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a b s t r a c t

In this paper, starting from the standard lattice BGK (LBGK) equation with an extended
equilibrium distribution and applying the multiscale Chapman–Enskog (CE) analysis, we
show theoretically that the correct Navier–Stokes (N–S) equations can be reproduced on
a non-standard rectangular grid, using only the BGK collision model. The parameters in
the extended equilibrium distribution are determined through an inverse design process.
This new LBGK model is then validated using two benchmark cases, i.e., the 2D decaying
Taylor–Green vortex flow and the lid-driven cavity flow. The accuracy and stability of the
new model are discussed. The new model clearly extends the standard LBGK model as it
was previously thought to be impossible to construct an LBGKmodel for the N–S equations
on a rectangular grid.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has been rapidly developed and widely used to simulate fluid flow problems in the
past three decades [1,2]. As an alternative scheme of solving the Navier–Stokes (N–S) equations, the LBM is usually designed
as a fully discretized version of the Boltzmann equation with a set of symmetric discrete velocities to ensure isotropy in
the kinetic theory. Therefore, for those flows with good isotropy, the method has been proven to have both accuracy and
efficiency [3–5]. On the other hand, anisotropic flows are far more common in both nature and industrial applications due
to the presence of solid boundaries. For example, in a channel flow, the presence of boundary layers requires a higher grid
resolution in the wall normal direction than in the streamwise direction. The standard LBM using a square or cubic lattice
is therefore computationally inefficient in treating such flows.

To date, several efforts have been devoted to develop lattice Boltzmann schemes on an irregular (i.e., nonuniform,
anisotropic) grid. Such efforts can roughly be divided into three groups. The first group makes use of spatial and
temporal interpolation schemes to transform the information from a regular lattice grid onto a computational grid where
the hydrodynamic variables are solved [6,7]. Although such schemes extended the implementation of LBM in some
respect, e.g., better boundary treatment [8], the accuracy of such models is still determined by the regular lattice so the
computational efficiency is not actually improved. Meanwhile, the interpolation usually introduces additional errors and
artificial dissipation to the system, which can further adversely affect the overall accuracy. The second group begins by
observing that the streaming step in LBM is not crucial to the recovery of the N–S equations. As can be clearly seen in the
Chapman–Enskog analysis, the essence of the streaming step is to recover the advection part in the N–S equations [9,10].
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Therefore, instead of performing the exact streaming, one may replace the streaming step in the standard LBM with other
treatments such as a finite-difference scheme, e.g. the Lax–Wendroff scheme. The exclusion of exact streaming releases
the constraint between lattice space and lattice time. Methods in this group, although overcoming the dependence on the
standard lattice, still have some drawbacks. First, since the mesoscopic lattice-particle streaming represents the natural
solution of the advection, the use of any finite difference scheme introduces artificial diffusion and dissipation which
deteriorate the accuracy of LBM. Second, these schemes are obviously computationally more expensive since local Taylor-
expansion is required at each node point. Third, these schemes could bring additional stability issue and data communication
requirement. The aforementionedmethods are not particularly developed for the implementation of LBM on an anisotropic
grid, they are not the optimal solution for such purpose.

Instead of modifying the streaming implementation, the third group of studies attempts to implement LBM on a
rectangular/cuboid grid through a redesign of the collision operator. Usually, the equilibrium states have to be modified so
that the standard lattice Boltzmann equation is preserved. Such methods make sense logically in that, since the lattice grid
is no longer geometrically isotropic, the equilibrium states must change accordingly. By redesigning the equilibrium, these
models are expected to preserve all the appealing features of the standard LBM, i.e., the inherent simplicity and accuracy of
LBM. The very first LBmodel of the third type on a D2Q9 rectangular lattice grid was proposed by Bouzidi et al. [11], with the
multiple relaxation-time (MRT) collision operator. Despite of their original and insightful idea, the resulting hydrodynamic
equations from their model failed to provide an isotropic viscosity, as shown in [12]. Later, Zhou designed two models with
both BGK [13] and MRT [14] collision operators on the same D2Q9 rectangular grid. However, neither of the models can
successfully recover the exact N–S equations [12,15]. The problemwas not solved until Zong et al. worked out a θ model [12].
In this θ model, the equilibriummoments for energy andnormal stresswere linearly combinedwith an adjustable parameter
θ to define two new equilibriummoments. Although this model works well for the MRT collision operator, it is not general
enough to be extended to the BGK collision operator. Compared with the MRT collision operator, the BGK collision model
with only one relaxation parameter was previously thought to be not flexible enough to overcome the anisotropy problem
induced into the hydrodynamic equations when a rectangular grid is employed [11,15]. This led Hegele et al. [16] to propose
a lattice BGK (LBGK)model based on a D2Q11 grid, i.e., the D2Q9 lattice rectangular grid (as shown in Fig. 1) plus 2 additional
velocities that align with e2 and e4 but with the speed doubled. The two additional distribution functions provide additional
degrees of freedom so the N–S equations can be reproduced. Jiang and Zhang [17] invented an orthorhombic LB model
on a 3D cuboid grid using the D3Q19 lattice. While the LBGK collision model is still used, the relaxation parameters for
different distribution functions were chosen differently. The physical basis for introducing different relaxation parameters
in this case is questionable. Themodel was shown to be stable only when the grid aspect ratio was in the narrow range from
0.8 to 1.25. Recently, we developed several new LBM-MRT models for the N–S equations on rectangular/cuboid grids by
introducing part of stress components into the equilibriummoments [18,19]. The idea of embedding stress elements in the
equilibrium comes from the early work of Inamuro [20], who attempted to enhance the stability of LBM by this approach,
and the related work on simulating non-Newtonian flows with LBM [21,22]. In these models, the added stress components
provide additional degrees of freedom to adjust the hydrodynamic diffusion transport coefficients. This implies a possibility
of realizing a correct hydrodynamic model on rectangular/cuboid grids even with the simple BGK collision model.

In this paper, we shall derive a model of this kind, on a two-dimensional rectangular lattice, by extending the form of
the equilibrium distribution. The multi-scale Chapman–Enskog analysis is used as an inverse design tool to construct the
correct N–S equations. All parameters in the equilibrium distribution can either be uniquely determined or classified as free
parameters. Themodel is then validated using two benchmark problems, i.e., the 2D decaying Taylor–Green vortex flow and
2D lid-driven cavity flow. To our knowledge, the resulting model is the first lattice BGK model on a D2Q9 rectangular grid
that is fully consistent with the N–S equations.

