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Goals

The first part of the presentation focuses on general computer science concepts,
guidelines, and programming tips with an aim to:

• Make managing data and programming easier

• Maintain accuracy and efficiency

• Ensure reproducibility of results

• Preserve an organized workflow throughout the project’s lifecycle

• Preserve your sanity

The second part of the presentation with Frank Pinter will introduce version
control via Git.
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Disclaimers

1. I am not a computer science expert - the content of this presentation is
assembled based on my computer science background and my own
programming experience.

2. I have not personally used all of the below tricks in my work, but am
providing them here for your reference.

3. The presentation is meant to be language-agnostic:
• We will not be learning the concepts in a specific programming language.
• Instead, we will focus on general principles that apply to any language.
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General Principles

The two main principles for coding and managing data are1:

1. Make things easier for your future self

2. Don’t trust your future self

Specifically:

• Be consistent in formatting, style, organization, and naming

• Make the computer do the work

• Reduce copy-pasting and repetition

• Test often and test modularly

• Document often but “minimally”

• Increase efficiency

1Like the agents we study, we too as programmers can be time inconsistent - the goal is to go from a naif
to a sophisticate.
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Outline

1 Organization

2 Data types, structures, and automation

3 Abstraction

4 Debugging and testing

5 Documentation

6 Efficiency

7 Miscellaneous

8 References and further resources
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Be consistent

Adopt an organizational system and adhere to it. This system should include
consistency in:

• Directory structure

• Code and comment style

• File naming conventions

• Variable naming conventions

• Output data structure
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Directory structure

• Data
• Raw
• Analytic
• Temp

• Code

• Output
• Tables
• Figures

• Documentation Wow, I know where everything is!

The documentation directory is optional - I personally like to keep any
documentation that came with the data in there. A short README.txt file that
describes how to run the code is also recommended.

Why is this useful? Preserves organization over time and makes automating
certain tasks (e.g., file input and output) easier.
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Code and comment style

• Small things like consistent spacing matter

• One statement per line

• Indent code that “belongs together” (i.e.,
anything within braces and/or parentheses)

• Use block commenting for separating code
sections

• Write comments before the line that you
want the comment to apply to

• Break long lines (I like to indent after
breaking)

• Break down long algebraic expressions

Block commenting: Here begins a long section of
code that estimates earnings by gender.

Why is this useful? Makes code readable for people (and future you), not just
machines.

More resources for code style by Google: for Python and R, applicable broadly.
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File and variable naming conventions

• Use distinctive and informative file and variable names (e.g., temp vs.
gender).

• Be generous and consistent with use of mixed case and underscores (e.g.,
laborElasticity vs. laborelasticity vs.
labor elasticity).

• Note: not all languages will distinguish between upper and lower case
characters in variable names – make sure to check!

• Length of variable names should be inversely proportional to how often you
use it (e.g., iterator i vs. coefficient relative risk aversion).

• But when in doubt, be more descriptive rather than less.
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Output data structure
When creating a data set, particularly when saving one in that special “Analytic”
directory, adhere to the following:

• Know that there are different types of input data sets (e.g., .csv, .xls, .dat)
and each programming language has a specific output data set format (e.g.,
.mat, .dta, etc.)

• Know which variables uniquely identify an observation for each data set
(called keys)

• Values do not have any internal structure, i.e., do not need to process
variables to use them

• The data does not contain any redundant information, e.g., do not save a
panel data set as a set of dummies year 1980, year 1981...

Why is this useful? Clarifies relationships between different data sets. Makes for
easy merges of data sets.
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Data types
Every programming language generally has the following “primitive” data types:

• booleans: stores binary 0 or 1 values, typically 32 bit, maybe less
• integers: stores mathematical integers, typically 32 bit

• Integers between -2,147,483,648 and 2,147,483,647 can be represented
accurately

• Decimal number storage, from least precise to most precise:
• floats: typically 32 bit
• doubles: typically 64 bit
• decimals: typically 128 bit, not available in every language

• strings: stores sequences of alphanumeric characters

Why is this useful?

