
79IEEE Signal Processing Magazine | November 2018 |

lecture notes

1053-5888/18©2018IEEE

Rafael C. Gonzalez

Deep Convolutional Neural Networks

Neural networks are a subset of the
field of artificial intelligence (AI).
The predominant types of neural

networks used for multidimensional sig­
nal processing are deep convolutional
neural networks (CNNs). The term deep
refers generically to networks having from
a “few” to several dozen or more convo­
lution layers, and deep learning refers to
methodologies for training these systems
to automatically learn their functional pa­
rameters using data representative of
a specific problem domain of interest.
CNNs are currently being used in a broad
spectrum of application areas, all of which
share the common objective of being able
to automatically learn features from (typi­
cally massive) data bases and to general­
ize their responses to circumstances not
encountered during the learning phase.
Ultimately, the learned features can be
used for tasks such as classifying the types
of signals the CNN is expected to pro­
cess. The purpose of this “Lecture Notes”
article is twofold: 1) to introduce the fun­
damental architecture of CNNs and 2) to
illustrate, via a computational example,
how CNNs are trained and used in prac­
tice to solve a specific class of problems.

Relevance
After decades of languishing in research
laboratories, AI has recently experienced
an explosion in worldwide interest as a
strategic tool in industry, government,

and research institutions. This interest is
based on the fact that AI makes it possible
for computers to learn from experience,
generalize their behavior, and perform
tasks that one normally associates with
human intelligence. Some applications of
AI are well known to the general public,
such as computers that beat grand mas­
ters at chess, recognize fingerprints, and
interpret verbal com­
mands. Other appli­
cations are less well
known, such as fraud
detection, searching
for patterns in large
amounts of data, and
controlling complex
industrial processes.
As varied as they are,
however, all of these
applications are based
on the same concepts
from deep learning.
Of particular interest in two-dimensional
(2-D) signal processing is automatic
recognition of the contents of digital
images using deep learning, which is
currently being applied with unprec­
edented success in fields ranging from
biometrics, such as face and retinal iden­
tification, to visual quality inspection,
medical diagnoses, and autonomous
vehicle navigation.

Prerequisites
The only prerequisites for understand­
ing this article are calculus (in particu­
lar, differentiation and the chain rule)

and linear algebra, both at the under­
graduate level.

Background and problem
statement
Interest in using computers to perform
automated image recognition tasks dates
back more than half a century. During
the mid 1950s and early 1960s, a class

of so-called learning
machines [1] caused a
great deal of excite­
ment in the field of ma­
chine learning. The
reason was the deve­
lopment of mathema­
tical proofs showing
that basic computing
units, called percept­
rons, when trained with
linearly separable data
sets, would converge
to a solution in a finite

number of iterative steps. The solution
took the form of coefficients of hyper­
planes that were capable of correctly se­
parating these data classes in feature
hyperspace. Unfortunately, the basic per­
ceptron was inadequate for tasks of prac­
tical significance. Subsequent attempts
to extend the power of perceptrons by
assembling multiple layers of these de­
vices lacked effective training algorithms,
such as those that had created interest in
the perceptron itself [2]. This discour­
aging state of the art changed with the de­
velopment in 1986 of backpropagation,
a method for training neural networks

Digital Object Identifier 10.1109/MSP.2018.2842646
Date of publication: 13 November 2018

The purpose of this
“Lecture Notes” article is
twofold: 1) to introduce
the fundamental
architecture of CNNs
and 2) to illustrate, via a
computational example,
how CNNs are trained and
used in practice to solve a
specific class of problems.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

80 IEEE Signal Processing Magazine | November 2018 |

composed of layers of perceptron-like
units [3]. Backpropagation was first ap­
plied to 2-D signals in 1989 in the context
of what we now refer to as deep CNNs
[4]. Similar efforts followed at a rela­
tively low level for the next two decades,
but it was not until 2012, when publica­
tion of the results of the 2012 ImageNet
Challenge demonstrated the power of
deep CNNs, that these neural nets began
to be used widely in image pattern rec­
ognition and other imaging applications
[5], [6]. Today, CNNs are the approach
of choice for addressing complex image
recognition tasks and other important
fields, which will be mentioned shortly.

Pattern recognition by machine involves
the following four basic stages:
1)	 acquisition
2)	 preprocessing
3)	 feature extraction
4)	 classification.
Acquisition generates the raw input pat­
terns (e.g., digital images); preprocessing
deals with tasks such as noise reduction
and geometric corrections; feature extrac­
tion deals with computing attributes that
are fundamental in differentiating one
class of patterns from another; and clas­
sification is the process that assigns a
given input pattern to one of several pre­
defined classes. Feature extraction usu­
ally is the most difficult problem to solve,
with extensive engineering often being
required to define and test a suitable set
of features for a given application. CNNs
offer an alternative approach that auto­
mates the learning of features by utilizing
large databases of samples, called training
sets, that are representative of an applica­
tion domain of interest.

