|E230 CONCISE NOTES Revised January 9, 2011
Purpose: These concise notes contain the definitions and results for Purdue University’s
course | E 230, "Probability and Statistics for Engineers, 1".

The purpose of these notes is to provide a complete, clear, and concise compendium.
The purpose of the lectures, textbook, homework assignments, and office hours is to
help understand the meanings and implications of these notes via discussion and
examples.

Essentially everything here is in Chapters 2—7 of the textbook, often in the highlighted
blue boxes. Topic order roughly follows the textbook.

Textbook: D.C. Montgomery and G.C. Runger, Applied Satistics and Probability for
Engineers, John Wiley & Sons, New Y ork, 2007 (fourth edition).
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Set-Theory Review

A set isacollection of items; each such itemis called a member of the set.

If aset A hasmembersx, y, and z, we can write A ={ x,y,z} and, for example, x < A.

If a set has members defined by a condition, we write A ={x | x satisfies the condition}.
The vertical lineisread "such that".

The largest set is the universe, the set containing all relevant items.

The smallest set is the empty set (or, sometimes, the null set), the set containing no
items; it is denoted by & or, occasionally, by {}.

If all members of aset A are contained in aset B, then A isasubset of B, written A < B.
If two sets A and B contain the same members, then they are equal, written A =B.

The union of two sets A and B is the set of items contained in at least one of the sets;
thatis, AUB ={x|xeAorxeB}.

The intersection of two sets A and B is the set of items contained in both sets; that is,
ANB={x|xeAandx eB}. Thisintersectionisalso written AB.

The complement of a set A is the set of al items not contained in the set; that is,
A'={x|x ¢A}.

SetsE,, E,,..., E, partition the set A if each member of A lies in exactly one of the n
partitioning sets. (Equivalently, if their union is A and their pairwise intersections
areempty. Thatis, if A=U" E andE, N E; = for every pair E; and E; )

Distributive Laws. For any sets A, B,and C, AUB)NC=(ANC)u (B NC) and
(ANB)UC=(AUC)N (B UC).

DeMorgan’s Laws. For any setsA andB, (A UB) =A'"nB'and (A N"B)' =A"UB'".

The cardinal number of aset A, denoted by #(A),is the number of membersin A.
— A set A isfiniteif #(A) isfinite; otherwise A isinfinite.
— Aninfinite set A is countably infinite if its members can be counted
(to count a set means to assign a unique integer to each member);

— otherwise A is uncountably infinite (e.g., the set of real numbers).

The open interval (a,b) is the set {x |a <x < b}, al real numbers between, but not
including, a and b. Square brackets are used to include a and/or b. Except for
[a,a], the closed interval containing only the one member a, non-empty intervals
are uncountably infinite.

The real-number line isthe open interval (—oo, ).

A function assigns a single value to each argument. The set of arguments is called the
domain and the set of values is called the range. For example, f (x)=x* has the
real-number line as its domain and [0, ) as its range. For example, let the domain
be a set of students, let the function be the weight of each student; then the range is
the set of student weights.
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Probability Basics (M&R Chapter 2)

All of probability and statistics depends upon the concept of a random experiment,
defined to be a procedure that can result in a different outcome each time it is
performed. Each replication of the experiment has exactly one outcome.

Experiments are sometimes classified into two types:

Enumerative: sampling from awell-defined finite set. (e.g., personsin the room).
Analytical: other sampling (e.g., next year’s students).

A set containing all possible outcomes is caled a sample space. An experiment can
have many sample spaces; we try to choose the ssimplest one that is sufficient to
answer the question at hand. Denote the chosen sample space by S.

A sample spaceisdiscreteif it has afinite or countably infinite number of members.

A set, say E, isan event if it isasubset of S; that is, if E < S. For agiven replication of
the experiment, E occursif it contains the outcome; otherwise it does not occur.

In practice, an event E can be a verbal statement that istrue if the event occurs and
falseif the event does not occur.

The complement of the event E isthe event E'.
—FE' occursif (and only if) the outcome does not liein E.
—The statement for E' is the negation of the statement for E.
—TFor each replication, exactly one of E and E' occurs.

Theintersection of eventsE, and E, isthe event E; N E.,
—E, N E, occursif (and only if) the outcome liesin both E; and E,,.
—The statements for E; and E, must both be true for E; N E,, to occur.
—The complement of E;, "E,iS(E;NE,)=E,UF,.
That is, (E; N E,)’ occursif either E, or E, or both do not occur.
Theunion of eventsE, and E, istheevent E; U E.,.
—E, UE, occursif (and only if) the outcome liesin E, or in E., or in both.
—Either or both of the statements for E; and E, must be true for E; U E,, to occur.
—The complement of E; UE,iS(E;UE,)=E;NFE,.
That is, (E, U E,)" occursif both E, and E,, do not occur.
Every subset of S isan event, so an experiment always has multiple events.
—Thelargest event is S, which always occurs.
— The smallest event is the empty set, &, which never occurs.
Definition. Two events, say E, and E,, are mutually exclusive if they cannot both occur
in the same replication of the experiment; that is, if E; N E,=J. More generally,

n events, say E,, E,,..., E,, are mutually exclusive if only one can occur in the same
replication; that is, if E; N E; = @ for every pair of events.

The correspondence between set theory and probability theory is that the universe is the
sample space, the items are outcomes, and sets are events.
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The probability of an event E, denoted by P(E), isanumerical measure of how likely the
event E isto occur when the experiment is performed.

There are two commonly used interpretations of probability.

Relative frequency: If the experiment were repeated infinitely often, P(E) is the
fraction of the replications in which E occurs. (This interpretation is
sometimes called "objective".)

ubjective: P(E) is a measure of belief about the likelihood that E will occur in a
particular replication.

