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Motivation

I In chapter 3, we learn the discrete probability distributions, including
Bernoulli, Binomial, Geometric, Negative Binomial, Hypergeometric,
and Poisson.

I In chapter 4, we learn the continuous probability distributions,
including Exponential, Weibull, and Normal.

I In chapter 3 and 4, we always assume that we know the parameter
of the distribution. For example, we know the mean µ and variance
σ2 for a normal distributed random varialbe, so that we can
calculate all kinds of probabilities with them.
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Motivation

I For example, suppose we know the height of 18-year-old US male
follows N(µ = 176.4, σ2 = 9) in centimeters.

I Let Y = the height of one 18-year-old US male.

I We can calculate P(Y > 180) = 1−pnorm(180, 176.4, 3)= 0.115.

I However, it is natural that we do NOT know the population mean µ
and population variance σ2 in reality. What should we do?

I We use statistical inference!

I Statistical inference deals with making (probabilistic) statements
about a population of individuals based on information that is
contained in a sample taken from the population.
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Terminology: population/sample

I A population refers to the entire group of ”individuals” (e.g.,
people, parts, batteries, etc.) about which we would like to
make a statement (e.g., height probability, median weight,
defective proportion, mean lifetime, etc.).

I Problem: Population can not be measured (generally)

I Solution: We observe a sample of individuals from the
population to draw inference

I We denote a random sample of observations by

Y1,Y2, . . . ,Yn

I n is the sample size

I Denote y1, y2, . . . , yn to be one realization of Y1,Y2, . . . ,Yn.
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Example

BATTERY DATA: Consider the following random sample of n = 50
battery lifetimes y1, y2, . . . , y50 (measured in hours):

4285 2066 2584 1009 318 1429 981 1402 1137 414
564 604 14 4152 737 852 1560 1786 520 396
1278 209 349 478 3032 1461 701 1406 261 83
205 602 3770 726 3894 2662 497 35 2778 1379
3920 1379 99 510 582 308 3367 99 373 454
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A histogram of battery lifetime data
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Cont’d on battery lifetime data

The (empirical) distribution of the battery lifetimes is skewed
towards the high side

I Which continuous probability distribution seems to display the
same type of pattern that we see in histogram?

I An exponential(λ) models seems reasonable here (based in the
histogram shape). What is λ?

I In this example, λ is called a (population) parameter (generally
unknown). It describes the theoretical distribution which is used
to model the entire population of battery lifetimes.
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Terminology: parameter

I A parameter is a numerical quantity that describes a
population. In general, population parameters are unknown.

I Some very common examples are:

I µ = population mean

I σ2 = population variance

I σ = population standard deviation

I p = population proportion

I Connection: all of the probability distributions that we talked
about in previous chapter are indexed by population parameters.
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Terminology: statistics

I A statistic is a numerical quantity that can be calculated from
a sample of data.

I Suppose Y1,Y2, . . . ,Yn is a random sample from a population,
some very common examples are:

I sample mean:

Y =
1

n

n∑
i=1

Yi

I sample variance:

S2 =
1

n − 1

n∑
i=1

(Yi − Y )2

I sample standard deviation: S =
√
S2

I sample proportion: p̂ =
1

n

∑n
i=1 Yi if Y

′
i s are binary.
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Back to battery lifetime data

With the battery lifetime data (a random sample of n = 50 lifetimes),

y = 1274.14 hours

s2 = 1505156 (hours)2

s ≈ 1226.85 hours

R code:

> mean(battery) ## sample mean
[1] 1274.14

> var(battery) ## sample variance
[1] 1505156

> sd(battery) ## sample standard deviation
[1] 1226.848
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Parameters and Statistics Cont’d

SUMMARY: The table below succinctly summarizes the salient
differences between a population and a sample (a parameter and a
statistic):

Comparison between parameters and statistics
Statistics Parameters
• Describes a sample • Describes a population
• Always known • Usually unknown
• Random, changes upon repeated sampling • Fixed
• Ex: X̄ ,S2,S • Ex: µ, σ2, σ

11 / 17



Statistical Inference

Statistical inference deals with making (probabilistic) statements about
a population of individuals based on information that is contained in a
sample taken from the population. We do this by

I estimating unknown poopulation parameters with sample statistics.

I quantifying the uncertainty (variability) that arises in the
estimation process.
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Point estimators and sampling distributions

I Let θ denote a population parameter.

I A point estimator θ̂ is a statistic that is used to estimate a
population parameter θ.

I Common examples of point estimators are:

I θ̂ = Y −→ a point estimator for θ = µ

I θ̂ = S2 −→ a point estimator for θ = σ2

I θ̂ = S −→ a point estimator for θ = σ

I Remark: In general, θ̂ is a statistic, the value of θ̂ will vary from
sample to sample.
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Terminology: sampling distribution

I The distribution of an estimator θ̂ is called its sampling
distribution.

I A sampling distribution describes mathematically how θ̂ would
vary in repeated sampling.

I What is a good estimator? And good in what sense?
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Evaluate an estimator

I Accuracy: We say that θ̂ is an unbiased estimator of θ if and
only if

E (θ̂) = θ

I RESULT: When Y1, . . . ,Yn is a random sample,

E (Y ) = µ

E (S2) = σ2

I Precision: Suppose that θ̂1 and θ̂2 are unbiased estimators of θ.
We would like to pick the estimator with smaller variance, since
it is more likely to produce an estimate close to the true value θ.
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Evaluate an estimator: cont’d

I SUMMARY: We desire point estimators θ̂ which are unbiased
(perfectly accurate) and have small variance (highly precise).

I TERMINOLOGY: The standard error of a point estimator θ̂ is
equal to

se(θ̂) =

√
var(θ̂).

I Note:
smaller se(θ̂)⇐⇒ θ̂ more precise.
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Evaluate an estimator: cont’d

Which estimator is better? Why?
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