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Deep Convolutional Neural Networks

Neural networks are a subset of the 
field of artificial intelligence (AI). 
The predominant types of neural 

networks used for multidimensional sig­
nal processing are deep convolutional 
neural networks (CNNs). The term deep 
refers generically to networks having from 
a “few” to several dozen or more convo­
lution layers, and deep learning refers to 
methodologies for training these systems  
to automatically learn their functional pa­
rameters using data representative of 
a specific problem domain of interest. 
CNNs are currently being used in a broad 
spectrum of application areas, all of which 
share the common objective of being able 
to automatically learn features from (typi­
cally massive) data bases and to general­
ize their responses to circumstances not 
encountered during the learning phase. 
Ultimately, the learned features can be 
used for tasks such as classifying the types 
of signals the CNN is expected to pro­
cess. The purpose of this “Lecture Notes” 
article is twofold: 1) to introduce the fun­
damental architecture of CNNs and 2) to 
illustrate, via a computational example, 
how CNNs are trained and used in prac­
tice to solve a specific class of problems.

Relevance
After decades of languishing in research 
laboratories, AI has recently experienced 
an explosion in worldwide interest as a 
strategic tool in industry, government, 

and research institutions. This interest is 
based on the fact that AI makes it possible 
for computers to learn from experience, 
generalize their behavior, and perform 
tasks that one normally associates with 
human intelligence. Some applications of 
AI are well known to the general public, 
such as computers that beat grand mas­
ters at chess, recognize fingerprints, and 
interpret verbal com­
mands. Other appli­
cations are less well 
known, such as fraud 
detection, searching 
for patterns in large 
amounts of data, and 
controlling complex 
industrial processes. 
As varied as they are, 
however, all of these 
applications are based 
on the same concepts 
from deep learning. 
Of particular interest in two-dimensional 
(2-D) signal processing is automatic 
recognition of the contents of digital 
images using deep learning, which is 
currently being applied with unprec­
edented success in fields ranging from 
biometrics, such as face and retinal iden­
tification, to visual quality inspection, 
medical diagnoses, and autonomous 
vehicle navigation.

Prerequisites
The only prerequisites for understand­
ing this article are calculus (in particu­
lar, differentiation and the chain rule) 

and linear algebra, both at the under­
graduate level.

Background and problem 
statement
Interest in using computers to perform 
automated image recognition tasks dates 
back more than half a century. During 
the mid 1950s and early 1960s, a class 

of so-called learning 
machines [1] caused a  
great deal of excite­
ment in the field of ma­
chine learning. The  
reason was the deve­
lopment of mathema­
tical proofs showing 
that basic computing  
units, called percept­
rons, when trained with 
linearly separable data 
sets, would converge 
to a solution in a finite 

number of iterative steps. The solution  
took the form of coefficients of hyper­
planes that were capable of correctly se­
parating these data classes in feature 
hyperspace. Unfortunately, the basic per­
ceptron was inadequate for tasks of prac­
tical significance. Subsequent attempts 
to extend the power of perceptrons by 
assembling multiple layers of these de­
vices lacked effective training algorithms, 
such as those that had created interest in 
the perceptron itself [2]. This discour­
aging state of the art changed with the de­
velopment in 1986 of backpropagation, 
a method for training neural networks 
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composed of layers of perceptron-like 
units [3]. Backpropagation was first ap­
plied to 2-D signals in 1989 in the context 
of what we now refer to as deep CNNs 
[4]. Similar efforts followed at a rela­
tively low level for the next two decades, 
but it was not until 2012, when publica­
tion of the results of the 2012 ImageNet 
Challenge demonstrated the power of 
deep CNNs, that these neural nets began 
to be used widely in image pattern rec­
ognition and other imaging applications 
[5], [6]. Today, CNNs are the approach 
of choice for addressing complex image 
recognition tasks and other important 
fields, which will be mentioned shortly.

Pattern recognition by machine involves 
the following four basic stages: 
1)	 acquisition
2)	 preprocessing
3)	 feature extraction
4)	 classification. 
Acquisition generates the raw input pat­
terns (e.g., digital images); preprocessing 
deals with tasks such as noise reduction 
and geometric corrections; feature extrac­
tion deals with computing attributes that 
are fundamental in differentiating one 
class of patterns from another; and clas­
sification is the process that assigns a 
given input pattern to one of several pre­
defined classes. Feature extraction usu­
ally is the most difficult problem to solve, 
with extensive engineering often being 
required to define and test a suitable set 
of features for a given application. CNNs 
offer an alternative approach that auto­
mates the learning of features by utilizing 
large databases of samples, called training 
sets, that are representative of an applica­
tion domain of interest.

