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Abstract. In this paper, we are concerned with the initial boundary value
problem on the two-fluid Navier-Stokes-Poisson system in the half-line R+.

We establish the global-in-time asymptotic stability of the rarefaction wave

and the boundary layer both for the outflow problem under the smallness
assumption on initial perturbation, where the strength of the rarefaction wave

is not necessarily small while the strength of the boundary layer is additionally

supposed to be small. Here, the large initial data with densities far from
vacuum is also allowed in the case of the non-degenerate boundary layer. The

results show that the large-time behavior of solutions coincides with the one for

the single Navier-Stokes system in the absence of the electric field. The proof
is based on the classical energy method. The main difficulty in the analysis

comes from the slower time-decay rate of the system caused by the appearance

of the electric field. To overcome it, we use the coupling property of the two-
fluid equations to capture the dissipation of the electric field interacting with

the nontrivial asymptotic profile.

1. Introduction. The two-fluid Navier-Stokes-Poisson (called NSP in the sequel
for simplicity) system is a model used to simulate the transport of charged particles
(e.g., electrons and ions). It consists of the compressible Navier-Stokes equations
of two-fluid under the influence of the electrostatic potential force governed by the
self-consistent Poisson equation. In this paper, we are concerned with the two-fluid
NSP system in half-line R+ =: [0,+∞], taking the form of

∂tρi + ∂x(ρiui) = 0,
∂t(ρiui) + ∂x(ρiu

2
i + Pi(ρi)) = µi(ui)xx + ρiE,

∂tρe + ∂x(ρeue) = 0,
∂t(ρeue) + ∂x(ρeu

2
e + Pe(ρe)) = µe(ue)xx − ρeE,

E = E(x, t) = −
∫∞
x

(ρi − ρe)(y, t) dy,

(1)

2000 Mathematics Subject Classification. 76X05, 35M33, 35M35, 35B40.
Key words and phrases. Navier-Stokes-Poisson equations, outflow problem, rarefaction wave,

boundary layer, asymptotic stability.
The first author was supported by a General Research Fund from RGC of Hong Kong; the

second author was supported by the NSFC grant 11171212 and SJTU’s SMC Project (B).

1



2 RENJUN DUAN AND XIONGFENG YANG

with appropriate initial and boundary data that we shall clarify later on. Here
ρi,e = ρi,e(x, t) ≥ 0 and ui,e = ui,e(x, t) ∈ R with x ≥ 0 and t ≥ 0 are the density
and velocity of ions and electrons, respectively. Pi,e(·) is the pressure depending only
on the density, µi,e is the viscosity coefficient, and E is the electric field satisfying

Ex = ρi − ρe.

Through this paper, we assume that two fluids of electrons and ions have the same
equation of state Pi(·) = Pe(·) = P (·) with P (ρ) = aργ for constants a > 0 and
γ ≥ 1, and also they have the same viscosity coefficients µi = µe = 1.

There have been extensive mathematical studies of the NSP system. Here we
mention some of them. The global existence and the optimal time convergence rates
of the classical solution around a constant state were obtained in [9, 18, 19, 30].
Later, the pointwise estimate of the solution was established in [29]. The global
well-posedness in the Besov type space for the NSP system was also proved in [8].
Green’s function and large time behavior were considered in [6] even for the case
when the magnetic field is included and thus the Maxwell equations are taken into
account. From those work, a common feature shows that the momentum of the
NSP system decays at the slower rate than that of the compressible Navier-Stokes
system in the absence of the electric field, which thus implies that the electric field
could affect the large time behavior of the solution and produce some additional
difficulties of analysis. In addition, we also mention that the quasi-neutral limit and
some related asymptotic limits were considered in [5, 28], and the global existence
and nonexistence were discussed in [4, 2].

In order to study the large time behavior of solutions to the NSP system, we
notice that in the simplified case E = 0, the problem is reduced to consider the
single quasineutral Navier-Stokes system in the form of{

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x

(
ρu2 + P (ρ)

)
= uxx.

(2)

The large-time behavior of solutions to the Cauchy problem on the system (2) with
initial data (ρ0, u0)(x) that admits the limit (ρ±, u±) at ±∞ is basically described
by the superposition of viscous shock waves, viscous contact discontinuities and
rarefaction waves. We refer to [10, 12, 14, 15, 20, 22, 23, 27] and references therein.
In the case of the initial boundary value problem for (2) over R+, the boundary
data is prescribed by

u(0, t) = ub, (ρ, u)(x, 0) = (ρ0, u0)(x)→ (ρ+, u+) as x→ +∞. (3)

Here ρ+ > 0, u+ and ub are constants. In the case ub < 0, the particles flow away
from the boundary {x = 0}, and thus the problem in such case is called an outflow
problem. The case of ub = 0 and ub > 0 is called the impermeable wall problem and
the inflow problem, respectively. Notice that for the inflow problem, there should
been an additional boundary condition on the density. The large-time behavior of
solutions to (2)-(3) is much more complicated than that for the Cauchy problem,
cf. [11, 16, 17, 21, 24, 25] and references therein.

In this paper, we will focus on the outflow problem in the case of ub < 0. In 1999,
Matsumura and Nishihara [24] gave the classification of the large-time behavior of
solutions to the problem (2)-(3) in terms of (ρ+, u+) and ub < 0. In particular,
Kawashima et al. [16] considered the stability of the boundary layer under the
assumptions that the strength of the boundary layer is small and initial data is
a small perturbation around the corresponding boundary layer. Recently, Huang
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and Qin [11] studied the stability of the boundary layer and rarefaction waves by
removing the smallness of the initial perturbations. In what follows, let us recall
some basic facts concerning the study of the outflow problem. The characteristic
speeds of the hyperbolic Euler system corresponding to (2) are

λ1 = u− S(ρ), λ2 = u+ S(ρ), (4)

where S(ρ) =
√
P ′(ρ) =

√
γaρ

γ−1
2 is the local sound speed. We also denote the

Mach number by M = |u|/S(ρ) and the specific volume by v = 1/ρ, where their
values at infinity are given by M+ = |u+|/S(ρ+) and v+ = 1/ρ+. The phase plane
R+ × R of (v, u) can be divided into three subsets:

Ωsub := {(v, u) ∈ R+ × R; |u| < S(1/v)},
Γtrans := {(v, u) ∈ R+ × R; |u| = S(1/v)},
Ωsuper := {(v, u) ∈ R+ × R; |u| > S(1/v)},

where Ωsub, Γtrans and Ωsuper are called the subsonic, transonic and supersonic
regions, respectively. In the phase plane, we denote the curves through a point
(v1, u1):

BL(v1, u1) = {(v, u) ∈ R+ × R :
u

v
=
u1

v1
},

R2(v1, u1) = {(v, u) ∈ R+ × R;u = u1 −
√
aγ

∫ v

v1

s−
γ+1
2 ds, v > v1},

S2(v1, u1) = {(v, u) ∈ R+ × R;u = u1 −
√

(v1 − v)
[
P (

1

v
)− P (

1

v1
)
]
, v < v1},

to be the boundary layer line, the 2-rarefaction wave and the 2-shock wave curves,
respectively. Then, the large-time behavior of solutions for the compressible isen-
tropic Navier-Stokes system can be considered in the following two cases:

Case I: (v+, u+) ∈ Ωsub ∩ {u+ < 0} and ub < min{0, u+}. Let (v∗, u∗) be the
intersection point of R2(v+, u+) and Γtrans, i.e.,

u∗ = −√aγv−
γ−1
2

∗ = u+ −
√
aγ

∫ v∗

v+

s−
γ+1
2 ds. (5)

Furthermore, if u∗ ≤ ub < min{0, u+}, then there exists a unique vb such that
(vb, ub) ∈ R2(v+, u+), and the time-asymptotic state of the solution is a 2-rarefaction
wave (v̄, ū)(xt ), which connects (vb, ub) and (v+, u+), to the corresponding Riemann
problem, see Figure 1.

Case II: (v+, u+) ∈ Ωsuper and ub < u∗. Here (v∗, u∗) is an intersection point of
BL(v+, u+) and S2(v+, u+), i.e.

u+ =
u+

v+
v∗ −

√
(v+ − v∗)

[
P (

1

v∗
)− P (

1

v+
)
]
, u∗ =

u+

v+
v∗. (6)

Then, there exists a unique vb such that (vb, ub) ∈ BL(v+, u+), and the time-
asymptotic state of the solution is a boundary layer (ρ̃, ũ)(x) which connects (vb, ub)
and (v+, u+), see Figure 2.
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Now, our goal in this paper is to study the large time behavior of global solutions
to the IBVP on the two-fluid NSP system (1). Compared with the case of the single
quasineutral Navier-Stokes system (2), we mainly investigate the influence of the
electric field on the time asymptotic stability of some nontrivial profiles. Precisely,
we consider (1) in the half-line R+ with initial data

(ρi, ui, ρe, ue)(x, 0) = (ρi0, ui0, ρe0, ue0)(x)→ (ρ+, u+, ρ+, u+) as x→ +∞, (7)

and the boundary data

ui(0, t) = ue(0, t) = ub < 0. (8)

Here, we suppose infx∈R+
ρi0 > 0, infx∈R+

ρe0 > 0 and further the compatibility
condition ub = ui0(0) = ue0(0).

We shall establish the global-in-time asymptotic stability of the rarefaction wave
and the boundary layer both for the outflow problem under the smallness assump-
tion on initial perturbation, where the strength of the rarefaction wave is not nec-
essarily small while the strength of the boundary layer is additionally supposed to
be small. Here, the large initial data with densities far from vacuum is also allowed
in the case of the non-degenerate boundary layer.

The results that we have obtained in this paper, cf. Theorem 2.3, Theorem 3.3
and Theorem 3.4, show that the large-time behavior of the solutions coincides with
the one for the single Navier-Stokes system in the absence of the electric field. To
the best of our knowledge, it is the first result concerning the asymptotic behavior
of solutions tending to a rarefaction wave or boundary layer for the two-fluid NSP
system. We remark that the approach developed here can be adapted to the stability
of the superposition of rarefaction wave and boundary layer and also to the study
in the case of the whole line.