2. The extended equilibrium distribution

The LBMevolution equation can be viewed as a fully discretized version of the Boltzmann equation in time, physical space
and molecular velocity space (i.e., the mesoscopic, phase space). Different from the conventional CFDmethods based on the
N–S equations, in LBMwe solve the kinetic equation of the lattice-particle distribution functions, fi (x, t), at position x, time
t , with particle velocity ei. The standard LB equation with the single-relaxation-time or BGK collision term is written as

fi (x + eiδt , t + δt) − fi (x, t) = −
1
τ


fi (x, t) − f (eq)

i (x, t)

, (1)

where δt is the time step size, τ is a dimensionless relaxation time (i.e., relaxation time normalized by δt ), f
(eq)
i is the corre-

sponding equilibriumdistribution. In order to give a clear interpretation of ourmodel, fromnowonwe adopt simultaneously
two different unit systems to present the variables and parameters in our model. The first assumes that all quantities are
presented in the lattice units, which is often used by the LBM community. In this approach, one may view that all quantities
are essentially normalized by the speed of sound cs =

√
RT and the inter-particle collision time δt ∼ lm/cs, where T is the

temperature, R is the specific gas constant, and lm is the mean free path. The second system retains the actual physical units,
which allows us to check physical consistency. In the above equation, the discrete distributions fi and f (eq)

i both have the
unit of density (kg/m3), δt has the unit of time (s).
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Fig. 1. The D2Q9 rectangular lattice grid.

The number of discrete velocities, ei, in LBM depends on the model details and dimensionality of the physical space.
In this paper, we consider the 2-dimensional, 9-velocity model, known as the D2Q9 lattice. A rectangular D2Q9 lattice are
shown in Fig. 1, where the 9 discrete velocities are expressed as

ei =


(0, 0)c, i = 0,

(±1, 0)c, i = 1, 3,
(0, ±a)c, i = 2, 4,

(±1, ±a)c, i = 5 − 8,

(2)

where a = δy/δx is the grid aspect ratio for the rectangular lattice, c = δx/δt is the lattice velocity (m s−1) in the x direction,
δx (m) and δy (m) are lattice spacing in the x and y directions, respectively. In the standard BGK model, where the square
lattice (i.e., a = 1) is applied, the equilibrium distribution f (eq)

i , with He–Luo’s incompressible-flow preconditioning [23],
usually assumes the following form

f (eq)
i = wi


δρ + ρ0


3
c2

(ei · u) +
9
2c4

(ei · u)2 −
3
2c2

(u · u)


, (3)

where δρ (kg m−3) and u = (u, v) (m s−1), are the local density fluctuation and velocity, respectively. ρ0 (kg m−3) is the
average density, and wi is the weighting factors that can be obtained from the Gauss–Hermite quadrature and are given as

wi =

 4/9, i = 0,
1/9, i = 1 − 4,
1/36, i = 5 − 8.

(4)

In order to extend the standard LBM to a rectangular lattice, we extend the form of equilibrium distribution to contain
both the leading-order and the next-order components as

f (eq)
i = f (eq,0)

i + ϵf (eq,1)
i , (5)

where ϵ is a small non-dimensional parameter that is related to the Knudsen number. The consequence of the above
extended design will be discussed in Section 3.

The general form of the extended equilibrium at the leading order must be designed such that it will reduce to Eq. (3)
when a = 1. Therefore, f (eq,0)

i is extended to read as

f (eq,0)
i =



α0δρ +
ρ0

c2

β0u2

+ γ0v
2 , i = 0,

α1δρ +
ρ0

c2

θ1eixu + β1u2

+ γ1v
2 , i = 1, 3,

α2δρ +
ρ0

c2

θ2eiyv + β2u2

+ γ2v
2 , i = 2, 4,

α5δρ +
ρ0

c2


θ5

eixu + eiyv


+ β5u2

+ γ5v
2
+ χ5

eixeiy
c2

uv

, i = 5 − 8,

(6)

where the coefficientsαk,βk, γk, (k = 0, 1, 2, 5), θl, (l = 1, 2, 5) andχ5 are all non-dimensional parameters to be determined,
and eix and eiy are the x- and y-components of ei, respectively.While Eq. (6)might appear to bemuchmore complicated than
Eq. (3), it is an explicit expansion of the latter with generalized weighting factors. Due to the anisotropic discrete velocities
in different spatial directions, the equilibrium distribution for i = 1, 3 is expected to be different from those for i = 2, 4.
The form for f (eq,1)

i is kept undefined at this stage.
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The extended equilibrium distribution is assumed to have the following properties:

1. The higher-order addition f (eq,1)
i shall have no effect on the conserved moments (local density, velocity), i.e.,

i

f (eq,0)
i = δρ,


i

f (eq,1)
i = 0, (7a)

i

f (eq,0)
i eix = ρ0u1 ≡ ρ0u,


i

f (eq,1)
i eix = 0, (7b)

i

f (eq,0)
i eiy = ρ0u2 ≡ ρ0v,


i

f (eq,1)
i eiy = 0. (7c)

2. f (eq,1)
i is introduced to restore the isotropy of viscosity that was violated in some previous rectangular-lattice models
[12,15]. The following requirement for f (eq,0)

i ensures that the Euler equations will be unaffected.
i

f (eq,0)
i eiαeiβ = c2s δρδαβ + ρ0uαuβ , (8)

where the subscript i (i = 0, 1, . . . , 8) refers to different particles, and roman subscripts α and β (α, β = 1, 2) denote
spatial directions. cs is the speed of sound (m s−1). It is noteworthy that, in our rectangular lattice model, we view the speed
of sound cs as another undetermined parameter, as in the MRT models [24,12,18]. In the regular BGK model, however, cs
is not a free parameter. It has to be set to 1/

√
3 in order to reproduce correct fluid hydrodynamics consistent to the N–S

equations.

3. Inverse design by the multiscale Chapman–Enskog analysis

In Section 2, we have set the stage for an LBGKmodel on a rectangular lattice. In this section, we shall apply themultiscale
Chapman–Enskog analysis to determine themodel details so that the model will be fully consistent with the N–S equations.
The formof f (eq,1)

i will be determined using the idea of inverse design, with themodel hydrodynamic equationsmatching the
N–S equations. The inverse design approach maximizes the model flexibility and capability, as demonstrated in [12,18,19].

The Taylor expansion of the left hand side of Eq. (1) yields

δt (∂t + ei · ∇) fi +
δ2
t

2
(∂t + ei · ∇)2 fi + O


δ3
t


= −

1
τ


fi − f (eq)

i


. (9)

Under themultiscale Chapman–Enskog expansion, wewrite fi = f (0)
i +ϵf (1)

i +ϵ2f (2)
i +· · · , ∂t = ϵ∂t1 +ϵ2∂t2, and∇ = ϵ∇1.

Substituting these into Eq. (9) and making use of Eq. (5), we obtain equations at different orders of ϵ as

O (1) : f (0)
i = f (eq,0)

i , (10a)

O (ϵ) : δt (∂t1 + ei · ∇1) f
(0)
i = −

1
τ


f (1)
i − f (eq,1)

i


, (10b)

O

ϵ2

: δt∂t2f
(0)
i + δt


1 −

1
2τ


(∂t1 + ei · ∇1) f

(1)
i +

δt

2τ
(∂t1 + ei · ∇1) f

(eq,1)
i = −

1
τ
f (2)
i . (10c)

Using Eq. (10a) and the moment conditions of f (eq,0)
i as stated in Section 2, the moment equations of Eq. (10b) at the zeroth

and first orders can be obtained as

∂t1δρ + ∂1α (ρ0uα) = 0, (11a)

∂t1ρ0uα + ∂1β

c2s δρδαβ + ρ0uαuβ


= 0, (11b)

which are the leading-order continuity equation and the Euler equations.
Next, we proceed to the O


ϵ2

equations. The moment equations of Eq. (10c) at the zeroth and first order are

∂t2δρ = 0, (12a)

∂t2ρ0uα +


1 −

1
2τ


∂1β


i

f (1)
i eiαeiβ +

1
2τ

∂1β


i

f (eq,1)
i eiαeiβ = 0. (12b)

Eqs. (12a) and (11a) together recover the full continuity equation, while Eq. (12b) should be designed to reproduce the N–S
equations.

