A (Partial) Introduction to

Software Engineering Practices
and Methods

Written by: Dr. Laurie Williams

NCSU CSC326 Course Pack
2010-2011 (Seventh) Edition

Table of Contents

Introduction 1
Software Reviews and Pair Programming 11
Testing Overview and Black-Box Testing 33
White-Box Testing 59
Agile and Automated Testing including JUnit. 74
Static Analysis 96
Requirements Engineering 105
Use Case-based Requirements 137
Agile Requirements 160
A Survey of Plan-Driven Methodologies 176
A Survey of Agile Methodologies 202
Maintenance 221
Risk Management............ 239
UML AppendiXo i 261
Glossaryof Terms 281

Many thanks to Dright Ho and Sarah Smith Heckman for their help with the Monopoly example
and to Ben Smith for his help with the static analysis chapter.

An Introduction to Software Engineering

Software engineering is concerned with all aspects of software production from the early
stages of system specification through to maintaining the system after it has gone into use.
In this chapter, we will explain the following:
e the definition of computer science and software engineering and how the two are
different
e how software engineering is similar to other engineering disciplines and what that
means for software engineers
e the unique challenges of software engineering
e software development models and processes and their component parts, software
development practices

Software systems are perhaps the most intricate and complex . . . of the
things humanity makes. — Fred Brooks [8]

As a discipline, software engineering has progressed very far in a very short period of
time, particularly when compared to classical engineering field (like civil or electrical
engineering). In the early days of computing, not much more than 50 years ago,
computerized systems were quite small. Most of the programming was done by scientists
trying to solve specific, relatively small mathematical problems. Errors in those systems
generally had only “annoying” consequences to the mathematician who was trying to find
“the answer.” Today we often build monstrous systems, in terms of size and complexity.
What is also notable is the progression in the past 50 years of the visibility of the
software from mainly scientists and software developers to the general public of all ages.
“Today, software is working both explicitly and behind the scenes in virtually all aspects
of our lives, including the critical systems that affect our health and well-being.” [19]

Despite our rapid progress, the software industry is considered by many to be in a crisis.
Some 40 years ago, the term “Software Crisis” emerged to describe the software
industry’s inability to provide customers with high quality products on schedule. “The
average software development project overshoots its schedule by half; larger projects
generally do worse. And, some three quarters of all large systems are “operating failures”
that either do not function as intended or are not used at all.” [14] While the industry can
celebrate that software touches nearly all aspects of our daily lives, we can all relate to
software availability dates (such as computer games) as moving targets and to computers
crashing or locking up. We have many challenges we need to deal with as we continue to
progress into a more mature engineering field, one that predictably produces high-quality
products.

1 The Engineering of Software

Until this point in your academic career, you have likely focused on being a computer
scientist. Consider the definition of computer science offered by CSAB, the
organization that accredits Computer Science programs in the United States [11]:

An Introduction to Software Engineering

Computer science is a discipline that involves the understanding and design of
computers and computational processes. In its most general form it is concerned
with the understanding of information transfer and transformation. Particular
interest is placed on making processes efficient and endowing them with some
form of intelligence.

It is likely that your main focus thus far has been to get the computer to do what you want
it to do, as efficiently as possible. There are definitely other issues to consider. There are
many, many definitions of the term engineering. One that we feel captures the essence
has been proposed by Robert Baber (emphasis added) [2]:

. the systematic and reqular application of scientific and mathematical
knowledge to the design, construction, and operation of machines, systems, and
so on of practical use and, hence, of economic value. Particular characteristic of
engineers is that they take seriously their responsibility for correctness,
suitability, and safety of the results of their efforts. In this regard they consider
themselves to be responsible to their customer (including their employers where
relevant), to the users of their machines and systems, and to the public at large.

Computer science is one of the disciplines that provide a theory basis for the
profession of software engineering. (Some others are psychology, economics, and
management.) There are two important issues beyond “getting the computer to do
what you want, as efficiently as possible” when transitioning to software engineering.
The issues underlined in the above definition of engineering are further discussed
below:

e Practical use, economic value. Engineers need to produce products that
customers actually want and are willing to pay real money for. These
products need to help people do the things they need to do. Listening to the
customer is of prime importance. Engineers also need to produce these
products the customer wants as economically as possible. The best product in
the world won’t sell if it’s too expensive. And, if we develop products using
inappropriate practices and processes, our products will be too expensive. As
engineers, we need to determine the content and build the best product value
to our customers.

e Responsibility for correctness, suitability, and safety. Engineers are ethically
obligated to ensure their programs are correct and suitable for their customers.
In fact, there is a software engineering code of ethics [1] that we are
responsible for adhering to. In some instances, our programs have safety
critical implications, where people might die if a program has errors. In other
cases, whole businesses could be at risk if a program is not correct. We are
sure that you have always tried to get your programs to be correct and suitable
in the past. The new dimension now is that you must always consider your

© Laurie Williams 2006 2

An Introduction to Software Engineering

responsibility and obligation to your customer. The work you do could
impact their safety, their business . . . and their well being!

e Regular application of scientific and mathematical knowledge. As was said,
in our field we are just beginning to build such
knowledge that is common in other engineering fields.

2 Software Development

Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the
application of engineering to software [16]. The “systematic, disciplined, quantifiable
approach” is often termed a software process model (in the general sense) or a software
development process (in the specific sense). Specific software development processes
consist of a particular set of software development practices which are often performed
by the software engineer in a predetermined order. Software development practices,
models, and methodologies will be introduced in the next two subsections.

2.1 Software Development Practices

Engineers adopt a systematic and organized approach to their work. As you learn
software engineering, you should be exposed to many specific practices (or techniques)
for developing software. By software development practice we refer to a requirement
employed to prescribe a disciplined, uniform approach to the software development
process [16], in other words, a well-defined activity that contributes toward the
satisfaction of the project goals; generally the output of one practice becomes the input of
another practice. As pictured on the cover of this book, you should deposit as many
software engineering skills into your “skill bag” as possible. Then, based upon the
project and the people on your team, you can decide the right set of skills to take out of
your “skill bag” to use on that particular project. In this book, you will learn skills to
deposit and about selecting an appropriate set of practices a project.

First, we provide one list of software development practices (but this list may vary
depending upon the process and its associated terminology):

Requirements engineering
System analysis

High-level design/architecture
Low-level design

Coding

Integration

Design and code reviews
Testing

Maintenance

Project management
Configuration management

© Laurie Williams 2006 3

An Introduction to Software Engineering

Most disciplines come to recognize some practices as best practices. A best practice is a
practice that, through experience and research, has proven to reliably lead to a desired
result and is considered to be prudent and advisable to do in a variety of contexts. Over
time, we accumulate information on whether new practices are good or not. This
information might be just stories of people succeeding with the practice, generally called
anecdotal or qualitative evidence. Ideally, someone has done a controlled experiment
that shows that a new practice is better than some other practice. This is called empirical
or quantitative evidence. For example, before the damages of smoking were
guantitatively assessed, there were physicians who recommended their patients not to
smoke because there was some sort of evidence that the smoke was bad. Ultimately,
structured empirical analysis backed up these physicians advice.

Those of you familiar with music will understand the concept of an etude. An etude is a
musical composition written solely to improve technique. At the XP Universe
conference in 2001, Kent Beck, the originator of Extreme Programming (XP) [3] likened
learning software best practices to etudes in music. When he was learning to play a
musical instrument, he was given etudes — short scores of music — to play over and over
and over again. He said these short scores were not pleasing to the ear. The purpose of
learning to play them was to really engrain in him how to play that kind of a combination
of notes. Then later, when that sort of combination of notes appears in the midst of a
larger beautiful composition, the notes will just flow off his fingers. Learning each etude
was fairly painful, but the practice led to beautiful music.

So, how does this relate to software development? As you study software engineering,
you will learn about many software development practices. You’ll learn each
individually, and (hopefully) you will “play” them over and over again. You will come
to understand and appreciate when a certain practice is very rigorous and probably good
for safety-critical software while a similar practice is not so painstaking and perhaps
better for small projects. Engineering is all about selecting the most appropriate method
for a set of circumstances — the right tool for the job. The goal is that when you are faced
with a project, you will understand what types of practices are appropriate for that kind of
project. You will then be able to include these practices into a suitable process just as an
etude in incorporated into a classical score. Then, you will be making beautiful software!

2.2 Software Process Models and Methodologies

In simplistic terms, if you string an appropriate set of specific software practices together
and if this set accomplishes all the fundamental activities listed in 3.1, you create a
software development process. A software development process is the process by which
user needs are translated into a software product. The process involves translating user
needs into software requirements, transforming the software requirements into design,
implementing the design in code, testing the code, and sometimes installing and checking
out the software for operational use. Note: these activities might overlap or be
performed iteratively [16].

A software process model is a simplified, abstracted description of a software
development process. The primary purpose of a software process model is to determine

© Laurie Williams 2006 4

An Introduction to Software Engineering

the order of stages involved in software development and to establish the transition
criteria for progressing from one stage to the next [5]. Because of the simplification,
several software development methodologies may share one process model — the
differentiation is in the details of the process itself. Software methodologists incorporate
the general characteristics of software development models into specific software
development processes that adhere to the spirit of these models. While software
development models have general characteristics, such as “having strong documentation
and traceability mandates across requirements, design and code” [6], software
development methodologies have specific practices that need to be followed, such as
code inspection.

Of recent, process models have begun to be characterized as plan-driven or agile [4]. The
plan-driven models have an implicit assumption that a good deal of information about
requirements can be obtained up front and that information is fairly stable. As a result,
creating a plan for the project to follow is advisable. A long-standing tenet of software
engineering is that the longer a defect remains in a product, the more expensive it is to
remove it. [7, 15] An overriding philosophy of plan-driven software models is that the
cost of product development can be minimized by creating detailed plans and by
constructing and inspecting architecture and design documents. As a result of these
activities, there will be significant cost savings because defects will be removed or
prevented. Plan-driven models can be summarized as “Do it right the first time.” These
models are very appropriate for projects in which there is not a great deal of requirements
and/or technology changes anticipated throughout the development cycle. Plan-driven
models are also considered more suitable for safety- and mission-critical systems because
of their emphasis on defect prevention and elimination. [4] Some examples of plan-
driven methodologies are the Personal Software Process [15], the Rational Unified
Process [17], and Cleanroom Software Engineering [18].

Alternately, agile models are considered to be better suited for projects in which a great
deal of change is anticipated [4]. Because of the inevitable change, creating a detailed
plan would not be worthwhile because it will only change. Spending significant amounts
of time creating and inspecting an architecture and detailed design for the whole project
is similarly not advisable; it will only change as well. The methodologies of the agile
model focus on spending a limited amount of time on planning and requirements
gathering early in the process and much more time planning and gathering requirements
for small iterations throughout the entire lifecycle of the project. Some examples of agile
methodologies are the Extreme Programming (XP) [3], Scrum [20], Crystal [10], FDD
[9], and DSDM [21].

However, there need not be a dichotomy between the two models; hybrid models that

have both agile and plan-driven characteristics have been used successfully in many
projects.

© Laurie Williams 2006 5

3

An Introduction to Software Engineering

Software Engineering Challenges

There are some unique and pressing issues to deal with in the software industry. Several
of these are now discussed:

Tractable Medium. We are engineers, yet what we engineer is a logical and
tractable, not physical medium. The constraints of physical medium can serve to
simplify alternatives. For example, in a house design you can’t put a kitchen and
a bathroom in the same place; batteries have standard voltages. Frederick Brooks,
notable software engineer and author of the legendary book The Mythical Man
Month, expresses an analogy,

The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by
exertion of the imagination. [8]

This tractability has its own pros and cons. On the positive side, as programmers
we have the ultimate creative environment. We can create grandiose programs
chock full of beautiful algorithms and impressive user interfaces. And we can
completely change this functionality or the look of the interface in mere seconds
and have a new creation! Conversely, because we are only dealing with “thought-
stuff,” our profession has a limited scientific and/or mathematical basis. In other
fields, the scientific and mathematic basis of physical, intractable mediums
constrain the solution to a problem -- only certain materials can withstand the
weight of a car, only certain paints can take the intensity of the UV rays on the top
of a mountain, etc. But, with software, the sky’s the limit!

Quite often programmers are also asked to fix hardware product problems
because people think that it is cheaper to fix the problems in the (tractable)
software than it is to re-design and re-manufacture physical parts. This presents
software engineers with the need to design and coding changes, often at the last
minute.

The software industry has been trying to formulate a sort of
scientific/mathematical basis for itself. Formal notations have been proposed to
specify a program; mathematical proofs have been defined using these formal
notations. The software community is also establishing analysis and design
patterns [12, 13]. These patterns are general solutions to recurring analysis and
design problems; the patterns are proposed, proven and documented by experts in
the field. Engineers can become familiar with these general solutions and learn to
apply them appropriately in the systems and programs under development.

Changing requirements. Adapting for hardware changes is only one source of
requirements churn for software engineers. Unfortunately, requirements changes
come from many sources. It is often very hard for customers to express exactly
what they want in a product (software is only thought-stuff for them too!). They
often don’t know what they want until they see some of what they’ve asked for.
Requirements analysts may not understand the product domain as completely as
they need to early in the product lifecycle. As a result, the analysts might not

© Laurie Williams 2006 6

4.

An Introduction to Software Engineering

know the right questions to ask the customer to elicit all their requirements.
Lastly, the product domain can be constantly changing during the course of a
product development cycle. New technology becomes available. Competitors
release new products that have features that weren’t thought of. Innovators think
of wonderful new ideas that will make the product more competitive.

Schedule Optimism. Software engineers are an optimistic crew. In most
organizations, it is the software engineers who estimate how long it will take to
develop a product. No matter how many times we’ve taken longer than we
thought in the past, we still believe “Next time, things will go more smoothly.
We know so much more now.” As a result, we often end up committing to a date
we have no business committing to, giving the software industry a “never on
time” reputation.

Schedule Pressure. We often make these aggressive commitments because of the
intensity of the people asking us for commitment. It seems that every product is
late before it’s even started, every feature is critical or the business will fold.
Products need to be created and updated at a constant, rapid pace lest competitors
take over the business.

Summary

There are some keys ideas to remember as you begin your study of software engineering.
These ideas are summarized in Table 1.

Table 1: Key Ideas for Software Engineering

Computer science is concerned with getting the computer to do what you want it
to do, as efficiently as possible.

K

Software engineers use their computer science skills to create products of
practical use and economic value. Software engineers are ethically responsible
for the correctness, suitability, and safety of their projects. When possible,
software engineers apply scientific and mathematical knowledge to their work.

A

A software development process is a process by which user needs are translated
into a software product. Software development processes are comprised of
specific software development practices.

A software process model is a generalized abstraction of a family of software
development processes.

Plan-driven processes are best for projects with a low degree of change or those
with critical safety and security needs.

§ 84

Software engineering is especially challenging because software is a tractable
medium, requirements often change, and competitive pressures cause schedule
pressure.

© Laurie Williams 2006 7

An Introduction to Software Engineering

Glossary of Chapter Terms

Word Definition Source
best practice | a software development practice that, through experience
and research, has proven to reliably lead to a desired result
and is considered to be prudent and advisable to do in a
variety of contexts
computer A discipline that involves the understanding and design of | [11]
science computers and computational processes. In its most
general form it is concerned with the understanding of
information transfer and transformation. Particular interest
is placed on making processes efficient and endowing
them with some form of intelligence
engineering | the systematic and regular application of scientific and [2]
mathematical knowledge to the design, construction, and
operation of machines, systems, and so on of practical use
and, hence, of economic value. Particular characteristic of
engineers is that they take seriously their responsibility for
correctness, suitability, and safety of the results of their
efforts. In this regard they consider themselves to be
responsible to their customer (including their employers
where relevant), to the users of their machines and
systems, and to the public at large.
Software a disciplined, uniform approach to the software [16]
development | development process
practice (or
technique)
Software The process by which user needs are translated into a [16]
development | software product. The process involves translating user
process (or needs into software requirements, transforming the
methodology | software requirements into design, implementing the
) design in code, testing the code, and sometimes installing
and checking out the software for operational use. Note:
these activities might overlap or be performed iteratively.
Software simplified, abstracted description of a software
process development process
model
software the application of a systematic, disciplined, quantifiable [16]
engineering | approach to the development, operation, and maintenance
of software; that is, the application of engineering to
software
References

© Laurie Williams 2006

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

© Laurie Williams 2006

An Introduction to Software Engineering

ACM/IEEE-CS Joint Task Force on Software Engineering, "Software
Engineering Code of Ethics and Professional Practice,” 1999.

R. L. Baber, "Comparison of Electrical "Engineering"” of Heaviside's Times and
Software "Engineering” of our Times," IEEE Annals of the History of Computing,
vol. 19, no. 4, pp. 5-17, 1997.

K. Beck, Extreme Programming Explained: Embrace Change. Reading, Mass.:
Addison-Wesley, 2000.

B. Boehm, "Get Ready for Agile Methods, with Care," IEEE Computer, vol. 35,
no. 1, pp. 64-69, 2002.

B. Boehm, "A Spiral Model for Software Development and Enhancement,”
Computer, vol. 21, no. 5, pp. 61-72, May 1988.

B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the
Perplexed. Boston, MA: Addison Wesley, 2003.

B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

F. P. Brooks, The Mythical Man-Month, Anniversary Edition: Addison-Wesley
Publishing Company, 1995.

P. Coad, E. LeFebvre, and J. DeLuca, Java Modeling in Color with UML.:
Prentice Hall, 1999.

A. Cockburn, Agile Software Development. Reading, Massachusetts: Addison
Wesley Longman, 2001.

CSAB, "Defining the Computing Sciences Professions,”
http://www.csab.org/comp_sci_profession.html, no., 1997.

M. Fowler, Analysis Patterns: Reusable Object Models. Menlo Park, CA:
Addison Wesley Longman, Inc, 1997.

E. H. Gamma, Richard; Johnson, Ralph; and Vlissides, John, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1995.

W. W. Gibbs, "Software's Chronic Crisis," in Scientific American, 1994, pp. 86-
95.

W. S. Humphrey, A Discipline for Software Engineering. Reading, MA: Addison
Wesley, 1995.

IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process. Reading, Massachusetts: Addison-Wesley, 1999.

H. D. Mills, R. C. Linger, and A. R. Hevner, "Box Structured Information
Systems," IBM Systems Journal, vol. 26, no. 4, pp. 395-413, 1987.

S. L. Pfleeger, Software Engineering: Theory and Practice. Upper Saddle River,
NJ: Prentice Hall, 1998.

K. Schwaber and M. Beedle, Agile Software Development with SCRUM. Upper
Saddle River, NJ: Prentice-Hall, 2002.

J. Stapleton, DSDM: The Method in Practice: Addison Wesley Longman, 1997.

An Introduction to Software Engineering

Chapter Questions

1.
2.

Describe the difference between a software process and a software process model.

What are the challenges of today’s SE? How do software engineers respond to these
challenges?

Software requirements change is inevitable. However, the requirements of some
software are not so volatile. Give three examples of such software. What are the
characteristics of this kind of software?

For a commercial shrink-wrapped software product, what are the important goals the
software developers seek to achieve? List at least 5 items, and rank them in order.

Search the web, and find three software process models. Give some description for
each model.

Based on Baber’s definition about engineering and your personal experience, do you
think software is engineering? Why? How is software different from other kind of
engineering?

As a software professional, we must take our ethical responsibility. ACM
(Association of Computer Machinery) and IEEE (Institute of Electrical And
Electronic Engineers) have produced a code of ethics and professional practice. Find
it on the web, and describe in your word what ethical responsibilities we should take.

For more than 30 years, software engineers have been thinking how to improve the
process of software development. Today, we can find an army of software processes,
and new ones are being created. If you were a manager in a software consulting
company, would you adapt new software practices? If you would, what would be the
motivation? If not, what would be the concerns?

Why, in your opinion, are software engineers often over-optimistic?

© Laurie Williams 2006 10

Software Reviews and Pair Programming

Software Reviews and Pair Programming

Software reviews are a quality assurance technique that helps us remove defects from our
software programs and supporting documentation. In this chapter, we will explain the
following:

e the benefits of software reviews

e the review technique of personal reviews, walkthroughs, and formal inspection.

e the economics of software reviews

... three experienced engineers worked for three months to find a subtle system
defect that was causing persistent customer problems. At the time they found this
defect, the same code was being inspected by a different team of five engineers.
As an experiment, this team was not told about the defect. Within two hours, this
team found not only this defect, but also 71 others! Once found, the original
defect was trivial to fix. [18]

By this point in your life, we’re sure you have written a paper and had someone else read
it before you turned it in. Quite often, authors can be pleased with their own work and
then quite shocked when others find mistakes or have excellent suggestions on how to
make it even better. We’re not the best judges of our own work, and to make matters
worse, we’re quite blind to our own mistakes. In the classic book, The Psychology of
Computer Programming, Gerald Weinberg reminds us, “The human eye has an almost
infinite capacity for not seeing what it does not want to see Programmers, if left to
their own devices, will ignore the most glaring errors in their output—errors that anyone
else can see in an instant [28]."

This chapter is dedicated to structured techniques for letting others look over our
software development work. The techniques discussed in this chapter are called static
techniques because they do not involve the execution of a program. Using these
techniques, we can overcome our human shortcomings for finding our own mistakes, and
we can brainstorm alternative approaches we wouldn’t think of on our own. The first set
of techniques for gaining this valuable input are various forms of periodic software
reviews. The second technigue is a more continual practice, pair programming. Even
though the second technique is called pair programming, this technique is used on many
phases of the software development process on many types of artifacts—requirements
documents, design documents, implementation code, test cases, and so on.

We use these techniques to get defects out of our work as quickly and efficiently as
possible. The longer a defect remains in our work, the harder and more time consuming it
is to get out [6]. We also use these techniques to learn from each other. Each of us has
our own skills, approaches, and techniques, and we have a lot to learn from each other.

© Laurie Williams 2008 11

Software Reviews and Pair Programming

1 Software Reviews

Software reviews are used for quality assurance. Software reviews are a process or
meeting during which a work product, or set of work products, is presented to project
personnel, managers, users, customers, or other interested parties for comment or
approval. Types include code review, design review, formal qualification review,
requirements review, test readiness review. [20] There are several varieties of software
review; they differ according to the size of the review group and the formality of the
review meetings. In this section, we’ll learn about personal reviews (which are done solo
by the creator of the artifact), walkthroughs (which are done informally with the artifact
creator and one or two other people), and inspections (which are done formally with the
artifact creator and up to four other people).

1.1 Objectives of Software Reviews
There are four explicit objectives for software reviews, as follows:
e To detect errors in program logic/structure or inconsistencies from one artifact to
the next. Harlan Mills’ believes that “programming should be a public process”
[7]. Exposing programs to others helps quality, both through the pressure by
peers to do things well and because peers spot flaws and bugs [7] that an
individual might not.

e To make sure the intention of the artifact is clear (the more clear the better)

e To verify that the design and/or software meets its requirements

e To ensure software has been developed in a uniform manner, using agreed-upon
standards

1.2 Beneficial Side Effects of Software Reviews

In addition to these explicit objectives, when reviews involve group participation, the
reviews have additional beneficial side effects for the development group. First, reviews
are an excellent means of learning about the overall system and about the techniques of
teammates so as to improve communication within the team. Secondly, by working
together several people on the team become somewhat familiar with the details of the
artifact under review. This additional knowledge is helpful when the creator of the
artifact is not available and the review participant must interact with the artifact. Finally,
there’s a psychological benefit for the creator of the artifact. When we know that others
will be looking at our documents or code, we have more incentive to make things clear
and simple. As a result, our work is generally of higher quality.

2 Types of Software Reviews

Some might think that if only we didn’t make mistakes, reviews would not be necessary.
But, even experienced programmers typically make about 100 defects per thousand lines
of code [18]! Early discovery and removal of defects is vital so these defects do not
propagate to the next step in the software process. We now describe three different types
of software reviews for removing defects: personal reviews, walkthroughs, and software
inspections.

© Laurie Williams 2008 12

Software Reviews and Pair Programming

2.1 Personal Reviews

On one end of the software review spectrum are personal reviews—here you privately
review your own work. Think back to a time when you’re asked someone to proof your
term paper for you. You wouldn’t give your reviewer your first draft, would you? You’d
go through your term paper to polish it up and find the glaring errors before showing it to
someone else. The same goes with software. Before others see your work, you should
examine your own products via a personal review. Humphrey [18] reminds us that
someone who inspects your work is making you a gift of time solely to help you improve
the quality of your product. To show your appreciation, you should treat that time as
important by ensuring your code is as clean as you can before submitting it for the
inspection.

A Checklist for a Personal Review

To prepare for a personal review, it is a good idea to create a checklist of questions
designed to detect common errors. As you proceed through the review, ask yourself the
questions on the checklist. For example, the following five sample questions could be on
a checklist for a requirements document checklist:

Are all requirements traceable back to a specific user need?

Are any requirements included that are impossible to implement?

Could the requirements be understood and implemented by an independent group?
Are security requirements specified for each function?

Is there a glossary in which each term is defined?

arwONDE

Finding Defects with a Personal Review

When you do a personal review, it is best if you print out the work you will be reviewing,
such as a requirements document, a design document, code, or a test plan. Then,
methodically, step through your work and through the checklist, trying to identify any
possible errors. The objective of a personal review is to find and fix as many defects as
possible before you implement, inspect, or test the design and/or the program. Research
has shown that with practice you can remove between 50%-80% of your defects by doing
a thorough personal review [18]. Every defect you remove from of your work on your
own saves your teammates time in later inspections, testing, and field support and
improves the quality of your product.

2.2 Walkthroughs

Going up the software review spectrum one step brings us to walkthroughs. A
walkthrough is a static analysis technique in which a designer or programmer leads
members of the development team and other interested parties through a segment of
documentation or code, and the participants ask questions and make comments about
possible errors, violations of development standards, and other problems [20]. At least
one other person attends a walkthrough with the creator of an artifact. Generally, no
preparation is done before a walkthrough, and no formal follow-up is done after a
walkthrough. This form of software generally follows a presentation format. The
developer first makes an overview presentation of the software element(s) under review.

© Laurie Williams 2008 13

Software Reviews and Pair Programming

Then, he or she traces the design or code step by step. [19] The developer also gives a
detailed description of how the program handles a typical application. The audience,
which can include customers/users and other team members, raises issues and asks
questions. Errors, suggested changes, and improvements are noted as the walkthrough
progresses. A walkthrough can therefore be effective at discovering omissions, and
resolving misunderstandings; it can also be used to educate users or team members about
an application.

There are three roles for walkthroughs [19]. These roles are defined below:

- Author: The author of the material presents his or her work.

- Moderator: The moderator handles the administrative aspects of the
walkthrough, such as determining the schedule and distributing materials, and
ensures it is conducted in an orderly manner. The moderator prepares a statement
of objectives for the meeting.

- Recorder: The recorder writes down the comments made during the
walkthrough. The comments pertain to errors found, questions of style, omission,
contradictions, and suggestions for improvement and alternative approaches.

2.3 Software Inspections

Similar to walkthroughs, software inspections involve the author creator and several other
people. An inspection is a static analysis technique that relies on visual examination of
development products to detect errors, violations of development standards, and other
problems [19]. Inspections are a more formal type of software than either personal
reviews or walkthroughs. The style of software inspection we will describe is often
referred to as Fagan-style [13] inspection, named after the software engineer who devised
the practice, Michael Fagan. Software inspections generally involve three to six
participants.

Organizations that include inspections in their development process generally have rules
or protocols for carrying out the inspection meetings. Artifacts that will be inspected
must be distributed to participants a set number of days prior to the meeting. Participants
are required to review the artifact prior to the meeting so that they are prepared for an
effective and efficient meeting. However, this pre-inspection preparation must not take
more than two hours. Similarly, the inspection must also not last more than two hours
lest the participants get too tired to provide useful input.

Roles within an Inspection

Additionally, a Fagan inspection requires that several participants to be present, each with
a particular role to play. For smaller reviews, participants may take on more than one
role. The roles [19] are defined below:

- Author: To no surprise, the author is the person who created the document being
inspected. However, as opposed to the authors role in walkthroughs, he or she is
present at the inspection to answer questions to help others understand the work
but does not step through the work; the reader does that. The authors listens to

© Laurie Williams 2008 14

Software Reviews and Pair Programming

the input of the inspection team but should not to “defend” his or her work. The
author does not take on any of the four roles defined below.

- Moderator: The moderator chooses the inspection team, schedules the inspection
meeting, ensures the artifact to be review are complete, and distributes the
materials. In the inspection meeting, the moderator runs the inspection and
enforces the protocols of the meeting. The moderator’s job is mainly one of
controlling interactions and keeping the group focused on the purpose of the
meeting — to discover (but not fix) deficiencies in the document. The moderator
also ensures that the group does not drift off onto a tangent and that everyone
sticks to a schedule.

- Reader: The reader leads the inspection team through the software element(s) in
a logical and comprehensive fashion. He or she calls attention to each part of the
document in turn — paraphrasing or reading line-by lines as appropriate. The
reader paces the inspection.

- Recorder: Whenever any problem is uncovered in the document being inspected,
the recorder describes the defect in writing. After the inspection, the recorder and
moderator prepare an inspection report.

- Inspectors: The inspectors raise questions and suggest problems with the
document. Inspectors are not supposed to “attack” the author or the document but
instead they should strive to be objective and constructive. Everyone except the
author can act as an inspector. Often inspectors are chosen to represent different
viewpoints, for example requirements, design, code, test, project management,
quality management.

During the Inspection

Everyone comes to the inspection prepared. The meeting is called to order by the
moderator. The meeting proceeds by the reader paraphrasing the artifact section by
section — the reader does not read the artifact line by line. When the reader is done
paraphrasing a section, the inspectors identify possible faults in that section and/or pose
questions about that section. The author can answer the question. If a question is not
posed to the author, the author remains quiet and observes the meeting. The scribe
records all issues discussed by the group.

After the Inspection

Upon completion of the inspection, the team of participants decides if the artifact (1) can
proceed to the next stage with minor changes; (2) needs to be fixed and re-inspected; or
(3) needs to be scrapped and done over. It is very important that none of the participants
is the supervisor of any of the other participants (especially the author) and that
inspection data is in no way used in employee performance evaluations.

Organizations that have embraced inspections have often found that they have far fewer
test defects [16]. Despite the advantages of these inspections, unfortunately, these
reviews are often not done as much as they should be. There are several reasons the
reviews are not done:

© Laurie Williams 2008 15

Software Reviews and Pair Programming

e Developers simply don’t believe that the reviews are worth their time—they’ve got
a deadline to meet. Instead, these same developers spend endless hours in long,
error-prone debugging sessions, finding errors that could have been efficiently
found in a review.

e Developers might have ego problems in reviews. They might have trouble
admitting their own mistakes and don’t want a room full of people seeing their
defects. However, we need to develop an egoless programming [27] culture where
we each learn from each other and benefit from each others’ input so we can grow
as software engineers and so we can produce higher quality products.

e Some software engineers avoid inspections because they find inspections boring.

3 Pair Programming

Pair programming is a techngiue that can be used to complement software reviews or,
sometimes, as as an alternative to reviews. Pair programming is a style of programming
in which two programmers work side-by-side at one computer, continuously
collaborating on the same design, algorithm, code, or test [29]. Pair programming has
been practiced sporadically for decades [29]; however, the emergence of agile
methodologies and Extreme Programming [4] has recently popularized the pair
programming practice. Pair programming has been shown to have many of the benefits
of reviews while also eliminating the programmer’s distaste for reviews so that at least
one form of review is actually performed.

3.1 The Driver and Navigator

One of the pair, called the driver, types at the computer or writes down a design. The
other partner, called the navigator, has many jobs. One of these is to observe the work of
the driver—Ilooking for tactical and strategic defects in the driver’s work. Some tactical
defects might be syntax errors, typos, and calling the wrong method. Strategic defects
occur when the driver is headed down the wrong path—what driver and navigator are
implementing just won’t accomplish what it needs to accomplish. The navigator is the
strategic, longer-range thinker of the programming pair. Because the navigator is not as
deeply involved with the design, algorithm, code or test, he or she can have a more
objective point of view and can better think strategically about the direction of the work.

