
IE230 CONCISE NOTES Revised January 9, 2011

Purpose: These concise notes contain the definitions and results for Purdue University’s
course IE 230, "Probability and Statistics for Engineers, I".

The purpose of these notes is to provide a complete, clear, and concise compendium.
The purpose of the lectures, textbook, homework assignments, and office hours is to
help understand the meanings and implications of these notes via discussion and
examples.

Essentially everything here is in Chapters 2–7 of the textbook, often in the highlighted
blue boxes. Topic order roughly follows the textbook.

Textbook: D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for
Engineers, John Wiley & Sons, New York, 2007 (fourth edition).
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Set-Theory Review

A set is a collection of items; each such item is called a member of the set.

If a set A has members x , y , and z , we can write A = { x , y , z } and, for example, x ∈ A .

If a set has members defined by a condition, we write A = {x | x satisfies the condition}.
The vertical line is read "such that".

The largest set is the universe, the set containing all relevant items.

The smallest set is the empty set (or, sometimes, the null set), the set containing no
items; it is denoted by ∅ or, occasionally, by {}.

If all members of a set A are contained in a set B , then A is a subset of B , written A ⊂ B .

If two sets A and B contain the same members, then they are equal, written A = B .

The union of two sets A and B is the set of items contained in at least one of the sets;
that is, A ∪ B = {x | x ∈ A or x ∈ B }.

The intersection of two sets A and B is the set of items contained in both sets; that is,
A ∩ B = {x | x ∈ A and x ∈ B }. This intersection is also written AB .

The complement of a set A is the set of all items not contained in the set; that is,
A ′ = {x | x ∈/ A }.

Sets E 1, E 2,..., En partition the set A if each member of A lies in exactly one of the n
partitioning sets. (Equivalently, if their union is A and their pairwise intersections
are empty. That is, if A =∪i=1

n
Ei and Ei ∩ Ej = ∅ for every pair Ei and Ej .)

Distributive Laws. For any sets A , B , and C , (A ∪ B ) ∩ C = (A ∩ C ) ∪ (B ∩ C ) and
(A ∩ B ) ∪ C = (A ∪ C ) ∩ (B ∪ C ).

DeMorgan’s Laws. For any sets A and B , (A ∪ B )′ = A ′∩ B ′ and (A ∩ B )′ = A ′∪ B ′.

The cardinal number of a set A , denoted by # (A ),is the number of members in A .

— A set A is finite if # (A ) is finite; otherwise A is infinite.

— An infinite set A is countably infinite if its members can be counted
(to count a set means to assign a unique integer to each member);

— otherwise A is uncountably infinite (e.g., the set of real numbers).

The open interval ( a , b ) is the set {x | a < x < b }, all real numbers between, but not
including, a and b . Square brackets are used to include a and/or b . Except for
[a , a ], the closed interval containing only the one member a , non-empty intervals
are uncountably infinite.

The real-number line is the open interval (−∞,∞).

A function assigns a single value to each argument. The set of arguments is called the
domain and the set of values is called the range. For example, f (x )=x 2 has the
real-number line as its domain and [0,∞) as its range. For example, let the domain
be a set of students, let the function be the weight of each student; then the range is
the set of student weights.
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Probability Basics (M&R Chapter 2)

All of probability and statistics depends upon the concept of a random experiment,
defined to be a procedure that can result in a different outcome each time it is
performed. Each replication of the experiment has exactly one outcome.

Experiments are sometimes classified into two types:

Enumerative: sampling from a well-defined finite set. (e.g., persons in the room).

Analytical: other sampling (e.g., next year’s students).

A set containing all possible outcomes is called a sample space. An experiment can
have many sample spaces; we try to choose the simplest one that is sufficient to
answer the question at hand. Denote the chosen sample space by S .

A sample space is discrete if it has a finite or countably infinite number of members.

A set, say E , is an event if it is a subset of S ; that is, if E ⊂ S . For a given replication of
the experiment, E occurs if it contains the outcome; otherwise it does not occur.

In practice, an event E can be a verbal statement that is true if the event occurs and
false if the event does not occur.

The complement of the event E is the event E′ .

—E′ occurs if (and only if) the outcome does not lie in E .

—The statement for E′ is the negation of the statement for E .

—For each replication, exactly one of E and E′ occurs.

The intersection of events E 1 and E 2 is the event E 1 ∩ E 2.

—E 1 ∩ E 2 occurs if (and only if) the outcome lies in both E 1 and E 2.

—The statements for E 1 and E 2 must both be true for E 1 ∩ E 2 to occur.

—The complement of E 1 ∩ E 2 is (E 1 ∩ E 2)′ = E′ 1 ∪ E′ 2.

That is, (E 1 ∩ E 2)′ occurs if either E 1 or E 2 or both do not occur.

The union of events E 1 and E 2 is the event E 1 ∪ E 2.

—E 1 ∪ E 2 occurs if (and only if) the outcome lies in E 1, or in E 2, or in both.

—Either or both of the statements for E 1 and E 2 must be true for E 1 ∪ E 2 to occur.

—The complement of E 1 ∪ E 2 is (E 1 ∪ E 2)′ = E′ 1 ∩ E′ 2.

That is, (E 1 ∪ E 2)′ occurs if both E 1 and E 2 do not occur.

Every subset of S is an event, so an experiment always has multiple events.

—The largest event is S , which always occurs.

— The smallest event is the empty set, ∅, which never occurs.

Definition. Two events, say E 1 and E 2, are mutually exclusive if they cannot both occur
in the same replication of the experiment; that is, if E 1 ∩ E 2 = ∅. More generally,
n events, say E 1, E 2,..., En , are mutually exclusive if only one can occur in the same
replication; that is, if Ei ∩ Ej = ∅ for every pair of events.

The correspondence between set theory and probability theory is that the universe is the
sample space, the items are outcomes, and sets are events.
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The probability of an event E , denoted by P(E ), is a numerical measure of how likely the
event E is to occur when the experiment is performed.

There are two commonly used interpretations of probability.
Relative frequency: If the experiment were repeated infinitely often, P(E ) is the

fraction of the replications in which E occurs. (This interpretation is
sometimes called "objective".)

Subjective: P(E ) is a measure of belief about the likelihood that E will occur in a
particular replication.

Alternative statements of probability.
"The odds of E are 2 in 3" is equivalent to "P(E ) = 2 / 3".
"The odds of E are 2 to 3" is equivalent to "P(E ) = 2 / 5".
"E has a 70% chance" is equivalent to "P(E ) = 0.7".
"E has a 50–50 chance" is equivalent to "P(E ) = 0.5".
A baseball player batting 282 has hit successfully with relative frequency 0.282.

All results of probability follow from three axioms.

Axiom 1. P(S ) = 1. (That is, the probability of the "sure" event is one.)

Axiom 2. For every event E , 0 ≤ P(E ). (That is, probabilities are non-negative.)