The problem addressed in this tuto­
rial is to define a CNN-based strategy for 
extracting features automatically from 
a large training database and to use 
those features for accurately recognizing 
images from both the training database 
and also from an independent set of test 
images. This type of problem is by far the 
predominant application of CNNs, but it 
is not their only use. CNNs are currently 
being applied successfully in a number of 
other areas that include speech recogni­
tion, semantic image segmentation, and 
natural language processing [8]. In each 
case, the specifics of how CNNs are struc­

tured may vary, but their principles of 
operation are the same as those discussed 
in this article.

Solution
We approach the solution to the problem 
stated in the previous section by using a 
deep modular CNN architecture consist­
ing of layers of convolution, activation, 
and pooling. The output of the CNN 
is then fed into a deep, fully connected 
neural network (FCN), whose purpose 
is to map a set of 2-D features into a class 
label for each input image. Central to 
this approach is the ability to use sam­
ple training data to 
learn the operational 
parameters of each 
network layer. For this, 
we use backpropaga­
tion as a tool for ite­
ratively adjusting the 
network weights (also 
referred to as coefficients, parameters, 
and hyperparameteres) based on cycling 
through the training data. Finally, we dem­
onstrate the effectiveness of the solution 
by training the CNN/FCN system using 
a large database of handwritten numeric 
characters and then testing it with a set 
of images not used in the training phase. 
As we show in the “A Computational Ex­
ample” section, the recognition accuracy 
achieved by the system on the images of 
both data sets exceeded 99%.

Deep CNNs
Figure 1 shows the basic components of 
one stage of a CNN. In practice, a CNN 
can have tens of such stages, intercon­
nected in series. In addition to the num­
ber of stages, CNN architectures differ 
in how the elements of each stage are 
defined and used, but the basic structure 
in Figure 1 is fundamental to all of them.

As the figure shows, one stage of a 
CNN is composed in general of three 
volumes, consisting, respectively, of input 
maps, feature maps, and pooled feature 
maps (or pooled maps, for short). Pooled 
maps are not always used in every stage 
and, in some applications, not at all. All 
maps are 2-D arrays whose size gener­
ally varies from volume to volume, but 
all maps within a volume are of the same 
size. If the input to the CNN is an RGB 

color image, the input volume will consist 
of three maps—the red, green, and blue 
component images, or channels, of the 
RGB image. The term input maps volume 
comes from the fact that the inputs have 
height and width (the spatial dimensions 
of each map) as well as depth, equal to 
the number of maps in a volume. In the 
context of our discussion, the input vol­
ume to the first stage consists in general 
of the channels of multispectral images; 
the input volumes to all other stages are 
the pooled maps (or feature maps for 
stages with no pooling) from the previ­
ous stage. When present, the number of 

pooled maps in a stage 
is equal to the num­
ber of feature maps.

The fundamental 
operation performed 
in each stage of a 
CNN is convolution, 
from which these ne­

ural nets derive their name. Although 
convolution is a ubiquitous operation 
in signal processing, it is not always ex­
plicitly stated that the type of convolu­
tion performed in CNNs is, in general, 
volume convolution, with the restriction 
that there is no displacement of the con­
volution kernel volume (also referred to 
as a filter) in the depth dimension. Fig­
ure 1 illustrates this concept, in which 
a kernel volume, shown in yellow, con­
sists of three individual 2-D kernels. It 
is evident from this figure that the depth 
of each kernel volume in any stage is 
always equal to the depth of the input 
volume to that stage. Convolution is per­
formed between a different 2-D kernel 
and its corresponding 2-D input map. 
Because there is no displacement in the 
depth dimension, a volume convolution 
in this case is simply the sum of the in­
dividual 2-D convolutions. To under­
stand how a CNN works, it helps to 
focus attention on the result of volume 
convolution at one pair of spatial coor­
dinates, ( , ).x y