Another benefit of pair programming is that the driver and the navigator can brainstorm
at any time the situation calls for it. An effective pair programming relationship is very
active. In an effective pairing relationship, the driver and the navigator continually
communicate. Periodically, it’s also very important to switch roles between the driver and
the navigator.

3.2 Pairing during All Phases of Development

The name of the technique, pair programming can lead people to incorretly assume that
you should only pair during code development. However, pairing can occur during all
phases of the development process, in pair design, pair debugging, pair testing, and so on.
Programmers could pair up at any time during development, in particular when they are

© Laurie Williams 2008 16

Software Reviews and Pair Programming

working on something that is complex. The more complex the task, the greater the need
for two brains.

3.3 Why Pair Program?

Some people think that having two people sit down to develop one artifact must be a big
waste of resources. Managers are especially concerned about this since they think they
will have to pay two programmers to do the work one could do. Even students are
concerned about this because they think they might have to spend twice as long on their
homework. However, some research results show that these concerns do not materialize.

Higher-Quality Code

Previous research with senior-level undergraduate students at the University of Utah
showed that pairs developed higher quality code faster with only a minimal increase in
total time spent in coding. For example, if one student finished a project in ten hours, the
pair might work on it for five and a half hours (for eleven total hours of time between the
two). The code produced by the pairs in the study also passed 15% more of the automated
test cases, demonstrating that the pairs produced code of higher quality. [30, 34]

At North Carolina State University, student pair programmers in beginning computer
science classes generally performed better on projects and exams and were more likely to
complete the class with a grade of C or better than did their solo counterparts. Results
also indicate that pair programming creates a laboratory environment conducive to more
advanced, active learning than traditional labs; students and lab instructors report labs to
be more productive and less frustrating. [23, 32, 33]

Enhanced Morale, Teamwork, and Learning
Pair programming offers additional benefits, including the following:

1. Increased Morale. Pair programmers are happier programmers. Several
surveys were taken of pair programmers in the North Carolina study discussed
above. Ninety-two percent of them indicated that they enjoyed programming
more when they worked with a partner. Ninety-six percent of them indicated
they felt more confident in their product when they worked with a partner.
[34]

2. Increased Teamwork. Pair programmers get to know their classmates much
better because they work so closely together. [11] It makes school more
enjoyable when you can walk into a classroom or a lab and really know
several of the people in the class. Classmates then seem more “approachable”
when you have a question about the class.

© Laurie Williams 2008 17

Software Reviews and Pair Programming

3. Enhanced learning. Pairs continously learn by watching how their partners
approach a task, how they use their language capabilities, and how they use
the development tools. [11]

3.4 How Does Pair Programming Work?

It may seem odd that two people can sit down at one computer and finish in about half
the time, with higher quality code, and enhanced morale, teamwork, and learning. But
studies have shown that pairing makes us work differently. As was done in [29], we will
discuss six “hows” and “whys” that contribute to the great results of pair programming.
They are pair pressure, pair negotiation and brainstorming, pair courage, pair reviews,
pair debugging, and pair learning.

1. Pair Pressure

Pair programmers put a positive form of pressure on each other that functions as a time
management strategy. Software engineers say they work harder and smarter on programs
because they do not want to let their partner down. They are also less likely to read
email, surf the web, or make a phone call. They handle interruptions more quickly so
they can return to their primary task they share with their partner [9]. Engineers often
pair for a few hours at a time during which they work intensely on their joint task without
interruption. As such, the pair can work with a “pair flow” [5] state of mind in which the
solution and the problem space are shared between the minds of the participants. The
presence of a pairing parter helps an engineer recover the state of a primary task after
interruption leading to more rapid interruption recovery [9]. Additionally, solo
programmers can use interruptions as means for filling a need for social interaction; this
need dimishes with pair programming [9].

Programmers say they work very intensively because they are highly motivated to
complete the task at hand during the session. Pairing requires schedule coordination,
which imposes explicit deadlines that motivate engineers to work intensively finish their
tasks.

2. Pair Negotiation and Brainstorming

The term pair negotiation is used to describe how two pair programmers arrive at the best
solution together. When pairing is working at its best, each person brings to the
partnership his or her own set of skills, abilities, and outlooks and both partners share the
same goal for completing the task. Each person has a suggested alternative for attacking
a joint problem, and the partners must negotiate how to jointly approach the problem. In
this negotiation, they evaluate more alternatives than either one would have considered
alone, whereas, a person working alone tends to pursue the first approach that comes to
mind. Together, the partners consider and include each other’s suggestions and
determine the best plan of attack.

© Laurie Williams 2008 18

Software Reviews and Pair Programming

Couched in effective pair programming is the phenomenon known as Beginner’s Mind
[5] wherein a person that is new to an area with no predisposition of a solution can see
more possible solutions.

3. Pair Courage

Having a partner is a tremendous courage builder. Gaining affirmation from a partner
gives programmers the confidence to do things they might be afraid to do alone When
working with someone else, programmers can piece together enough knowledge to feel
confident in what they are doing.

Working with a partner also gives us courage to admit when we do not know something.
Developers by themselves tend to be embarrassed when they do not know something and
will try to muddle through on their own rather than ask for help from their peers. When
two people do not know something, there is a joint realization that it is time to seek help.

4. Pair Reviews

Pair programming functions as a form of continuous review and problem identification
occurs on a minute-by-minute basis. Syntax or semantic errors and missing assumptions
or unconsidered cases in algorithm design that may otherwise go unnoticed can often be
observed by an attentive navigator before these problems gestate. This low-level review
process complements that pair’s strategic brainstorming by avoiding the small, subtle
errors that a solo programmer may unknowingly inject and spend considerable time later
trying to uncover and fix.

5. Pair Debugging

Every person has experienced problems that can be resolved simply through the act of
explaining the problems to another person.

... [an] effective technique is to explain your code to someone else. This will
often cause you to explain the bug to yourself. Sometimes it takes no more than a
few sentences, followed by an embarrassed "Never mind; | see what's wrong.
Sorry to bother you." This works remarkably well; you can even use
nonprogrammers as listeners. One university computer center kept a teddy bear
near the help desk. Students with mysterious bugs were required to explain them
to the teddy bear before they could speak to a human counselor. [21]

When explaining a problem to a partner, the partner will ask questions and will likely
force the programmer to explain his or her potentially-flawed reasoning.

6. Pair Learning

Knowledge is constantly being passed between partners, from tool usage tips to
programming language rules to design and programming techniques. The partners take
turns being the teacher and the student on a minute-by-minute basis. Even unspoken

© Laurie Williams 2008 19

Software Reviews and Pair Programming

skills and habits cross partners [10]. When pairs rotate to work with different team
members, each programmer is then able to share new skills and knowledge with a new
partner. As a result, switching pairs often is an effective strategy for spreading
knowledge and information around a team [5]. As stated above, pair programming with
frequent swapping also aids in indoctrinating and training new team members [5, 22, 31].

3.6 Distributed Pair Programming

Distributed software development is becoming common practice in industry. In
education, students may also prefer to work from their dorm rooms or homes, rather than
going to the lab to work with their partners. Furthermore, students enrolled in distance
education courses may not ever be able to meet each other face-to-face. These
distributed workers can practice pair programming through the Internet using a variety of
tools. In the simplest of cases, programmers can use VNC* or Windows Meeting Space?
(previously Net Meeting) to share desktops. These tools broadcast the display of the
output of any application from a member to all the others, requiring sufficient bandwidth,
trust, and security between the parties. Other tools, such as Sangam [17], xpairtise®,
COPPER [24], or Facetop [25] have been designed to only transmits messages that are
important for pair programming, such as the latest change made by the driver.

Distributed cognition expert Nick Flor stresses the importance of distributed pair
programming systems to support cross-workspace visual, manual, and audio channels
[14]. These channels allow pairs to collaborate and provide subtle, yet significant
catalysts for on-going knowledge sharing and helping activities. For example, subtle
gestures such as a headshake or a mumble can be the catalyst for an exchange between
the pair. Transparent images of the partner shown in the screen by Facetop [25] can aid
in the transmission of these channels. Additionally, Chong and Hurlbutt [8] discourage
tools that have defined driver/navigator roles such as Sangam [17] because they inhibit
the behaviors of more effective pair programmers who share the driver/navigator role
throughout the session.

Some studies of distributed pair programming have been done with students at both
North Carolina State University and the University of North Carolina -- Chapel Hill [1, 2].
These studies indicated that pairing over the Internet shows a great deal of potential when
compared with distributed non-paired teams in which programmers work alone, and code
is integrated later. In these studies, the students used desktop sharing software,
NetMeeting, and Yahoo Messenger/headsets/microphones to communicate.

4 The Economics of Quality Assurance
How can we justify the time spent on pair programming and software reviews? It might
seem faster to skip these steps and move right into software test.

L http://www.realvnc.com/
2 http://www.microsoft.com/windows/products/windowsvista/features/details/meetingspace.mspx
® http://xpairtise.sourceforge.net/

© Laurie Williams 2008 20

Software Reviews and Pair Programming

4.1 General Research Findings

Research studies (including [3, 12, 15]) have been done to assess whether the time
invested in software reviews is worthwhile. Researchers have found that reviewing was
more effective and less expensive than testing in discovering program faults and that
more than 60 % of the errors in a program can be detected using informal program
inspection. As said above when pairs work, they produce higher quality code

4.2 Ease of Finding and Fixing Defects

In both reviews and pair programming, you find the defects directly and you deal with the
problems that are identified. (In reviews, you should only identify problems, but not try
to solve the problems on the spot. With pair programming, you solve problems on the
spot.) By this, we mean that in a review, a fellow programmer could tell you, “On line

20, you put limit <= 100, but that should be < 100.” You say, “Yes, you’re right!” you
correct your paper and fix it in your code later.

In black-box testing, however, you get only symptoms. For example, you run a planned
test case and you get the wrong answer. The wrong answer is just a symptom of the
problem in your code. Once you find that symptom, you must figure out why in the
world you got the wrong answer — which line of code would cause such a symptom? The
time you spend tracking down the exact problem that caused the improper behavior is
called debugging. Depending upon the size of your program, this debugging time could
be very time consuming. Most often there is no relationship between the size of the
defect you find and how long it takes to find the defect (that <= sign in the example
above could take hours or days to find.).

You should feel highly motivated to find and fix as many defects as possible before you
head into your black-box testing phases. Consider that the review/pair programming
form of defect identification and correction is fairly efficient, is quite predictable, and has
been shown to be able to remove more than half of the defects in your project. You know
that you and your four reviewers will sit together for two hours and you will find many
problems. You know that you and your pairing partner will spend several hours together
to write high quality code. However, once you start doing black-box testing, you enter
the chaos zone. At this point, even the smallest defect could take many hours to find and
fix —and these hours unpredictable and are often very frustrating. The relative ease of
tracking down and fixing problems with reviews and pair programming when compared
with the difficulties of tracking down and fixing symptoms with debugging sessions is
why these practices are more efficient.

4.3 Garbage In, Garbage Out (GIGO)
As good as these reviews and pair programming are, any quality assurance practice (such
as pair programming, reviews, and testing) cannot remove all the defects in a document

or code. These practices are only imperfect filters that can remove a percentage of your
defects. The percentage of defects removed by a quality assurance activity is called the

© Laurie Williams 2008 21

Software Reviews and Pair Programming

yield of the practice. For example, if an inspection actually gets out 40% of the defects in
the code, the inspection is said to have a 40% vyield.

Because all of the quality assurance practices are imperfect filters, the more defects that
are in the program, the more defects will escape to your customer. (Hence, the title of
this section — Garbage In, Garbage Out.) Also, the more filters you have, the more
defects you can remove. Consider three hypothetical programs (as shown in Figure 1)
that would start with 100 errors in each of them (however, pair programming prevents
half of these from being injected into the program at the coding stage). For the first
program, the development team works solo and does inspection. For the second program,
the development team also works solo but does not do inspection. Finally, the third
program was developed by programmers working in pairs without inspection.

4.4 Economic Analysis of Reviews

Quality is certainly one concern we have in our development. However, if obtaining this
degree of quality is exceedingly expensive, we may not be able to afford these quality
assurance steps. We must analyze the economic feasibility of these steps. The previous
discussion and Figure 1 show how having additional quality assurance activities can
reduce the number of defects that are delivered to a customer. The top diagram in Figure
1 shows the case of solo programming with inspection. The middle diagram shows the
case of no inspection. The bottom figure illustrates pair programming. Even more
defects can be prevented from being “delivered” to a customer if both pair programming
and reviews were used.

We consider two simple scenarios to explain the economics of quality assurance. The
example makes two important but realistic assumptions.
e Experienced software engineers normally inject about 100 defects/KLOC (KLOC
= thousand lines of code). About half of these defects are found by the compiler
(the compiler has 50% vyield).
¢ Inindustry, defects that escape from the compiler take on average eight hours
each to find and fix in the testing phase. Eight hours/defect may sound like a lot,
but it is realistic and actually quite low. It can be hard to find the defect.
Sometimes a software engineer will have to get in their car or jump on a plane to
go to a customer site to help find and fix the defect. All this time adds up!
[]
Scenario One: Solo Programming, No Inspection

Consider the case of solo programming without inspection (middle diagram of Figure 1).
For a 50 KLOC program, there will be (50)(100 defects/KLOC) = 5,000 defects. Half of
these will be caught by the compiler and the rest (2,500) will escape to the testing phase,
since the solo programmers do not perform inspection.

© Laurie Williams 2008 22

Software Reviews and Pair Programming

Figure 1. Quality Assurance Filters

\

100 errors Inspection Testing To
50% 50%
:: (50%) 50errors > | (50%) 25 errors >customer

/

Solo programming with inspection

\

Testing T ¢
:: > :: > 0 customer
100 errors (50%) 50 errors

Solo programming without inspection or pair programming

— T

Testing To
Programming_20 €1ors (50%) 25 errors customer

Paired team without inspection

No practice is a perfect filter (it won’t get out all the defects that are in the project.)
Testing will generally identify only half of the defects that enter the phase. How many
programmer hours will it take to find and fix this half of the defects?

(2,500 defects)(0.5 test yield) = 1,250 defects removed in test
(1,250 defects)(8 hours/defect) = 10,000 hours to find and fix those defects

e How many weeks would it take 10 people to do this work, assuming 40 hours
work/week each?

(10,000 programmer hours)/(10 people)(40 hours/week) = 25 weeks (or almost
half a year)!

© Laurie Williams 2008 23

Software Reviews and Pair Programming

e How many defects will escape to the customer?

2,500 — 1,250 = 1,250 defects escape to the customer

e What would the impact be to the quality of the product if management said “You
have three months (12 weeks) to test this product.”

Unfortunately, this is what often happens. The testing phase comes right before
the product is released. Often testers must compromise on the time so that the
product can be released on schedule. At 8 hours/defect, each person can only
remove 5 defects per 40 hour week). In 12 weeks, this team could only remove:

(12 weeks)(10 people)(5 defects/week) = 600 defects

This means that 2,500 — 600 defects = 1,900 defects would escape to the customer.

Scenario Two: Solo Programming with Inspection or Pair Programming without
Inspection

These cases are shown in the top and bottom diagrams of Figure 1. For the sake of this
example, we will assume that pair programmers produce code of equal quality to
reviewed code, though there are no research results to back up this claim. We do know
of several industrial organizations that are beginning to offer employees an alterative to
either formally inspect their code or to pair program; their anecdotes support that this
alternative provides similar benefit. However, there are no research results that
conclusively show that these alternatives are equal.

We again use the same assumptions as above (50 KLOC, 100 defects/KLOC, 50% yield
from the compiler, 8 hours to remove each defect in test).

For a 50 KLOC program, there will be (50)(100 defects/KLOC) = 5,000 defects. For the
solo programming group, half of these will be caught by the compiler and the rest (2,500)
will escape to the inspection phase.

Inspections will generally identify only half of the defects that enter the phase. In
industry, approximately 0.5 hours are spent to find and fix each defect in an inspection
phase. (Defects might be found quite rapidly in an inspection. However, we must
consider that four people might be attending the review. If 8 defects are found in an
hour-long review, the average time is calculated 4 person hours/8 defects or 0.5
hours/defect).

How many programmer hours will it take to find and fix this half of the defects in the
inspection?

© Laurie Williams 2008 24

Software Reviews and Pair Programming

(2,500 defects)(.5 inspection yield) = 1,250 defects removed in inspection
(1,250 defects)(0.5 hours/defect) = 625 hours to find and fix those defects

Now, 1,250 defects remain in the product as the product enters the test phase from either
the solo/reviewed group or the pair programming group. We assume the pair
programming group had not done an inspection, but instead had a continuous review as
they worked. The test phase will still again only find half of the remaining defect.

How long will the test phase need to be?

(1,250 defects)(.5 test yield) = 625 defects removed in test
(625 defects)(8 hours/defect) = 5,000 hours to find and fix those defects

e How many weeks would it take 10 people to do this work, assuming 40 hours
work/week each? (Would they be having fun?)

(5,000 programmer hours)/(10 people)(40 hours/week) = 12.5 weeks
e How many defects will escape to the customer?
1,250 — 625 = 625 defects escape to the customer

e What would the impact be to the quality of the product if management said “You
have three months (12 weeks) to test this product.”

Now, this deadline would not be a problem — the team would just need to work
minimal overtime to complete test.

In summary, the solo/no review group needed to work 10,000 programmer hours in
testing. The solo/review group needed to work 5,000 programmer hours in testing plus
they had to dedicate 625 hours to inspect for 5,625 hours of quality assurance activity.
The solo/review group saved 4,375 hours when compared with the solo/no review group
and had higher quality code. We will also assume the pair programming group had
similar results to the solo/review group — minimal increase in programmer hours due to
doubling up, 5,000 hours in test, and high quality code.

To re-emphasize, often rushed development teams decide not to do any reviews and/or
decide not to pair program because they “don’t have the time.” Remember the scenarios
above when you are tempted to do the same. Finding, fixing, and preventing defects as
early and efficiently as possible should be your goal.

5 Recommendations for Effective Reviews and Pair Programming

Reviews and pair programming can either be highly effective or a huge waste of resource,
depending upon whether protocol is followed and whether the people involved contribute

© Laurie Williams 2008 25

Software Reviews and Pair Programming

and are receptive. Below we give some recommendations for you to make your reviews
and your pairing as effective as possible. We suggest that you take these
recommendations and make them habits.

Recommendation 1: Be Tactful, Patient and Respectful

Know how to give objective criticism. In both pairing and in reviews, remember never to
infer (or blatantly say) that your partner or the author is inferior to yourself or has made a
stupid mistake. Remember, to err is human, and we are all human and are always
learning, particularly in the dynamic field of software development. Eventually (in a few
minutes or a few days), you will be the driver or the subject of an inspection. At all times,
treat others as you would like to be treated.

Respect your partner for who he or she is. He or she could be from another culture, an
introvert, and extrovert, a global person, a detailed person, a good time manager, a
procrastinator and so on. In this life, you will deal with all kinds of people — pair
programming is a lesson in doing so. Remember — EVERYONE has something to offer.

Recommendation 2: Respect the Protocol

Software reviews have protocols. For example, personal reviews rely on checklists,
which need to be developed. In walkthroughs, authors present their designs and code in
an informal way. In software inspections, there are specified roles for the participants,
and all participants should come to the inspection prepared. Defects that are identified
must be recorded.

Pair programming also has its protocols. The partners assume roles of driver and
navigator. However, they swap these roles periodically. Pairs converse almost
continuously. If you hog the keyboard, you will give your partner the impression that
you want the power or that you don’t have confidence in your partner. Don’t be a
keyboard hog!

Recommendation 3: Know When to Stop, Take Breaks

Reviews are exhausting. Through many experiments it has been established that reviews
should be no longer than two hours. If a review lasts longer than this, the participants
start to get exhausted and the productivity of the review drops significantly. Over time,
you will learn how much you can review in this period of time and will schedule the
reviews accordingly.

“Pair programming is exhausting but productive. [26]” Because pair programmers do
keep each other continuously focused and on-task, it can be a very intense and mentally
exhausting. Periodically taking a break is important for maintaining the stamina you
need for another round of productive pair programming. During the break, it is best to

© Laurie Williams 2008 26

Software Reviews and Pair Programming

disconnect from the task at hand so that you can approach it with freshness when
restarting.

Recommendation 4: Talk

In software reviews, you must feel confident to bring up the problems you have found
when reviewing the artifact.

With pair programming, if the driver is doing all the work and the navigator is just
watching, the pair is dysfunctional. A bored navigator is a sign of a problem too. A good
rule of thumb is that the navigator should be ready to take the keyboard at any moment.

If you are the navigator and the driver suddenly passes you the keyboard, you should be
able to take over without asking any questions about what the driver is doing — you
should be that engaged. If you are the driver, if you see your navigator getting bored or
even starting to fall asleep — realize that is the PERFECT time to pass him or her the
keyboard to be the driver.

The primary purpose of pairing and reviews are to work towards the best design possible,
regardless of from where or from whom the design originated. While it’s not good to
argue over what to do all the time -- students who always agree with their partner
minimize the benefits of collaborating. Your partner may as well be working alone if you
are not willing to speak up and to take a position. For favorable idea exchange there
needs to be some healthy debate and disagreement. Don’t be afraid or too willing to give
up on your idea if you believe it is best. Your joint goal is to make the best product
possible.

Recommendation 5: Listen and Practice Humility

“Ego-less programming,” an idea surfaced by Gerald Weinberg in The Psychology of
Computer Programming [28] a quarter of a century ago, is essential for effective pair
programming. Excessive ego can manifest itself in two ways, both damaging the
collaborative relationship and the spirit of a review. First, having a “my way or the
highway” attitude can prevent the programmer from considering other’s ideas. Secondly,
excessive ego can cause a programmer to be defensive when receiving criticism or to take
this criticism as an expression of mistrust. However, all must remember to put the team’s
progress above his or her own ego.

None of us, no matter how skilled, is infallible; all of us, no matter how skilled, can
benefit from the input of another. John von Neumann, the great mathematician and
creator of the von Neumann computer architecture, recognized his own inadequacies and
continuously asked others to review his work.

And indeed, there can be no doubt of von Neumann's genius. His very

ability to realize his human limitation put him head and shoulders above
the average programmer today Average people can be trained to

© Laurie Williams 2008 27

Software Reviews and Pair Programming

accept their humanity -- their inability to function like a machine—and to
value it and work with others so as to keep it under the kind of control
needed if programming is to be successful. [28]

Weinberg also shares [28] a true story about a programmer seeking review of the code he
produced. On this particular “bad programming” day, this individual ego-lessly laughed
because his reviewer found 17 bugs in 13 statements. However, after fixing these defects,
this code performed flawlessly during test and in production. Think how much worse the
programmer's life would have been if he'd been too proud to accept the input of others or
had viewed this input as an indication of his inadequacies.

If you continuously think your partner is not a smart as your partner — than you are
probably the problem. Be humble and you will learn.

Recommendation 6: Be Prepared

With software inspections, inspectors are to prepare by examining the artifact ahead of
time and coming prepared to discuss the anomolies he or she has found. The idea is not
to inspect the artifact “on-the-fly” during the meeting.

If you have an appointment with your pair programming partner or with a collegue to
conduct a walktrhough, respect their valuable time. Do any preparatory work ahead of
time, get to your appointment on time — or contact them to tell them you will be late or
you have to cancel. Come to your appointment mentally ready to go!

Recommendation 7: Consider Hygiene

When pair programming, you are in close proximity to your partner for an extended
period of time. Remember to shower, use deodorant, and brush your teeth! Bring gum or
mints to share with your partner (as a proactive measure in case your partner forgot to be
as considerate).

Recommendation 8: Don’t Suffer in Silence

Finally, if you are having problem with your partner, don’t suffer in silence — tell you
teacher or your teaching assistant. The teacher can tactfully handle the situation. It can
take some students awhile to use to working in pairs — and your partner may be one of
these. And, as we all know, some students may not care as much as you do. Your
teacher can help out with making that kind of situation as fair as possible to you.

6. Summary

A main goal of software reviews and pair programming is to remove defects in software
products. As has been discussed, both of these techniques also provide excellent learning
environments for team members. Additionally, pair programming also prevents defects

© Laurie Williams 2008 28

Software Reviews and Pair Programming

from being injected in the product in the first place. These ideas are summarized in Table

=

Table 1: Key ldeas for Software Reviews and Inspection

The sooner a defect is found and fixed in a product, the less expensive it is for the
product — and the less frustrating it is for the software engineer.

|

b &

|

Sometimes programmers avoid software reviews because they think they take too
much time or because they don’t want to publicly expose their defects. However,
software reviews have been shown to be very beneficial for removing defects and
for educating the team.

5

Software engineers should review their code via a personal review to remove as
many defects as possible before others get involved with helping them remove
their defects.

Walkthroughs are fairly informal, small group reviews of software artifacts, often
involving two or three people.

Inspections are more formal reviews of software artifacts that involve three to six
people.

ER

Pair programming also helps with removing defects, efficiently as the code is
being produced. Many people thing this higher quality will cost twice as much,
but this has not been shown to be the case.

Not quality assurance filter (such as reviews, pair programming, and testing)
removes all the defects in a product.

§ &

Quality assurance filters are economically beneficial for removing defects before
they are delivered to a customer. Once a customer gets a product with a defect,
the defects make the customer less delighted with the product, the defects are
much more costly to find and fix.

Glossary of Chapter Terms

Definition Source

inspection A static analysis technique that relies on visual [20]

examination of development products to detect errors,
violations of development standards, and other problems.

pair

programming | side-by-side at one computer, continuously collaborating

a style of programming in which two programmers work [29]

on the same design, algorithm, code, or test.

review

A process or meeting during which a work product, or set | [20]
of work products, is presented to project personnel,
managers, users, customers, or other interested parties for
comment or approval. Types include code review, design
review, formal qualification review, requirements review,
test readiness review.

© Laurie Williams 2008 29

Software Reviews and Pair Programming

walkthrough | A static analysis technique in which a designer or [20]

programmer leads members of the development team and
other interested parties through a segment of
documentation or code, and the participants ask questions
and make comments about possible errors, violations of
development standards, and other problems.

References

[1] P. Baheti, E. Gehringer, and D. Stotts, "Exploring the Efficacy of Distributed Pair
Programming,” in Extreme Programming/Agile Universe, Chicago, IL, 2002, pp.
208-220.

[2] P. Baheti, L. Williams, E. Gehringer, and D. Stotts, "Exploring Pair Programming
in Distributed Object-Oriented Team Projects,” in OOPSLA Educator's Syposium,
Seattle, WA, 2002.

[3] V. R. Basili and R. Selby, "Comparing the Effectiveness of Software Testing
Strategies,” IEEE Transactions on Software Engineering, no. pp. 1278-1296,
December 1987.

[4] K. Beck, Extreme Programming Explained: Embrace Change. Reading, MA:
Addison-Wesley, 2000.

[5] A. Belshee, "Promiscuous pairing and beginner's mind: embrace inexperience,” in
Agile Conference 2005, Denver, CO, 2005, pp. 125 - 131

[6] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

[7] F. P. Brooks, The Mythical Man-Month, Anniversary Edition: Addison-Wesley
Publishing Company, 1995.

[8] J. Chong and T. Hurlbutt, "The Social Dynamics of Pair Programming,” in
International Conference on Software Engineering (ICSE) 2007, Minneapolis,
MN, 2007, pp. 354-363

[9] J. Chong and R. Siino, "Interruptions on Software Teams: A Comparison of
Paired and Solo Programmers,” in Computer Supported Collaborative Work
(CSCW) 2006, Banff, Alberta, Canada, 2006, pp. 29-38.

[10] A. Cockburnand L. Williams, "The Costs and Benefits of Pair Programming,” in
Extreme Programming and Flexible Processes in Software Engineering (XP2000),
Cagliari, Sardinia, Italy, 2000.

[11] A. Cockburn and L. Williams, "The Costs and Benefits of Pair Programming," in
Extreme Programming Examined, G. Succi and M. Marchesi, Eds. Boston, MA:
Addison Wesley, 2001, pp. 223-248.

[12] M. E. Fagan, "Advances in Software Inspection,” IEEE Transactions on Software
Engineering, vol. 12, no. 7, July 1986 1986.

[13] M. E. Fagan, "Advances in software inspections to reduce errors in program

development,” IBM Systems Journal, vol. 15, no. pp. 182-211, 1976.

© Laurie Williams 2008 30

[14]

[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]

[31]

Software Reviews and Pair Programming

N. Flor, "Globally Distributed Software Development and Pair Programming,”
Communications of the ACM, vol. 49, no. 10, pp. 57-58, October 2006.

T. Gilb and D. Graham, Software Inspection: Addison Wesley, 1993.

D. Hamlet and J. Maybee, The Engineering of Software. Boston: Addison Wesley,
2001.

C.-w. Ho, S. Raha, E. Gehringer, and L. Williams, "Sangam: A Distributed Pair
Programming Plug-in for Eclipse,” in Eclipse Technology Exchange at Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) 2004.,
Vancouver, BC, 2004.

W. S. Humphrey, A Discipline for Software Engineering. Reading, Mass.:
Addison Wesley Longman, 1995.

IEEE, "IEEE 1028-1988: IEEE Standard for Software Reviews and Audits,” no.
1988.

IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

B. W. Kernighan and R. Pike, The Practice of Programming. Reading,
Massachusetts: Addison-Wesley, 1999.

M. Lacey, "Adventures in Promiscuous Pairing: Seeking Beginner’s Mind," in
Agile 2006, Minneapolis, 2006, pp. 263 - 269.

N. Nagappan, L. Williams, M. Ferzli, K. Yang, E. Wiebe, C. Miller, and S. Balik,
"Improving the CS1 Experience with Pair Programming," in ACM Special
Interest Group Computer Science Education (SIGCSE) 2003, Reno, 2003, pp. 359
- 362.

H. Natsu, J. Favela, A. Moran, D. Decouchant, and A. Martinez-Enriquez,
"Distributed Pair Programming on the Web," in Mexican International
Conference on Computer Science (ENC) 2003, Ciencias de la Computacion,
CICESE, Mexico, 2003, pp. 81-88.

K. Navoraphan, E. F. Gehringer, J. Culp, K. Gyllstrom, and D. Stotts, "Next-
generation DPP with Sangam and Facetop,” in OOPSLA workshop on eclipse
technology eXchange, Portland, Oregon, 2006, pp. 6-10.

W. C. Wake, Extreme Programming Explored. Boston: Addison Wesley, 2001.
G. M. Weinberg, "Egoless Programming,” in IEEE Software. vol.
January/February, 1999, pp. 118-120.

G. M. Weinberg, The Psychology of Computer Programming Silver Anniversary
Edition. New York: Dorset House Publishing, 1998.

L. Williams and R. Kessler, Pair Programming Illuminated. Reading,
Massachusetts: Addison Wesley, 2003.

L. Williams, R. Kessler, W. Cunningham, and R. Jeffries, "Strengthening the
Case for Pair-Programming," IEEE Software, vol. 17, no. 4, pp. 19-25,
July/August 2000 2000.

L. Williams, A. Shukla, and A. Antén, "An Initial Exploration of the Relationship
Between Pair Programming and Brook’s Law," in Agile Development Conference
2004, Salt Lake City, 2004, pp. 11-20.

© Laurie Williams 2008 31

Software Reviews and Pair Programming

[32] L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. Miller, "In Support of Pair
Programming in the Introductory Computer Science Course," Computer Science
Education, vol. 12, no. 3, pp. 197-212, 2002.

[33] L. Williams, K. Yang, E. Wiebe, M. Ferzli, and C. Miller, "Pair Programming in
an Introductory Computer Science Course: Initial Results and
Recommendations,” in OOPSLA Educator's Symposium, Seattle, WA, 2002, pp.
20-26.

[34] L. A. Williams, "The Collaborative Software Process," in Department of
Computer Science Salt Lake City, UT: University of Utah, 2000.

