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T
he Dixmier-Douady invariant is the pri-
mary tool in the classification of contin-
uous trace C∗-algebras. These algebras
have come to the fore in recent years
because of their relationship to twisted

K-theory and via twisted K-theory to branes, gerbes,
and string theory.

This note sets forth the basic properties of
the Dixmier-Douady invariant using only classical
homotopy and bundle theory. Algebraic topology
enters the scene at once since the algebras in
question are algebras of sections of certain fibre
bundles.

The results stated are all contained in the orig-
inal papers of Dixmier and Douady [5], Donovan
and Karoubi [7], and Rosenberg [23]. Our treatment
is novel in that it avoids the sheaf-theoretic tech-
niques of the original proofs and substitutes more
classical algebraic topology. Some of the proofs are
borrowed directly from the recent paper of Atiyah
and Segal [1]. Those interested in more detail and
especially in the connections with analysis should
consult Rosenberg [23], the definitive work of Rae-
burn and Williams [21], as well as the recent paper
of Karoubi [13] and the book by Cuntz, Meyer, and
Rosenberg [4]. We briefly discuss twisted K-theory
itself, mostly in order to direct the interested reader
to some of the (exponentially-growing) literature
on the subject.

It is a pleasure to acknowledge the assistance of
Alan Carey, Dan Isaksen, Max Karoubi, N. C. Phillips,
and Jonathan Rosenberg in the preparation of this
paper.

Fibre Bundles
Suppose that G is a topological group and G →
T → X is a principal G-bundle over the compact
space X. Then up to equivalence it is classified by
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a map f to the classifying space BG and there is a
pullback diagram

G --------------------------------------------------------------------------------------------------------------------------------------→ Gy y
T --------------------------------------------------------------------------------------------------------------------------------------→ EGy y
X f
--------------------------------------------------------------------------------------------------------------------------------------→ BG

where the right column is the universal principal
G-bundle.

Suppose further that F is some G-space. Then
following Steenrod [24] we may form the associated
fibre bundle

F -→ T ×G F -→ X
with fibre F and structural group G. Pullbacks
commute with taking associated bundles, so there
is a pullback diagram

F --------------------------------------------------------------------------------------------------------------------------------------→ Fy y
T ×G F --------------------------------------------------------------------------------------------------------------------------------------→ EG ×G Fy y
X f

--------------------------------------------------------------------------------------------------------------------------------------→ BG.

Now suppose that M is some fixed C∗-algebra,
soon to be either the matrix ring Mn = Mn(C)
for some n < ∞ or the compact operators K on
some separable Hilbert spaceH . Take G = U(M),
the group of unitaries of the C∗-algebra. (If M
is not unital then we modify by first adjoining
a unit canonically to form the unital algebra M+
and then define U(M) to be the kernel of the nat-
ural homomorphism U(M+) → U(M+/M) � S1.)
Then U(M) acts naturally on M by conjugation;
denote M with this action as Mad . The center
ZU(M) of U(M) acts trivially, and so the action
descends to an action of the projective unitary
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group PU(M) = U(M)/ZU(M) onM , denotedMad .
Note that ifM is simple then its center is just C and
ZU(M) � S1 so that PU(M) is just the quotient
group (U(M))/S1.

Having fixed M , let

ζ : PU(M) -→ T → X
be a principal PU(M)-bundle over a compact space
X. Form the associated fibre bundle

Pζ : Mad -→ T ×PU(M) Mad p
-→ X.

This fibre bundle always has non-trivial sections.
Define Aζ to be the space of sections:

Aζ = Γ(Pζ) = {s : X -→ T ×PU(M) Mad | ps = 1}.
This is a C∗-algebra with pointwise operations that
are well defined because we are using the adjoint
action. It is unital if M is unital. If M = Mn or
M = K then this is a continuous trace C∗-algebra.
If X is locally compact but not compact then Aζ
is still defined by using sections that vanish at
infinity and it is not unital.

Note that if Pζ is a trivial fibre bundle then
sections correspond to functions X → M and hence

Aζ � C(X)⊗M,
where C(X) denotes the C∗-algebra of continuous
complex-valued functions on X. (If X is only locally
compact then we use Co to denote continuous
functions vanishing at infinity.)

