

October 2019, Long Island System Users Group 1 © Copyright Perforce Software, Inc. 2019

Lab Exercise: Exploring Open Source Solutions on IBM i

Speaker Name: Erwin Earley
(erwin.earley@roguewave.com)

Introduction:

Open Source Solutions (OSS) are in vogue for businesses large and small. You might be surprised at the
wealth of Open Source Solutions that are available to leverage directly on IBM i. This workshop provides

the opportunity to get your feet wet with OSS on IBM i. The self-paced exercises allow you to explore
open source programming languages like python, php, and node.js as well as management of open

source packages.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 2 © Copyright Perforce Software, Inc. 2019

1. Establishing a container

Containers allow for the isolation of directories such that different users can have different
environments that are dedicated to their usage. IBM i has the 'chroot' capability available to enable
establishing of what are often referred to as a 'chroot jail' – an isolation of directories and files. The
following diagram provides a high-level view of chroot jail:

In the above example there are two 'chroot jails' that sit on top of the host operating system and the
system infrastructure. This first lab will walk through the creation of chroot jail.

NOTE: Support for Open Source Solutions (OSS) / packages is provided through the OSS bootstrap which
installs a number of utilities and packages and also establishes a package repository which is a definition
for a location of package files. The boot strap has already been installed on the system being used for
the lab. Contact the instructor if you would like a lab that covers the steps for setting up the OSS boot
strap that you could use on your system to continue your exploration of open source on IBM i.

Section 1. Establishing an SSH connection to the lab system

The first step is to establish an SSH connection to the lab system.

__ 1. Use the credential and system information in the lab token to establish the ssh connection using
an SSH client (typically PuTTY on Windows, ssh command on MacOS)

NOTE: This connection will be used throughout the rest of this lab

Section 2. Install and setup chroot

The chroot capability on IBM i is provided through the ibmichroot package. This package has
already been installed on the lab system.

Once chroot has been installed, chroot jails can be configured for individual users.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 3 © Copyright Perforce Software, Inc. 2019

NOTE: A self-guided lab for installing the ibmichroot package on your system is available. Ask the
instructor if you are interested in a copy of this lab.

__ 2. The 'chroot_setup' command will be used to configure the chroot jail. The command takes
as arguments the directory that will be used as the chroot jail as well as a type indicator and an
indication for language support. For the lab enter the following command:

chroot_setup /QOpenSys/<team> minimal nls

- Where <team> is replaced with the team name from your token

Observe that a lengthy list of diagnostic messages is output. This process will take several
minutes.

Software packages can be installed in the chroot-jail. This allows different users to have different
sets of applications (and configurations) and for those to be distinct from each other. Several
packages will be installed in the chroot-jail through the remainder of this workshop.

__ 3. Prior to entering the chroot jail let's install the 'bash' package into the container. bash is a
popular shell (command interpreter) in the Linux/Open-Source space. The yum command will be
used to install the package (ACS can also be used to install Open Source Packages in a chroot
container; however, ACS is not available on the workstation laptops). Enter the following
command:

yum –-installroot=/QOpenSys/<team> install bash

o Where <team> is replaced with the team name from your token

NOTES:

- The 'installroot' option instructs yum to use the specified directory as the root
directory rather than the default root directory

- The 'install' keyword instructions yum to perform an installation

- 'bash' indicates the name of the package to install

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 4 © Copyright Perforce Software, Inc. 2019

One final item before entering the jail. The chroot_setup command doesn’t create a home
directory in the chroot jail. Prior to our entering the jail, let’s create a home directory

__ 4. The next step is put ourselves in the chroot jail. This is done with the 'chroot' command. Enter
the following command:

chroot /QOpenSys/<team> /QOpenSys/usr/bin/bash

o Where <team> is replaced with the team name from the token

NOTES:

- The first argument is the directory that has been configured as the 'chroot jail'. This directory
will become the root (/) directory for the user as a result of running the chroot command

- The second argument represents the program to execute. Typically, it is a shell so that you
can traverse and work within the chroot jail. The path represents the path within the chroot
jail

You may have noticed when entering the container an error was displayed indicting that the
home directory was not found. This is because the home directory is not created as part of the
chroot_setup process. The following two steps take advantage of the $HOME environment
variable to create the home directory and to ensure that the ownership of the directory is
properly set.

