1. 6.6 p 496 Problem 19. Find $\lim _{x \rightarrow \frac{\pi}{2}-}\left(x-\frac{\pi}{2}\right) \sec x$.

This limit is of the form $0 \cdot \infty$, but it can easily be rewritten in the form $\frac{0}{0} \operatorname{since} \sec x$ is the reciprocal of $\cos x$. Doing so, and using l'Hospital's rule, we have

$$
\lim _{x \rightarrow \frac{\pi}{2}-}\left(x-\frac{\pi}{2}\right) \sec x=\lim _{x \rightarrow \frac{\pi}{2}-} \frac{x-\frac{\pi}{2}}{\cos x}=\lim _{x \rightarrow \frac{\pi}{2}-} \frac{1}{-\sin x}=-1 .
$$

2. 6.6 p 496 Problem 35 . Find $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)$.

When x is slightly larger than 1 , both $x-1$ and $\ln x$ are tiny positive numbers, so this limit is of the form $\infty-\infty$. Adding fractions allows us to rewrite it in the form $\frac{0}{0}$. Doing so, and using l'Hospital's rule three times, we have

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)=\lim _{x \rightarrow 1^{+}} \frac{\ln x-x+1}{x \ln x-\ln x}=\lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x}-1}{1+\ln x-\frac{1}{x}} \\
=\lim _{x \rightarrow 1^{+}} \frac{1-x}{x+x \ln x-1}=\lim _{x \rightarrow 1^{+}} \frac{-1}{2+\ln x}=-\frac{1}{2}
\end{gathered}
$$

3. 6.6 p 496 Problem 43. Find $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}}$.

This is of the form $1^{-\infty}$, which is indeterminate. We'll use l'Hospital's rule to find $\lim _{x \rightarrow 1^{+}} \ln \left(x^{\frac{1}{1-x}}\right)$ and then "e it up". We have

$$
\lim _{x \rightarrow 1^{+}} \ln \left(x^{\frac{1}{1-x}}\right)=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{1-x}
$$

The limit on the right is of the form $\frac{0}{0}$, so we use l'Hospital's rule to obtain

$$
\lim _{x \rightarrow 1^{+}} \ln \left(x^{\frac{1}{1-x}}\right)=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{1-x}=\lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x}}{-1}=-1
$$

Therefore $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}}=\mathrm{e}^{-1}$ or $\frac{1}{\mathrm{e}}$.
4. 6.6 p496 Problem 55. Find $\lim _{x \rightarrow \frac{\pi}{2}-} \frac{\sec x}{\tan x}$, using some method other than l'Hospital's rule, which doesn't help.

The given limit, as written, is of the form $\frac{\infty}{\infty}$. What we can do here is to rewrite everything in terms of $\sin x$ and $\cos x$. Doing so and simplifying, we have

$$
\lim _{x \rightarrow \frac{\pi}{2}-} \frac{\sec x}{\tan x}=\lim _{x \rightarrow \frac{\pi}{2}-} \frac{1}{\sin x}=1
$$

5. 6.6 p496 Problem 59. See text for statement of the problem.

Proposed solution (a) is faulty because $0 \cdot(-\infty)$ is undefined or indeterminate, not 0 , and (b) is faulty for essentially the same reason: $0 \cdot(-\infty)$ is undefined or indeterminate, not $-\infty$. Proposal (c) is faulty for a similar reason: $\frac{-\infty}{\infty}$ is undefined, indeterminate, not -1 . Fortunately, solution (d) is correct!
6. 6.6 pa496 Problem 61. Suppose $f(x)$ is given by $f(x)=\frac{9 x-3 \sin 3 x}{5 x^{3}}$ for $x \neq 0$ and by $f(x)=c$ for $x=0$. Find a value for c that makes the function f continuous at $x=0$. Explain why your value of c works.

According to the definition of continuity, we only need to guarantee that $\lim _{x \rightarrow 0} f(x)=f(0)$. Since $f(0)$ is to equal the as yet unknown value of c, we need to have $c=\lim _{x \rightarrow 0} f(x)$. Using l'Hospital's rule (for the case $\frac{0}{0}$) three times in succession, we have $\lim _{x \rightarrow 0} f(x)=$ $\lim _{x \rightarrow 0} \frac{9 x-3 \sin 3 x}{5 x^{3}}=\lim _{x \rightarrow 0} \frac{9-9 \cos 3 x}{15 x^{2}}=\lim _{x \rightarrow 0} \frac{27 \sin 3 x}{30 x}=\lim _{x \rightarrow 0} \frac{81 \cos 3 x}{30}=\frac{81}{30}=\frac{27}{10}$. So we need to have $c=\frac{27}{10}$.