The proof of those main results is based on the classical energy method. As we
mentioned before, the main difficulty in the analysis comes from the slower time-
decay rate of the system caused by the appearance of the electric field. In fact,
generally, the electric field E(x, t) can not be time-space integrable, that is, the
integral ∫ ∞

0

∫ ∞
0

|E(x, t)|2dxdt

could diverge. Thus, when the asymptotic stability of a nontrivial profile (ρ∞(x, t),
u∞(x, t)) is considered, it is impossible to use the above quantity to control the
following type of term

1

2

∫ ∞
0

∫ ∞
0

∂xu∞(x, t)|E(x, t)|2dxdt (9)
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that one has to meet in the proof of zero-order energy estimates. One way for
estimating (9) is to make use of the time-space integrability of the first-order space
derivative of E in terms of the possible space-decay property of u∞(x, t) at infinity
together with the Hardy inequality. It is the case in the study of the stability
of the non-degenerate boundary layer, see the proof of Theorem 3.4. However,
due to technical difficulties, the same trick fails for the consideration of both the
rarefaction wave and the degenerate boundary layer. To overcome this, we instead
use the coupling property of the two-fluid equations to control (9) and hence capture
the dissipation of the electric field interacting with the nontrivial asymptotic profile;
see also [7] for a similar observation. Specifically, the difference of two momentum
equations in (1) gives

2E = ∂t(ui − ue) +
1

2
∂x(u2

i − u2
e)

+
[P ′(ρi)∂xρi

ρi
− P ′(ρe)∂xρe

ρe

]
−
[ (ui)xx

ρi
− (ue)xx

ρe

]
.

By applying this equation, it formally holds that

1

2
∂xu∞|E|2 =

1

4

∂

∂t
{∂xu∞(ui − ue)E}+

ρi + ρe
8

∂xu∞|ui − ue|2 + (h.o.t.),

where (h.o.t.) indeed denotes the high-order terms and the first two terms on the
right-hand side can be bounded in terms of the basic energy inequality obtained in
the usual way. Notice that ui and ue have the same asymptotic profile u∞ in time.
Therefore, if u∞ is nondecreasing in space variable, the term (∂xu∞)1/2E which
denotes the interaction of the electric field E with the nontrivial asymptotic profile
can be time-space integrable.

Finally, it should be pointed out that system (1) in the non-dimensional form
depends generally on the ratios of masses, charges and temperatures of two fluids
and also on the Debye length, cf. [26] and [1]. In such case, the two-fluid plasma
system exhibits more complex coupling structure and the corresponding analysis
of the large time behavior of solutions becomes more complicated [3]. The general
physical situation is left for the future study.

The rest of this paper is organized as follows. In Section 2, we prove Theorem
2.3 for the stability of the rarefaction wave. In Section 3, we prove Theorem 3.3
and Theorem 3.4 for the stability of the boundary layer in the degenerate and
non-degenerate cases, respectively.

Notations. Throughout this paper, the generic positive constants are denoted
by c or C. C(·) stands for a generic function depending only on the argument.
Lp(Ω) denotes the usual Lebesgue Lp space on Ω ⊂ R, while W k,p(Ω) denotes
the usual kth-order Sobolev space. For simplicity, we denote Hk(Ω) := W k,2(Ω),
H0(Ω) = L2(Ω). The corresponding norm is denoted by ‖ · ‖k = ‖ · ‖Hk(Ω) and
‖ · ‖ = ‖ · ‖L2(Ω). The domain Ω will be often abbreviated without confusion.

2. The stability of rarefaction waves. In this section we are concerned with
the asymptotic stability of the rarefaction wave for the outflow problem (1), (7)
and (8) on the two-fluid NSP system. In this case, there exists a unique ρb such
that (ρb, ub) ∈ R2(ρ+, u+) and the time-asymptotic state of solution is indeed a
2-rarefaction wave (ρR, uR)(xt ) which connects two constant states (ρb, ub) and
(ρ+, u+) at x = 0 and x =∞, respectively.
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We firstly construct a smooth approximation for the rarefaction wave as follows.
Consider the Riemann problem on the Burger’s equation wt + wwx = 0,

w(0, x) = w0(x) =

{
w−, x < 0,
w+, x > 0,

(10)

for w− < w+. It is well known that (10) has a continuous weak solution wR(x/t)
connecting w− and w+, taking the form of

wR
(x
t

)
=

 w−, x ≤ w−t,
x
t , w−t < x < w+t,
w+, w+t < x.

Let (ρR, uR)(xt ) be defined by

wR
(x
t

)
:= uR + S(ρR),

duR

dρR
=
S(ρR)

ρR
,

with w− = ub + S(ρb) and w+ = u+ + S(ρ+), where S(·) is defined in (4). Then
by a direct calculation, (ρR, uR)(xt ) satisfies the following Riemann problem on the
Euler equations

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + P (ρ))x = 0,

(ρ, u)(x, 0) = (ρ0, u0)(x) =

{
(ρb, ub), x < 0,
(ρ+, u+), x > 0.

As usual, wR(xt ) can be approximated by a smooth function w(x, t) to be con-
structed as follows. Consider the Cauchy problem on the Burger’s equation:

wt + wwx = 0,

w(0, x) = w0(x) =

{
w−, x < 0,
w− + Cqδr

∫ εx
0
yqe−ydy, x > 0,

(11)

where δr := w+−w−, q ≥ 10 is a constant, Cq is a constant such that Cq
∫∞

0
yqe−ydy =

1, and ε ≤ 1 is a positive constant to be determined later. Then, we have

Lemma 2.1. Let 0 < w− < w+, then the problem (11) has a unique smooth solution
w(x, t) which satisfies the following properties

i) w− ≤ w(x, t) ≤ w+, wx ≥ 0 for x ≥ 0, t > 0.
ii) For any p (1 ≤ p ≤ +∞), there exists a constant Cp,q such that for t ≥ 0,

||wx(t)||Lp ≤ Cp,q min{δrε1−1/p, δ1/p
r t−1+1/p},

||wxx(t)||Lp ≤ Cp,q min{δrε2−1/p, δ1/q
r ε1−1/p+1/qt−1+1/q}.

iii) When x ≤ w−t, ∂kx(w − w−) = 0 for k = 0, 1, 2.
iv) lim

t→+∞
sup
x∈R
|w(x, t)− wR(x/t)| = 0.

We now define the approximate solution of (ρR, uR) by (ρ, u) in terms of

w(x, t+ 1) := u(x, t) + S(ρ(x, t)),
du

dρ
=
S(ρ)

ρ
(12)

together with ub + S(ρb) = w− and u+ + S(ρ+) = w+. Then, it holds that{
ρt + (ρ u)x = 0,
(ρ u)t + (ρ u2 + P (ρ))x = 0.
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Let δr = |ρ+ − ρb|+ |u+ − u−|. From the properties of w stated in Lemma 2.1, one
has the following lemma concerning (ρ, u).

Lemma 2.2. The approximate solution (ρ, u) given by (12) satisfies
i) ρx ≥ 0, ux ≥ 0 and ρb ≤ ρ ≤ ρ+, ub ≤ u ≤ u+ for x ≥ 0, t > 0.
ii) For any p (1 ≤ p ≤ +∞), there exists a constant Cp such that for t ≥ 0,

||(ρx, ux(t)||Lp ≤ Cp,q min{δrε1−1/p, δ1/p
r (1 + t)−1+1/p},

||(ρxx, uxx)(t)||Lp ≤ Cp,q min{δrε2−1/p, δ1/q
r ε1−1/p+1/q(1 + t)−1+1/q}.

iii) When x ≤ 0, ∂kx(u− u−) = 0 for k = 0, 1, 2.
iv) lim

t→+∞
sup
x∈R
|(ρ, u)(x, t)− (ρR, uR)(x/t)| = 0.

Now, in order to consider the stability of the approximate rarefaction wave (ρ, u)
for the IBVP (1), (7) and (8), let us define the perturbation

(φi,e, ψi,e) = (ρi,e − ρ, ui,e − u).

Then, (φi,e, ψi,e) satisfies

∂tφi + ui∂xφi + ρi∂xψi = −fi,
ρi∂tψi + P ′(ρi)∂xφi + ρiui∂xψi = (ψi)xx − gi + ρiE,
∂tφe + ue∂xφe + ρe∂xψe = −fe,
ρe∂tψe + P ′(ρe)∂xφe + ρeue∂xψe = (ψe)xx − ge − ρeE,
E(x, t) = −

∫∞
x

(φi − φe)(y, t) dy, x ∈ R+, t > 0,
(φi, ψi)(t, 0) = 0,
(φi, ψi, φe, ψe)(x, 0) := (φi0, ψi0, φe0, ψe0)(x)→ 0, as x→∞,

(13)

where fi,e, gi,e are the nonlinear terms, given by{
fi,e = uxφi,e + ρxψi,e,
gi,e = −uxx + uxρi,eψi,e + ρx[P ′(ρi,e)− ρi,e

ρ P ′(ρ)].

The solution of (13) is sought in a set of functions Xr(0,+∞), where for given
0 < T ≤ +∞, Xr(0, T ) denotes

Xr(0, T ) =
{

(φi,e, ψi,e, E)
∣∣∣ (φi,e, ψi,e) ∈ C(0, T ;H1), (φi,e)x ∈ L2(0, T ;L2),

(ψi,e)x ∈ L2(0, T ;H1), E ∈ C(0, T ;L2), ψi,e(t, 0) = 0 (0 ≤ t ≤ T )
}
.

The main result of this section is stated as follows.

Theorem 2.3. Assume that (v+, u+) ∈ Ωsub∩{u+ < 0} and u∗ ≤ ub < min{0, u+},
where u∗ is given in (5). There exist positive constants ε0 and C0 such that if

||E0||+ ||(φi0,e0, ψi0,e0)||1 + ε ≤ ε0,

where ε is the parameter in (11), then the outflow problem (13) of the two-fluid
NSP system has a unique global solution (φi,e, ψi,e, E) ∈ Xr(0,+∞) satisfying

sup
t≥0

(
||E(t)||2 + ||(φi,e, ψi,e)(t)||21

)
+

∫ +∞

0

|(E, φi,e, (φi,e)x)(0, τ)|2dτ

+

∫ ∞
0

[
||
√
ux(φi,e, ψi,e)(τ)||2 + ||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2

]
dτ

≤ C0

[
||E0||2 + ||(φi0,e0, ψi0,e0)||21 + ε1/q

]
,
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and

lim
t→∞

sup
x∈R+

∣∣∣(ρi,e(x, t)− ρR(
x

t
), ui,e(x, t)− uR(

x

t
), E(x, t)

)∣∣∣ = 0.

The local existence of the solution (φi,e, ψi,e, E) to the IBVP (13) is proved by
the standard iteration method. As to the proof of Theorem 2.3, it suffices to show
the following a prior estimate.

