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Some Effects of Non-linear Stress/Strain

Relations in Rotationally Symmetric

Thin Shells and other Engineering Components

by

A C..Mackenzie

S UMMARY

This thesis is mainly concerned with rotation:.lly
symmetric thin shells made of materials obeying non-liiicat
stress/strain laws, in particular an n-power law
relating effective stress and effective strain. To
formulate boundary wvalue probléms in such shells, it is
convenient to have relations betwecen edge Torces and
moments and mid-surface deformations. With the usual
assumptions of thin shell theory, thgse relations can be
obtained as integral expressions in the;thickneés co-
ordinate, but the integrations cannot be performed
analytically for all wvalues of the index n. Simplec.
approximate relatioms are thus suggested for thin she..
which are rgﬁafionally symﬁetric both in geometry and
loading; the approximate relations are compared with thc

exact relations computed numerically for the particular



condition in which one curvature change of the mid-~
surfaoe'is Zero. This condition applies in the
analysis of circular cylindrical shells.

The approximate relations are used to formulate
boundary wvalue problcms in oylinQrical shells, and a
method of solution using an andloguc computer is
described. Solutions are given for a long, fixed cnd
cylinder under uniform radial loading and under internal
pressﬁre. A feature of these solu%ions,-in the form
presented, is the small variation in the maximum values
of important variables with the index n. This suggests
that the linear elastic (n = 1) solution may be used to
make reasonable estimates of these maximum values for a
range of wvalues of mn.

As a preliminary to the worlk on shells, an
examination was ma%E'of solutions obtained with an
n-power law for deformations in a number of other
enginecering components. A simple methiod, based on thc
linecar elastic éolution, was devised for estimating
deformations and is described in the present work. The
method makes direct use of the stress/strain curve
without necd Toir detormining material constants.
Although it was derived for an n-power law, physical

expilanations for the method suggest that it might give



reasonable estimates of deformations for non-linear
laws other than the n-power law. Some available
experimental results are given in support of this

suggestion.
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CIIAPTER 1

INTRODUCTION

Much is known about the behaviour of structures
made of materials which have linear relations between
stress and strain, and in rceccent years this knowledge has
been extendcd to behaviour under conditions of non-work-
hardening plastic flow. Less attention has been given to
structures of materials which have intermcdiate, non-iincar
stress/strain relations.

Many light alloys and polymeric matcrials, wlhich
are being uscd incrcasingly as strucltural components, show
little or noe linear clasticity; design of thesc components
should take account of the non-linear bchaviour. Also,
more and morc structures are being designed to operate
at temperaturcs and strcss levels at which significanﬁ
creep occurs, and in most materials the crecp strain rate
bears a non-linear relationship to stress.

In the past, the difficulties in studying structures
made of such materials have arisen mainly from the complex
stress/strain relations necessary to describe the material
behaviour accurately, and from inability to cope with such
relations in analysis. As modern computing techniques

have developed, it has become possible, with numerical



methods of analysis, to deal with increasingly complex
material characteristics. There is a tendency, however,
for too much emphasis to be placed on the development of
involved computer programmes, and too little attentioﬁ
given to obtaining solutions leading to a better under-
standing of the behaviour of structures. There is some
advantage in selecting-a family of simple non-linear
relations, which only approximate to material behaviour
but by way of'pelatively simple analysis may be uséd to
explore some featureémof.ﬁhe behaviour of structures.
They may also suggest approximate methods of analysis
applicable with other non-linear laws.

A family of stress/strain relations which may be
used in problems involving a single stress wvariable is

. ’
€ = BUo (1.1)

whefe € and T are uniaxial strain and stress respectively,
and B and n.are constants. With n = 1, cecquation 1.1 is
a statemeﬁf of linear elasticity and for n -~ & , written
in appropriate non-dimensional form, it represents a
rigid-non-work-hardening materiai.(l) It has been used
with other wvalues of n to approximafe to the behaviour of
some metals in their plastic range. Written in the form
expressing strain rate as a function of stress, i.e.
"

= BJd (1.2)

-



it is commonly used to describe the steady state creep
behaviour of metals.
For proﬁlems involving multiaxial states of stress,
furfher assumptions have to be made about material behaviour.
One assumption which has found wide acceptance for simple
loading paths is that the root mean square of the principal
shear strains is a function of ﬁhe root mean square of the
prinoipai shear stresses (usually termed the effective strain
and stress and denoted Ef and a respectively). Experiments
made by many investigators have shéwn this to be a reasonable
assumption fsr the plastic flow of metals, whether under
short-term loading or under longer tefm creep conditiois,
when it is found that the'effecfive strain rate is a
 function of the effective stress. Since it is well
established that plastic flow in metals is a shear
phenomenon, it is mot surprising that approximate relations
should exist between simpie statistical measures of shear
stress and shear strain "intensity". It has been found
(2)

recently that these concepts are useful also in

describing the behaviour of some polymeric materials.