© Laurie Williams 2008

32

Testing Overview and Black-Box Testing Techniques

Software testing is an important technique for assessing the quality of a software product.
In this chapter, we will explain the following:
* the basics of software testing, a verification and validation practice, throughout
the entire software development lifecycle
* the two basic techniques of software testing, black-box testing and white-box
testing
* six types of testing that involve both black- and white-box techniques.
* strategies for writing fewer test cases and still finding as many faults as possible
* using a template for writing repeatable, defined test cases

1 Introduction to Testing

Software testing is the process of analyzing a software item to detect the differences
between existing and required conditions (that is, bugs) and to evaluate the features of
the software item 9, 12]. Software testing is an activity that should be done throughout
the whole development process [3].

Software testing is one of the “verification and validation,” or V&V, software practices.
Some other V&V practices, such as inspections and pair programming, will be discussed
throughout this book. Verification (the first V) is the process of evaluating a system or
component to determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase [11]. Verification activities include testing
and reviews. For example, in the software for the Monopoly game, we can verify that
two players cannot own the same house. Validation is the process of evaluating a system
or component during or at the end of the development process to determine whether it
satisfies specified requirements [11]. At the end of development validation (the second V)
activities are used to evaluate whether the features that have been built into the software
satisfy the customer requirements and are traceable to customer requirements. For
example, we validate that when a player lands on “Free Parking,” they get all the money
that was collected. Boehm [4] has informally defined verification and validation as
follows:

Verification: Are we building the product right?

Through verification, we make sure the product behaves the way we want it to. For
example, on the left in Figure 1, there was a problem because the specification said that
players should collect $200 if they land on or pass Go. Apparently a programmer
implemented this requirement as if the player had to pass Go to collect. A test case in
which the player landed on Go revealed this error.

Validation: Are we building the right product?

Through validation, we check to make sure that somewhere in the process a mistake
hasn’t been made such that the product build is not what the customer asked for;
validation always involves comparison against requirements. For example, on the right
in Figure 1, the customer specified requirements for the Monopoly game — but the
programmer delivered the game of Life. Maybe the programmer thought he or she

Testing Overview and Black-Box Testing Techniques

“knew better” than the customer that the game of Life was more fun than Monopoly and
wanted to “delight” the customer with something more fun than the specifications stated.
This example may seem exaggerated — but as programmers we can miss the mark by that
much if we don’t listen well enough or don’t pay attention to details — or if we second
guess what the customer says and think we know better how to solve the customer’s
problems.

Verification Validation
Are we building the product right? Are we building the right product?

“I landed on “Go” but didn’t get my “I know this game has money and
$200!” players and “Go” — but this is not the
game | wanted.”

Figure 1: Verification vs. Validation

Both of Boehm’s informal definitions use the term “right.” But what is “right”? In
software we need to have some kind of standard or specification to measure against so
that we can identify correct results from incorrect results. Let’s think about how the
incorrect results might originate. The following terms with their associated definitions
[11] are helpful for understanding these concepts:

o Mistake — a human action that produces an incorrect result.

o Fault [or Defect] — an incorrect step, process, or data definition in a program.

o Failure — the inability of a system or component to perform its required function
within the specified performance requirement.

o Error — the difference between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition.

o Specification — a document that specifies in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristic of a system or
component, and often the procedures for determining whether these provisions
have been satisfied.

A mistake committed by a person becomes a fault (or defect) in a software artifact, such

as the specification, design, or code. This fault, unless caught, propagates as a defect in

the executable code. When a defective piece of code is executed, the fault may become a
visible anomaly (a variance from the specification or desired behavior) and a failure is

© Laurie Williams 2010 34

Testing Overview and Black-Box Testing Techniques

observed. Otherwise, the fault remains latent. Testing can reveal failures, but it is the
faults that must be found and removed [3]; finding a fault (the cause of a failure) can be
time consuming and unpredictable. Error is a measure of just how incorrect the results
are.

The progression of a software failure is demonstrated in Figure 2. A purpose of testing is
to cause failures in order to make faults visible [10] so that the faults can be fixed and not
be delivered in the code that goes to customers. Another purpose of testing is to assess
the overall quality level of the code. For example, a test team may determine a project
with too many high-severity defects should be sent back to development for additional
work to improve the quality before the testing effort should continue. Or, the
management may have a policy that no product can ship if testing is continuing to reveal
high-severity defects.

Compared with
specification or desired
use/functionality
A programmer makes a The mistake manifests A failure is observed if
mistake. itself as a fault' [or the fault [or defect] is

defect] in the program. made visible. Other
faults remain latent in
the code until they are

observed (if ever).
Figure 2: The progression of a software failure. A purpose of testing is to expose as many
failures as possible before delivering the code to customers.

1.1 The Economics of Software Testing

In software development, there are costs associated with testing our programs. We need
to write out test plan and our test cases, we need to set up the proper equipment, we need
to systematically execute the test cases, we need to follow up on problems that are
identified, and we need to remove most of the faults we find. Actually, sometimes we
can find low-priority faults in our code and decide that it is too expensive to fix the fault

" The IEEE does not define defect however, the term defect is considered to be synonymous with fault.

© Laurie Williams 2010 35

Testing Overview and Black-Box Testing Techniques

because of the need to redesign, recode, or otherwise remove the fault. These faults can
remain latent in the product through a follow-on release or perhaps forever.

For faults that are not discovered and removed before the software has been shipped,
there are costs. Some of these costs are monetary, and some could be significant in less
tangible ways. Customers can lose faith in our business and can get very angry. They can
also lose a great deal of money if their system goes down because of our defects. (Think
of the effect on a grocery store that can’t check out the shoppers because of its “down”
point-of-sale system.) And, software development organizations have to spend a great
deal of money to obtain specific information about customer problems and to find and fix
the cause of their failures. Sometimes, programmers have to travel to customer locations
to work directly on the problem. These trips are costly to the development organization,
and the customers might not be overly cheerful to work with when the programmer
arrives. When we think about how expensive it is to test, we must also consider how
expensive it is to not test — including these intangible costs as well as the more obvious
direct costs.

We also need to consider the relative risk associated with a failure depending upon the
type of project we work on. Quality is much more important for safety- or mission-
critical software, like aviation software, than it is for video games. Therefore, when we
balance the cost of testing versus the cost of software failures, we will test aviation
software more than we will test video games. As a matter of fact, safety-critical software
can spend as much as three to five times as much on testing as all other software
engineering steps combined [17]!

To minimize the costs associated with testing and with software failures, a goal of testing
must be to uncover as many defects as possible with as little testing as possible. In other
words, we want to write test cases that have a high likelihood of uncovering the faults
that are the most likely to be observed as a failure in normal use. It is simply impossible
to test every possible input-output combination of the system; there are simply too many
permutations and combinations. As testers, we need to consider the economics of testing
and strive to write test cases that will uncover as many faults in as few test cases as
possible. In this chapter, we provide you with disciplined strategies for creating efficient
sets of test cases — those that will find more faults with less effort and time.

1.2 The Basics of Software Testing

There are two basic classes of software testing, black box testing and white box testing.
For now, you just need to understand the very basic difference between the two classes,
clarified by the definitions below [11]:

o Black box testing (also called functional testing) is testing that ignores the
internal mechanism of a system or component and focuses solely on the outputs
generated in response to selected inputs and execution conditions.

o White box testing (also called structural testing and glass box testing) is festing
that takes into account the internal mechanism of a system or component.

© Laurie Williams 2010 36

Testing Overview and Black-Box Testing Techniques

The classes of testing are denoted by colors to depict the opacity of the testers of the code.
With black box testing, the software tester does not (or should not) have access to the
source code itself. The code is considered to be a “big black box” to the tester who can’t
see inside the box. The tester knows only that information can be input into to the black
box, and the black box will send something back out. Based on the requirements
knowledge, the tester knows what to expect the black box to send out and tests to make
sure the black box sends out what it’s supposed to send out. Alternatively, white box
testing focuses on the internal structure of the software code. The white box tester (most
often the developer of the code) knows what the code looks like and writes test cases by
executing methods with certain parameters. In the language of V&V, black box testing is
often used for validation (are we building the right software?) and white box testing is
often used for verification (are we building the software right?). This chapter focuses on
black box testing.

All software testing is done with executable code. To do so, it might be necessary to
create scaffolding code. Scaffolding is defined as computer programs and data files built
to support software development and testing but not intended to be included in the final
product [11]. Scaffolding code is code that simulates the functions of components that
don’t exist yet and allow the program to execute [16]. Scaffolding code involves the
creation of stubs and test drivers. Stubs are modules that simulate components that aren’t
written yet, formally defined as a computer program statement substituting for the body
of a software module that is or will be defined elsewhere [11]. For example, you might
write a skeleton of a method with just the method signature and a hard-coded but valid
return value. Test drivers are defined as a software module used to involve a module
under test and often, provide test inputs, controls, and monitor execution and report test
results [11]. Test drivers simulate the calling components (e.g. hard-coded method calls)
and perhaps the entire environment under which the component is to be tested [1].
Another concept is mock objects. Mock objects are temporary substitutes for domain
code that emulates the real code. For example, if the program is to interface with a
database, you might not want to wait for the database to be fully designed and created
before you write and test a partial program. You can create a mock object of the database
that the program can use temporarily. The interface of the mock object and the real
object would be the same. The implementation of the object would mature from a
dummy implementation to an actual database.

1.4 Six Types of Testing

There are several types of testing that should be done on a large software system. Each
type of test has a “specification” that defines the correct behavior the test is examining so
that incorrect behavior (an observed failure) can be identified. The six types and the
origin of specification (what you look at to develop your tests) involved in the test type
are now discussed. There are two issues to think about in these types of testing — one is
the opacity of the tester’s view of the code (is it white or black box testing). The other
issue is scale (is the tester examining a small bit of code or the whole system and its
environment).

© Laurie Williams 2010 37

Testing Overview and Black-Box Testing Techniques

1. Unit Testing
Opacity: White box testing

Specification: Low-level design and/or code structure
Unit testing is the testing of individual hardware or software units or groups of related
units [11]. Using white box testing techniques, testers (usually the developers creating
the code implementation) verify that the code does what it is intended to do at a very low
structural level. For example, the tester will write some test code that will call a method
with certain parameters and will ensure that the return value of this method is as expected.
Looking at the code itself, the tester might notice that there is a branch (an i f-then) and
might write a second test case to go down the path not executed by the first test case.
When available, the tester will examine the low-level design of the code; otherwise, the
tester will examine the structure of the code by looking at the code itself. Unit testing is
generally done within a class or a component.

2. Integration testing

Opacity: Black- and white-box testing

Specification: Low- and high-level design
Integration test is testing in which software components, hardware components, or both
are combined and tested to evaluate the interaction between them [11]. Using both black
and white box testing techniques, the tester (still usually the software developer) verifies
that units work together when they are integrated into a larger code base. Just because
the components work individually, that doesn’t mean that they all work together when
assembled or integrated. For example, data might get lost across an interface, messages
might not get passed properly, or interfaces might not be implemented as specified. To
plan these integration test cases, testers look at high- and low-level design documents.

3. Functional and system testing

Opacity: Black-box testing

Specification: high-level design, requirements specification
Using black box testing techniques, testers examine the high-level design and the
customer requirements specification to plan the test cases to ensure the code does what it
is intended to do. Functional testing involves ensuring that the functionality specified in
the requirement specification works. System testing involves putting the new program in
many different environments to ensure the program works in typical customer
environments with various versions and types of operating systems and/or applications.
System testing is testing conducted on a complete, integrated system to evaluate the
system compliance with its specified requirements [11]. Because system test is done with
a full system implementation and environment, several classes of testing can be done that
can examine non-functional properties of the system. It is best when function and system
testing is done by an unbiased, independent perspective (e.g. not the programmer) [3].

Stress testing, performance testing, and usability testing are three specific types of system
testing.
o Stress testing — testing conducted to evaluate a system or component at or
beyond the limits of its specification or requirement [11]. For example, if the
team is developing software to run cash registers, a non-functional requirement

© Laurie Williams 2010 38

Testing Overview and Black-Box Testing Techniques

might state that the server can handle up to 30 cash registers looking up prices
simultaneously. Stress testing might occur in a room of 30 actual cash registers
running automated test transactions repeatedly for 12 hours. There also might be
a few more cash registers in the test lab to see if the system can exceed its stated
requirements.

o Performance testing — testing conducted to evaluate the compliance of a system
or component with specified performance requirements [11]. To continue the
above example, a performance requirement might state that the price lookup
must complete in less than 1 second. Performance testing evaluates whether the
system can look up prices in less than 1 second (even if there are 30 cash
registers running simultaneously).

o Usability testing — testing conducted to evaluate the extent to which a user can
learn to operate, prepare inputs for, and interpret outputs of a system or
component. While stress and usability testing can be and is often automated,
usability testing is done by human-computer interaction specialists that observe
humans interacting with the system.

4. Acceptance testing

Opacity: Black-box testing

Specification: requirements specification
After functional and system testing, the product is delivered to a customer and the
customer runs black box acceptance tests based on their expectations of the functionality.
Acceptance testing is formal testing conducted to determine whether or not a system
satisfies its acceptance criteria (the criteria the system must satisfy to be accepted by a
customer) and to enable the customer to determine whether or not to accept the system
[11]. These tests are often pre-specified by the customer and given to the test team to run
before attempting to deliver the product. The customer reserves the right to refuse
delivery of the software if the acceptance test cases do not pass. However, customers are
not trained software testers. Customers generally do not specify a “complete” set of
acceptance test cases. Their test cases are no substitute for creating your own set of
functional/system test cases. The customer is probably very good at specifying at most
one good test case for each requirement. As you will learn below, many more tests are
needed. Whenever possible, we should run customer acceptance test cases ourselves so
that we can increase our confidence that they will work at the customer location.

5. Regression testing

Opacity: Black- and white-box testing

Specification: Any changed documentation, high-level design
Throughout all testing cycles, regression test cases are run. Regression testing is
selective retesting of a system or component to verify that modifications have not caused
unintended effects and that the system or component still complies with its specified
requirements [11]. Regression tests are a subset of the original set of test cases. These
test cases are re-run often, after any significant changes (bug fixes or enhancements) are
made to the code. The purpose of running the regression test case is to make a “spot
check” to examine whether the new code works properly and has not damaged any
previously-working functionality by propagating unintended side effects. Most often, it

© Laurie Williams 2010 39

Testing Overview and Black-Box Testing Techniques

is impractical to re-run all the test cases when changes are made. Since regression tests
are run throughout the development cycle, there can be white box regression tests at the
unit and integration levels and black box tests at the integration, function, system, and
acceptance test levels.

The following guidelines should be used when choosing a set of regression tests (also
referred to as the regression test suite):
* Choose a representative sample of tests that exercise all the existing software
functions;
* Choose tests that focus on the software components/functions that have been
changed; and
* Choose additional test cases that focus on the software functions that are most
likely to be affected by the change.

A subset of the regression test cases can be set aside as smoke tests. A smoke fest is a
group of test cases that establish that the system is stable and all major functionality is
present and works under “normal” conditions [6]. Smoke tests are often automated, and
the selection of the test cases are broad in scope. The smoke tests might be run before
deciding to proceed with further testing (why dedicate resources to testing if the system is
very unstable). The purpose of smoke tests is to demonstrate stability, not to find bugs
with the system.

6. Beta testing
Opacity: Black-box testing

Specification: None.

When an advanced partial or full version of a software package is available, the
development organization can offer it free to one or more (and sometimes thousands)
potential users or beta testers. These users install the software and use it as they wish,
with the understanding that they will report any errors revealed during usage back to the
development organization. These users are usually chosen because they are experienced
users of prior versions or competitive products. The advantages of running beta tests are
as follows [8]:

* Identification of unexpected errors because the beta testers use the software in
unexpected ways.

* A wider population search for errors in a variety of environments (different
operating systems with a variety of service releases and with a multitude of other
applications running).

* Low costs because the beta testers generally get free software but are not
compensated.

The disadvantages of beta testing are as follows [8]:
* Lack of systematic testing because each user uses the product in any manner they
choose.
* Low quality error reports because the users may not actually report errors or may
report errors without enough detail.
* Much effort is necessary to examine error reports particularly when there are
many beta testers.

© Laurie Williams 2010 40

Testing Overview and Black-Box Testing Techniques

Throughout all testing cycles, regression test cases are run. Regression testing is
selective retesting of a system or component to verify that modifications have not caused
unintended effects and that the system or component still complies with its specified

requirements.

These six levels of testing are summarized in Table 1.

Testing Type

Specification

General Scope

Opacity

Who generally

does it?

Unit Low-Level Design Small unit of White Box Programmer
Actual Code Structure | code no larger who wrote
than a class code
Integration Low-Level Design Multiple White Box Programmers
High-Level Design classes Black Box who wrote
code
Functional High Level Design Whole product | Black Box Independent
tester
System Requirements Analysis | Whole product | Black Box Independent
in tester
representative
environments
Acceptance Requirements Analysis | Whole product | Black Box Customer
in customer’s
environment
Beta Ad hoc Whole product | Black box Customer
in customer’s
environment
Regression Changed Any of the Black Box Programmer(s)
Documentation above White Box or independent

High-Level Design

testers

Table 1: Levels of Software Testing

It is best to find a fault as early in the development process as possible. When a test case
fails, you have now seen a symptom of the failure [13] and still need to find the fault that
caused the failure. The further you go into the development process the harder it is to
track down the cause of the failure. If you unit test often, a new failure is likely to be in
the code you just wrote/tested and should be reasonably easy to find. If you wait until
system or acceptance testing, a failure could be anywhere in the system — you will have
to be an astute detective to find the fault now.

1.5 Test Planning

Test planning should be done throughout the development cycle, especially early in the
development cycle. A test plan is a document describing the scope, approach, resources,
and schedule of intended test activities. It identifies test items, the features to be tested,
the testing tasks, who will do each task, and any risks requiring contingency plans [11].

© Laurie Williams 2010

41

Testing Overview and Black-Box Testing Techniques

An important component of the test plan is the individual test cases. A fest case is a set
of test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a
specific requirement [11].

Write the test plan early in the development cycle when things are generally still going
pretty smoothly and calmly. This allows you to think through a thorough set of test cases.
If you wait until the end of the cycle to write and execute test cases, you might be in a
very chaotic, hurried time period. Often good test cases are not written in this hurried
environment, and ad hoc testing takes place. With ad hoc testing, people just start trying
anything they can think of without any rational roadmap through the customer
requirements. The tests done in this manner are not repeatable.

1.6 Testing as Part of the Development Process

It is essential in testing to start planning as soon as the necessary artifact is available. For
example, as soon as customer requirements analysis has completed, the test team should
start writing black box test cases against that requirements document. By doing so this
early, the testers might realize the requirements are not complete. The team may ask
questions of the customer to clarify the requirements so a specific test case can be written.
The answer to the question is helpful to the code developer as well. Additionally, the
tester may request (of the programmer) that the code is designed and developed to allow
some automated test execution to be done. To summarize, the earlier testing is planned at
all levels, the better.

It is also very important to consider test planning and test execution as iterative processes.
As soon as requirements documentation is available, it is best to begin to write functional
and system test cases. When requirements change, revise the test cases. As soon as some
code is available, execute test cases. When code changes, run the test cases again. By
knowing how many and which test cases actually run you can accurately track the
progress of the project. All in all, testing should be considered an iterative and essential
part of the entire development process.

2 Performing Black Box Testing

Black box testing, also called functional testing and behavioral testing, focuses on
determining whether or not a program does what it is supposed to do based on its
functional requirements. Black box testing attempts to find errors in the external
behavior of the code in the following categories [17]: (1) incorrect or missing
functionality; (2) interface errors; (3) errors in data structures used by interfaces; (4)
behavior or performance errors; and (5) initialization and termination errors. Through
this testing, we can determine if the functions appear to work according to specifications.
However, it is important to note that no amount of testing can unequivocally demonstrate
the absence of errors and defects in your code.

It is best if the person who plans and executes black box tests is not the programmer of

the code and does not know anything about the structure of the code. The programmers
of the code are innately biased and are likely to test that the program does what they

© Laurie Williams 2010 42

Testing Overview and Black-Box Testing Techniques

programmed it to do. What are needed are tests to make sure that the program does what
the customer wants it to do. As a result, most organizations have independent testing
groups to perform black box testing. These testers are not the developers and are often
referred to as third-party testers. Testers should just be able to understand and specify
what the desired output should be for a given input into the program, as shown in Figure
3.

Input Output

Executable Program

T Black-box test T

Figure 3: Black Box Testing. A black-box test takes into account only the input and output of the
software without regard to the internal code of the program.

2.1 The Anatomy of a Test Case

The format of your test case design is very important. We will use a particular format for
our test cases, as shown in Table 2. We recommend you use this template in your test
planning.

Test Description Expected Actual
ID Results Results

Table 2: Test Case Planning Template

First, you give each test case a unique identifier. When you are tracking large projects,
you might need to itemize those test cases that have not yet passed. This identifier is
recorded in the first column. For example, you might need to say something like, “All my
test cases are running except playerMovementl. I’'m working on that one today.” Next
in the second column of the table, you specifically describe the set of steps and/or input
for the particular condition you want to test (including what needs to be done to prepare
for the test case to be run which are listed as preconditions). The third column is the
expected results for an input/output oracle — what is expected to come out of the “black
box” based upon the input (as described in the “description™). An oracle is any program,
process, or body of data that specified the expected outcome of a set of tests as applied to
a tested object [1]; and input/output oracle is an oracle that specifies the expected output
for a specified input [1]. In the last column, the actual results are recorded after the tests
are run including the name of the tester who ran the test and the date the test was run. If a
test passes, the actual results will indicate “Pass.” If a test fails, it is helpful to record
“Fail”, a description of the failure (“what came out”) in the actual results column.

Software engineering is not only about systems, but also about people. Including the

© Laurie Williams 2010 43

Testing Overview and Black-Box Testing Techniques

name of the tester facilitates communication in the event that the test results are not clear.
If, for example, you suspect that the tester did not look at the right part of the screen, it is
extremely helpful to know that Bob did the actual test. Thus, you can go check with him.
If the error exposed is a validation issue as opposed to a verification issue, this is even
more helpful. If you utilize paper test scripts as opposed to digital test scripts (as is often
the case), it can also be helpful to leave room for additional comments and notes the
tester may wish to make.

Also note the preconditions. All test cases require that the system be in a certain state.
This state may be as simple as "fresh install" or as complex as the system being

connected to twenty specific databases with one hundred configuration options set to
certain values. A common mistake programmers make when writing tests scripts is
assuming the state of the system will be the same as the version they used when writing
the test case. This simply isn't the case. Those executing the tests are often engaged in
executing many tests constantly. If, for example, the tester has just completed a stress test,
the system may be filled with data that makes your script impossible to run.

2.2 Clear Descriptions

It is of prime importance that the test case description be very clear and specific so that
the test case execution is repeatable. Even if you will always be the person executing the
test cases, pretend you are passing the test planning document to someone else to perform
the tests. You need your directions to clear enough for that other person to be able to
follow the directions explicitly so that the exact same test is executed every time. For
example, consider a basic test case to ensure that players can move on a Monopoly board.
Example of poorly specified test case is shown in Table 3:

Test Description Expected Actual
ID Results REIIS
1 Player 1 rolls dice and | Player 1 moves on board.

moves.
2 Player 2 rolls dice and | Player 2 moves on board.

moves.

Table 3: Poor Specification of a Test Case

The problem is that the description does not give exact values of how many spaces the
players moved. This is an overly simplistic problem — but maybe the program crashes
for some reason when Player 1 and Player 2 land on the same spot. If you don’t
remember what was actually rolled (you let the rolls be determined randomly and don’t
record them), you might never be able to cause the problem to happen again because you
don’t remember the circumstances leading up to the problem. Recreating the problem is
essentially important in testing so that problems that are identified can be repeated and
corrected. Instead write specific descriptions, such as shown in Table 4.

Test Description Expected Actual

ID Results Results
3 Precondition: Game is in test | Player 1 is located at Blue 3.

© Laurie Williams 2010 44

Testing Overview and Black-Box Testing Techniques

mode, SimpleGameBoard is
loaded, and game begins.
Number of players: 2
Money for player 1: $1200
Money for player 2: $1200
Player 1 dice roll: 3

4 Precondition: Test case 3 Player 1 is located on Blue 3.
has successfully completed Player 2 is located on Blue 3.
Player 2 dice roll: 3

Table 4: Preferred Specification of a Test Case

There a few things to notice about the test cases in Table 4. First, notice the Precondition
in the Description field. The precondition defines what has to happen before the test case
can run properly. There may be an order of execution [5] whereby a test case may
depend upon another test case running successfully and leaving the system in a state such
that the second test case can successfully be executed. For example, maybe one test case
(call it Test 11) tests whether a new user can create an ID in a system. Another test case
(call it Test 22) may depend upon this new user logging in. Therefore Test 11 must run
before Test 22 can run. Additionally, if Test 11 fails, than Test 22 cannot be run yet.
Alternately, perhaps Test 11 passes but Test 22 fails. Later when the functionality is
fixed, Test 11 must be re-run before the testers try to re-run Test 22. Or, maybe a
database or the system needs to be re-initialized before a test case can run.

There’s also something else important to notice in the Preconditions for test case 3 in
Table 4. How can the test case ensure the player rolled a 3 when the value the dice rolls
needs to be random in the real game? Sometimes we have to add a bit of extra
functionality to put a program in “test mode” so we can run our test cases in a repeatable
manner and so we can easily force a condition happen. For example, we may want to test
what happens when a player lands on “Go” or on “Go to Jail” and want to force this
situation to occur. The Monopoly programmers needed to create a test mode in which (1)
the dice rolls could be input manually and (2) the amount of money each player starts
with is input manually. It is also important to run some non-repeatable test cases in the
regular game mode to test whether random dice input does not appear to change expected
behavior.

The expected results must also be written in a very specific way, as in Table 4. You need
to record what the output of the program should be, given a particular input/set of steps.
Otherwise, how will you know if the answer is correct (every time you run it) if you don’t
know what the answer is supposed to be? Perhaps your program performs mathematical
calculations. You need to take out your calculator, perform some calculations by hand,
and put the answer in the expected result field. You need to pre-determine what your
program is supposed to do ahead of time, so you’ll know right away if your program
responds properly or not.

© Laurie Williams 2010 45

Testing Overview and Black-Box Testing Techniques

3 Strategies for Black Box Testing

Ideally, we’d like to test every possible thing that can be done with our program. But, as
we said, writing and executing test cases is expensive. We want to make sure that we
definitely write test cases for the kinds of things that the customer will do most often or
even fairly often. Our objective is to find as many defects as possible in as few test cases
as possible. To accomplish this objective, we use some strategies that will be discussed
in this subsection. We want to avoid writing redundant test cases that won’t tell us
anything new (because they have similar conditions to other test cases we already wrote).
Each test case should probe a different mode of failure. We also want to design the
simplest test cases that could possibly reveal this mode of failure — test cases themselves
can be error-prone if we don’t keep this in mind.

3.1 Tests of Customer Requirements

Black box test cases are based on customer requirements. We begin by looking at each
customer requirement. To start, we want to make sure that every single customer
requirement has been tested at least once. As a result, we can trace every requirement to
its test case(s) and every test case back to its stated customer requirement. The first test
case we’d write for any given requirement is the most-used success path for that
requirement. By success path, we mean that we want to execute some desirable
functionality (something the customer wants to work) without any error conditions. We
proceed by planning more success path test cases, based on other ways the customer
wants to use the functionality and some test cases that execute failure paths. Intuitively,
failure paths intentionally have some kind of errors in them, such as errors that users can
accidentally input. We must make sure that the program behaves predictably and
gracefully in the face of these errors. Finally, we should plan the execution of our tests
out so that the most troublesome, risky requirements are tested first. This would allow
more time for fixing problems before delivering the product to the customer. It would be
devastating to find a critical flaw right before the product is due to be delivered.

We’ll start with one basic requirement. We can write many test cases based on this one
requirement, which follows below. As we’ve said before, it is impossible to test every
single possible combination of input. We’ll outline an incomplete sampling of test cases
and reason about them in this section.

Requirement: When a user lands on the “Go to Jail” cell, the player goes directly to
jail, does not pass go, does not collect $200. On the next turn, the player must pay $50
to get out of jail and does not roll the dice or advance. If the player does not have
enough money, he or she is out of the game.

There are many things to test in this short requirement above, including:
1. Does the player get sent to jail after landing on “Go to Jail”?
2. Does the player receive $200 if “Go” is between the current space and jail?
3. Is $50 correctly decremented if the player has more than $50?

© Laurie Williams 2010 46

Testing Overview and Black-Box Testing Techniques

4. Is the player out of the game if he or she has less than $50?

At first it is good to start out by testing some input that you know should definitely pass
or definitely fail. If these kinds of tests don’t work properly, you know you should just
quit testing and put the code back into development. We can start with a two obvious
passing test case, as shown in Table 5.

Test Description Expected Actual
1)) Results Results
5 Precondition: Game is in test mode.

Number of players: 1

Money for player 1: $1200
Player 1 dice roll: 3

Player 1 clicks “End Turn” button.

Player 1 is sent to jail
Only “Get Out of Jail”
button is enabled for
Player 1.

Money for Player 1:
$1150

6 Precondition: Game is in test mode.
Number of players: 2

Money for player 1: $1200

Money for player 2: $1200

Player 1 dice roll: 3

Player 1 clicks “End Turn” button.

Only “Get Out of Jail”
button is enabled for
Player 1.

Money for Player 1:
$1150

Table 5: Test Plan #1 for the Jail Requirement

© Laurie Williams 2010 47

Testing Overview and Black-Box Testing Techniques

You will also note that we should test the simplest possible means to force the condition
we are trying to achieve. For example, in Test Case 5, we only have one player so we
temporarily didn’t have to spend our time with Player 2. We add Player 2 in Test Case 6
so we can observe that the loss of $50 and dice roll occurs on the next turn (after Player 2
goes). We could go on and test many more aspects of the above requirement. We will
now discuss some strategies to consider in creating more test cases.

3.2 Equivalence Partitioning

To keep down our testing costs, we don’t want to write several test cases that test the
same aspect of our program. A good test case uncovers a different class of errors (e.g.,
incorrect processing of all character data) than has been uncovered by prior test cases. [17]
Equivalence partitioning is a strategy that can be used to reduce the number of test cases
that need to be developed. Equivalence partitioning divides the input domain of a
program into classes. For each of these equivalence classes, the set of data should be
treated the same by the module under test and should produce the same answer. Test
cases should be designed so the inputs lie within these equivalence classes. [2] For
example, for tests of “Go to Jail” the most important thing is whether the player has
enough money to pay the $50 fine. Therefore, the two equivalence classes can be
partitioned, as shown in Figure 4.

Figure 4: Equivalence Classes for Player Money

Less than $50 $50 or more

Once you have identified these partitions, you choose test cases from each partition. To
start, choose a typical value somewhere in the middle of (or well into) each of these two
ranges. See Table 6 for test cases written to test the equivalent classes of money.
However, you will note that Test Cases 6 (Player 1 has $1200) and 7 (Player 1 has $100)
are both in the same equivalence class. Therefore, Test Case 7 is unlikely to discover any
defect not found in Test Case 6.

© Laurie Williams 2010 48

Testing Overview and Black-Box Testing Techniques

Test Description Expected Results Actual
1D) Results
7 Precondition: Game is in test mode.
Number of players: 2
Money for player 1: $100
Money for player 2: $100
Player 1 dice roll: 3
 Player 1 clicks “End Turn™ |
___ Player Lissenttojail |
Player 2 dice roll: 2
 Player 2 clicks “End Turn™ |
Only “Get Out of
Jail” is enabled for
___ Player 1. | .
 Player 1 clicks “Get Out of Jail” |
Money for Player 1:
$50
8 Precondition: Game is in test mode.

Number of players: 2
Money for player 1: $25
Money for player 2: $25
Player 1 dice roll: 3
Player 1 clicks “End Turn”

Player 2 dice roll: 2
Player 2 clicks “End Turn”

Only “Get Out of
Jail” is enabled for
Player 1.

Player 1 is out of
game

Table 6: Test Plan #2 for the Jail Requirement

For each equivalent class, the test cases can be defined using the following guidelines

[17]:

1.