The problem addressed in this tuto­
rial is to define a CNN-based strategy for
extracting features automatically from
a large training database and to use
those features for accurately recognizing
images from both the training database
and also from an independent set of test
images. This type of problem is by far the
predominant application of CNNs, but it
is not their only use. CNNs are currently
being applied successfully in a number of
other areas that include speech recogni­
tion, semantic image segmentation, and
natural language processing [8]. In each
case, the specifics of how CNNs are struc­

tured may vary, but their principles of
operation are the same as those discussed
in this article.

Solution
We approach the solution to the problem
stated in the previous section by using a
deep modular CNN architecture consist­
ing of layers of convolution, activation,
and pooling. The output of the CNN
is then fed into a deep, fully connected
neural network (FCN), whose purpose
is to map a set of 2-D features into a class
label for each input image. Central to
this approach is the ability to use sam­
ple training data to
learn the operational
parameters of each
network layer. For this,
we use backpropaga­
tion as a tool for ite­
ratively adjusting the
network weights (also
referred to as coefficients, parameters,
and hyperparameteres) based on cycling
through the training data. Finally, we dem­
onstrate the effectiveness of the solution
by training the CNN/FCN system using
a large database of handwritten numeric
characters and then testing it with a set
of images not used in the training phase.
As we show in the “A Computational Ex­
ample” section, the recognition accuracy
achieved by the system on the images of
both data sets exceeded 99%.

Deep CNNs
Figure 1 shows the basic components of
one stage of a CNN. In practice, a CNN
can have tens of such stages, intercon­
nected in series. In addition to the num­
ber of stages, CNN architectures differ
in how the elements of each stage are
defined and used, but the basic structure
in Figure 1 is fundamental to all of them.

As the figure shows, one stage of a
CNN is composed in general of three
volumes, consisting, respectively, of input
maps, feature maps, and pooled feature
maps (or pooled maps, for short). Pooled
maps are not always used in every stage
and, in some applications, not at all. All
maps are 2-D arrays whose size gener­
ally varies from volume to volume, but
all maps within a volume are of the same
size. If the input to the CNN is an RGB

color image, the input volume will consist
of three maps—the red, green, and blue
component images, or channels, of the
RGB image. The term input maps volume
comes from the fact that the inputs have
height and width (the spatial dimensions
of each map) as well as depth, equal to
the number of maps in a volume. In the
context of our discussion, the input vol­
ume to the first stage consists in general
of the channels of multispectral images;
the input volumes to all other stages are
the pooled maps (or feature maps for
stages with no pooling) from the previ­
ous stage. When present, the number of

pooled maps in a stage
is equal to the num­
ber of feature maps.

The fundamental
operation performed
in each stage of a
CNN is convolution,
from which these ne­

ural nets derive their name. Although
convolution is a ubiquitous operation
in signal processing, it is not always ex­
plicitly stated that the type of convolu­
tion performed in CNNs is, in general,
volume convolution, with the restriction
that there is no displacement of the con­
volution kernel volume (also referred to
as a filter) in the depth dimension. Fig­
ure 1 illustrates this concept, in which
a kernel volume, shown in yellow, con­
sists of three individual 2-D kernels. It
is evident from this figure that the depth
of each kernel volume in any stage is
always equal to the depth of the input
volume to that stage. Convolution is per­
formed between a different 2-D kernel
and its corresponding 2-D input map.
Because there is no displacement in the
depth dimension, a volume convolution
in this case is simply the sum of the in­
dividual 2-D convolutions. To under­
stand how a CNN works, it helps to
focus attention on the result of volume
convolution at one pair of spatial coor­
dinates, (,).x y

Let w , ,m n k denote the weights of
a 2-D kernel associated with the kth
map in the input volume, where m and
n are variables that index over the ker­
nel height and width. The convolution
between this kernel and the kth map, at
any specific spatial location, (,),x y of

The fundamental operation
performed in each stage of
a CNN is convolution, from
which these neural nets
derive their name.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