Alternative statements of probability.
"Theoddsof E are2in 3" isequivalent to "P(E) =2/3".
"The odds of E are2to 3" isequivalent to "P(E) =2/5".
"E hasa70% chance" isequivalent to "P(E) = 0.7".
"E hasa50-50 chance" isequivalent to "P(E) = 0.5".
A baseball player batting 282 has hit successfully with relative frequency 0.282.

All results of probability follow from three axioms.
Axiom 1. P(S)=1. (That is, the probability of the "sure" event isone.)
Axiom 2. For every event E, 0<P(E). (That is, probabilities are non-negative.)
Axiom 3. For all mutually exclusive events, and E,,

P(E,VE,) = PE)+PE,.

(That is, if two events cannot occur simultaneously, then the probability that
one or the other occursis the sum of their probabilities.)

Five useful probability results that are easily proven using the three axioms:

Result. (Complement) For every event E, P(E')=1-P(E). (In particular,
P(D) =1- P(S) =0; that is, the "impossible" event has probability zero.)

Result. (Dominance) If E, cE,, then P(E,) <P(E,). (That is, if two events differ
only in that one contains more outcomes than the other, the larger event
cannot be lesslikely.)

Result. (Axiom 3 extended to n events) If events E|,E,, ..., E, are mutualy
exclusive, then

P(ULE) = S PE).

(That is, if only one of the n events can occur, then the probability that one of
them does occur is the sum of their probabilities.)

Result. (Equally likely events) If equally likely events E,, E,,..., E, partition the
sample space, then P(E;) = 1/n fori =1,2,...,n.

Result. (Alwaystrue) For any two events, and E,,,
P(E,UE,) = P(E) + PE,) - PE,;NE,).
More generally, for any three eventsE,, E,, and E,
P(E,UE,UE,) = P(E,) + PE,) + P(E,)
- P(E,NE,) - PE;NE,) — PE,NE,)
+PE,NE,NEy.

Y et more generally, for n events continue to alternate signs.
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Definition. The conditional probability of an event E,, given that an event B has
occurred, is

PE;NB)
PB)
—If P(B) =0, then P(E, | B) is undefined.
—The given event B is assumed to have occurred; that is, the outcomeisin B.

—The given event B becomes the sample space.
—P(E,) =P(E, | S) isthe unconditional or marginal probability of E.

PE,|B) =

Multiplication Rule. For any nonempty events B and E;,

PB NE) = P(B) P(El| B) = P(E,) P(B | E,).
Baby Bayes's Rule. For any eventsE, and B, if P(B) > 0, then
P(B | Ey) P(EY)

PE,|B) = &)

The full Bayes' s Ruleis obtained by expanding P(B) using Total Probability.
Total Probability. (Applying thisruleis sometimes called conditioning.)
For any events B and E
P(B) = PB NE)+PB NE,) = P(B|Ey)PE,)+PB |E)PE ).
More generaly, if eventsE,, E,,..., E, partition S, then for any event B

n n
PB) = ¥ PBNE) = XPB|E)PE).
i=1 i=1
Result. (Independent events) The following four statements are equivalent; that is, either
al arefalse or al aretrue. Often, Statement (2) is chosen to define independence.

(1) Events A and B are independent.
(2) P(A N"B)=P(A)P(B)
(3) P(A | B) =P(A)
(4) P(B |A)=P(B)
Result. (Independence of complements) The following four statements are equivalent.
(1) Events A and B are independent.
(2) Events A’ and B are independent.
(3) Events A and B’ are independent.
(4) Events A’ and B’ are independent.
Extended Multiplication Rule. For any nonempty events A , A,,..., A,
PA,NA, N = MA) = PAAYPA, [ A) PAZ | AL NAY) - PA |A N DAL
Definition. Then events A, A,,..., A, are (jointly) independent if and only if
PALN AN - N A =PA)PA) - PR,
for every subset A |, A,...., A Of then events, fork =2,3,...,n.

A weaker form of independence is pairwise independence, which requires only that
every pair of events be independent (k = 2 in the definition).
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Discrete Random Variables and Probability Distributions (M&R Chapter 3)

Definition. A random variable is a function that assigns a real number to each outcome
in the sample space of an experiment.

—Traditionally, we denote random variables by upper-case letters toward the end
of the English alphabet; e.g., X.

—In practice, a random variable can be a verba statement; e.g., the experiment is
to select arandom student and X = "the student’ s grade point.”

—Events can be constructed from random variables; e.g., "X > 3.0" is an event
(defined by the set of students whose grade point is greater than 3.0).

Definition. The probability distribution of a random variable X is a description (in
whatever form) of the likelihoods associated with the values of X.

Definition. The cumulative distribution function, often abbreviated cdf, of a random
variable X isF (x) = P(X < x) for every real number —oo < x < oo,

Result. For every random variable X, if a <b, thenP(a < X <b)=F(b) - F(a).
Result. F (—o) =0 and F («) = 1. More generadly, if x <y, then F(x) <F (y).
(That is, every cdf isnondecreasing. Thisisaspecial caseof P(A) <P(B)if AcB.)

Definition. A random variable is discrete if its range is finite or countably infinite. A
random variable is continuous if its range is uncountably infinite.

—Often, discrete random variables arise from counting.
—Often, continuous random variables arise from measuring.

Definition. For a discrete random variable X, the probability mass function, often
abbreviated pmf, is f (x) = P(X = x) for every real number - < x < oo,

(Notice that the cdf is denoted by an upper-case F, whereas the pmf is denoted by a
lower-case f. Later, when dealing with more than one random variable, we will
use the more-explicit notation F, and f.)

Result. For a discrete random variable X having possible values x;, x,..., x,, the cdf is

Fx)= Y f(x) foreveryreal number —o<x < o.
alx <x

Definition. For a discrete random variable X having possible values x,, X,..., X,, the

mean or expected value is the constant E(X) = 3" x f (x).
—Traditionally, the mean is also denoted by . or, more explicitly, by p, .
—Because 3", f (x) = 1, the mean is the first moment, or center of gravity.

n?