If input conditions specify a range of values, create one valid and one or two
invalid equivalence classes. In the above example, this is (1) less than 50/invalid;

(2) 50 or more/valid.

If input conditions require a certain value (for example R and L for the side in our
train example), create an equivalence class of the valid values (R and L) and one
of invalid values (all other letters other than R and L). In this case, you need to
test all valid values individually and several invalid values.

© Laurie Williams 2010

49

Testing Overview and Black-Box Testing Techniques

3. If input conditions specify a member of a set, create one valid and one invalid
equivalence class.
4. If an input condition is a Boolean, define one valid and one invalid class.

Equivalence class partitioning is just the start, though. An important partner to this
partitioning is boundary value analysis.

3.3 Boundary Value Analysis

Boris Beizer, well-known author of testing book advises, “Bugs lurk in corners and
congregate at boundaries.” [1] Programmers often make mistakes on the boundaries of
the equivalence classes/input domain. As a result, we need to focus testing at these
boundaries. This type of testing is called Boundary Value Analysis (BVA) and guides
you to create test cases at the “edge” of the equivalence classes. Boundary value is
defined as a data value that corresponds to a minimum or maximum input, internal, or
output value specified for a system or component [11]. In our above example, the
boundary of the class is at 50, as shown in Figure 5. We should create test cases for the
Player 1 having $49, $50, and $51. These test cases will help to find common off-by-one
errors, caused by errors like using >= when you mean to use >.

Figure 5: Boundary Value Analysis. Test cases should be created for the boundaries (arrows)
between equivalence classes.

Less than $50 $50 or more

it

When creating BVA test cases, consider the following [17]:
1. If input conditions have a range from a to b (such as a=100 to b=300), create test

cases:
* immediately below a (99)
* ata(100)

* immediately above a (101)
* immediately below b (299)
* atb (300)

* immediately above b (301)

2. If input conditions specify a number of values that are allowed, test these limits.
For example, input conditions specify that only one train is allowed to start in
each direction on each station. In testing, try to add a second train to the same
station/same direction. If (somehow) three trains could start on one
station/direction, try to add two trains (pass), three trains (pass), and four trains
(fail).

© Laurie Williams 2010 50

Testing Overview and Black-Box Testing Techniques

3.4 Decision Table Testing

Decision tables are used to record complex business rules that must be implemented in
the program, and therefore tested. A sample decision table is found in Table 7. In the
table, the conditions represent possible input conditions. The actions are the events that
should trigger, depending upon the makeup of the input conditions. Each column in the
table is a unique combination of input conditions (and is called a rule) that result in
triggering the action(s) associated with the rule. Each rule (or column) should become a
test case.

If a Player (A) lands on property owned by another player (B), A must pay rent to
B. If A does not have enough money to pay B, A is out of the game.

Table 7: Decision table
Rule 1 | Rule 2 | Rule 3

Conditions
A lands on B’s property Yes Yes No
A has enough money to pay rent | Yes No --
Actions
A stays in game Yes No Yes

3.5 Failure (“Dirty”) Test Cases

Donald Knuth is many times referred to as one of the fathers of computer science. He is
also known as a stickler when it comes to bugs in his code (and in his books. He sends
checks to readers who find errors in his books!). Anticipating the unexpected is one of
his techniques. Think the way Knuth does when you write your test cases. Be mean and
nasty!

My test programs are intended to break the system, to push it to its extreme limits,
to pile complication on complication, in ways that the system programmer never
consciously anticipated. To prepare such test data, I get into the meanest,
nastiest frame of mind that I can manage, and I write the cruelest code I can think
of; then I turn around and embed that in even nastier constructions that are
almost obscene. [14]

Think diabolically! Think of every possible thing a user could possibly do with your
system to demolish the software. You need to make sure your program is robust — in that
it can properly respond in the face of erroneous user input. This type of testing is called
robustness testing, whereby test cases are chosen outside the domain to test robustness to
unexpected, erroneous input [3], and is included in defensive testing which includes tests
under both normal and abnormal conditions [5]. Look at every input. Does the program
respond “gracefully” to these error conditions?

© Laurie Williams 2010 51

Testing Overview and Black-Box Testing Techniques

1. Can any form of input to the program cause division by zero? Get creative!

2. What if the input type is wrong? (You’re expecting an integer, they input a float.
You’re expecting a character, you get an integer.)

3. What if the customer takes an illogical path through your functionality?

4. What if mandatory fields are not entered?

5. What if the program is aborted abruptly or input or output devices are unplugged?

3.5 Test Early and Often

As was said in the beginning of the chapter, executing your test cases as soon as possible
is an excellent way of getting concrete feedback about your program. In order to run test
cases early, programmers need to integrate the pieces of their code into the code base
often. Programmers could be tempted to work on their own computer until the finish
implementing a “whole” requirement. In industry, this could quite feasibly mean they
keep their code to themselves for several months. However, this is a dangerous practice
— and can lead to what is known in industry as integration hell. Just because a
component works on a programmer’s own computer, this doesn’t mean it will work when
it is assembled with the code other programmers are working on. The earlier it is known
that there are some interface problems or some data that’s not getting passed properly the
better. This knowledge can only be gained by integrating code and testing early and
often. Then, integration problems can be more easily localized in the work that was just
integrated. By localizing the code that contains a new defect, the programmer can
efficiently identify and remove defects.

4 Acceptance Testing

Acceptance test cases are written by the customer. In custom software development,
often contracts between the customer and the development organization state that the
customer can refuse to take delivery of the product if their acceptance test cases do not
run properly in the customer’s own (software and hardware) environment. Sometime the
customer shares the acceptance test cases with the team, which gives them a shared
specific goal. Other times, the customer hides the acceptance test cases from the
developers and runs them after receiving the code (in the same way as a teacher often
doesn’t tell the students the test cases they will run to grade their class projects). We
believe it is much more productive for the customer and the development team to work
openly and collaboratively on the creation of the acceptance test cases. Then, together
the customer and the development team have a similar vision of what the software has to
look like for the customer to be happy. In our experience, the collaborative acceptance
test case creation serves as an excellent means of clarifying requirements by making
requirements specified in a way that is quantifiable, measurable, and unambiguous long
before testing commences. Likewise, they can together track the progress of system
development as the team can tell the customer which acceptance test cases are passing.

5 Black Box Test Case Automation

By their nature, black box test cases are designed and run by people who do not see the
inner workings of the code. Ultimately, system and acceptance cases are intended to be
run through the product user interface (UI) to show that the whole product really works.

© Laurie Williams 2010 52

Testing Overview and Black-Box Testing Techniques

Test automation can be difficult because the developer has no knowledge of the inner
workings of the software and because system and acceptance cases must be run through
the UL. However, the more automated testing can be, the easier it is to run the test cases
and to re-run them again and again. The simpler it is to run a suite of tests, the more
often those tests will be run. The more the tests are run, the faster any deviation from
those tests will be found. [15]

If your role on the team is as a software developer, it is always good to consider the types
of black box test cases (functional, system, and acceptance) that will ultimately be run on
your code and to automate test cases to test the logic (separate from the UI logic) behind
these black box test cases. Automated test cases can be run often with minimal time
investment once they are written. By automating the testing of the logic behind the black
box test cases, (1) you are ensuring that the logic “behind the scenes” is working properly
so that the inevitable black box test cases can run smoothly through the UI by the testers
and the customers; and (2) you are more motivated to decouple program/business logic
separate from the Ul logic (which is always a good design technique).

When test cases are automated, they can then become compile-able and executable
documentation.

6 Summary

Several practical tips for black box testing were presented throughout this chapter. The
keys for successful black box testing are summarized in Table 8.

=3 | You need to test for what the customer wants the program to do, not what the
programmer programmed it to do. The programmer is biased (through no fault of
her/her own) by knowing the intimate details of what the program does. Black
box testing is best done by someone with a fresh, objective perspective of the
customer requirements.

== | Use the four-item test case template (ID, Description, Expected Results, Actual
Results) when planning your test cases.

=3 | In the test case, specify exactly what the tester has to do to create the desired input
conditions and exactly how the program should respond (the output). Be explicit
in this documentation so that multiple testers (other than yourself) would be able
to run the exact same test case using the directions in the test case. These
directions will be especially important if a failure need to be re-created for the
programmer to a failure.

== | Test early and often.

<=8 | Write the simplest test cases that could possibly reveal a mode of failure. (Test
cases can also be error-prone.)

=8 | Use equivalence class partitioning to manage the number of test cases run. Test
cases in the same equivalence class will all reveal the same fault.

=8 | Use boundary value analysis to find the very-common bugs that lurk in corners
and congregate at boundaries.

=@ | Use decision tables to record complex business rules that the system must
implement and that must be tested.

© Laurie Williams 2010 53

Testing Overview and Black-Box Testing Techniques

== | Run the equivalence class test cases first. If the program doesn’t work for the
simplest case (smack in the middle of an equivalence class), it probably won’t
work for the boundaries either. If you run a boundary test first, you’ll probably
go run the general case (equivalence class test) before investigating the problem.
So, instead just run the simple case first.

=@ | Avoid having test cases dependant upon each other (i.e. having preconditions of
another test case passing). Consider that you have 17 test cases, each having a
precondition of the prior test case passing — and you pass the first 16 test cases but
fail the 17" test case. It take you some time (until the next day) to debug your
program. Now, in order to re-run the 17" test case to see if it now passes, you
have to re-run the 16 you know pass. This can be time consuming ®

<=8 | Write each test case so that it can reveal one type of fault. Consider a test case
that has three different forms of invalid input. If the test case fails, you might not
know which of the three inputs make it the test case fail, and you will have to run
different, smaller test cases to see which of the inputs caused problems.

<=8 | Think diabolically! What are the worst things someone could try to do to your
program? Write test for these.

== | Encourage a collaborative approach to acceptance testing with the customer.

=8 | When black box test cases surface failures, they only reveal the symptoms of
faults. You need to use your detective skills to find the fault in the code that
caused the failure to occur.

Table 8: Key Ideas for Black Box Testing

Reminds Dijkstra, “Program testing can be used to show the presence of bugs, but never
to show their absence!” [7] Mostly, testing can be used to check how well defect-
prevention activities worked. As a beneficial side effect, testing can also be used to
identify anomalies in code via dynamic execution of the code.

In this chapter, we learned that complete, exhaustive testing is impractical. However,
there are good software engineering strategies, such as equivalence class partitioning and
boundary value analysis, for writing test cases that will maximize your chance of
uncovering as many defects as possible with a reasonable amount of testing. It is most
prudent to plan your test cases as early in the development cycle as possible, as a
beneficial extension of the requirements gathering process. Likewise, it is beneficial to
integrate code as often as possible and to test the integrated code. In this manner, we can
isolate defects in the new code — and find and fix them as efficiently as possible. Lastly,
we learned the benefits of partnering with a customer to write the acceptance test cases
and to automate the execution of these (and other test cases) to form compile-able and
executable documentation of the system.

Glossary of Chapter Terms

Term Definition Source

Acceptance testing formal testing conducted to determine whether or not | [11]
a system satisfies its acceptance criteria (the criteria
the system must satisfy to be accepted by a customer)
and to enable the customer to determine whether or

© Laurie Williams 2010 54

Testing Overview and Black-Box Testing Techniques

not to accept the system

Black box testing (also | testing that ignores the internal mechanism of a [11]

called functional system or component and focuses solely on the

testing or behavioral outputs generated in response to selected inputs and

testing) execution conditions

Boundary value data value that corresponds to a minimum or [11]
maximum input, internal, or output value specified for
a system or component

Defect See fault

Defensive testing Testing which includes tests under both normal and [5]
abnormal conditions

Error the difference between a computed, observed, or [11]
measured value or condition and the true, specified, or
theoretically correct value or condition

Failure the inability of a system or component to perform its | [11]
required function within the specified performance
requirement

Failure path a test case that intentionally forces an error condition
to occur

Fault an incorrect step, process, or data definition in a [11]
program

Integration testing testing in which software components, hardware [11]
components, or both are combined and tested to
evaluate the interaction between them

Input/output oracle an oracle that specifies the expected output for a [1]
specified input

Mistake human action that produces an incorrect result [11]

oracle any program, process, or body of data that specified [1]
the expected outcome of a set of tests as applied to a
tested object

Performance testing testing conducted to evaluate the compliance of a [11]
system or component with specified performance
requirements

Regression testing selective retesting of a system or component to verify | [11]
that modifications have not caused unintended effects
and that the system or component still complies with
its specified requirements

Robustness testing Testing whereby test cases are chosen outside the [3]
domain to test robustness to unexpected, erroneous
input

Scaffolding code computer programs and data files built to support [11]
software development and testing but not intended to
be included in the final product

Smoke tests group of test cases that establish that the system is [6]

stable and all major functionality is present and works
under “normal” conditions

© Laurie Williams 2010

55

Testing Overview and Black-Box Testing Techniques

Specification

a document that specifies in a complete, precise,
verifiable manner, the requirements, design, behavior,
or other characteristic of a system or component, and
often the procedures for determining whether these
provisions have been satisfied

[11]

Stress testing

testing conducted to evaluate a system or component
at or beyond the limits of its specification or
requirement

[11]

Stubs

computer program statement substituting for the body
of a software module that is or will be defined
elsewhere

[11]

Success path

a test case that execute some desirable functionality
(something the customer wants to work) without any
error conditions

System testing

testing conducted on a complete, integrated system to
evaluate the system compliance with its specified
requirements

[11]

Test case

set of test inputs, execution conditions, and expected
results developed for a particular objective, such as to
exercise a particular program path or to verify
compliance with a specific requirement

[11]

Test driver

software module used to involve a module under test
and often, provide test inputs, controls, and monitor
execution and report test results

[11]

Test plan

document describing the scope, approach, resources,
and schedule of intended test activities. It identifies
test items, the features to be tested, the testing tasks,
who will do each task, and any risks requiring
contingency plans

[11]

Unit testing

testing of individual hardware or software units or
groups of related units

[11]

Usability testing

testing conducted to evaluate the extent to which a
user can learn to operate, prepare inputs for, and
interpret outputs of a system or component

[11]

Validation

the process of evaluating a system or component
during or at the end of the development process to
determine whether it satisfies specified requirements

[11]

Verification

the process of evaluating a system or component to
determine whether the products of a given
development phase satisfy the conditions imposed at
the start of that phase

[11]

White box testing

testing that takes into account the internal mechanism
of a system or component

[11]

References:

© Laurie Williams 2010

56

[1]

[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

Testing Overview and Black-Box Testing Techniques

B. Beizer, Software Testing Techniques. London: International Thompson
Computer Press, 1990.

B. Beizer, Black Box Testing. New York: John Wiley & Sons, Inc., 1995.

A. Bertolino, "Chapter 5: Software Testing," in [EEE SWEBOK Trial Version
1.00, May 2001.

B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

L. Copeland, 4 Practitioner's Guide to Software Test Design. Boston: Artech
House Publishers, 2004.

R. D. Craig and S. P. Jaskiel, Systematic Software Testing. Norwood, MA: Artech
House Publishers, 2002.

E. W. Dijkstra, "Notes on Structured Programming," Technological University
Eindhoven T.H. Report 70-WSK-03, Second edition, April 1970.

D. Galin, Software Quality Assurance. Harlow, England: Pearson, Addison
Wesley, 2004.

IEEE, "ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit
Testing," no., 1986.

IEEE, "ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit
Testing," no., 1987.

IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

IEEE, "IEEE Standards Collection: Glossary of Software Engineering
Terminology," IEEE Standard 610.12-1990, 1990.

C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing: John
Wiley & Sons, 2002.

D. E. Knuth, "The errors of TeX. Software--Practice and Experience," in Literate
Programming,; CSLI Lecture Notes, no. 27, vol. 19: CSLI, 1992, pp. 607--681.
R. C. Martin, Agile Software Development: Principles, Patterns, and Practices.
Upper Saddle River: Prentice Hall, 2003.

G. J. Myers, The Art of Software Testing. New York: John Wiley, 979.

R. Pressman, Software Engineering: A Practitioner's Approach. Boston:
McGraw Hill, 2001.

Chapter Questions

1. What is the difference between black-box and white-box testing? During the software
development, how can we derive black-box tests? How about white-box tests?

2. Dharma City is installing the AutoCop Traffic Law Enforcement System. AucoCop is
a sensor-camera combo installed near a traffic light. When the sensor detects a
speeding (faster than 40miles/hour) car passing by or a car running through the red
light, AutoCop will activate the camera and take a picture of the plate. Use the
equivalence partitioning and boundary value analysis methods to derive the test cases
to test the camera activation logic.

© Laurie Williams 2010 57

10.

11.

12.

Testing Overview and Black-Box Testing Techniques

From the perspective of automating software testing, what is the problem if the user
interface and the business logic are heavily coupled?

Describe in your own words the difference between validation and verification.

In XP, the customer and developers work cooperatively to specify the acceptance
tests. What are to pros and cons if the customer and developers work together on
acceptance tests?

What’s the advantage if acceptance tests can be automated?

Suppose you are writing a program that counts the number of alphanumeric
characters in a string. May we apply equivalence partitioning for this program? What
about boundary value analysis? Do we need more test cases to validate the program?

Suppose we are developing a program which decides, in a two-dimensional
coordinate system, whether a point P falls in a circle C or on its edge. The program
reads five real numbers. The first two numbers are the x- and y-coordinate of the
center of C, the third number is the radius of C, and the fourth and fifth numbers
represent the coordinate of P. Develop the test cases that you feel are adequate for this
program.

Some organizations have independent testing groups. What tests are best designed by
the testing group? What tests are best designed by the developers? And what tests are
best designed by the customer? Justify your answer.

You are testing an automatic auction system. Suppose there is an auction of which the
bids can only be placed between 1/1/2008 and 1/7/2008. The starting bid price of this
auction must be at least $20.00, and a minimum incremental bid of $5.00 is required.
Using the equivalence partitioning and boundary value analysis methods to derive a
set of test cases for the bid placement. Also give some “dirty” test cases.

Suppose you are writing a simple calculator program. This program can handle
positive integer calculation, including addition, subtraction, multiplication, and
division. The input is a string composed of digits (0, 1, 2, ..., 9) and operators (+, -, *,
/). No space is allowed. The input string can be at most 100 characters long, and each
number can compose of at most 10 digits. Division of two integers produces one
integer by truncation. If the answer contains more than 10 digits, this program simply
outputs an overflow error message. Using the equivalence partitioning and boundary
value analysis methods, derive a set of test cases for the program. Also give some
dirty test cases.

Acceptance tests are specified by the customer with the help of developers. Usually
the customer has better knowledge in their business than in programming. Therefore,
it is next to impossible for the customer to write or understand the tests using the
programming language. What do you think is a feasible form of acceptance tests?
(Remember that we’d like the acceptance tests executable.)

© Laurie Williams 2010 58

White-Box Testing
White-box testing is a verification technique software engineers can use to examine if their
code works as expected. In this chapter, we will explain the following:
e a method for writing a set of white-box test cases that exercise the paths in the code
e the use of equivalence partitioning and boundary value analysis to manage the number of
test cases that need to be written and to examine error-prone/extreme “corner” test cases
e how to measure how thoroughly the test cases exercise the code

White-box testing is testing that takes into account the internal mechanism of a system or
component (IEEE, 1990). White-box testing is also known as structural testing, clear box
testing, and glass box testing (Beizer, 1995). The connotations of “clear box” and “glass
box” appropriately indicate that you have full visibility of the internal workings of the
software product, specifically, the logic and the structure of the code.

Using the white-box testing techniques outlined in this chapter, a software engineer can
design test cases that (1) exercise independent paths within a module or unit; (2) exercise
logical decisions on both their true and false side; (3) execute loops at their boundaries and
within their operational bounds; and (4) exercise internal data structures to ensure their
validity (Pressman, 2001).

There are six basic types of testing: unit, integration, function/system, acceptance, regression,
and beta. White-box testing is used for three of these six types:

e Unit testing, which is testing of individual hardware or software units or groups of
related units (IEEE, 1990). A unit is a software component that cannot be subdivided
into other components (IEEE, 1990). Software engineers write white-box test cases to
examine whether the unit is coded correctly. Unit testing is important for ensuring the
code is solid before it is integrated with other code. Once the code is integrated into the
code base, the cause of an observed failure is more difficult to find. Also, since the
software engineer writes and runs unit tests him or herself, companies often do not track
the unit test failures that are observed— making these types of defects the most “private”
to the software engineer. We all prefer to find our own mistakes and to have the
opportunity to fix them without others knowing. Approximately 65% of all bugs can be
caught in unit testing (Beizer, 1990).

e Integration testing, which is testing in which software components, hardware
components, or both are combined and tested to evaluate the interaction between them
(IEEE, 1990). Test cases are written which explicitly examine the interfaces between
the various units. These test cases can be black box test cases, whereby the tester
understands that a test case requires multiple program units to interact. Alternatively,
white-box test cases are written which explicitly exercise the interfaces that are known
to the tester.

e Regression testing, which is selective retesting of a system or component to verify that
modifications have not caused unintended effects and that the system or component still
complies with its specified requirements (IEEE, 1990). As with integration testing,
regression testing can be done via black-box test cases, white-box test cases, or a
combination of the two. White-box unit and integration test cases can be saved and re-
run as part of regression testing.

White-Box Testing

1 White-Box Testing by Stubs and Drivers

With white-box testing, you must run the code with predetermined input and check to make
sure that the code produces predetermined outputs. Often programmers write stubs and
drivers for white-box testing. A driver is a software module used to invoke a module under
test and, often, provide test inputs, control and monitor execution, and report test results
(IEEE, 1990) or most simplistically a line of code that calls a method and passes that method
avalue. For example, if you wanted to move a Player instance,Playerl, two spaces on the
board, the driver code would be

movePlayer(Playerl, 2);

This driver code would likely be called from the main method. A white-box test case would
execute this driver line of code and check Player.getPosition() to make sure the player is
now on the expected cell on the board.

A stub is a computer program statement substituting for the body of a software module that
is or will be defined elsewhere (IEEE, 1990) or a dummy component or object used to
simulate the behavior of a real component (Beizer, 1990) until that component has been
developed. For example, if the movePlayer method has not been written yet, a stub such as
the one below might be used temporarily — which moves any player to position 1.

public void movePlayer(Player player, int diceValue) {
player.setPosition(l);
b5

Ultimately, the dummy method would be completed with the proper program logic.
However, developing the stub allows the programmer to call a method in the code being
developed, even if the method does not yet have the desired behavior.

Stubs and drivers are often viewed as throwaway code (Kaner, Falk et al., 1999). However,
they do not have to be thrown away: Stubs can be “filled in” to form the actual method.
Drivers can become automated test cases.

2 Deriving Test Cases

In the following sections, we will discuss various methods for devising a thorough set of
white-box test cases. We will refer to the Monopoly example to illustrate the methods under
discussion. These methods can serve as guidelines for you as you design test cases. Even
though it may seem like a lot of work to use these methods, statistics show [1] that the act of
careful, complete, systematic test design will catch as many bugs as the act of testing. The
test design process, at all levels, is at least as effective at catching bugs as is running the test
case designed by that process.

Each time you write a code module, you should write test cases for it based on the guidelines.
A possible exception to this recommendation is the accessor methods (i.e., getters and setters)
of your projects. You should concentrate your testing effort on code that could easily be
broken. Generally, accessor methods will be written error-free.

© Laurie Williams 2008 60

White-Box Testing

2.1 Basis Path Testing

Basis path testing (McCabe, 1976) is a means for ensuring that all independent paths through
a code module have been tested. An independent path is any path through the code that
introduces at least one new set of processing statements or a new condition. (Pressman, 2001)
Basis path testing provides a minimum, lower-bound on the number of test cases that need to
be written.

To introduce the basis path method, we will draw a flowgraph of a code segment. Once you
understand basis path testing, it may not be necessary to draw the flowgraph — though you
may always find a quick sketch helpful. If you test incrementally and the modules you test
are small enough, you can consider having a mental picture of the flow graph. As you will
see, the main objective is to identify the number of decision points in the module and you
may be able to identify them without a written representation.

A flowgraph of purchasing property appears in Figure 1. The flowgraph is intended to
depict the following requirement.

If a player lands on a property owned by other players, he or she needs to pay the
rent. If the player does not have enough money, he or she is out of the game. If the
property is not owned by any players, and the player has enough money buying the
property, he or she may buy the property with the price associated with the property.

In the simple flowgraph in Figure 2, a rectangle shows a sequence of processing steps that
are executed unconditionally. A diamond represents a logic conditional or predicate. Some
examples of logical conditionals are if-then, if-then-else, selection, or loops. The head of the
arrow indicates the flow of control. For a rectangle, there will be one arrow heading out. For
a predicate, there will be two arrows heading out — one for a true/positive result and the other
for a false/negative result.

© Laurie Williams 2008 61

White-Box Testing

1
Land on property cell

2
Y

Qwned by other v
3
M Buy property?, 1
9
Fay the money
¥ M
= 1 N
Lose game Fay rent to owner
¥

Figure 1: Flowgraph of purchasing property
Using this flow graph, we can compute the number of independent paths through the code.

We do this using a metric called the cyclomatic number (McCabe, 1976), which is based on
graph theory.
You can compute the cyclomatic number via the formula:

Edge — Nodes + 2

In our example above, 14 edges and 10 nodes. Therefore, our cyclomatic number is 6, and we
have six independent paths through the code. We can now enumerate them:

1. 1-2-3-4-5-10 (property owned by others, no money for rent)

2. 1-2-3-4-6-10 (property owned by others, pay rent)

3. 1-2-3-10 (property owned by the player)

4. 1-2-7-10 (property available, don’t have enough money)

5. 1-2-7-8-10 (property available, have money, don’t want to buy it)
6. 1-2-7-8-9-10 (property available, have money, and buy it)

We would want to write a test case to ensure that each of these paths is tested at least once.
As said above, the cyclomatic number is the lower bound on the number of test cases we will
write. The test cases that are determined this way are the ones we use in basis path testing.
There are other things to consider, as we now discuss.

© Laurie Williams 2008 62

White-Box Testing

2.2 Equivalence Partitioning/Boundary Value Analysis

Equivalence partitioning (EP) and boundary value analysis (BVA) provide a strategy for
writing white-box test cases. Undoubtedly, whenever you encounter any kind of number or
limit in a requirement, you should be alert for EP/BVA issues. For example, a person might
want to buy a house, but may or may not have enough money. Considering EP/BVA, we
would want to ensure our test cases include the following:

property costs $100, have $200 (equivalence class “have enough money”)
property costs $100, have $50 (equivalence class, “don’t have enough money’)
property costs $100, have $100 (boundary value)

property costs $100, have $99 (boundary value)

property costs $100, have $101 (boundary value)

arONOE

With programming loops (such as while loops), consider EP and execute the loops in the
middle of their operational bound. For BVA, you will want to ensure that you execute loops
right below, right at, and right above their boundary conditions.

3 Control-flow/Coverage Testing

Another way to devise a good set of white-box test cases is to consider the control flow of the
program. The control flow of the program is represented in a flow graph, as shown in Figure
1. We consider various aspects of this flowgraph in order to ensure that we have an adequate
set of test cases. The adequacy of the test cases is often measured with a metric called
coverage. Coverage is a measure of the completeness of the set of test cases. To
demonstrate the various kinds of coverage, we will use the simple code example shown in
Figure 2 as a basis of discussion as we take up the next five topics.

1 int foo (int a, int b, int c, int d, float e) {
2 float e;

3 if (a==0) {

4 return O;

5 3

6 int x = 0;

7 if ((@a==b) OR ((c == d) AND bug(a))) {
8 x=1;

9 }

10 e = 1/x;

11 return e;

12 }

Figure 2: Sample Code for Coverage Analysis

Keeping with a proper testing technique, we write methods to ensure they are testable — most
simply by having the method return a value. Additionally, we predetermine the “answer”
that is returned when the method is called with certain parameters so that our testing returns
that predetermined value. Another good testing technique is to use the simplest set of input
that could possibly test your situation — it’s better not to input values that cause complex,

© Laurie Williams 2008 63

White-Box Testing

error-prone calculations when you are predetermining the values. We’ll illustrate this
principle as we go through the next items.

3.1 Method Coverage

Method coverage is a measure of the percentage of methods that have been executed by test
cases. Undoubtedly, your tests should call 100% of your methods. It seems irresponsible to
deliver methods in your product when your testing never used these methods. As a result,
you need to ensure you have 100% method coverage.

In the code shown in Figure 3, we attain 100% method coverage by calling the foo method.
Consider Test Case 1: the method call foo(0, 0, 0, 0, 0.), expected return value of 0. If you
look at the code, you see that if a has a value of 0, it doesn’t matter what the values of the
other parameters are — so we’ll make it really easy and make them all 0. Through this one
call we attain 100% method coverage.

3.2 Statement Coverage

Statement coverage is a measure of the percentage of statements that have been executed by
test cases. Your objective should be to achieve 100% statement coverage through your
testing. Identifying your cyclomatic number and executing this minimum set of test cases
will make this statement coverage achievable.

In Test Case 1, we executed the program statements on lines 1-5 out of 12 lines of code. As
a result, we had 42% (5/12) statement coverage from Test Case 1. We can attain 100%
statement coverage by one additional test case, Test Case 2: the method call foo(1, 1, 1, 1,
1.), expected return value of 1. With this method call, we have achieved 100% statement
coverage because we have now executed the program statements on lines 6-12.

3.3 Branch Coverage

Branch coverage is a measure of the percentage of the decision points (Boolean expressions)
of the program have been evaluated as both true and false in test cases. The small program
in Figure 3 has two decision points — one on line 3 and the other on line 7.

3 if (a == {
7 if ((a==b) OR ((c == d) AND bug(a))) {

For decision/branch coverage, we evaluate an entire Boolean expression as one true-or-false
predicate even if it contains multiple logical-and or logical-or operators — as in line 7. We
need to ensure that each of these predicates (compound or single) is tested as both true and
false. Table 1 shows our progress so far:

Table 1: Decision Coverage

© Laurie Williams 2008 64

White-Box Testing

Line # Predicate True False

3 @a==0) Test Case 1 Test Case 2
foo(0,0,0,0,0) | foo(1,1,1,1,1)
return 0 return 1

7 ((a==b) OR ((c == d) AND bug(a))) | Test Case 2
foo(1,1,1,1,1)
return 1

Therefore, we currently have executed three of the four necessary conditions; we have
achieved 75% branch coverage thus far. We add Test Case 3 to bring us to 100% branch
coverage: foo(l, 2,1, 2, 1). When we look at the code to calculate an expected return value,
we realize that this test case uncovers a previously undetected division-by-zero problem on
line 10! We can then immediately go to the code and protect from such an error . This
illustrates the value of test planning. Through the test case, we achieve 100% branch
coverage.

In many cases, the objective is to achieve 100% branch coverage in your testing, though in
large systems only 75%-85% is practical. Only 50% branch coverage is practical in very
large systems of 10 million source lines of code or more (Beizer, 1990).

3.4 Condition Coverage

We will go one step deeper and examine condition coverage. Condition coverage is a
measure of percentage of Boolean sub-expressions of the program that have been evaluated
as both true or false outcome [applies to compound predicate] in test cases. Notice that in
line 7 there are three sub-Boolean expressions to the larger statement (a==b), (c==d), and
bug(a). Condition coverage measures the outcome of each of these sub-expressions
independently of each other. With condition coverage, you ensure that each of these sub-
expressions has independently been tested as both true and false. We consider our progress
thus far in Table 2.

Table 2: Condition coverage

Predicate | True False

(a==b) Test Case 2 Test Case 3
foo(1, 1, x, x, 1) | foo(1, 2, 1, 2, 1)
return value 0 | division by zero!
(c==d) Test Case 3
foo(1,2,1,2,1)
division by zero!

bug(a)
At this point, our condition coverage is only 50%. The true condition (c==d) has never been
tested. Additionally, short-circuit Boolean has prevented the method bug(int) from ever
being executed. We examine our available information on the bug method and determine
that is should return a value of true when passed a value of a=1. We write Test Case 4 to

© Laurie Williams 2008 65

White-Box Testing

address test (c==d) as true: foo(1, 2, 1, 1, 1), expected return value 1. However, when we
actually run the test case, the function bug(a) actually returns false, which causes our actual
return value (division by zero) to not match our expected return value. This allows us to
detect an error in the bug method. Without the addition of condition coverage, this error
would not have been revealed.

