Chapter 5: Statistical Inference (in General)

Shiwen Shen

University of South Carolina

2017 Summer

Motivation

- ▶ In chapter 3, we learn the discrete probability distributions, including Bernoulli, Binomial, Geometric, Negative Binomial, Hypergeometric, and Poisson.
- In chapter 4, we learn the continuous probability distributions, including Exponential, Weibull, and Normal.
- In chapter 3 and 4, we always **assume** that we know the **parameter** of the distribution. For example, we know the mean μ and variance σ^2 for a normal distributed random varialbe, so that we can calculate all kinds of probabilities with them.

Motivation

- ► For example, suppose we know the height of 18-year-old US male follows $N(\mu = 176.4, \sigma^2 = 9)$ in centimeters.
- Let Y = the height of one 18-year-old US male.
- We can calculate P(Y > 180) = 1 pnorm(180, 176.4, 3) = 0.115.
- ▶ However, it is natural that we do NOT know the population mean μ and population variance σ^2 in reality. What should we do?
- We use statistical inference!
- ➤ Statistical inference deals with making (probabilistic) statements about a population of individuals based on information that is contained in a sample taken from the population.

Terminology: population/sample

- A population refers to the entire group of "individuals" (e.g., people, parts, batteries, etc.) about which we would like to make a statement (e.g., height probability, median weight, defective proportion, mean lifetime, etc.).
 - Problem: Population can not be measured (generally)
 - Solution: We observe a sample of individuals from the population to draw inference
 - We denote a random sample of observations by

$$Y_1, Y_2, \ldots, Y_n$$

- n is the sample size
- ▶ Denote $y_1, y_2, ..., y_n$ to be one realization of $Y_1, Y_2, ..., Y_n$.

Example

BATTERY DATA: Consider the following random sample of n=50 battery lifetimes y_1, y_2, \ldots, y_{50} (measured in hours):

4285	2066	2584	1009	318	1429	981	1402	1137	414
564	604	14	4152	737	852	1560	1786	520	396
1278	209	349	478	3032	1461	701	1406	261	83
205	602	3770	726	3894	2662	497	35	2778	1379
3920	1379	99	510	582	308	3367	99	373	454

A histogram of battery lifetime data

Cont'd on battery lifetime data

The (empirical) distribution of the battery lifetimes is skewed towards the high side

- Which continuous probability distribution seems to display the same type of pattern that we see in histogram?
- ▶ An exponential(λ) models seems reasonable here (based in the histogram shape). What is λ ?
- In this example, λ is called a (population) **parameter** (generally unknown). It describes the theoretical distribution which is used to model the entire population of battery lifetimes.

Terminology: parameter

- ▶ A parameter is a numerical quantity that describes a population. In general, population parameters are unknown.
- Some very common examples are:
 - $\blacktriangleright \ \mu = {\rm population} \ {\rm mean}$
 - σ^2 = population variance
 - $\sigma =$ population standard deviation
 - ▶ p = population proportion
- Connection: all of the probability distributions that we talked about in previous chapter are indexed by population parameters.

Terminology: statistics

- A statistic is a numerical quantity that can be calculated from a sample of data.
- ▶ Suppose $Y_1, Y_2, ..., Y_n$ is a random sample from a population, some very common examples are:
 - sample mean:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

sample variance:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

- sample standard deviation: $S = \sqrt{S^2}$
- **sample proportion**: $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ if $Y_i's$ are binary.

Back to battery lifetime data

With the battery lifetime data (a random sample of n = 50 lifetimes),

$$\overline{y} = 1274.14 \text{ hours}$$

 $s^2 = 1505156 \text{ (hours)}^2$
 $s \approx 1226.85 \text{ hours}$

R code:

```
> mean(battery) ## sample mean
[1] 1274.14
> var(battery) ## sample variance
[1] 1505156
> sd(battery) ## sample standard deviation
[1] 1226.848
```

Parameters and Statistics Cont'd

SUMMARY: The table below succinctly summarizes the salient differences between a population and a sample (a parameter and a statistic):

Comparison between parameters and statistics					
Statistics	Parameters				
Describes a sample	 Describes a population 				
Always known	 Usually unknown 				
 Random, changes upon repeated sampling 	• Fixed				
• Ex: \bar{X} , S^2 , S	• Ex: μ, σ^2, σ				

Statistical Inference

Statistical inference deals with making (probabilistic) statements about a population of individuals based on information that is contained in a sample taken from the population. We do this by

- estimating unknown poopulation parameters with sample statistics.
- quantifying the uncertainty (variability) that arises in the estimation process.

Point estimators and sampling distributions

- Let θ denote a population parameter.
- ▶ A **point estimator** $\hat{\theta}$ is a statistic that is used to estimate a population parameter θ .
- Common examples of point estimators are:
 - $ightharpoonup \widehat{\theta} = \overline{Y} \longrightarrow \text{a point estimator for } \theta = \mu$
 - $m{\hat{ heta}} = S^2 \longrightarrow$ a point estimator for $\theta = \sigma^2$
 - $\blacktriangleright \ \widehat{\theta} = \mathcal{S} \longrightarrow \text{a point estimator for } \theta = \sigma$
- ▶ Remark: In general, $\widehat{\theta}$ is a statistic, the value of $\widehat{\theta}$ will vary from sample to sample.

Terminology: sampling distribution

- ▶ The distribution of an estimator $\widehat{\theta}$ is called its **sampling** distribution.
- A sampling distribution describes mathematically how $\widehat{\theta}$ would vary in repeated sampling.
- ▶ What is a good estimator? And good in what sense?

Evaluate an estimator

▶ Accuracy: We say that $\widehat{\theta}$ is an **unbiased estimator** of θ if and only if

$$E(\widehat{\theta}) = \theta$$

▶ *RESULT:* When $Y_1, ..., Y_n$ is a random sample,

$$E(\overline{Y}) = \mu$$
$$E(S^2) = \sigma^2$$

▶ **Precision:** Suppose that $\widehat{\theta}_1$ and $\widehat{\theta}_2$ are unbiased estimators of θ . We would like to pick the estimator with smaller variance, since it is more likely to produce an estimate close to the true value θ .

Evaluate an estimator: cont'd

- SUMMARY: We desire point estimators $\widehat{\theta}$ which are **unbiased** (perfectly accurate) and have **small variance** (highly precise).
- ▶ TERMINOLOGY: The **standard error** of a point estimator $\widehat{\theta}$ is equal to

$$se(\widehat{\theta}) = \sqrt{var(\widehat{\theta})}.$$

► Note:

smaller $se(\widehat{\theta}) \iff \widehat{\theta}$ more precise.

Evaluate an estimator: cont'd

Which estimator is better? Why?