Axiom 3. For all mutually exclusive events E 1 and E 2,

P(E 1 ∪ E 2) = P(E 1) + P(E 2) .

(That is, if two events cannot occur simultaneously, then the probability that
one or the other occurs is the sum of their probabilities.)

Five useful probability results that are easily proven using the three axioms:

Result. (Complement) For every event E , P(E ′) = 1 − P(E ). (In particular,
P(∅) = 1 − P(S ) = 0; that is, the "impossible" event has probability zero.)

Result. (Dominance) If E 1 ⊂ E 2, then P(E 1) ≤ P(E 2). (That is, if two events differ
only in that one contains more outcomes than the other, the larger event
cannot be less likely.)

Result. (Axiom 3 extended to n events) If events E 1, E 2, . . . , En are mutually
exclusive, then

P( ∪i=1
n

Ei ) = Σi=1
n P( Ei ) .

(That is, if only one of the n events can occur, then the probability that one of
them does occur is the sum of their probabilities.)

Result. (Equally likely events) If equally likely events E 1, E 2,..., En partition the
sample space, then P(Ei ) = 1 / n for i = 1, 2,..., n .

Result. (Always true) For any two events E 1 and E 2,

P(E 1 ∪ E 2) = P(E 1) + P(E 2) − P(E 1 ∩ E 2) .

More generally, for any three events E 1, E 2, and E 3,

P(E 1 ∪ E 2 ∪ E 3) = P(E 1) + P(E 2) + P(E 3)

− P(E 1 ∩ E 2) − P(E 1 ∩ E 3) − P(E 2 ∩ E 3)

+ P(E 1 ∩ E 2 ∩ E 3) .

Yet more generally, for n events continue to alternate signs.
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Definition. The conditional probability of an event E 1, given that an event B has
occurred, is

P(E 1 | B ) ≡
P(B )

P(E 1 ∩ B )
hhhhhhhhhh .

—If P(B ) = 0, then P(E 1 | B ) is undefined.
—The given event B is assumed to have occurred; that is, the outcome is in B .
—The given event B becomes the sample space.
—P(E 1) ≡ P(E 1 | S ) is the unconditional or marginal probability of E .

Multiplication Rule. For any nonempty events B and E 1,

P(B ∩ E 1) = P(B ) P(E 1 | B ) = P(E 1) P(B | E 1) .

Baby Bayes’s Rule. For any events E 1 and B , if P(B ) > 0, then

P(E 1 | B ) =
P(B )

P(B | E 1) P(E 1)
hhhhhhhhhhhhhh .

The full Bayes’s Rule is obtained by expanding P(B ) using Total Probability.

Total Probability. (Applying this rule is sometimes called conditioning.)

For any events B and E 1,

P(B ) = P(B ∩ E 1) + P(B ∩ E′ 1) = P(B | E 1) P(E 1) + P(B | E′ 1) P(E′ 1) .

More generally, if events E 1, E 2,..., En partition S , then for any event B

P(B ) =
i=1
Σ
n

P(B ∩ Ei ) =
i=1
Σ
n

P(B | Ei ) P(Ei ) .

Result. (Independent events) The following four statements are equivalent; that is, either
all are false or all are true. Often, Statement (2) is chosen to define independence.

(1) Events A and B are independent.

(2) P(A ∩ B ) = P(A ) P(B )

(3) P(A | B ) = P(A )

(4) P(B | A ) = P(B )

Result. (Independence of complements) The following four statements are equivalent.

(1) Events A and B are independent.

(2) Events A′ and B are independent.

(3) Events A and B′ are independent.

(4) Events A′ and B′ are independent.

Extended Multiplication Rule. For any nonempty events A 1, A 2,..., An ,

P(A 1 ∩ A 2 ∩ . . . ∩ An ) = P(A 1) P(A 2 | A 1) P(A 3 | A 1 ∩A 2) . . . P(An | A 1 ∩ . . . ∩ An−1) .

Definition. The n events A 1, A 2,..., An are (jointly) independent if and only if

P(Ai 1 ∩ Ai 2 ∩ . . . ∩ Aik ) = P(Ai 1) P(Ai 2) . . . P(Aik ) ,

for every subset Ai 1, Ai 2,..., Aik of the n events, for k = 2, 3,..., n .

A weaker form of independence is pairwise independence, which requires only that
every pair of events be independent (k = 2 in the definition).
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Discrete Random Variables and Probability Distributions (M&R Chapter 3)

Definition. A random variable is a function that assigns a real number to each outcome
in the sample space of an experiment.
—Traditionally, we denote random variables by upper-case letters toward the end

of the English alphabet; e.g., X .
—In practice, a random variable can be a verbal statement; e.g., the experiment is

to select a random student and X = "the student’s grade point."
—Events can be constructed from random variables; e.g., "X > 3.0" is an event

(defined by the set of students whose grade point is greater than 3.0).

Definition. The probability distribution of a random variable X is a description (in
whatever form) of the likelihoods associated with the values of X .

Definition. The cumulative distribution function, often abbreviated cdf, of a random
variable X is F (x ) = P(X ≤ x ) for every real number −∞ < x < ∞.

Result. For every random variable X , if a ≤ b , then P(a < X ≤ b ) = F (b ) − F (a ).

Result. F (−∞) = 0 and F (∞) = 1. More generally, if x ≤ y , then F (x ) ≤ F (y ).

(That is, every cdf is nondecreasing. This is a special case of P(A ) ≤ P(B ) if A ⊂ B .)

Definition. A random variable is discrete if its range is finite or countably infinite. A
random variable is continuous if its range is uncountably infinite.
—Often, discrete random variables arise from counting.
—Often, continuous random variables arise from measuring.

Definition. For a discrete random variable X , the probability mass function, often
abbreviated pmf, is f (x ) = P(X = x ) for every real number −∞ < x < ∞.

(Notice that the cdf is denoted by an upper-case F , whereas the pmf is denoted by a
lower-case f . Later, when dealing with more than one random variable, we will
use the more-explicit notation FX and f X .)

Result. For a discrete random variable X having possible values x 1, x 2,..., xn , the cdf is

F (x ) =
all xi ≤ x
Σ f (xi ) for every real number −∞ < x < ∞ .

Definition. For a discrete random variable X having possible values x 1, x 2,..., xn , the
mean or expected value is the constant E(X ) =Σi=1

n xi f (xi ).

—Traditionally, the mean is also denoted by µ or, more explicitly, by µX .
—Because Σi=1

n f (xi ) = 1, the mean is the first moment, or center of gravity.

Definition. The variance of a random variable X is the constant V(X ) = E[(X − µ)2].
—Traditionally, the variance is also denoted by σ2 or, more explicitly, by σX

2.
—The variance is the second moment about the mean, or moment of inertia.