Proposition 1. (A priori estimates). Suppose that all assumptions in Theorem
2.3 are satisfied. Let (φi,e, ψi,e) ∈ Xr(0, T ) be a solution to the IBVP (13) for some
positive T . Then there exist constants ε1 > 0 and C1 such that if

sup
0≤t≤T

(
||E(t)||+ ||(φi,e, ψi,e)(t)||1

)
+ ε ≤ ε1,

then the solution (φi,e, ψi,e) satisfies

sup
0≤t≤T

(
||E(t)||2 + ||(φi,e, ψi,e)(t)||21

)
+

∫ T

0

|(E, φi,e, (φi,e)x)(0, τ)|2dτ

+

∫ T

0

[
||
√
ux(φi,e, ψi,e)(τ)||2 + ||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2

]
dτ (14)

≤ C1

[
||E0||2 + ||(φi0,e0, ψi0,e0)||21 + ε1/q

]
.

Proof. Before giving the proof of this proposition, we list two notations

N2(t) := sup
0≤τ≤t

(
||E(τ)||2 + ||(φi,e, ψi,e)(τ)||21

)
,

and

M2(t) :=

∫ t

0

{
|(E, φi,e, (φi,e)x)(τ, 0)|2 + ||

√
ux(φi,e, ψi,e)(τ)||2

+||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2
}
dτ.

By the Sobolev inequality

sup
x∈R+

|f(x)| ≤
√

2||f ||1/2||fx||1/2 for any f ∈ H1,

we have that, for sufficiently small ε1,

ρb/2 ≤ ρb −
√

2ε1 ≤ ρ+ φi,e = ρi,e ≤ ρ+ + Cε1 ≤ 2ρ+, (15)

||ψi,e(t)||L∞ ≤
√

2||ψi,e||1/2 ||(ψi,e)x||1/2 ≤
√

2N(t) ≤ Cε1, (16)

and

||E(t)||L∞ ≤
√

2||E||1/2||Ex||1/2 =
√

2||E||1/2||φi − φe||1/2 ≤ 2
√

2N(t) ≤ Cε1.

Now, we divide the proof of Proposition 1 by three steps.

Step 1. The zero-order energy estimates.
We define the following functionals (see [11] and [16]),

E(ρ, u) := Φ(ρ, ρ) +
1

2
|u− u|2,

where

Φ(ρ, ρ̃) :=

∫ ρ

ρ

P (s)− P (ρ)

s2
ds =

a

(γ − 1)ρ

[
ργ − ργ − γργ−1(ρ− ρ)

]
.
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Notice that Φ(ρ, ρ) is equivalent to |ρ− ρ|2 for |ρ− ρ| < C. Hence, the energy form
is equivalent to |(ρ − ρ, u − u)|2, namely, there exist positive constants c1 and C1

such that

c1|(ρ− ρ, u− u)|2 ≤ E(ρ, u) ≤ C1|(ρ− ρ, u− u)|2.
For brevity of presentation, we denote

Ei,e := E(ρi,e, ui,e), Φi,e := Φ(ρi,e, ρ),

and for any function h, we set

hα := hi + he.

From (13), a direct computation yields{
ραEα +

1

2
E2
}
t

+
{[
ραuαEα + [P (ρα)− P (ρ)]ψα − ψα(ψα)x

]
+
u

2
E2
}
x

+ux

{[
P (ρα)− P (ρ)− P ′(ρ)φα

]
+ ραψ

2
α −

E2

2

}
+ [(ψα)x]2 = uxxψα.

(17)

The main difficulty comes from the term uxE
2 on the left-hand side of (17). We

estimate it as follows. From the second and fourth equations of (1), one can compute

2E = ∂t(ui − ue) +
1

2
∂x(u2

i − u2
e)

+
[P ′(ρi)∂xρi

ρi
− P ′(ρe)∂xρe

ρe

]
−
[ (ui)xx

ρi
− (ue)xx

ρe

]
.

(18)

Multiplying both sides of the above equation by uxE/4 and using Et = −ρiui +

ρeue = −ρi+ρe2 (ui − ue)− (ρi−ρe)(ui+ue)
2 , one has

ux
2
E2 =

(ux
4

(ui − ue)E
)
t
− uxt

4
(ui − ue)E

−ux
4

(ui − ue)Et +
ux
8
E∂x(u2

i − u2
e)

+
Aγux

4(γ − 1)
(ργ−1
i − ργ−1

e )xE +
ux
4
E
[ (ui)xx

ρi
− (ue)xx

ρe

]
=
(ux

4
(ψi − ψe)E

)
t
−
(ut

4
(ψi − ψe)E −

ux(ψ2
i − ψ2

e)

8

)
x

+
ux
8

(ρi + ρe)(ψi − ψe)2 +
ut + uux

4

(
(ψi − ψe)E

)
x

+
u2
x

4
E(ψi − ψe)−

uxx
8
E(ψ2

i − ψ2
e) +

Aγux
4(γ − 1)

(ργ−1
i − ργ−1

e )xE

−uxuxx
4

EEx
ρiρe

+
ux
4

[ (ψi)xx
ρi

− (ψe)xx
ρe

]
E.

(19)

Combining (17)-(19), we arrive at the following equality{
ραEα −

ux
4

(ψi − ψe)E +
1

2
E2
}
t

+
{
ραuαEα + [P (ρα)− P (ρ)]ψα

−ψα(ψα)x +
ut
4

(ψi − ψe)E −
ux(ψ2

i − ψ2
e)

8
+
u

2
E2
}
x

+ux

[
P (ρα)− P (ρ)− P ′(ρ)φα + ραψ

2
α −

ρα
8

(ψi − ψe)2
]

+ [(ψα)x]2

= uxxψα + (H.O.T.), (20)
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where

(H.O.T.) = −P (ρ)x
4ρ

(
(ψi − ψe)xE + (ψi − ψe)Ex

)
+
Aγux

4

(
ργ−2
i (φi)x − ργ−2

e (φe)x

)
E − uxuxx

4

EEx
ρiρe

+
[u2

x

4
(ψi − ψe) +

Aγuxρx
4(γ − 1)

(ργ−2
i − ργ−2

e )
]
E

−uxx
8

(ψ2
i − ψ2

e)E +
ux
4

[ (ψi)xx
ρi

− (ψe)xx
ρe

]
E

:= R1 +R2 +R3 +R4 +R5 +R6. (21)

Therefore, after integrating (20) over [0, t]× R+ and noticing ub < 0, (20) gives

∫
R+

{
ραEα −

ux
4

(ψi − ψe)E +
1

2
E2
}
dx

+

∫ t

0

|ub|
[
ραΦα(0, τ) +

1

2
E2(0, τ)

]
dτ

+

∫ t

0

∫
R+

{
ux

[(
P (ρα)− P (ρ)− P ′(ρ)φα

)
+ραψ

2
α −

ρα
8

(ψi − ψe)2
]

+ |(ψα)x|2
}
dxdτ

=

∫
R+

{
ρα0Eα0 −

ux(x, 0)

4
(ψi0 − ψe0)E0 +

1

2
E2

0

}
dx

+

∫ t

0

∫
R+

[
uxxψα + (H.O.T.)

]
dxdτ. (22)

For the estimates of the terms on the right hand side of (22), by the Sobolev
inequality and the Hölader inequality, we have

∫ t

0

∫
R+

uxx|ψα|dxdτ ≤ C
∫ t

0

||uxx||L1 ||ψα||
1
2 ||(ψα)x||

1
2 dτ

≤ C(δrε)
1
q

∫ t

0

(1 + τ)−1+ 1
q ||(ψα)x||

1
2 ||ψα||

1
2 dτ

≤ C(δrε)
1
q

[ ∫ t

0

||(ψα)x||2dτ +

∫ t

0

(1 + τ)
4(1−q)

3q ||ψα||
2
3 dτ
]

≤ C(δrε)
1
q

(
M2(t) +N

2
3 (t)

)
≤ C(δrε)

1
q

(
M2(t) +N2(t) + 1

)
, (23)
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where we choose q > 10 such that 5(1−q)
4q < −1. For other terms, we use an estimate

which reads that for all f, g ∈ H1,

∣∣∣ ∫ t

0

∫
R+

ũxfgxdxdτ
∣∣∣ ≤ ∫ t

0

∫
R+

|ũx|
7
8 |f | |ũx|

1
8 |gx|dxdτ

≤
∫ t

0

||ũx(τ)||
1
4

L∞

∫
R+

(
|ũx|

3
2 |f |2 + |gx|2

)
dxdτ

≤ C(δrε)
1
4

∫ t

0

∫
R+

(
(1 + τ)−

3
2 |f |2 + |gx|2

)
dxdτ

≤ C(δrε)
1
4

(
sup

0≤τ≤t
||f(τ)||+

∫ t

0

||gx||2dτ
)
.

It should be pointed out that the above estimate also holds true when ũx is replaced
by ρ̃x. Basing on the above inequality, we will give the estimates of the time-space
integral of (H.O.T.) in (22) corresponding to (21) term by term. Recalling i) in
Lemma 2.1, (15) and (16), we get by Cauchy-Schwarz

∣∣∣ ∫ t

0

∫
R+

R1dxdτ
∣∣∣

≤ C(δrε)
1
4

(
sup

0≤τ≤t
(||E||2 + ||ψi − ψe||2

)
+

∫ t

0

||Ex||2 + ||(ψi − ψe)x||2dτ
)

≤ C(δrε)
1
4 (N2(t) +M2(t)). (24)

In a similar way, for R2 and R3, we estimate them by

∣∣∣ ∫ t

0

∫
R+

R2dxdτ
∣∣∣ ≤ C(δrε)

1
4 (N2(t) +M2(t)), (25)

∣∣∣ ∫ t

0

∫
R+

R3dxdτ
∣∣∣ ≤ Cδrε2(δrε)

1
4 (N2(t) +M2(t)), (26)

and moreover, for R4 and R5, we obtain

∣∣∣ ∫ t

0

∫
R+

R4dxdτ
∣∣∣ ≤ C ∫ t

0

∫
R+

(
|u2
x|+ |ρxux|

)
|E|dxdτ

≤ C(δrε)
1
2

∫ t

0

(1 + τ)−
4
3 ||E||dτ ≤ C(δrε)

1
2 (N2(t) + 1) (27)

and

∣∣∣ ∫ t

0

∫
R+

R5dxdτ
∣∣∣ ≤ C ∫ t

0

∫
R+

|uxx||E|dxdτ

≤ C(δrε)
1
q

(
M2(t) +N

2
3 (t)

)
≤ C(δrε)

1
q

(
M2(t) +N2(t) + 1

)
. (28)
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For R6, since ux(t, 0) = 0, it follows from integrating by parts that∫ t

0

∫
R+

R6dxdτ =
1

4

∫ t

0

∫
R+

uxE
[ (ψi)xx

ρi
− (ψe)xx

ρe

]
dxdτ

= −1

4

∫ t

0

∫
R+

uxEx

[ (ψi)x
ρi
− (ψe)x

ρe

]
dxdτ

−1

4

∫ t

0

∫
R+

(
uxx + uxρx

)
E
[ (ψi)x
ρ2
i

− (ψe)x
ρ2
e

]
dxdτ

−1

4

∫ t

0

∫
R+

uxE
[ (φi)x(ψi)x

ρ2
i

− (φe)x(ψe)x
ρ2
e

]
dxdτ

:= R1
6 +R2

6 +R3
6,

where R1
6, R2

6, R3
6 can be estimated as

|R1
6| ≤ C(δrε)

∫ t

0

||(Ex, (ψi)x, (ψe)x||2dτ ≤ C(δrε)M
2(t),

|R2
6| ≤ C

(
δrε

1+1/q + δ1+1/p
r ε

)∫ t

0

[
(1 + τ)−2+ 2

q ||E||2 + ||((ψi)x, (ψe)x)||2
]
dτ

≤ C
(
δrε

1+1/q + δ1+1/p
r ε

)
(N2(t) +M2(t)),

|R3
6| ≤ Cδrε sup

0≤τ≤t
||E(τ)||L∞

∫ t

0

(
||((φi)x, (φe)x)||2 + ||((ψi)x, (ψe)x)||2

)
dτ,

≤ C(δrε)(N
2(t) +M2(t)).