__ 5. Enter the following command to create the home directory.

mkdir $HOME

__ 6. Enter the following command to ensure the correct ownership of the directory created in the
previous step:

chown <team> $HOME

__ 7. When the command is complete take a look at the current working directory with the following
command:

pwd

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 5 © Copyright Perforce Software, Inc. 2019

Notice that the current working directory is root (/) – this is actually the /QOpenSys/<team>
directory within the overall file system but for the scope of the running job (chroot) the user is
limited (jailed) to the indicated directory since it's not possible to traverse above the root (/)
directory.

__ 8. Take a look at the directory listing with the following command:

ls -l

The output will resemble the following:

total 208
drwxr-sr-x 6 student0 0 8192 Apr 30 09:10 QOpenSys
lrwxrwxrwx 1 student0 0 34 Apr 30 09:04 bin -> /QOpenSys/usr/bin
drwxr-sr-x 4 student0 0 8192 Apr 30 09:04 dev
drwxr-sr-x 3 student0 0 8192 May 1 19:35 home
lrwxrwxrwx 1 student0 0 34 Apr 30 09:04 lib -> /QOpenSys/usr/lib
drwxr-sr-x 5 student0 0 8192 May 1 20:04 node_modules
-rw-r--r-- 1 student0 0 10803 May 1 20:04 package-lock.json
lrwxrwxrwx 1 student0 0 36 Apr 30 09:04 sbin -> /QOpenSys/usr/sbin
drwxr-sr-x 5 student0 0 8192 May 1 20:02 tmp
drwxr-sr-x 2 student0 0 8192 Apr 30 09:04 usr

lrwxrwxrwx 1 student0 0 26 Apr 30 09:04 var -> /QOpenSys/var

A few things to make note of:

- The QOpenSys directory here is not the /QOpenSys directory in the IFS – rather this is
the QOpenSys directory that was created in the chroot container when the chroot-
setup command was executed (the reality is that this directory is the
/QOpenSys/<team>QOpenSys directory – boggles the mind until you get used to it. ;-
)

- Likewise, the home directory here is not the user's home directory outside of the chroot
jail which is typically located in /home/<team>. When a 'cd' is performed in the
chroot container the user will be placed in the home directory in the container – it needs
to be understood that the files in this home are not the same as the files located in the
users non-chroot home directory.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 6 © Copyright Perforce Software, Inc. 2019

Let's take a quick exploration of some of the features of the 'bash' shell:

__ 9. The shell maintains a history of previous commands that have been executed. The 'history'
command can be used to display a list of those commands:

history

Note that the commands are shown preceded with a number. Any command in the history list
can be re-executed simply by entering ! followed by the number from the command history list.

Additionally, previously executed commands can be recalled through use of the up-arrow key.
This will allow you to scroll through the list of previously executed commands. A command can
be executed simply by pressing <ENTER> after the command has been recalled.

__ 10. Another powerful feature of the bash shell is file-name completion. File-name completion is
accomplished by pressing the <TAB> key after entering a portion of a file-name, at this point the
shell will complete as much of the name as possible while remaining unique. If there are
multiple names that match was has been entered, then pressing the <TAB> key twice will show
those matches. To see this is action try the following:

type ls /QO

Press <TAB>

Notice that the shell completes /QOpenSys/

Now press <TAB> twice

Notice that the shell provides a list of the items under /QOpenSys/

At this point simply press <ENTER> to execute the ls command.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 7 © Copyright Perforce Software, Inc. 2019

Section 3. Package Management

Package management can be accomplished via command-line (as shown with the yum command in a
previous step) as well as with Access Client Solutions. Since ACS is not installed on the workshop laptops
we will use CLI commands in this section to prepare the chroot container for the remainder of the lab.

__ 11. Exit the chroot jail:

exit

__ 12. The 'provides' option to the yum command can be used to determine which package
provides a particular command. One of the commands that needs to be installed in the chroot
container is the nano (editor) command. Issue the following command to determine which
package needs to be installed:

yum provides nano

The system should respond with something similar to the following:

ibm | 2.2 kB 00:00
nano-2.9.0-0.ppc64 : Small and friendly text editor
Repo : ibm

The output indicates that the command 'nano' is provided by the package 'nano-
2.9.0.0.ppc64' from the ibm repository. The format of the package name is <package
name>-<version>.architecture. For installation purposes only the package-name is required.

__ 13. Install 'nano' in the chroot container with the following command:

yum –-installroot=/QOpenSys/<team> install nano

__ 14. A number of additional packages will be needed for the remainder of the lab. Run each of the
following install commands to install the packages in your cohort container:

yum –-installroot=/QOpenSys/<team> install python3

yum –-installroot=/QOpenSys/<team> install nodejs

yum –-installroot=/QOpenSys/<team> install git

yum –-installroot=/QOpenSys/<team> install curl

yum –-installroot=/QOpenSys/<team> install python3-pip

yum –-installroot=/QOpenSys/<team> install python3-ibm_db

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 8 © Copyright Perforce Software, Inc. 2019

NOTE: One could make use of the command-recall (up-arrow) provided by the bash shell to
simply recall the command and change the package name.