Eq. (12b) contains f (1)
i and f (eq,1)

i , both are not known at this stage. However, Eq. (10b) can be used to relate the two as
follows,

f (1)
i = f (eq,1)

i − τδt


∂t1f

(eq,0)
i + ei · ∇1f

(0)
i


. (13)
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Multiplying Eq. (13) by eiαeiβ and summing over i, then we can express the second term in Eq. (12b) as


i

f (1)
i eiαeiβ =


i

f (eq,1)eiαeiβ − τδt


∂t1


i

f (eq,0)
i eiαeiβ + ∂1γ


i

f (eq,0)
i eiαeiβeiγ


. (14)

For the D2Q9 rectangular lattice and using Eq. (6), the above equation can be explicitly expanded as
i

f (1)
i eixeix =


i

f (eq,1)
i eixeix − τδt


∂t1

c2s δρ


+ c2∂1x (ρ0u) + c2∂1y


4θ5a2ρ0v


, (15a)

i

f (1)
i eixeiy =


i

f (eq,1)
i eixeiy − τδt


c2∂1x


4θ5a2ρ0v


+ c2∂1y


4θ5a2ρ0u


, (15b)

i

f (1)
i eiyeiy =


i

f (eq,1)
i eiyeiy − τδt


∂t1

c2s δρ


+ c2∂1x


4θ5a2ρ0u


+ c2∂1y


a2ρ0v


. (15c)

In the above equations, terms of order O

Ma3


or higher have already been eliminated.

Substituting Eq. (15) in Eq. (12b), we obtain

ϵ2∂t2ρ0u + A1,add =


τ −

1
2


ρ0δt


∂x

c2 − c2s


∂xu +


4θ5c2a2 − c2s


∂yv


+ ∂y

∂x

4θ5c2a2v


+ ∂y


4θ5c2a2u


, (16a)

ϵ2∂t2ρ0v + A2,add =


τ −

1
2


ρ0δt


∂x

∂x

4θ5c2a2v


+ ∂y


4θ5c2a2u


+ ∂y


4θ5c2a2 − c2s


∂xu +


c2a2 − c2s


∂yv


, (16b)

where A1,add and A2,add represent contributions from ϵf (eq,1)
i which are

A1,add = ∂x


i

ϵf (eq,1)
i eixeix


+ ∂y


i

ϵf (eq,1)
i eixeiy


, (17a)

A2,add = ∂y


i

ϵf (eq,1)
i eiyeiy


+ ∂x


i

ϵf (eq,1)
i eixeiy


. (17b)

In writing Eq. (16), we have added ϵ2 back and have converted the spatial derivatives in the expanded form, back to the
original variables (i.e. ∂1x back to ∂x). As mentioned before, the design goal is that these two equations should recover all
viscous stress components of the N–S equations, which read as

ϵ2∂t2ρ0u = ρ0

∂x


νV
+ ν


∂xu +


νV

− ν

∂yv

+ ∂y


ν

∂xv + ∂yu


, (18a)

ϵ2∂t2ρ0v = ρ0

∂x

ν

∂xv + ∂yu


+ ∂y


νV

− ν

∂xu +


νV

+ ν

∂yv


, (18b)

where ν (m2 s−1) and νV (m2 s−1) are the kinematic shear and bulk viscosities, respectively.
Combining Eq. (18) and the leading-order Euler equations, Eq. (11b), will recover the exact N–S equations. A comparison

of Eqs. (16) and (18) clearly indicates why the previous BGKmodel of Zhou [13] fails to reproduce the correct N–S equations.
In the absence of contributions from ϵf (eq,1)

i , the isotropic form of the stress tensor cannot be restored unless a = 1, i.e., the
square lattice grid is used. A similar conclusion was made in [15] regarding Zhou’s BGK model.

Since the RHS of Eq. (16) fails tomatch the RHS of Eq. (18), the additional terms A1,add and A2,add have to be used to restore
the correct N–S equations. A close inspection of Eqs. (17a) and (17b) suggests that the first terms of both Eqs. (17a) and (17b)
contribute to the diagonal strain rate while the second terms can be used to alter the deviatoric strain rate. Therefore, the
following specific forms are proposed for individual parts of ϵf (eq,1)

i ,

ϵf (eq,1)
0 = ρ0δt


ω0x∂xu + ω0y∂yv


, (19a)

ϵf (eq,1)
1,3 = ρ0δt


ω1x∂xu + ω1y∂yv


, (19b)

ϵf (eq,1)
2,4 = ρ0δt


ω2x∂xu + ω2y∂yv


, (19c)

ϵf (eq,1)
5,6,7,8 = ρ0δt


ω5x∂xu + ω5y∂yv + ω5s

eixeiy
c2


∂xv + ∂yu


, (19d)

where additional coefficients ωk are dimensionless and will be determined later.
Several important comments can bemade on the proposed expressions. First, only Eq. (19d) contains a term related to the

deviatoric strain rate, since the counterparts in the other three equations make no contribution to the second parts of A1,add
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and A2,add due to zero particle velocity or symmetry. Second, the coefficient of such deviatoric term must contain eixeiy in
order to keep the conserved moments unaffected. Third, although f (eq,1)

0 does not affect isotropy (it makes no contribution
to A1,add and A2,add), it does affect the distribution of stress components in different directions by the constraint of mass
conservation (Eq. (7a)). In the present model, we keep this term nonzero, as done in [22] to ensure mass conservation. Our
formulation of Eq. (19), however, is more general than that in [22], in the sense that keeping f (eq,1)

0 nonzero is not solely
due to the mass-conservation requirement, but is designed to preserve more degrees of freedom that potentially benefits
the stability of the model. Finally, it is important to realize that there is more than one way to design Eq. (19) to match
the N–S equations as long as certain constraints are satisfied. These design details may affect the numerical stability of the
model. How to optimize the design is beyond the scope of this work. For demonstrative purpose, only the design in Eq. (19)
is considered.