To finalize our condition coverage, we must force bug(a) to be false. We again examine our
bug() information, which informs us that the bug method should return a false value if fed
any integer greater than 1. So we create Test Case 5, foo(3, 2, 1, 1, 1), expected return value
“division by error”. The condition coverage thus far is shown in Table 15.3.

Table 3: Condition Coverage Continued

Predicate True False

(a==b) Test Case 2 Test Case 3
foo(1,1,1,1,1) |foo(1,2,1,2,1)
return value 0 division by zero!

(c==d) Test Case 4 Test Case 3
foo(1,2,1,1,1) |foo(1,2,1,2,1)
return value 1 division by zero!

bug(a) Test Case 4 Test Case 5
foo(1,2,1,1,1) |foo(3,2,1,1,1)
return value 1 division by zero!

There are no industry standard objectives for condition coverage, but we suggest that you
keep condition coverage in mind as you develop your test cases. You have seen that our
condition coverage revealed that some additional test cases were needed.

There are commercial tools available, called coverage monitors, that can report the coverage
metrics for your test case execution. Often these tools only report method and statement
coverage. Some tools report decision/branch and/or condition coverage. These tools often
also will color code the lines of code that have not been executed during your test efforts. It
is recommended that coverage analysis is automated using such a tool because manual
coverage analysis is unreliable and uneconomical (IEEE, 1987).

4 Data Flow Testing

In data flow-based testing, the control flowgraph is annotated with information about how the
program variables are defined and used. Different criteria exercise with varying degrees of
precision how a value assigned to a variable is used along different control flow paths. A
reference notation is a definition-use pair, which is a triple of (d, u, V) such that V is a
variable, d is a note in which V is defined, and us is a node in which V is used. There exists
a path between d and u in which the definition of V ind is used in u.

© Laurie Williams 2008 66

White-Box Testing

5 Failure (“Dirty”) Test Cases

As with black-box test cases, you must think diabolically about the kinds of things users
might do with your program. Look at the structure of your code and think about every
possible way a user might break it. These devious ways may not be uncovered by the
previously mentioned methods for forming test cases. You need to be smart enough to think
of your particular code and how people might outsmart it (accidentally or intentionally).
Augment your test cases to handle these cases. Some suggestions follow:
e Look at every input into the code you are testing. Do you handle each input if it
is incorrect, the wrong font, or too large (or too small)?
e Look at code from a security point of view. Can a user overflow a buffer, causing
a security problem?
e Look at every calculation. Could it possible create an overflow? Have you
protected from possible division by zero?

6 Flow Graphs Revisited

The flowgraph of Figure 1 was fairly straightforward because there were no compound
Boolean predicates. Let’s go back and look at what a flowgraph of the code in Figure 2
would look like. When you encounter a compound predicate, such as in line 7, you must
break the expression up so that each Boolean sub-expression is evaluated on its own, as

shown below in Figure 3.
r Y—w| retumi rO
Fy

Figure 3: Compound Predicate Flow Graph

© Laurie Williams 2008 67

White-Box Testing

If you look back at the previous section on deriving test cases, you see that as we strove to
get 100% method, statement, decision/branch and condition coverage, we wrote five test
cases. Examining Figure 3, you can see we have four predicates (diamonds). Therefore, our
cyclomatic number is 4 + 1 = 5 — which is the number of test cases we wrote.

As code becomes larger and more complex, devising the flowgraph and calculating the
cyclomatic complexity can become difficult or impossible. However, if you write methods
that are not overly long (which is a good practice anyway), the methods we have discussed in
this chapter are quite helpful in your quest for high quality.

7 Summary

Properly planned with explicit input/output combinations, white-box testing is a controlled
V&YV technique. You run a test case, you know what lines of code you execute, and you
know what the “answer” should be. If you don’t get the right answer, the test case reveals a
problem (a fault). Fortunately, you know which lines of code to look at based upon the test
case that fails. Because of this control, removing defects in unit test is more economical than
later phases in the development cycle. Later testing phases that involve block-box testing
can be more chaotic. In those phases, a test case no longer reveals a problem (and an
approximate location of where the problem needs to be fixed). Instead, a failed black-box
test case reveals a symptom of a problem (a failure). It can be difficult, time consuming, and
take an unpredictable amount of time to find the root cause of the symptom (the fault that
caused the failure) so that the software engineer knows what to change in the code.
Therefore, unit testing is a more economical defect removal technique when compared with
black box testing. Therefore, as much as possible should be tested at the unit level (IEEE,
1987). A comparison between white-box testing and black box testing can be found in
Table 5.

Table 5. A comparison of white-box testing and black-box testing

© Laurie Williams 2008 68

White-Box Testing

Type of White-box Testing Black-box Testing

Testing

Tester have visibility to the code and write | have no visibility to the code and

visibility test cases based upon the code write test cases based on possible
inputs and outputs for functionality
documented in specifications and/or
requirements

A failed test | a problem (fault) a symptom of a problem (a failure)

case reveals

Controlled? | Yes — the test case helps to identify | No — it can be hard to find the cause

the specific lines of code involved

of the failure

Both white-box and black-box testing techniques are important and are intended to find
different types of faults. Simple unit faults might need to be found in black-box testing if
adequate white-box testing is not done adequately). You should strive to remove as many
defects as possible using white-box testing techniques when the identification of the faults is
more controllable.

Several practical tips for risk management were presented throughout this chapter. The keys
for successful risk management are summarized in Table 6.

Table 6. Key Ideas for White-Box Testing

© Laurie Williams 2008

69

White-Box Testing

testing.

Use an automated coverage monitor for the analysis of control flow-based unit

§ &

Compute the cyclomatic complexity to determine the least number of test cases that
should be written. This number does not consider equivalence class partitioning or
boundary value analysis — which should be done for most decision points.

Draw the flowgraph for a code segment — at least until you get more used to
computing cyclomatic complexity.

§ &

At a minimum, write enough white box test cases to cover 100% of your statements.
Get as high a coverage as possible with your decision/branch and condition coverage.

Glossary of Chapter Terms

Word Definition Source

branch coverage a measure of the percentage of the decision points
(Boolean expressions) of the program have been evaluated
as both true and false in test cases

condition coverage | a measure of the percentage of Boolean sub-expressions of
the program that have been evaluated as both true or false
outcome [applies to compound predicate] in test cases

driver software module used to invoke a module under test and, | (IEEE,
often, provide test inputs, control and monitor execution, | 1990)
and report test results

integration testing | testing in which software components, hardware (IEEE,
components, or both are combined and tested to evaluate | 1990)
the interaction between them

method coverage a measure of the percentage of methods that have been
executed by test cases.

regression testing | selective retesting of a system or component to verify that | (IEEE,
modifications have not caused unintended effects and that | 1990)
the system or component still complies with its specified
requirements

statement coverage | a measure of the percentage of statements that have been
executed by test cases

stub computer program statement substituting for the body of a | (IEEE,
software module that is or will be defined elsewhere 1990)

unit a separable, testable element specified n the design of a (IEEE,
computer software component; a software component that | 1990)
cannot be subdivided into other components

unit testing testing of individual hardware or software units or groups | (IEEE,
of related units 1990)

white-box testing | testing that takes into account the internal mechanism of a | (IEEE,
system or component 1990)

© Laurie Williams 2008

70

White-Box Testing

References

Beizer, B. (1990). Software Testing Techniques. Boston, International Thompson Computer
Press.

Beizer, B. (1995). Black Box Testing. New York, John Wiley & Sons, Inc.

IEEE (1987). "ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit Testing."

IEEE (1990). IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology.

Kaner, C., J. Falk, et al. (1999). Testing Comptuer Software. New York, Wiley Computer
Publishing.

McCabe, T. (1976). "A Software Complexity Measure." IEEE Transactions on Software
Engineering SE-2: 308-320.

Pressman, R. (2001). Software Engineering: A Practitioner's Approach. Boston, McGraw
Hill.

Chapter Questions:

1. If we have a program which has 10 independent if...then...else... statements, there are
totally 2'° execution paths. Suppose that, on average, each test case needs 50
microseconds to exercise one execution path and the program itself takes 100
microseconds. If we write a test case for each possible execution path, how much time
does it take to run all the test cases?

2. If a program passes all the black box tests, it means that this program should work
properly. Then, in addition to black-box testing, why do we need white-box testing?

3. Consider the following Java code snippet:

Class ProductDB{

/**

* returns an instance of product database
*/

public static ProductDB getlnstance(){

}

/**
* returns the price of a product.
* throws Exception if the product is not found
*/
public float getProductPrice(String productlD)
throws Exception{

}
}

Class Cashier{
ProductDB db;

public Cashier(ProductDB db){
this.db = db;

© Laurie Williams 2008 71

White-Box Testing

¥

/**
* Calculate the total of the prices of several products
* param productlDs a String array that contains all the
* product IDs.
* return The total price of the products.
*
/
public float calculateTotal (String[] productiDs)
throws Exception{
float total = 0;

if(productlDs == null)
return O;
for(int x=0; x<productlDs.length; x++){
float price =
db.getProductPrice(productlIDs[x]);
total += price;

return total;

}

by

The getlnstance method of ProductDB returns an instance of the product database. Assume
that ProductDB is a tested component. Suppose we are going to write a unit test to test this
calculateTotal method. Write suitable test drivers. Make proper assumptions.

4. Consider the calculateTotal method in question 3 and the following test case:

public void testCalculateTotal Q){
Cashier cashier = new Cashier(new MockProductDB());
String[] products = new String[O];
assertEquals(0, cashier.calculateTotal (products);

b5

A. Compute the statement coverage of the test for the calculateTotal method.
B. Can we say this test achieves 100% branch coverage for the method?

5. Read the following pseudo code:

if (input is in AllowedCharacterSet)
if (input is a number)
if (input >= 0)
put input into positiveNumberList

else

put input into negativeNumberList
else

if (input is an alphabet)
put input into alphabetList

else
put input into symbolList

else

exception(“l1llegal character”™)

A. Draw a flow diagram that depicts the pseudo code. Label each node in the diagram
with a unique alphabet.

B. What is the cyclomatic number of the program?

C. Identify each independent execution path in this program.

6. Following is the code from the information system of Video Buster video rental company.
The purpose of the following program is to calculate the fee of the rental.

Float calcRentalFee(Tape[] tapes, Customer customer){
float total = 0O;
for(int 1 = 0; 1 < tapes.length; I++){

© Laurie Williams 2008 72

White-Box Testing

total += tapes[l]-price;

}

if (tapes. Iength > 10){
total *= .8;

} else if(tapes. Iength > 5){
total *= _9;

if(customer.isPremium()){
total *= _9;

return total;

3

A. Using EP/BVA techniques, how many test cases are needed?
B. How many test cases are needed to achieve 100% branch coverage?

7. Read the program snippet in question 6.
A. Derive the test cases that achieve 100% statement coverage and branch coverage.
B. This program will throw a null pointer exception if we use null as the either of the
two arguments. Do any of your test cases catch this bug?
C. From this experience, we can find that it is wise to add test cases to test the null
values. This is a good rule for dirty tests. Write this finding in your notebook.

8. From question 7, we know that even if the test cases have 100% test coverage, it is still
possible for the program to go wrong. Find some rules that can help software developers
discover more test cases (or dirty test cases) that are useful.

9. Discuss the meaning of cyclomatic number, and why it is useful.
10. Consider the following Java code segment:

public Hashtable countAlphabet(String aString){
Hashtable table = new Hashtable();
IT (aString.length > 4000) return table;
StringBuffer buffer = new StringBuffer(aString);
While (buffer.length() > 0){
String firstChar = buffer.substring(0, 1);
Integer count = (Integer)table.get(firstChar);
if (count == null){
count = new Integer(l);
} else{
count = new Integer(count.intValue() + 1);

}
table.put(firstChar, count);
buffer.delete(0, 1);

return table;

b5

The program counts the numbers of each alphabet in a string, and put the result in a
hashtable. Develop a minimum set of test cases that:

1. Guarantees that all independent execution path is exercised at least once;

2. Guarantees that both the true and false side of all logical decisions are exercised;
3. Executes the loop at the boundary values and within the boundaries.

© Laurie Williams 2008 73

Automated Testing including JUnit

By automating test cases, software engineers can easily run their test cases often. In this
chapter, we will explain the following:
* Guidelines on when to automate test cases, considering the cost of creating the test
cases
* the XP test-driven development practice and the open-source JUnit tool which is
used to create these automated test cases
* the automation of acceptance tests, particularly with the open source FIT framework

The test practices discussed in this chapter come from the test-centric XP methodology.
XP has two important test practices: test-driven development (TDD) [2] and customer
acceptance testing. Acceptance testing is formal testing conducted to determine whether
or not a system satisfies its acceptance criteria (the criteria the system must satisfy to be
accepted by a customer) and to enable the customer to determine whether or not to
accept the system. [9] In this chapter, we will discuss both of these practices along with
the open source tools that are often used to support them. We will also provide an
extensive code example of the practices in action. Because agile methods emphasize
automating all testing, this chapter provides a good deal of information about automated
testing in general.

One overriding emphasis of both TDD and acceptance testing is that the tests should be
automated [5]. By automated, we mean that the tests themselves are code. The tests can
then be run over and over again with very little effort, at any time, and by anyone [10].
There are three main advantages to automating tests:

* Running the tests over and over again gives you confidence that the new work just
added to the system didn’t break or destabilize anything that used to work and that
the new code does what it is supposed to do.

* Running the tests over and over (particularly acceptance tests) can also help you
understand what portion of the desired functionality has been implemented.

* Together the set of automated tests can form a regression test suite. Regression
testing is selective retesting of a system or component to verify that modifications
have not caused unintended effects and that the system or component still complies
with its specified requirements [9]. The purpose of these regression tests is to show
that the software’s behavior is unchanged unless it is specifically changed due to the
latest software or data change [3].

When tests have to be run manually (with someone sitting at the computer typing the
input on the keyboard), the execution of the manual tests and the examination of the
results can be error-prone and time consuming. When schedule pressures rise, manual
testing often gets forgotten. So, automating tests can be very beneficial and is emphasized
in agile development.

We do, however, need to be somewhat flexible and sensible in our quest for total test
automation. Automating tests can be time consuming and expensive. Writing an
automated test can take several orders of magnitude more time (2X — 10X more) than

Automated Test including JUnit

executing the test by hand once [10]. Often, XP projects have at least as much test code
as production code [2] and, therefore, are themselves software applications [4]. This test
code needs to be maintained just as implementation code does. Debugging and handling
customer complaints can also be time consuming and expensive — so there is a tradeoff
between spending the time to automate tests and spending time and money on customer
complaints. The benefits of automated testing include: (1) production of a reliable system,
(2) improvement of the quality of the test effort, (3) reduction of the test effort and (4)
minimization of the schedule [6]. We need to prudently trade off the costs and benefits of
test automation.

Based on many years of building and maintaining automated unit and acceptance tests,
Meszaros et al. [12] created their Test Automation Manifesto. The Manifesto contains
lots of good advice to remember as you create your automated tests.

Automated tests should be:
* Concise — Test should be as simple as possible and no simpler.

* Self Checking — Test should report its results such that no human interpretation is
necessary.

* Repeatable — Test can be run repeatedly without human intervention.

* Robust — Test produces same result now and forever. Tests are not affected by
changes in the external environment.

* Sufficient — Tests verify all the requirements of the software being tested.

* Necessary — Everything in each test contributes to the specification of desired
behavior.

* Clear — Every statement is easy to understand.
e Efficient — Tests run in a reasonable amount of time.

* Specific — Each test failure points to a specific piece of broken functionality (e.g.
each test case tests one possible point of failure).

* Independent — Each test can be run by itself or in a suite with an arbitrary set of
other tests in any order.

* Maintainable — Tests should be easy to modify and extend.

* Traceable — Tests should be traceable to the requirements; requirements should be
traceable to the tests.

1 Test-Driven Development

TDD is a design and testing practice that is used by software developers as they write
code. TDD is depicted in Figure 1.

© Laurie Williams 2010 75

Automated Test including JUnit

Unit Te
(every few lines o

2ptance

Test
ry feature)

Feature Delivery

Features

In the upper cycle of Figure 1, software engineers develop production code through rapid
iterations (minute-by-minute) of the following steps :

1. Writing a small number of automated unit test cases;
Running these unit test cases to ensure they fail (since there is no code to run yet);
Implementing code that should allow the unit test cases to pass;
Running all the unit test cases to ensure they now pass with the new code; and
Restructuring the production and the test code (called refactoring, see Maintenance
chapter), as necessary, to make it run better and/or to have better design.

bl

As we said, there are rapid iterations of these five steps. In implementing some code, the
programmer will often iterate steps 1 through 4 on a minute-by-minute basis. You might
wonder about step 2. Why run the test cases to make sure they fail? There are three
reasons why step 2 is done — all involving the unexpected event that the new test cases
actually pass even though the new code hasn’t been added yet:

1. there’s a problem with the test, and it isn’t testing what you think it is testing;

2. there’s a problem with the code, and it’s doing something you didn’t expect it to
do (it’s a good idea to check this area of the code to find out what other
unexpected things it’s doing); and

3. maybe the code legitimately already performs the functionality correctly — and no
more new code is needed (this is a good thing to know).

When programmers thoroughly follow TDD, a good set of automated unit test cases are
produced. These test cases can be run over and over again — potentially multiple times
each hour or at least once per day. There are three advantages to running these automated
unit tests often:

© Laurie Williams 2010 76

Automated Test including JUnit

* The test results tell us when we inadvertently break some existing functionality
[11].

* You can add functions to a program or change the structure of the program without
fear that you are breaking something important in the process [11]. A good set of
tests will probably tell you if you break something.

* Automated unit tests prevent backtracking and maintain development momentum
[10].

Programmers who use TDD find these automated unit-tests very helpful when
maintaining code. When a problem is found in the code (by a software tester or by the
customer), the first thing the programmer does is add a unit test case that would have
found that error. The programmer runs the test to make sure the code fails in a similar
manner to the newly identified defect and then fixes the code until the test case passes. In
this way, the programmer also learns more about the kinds of tests that need to be written
for a high quality system.

Research has been done to see whether or not TDD is a good practice to follow. Two
major research studies found that the TDD practice helps programmers produce higher
quality systems [7, 14]. One research study found that TDD did not help to produce a
higher quality system [13]. However, in this last study, the programmers involved in the
study had to write all their automated unit test cases before writing any production code.
Normally, TDD test cases are written in a highly iterative manner, as described above. So,
these research results support the need for this rapid iteration between test and production
code to achieve the best benefits of TDD.

TDD shortens the decision-code feedback loop for the developer — in which the
developer makes a decision on what to do, implements the decision, and is provided with
feedback on this decision. Programmers who use TDD often become “test infected” [2]
and really enjoy the security they get by repeatedly running an extensive set of automated
tests on their code and seeing the results.

The lower cycle of Figure 1 involves acceptance testing. Acceptance testing will be
discussed more in Section 4.

1.1 Test and Implementation Code as Design

In XP, TDD begins without any major/formal design effort occurring beforehand.
Possibly, a pair of developers will decide to brainstorm a design and will sketch it on a
whiteboard or a piece of paper. Alternately, the pair will decide to do a CRC card session
(perhaps including a few more teammates in the activity.) But, either of these two
activities is done informally without consuming much time. For the most part, a pair of
developers looks at the user story and gets started iteratively writing tests and production
code to satisfy the user story. Because the creation of automated unit test cases requires
that the developer know the structure of code, the developer must decide what the code
will look like in order to write the test(s). For example, the programmer will have to
decide what method will be called, what parameters will need to be passed to this method,

© Laurie Williams 2010 77

Automated Test including JUnit

and what kind of value the method will return. Through these many small decisions, the
pair of developers designs the production code as part of the TDD cycles.

1.2 Design before TDD

Alternatively, a team can spend some time and devise a documented design before
starting the TDD cycles. Then, as developers implement code, they refer to this design to
incrementally write test cases and production code. The initial design will tell them what
methods are called, what parameters need to be passed, and what the return values need
to be. Naturally, the developer can always change the initial design as part of the TDD
cycles. No matter what development methodology is used, the initial design almost never
exactly matches the actual design of the code that is implemented. This is also likely the
case when developers do a design prior to starting TDD.

We will do an extensive TDD example in Section 3. In this example we will use the
“Design before TDD” approach.

2 JUnit

Never in the field of software development was so much owed by so many to so
few lines of code. -- Martin Fowler

JUnit' is an award-winning open source testing framework for Java written by Erich
Gamma and Kent Beck. JUnit is used for white box testing. White box testing is testing
that takes into account the internal mechanism of a system or component. [9] Therefore,
you must know the internal structure of the code. The framework can be used for white
box testing for both unit test and integration test. It is fairly easy to learn to use JUnit
because it is a Java framework. You download the framework, put it in your classpath,
and create test cases by inheriting from the classes in the framework.

In the next section of this chapter, we provide an extensive example of TDD and writing
test cases with JUnit. The following list summarizes the steps for creating test cases. For
your reference, Figure 2 provides a class diagram of the JUnit framework. These steps
are demonstrated via extensive code examples in the next section of this chapter.

! JUnit is available at http:/junit.org/index.htm. At this website, there are also many resources and articles
written by JUnit users around the world.

© Laurie Williams 2010 78

Automated Test including JUnit

Test

run(TestResult) <

TestCase TestSuite

run(TestResult) run(TestResult)
runTest() addTest(T est) Assts

setUp()
TestResult tearDowny)

fName

T

runTest()

Figure 2: UML class diagram for JUnit

Define a subclass of TestcCase. For instance, MyTest.

Override the setup () method to initialize the object(s) and resources under test. setup ()
runs before each individual test. Override the tearbown() method to release the object(s)
and resources under test. tearbown () runs after each individual test. Each test runs in
the context of its own fixture, calling setup() before and tearbown() after each test
method to ensure there can be no side effects among test runs.

Define one or more public testxxx() methods that exercise the object(s) under test and
assert expected results. There are various forms of assert available in the tool. See Table
1 for a description of these. You will probably use assertTrue and assertEquals most
often. The JUnit framework defines an error class called AssertionFailederror. All
the assertion methods in the JUnit framework throw an AssertionFailedError
whenever an assertion fails. The JUnit framework catches this error and reports that the
test has failed. If the AssertionFailedError object has any detail about the failure, the
user interface displays that information to the user. Alternatively, you can test whether
the program throws an exception to verify that the test's execution path ends up inside the
exception handler as expected using JUnit’s fail() method.

JUnit provides both a textual and a Swing graphical user interface. Both user interfaces
indicate how many tests were run, any errors or failures, and a simple completion status
(a text message or a red/green bar). You specify your choice of interface in your main
method. The simplicity of the user interfaces is the key to running tests quickly. You can
run your tests and know the test status with a glance.

Optionally, define a static suite() method that creates a TestSui te containing all the
testxxx() methods of MyTest. A TestSuite is a composite of other tests, either

© Laurie Williams 2010 79

Automated Test including JUnit

instances of TestCase subclasses or other TestSui te instances. The composite behavior
of the TestsSui te allows you to assemble test suites of tests and run all the tests
automatically and uniformly to yield a single pass or fail status. Commonly, there is a
one-to-one correspondence between classes in the implementation code and subclasses of
Testcase (for example, the Auction class in the code hierarchy would have a
corresponding AuctionTest class in the test code hierarchy). A TestSuite can be used
to gather together all the TestCase instances and run their test cases.

Table 1: JUnit Asserts

assert Description
3:%%;355%5‘1 s(a,b, Asserts that a and b are equal. a and b could be Booleans,

bytes, chars, doubles, floats, ints, longs, shorts, Strings, or
any Java Objects. Doubles and floats require a third
parameter, delta, which specifies the maximum variance
under which a and b would be declared equal.

assertTrue(a) Asserts that a Boolean condition, a, is true.

assertfFalse(a) Asserts that a Boolean condition, a, is false.

assertNull(a) Asserts that an object, a, is null.

assertNotNull(a) Asserts that an object, a, is not null.

assertsame(a, b) Asserts that two objects, a and b, refer to the same object.

assertNotsame (a, b) | Asserts that two objects, a and b, do not refer to the same
object.

When you write JUnit test cases, you want to use all the white box testing strategies, such
as boundary value analysis and equivalence class partitioning. You also should strive to
get the maximum method, statement, branch, and condition coverage with your tests.
With automated testing, it is unnecessary to instrument the code. When you instrument
code, you add lines of code to the program that are only intended to help in the testing —
for example, adding a line that will print out a value. Instrumenting code is a concern
because these extra lines of code could cause errors, affect performance, and/or may need
to be commented out when testing is complete. A big advantage of the JUnit framework
is that the test code is completely independent of the program being tested because it
lives in a totally separate code hierarchy. Thus, you don't run the risk of introducing a
bug just because you add a test.

3 Test-Driven Development Example

We will now go through a TDD example using our Monopoly game example to show
you how JUnit works. For the example, we will use the “Design before TDD” version of
TDD. We think this is an appropriate approach for this book because we want you to be
able to follow our thought processes and understand where we are going.

3.1 Starting Point

First of all, let’s have a simple starting point. What are the most essential things in a
Monopoly game? The game board and the cells! After all, Monopoly is a board game. A
game board has many cells, and a cell, regardless of the type (property, utility, railroad,
etc.), has a name. We should be able to add cells to a game board. A cell has no reason to

© Laurie Williams 2010 80

Automated Test including JUnit

exist if not for the game board, so their interrelationship is a composition. This seems
good enough to get started. Figure 3 is a UML class diagram that depicts the idea.

GameBoard

Cell

1
+ addcell () |®

Figure 3: A starting point of the Monopoly game

1.

*

+ name

Let’s write a test for the game board. This test should be just enough to show our design.

public class GameboardTest extends TestCase {
pubTlic GameboardTest(String name) {

super(name) ;

pubTlic void testAddcell1() {

GameBoard gameboard = new GameBoard();

assertEquals(0, gameboard.getCelINumber());

Cell cell = new Cell();
gameboard.addCel1(cell);

assertEquals(l, gameboard.getCelINumber());

The test shows that when a game board is initialized, it has no cell. After we add a cell to
the game board, it’ll have one cell. The test does not pass the compiler because we do not

have the GameBoard and the ce11 classes created yet. From the class diagram, we want
an addCe11 method in GameBoard, and a name attribute in Ce11. From the test, we see

that we need a method to get the number of cells from a GameBoard. We can write these

two classes:

public class GameBoard {
gub1ic void addcell(cell cell) {

pubTlic int getCellNumber() {
return 0;

}

public class cell {
private String name;

public String getName() {
return this.name;
}

public void setName(String name) {
this.name = name;

© Laurie Williams 2010

81

Automated Test including JUnit

}

The initial purpose of writing these two classes is just to pass the compiler. We can
compile the program now. If we run thee test, we can see that we can pass the first
assertion, but not the second one. This is because we simply return 0 in getCel1Number
of GameBoard. We need to use some data structure to store the cells. We use ArrayList
here, because the cells should be put in an ordered list. We don’t want the cells to change
their orders in the middle of a game. Therefore, GameBoard can be implemented as:

public class GameBoard {)
ArrayList cells = new ArrayList();

public void addcell(cell cell) {
. cells.add(cell);

public int getCellNumber() {
return cells.size();

}

We pass the first test now. Let’s move on to the next step.

3.2 Letthe Game Begin

We have a game board, and we can add cells to the game board. What is missing if we
want to play the game? The players! Look at the requirements and find some
requirements that are related to players. We start with the three requirements that seem to

be easy:
1. Before the game begins, one player shall enter the number of players and the names
of the players.

2. At the beginning of the game, all the players shall be at the Go cell.
3. The players shall move based on the dice roll. When the player reaches the last cell of
the game board, he shall cycle around the board and start from the Go cell again.

Even with these three “easy” requirements, we have some design considerations.

1. What takes care of the players? Adding the players to the game board should work,
but can we say that a game board has some players? It does not sound right.
Therefore, we decided to create a new class to manage the players. We gave this class
a cool name: the Gamemaster.

2. There is always only one GameMaster in the game. We can use a design pattern and
make it a singleton.

3. Itis reasonable to let the GameMaster to move the players on the game board.
Therefore, the GameMaster should have the knowledge of the players and the game
board.

4. From the requirement, the Go cell is indispensable. When a game board is created,
there should already be one Go cell.

© Laurie Williams 2010 82

Automated Test including JUnit

5. What puts the players at the Go cell at the beginning of the game? Since there is
guaranteed to be a Go cell in a game board, we decided to put a player at the Go cell
as soon as the player instance is created.

6. We created a simple game board so that we could test the player’s movement. The
simple game board looks like Figure 4. To simplify the situation, there are only a Go
cell and five different property cells. While later we can test with a more “realistic”
game board — it is good to write the simplest test cases that can force the conditions
we want to occur. This Simple Game Board does that for us.

What is the difference between the Go cell and a property cell? Well, they are totally
different cells actually, except that they both have names. Thus, we decided to make
the Go cell and the property cell subclasses of the ce11 class.

GO

Figure 4: The Simple Game Board

These ideas are summarized in the UML class diagram in Figure 5. The rest of the JUnit
example will show how to apply TDD to develop a system that satisfies these three
requirements.

«singleton»
GameMaster

+ setNumberOfPlayers ()
+ movePlayer () *

Player

{A GameBoard has only one Go j

Cell}
1 .
1|+ position
G B d
ameBoar) : cell
+addcell () [® : L v+ name
SimpleGameBoard
GocCell PropertyCell

Figure 5: System Design — Introducing GameMaster and Player.

© Laurie Williams 2010 83

Automated Test including JUnit

The One and Only GameMaster

We want to apply the singleton design pattern to the GameMaster class. Singleton means
there can be only one instance of this class. Whenever we request an instance from the
singleton class, we will always get the same instance. We write our intent in a test case:

public class GameMasterTest extends TestCase{
pubTlic void testSingleton() {
GameMaster instancel = GameMaster.instance();
assertNotNull(instancel);
GameMaster instance2 = GameMaster.instance();
assertNotNull(instance2);
assertSame(instancel, instance2);

We need to create the Gamemaster class, and also a static method instance, to make the
test case compile. We may start this with a code skeleton for Gamemaster:

public class GameMaster {]
public static GameMaster instance() {
return null;

Because we only return null in the instance method, we cannot pass the test case. There
is a standard way to implement the singleton pattern in Java: create a static member for
the singleton instance, and use lazy instantiation to initialize the instance. We modified
GameMaster so that the singleton instance is always returned:

public class GameMaster {)
static private GameMaster singleton;

public static_ GameMaster_ instance() {
if(singleton == null
singleton = new GameMaster();

return singleton;

The test passes, and we have a singleton instance of the GameMaster.

The Go Cell

At this moment, the only thing special about the Go cell is that the name of the cell is
always Go. We cannot change the name of the Go cell. We may do so by setting the
name of the Go cell in GoCe11’s constructor, and override setName method so that this
method does nothing:

© Laurie Williams 2010 84

Automated Test including JUnit

public class GoCell extends Cell {
public Gocell() {
super.setName("Go");

void setName(String name) {

}

The implementation is so easy that we do not even bother to write a test. Usually, we do
not need to write tests for the accessor (getters and setters).