Definition. The variance of arandom variable X isthe constant V(X) = E[(X — n)3.
—Traditionally, the variance is also denoted by o or, more explicitly, by of.
—The variance is the second moment about the mean, or moment of inertia.

Result. For a discrete random variable X having possible values x,, x,,..., X

n?

VX) = 3 (6 -w>fx) = 3 x7f(x)-pn’=EX)-p’.

i=1 i=1
Definition. The standard deviation of X isthe constant ¢ = oy = +\W(X).
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Definition. A random variable X has a discrete uniform distribution if each of the n
numbersinitsrange, say x,, X,,..., X, has equal probability.

Result. Suppose that X has a discrete uniform distribution on the n > 1 equally spaced
numbers from a to b. Then the mean and variance of X are

(b - a)T N+l
12 n-1J
Definition. A sequence of Bernoulli trials has three properties:
(i) Each trial has exactly two outcomes (often called "success' and "failure”).

(it) Each trial has P(success) = p, which is a constant.
(i) Each trial isindependent of every other trial.

E(X) = a+b

and V(X)=

Definition. A binomial experiment is an experiment composed of n Bernoulli trias.
Definition. An ordering of r elements from a set of n elementsis called a permutation.

Definition. A selection (without regard to order) of r elements from a set of n elements
is called a combination.

Result. A set of n elementshasn! =nx(n-1)x(n-2)x - - - x2x 1 permutations.
(An empty set has 0! = 1 permutation.)

Result. The number of permutations of r elements from aset of n elementsis

n n!
= forr =0,1,...,n.
(n—r)!
Result. The number of combinations of r elements from a set of n elementsis
n n! prn
C'=| |=————=— forr=01,..,n
N ri(n-r) r!

Definition (not precise). Suppose that counts occur at random throughout a real-number
interval (typically of time or space). The random experiment is caled a
(homogeneous) Poisson process if the interval can be partitioned into equal-length
non-overlapping subintervals of small enough length that

(i) the probability of more than one count in asubinterval is zero,

(ii) the probability of one count in a subinterval is the same for all subintervals
and proportional to the length of the subintervals, and

(iii) the count in each subinterval isindependent of other subintervals.

(An example: Customer arrivals. Condition (i) says that customers arrive
separately; Condition (ii) says that the arrival rate is constant (that is,
homogeneous) and that the probability of a customer arriving during a two-second
subinterval is twice the probability of a customer arriving during a one-second
subinterval; Condition (iii) says that the number of customers in one subinterval is
not useful in predicting the number of customers in another subinterval.)

Result: Poisson Approximation to the Binomial Distribution. The Poisson process is
(asymptotically) equivalent to "many”, n, Bernoulli trials, each with a "small"
probability of success, p. Therefore, the Poisson distribution with mean np is a
good approximation to the binomial distribution when n islarge and p issmall.
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random distribution  range probability expected variance
variable name mass function  value
n n
X general X1, X0 or Xy PX =X) Sx ) S04 —w3f(x)
i=1 i=1
=f(x) ==y =02=G§
=fy(x) =E(X) =V(X)
= E(X%) - p?
n n
X discrete Xy Xp ooy X, 111N S x/n  [Ix°/n]-p?
i=1 i=1
uniform
a+b c?(n*-1)
X equal-space x=a,a+c,..b 1/n ) "
uniform where n=(b-a+c)/c
"# successesin  indicator x=0,1 p*(1-p)*™* p p(1-p)
1 Bernoulli variable
trial" where p =P("success")
"# successesin  binomial x=01..,n C'p*(-p)"* np np(1-p)
n Bernoulli
trials’ where p =P("success")
. _ N-
"#successesin  hyper- X = cicl e np np(l—p)((er))
asample of geometric  (n—(N-K))",
sizen from ~omin{K,n} where p=K /N
apopulation (sampling and
of sizeN without integer
containing replacement)
K successes'
"# Bernoulli geometric  x=1,2,... p(1-p)<? 1/p (1-p) / p*
trials until
1st success' where p =P("success")
"# Bernoulli negative X=r,r+l,.. Cp@p) rip r (1-p) / p*
trials until binomial
r th success' where p =P("success")
"#of countsin  Poisson x=0,1,.. et /x! mn n
timet froma
Poisson process where p=Aat

with rate A"

Result. For x =1,2,..., the geometric cdf isF, (x) =1 - (1-p)".

Result. The geometric distribution is the only discrete memoryless distribution.
Thatis, P(X > x +¢ | X > x) =P(X > c).

Result.

Purdue University

The binomial distribution with p=K /N
hypergeometric distribution when n issmall compared to N.
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Continuous Random Variables and Probability Distributions (M&R Chapter 4)

Comment. Concepts of, and notations for, the continuous case are analogous to the
discrete case, with integrals replacing sums.

Definition. For a continuous random variable X, the probability density function, often
abbreviated pdf, isafunction satisfying

(1) f (x) > 0for every real number x,
(i) [ f(x)dx=1,and
o )
(iii) P(a < X <b) =L f (x)dx for all real numbersa <b.

(The pdf is analogous to the pmf. The pmf is a probability, however, while the pdf
must be integrated to obtain a probability.)

Result. If X is continuous, then P(X = x) = 0 for every real number x.
(Therefore, e.g., P(a < X) = P(a < X), which is different from the discrete case.)

X
Result. For a continuous random variable X, the cdf isF (x) = P(X <x) :i f(u)du .

Definition. The mean of a continuous random variable X is the constant

p=py =EX) = [ xf(x)dx.

—00

Definition. The variance of a random variable X is the constant V(X) = E[(X — p)?.
(Unchanged from the discrete case.)

Result. For a continuous random variable X

0 [ee]

o’=og=V(X) = [ x-p?fx)dx = [ x*f(x)dx - p®=EX?) - p?.

