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ABSTRACT 

             

 In this paper, a rheumatoid arthritis (RA) medicine clinical dataset with an ordinal response 

is selected to study this new medicine. In the dataset, there are four features, sex, age, treatment, 

and preliminary. Sex is a binary categorical variable with 1 indicates male, and 0indicates female. 

Age is the numerical age of the patients. And treatment is a binary categorical variable with 1 

indicates has RA, and 0 indicates does not have RA. And preliminary is a five class categorical 

variable indicates the patient’s RA severity status before taking the medication. The response Y is 

5 class ordinal variable shows the severity of patient’s RA severity after taking the medication.  

 The primary aim of this study is to determine what factors play a significant role in 

determine the response after taking the medicine. First, cumulative logistic regression is applied 

to the dataset to examine the effect of various factors on ordinal response. Secondly, the ordinal 

response is categorized into two classes. Then logistic regression is conducted to the RA dataset 

to see if the variable selection would be different. Moreover, the shrinkage methods, elastic net 

and lasso are used to make a variable selection on the RA dataset of two-class response for the 

purpose of adding penalization to increase the model’s robustness. 

 The four model results were compared at the end of the paper. From the comparison result, 

logistic regression has a better performance on variable selection than the other three approaches 

based on P-value.
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Rheumatoid arthritis (RA) is a type of autoimmune arthritis which is caused by the faulty 

immune system and creates inflammation in joints [1]. Moreover, it may cause the tissue that lines 

the inside of joints to thicken that lead to swelling and pain in the joints. The elastic tissue 

“cartilage” which is the cover of the end edges of bones in joints may be damaged if the disorder 

of inflammation is not controlled. The joint spacing between bones will become smaller due to 

loss of cartilage. Joints will be unstable and painful. Joints may lose their mobility when the 

condition is severe. Joint damage cannot be reversed and may lead to deformity. Doctors 

recommend early diagnosis and treatment to control rheumatoid arthritis since joint damage can 

occur early. Joints of the hands, feet, wrists, elbows, knees and ankles can be severely effected by 

RA. The joint effect is usually symmetrical which means the right knee joint will be effected if the 

left one is affected. Because RA also can influence the entire body system. That is why it is 

considered as a systemic disease [2]. 

According to the national statistics, There are about 1.5 million people in the United States 

have rheumatoid arthritis (RA). The amount of female RA patients is three times as the amount of 

male RA patients. For female, RA most begins at 30 to 60. In contrast, it often begins later in life 

for male. The odds of having RA will be increasing if there are RA patients in families. But the 

most RA patients do not family history of the disease [2]. 
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The cause of rheumatoid arthritis is not clear exactly. The abnormal response of the 

immune system is considered as the main reason for joint inflammation and. The risk factors 

include gene, infectious agents, female hormones, obesity, environment and the body’s response 

to stressful events [2].  

Rheumatoid arthritis is a chronic immune disease that cannot be cured. But some 

medications can slow disease activity. Corticosteroids which the major medications are 

prednisone, prednisolone and methylprednisolone have an obvious effect of anti-inflammatory. 

They are used to control the potential damage of joint inflammation. DMARD is an abbreviated 

form of the disease-modifying anti-rheumatic drug which is used to improve the course of RA. 

Biologics may slow, improve and stop RA when other treatments do not help for some patients. 

Every biologic may block a specific step in RA progress. Abatacept, adalimumab, anakinra, 

certolizumab pegol, etanercept, infliximab, golimumab and rituximab are the most 

popular biologics [2]. 

           

1.2 Study Objectives 

This research aims to apply the methodologies to the rheumatoid arthritis clinic data to do 

the significant factor analysis. 

The objectives of this research are to (1) conduct a cumulative logistic regression to 

examine the influence of various factors in rheumatoid arthritis clinical trial data, then we divided 

the response variable into two classes and apply a logistic model to make the variable selection (2) 

apply penalized approaches to the RA data of the two-class response variable to determine which 

factors affect the outcome significantly and compare the two shrinkage methods according to the 

results. 
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1.3 Organization 

This document is organized as follows: 

• Chapter 2 is a data introduction. Detailed description of the variables are presented. 

The plots of relationship among the variables are shown.  

• Chapter 3 presents the methodology applied, including model formulation and model 

fitting. 

• Chapter 4 presents the results for each model described in the methodology section. 