NOTE: Another approach to installing the above packages into the chroot container would have
been to install rpm and yum into the container (yum –installroot=<container>
install rpm yum) and then performed the installation inside of the container. Either
method will provide the same result.

Before leaving this portion of the exercise let's take a look at a few more package management
commands.

__ 15. One of the features/components of a package is package information including a description of
the package, the repository the package resides in, the architecture, and so forth. Information
on a package can be displayed with the 'info' option to the yum command. Execute the following
command:

yum info nodejs

The following should be output:

Available Packages
Name : nodejs
Arch : ppc64
Version : 8.9.3
Release : 0
Size : 22 M
Repo : ibm
Summary : Node.js JavaScript Programming Language
URL : https://www.nodejs.org
License : MIT
Description : Node.js? is a JavaScript runtime built on
Chrome V8 JavaScript engine. Node.js uses an event-
driven, non-blocking I/O model that
 : makes it lightweight and efficient.

__ 16. A list of packages available for installation can be obtained with the following command:

yum list available

A list of packages that are available (and not currently installed) will be displayed:

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 9 © Copyright Perforce Software, Inc. 2019

Available Packages
activemq.noarch 5.11.1-1 ibm
autoconf.noarch 2.69-1 ibm
automake.noarch 1.15-1 ibm
bash.ppc64 4.4-1 ibm

Other options to the 'yum list' command include:

- installed  provide a list of the packages installed on the system (or container)

- all  show all packages, both installed and available

- kernel  show the list of packages related to the kernel

__ 17. The 'check-update' function of yum can be used to display a list of installed packages that
have updates available. Enter the following command:

yum check-update

Output similar to the following should be output:

bash.ppc64 4.4-1 ibm
libgcc_s1.ppc64 6.3.0-24 ibm
liblzma5.ppc64 5.2.3-3 ibm
libopenssl1_0_0.ppc64 1.0.2q-0 ibm
libutil1.ppc64 0.3-99 ibm
python2.ppc64 2.7.16-1 ibm
python2-rpm.ppc64 4.13.0.1-17 ibm
rpm.ppc64 4.13.0.1-17 ibm

yum.noarch 3.4.3-17 ibm

To install updates the 'yum upgrade <package>' command would be used. Please don't do
this in the lab environment

__ 18. A history of actions taken by yum can be displayed with the following command:

yum history

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 10 © Copyright Perforce Software, Inc. 2019

Output of the command history will resemble the following:

ID | Login user| Date and time | Action(s) | Altered

 4 |<student0> | 2019-05-01 12:47 | Install | 1
 3 |<student0> | 2019-05-01 11:51 | Install | 3
 2 |<qsecofr> | 2019-04-30 10:27 | Install | 1
 1 |<student0> | 2019-04-30 09:00 | Install | 9
history list

The 'yum history' command can also be used to undo actions taken by a particular yum
command as well as to redo actions taken by a particular command.

Many other options/commands are available in yum. Do a google search on 'yum cheetsheet' to
get more information.

NOTE: All of the package management functions can be accomplished via ACS as well as the
command-line methods shown in this workshop.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 11 © Copyright Perforce Software, Inc. 2019

Section 4. Introduction to the nano editor

There are many editors available within the open source space including the venerable ‘vi’ and ‘nano’. If
you are familiar with ‘vi’ and wish to use it for the rest of the lab by all means feel free to do so. This
portion of the lab will introduce the nano editor and a few key commands that are needed to work with
the editor.

__ 19. Enter the following command to enter your container:

chroot /QOpenSys/<team> /QOpenSys/usr/bin/bash

o Where <team> is replaced with the team name from the token

__ 20. Enter the following command to change to our home directory within your container (recall that
we created this directory earlier in the lab):

cd

__ 21. Enter the following command to start the nano editor on a new file:

nano testfile

Notice that the nano editor is displayed:

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 12 © Copyright Perforce Software, Inc. 2019

Notice that at the bottom of the nano screen are a number of control-key sequences with functions such
as Exit, Read File, and Write Out associated with them.

You might be tempted to use the mouse to position the cursor as well as highlight portions of text –
don’t! The editor knows nothing about the mouse, instead the arrow keys will be used to position the
cursor.