Let w , ,m n k  denote the weights of 
a 2-D kernel associated with the kth  
map in the input volume, where m  and 
n  are variables that index over the ker­
nel height and width. The convolution 
between this kernel and the kth map, at 
any specific spatial location, ( , ),x y  of 

The fundamental operation 
performed in each stage of 
a CNN is convolution, from 
which these neural nets 
derive their name. 
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Figure 1. The components of one stage of a CNN, consisting of an input maps volume, a feature maps volume, and an optional pooled maps volume. The 
maps in the input volume correspond to the three channels of the RGB image shown. The stage has 96 feature maps and 96 pooled maps. The highlighted 
feature maps, displayed as images and identified numerically, illustrate the types of features that a CNN is capable of extracting from an input image.
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the map, is the sum of products of the 
weights of the kernel and the elements 
of the map that are spatially coincident 
with the kernel. To obtain a volume con­
volution, the sum of products operation 
is performed between each correspond­
ing 2-D kernel and its map at that same 
spatial location. Each sum of products is 
a scalar, and the volume convolution at 
that point is the sum of the K  resulting 
scalars, where K  is the depth of the input 
volume. To write this in equation form 
would require K  2-D summations. How­
ever, for reasons that will be explained in 
the next section, we can redefine the indi­
ces and write the K  summations as one:

	 w v ,conv ,x y i i
i

= / � (1)

where the ws are kernel weights, the vs 
are values of the spatially corresponding 
elements in the input maps, and conv ,x y  
is the result of volume convolution at the 
same spatial coordinates, ( , ),x y  for all 
maps of the input volume. Equation (1) 
gives the result at point A in Figure 1. 
The result at point B  is obtained by add­
ing a scalar bias, ,b  to (1)

	 w v .z b,x y i i
i

= +/ � (2)

We discuss the nature of this bias in the 
next section.

The result at point C is obtained by 
passing scalar z ,x y  through a nonlinear­
ity called an activation function, h

	 ( ) .a h z, ,x y x y= � (3)

Activation functions used in practice in­
clude sigmoids ( ) / ( ) ,exph z z1 1= + -^ h  
hyperbolic tangents ( ) ( ),tanhh z z=  and 
so-called rectified linear units (ReLUs)

( ) ( , ) .maxh z z0=  The resulting ,a ,x y  
called an activation value, becomes the 
value of the feature map at location 
( , ),x y  as illustrated by the point labeled 
C in Figure 1. A complete feature map, 
also referred to as an activation map, is 
generated by performing the three opera­
tions just explained at all spatial locations 
of the input maps. Each feature map has 
one kernel volume and one bias associ­
ated with it. The objective is to use train­
ing data to learn the weights of the kernel 
volume and bias of each feature map. We 

explain in the following two sections how 
these coefficients are learned, and give 
a detailed computational example of a 
CNN application.

Figure 1 also illustrates the types of 
features that volume convolution is able 
to extract. The input to the CNN stage 
in Figure 1 was an RGB image of size 
277 277#  pixels, which resulted in an 
input volume of depth three, correspond­
ing to the red, green, and blue channels 
of the RGB image. We used the image of 
a human subject as the input so that the 
resulting feature maps would be easier to 
interpret visually. The feature maps vol­
ume in this case was specified to have 96 
feature maps, each obtained by filtering 
the maps of the input volume with a dif­
ferent kernel volume of size .11 11 3# #  
Thus, there are 96 kernel volumes of 
depth three, for a total of 3 96 288# =  
2-D convolution kernels of size 11 11#  
in this CNN stage. The 96 feature maps 
resulting from the input image are shown 
as images in the upper right of Figure 1 
as an 8 12#  montage. The feature maps 
shown in enlarged detail are numbered 
and grouped to illustrate the variety of 
complementary features that can result 
from volume convolution. The first group 
shows three feature maps. Two of them 
(4 and 35) emphasize edge content, and 
the third (23) is a blurred version of the 
input. The second group has two maps 
(10 and 16) that capture complementary 
shades of gray (note the difference in 
the hair intensity, for example). In the 
third group, feature map 39 emphasiz­
es the subject’s eyes and dress, both of 
which are blue in the input RGB image. 
Map 45 also emphasizes blue, but it 
also emphasizes areas that correspond 
to red tones in the RGB image, such as 
the subject’s lips, hair, and skin. These 
two feature maps are more sensitive to 
color content than the maps in the other 
two groups. Subsequent stages would 
operate on these feature maps to extract 
further abstractions from the data, as 
we illustrate later in the “A Computa­
tional Example” section. The weights 
of the convolution kernel volumes used 
to generate the 96 feature maps came 
from AlexNet, a CNN trained using 
more than 1 million images belonging 
to 1,000 object categories [5]. The sys­

tem had never “seen” the image we used 
in Figure 1.