81IEEE Signal Processing Magazine | November 2018 |

One
Pooled Map

To Next Stage

A
B

C

Acti
va

tio
n

Feature Maps Volume

Pooled Maps Volume
RGB

Image

All Feature Maps

One Feature Map
RGB Channels

All Pooled Maps

Add
 B

ias

Con
vo

lut
ion

Poo
lin

g

Input Maps Volume

= Kernel Volume

B

A

A
B

ias

Add
 B

ia

Con
vo

lut
ion

96 Feature Maps

04 35

39 45

23 10 16

04

16

39 45

35

23

10

Figure 1. The components of one stage of a CNN, consisting of an input maps volume, a feature maps volume, and an optional pooled maps volume. The
maps in the input volume correspond to the three channels of the RGB image shown. The stage has 96 feature maps and 96 pooled maps. The highlighted
feature maps, displayed as images and identified numerically, illustrate the types of features that a CNN is capable of extracting from an input image.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

82 IEEE Signal Processing Magazine | November 2018 |

the map, is the sum of products of the
weights of the kernel and the elements
of the map that are spatially coincident
with the kernel. To obtain a volume con­
volution, the sum of products operation
is performed between each correspond­
ing 2-D kernel and its map at that same
spatial location. Each sum of products is
a scalar, and the volume convolution at
that point is the sum of the K resulting
scalars, where K is the depth of the input
volume. To write this in equation form
would require K 2-D summations. How­
ever, for reasons that will be explained in
the next section, we can redefine the indi­
ces and write the K summations as one:

	 w v ,conv ,x y i i
i

= / � (1)

where the ws are kernel weights, the vs
are values of the spatially corresponding
elements in the input maps, and conv ,x y
is the result of volume convolution at the
same spatial coordinates, (,),x y for all
maps of the input volume. Equation (1)
gives the result at point A in Figure 1.
The result at point B is obtained by add­
ing a scalar bias, ,b to (1)

	 w v .z b,x y i i
i

= +/ � (2)

We discuss the nature of this bias in the
next section.

The result at point C is obtained by
passing scalar z ,x y through a nonlinear­
ity called an activation function, h

	 () .a h z, ,x y x y= � (3)

Activation functions used in practice in­
clude sigmoids () / () ,exph z z1 1= + -^ h
hyperbolic tangents () (),tanhh z z= and
so-called rectified linear units (ReLUs)

() (,) .maxh z z0= The resulting ,a ,x y
called an activation value, becomes the
value of the feature map at location
(,),x y as illustrated by the point labeled
C in Figure 1. A complete feature map,
also referred to as an activation map, is
generated by performing the three opera­
tions just explained at all spatial locations
of the input maps. Each feature map has
one kernel volume and one bias associ­
ated with it. The objective is to use train­
ing data to learn the weights of the kernel
volume and bias of each feature map. We

explain in the following two sections how
these coefficients are learned, and give
a detailed computational example of a
CNN application.

Figure 1 also illustrates the types of
features that volume convolution is able
to extract. The input to the CNN stage
in Figure 1 was an RGB image of size
277 277# pixels, which resulted in an
input volume of depth three, correspond­
ing to the red, green, and blue channels
of the RGB image. We used the image of
a human subject as the input so that the
resulting feature maps would be easier to
interpret visually. The feature maps vol­
ume in this case was specified to have 96
feature maps, each obtained by filtering
the maps of the input volume with a dif­
ferent kernel volume of size .11 11 3# #
Thus, there are 96 kernel volumes of
depth three, for a total of 3 96 288# =
2-D convolution kernels of size 11 11#
in this CNN stage. The 96 feature maps
resulting from the input image are shown
as images in the upper right of Figure 1
as an 8 12# montage. The feature maps
shown in enlarged detail are numbered
and grouped to illustrate the variety of
complementary features that can result
from volume convolution. The first group
shows three feature maps. Two of them
(4 and 35) emphasize edge content, and
the third (23) is a blurred version of the
input. The second group has two maps
(10 and 16) that capture complementary
shades of gray (note the difference in
the hair intensity, for example). In the
third group, feature map 39 emphasiz­
es the subject’s eyes and dress, both of
which are blue in the input RGB image.
Map 45 also emphasizes blue, but it
also emphasizes areas that correspond
to red tones in the RGB image, such as
the subject’s lips, hair, and skin. These
two feature maps are more sensitive to
color content than the maps in the other
two groups. Subsequent stages would
operate on these feature maps to extract
further abstractions from the data, as
we illustrate later in the “A Computa­
tional Example” section. The weights
of the convolution kernel volumes used
to generate the 96 feature maps came
from AlexNet, a CNN trained using
more than 1 million images belonging
to 1,000 object categories [5]. The sys­

tem had never “seen” the image we used
in Figure 1.