—00 —00

Definition. The standard deviation of X isthe constant ¢ = o, = +\W(X).
(Unchanged from the discrete case.)

Definition. A random variable X has a continuous uniform (or rectangular) distribution
if its pdf forms arectangle with base[a, b].

Result. If X has a continuous uniform distribution on [a, b], then
(i) themean of X iISE(X)=(a +b)/2, and
(ii) the variance of X isV(X) = (b —a)?/ 12.
(Notice the analogy to the discrete uniform distribution.)

Definition. A random variable X has a triangular distribution if its pdf forms a triangle
with base[a,b] and mode at m, wherea <m <b.

Result. If X hasatriangular distribution on [a, b], with mode at m, then
(i) Themeanof X iISE(X)=(a+m+b)/3.
(i) The variance of X isV(X) =[(b —a)? - (m-a)(b —m)] / 18.
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The normal (or Gaussian ) distribution (see table) with mean p and standard deviation
— is often an adequate model for the sum of many random variables
(asaresult of the "Central Limit Theorem™),
— has a symmetric bell-shaped pdf centered at u, points of inflection at p - o and
1+ o, and range (-, ),
— is the only famous distribution for which the general notation p and ¢ are used
directly as the distribution’s mean and standard deviation.

— X ~N (p,0%) isread "X isnormally distributed with mean p and variance ¢*".

Definition. The standard normal distribution is the specia case of u=0and s =1. This
random variable is usually denoted by Z, its cdf by @, and its pdf by ¢.

Result. To convert between general and standardized normal distributions, use...
—1If X ~N (p,6°), then (X =) /o ~N (0,1).
—1fZ~N(0,1), then (n+5Z)~N (n,c%).

Probability calculations for the normal distribution are not closed form. Use numerical
methods, approximations, or tabled values.

— For X ~N (u,6°), relate p and x , where p = P(X <) = Fy (X)).
® MSExcel: Givenp, use"norminv"; given z,, use "normdist".
° Sketch the normal density and visually approximate the relevant area. Asan
aid, remember that

(1) P(u— o<X<up+ o) =~ 068
(i) P(u-26<X<pu+2c6) =~ 0.95
@ii)  P(u-3c<X<u+3c) =~ 0.997.

° Probabilities can be converted to standard normal probabilities using

X — —p
Fy (%) = PIX <) = P G“ P

X, — 1

1=PZ <2,)=(z,),

wherez, = isthe z-value obtained by standardizing X =x;.

(e}
— ForZ ~N (0,1), relate p and z,, wherep = P(Z < z,) = ®(z,).

° MSExcel: Givenp «[0,1], use "normsinv"; given z,, use "normsdist”.
°Table: p =cI)(zp)forzp =a,a+b,..,c-Db,c.

(Tablelll of M&R usesa =-4,b =0.01,andc =4.)
° One-line Approximations:

z, ~[p*® - (1-p)**]1/0.1975

p~1/[1+exp(-2z, (15966 +(z /14.)))]

Definition. The order statistics from a sample x;,x,, ..., x, are the sorted values
Xy <X@ < 0 $Xp That is, X is the minimum observation and x,, is the
maximum. (This éeﬁ nition is general, not dependent upon normality.)

A graphical test of normality. Given a sample of size n, plot each order statistic x;
against its standardized normal score z,, the p=(j —0.5)/n quantile. If the
resulting curve is approximately a straight line, then the sample data are consistent
with the observations having been drawn from a normal distribution.
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Result. Normal approximation to the binomial distribution. The normal (np,np (1-p))
distribution is a good approximation to the binomia (n,p) distribution when
min{py,n—pye} =nmin{ p,(1-p)} is"large”. (A common value for "large" is 5;
the approximation is asymptotically exact. See also "continuity correction”.)

Result. Normal approximation to the Poisson distribution. The norma (A,2)
distribution is a good approximation to the Poisson (1) distribution when p, =4 is
"large’. (A common value for "large" is 5; the approximation is asymptotically
exact. See also "continuity correction”.)

Definition. Continuity correction. Rewriting an event to reduce the error from
approximating a discrete distribution with a continuous distribution.

Let X be a discrete random variable. For simplicity, assume that the possible
values of X areintegers. Then, for integer constantsa and b,

Pla<X<b)=P(a-05<X<b +05).

The continuity-correction approximation of P(a<X <b) is the continuous-
distribution value of P(a — 0.5< X <b +0.5).

(The correction is crucial when a = b, but islessimportant asb — a increases.)

Result. From any timet, let X denote the time until the next count of a Poisson Process
having rate ». Then X has an exponential distribution with mean 1/ 1. (Heret can
be any time, including zero or the time of a particular count.) (See Table.)

Result. For any timet, let X denote the time until the rth count of a Poisson Process
having rate A. Then X is the sum of r independent exponential random variables
and X has an Erlang distribution with parametersr and 1. (See Table.)

Anaogy. The exponential distribution is analogous to the geometric distribution;
the Erlang distribution is analogous to the negative binomial distribution.

Definition. The gamma distribution is the generalization of the Erlang distribution in
which the parameter r > 0is not necessarily an integer. (See Table.)

Result. If Y is an exponential random variable with mean 1, then X =8 Y? is Weibull
with parameters 5 > 0and g > 0. (See Table.)

Definitions. Three types of distribution parameters:

— A location parameter is additive: Y =a + X. The distribution of Y isidentical to
that of X except that itslocation is shifted a units to the right.

— A scale parameter is multiplicative: Y =b X. Thedistribution of Y isidentical to
that of X, except that each unit of Y is b units of X; the location of zero is
unchanged.

— A shape parameter isnonlinear: Y = g(X; c), where the function g is nonlinear in
c. Thedistributions of Y and X have different shapes.

Result. Chebyshev's Inequality. The probability that a random variable X differs from
its mean by at least ¢ standard deviationsis no more than 1/ c?. Notationally,

P(X -u|2co) < 1/c?
for every constant ¢ > 0. Equivalently, the inequality can be written as
Plu—-co<X<u+co) > 1-1/c?.