The pooling, or subsampling, shown in 
Figure 1 is motivated by studies that sug­
gest that the brains of mammals perform 
an analogous operation during visual cog­
nition. A pooled map is simply a feature 
map of lower resolution. A typical pooling 
method is to replace the values of every 
neighborhood of size, say, ,2 2#  in the 
feature maps by the average of the values 
in the neighborhood. Using a neighbor­
hood of size 2 2#  results in pooled maps 
of size one-half in each spatial dimension 
of the size of the feature maps. Thus, a 
consequence of pooling is significant data 
reduction, which helps speed up process­
ing. However, a major disadvantage is that 
map size also decreases significantly every 
time pooling is performed. Even with 
neighborhoods of size 2 2#  the reduction 
by half in each spatial dimension quickly 
becomes an issue when the number of lay­
ers is large with respect to the size of the 
input images. This is one of the reasons 
why pooling is used only sporadically in 
large CNN systems. As with activation 
functions, the type of pooling used also 
plays a role in defining the architecture of 
a CNN. In addition to neighborhood aver­
aging, two additional pooling methods 
used in practice are max pooling, which 
replaces the values in a neighborhood by 
the maximum value of its elements, and 
L2 pooling, in which the pooled value in a 
neighborhood is the square root of the sum 
of their values squared. Max pooling has 
been demonstrated to be particularly effec­
tive in classifying large image databases, 
and it has the added advantage of simplic­
ity and speed. As noted previously, when 
pooling is used in a layer, each pooled map 
is generated from only one feature map, so 
the number of feature and pooled maps is 
the same.

The basic architecture of each stage 
of a CNN is defined by specifying the 
number of feature maps and by whether 
or not pooling is used in that stage. Also 
specified are kernel and pooling sizes, 
and the convolution stride, defined as 
the number of increments of displace­
ment of the kernel between convolution 
operations. For example, a stride of two 
means that convolution is performed at 
every other spatial location in the input 
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maps. The number of 2-D convolution 
kernels needed in each stage is equal to 
the depth of the input volume multiplied 
by the number of feature maps. The spa­
tial dimensions of all kernels in a stage 
are the same and are specified as part of 
the definition of a CNN stage. Generally, 
the same type of activation is used in all 
stages of a CNN. This is true also of the 
size and type of pooling method used 
when pooling is defined for one or more 
stages of the network.

There are two major ways in which 
CNNs are structured: A fully convolu­
tional network (not to be confused with 
a fully connected network) consists ex­
clusively of stages of the form describ­
ed in Figure 1, connected in series. The 
major application 
of fully convolutional  
architectures is image 
segmentation in which 
the objective is label­
ing each individual 
pixel in an input image. 
Because map size 
decreases as the num­
ber of stages increases, 
additional processing, 
such as upsampling,  
is used so that the output maps are of 
the same size as the input images. In 
fact, fully convolutional nets can be  
connected “end to end” so that map size 
is first allowed to decrease as a result  
of convolution and then are run in a 
reverse process through an identical 
network whose maps increase from 
stage to stage using “backward” con­
volution. The final output is an image 
of the same size as the input, but in which 
pixels have been labeled and grouped 
into regions [8].

The second major way in which CNNs 
are used is for image classification 
which, as noted previously, is by far the 
widest use of CNNs. In this applica­
tion, the output maps in the last stage 
of a CNN are fed into an FCN whose 
function is to classify its input into one 
of a predetermined number of classes. 
Because the output volume of a CNN 
consists of 2-D maps and, as we will 
show in the next section, the inputs to 
FCNs are vectors, the interface between 
a CNN and an FCN is a simple stage 

that converts 2-D arrays to vectors. A 
discussion of how all of this is accom­
plished and applied to solve a specific 
problem is the subject of the section “A 
Computational Example.”