In our design, the game board has a Go cell when it is created. We need to modify the
GameboardTest to show this. We also need to add a new test to make sure that the first
cell is the Go cell.

public class GameboardTest extends TestCase {

pubTlic void testAddcell1() {
GameBoard gameboard = new GameBoard();
assertEquals(l, gameboard.getCelINumber());
Ccell cell = new Cell(Q);
gameboard.addcell(cell);
assertEquals(2, gameboard.getCelINumber());

}

public void testFirstCell() {
GameBoard gameboard = new GameBoard();
Cell firstCell = gameboard.getCell(0);
assertSame(GoCell.class, firstCell.getClass());

The compiler tells us that we need a getCe11 method for GameBoard. No problem:

public class GameBoard {

public cell getcCell(int index) {
return (Cell)cells.get(index);

}

Although we can compile the code now, we cannot pass the test. JUnit reports that
testAddcel1 has an assertion error, and testFirstCel1 has an index out of bound
exception. The reason for these errors is that the game board has no cell when it is created.
We want the game board to have a Go cell when it is created. We can put the code in the
constructor of GameBoard:

public class GameBoard {
public GameBoard() {
addcelT(new GoCelT1());

© Laurie Williams 2010 85

Automated Test including JUnit

Now the game board has a Go cell when instantiated. What about propertycel11? For
this time being, the PropertycCel1 does not have any special behaviors. Just making it a
subclass of ce11 is good enough:

public class PropertyCell extends Cell {

One may argue that we need a more detailed test for adding a new cell. When several
cells are added to a game board, shouldn’t we write a test to make sure that these cells are
added in order? Looking at addCe11 method in GameBoard, we can see that it only calls a
method of ArrayList. If we write a test to see that the cells are added in order, whether
the test will pass depends on the correct implementation of ArrayList. This is not our
intension. This is another example of unnecessary test.

SimpleGameBoard

simpleGameBoard is a subclass of GameBoard. It does not have additional methods or
member variables. However, several cells are created and added to the game board when
a new instance of SimpleGameBoard is created. The code of SimpleGameBoard is listed
below. There is nothing worthy of testing in Simp1eGameBoard since we already tested
all that functionality before.

public class SimpleGameBoard extends GameBoard {
public SimpleGameBoard() {

super();
Cell bluel = new PropertyCell();
= new PropertyCell();

cell blue?2

bluel.setName("Blue 1");
blue2.setName("Blue 2");

addcell(bluel);
addcell(blue2);

}

The Player

Figure , the class diagram, shows that the player knows his or her position. Let’s create
the PT1ayer class, with a member variable and the accessors:

public class Player {
private Cell position;

pubTlic cell getpPosition() {
return this.position;

© Laurie Williams 2010 86

Automated Test including JUnit

}

public void setPosition(Cell newPosition) {
this.position = newPosition;
h

Again, we don’t need to write tests for the accessors. However, we do need a test to show
that when a player is created, the position is at the Go cell:

public class PlayerTest extends TestCase {
public PlayerTest(String name) {
super(name) ;

public void testStartPosition() {
GameBoard board = new SimpleGameBoard();
GameMaster.instance() .setGameBoard(board);
Player playerl = new Player();
Player player2 = new Player();
Cell go = board.getcCell1(0);
assertSame(go, playerl.getPosition(
assertSame(go, player2.getPosition(

));
)

First of all, the GameMaster needs a method to set up the game board:

public class GameMaster {
private GameBoard gameBoard;

bub]ic void setGameBoard(GameBoard board) {
) this.gameBoard = board;

This test fails, because the players’ positions are both null. We can initialize the player’s
position in the constructor of the Player class:

public class Player {

public Player() {)
position = GameMaster.instance().getGameBoard().getCell1(0);

The test passes now. This means when we create a new instance of Player, the position
of the player is set to the Go cell (cell 0) of the current game board.

© Laurie Williams 2010 87

Automated Test including JUnit

One of the requirements states that at the beginning of the game, the players shall enter
the number of players. In our design, the players are initialized when calling
setNumberofPlayers on the GameMaster. We can write a test to show that after this call,
we will have exactly the same number of players, all of which are at the Go cell.

public class GameMasterTest extends TestCase{

pubTlic void testPlayerInit() {
master = GameMaster.instance();
master.setGameBoard(new SimpleGameBoard());
master.setNumberofusers(6);
assertEquals(6, master.getNumberofPlayers();
Cell go = master.getGameBoard() .getCel1(0);
for (int i =0; i < 6; i++) {
Player player = master.getPlayer(i);
assertSame(go, player.getPosition());

The compiler is complaining about the missing methods. We need to add those methods
to GameMaster to pass the compiler:

public class GameMaster {

bub]ic void setNumberofpPlayers(int number) {

public int getNumberofpPlayers() {
return 0;

public Player getPlayer(int index) {
return null;

Again, this is just a code skeleton. It helps us pass the compiler. Since there is no real
implementation in the code, the test fails. We need to think about how we may store the
players in the game master. The players should be stored in order, so ArrayList would
be a nice choice. When setting up the number of players, we can simply create several
instances of Player and put them in the ArrayList. We may also get the number of
players or query a player via an index from the ArrayList.

public class GameMaster {
private ArrayList players;

© Laurie Williams 2010 88

Automated Test including JUnit

pubTlic void setNumberofPlayers(int number) {
players = new ArrayList(nhumber);
for(int i = 0; i < number; i++) {
Player player = new Player();
players.add(player);

}

public int getNumberofPlayers() {
return players.size();

public Player getPlayer(int index) {
) return (Player)players.get(index);

The test passes. We now can specify the number of players, and these players are put at
the Go cell. Finally, we are ready to deal with the player movement.

Test Makes the Players Go Round

We have a game board. We have players. It’s time to move the players. To make the
example simpler, we will just write test cases to move a single player. First, let’s consider
the case in which the player does not reach the end of the game board:

public class GameMasterTest extends TestCase{

pubTlic void testMovePlayerSimple() {
master = GameMaster.instance();
master.setGameBoard(new SimpleGameBoard());
master.setNumberofusers(l);
Player player = master.getPlayer(0);
master.movePlayer(0, 2);
assertEquals("Blue 2”, player.getPosition.getName());
master.movePlayer(0, 3);
assertEquals("Green 2”, player.getPosition.getName());

Because the player’s movement is based on the dice roll, we put two parameters for
movePlayer method. The first one is the index of the player; the second the value of the
dice role. In this test, we move the first player two steps forward, and check if it lands on
Blue 2; and then we move him three steps further, and check if it lands on Green 2. We
need to add this method to make the test compile:

public class GameMaster {

5ub11c void movePlayer(int playerIndex, int diceRoll) {

© Laurie Williams 2010 89

Automated Test including JUnit

|}

After the program compiles OK, we may run the test. We have not written anything in

movePlayer, so the player always stays at the Go cell. Therefore, the test fails. How do

we move the player? We can think of a straightforward algorithm:

Find out the player’s position. (GameMaster can find out a player with an index. The
player knows its position.)

Find out the index of the cell the player is in. (GameBoard has the knowledge. However, it
doesn’t have an interface for this.)

Add the index with the dice roll value. The result is the index of the cell the player is
moving to.

Find the cell object with the index from step 3. (GameBoard already has an interface for
this, the getCe11 method.)

Set the position of the player to the cell object.

The only missing piece in this algorithm is that we cannot find out the index of a certain
cell. GameBoard knows all the cells, so it must know the index of every cell. We just need
to add a method. With TDD, of course, we need to write a test first.

public class GameboardTest extends TestCase {

public void testGetCellIndex() {
GameBoard gameBoard = new SimpleGameBoard();
Cell blue2 = gameBoard.getCell(2);
Int index = gameBoard.getCellIndex(blue2);
assertEquals(2, index);
Cell notExist = new Cell(Q);
Index = gameBoard.getCellIndex(notExist);
assertEquals(-1, index);

In this test, we not only state that GameBoard should have getcCel1Index method, but
also specify the behavior of this method. If the cell is found, the index is returned.
However, if the cell is not found, the method returns -1. Actually this is easy if we are
familiar with the ArrayList APT:

public class GameBoard {

bub]ic int getCellIndex(cell cell) {
return cells.indexof(cell);

Then we can finish the movePlayer method for GameMaster:

public class GameMaster {

2 To be honest, we did not know ArrayList has such a method. We were planning to do a linear search
through the ArrayList. That was why we had this test. If we had known this method before we wrote the
test, we would not have written the test.

© Laurie Williams 2010 90

Automated Test including JUnit

public void movePlayer(int playerIndex, int diceRoll) {
Player player = getPlayer(playerIndex);
Cell playerpPosition = player.getPosition();
int oldIndex = gameBoard.getCellIndex(playerPosition);
int newIndex = oldIndex + diceRoll;
Cell newPosition = gameBoard.getCell(newIndex);
player.setPosition(newPosition);

We pass the test! However, we have not finished yet. When a player reaches the end of
the game board, he or she shall cycle around. Let’s write a test to test this situation:

public class GameMasterTest extends TestCase{

pubTlic void testMovePlayercCycle() {
master = GameMaster.instance();
master.setGameBoard(new SimpleGameBoard());
master.setNumberofusers(l);
Player player = master.getPlayer(0);
master.movePlayer(0, 2);
master.movePlayer(0, 5);
assertEquals("Blue 1”, player.getPosition.getName());

In this test, we move the player two steps then five steps. The player should reach the end
of the game board, and then start again from the Go cell, and finally land on Blue 1.
When we try to run the test, we will run into an array index out of bound exception. This
is because the value of the new index is 7, and there is no 8" cell in the game board. We
need to modify movePlayer in GameMaster to pass this test:

public class GameMaster {
bub]ic void movePlayer(int playerIndex, int diceRoll) {

%nt newIndex =
(oldindex + diceRoll) % gameBoard.getCellNumber();

Run the test again, and we can see that the implementation passes the test. Do we need to
care about the situation when the player’s position is not found on the game board? No,
because it is not possible.

Looking at the GameMasterTest, we can see some repeated code to initialize the
GameMaster. We can use the setUp method to remove the repetition. The setup method
is called before each test method is called. There is a similar method called tearbown.
However, tearbown is called after each test method is called. It is usually used to free the
resources that are allocated in setup (such as file handle, network connection, or

© Laurie Williams 2010 91

Automated Test including JUnit

database connection). In this example, we do not allocate any resource in setUp, so
tearDown is not needed. After the cleaning up, GamemasterTest looks like this:

public class GameMasterTest extends TestCase{
GameMaster master;

public void setup() {]
master = GameMaster.instance();
master.setGameBoard(new SimpleGameBoard());

pubTlic void testPlayeriInit() {
master.setNumberofusers(6);
assertEquals(6, master.getNumberofPlayers();

}

pubTlic void testMovePlayerSimple() {
master.setNumberofusers(l);
Player player = master.getPlayer(0);

}

pubTlic void testMovePlayercCycle() {
master.setNumberofusers(l);
Player player = master.getPlayer(0);

What Have We Here?

Let’s take a look at what we have so far. Figure 6 shows the class diagram. The blue
classes are test cases. Their super class, TestCase, is now shown in this diagram.
Accessor methods are now shown in this diagram.

GameMasterTest «singleton»

+ getPlayer ()

cell}

{A GameBoard has only one Go j

-

+ position

1

Cell

GameBoardTest

GameBoard 1 P —

+ testAddCell () |-~ -

<> it .
+ testFirstCell () + addCell () 1.
+ testGetCellindex () +getCell ()
+ getCelllndex ()

GoCell PropertyCell

SimpleGameBoard

Figure 6: A Snap Shot of Current System

© Laurie Williams 2010

GameMaster .| Player PlayerTest
+ testSingleton () "
+ testPlayerInit () + setNumberOfPlayers () + testStartPosition ()
+ testMovePlayerSimple () + movePlayer ()
+ testMovePlayerCycle () + instance ()
+ setUp () + getNumberOfPlayers ()

92

Automated Test including JUnit

4. Acceptance Testing

Acceptance tests are black box test cases that are jointly written by a developer and a
customer. An acceptance test is a concrete situation, or scenario, that the system might
encounter when using the functionality of a user story. When an acceptance test case runs
properly, this lets the customer know that the user story has been properly implemented —
at least for the scenarios defined in the acceptance tests. Customers are generally not
software engineers so they don’t understand about equivalence class partitioning,
boundary value analysis, test coverage, or the like. They usually provide one very basic
“success” test case based on the requirements. So we must not take the acceptance test
cases written by the customer as the only black box test cases we run. We must write all
those test cases that test all the different combinations of bad and good things that users
of our software might try to do.

Acceptance tests have the same four parts as all black box test cases: a test ID; a
description that describes the preconditions of the test and the steps of the test; the
expected results of running the test; and the actual results of running the test.

The dialog between the customer and the developer when the acceptance test cases are
created usually leads to the discussion of many details about the user story — details the
developer needs to know about what is entailed in the user story. The conversation also
helps the development team to understand how difficult a simple user story can get [1].

With XP, the progress of a development effort is often tracked by the number of
acceptance test cases that run successfully. Additionally, in XP there is an emphasis on
automating the acceptance test cases so that they can be run many times as the
functionality of the program grows. We always want to have a level of confidence that
the new functionality we just added did not break any of the functionality that used to
work. Running the automated acceptance test cases often can help us do that.

A recommended tool for automating acceptance test of web applications is HttpUnit’.

Summary

Several practical tips for automated test were presented throughout this chapter. The
keys for successful automated test are summarized in Table 3.

Table 3 Key Ideas for Automated Test

<=8 | Download and learn to use the JUnit and the HttpUnit testing frameworks. If you
don’t code in Java, these tools are available for other languages.

=@ | Running automatic tests often will help you see if your new code broke any
existing functionality. Collect all the tests from the entire time for the entire code
base. Run these tests often — at least once per day.

? http://httpunit.sourceforge.net/

© Laurie Williams 2010 93

Automated Test including JUnit

== | Use the “key ideas” in black box testing and white box testing from prior chapters
to create your automated tests.

<=8 | In automating tests, consider the advice in the Test Automation Manifesto.

<=8 | When a defect is found in your code, add automated tests to reveal the defect.
Then, fix the defect and re-run the automated tests to make sure they all pass now.

=@ | Work with your customer to create acceptance tests — then automate them. You
can use the number (or percent) of acceptance test cases that pass as the means of
determining the progress of your project.

The XP software development method uses two forms of automated testing -- white box
unit tests that support the TDD practice and black box acceptance tests. In this chapter,
you learned how to create both of these types of automated test cases. You can use these
techniques and tools to develop automated tests in any software development process.
These tests can help you identify defects in your code, can be used to ensure new changes
don’t cause problems with previously-working code, and can be used to help track project
status. Remember that writing automated tests can be expensive, so be reasonable with
the investment you make in automated tests.

Glossary of Chapter Terms

Word Definition Source
acceptance | formal testing conducted to determine whether or not a system | [9]
test satisfies its acceptance criteria (the criteria the system must

satisfy to be accepted by a customer) and to enable the
customer to determine whether or not to accept the system

mock object | debug replacement for a real-world object [8]
regression | selective retesting of a system or component to verify that [9]
testing modifications have not caused unintended effects and that the
system or component still complies with its specified
requirements
white box testing that takes into account the internal mechanism of a [9]
testing system or component
References

[1] D. Astels, G. Miller, and M. Novak, 4 Practical Guide to Extreme Programming.
Upper Saddle River, NJ: Prentice Hall, 2002.

[2] K. Beck, Test Driven Development -- by Example. Boston: Addison Wesley, 2003.

[3] B. Beizer, Software Testing Techniques. London: International Thompson
Computer Press, 1990.

[4] R. D. Craig and S. P. Jaskiel, Systematic Software Testing. Norwood, MA: Artech
House, 2002.

[5] L. Crispen and T. House, Testing Extreme Programming. Boston, MA: Addison
Wesley Pearson Education, 2003.

© Laurie Williams 2010 94

[6]
[7]

[8]
[9]
[10]
[11]

[12]

[13]

[14]

Automated Test including JUnit

E. Dustin, J. Rashka, and J. Paul, Automated Software Testing. Reading,
Massachusetts: Addison Wesley, 1999.

B. George and L. Williams, "A Structured Experiment of Test-Driven
Development," Information and Software Technology (IST), vol. 46, no. 5, pp.
337-342,2003.

A. Hunt and D. Thomas, Pragmatic Unit Testing in Java with JUnit. Raleigh, NC:
The Pragmatic Bookshelf, 2003.

IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing. New
York: John Wiley and Sons, Inc., 2002.

R. C. Martin, Agile Software Development: Principles, Patterns, and Practices.
Upper Saddle River, NJ: Prentice Hall, 2003.

G. Meszaros, S. M. Smith, and J. Andrea, "The Test Automation Manifesto," in
Extreme Programming and Agile Methods -- XP/Agile Universe 2003, Lncs 2753,
F. Maurer and D. Wells, Eds. Berlin: Springer, 2003.

M. M. Miiller and O. Hagner, "Experiment about Test-first Programming,"
Conference on Empirical Assessment in Software Engineering (EASE), 2002, pp.
L. Williams, E. M. Maximilien, and M. Vouk, "Test-Driven Development as a
Defect-Reduction Practice," IEEE International Symposium on Software
Reliability Engineering, Denver, CO, 2003, pp. 34-45.

© Laurie Williams 2010 95

Static Analysis

Static analysis is an important technique for removing certain types of defects prior to the
software testing phase. In this chapter, we will explain the following:

e the basics of static analysis

e the capabilities of static analysis tools that automate static analysis

o the types of defects that are likely to be found by a static analysis tool

Static analysis is the process of evaluating a system or component based on its form,
structure, content, or documentation [4], which does not require program execution.
Inspections are an example of a classic static analysis technique; inspections are a static
analysis technique that relies on the visual examination of development products to detect
errors, violations of development standards, and other problems [4]. Tools are
increasingly being used to automate the identification of anomalies that can be removed
via static analysis, such as coding standard non-compliance, uncaught runtime exceptions,
redundant code, inappropriate use of variables, division by zero, and potential memory
leaks. The use of static analysis tools can be thought of as an automated code inspection.
By using a static analysis tool, software engineers may be able to fix faults before they
surface more publicly in inspections or as test and/or customer-reported failures — or, in
the case of students, before these faults surface as problems in your project which result
in a lower grade.

Complementary to static analysis is a practice known as dynamic analysis. Dynamic
analysis is the process of evaluating a system or component based on it behavior during
execution whereby static analysis does not involve execution. Dynamic analysis
includes all types of testing techniques. Because analysis is achieved without actually
running any code and automated testing focuses entirely on results the code achieves
when running, it may be tempting to think of the two methodologies as opposites. This is
not accurate. As will be discussed below, static and dynamic analysis find different types
of defects [9] so including both in your development process is important.

1 Introduction and Background

Static analysis can be thought of as a spell/grammar checker for your code (see Figs. 1a
& 1b). Spell checkers parse through the text of a word processing document and compare
the language with known grammar rules and a dictionary to find possible errors. Any
good spell checker will also make suggestions for how to improve various sentences’
structures even when the sentences are perfectly legal from a grammatical standpoint.

Spelling and Grammar: English [U.5.) HE

Mot in Dictionary:

Yownowhavera-chancetobring-to-liferscene s ﬂ Ionore I
and-dialog-from-a-favoriter-novel-orshortstory — |
by-participating-in-one-of-several-“dramatic-

=l Add |

stagings{”-fro m-classical-literature. -
Suggestions:

= Change |

Change all |

j AutoCatrect |

lskaginess

¥ Check grammar

Static Analysis

FH A IIIII

&

M MedRecjava X

[E_\ Froblems £3

h.put ("EloodType®, r.getitring("BEloodType™)):

h.put ("EloodPressureN”, r.getString("BloodPressureh’

h.put ("EloodPressurel”, r.get3tring("BloodPressurel”

h.put ("EyeColor”, r.get3tring("EveColor™il;

h.put ("Missingippendages™, r.get3tring("Missinglpper

h.put ("Gender", r.get3tring|"Gender™)]):
"B rin rt

if (r.get3tring("Decessedbate™) !'= null)
h.put ("Deceasedbate”, r.get3tring("Deceasedbate’

h.put ("HCPID"™, r.get3tring("HCPID™)) !

h.put ("LastTpdated"”, r.get3tring("LastUpdated™));

itwr=0b.closeConn (conn) ;
return new PersonalHealthInformationih];

} catch (SQOLException e)

itmrsth.closelonn (conn) ;

e.printStackTrace ()

throw new UserbacaException(MedRecittributes.ERROR

5= Dutline

The field ITrustU serrole iz never read... | ITrustserjava iTrugt_DwWP/src/edusnesu... | i
@l Options... Undo | Cancel I & | Type zafety: The method put{Object, ... | MedRec java iTrust_DWw/P/ercdedusnezu... | line 124
& | Type safety: The method put{Object, MedRec java iTrust_DwP/src/edusnesu. line 125
& | Type zafety: The method put(Object, ... | MedRec java iTrugt_DwWP/src/edu/nesu... | line 126
& | Type safety: The method putObject, ... | MedRec. java iTrugt_DwWP/sre/edusnesu... | line 127
& | Type safety: The method putiObject, ... | MedRec java iTrust_DwWP/srededu/nesy... | ine 128
& | Type safety: The method put{Object, ... | MedRec. java iTrust_DwWP/src/edu/nesu... | line 129
& | Type safety: The method put[Object, MedRec. java iTrust_DwP/src/edusnesu. line 130
& | Type safety: The method putiObiect, ... | MedRec java iTrust_D'wP/srcdedusnesu... | line 131
& | Type zafety: The method put{Object, ... | MedRec java iTrugt_D'wWP/srcledusnesu... | line 132
&
& | Type zafety: The method put(Object, ... | MedRec java iTrugt_DwP/src/edusnesu...
S PR R T Diaean LT o - Y 1
Figure 1.1a: A Common Spell Checker Figure 1.1b: Static Analysis with FindBugs

A static analysis tool will “do spellcheck” on your code. A spell checker has a set of
grammar patterns that are wrong and will flag a word processing document that contains
these errors as well as occurrences of words that do not appear in the dictionary.
Similarly, a static analysis will parse through your code, comparing each class definition
to its set of bug patterns. A bug pattern is a code idiom that is likely to be an error;
occurrences of bug patterns are places where code does not follow usual correct practice
in the use of a language feature [3].

Have you ever had an experience with a spell/grammar checker that told you a word
(such as a name) was spelled wrong, but you knew it was right? Well, the spell/grammar
checker identified a false positive. A false positive happens when a test incorrectly
reports that it has found a positive result where none really exists [7]. Unfortunately,
current static analysis tools can give a significant number of false positives. Active
research is taking place to reduce the number of false positives found by the tool. Often,
static analysis tools can be customized and filters can be established so that certain
classes of faults are not reported, reducing the number of false positives. But, it is better
to have been warned about the possibility of a fault and after inspection, realize it is not a
fault, than to be suffering the error and not knowing where it could come from.

© Laurie Williams, Ben Smith 2006 97

Static Analysis

2 But Why?

In automated testing of an application, the programmer writes code to check the source of
the application. The results of an automated test frequently come down to a Boolean
statement: Does the application produce the expected results? Static analysis is an
excellent addition to your code reviewing arsenal because it contains a method that is a
bit more robust than true or false.

Static analysis has the added benefit of not being as biased toward your system. One’s
own understanding of how the system being created works can influence him or her not
to test for a particular error due to thoughts such as “Well, it will never happen that way.”
The bug patterns that static analysis tools look for have been gathered by developer’s
who have spent a long time analyzing code for the most frequently-occurring defects and
have put patterns for them into the set that the tools look for.

With development Kits that are as helpful as the compiler and automated software testing
methods such as JUnit/test-driven development [1], one may wonder what the purpose of
a tool that searches for simple and obvious fault is. The compiler already acts as a
proofreader in its own right. When a resource such as a Java source code file compiled, it
and feeds back all of the compile-time errors and even warnings to the console. What can
static analysis offer that the warnings coming from the compiler do not? In the next
section, we look at a couple of examples of errors that static analysis will catch that the
Java compiler will not.

3 Examples

The example in Figure 2.1 is a demonstration of a common error programmers can run
into when writing their first program dealing with Strings or human-readable text.

String a = “very similar strings”;
String b = “very similar strings.”;
it (a == b)

//do something

Figure 2.1: A Fault (not so) Easily Caught

In the conditional, the programmer is trying to see if the two strings are equivalent—that
is, if they contain the same sequence of characters. The semantics of the Java language,
however, do not allow String content comparison with the == operator, because this
operator is meant for dealing with reference equivalence. If the programmer were trying
to determine if the references a and b both pointed to the same object in memory, this
statement would be the one to use. However, since the goal is to determine if these two
String objects contain the same data, the statement to use is if (a.equals(b)).
This mistake would not be caught by the basic code checking features of the Java
Development Environment because it is not a statement that requires a warning, nor is it

© Laurie Williams, Ben Smith 2006 98

Static Analysis

syntactically incorrect! However, the use of == for string equivalence is a bug pattern
caught by many static analysis tools.

An example of an error that is harder to catch is in Figure 2.2

t 3;
t

T 9o
[T

n
n
f

4;
(a = b)
//do something...

Figure 2.2: A Less Obvious Error

The programmer probably meant to write a == b for the 1F conditional, but there is
nothing syntactically or otherwise wrong with the if statement as it stands. The code will
compile and execute perfectly—the only problem is that every time the if statement is
executed, a will be set to equal b and the condition will be true. When testing the code,
the developer will discover that there is definitely something wrong with its behavior, but
he or she may have a difficult time figuring out where the error occurred. Both examples
are easily caught, of course, but try to imagine how many times it or something like it has
happened to you.

The previous figures demonstrate two specific examples of faults. The most powerful
ability of static analysis automation is that rather than looking for one instance of the
formation of an idiom that is likely to be a fault, automation allows your favorite static
analysis tool to search your code for every possible variation on the idiom that can be
constructed. Thus, resulting in a bug pattern. In the example associated with Figure 2.2,
for instance, the variable names could be different, the variables could have been
declared on a different line of code or in a different class, the variables could be classes,
the programmer may have not indented the line within the conditional or the programmer
may have been using a while conditional instead of 1 f. No matter what the
surrounding code is, this example will be caught because it matches the pattern.

The authors of a commonly-used, open source static analysis tool FindBugs [3], have
listed three reasons why obvious faults occur (in Java) and why you should use static
analysis tools to catch them before they catch you:

e Everyone makes dumb mistakes

e Java offers many opportunities for latent bugs
e Programming with threads is harder than people think

© Laurie Williams, Ben Smith 2006 99

Static Analysis

4 An Example Static Analysis Tool Implementation

FindBugs® uses the following methods to check code for possible errors:

e Class Structure and Inheritance Hierarchy: this strategy looks at the hierarchy
of classes in the project without looking at the code in the classes.

e Linear Code Scan: a linear scan of the bytecode is made, and a state machine is
made of visited instructions.

e Control Sensitive: a control flow graph is made of the program, and the patterns
are compared to the control flow graph. A control flow graph is a graph of all
possible paths through the program.

e Dataflow: these patterns use the control flow and dataflow graphs generated from
analyzing the program. A dataflow graph looks at when data is created, used, and
destroyed.

These methods are executed using the Visitor pattern (see Fig. 3.1). The object code files
for the Java classes you implement follow the pattern by allowing the Visitor to examine
each object type’s definition. The structure of each is then compared with patterns of
known errors.

Visitor

Wheel

+acceptivisitor:Visitor): wolid

+visit (uheel :Hheel) : wvoid
+visit (engine:Engine) : wold
+visit (body:Body) : wvoid
+visit(car:Car): woid

Engine < Car
+accept|visitor:Visitor): void +acceptivisitor:Visitor): wvoid
PrintVisitor
+visit(wheel:Wheel): void
Body +vrisit({engine:Engine): woid

+visit(body:Body): woid
+visiticar:Car): wvoid

+acceptivisitor:Visitor): wolid

Figure 3.1: The Visitor Pattern [7]

The resulting execution finds six types of vulnerabilities:
e correctness

internationalization

malicious code vulnerabilities

multithreaded correctness

performance

style

1. ! http://findbugs.sourceforge.net/

© Laurie Williams, Ben Smith 2006 100

Static Analysis

5 Different Types of Faults

After your first experience with static analysis, you may think that with proper rigorous
testing and static analysis tool in place, you will be able to smite every fault in your code.
This is not the case. While these tools are an excellent addition to the set, they do not
cover everything—in fact, it is recommended that it is best to use more than one static
analysis tool, because they will each catch something the others do not [6]. And, there is
a range of programmer errors that can never be detected by any static analysis [5, 8] — so
don’t feel overly secure and continue with other validation and verification techniques.

Additionally, a static analysis study was conducted at Nortel Networks [9]. The faults
found by static analysis and inspections and the test and customer-reported failures were
counted and classified. Data analysis consisted of faults reported by over 200 inspectors
and testers, and by customers, for over three million LOC written in C/C++. The
classification scheme used was IBM's Orthogonal Defect Classification (ODC) [2]. The
goal of ODC is to categorize defects such that each defect type is associated with a
specific stage of development. ODC has eight defect types. Each defect type is intended
to point to the part of the development process that needs attention. The relationship
between these defect types and process associations are shown in Table 1, which adapted
from [2]. Therefore, the ODC scheme can be used to indicate the development phase in
which a defect was injected into the system.

Table 1: ODC Defect Types and Process Associations, adapted from [2]

Process Association Defect Type
Design Function
Low Level Design Interface, Checking, Timing/Serialization, Algorithm
Code Checking, Assignment
Library Tools Build/Package/Merge
Publications Documentation

The results indicate that static analysis tools predominantly identify two ODC defect
types: Checking and Assignment — which would most likely be injected in the coding
phase. Approximately 90% of all the faults identified by inspection belong to Algorithm,
Documentation, and Checking faults. A large majority of test/customer-reported failures
is in Function and Algorithm types.

© Laurie Williams, Ben Smith 2006 101

Static Analysis

Table 12: Mapping of defects found by different filters to ODC defect types
[adapted from [9]]

Defect Type Static Inspection Test Customer
analysis (%) (%) (%)
tools
(%)
Function 0 1.09 55.73 69.70
Assignment 72.27 4.37 3.82 0
Interface 0 0.87 0.20 0
Checking 27.73 20.52 0.80 0
Timing/Serialization 0 0 0 0
Build/Package/Merge 0 1.77 1.81 0
Documentation 0 35.37 0 0
Algorithm 0 36.03 37.63 30.30

The bottom line is that it is prudent to use several different static analysis tools on your
code and to continue with the full range of validation and verification techniques to get
the most faults out of your code.

6 Summary

Several main ideas about static analysis were presented throughout this chapter. They are

summarized in Table 1.

document.

Static analysis is to your code as a spell checker is to a word processing

Static analysis looks at your system’s source code without executing it.

Everyone makes dumb mistakes, and static analysis tools are useful for catching
them before they become really serious problems.

b 88 &

Whereas automated testing is managed and created by the team itself, static
analysis is based on a set of bug patterns that have been determined by a much
larger group of programmers.

Static analysis tools do not all look for the same errors—the use of more than one
on a given system is highly recommended!

§ &

Though tools for performing static analysis have a high rate of false positives, it is
better to have a false positive than to not know about the fault.

© Laurie Williams, Ben Smith 2006

Table 1: Key ldeas for Chapter

Glossary of Chapter Terms

102

Static Analysis

Term Definition Source
bug pattern | a code idiom that is likely to be an error; occurrences of bug [3]
patterns are places where code does not follow usual correct
practice in the use of a language feature
dynamic The process of evaluating a system or component based on it [4]
analysis behavior during execution.
false A test incorrectly reports that it has found a positive result where | [7]
positive none really exists.
inspection static analysis technique that relies on the visual examination of | [4]

development products to detect errors, violations of development
standards, and other problems

object code

Computer instructions and data definitions in a form output by [4]
an assembler or compiler.

source code

Computer instructions and data definitions expressed in a form [4]
suitable for input to an assembler, compiler or other translator.

static the process of evaluating a system or component based on its [4]
analysis form, structure, content, or documentation
References:

[1] K. Beck, Test Driven Development -- by Example. Boston: Addison Wesley, 2003.

[2] R. Chillarege, 1. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M.
Wong, "Orthogonal Defect Classification -- A Concept for In-Process
Measurements,” IEEE Transactions on Software Engineering, vol. 18, no. 11,
November 1992, pp. 943-956.

[3] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy,” Conference on Object
Oriented Programming Systems Languages and Applications (OOSPLA)
Companion, Vancouver, BC, 2004 pp. 132-135.

[4] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

[5] L. Osterweil (Eds.), Integrating the Testing, Analysis, and Debugging of
Programs. North Holland: Elsevier Science Publishers, 1984.