The above estimates imply∣∣∣ ∫ t

0

∫
R+

R6dxdτ
∣∣∣ ≤ Cδrε(N2(t) +M2(t)). (29)

We now choose ε sufficiently small such that δrε ≤ 1, so (24), (25), (26), (27), (28)
and (29) yield∣∣∣ ∫ t

0

∫
R+

(H.O.T.)dxdτ
∣∣∣ ≤ C(δrε)

1/q
[
N2(t) +M2(t)

]
. (30)

Then, by using (23) and (30), it follows from (22) that∫
R+

{
ραEα −

ux
4

(ψi − ψe)E +
1

2
E2
}
dx

+

∫ t

0

|ub|
[
ραΦα(0, τ) +

1

2
E2(0, τ)

]
dτ

+

∫ t

0

∫
R+

{
ux

[(
P (ρα)− P (ρ)− P ′(ρ)φα

)
+ραψ

2
α −

ρα
8

(ψi − ψe)2
]

+ |(ψα)x|2
}
dxdτ

≤ C
(
||(φα0, ψα0)||2 + ||E0||2 + (δrε)

1
q

)
+ C(δrε)

1
q (N2(t) +M2(t)). (31)
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Here, notice that∫ t

0

∫
R+

ux

[
ραψ

2
α −

ρα
8

(ψi − ψe)2
]
dxdτ

=

∫ t

0

∫
R+

uxρ
[
ψ2
i + ψ2

e −
(ψi − ψe)2

4

]
+ ux

[
φαψ

2
α −

φα
8

(ψi − ψe)2
]
dxdτ

≥ 1

2

∫ t

0

∫
R+

uxρ
[
ψ2
i + ψ2

e

]
− CN(t)M2(t). (32)

Recall that (15) implies that the densities ρi,e are bounded below. Therefore, by
choosing ε further small enough, we have from (31) and (32)

||φα(t)||2 + ||ψα(t)||2 + ||E(t)||2 +

∫ t

0

[
|φα(0, τ)|2 + E2(0, τ)

]
dτ

+

∫ t

0

∫
R+

{
ux

[
|φα|2 + |ψα|2 + E2

]
+ |(ψα)x|2

}
dxdτ

≤ C
(
||(φα0)||2 + ||E0||2 + (δrε)

1
q

)
+ C(δrε)

1
q (N2(t) +M2(t)), (33)

which is the desired zero-order energy estimate.

Step 2. The estimate of (φα)x.
By differentiating the first and third equations of (13) in x and then multiplying

them by (φi)x
ρ3i

and (φe)x
ρ3e

, respectively, one has

− (fi)x
(φi)x
ρ3
i

=
(φi)xt(φi)x

(ρi)3
+
ui(φi)xx(φi)x

(ρi)3
+

(ui)x(φi)
2
x

(ρi)3
+

(φi)x(ψi)xx
(ρi)2

=
( [(φi)x]2

2(ρi)3

)
t

+
(ui[(φi)x]2

2(ρi)3

)
x
− ux

[(φi)x]2

ρ3
i

+ρx
(φi)x(φi)x

(ρi)3
+

(φi)x(ψi)xx
(ρi)2

, (34)

and

− (fe)x
(φe)x
ρ3
e

=
( [(φe)x]2

2(ρe)3

)
t

+
(ue[(φe)x]2

2(ρe)3

)
x
− ux

[(φe)x]2

ρ3
e

+ρx
(φe)x(φe)x

(ρe)3
+

(φe)x(ψe)xx
(ρe)2

. (35)

Moreover, multiplying the second and fourth equations of (13) by (φi)x
ρ2i

and (φe)x
ρ2e

,

respectively, gives

− gi
(φi)x
ρ2
i

=
(φi)x(ψi)t

ρi
+
ui(φi)x(ψi)x

ρi
+
P ′(ρi)

ρ2
i

[(φi)x]2 − (φi)x(ψi)xx
(ρi)2

+
E(φi)x
ρi

=
( (φi)xψi

ρi

)
t
−
( (φi)tψi

ρi
+ ρx

(ψi)
2

ρi

)
x
− [(ψi)x]2 +

P ′(ρi)

ρ2
i

[(φi)x]2

+ux
φi(ψi)x
ρi

+ ρxx
(ψi)

2

ρi
+ 2ρx

ψi(ψi)x
ρi

+ ux
(ρxφi − ρ(φi)x)ψi

ρ2
i

− (φi)x(ψi)xx
(ρi)2

+
E(φi)x
ρi

, (36)
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and

− ge
(φe)x
ρ2
e

=
( (φe)xψe

ρe

)
t
−
( (φe)tψe

ρe
+ ρx

(ψe)
2

ρe

)
x
− [(ψe)x]2 +

P ′(ρe)

ρ2
e

[(φe)x]2

+ux
φe(ψe)x
ρe

+ ρxx
(ψe)

2

ρe
+ 2ρx

ψe(ψe)x
ρe

+ ux
(ρxφe − ρ(φe)x)ψe

ρ2
e

− (φe)x(ψe)xx
(ρe)2

− E(φe)x
ρe

. (37)

Now, adding (34), (35), (36) and (37) together, we get( [(φα)x]2

2ρ3
α

+
(φα)xψα
ρα

)
t

+
(uα[(φα)x]2

2(ρα)3
− (φα)tψα

ρα
− ρx(ψα)2

ρα

)
x

+
P ′(ρα)[(φα)x]2

ρ2
α

= [(ψα)x]2 +
uxφα(ψα)x

ρα
− ρxx(ψα)2

ρα
− 2ρxψα(ψα)x

ρα

+
ux(ρxφα − ρ(φα)x)ψα

ρ2
α

− ux[(φα)x]2

ρ3
α

+
ρx(φα)x(φα)x

(ρα)3

− (fα)x(φα)x
ρ3
α

− gα(φα)x
ρ2
α

+ E
( (φi)x

ρi
− (φe)x

ρe

)
. (38)

The last term in the above equation can be further written as

E
( (φi)x

ρi
− (φe)x

ρe

)
=
[
(ln ρi − ln ρe)x

]
E − (ρi − ρe)Eρx

ρiρe

=
[
(ln ρi − ln ρe)E

]
x
− (ln ρi − ln ρe)Ex +

ExEρx
ρiρe

.

By integrating (38) over [0, t]×R+, similar to Step 1, it is straightforward to check
that ∫

R+

[(φα)x]2

ρ3
α

+
(φα)xψα
ρα

dx+

∫ t

0

|ub|[(φα)x]2

(ρα)3
(0, τ)dτ

+

∫ t

0

∫
R+

{P ′(ρα)[(φα)x]2

ρ2
α

+ (ln ρi − ln ρe)Ex

}
dxdτ

≤ C(||(φα0, ψα0)||2 + ||(φα0)x||2 + (δrε)
1/q)

+

∫ t

0

(ln ρi − ln ρe)E(0, τ)dτ + C(δrε)
1/q(N2(t) +M2(t)). (39)

Now, let us further consider the estimate of the electric field E appearing in (39).
Notice that (lnx− ln y)(x−y) ≥ (

√
x−√y)2 for all x, y > 0. Under the assumption

(15) on the densities, we have∫ t

0

∫
R+

(ln ρi − ln ρe)Exdxdτ ≥
∫ t

0

∫
R+

(
√
ρi −

√
ρe)

2dxdτ ≥ c
∫ t

0

∫
R+

E2
x(x, τ)dxdτ.

Furthermore, since ln(1 + x) ≤ x for all x ≥ 0, | lnx − ln y| ≤ |x−y|
min{x,y} holds true

and we hence have∫ t

0

(
(ln ρi − ln ρe)E(0, τ)

)
dτ ≤ C

∫ t

0

[φ2
α + E2](0, τ)dτ.
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Multiplying (39) by a suitably small positive constant λ and adding the resulting
inequality to (33), we then obtain

||(φα, (φα)x, ψα)(t)||2 + ||E(t)||2 +

∫ t

0

|(φα, (φα)x, E)(0, τ)|2dτ

+

∫ t

0

∫
R+

{
ux

[
|(φα, ψα, E)|2

]
+ |((φα)x, (ψα)x, Ex)|2

}
dxdτ

≤ C
(
N(0) + (δrε)

1
q

)
+ C(δrε)

1
q (N2(t) +M2(t)). (40)

Step 3. The estimate of (ψα)x.
Multiplying the second and fourth equation of (13) by−(ψi)xx/ρi and−(ψe)xx/ρe,

respectively, it follows that( [(ψi)x]2

2

)
t
−
(

(ψi)t(ψi)x +
ui[(ψi)x]2

2

)
x

+
[(ψi)xx]2

ρi

= − [(ψi)x]3

2
− ux[(ψi)x]2

2
+
P ′(ρi)(φi)x(ψi)xx

ρi
+
gi(ψi)xx

ρi
− E(ψi)xx,(41)

and ( [(ψe)x]2

2

)
t
−
(

(ψe)t(ψe)x +
ue[(ψe)x]2

2

)
x

+
[(ψe)xx]2

ρe

= − [(ψe)x]3

2
− ux[(ψe)x]2

2
+
P ′(ρe)(φe)x(ψe)xx

ρe
+
ge(ψe)xx

ρe
+ E(ψe)xx.(42)