Result. For a discrete random variable X having possible values x 1, x 2,..., xn ,

V(X ) =
i=1
Σ
n

(xi − µ)2 f (xi ) =
i=1
Σ
n

xi
2 f (xi ) − µ2 = E(X 2) − µ2 .

Definition. The standard deviation of X is the constant σ ≡ σX ≡ +√dddddV(X ).
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Definition. A random variable X has a discrete uniform distribution if each of the n
numbers in its range, say x 1, x 2,..., xn , has equal probability.

Result. Suppose that X has a discrete uniform distribution on the n > 1 equally spaced
numbers from a to b . Then the mean and variance of X are

E(X ) =
2

a + bhhhhhh and V(X ) =
I
J
L 12

(b − a )2
hhhhhhhh

M
J
O

I
J
L n − 1

n + 1hhhhhh
M
J
O
.

Definition. A sequence of Bernoulli trials has three properties:

(i) Each trial has exactly two outcomes (often called "success" and "failure").

(ii) Each trial has P(success) = p , which is a constant.

(iii) Each trial is independent of every other trial.

Definition. A binomial experiment is an experiment composed of n Bernoulli trials.

Definition. An ordering of r elements from a set of n elements is called a permutation.

Definition. A selection (without regard to order) of r elements from a set of n elements
is called a combination.

Result. A set of n elements has n ! = n × (n−1) × (n−2) × . . . × 2 × 1 permutations.
(An empty set has 0! = 1 permutation.)

Result. The number of permutations of r elements from a set of n elements is

Pr
n =

(n − r )!

n !hhhhhhhh for r = 0, 1,..., n.

Result. The number of combinations of r elements from a set of n elements is

Cr
n =

I
J
Lr

n M
J
O
=

r ! (n − r )!

n !hhhhhhhhhh =
r !

Pr
n

hhh for r = 0, 1,..., n.

Definition (not precise). Suppose that counts occur at random throughout a real-number
interval (typically of time or space). The random experiment is called a
(homogeneous) Poisson process if the interval can be partitioned into equal-length
non-overlapping subintervals of small enough length that

(i) the probability of more than one count in a subinterval is zero,

(ii) the probability of one count in a subinterval is the same for all subintervals
and proportional to the length of the subintervals, and

(iii) the count in each subinterval is independent of other subintervals.

(An example: Customer arrivals. Condition (i) says that customers arrive
separately; Condition (ii) says that the arrival rate is constant (that is,
homogeneous) and that the probability of a customer arriving during a two-second
subinterval is twice the probability of a customer arriving during a one-second
subinterval; Condition (iii) says that the number of customers in one subinterval is
not useful in predicting the number of customers in another subinterval.)

Result: Poisson Approximation to the Binomial Distribution. The Poisson process is
(asymptotically) equivalent to "many", n , Bernoulli trials, each with a "small"
probability of success, p . Therefore, the Poisson distribution with mean np is a
good approximation to the binomial distribution when n is large and p is small.
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Discrete Distributions: Summary Table
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
random distribution range probability expected variance
variable name mass function valueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

X general x 1, x 2, . . . , xn P(X = x )
i=1
Σ
n

xi f (xi )
i=1
Σ
n

(xi − µ)2f (xi )

= f (x ) = µ = µX = σ2 = σX
2

= f X (x ) = E(X ) = V(X )

= E(X 2) − µ2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

X discrete x 1, x 2, . . . , xn 1 / n
i=1
Σ
n

xi / n [
i=1
Σ
n

xi
2 / n ] − µ2

uniformiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

X equal-space x = a ,a+c ,...,b 1 / n
2

a+bhhhhh
12

c 2 (n 2−1)hhhhhhhhh

uniform where n = (b−a+c ) / ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
"# successes in indicator x = 0, 1 p x (1−p )1−x p p (1−p )

1 Bernoulli variable
trial" where p =P("success")iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

"# successes in binomial x = 0, 1,..., n Cx
n p x (1−p )n−x np np (1−p )

n Bernoulli
trials" where p =P("success")iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

"# successes in hyper- x = Cx
K Cn−x

N−K / Cn
N np np (1−p )

(N−1)

(N−n )hhhhhh

a sample of geometric (n−(N−K ))+,
size n from ..., min{K , n } where p = K / N
a population (sampling and
of size N without integer
containing replacement)
K successes"iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

"# Bernoulli geometric x = 1, 2,... p (1−p )x−1 1 / p (1−p ) / p 2

trials until
1st success" where p =P("success")iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

"# Bernoulli negative x = r , r+1,... Cr−1
x−1 p r (1−p )x−r r / p r (1−p ) / p 2

trials until binomial
r th success" where p =P("success")iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

"# of counts in Poisson x = 0, 1,... e−µ µx / x ! µ µ
time t from a
Poisson process where µ = λt
with rate λ"iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Result. For x = 1, 2,..., the geometric cdf is FX (x ) = 1 − (1 − p )x .

Result. The geometric distribution is the only discrete memoryless distribution.
That is, P(X > x + c | X > x ) = P(X > c ).

Result. The binomial distribution with p = K / N is a good approximation to the
hypergeometric distribution when n is small compared to N .
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Continuous Random Variables and Probability Distributions (M&R Chapter 4)

Comment. Concepts of, and notations for, the continuous case are analogous to the
discrete case, with integrals replacing sums.

Definition. For a continuous random variable X , the probability density function, often
abbreviated pdf, is a function satisfying

(i) f (x ) ≥ 0 for every real number x ,

(ii) ∫−∞
∞

f (x ) dx = 1, and

(iii) P(a ≤ X ≤ b ) = ∫a
b

f (x )dx for all real numbers a ≤ b .

(The pdf is analogous to the pmf. The pmf is a probability, however, while the pdf
must be integrated to obtain a probability.)

Result. If X is continuous, then P(X = x ) = 0 for every real number x .

(Therefore, e.g., P(a < X ) = P(a ≤ X ), which is different from the discrete case.)

Result. For a continuous random variable X , the cdf is F (x ) = P(X ≤x ) = ∫−∞
x

f (u ) du .

Definition. The mean of a continuous random variable X is the constant

µ ≡ µX ≡ E(X ) =
−∞
∫
∞

x f (x ) dx .

Definition. The variance of a random variable X is the constant V(X ) = E[(X − µ)2].
(Unchanged from the discrete case.)

Result. For a continuous random variable X

σ2 ≡ σX
2 ≡ V(X ) =

−∞
∫
∞

(x − µ)2 f (x ) dx =
−∞
∫
∞

x 2 f (x ) dx − µ2 = E(X 2) − µ2 .

Definition. The standard deviation of X is the constant σ ≡ σX ≡ +√dddddV(X ).
(Unchanged from the discrete case.)

Definition. A random variable X has a continuous uniform (or rectangular) distribution
if its pdf forms a rectangle with base [a , b ].

Result. If X has a continuous uniform distribution on [a , b ], then

(i) the mean of X is E(X ) = (a + b ) / 2, and

(ii) the variance of X is V(X ) = (b − a )2 / 12.