——

The functional relationship between € and TJ  of

which equation 1.1l is a special case is

1
—

€ =BJ
while equation 1.2 is a special case of

- T

€=DBdJd i | ' (1.4)



Af this stage it is relevant to mention Hoff's
analogy(l)_between solutions to structural problems
obtained yith equation 1.3 and those obtaiﬂed with
equation 1.4, For a given loading, the stresses
throughout a structhre are the same iﬁ the two cases,
deformations obtained with equafion 1.3 becoming
deformatidn rates with equation 1.4, Solutions to non-
time-dependent problems with equation 1.3 can thus be
used for steady state creep problems obeying equation
1.4 and viée-versa.

It is as an equation of steady state creep that
the n—poWer law has been most widely applied in
structural analysié, and solutions to many problems with
a single stress wvariable are easily obtained. A number
of probiems involving multiaxial states of stress have
also been solved with equation 1.4, Among these are the
thick-wall cylinder and sphefe under internal pressure,
the rotating disc, and the circular flat plate under
rotationally symmetric loading. The most important of

' _(3),

© the results have been gathered by Finnie and Heller
and also by Odqvist and Hulﬁ.(h)

A bound method for analysis of structures in
steady state creep obeying equation 1.4 has been suggested

by Calladine and Drucker.(5)'(6) It is based on surfaces

of constant energy dissipation rate, and the bounds are



obtained from the linear elastic (n = 1) and the rigid-
'non—wofk—hardening plastic ('nwwm ) solutions. The
method is useful when the solution for neso is readily
obtainable and the bounds are reasonably close. In many
~structures, the solution for N — 0o isAas difficulf to
obtain as the solution for an intermediate value of n.
Calladine has applied bound.methods to a number of

(7),(8)

structures and has also recently suggeéted a

method for estimating the greéteét stress in a structure
subject to creep.(9)
As part of the preseht'wbrk, an examination was
made of some of the existing solutions for deformations
in simple sftructures obtained with the n-power law. It
was found that when ﬁhe solution for m = 1 was factored
out, the rest of the solution could be made relatively
insensitive to the Qalue of n if a non-dimensional group,
dependent on the dimensions of the structure and on the
loading, was given a particular wvalue. This suggested a
method for predicting deformations which used the linear
elastic solution and did not require evaluation of the
material constants B and n in equations i.3 or 1.4, the
stress/strain (or strain rate) curve being used directly.
Furthermore, physical explanationsAfor the method

suggested that it might give reasonable estimates of

deformations for non-linear laws other than the n-power



law. Some avallable experimentél results supported this
suggestion.

The method is reported here and reéults are given
for a number of structures.  No apology is made fo? the
relativély simple examples which have been considered.
They are frequently met in the design of engineering
components, and a ready, if only approximate, method of
predicting deformations is all that is required,
particularly in the early stages of developing a.design.
The use of the n-power solutions as normally presented
requires determination of the material constapts. As
few materials obey an n-power law exactly,'it is usually
..difficult to decide on wvalues for the comnstants which
best fit the test data.

‘In recent years a growing need has developed for
an understan@ing of the behaviour of rotationally
Symmetric thin sheigs.made-of materials with non-linear
stréss/straih‘relations. ; Such shells are widely used as
pressure vessels and,aré now frequently made of light
alloys and polymeric materials. - Pressure vessels of
more conventional materials are also being reqguired to
operate at temperatures at which significant creep occurs.

Several. attempts have been made with the n-power
law to obtain solutions to such thin shell problems.

Only limited progress has been made with even the simplest

6



of rotationally symmetric shells. One difficulty lies

in obtaining relations betWeen forces and moments on an
element . of the sheli and the associated mid-surface
deformations. . This requires integration of theynon-linear
stfess/strain relationS‘fhrough the shell thickness énd

the integrations cannot be '‘performed analytically. There
is also coupling between in-plane and bending actions which
does not occur in the corresponding linear relations.