Notice that

E(ψi − ψe)xx = [E(ψi − ψe)x]x − Ex(ψi − ψe)x.
Then, integrating (41) and (42) over [0, t] × R+, adding them together, and using
Cauchy’s inequality, we obtain

||(ψα)x(t)||2 +

∫ t

0

∫
R+

ux|(ψα)x|2 + |(ψα)xx(τ)|2dxdτ

≤ C
{
||(φα0, ψα0)||1 +

∫ t

0

|(E, (ψi)x, (ψe)x)(0, τ)|2dτ

+

∫ t

0

∫
R+

(
E2
x + [(ψα)x]2 + (|(φα)x|+ |gα|)|(ψα)xx|+ |(ψα)x|3

)
dxdτ

}
.(43)

We now estimate those terms on the right-hand side of (43). By Sobolev inequality,∫ t

0

|(ψα)x(0, τ)|2dτ ≤
∫ t

0

||(ψα)x||2L∞dτ

≤ 8C

∫ t

0

||(ψα)x||2L2dτ +
1

8C

∫ t

0

||(ψα)xx||2L2dτ, (44)

and∫ t

0

∫
R+

|(φα)x(ψα)xx|dxdτ ≤ 8C

∫ t

0

||((φα)x||2L2dτ +
1

8C

∫ t

0

||(ψα)xx||2L2dτ. (45)

Because gi,e = uxx + uxρi,eψi,e + ρx[P ′(ρi,e)− P ′(ρ)− P ′(ρ)
ρ φi,e], then we get that∫ t

0

∫
R+

|gα(ψα)xx|dxdτ ≤ C
(
ε(δrε)

2/q + δrεM
2(t)

)
+

1

8C

∫ t

0

||(ψα)xx||2L2dτ. (46)
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Furthermore, we have∫ t

0

∫
R+

|(ψα)x|3dxdτ ≤ C
∫ t

0

||(ψα)x||
5
2 ||(ψα)xx||

1
2 dτ

≤
∫ t

0

[
8C||(ψα)x||

10
3 +

1

8C
||(ψα)xx||2

]
dτ

≤ 8C sup
0≤τ≤t

||(ψα)x||
4
3

∫ t

0

||(ψα)x||2dτ +
1

8C

∫ t

0

||(ψα)xx||2dτ

≤ 8CN
4
3 (t)M2(t) +

1

8C

∫ t

0

||(ψα)xx||2dτ. (47)

Thus, by plugging (44), (45), (46) and (47) into (43), we arrive at

||(ψα)x(t)||2 +

∫ t

0

∫
R+

ux|(ψα)x|2 + |(ψα)xx(τ)|2dτ ≤ C
{
||(φα0, ψα0)||1

+ε(δrε)
2/q +

∫ t

0

|E(0, τ)|2dτ +M2(t) +N
4
3 (t)M2(t)

}
. (48)

Combing (48) with the inequality (40) obtained in Step 2, we have

||(E, φα, ψα, (φα)x, (ψα)x)(t)||2 +

∫ t

0

|(E, φα, (φα)x)(0, τ)|2dτ

+

∫ t

0

∫
R+

{
ux

[
|(E, φα, ψα, (ψα)x)|2

]
+ |(Ex, (φα)x, (ψα)x, (ψα)xx)|2

}
dxdτ

≤ C
(
N(0) + (δrε)

1
q

)
+ C(δrε)

1
q (N2(t) +M2(t)) + CN4/3(t)M2(t). (49)

From (49), it follows that there exists a constant ε0 such that if N(t)+ε ≤ ε0, then,
for all t ≥ 0, it holds that

N2(t) +M2(t) ≤ C[N2(0) + (δrε)
1/q],

which implies (15). The proof of Proposition 1 is completed.

Proof of Theorem 2.3: The existence of the solution follows from the standard
continuation argument based on the local existence and the a priori estimates in
Proposition 1. Therefore, it suffices to show the large time behavior of the solution
as t→∞. First of all, we prove that

lim
t→+∞

||((φα)x, (ψα)x, Ex)(t)|| = 0. (50)

In fact, it is direct to check that

Ext = (ρiui − ρeue)x
= ρx(ψi − ψe) + ρ(ψi − ψe)x + uxEx + uExx + (φiψi − ψiψe)x.
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Thus, one has∣∣∣1
2

d

dt

∫
R+

E2
xdx

∣∣∣ =
∣∣∣ ∫

R+

ExExtdx
∣∣∣

=
∣∣∣ ∫

R+

Ex

[
ρx(ψi − ψe) + ρ(ψi − ψe)x + uxEx + uExx + (φiψi − ψiψe)x

]
dx
∣∣∣

≤
∫
R+

|ρxEx(ψi − ψe)|dx+

∫
R+

|ρ(ψi − ψe)x|dx

+
|ub|E2

x(0, t)

2
+

1

2

∫
R+

uxE
2
xdx+

∫
R+

|Ex(φiψi − ψiψe)x|dx,

which after further taking the time integration, implies that for all t ≥ 0,∫ t

0

∣∣∣1
2

d

dt

∫
R+

E2
xdx

∣∣∣dτ ≤ C(N2(t) +M2(t)) < +∞. (51)

From Proposition 1, the inequalities (38), (41), (43) and (51) yield∫ ∞
0

[
||(Ex, (φα)x, (ψα)x)||2 +

∣∣∣ d
dt
||(Ex, (φα)x, (ψα)x)||2

∣∣∣]dt < +∞.

It implies that (50) holds true. Hence, by Sobolev inequality,

lim
t→+∞

sup
x∈R+

|(ρi,e(x, t)− ρ(x, t), ui,e(x, t)− u(x, t), E(x, t))| = 0.

Furthermore, by the construction of the smooth approximation function of the
rarefaction wave, in terms of iv) in Lemma 2.2, we have the desired asymptotic
behavior of the solution

lim
t→+∞

sup
x∈R+

|(ρi,e(x, t)− ρR(
x

t
), ui,e − uR(

x

t
), E(x, t))| = 0.

This completes the proof of Theorem 2.3.

3. Stability of the boundary layer. In this section, we are concerned with the
time asymptotic stability of boundary layers for the IBVP (1), (7) and (8) of the two-
fluid NSP system. Here, a boundary layer (ρ̃, ũ)(x) is defined to be the stationary
solution to (ρ̃ ũ)x = 0, x ∈ R+,

(ρ̃ ũ2 + p(ρ̃))x = ũxx, x ∈ R+,
ũ(0) = ub, (ρ̃, ũ)(∞) = (ρ+, u+), infx∈R+ ρ̃(x) > 0.

(52)

In what follows let us present the existence and some known properties of the
boundary layer (ρ̃, ũ)(x) connecting (ρb, ub) with (ρ+, u+) for the above single isen-
tropic Navier-Stokes system in R+ in the absence of the electric field. First of all,
integrating the first equation of (52) over [x,∞) for x > 0 yields

ρ̃(x) = ρ+u+(ũ(x))−1,

which implies by letting x→ 0+

ρb := ρ̃(0) = ρ+u+(ub)
−1.

Thus, the condition u+ < 0 has to be assumed whenever the outflow problem, i.e.,
the case ub < 0, is considered. Moreover, let the strength of the boundary layer
(ρ̃, ũ)(x) be measured by

δ̃ := |u+ − ub|.
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Then, one has the following

Lemma 3.1. (See [16].) Assume that (v+, u+) ∈ Ωsupp and ub < 0. Then the
stationary problem (52) has a smooth solution (ρ̃, ũ), if and only if M+ ≤ 1 and
ub < u∗, where u∗ is given in (6). The solution (ρ̃, ũ)(x) is monotonic, that is,
ũx ≶ 0 and ρ̃x ≶ 0 if ub ≷ u+. If M+ = 1, ũ(x) is monotonically increasing and
converges to u+ algebraically as x tends to infinity, precisely, there exists a positive
constant C such that

|∂kx(ũ− u+)| ≤ Cδ̃k+1

(1 + δ̃x)k+1
for k = 0 , 1 , 2 , · · · .

If M+ > 1, ũ(x) converges to u+ exponentially as x tends to infinity, precisely,
there exist two positive constants c,C such that

|∂kx(ũ(x)− u+)| ≤ Cδ̃e−cx for k = 0, 1, 2, · · · .

Remark 1. (i) For the existence of the boundary layer, the strength δ̃ is not
necessarily small.

(ii) It is easy to see that ρ̃(x) satisfies the same properties as ũ(x) above.
(iii) In the case M+ = 1, the boundary layer is degenerate. For this case, ρ̃(x)

and ũ(x) are increasing functions with

ρb ≤ ρ̃(x) ≤ ρ+.

For later use, we also need the Poincaré type inequality obtained in the following

Lemma 3.2. (i) Let M+ = 1. For any function h and k+ j > 2, there is a positive
constant C such that,∫ t

0

∫ ∞
0

|∂kx ũ|j |h|2dxdτ ≤ Cδ̃(k+1)j−2

∫ t

0

δ̃|h(0, τ)|2 + ||hx(τ)||2dτ, (53)

provided that the right hand side of (53) is bounded.
(ii) Let M+ > 1. For any function h and k + j ≥ 2, there is a positive constant

C such that∫ t

0

∫ ∞
0

|∂kx ũ|j |h|2dxdτ ≤ Cδ̃j
∫ t

0

|h(0, τ)|2 + ||hx(τ)||2dτ, (54)

provided that the right hand side of (54) is bounded.

Proof. We only prove (53) in the degenerate case. The proof in the non-degenerate
case is similar and thus is omitted for brevity. In fact, for the caseM+ = 1, whenever
k + j > 2, ∫ t

0

∫ ∞
0

|∂kx ũ|j |h|2dxdτ

≤
∫ t

0

∫ ∞
0

Cδ̃(k+1)j

(1 + δ̃x)(k+1)j

∣∣∣h(0, τ) +

∫ x

0

hy(y, τ)dy
∣∣∣2dxdτ

≤
∫ t

0

∫ ∞
0

Cδ̃(k+1)j

(1 + δ̃x)(k+1)j

[
|h(0, τ)|2 + x||hx(·, τ)||2

]
dxdτ

≤ Cδ̃j(k+1)−2

∫ t

0

δ̃|h(0, τ)|2 + ||hx(τ)||2dτ.