Deep FCNs
A single perceptron is a computational unit 
that performs a sum-of-products opera­
tion, w w ,z xi

n
i i n1 1R= += +  between a 

set of weights, w w w w, , , , ,n n1 2 1f +  and 
a set of input scalar pattern features, 

., ,x x xn1 2 f  A vector formed from these 
features is referred to as a pattern (or 
feature) vector. Setting z 0=  gives the 
equation of an n-dimensional hyper­
plane, where coefficient wn 1+  is a bias that 
offsets the hyperplane from the origin 

of the corresponding 
n-dimensional Euc­
lidean space. In the 
“classic” perceptron, 
the output of the sum-
of-products compu­
tation is fed into a 
hard threshold, ,h  to 
produce an activa­
tion value, ( ),a h z=  
with a binary output 
denoted typically by 

[ , ] .1 1+ -  Then, if ,a 1=  an input pat­
tern is assigned by the single perceptron 
to one class, and, if ,a 1=-  the pattern 
is assigned to another. Neural networks 
are composed of perceptrons in which 
the activation function is changed from 
a hard threshold to a smoother function, 
such as a sigmoid, hyperbolic tangent, or 
ReLU function, as defined in the previous 
section. The resulting unit is referred to as 
an artificial neuron because of postulated 
similarities between its response and the 
way neurons in the brains of mammals 
are believed to function.

Figure 2 is a schematic of a deep FCN 
consisting of layers of artificial neurons 
in which the output of every neuron in 
a layer is connected to the input of every 
neuron in the next layer, hence the term 
fully connected. The input layer is formed 
from the components of a pattern vector, 

, , , ,x x xn1 2 f  and the number of neurons 
in the output layer is equal to the number of 
pattern classes in a given application. The 
input and output layers are visible because 
we can observe the values of their outputs. 

All other layers in a neural net are hidden 
layers. Note that CNNs are not fully con­
nected, in the sense that each element of a 
map in one layer is not connected to every 
element of maps in the following layer.

The objective of training a CNN/FCN 
network is to determine the weights and 
biases of convolution volumes in the for­
mer, and of the neuron weights and biases 
in the latter, that solve a given problem. 
As noted in the “Background and Prob­
lem Statement” section, these parameters 
are estimated using backpropagation, a 
methodology for iteratively adjusting the 
coefficients based on values of the error 
observed at the output neurons of the FCN.

The computation performed by the 
zoomed neuron in Figure 2 is

	 w( ( ( ) ( ,z a b1i ij
j

n

j i
1

1

, , , ,= - +
=

,-

) ) )/ � (4)

where w (ij ,) is the weight of the ith neu­
ron in layer , that associates that neuron 
with the output of the jth neuron in layer 

; ( )a1 1j, ,- -  is the output of the jth  
neuron in layer ; ( )b1 i, ,-  is the bias of 
the ith neuron in layer ;,  and n 1,-  is the 
number of neurons in layer .1, -  The out­
put of the ith neuron is obtained by pass­
ing ( )zi ,  through a nonlinearity, ,h  of the 
form discussed in the previous section:

	 ( ) ( ) .a h zi i, ,= ^ h � (5)

These two simple expressions complete­
ly characterize the behavior of a neuron 
in any layer of an FCN. Basically, these 
equations indicate that the inputs to a neu­
ron in any layer of an FCN are the out­
puts of all neurons in the previous layer 
and that the output of that neuron is the 
sum of products of the neuron weights 
and its inputs, to which we add a scalar 
value, and then pass the total sum through 
a nonlinearity. The important thing to note 
in (4) and (5) is that they are identical in 
form to (2) and (3), indicating that CNNs 
and FCNs perform the same types of neu­
ral computations. The ultimate result of 
this similarity is that training a CNN and 
an FCN follows the same computation­
al rules, with allowances being made for 
the fact that CNNs operate on volumes, 
while FCNs work with vectors.

Training of an FCN begins by assign­
ing small random values to all weights and 

The objective of training 
a CNN/FCN network is to 
determine the weights 
and biases of convolution 
volumes in the former, and 
of the neuron weights and 
biases in the latter, that 
solve a given problem. 
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biases. Because we know that ( ) ,a x1j j=  
we can use (4) and (5) to compute (z j ,) 
and (a j ,) for all layers in the network, 
past the first. Although it is not shown in 
the diagram, we also compute (h zi ,)l̂ h 
for use later in backpropagation. Propa­
gating a pattern vector through a neural 
net to its output is called feedforward, 
and training consists of feedforward and 
backpropagation passes through the net­

work, periodically adjusting the weights 
and biases between such passes.