[6] N. Rutar, C. B. Almazan, and J. S. Foster, "A Comparison of Bug Finding Tools
for Java," IEEE International Symposium on Software Reliability Engineering
(ISSRE), St. Malo, France, 2004 pp. 245-256.

[7] Wikipedia, "http://www.wikipedia.org/," no.

[8] M. Young and R. N. Taylor, "Rethinking the taxonomy of fault detection
techniques,” International Conference on Software Engineering, Pittsburgh, Penn.,
1989 pp. 53-62.

[9] J. Zheng, L. Williams, W. Snipes, N. Nagappan, J. Hudepohl, and M. Vouk, "On

the Value of Static Analysis Tools for Fault Detection,” IEEE Transactions on
Software Engineering, vol. 32, no. 4, 2006, pp. 240-253.

© Laurie Williams, Ben Smith 2006 103

Static Analysis

Chapter Questions

True or False: Static Analysis is accomplished using the Visitor pattern?

True or False: Static Analysis and Automated Testing are counter opposite tools?
How is static analysis like a spell checker?

List three reasons static analysis should be used on your software project.

o M w D oE

If compilation of your program results in only a few warnings from the JDK, why
should you run static analysis on it anyway?

6. What is a bug pattern and how is it used?

7. Name two of the vulnerabilities that FindBugs, a static analyzer, finds in software
projects.

8. How does your quality assurance manager exert a bias over the tests he or she writes
for the software project?

9. [Exercise] Go to the FindBugs bugs descriptions page
(http://findbugs.sourceforge.net/bugbDescriptions._html), and
find a bug description that you like. Write a source code example that would be
caught by this bug pattern.

© Laurie Williams, Ben Smith 2006 104

Requirements Engineering

Requirements Engineering and Elicitation

This chapter gives an overall introduction to that part of the software development process in
which you begin to learn what your customer needs built and why. In this chapter, we will
explain the following:

o the definition of requirements engineering

o the different types of requirements

o how to gather requirements

o the components of a Software Requirements Specification

e strategies for managing requirements changing throughout development

Two college students walked out of their last final exam of a long, hard semester. They wanted to
celebrate, but it was only 11:00 AM. A nice breakfast was the answer! They walked into a
coffee shop and sat down. A waiter came over to their table. One student said, “I would like a
chocolate-chocolate chip muffin, but I’m not sure what | want to drink.” The other said, “I’d like
a blueberry croissant, but I also don’t know what I want to drink. 1’m tired and need caffeine, but
I’m really sick of just plain coffee.” The waiter decided the best thing to do was to bring over the
drink specialist who could help the students decide what to drink with their delectable treats.

The drink specialist then queried the students on the requirements for their beverages. “Hot or
cold?” Hot. “Caffeinated?” Absolutely! “More like tea, coffee, or hot chocolate?” Coffee.
“What else should I know?” The students shared that they wanted to celebrate, they wanted to
feel pampered, plain coffee was definitely out. They wanted something sweet. One student said
she heard you could have frothed milk on top — with cocoa powder. That sounded great. The
other student said the frothed milk and the cocoa powder were definitely not for him. The drink
specialist listened intently and then read back the students’ requirements:

The beverage shall be hot.

The beverage shall be caffeinated.

The beverage shall have coffee in it, but should not be plain coffee.

The beverage shall make you feel pampered.

The beverage shall be sweet.

For one of you, the beverage shall have frothed milk and cocoa powder on top. For the
other of you, there shall be no frothed milk or cocoa powder.

o E

“Is this correct?” The students agreed. The drink specialist said he could surely satisfy those
requirements, except for #4. He said he’d do his best to bring a drink that would make them feel
pampered, but couldn’t guarantee that one since it wasn’t very specific and depended on their
opinion. The students agreed to take a chance on the specialist’s choice. On his way back he
pondered what to make. Either a cappuccino or a latte (with some added cocoa power) would
satisfy one student. An espresso or a Greek coffee would meet the second student’s requirements.
He decided to make a cappuccino and an espresso, his own personal favorites.

In most of the computer science classes you’ve taken so far, you’ve probably been given non-
negotiable, fairly detailed specifications from your instructor. In reality, what is required in
software development is not nearly so defined. In the coffee shop example above, the students
knew their goal -- to celebrate the end of exams by relaxing with a leisurely breakfast. The drink
specialist had to elicit their requirements for this breakfast. Ultimately, he had to make a
judgment of what to serve the students to best satisfy their goal. This was much harder and
subjective than if the students had come in and ordered a cappuccino and an espresso right away.

© Laurie Williams 2006 105

Requirements Engineering

A software requirement is a condition or capability needed by a user to solve a problem or
achieve an objective [13] and that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document [12]. In software
development, the requirements are never explicitly “ordered.” You must always work hard to
determine exactly what the customers/users want so as to design a solution to meet their goals.
This is challenging to do because requirements are often buried “deep beneath layers of
assumptions, misconceptions, and politics [11].” Understanding what you need to do to satisfy
your customer is essential because if you don’t precisely know what problem you’re solving, you
may end up solving the wrong problem. You must never assume you know what your customer
wants — you must ask and ask again later if you are unsure.

1 Requirements Engineering

Requirements engineering is a systematic way of developing requirements through an iterative
process of analyzing a problem, documenting the resulting observations, and checking the
accuracy of the understanding gained. [19] Software requirements engineering provides the
techniques for understanding what a customer wants, analyzing it, assessing feasibility,
negotiating a reasonable solution, specifying the solution unambiguously, validating the
specification, and managing the requirements as they are transformed into an operational system
[26].

Requirements engineering is comprised of two major tasks, analysis and modeling [17].
However, often these two steps are done so iteratively, it can be hard to distinguish one from the
other. Requirements evolve at an uneven pace and tend to generate further requirements from the
definition process. [25]

Requirements analysis is the process of studying user needs to arrive at a definition of system,
hardware, or software requirements [12]. In the analysis task, sub-tasks include fact-finding,
communication and fact-validation [17]. The output of the requirements elicitation step is a
requirements document (of sorts.) This document should express requirements in a form that
customers can unambiguously understand — and participate in validating. In the modeling task,
sub-tasks include representation and organization [17]. Modeling is done based on the
requirements statement produced by elicitation. Via modeling, the requirements are translated
into a form that software engineers can unambiguously understand. Once they are elicited,
validated, and modeled, requirements must be managed to identify, control, and track changes to
requirements as they are transformed into an operational system.

This chapter will describe requirements engineering in general, the practice of requirements
elicitation in particular, and will educate you on the plan-driven approach of requirements
specification.

2 Stakeholders and Requirements Elicitation

The primary interest of customers is not in a computer system, but rather in some overall
positive effects resulting from the introduction of a computer system in their environment.

[7]

Requirements elicitation involves the gathering of requirements. Gathering requirements sounds
so easy, doesn’t it? “The words *“gathering” seems to imply a tribe of happy analysts, foraging

© Laurie Williams 2006 106

Requirements Engineering

for nuggets of wisdom that are lying on the ground all around them “Gathering” implies that
requirements are already there — you merely find them, place them in your basket, and be merrily
on your way [11].” As we’ve already impressed upon you, effectively devising requirements is
not easy.

There are different types of requirements to consider and many ways of gathering them. Several
different groups of people will have a vested interest in your system. For example, there may be
a group of people who pays for your system, a group of people that actually uses your system, a
group of people who will maintain your system, and so forth. We use the term stakeholder to
refer to the key representative of the groups who have a vested interest in your system and direct
or indirect influence on its requirements. For example, for the Monopoly game the stakeholders
are the people who will play the game and the organization that is paying for the software
development to be done. Generally, each stakeholder has different perspectives on the problem
the software must solve and different needs that must be met. Each of these perspectives must be
captured in the requirement elicitation. One of the first activities is to involve people who will act
as stakeholders over the course of product development. The stakeholders are thus heavily
involved in the requirements elicitation process.

Depending upon the development process chosen, stakeholder involvement may be most heavily
weighted at the front-end of the development life cycle (a plan-driven process) or spread
throughout the majority of the life cycle (an agile process).

2.1 Types of Requirements

There are three distinct but equally important kinds of requirements that need to be gathered from
the stakeholders: functional and non-functional requirements, and constraints.

Functional Requirements

Functional requirements are requirements that specify a function that a system or system
component must be able to perform [12]. These types of requirements specify the services a
system must provide, describing how the system should react to specified inputs and how the
system should behave in specified circumstances. Sometimes, functional requirements also state
what the system should not do. Below are some sample functional requirements from our
Monopoly game:

e When a player passes or lands on the Go cell, the player shall get paid $200.

e When a player lands on the Free Parking cell, nothing shall happen.

o When a player lands on an available property cell, the player shall have a chance to purchase
it. The price shall be the land value of that property.

Non-functional Requirements

Non-functional requirements are requirements which are not specifically concerned with the
functionality of a system but place restrictions on the product being developed [16]. In general,
non-functional requirements are emergent properties that relate to the system as a whole rather
than to individual system functions. The majority of non-functional requirements are of the
following five types:

© Laurie Williams 2006 107

Requirements Engineering

e Security. Depending upon the purpose of the system and the data it interacts with/transmits,
the security needs vary widely. Security requirements are discussed further later in this
section.

e Privacy. Depending upon the sensitivity of the data the system interacts with/transmits, the
needs for protecting the privacy of the data varies widely. Privacy requirements are
discussed further later in this section.

o Usability. Usability requirements consider human factors, aesthetics, ease of learning, and
similar factors.

o Reliability. Depending upon the purpose of the system and its functions, the reliability
requirements (the acceptable frequency and severity of failures) will vary widely. For
example, the manufacturer of a cellular phone might consider the auxiliary games to be a
low-reliability functionality whereas the calling functionality would be considered a high-
reliability functionality.

¢ Availability. In addition to reliability, certain types of systems must be available or
functioning acceptably for a large majority of the time.

o Performance. Performance requirements are concerned with the allowable transaction time,
response time, recovery time, memory usage, and so on.

Even though functional requirements may not be obvious, they are easier to elicit than non-
functional requirements. Functional requirements reflect the things the stakeholders want to be
able to do. Non-functional requirements are properties — properties the stakeholders often forget
about until they actually try the system — and the transactions take too long . . . or the system is
too difficult to use. Failure of a functional requirement generally means that an individual
function the user wants does not work. In contrast, failure of a non-functional requirement might
make not just an individual function unusable but the whole system unusable. Even worse,
fixing non-functional defects are often prohibitively expensive, requiring “back to the drawing
board” redesign. It can be exceedingly difficult, if not impossible, to make an insecure system
secure or to make an unreliable system reliable.

To prevent these critical non-functional requirements from being overlooked, you must make a
greater effort to elicit them from the stakeholders. Rather than wait, ask your customer if the data
used in the application is sensitive, who can have access to the data, if it needs to be encrypted
during the transaction, how much memory is available, what is the expected transaction time, and
so forth. Many software engineers find it helpful to develop a domain-specific taxonomy or
checklist of questions about non-functional requirements to ask during requirements elicitation
activities.

Non-functional requirements often are born as vaguely-expressed concerns. These concerns need
to be translated to statements with measurable properties. Ideally, non-functional requirements
need be expressed as quantitatively as possible so that they can be tested with a definite “pass” or
“fail” result.

Bad: The system shall be responsive to any user input.
Good: The system shall respond to any user input within 0.01 seconds.

Constraints

Constraints are a type of non-functional requirement that is imposed by the client that restricts
the implementation of the system or the development process. These can include things such as

© Laurie Williams 2006 108

Requirements Engineering

the implementation language, the development platform (e.g. Linux, Windows, .NET) or the
hardware configuration. Additionally, required process steps, such as automated testing and
documentation, could be stated as constraints.

An easy way to distinguish constraints from functional and general non-functional requirements
is that constraints usually have no direct effect on the users’ view of the system.

2.2 Security and Privacy Requirements

The development of secure systems that protect the rights of individuals is very important.
However, the need for information security and privacy is fairly recent concern. Technology and
the Internet have made it much easier for intruders and criminals to steal, corrupt, and/or exploit
data — from the private information of individuals to mission-critical assets of major corporations.
As with most non-functional requirements, it is not easy to magically sprinkle privacy or security
dust on an application to fix the built-in vulnerabilities. It is critical that security and privacy
requirements are elicited from stakeholders early and for these essential requirements to be
designed into our systems from the start. We therefore take a more detailed look at the security
and privacy requirements we mentioned in the previous sections.

Using an Organization’s Security and Privacy Documents

In developing a set of security and privacy requirements, the engineer should focus on [22]
identifying:

e What needs to be protected
o From whom those things need to be protected
e For how long protection is needed

The astute engineer will also examine the organization’s security and privacy policies as a
prompt for requirements. An organization’s privacy policy should state the privacy rights of
users and defines how information is collected, stored, used, and shared. If you’ve never seen a
privacy policy, click on the Privacy Policy link of most any web page. An organization’s
security policy define how both internal and external users interact with systems in the
organization, how the computer architecture topology is implemented, and where computer
assets will be located.

It is more difficult to find an example of a security policy because these are generally considered
a confidential asset of an organization. However, developers of computer systems have a need to
read the security policy and should ask to see it.

Asking Questions during Requirements Elicitation
Examining these two documents is very important for two reasons:

e Understanding the policies of the organization will enable the engineer to ask the right
questions during requirements elicitation. For example, you might ask: Your privacy policy
would indicate that the private information not be revealed. Does this mean you would only
like the name displayed on the screen and not the serial number?

o Understanding the policies of the organization will enable the engineer to spot
inconsistencies between the policy and the requirements that are being requested. For
example, you might ask: You said the data can be immediately changed in the database
without any transaction logging. However, you security policy specifically states that all
transactions must be traceable. | suggest we add a transaction log. What do you think?

© Laurie Williams 2006 109

Requirements Engineering

A system need for security and/or privacy may start as a non-functional requirement. Ultimately,
these types of requirements should be formulated as a functional requirement if at all possible.
For example, in discussing the security needs of an application, the customer might state that only
employees of the company can access certain data. This will lead to a functional requirement to
add password authentication.

3 How to Gather Requirements

In requirements elicitation activities, the software engineers and the stakeholders communicate to
determine what the software system needs to be comprised of. In these elicitation activities, it is
important to discover the underlying reason why users want a particular thing, rather than just
their expression of what they want. Your system has to solve their business problem, not just
meet their stated requirements. Documenting the reasons behind requirements will give your
team invaluable information when making implementation decisions.

In this section, we provide you information on nine different ways to solicit requirements

information from your stakeholders. Before reading these, it is important to familiarize yourself
with the potential problems often found when embarking on these activities in Figure 1.

Figure 1: Ten Problems of Requirements Elicitation

Ten Problems of Requirements Elicitation [21]

1. The boundary of the system is ill-defined.

2. Unnecessary design information may be given.

3. Stakeholders have incomplete understanding of their needs.

4. Stakeholders have poor understanding of computer capabilities and
limitations.

5. Software engineers have poor knowledge of the problem domain.

6. Stakeholder and software engineers speak different languages.

7. “Obvious” information is omitted.

8. Different stakeholders have conflicting views.

9. Requirements are vague and untestable, such as “user friendly” and
“robust”.

10. Requirements are volatile and change over time.

You should work to overcome as many of these problems and use a combination of these nine
techniques for effectively eliciting your requirements. The first six of these techniques are used
for initial requirements capture. The last three are used to collect feedback and additional
requirements during the development process.

3.1 Interviews

The most common form of requirements elicitation technique is to interview stakeholders to gain
their perspective on what the system needs to do. There are two forms of interviews, structured
interviews and unstructured interviews. Before a structured interview, the software engineer

© Laurie Williams 2006 110

Requirements Engineering

prepares a list of pre-determined questions and a clear, planned agenda. The questions are
designed to gain an understanding of real problems and potential solutions. The prepared
guestions can be open-ended (allowing the interviewee to say what they want) and/or closed-
ended (interviewee chooses from a selection of choices, such as multiple choice, ranking, rating
questions). The questions should be carefully designed not to be opinionated, biased, or leading.
An example of a leading question is, “You don’t do it this way, do you?” Having only structured
interviews may lead the stakeholders down the wrong, pre-determined path. Structured
interviews should be augmented with some unstructured interviews. No questions are prepared
for an unstructured interview. The interviewee instead takes the conversation wherever he or she
wants.

Interviews are very effective for collecting requirements. However, after the interviews are
completed, the engineer has the difficult task of integrating different interpretations, goals,
objectives, communication styles, and use of terminology into a single set of requirements. The
structured interviews can be planned in such a way to facilitate this compilation and analysis.

3.2 Observation

One method of learning about system requirements is for the software engineer to observe
business activities. This observation can either be passive or active [20]. With passive
observation, the engineer observes business activities without interruption or direct involvement
or via studies audio/video recordings of business activities. With active observation, the engineer
“lives the requirements” by actually participating in the activities and/or becoming part of the
team.

Observation is an expensive elicitation technique because it needs to be carried out over a
prolonged period of time, at different time intervals, at different workloads, times of day, and
times of year. You must also consider that people tend to behave differently when they are
watched. They might do things like hide work shortcuts.

3.3 Examining Documents and Artifacts

A very effective means of collecting requirements is to examine existing documents and systems.
Look at anything you can to gain insight about how things are currently done — such as forms and
any automation. Don’t forget to gather any policies, such as privacy and security policies.

3.4 Joint Application Design Sessions

Joint Application Design or JAD [28] sessions have been used by IBM since the mid 1970s as an
effective means for getting the right people involved from the start of the project. The purpose of
a JAD session is to guide user or subject matter experts through defining requirements, process,
data models, and screen mock-ups.

JAD sessions can be held over a few hours or a few days but should not involve more than 25 to
30 people. There are six roles of the JAD participants:

1. Executive Sponsor: The executive who supports and/or pays for the project. He or she
must be high enough in the organization to be able to make decisions and to provide the
necessary resources for the project. His/her presence at the session (often only the
opening and closing segments) is an indication to the team of the importance of the
project.

© Laurie Williams 2006 111

Requirements Engineering

2. Facilitator: The facilitator moderates the meeting, keeping the group on the meeting
agenda. The facilitator initiates interactive techniques, such as brainstorming,
communication, and consensus building. The facilitator generally understands the
business domain but is not a stakeholder. The facilitator does not contribute technical or
domain information to the meeting.

3. Project Leader: The leader of the application development team answers questions
about the project regarding scope, time, coordination issues, and resources.

4. Participants: Stakeholders provide the information about their requirements and
objectives of the system to be developed. Engineers help users formulate problems and
explore solutions.

5. Scribe: The scribe records and publishes the proceedings of the meeting. The scribe
does not contribute information to the meeting.

6. Development Team Members: The development team members sit behind the
participants and silently observe the JAD sessions, gathering information.

3.5 Groupware

Unavoidably and increasingly, software development teams are geographically separated from
each other and from their stakeholders. Organizations have global joint ventures and
geographically distributed teams, and sometimes software teams from other countries perform
subcontract work. In these situations, frequent face-to-face meetings, even for requirements
elicitation, can be impractical and prohibitively expensive. Software tools, such as groupware, to
help the development collaboratively formulate the requirements have been shown to be effective
for distributed requirements gathering [18]. These groupware tools support communication
through video conferencing, audio conferencing, interactive chat, email, and specialized tools to
capture the interactions and decisions of the teams. The teams can use the tools to interact
together at the same time (synchronously). The tools can also allow asynchronous collaboration,
whereby the teams do not work at the same time but instead pass back and forth documents (like
tokens) and enter information into systems. Research has shown that synchronous requirements
elicitation is preferred in a distributed setting [18].

Additionally, groupware tools can also be used by teams that can meet face-to-face. These tools
can be used for decision making and negotiation. A very successful groupware tool, WinWin [3],
allows the stakeholders to state their product and process objectives, explore their interactions,
and negotiate mutual agreements on the specifics of the new project being contracted.

3.6 Questionnaires

Another effective means of gathering requirements is to design and distribute a questionnaire to
stakeholders. Questionnaires enable the development team to reach a wider range of people than
would be possible otherwise and have the advantage of providing a means for obtaining honest,
anonymous input.

As with interviews, the questions should be carefully designed not to be opinionated, biased, or
leading. The questions can be a mixture of closed-ended and open-ended. However, if the
questionnaire has wide circulation, open-ended questions can make analysis more difficult. One
disadvantage of questionnaires is that there is less control over the results. For example, one can
often not go back to gain clarification on possible misunderstandings.

© Laurie Williams 2006 112

Requirements Engineering

Questionnaires should be in addition to, not in lieu of, more active, personal elicitation activities.
3.7 PI’OtOtypeS

A prototype is a partially-developed, demonstration system that can be used to show end-
users and/or stakeholders what facilities the system can provide. Users and/or
stakeholders can interact with the prototype in an actual environment; this interaction is
very helpful when requirements are vague or poorly understood. Stakeholders can then
refine their ideas and be more specific of their requirements.

There are two possible approaches to developing prototypes [24]:

1. A paper prototype, which is a drawn or screen-shot mock- up of the system.
Engineers and stakeholders can run through the types of functions that need to be
handled using the paper mock-ups as props.

2. An automated prototype, developed using a fourth-generation language or other
rapid development environment. Languages/tools such as Visual Basic, HTML,
and Java are popular for automated prototypes. Automated prototypes are more
expensive than paper prototypes, but are considered to be more effective at
eliciting crisp feedback and requirements because the requirements are
“animated.”

3.8 Customer Focus Groups

An excellent means for reviewing interim results is the customer focus group (CFG) [10]. Ina
CFG, customer decision makers explore a working application (not the documentation) in a
facilitated environment. A CFG is run similar to a JAD session — where a facilitator runs the
meeting, the customers interact with the system, and the development team quietly watches and
listens.

The result of the CFG is (1) feedback on the quality and effectiveness of system so far from the
stakeholder’s perspective; (2) documented requirements changes, and (3) prioritization on future
work. CFGs also help to form a trust bond between the development team and the customers.

3.9 On-Site Customer (and Variations Thereof)

We don’t want to conduct product development in a vacuum once the requirements have been
defined. Therefore, it is excellent to have customer or stakeholder available nearby (preferably in
the same room or cubicle suite) the development team. The customer would then be able to
clarify requirements questions and to provide feedback to team members as the need arises, on a
minute-by-minute basis. Experience has shown that when a customer is nearby, only about 10%
of his or her time is actually taken by the development team. The rest of the time can be spent on
the customer’s “normal” work. In the absence of such an on-site customer, developers often
make assumptions when a requirement is not adequately defined, a sure-fire recipe for failure.
Yet another alternative is to have a customer who is committed to being responsive to email,
instant messaging, and telephone calls by the development team and also who periodically makes
personal visits to the team.

© Laurie Williams 2006 113

Requirements Engineering

4 Requirements Specification

The project requirements must be clearly and concisely documented. As a result, organizations
often adopt templates, standard forms for specifying requirements. When an organization shares
and uses such a template, readers come to expect and understand the format of the document and
can more easily understand it. Additionally, the engineers creating the requirements specification
(also called a requirements document) will be less likely to leave out important information; the
template jogs their memory as to what is needed. A software requirements specification is a
document that specifies the requirements for a system or component [12]. In this section, we
present a template for a Software Requirements Specification (SRS), a means for documenting
the requirements of a software project.

No single ideal requirements process exists because what needs to be done is dependent upon
several factors. Software projects have differing amounts of requirements volatility, in addition
to other important considerations, such as the type and size of the project and the size and
experience level of the team. As a result, we will teach you three ways to document your
requirements. The form of SRS we present in this chapter is consistent with an IEEE standard
[14] and has been adapted from the SRS of a published evolutionary process [1]. This form of
SRS is considered to be an excellent means of documenting requirements for projects that are
relatively large with fairly stable requirements.

This example SRS shows the requirements for the Monopoly game.

On-line Monopoly Game
System Requirements Specification

Version 1.1
July 22, 2004

Project Team:
Chih-wei Ho, Team Lead
Hema Srikanth, Quality Assurance Manager
Nachi Nagappan, Requirements Analyst
Lucas Layman, Project Manager
Mark Sherriff, Development Manager

Document Author(s):
Nachi Nagappan, Requirements Analyst

Customer Representative(s):
Michael Gegick, Raleigh

l. Introduction

© Laurie Williams 2006 114

Requirements Engineering

This system is an on-line Monopoly board game. This game provides several features we
can see in the board game version. This document describes the requirements of this

I1. Functional Requirements

FRO. Game Initialization

FRO provides the initialization of the game.

FRO.1 Enter Player’s Information

There shall be two dice in the game. Each dice shall have six faces. The
player’s movement shall be based on the dice roll. If the dice roll is two, the
player shall move forward two cells; if the dice roll is three, the player shall
move forward three cells; etc.

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01).
Priority: 1

Implementation Completed Date: July 9, 2004

FR1. Player Movement

FR1 describes the rules of the movement.
FR1.1. Roll Dice

There shall be two dice in the game. Each dice shall have six faces. The
player’s movement shall be based on the dice roll. If the dice roll is two, the
player shall move forward two cells; if the dice roll is three, the player shall
move forward three cells; etc.

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 1

Implementation Completed Date: July 9, 2004

FR1.2. Play in Turn

Monopoly is a turn-based game. The players shall play in turns in this game.
Player sequence shall be determined by the order the names are entered before
the game starts. A player’s turn shall end when the player presses the End
Turn button.

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SCO01)
Priority: 1

Implementation Completed Date: July 9, 2004

FR2. Cells

FR2 describes the rules of different types of cells that are used in the game.

Requirements Engineering

FR2.1. Pass Go Cell
When the player passes or lands on the Go cell, the player shall get paid $200.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 1
Implementation Completed Date: July 14, 2004

FR2.2. Jail Cell
If a player is sent to jail by either landing on the Go to Jail cell or drawing a
go to jail card, the player shall pay $50 in bail money to get out of jail at their
next turn. If a player lands on jail as the result of a dice roll, nothing shall
happen.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 2
Implementation Completed Date:

FR2.3. Do Nothing on Free Parking
When the player lands on the Free Parking cell, nothing shall happen.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 2
Implementation Completed Date:

FR2.4. Go to Jail
When the player lands on the Go to Jail cell, the player shall be sent to the Jail
cell. The player shall not receive $200 if she or he passes the Go cell on the
way to the Jail cell.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 2
Implementation Completed Date:

FR2.5. Buy Property
When the player lands on a tradable cell, including properties, railroads, and
utilities, she or he shall have a chance to buy that cell given that the cell is
available. If the player clicks on the Buy button, the cell shall be sold to the
player. See FR3 for the price rules of the properties, railroads, and utilities.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 1
Implementation Completed Date: July 14, 2004

FR2.6. Draw Card
When the player lands on a card cell, including Community Chest and
Chance, she or he shall click on the Draw Card button and draw a card from
the Community Chest or Chance. The player shall perform the actions
specified in the cards. See FR4 for the rules of the cards.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 1
Implementation Completed Date:

FR3. Tradable Cells

Requirements Engineering

Tradable cells are properties, utilities, and rail roads. When a player lands on an available
tradable cell, she or he shall have a chance to buy that cell. If player A lands on a tradable
cell that is owned by player B, A shall pay rent to B.

FR3.1. Buy Properties

When a player lands on an available property cell, the player shall have a
chance to purchase it. The price shall be the land value of that property.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 3

Implementation Completed Date:

FR3.2. Buy Utilities

When a player lands on an available utility cell, the player shall have a chance
to purchase it. The price shall be $150.

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 3

Implementation Completed Date:

FR3.3. Buy Rail Roads

When a player lands on a rail road cell, the player shall have a chance to
purchase it. The price shall be $200.

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 3

Implementation Completed Date:

FR3.4. Pay Rent to Properties

When a player (A) lands on a property cell owned by another player (B), A
shall pay rent to B. If there is no house on the cell, A shall pay the base rent of
the cell. If there are n houses on the cell, the rent shall be (base rent * (number
of houses + 1)).

Priority: 3

Implementation Completed Date:

FR3.5. Pay Rent to Utilities

If player A lands on player B’s utility, player A shall pay rent to player B
based on a dice roll and the number of utilities player B owns. If player B
owns one utility the system shall charge player A rent of 4 times the dice roll.
If player B owns two utilities the system shall charge player A rent of 10
times the dice roll. The game board shall have no more than two utility cells.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 3

Implementation Completed Date:

FR3.6. Pay Rent to Rail Roads

If player A lands on player B’s rail road, A shall pay rent to B based on the
number of railroads B owns. The base rent of railroads shall be $50. If the
ntdlrrllber of the railroads B owns is N, the amount of rent A shall pay B is $50 *
27,

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 3

Requirements Engineering

Implementation Completed Date:

FR3.7. Build Houses
A player has the monopoly of a color group if she or he owns all the property
cells in the color group. During a player’s turn, before she or he rolls the dice,
the player shall have a chance to buy houses for the monopolies she or he
owns. A player shall not build more than five houses on one cell.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 1
Implementation Completed Date: July 14, 2004

FR4. Cards

There shall be two decks of cards in the game: Community Chest and Chance. When a
player lands on a Community Chest cell or a Chance cell, the player shall draw a card
from the top of the Community Chest cards or Chance cards, respectively.

FR4.1. Draw jail card
If the player draws a jail card, the system shall move the player to jail. If this
move causes the player to pass the Go cell, the player shall not receive the
$200 salary from the system.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 2
Implementation Completed Date: July 9, 2004

FR4.2. Draw lose money card
If the player draws a lose money card, the system shall decrease the player’s
money by the amount specified on the card.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 3
Implementation Completed Date: July 9, 2004.

FR4.3. Draw gain money card
If the player draws a gain money card, the system shall increase the player’s
money by the amount specified on the card.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 2
Implementation Completed Date: July 9, 2004.

FR4.4. Draw move player card
If the player draws a move player card, the system shall move the player to the
specified cell. If this move causes the player to pass the Go cell, the player
shall receive $200 salary from the system.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01)
Priority: 2
Implementation Completed Date: July 9, 2004

FR5. Trading

Requirements Engineering

A player (A) shall have the chance to buy properties from another player (B)
during A’s turn, before A rolls the dice. The trading shall begin when A clicks
the Trade button. A shall select which player to trade with, and which tradable
cell to buy. A dialog shall pop up to ask B whether he or she agrees with the
price. If B clicks the Yes button in the dialog, the amount of money they
agreed upon shall be transferred from A to B, and the selected tradable cell
shall belong to A. If B clicks No, nothing shall happen.

Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01
Priority: 3

Implementation Completed Date: July 9, 2004

I11. Nonfunctional Requirements
NR1. Performance

The system shall wait for all user inputs, and execute only the necessary functions given a
user input to the system. All functions shall be completed quickly.

NR1.1. User response
The system shall respond to any user input within 0.01 seconds.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01
Priority: 3
Implementation Completed Date: July 9, 2004.

NR1.2. Update user data
The system should update user data within 0.01 seconds.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01
Priority: 3
Implementation Completed Date: July 9, 2004.

NR2. Usability

A user shall be able to determine quickly what player options they have to perform.

NR2.1. Player options
A user shall only have access to functionality that is allowed to them at a
given time.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01
Priority: 3
Implementation Completed Date: July 9, 2004.

NR2.2. User Interface
The system shall allow a user to interface with it through mouse events on
buttons and drop down boxes and keyboard events on text fields. The amount
of user keyboard input shall be minimized by the system to include only
entering the number of players, player names, and a trade price.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01
Priority: 1

Requirements Engineering

Implementation Completed Date: July 29, 2004.
NR2.3. User Errors

The system shall catch improper input from all text fields in the system.
Origin: Interview with Mr. Gegick on May 1, 2004 (Interview #103SC01
Priority: 1

Implementation Completed Date: July 9, 2004.

IV. Constraints

All code development shall be done with the Java programming language.
All testing shall be done using JUnit and FIT.

© Laurie Williams 2006 120

Requirements Engineering

V. Requirements Dependency Traceability Table

The matrix is used to identify dependencies between requirements to identify when one requirement must be completed before another can be implemented.