(Notice the analogy to the discrete uniform distribution.)

Definition. A random variable X has a triangular distribution if its pdf forms a triangle
with base [a , b ] and mode at m , where a ≤ m ≤ b .

Result. If X has a triangular distribution on [a , b ], with mode at m , then

(i) The mean of X is E(X ) = (a + m + b ) / 3.

(ii) The variance of X is V(X ) = [(b − a )2 − (m − a )(b −m )] / 18.
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The normal (or Gaussian ) distribution (see table) with mean µ and standard deviation σ
— is often an adequate model for the sum of many random variables

(as a result of the "Central Limit Theorem"),
— has a symmetric bell-shaped pdf centered at µ, points of inflection at µ − σ and

µ + σ, and range (−∞,∞),
— is the only famous distribution for which the general notation µ and σ are used

directly as the distribution’s mean and standard deviation.
— X ∼ N (µ,σ2 ) is read "X is normally distributed with mean µ and variance σ2".

Definition. The standard normal distribution is the special case of µ = 0 and σ = 1. This
random variable is usually denoted by Z , its cdf by Φ, and its pdf by φ.

Result. To convert between general and standardized normal distributions, use...

— If X ∼ N (µ,σ2 ), then ( X − µ ) / σ ∼ N ( 0, 1 ).

— If Z ∼ N ( 0, 1 ), then (µ + σZ ) ∼ N (µ,σ2 ).

Probability calculations for the normal distribution are not closed form. Use numerical
methods, approximations, or tabled values.

— For X ∼ N (µ,σ2 ), relate p and xp , where p = P(X ≤ xp ) ≡ FX (xp ).
° MSExcel: Given p , use "norminv"; given zp , use "normdist".
° Sketch the normal density and visually approximate the relevant area. As an

aid, remember that
(i) P(µ− σ < X < µ+ σ ) ≈ 0.68

(ii) P(µ− 2σ < X < µ+ 2σ) ≈ 0.95

(iii) P(µ− 3σ < X < µ+ 3σ ) ≈ 0.997.

° Probabilities can be converted to standard normal probabilities using

FX (xp ) ≡ P(X ≤ xp ) = P[
σ

X − µhhhhhh ≤
σ

xp − µhhhhhh] = P(Z ≤ zp ) ≡ Φ(zp ) ,

where zp =
σ

xp − µhhhhhh is the z -value obtained by standardizing X = xp .

— For Z ∼ N ( 0, 1 ), relate p and zp , where p = P( Z ≤ zp ) ≡ Φ( zp ).
° MSExcel: Given p ∈ [ 0, 1 ], use "normsinv"; given zp , use "normsdist".
° Table: p = Φ( zp ) for zp = a , a + b ,..., c − b , c .

(Table III of M&R uses a = −4, b = 0.01, and c = 4.)
° One-line Approximations:

zp ≈ [ p 0.135 − (1− p )0.135 ] / 0.1975

p ≈ 1. / [ 1. + exp(− zp × ( 1.5966 + (zp
2 / 14. ) ) ) ]

Definition. The order statistics from a sample x 1, x 2, . . . , xn are the sorted values
x (1) ≤ x (2) ≤

. . . ≤ x (n ). That is, x (1) is the minimum observation and x (n ) is the
maximum. (This definition is general, not dependent upon normality.)

A graphical test of normality. Given a sample of size n , plot each order statistic x (j )
against its standardized normal score zp , the p = (j − 0.5) / n quantile. If the
resulting curve is approximately a straight line, then the sample data are consistent
with the observations having been drawn from a normal distribution.
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Result. Normal approximation to the binomial distribution. The normal ( n p , n p (1−p ) )
distribution is a good approximation to the binomial ( n , p ) distribution when
min{µX , n −µX } = n min{ p , (1− p )} is "large". (A common value for "large" is 5;
the approximation is asymptotically exact. See also "continuity correction".)

Result. Normal approximation to the Poisson distribution. The normal (λ,λ )
distribution is a good approximation to the Poisson (λ ) distribution when µX = λ is
"large". (A common value for "large" is 5; the approximation is asymptotically
exact. See also "continuity correction".)

Definition. Continuity correction. Rewriting an event to reduce the error from
approximating a discrete distribution with a continuous distribution.

Let X be a discrete random variable. For simplicity, assume that the possible
values of X are integers. Then, for integer constants a and b ,

P( a ≤ X ≤ b ) = P( a − 0.5 ≤ X ≤ b + 0.5 ) .

The continuity-correction approximation of P( a ≤ X ≤ b ) is the continuous-
distribution value of P( a − 0.5 ≤ X ≤ b + 0.5 ).

(The correction is crucial when a = b , but is less important as b − a increases.)

Result. From any time t , let X denote the time until the next count of a Poisson Process
having rate λ. Then X has an exponential distribution with mean 1 / λ. (Here t can
be any time, including zero or the time of a particular count.) (See Table.)

Result. For any time t , let X denote the time until the r th count of a Poisson Process
having rate λ. Then X is the sum of r independent exponential random variables
and X has an Erlang distribution with parameters r and λ. (See Table.)

Analogy. The exponential distribution is analogous to the geometric distribution;
the Erlang distribution is analogous to the negative binomial distribution.

Definition. The gamma distribution is the generalization of the Erlang distribution in
which the parameter r > 0 is not necessarily an integer. (See Table.)

Result. If Y is an exponential random variable with mean 1, then X = δY 1/β is Weibull
with parameters δ > 0 and β > 0. (See Table.)

Definitions. Three types of distribution parameters:
— A location parameter is additive: Y = a + X . The distribution of Y is identical to

that of X except that its location is shifted a units to the right.
— A scale parameter is multiplicative: Y = b X . The distribution of Y is identical to

that of X , except that each unit of Y is b units of X ; the location of zero is
unchanged.

— A shape parameter is nonlinear: Y = g (X ; c ), where the function g is nonlinear in
c . The distributions of Y and X have different shapes.

Result. Chebyshev’s Inequality. The probability that a random variable X differs from
its mean by at least c standard deviations is no more than 1 / c 2. Notationally,

P(|X − µ | ≥ cσ) ≤ 1 / c 2

for every constant c > 0. Equivalently, the inequality can be written as

P(µ − c σ ≤ X ≤ µ + c σ) ≥ 1 − 1 / c 2 .