• Chapter 5 includes conclusion of the study. 
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CHAPTER 2: DATA 

 

The rheumatoid arthritis clinical trial (RA) dataset is used for this analysis. The dataset is 

extracted from “Statistics in Medicine, 1994” which is a peer-reviewed medical statistics journal 

published by Wiley. Established in 1982 [9]. The data is a record of the clinical trial of 302 RA 

patients that are measured on a five-level response which is the rheumatoid arthritis self-

assessment score from 1 to 5. There are 302 observations on 5 variables in the dataset. The 

following refers to the description of the RA data. 

  

1 for very good after 3 months clinical trail 

  2 for good after 3 months clinical trail 

          y 3 for fair after 3 months clinical trail 

  4 for poor after 3 months clinical trail 

  5 for very poor after 3 months clinical trail 

  1 for very good before clinical trail 

  2 for good before clinical trail 

baseline  3 for fair before clinical trail 

  4 for poor before clinical trail 

  5 for very poor before clinical trail 

sex 0 for male 

1 for female 

 

age Patients' age recorded at the baseline 

trt 
0 for the drug group  

1 for the placebo group. 

 

In Rheumatoid Arthritis clinical trial dataset, “age” is a continuous variable. It describes 

the patients’ age in clinical trial. “y” and “baseline” are ordinal variables. “y” and “baseline” refer 

to the  patients’ self-assessment score of rheumatoid arthritis after three-month medication 
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treatment  and original self-assessment score of rheumatoid arthritis when they enrolled in this 

study.  “sex” is a binary variable which is the patients’ gender. The patients are divided by two 

groups to test the efficacy of the drug. One group took the new medication for an experimental 

treatment. The other group which is the non-drug therapy group is recorded as the placebo group 

in the study. 

 

 

Figure 2.1. RA self-assessment score before the medication treatment 

 

Figure 2.2. RA self-assessment score after the medication treatment 
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 From Figure 2.1 and Figure 2.2, we can see the population change of different RA score 

during the clinical trial.  

 

Figure 2.3.  Age distribution of male and female RA patients 

 

Figure 2.4. Age distribution of drug group and non-drug group 

 Figure 2.3 shows the RA male and female patients’ age. In Figure 2.4, age distribution of 

RA patients in drug group and non-drug is shown. Most of patients in this clinical trial are at age 

of 40 to 60. 
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CHAPTER 3: METHODOLOGY 

 

This chapter presents the methodologies applied to achieve the goals of this study. The 

methodologies of logistic regression, ordinal logistic regression, elastic net regression and lasso 

regression are shown in detail in this chapter. 

 

3.1 Logistic Regression 

Logistic regression is used to analyze the relationship between the dependent variables 

which are categorical [3]. It is called a cumulative or ordinal logistic regression when used to 

predict the probabilities of ordinal outputs.  

3.1.1 Model Formulation 

Suppose we have random variables (X, Y), where X ∈ R, Yi is a dichotomous variable and 

Y∈ {0, 1}. Y is defined as a Bernoulli random variable. So the success probability is Pr(Y =1 |X) 

= p(X), where p(X) is the logistic function. That is 

0 1

0 1
( )

1

X

X

e
p X

e

 

 







   (1) 

This formula generates from 0 1( )p X X     which is the probability of simple linear 

regression. 

 From equation (1) we have: 

0 1
( )

1 ( )

p X
e

P X

 



  (2) 
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 Manipulate the equation (2) by taking the logarithm of both sides, we have: 

0 1

( )
log( )

1 ( )

p X
X

P X
  


 (3) 

Where 0 1e
  = 

( )

1 ( )

p X

P X
∈ (0, ∞) is the odds and 

( )
log( )

1 ( )

p X

P X
is the log odds. 

 Then we can derivate the odds ratio formula from equation (3), that is  

OR=
0 1

1

0 1

( 1)

( 1)

1 ( 1)

( )

1 ( )

X

X

p X

P X

p X e

p

e
e

X

 


 

 













 

 The logistic model is called a cumulative or ordinal logistic model when the depend 

variable is ordinal. Let the ordinal response variable be Y=1, 2, 3...j [5]. The relevant probabilities 

are {
1 2 j    }, the corresponding cumulative probability of a response less than equal to j 

is: 

1 2( ) jp Y j       =  
exp( )

1 exp( )

j

j

x

x

 

 



 
 

 The cumulative logit is defined as 

1

1

( ) ( )
log log log

( ) 1 ( )

j

j J

p Y j p Y j

p Y j p Y j

 

 

      
                 

 

3.1.2 Model Fitting 

 Typically, we use the ordinary least squares (OLS) approach by estimating the coefficients 

0  and 1 in linear regression. However, maximum likelihood is a better method compared with 

non-linear least squares to fit a logistic regression model [3]. The basic intuition is finding the 

estimates of 0  and 1  for the predicted probability of p(X) to calculate a value close to 1 for all 
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the success and a value close to 0 for all the failure. The maximum likelihood function is: 

' '

'

0 1

: 1 : 0

( , ) ( ) (1 ( ))
i i

i i

i y i y

l p x p x 
 

     

We maximize this likelihood function by choosing the estimates of 0  and 1 . 