(For example, every distribution has at least 8/9 of the probability within three
standard deviations of the mean. Chebyshev’sinequality holdsfor all distributions,
but seldom is a good approximation for a particular distribution.)
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random distribution range cumulative probability expected  variance
variable name distrib. func.  density func. value
oF (y) 0 o
X eneral —0,0) P(X <X —_— xf (x)dx x—n)“f (x)dx
g ( ) M ) dy |y=x _{O() _jw( n)f (x)
=Fy(x) =fy(x) =EX) = V(Xz) ,
=E(X") —p
-a 1 a+b b —a)?
X continuous [a,b] X - (b-a)y
b-a b-a 2 12
uniform
- 2(x—d a-+m-+b b-a)?- (m-a)(b-m
X tianguar  [a,b] (x-a)f (x)/2 (x—d) (b-a)"—(m-a)(b—m)
ifx<m,edse (ph-a)(m-d) 3 18
1-(b—x)f (x)/2 (d=aif x <m, elsed =b)
1 x-u]’
2 c
e
sumof  norma (—o0,0) Tablelll E— n o’
2n 6
random (or
variables  Gaussian)
timeto  exponentid [0,0) 1-e™* A 1/ 1722
Poisson
count 1
. 0 e—kx(kx)k }err—le—kx 5
timeto  Erlang [0,0) > r/a r/a
K (r =)
Poisson
count r
}brxrfleka
lifetime gamma [0,0) numerical _— r/a r /a2
I'(r)
B-1 _—(x/5)°
x" e 1 2
lifetime  Weibull [0,00) 1-—e®d P e ST(1+—) 8T (1+—)-p?
5P B p
Definition. For any r > 0, the gamma function isT(r) =L x' e dx.

Result. T(r)=(r - 1)I'(r — 1). In particular, if r isapositive integer, then T'(r) = (r -1)!.

Result. The exponential distribution is the only continuous memoryless distribution.
Thatis, P(X > x +¢ | X > x) =P(X > c).

Definition. A lifetime distribution is continuous with range [0, ).

Modeling lifetimes. Some useful lifetime distributions are the exponential, Erlang,
gamma, and Weibull.
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Joint Probability Distributions (M&R Chapter 5)

Comment. The topic is now two (or more) random variables defined on the same sample
gpace. Concepts and notation are analogous to those from Chapters 2—4. In
particular, independence of random variables is analogous to independence of
events, lower-case letters denote constants and upper-case letters denote random
variables, except that lower-case f denotes pmf’s and pdf’s, and upper-case F
denotes cdf’s. Subscripts become important.

Definition. A random vector is a vector whose components are (scalar) random
variables defined on a common sample space.

Definition. The joint probability distribution of a random vector (X, X,,..., X,) is a
description (in whatever form) of the likelihoods associated with the possible
values of (X;,X,, ..., X,). (When we consider n =2, the two random variables
often will be denoted by X and Y. Definitions are given here only for n = 2; they
extend to general values of n by analogy, as donein Section 5.2.)

Definition. The joint cumulative distribution function (cdf) of the random vector (X,Y)
is, for al real numbersx andy,

Fay(X,y)=P(X <Xx,Y <y),
where the comma denotes intersection and isread as "and".
Result. For al real numbersa, b, c,andd,
Pl@a<X<b,c<Y<d)=F(b,d)-Fy(b,c)-Fy(a,d)+Fy(a,c)
Definition. The joint probability mass function (pmf) of the discrete random vector (X, Y)
is, for al real numbersx andy,
fiy(X,y)=PX=Xx,Y =y).
Result. Every joint pmf satisfies
(1) fyy(x,y)=0, for al real numbersx andy, and
(2) > X fXY(X,y)=1.

dl xaly
Definition. The marginal distribution of X is the distribution of X alone, unconditional
onY (just asdiscussed in Chapters 3 and 4.)

Result. The marginal cdf of X is, for every real number x,

Fy (X) = Fyy (X,00).
Result. If (X,Y) isadiscrete random vector, then the marginal pmf of X is

fy(X)=PX=x)=3 fy,(x,y) forevery real number x ,
aly
the marginal mean of X is

EX)=py =Y xfy(x)=3 > xfy(X,y)
all x dlxaly

and the marginal variance of X is

VX)=0g =3 (X - 1)’ ()= 3 3 (x =)’ Fy (,Y) -
al x al xaly
Analogous results hold for the margina cdf, pmf, mean and variance of Y.
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Definition. If (X,Y) is adiscrete random vector with joint pmf f ., then the conditional
pmf of Y given X =x is

Fxy (X, ¥)

f -—
VXY ()

The conditional pmf of X givenY =y isdefined analogously.
Result. For every real number x at which fY‘x:X is defined,
Q) f, X _, =0 for every real number vy,
) a% fyx ¥ =1 and
y
Q) P(Y=y|X=x)= fY|X:X(y) for every real number y.

Result. The conditional mean and conditional variance of Y given X =x are

E(Y | X=x) = MY|x:x - nyY|X:X(y)
aly

if £, (x) > O.

and

VY [X=X) = o¢ = T 0hy )Ty ) 00 = B X =x) g
al
Result. If (X,Y) isadiscrete rarymdom vector, then
fy(X,y) = fX IY:y(x) fyly)= fY‘X :X(y) fy(x) forallx andy.
Definition. If (X,Y) is a discrete random vector, then X and Y are independent if and
only if f, (x,y)=fy(x)f,(y) foral x andy.
Result. If (X,Y) is a discrete random vector, then the following four statements are
equivalent; that is, either none are true or all aretrue.
(1) X and Y are independent.
2 fY|X:X(y) =fy(y) for al x andy with f, (x) > 0.
3 f |Y=y(X) =fy(x) foral x andy with f, (y) > 0.
(4 P(X € A,Y e B)=P(X ¢ A)P(Y < B) for al subsets A and B of (-, «0).
Definition. A multinomial experiment is composed of n trials satisfying
(1) each trial has exactly one of k outcomes,
(2) the probability of outcomei isp, fori =1,2,...,k
(and thereforep, + p, + - - - +p, = 1), and
(3) the trials are independent.