(For example, every distribution has at least 8 / 9 of the probability within three
standard deviations of the mean. Chebyshev’s inequality holds for all distributions,
but seldom is a good approximation for a particular distribution.)
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Continuous Distributions: Summary Table
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
random distribution range cumulative probability expected variance
variable name distrib. func. density func. valueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

X general (−∞,∞) P(X ≤ x )
dy

dF (y )hhhhhh
J
J
Jy=x

−∞
∫
∞

xf (x )dx
−∞
∫
∞

(x−µ)2f (x )dx

= F (x ) = f (x ) = µ = µX = σ2 = σX
2

= FX (x ) = f X (x ) = E(X ) = V(X )

= E(X 2) − µ2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

X continuous [a , b ]
b − a

x − ahhhhhh
b − a

1hhhhhh
2

a + bhhhhhh
12

(b − a )2
hhhhhhhh

uniformiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

X triangular [a , b ]
if x ≤m , else
(x−a )f (x ) / 2

(b−a )(m−d )

2(x − d )hhhhhhhhhhhh
3

a+m+bhhhhhhh
18

(b−a )2− (m−a )(b−m )hhhhhhhhhhhhhhhhhhhh

1−(b−x )f (x )/2 (d = a if x ≤ m , else d = b )iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

sum of normal (−∞,∞) Table III
√ddd2π σ

e
2

−1hhh
I
J
L σ

x−µhhhhh
M
J
O

2

hhhhhhhhh µ σ2

random (or
variables Gaussian)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

time to exponential [0,∞) 1 − e−λx λ e−λx 1 / λ 1 / λ2

Poisson
count 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

time to Erlang [0,∞)
k=r
Σ
∞

k !

e−λx (λx )k
hhhhhhhhh

(r − 1)!

λr x r−1e−λx
hhhhhhhhhh r / λ r / λ2

Poisson
count riiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

lifetime gamma [0,∞) numerical
Γ(r )

λr x r−1e−λx
hhhhhhhhhh r / λ r / λ2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

lifetime Weibull [0,∞) 1 − e−(x /δ)β

δβ
βxβ−1e−(x /δ)β

hhhhhhhhhhh δΓ(1+
β

1hh) δ2Γ(1+
β

2hh)−µ2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Definition. For any r > 0, the gamma function is Γ(r ) = ∫0
∞

x r−1e−x dx .

Result. Γ(r ) = (r − 1)Γ(r − 1). In particular, if r is a positive integer, then Γ(r ) = (r−1)!.

Result. The exponential distribution is the only continuous memoryless distribution.
That is, P(X > x + c | X > x ) = P(X > c ).

Definition. A lifetime distribution is continuous with range [0,∞).

Modeling lifetimes. Some useful lifetime distributions are the exponential, Erlang,
gamma, and Weibull.
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Joint Probability Distributions (M&R Chapter 5)

Comment. The topic is now two (or more) random variables defined on the same sample
space. Concepts and notation are analogous to those from Chapters 2–4. In
particular, independence of random variables is analogous to independence of
events, lower-case letters denote constants and upper-case letters denote random
variables, except that lower-case f denotes pmf’s and pdf’s, and upper-case F
denotes cdf’s. Subscripts become important.

Definition. A random vector is a vector whose components are (scalar) random
variables defined on a common sample space.

Definition. The joint probability distribution of a random vector (X 1, X 2, . . . , Xn ) is a
description (in whatever form) of the likelihoods associated with the possible
values of (X 1, X 2, . . . , Xn ). (When we consider n = 2, the two random variables
often will be denoted by X and Y . Definitions are given here only for n = 2; they
extend to general values of n by analogy, as done in Section 5.2.)

Definition. The joint cumulative distribution function (cdf) of the random vector (X , Y )
is, for all real numbers x and y ,

FXY (x , y ) = P(X ≤ x , Y ≤ y ) ,

where the comma denotes intersection and is read as "and".

Result. For all real numbers a , b , c , and d ,

P(a < X ≤ b , c < Y ≤ d ) = FXY (b , d ) − FXY (b , c ) − FXY (a , d ) + FXY (a , c )

Definition. The joint probability mass function (pmf) of the discrete random vector (X , Y )
is, for all real numbers x and y ,

f XY (x , y ) = P(X = x , Y = y ) .

Result. Every joint pmf satisfies

(1) f XY (x , y ) ≥ 0, for all real numbers x and y , and

(2)
all x
Σ

all y
Σ f XY (x , y ) = 1.

Definition. The marginal distribution of X is the distribution of X alone, unconditional
on Y (just as discussed in Chapters 3 and 4.)

Result. The marginal cdf of X is, for every real number x ,

FX (x ) = FXY (x ,∞).

Result. If (X , Y ) is a discrete random vector, then the marginal pmf of X is

f X (x ) = P(X = x ) =
all y
Σ f XY (x , y ) for every real number x ,

the marginal mean of X is

E(X ) = µX =
all x
Σ x f X (x ) =

all x
Σ

all y
Σ x f XY (x , y )

and the marginal variance of X is

V(X ) = σX
2 =

all x
Σ (x − µX )2 f X (x ) =

all x
Σ

all y
Σ (x − µX )2 f XY (x , y ) .

Analogous results hold for the marginal cdf, pmf, mean and variance of Y .
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Definition. If (X , Y ) is a discrete random vector with joint pmf f XY , then the conditional
pmf of Y given X = x is

f
Y | X = x

(y ) =
f X (x )

f XY (x , y )
hhhhhhhhh if f X (x ) > 0.

The conditional pmf of X given Y = y is defined analogously.
Result. For every real number x at which f

Y | X = x
is defined,

(1) f
Y | X = x

(y ) ≥ 0 for every real number y ,

(2)
all y
Σ f

Y | X = x
(y ) = 1, and

(3) P(Y = y | X = x ) = f
Y | X = x

(y ) for every real number y .

Result. The conditional mean and conditional variance of Y given X = x are

E(Y | X = x ) = µ
Y | X = x

=
all y
Σ y f

Y | X = x
(y )

and

V(Y | X = x ) = σ
Y | X = x

2 =
all y
Σ (y−µ

Y | X = x
)2 f

Y | X = x
(y ) = E(Y 2

| X = x ) − µ
Y | X = x

2 .

Result. If (X , Y ) is a discrete random vector, then

f XY (x , y ) = f
X | Y = y

(x ) f Y (y ) = f
Y | X = x

(y ) f X (x ) for all x and y.

Definition. If (X , Y ) is a discrete random vector, then X and Y are independent if and
only if f XY (x , y ) = f X (x ) f Y (y ) for all x and y .

Result. If (X , Y ) is a discrete random vector, then the following four statements are
equivalent; that is, either none are true or all are true.

(1) X and Y are independent.
(2) f

Y | X = x
(y ) = f Y (y ) for all x and y with f X (x ) > 0.

(3) f
X | Y = y

(x ) = f X (x ) for all x and y with f Y (y ) > 0.