Continuous trace C∗-algebras may be defined
intrinsically, of course. Here is one approach. If A
is a (complex) C∗-algebra, then let Â denote the
set of unitary equivalence classes of irreducible
∗-representations of A with the Fell topology (cf.
[21]).

Definition. Let X be a second countable locally
compact Hausdorff space. A continuous trace C∗-
algebra with Â = X is a C∗-algebra A with Â = X
such that the set

{x ∈ A | the map π → tr(π(a)π(a)∗)
is finite and continuous on Â}

is dense in A.

From the definition it is easy to see that com-
mutative C∗-algebras Co(X) as well as stable
commutative C∗-algebras Co(X,Mn) and Co(X,K)
are continuous trace. In fact every continuous trace
algebra arises as a bundle of sections of the type
we have been discussing.

Products
Vector spaces come equipped with natural direct
sum and tensor product operations, and these pass
over to vector bundles. Thus if E1 → X and E2 → X
are complex vector bundles of dimension r and s
respectively then we may form bundles E1⊕E2 → X
of dimension r + s and E1 ⊗ E2 → X of dimension
rs. There are two corresponding operations on

classifying spaces. The one that concerns us is
the tensor product operation. Fix some unitary
isomorphism of vector spaces

Cr ⊗ Cs � Crs .

(This isomorphism is unique up to homotopy, since
the various unitary groups are connected.) Let
Un = U(Mn(C)). This determines a homomorphism

Ur ×Us ⊗
-→ Urs

and the associated map on classifying spaces

BUr × BUs ⊗
-→ BUrs

given by the composite

BUr × BUs � B(Ur ×Us)
B(⊗)
-→ BUrs .

Let [X, Y] denote homotopy classes of maps and
recall that if X is compact and connected then
isomorphism classes of complex n-plane vector
bundles overX correspond to elements of [X, BUn].
Then this construction induces an operation

[X, BUr]× [X, BUs] ⊗
-→ [X, BUrs],

which does indeed correspond to the tensor prod-
uct operation on bundles. Precisely, if E1 → X and
E2 → X are represented by f1 and f2 respectively,
then the tensor product bundle E1 ⊗ E2 → X is
represented by f1 ⊗ f2. (This holds at once for
compact connected spaces. If X is not connected
then one checks this on each component.)

The inclusion

Ur � Ur × {1} → Ur ×Us → Urs
is denoted

αrs : Ur → Urs .
The center of Uk is the group S1 regarded as ma-

trices of the form zI, where z is a complex number
of norm 1. The quotient group PUk is the projec-
tive unitary group. The fibration S1 → Uk → PUk
induces the sequence

0→ Z k
-→ Z→ Z/k→ 0

on fundamental groups, and, in particular,
π1(PUk) � Z/k.

There is a natural induced map and commuting
diagram

S1 × S1 --------------------------------------------------------------------------------------------------------------------------------------→ S1y y
Ur ×Us --------------------------------------------------------------------------------------------------------------------------------------→ Ursy y
PUr × PUs --------------------------------------------------------------------------------------------------------------------------------------→ PUrs
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and this induces a tensor product operation and a
commuting diagram

BUr × BUs --------------------------------------------------------------------------------------------------------------------------------------→ BUrsy y
BPUr × BPUs --------------------------------------------------------------------------------------------------------------------------------------→ BPUrs .

It is easy to see that

π2(BPUk) � π1(PUk) � Z/k
and that the natural map αrs : PUr → PUrs induces
a commuting diagram

π2(BPr)
(αrs)∗--------------------------------------------------------------------------------------------------------------------------------------→ π2(BPrs)y� y�

Z/r s
--------------------------------------------------------------------------------------------------------------------------------------→ Z/rs.

There is a similar structure in infinite dimen-
sions. Fix some separable Hilbert space H with
associated group of unitaries U on which we im-
pose the strong operator topology. The groupU is
contractible in this topology (cf. [21], Lemma 4.72).
Fix some unitary isomorphismH⊗H �H . This is
unique up to homotopy sinceU is path-connected.
Then there is a canonical homomorphism

U×U ⊗
-→U

and associated maps on classifying spaces

BU× BU ⊗
--------------------------------------------------------------------------------------------------------------------------------------→ BUy y

BPU× BPU ⊗
--------------------------------------------------------------------------------------------------------------------------------------→ BPU

where PU denotes the infinite projective unitary
group.