In an early attempt to obtain these relations, Onat
and Yuksel(lq) avoided the difficulty of integrating
stresses through the shell thickness by considering a
‘sandwich construction. Two identiéél thin layers of material
were considéred to be separated by a central core, the only
other function of which was to withstand shear stresses
associated with changing bending moments in the shell.
Further simplifying assumbtions were introduced by the use
of a stead& state creep law based on a relationship between
maximum shear stress and maximum shear strain rate
(analogous to the Tresca condition in the theory of
plasticity). fhe analysis could be applied if the outer
layers 6f the shell were assumed to obey relationé between
effective stress and effective strain rate as in equation
1.4, but it is difficult to see that it gives anything but
a very crude appfoximation to the béhgviour of shells having

uniform propertieé through the thickness.



(11)

Bieniek and Freudentﬁal , in performing an
analysié of secondary creep in thin cylinders, made
drastic simplifying assumptions which removeq the
coupling bebtween in-plane and bénding actions. They
applied extremum principles to obtain solutions to the
problem of the thin cylinder with fixed ends under
internal pressure, but the moment distributions which
they obtained show very unlikely trends.

" The first attempt to use a reasonable seé_of

(12). He

approximate relations was made by Calladine
postulated semi-empirical relations based on an
ellipsoidal interaction surface between the forces

and moments on a shell element, and used the relations

to establish a governing differential equation for
secondary creep in a cylindrical shell. By casting the
equation into finite difference form, he obtained a
numerical solution'to a boahdary value problem in a shell
with edge shear force and bending moment for a value of
the index n = 3.

One object of the present work was to propose a
rational_basis for the suggestion of approximate relations
between forces and moments and mid-surface deformations,
and for coﬁparison witﬁ "exact" relations computed
nuﬁerioally. It was moted that the exact relations

can be derived from a function which, in steady state



creep, is the energy dissipation rate. An approximate
form of the function, based on an n-power law, was
obtained for an element of a shell rotationally symmetfic
both in geometry and loading, and led to approximate
relations simple enough to be useful in further analyéis.
The relations were compared with the exact relations for
a cylindrical shell and showea favourable agreement.
Af'ter these approximate relations had been
obtained; the writer became aware of relations suggcested
by Rozenbliﬁm(lj). The latter are based on an approximate
expression for the rate of energy dissipation in steady
state creep of a shell element, and can be shown to be
the same aé those obtained here. Rozenblium based his
approximate expression}For the rate of energy dissipation
on a yield surface suggested originally by Ilyushin,(lu)
and developed it in load space. In the present work, the
energy function and the approximate relations are developed
in deformation space, the advantage of this being the ease
with which comparison can be made with the exact relations.
Rozenblium has included in his relations thé
in-plane edge shear forces and the twistipg moments which
arise in a shell not rotationally symmetric in geometry
and/or loading. In thg writer's opinion,if is premature
to attempt to deal with this general case before ‘the

relations are tried and proved for . the simpler, but



important, practical examples of rotationally symmetric
shells. Illustrating the use of the relafions,,Rozenblium
used variational brinciples to obtain approximate solutions
to the problem of an infinite cylinder with a circumferential
line loading.

In the present work,  the approximate relations have
been used to formulate the problem of a cylindrical shell
under rotationally symmetric loading. It was found that
the resulting fourth order system of two simultaneous,
non-linear differential equations could conveniently be
solved on an analogue computer. Solutions were obtained
for a number of boundary wvalue problems in semi-infinite
cylinders and, in particular, for the long cylinder with
fixed ends under internal pressure. The results indicate
that it may be possible in many problems to make reasonable
estimates of forces and moments at boundary restraints and
of deformations in the shell, from the linear elastic
solution.

‘To summarise, the objects of the present study are

(i)“ to examine solutions obtained with an n-power law
for the deformations in some simple structures,'and
to éuggest approximate methods for predicting
deformations ﬁhich‘may be applicable with other
nbn—linear laws§

(ii) to suggest approximate relations between forces

and moments and mid-surface deformations, based



(iid)

on an n-power law and suitable for analysis of
thin shells which are rotationally symmetric both
in geometry and loading; |

to demonstrate the use of these approximate
relations in obtaining ‘'solutions to boundary

value problems in cylindrical shells.



CHAPTER 2

SOME DEFINITIONS AND ASSUMPTIONS

2.1 The uniaxial stress/strain law

A typical stress/strain curve of the family defined

by equation 1.1 i.e.
m
€ =0B0
is shown in Fig. 2.1 for n » 1 (With n<1 equation 1.1

defines a material behaviour which is not commonly met,

and in what follows values of n< 1l are not considered.)

g4

s g (Uo ) e-o)

FIG. 2.1

N

As suggested by Calladine and Drucker(5) the constant

B may be expressed in terms of the co-ordinates (J,, &,) of

an arbitrary point on the stress/strain curve, i.e.