The pooling, or subsampling, shown in
Figure 1 is motivated by studies that sug­
gest that the brains of mammals perform
an analogous operation during visual cog­
nition. A pooled map is simply a feature
map of lower resolution. A typical pooling
method is to replace the values of every
neighborhood of size, say, ,2 2# in the
feature maps by the average of the values
in the neighborhood. Using a neighbor­
hood of size 2 2# results in pooled maps
of size one-half in each spatial dimension
of the size of the feature maps. Thus, a
consequence of pooling is significant data
reduction, which helps speed up process­
ing. However, a major disadvantage is that
map size also decreases significantly every
time pooling is performed. Even with
neighborhoods of size 2 2# the reduction
by half in each spatial dimension quickly
becomes an issue when the number of lay­
ers is large with respect to the size of the
input images. This is one of the reasons
why pooling is used only sporadically in
large CNN systems. As with activation
functions, the type of pooling used also
plays a role in defining the architecture of
a CNN. In addition to neighborhood aver­
aging, two additional pooling methods
used in practice are max pooling, which
replaces the values in a neighborhood by
the maximum value of its elements, and
L2 pooling, in which the pooled value in a
neighborhood is the square root of the sum
of their values squared. Max pooling has
been demonstrated to be particularly effec­
tive in classifying large image databases,
and it has the added advantage of simplic­
ity and speed. As noted previously, when
pooling is used in a layer, each pooled map
is generated from only one feature map, so
the number of feature and pooled maps is
the same.

The basic architecture of each stage
of a CNN is defined by specifying the
number of feature maps and by whether
or not pooling is used in that stage. Also
specified are kernel and pooling sizes,
and the convolution stride, defined as
the number of increments of displace­
ment of the kernel between convolution
operations. For example, a stride of two
means that convolution is performed at
every other spatial location in the input

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

83IEEE Signal Processing Magazine | November 2018 |

maps. The number of 2-D convolution
kernels needed in each stage is equal to
the depth of the input volume multiplied
by the number of feature maps. The spa­
tial dimensions of all kernels in a stage
are the same and are specified as part of
the definition of a CNN stage. Generally,
the same type of activation is used in all
stages of a CNN. This is true also of the
size and type of pooling method used
when pooling is defined for one or more
stages of the network.

There are two major ways in which
CNNs are structured: A fully convolu­
tional network (not to be confused with
a fully connected network) consists ex­
clusively of stages of the form describ­
ed in Figure 1, connected in series. The
major application
of fully convolutional
architectures is image
segmentation in which
the objective is label­
ing each individual
pixel in an input image.
Because map size
decreases as the num­
ber of stages increases,
additional processing,
such as upsampling,
is used so that the output maps are of
the same size as the input images. In
fact, fully convolutional nets can be
connected “end to end” so that map size
is first allowed to decrease as a result
of convolution and then are run in a
reverse process through an identical
network whose maps increase from
stage to stage using “backward” con­
volution. The final output is an image
of the same size as the input, but in which
pixels have been labeled and grouped
into regions [8].

The second major way in which CNNs
are used is for image classification
which, as noted previously, is by far the
widest use of CNNs. In this applica­
tion, the output maps in the last stage
of a CNN are fed into an FCN whose
function is to classify its input into one
of a predetermined number of classes.
Because the output volume of a CNN
consists of 2-D maps and, as we will
show in the next section, the inputs to
FCNs are vectors, the interface between
a CNN and an FCN is a simple stage

that converts 2-D arrays to vectors. A
discussion of how all of this is accom­
plished and applied to solve a specific
problem is the subject of the section “A
Computational Example.”

Deep FCNs
A single perceptron is a computational unit
that performs a sum-of-products opera­
tion, w w ,z xi

n
i i n1 1R= += + between a

set of weights, w w w w, , , , ,n n1 2 1f + and
a set of input scalar pattern features,

., ,x x xn1 2 f A vector formed from these
features is referred to as a pattern (or
feature) vector. Setting z 0= gives the
equation of an n-dimensional hyper­
plane, where coefficient wn 1+ is a bias that
offsets the hyperplane from the origin

of the corresponding
n-dimensional Euc­
lidean space. In the
“classic” perceptron,
the output of the sum-
of-products compu­
tation is fed into a
hard threshold, ,h to
produce an activa­
tion value, (),a h z=
with a binary output
denoted typically by

[,] .1 1+ - Then, if ,a 1= an input pat­
tern is assigned by the single perceptron
to one class, and, if ,a 1=- the pattern
is assigned to another. Neural networks
are composed of perceptrons in which
the activation function is changed from
a hard threshold to a smoother function,
such as a sigmoid, hyperbolic tangent, or
ReLU function, as defined in the previous
section. The resulting unit is referred to as
an artificial neuron because of postulated
similarities between its response and the
way neurons in the brains of mammals
are believed to function.