(4) P(X ∈ A , Y ∈ B ) = P(X ∈ A ) P(Y ∈ B ) for all subsets A and B of (−∞,∞).
Definition. A multinomial experiment is composed of n trials satisfying

(1) each trial has exactly one of k outcomes,
(2) the probability of outcome i is pi for i = 1, 2,..., k

(and therefore p 1 + p 2 +
. . . +pk = 1), and

(3) the trials are independent.
Definition. In a multinomial experiment, let Xi denote the number of trials that result in

outcome i for i = 1, 2,..., k . (Then X 1 + X 2 +
. . . + Xk = n .) The random vector

(X 1, X 2, . . . , Xk ) has a multinomial distribution with joint pmf

P(X 1 = x 1, X 2 = x 2, . . . , Xk = xk ) =
x 1! x 2! . . . xk !

n !hhhhhhhhhhhhh p 1

x
1 p 2

x
2 . . . pk

x
k

when each xi is a nonnegative integer and x 1 + x 2 +
. . . + xk = n ; zero elsewhere.

Result. If the random vector (X 1, X 2, . . . , Xk ) has a multinomial distribution, then the
marginal distribution of Xi is binomial with parameters n and pi for i = 1, 2,..., k .
(And therefore E(Xi ) = npi and V(Xi ) = npi (1−pi ).)
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Comment. The topic is now two (or more) continuous random variables defined on the
same sample space. Concepts and notation are analogous to those from Chapters
2–4 and to Sections 5.1–5.2. All previous cdf results hold for both discrete and
continuous random variables; they are not repeated here.

Definition. The joint probability density function (pdf) of the continuous random vector
(X , Y ) is, for all real numbers x and y , denoted by f XY (x , y ) and satisfies

P((X , Y ) ∈ R ) =
R
∫∫ f XY (x , y ) dx dy ,

for every region R in two-dimensional space.

Result. Every joint pdf satisfies

(1) f XY (x , y ) ≥ 0 for all real numbers x and y , and

(2)
−∞
∫
∞

−∞
∫
∞

f XY (x , y ) = 1.

Result. If (X , Y ) is a continuous random vector, then the marginal pdf of X is

f X (x ) =
−∞
∫
∞

f XY (x , y ) dy for every real number x .

Analogously, the marginal pdf of Y is

f Y (y ) =
−∞
∫
∞

f XY (x , y ) dx for every real number y .

Result. The marginal mean and variance of a continuous random variable X having
marginal pdf f X are

E(X ) = µX =
−∞
∫
∞

x f X (x ) dx =
−∞
∫
∞

−∞
∫
∞

x f XY (x , y ) dy dx

and

V(X ) = σX
2 =

−∞
∫
∞

(x − µX )2 f X (x ) dx =
−∞
∫
∞

−∞
∫
∞

(x − µX )2 f XY (x , y ) dy dx .

Analogous results hold for the marginal mean and variance of Y .

Definition. If h (X , Y ) is a scalar function of the continuous random vector (X , Y ), then
the expected value of h (X , Y ) is

E[h (X , Y )] =
−∞
∫
∞

−∞
∫
∞

h (x , y ) f XY (x , y ) dy dx .

If X and/or Y is discrete, replace the corresponding integral with a summation.
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Definition. If (X , Y ) is a continuous random vector with joint pdf f XY , then the
conditional pdf of Y given X = x is

f
Y | X = x

(y ) =
f X (x )

f XY (x , y )
hhhhhhhhh if f X (x ) > 0.

The conditional pdf of X given Y = y is defined analogously.

Result. For every real number x at which f Y | x is defined,

(1) f
Y | X = x

(y ) ≥ 0 for every real number y ,

(2)
−∞
∫
∞

f
Y | X = x

(y ) dy = 1, and

(3) P(Y ∈ B | X = x ) =
B
∫ f

Y | X = x
(y ) dy for every subset B of (−∞,∞).

Result. The conditional mean and conditional variance of Y given X = x are

E(Y | X = x ) = µ
Y | X = x

=
−∞
∫
∞

y f
Y | X = x

(y ) dy

and

V(Y | X = x ) = σ
Y | X = x

2 =
−∞
∫
∞

(y−µ
Y | X = x

)2 f
Y | X = x

(y ) dy = E(Y 2
| X = x ) − µ

Y | X = x

2 .

Result. If (X , Y ) is a continuous random vector, then

f XY (x , y ) = f
X | Y = y

(x ) f Y (y ) = f
Y | X = x

(y ) f X (x ) for all x and y.

Definition. If (X , Y ) is a continuous random vector, then X and Y are independent if and
only if f XY (x , y ) = f X (x ) f Y (y ) for all x and y .

Result. If (X , Y ) is a continuous random vector, then the following four statements are
equivalent; that is, either none are true or all are true.

(1) X and Y are independent.

(2) f
Y | X = x

(y ) = f Y (y ) for all x and y with f X (x ) > 0.

(3) f
X | Y = y

(x ) = f X (x ) for all x and y with f Y (y ) > 0.

(4) P(X ∈ A , Y ∈ B ) = P(X ∈ A ) P(Y ∈ B ) for all subsets A and B of (−∞,∞).
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Definition. If (X , Y ) is a random vector, then the covariance of X and Y , denoted by
cov(X , Y ) or by σXY , is

cov(X , Y ) = σXY = E[(X − µX )(Y − µY )] = E(XY ) − µX µY

Definition. If (X , Y ) is a random vector, then the correlation of X and Y , denoted by
corr(X , Y ) or by ρXY , is

corr(X , Y ) = ρXY =
√ddddddddddV(X )V(Y )

cov(X , Y )hhhhhhhhhhh =
σX σY

σXYhhhhhh

Result. If (X , Y ) is a random vector, then −1 ≤ ρXY ≤ 1.

Result. If all observations of (X , Y ) lie in a straight line, then |ρXY | = 1.

Result. If X and Y are independent, then σXY = ρXY = 0.

Comment. Covariance and correlation are measures of linear dependence. Zero
correlation does not imply independence; consider Y = |X | for X uniformly
distributed on [−1, 1]. Nevertheless, informally the phrase "X and Y are correlated"
sometimes is used to mean that "X and Y are dependent."

Definition. Suppose that the continuous random vector (X , Y ) has means (µX ,µY ),
positive variances (σX

2 ,σY
2), and correlation ρ with |ρ|<1. (Notice that zero variances

and |ρ|=1 are excluded.)

Then (X , Y ) has the bivariate normal distribution if its pdf at any point (x , y ) is

f XY (x , y ) =
2πσX σY √ddddd1 − ρ2

exp
I
J
L −2 (1 − ρ2)

z 2(x ) − 2ρ z (x ) z (y ) + z 2(y )hhhhhhhhhhhhhhhhhhhhhhhh
M
J
O

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ,

where z (x ) = (x −µX ) /σX and z (y ) = (y −µY ) /σY (i.e., the z -values of X = x and
Y = y ).

Result. If (X , Y ) is bivariate normal with parameters µX , µY , σX , σY and ρ, then

(a) the marginal distributions of X and Y are normal,

(b) if ρ = 0, then X and Y are independent, and

(c) if X = x , then the conditional distribution of Y is normal with mean
µY | x = µY + ρσY z (x ) and variance σY | x

2 = (1 − ρ2)σY
2 and

if Y = y , then the conditional distribution of X is normal with mean
µX | y = µX + ρσX z (y ) and variance σX | y

2 = (1 − ρ2)σX
2.