B - &

U;d\

-



and equation 1.1 may be written in the non-dimensional

form
" ‘
€u O-O . (2-.]_) *
Equation 2.1 is plotted for different values of
#*
n in Fig. 2.2. Written in this form, it is seen to

represent a rigid/’non—work~hardening material for n -—»co.
The material behaviour is assumed to be the same

in tension and oompressioﬁ, and this oaﬁ lead to difficulty

in using eqﬁation 2.1 when n is even. The difficulty is

avoided, however, if the equation is used in the forms

& =era(gl) )

%, = (Mame-) (%)/ﬂ (2.2b)

2.2 Stress/strain relations for complex states of stress

In defining stress/strain relations for complex

states of stress, the following assumptions are made:

(a) The material is homogeneous and isotropic. \
(b) No change in volume occurs during deformation.
(c) The material is initially unstressed and the

stresses increase monotonically from zero in a

¥ Where not included in the text all figures are to be
found at the ends of the relevant chapters.



constant ratio. (Loads applied to a structure
must therefore increase monotonically from zero
in a constant ratio.)

(d) Deformation is governed by the flow rule

€¢""€‘L — E-?,—ﬁ} o €.3"""€, o _5_ _:é_: (2 3)
g— 0, T T, T;— 3, 2 g '
where
" 2 2 . 2 ra
-é f— E L_(€.-—€:3 + (G.g_”é;) +(€5~€.)
3
- 72 (2.4)
—_ 2 (3 2 i .
7 =L |@-6)+ (crz-@w(d:—ct)]
V’é’ L
In these equations (71, Oé, Gé are principal
stresses and él’ 62, 63‘are principal strains.

(Assumption (c) allows the flow rule to be written

in terms of total rather than incremental strains.)
(e) The equivalent stress and strain J and E: are

related by the equation

—

=R J (2.5)

™

or, in non-dimensional form,

—_ N

£ =D (2.6)

&, a, . :
With the assumptions (a) to (e), the following

stress/strain relations are obtained in Appendix 2.1:



m
2

BT [a- $ (e )] )

o
i

o (@D f
Co= BTG - 4(g+a)]

15

(2.7)

In developing relations between forces and moments

and mid-~surface deformations, suitable for the analysis of

thin shells, a state of plane stress ( Oé = 0) is assumed.

With this assumption, expressions for Cfl and

terms of Ei and €2 are obtained as follows:

From equation 2.3, with Og = 0

7= 3% (&8)
g, = % _g (elbé’:’)
with
€, + 62 + 63 = o.4for‘¢onstant volume),

Q

_ (s:)%n 5

:%. (ef v EE, + C’f)'/a

o

equations 2.8 become finally

'Y\-H

J = Eyn (——g) CEi'é.E{*E)T‘(C+JZC)

Gim g (e )R

(2.8)

] (2.9)
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No difficulty arises in using these relations,

z 2
whether n is odd or even. The term ( € + g€, + €, )
. L S :
can be written [ (6‘ + -‘i C".;) + = €, and is always

positive, |

2.3 Limitations on strains and displacements

Non-linearities arise in the analysis of structures
from changes in geometry as well as from the stress/strain
relations. The equilibrium equations are normally
obtained for an element in the undeformed structure. If
substantial deformation and/or rotation of the element
occurs, the equilibrium equations must be established for
the deformed state and.non—linear terms are thereby
introduced. The strain/diéplacement relations also
become non-linear when rotations are taken into account.

(15) the

As discussed, for example, by Novozhilowv,
non-linearities associated with physical and geometric

sources can occur independently. In the present study

it ds assumed that non-linearities arising from geometry

changes can be disregarded; This implies a limitation
on displacements and strains in the structure. It is not
possible to define these limits. They will depend on the

nature of the problem and the required accuracy of solution,

and are perhaps best established from individual experiments.
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CHAPTER 3

AN APPROXIMATE METHOD FOR PREDICTING
DEFORMATIONS IN SOME SIMPLE STRUCTURES
WITIL NON-LINEAR STRESS/STRAIN RELATIONS

3.1 TIllustration of method with reference to
beams in uwuniform bending

A method for predicting deformations in simple
structures obeying non-linear stress/strain relations is
illustrated for a beam of rectangular cross-section in

uniform bending. @

M o ™ I

N _ %

b=

For a material obeying equation 2.1, i.e.
€ - (a\™
€, 7
the relationship between the applied moment M and the
curvature K to which the central axis of the becam bends

is. obtained in Appendix 3.1 (a) as

e € M

g o g (3.1)

K o (&wl

”(\. M"' t ((L
A"



With n = 1, this reduces to

a linear elastic beam
o~

p= t2 M
(%) &

FactoringiKl from the right

K

to

Yu.o> |
K =K,

Thus for

AR A -
K= KM ) 2
G bd* 3

19

the familiar expression Tor.