 Deviance is an appropriate approach to test the fit of a dataset in a logistic regression model. 

This approach is similar to the sum of squares calculation in linear regression in some ways. The 

model fits well if its deviance is small. The formula is defined as: 

   ( ) 2 log ( ) log ( )sDev V l V l V         

Where sV is the saturated model which means a model with the perfect fit. V is the fitted model. 

 log ( )l V  and  log ( )sl V are the log-likelihood of  V and sV .  ( )Dev V  follows chi-square 

distribution.  

 

3.2 Shrinkage Methods 

Shrinkage method refers to a useful approach of estimation or prediction when two or more 

of the independent variables in a regression model are correlated. In other words, it is a method of 

fitting a regression model with all predictors [4]. The goal of this method is reducing the related 

variance significantly by regularizing or shrinking the coefficient estimates towards zero to make 

the variable selection. In this chapter, we introduce two shrinkage regression models which are 

elastic net and lasso. 

3.2.1 Model Formulation 

Suppose we have a multiple regression model. 

0 1 1 2 2 p pY x x x         
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Where 1(  , , ), 1nY y y n   and 1(  , , ),pX x x n p   

The formula of ordinary least squares estimates of parameter β is: 

1( )T Tx x x y   

Where 
1( )Tx x 
is inverse of matrix of Tx x  and 

Tx y  is the vector of their sums of products with y. 

The ordinary least square estimator   is the best fitting and best linear unbiased estimator. Its 

variance is:  

1 2var( ) ( )Tx x   

Where the matrix 
1( )Tx x 
is near singular, so var( ) will have many elements.   is not clearly 

stated and explained under exact collinearity. In such a situation, shrinkage methods can be used 

to trade bias for variance [4]. 

 Elastic net is one of regularization models. It prevents coefficients of linear regression 

models with many correlated variables with high variance. It can shrink the coefficients of 

correlated predictors towards zero to make a variable selection [5]. 

 Elastic net regression is based on the least squares coefficient estimates of linear regression 

that is using the values that minimize residual sum of squares, which is 

2

0
1 1

( )
pn

i j ij
i j

RSS y x 
 

      

 The values of coefficient estimates of elastic net minimize 2

1 1

p p

j j
j j

RSS    
 

    which 

the formula is  

2 2 2

0
1 1 1 1 1 1

( )
p p p p pn

j j i j ij j j
j j i j j j

RSS y x         
     

              
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2

0

1 1

min
pn

i j ij

i j

y x 
 

   
   

   
   

 subject to 2

2
1

p

j
j

t


    

                    1
1

p

j
j

t


   

Where λ ≥ 0 is the tuning parameter and 2

1 1

p p

j j
j j

   
 

   is the shrinkage penalty. 
1t and 2t refer 

to the tuning parameters of lasso and ridge. 

 The Lasso is a relatively alternative method of elastic net. It also can make the variable 

selection [5]. 

                                    2

0
1 1 1 1

( )
p p pn

j i j ij j
j i j j

RSS y x     
   

          

2

0

1 1

min
pn

i j ij

i j

y x 
 

   
   

   
    

subject to 1
1

p

j
j

t 


   

            We see that the lasso and elastic net regression have similar formulations. The difference 

is the penalties. The lasso uses an L1 penalty. The L1 penalty has the effect of forcing some of the 

coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large. 

3.2.2 Model Fitting 

λ is defined as the tuning parameter. The value of λ is greater than zero. The usage of tuning 

parameter λ is controlling the coefficient estimates. The following is the explanation of the effects 

of different values of λ. 

(1) When λ = 0, the least squares estimates will be produced. It means there is the effect 
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for penalty term. 

(2) When λ →∞, the coefficient estimates will be close to 0. It indicates the growth of the 

effect of shrinkage penalty. 

 Cross-validation is the method of selection of tuning parameter. The primary concept is 

choosing a grid of λ values and computing the cross-validation error for each value of λ. Then we 

select the best tuning parameter which has the smallest cross-validation error. At last we fit the 

model by using all observations and the best tuning parameter. The function is given by 

( )

1

1 k

k i

i

CV MSE
k 

   

 

Where iMSE is the mean square error. 

