
 Course Description

Java[tm] Programming for Non-Programmers provides first-time programmers an
excellent choice for learning programming using the Java programming language. This
course helps students understand the significance of the Java programming language.
With this knowledge, students will develop programming skills in the areas of object
orientated and Java technology. By the end of class, students will be able to create simple
programs using Java technology ("Java programs") and read and edit Java technology
source code.

• Course Content

 Module 1: Computer Principles and
Components

• Logical components of a computer
• Binary arithmetic
• Creating programs: machine code, other languages, and the Java programming
language.

 Module 2: Software Development

• Programming paradigms
• Product development
• Software development
• Primary components of a Java technology program
• Procedural and object-oriented Java technology programs.

 Module 3: The Java Technology
Language Rules and Tools

• Comments, statements, codeblocks, and whitespace
• Identifiers, keywords, and reserved words
• Variables and constants
• Primitive and reference types
• Literal values
• Naming conventions.

 Module 4: Simple Java Programming
Constructs

• if and while constructs.

 Module 5: Advanced Java
Programming Constructs

• for and do loops
• switch, break, and continue statements.

 Module 6: Object Orientation

• Encapsulation
• Restricting data access (public and private modifiers).

 Module 7: Methods

• Writing and invoking methods
• Object methods
• Static methods
• this reference
• Passing parameters
• Writing generic method
• Overloading methods.

 Module 8: Arrays

• Declaring and instantiating arrays
• Initializing arrays
• Array bounds and size
• Multi-dimensional arrays
• Arrays of objects.

 Module 9: Advanced Object
Orientation

• Constructors
• Inheritance and the "is a" relationship
• Containment and the "has a" relationship
• Abstract classes
• Polymorphism.