(3.2)

hand side of equation 3.1 leads

448
2|

(3.3)

l

(3.4)

¥} does not vary greatly

if
’f\-l ~ Y\
(__,.._..,_*M ) e (2 e t> _
0o lrd® 3 n
or
M
M 3 =
GBQNJZ o c éﬁa%i>
= 0 (), sav
Table 3.1 shows that
14
. for LiZ= =T,

[NOTE: It is shown in Appendix 3.2 that

[N
gi X&f):: M-Qfs

AT Y|

0.23%26



™M
Equation 3.3 is not violated with 3 = 0-232¢ for
. d
n = 1 , since =7 T3 is raised to the power n — 1
o O d® powe

Similar remarks apply to all the examples of structures

considered in this Chapter.}

()
- 233

-

- 237 Table 3.1
.240

243
2Ll
.2hs
2hy

N e

2
OISO |0 ;0 \ut

(11

ojlojolololo]o |

It is thus possible to select a value for the

M

non-dimensional group T 4 72 which will make K
T d

approximately equal to K for a range of wvaluaes of n.

1
The error incurred can be assessed as follows:

From equation 3.3

M- | - AN '
K (M ) gf'(an+:>
K, 0o rcl® 3 m (3.5)
Selecting from Table 3.1 the value

M
Jo & d®

‘v

= (0.245

I

gives

448

K _ (0-245)" o™ (zm. l)m
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AER

The ratio is given for different values of n

1
in Table 3.2. It differs from unity by less than = 5%

for 1.1% n ff?

11 %——
1
1.005
1.016
.021
.020
.005
. 000
.959

(S S

ol NCR NN NN NGR RN

™o

s
I

Ut =W

~J
Of | k]

Table 3.2

The result sﬁggests the following method for
predicting curvatures in beams in uniform bending, obeying

an n-power law:

(a) For a given value of M and dimensions of beam

obtain C% from

M - 0245
JoQIc:ta ’
or.
- ™



(v) Read this value of O; into the stress/strain curve
to obtain €O

(c) Use these values of g, and € to calculate K,

from the linear elastic solution, equation 3.2, i.e.

K, = —teM
(%le)od®

The actual curvature K will not differ from Kl by

more than -~ 5% for 1.1 &= n =< 7,
Fig 3.1 gives a physical explanation for the
method. The'bending stress is plotted in convenient

non-dimensional form over half the depth of the beam for

different walues of n, the moment M being the same in

22

cach case. The curves for l.1f513f5‘7 intersect the
curve for n = 1 at approximately the same distance from the
neutral axis of the beam. If the stress at the inter-

section "point" is taken to be Gg, the strain at this
point, and hence the curvature of the beam, will be the
same for members of the family of stress/strain curves in

Fig. 2.2.

. )
If the wvalue of Jo &d at the intersection "point"
™M
is taken to be
T bel®
— = 4.1
™M
then
O~o pasud M
0244 ¢ d*

This compares with the wvalue for J, obtained above.



For other non-linear laws which are réasonably
close to the n-power family, the stress distributions
will not be very different from those in Fig. 3.1, and
intersection with the linedar distribution will occur at
approximately the same point. Thus it may be expe;ted
that the method will give rceasonable estimates of
curvature for other non-linear laws. Examination of
some experimental results for beams in bending supports

this cladim.

(16)

Gill conducted uniform bending tests on
magnesium alloy beams of different cross-sections. The
stress/strain curve for the material (a mean of curves
obtained in tension and compression) is reproduced in
'Fig. 3.2. Moment/curvature results for a beam of
rectangular cross-section are reproduced in IFig. 3.3,

and the curvatures predicted from the stress/strain curve
by thé method described qbove are plotted for comparison.
The maximum curvature represents a 6% strain at the
extreme fibres, and there ié good agrecement between the
experimental and predicted curvatures.over the whole

range.

The stress/strain curve of Fig. 3.2 is plotted
logarithmically in Fig. 3.4 for strains up to 6%. It

shows that the material does not obey an n-power law

over this range, the slope of the curve increasing from
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1 (in the elastic range) to approximately 3.2. This is
an illustration of the difficulty, mentioned in Chapter 1,
of using the n-power solutions in their usual form. It
would be difficult to decide on values for the constants B
and n from Fig. 3.4.

The method can be applied to other cross-~sections
and is applied to an I-beam in Appendix 3.1(b). The
resﬁlts are compared Z; Fig. 3.5 with experimental results
for an I-becam tested by Gill. Again there i1s good’

agreement betwecn the experimental and estimated curvatures.