Result. If Z 1 and Z 2 are two independent standard-normal random variables and if

X = µX + σX Z 1

Y = µY + σY (ρZ 1 + √ddddd1−ρ2 Z 2) ,

then (X , Y ) is bivariate normal with parameters µX , µY , σX , σY , and ρ. (This result
can be used to generate bivariate normal observations in a Monte Carlo simulation.)
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Definition. Given random variables X 1, X 2, . . . , Xn and any constants c 1, c 2, . . . , cn , then

Y = c 1X 1 + c 2X 2 +
. . . + cn Xn

is a linear combination of X 1, X 2, . . . , Xn .

Result. The linear combination Y = c 1X 1 + c 2X 2 +
. . . + cn Xn has mean and variance

E(Y ) =
i=1
Σ
n

E(ci Xi ) =
i=1
Σ
n

ci E(Xi )

and

V(Y ) =
i=1
Σ
n

j=1
Σ
n

cov(ci Xi , cj Xj ) =
i=1
Σ
n

j=1
Σ
n

ci cj cov(Xi , Xj )

=
i=1
Σ
n

ci
2 V (Xi ) + 2

i=1
Σ

n−1

j=i+1
Σ
n

ci cj cov(Xi , Xj ) .

Recall: cov(Xi , Xj ) = cov(Xj , Xi ) and cov(Xi , Xi ) = V(Xi ).

Corollary. If X 1, X 2, . . . , Xn are mutually independent, then the linear combination
Y = c 1X 1 + c 2X 2 +

. . . + cn Xn has variance V(Y ) =Σi=1
n ci

2 V(Xi ).

Definition. The sample mean of X 1, X 2, . . . , Xn is the linear combination

Xdd =
n

X 1 + X 2 +
. . . + Xnhhhhhhhhhhhhhhhhh .

Result. If X 1, X 2, . . . , Xn each have mean µ, then the mean of the sample mean is

E(Xdd) = µ .

Result. If X 1, X 2, . . . , Xn have common mean µ, common variance σ2, and are
independent, then the variance of the sample mean is

V(Xdd) = σ2 / n .

Result. Reproductive Property of the Normal Distribution. If X 1, X 2, . . . , Xn are
independent normally distributed random variables, then the linear combination
Y = c 1X 1 + c 2X 2 +

. . . + cn Xn is normally distributed.

Corollary. If X 1, X 2, . . . , Xn are mutually independent normal random variables with
common mean µ and common variance σ2, then the sample mean Xdd is normally
distributed with mean µ and variance σ2 / n .

Result. Central Limit Theorem. If X 1, X 2, . . . , Xn is a random sample of size n taken
from a population with mean µ and variance σ2, then as n→∞

Z =
σ / √ddn

Xdd − µhhhhhh

goes in the limit to the standard normal distribution.

(That is, when n is "large" Xdd can be assumed to be normally distributed with mean
µ and variance σ2 / n .)
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Descriptive Statistics (M&R Chapter 6)

A sample of data, denoted here by x 1, x 2, . . . , xn , can be summarized (that is, described)
numerically or graphically.

A numerical summary value is called a statistic. Commonly used statistics include
— sample average (the center of gravity, a measure of location):

xd =
i=1
Σ
n

xi / n

— sample variance (the moment of inertia, a measure of dispersion):

s 2 =
n − 1

i=1
Σ
n

I
Lxi − xd

M
O

2

hhhhhhhhhhh =
n − 1

I
J
Li=1
Σ
n

xi
2 M
J
O
− n (xd)2

hhhhhhhhhhhhhh

— sample standard deviation (an alternative measure of dispersion):

s = + √dds 2

— sample range (an alternative measure of dispersion. Often 4 s ≤ r ≤ 6 s .):

r = max{x 1, x 2, . . . , xn } − min{x 1, x 2, . . . , xn }

— 100k sample percentiles for k = 1, 2,..., 99 (alternative measures of location):

pi = the data value greater than approximately 100k % of the data

— first, second, and third sample quartiles (alternative measures of location):

q 1 = p 25 , q 2 = p 50 , q 3 = p 75

— sample median (an alternative measure of location):

m̃ = q 2 = p 50

— sample inter-quartile range (an alternative measure of dispersion):

IQR = q 3 − q 1 = p 75 − p 25

— sample mode (most-common data value, an alternative measure of the location).

Result. For constants a and b , consider the coded data yi = a + b xi for i = 1, 2,..., n .
Then
(a) location measures are multiplied by b and then increased by a , and
(b) dispersion measures (except for sample variance) are multiplied by | b |.

Graphical summaries include dot plots, histograms, cumulative distribution plots, stem-
and-leaf diagrams, and box plots. Data values plotted against time is a time-series
plot; appending a stem-and-leaf plot to a time-series plot yields a digidot plot.
— Frequency is the number of data values satisfying a specified condition, such as

lying in a particular interval. Relative frequency is the frequency divided by
n , the fraction of the data values satisfying the condition.

— A histogram is a bar graph showing data-value frequency for several adjacent
equal-length intervals. (The intervals are sometimes called cells or bins).

— A cumulative distribution plot is analogous to a histogram, but each bar shows
cumulative frequency, the number of data values in the bin or to the left of the
bin. (Alternatively, each bar can show cumulative relative frequency.)
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Parameter Estimation (M&R Chapter 7)

Comment. We now begin inferential statistics, the study of data drawn from a system to
infer conclusions about the system. (Chapter 6 discussed descriptive statistics.)

Definition. A population is the set of all possible observations of the relevant system.
(For example, the students in this course.)

Definition. A constant θ is a population parameter if it is a characteristic of the
population. (For example, class average gpa.)

Definition. A sample is a subset selected from the population. (For example, the
students in the front row.)

Definition. The random vector (X 1, X 2, . . . , Xn ) is independent and identically
distributed, often abbreviated iid, if

(a) the Xi s are mutually independent and
(b) every Xi has the same probability distribution, say with cdf FX .

Definition. The random vector (X 1, X 2, . . . , Xn ) is a random sample (of size n ) if it is iid.

(For now, every random sample is iid. Later, the definition will be generalized in
order to discuss more-sophisticated sampling ideas. At that time this simplest kind
of sample will become an "iid random sample" or a "simple random sample".)

Definition. A statistic Θ̂ is (a random variable that is) a function of a random sample,
that is, there is some function h so that Θ̂ = h (X 1, X 2, . . . , Xn ). (For example, the
average gpa of the students in the sample.)

Definition. A statistic Θ̂ is a point estimator of the population parameter θ if its purpose
is to guess the value of the population parameter θ.

Definition. A point estimate θ̂ is a single observation of Θ̂. (Notice that Θ̂ = θ̂ is an event
in the same sense that X = x is an event.)