Thus, (53) holds true. The proof of Lemma 3.2 is complete.
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In order to study the stability of the boundary layer, as in the previous section,
we also define the perturbation (φi,e, ψi,e) by

(φi,e, ψi,e) = (ρi,e(x, t)− ρ̃(x), ui,e(x, t)− ũ(x)) ,

where (ρ̃, ũ) is the boundary layer defined by (52). Then, the IBVP (1), (7) and (8)
of the two-fluid NSP system is reformulated as

∂tφi + ui∂xφi + ρi∂xψi = −fi,
ρi∂tψi + P ′(ρi)∂xφi + ρiui∂xψi = (ψi)xx − gi + ρiE,
∂tφe + ue∂xφe + ρe∂xψe = −fe,
ρe∂tψe + P ′(ρe)∂xφe + ρeue∂xψe = (ψe)xx − ge − ρeE,
E = −

∫∞
x

(φi − φe)(y, t) dy, x, t ∈ R+,
(φi, ψi)(t, 0) = 0,
(φi, ψi, φe, ψe)(x, 0) := (φi0, ψi0, φe0, ψe0)(x)→ 0, as x→∞,

(55)

where the nonlinear terms fi,e, gi,e are given by{
fi,e = ũxφi,e + ρ̃xψi,e,
gi,e = ũx(ũφi,e + ρi,eψi,e) + ρ̃x[P ′(ρi,e)− P ′(ρ̃)].

Notice that for brevity, we have used the same notations as in (13) without any
confusion.

In the following two subsections, we will discuss the global existence and large
time behavior of solutions to the above IBVP (55) by two cases: the degenerate
case M+ = 1 and the non-degenerate case M+ > 1.

3.1. The stability of boundary layer in degenerate case M+ = 1. In this
case, we look for the solution (φi,e, ψi,e) to (55) in the solution space

Xbd(0, T ) =
{

(φi,e, ψi,e, E)
∣∣∣ (φi,e, ψi,e) ∈ C(0, T ;H1), (φi,e)x ∈ L2(0, T ;L2),

(ψi,e)x ∈ L2(0, T ;H1), E ∈ C(0, T ;L2), ψi,e(t, 0) = 0 (0 ≤ t < T )
}
,

where 0 < T ≤ ∞ is the lifespan.
The first result of this section concerning the stability for the boundary layer in

the degenerate case is stated as follows.

Theorem 3.3. Let M+ = 1. For each given constant state (v+, u+) ∈ Γ−trans
and ub < u+, there is a unique vb such that (52) admits a boundary layer (ρ̃, ũ)
connecting (vb, ub) and (v+, u+). Furthermore, there exist positive constants δ0 and
C0 such that if

||E0||+ ||(φi0,e0, ψi0,e0)||1 + δ̃ ≤ δ0,
then the reformulated outflow problem (55) of the two-fluid NSP system has a unique
global solution (φi,e, ψi,e, E) ∈ Xbd(0,+∞), satisfying

sup
t≥0

(
||E(t)||2 + ||(φi,e, ψi,e)(t)||21

)
+

∫ ∞
0

{
|(E, φi,e, (φi,e)x)(0, τ)|2

+||
√
ũx(φi,e, ψi,e)(τ)||2 + ||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2

}
dτ

≤ C0

[
||E0||2 + ||(φi0,e0, ψi0,e0)||21

]
,

and

lim
t→∞

sup
x∈R+

|
(
ρi,e(x, t)− ρ̃(x), ui,e(x, t)− ũ(x), E(x, t)

)
| = 0.
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The local existence of the solution (φi,e, ψi,e, E) to the IBVP (55) can be proved
by the standard iteration method and the details are omitted here. Therefore, to
prove Theorem 3.3, it suffices to consider the uniform-in-time a priori estimates
obtained in the following

Proposition 2. (A priori estimates). Suppose that all conditions in Theorem 3.3
hold. Let (φi,e, ψi,e) ∈ Xbd(0, T ) be a solution to the IBVP (55) for 0 < T ≤ ∞.
Then there exist positive constants δ1 and C1 such that if

sup
0≤t≤T

(
||E||+ ||(φi,e, ψi,e)||1

)
≤ δ1, (56)

then the solution (φi,e, ψi,e) satisfies

sup
0≤t<T

(
||E(t)||2 + ||(φi,e, ψi,e)(t)||21

)
+

∫ T

0

{
|(E, φi,e, (φi,e)x)(0, τ)|2

+||
√
ũx(φi,e, ψi,e)(τ)||2 + ||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2

}
dτ

≤ C1

(
||E0||2 + ||(φi0,e0, ψi0,e0)||21

)
. (57)

Proof. As in the proof of Proposition 1, we denote

N2(t) := sup
0≤τ≤t

(
||E(τ)||2 + ||(φi,e, ψi,e)(τ)||21

)
,

and

M2(t) :=

∫ t

0

{
|(E, φi,e, (φi,e)x)(τ, 0)|2 + ||

√
ũx(φi,e, ψi,e)(τ)||2

+||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2
}
dτ.

By the Sobolev inequality and the assumption (56),

||E(t)||L∞ ≤
√

2||E||1/2||Ex||1/2 =
√

2||E||1/2||φi − φe||1/2 ≤ 2
√

2N(t) ≤ Cδ1,
||(φi,e, ψi,e)(t)||L∞ ≤

√
2||ψi,e||1/2 ||(ψi,e)x||1/2 ≤

√
2N(t) ≤ Cδ1,

(58)

for any 0 ≤ t < T . Therefore, for δ1 sufficiently small,

1

2
ρb ≤ ρb − Cδ1 ≤ ρ̃(x) + φi,e(x, t) = ρi,e(x, t) ≤ ρ+ + Cδ1 ≤ 2ρ+, (59)

for any x ≥ 0 and 0 ≤ t < T .
We now divide the proof by three steps.

Step1. The zero-order energy estimates.
Similar to Step 1 in the proof of Proposition 1, we define the functionals

E(ρ, u) := Φ(ρ, ρ̃) +
1

2
|u− ũ|2, Φ(ρ, ρ̃) :=

∫ ρ

ρ̃

P (s)− P (ρ̃)

s2
ds,

where the energy form E(ρ, u) is equivalent to |(ρ− ρ̃, u− ũ)|2. For brevity, we also
denote

Ei,e := E(ρi,e, ui,e), Φi,e := Φ(ρi,e, ρ̃), hα := hi + he, (60)
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where h is an arbitrary function taking different forms at different places. From
(55), a direct computation yields{

ραEα +
1

2
E2
}
t

+
{[
ραuαEα + [p(ρα)− p(ρ̃)]ψα − ψα(ψα)x

]
+
ũ

2
E2
}
x

+ũx

{[
P (ρα)− P (ρ̃)− P ′(ρ̃)φα + ραψ

2
α

]
− 1

2
E2
}

+ (ψα)2
x

= − ũxx
ρ̃

[
φαψα

]
. (61)

Notice that from the second and fourth equations of (1),

2E = ∂t(ui − ue) +
1

2
∂x(u2

i − u2
e)

+
[P ′(ρi)∂xρi

ρi
− P ′(ρe)∂xρe

ρe

]
−
[ (ui)xx

ρi
− (ue)xx

ρe

]
. (62)

By further multiplying (62) by ũxE/4, one has

ũx
2
E2 =

( ũx
4

(ui − ue)E
)
t
− ũx

4
(ui − ue)Et

+
ũx
8
E∂x(u2

i − u2
e) +

Aγux
4(γ − 1)

(ργ−1
i − ργ−1

e )xE

+
ũx
4
E
[ (ui)xx

ρi
− (ue)xx

ρe

]
=
( ũx

4
(ui − ue)E

)
t

+
( ũũx

4
E(ψi − ψe)

)
x

+
ũx
8

(ρi + ρe)(ψi − ψe)2 − ũũxx
4

E(ψi − ψe)

+
ũx
8
Ex(ψ2

i − ψ2
e) +

Aγux
4(γ − 1)

(ργ−1
i − ργ−1

e )xE

+
ũx
4
E
(
ψi(ψi)x − ψe(ψe)x

)
+
ũx
4

[ (ui)xx
ρi

− (ue)xx
ρe

]
E. (63)

Plugging (63) into (61), we arrive at{
ραEα −

ũx(ψi − ψe)E
4

+
E2

2

}
t

+
{[
ραuαEα + [P (ρα)− P (ρ)]ψα − (

ψ2
α

2
)x

]
+
ũũx(ψi − ψe)E

4
+
ũE2

2

}
x

+ũx

[
P (ρα)− P (ρ)− P ′(ρ̃)φα + ραψ

2
α −

ρα
8

(ψi − ψe)2
]

+ [(ψα)x]2

= − ũxx
ρ̃

[
φαψα

]
+ (H.O.T.)′, (64)

where

(H.O.T.)′ = − ũũxx
4

E(ψi − ψe) +
ũx
8
Ex(ψ2

i − ψ2
e) +

ũxE

8

(
ψ2
i − ψ2

e

)
x

+
AγũxE

4(γ − 1)
(ργ−1
i − ργ−1

e )x +
ũx
4

[ (ui)xx
ρi

− (ue)xx
ρe

]
E

:= R′1 +R′2 +R′3 +R′4 +R′5.
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Integrating (64) over [0, t]× R+ and noticing ub < 0, we have∫
R+

{
ραEα −

ũx(ψi − ψe)E
4

+
E2

2

}
dx+

∫ t

0

|ub|
[
ραΦα(0, τ) +

E2(0, τ)

2

]
dτ

+

∫ t

0

∫
R+

{
ũx

[(
P (ρα)− P (ρ̃)− P ′(ρ̃)φα

)
+ραψ

2
α −

ρα
8

(ψi − ψe)2
]

+ |(ψα)x|2
}
dxdτ

=

∫
R+

{
ρα0Eα0 −

ũx(ψi0 − ψe0)E0

4
+
E2

0

2

}
dx

+

∫ t

0

∫
R+

[
− ũxxφαψα

ρ̃
+ (H.O.T.)′

]
dxdτ. (65)

For the first term on the right hand side of (65), we estimate it as∣∣∣ ∫ t

0

∫
R+

ũxxφαψα
ρ̃

dxdτ
∣∣∣ ≤ ∣∣∣ ∫ t

0

∫
R+

ũxx
ρ̃

[
φ2
α + ψ2

α

]
dxdτ

∣∣∣
≤ Cδ̃

∫ t

0

δ̃|φα(0, τ)|2 + ||((φα)x, (ψα)x)||2dτ ≤ Cδ̃M2(t).

Similarly, we get∣∣∣ ∫ t

0

∫
R+

R′1dxdτ
∣∣∣ ≤ Cδ̃ ∫ t

0

δ̃|E(0, τ)|2 + ||(Ex, (ψα)x)||2dτ ≤ Cδ̃M2(t).

We now estimate the rest terms corresponding to R′2, R′3, R′4, R′5. In a general way,
for given functions f and g,∣∣∣ ∫ t

0

∫
R+

ũxfgxdxdτ
∣∣∣

≤
∣∣∣ ∫ t

0

∫
R+

ũ
3
4
x fũ

1
4
x gxdxdτ

∣∣∣ ≤ Cδ̃ ∫ t

0

∫
R+

[
ũxf

2 + g2
x

]
dxdτ

≤ Cδ̃
∫ t

0

δ̃|f(0, τ)|2 + ||fx||2 + ||gx||2
]
dxdτ,

where Lemma 3.1 and Lemma 3.2 have been used. Recalling the inequalities (3.2),
(58) and (59), we obtain∫ t

0

∫
R+

|R′2|+ |R′3|dxdτ ≤ Cδ̃
∫ t

0

δ̃|E(0, τ)|2 + ||(Ex, (ψα)x)||2dτ ≤ Cδ̃M2(t).