Measuring performance during train­
ing requires an error, or cost, function. The 
function used most frequently for this 
purpose is the mean-squared error (MSE) 
between actual and desired outputs:

	 ( ) ,E r a L
2
1

j j
j

n
2

1

L

= -
=

^ h/ � (6)

where ( )a Lj  is the activation value of the 
jth  neuron in the output layer of the FCN. 
During training, we let r 1j =  if the pat­
tern being processed belongs to the jth  
class and r 0j =  if it does not. Thus, if a 
pattern belongs to the kth  class, we want 
the response of the kth  output neuron, 

( ),a Lk  to be 1 and the response of all 
other output neurons to be 0. When this 
occurs, the error is zero and no adjustments 
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Figure 2. A schematic of a fully connected neural network. The zoomed section shows the computations performed by each neuron in the network. The 
activation function, ,h  shown is in the shape of a sigmoid.
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are made to the weights because the input 
vector was classified correctly.

The objective of training is to adjust 
all the weights and biases in the network 
when a classification mistake is made, so 
that the error at the output is minimized. 
This is done using gradient descent for 
the weights and biases

	 w w
w

( ) ( )
( )
E

ij ij
ij

, ,
2 ,
2

a= - � (7)

and

	 ,( (
(

b b
b
E

i i
i

, ,
2 ,
2

a= -
)

) ) � (8)

where a  is a scalar correction increment 
called the learning rate constant. Unfor­
tunately, the change in the output error 
with respect to changes in the weights 
and biases in the hidden layers is not 
known. In a nutshell, backpropagation 
is a scheme that 1) propagates the error 
in the output, which is known, backward 
through all the hidden layers of the net­
work and 2) uses the backpropagated 
error to express the two partials in (7) 
and (8) in terms of the activation function, 
the output error, and the current values of 
the weights and biases, all of which are 
known quantities at every layer in the net­
work during training. A derivation of this 
important result is outside the scope of 
our discussion, but a sketch of the funda­
mental equations of backpropagation will 
help demonstrate the surprising simplici­
ty of this method. The original derivation 
is given in [3], and is further illustrated 
and formulated in a more computation­
ally effective matrix form, in [7].

Backpropagation is based on the fol­
lowing four results:
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Equations (9) and (10) are used to com­
pute the gradients in (7) and (8), based 
on known or computable quantities. 
The fact that the quantities in (9) and 
(10) are known is established by (11) 
and (12). In the latter equation, ( )h z Ljl̂ h 
and ( )a Lj  are computed during feedfor­
ward, and rj  is given during training, 
so ( )LjT  can be computed. But if we 
know this quantity, we can compute 

( )L 1jT -  using (11) because all of its 
terms are known also during any train­
ing iteration. Another application of 
this equation gives ( ),L 2jT -  and so on 
for all values of ,L 1, = -  , , .L 2 2f-  
In other words, at any iterative step in 
training, we are able to compute all the 
quantities necessary to implement the 
gradient descent for­
mulation given in (7) 
and (8), which seeks a 
minimum of the MSE  
in (6). Observe that 
we compute the terms 
necessary for gradient 
descent by proceeding backward from 
the output, hence the use of the term back­
propagation to describe this method.

Using the preceding relatively sim­
ple equations, the procedure for training 
an FCN can be summarized as follows:
1)	 Initialize all weights and biases to 

small random values.
2)	 Using a pattern vector from the train­

ing set, perform a forward pass through 
the network and compute all values 
of (a j ,) and ( .h z j ,)l̂ h

3)	 Compute the MSE using (6).
4)	 Compute ( )LjT  using (12) and propa­

gate it back through the network, using 
(11) to compute (j ,T ) for ,L 1, = -  

, , .L 2 2f-

5)	 Update the weights and biases using 
(7)–(10).