Definition. In amultinomial experiment, let X; denote the number of trials that result in
outcome i for i =1,2,...,k. (Then X;+X,+--+X,=n.) The random vector

(X1, Xo, ..., X, ) hasamultinomial distribution with joint pmf
n! Xl Xz )ﬁ<
P(Xlle,XZZXz,...,Xk:Xk): | l | pl p2 "'pk
XX, e x !

when each x, isanonnegative integer and x, + X, + - + X, = n; zero elsewhere.

Result. If the random vector (X;,X,, ..., X,) has a multinomial distribution, then the
marginal distribution of X; is binomial with parameters n and p, fori =1,2,....k.
(And therefore E(X;) = np, and V(X;) = np; (1-p;).)
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Comment. The topic is now two (or more) continuous random variables defined on the
same sample space. Concepts and notation are analogous to those from Chapters
2—4 and to Sections 5.1-5.2. All previous cdf results hold for both discrete and
continuous random variables; they are not repeated here.

Definition. The joint probability density function (pdf) of the continuous random vector
(X,Y) is, for all real numbersx andy, denoted by f . (x,y) and satisfies

P(X,Y) € R) = [[ fyy (x,y) dx dy ,
R
for every region R in two-dimensional space.

Result. Every joint pdf satisfies

(1) fy (x,y)=0for al real numbersx andy, and

[eele e}

@ ] Jfxwxy)=1

—00 —00

Result. If (X,Y) isa continuous random vector, then the marginal pdf of X is

0

fy ()= [ fyy(x,y)dy forevery real number x .

Anaogously, the marginal pdf of Y is

o0

fy(y) = | fyy(x,y)dx forevery real numbery .

Result. The margina mean and variance of a continuous random variable X having
marginal pdf f, are
EX)=py = [ x fy()dx = [ | xfy(x,y)dydx

and

e} o0 oo

VX)=oy = [ (x =)’ F 00 ax = [ [ (X = 1y)* Fry (x,y) dy x .

—00 —00

Analogous results hold for the marginal mean and variance of Y.

Definition. If h(X,Y) is a scalar function of the continuous random vector (X,Y), then
the expected value of h(X,Y) is

[oelNee)

E[n(X,Y)] = | [ h(x,y)fy(x,y)dydx.

—00 —00

If X and/or Y is discrete, replace the corresponding integral with a summation.
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Definition. If (X,Y) is a continuous random vector with joint pdf f,., then the
conditional pdf of Y given X =x is

Fxy (X,¥)

f [
vpx=x ) fy (x)
The conditional pdf of X givenY =y isdefined analogously.

if £, (x) > 0.

Result. For every real number x at which ., is defined,

Q) fY|X:X (y) > 0for every real number y,

o0

@ | fy o =1 and

(B)P(Y cB |X=x)=f () dy for every subset B of (—0, ).
B

Y|X=

Result. The conditional mean and conditional variance of Y given X =x are

0

E(Y [X=X) = by o = Yy 0y

and w
V(Y | X =X) = o2 = [ - )2 f (y)dy = E(Y?|X =x)-p2
| - COUYX=x y MY|x:x \(|x:xy y = | N HY|X:X '

Result. If (X,Y) isa continuous random vector, then
fy(X,y) = fX IY:y(x)fY(y) = fY‘X:X(y)fX(x) foral x andy.

Definition. If (X, Y) is a continuous random vector, then X and Y are independent if and
only if . (x,y)=fy(x)f,(y) foral x andy.

Result. If (X,Y) is a continuous random vector, then the following four statements are
equivalent; that is, either none are true or all are true.

(1) X and Y are independent.
) f
) f

YIX:X(y) =f(y) foral x and y with f, (x) > 0.

« IY:y(x) =fy(x) foral x andy with f, (y) > 0.

(4) P(X < A,Y e B)=P(X « A)P(Y < B) for al subsets A and B of (-, ).
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Definition. If (X,Y) is a random vector, then the covariance of X and Y, denoted by
cov(X,Y) or by oy, IS

coV(X, Y) = oyy = E[(X = uy )(Y = py)] = E(XY) — py by

Definition. If (X,Y) is a random vector, then the correlation of X and Y, denoted by
corr(X,Y) or by pyy, IS

cov(X,Y) Oxy

X,Y) = pyy = -
NN =P = GV oo

Result. If (X,Y) isarandom vector, then -1< p,, <1.
Result. If al observationsof (X,Y) liein astraight line, then | pyy | = 1.
Result. If X and Y are independent, then o, = pyy, =0.

Comment. Covariance and correlation are measures of linear dependence. Zero
correlation does not imply independence; consider Y =|X| for X uniformly
distributed on [-1,1]. Nevertheless, informally the phrase "X and Y are correlated”
sometimes is used to mean that "X and Y are dependent.”

Definition. Suppose that the continuous random vector (X,Y) has means (Mx ty ),
positive variances (GX, ch) and correlation p with |p|<1. (Notice that zero variances
and |p|=1 are excluded.)

Then (X, Y) hasthe bivariate normal distribution if its pdf at any point (x,y) is

24(x) — 2pz(x) z(y) + Z°(y)

exp

-2(1-p?)
fxy(xvy): ,
2noy oy V1-p
where z(x) = (x —py)/oy and z(y)=(y —ny)/oy (i.e., the z-values of X =x and

Y =vy).