Figure 2 is a schematic of a deep FCN
consisting of layers of artificial neurons
in which the output of every neuron in
a layer is connected to the input of every
neuron in the next layer, hence the term
fully connected. The input layer is formed
from the components of a pattern vector,

, , , ,x x xn1 2 f and the number of neurons
in the output layer is equal to the number of
pattern classes in a given application. The
input and output layers are visible because
we can observe the values of their outputs.

All other layers in a neural net are hidden
layers. Note that CNNs are not fully con­
nected, in the sense that each element of a
map in one layer is not connected to every
element of maps in the following layer.

The objective of training a CNN/FCN
network is to determine the weights and
biases of convolution volumes in the for­
mer, and of the neuron weights and biases
in the latter, that solve a given problem.
As noted in the “Background and Prob­
lem Statement” section, these parameters
are estimated using backpropagation, a
methodology for iteratively adjusting the
coefficients based on values of the error
observed at the output neurons of the FCN.

The computation performed by the
zoomed neuron in Figure 2 is

	 w((() (,z a b1i ij
j

n

j i
1

1

, , , ,= - +
=

,-

)))/ � (4)

where w (ij ,) is the weight of the ith neu­
ron in layer , that associates that neuron
with the output of the jth neuron in layer

; ()a1 1j, ,- - is the output of the jth
neuron in layer ; ()b1 i, ,- is the bias of
the ith neuron in layer ;, and n 1,- is the
number of neurons in layer .1, - The out­
put of the ith neuron is obtained by pass­
ing ()zi , through a nonlinearity, ,h of the
form discussed in the previous section:

	 () () .a h zi i, ,= ^ h � (5)

These two simple expressions complete­
ly characterize the behavior of a neuron
in any layer of an FCN. Basically, these
equations indicate that the inputs to a neu­
ron in any layer of an FCN are the out­
puts of all neurons in the previous layer
and that the output of that neuron is the
sum of products of the neuron weights
and its inputs, to which we add a scalar
value, and then pass the total sum through
a nonlinearity. The important thing to note
in (4) and (5) is that they are identical in
form to (2) and (3), indicating that CNNs
and FCNs perform the same types of neu­
ral computations. The ultimate result of
this similarity is that training a CNN and
an FCN follows the same computation­
al rules, with allowances being made for
the fact that CNNs operate on volumes,
while FCNs work with vectors.

Training of an FCN begins by assign­
ing small random values to all weights and

The objective of training
a CNN/FCN network is to
determine the weights
and biases of convolution
volumes in the former, and
of the neuron weights and
biases in the latter, that
solve a given problem.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

84 IEEE Signal Processing Magazine | November 2018 |

biases. Because we know that () ,a x1j j=
we can use (4) and (5) to compute (z j ,)
and (a j ,) for all layers in the network,
past the first. Although it is not shown in
the diagram, we also compute (h zi ,)l̂ h
for use later in backpropagation. Propa­
gating a pattern vector through a neural
net to its output is called feedforward,
and training consists of feedforward and
backpropagation passes through the net­

work, periodically adjusting the weights
and biases between such passes.

Measuring performance during train­
ing requires an error, or cost, function. The
function used most frequently for this
purpose is the mean-squared error (MSE)
between actual and desired outputs:

	 () ,E r a L
2
1

j j
j

n
2

1

L

= -
=

^ h/ � (6)

where ()a Lj is the activation value of the
jth neuron in the output layer of the FCN.
During training, we let r 1j = if the pat­
tern being processed belongs to the jth
class and r 0j = if it does not. Thus, if a
pattern belongs to the kth class, we want
the response of the kth output neuron,

(),a Lk to be 1 and the response of all
other output neurons to be 0. When this
occurs, the error is zero and no adjustments

x1

x2

xn

Layer 1
(Input)

Layer L
(Output)

Hidden Layers

(The Number of Nodes in the Hidden Layers Can Be
Different from Layer to Layer)

Layer ,

∑

h

Neuron i in Hidden Layer , Output ai (,) Goes to All Neurons in Layer , + 1

a1(, – 1)

a1(L)

a2(L)

anL
(L)

a2(, – 1)

aj (, – 1) ai (,) = h (zi (,))wi j (,)aj (, – 1)

an, – 1
(, – 1)

zi (,) =
n, – 1

j =1

ai (,)

+ bi (,)

Figure 2. A schematic of a fully connected neural network. The zoomed section shows the computations performed by each neuron in the network. The
activation function, ,h shown is in the shape of a sigmoid.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

85IEEE Signal Processing Magazine | November 2018 |

are made to the weights because the input
vector was classified correctly.