• Generally cannot combine types

• With large data sets, the choice of how to store information will save you
space on disk and also run time – different data types have different storage
requirements and they are more suited for certain operations

• Careful when doing operations or merging data with decimal types or strings
• Ensure that precision and string length is the same across merging data sets or

variables to avoid truncation
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Data structures

• While every language has the aforementioned primitive data types, some
languages have more advanced data structures (e.g., vectors, matrices, lists,
data frames, stacks, queues, dictionaries...).

• Typically these data structures consist of multiple instances of the primitive
data types.

• Different data structures are stored/linked differently and are more conducive
to certain types of operations than others.

Why is this useful? Using the appropriate data structure for the task at hand
can improve code readability and efficiency.
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Automation basics

Every programming language must have syntax for the following:

• if-then-else statements: execute a piece of code only if a specified
statement evaluates to true

• if this lecture is useful==true then
stay at lecture()

else
go do work()

• for-loops: execute a piece of code repeatedly using a loop counter (typically
used when you know the number of iterations ahead of time)

• for i=0 to last minute of lecture {
pay attention()

}
• while-loop: execute a piece of code repeatedly until a specified condition

fails to be satisfied (very useful when you don’t know the number of
iterations ahead of time, but beware of infinite loops!)

• while this lecture is boring ==false {
stay()

}
Pseudo code can be really useful when programming complicated procedures. It is language-agnostic and suitable for conveying general concepts without
the burden of syntax.
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Automation tips

Always use scripts, even for testing.

• Very rarely should you be typing directly into the interpreter.

• Whatever you don’t want to keep, you can comment out, flag out, or save in
a separate file (Is it really a good idea to delete it? More with version control
in part two of this presentation.)

• Highly recommended to keep a master script, which executes all scripts in
order as intended.

• For example, a script master.do in Stata will call on, in order, the scripts
data cleaning.do, sample selection.do, summary stats.do,
regressions.do

Why is this useful? Maintains a clear record of steps that were taken and done
on the project.
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Automation tips

Automate as much as possible.

• A frequent mistake: tabulate the data and get the min/max/mean values of
a variable from that tabulation and hard code it for use later on.

• Instead, consider tabulating the data and storing the min/max/mean values of
the variable you want to iterate through in a local variable.

• Then, whenever the data changes, you do not need to change these values,
they will automatically update.

• Consider using Makefile: a list of shell commands containing rules that
dictate what files to execute.

Why is this useful? Automation saves future-you time, reduces errors, and
makes it easy to replicate results.
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An aside: macro variables

Most programming languages have a version of “macro” variables – these are
objects defined as independent of the data (i.e., they are not data set variables).

Two types of macro variables:

• global variables: defined outside of any function, and can be accessed from
anywhere

• local variables: defined within a specific function, and can only be accessed
within that function

Generally it is not a good idea to use globals – it is difficult to keep track of which
functions have access to it and update it.

Be careful how these variables are passed on to functions – some programming
languages pass them on by value, and others by reference.

Why is this useful? Locals are very useful for defining fixed parameters (e.g., a
CRRA of 3), doing text substitution, or using them for automating file
input/output.
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Automation tips

Automate file input and output.

• This is where maintaining a consistent directory structure and file naming
convention comes useful.

• With a consistent directory structure and file name conventions, can easily
define the project’s directory at the top of the code and re-use code across
projects by only changing the directory name.

• Generally, the base file path is one of the few things that is “allowed” to be
hard coded in your script.

• local dir "insert directory name here"
local outcomes "insert list of outcomes here"

for each outcome in local ‘outcomes’ {
graph outcome()
save "dir/histogram ‘outcome’.pdf"

}

• With a consistent folder structure, you can refer to each of the subdirectories
of your project without having to re-type the entire directory path again.

Why is this useful? Avoids manual file input/output, allows you to re-use code
across projects by only changing the directory, avoids the need for
re-inputting/outputting data when the data changes.
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With great power...

Suppose you perform the same repetitive set of commands in multiple sections of
one script, or across many scripts, but you just change the inputs to this set of
commands.

Many programming languages allow you to write your own functions and
modularize code.

What does modularization/abstraction mean? Break up code based on its use,
save it as an “abstracted” piece of code in a separate script, and call it from many
different scripts while only changing the inputs and outputs.

• If you foresee that you will be copy-pasting a piece of code a lot across
different scripts but changing a fixed set of parameters, it’s time to invest
some of your time into abstraction!
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... comes great responsibility

Abstraction is very powerful. It is clean, less error-prone, and allows for re-use.