The action of S1 on U is free and thus

PU ' BS1 ' K(Z,2).
This implies that

BPU ' K(Z,3).
It is simpler to separate the discussion of finite

and infinite dimensional bundles at this point.

A Note on Cohomology for Compact
Spaces
If X is a finite complex then the Eilenberg-Steenrod
uniqueness theorem guarantees for us that singu-
lar, simplicial, representable, and Čech cohomology
theories all coincide. Moving up to compact spaces
one must pause to reconsider the question. The nat-
ural choice in the classical Dixmier-Douady context
is Čech cohomology, as this relates best to sheaf
theories, and so the Dixmier-Douady invariant
was originally defined to take values in Ȟ3(X;Z).
However, a classical homotopy approach dictates
defining H3(X;Z) = [X,K(Z,3)]. Fortunately these
two functors agree on compact spaces; the result
is again due to Eilenberg and Steenrod.

Proposition ([8]). On the category of compact
spaces, Čech cohomology is representable. That is,
there is a natural isomorphism

Ȟn(X;Z) � [X,K(Z, n)].

Proof. The natural isomorphism is well known
for X a finite complex, by the Eilenberg-Steenrod
uniqueness theorem. Suppose that X is a compact
space. Then write X = lim←----------------------------------- Xj for some inverse
system of finite complexes. (See [8], Chapters IX, X,
and XI for open covers, nerves, and inverse limits.)
Continuity of Čech theory implies that

Ȟn(X;Z) � lim-----------------------------------→H
n(Xj ;Z).

The maps X → Xj induce natural maps

[Xj , K(Z, n)]→ [X,K(Z, n)]
and these coalesce to form

Φ : lim-----------------------------------→[Xj , K(Z, n)]→ [X,K(Z, n)].

Claim: the map Φ is a bijection. The key fact
needed is the following result of Eilenberg-
Steenrod ([8], p. 287, Theorem 11.9): ifX = lim←----------------------------------- Xj is
compact, Y is a simplicial complex, and f : X → Y ,
then up to homotopy f factors through one of
the Xj . This implies immediately that Φ is onto.
On the other hand, if g : Xj → Y and the com-
posite X → Xj → Y is null-homotopic then the
null-homotopy factors through some Xk × [0,1]
and hence [g] = 0. �

Bundles with Fibre K
Recall that K = K(H ) denotes the algebra of
compact operators on a separable Hilbert space
H . Let

ζ : PU -→ T -→ X
be a principal PU-bundle with associated C∗-
algebra Aζ . All automorphisms ofK =K(H ) are
given by conjugation by unitary operators on the
Hilbert spaceH , so the group of unitaries U acts
onK by the adjoint action. The center of the group
is just S1, and it acts trivially, of course, and so

Aut(K) � U/S1 = PU,
the infinite projective unitary group. Thus

[X, BPU] � [X,K(Z,3)] � H3(X;Z).

We may regard maps X → BPU as projec-
tive vector bundles in analogy with projective
representations.

The resulting C∗-algebras Aζ are stable in the
sense that Aζ ⊗K � Aζ .

Define the Dixmier-Douady invariant δ(Aζ) of
the C∗-algebra Aζ to be the homotopy class of a
map

f : Â→ BPU � K(Z,3)
that classifies the bundle E → X.
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We note that given Aζ then its Dixmier-Douady
invariant lies naturally in the group H3(Âζ ;Z). The
identification of Âζ with X is only given mod the
group of homeomorphisms of X, and hence the
Dixmier-Douady invariant is only defined modulo
the action of the homeomorphism group of X on
H3(X;Z). Of course this action preserves the order
of the element δ(Aζ).

So we have established the first parts of the
following Dixmier-Douady result:

Theorem ([5], [23]). Let X be a compact space. Then:

(1) There is a natural isomorphism

δ : [X, BPU] �
-→ Ȟ3(X,Z).

(2) Suppose we are given a principal PU-
bundle ζ, associated fibre bundle Pζ, and
associated C∗-algebra Aζ . Then δ(Aζ) = 0
if and only if Pζ is equivalent to a trivial
matrix bundle, and in that case

Aζ � C(X)⊗K.

(3) The Dixmier-Douady invariant is additive,
in the sense that

δ(Aζ1⊗ζ2) = δ(Aζ1)+ δ(Aζ2).

(4) The invariant respects conjugation:

δ(Aζ∗) = −δ(Aζ).