The objective of training is to adjust
all the weights and biases in the network
when a classification mistake is made, so
that the error at the output is minimized.
This is done using gradient descent for
the weights and biases

	 w w
w

() ()
()
E

ij ij
ij

, ,
2 ,
2

a= - � (7)

and

	 ,((
(

b b
b
E

i i
i

, ,
2 ,
2

a= -
)

)) � (8)

where a is a scalar correction increment
called the learning rate constant. Unfor­
tunately, the change in the output error
with respect to changes in the weights
and biases in the hidden layers is not
known. In a nutshell, backpropagation
is a scheme that 1) propagates the error
in the output, which is known, backward
through all the hidden layers of the net­
work and 2) uses the backpropagated
error to express the two partials in (7)
and (8) in terms of the activation function,
the output error, and the current values of
the weights and biases, all of which are
known quantities at every layer in the net­
work during training. A derivation of this
important result is outside the scope of
our discussion, but a sketch of the funda­
mental equations of backpropagation will
help demonstrate the surprising simplici­
ty of this method. The original derivation
is given in [3], and is further illustrated
and formulated in a more computation­
ally effective matrix form, in [7].

Backpropagation is based on the fol­
lowing four results:

	
w

() ()
()
E a 1
ij

j i2
2
,

, ,T= - � (9)

and

	 (),
()b
E
i

i
2
2
,

,T= � (10)

where

i
w((() ()h z 1 1j j ij i, , , ,T T= + +))l̂ h/

� (11)

and

	 () () () .L h z L a L rj j j jT = -l h^ 6 @ � (12)

Equations (9) and (10) are used to com­
pute the gradients in (7) and (8), based
on known or computable quantities.
The fact that the quantities in (9) and
(10) are known is established by (11)
and (12). In the latter equation, ()h z Ljl̂ h
and ()a Lj are computed during feedfor­
ward, and rj is given during training,
so ()LjT can be computed. But if we
know this quantity, we can compute

()L 1jT - using (11) because all of its
terms are known also during any train­
ing iteration. Another application of
this equation gives (),L 2jT - and so on
for all values of ,L 1, = - , , .L 2 2f-
In other words, at any iterative step in
training, we are able to compute all the
quantities necessary to implement the
gradient descent for­
mulation given in (7)
and (8), which seeks a
minimum of the MSE
in (6). Observe that
we compute the terms
necessary for gradient
descent by proceeding backward from
the output, hence the use of the term back­
propagation to describe this method.

Using the preceding relatively sim­
ple equations, the procedure for training
an FCN can be summarized as follows:
1)	 Initialize all weights and biases to

small random values.
2)	 Using a pattern vector from the train­

ing set, perform a forward pass through
the network and compute all values
of (a j ,) and (.h z j ,)l̂ h

3)	 Compute the MSE using (6).
4)	 Compute ()LjT using (12) and propa­

gate it back through the network, using
(11) to compute (j ,T) for ,L 1, = -

, , .L 2 2f-

5)	 Update the weights and biases using
(7)–(10).

6)	 Repeat steps 2–5 for all patterns of the
training set. One pass through all train­
ing patterns constitutes one epoch of
training. This procedure is repeated for
a specified number of epochs, or until
the MSE stabilizes to within a pre­
defined range of acceptable variation.
Training a CNN for image classifi­

cation is performed in conjunction with
training its attached FCN. During feed­
forward, an image propagates through the
CNN, resulting in a set of output maps in

the last stage, as explained in Figure 1.
The elements of these maps are vector­
ized and input into the FCN so that they
propagate to the output of the fully con­
nected net, at which point the MSE is
computed, as described previously. The
error delta, (),LjT is backpropagated all
the way to the input of the FCN. The vec­
torization applied on feedforward is then
reversed into the 2-D format of the output
maps. The reformatted quantities are the
“deltas” of the CNN, which are then back­
propagated to its input stage. The error
deltas at each layer are computed during
backpropagation through both networks,
and these are then used to update the
weights and biases of the CNN and FCN,
using (7) and (8) for the latter, and their

equivalents for the
CNN [7]. Given the
similarities between
the computations per­
formed by a CNN [(2)
and (3)], and those
performed by an FCN

[(4) and (5)], the reader should not be sur­
prised that the equations of backpropaga­
tion for the two networks are also similar.
The fundamental difference between the
equations for the two neural networks
is that FCNs, which work with vectors,
use multiplications, while CNNs, which
work with 2-D arrays, use convolution.