Substituting Eq. (19) into Eq. (17) and then the results into Eq. (16), we obtain

ϵ2∂t2ρ0u = ρ0δt∂y


4θ5c2a2


τ −

1
2


− 4c2a2ω5s

 
∂xv + ∂yu


+ ρ0δt∂x


τ −

1
2

 
c2 − c2s


− c2 (2ω1x + 4ω5x)


∂xu

+


τ −

1
2

 
4θ5c2a2 − c2s


− c2


2ω1y + 4ω5y


∂yv


, (20a)

ϵ2∂t2ρ0v = ρ0δt∂x


4θ5c2a2


τ −

1
2


− 4c2a2ω5s

 
∂xv + ∂yu


+ ρ0δt∂y


τ −

1
2

 
4θ5c2a2 − c2s


− c2a2 (2ω2x + 4ω5x)


∂xu

+


τ −

1
2

 
c2a2 − c2s


− c2a2


2ω2y + 4ω5y


∂yv


. (20b)

A comparison of Eqs. (20) and (18) now yields the following 5 expressions
τ −

1
2


1 −

c2s
c2


− (2ω1x + 4ω5x) =

νV
+ ν

c2δt
, (21a)

τ −
1
2


4θ5a2 −

c2s
c2


−

2ω1y + 4ω5y


=

νV
− ν

c2δt
, (21b)

τ −
1
2


4θ5a2 −

c2s
c2


−

2a2ω2x + 4a2ω5x


=

νV
− ν

c2δt
, (21c)

τ −
1
2


a2 −

c2s
c2


−

2a2ω2y + 4a2ω5y


=

νV
+ ν

c2δt
, (21d)

4θ5a2


τ −
1
2


− 4a2ω5s


=

ν

c2δt
. (21e)

Essentially, these equations provide additional constraints that can be used to determine the coefficients of the extended
equilibrium distribution in Eq. (19).

The last equation in Eq. (21) is the only equation obtained by matching the shear stress components. As in our previous
studies [18,19], this equation provides a relationship between relaxation parameter τ and the viscosity. To simplify, we set
4a2ω5s = λ and 4θ5a2 = γ (namely, converting two dimensionless parameters ω5s and θ5 to two alternative dimensionless
parameters λ and γ ), then the shear viscosity is

ν =


τ −

1
2


γ − λ


c2δt . (22)

The other equations in Eq. (21) guarantee the isotropy of bulk and shear viscosities.
So far, we have introduced 25 coefficients in Eqs. (19) and (6): α0, α1, α2, α5, β0, β1, β2, β5, γ0, γ1, γ2, γ5, θ1, θ2, θ5 (replaced

by γ ),χ5,ω0x,ω1x,ω2x,ω0y,ω1y,ω2y,ω5x,ω5y, andω5s (replaced byλ). Togetherwith cs and τ that appear in the hydrodynamic
equations, we have 27 parameters in total. To specify these parameters, we simply recall all the identities about conserved
moments in Eqs. (7) and (8), and the isotropy constraints in Eq. (21). Together they form a total of 19 constraints: namely, 7
from Eq. (7), 7 from Eq. (8), and 5 from Eq. (21). Therefore, 8 parameters are free, and they are chosen to be α5, β5, γ5, ω5x,
ω5y, γ , cs and τ . Then the other 19 parameters can be determined in terms of the physical parameters (ν, νV ), these eight
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free parameters, plus the model coefficients (a, c , δt ) as

α0 = 1 + 4α5 −


a2 + 1


c2s

c2a2
, α1 =

c2s
2c2

− 2α5, α2 =
c2s

2c2a2
− 2α5,

β0 = 4β5 − 1, β2 = −2β5, β1 = 1/2 − 2β5,

γ0 = 4γ5 − 1/a2, γ1 = −2γ5, γ2 = 1/

2a2

− 2γ5,

θ1 = 1/2 − γ /

2a2

, θ2 = (1 − γ ) /


2a2

, θ5 = γ /


4a2

,

ω0x = 4ω5x +
1

a2c2δt


a2 + 1


νV

+

a2 − 1


ν

−


τ −

1
2


1 +

γ

a2
−


a2 + 1


c2s

a2c2


,

ω0y = 4ω5y +
1

a2c2δt


a2 + 1


νV

−

a2 − 1


ν

−


τ −

1
2


1 + γ −


a2 + 1


c2s

a2c2


,

ω1x =


τ

2
−

1
4


1 −

c2s
c2


−

1
2c2δt


νV

+ ν

− 2ω5x,

ω2x =
1
a2


τ

2
−

1
4


γ −

c2s
c2


−

1
2c2a2δt


νV

− ν

− 2ω5x,

ω1y =


τ

2
−

1
4


γ −

c2s
c2


−

1
2c2δt


νV

− ν

− 2ω5y,

ω2y =
1
a2


τ

2
−

1
4


a2 −

c2s
c2


−

1
2c2a2δt


νV

+ ν

− 2ω5y,

ω5s =
γ

4a2


τ −

1
2


−

ν

4c2a2δt
,

χ5 = 1/

4a2

.

(23)

The remaining task is to reduce the 8 free parameters down to a smaller number. From Eq. (23), it is reasonable to assume
that

α5 = α5

c2s , a


, γ5 = γ5 (a) , β5 = constant,

ω5x = ω5x

a, cs, ν, νV , τ


, ω5y = ω5y


a, cs, ν, νV , τ


.

(24)

Furthermore, when a = 1 and c2s = 1/3, αk, βk and γk should recover the exact coefficients in the LBGK model. Therefore,
we propose the following five constraints

α5 =


a2 + 1


c2s

6a2c2
−

1
12

, γ5 =
1
6a2

−
1
12

, β5 =
1
12

,

ω5x =
1
6


τ −

1
2


1 +

γ

a2
−


a2 + 1


c2s

a2c2


−

1
a2c2δt


a2 + 1


vV

+

a2 − 1


ν


,

ω5y =
1
6


τ −

1
2


1 + γ −


a2 + 1


c2s

a2c2


−

1
a2c2δt


a2 + 1


vV

−

a2 − 1


ν


.

(25)

It follows that the bulk viscosity can be expressed as

νV
=


τ −

1
2


a2 (1 − γ ) + 2γ

a2 + 1
 −

c2s
c2


+


a2 − 1


λ

a2 + 1
 −

6ω5xa2
a2 + 1

 c2δt . (26)

At this point, we have provided a possible (although it is not unique) way to specify all the 25 parameters we introduced
in Eqs. (6) and (19), as functions of only three free parameters γ , τ and cs. When the grid aspect ratio a is chosen, we can tune
these three parameters (as well as α5, γ5, β5, ω5x and ω5y if Eq. (25) is replaced by some alternative choices) to optimize the
stability of the model. The same number of additional degrees of freedom, relative to the standard LBGK, is also found in our
extendedMRTmodel, as demonstrated in [18]. It is well known that the regular BGKmodel has less degrees of freedom than
its MRT counterparts, however, in light of the comparison with ourMRT implementation [18], the same conclusion does not
apply to the present BGK model. In the extended MRT model designed for a rectangular lattice [18], after considering the
constraints that restore the isotropic viscosity, there are still 5 free parameters. In the present model, due to the redesign of
the equilibriumdistribution, we have 8 free parameters, which ismore than 5 in the extendedMRTmodel. In theMRTmodel
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on a rectangular lattice [12], we reduced 2 free parameters (s∗n and s∗e ) by introducing the relationship between relaxation
parameters as additional constraints Similar reduction has been done here to get rid of α5, β5, γ5, ω5x and ω5y, which also
reduce the number of degrees of freedom to 3.