(5) Every element of Ȟ3(X;Z) may be realized
as the Dixmier-Douady invariant of some
infinite-dimensional bundle and associated
C∗-algebra.

Proof. Only (3) and (4) remain to be demonstrated.
Part (3) comes down to an analysis of the commu-
tative diagram

BPU× BPU '
--------------------------------------------------------------------------------------------------------------------------------------→ K(Z,3)×K(Z,3)y⊗ y

BPU '
--------------------------------------------------------------------------------------------------------------------------------------→ K(Z,3)

which deloops to

PU× PU '
--------------------------------------------------------------------------------------------------------------------------------------→ K(Z,2)×K(Z,2)y⊗ ym

PU '
--------------------------------------------------------------------------------------------------------------------------------------→ K(Z,2).

The map m is determined up to homotopy by
its representative in

Ȟ2(K(Z,2)×K(Z,2);Z) � Z⊕ Z

and this class is (1,1) so thatm is indeed the map
inducing addition in H2(−;Z).

Part (4) is a similar argument, which we omit. �

This result may be viewed in a more bundle-
theoretic manner. The fibration

S1 →U→ PU
induces an exact sequence

[X,K(Z,2)]→ [X, BU] ε→ [X, BPU] δ→ [X,K(Z,3)]
which, after identifications, becomes

Vect1(X)→ Vect∞(X) ε→ PVect∞(X) δ→ Ȟ3(X;Z)
where Vectk(X) denotes isomorphism classes of
vector bundles over X of dimension k, PVect∞(X)
denotes isomorphism classes of projective vector
bundles over X, and we have identified

[X,K(Z,2)] � Ȟ2(X;Z) � Vect1(X)
using the first Chern class of the bundle.

The map ε takes an infinite-dimensional vector
bundle V → X and associates to it the matrix
bundle

ε(V → X) = End(V)→ X
where End(V)x = End(Vx), and so if δ(Aζ) = 0
then the bundle Pζ is isomorphic to a bundle of
endomorphisms: Pζ � End(V) as bundles. Then
we use the fact that every vector bundle over X
with infinite-dimensional fibres is trivial as a vector
bundle (sinceU is contractible), and thus there are
bundle isomorphisms

Pζ � End(V) � End(X ×H ) � X ×K
so that

Aζ � C(X)⊗K
as C∗-algebras. In fact, recalling that U is con-
tractible, U ' ∗, we may extend the sequence
above to read

[X,K(Z,2)]→ [X,∗] ε→ [X, BPU]
δ→ [X,K(Z,3)]→ [X,∗]

and then deduce that δ is also onto.

Bundles with FibreMn(C)Mn(C)Mn(C)
The inclusion of S1 as the center of Un gives rise
to a fibration sequence

S1 → Un → PUn → K(Z,2)

→ BUn → BPUn δ
-→ K(Z,3).

For n ≥ 2 the map Un → PUn induces an isomor-
phism on homotopy. Passing to classifying spaces,
this yields

π2(BPUn) � Z/n
as previously noted, and

πj(BUn) � πj(BPUn), j > 2.
The Dixmier-Douady invariant is defined to be the
induced map

δ : [X, BPUn]→ [X,K(Z,3)] � Ȟ3(X;Z).
There is a long exact sequence

[X,K(Z,2)]→ [X, BUn]
ε
-→ [X, BPUn] δ

-→ [X,K(Z,3)]
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which translates into

Ȟ2(X;Z)→ Vectn(X) ε
-→ PVectn(X) δ

-→ Ȟ3(X;Z).
The map ε is defined as follows. Given a complex
vector bundle V → X, then

ε(V → X) = End(V)→ X
where End(V) → X is the endomorphism
bundle of V ; the fibre over a point x is just End(Vx).
This yields the third Dixmier-Douady result:

Proposition. Suppose that X is compact. Let ζ
be a principal PUn-bundle over X with associat-
ed bundle Pζ and C∗-algebra Aζ . Suppose that
δ(Aζ) = 0. Then there is a complex vector bun-
dle V → X of dimension n over X and a bundle
isomorphism

Pζ �
--------------------------------------------------------------------------------------------------------------------------------------→ End(V)y y

X 1
--------------------------------------------------------------------------------------------------------------------------------------→ X.