As noted previously, the feedforward/
backpropagation training procedure just
explained is repeated for a specified num­
ber of epochs or until changes in the MSE
stabilize to within a specified range of
acceptable variation. After training, the
CNN and FCN are completely specified
by the learned weights and biases. When
deployed for autonomous operation, the
system classifies an unknown image into
one of the classes on which the system
was trained, by performing a feedforward
pass and detecting which neuron at the
output of the FCN yields the largest value.

A computational example
In this section, we illustrate how to train
and test a CNN/FCN for image classifi­
cation, using an image database that con­
tains a training set of 60,000 grayscale
images of handwritten numerals. The
database also contains a set of 10,000
test images. Figure 3 shows the CNN and

Training a CNN for image
classification is performed
in conjunction with
training its attached FCN.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

86 IEEE Signal Processing Magazine | November 2018 |

FCN architectures we used. The layout is
more detailed than in Figure 1 to sim­
plify explanations. This network, which
we explain below, was trained for 200
epochs using all 60,000 training images.
The performance of the resulting trained
system on the images of the training set
was 99.4% correct classification. When
subjected to the 10,000 test images, which
the system had never “seen” before, the
performance was 99.1%. These are im­
pressive results, considering the sim­
plicity of the architecture in Figure 3,
and the fact that the inputs are hand­
written characters that exhibit signif­
icant variability.

The input grayscale images are of
size 28 28# pixels. The first stage of
the CNN has six feature maps, and the

second has 12. Both stages use pooling
with 2 2# neighborhoods. The convo­
lution kernels are of size 5 5# in both
stages. The FCN has no hidden layers,
consisting instead of only an input and an
output layer. This means that the FCN is
a linear classifier that implements hyper­
plane boundaries, as we noted previously
in the discussion of perceptrons.

Because the inputs are grayscale imag­
es, the depth of the input volume to the first
stage of the CNN is one, indicating that six
2-D kernels, one for each of the six feature
maps, are needed in the first stage. The
depth of the input volume to the second
stage is six because there are six pooled
maps at the output of the first stage. This
means that 12 kernel volumes, each con­
sisting of six 2-D kernels, are required

to generate the 12 feature maps in the
second stage, for a total of ,6 12 72# =
2-D convolution kernels in that stage.
There is one bias per feature map, for a
total of six biases in the first stage and 12
in the second.

For 2-D convolution without pad­
ding, we require that the 2-D kernels be
completely contained in their respective
maps during spatial translation. Because
the input images are of size 28 28#
pixels and the kernels are of size ,5 5#
this means that the feature maps in the
first stage are of size 24 24# elements.
Pooling reduces the size of these maps
to 12 12# elements. These are the input
maps to the second stage which, when
convolved with kernels of size ,5 5#
result in feature maps of size .8 8# The

0.00

0.00
0.00

0.00
0.00

0.00
0.01

0.00

0.98

0.00

Feature Extraction Classification

CNN FCN

192-Dimensional Vector

2 × 2
Pooling

2 × 2
Pooling

28 × 28

5 × 5
Convolution

5 × 5
Convolution

24 × 24 12 × 12

8 × 8 4 × 4

Figure 3. A CNN trained to extract features that are then used by an FCN to classify handwritten numerals. The input image shown is from the National
Institute of Standards and Technology database. (A formatted version of this database is available for experimental work at yann.lecun.com/exdb/mnist.)

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

87IEEE Signal Processing Magazine | November 2018 |

output maps in the second stage are
obtained by pooling the feature maps
in that stage, which results in 12 maps
of size .4 4# These maps are then con­
verted to vectors by linear indexing,
which concatenates the elements of all
the 2-D maps, column by column, into
a one-dimensional string. When vector­
ized, these maps result in input vectors
to the FCN that have 4 4 12 192## =
elements. There are ten numeric classes,
so the number of neurons in the output
layer of the FCN is ten.

We illustrate the operations perfor­
med by our CNN/FCN neural net by fol­
lowing the flow of the image in Figure 3
from the input to the CNN to the output
of the FCN. The weights and biases
used in this example were obtained by
training the CNN/FCN with the 60,000
images mentioned previously. Each fea­
ture map in the first stage of the CNN
was generated by convolving a differ­
ent 5 5# kernel with the input image.
The resulting feature maps are shown as
images above the feature maps volume in
the first CNN stage. The feature maps in
the first stage are of size 24 24# pixels,
which we enlarged using bicubic inter­
polation to a size of 300 300# pixels,
to make it easier to interpret them visu­
ally. These maps illustrate that each ker­
nel was capable of detecting different
features in the input image. For exam­
ple, the first feature map at the top
of the figure exhibits strong vertical
components on the left of the character.
The second feature map shows strong
components in the northwest area of
the top of the character and the left ver­
tical lower area. The third feature map
shows strong horizontal components in
the top of the character. Similarly, each
of the other three feature maps exhibits
features distinct from the others.