3.2 0Other Applications

(a) Beams in non-uniform bending

The example considered is a beam of rectangular
cross-section, simply supported at its ends and centrally

loaded.

W

&
7)d

. . i
L/o /o

A

If the effects of shear stresses associated with
shear Torces in the beam are disregarded, and only small
deflcctions counsidered, the central deflection d is

shown in Appendix 3.3 to be

5 qux Lﬁﬂ+2 e, 27\+l)~x [ (5.7



and

Co |

§ = ML

Qr d3 JU 4’

Equation 3.7 can then be written

§ = & (WL ““(2»«” 2"
"\G b d* n 42

and

§d = ¢

il

if

i1

Wl YL
Jo Uy d* 2 4

EAY |

-t (mz o
L

= Xz(m.\ , Sav
Table 3.3 shows values of X;Qﬂ).
n }g(n)
1.1 1.30
1.5 1.29
2.0 1.28
3.0 1.26
4,0 1.23
5.0 1.22
6.0 1.20
7.0 1.19

Again there is not a strong dependence on n,

Table 3.3

and

a suitable wvalue may be chosen for the non-dimensional



Wi

group (. 4% - For example, with

WL = (.20
el d?

or

d, = O833 WL
¢ d*

the values of 7y~ given in Table 3.4 are obtained, and
i

show that, for 1.1 = n =<

Cf = é} T aApProx. 10%.

Other values-can be chosen for ”&!Lj to give a better
o -l

approximation for a smaller range of n,

WL
n CT, form = 1.20
1.1 1.020
1.5 0.964

Table 3.4

2.0 0.937
3.0 0.914
4.0 0.923
5.0 0.937
6.0 1.002
7.0 1.055

Although the central deflection can be made the
same for different values of n, the deflected shapes are

not the same. This is illustrated in Fig. 3.6, in which



the deflected shapes are plotted for the same central
deflection and different values of n. In most-
applications, however, it is the deflection under the
load, and not the exact deflected shape, that is
important.

Results for three furthér examples of beams
of rectangular cross-section in non-uniform bending
are given below. The results are derived in

Appendix 3.54.
W
(+) .

-

Simply supported beam of rectangular cross-section with

non-central point load.
Deflection under load & = &, < 10% for 1.1=n =7

ir
%Qi? (1- ng.) — 0300

or

Jd, = 333 \Qf;l;z(t-%)
(1) |

) W

/ v 4 0-

/ S ¢ A d
, / 7
g ) oz 4

/ > i d

27
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Beam of rectangular cross-section with built-

in ends and central point load.

Deflection under load d = (5, L 10% for 1.1 =n=7

if

WL - 2.4
0 & d®

or
O d?
(iid) WHunhT LENGTH
/ i/
s -
i VN "N W 7T N S R S N ST -
/ 7z
7 .
b i
/ ™
Cantilever of rectangular cross-section with uniformly

distributed load.

End deflection d' = d} T l)% for 1.1=n =7
if
Wl — 0.635
05 b d*
g = 1575 Wl

& d*

The thin wall -eylinder with closed ends
under internal pressure

2H
CTR T LAY \ A W Y T
{ > IYes
- es«s‘frm\,m_ ) O = Oe -
i \\\\\ SN




Away from the ends, the circumferential and

longitudinal stresses, G% and (x respectively, are
approximately
C%:: ELm ’ T ::El“
2 H ’ aH

It can be shown with equations 2.7 that the

circumferential strain QQ is

69:_6..&.!

For n = 1

<= () @

and

-\ Al
Co = 5@1( ) (
HOu v

Thus, for all values

661

= @)=
2HO; >

oxr

it

NAGS

of n,

(55

(3.9)

g, = 0-43% P&

H

The interpretation of this result is that the

reference stress CTO

has been equated to the effective

29



stress U 4in the cylinder wall. - The effective

strain & is thus Eo and the same for all values
of n in the family of equation 2.6. € is directly

proportional to the circumferential strain éig, and -

thus €g is the same for all valueé of n.

{(c) Thin wall spherc under internal pressure

The stress (¢ in the wall is given approximately

1
7 g - Pa
4-H

Again, with eqguations 2.7, the circumferential strain

Ee;is

€o = Lo <P9 o | (3.10)
g, \2H g™t
and
€Cor — L PA !

4 2H  (Gfe,)



€o can thus be written

0,-« i~
A
) e
and é:.@ = Ee; if
PR L
2H G, 2
or
g, _ Pa
H

This value for CTO is again the effective stress a

(d) The thick-wall cylinder with closed
ends under internal pressure

{\\\*w:\\\ S
R.