Note that, in contrast to the infinite-dimensional
case, endomorphism bundles need not be trivial
bundles. There is one improvement possible, and
we are indebted to Peter Gilkey for this explicit
construction.

Corollary. The vector bundle V → X in the Propo-
sition may be taken to have trivial first Chern class,
so that its structural bundle may be reduced to an
SUn-bundle.

Proof. Suppose that Pζ � End(V) as in the
Proposition. Let L be a complex line bundle over
X with c1(L) = −c1(V). Let V ′ = V ⊗ L. Then
using the fact that L ⊗ L∗ is a trivial line bundle
we have

End(V ′) � (V ′)∗ ⊗ V ′ � V ⊗ V∗ ⊗ L⊗ L∗

� V ⊗ V∗ � End(V)

so we may replace V by V ′ and obtain the same
endomorphism bundle. �

Note that even though V and V ′ have isomor-
phic endomorphism bundles, in general they will
not themselves be isomorphic. In fact, End(V) �
End(V ′) if and only if V ′ � V ⊗ L for some line
bundle L.

We can refine this observation as follows. The
diagram above expands to a natural commuting
diagram (below)

The Dixmier-Douady map δ : BPUn → K(Z,3)
factors as

BPUn
γ
-→ K(Z/n,2) β

-→ K(Z,3).
The map β induces the Bockstein homomorphism

β : Ȟ2(X;Z/n)→ Ȟ3(X;Z)
with

Ker(β) = Image
[
Ȟ2(X;Z) -→ Ȟ2(X;Z/n)

]
and

Image(β) = {x ∈ Ȟ3(X;Z) : nx = 0}
whose image lies in the torsion subgroup of
Ȟ3(X;Z).

Theorem. Let X be a compact space and let n ∈ N.
Then:

(1) There is a natural exact sequence

0→ Ȟ2(X;Z) σ
-→ Vectn(X)

ε
-→ [X, BPUn] δ

-→ Ȟ3(X;Z).
(2) Suppose we are given a principal PUn-

bundle ζ over a compact space X and
associated C∗-algebra Aζ . Then
(a) If γ(Aζ) ≠ 0 but δ(Aζ) = 0 then γ(Aζ)

lifts to an integral class in Ȟ2(X;Z).
(b) If γ(Aζ) = 0 then Pζ � End(V) with

c1(V) = 0.
(3) The Dixmier-Douady invariant is additive,

in the sense that

δζ1⊗ζ2 = δζ1 + δζ2 .
(4) The invariant respects conjugation:

δζ∗ = −δζ .
(5) For any Mn-bundle ζ, it is the case that

nδζ = 0.

Proof. Most of this result has already been estab-
lished. The map σ takes a class c ∈ Ȟ2(X;Z) and
associates to it a vector bundle of the form L⊕θn−1

where L is a line bundle with first Chern class c
and θn−1 is a trivial bundle of dimension n−1. This
map is one-to-one since it is split by the first Chern
class map

c1 : Vectn(X)→ Ȟ2(X;Z).
Parts (3) and (4) follow as in the infinite-dimensional
case. �

The various mapsαrs : PUr → PUrs induce maps
on classifying spaces that by abuse of language are
also denoted αrs : BPUr → BPUrs . These maps
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form a directed system {BPUr , αrs}. Write BPU∞
for the colimit. Note that this is not the same as
BPU = K(Z,3).
Proposition (Serre, [9], pp. 228–229).

(1) The natural map

lim-----------------------------------→πj(BPUn)→ πj(BPU∞)
is an isomorphism.

(2) π2(BPU∞) � Q/Z.
(3) If j ≥ 2 then π2j(BPU∞) � Q.
(4) If j ≥ 2 then π2j−1(BPU∞) = 0.
(5) There is a natural splitting

BPU∞ ' K(Q/Z,2)× F
with πj(F) = Q for j ≥ 4 and even and
πj(F) = 0 otherwise.