Result. If (X,Y) isbivariate normal with parameters py , ny, oy, oy and p, then
(a) the marginal distributions of X and Y are normal,
(b) if p=0, then X and Y are independent, and

(c) if X=x, then the conditiona dlstrlbutlon of Y is normal with mean
Hy|x = uY+chz(x)andvar|ancecY‘X_(1 p)cYand

if Y=y, then the conditional dlstrlbutlon of X is normal with mean
Hyy = ux+chz(y)andvar|ancech|y_(1 p)GX

Result. If Z, and Z, are two independent standard-normal random variables and if
X=uy +oy”Z,
Y=py+oy(pZ,+V1-p°Z,),

then (X, Y) is bivariate normal with parameters p, p, oy, oy, and p. (This result
can be used to generate bivariate normal observations in a Monte Carlo simulation.)
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Definition. Given random variables X, X,, ..., X, and any constantsc,,c,, . .., c,, then
Y =C X +CoX5+ - +C X,
isalinear combination of X, X, ..., X,.

Result. The linear combination Y = ¢, X, + ¢, X, + - - - + ¢, X,, has mean and variance

E(Y) = é E(G %) = zn; ¢ E(X)

and i:l n i=1 .
V(Y)=3 ¥ cov(c X, ¢ Xj) =3 ¥ ¢ ¢ cov(X, X;)
i=1j=1 i=1j=1
n-1 n
—ZC VX)+23% ¥ ¢coov(X,X).
i=1 i=1j=i+1
Recall: cov(X, X;) = cov(X;, X;) and cov(X;, X;) = V(X;).

i N

Corollary. If XLXZ,.. X, are mutualy mdependent then the linear combination
Y =c X +C X, + 4 ¢, X, hasvariance V(Y)=3." ¢ 2V(X,).

Definition. The sample mean of X, X,, ..., X, isthelinear combination

Xt Xt X

X =

n
Result. If X;,X,, ..., X, each have mean p, then the mean of the sample mean is
EX)=p.
Result. If X, X, ..., X, have common mean y, common variance o>, and are
independent, then the variance of the sample mean is
V(X)=c%/n.

Result. Reproductive Property of the Normal Distribution. If X, X, ..., X, are
independent normally distributed random variables, then the linear combination
Y =c¢ X, +CX,++¢, X, isnormally distributed.

Corollary. If X; X,,...,X, are mutualy independent normal random variables with
common mean p and common vanance o7, then the sample mean X is normally
distributed with mean p and variance */ n.

Result. Central Limit Theorem. If X, X,, ..., Xn is a random sample of size n taken
from a population with mean p and variance 6%, then as n—o

o/
goes in the limit to the standard normal distribution.

(That is, when n |s "large" X can be assumed to be normally distributed with mean
p and variance 6/ n.)
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Descriptive Statistics (M&R Chapter 6)

A sample of data, denoted here by x,,x,, ..., x,, can be summarized (that is, described)
numerically or graphically.

A numerical summary valueis called a statistic. Commonly used statistics include
— sample average (the center of gravity, a measure of location):

n
X=Yx/n
i=1
— sample variance (the moment of inertia, a measure of dispersion):

> % - }2 {Z &ZJ -n(x)*

i i=1
Sz _ i=1 _ |
n-1 n-1
— sample standard deviation (an alternative measure of dispersion):
s = +Vs?

— sample range (an aternative measure of dispersion. Often4s <r <6s.):
ro= max{X;, Xy ..., X} — min{Xy;,X,, ..., X}
— 100k sample percentiles for k =1, 2,...,99 (alternative measures of location):
p; = the data value greater than approximately 100k % of the data
— first, second, and third sample quartiles (alternative measures of location):
Q41 = P25y U = Pgpy U3 = Prs
— sample median (an alternative measure of location):
M =0, = Pgy
— sample inter-quartile range (an alternative measure of dispersion):
IQR = 03-0;y = P7s—Pys
— sample mode (most-common data value, an aternative measure of the location).

Result. For constants a and b, consider the coded data y, =a +b x for i =1,2,...,n.
Then
() location measures are multiplied by b and then increased by a, and
(b) dispersion measures (except for sample variance) are multiplied by |b |.

Graphical summaries include dot plots, histograms, cumulative distribution plots, stem-
and-leaf diagrams, and box plots. Data values plotted against time is a time-series
plot; appending a stem-and-leaf plot to atime-series plot yields adigidot plot.

— Frequency is the number of data values satisfying a specified condition, such as
lying in a particular interval. Relative frequency is the frequency divided by
n, the fraction of the data values satisfying the condition.

— A histogram is a bar graph showing data-value frequency for several adjacent
equal-length intervals. (The intervals are sometimes called cells or bins).

— A cumulative distribution plot is analogous to a histogram, but each bar shows
cumulative freguency, the number of data values in the bin or to the left of the
bin. (Alternatively, each bar can show cumulative relative frequency.)
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Parameter Estimation (M&R Chapter 7)

Comment. We now begin inferential statistics, the study of data drawn from a system to
infer conclusions about the system. (Chapter 6 discussed descriptive statistics.)

Definition. A population is the set of all possible observations of the relevant system.
(For example, the studentsin this course.)

Definition. A constant 0 is a population parameter if it is a characteristic of the
population. (For example, class average gpa.)

Definition. A sample is a subset selected from the population. (For example, the
studentsin the front row.)

Definition. The random vector (X, X,, ..., X,) is independent and identically
distributed, often abbreviated iid, if
(8) the X; s are mutually independent and
(b) every X; has the same probability distribution, say with cdf Fy .
Definition. The random vector (X;, X, ..., X,) isarandomsample (of sizen) if itisiid.
(For now, every random sample is iid. Later, the definition will be generalized in

order to discuss more-sophisticated sampling ideas. At that time this simplest kind
of sample will become an "iid random sample" or a"simple random sample”.)

Definition. A statistic © is (a random variable that is) a function of a random sample,
that is, there is some function h so that ® =h(X,,X,, ..., X,). (For example, the
average gpa of the studentsin the sample.)