‘ 1 Ko \

) INTERNMAL. PRESSURE P

SO

(17)

A solution, originally obtained by Bailey
for steady state creep, and based on equations 2.7,
gives the circumfercntial strain Co at any radius

r in the cylinder wall as

(s.

31
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where

A = outer radius _ Ro
T dinner radius

2

For n = 1

2,
Cop = 2 | /Ro) 2p

& O:/Eo K-Q" sz._\
and
L me
2
Co = Col (,E_ 3 X - |
2 o
7, " (04/"‘-4)
The condition for Co = E e dis

vi—] 7

E_'“;
o 372 oL =1

. . / A
Table 3.5 gives values of E:,,(n) for K = 4,2,

and n values from 1.1 to 7.

- [ a (0{2/“_& Q“«j\ _ 2}/3 (ﬂ) | sa

Ll
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§ ()
n
‘ Ly
O< = Ll O( = 2 O( = -5-
1.1 1.218 0.739 0.328
1.5 1.323 ~0.749 0.329
2 1.385 0.771 0.330
3 1.425 0.782 0.331
I 1.485 0.786 0.332
5 1.506 0.790 0.333
6 1.525 0.792 0.33k
7 1.538 0.794 0.335
Table 3.5
Even for a very thick wall cylinder (ot = 4),
XB(H) does mot vary greatly with n. If é; is given
v
the value of Xj(n) for n = 5 in each case,i.e.
X 4 2 2
i
as 1.506 0.790 0.333

the values for (



n Cor
xo= U * o= 2 X = 4/3
1.1 1.024 1.007 1.001
1.5 1.067 1.020 1.006
2 1.088 1.027 1.008
3 1.072 1.020 1.008
by 1.039 1.015 1.006
5 1.000 1.000 1.000
! 6 0.936 0.990 0.995
7 0.880 0.970 0.988
Table 3.6
With these values of £ , the circumferential

Jo

strain at any radius, and hence the radial displacement
of any point in the cylinder wall, can be eétimated
from the linear elastic solution. The accuracy of
the estimate is - 12% for ol = 4 and values of n from
1.1 to 7, and it improves greatly for lower values of
A
i

In Fig 3.7, (% is plotted for values of &

from 1 to 4. Also shown is the curve obtained from

the following thin cylinder approximation.

3k
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From equation 3.9

H
or
P - 1155 2H
To A
But‘
g_}j_ — Re = R¢ i A ~ |
A R
£ = 55 (¢~
P (<)

(e) Circular flat plates under rotationally
symmetric loading

Solutions have been obtained by Malinin(lg) for
the central deflection in the following four examples

of circular flat plates. A summary of the results is

given in referenoe(3)

w}umr AREA w luN T ARE R .
2H / ' ’
RS R ¢ /T T S R N
T /
! Ro | / [

©) (©

W LMV
/ /
! ’ /
/

/

77977 77477' 5 f




(a) and (b) - uniform load w/unit area distributed

over whole area .,

(c) and (d)‘ ~ central load W.
(a) and (c) - simply supported edges .
(b) and (d) - clamped cdges.

The solutions were obtained with relations
between moments and changes in mid-surface curvatures
based on.equations 2.7.

I W = TTR:LU in cases (a) and (b), the éentral

deflection ¢ for all four plates may be written as

. ML .
§= C& BYWIRS 37 (2___“*0“ (3.12)
- o T C2H)2n+s ™ , )

where
J is a function of n plotted for the four cases in
Frig. 3.8,

C and D are constants having the following wvalues

Case (a) (p) (e) (a)

c oy Ly /12 L/
D Sre | toue |7 auw 1 /841

From equation 3.12

§i= C_1__ D WR2 .9
(e,) 3 @)

36



where Jl is the value of J for n = 1.
The expression for the central deflection may thus

be written

A

-
\/\/ _ ‘_I_. L)Y\-t 64\—! | e -1
4H°0, D\ 3 % 5w \2 et

= Xﬂi- (VL) Y say.

I

Values of Xu(n) have been calculated for each example

and are given in Table 3.7

Xu(n)
n
(a) () (¢) (a)

1.25 | k.81 10. 4L 0.155 0.225
1.5 | 4.91 10.53 0.165 0.245
2.0 4.97 10.77 0.17L 0.266
3.0 5.03 .10 0.185 0.284
L.o 5.09 11.25-' 0.189 0.290
5.0 5.15 11.32 0.191 0.295

Table 3.7
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Solutions are available only for values of

n from 1,25 to 5, but in this range XLATO does not

depend étrongly on m.