                              

( )

1

1 k

k i

i

CV Err
k 

   

Where ( )i i i
Err I y y  .This formula is defined as cross-validation on classification problems. 
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CHAPTER 4: RESULTS  

 

This chapter presents the results by using different models. The results that analyzed by 

logistic regression are illustrated in the first part. Two Logistic regression models have been 

applied to the RA dataset to make a comparison on variable selection for different response 

classifications. A comparison between two regularization models on variable selection in the RA 

dataset when response variable has been divided into two classes is presented in 4.2. 

 

4.1 Logistic Regression 

 The logistic regression model is applied to analyze the RA dataset in the first part.  First, 

we aim at the response variable “y” which is the final self-assessment score of rheumatoid arthritis 

to evaluate the impact of the other variables at different self-assessment scores. The predictor 

variables are the age of patients, the gender of patients, the self-assessment score of rheumatoid 

arthritis at each baseline and the different treatment groups of patients.  

 

Table 4.1. Ordered log-odds, odds ratio, p-value and 95% CI of predictor variables 

Variable  Ordered log odds Odds ratio P-value 95% CI 

sex -0.15788 0.8539552 0.2458468 [ 0.6539397, 1.1148591 ] 

trt -0.48097 0.6181837 0.00010168 [ 0.4847353, 0.7874804 ] 

baseline2 0.63288 1.8830283 0.01754823 [ 1.1174971, 3.1800030 ] 

baseline3 1.13816 3.1210301 0.000008 [ 1.8958975, 5.1562383 ] 

baseline4 2.46945 11.8159101 1.4023E-17 [ 6.7195089, 20.9077778 ] 

baseline5 4.0324 56.3961248 1.91E-21 [ 24.7443444, 130.8564469 ] 

age  -0.01229 0.9877886 0.02941853 [ 0.9768979, 0.9987502 ] 
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 From the column of ordered log-odds in Table 4.1, we could see that the self-assessment 

score of rheumatoid arthritis “y” is expected to change since the predictor variables increase by 

one unit or level. For the dichotomous variable “sex”, the ordered log-odds of females was -

0.15788 less than males in a higher self-assessment score when the other variables in the model 

are held constant. The variable “trt” which is defined as dichotomous treatment group “drug” and 

“placebo” has an ordered log-odds of -0.48097. This indicates the decreasing in ordered log-odds 

of comparing placebo group to drug group. With the increase in “age” at higher self-assessment 

score, the ordered log-odds is decreasing by 0.01229.  For the ordinal predictor variable “baseline”, 

every ordered logit odds of different level of “baseline” is increasing with the higher self-

assessment score of rheumatoid arthritis. The values of odds ratio of “age”, “sex” and “trt” are less 

than 1. That indicates the exposure associated with lower odds of outcome. In contrast, each score 

of the “baseline” has a greater magnitude for the response variable “y” compared to other three 

predictor variables. From all results of p-value, we could summarize that the variable “trt” is 

statistically highly significant as P < 0.001. The “baseline” has a great effect for all responses of 

“y” when its score values are 2, 3, 4 and 5. The variables “age” and “sex” do not influence final 

self-assessment score of rheumatoid arthritis “y” significantly. The range of 95% CI for all 

predictor variable are shown in the column. All 95% CI of all variables do not cross 0. It indicates 

that the parameter estimates are statistically significant. 

 Then we divide the response variable “self-assessment score of rheumatoid arthritis “y” for 

two groups “good for y < 3” and “severe for y>= 3” in order to make a comparison between the 

significate variable selection of the logistic regression on different classification of response. 
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Table 4.2. Two-class log-odds, odds ratio, p-value and 95% CI of predictor variables 

 Variable log odds Odds ratio P-value 95% CI 

sex 0.13809 1.148085 0.2458468 [-0.4865685, 0.7627599] 

trt -0.327838 0.7204797 0.2392319037 [-0.8738030, 0.2181268] 

baseline2 1.09500 2.989191 0.0270104426 [0.1244872, 2.065518] 

baseline3 1.77808 5.918502 0.0002086449 [ 0. 8383084, 2.717858] 

baseline4 2.10396 8.198575 0.0001966691 [0.9964122, 3.211508] 

baseline5 16.97979 0.00000023 0.9812004129 [-0.00139533, 1429.297] 

age  -0.002174 0.9877886 0.6648019462 [0.02692466, 0.02257533] 

 

 In Table 4.2, the values log-odds and odd ratio are changed compare to the values in Table 

4.1 due to different classification of response variable .“baseline” has the least p-value. It indicates 

“baseline” is the most significate variable in the model when the value of “baseline” are 2, 3, and 

4. “sex”, “trt” and “age” do not have the influence on final RA score. The values of 95% CI of 

variables “sex” “trt” and “baseline5” cross zero. This indicates the parameter estimates are not 

statistically significant. 