In summary, we have presented a detailed Chapman–Enskog analysis of a new LBGK model on a rectangular lattice that
is fully consistent with the N–S equations. The key is to include the strain rate components in the equilibrium distribution.
To maintain accuracy of the present model, the strain rate should be calculated mesoscopically in terms of the distribution
functions directly, instead of taking finite difference approximation in the physical space. Similar to the lattice BGK model,
the strain rate tensor in the present model can be obtained from the non-equilibrium distribution function. Taking the
second-order moments of Eq. (10b), we obtain

c1∂xu + c2∂yv = −
1

ρ0c2δt


i

fieixeix −

c2s δρ + ρ0u2 , (27a)

c3∂xu + c4∂yv = −
1

ρ0c2δt


i

fieiyeiy −

c2s δρ + ρ0v

2 , (27b)

c5

∂xv + ∂yu


= −

1
ρ0c2δt


i

fieixeiy − ρ0uv


, (27c)

where

c1 =
1
2


1 −

c2s
c2


+


νV

+ ν

c2δt


, c2 =

1
2


γ −

c2s
c2


+


νV

− ν

c2δt


,

c3 =
1
2


γ −

c2s
c2


+


νV

− ν

c2δt


, c4 =

1
2


a2 −

c2s
c2


+


νV

+ ν

c2δt


,

c5 =
1
2
γ +

ν

c2δt
.

To explicitly obtain all strain rate components, the coefficient matrix from Eqs. (27a) and (27b) should have a non-zero
determinant, which states:

c2s
c2

≠
c4δ2

t


a2 − γ 2


+ 2c2δt


1 − 2γ + a2


νV

+

1 + 2γ + a2


ν

+ 16νVν

8νc2δt + 2c4δ2
t

1 + a2 − 2γ

 . (28)

Meanwhile, the coefficient on the LHS of Eq. (27c) also needs to be non-zero, thus

γ ≠ −
2ν
c2δt

. (29)

Since these two are inequalities, they do not usually represent separate constraints. Clearly, these equations determine three
strain-rate components ∂xu, ∂yv, (∂xv + ∂yu)/2, as

∂xu = −
1

ρ0c2δt (c2c3 − c1c4)


c3


i

fieixeix −

c2s δρ + ρ0u2

− c1


i

fieiyeiy −

c2s δρ + ρ0v

2 (30a)

∂yv = −
1

ρ0c2δt (c2c3 − c1c4)


c2


i

fieiyeiy −

c2s δρ + ρ0v

2
− c4


i

fieixeix −

c2s δρ + ρ0u2 (30b)

1
2


∂xv + ∂yu


= −

1
2c5ρ0c2δt


i

fieixeiy − ρ0uv


(30c)

which maintain the mesoscopic nature of the whole model.
To facilitate implementation of the proposed model, we restate all necessary model details in Appendix.
Comparing to the standard lattice BGK model on a square lattice grid, the present model has several appealing features.

First, the bulk viscosity and shear viscosity can be different in the presentmodel, as shown in Eqs. (26) and (22), respectively.
This feature provides the present model an additional degree of freedom that can be used to enhance numerical stability,
as in the MRT models [24,25]. Second, two parameters γ and λ, with one being a free parameter per Eq. (23), can be tuned
to release the usual restriction that the shear viscosity ν is solely determined by the relaxation parameter τ . This feature
allows the model to simulate high Reynolds number flows with moderate τ , as in the earlier work of Inamuro [20]. Finally,
the value for cs is also a tunable parameter, allowing the present model to have another degree of freedom that can be used
to further improve the numerical stability.
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4. Numerical validations

In this section, the new model will be validated by simulating two benchmark cases: the 2D decaying Taylor–Green
vortex flow and the lid-driven cavity flow.

4.1. Decaying Taylor–Green vortex flow

The 2D Taylor–Green vortex flow is a field of structured vortices that maintain the velocity and pressure distributions
in a periodic domain but with their magnitudes decaying in time. This flow is an analytical solution of the incompressible
Navier–Stokes equations and its velocity and pressure fields are

u (x, y, t) = −U0 cos

2π
L

x

sin

2π
H

y

e−k2νt , (31a)

v (x, y, t) =
H
L
U0 cos


2π
H

y

sin

2π
L

x

e−k2νt , (31b)

p (x, y, t) = −
1
4
U2
0


cos


2π
L

x


+


H
L

2

cos

2π
H

y


e−2k2νt
+ P0, (31c)

where L and H are the domain size in x and y direction, respectively. U0 is the characteristic velocity magnitude while P0 is

the background pressure. The wave number k is defined as k = 2π


1
L2

+
1
H2 .

Here we consider a square domain with L = H and assume P0 = 0, Eq. (31) can be simplified as

u (x, y, t) = −U0 cos

2πx
L


sin

2πy
L


e−

8π2νt
L2 , (32a)

v (x, y, t) = U0 cos

2πy
L


sin

2πx
L


e−

8π2νt
L2 , (32b)

p (x, y, t) = −
1
2
U2
0 cos


2π
L

(x − y)

cos


2π
L

(x + y)

e−

16π2νt
L2 . (32c)

For an unsteady flow problem such as the Taylor–Green flow, inappropriate specification of the initial distribution
functions will have long-term negative impacts on the accuracy of the simulation [26]. Following [26], the initial
distributions are iterated as follows:

1. Begin with the initial distribution functions defined as fi (x, 0) = f (eq)
i


δρ (x, 0) ,u (x, 0) , ∂αuβ (x, 0)


, where

δρ (x, 0) = p (x, 0) /c2s .
2. Evolve the distributions for one time step, by applying the collision and streaming at all lattice nodes. Update the

hydrodynamic variables and denote them as δρ (x, δt) and u (x, δt).
3. Construct a new set of the initial distributions by restoring themomentummoments back to its initial values, as follows:

ϵf (1)
i (x, 0) ≈ fi (x, δt) − f (eq,0)

i [δρ (x, δt) ,u (x, δt)] + O

ϵ2 , (33a)

fi (x, 0) = ϵf (1)
i (x, 0) + f (eq,0)

i [δρ (x, δt) ,u (x, 0)] . (33b)

4. Calculate the strain rate tensor (∂βuα + ∂αuβ)/2 using Eq. (27). If both pressure and each term in the strain rate tensor
converge, then end the iteration, otherwise repeat Steps (2)–(3).

It shall be noted that although in this case, the initial pressure field is known theoretically, it may not be fully consistent with
the LBGK equation that corresponds to the weakly compressible N–S equations. Therefore, unlike the initial velocity field,
the initial pressure field is not used as a constraint in the iteration process of initial distribution functions. Three different
grid aspect ratios (i.e., a = 0.8, 0.5, 1/3) are tested for model validations. The simulation parameters in each case are listed
in Table 1. In addition, for the grid aspect ratio of a = 0.5, two cases at higher flow Reynolds numbers (Re = 1000 and 2000)
are also simulated to test the numerical stability of the present model, using the same grid resolution.