6)	 Repeat steps 2–5 for all patterns of the 
training set. One pass through all train­
ing patterns constitutes one epoch of 
training. This procedure is repeated for 
a specified number of epochs, or until 
the MSE stabilizes to within a pre­
defined range of acceptable variation.
Training a CNN for image classifi­

cation is performed in conjunction with 
training its attached FCN. During feed­
forward, an image propagates through the 
CNN, resulting in a set of output maps in 

the last stage, as explained in Figure 1. 
The elements of these maps are vector­
ized and input into the FCN so that they 
propagate to the output of the fully con­
nected net, at which point the MSE is 
computed, as described previously. The 
error delta, ( ),LjT  is backpropagated all 
the way to the input of the FCN. The vec­
torization applied on feedforward is then 
reversed into the 2-D format of the output 
maps. The reformatted quantities are the 
“deltas” of the CNN, which are then back­
propagated to its input stage. The error 
deltas at each layer are computed during 
backpropagation through both networks, 
and these are then used to update the 
weights and biases of the CNN and FCN, 
using (7) and (8) for the latter, and their 

equivalents for the 
CNN [7]. Given the 
similarities between 
the computations  per­
formed by a CNN [(2) 
and (3)], and those 
performed by an FCN 

[(4) and (5)], the reader should not be sur­
prised that the equations of backpropaga­
tion for the two networks are also similar. 
The fundamental difference between the 
equations for the two neural networks 
is that FCNs, which work with vectors, 
use multiplications, while CNNs, which 
work with 2-D arrays, use convolution.

As noted previously, the feedforward/
backpropagation training procedure just 
explained is repeated for a specified num­
ber of epochs or until changes in the MSE 
stabilize to within a specified range of 
acceptable variation. After training, the 
CNN and FCN are completely specified 
by the learned weights and biases. When 
deployed for autonomous operation, the 
system classifies an unknown image into 
one of the classes on which the system 
was trained, by performing a feedforward 
pass and detecting which neuron at the 
output of the FCN yields the largest value.

A computational example
In this section, we illustrate how to train 
and test a CNN/FCN for image classifi­
cation, using an image database that con­
tains a training set of 60,000 grayscale 
images of handwritten numerals. The 
database also contains a set of 10,000 
test images. Figure 3 shows the CNN and 

Training a CNN for image 
classification is performed 
in conjunction with 
training its attached FCN.
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FCN architectures we used. The layout is 
more detailed than in Figure 1 to sim­
plify explanations. This network, which 
we explain below, was trained for 200 
epochs using all 60,000 training images. 
The performance of the resulting trained 
system on the images of the training set 
was 99.4% correct classification. When 
subjected to the 10,000 test images, which 
the system had never “seen” before, the 
performance was 99.1%. These are im­
pressive results, considering the sim­
plicity of the architecture in Figure 3, 
and the fact that the inputs are hand­
written characters that exhibit signif­
icant variability.

The input grayscale images are of 
size 28 28#  pixels. The first stage of 
the CNN has six feature maps, and the 

second has 12. Both stages use pooling 
with 2 2#  neighborhoods. The convo­
lution kernels are of size 5 5#  in both 
stages. The FCN has no hidden layers, 
consisting instead of only an input and an 
output layer. This means that the FCN is 
a linear classifier that implements hyper­
plane boundaries, as we noted previously 
in the discussion of perceptrons.

Because the inputs are grayscale imag­
es, the depth of the input volume to the first 
stage of the CNN is one, indicating that six 
2-D kernels, one for each of the six feature 
maps, are needed in the first stage. The 
depth of the input volume to the second 
stage is six because there are six pooled 
maps at the output of the first stage. This 
means that 12 kernel volumes, each con­
sisting of six 2-D kernels, are required 

to generate the 12 feature maps in the 
second stage, for a total of ,6 12 72# =  
2-D convolution kernels in that stage. 
There is one bias per feature map, for a 
total of six biases in the first stage and 12 
in the second.