 From the results of Table 4.1 and Table 4.2, we can conclude that the variable selections 

are different which we the classification of response are different. The most significant difference 

is that “trt” no longer influence the response variable “y” when “y” is dichotomous.  

 

4.2 Shrinkage Methods Comparison  

In this section, we apply lasso and elastic net regression models to the RA dataset to 

estimate the performance of the variables. We divide the response variable “self-assessment score 

of rheumatoid arthritis “y” for two groups “good for y < 3” and “severe for y>= 3” Then we 

compare the results of these two shrinkage methods. These two methods would shrink some 

coefficient estimates to 0. The predictor variables which have the coefficient estimates of zero are 
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not considered as the significant factors [8]. The plots in Figure 4.2 illustrate the relationship 

between regression coefficients and the penalty parameters in lasso and elastic net. 

.  

Lasso 

 

Elastic net 

 

Figure 4.1. Plots of coefficients vs log lambda 

 

 

 In Figure 4.1 the plots show nonzero coefficient estimates as a function of the tuning 

parameter  . Lasso and elastic net have the similar plots. In two plots, the values of some 

coefficients are zero. Thus, the relative variables must be removed due to insignificance in the 

model. 
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Elastic net 

 

Lasso 

Figure 4.2. Plots of lambda of elastic net vs lasso 

 In Figure 4.2, the plots show the binomial deviance as a function of the tuning parameter

 in lasso and elastic net regression. The best λ for the model in elastic net and lasso regression 

are 0.002399396 and 0.002096507. 

 

Table 4.3. Coefficient estimates of all predictor variables in elastic net and lasso  

Model sex trt age baseline2 baseline3 baseline4 baseline5 

elastic net 0.1249 -0.3063 -0.0018 0.9154 1.5977 1.9051 4.6999 

Lasso 0.1132 -0.2977 -0.0014 0.9053 1.5925 1.8991 4.7682 
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 From Table 4.3, we could see the values of the coefficients in elastic net and lasso model 

when the best tuning parameters have been selected by ten-fold cross-validation. In elastic net and 

lasso, none of coefficient estimate of a predictor variable is equal to zero [6]. The absolute values 

of coefficients of “baseline5” are the greatest in two models. That means “baseline5” is the most 

significant variable in two models. Overall, the absolute value of “baseline” is the greatest that 

demonstrates “baseline” is the most significant value in two models. In contrast, the values of 

coefficients of “sex”, “age” and “trt” are less than 1 in two models. It indicates these three variables 

do not affect the response variable “y” significantly.   

 

Lasso 

 

Elastic net 

Figure 4.3. Plots of misclassification error vs lambda 
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 From Figure 4.3, we could know that elastic net model has a better fit for the RA dataset 

compare to lasso model since its values of overall misclassification error are less than lasso.  

In conclusion, there is no obvious difference on variable selection of two shrinkage 

methods. The elastic net fits the RA data set better than lasso due to smaller values of overall 

misclassification error. 
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CHAPTER 5: CONCLUSION 

            

            The results in last chapter show that the different significant variable selections by applying 

different models to the RA dataset. The results of all models show that “baseline” is the most 

significant predictor variable. The variable “trt” has the impact on “y-final RA score” in the logistic 

model when “y” is defined as the ordinal outcome. Typically, age and gender are considered as 

risk factors in rheumatoid arthritis research. However, these two factors do not influence the final 

RA score in this study. 

          This study illustrates how logistic regression and shrinkage method applied in a small 

categorical medical dataset. Logistic regression can make use of one or more predictor variables 

that may be either continuous or categorical. It is usually used for predicting qualitative responses. 

Lasso and elastic net can make an easy variable selection when the coefficient estimate is shrunk 

to be exactly zero [7]. But these two models do not shrink any coefficient estimate to zero in this 

study. Elastic net model is better on model fitting comparing with lasso model. Comparing to 

shrinkage methods, logistic regression has better performance on variable selection based on P-

value [8].         

           

.  
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