Definition. A sequence of point estimators Θ̂n is consistent if limn→∞P( | Θ̂n − θ | < ε ) = 1
for every positive constant ε. (Usually n is sample size. A consistent estimator,
then, is guaranteed to be arbitrarily close to θ for large sample sizes.)

Definition. The bias of the point estimator Θ̂ is bias(θ̂, θ) = E(Θ̂) − θ.

Definition. The point estimator Θ̂ is an unbiased estimator of θ if E(Θ̂) = θ.

Definition. The standard error of a point estimator Θ̂ is its standard deviation,
σ
Θ̂
= √ddddV(Θ̂). (For example, σ

Xdd
= σX / √ddn .)

Definition. The mean squared error (MSE) of a point estimator Θ̂ of the parameter θ is

MSE(Θ̂, θ) ≡ E[(Θ̂ − θ)2] .

Result. MSE(Θ̂, θ) = [bias(Θ̂, θ)]2 + V(Θ̂) .

Definition. The root mean squared error (RMSE) is the square root of the MSE.

Comments.
— The concept of variance is generalized by MSE, which is useful when the point

estimator is biased. RMSE is analogous to standard deviation.
— For most commonly used point estimators, squared bias goes to zero faster than

variance as n increases, so asymptotically MSE(Θ̂, θ) / V(Θ̂) = 1.
— Some biased point estimators are good in the sense of having a small MSE.
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Point Estimators (from iid data): Summary Table
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Distribution Point ...Sampling Distribution... Standard-Erroriiiiiiiiiiiiiiiiiiiiiiii
Parameter Estimator Mean Variance Estimatoriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

θ Θ̂ E(Θ̂) V(Θ̂) ≡ [ste(Θ̂)]2 steˆ (Θ̂)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

p ≡ P(A ) p̂ ≡ " # of successes" / n p p (1− p ) / n √ddddddddddddp̂ (1− p̂ ) / (n−1)

µ ≡ E(X ) Xdd ≡
i=1
Σ
n

Xi / n µ σ2 / n S / √ddn

µ1 − µ2 Xdd1 − Xdd2 µ1 − µ2 σ1
2 / n 1 + σ2

2 / n 2 √ddddddddddddS 1
2 / n 1 + S 2

2 / n 2

σ2 ≡ V(X ) S 2 ≡
i=1
Σ
n

(Xi −Xdd)2 / (n − 1) σ2

n

σ4
hhh

I
J
L
α4−

n − 1

n−3hhhhh
M
J
O

difficult

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Definition. The unbiased estimator of θ having the smallest variance is called the
minimum-variance unbiased estimator (MVUE).

(More precisely, for the iid random vector (X 1, X 2, . . . , Xn ) drawn from a particular
distribution having parameter θ, consider all functions h for which
E[h (X 1, X 2, . . . , Xn )] = θ. The MVUE of θ is the point estimator defined by the
function h that minimizes V[h (X 1, X 2, . . . , Xn )]).

Result. If X 1, X 2, . . . , Xn is a random sample from a normal distribution with mean µ
and variance σ2, then the sample mean Xdd is the MVUE for µ.

(We already knew that Xdd is unbiased for µ, and that V(Xdd) = σ2 / n . The new point is
that the functional form h of the MVUE is that of a sample average.)

Definition. The distribution of a point estimator Θ̂ is its sampling distribution.
— The quality of a point estimator is determined by its sampling distribution.
— The sampling distribution (and therefore the bias and standard error of Θ̂)

depends upon the sample size n , the distribution FX , and the function h .
— For all point estimators in a first course, and for almost all point estimators in

general, as n becomes large
(i) the bias goes to zero (at a rate inversely proportional to n ),
(ii) the standard error goes to zero (at a rate inversely proportional to √ddn ), and
(iii) the sampling distribution becomes normal.

Definition. The estimated standard error, σ̂
Θ̂
, is a point estimate of the standard error.

— A common notational convenience, illustrated here, is to denote an estimator by
placing a "hat" over a the quantity being estimated.

— The reason to estimate a standard error σ
Θ̂
is to evaluate the quality of Θ̂.

The reason to estimate θ is to make an inference about the system of interest.
— Many point estimators are created by estimating unknown constants.

(For example, σ̂
Xdd
= S / √ddn , where S is the sample standard deviation.)

— The bootstrap is an alternative method of estimating σ
θ̂
, especially when the

function h is complicated. The method used is Monte Carlo sampling.
(We do not provide bootstrapping details in these notes.)
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Distribution fitting. Choosing values of the distribution parameters to obtain the desired
properties. Two classical methods are Method of Moments and Maximum
Likelihood Estimation.

Method of Moments (MOM). Fitting a k -parameter distribution to a real-world context
by matching the values of the first k distribution moments to the corresponding k
sample moments.

Definition. The likelihood L of a sample x 1, x 2, . . . , xn is f X1, X2, . . . , Xn
(x 1, x 2, . . . , xn ), the

n -dimensional joint pmf (if discrete) or joint pdf (if continuous) evaluated at the
observed values x 1, x 2, . . . , xn .

(In the discrete case the likelihood is simply the probability of the sample; in the
continuous case it is the density of the sample. The word likelihood is commonly
used to encompass both cases while still being descriptive.)

Definition. The likelihood function L (θ) of an observed sample x 1, x 2, . . . , xn is
f X1, X2, . . . , Xn

(x 1, x 2, . . . , xn ; θ), where θ is a distribution parameter.

Result. Assume that x 1, x 2, . . . , xn is a random sample from pmf or pdf f (x ; θ). Then
the sample’s likelihood function is

L (θ) = f (x 1; θ) f (x 2; θ) . . . f (xn ; θ) ,

(The observed sample is known, so L is a function of only the unknown parameter
θ. The analyst must assume that the observations xi are from a family of
distributions parameterized by θ; for example, the normal family with θ = (µ,σ2).)

Definition. The maximum likelihood estimator (MLE) of θ is the (feasible) value of theta
that maximizes L (θ).

Result. The value of θ that maximizes L also maximizes any continuous monotonic
function of L .

(In particular, L and lnL are both maximized by the same value of θ, a useful result
because often lnL is simpler, especially if maximization is accomplished by setting
the first derivative to zero.)

Result. Except in unusual situations, MLEs have these large-sample properties:
(1) approximately unbiased,
(2) nearly minimum variance,
(3) approximately normally distributed, and
(4) consistent.

Result. MLE Invariance. Let Θ̂1, Θ̂2, . . . , Θ̂k be the mle’s of the parameters
θ1, θ2, . . . , θk . The mle of any function h (θ1, θ2, . . . , θk ) is the same function
h (Θ1,Θ2, . . . , Θk ) of the estimators Θ̂1, Θ̂2, . . . , Θ̂k .

(For example, if the mle of σ2 is σ̂2, then the mle of σ is σ̂.)
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