For 2-D convolution without pad­
ding, we require that the 2-D kernels be 
completely contained in their respective 
maps during spatial translation. Because 
the input images are of size 28 28#  
pixels and the kernels are of size ,5 5#  
this means that the feature maps in the 
first stage are of size 24 24#  elements. 
Pooling reduces the size of these maps 
to 12 12#  elements. These are the input 
maps to the second stage which, when 
convolved with kernels of size ,5 5#  
result in feature maps of size .8 8#  The 
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Figure 3. A CNN trained to extract features that are then used by an FCN to classify handwritten numerals. The input image shown is from the National 
Institute of Standards and Technology database. (A formatted version of this database is available for experimental work at yann.lecun.com/exdb/mnist.)
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output maps in the second stage are 
obtained by pooling the feature maps 
in that stage, which results in 12 maps 
of size .4 4#  These maps are then con­
verted to vectors by linear indexing, 
which concatenates the elements of all 
the 2-D maps, column by column, into 
a one-dimensional string. When vector­
ized, these maps result in input vectors 
to the FCN that have 4 4 12 192## =  
elements. There are ten numeric classes, 
so the number of neurons in the output 
layer of the FCN is ten.

We illustrate the operations perfor­
med by our CNN/FCN neural net by fol­
lowing the flow of the image in Figure 3 
from the input to the CNN to the output 
of the FCN. The weights and biases 
used in this example were obtained by 
training the CNN/FCN with the 60,000 
images mentioned previously. Each fea­
ture map in the first stage of the CNN 
was generated by convolving a differ­
ent 5 5#  kernel with the input image. 
The resulting feature maps are shown as 
images above the feature maps volume in 
the first CNN stage. The feature maps in 
the first stage are of size 24 24#  pixels, 
which we enlarged using bicubic inter­
polation to a size of 300 300#  pixels, 
to make it easier to interpret them visu­
ally. These maps illustrate that each ker­
nel was capable of detecting different 
features in the input image. For exam­
ple, the first feature map at the top 
of the figure exhibits strong vertical 
components on the left of the character. 
The second feature map shows strong 
components in the northwest area of 
the top of the character and the left ver­
tical lower area. The third feature map 
shows strong horizontal components in 
the top of the character. Similarly, each 
of the other three feature maps exhibits 
features distinct from the others.

As Figure 3 shows, the pooled maps 
are lower-resolution versions of the 
feature maps, but the former retain the 
basic characteristics of the latter. The 
volume containing these six maps is the 
input to the second stage. Each feature 
map in the second stage was generated 
by convolving a different kernel volume 
with the input volume to that stage, as 
explained in Figure 1. The feature maps 
resulting from these operations are of size 

;8 8#  they are shown as enlarged images 
above the second CNN stage in Figure 3. 
These are not as easy to interpret visually 
as the feature maps in the first stage, other 
than to say that each exhibits a different 
response. Based on the accuracy of the 
training and test results, we know that 
these responses do a good job of charac­
terizing all ten numeral classes over the 
entire database.

Each 192-dimensional vector result­
ing from vectorizing the output maps of 
the second stage of the CNN was fed into 
a fully connected net. This vector then 
propagated through the FCN, as explained 
previously. The values of the output neu­
rons corresponding to the input image are 
zero or nearly zero, with the exception of 
the tenth neuron, whose output was 0.98. 
This indicates that the system correctly 
recognized the input image as being from 
the tenth class, which is the class of nines. 
These values of the output neurons result­
ed in a value for the MSE in (6) that is close 
to zero.

As mentioned previously in this 
example, training was carried out for 
200 epochs. We trained the system using 
minibatches of 50 images between weight 
updates. The patterns were ordered ran­
domly after each epoch of training, and 
the learning rate increment we used was 

. .1 0a =  This “standard” approach to 
training yielded excellent results in our 
example, but it can be refined further in 
more complex situations. For instance, 
experimental evidence suggests that 
large databases of RGB images contain­
ing 1,000 or more object classes require 
significantly deeper architectures and 
more complex training methodology. A 
good example is the deep learning neural 
network, AlexNet, that won the 2012 Ima­
geNet Challenge [5].

What we have learned
After giving a brief historical account of 
how adaptive learning systems evolved, 
we introduced the basic concepts under­
lying the architecture and operation of 
deep CNNs and FCNs. The usefulness 
of these networks, working together 
to address complex image processing 
applications, is made possible by train­
ing the complete CNN/FCN system 
using backpropagation. We presented 

the underpinnings of backpropagation 
and discussed the basic equations used 
to implement this deep-learning scheme. 
The effectiveness of combining CNNs 
and FCNs for image pattern recognition 
was illustrated by training and testing a 
system capable of recognizing with high 
accuracy a large database of handwritten 
numeric characters.
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