As Figure 3 shows, the pooled maps
are lower-resolution versions of the
feature maps, but the former retain the
basic characteristics of the latter. The
volume containing these six maps is the
input to the second stage. Each feature
map in the second stage was generated
by convolving a different kernel volume
with the input volume to that stage, as
explained in Figure 1. The feature maps
resulting from these operations are of size

;8 8# they are shown as enlarged images
above the second CNN stage in Figure 3.
These are not as easy to interpret visually
as the feature maps in the first stage, other
than to say that each exhibits a different
response. Based on the accuracy of the
training and test results, we know that
these responses do a good job of charac­
terizing all ten numeral classes over the
entire database.

Each 192-dimensional vector result­
ing from vectorizing the output maps of
the second stage of the CNN was fed into
a fully connected net. This vector then
propagated through the FCN, as explained
previously. The values of the output neu­
rons corresponding to the input image are
zero or nearly zero, with the exception of
the tenth neuron, whose output was 0.98.
This indicates that the system correctly
recognized the input image as being from
the tenth class, which is the class of nines.
These values of the output neurons result­
ed in a value for the MSE in (6) that is close
to zero.

As mentioned previously in this
example, training was carried out for
200 epochs. We trained the system using
minibatches of 50 images between weight
updates. The patterns were ordered ran­
domly after each epoch of training, and
the learning rate increment we used was

. .1 0a = This “standard” approach to
training yielded excellent results in our
example, but it can be refined further in
more complex situations. For instance,
experimental evidence suggests that
large databases of RGB images contain­
ing 1,000 or more object classes require
significantly deeper architectures and
more complex training methodology. A
good example is the deep learning neural
network, AlexNet, that won the 2012 Ima­
geNet Challenge [5].

What we have learned
After giving a brief historical account of
how adaptive learning systems evolved,
we introduced the basic concepts under­
lying the architecture and operation of
deep CNNs and FCNs. The usefulness
of these networks, working together
to address complex image processing
applications, is made possible by train­
ing the complete CNN/FCN system
using backpropagation. We presented

the underpinnings of backpropagation
and discussed the basic equations used
to implement this deep-learning scheme.
The effectiveness of combining CNNs
and FCNs for image pattern recognition
was illustrated by training and testing a
system capable of recognizing with high
accuracy a large database of handwritten
numeric characters.

Author
Rafael C. Gonzalez (rcg@utk.edu)
received a B.S.E.E. degree (1965) from
the University of Miami, FL, and M.S.
(1967) and Ph.D. (1970) degrees from
the University of Florida, Gainesville,
all in electrical engineering. He is a
distinguished service professor, emeri­
tus in the Electrical Engineering and
Computer Science Department at the
University of Tennessee, Knoxville. He
is a pioneer in the fields of image pro­
cessing and pattern recognition and is
the author or coauthor of four books,
several edited books, and more than
100 publications in these fields. His
books are used in more than 1,000 uni­
versities and research institutions
throughout the world, and his work
spans highly successful academic and
industrial careers. He is a Life Fellow
of the IEEE.

References
[1] F. Rosenblatt, “Two theorems of statistical sepa­
rability in the perceptron,” in Proc. Symp. No. 10
Mechanisation Thought Processes, London, 1959, vol.
1, pp. 421–456.

[2] F. Rosenblatt, Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms.
Washington, D.C.: Spartan, 1962.

[3] D. E. Rumelhart, G. E. Hinton, R. J. Williams,
“Learning internal representations by error propaga­
tion,” in Parallel Distributed Processing: Explorations
in the Microstructures of Cognition, Vol. 1, D. E.
Rumelhart et al., Eds. Cambridge, MA: MIT Press,
1986, pp. 318–362.

[4] Y. LeCun, B. Boser, J. S. Denker D. Henderson,
R. E. Howard, W. Hubbard, and L. D. Jackel, “Back­
propagation applied to handwritten zip code rec­
ognition,” Neural Comput., vol. 1, no. 4, pp. 541–551,
1989.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional neural
networks,” in Proc. Advances Neural Information
Processing Systems 25, 2012, pp. 1097–1105.

[6] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep
learning,” Nature, vol. 521, pp. 436–444, May, 2015.

[7] R. C. Gonzalez and R. E. Woods, Digital Image
Processing, 4th ed. New York: Pearson-Prentice Hall,
2018.

[8] E. Shelhamer, J. Long, and T. Darrell, “Fully con­
volutional networks for semantic segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp.
640–651, 2017.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 25,2020 at 02:55:19 UTC from IEEE Xplore. Restrictions apply.