Since

(ργ−1
i − ργ−1

e )x = (γ − 1)
[
(ργ−2
i − ργ−2

e )ρ̃x + ργ−2
i (φi)x − ργ−2

e (φe)x

]
,

we have∫ t

0

∫
R+

|R′4|dxdτ ≤ Cδ̃
∫ t

0

δ̃|E(0, τ)|2 + ||(Ex, (φα)x)||2dτ ≤ Cδ̃M2(t).
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Similar to estimating R6 as in the proof of Proposition 1, a direct computation
yields

R′5 =
[ ũxE

4

( (ψi)x
ρi
− (ψe)x

ρe

)]
x

+
(ũxx + ũxρ̃x)E

4

( (ψi)x
ρ2
i

− (ψe)x
ρ2
e

)
+
ũxEx

4

( (ψi)x
ρi
− (ψe)x

ρe

)
+
ũxE

4

( (φi)x(ψi)x
ρ2
i

− (φe)x(ψe)x
ρ2
e

)
+
ũxũxx
4ρiρe

EEx,

which further implies∫ t

0

∫
R+

|R′5|dxdτ

≤ Cδ̃
∫ t

0

[
|(E, (ψα)x)(τ, 0)|2 + ||(Ex, (φα)x, (ψα)x)(τ)||2

]
dτ ≤ Cδ̃M2(t).

Then, by collecting the previous estimates, it follows from (65) that∫
R+

{
ραEα −

ũx
4

(ψi − ψe)E +
1

2
E2
}
dx

+

∫ t

0

|ub|
[
ραΦα(0, τ) +

1

2
E2(0, τ)

]
dτ

+

∫ t

0

∫
R+

{
ũx

[(
P (ρα)− P (ρ)− P ′(ρ)φα

)
+ραψ

2
α −

ρα
8

(ψi − ψe)2
]

+ |(ψα)x|2
}
dxdτ

≤ C
(
||(φα0, ψα0)||2 + ||E0||2

)
+ Cδ̃M2(t).

Here, further notice that∫ t

0

∫
R+

ux

[
ραψ

2
α −

ρα
8

(ψi − ψe)2
]
dxdτ

=

∫ t

0

∫
R+

uxρ
[
ψ2
i + ψ2

e −
(ψi − ψe)2

4

]
+ ux

[
φαψ

2
α −

φα
8

(ψi − ψe)2
]
dxdτ

≥ 1

2

∫ t

0

∫
R+

uxρ
[
ψ2
i + ψ2

e

]
dxdτ − CN(t)M2(t).

Therefore, by choosing δ̃1 small enough, we obtain

||φα(t)||2 + ||ψα(t)||2 + ||E(t)||2 +

∫ t

0

[
|φα(0, τ)|2 + E2(0, τ)

]
dτ

+

∫ t

0

∫
R+

{
ux

[
|φα|2 + |ψα|2 + E2

]
+ ||(ψα)x(τ)||2

}
dx

≤ C
(
||(φα0, ψα0)||2 + ||E0||2

)
+ Cδ̃M2(t). (66)

Step 2. The estimates of (φα)x.
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Similar to obtaining (34)-(37), we also get( [(φα)x]2

2ρ3
α

+
(φα)xψα
ρα

)
t

+
(uα[(φα)x]2

2(ρα)3
− (φα)tψα

ρα
− ρ̃x(ψα)2

ρα

)
x

+
P ′(ρα)[(φα)x]2

ρ2
α

= [(ψα)x]2 +
ũxφα(ψα)x

ρα
− ρ̃xx(ψα)2

ρα
− 2ρ̃xψα(ψα)x

ρα

+
ũx(ρ̃xφα − ρ̃(φα)x)ψα

ρ2
α

− ũx[(φα)x]2

ρ3
α

+
ρ̃x(φα)x(φα)x

(ρα)3

− (fα)x(φα)x
ρ3
α

− gα(φα)x
ρ2
α

+ E
( (φi)x

ρi
− (φe)x

ρe

)
. (67)

The last term in the above equation can be rewritten as

E
(

(φi)x
ρi
− (φe)x

ρe

)
=
[
(ln ρi − ln ρe)x

]
E − (ρi−ρe)Eρ̃x

ρiρe

=
[
(ln ρi − ln ρe)E

]
x
− (ln ρi − ln ρe)Ex + ExEρ̃x

ρiρe
.

Integrating (67) over [0, t] × R+, similar to Step 1, it is straightforward to check
that ∫

R+

[(φα)x]2

ρ3
α

+
(φα)xψα
ρα

dx+

∫ t

0

|ub|[(φα)x]2

(ρα)3
(0, τ)dτ

+

∫ t

0

∫
R+

{P ′(ρα)[(φα)x]2

ρ2
α

+ (ln ρi − ln ρe)Ex

}
dxdτ

≤ C
(
||(ψα0, (φα0)x)||2

)
+

∫ t

0

(ln ρi − ln ρe)E(0, τ)dτ + Cδ̃M2(t). (68)

Under the assumption (59) on the densities, it holds that∫ t

0

∫
R+

(ln ρi − ln ρe)Exdxdτ ≥ c
∫ t

0

∫
R+

E2
x(x, τ)dxdτ,

and ∫ t

0

(
(ln ρi − ln ρe)E(0, τ)

)
dτ ≤ C

∫ t

0

[φ2
α + E2](0, τ)dτ.

Then, using the above two estimates in (68), multiplying it by a suitably small
positive constant λ and adding the resulting inequality to (66), we obtain

||(φα, (φα)x, ψα)(t)||2 + ||E(t)||2 +

∫ t

0

|(φα, (φα)x, E)(0, τ)|2dτ

+

∫ t

0

∫
R+

{
ũx|(φα, ψα, E)|2 + |((φα)x, (ψα)x, Ex)|2

}
dxdτ

≤ CN(0) + Cδ̃M2(t). (69)

Step 3. The estimate of (ψα)x.
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After multiplying the second and fourth equations of (55) by −(ψi)xx/ρi and
−(ψe)xx/ρe respectively, adding the resulting equations together, and then inte-
grating them over [0, t]× R+, it follows that

||(ψα)x(t)||2 +

∫ t

0

∫
R+

|(ψα)xx(τ)|2dτ

≤ C
{
||(φα0, ψα0)||1 +

∫ t

0

|(E, (ψα)x)(0, τ)|2dτ +

∫ t

0

∫
R+

(
ux|(ψα)x|2

+E2
x + [(ψα)x]2 + |(φα)x(ψα)xx|+ |gα(ψα)xx|+ |(ψα)x|3

)
dxdτ

}
, (70)

which further implies

||(ψα)x(t)||2 +

∫ t

0

∫
R+

|(ψα)xx(τ)|2dτ

≤ C
{
||(φα0, ψα0)||1 +M2(t) +N

4
3 (t)M2(t)

}
. (71)

We now combing the estimate (71) with the inequality (69) so as to obtain

||(E, φα, ψα, (φα)x, (ψα)x)(t)||2 +

∫ t

0

|(E, φα, (φα)x)(0, τ)|2dτ

+

∫ t

0

∫
R+

{
ux|(E, φα, ψα, (ψα)x)|2 + |(Ex, (φα)x, (ψα)x, (ψα)xx)|2

}
dxdτ

≤ C
(
N(0) +N4/3(t)M2(t)

)
. (72)

From (72), it follows that there exists a constant δ1 such that if N(t)+δ ≤ δ1, then,
for all 0 ≤ t < T ,

N2(t) +M2(t) ≤ CN2(0).

This implies (57). The proof of Proposition 2 is completed.

Proof of Theorem 3.3. The proof is similar to that for Theorem 2.3, and the
details are omitted for brevity.

3.2. The stability of boundary layer in non-degenerate case M+ > 1. In
this case, we look for the solution (φi,e, ψi,e) to the IBVP (55) in the solution space

Xbnd(0, T )

=
{

(φi,e, ψi,e, E)
∣∣∣(φi,e, ψi,e) ∈ C(0, T ;H1), (φi,e)x ∈ L2(0, T ;L2),

(ψi,e)x ∈ L2(0, T ;H1), E ∈ C(0, T ;L2), ψi,e(t, 0) = 0 (0 ≤ t < T ),

1

2M0
≤ ρ̃(x) + φi,e(x, t) ≤ 2M0, ∀x ∈ R+, 0 ≤ t < T

}
, (73)

where 0 < T ≤ ∞ is the lifespan and M0 > 0 is a given constant to be chosen later.
The second result of this section concerning the asymptotic stability of the bound-

ary layer in the non-degenerate case is stated as follows.

Theorem 3.4. Let M+ > 1. For each given constant state (v+, u+) ∈ Γ−supp and
ub < u∗ with u∗ given in (6), there is a unique vb such that (52) admits a boundary
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layer solution (ρ̃, ũ) connecting (vb, ub) and (v+, u+). Furthermore, assume that
initial data satisfies

E0 ∈ L2(R+), (φi0,e0, ψi0,e0) ∈ H1(R+), inf
x∈R+

(ρi0,e0) > 0.

Then, there exists a positive constant δ2 < 1 depending only on initial data such that
if δ̃ = |u+ − ub| ≤ δ2, the reformulated outflow problem (55) of the two-fluid NSP
system has a unique global solution (φi,e, ψi,e, E) ∈ Xbnd(0,∞) for an approximate
constant M0 > 0. Moreover, it holds that

lim
t→∞

sup
x∈R+

|
(
ρi,e(x, t)− ρ̃(x), ui,e(x, t)− ũ(x), E(x, t)

)
| = 0.

To prove the above theorem, similarly as before, it suffices to establish the a
priori estimates on the solution in the following proposition with the rest of this
subsection further devoted to its proof.

Proposition 3. (A priori estimates). Suppose that all conditions in Theorem 3.4
hold. Let (φi,e, ψi,e, E) ∈ Xbnd(0, T ) be a solution to the IBVP (55) for some
0 < T ≤ ∞. Then there exist positive constants δ3 > 0 and C1 > 0 such that if
δ̃ = |u+ − ub| ≤ δ3, the solution (φi,e, ψi,e, E) satisfies

sup
0≤t<T

(
||E(t)||2 + ||(φi,e, ψi,e)(t)||21

)
+

∫ T

0

{
|(E, φi,e, (φi,e)x)(0, τ)|2

+||
√
ũx(φi,e, ψi,e)(τ)||2 + ||(Ex, (φi,e)x, (ψi,e)x, (ψi,e)xx)(τ)||2

}
dτ

≤ C1

(
||E0||2 + ||(φi0,e0, ψi0,e0)||21

)
. (74)

Proof. We divide the proof by the following three steps.