First, we compare the velocity and pressure profiles of different cases along a vertical line across the flow domain. For
different cases, the numbers of grid points are identical in the x direction, so we can compare the velocity at exactly the
same x location without interpolation. The horizontal location x = 0.1475L is chosen for comparison. At different times
(t∗ = tν/L2), the normalized u, v and p profiles are presented and compared with the theoretical solutions in Figs. 2–4,
respectively. It is shown that all the profiles match perfectly with the theoretical solutions. Specifically, in the Taylor–Green
flow, the correct results for pressure indicate that themodel has an isotropic viscosity, as illustrated in [18]. It is worth noting
that, even in the last three cases where the viscosity is small, we can choose a nonzero λ to keep the relaxation parameter
τ close to one for better numerical stability. It should be noted that, for rectangular lattice models, the speed of sound cs



C. Peng et al. / Computers and Mathematics with Applications 78 (2019) 1076–1094 1085

Table 1
The parameter settings in the simulations for the 2D Taylor–Green vortex flow (in lattice units).

Case # Re ν νV U0 a nx × ny γ c2s λ τ

1 100 0.2 0.2 0.1 0.8 200 × 250 1/3 1/3 0 1.1
2 100 0.1 0.1 0.05 0.5 200 × 400 0.18 0.15 0 1.0556
3 100 0.04 0.04 0.02 1/3 200 × 600 0.035 0.04 −0.0225 1.0
4 1000 0.01 0.01 0.05 0.5 200 × 400 0.18 0.20 0.1 1.1111
5 2000 0.08 0.008 0.08 0.5 200 × 400 0.18 0.215 0.1 1.1

Fig. 2. The u profiles on a vertical line at x/L = 0.1475, at t∗ = 0.005 and t∗ = 0.01: (a) Case 1, Case 2 and Case 3, (b) Case 4 and Case 5.

Fig. 3. The v profiles on a vertical line at x/L = 0.1475, at t∗ = 0.005 and t∗ = 0.01: (a) Case 1, Case 2 and Case 3, (b) Case 4 and Case 5.

is affected by the value of a as some lattice particles have a velocity equal to a. In general, when cs is reduced, U0 must be
reduced as well to maintain a small Mach number.

Next, we examine the normal stress profiles along the same vertical line. The shear stress is not discussed here since it
is identically zero in the Taylor–Green flow. From Eq. (20), we can compute the normal stress components τxx and τyy as

τxx =
1
2
ρ0


τ −

1
2


δt

1 − 4θ5a2


−

2ω1x + 4ω5x − 2ω1y − 4ω5y

 
∂xu − ∂yv


= ρ0ν1


∂xu − ∂yv


, (34a)

τyy =
1
2
ρ0


τ −

1
2


δt

a2 − 4θ5a2


−

2a2ω2y + 4a2ω5y − 2a2ω2x − 4a2ω5x

 
∂yv − ∂xu


= ρ0ν2


∂yv − ∂xu


(34b)
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Fig. 4. The pressure profiles on a vertical line at x/L = 0.1475, at t∗ = 0.005 and t∗ = 0.01: (a) Case 1, Case 2 and Case 3, (b) Case 4 and Case 5.

where ν1 and ν2 are defined as the effective shear viscosities in the x and y direction, respectively, as in the previous
works [11,12,18]. For each grid aspect ratio a, such profiles at different times are presented in Fig. 5, Fig. 6 (Case 4 is not
presented due to the space limitation.) and Fig. 7, respectively. As clearly illustrated in Figs. 5–7, the normal stress profiles for
all casesmatch perfectly with the theory. Particularly, since the two effective viscosities are perfectly equal in ourmodel, τxx
and τyy cancel exactly and their sum is zero. This is confirmed, showing that the isotropy is fully restored in thepresentmodel.

It is well known that the standard LBGK model has a second-order accuracy for both velocity [27] and strain rate [28],
and a first-order accuracy for pressure [29]. The accuracy of the present model is also tested with different grid aspect ratios
in the Taylor–Green vortex flow. Here we again choose grid aspect ratios at a = 0.5 and a = 1/3. (Case 1 is not presented
due to the difficulty of arranging grid points.) For each aspect ratio, we fix the flow Reynolds number (Re = 10) and apply
the same parameters for ν, νV , γ , and c2s as in Table 1. Four different grid resolutions are considered. The L1 and L2 errors

εL1 (t) =


x,y

|qn − qt |
x,y

|qt |
, (35a)

εL2 (t) =


x,y

|qn (x, y, t) − qt (x, y, t) |2
x,y

|qt (x, y, t) |2
, (35b)

are presented in Tables 2 and 3, respectively. Here qn and qt are the numerical and corresponding theoretical results
of velocity u or normal stress τxx. Due to the unsteadiness of the Taylor–Green flow, both L1 and L2 errors are time-
dependent. For fair comparisons, all the results are calculated at the half-life time tH per the analytical solution by setting
u (x, tH) = 0.5u (x, 0) or −8π2νtH/L2 = ln 0.5. Roughly speaking, the present model maintains an overall second-order
accuracy for both the velocity and the normal stress, as well as the first-order accuracy for pressure. However, significant
oscillations of convergence rates are observed for pressure and velocity. Such oscillation is very likely caused by the acoustic
waves that due to the weakly compressible nature of LBE. The initialization errors of distribution functions could also play a
role in causing the oscillations. On the other hand, since the normal stress determined by the non-equilibrium distribution
functions is less affected by the pressure and velocity, the level of oscillations in its convergence rate is much smaller.

Finally, the time-dependent direction-partitioned kinetic energy ratio R (t)

R (t) =
⟨u (t)2⟩
⟨v (t)2⟩

(36)

is examined. The angle brackets indicate the average over the whole domain. The theoretical value of R is one and is
independent of time, since the velocities in the two directions decay at the same rate. In Fig. 8, this kinetic energy ratios
are presented for both cases. For comparison, the counterpart results based on Bouzidi’s MRT model [11] are added to the
same plot.

Clearly, Fig. 8 shows that the results based on the present model (three red curves) match well with the theoretical value
of one for all grid aspect ratios. In contrast, Bouzidi’s model, as pointed out in [12,18], presents clear anisotropy leading to
deviations from one. As mentioned before, the small oscillations in the red curves could be related to the acoustic waves
propagating and bouncing in the domain, which is also observed in the standard lattice Boltzmann simulations [26,18].
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Fig. 5. The normalized normal stress profiles on a vertical line at x/L = 0.1475, for t∗ = 0.005 and t∗ = 0.01. The grid aspect ratio a = 0.8.

Fig. 6. The normalized normal stress profiles on a vertical line at x/L = 0.1475, for t∗ = 0.005 and t∗ = 0.01. The grid aspect ratio a = 0.5: (a) Case 2,
(b) Case 5.

Fig. 7. The normalized normal stress profiles on a vertical line at x/L = 0.1475, for t∗ = 0.005 and t∗ = 0.01. The grid aspect ratio a = 1/3.