Is dependant upon req

uirement

FO.1 | F1.1 | F1.2

F2.1

F2.2

F2.3

F2.4

F2.5

F2.6

F3.1

F3.2

F3.3

F3.4

F3.5

F3.6

F3.7

F4.1

F4.2

F4.3

F4.4

F5

N1.1

N1.2

N2.1

N2.3

FO.1

Fl.1

x

F1.2

XX [X ([N

F2.1

F2.2

x

F2.3

F2.4

F2.5

XXX X[XX

F2.6

F3.1

F3.2

F3.3

XXX XX

XXX [XX

F3.4

F3.5

F3.6

F3.7

XX XXX XX

XXX XX XXX | X

F4.1

F4.2

F4.3

F4.4

XXX

F5

XX XX XXX XXX XXX XXX | X | X | X

N1.1

N1.2

N2.1

XX XX

N2.2

S XXX XXX XXX XXX XX XX [X [X
XXX

N2.3

x

© Laurie Williams 2006

121

V1. Development and Target Platforms
1. Windows XP Operating System
2. Intel Pentium IV processors
3. Eclipse IDE
VII. Project Glossary
cell: a box on the game board on which the players land. Cells can be houses, utilities, rail roads,

jail, or “pick a card” slots.

VII1. Document Revision History

Version 1.1

Name(s) Laurie Williams

Date July 22, 2004

Change Description Updated priorities and dependency chart
Version 1.0

Name(s) Dright Ho and Sarah Smith

Date July 19, 2004.

Change Description Original creation of the SRS.

5 Requirements Validation

As you are documenting your requirements, you must write them in such a way that both the
development team and the customer can unambiguously understand and agree to the requirements
(via the validation process; more about validation later). Ultimately, the requirements document
must reflect a consensus between the development team and the stakeholder on the system that
will be produced. In this section, we will discuss characteristics of properly written requirements
and the validation and prioritization of these requirements.

Well-written requirements have several important characteristics. Keep these in mind not only as
you document requirements, but in your elicitation activities too. You need to ask the right
questions! Adapted from IEEE 830-1998 [14], the following are characteristics of well-written
requirements.

5.1 Understandable

The purpose of the requirements document is to document and validate the stakeholders’ desires
for the system. The requirements are a formal or informal contract between the stakeholders and
the development team for what will be produced. Two mistakes are common:

1. The requirements are full of domain-specific language and terms the development team
does not understand. This causes problems because the team does not really understand
what they are committing to and does not know what to design/implement.

2. The requirements are full of technical terms the stakeholders don’t understand. If the
stakeholders can’t understand the document, it will either need to be rewritten (so the
stakeholders can understand it) or the team is doomed to surprise the stakeholders with
something they really don’t want.

© Laurie Williams 2004 122

Requirements Engineering

The best guideline is to write your requirements at an elementary school level, using short,
declarative statements. Remember, the development team and the stakeholders will likely contain
several people whose first language is not the same as yours. It is a valuable and desirable to
have examples and figures and/or tables for clarification.

5.2 Non-prescriptive

The requirements should state everything about what the customer wants and nothing about how
the programmer(s) will do it. You define the “how” when you start modeling and designing.
The requirements should be design-free.

5.3 Correct and Complete

To no surprise, the requirements must be a precise reflection of what the stakeholders want. The
requirements must also be an exhaustive list of what they want including what should happen in
exceptional and/or undesirable situations. However, it is difficult to ensure that the requirements
are correct and complete before the system is developed, tested, and delivered to the customer.
One can never guarantee or prove the requirements to be correct and complete. Despite this
difficulty, we must strive for correctness and completeness and perform a thorough validation of
the requirements.

5.4 Concise

Be to the point. Avoid rambling text that does not contribute to the understanding of what is
necessary. There are two reasons you need to be concise. First, the requirements document
needs to be validated by the customer. The longer the document, the more tired the stakeholders
and development team reviewing the document will get, resulting in defects not being caught.
Additionally, developers may tend to skim long requirements statement and pass over the most
important information. Use the KISS principle (Keep it Short and Sweet). Remember the
famous words:

Perfection is achieved, not when there is nothing left to add, but when there is nothing
left to take away . . . [8]

5.5 Consistent Language
For ease of reading and for efficient identification of problems, it is best for you to express all

your requirements in a similar format. Requirements are often stated as “shall” statements. For
example:

When the player passes or lands on the “Go” cell, the player shall get paid $200.
The use of shall statements indicates a “contract” or mandatory, binding provision to provide that
capability. Desirable but optional or non-binding propositions can be stated as “should” or “may”
statements. For example:

The system should update user data within 0.01 seconds.

The use of shall, should, and may will feed into the requirement prioritization process, as will be
discussed below.

© Laurie Williams 2005 123

Requirements Engineering

5.6 Unambiguous and Testable

The requirements need to be written so that there can be only one interpretation of what is desired
— exactly one system can be specified. The reduction of ambiguity is helped tremendously by
considering exactly how the system can be precisely tested to ensure the requirement is met.
Remember back to the coffee shop example at the beginning of this chapter. The students
specified “testable” things such as that their beverage had to be hot, sweet, caffeinated, but not
plain coffee. They also said they wanted to “feel pampered.” This last requirement was
ambiguous, hard to satisfy reliability, and could not be tested — a bad requirement. Requirements
must be both unambiguous and testable.

The following is an ambiguous but testable requirement.
Players can buy utility properties.
The following is an unambiguous and testable requirement.

When a player lands on an available utility cell, the player shall have a chance it. The
price is $150.

Writing test cases during the requirements process is an excellent means of ensuring your
requirements are unambiguous and testable. Very often, you will realize that you don’t
understand enough about a requirement to write a test case. This is a strong signal you had better
ask more questions! You can use the following three ways [23] to make your requirements more
testable:

1. Specify a quantitative description for each adverb and adjective so that the meaning of
qualifiers is clear and unambiguous.

2. Replace pronouns with specific names of entities.

3. Make sure that every noun is defined in exactly one place in the requirements document.

It is valuable to involve your customer in this early test-writing process. Ask you customer what
kind of test they would run if they wanted to make sure this requirement was implemented
properly. Consider this test case a “customer acceptance test case” — the customer will accept
your system if these test cases run properly. We advocate that the test cases based on the
requirements are written before you proceed to modeling and/or designing your product.

5.7 Consistent

Requirements are inconsistent when two or more different requirements contradict each other.
For example:

When a player lands on the Free Parking cell, nothing shall happen.
When a player lands on the Free Parking cell, that player gets all the money in the Kitty.

This may be a simplified example, but problems like these can easily creep into the set of
requirements. How can this happen? You interview two different stakeholders. The user might
want the ability to get a big pile of cash when landing on Free Parking. The person marketing
representative might think it is more important to get the game out on the market than to have the
Free Parking kitty functionality in the product.. Both requirements must not be recorded — the
inconsistency must be surfaced and resolved with the users. Inconsistencies can also result in
large requirements documents — these can be written by several people (one interviewed the

© Laurie Williams 2005 124

Requirements Engineering

red/green user, the other interviewed the purple/pink user) or be a single person who cannot keep
track of all the interrelationships between all the requirements.

5.8 Traceable

Requirements must be able to be traced back to a stated need by the customer. Assign
requirements unique identifiers. These identifiers help you in discussion. Fore example, you
might call up a customer for clarification on Requirement 4.1. These identifiers also allow
traceability in future stages. For example, you can trace a test case back to the requirement it
verifies.

5.9 Feasible

Stakeholders can specify requirements that cannot feasibly be implemented within realistic
constraints. Sometimes infeasible requirements can surface during the initial elicitation phase —
and this should be explained to the stakeholder right away. Often a requirement may be deemed
infeasible during the analysis or design phases. In this case, the stakeholder must be notified and
the requirements documentation must be updated.

5.10 Ranked for Importance and Stability

Not all requirements should be treated equally. Some requirements are essential for an
operational system; others are “nice to have.” In order to prioritize the use of resources of a
software development team, you must be very clear which requirements are the most important
and at the core of the system. As a result, your requirements should be documented with a
measure of importance or ranking. The team should jointly decide the importance rating scheme
— whether it be high/medium/low or a rank. Be aware that the stakeholders will tend to indicate
that all requirements are essential. Part of the requirements negotiation process should be to
determine their realistic priorities.

Requirements stability is a related issue. Requirements stability is a measure of how likely a
requirement is to change. The stakeholders can indicate how sure they are of the specific details
of a requirement. If the details are quite crisp and the stakeholder is confident that these details
are stable, the requirement should be annotated with a high stability rating. If the details are
sketchy and/or the stakeholder is not sure that the requirement is necessary, a low stability should
be indicated. Again, the team should jointly decide the stability rating scheme — whether it be
high/medium/low or a rank.

It is advisable to begin development with the most important and stable requirements, though
there are other important considerations, such as dependencies between requirements (e.g., when
one requirement must be completed before another requirement can be started).

6 Requirements Validation Review

We have seen that requirements gathering and documentation is not an easy task. However, these
requirements become the basis for the entire development effort. Errors in the requirements
ultimately are “committed” into the implementation of the project. Requirements errors can be
especially insidious because we may even have an automated test case that may verify that the
“wrong” requirement works perfectly. It is essential that our requirements represent the
stakeholders’ true need and that these requirements exhibit the characteristics that were listed in
the prior section.

© Laurie Williams 2005 125

Requirements Engineering

We must remove as many requirements defects as possible as early as possible. An effective
technique for this data removal is the requirements review. A requirements review is a process
or meeting during which the requirements for a system, hardware item, or software item are
presented to project personnel, managers, users, customers, or other interested parties for
comment or approval [12]. The objective of such a review is to ensure the document clearly and
accurately reflects the actual requirements. Requirements reviews are run as are any technical
reviews. In a requirements review, the team of engineers that developed the SRS and the
stakeholders gather in a room for a neutral but formal meeting. Someone other than the author of
the requirements reads the SRS. The review team determines if what is read represents a clear
description of the system and if there are any potential problems. By having the requirements
read by another person who may have different “interpretation” of requirements — problems
caused by misinterpretation or ambiguities can be identified [2]. The goal of the meeting is to
resolve problems. As problems are discovered, no blame should be attached to any person.

It is helpful for the review team to use validation checklists to remind people what to look for in
the SRS. The checklists focus on the criteria discussed in the previous section of this chapter.
Additionally, it is useful for the review team to have in hand copies of the organization’s security
and privacy policies.

The review team must be realistic about how much can be validated in one meeting. Experience
has shown [24] that probably about 40 requirements can be inspected per hour. Beyond that, the
team is likely to get tired and gloss over errors.

7 Requirements Volatility

Requirements volatility is the amount of change in the software requirements between the
beginning and end of a software development project [4], particularly once coding has begun.
The complexity of managing the volatility is increased when a change to one requirement
has a cascading impact on other requirements.

In most software projects, stable requirements do not often exist, though the actual change rate
varies by project. Here are some points of reference:

e A study at IBM Santa Teresa Laboratory in the mid-1970’s found that, in a sample size of 1
million lines of code, the average project experiences a 25 percent change in requirements
during development. [4, 6] Technology and expectations seem to have been more stable in
the 1970’s than they are currently.

o Capers Jones indicates the U.S. average rate of “creeping requirements” (changes after the
initial set of requirements is defined) is approximately 2% per month during the design and
coding phases. This equates to changing almost 25% of the system on a year-long project.
Jones has seen creep exceed 150%. [15]

During the time it takes to develop a system, the users’ needs may mature because of increased
knowledge brought on by the development activities, or they may shift to a new set of needs
because of unforeseen organizational or environmental pressures [7].

7.1 Taming Requirements Volatility: Iteration

Because of this inevitable change, it is important to have requirements elicitation activities that
are iterative in nature. You should not formulate the requirements, then carry on with
development without reexamining the requirements with your stakeholders periodically. When
the whole development process is iterative, mistaken assumptions can be detected faster

© Laurie Williams 2005 126

Requirements Engineering

and corrected sooner because the customer provides feedback on the developer’s
interpretation of the requirements. The developer can then correct the problems as they
are found.

If a team does formulate the requirements only once, you run the risk of delivering exactly what
the stakeholders initially asked for, but not what they actually want, as shown in Figure 2. Such

activity supports an efficient process for missing your desired target in an environment where
requirements are volatile.

Starting Point Original Plan

Desired

Figure 2: One-Time Requirements Formulation

Instead, formulating requirements in an iterative way allows the requirements to evolve through
time, synchronized with the design process [7]. Such an iterative practice will more likely result
in a software development team delivering what the customer actually wants, as shown in Figure

3.

Original Plan

Starting Point

Desired

Figure 3: Iterative Requirements Formulation

Figure 2 indicates an efficient, straight path from the starting point to the completion point.
Figure 3 indicates a meandering path; this path is less efficient than a straight line path from the
starting point to the desired completion. Undoubtedly, some efficiency is lost when change is
allowed into the process. There may be some design, implementation, or test planning that needs
to be reworked and/or scrapped due to a requirements change. In a perfect world, we would not
need to deal with such change, but in the world we live in, we must. In order to deliver a product
that will be most valuable to the stakeholders, we must learn to deal with the inefficiencies of
change and have software development practices that deal with these changes.

© Laurie Williams 2005 127

Requirements Engineering

7.2 Additional Ways of Taming Requirements Volatility

There are other practices that can be used to reduce and/or control the degree of requirements
volatility.

Change Control Boards

In large system development, development organizations may have change control boards. A
change control board is a group of managers, client representatives, and technical personnel who
meet and decide what proposed changes should be accepted or rejected. If a proposed change to
the system would likely cause too much cascading rework, the board may elect to reject the
change. However, they must trade off the risk of rejecting the change and the likelihood that the
stakeholders may not ultimately be fully satisfied with the product without the alteration.

A Structured Process

Another means for reducing requirements volatility is to follow a defined methodology for
requirements analysis and modeling [29], such as those discussed in this chapter. By creating and
validating requirements in conjunction with the stakeholders, the Software Requirements
Specification is more likely to reflect their true needs to start with. As much as we hate to admit
this, some development teams proceed with development without a clear picture of the
requirements that is obtained by creating and validating an SRS. In these cases, a great deal of
the volatility can be attributed to the fact that the team was developing what they thought the
stakeholders wanted — acting upon assumptions.

Frequent Communication

Change occurs just to reset the project, often incrementally, from the assumptions to the real
customer requirements. Communicating with the customer throughout the requirements
elicitation phase helps to tame requirements volatility. A major study suggests that the more
frequent developers and customers communicate with each other during the requirements
elicitation phase, the less volatile the customer’s requirements will be [29].

Explicit Tradeoffs

The team must also have a structured means for not catering to every whim of the stakeholders.
Scope creep must be controlled. Scope creep means that new or expanded requirements have
“crept” into the project after everyone though the requirement were defined [9]. Gerald
Weinberg refers to an ever-growing requirements document as being “perpetually pregnant.” [27]
An effective means of controlling scope creep is to ensure the stakeholders understand the cost of
the changes and therefore must make explicit tradeoff decisions. For example, an engineer might
say the following to a customer:

The original requirement was that no money would be given to anyone who lands
on Free Parking. Now, you have said you would like for their to be a Free
Parking kitty of money that players get if they land on Free Parking. It will take
us three months to make this change. We have several options: (1) delay the
whole project; (2) keep on schedule and add this requirement in the next release;

© Laurie Williams 2005 128

Requirements Engineering

(3) keep on schedule by adding this requirement but moving the ““Free Parking”
functionality to the next release. Which of these options do you prefer?

Often these kind of tradeoff decisions, relating to budget and/or schedule renegotiation, will cause
the stakeholder to translate a must have requirement to a nice to have requirement.

Fast Process

Finally, elicitation, specification, and verification should not be too time consuming. If this
process spans several months, the validated requirements could be obsolete before the design
process starts.

8 Summary

The hardest single part of building a software system is deciding precisely what to
build No other part of the work so cripples the resulting system if it is done wrong.
No other part is more difficult to rectify later. [5]

Several practical tips for requirements engineering and elicitation were presented throughout this
chapter. The keys for successful requirements engineering are summarized in Table 1.

&

Gathering requirements is hard work. It is good to communicate with a variety of
stakeholders to gain as many different perspectives of their goals as possible. It is also
good to use several of the following techniques to get the best picture of what is needed:
interviews, observations, examining documents and artifacts, Joint Application
Development sessions, groupware, questionnaires, prototypes, customer focus groups,
and the presence of an on-site customer.

4

Develop a domain-specific taxonomy of questions which can guide questions to
stakeholders about their non-functional requirements. Non-functional are often not
discussed in the elicitation process. It can be devastating to a product if the non-
functional requirements are missed since rework for new non-functional requirements is
so difficult.

Examine an organization’s security and privacy policies to obtain important information
about security and privacy requirements.

Create a requirements specification to record the requirements that have been gathered.

58 &

Examine the requirements document for the characteristics of properly-written
requirements: understandable, non-prescriptive, correct and complete, concise,
consistent language, unambiguous and testable, traceable, feasible, and ranked for
importance.

Many requirements problems can be alleviated by having a requirements review with
stakeholders.

§ &

Requirements inevitably change during the software process. This volatility can be
tamed by the use of the following techniques: short iterations, change control board,
using a structured process, frequent communication between the stakeholders and the
developers, making explicit tradeoffs in functionality, and by developing the process as
quickly as possible.

Table 1: Key Ideas for Requirements Engineering and Elicitation

© Laurie Williams 2005 129

Requirements Engineering

Glossary of Chapter Terms

Term Definition Source
Constraint a type of non-functional requirement that is imposed by the client
that restricts the implementation of the system or the development
process
Functional requirements that specify a function that a system or system [12]
reguirement component must be able to perform
Non-functional | requirements which are not specifically concerned with the [16]
requirement functionality of a system but place restrictions on the product being
developed
requirement (1) a condition or capability needed by a user to solve a problem or | [12]
achieve an objective; (2) a condition or capability that must be met
or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed document.
requirements The process of studying user needs to arrive at a definition of [12]
analysis system, hardware, or software requirements.
Requirements a systematic way of developing requirements through an iterative [19]
engineering process of analyzing a problem, documenting the resulting
observations, and checking the accuracy of the understanding gained
requirements A process or meeting during which the requirements for a system, [12]
review hardware item, or software item are presented to project personnel,
managers, users, customers, or other interested parties for comment
or approval.
Requirements A document that specifies the requirements for a system or [12]
specification component.
Requirements the amount of change in the software requirements between the | [4],
volatility beginning and end of a software development project
Stakeholder key representative of the groups who have a vested interest in your
system and direct or indirect influence on its requirements
References

[1] A. Anton, R. Carter, J. Earp, and L. Williams, "EPRAM: Evolutionary
Prototyping Risk Analysis and Mitigation,” North Carolina State University,
Raleigh, NC, CSC TR-2001-08, 2001.

[2] B. Boehm, "Verifying and validating software requirements and design

3]

[4]

[5]
[6]

[7]

specifications,” IEEE Software, no., pp. 75-88, January 1984.

B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, "Using the
WinWin Spiral Model: A Case Study,” IEEE Computer, vol. 31, no. 7, pp. 33-44,
July 1998.

B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

F. P. Brooks, "No Silver Bullet," IEEE Computer, vol. 20, no. 4, pp. 10-19, 1987.
T. Climis, "Software Cost Estimation,” NSIA Software Workshop, Buena Park,
CA, February 1979, pp.

M. G. Cristel and K. C. Kang, "Issues in Requirements Elicitation,” Software
Engineering Institute CMU/SEI-92-TR-12 7, September 1992.

© Laurie Williams 2005 130

Requirements Engineering

[8] A. de Saint-Exupéry, Wind, Sand, and Stars: Harvest Books, 1939.

[9] E. Gottesdiener, Requirements by Collaboration. Boston: Addison-Wesley, 2002.

[10] J. Highsmith, Adaptive Software Development. New York, NY: Dorset House,
1999.

[11] A. Huntand D. Thomas, The Pragmatic Programmer. Reading, Massachusetts:
Addison-Wesley, 2000.

[12] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

[13] IEEE, "IEEE Standards Collection: Glossary of Software Engineering
Terminology,” IEEE Standard 610.12-1990, 1993.

[14] IEEE, "IEEE Recommended Practice for Software Requirements Specifications,"
IEEE Standard 830-1998, 1998.

[15] C. Jones, Estimating Software Costs: McGraw-Hill Professional, 1998.

[16] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and
Techniques. Chichester: John Wiley and Sons, 1998.

[17] J.C. Leite and P. Freeman, "Requirements Validation through Viewpoint
Resolution,” IEEE Transactions on Software Engineering, vol. 17, no. 12, pp.
1253-1269, December 1991.

[18] W.J. Lloyd, M. B. Rossen, and J. D. Arthur, "Effectiveness of Elicitation
Techniques," IEEE Joint Internation Conference on Requirements Engineering
(RE '02), Essen, Germany, 2002, pp.

[19] P. Loucopoulos and R. Champion, "Knowledge-Based Support for Requirements
Engineering,” Information and Software Technology, vol. 31, no. 3, pp. 123-135,
April 1989.

[20] L. A. Maciaszek, Requirements Analysis and System Design. Harlow, England:
Addison-Wesley, 2001.

[21] J. A. McDermid, "Requirements Analysis: Problems and the STARTS
Approach," IEE Colloguium on 'Requirements Capture and Specification for
Critical Systems' (Digest No. 138), 4/1-4/4, no., November 1989.

[22] G. McGraw, "On Bricks and Walls: Why Building Secure Software is Hard,"
Cutter IT Journal, vol. 15, no. 5, pp. 5-14, May 2002.

[23] J. Robertson and S. Robertson, Complete Systems Analysis: The Workbook, the
Textbook, the Answers. New York: Dorset House Publishing, 1994.

[24] 1. Sommerville and P. Sawyer, Requirements Engineering: A good practice guide.
Chichester: Wiley, 1997.

[25] K. Southwell, J. James, B. A. Clarke, B. Andrews, C. Ashworth, M. Norris, and V.
Patel, "Requirements Definition and Design.," in The STARTS Guide, vol. 1,
Second ed: National Computing Centre, 1987, pp. 177-313.

[26] R.H. Thayer and M. Dorfman, Software Requirements Engineering, Second ed:
IEEE Computer Society Press, 1997.

[27] G. M. Weinberg, "Just Say No! Improving the Requirements Process.,” American
Programmer, vol. 8, no. 10, pp. 19-23, October 1995.

[28] J. Wood and D. Silver, Joint Application Design: How to Design Quality Systems
in 40% Less Time. New York: Wiley, 1989.

© Laurie Williams 2005 131

Requirements Engineering

[29] D. Zowghi and N. Nurmuliani, "A Study of the Impact of Requirements Volatility

on Software Project Performance,” Nineth Asia-Pacific Software Engineering
Conference (APSEC 2002), 2002, pp.

Chapter Questions:

1.

From the perspective of requirements analysis, why is it important to know the organization’s
security and privacy policy?

What are the properties of well-stated requirements?

Describe, in your own words, what software stakeholders are. What is the difference between
a stakeholder and a user from the aspect of requirements elicitation?

Rapid application development (RAD) is a software process model that emphasizes an
extremely short (60-90 days) development cycle. At the end of the development cycle, the
software team delivers workable software, often with some compromises. What requirements
problems can be mitigated if the software team uses RAD? Justify your answer.

Avre these requirement statements testable? If not, why not?
The system shall support 100 simultaneous users.

The database shall respond to a query in 100 milliseconds.
The result image shall have soft-focus effect.

The sound after the process shall not exceed 40db.

The Ul shall be user friendly.

The query result shall be represented in XML format.

mmoow>

A requirement is traceable if the origin of the requirement is clear. What can be the origin of
a requirement statement? Give at least 5 examples.

Take Microsoft Word for example. Who are the stakeholders of this software? If you were a
requirements analyst in charge of this software, who and what would you consult when
gathering the requirements? How would you collect the requirements?

Listed below is the requirements specification of a web-based bulletin board system. Identify
the problems with the specification.

Functional Requirements:

FR1. The administrator shall add new boards to the system.

FR2. The administrator may remove old boards from the system.
FR3. All boards shall be listed in the welcome page.

FR4. When a user clicks on the name of the board in the welcome page, he/she shall enter the board
page.

FR5. All the articles in a board shall be listed in the board page.

FR6. When a user clicks on the name of the article in the board page, he/she shall enter the article
page.

FR7. The article page shall list the detail of a specific article.

FR8. Any user shall read all the articles, but only registered user shall post an article.

FR9. Only the author of the article, or the board manager, shall remove an article from the board.

FR10. Each board has a board manager to maintain the articles in the board. The board manager shall
be selected by the system administrator.

© Laurie Williams 2005 132

Requirements Engineering

Non-functional Requirements:
NR1. The system shall be able to handle high-volume of transactions.

NR2. The users’ information shall be encrypted in the database.

NR3. The user interface for posting an article shall be easy enough so that even 8-year old kids know
how to use it.

Constraints:
Cl1l. The system shall run on Red Hat Linux 9, on Pentium 4 boxes with 1GB of RAM.

9. Suppose you are going to develop an online shopping web site. During the requirement
analysis, in order to make sure that you can have a complete set of nonfunctional
requirements, it is a good idea to have a checklist about the nonfunctional properties of the
system. Develop the checklist that helps you to gather nonfunctional requirements.

10. In some software process models, like the waterfall model, requirements are “frozen” after
the requirements analysis phase. What are to pros and cons if the requirements are allowed to
change after the requirements analysis phase? What projects are suitable to apply such
process models?

11. Consider the following statement:

After the user logs in, the system shall assign the resources to the user according to
the role. If the user is a Privileged User, the service shall be provided by High-
Performance Cluster. Otherwise, the service shall be provided by the PC cluster.

Is this a function requirement, nonfunctional requirement, or constraint? Justify your answer.

Sometimes it is not easy to classify a requirement. How should a requirement analyst (or the
software team) deal with such situation?

12. Traceability matrix becomes difficult to manage when there are many requirements. What
can we do to reduce the problem?

13. Use your knowledge about vending machines. Develop an SRS document for a vending
machine that sells soft drinks.

14. Build a paper prototype for the Monopoly case study.
15. Discuss the skills that are required for a good requirements analyst.

© Laurie Williams 2005 133

Requirements Engineering

Appendix: Software Requirements Specification

[Project Name] Requirements Specification

[Template adapted from [1]]

[Document Version Number]
[Date]

Project Team:

[Name] [Role]

[Name] [Role]

[Name] [Role]

[Name] [Role]

Document Author(s):
[Name] [Role]
[Name] [Role]

Customer Representative(s):
[Name]

I. Introduction
The requirements document specifies the services that the system will provide and the
constraints under which the system must operate.

I1. Functional Requirements
Enumerate all functional requirements in this section. It is generally a good idea to
organize the functional requirements according to the modules into which the system has
been decomposed by the system architect. Don't forget to provide traceability
information such as where the requirement originated and a unique identifier, what the
priority is, a definition of different priority levels, how stable the requirement is, and a
definition of different stability levels.

Example:

V.1. Communication with Server.
V.1.1.
The system shall be able to communicate with the Zephyr server.

Description: Messages, location of other users, and class subscriptions must
all be handled through communication with the server.

Origin: Use cases 111.2.1., 111.2.2., 111.2.5., 111.2.12., 111.2.13., 111.2.14., and
111.2.15. Customer interview from November 11, 2000.

Priority: 2 Stability: 2

© Laurie Williams 2005 134

Requirements Engineering

I11. Nonfunctional Requirements
Enumerate all nonfunctional requirements in this section. Again, it is best to organize the
nonfunctional requirements according to the modules into which the system has been
decomposed by the system architect. Don't forget to provide traceability information
such as where the requirement originated and a unique identifier, what the priority is, a
definition of different priority levels, how stable the requirement is, and a definition of
different stability levels.

Example:
VI1.1. Timing
VI.1.1.

WindowGrams sent by WinZephyr shall be received at the destination in an
amount of time comparable to Unix Zephyr.

Description: The time to receive a WindowGram is described as nearly
instantaneous. Messages consisting of 200 characters (roughly three lines of
text) shall be sent to and received from the server in an average of two seconds.

Origin: Zephyr on Athena Manual.

Priority: 3 Stability: 1

1VV. Constraints
Enumerate all constraints.

V. Requirements Dependency Traceability Matrix
Provide a cross-reference matrix showing related requirements as shown in the example
below. The matrix is used to identify dependencies between requirements to identify
when one requirement must be completed before another can be implemented.

Is dependent on requirement |
Reql Reqg?2 Reqg3 Reg4
Reql
X
Reg2
Req3
X
Reqg4
X

© Laurie Williams 2005 135

Requirements Engineering

V1. Development and Target Platforms
Describe in full detail the expected development and target platforms including
software/hardware types, versions, and so on.

VII. Project Glossary
Define any terms that are used throughout the requirements document. There will be
many domain terms that have specific meaning in context. It is important to have all
these terms defined in one place so that their meaning is clear to all readers.

VI1I1. Document Revision History
This section includes a list of significant changes that have been made to this document
after the 1.0 version has been submitted for assessment. The revision history should
contain a dated list of revisions to the document consisting of: the date of each change,
the person responsible for the change, and a description of the change. You should be
able to trace changes to the individual who completed the modification. Changes are to
be listed in reverse chronological order, recording the following information for changes:

Version File version number.

Name(s) Name of individual(s) responsible for the change.
Date Date of change.

Change Description Description of the changes made to the file.

© Laurie Williams 2005 136

Use Case-based Requirements

This chapter gives an overall introduction to documenting requirements using use cases.
In this chapter, we will explain the following:

e the symbols found in a use case diagrams

o the relationships between the symbols in a use case diagram

o the textual description of a use case, the use case flow of events

It is quite likely that you have written code in an object-oriented language, such as Java
or C++. In these object-oriented languages, you have come to create your programs in
terms of classes where each class has its own data (via variables/attributes) and its own
behavior (via the class methods). In your programs, you create instances of these classes,
called objects. As your program runs, these objects interact with each other to implement
the system functionality.

In this chapter we will discuss a means of documenting your stakeholder functional
requirements in a way that will more easily lead you to discover what classes you will
need to implement. This approach is called the use cases approach [5]. When you
document your requirements using use cases, these use cases are then valuable during the
next steps in your project development — such as in the design and testing activities. Also,
it will be easier to write your user manual if you have documented your requirements by
means of use cases.

When we document requirements using use cases, we use textual description along with
use case diagrams. The use case diagram is a part of the Unified Modeling Language
[10], more commonly referred to as UML. In this chapter, we will first introduce you to
UML. Then, we will show you how to document your requirements using use cases.

1 An Introduction to UML

UML is a modeling language or graphical/diagrammatic notation for object-oriented
programming — a way to express the “blueprints” of your system. Within UML, there are
several types of diagrams. Some of them are:

« Use case diagrams for requirements

« State diagrams for object-oriented analysis

« Class diagrams and sequence diagrams for object-oriented design

As a software engineer, you need to become well-versed in these UML diagrams. As you
head towards your professional life, your peers will simply assume that you know these
diagrams. When you brainstorm together, your co-workers will quickly draw one of

these diagrams on a whiteboard without explaining the symbols or notations, fully
expecting that you understand. Or, you might receive UML-based requirements, analysis,
or design documents that you will need to work with.

Use Case-based Requirements

Once you know UML, you can also communicate with your peers using the diagrams too.
You know the old adage, “A picture is worth a thousand words.” You can spend a few
moments reviewing a use case, class, or sequence diagram and have a pretty good
understanding of what even large programs do. UML diagrams are also very
understandable to non-technical stakeholders. So, these diagrams are useful for
validating requirements.

2 Scenario-based Requirements Elicitation

Before jumping into use cases themselves, we will first describe a scenario, which is a
subset of a use case. A scenario is a sequence of actions that illustrates behavior. A
scenario may be used to illustrate an interaction or the execution of a use case instance.
[10] Scenarios are used in a scenario-based requirements elicitation, a technique of
asking questions related to a descriptive story in order to ascertain the design
requirements. For example, consider the following scenario for the Monopoly game:

Player 1 lands on Blue 3. This house is owned by Player 2, and the rent is $25.
Player 1 gives Player 2 $25.

The above scenario specifically describes, step-by-step, what happens on one of Player
1’s turns.

With scenario-based requirements elicitation, we query the stakeholders for the kinds of
things they want to be able to do. We ask them to describe how they envision the system
inuse. We then map