__ 22. Enter some text into the file

__ 23. Press the <CTRL><X> key sequence to attempt to exit the editor

__ 24. Note that a message is displayed at the bottom prompting for saving of the modified buffer.
Press ‘y’ to save the file.

__ 25. Notice that a new message prompting for confirmation of the name of the file to be written is
displayed. Press <ENTER> to accept the file name which is the file name provided on the nano
command in an earlier step.

__ 26. Observe that the editor exits and the bash prompt is re-displayed.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 13 © Copyright Perforce Software, Inc. 2019

Section 5. Exploring Python

One of the key areas of growth in the Open Source space on IBM i is the availability of additional open
source programming languages. In this section we will take a brief look at Python.

This portion of the lab assumes that you are still in your container. If not issue the ‘chroot’ command as
shown earlier in the lab.

__ 27. This portion of the lab assumes that you are still in your container. If not then issue the following
‘chroot’ command to re-enter your container:

chroot /QOpenSys/<team> /QOpenSys/usr/bin/bash

__ 28. Set the current working directory to the home directory and output it’s path:

cd
pwd

__ 29. Create a file called hello.py with the following contents (keep in mind that Python uses
spaces to indicate control blocks so ensure that you don't start any of these lines with extra
spaces).

Hello World

print ("Hello Workshop Attendees!!!")

__ 30. After saving the file execute it with the 'python3' command:

python3 hello.py

The following should be output:

Hello Workshop Attendees

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 14 © Copyright Perforce Software, Inc. 2019

Like the other open source languages, python has the ability to access Db2 resident data as well
as ILE artifacts. The next portion of this exercise will walk through a sample script for accessing
Db2.

__ 31. Use nano to create a script called db2access.py with the following content:

import ibm_db_dbi as db2

conn = db2.connect()

cur = conn.cursor()

cur.execute("SELECT CUST_ID,COMPANY,LASTNAME,CITY,STATE
FROM <TEAM>.SP_CUST WHERE COUNTRY='US'")

for row in cur:
 customerID,Company,LastName,City,State=row
 print(customerID,Company,State)

- Where <TEAM> is replaced with your team name from the token. This represents a library on
the system.

- The cur.execute line is wrapped – this should be entered as a single line.

NOTE: Spacing is very important in python – it's how control blocks are defined. Ensure that the
two lines in the for loop are lined up – typically use four (4) spaces

__ 32. Use the python3 command to execute the script:

python3 db2access.py

Output of the script should resemble the following:

1221 Kauai Dive Shoppe HI
1380 Blue Jack Aqua Center HI
1510 Ocean Paradise HI
1560 The Depth Charge FL
1563 Blue Sports OR
1624 Makai SCUBA Club HI

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 15 © Copyright Perforce Software, Inc. 2019

Section 6. Exploring node.js

Another open source language that has become available to IBM i is node.js. With node.js javascript
code can be executed on the server and as a result have access to server-side resources. The language is
typically used to support web requests for various services. In this section of the workshop we will take
a quick look at the language, implement a service and call the service from a browser. We will also take
a look at how node.js can access Db2 data.

__ 33. Use nano to create a filed called hello.js with the following content:

#!/usr/bin/env node
var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(<port>, 'localhost');

console.log('Server running at http://localhost:<port>/');

- Where <port> is replaced with the value from your workshop token

__ 34. Now execute the script:

./hello.js

The console.log message should be output:

Server running at http://localhost:<port>/

NOTES:

 The script is able to be executed directly because of the first line in the file which is
referred to as a 'shbang' – the #! Is a special character sequence that when appearing on
the first line of a script indicates the program/command to use to interpret the remaining
lines of the script.

 The ./ designator when executing the command is a shortcut to the current working
directory (or specifically the . is a short cut to the full path of the current directory). This
is needed as the current directory is not in the execution search path.

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 16 © Copyright Perforce Software, Inc. 2019

At this point the script is waiting for requests on the specified port. Since 'localhost' was
specified the script will need to be exercised from another terminal window:

__ 35. Start another ssh session (via putty) to the workshop system using the values specified in the
token

__ 36. When logged in issue the following command to send a request to the node.js script (note, you
don't need to enter your chroot container for this step):

curl http://localhost:10200/

The following should be output:

Hello World

This is the output that is specified as the 'res.end' in the script

__ 37. Exit the second terminal window as it will not be needed again.

__ 38. In the first terminal window (the one where the node.js script is running) press <CTRL><C> to
terminate the program.

__ 39. Let's change the script so that it will listen to requests on the public internet. Use nano to edit
the file and change the two instances of 'localhost' to the <host> specified on the
workshop token.