Such small oscillations of velocity are consistent with the oscillatory nature of the convergence rate for velocity shown in
Tables 2 and 3.
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Table 2
The L1 and L2 errors and convergence orders of the velocity, normal stress and pressure with a = 0.5, at half-life time.

nx × ny u (L1) Order u (L2) Order τxx (L1) Order τxx (L2) Order

50 × 100 1.734E−3 (−) 1.994E−3 (−) 3.355E−3 (−) 3.266E−3 (−)
100 × 200 3.163E−4 2.455 3.212E−4 2.634 8.604E−4 1.963 8.359E−4 1.966
200 × 400 9.523E−5 1.732 1.088E−4 1.562 2.114E−4 2.025 2.056E−4 2.024
400 × 800 2.105E−5 2.178 2.386E−5 2.189 5.288E−5 1.999 5.136E−5 2.001
Overall 2.122 2.128 1.996 1.997

nx × ny p (L1) Order p (L2) Order

50 × 100 5.934E−2 (−) 6.103E−2 (−)
100 × 200 3.578E−2 0.730 3.744E−2 0.705
200 × 400 1.713E−2 1.063 1.735E−2 1.110
400 × 800 9.759E−3 0.812 1.036E−2 0.744
Overall 0.868 0.853

Table 3
The L1 and L2 errors and convergence orders of the velocity, normal stress and pressure with a = 1/3, at half-life time.

nx × ny u (L1) Order u (L2) Order τxx (L1) Order τxx (L2) Order

50 × 150 9.689E−3 (−) 9.719E−2 (−) 1.352E−3 (−) 1.273E−3 (−)
100 × 300 4.626E−3 1.067 4.633E−3 1.069 3.074E−4 2.137 2.925E−4 2.122
200 × 600 2.149E−4 4.428 2.295E−4 4.335 8.943E−5 1.781 8.400E−5 1.800
400 × 1200 2.897E−4 −0.431 2.900E−4 −0.338 1.975E−5 2.179 1.870E−5 2.167
Overall 1.688 1.689 2.032 2.030

nx × ny p (L1) Order p (L2) Order

50 × 150 5.435E−2 (−) 5.167E−2 (−)
100 × 300 4.332E−2 0.327 4.550E−2 0.184
200 × 600 5.921E−3 2.871 6.235E−3 2.867
400 × 1200 1.001E−2 −0.757 9.740E−3 −0.644
Overall 0.814 0.802

Fig. 8. The kinetic energy ratio R as a function of time, for different grid aspect ratios (Case 1, Case 2 and Case 3). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

4.2. Lid-driven cavity flow

The presentmodel is also tested in the lid-driven cavity flowwith solid boundaries. In order to apply themid-link bounce
back, the boundary grid points are placed half lattice length (1/2 or a/2 depends on the spatial direction) from the solidwall.
At the top moving lid, a bounce-back scheme may be stated as

fī (xb, t + δt) = f̃i (xb, t) +


f (eq)
ī

(uw, δρw) − f (eq)
i (uw, δρw)


= f̃i (xb, t) + 2ρ0θ5


eī · uw


(37)

where uw and δρw are the velocity and density fluctuation at the wall location, respectively. The incident direction i and its
bouncing-back direction ī are opposite directions as usual. Essentially, the bounce back is applied to the non-equilibrium
part of the distribution. This may be understood from Eq. (27) that the non-equilibrium parts of the distribution in opposite
directions make the same contribution to the strain-rate or stress components.
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Fig. 9. The velocity profiles along a vertical line through the geometric center of the cavity: (a) u, (b) v.

Fig. 10. The velocity profiles along a horizontal line through the geometric center of the cavity: (a) u, (b) v.

Here, we also test the model with three grid aspect ratios a = 0.8, a = 0.5 and a = 1/3. The parameters chosen in the
simulations are as same as the first three cases in Table 1 except that here the characteristic velocity U0 is the lid velocity
uw . The Re defined from uw is also fixed at 100 for all cases.

We first examine the velocity profile along a vertical line (Fig. 9) and a horizontal line (Fig. 10), both across the geometric
center of the cavity. The LBM results are compared to those from the fractional-step finite difference scheme [30] on a
257× 257 staggered, uniform grid, denoted as FD. As shown clearly in the figures, all velocity profiles match perfectly with
the FD benchmark results.

Next, we show the normal and shear stress profiles along the same vertical and horizontal lines in Figs. 11 and 12,
respectively. The definitions of normal stresses τxx and τyy follow the same definitions in Eq. (34) while the shear stress
τxy is simply defined as

τxy = ν

∂xv + ∂yu


. (38)

Both normal and shear stress results of the present model are computed through Eq. (20) in a mesoscopic way, while the
corresponding finite difference results are calculated by taking the finite difference approximation of velocity gradients.
Figs. 11 and 12 show that all the normal stress profiles obtained with different a values match the FD benchmark well
except a small region close to the moving wall. The normal stress jump in this small region is caused by the pressure kink
(not shown) associated with the moving boundary, which is also discussed in [25]. For regular MRT model, this pressure
kink can be easily eliminated by simply choosing equal relaxation rate for energy moment and normal stress moment [25].
However, due to the redesign of equilibrium in the present BGKmodel, such simple solution does not apply, thereforewe still
observe a small jump in normal stress profiles. In contrast, the shear stress (i.e. τxy) results are not affected by the pressure
kink. All shear stress profiles are independent from a and agree very well with the benchmark results.

Finally, as a further demonstration of the robustness of the present model, we also test the model in lid-driven cavity
flows at Re = 400 and 1000. Again, we fix the grid aspect ratio to a = 0.5 in both cases. The lid velocity in the two cases is
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Fig. 11. The stress profiles along a vertical line through the geometric center of the cavity: (a) normal stress, (b) shear stress.

Fig. 12. The stress profiles along a horizontal line through the geometric center of the cavity: (a) normal stress, (b) shear stress.

chosen as uw = 0.02 and 0.05, with all other parameters identical to those used in Case 4 in Table 1. We plot the velocity,
and stress profiles in Figs. 13 and 14 on a vertical line through the geometric center, and compare themwith the results from
same finite difference scheme using a 257 × 257 staggered grid. As clearly shown by both figures, the velocity and stress
profiles from the present model agree excellently with those from the finite-difference approach. These results confirm that
the present model possesses good stability and accuracy even at relatively high Re numbers.

5. Summary and outlook

In this paper, we have developed a lattice BGK model on a rectangular D2Q9 lattice grid that is fully consistent to the
N–S equations. Such was thought to be impossible for the BGK collision operator previously. Different from the previous
unsuccessful design [11,13,14], the key is to incorporate parts of stress components into the equilibrium distribution to
cancel out the anisotropy of the strain rate tensor resulting from the use of the anisotropic lattice grid. In addition, by
redesigning the equilibrium distribution using a more general form, the present lattice BGK model has several appealing
features. First, the bulk and shear viscosity can be different. Second, the speed of sound is also an adjustable parameter in
the presentmodel. These two features provide additional degrees of freedom,whichmaybeused to achieve better numerical
stability in the LBM simulations. More importantly, in the present model, the relaxation parameter τ is completely free to
choose because the introduction of two new parameters γ and λ (one of the two is free) can be used to tune the fluid
viscosity even after τ is specified. This releases the usual one-to-one relationship between the relaxation parameter and
the shear viscosity. This feature allows the model to use small viscosity while maintaining the relaxation parameter in the
range of maximum numerical stability. The model is also fully mesoscopic as the standard lattice BGK model. No finite-
difference approximation is needed to compute the additional stress components in the extended equilibrium distribution.
These many advantages far outweigh the increased complexity within the extended equilibrium distribution. The strategy
could be extended to design a 3D LBMmodel on a cuboid lattice.
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Fig. 13. The velocity profiles along a vertical line through the geometric center of the cavity at higher Re: (a) u, (b) v.