Proof. Each map αrs : BPUr → BPUrs is a cofibra-
tion and so (1) is immediate. We showed previously
that π2(BPUr) � Z/r . The map induced by αrs
takes the generator of π2(BPUr) to s times the
generator of π2(BPUrs) and so

π2(BPU∞) = lim-----------------------------------→(Z/r ,α∗) = Q/Z.
For n >> j > 2, π2j(BPUn) � π2j(BUn) � Z by
Bott periodicity, and it follows easily that

π2j(BPU∞) � lim-----------------------------------→(π2j(BPUn),α∗) = Q.
Similarly, in odd degrees homotopy groups vanish,
and calculation yields the result. There results a
fibration BPU∞ → K(Q/Z,2); call the fibre F . Then
the homotopy of F is as stated, and as the base
space has trivial rational cohomology this implies
that the fibration is trivial. �

The various Dixmier-Douady maps

δ : [X, BPUn] -→ Ȟ3(X;Z)
are coherent and hence pass to the limit to produce
an induced Dixmier-Douady map

δ∞ : [X, BPU∞] -→ Ȟ3(X;Z).
It is obvious that δ∞ takes values in the torsion

subgroup of Ȟ3(X;Z). In fact, more is true:

Proposition. Let X be a compact space. Then:

(1) The image of the map δ∞ is the whole tor-
sion subgroup of Ȟ3(X;Z).

(2) Let x ∈ Ȟ3(X;Z) be a torsion class. Then
there is some finite n and some principal
PUn-bundle ζ over X such that δ(Aζ) = x.

Proof. The lattice of cyclic subgroups of Q/Z in-
duces an equivalence

lim-----------------------------------→ K(Z/n,2) -→ K(Q/Z,2).
Furthermore, the various Bockstein mapsK(Z/n,2)
-→ K(Z,3) all factor as

K(Z/n,2) -→ K(Q/Z,2) β̃
-→ K(Z,3).

The exactness of the coefficient sequence

Ȟ2(X;Q/Z) β̃
-→ Ȟ3(X;Z) -→ Ȟ3(X;Q)

implies that the image of β̃ is exactly the torsion
subgroup of Ȟ3(X;Z). This shows (1).

For (2), let x be a torsion class. Then it is in the
image of the Bockstein map

β̃‘ : Ȟ2(X;Q/Z)→ Ȟ3(X;Z)

and thus may be represented as x = β̃(y) where
y ∈ [X,K(Q/Z,2)]. The map

[X, BPU∞] -→ [X,K(Q/Z,2)]
is onto, and so the class y lifts to some class

z ∈ [X, BPU∞] � lim-----------------------------------→[X, BPUn].
Choose some ζ ∈ [X, BPUk] representing z. (Note
that if x has order n then n divides k but in general
n ≠ k.) Then δ(Aζ) = x as required. �

Twisted KKK-theory
Twisted K-theory was first introduced by Donovan
and Karoubi [7] for finite-dimensional bundles and
then by Rosenberg [23] in the general case. In our
context the point is to look at the Z/2-graded group
K∗(Aζ). Let Aζ denote a continuous trace algebra
over X. Recall that K0 is defined for any unital ring
as the Grothendieck group of finitely projective
modules. For our purposes a topological definition
is cleaner and so we may simply define

Kj(Aζ) � πj+1(U(Aζ ⊗K)), j ∈ Z/2,
where in all cases we grade as Kj = K−j (and then
note that by periodicity there are only two groups
anyhow). If the bundle is infinite dimensional then
it is not necessary to tensor with K since the
algebra is already stable. These groups are denoted
in the literature by (for instance)

K∗(X;ζ) or K∗(X;δ(ζ)) or K∗δ(ζ)(X) or K∗∆(X).
The point is that once one specifies X and ∆ =
δ(ζ) ∈ Ȟ3(X;Z) then Aζ is specified up to equiva-
lence, and hence K∗∆(X) makes sense as notation
for Kj(Aζ). Here are the basic properties:

Proposition.

(1) Domain: The groups K∗∆(X) are defined
for locally compact spaces X and principal
PUn or PU-bundles ζ over X with asso-
ciated Dixmier-Douady class ∆ = δ(ζ) ∈
H3(X;Z).

(2) Naturality: Given (X,∆) together with a
continuous function f : Y → X then there is
an induced map

f∗ : K∗∆(X) -→ K∗f∗∆(Y)
and twisted K-theory is natural with respect
to these maps.

(3) Periodicity: The groups K∗∆(X) are periodic
of period 2.

(4) Product: There is a cup product operation

K∗∆1
(X)×K∗∆2

(X) -→ K∗∆1+∆2
(X).
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(5) Relation to untwisted K-theory: There is a
natural isomorphism

K∗0 (X) � K∗(X),

where if X is locally compact but not com-
pact then K-theory with compact support is
intended.