Not everything should be abstracted. The key theme is that things should be
separated based on function. Random pieces of code should not belong in a
function that has a specific role and/or encapsulates a certain behavior.

Save your functions in separate scripts and name them well!

Why is this useful? Abstraction is one of the most powerful concepts of good
computer programming. Because it describes behavior, it allows for re-using of
code across many different projects and applications. It saves time, and increases
readability of code.

The perfect example of the power of abstraction is that I have been using the same function I wrote to output summary statistics from Stata into Excel
using the format that I like for the past 5 years for many problem sets and projects.
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Hey, I wrote some code! Does it work?

There are two types of checks you should be performing:

• Debugging: The code is not compiling/not running

• Testing: The code runs, but is it accurate?

Programming languages offer a lot of help with debugging – most programming
languages provide very informative prompts and error messages when code does
not compile or run. Read those warnings carefully!
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languages provide very informative prompts and error messages when code does
not compile or run. Read those warnings carefully!
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Test often

Testing is trickier, since it depends on the code’s function. The key questions to
ask while testing are:

• What is the code supposed to be doing?

• Is it doing what it is supposed to be doing?

• What are potential cases that might break the code?

Ask these questions often, and verify the answers.
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Test modularly
In addition to testing often, you should test modularly.

What does this mean? Test code piece by piece, ensuring that each piece works
correctly before moving on to the next.

• This becomes crucial when dealing with abstraction – generally good practice
to ensure a function works correctly on a simple example, before checking
that the code that calls that function works.

• Modular testing is made easy by splitting up your code into multiple scripts
based on function.

General workflow for testing:

1. Focus on a piece of code

2. Is it doing what it is supposed to be doing?

3. Try to break it (e.g., pass in wrong type of input, or try edge cases)

Why is this useful? Testing code all at once takes longer and makes it easy to
miss errors/mistakes. Testing it modularly allows you to verify accuracy of code
piece by piece and narrow down the areas where there could be a mistake.
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Other testing tips

• Do not test in the interpreter, test in a script (and keep those scripts).

• Check values of key variables and data sets.

• Use the built-in debugger: adding break-points is very helpful for checking
values of key variables/data sets while the code runs.

• With large data, you might not want to test the code on the first pass with
the entire data set. Many languages allow you to run a piece of code on a
sub-sample of 100 observations. Make use of this feature to save some time
when testing!

• If you have code that runs slowly, print notes to yourself to delineate what
pieces of code have finished running. That way, if the code stops due to an
error, you’ll know where the error was.

• Don’t trust your future self: instead of adding comments in the code that
say “check for XYZ when updated data arrives” or “be careful: data must be
in numeric format”, add your own assertions and error checks.

• Read your results! Think through them! You’ll be surprised how many
special cases and errors you can catch that way.
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Documentation tips
Find a good documentation strategy that works for you and is easy for
future you and others to understand.

Most people document in-code, which means that they add comments
documenting variables and functions where appropriate. This is the easiest to
maintain, but it requires you to remember to update the comments when you
change something.

Documentation varies based on individual preferences, but general tips include:

• Document unique identifiers (keys) and where parameters/data came from.
• Document decisions made, and why those decisions were made.
• Document inputs to your functions.
• I personally like to save data use agreements (DUAs) and dates when raw

data was saved/downloaded in the ’Documentation’ folder.
• Only write documentation that you know you will update.
• Write code to be self documenting:

• If variable names are descriptive, then there is no need to document what each
variable means.

• Use software (e.g., Stata and R Markdown).
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One rule of fight club

Only improve efficiency after you have ensured accuracy.
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Previously mentioned tips

• Automate and abstract!

• Test first passes of a code on a subset of the data.

• Print notes to yourself when running code while testing to benchmark the
execution of the code.

• Use assertions and error checks.
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Other tips for saving time and speeding up code

• Do not run things in the graphical user interface – learn how to run code
from the terminal.

• Use flags in your master script to turn on/off scripts to run.

• Parallelize: makes your computer executes many operations simultaneously
(e.g., use multiple cores of your processor, or use multiple processors on
different machines - clusters).