Two test cases were considered to validate the accuracy and stability of the presentmodel. In the case of the 2D unsteady
Taylor–Green vortex flow, an iterative approach was used to correctly initialize the flow. The simulated velocity, pressure
and stress fields using different grid aspect ratios have been shown at different times, all of them show perfect agreement
with the theoretical benchmark. Using this non-uniform Taylor–Green flow, we also confirmed that regardless of the grid
aspect ratio, the model always has a second-order accuracy for both velocity and stress. The tests in the lid-driven cavity
flow also indicate that the model works well when a moving solid wall is present.

So far, the model works well for a certain range of aspect ratios (a > 0.3). For very elongated lattice (a < 0.3), the model
became unstable with the present parameters. It is not yet clear that the instability is originated from the model itself or
from inappropriate choices of the model free parameters. A more careful and rigorous study on the numerical stability of
the present model is needed. Certain features that are inherent in any LBM models, such as pressure kinks near a moving
wall and acoustic noises, also warrant further investigations.
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Appendix

The governing equation of the present model is the standard LBGK equation

fi (x + eiδt, t + δt) − fi (x, t) = −
1
τ


fi (x, t) − f (eq)

i (x, t)

, (39)

where the equilibrium distribution function f (eq)
i contains two parts, a leading-order component and a higher-order

component, as

f (eq)
i = f (eq,0)

i + ϵf (eq,1)
i . (40)

The leading-order component f (eq,0)
i can be summarized as

f (eq,0)
i =



α0δρ +
ρ0

c2

β0u2

+ γ0v
2 , i = 0,

α1δρ +
ρ0

c2

θ1eixu + β1u2

+ γ1v
2 , i = 1, 3,

α2δρ +
ρ0

c2

θ2eiyv + β2u2

+ γ2v
2 , i = 2, 4,

α5δρ +
ρ0

c2


θ5

eixu + eiyv


+ β5u2

+ γ5v
2
+ χ5

eixeiy
c2

uv

, i = 5 − 8

(41)

http://www.csrc.ac.cn
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where the coefficients αk, βk, γk, (k = 0, 1, 2, 5), θl, (l = 1, 2, 5) and χ5 are all non-dimensional, and can be determined as
functions of grid aspect ratio a, speed of sound c2s and the free parameter γ .

α5 =

a2 + 1


c2s /


6a2c2


− 1/12, γ5 = 1/


6a2

− 1/12, β5 = 1/12,

α0 = 1 + 4α5 −


a2 + 1


c2s

c2a2
, α1 =

c2s
2c2

− 2α5, α2 =
c2s

2c2a2
− 2α5,

β0 = 4β5 − 1, β2 = −2β5, β1 = 1/2 − 2β5,

γ0 = 4γ5 − 1/a2, γ1 = −2γ5, γ2 = 1/

2a2

− 2γ5,

θ1 = 1/2 − γ /

2a2

, θ2 = (1 − γ ) /


2a2

, θ5 = γ /


4a2

,

χ5 = 1/

4a2

.

(42)

On the other hand, the higher-order component ϵf (eq,1)
i can be expressed as

ϵf (eq,1)
0 = ρ0δt


ω0x∂xu + ω0y∂yv


, (43a)

ϵf (eq,1)
1,3 = ρ0δt


ω1x∂xu + ω1y∂yv


, (43b)

ϵf (eq,1)
2,4 = ρ0δt


ω2x∂xu + ω2y∂yv


, (43c)

ϵf (eq,1)
5,6,7,8 = ρ0δt


ω5x∂xu + ω5y∂yv + ω5s

eixeiy
c2


∂xv + ∂yu


, (43d)

where

ω5x =
1
6


τ −

1
2


1 +

γ

a2
−


a2 + 1


c2s

a2c2


−

1
a2c2δt


a2 + 1


vV

+

a2 − 1


ν


,

ω5y =
1
6


τ −

1
2


1 + γ −


a2 + 1


c2s

a2c2


−

1
a2c2δt


a2 + 1


vV

−

a2 − 1


ν


,

ω0x = 4ω5x +
1

a2c2δt


a2 + 1


νV

+

a2 − 1


ν

−


τ −

1
2


1 +

γ

a2
−


a2 + 1


c2s

a2c2


,

ω0y = 4ω5y +
1

a2c2δt


a2 + 1


νV

−

a2 − 1


ν

−


τ −

1
2


1 + γ −


a2 + 1


c2s

a2c2


,

ω1x =


τ

2
−

1
4


1 −

c2s
c2


−

1
2c2δt


νV

+ ν

− 2ω5x,

ω2x =
1
a2


τ

2
−

1
4


γ −

c2s
c2


−

1
2c2a2δt


νV

− ν

− 2ω5x,

ω1y =


τ

2
−

1
4


γ −

c2s
c2


−

1
2c2δt


νV

− ν

− 2ω5y,

ω2y =
1
a2


τ

2
−

1
4


a2 −

c2s
c2


−

1
2c2a2δt


νV

+ ν

− 2ω5y,

ω5s =
γ

4a2


τ −

1
2


−

ν

4c2a2δt
.

(44)

The relaxation parameter τ in the present model is calculated as

τ =
1
γ


ν

c2δt
+ λ


+

1
2
. (45)

The hydrodynamic quantities (density, momenta, etc.) in the present model are obtained as

δρ =


i

fi, (46a)

ρ0u =


i

fieix, ρ0v =


i

fieiy, (46b)

∂xu = −
1

ρ0c2δt (c2c3 − c1c4)


c3


i

fieixeix −

c2s δρ + ρ0u2

− c1


i

fieiyeiy −

c2s δρ + ρ0v

2 , (46c)
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Fig. 14. The stress profiles along a vertical line through the geometric center of the cavity at higher Re: (a) normal stress, (b) shear stress.

∂yv = −
1

ρ0c2δt (c2c3 − c1c4)


c2


i

fieiyeiy −

c2s δρ + ρ0v

2
− c4


i

fieixeix −

c2s δρ + ρ0u2 , (46d)

1
2


∂xv + ∂yu


= −

1
2c5ρ0c2δt


i

fieixeiy − ρ0uv


, (46e)

where

c1 =
1
2


1 −

c2s
c2


+


νV

+ ν

c2δt


, c2 =

1
2


γ −

c2s
c2


+


νV

− ν

c2δt


,

c3 =
1
2


γ −

c2s
c2


+


νV

− ν

c2δt


, c4 =

1
2


a2 −

c2s
c2


+


νV

+ ν

c2δt


,

c5 =
1
2
γ +

ν

c2δt
.
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