__ 40. Start the node.js application:

./hello.js

The same console message should be output.

__ 41. From a web browser attempt to execute the script by providing a URL of
http://<system>:<port>

The hello World message should be output in the browser:

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 17 © Copyright Perforce Software, Inc. 2019

Up to this point executing the node.js script requires us to block a terminal widow while the
process is running. The next step will take advantage of a node utility for background the script.

__ 42. Node Package Manager is used to install and maintain node.js based components. The following
command installs a utility called pm2 (pm2 is a production process manager for Node.js
applications – pm2 includes a built-in load balancer.)

npm install -g pm2

The installation will take a couple of minutes and output some diagnostic messages, the last of
which should resemble the following:

+ pm2@3.5.0

added 310 packages from 258 contributors in 43.47s

Unlike yum|rpm which tends to install commands in the /QOpenSys/pkgs/bin directory
which is included in the search path, npm tends to install its commands in the
/QOpenSys/pkgs/lib/nodejs8/bin directory – that directory would either need to be
added to the search path or specified when commands are executed.

__ 43. Issue the following command to use pm2 to execute the hello.js script:

/QOpenSys/pkgs/lib/nodejs8/bin/pm2 start hello.js

A number of diagnostic messages will be output followed by a table of node.js applets that are
being managed by pm2:

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 18 © Copyright Perforce Software, Inc. 2019

┌───────┬────┬──────┬────────┬───┬─────┬───────
─┐
│ Name │ id │ mode │ status │ ↺ │ cpu │ memory │
├───────┼────┼──────┼────────┼───┼─────┼───────
─┤
│ hello │ 0 │ fork │ online │ 0 │ 0% │ 0 B │

└───────┴────┴──────┴────────┴───┴─────┴───────
─┘

Like the other open source languages available on the platform node.js has the ability to access
both Db2 as well as ILE programs and artifacts – this is accomplished through two additional
modules that are available for the language:

__ 44. To install the IBM Db2 for i access library execute the following command:

npm install idb-connector

A number of diagnostic messages will be output as the installation progresses. The end of the
installation should have messages similar to the following:

+ idb-connector@1.1.10
added 68 packages from 68 contributors and audited
97 packages in 11.778s

found 0 vulnerabilities

__ 45. To install the Node.js toolkit for IBM i execute the following command:

npm install toolkit

A number of diagnostic messages will be output as the installation progresses. The end of the
installation should have messages similar to the following:

+ toolkit@1.5.4

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 19 © Copyright Perforce Software, Inc. 2019

added 1 package from 1 contributor and audited 99 packages in
3.68s

found 0 vulnerabilities

__ 46. Use nano to create the following script. The script provides a simple example of using the idb-
connector to access Db2 data from a node.js application:

const {dbconn, dbstmt} = require('idb-connector');

const sSQL = 'SELECT CITY FROM ZENDPHP7.SP_CUST';
const connection = new dbconn();
connection.conn('*LOCAL');
const statement = new dbstmt(connection);

statement.exec(sSQL, (x) => {
 console.log(JSON.stringify(x));
 statement.close();
 connection.disconn();
 connection.close();

});

Unlike the hello world example, this script is not a web service, therefore we will want to execute
the script directly in the terminal.

__ 47. Use the node command to execute the script created in the previous step:

node <scriptname>

- Where <scriptname> is the name of the script created in the previous step

The script will output the value of city from each record in the table:

[{"CITY":"Kapaa Kauai "},{"CITY":"Freeport
"},{"CITY":"Kato Paphos "},{"CITY":"Grand Cayman
"},{"CITY":"Christiansted "},{"CITY":"Waipahu

Exercises Guide Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Long Island System Users Group October 2019 20 © Copyright Perforce Software, Inc. 2019

"},{"CITY":"Christiansted "},{"CITY":"Kailua-Kona
"},{"CITY":"Bogota "},{"CITY":"Kitchener
"},{"CITY":"Marathon "},{"CITY":"Giribaldi

The above is a truncated example of the output provided by the script. A couple items to make
note of is that the output starts with an open bracket [and if the complete output had been
shown it ends with a close bracket]. Additionally, each item retrieved from by the select
statement is enclosed in braces {} and includes the field name as well as the field value. One
could envision rather than outputting the data as is processing through this returned array and
performing some level of additional processing on it.

This application could be turned into a web service by merging it with the web processing such as
waiting for a request and providing a response shown in the previous example. Additionally, one
could envision having a web form that would collect selection data from the user that could then
be used in the select – the possibilities start to become endless.