�
Karoubi notes that the cup product is not canoni-

cally defined at the level of cohomology classes. For
instance, in the finite-dimensional case, one must
choose representatives from among the various
algebra bundles; i.e. choose Morita equivalences
that are not canonical in general.

Rosenberg [22] points out the simplest case
where twisted K-theory actually does something
interesting. Take X = S3. Then the Dixmier-Douady
invariant takes values in H3(S3;Z) � Z and hence
is determined by an integer m. Rosenberg shows
that

K0
m(S3) = 0, K−1

m (S3) = Z/m.

He takes us further by introducing a twisted
Atiyah-Hirzebruch spectral sequence (for X a finite
complex) converging to K∗∆(X) and with

E∗2 = H∗(X;K∗(C)).

Just as with the classical Atiyah-Hirzebruch spec-
tral sequence we have d2 = 0. The differential d3 is
determined by the integral Steenrod operation Sq3

Z

(as is the case classically) and (the first mention of
the twist) the class ∆:

d3(x) = Sq3
Z(x)−∆x.

This spectral sequence is developed further by
Atiyah and Segal [1], [2] who show, for instance,
that the spectral sequence does not collapse after
rationalization.

There are other ways to twist K-theory and to
make it equivariant, to make it real (rather than
complex) or both, and the reader should consult the
papers of Atiyah and Segal [1], [2], Freed, Hopkins,
and Teleman [11], and especially the fine survey
paper of Karoubi [13] before burying oneself in
the physics literature. That physics comes into
the picture goes back to the observation of Witten
that D-brane charges in type IIB string theory
over a space M are elements of K0

δ(M)—see for
instance [3], where the role of the Dixmier-Douady
invariant in the classification of bundle gerbes is
summarized along with a differential geometric
model for twisted K-theory. See [10], [16], [17], [19]
for further developments.

Rational Homotopy
For stable continuous trace algebras, the groups
π∗(UAζ) are periodic of period 2 and in fact corre-
spond to the twisted K-theory groups. However, if
ζ is a principal PUn-bundle where n is finite then
the natural map

πj(UAζ)→ Kj−1(Aζ)

is neither injective nor surjective in general. Further-
more, K-theory obscures the geometric dimension
of the space X, since K0(S2n) doesn’t depend on n
and hence cannot detect it. In this situation a more
natural question is to calculate π∗(UAζ) itself.
This is impossible even in very elementary cases
(e.g., when A = M2(C)). A more reasonable project
is to calculate the rational homotopy groups

πj(UAζ)⊗Q,
and this has been done in general for X compact by
[15], [14]. The answer depends upon the individual
groups Hj(X;Q) and upon n. It turns out to be
independent of the principal bundle. This is to be
expected, at least after the fact, since the Dixmier-
Douady invariant is finite when the bundle is finite
dimensional and hence is trivial in the world of
rational homotopy.

Generalizations
What if X is assumed to be a CW -complex or, more
generally, a compactly generated space that is not
necessarily compact? First, the definition of Aζ
does not lead to a C∗-algebra since infinite CW -
complexes are not locally compact. These would
be pro-C∗-algebras such as those studied by
N. C. Phillips [20]. The good news is that some
of the proofs in this note generalize. The bundle
classification results require restriction to Dold’s
numerable bundles [6], [12]. These are bundles
that are trivial with respect to a locally finite cover,
and so one can assume, for instance, that X is
paracompact. In the infinite-dimensional case the
isomorphism

[X, BPU] � [X,K(Z,3)]
is tautological, since BPU ' K(Z,3).

In the finite-dimensional situation we obtain
maps

Vectnumn (X) ε→ [X, BPUn] δ→ H3
sing(X;Z),

where Vectnumn (X) denotes isomorphism classes
of numerable vector bundles, and the Dixmier-
Douady results still hold when singular cohomology
is understood throughout.

What if X is assumed to be locally compact but
not necessarily compact? In that case the definition
of Aζ is modified to include only those sections
that vanish at infinity, so that the sup norm is
defined and then Aζ is a C∗-algebra again. The
Dixmier-Douady results still hold, but it is prob-
ably better in this setting to shift back to the
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sheaf-theoretic setting of the original proofs, since
the classification of vector bundles over locally
compact spaces is somewhat awkward.
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