Step1. The basic energy estimates.
We use the same notation Ei,e as in (60). From (55), a direct computation yields{

ραEα +
1

2
E2
}
t

+
{[
ραuαEα + [P (ρα)− P (ρ̃)]ψα − ψα(ψα)x

]
+
ũ

2
E2
}
x

+ (ψα)2
x

= −ũx
{[
P (ρα)− P (ρ̃)− P ′(ρ̃)φα + ραψ

2
α

]
− 1

2
E2
}
− ũxx

ρ̃

[
φαψα

]
,

which after taking integration over [0, t]× R+ and noticing ub < 0, implies∫
R+

{
ραEα +

1

2
E2
}
dx

+

∫ t

0

{
|ub|
[
ραΦα(0, τ) +

1

2
E2(0, τ)

]
+ ||(ψα)x(τ)||2

}
dτ

≤ C
(
||(φα0, ψα0, E0)||2

)
−
∫ t

0

∫
R+

{
ũx

[(
P (ρα)− P (ρ̃)

−P ′(ρ̃)φα + ραψ
2
α

)
− 1

2
E2
]

+
ũxx
ρ̃

[φαψα]
}
dxdτ.
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From Lemma 3.2, we have∣∣∣ ∫ t

0

∫
R+

ũx
(
P (ρα)− P (ρ̃)− P ′(ρ̃)φα + ραψ

2
α

)
+
ũxx
ρ̃

[φαψα]dxdτ
∣∣∣

≤ C(M0)

∫ t

0

∫
R+

(ũx + ũxx)
[
φ2
α + ψ2

α

]
dxdτ

≤ C(M0)δ̃

∫ t

0

|ub|ραΦα(0, τ) + ||
(
(φα)x, (ψα)x

)
(τ)||2dτ,

since ψ(0, τ) = 0 and φ2
α(0, τ) ≤ C(M0)(ραΦα(0, τ)) for all 0 ≤ τ ≤ t. At the same

time, from (iii) in Lemma (3.2), we directly have∫ t

0

∫
R+

ũxE
2dxdτ ≤ Cδ̃

∫ t

0

|E(0, τ)|2 + ||Ex(τ)||2dτ.

The above estimate is different from one in the degenerate case. Here we do not
need to give the estimate similar to (63) from the system. By choosing δ4 suitably
small such that

C(M0)δ4 ≤
1

2
, Cδ4 ≤

1

4
|ub|,

then, we get that, for δ̃ ≤ δ4∫
R+

{
ραEα +

1

2
E2
}
dx

+

∫ t

0

{
|ub|
[
ραΦα(0, τ) +

1

2
E2(0, τ)

]
+ ||(ψα)x(τ)||2

}
dτ

≤ C
(
||(E0, φα0, ψα0)||2 + δ̃

∫ t

0

||Ex(τ)||2dτ
)
. (75)

Similar to obtaining (68), it is straightforward to check that∫
R+

[(φα)x]2

ρ3
α

+
(φα)xψα
ρα

dx+

∫ t

0

|ub|[(φα)x]2

(ρα)3
(0, τ)dτ

+

∫ t

0

∫
R+

{p′(ρα)[(φα)x]2

ρ2
α

+ (ln ρi − ln ρe)Ex

}
dxdτ

≤ C(||(φα0, ψα0)||2 + ||(φα0)x||2) +

∫ t

0

(
(ln ρi − ln ρe)E(0, τ)

)
dτ

+C(M0)δ̃

∫ t

0

||
(
(φα)x, (ψα)x

)
(τ)||2dτ

+C(M0)

∫ t

0

∫
R+

(ũxx + ũ2
x)(φ2

α + ψ2
α + E2)dxdτ. (76)

Here we have used the fact that |ρ̃xx| ≤ C(ũxx + ũ2
x). Similarly as before, we have∫ t

0

∫
R+

(ũxx + ũ2
x)(φ2

α + ψ2
α + E2)dxdτ

≤ C(M0)δ̃

∫ t

0

(ραΦα + E2)(0, τ) + ||
(
(φα)x, (φα), Ex

)
(τ)||2dτ.
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Moreover, it holds that∫ t

0

∫
R+

(ln ρi − ln ρe)Exdxdτ ≥
∫ t

0

∫
R+

(
√
ρi −

√
ρe)

2dxdτ

≥ C(M0)

∫ t

0

∫
R+

E2
x(x, τ)dxdτ,

and∫ t

0

(
(ln ρi − ln ρe)E(0, τ)

)
dτ ≤ C(M0)

∫ t

0

ραΦα(0, τ)dτ +

∫ t

0

E2(0, τ)dτ.

So, by plugging the above estimates into (76) and further taking summation of (75)
and (76) multiplied by a properly small constant λ > 0 such that

0 < δ̃ ≤ δ̃5 � λ� 1, C(M0)δ̃5 < 1/2,

one has ∫
R+

{
ραEα +

[(φα)x]2

ρ3
α

+
E2

2

}
dx

+

∫ t

0

(
ραΦα +

[(φα)x]2

ρ3
α

+ E2
)

(0, τ)dτ

+

∫ t

0

∫
R+

{
p′(ρα)[(φα)x]2

ρ2
α

+ [(ψα)x]2 + E2
x

}
dxdτ

≤ C(||(φα0, ψα0)||2 + ||(φα0)x||2). (77)

Step 2. The bounds of the densities ρi,e.
We now use (77) to determine the constant M0 appearing in the definition of

Xbnd(0, T ) (73). Equivalently one has to consider the lower and upper bounds of
ρi, ρe. In terms of the Kanel’s method [13], let us define

Ψ(η) := η − 1−
∫ η

1

s−γds, η ∈ R+, Ψ̃(θ) :=

∫ θ

1

√
Ψ(η)

η
dη, θ ∈ R+.

It is straightforward to see

Ψ
( ρ̃
ρ

)
= ρ̃Φ(ρ, ρ̃), Ψ̃

( ρ̃
ρ

)
→
{
−∞, ρ→∞,
∞, ρ→ 0 + .

(78)

On the other hand, setting φ = ρ− ρ̃, we have∣∣∣Ψ̃( ρ̃
ρ

)∣∣∣ =
∣∣∣ ∫ x

∞
Ψ̃
( ρ̃
ρ

)
y
dy
∣∣∣ =

∣∣∣ ∫ x

∞

√
Ψ
( ρ̃
ρ

)ρ
ρ̃

( ρ̃
ρ

)
y
dy
∣∣∣

≤
∫
R+

{
ρΨ
( ρ̃
ρ

)
+
φ2
y

ρ3
+
ρ̃2
yφ

2

ρ̃2ρ3

}
dy

≤ C

∫
R+

{
ρΦ +

φ2
y

ρ3
+ C(M0)δ̃4ρΦ

}
dy. (79)

Now, from (77) and (79), by letting δ̃ ≤ δ4 and C(M0)δ4
4 ≤ 1 for δ4 > 0 small

enough, we have ∣∣∣Ψ̃( ρ̃
ρα

)∣∣∣ ≤ C(||(φα0, ψα0)||2 + ||(φα0)x||2). (80)
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Then, in view of (78) and (80), there exists a positive constant M1 only depending
on the initial data such that

M−1
1 ≤ ρi,e(x, t) ≤M1, ∀x ∈ R+, 0 ≤ t < T. (81)

Now, one can choose M0 = 1
2M1.

Step 3. The estimate of (ψi,e)x.
Similar to obtaining (70), we have

||(ψα)x(t)||2 +

∫ t

0

||(ψα)xx(τ)||2dτ

≤ C(M0)
{
||(φα0, ψα0)||1 +

∫ t

0

|E(ψi − ψe)x(0, τ)|dτ +

∫ t

0

∫
R+

(
E2
x

+[(ψα)x]2 + |(φα)x(ψα)xx|+ |gα(ψα)xx|+ |(ψα)x|3
)
dxdτ

}
. (82)

By Sobolev inequality, it holds that∫ t

0

|E(ψi − ψe)x(0, τ)|dτ

≤
∫ t

0

|E(0, τ)|2dτ +

∫ t

0

|(ψi − ψe)x(0, τ)|2dτ

≤
∫ t

0

|E(0, τ)|2dτ +

∫ t

0

||(ψi − ψe)x||2L∞dτ

≤
∫ t

0

|E(0, τ)|2dτ + 4C(M0)

∫ t

0

||(ψi − ψe)x||2L2dτ

+
1

4C(M0)

∫ t

0

||(ψi − ψe)xx||2L2dτ

≤ 4C(M0)(||(φα0, ψα0)||1) +
1

4C(M0)

∫ t

0

||(ψi − ψe)xx||2L2dτ.

Moreover, one has∫ t

0

∫
R+

|(φα)x(ψα)xx|+ |gα(ψα)xx|dxdτ

≤ C(M0)

∫ t

0

||
(
(φα)x, (ψα)x

)
||2dτ +

1

4C(M0)

∫ t

0

||(ψα)xx||2dτ,

and ∫ t

0

∫
R+

|(ψα)x|3dxdτ ≤ C
∫ t

0

||(ψα)x||
5
2 ||(ψα)xx||

1
2 dτ

≤
∫ t

0

[
C(M0)||(ψα)x||

10
3 +

1

4C(M0)
||(ψα)xx||2

]
dτ

≤ C(M0) sup
0≤τ≤t

||(ψα)x||
4
3

∫ t

0

||(ψα)x||2dτ +
1

4C(M0)

∫ t

0

||(ψα)xx||2dτ

≤ C(M0) sup
0≤τ≤t

||(ψα)x||
4
3 +

1

4C(M0)

∫ t

0

||(ψα)xx||2dτ

≤ C(M0) +
1

2
sup

0≤τ≤t
||(ψα)x||2 +

1

4C(M0)

∫ t

0

||(ψα)xx||2dτ.
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Then, by putting the above estimates into (82) and further taking the proper linear
combination with (77), we have

||(ψα)x(t)||2 +

∫ t

0

||(ψα)xx(τ)||dτ ≤ C(M0)||(φα0, ψα0)||1. (83)

Therefore, the combination of (77), (81) and (83) implies (74) and thus completes
the proof of Proposition 3.

Proof of Theorem 3.4. Similar to that for Theorem 2.3, the proof follows by the
local existence and Proposition 3, and the details are omitted for brevity.
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