Definition. A statistic © is a point estimator of the population parameter 6 if its purpose
isto guess the value of the population parameter 6.

Definition. A point estimate 6 is asingle observation of ®. (Notice that © = is an event
in the same sense that X = x isan event.)

Definition. A sequence of point estimators @, is consistent if lim, _,.P(| 0, -6 |<e)=1
for every positive constant . (Usually n is sample size. A consistent estimator,
then, is guaranteed to be arbitrarily close to 6 for large sample sizes.)

Definition. The bias of the point estimator @ is bias(6, 6) = E(©) — 6.

Definition. The point estimator © is an unbiased estimator of 0 if E(©) = 0.

Definition. The standard error of a point estimator © is its standard deviation,
o5 = W(6). (For example, o, =y /\n )

Definition. The mean squared error (MSE) of a point estimator © of the parameter 6 is

MSE(®,0) = E[(® - 0)7] .
Result. MSE(®,0) = [bias(®, 0)]>+ V(6) .
Definition. The root mean squared error (RMSE) is the square root of the MSE.

Comments.

— The concept of variance is generalized by MSE, which is useful when the point
estimator is biased. RMSE is analogous to standard deviation.

— For most commonly used point estimators, squared bias goes to zero faster than
variance asn increases, so asymptotically MSE(©,0) / V(0) = 1.
— Some biased point estimators are good in the sense of having asmall MSE.
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Point Estimators (from iid data): Summary Table

Distribution Point ...Sampling Distribution... Standard-Error
Parameter Estimator Mean Variance Estimator
0 © E©) V(O =[se©®)® se(6)
p =P(A) p ="#of successes' / n p p(l-p)/n \/m
= E(X) xzzn;xi/n m o’ /n S/\n
Wy — Hy )_(1—?(12 1y — Uy cslzlnl+cs22/rl2 \NS; /nj+S5 /n,
o%=V(X) SP= %(xi ~X)I(n-1) o° %4 {%— :_ﬂ difficult

i=1 -

Definition. The unbiased estimator of 6 having the smallest variance is caled the
minimum-variance unbiased estimator (MVUE).

(More precisely, for the iid random vector (X, X,, ..., X) drawn from a particular
distribution having parameter 6, consider al functions h for which
E[h(X, X5, ..., X,)]=6. The MVUE of 6 is the point estimator defined by the
function h that minimizes V[h(X, X,, ..., X,)]).

Result. If X, X,,..., X, is arandom sample from a normal distribution with mean p
and variance ¢, then the sample mean X is the MV UE for p.

(We aready knew that X is unbiased for p, and that V(X) =%/ n. The new point is
that the functional form h of the MVUE isthat of a sample average.)

Definition. The distribution of a point estimator  is its sampling distribution.
— The quality of a point estimator is determined by its sampling distribution.
— The sampling distribution (and therefore the bias and standard error of ©)
depends upon the sample size n, the distribution F,, and the function h.

— For al point estimators in a first course, and for ailmost al point estimators in
general, asn becomes large

(i) the bias goes to zero (at arate inversely proportional to n),
(ii) the standard error goesto zero (at arate inversely proportional to vh ), and
(i11) the sampling distribution becomes normal.

Definition. The estimated standard error, &é, Isapoint estimate of the standard error.

— A common notational convenience, illustrated here, is to denote an estimator by
placing a"hat" over athe quantity being estimated.

— Thereason to estimate a standard error o 4is to evaluate the quality of 0.
The reason to estimate 0 isto make an inference about the system of interest.

— Many point estimators are created by estimating unknown constants.
(For example, o, =S/ Vn , where S is the sample standard deviation.)

— The bootstrap is an aternative method of estimating o;, especially when the

function h iscomplicated. The method used is Monte Carlo sampling.
(We do not provide bootstrapping details in these notes.)
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Distribution fitting. Choosing values of the distribution parameters to obtain the desired
properties. Two classical methods are Method of Moments and Maximum
Likelihood Estimation.

Method of Moments (MOM). Fitting a k-parameter distribution to a real-world context
by matching the values of the first k distribution moments to the corresponding k
sample moments.

Definition. The likelihood L of a sample x;,x,, . .., X 1S Fy x o x KpXor oo e X,), the
n-dimensional joint pmf (if discrete) or joint pdf (if conti nuous) evaluated at the
observed values x;, x,, . . ., X,.

(In the discrete case the likelihood is ssmply the probability of the sample; in the
continuous case it is the density of the sample. The word likelihood is commonly
used to encompass both cases while still being descriptive.)

Definition. The likelihood function L(6) of an observed sample x;,x,, ..., X, IS
fx %, ..., x X1 Xa - .., X,10), where 6 is a distribution parameter.
Result. Assume that x,X,, ..., x, is arandom sample from pmf or pdf f (x;6). Then

the sample' slikelihood function is

L(0)=f(x3;0) f(x0) - f(x,:6),

(The observed sample is known, so L is afunction of only the unknown parameter
6. The analyst must assume that the observations x, are from a famny of
distributions parameterized by 0; for example, the normal family with 6 = (11,6?).)

Definition. The maximum likelihood estimator (MLE) of 6 isthe (feasible) value of theta
that maximizes L ().

Result. The value of 6 that maximizes L aso maximizes any continuous monotonic
function of L.

(In particular, L and InL are both maximized by the same value of 6, a useful result
because often InL is simpler, especially if maximization is accomplished by setting
the first derivative to zero.)

Result. Except in unusual situations, MLES have these large-sample properties:
(1) approximately unbiased,
(2) nearly minimum variance,
(3) approximately normally distributed, and
(4) consistent.

Result. MLE Invariance. Let 6,0, ...,0, be the mle's of the parameters
0,,0,,...,0,. The mle of any function h(6,,0,,...,06,) is the same function
h(©,0,,...,0,)of theestimators ©,,0,, . .., ©,.

(For example, if the mle of 6% is 67, then the mle of 5 is5.)
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