• When working with small data sets, parallelizing won’t save you much time –
better optimize your sequential code.

• Very useful to know how to parallelize if you are working with large data sets.

• Vectorize: subset of parallelization, but does not require separate
cores/clusters. Involves using data structures that are conducive to applying
a procedure to multiple items .

• Know your data structures and know when vectors/matrices and matrix
algebra is faster.

• Matrix algebra can in some instances replace loops and provide efficiency.
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Command line basics (Linux/Mac)

• pwd prints working directory

• cd "insert path here" changes directory to specified one
• cd .. goes up one directory
• cd ˜ goes to root directory

• ls lists all files in current directory

• ls -a lists all files, including hidden files

• mkdir "name or file path" creates the specified directory
• Can type . to denote the current directory instead of typing up the entire

path

• rmdir "name or file path" deletes the specified directory

• cp "origin path" "destination path" copies origin
file/directory to destination

• mv "origin path" " destination path" moves the origin
file/directory to the destination path

• top provides a list of running processes, along with their process ID (PID)

• kill "insert PID here" stops the process with the specified PID
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Regular expression basics

Regular expressions represent a way to denote patterns in variable, value, file, even
directory names.

Why is this useful? Makes searching for values/files that satisfy a particular
pattern easy.

Ljubica “LJ” Ristovska Coding for Economists February 21, 2019 35 / 41



Regular expression basics

• . denotes any character
• e.g., a.t matches art, ant, aft, a2t, artsy...
• e.g., b..l matches ball, bawl, bowl, b65l, bawling, bowling,...

• [] denotes a range of characters
• e.g., l[oe]t matches let, lot, lots, letting,... but not lit, latitude,...
• e.g., l[1-8]t matches l1t, l2t, ..., l8t,... – can use it with different ranges,

e.g., 1-49, a-t etc.

• ˆ denotes ”not”
• e.g., l[ˆoe]t matches lit, but not let or lot

• * denotes something occurring zero or more times, applied to the character
directly in front of it

• e.g., let* matches let, letting, lets,...

• + denotes something occurring one or more times, applied to the character
directly in front of it

• e.g., let+ matches letting, lets but not let
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General Principles

The two main principles for coding and managing data are:

1. Make things easier for your future self

2. Don’t trust your future self

Specifically:

• Be consistent in formatting, style, organization, and naming

• Make the computer do the work

• Reduce copy-pasting and repetition

• Test often and test modularly

• Document often but “minimally”

• Increase efficiency
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Big picture advice

The following big picture advice is always applicable2:

• Know the basics (data types, structures, automation, abstraction)

• Turn bugs into test cases.

• Divide (by function) and conquer.

• Investing time to write a function for a set of commands you use often pays
off in the long run.

• Most things you want to program have already been programmed and are
available online:

• Even complicated concepts have pseudo code available that you can adapt.

• Learn the vocabulary of your programming language:
• The answers to your questions are probably online, and you will find them

easily if you know what to search for.

2Many thanks to Alex Measure for some of this great advice!
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References and other helpful resources
• Gentzkow, M. and Shapiro, J.

Code and Data for the Social Sciences: A Practitioner’s Guide

• Wilson, Gregory V. et al. (2014). ”Best Practices for Scientific Computing”

• Hans-Martin von Gaudecker’s course:
Effective programming practices for economists

Specific to Python, but contains a lot of general programming tips

• MIT Open Courseware course:
Introduction to Computer Science and Programming in Python

Specific to Python, but is a great intro to computer science concepts.

• Grant McDermott’s data science course:
Environmental Economics and Data Science.

Specific to R, but has wonderful general tips for programming.

• Intro to parallel computing in R: Quick Intro to Parallel Computing in R.

• Intro to Regular Expressions

• Jesús Fernández-Villaverde’s course: Computational Methods
Starts the second half of this semester at Harvard!
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https://web.stanford.edu/~gentzkow/research/CodeAndData.xhtml
http://www.wiwi.uni-bonn.de/gaudecker/teaching/prog_econ_slides.html#prog-econ-slides
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://github.com/uo-ec607
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
https://ryanstutorials.net/regular-expressions-tutorial/regular-expressions-basics.php
https://www.sas.upenn.edu/~jesusfv/teaching.html


Thank you!
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