In Table 3.8 are shown values of ?? calculaté
W % \ '
with ijzi having the values of u(n) for n = 5.
S
n s
(a) () (¢) (a)
1.25 1.018 1.021 1.053 1.070
1.5 1.025 1.036 1.075 1.097
2.0 1.037 1.051 1.008 1.100
3.0 1.050 1.040 1.062 1.079
L .0 1.033 1.021 1.020 1.060
5.0 - 1.000 1.000 1.000 1.000
Table 3.8
With these wvalues for W
4H*0s

§- 4, *

10% approx for 1.25 = n =5

3,3 Summary .of Method

For some structures obeying an n-power law, the

displacement d-at a particular point can be expressed

in the form
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g = >\l (P ""-"J L¢ _,~“J'0:}eo>.>\t(ﬂ) (3.13)

where
Al

the dimensions of the structure Li and the co-ordinates

is a non-lincar function of the loading Pi,

G% €, of an arbitrary point on the stress/strain

curve ;
,X2 is a numerical function of n.

Equation 3.13 can be written as
-l
$ = g[N] AW (3.14)

where

d;is the displacement for n = 1 (the linear elastic

P

125

solution with the modulus of elasticity written as . 2
and Poisson's ratio taken as %);

A

3 is a non-dimensional grouping of
P., L, and T ;
i i 0

X1¥ is a new numerical function of n.

The condition for d.=7 61 when n > 1 is thus

- | |
)\3 — (_,L. ' (3.15)

2

P



Lo

The parameter X*BCan be given a numerical

value for each n to satisfy equation 3.15 and hence

give Cf = J

( It is found, however, that A‘3 is

often not strongly dependent on n and may be chosen
to give d 6( for a range of n.

'AB chosen in thié way-défines (Toin terms
of the loading and the dimensions of the structure,
and 60 islobtained from the stress/strain curve.

The wvalues of (7; and éo are used in the linear

elastic solution to evaluate 6:1.

3.4 Discussion

The method suggested for éstimating displacements
in some structures obeying an n-power law has the
advantages that

(a) the linear elastic solution replaces the
more complex non-linear one;

(b) the non-linear stress/strain curve can be
used directly without evaluating the constants B and
n in equations 1.3 and 1.h4.

For the structures considered, the reference
stress 0; can be chosen to give estimates of
displacements which are within : 15% of the exact
values for 1.1 <= n =7, (1.25=mn = 5 for the

circular flat plates). Other values of CTO will give



better accuracy for a smaller range pf n but greater,
errors are introduced if the range is extended
beyond n = 7.

The physical explanation of the method for the
beam in uniform bending suggests that it might be useful
for non-linear laws besides thg n-power law. Similar
physical explanations can be obtained for the other
structures and also suggest that the method might be
more widely applicable. For example, Fig. 3.9 shows
the effecti%e stress O through the wall of a
cylinder having a diameter ratio of 2, for different
valueé of n and the same internal pressure. In
Fig. 3.10, the product of the moment and curvature
is plotted along a beam of rectangular croés—seotion,
simply supported at its ends and centrally loaded.

The central deflection (and thus the area under the
curve) is the same for each value of n.

In Figs 3.9 and 3.10, the curves for 1= n =7
intersect the curve for n = 1 at approxima%ely the
same point. Use of the intersection "point" to
obtain the results of paragraphs 3.2 (a).and (a) is
demonstrated in Appendix 3.5. For other non-linear
laws, which are reasonably~close fo the n-power family
for 1= n =7, intersection with the n = 1 curve may

be expected to occur in the same region.



It has been brought to the writer's attention
that characteristics of an.nmpower_system similar to
those discussed above have been used by Preston(zo),
in the measurement of fluid flow in circular pipes. '’
The veiocity distribution for tgrbulent flow can be
described by an n-power éxpresgion where the value of
n depends on Reynold's Number. It was found that
there is a radius in the pipe at which, for a given
mass flow rate, the veiocity does not depend strongly
on n. Measﬁrement of the wvelocity at this radius
will thus give a measure of mass flow rate which,
within limits; is independent of Reymnold's Number.

(21)

Exﬁeriments conducted by Campbell on beams
in three point bending provide a more rigorous test
of thelmethod than the experiments in uniform bending.
Beams of rectangular cross-section 1" depth x #" width
were simply supported over an 18" span, and centrally
loaded. Stress/strain curves for beams of annealed
copper and brass are given 1in Fig 3.11, and plotted
logarithﬁically in Fig 3.12. for strains up to 5%.

The experimental load/central deflection curves
for deflections up to 1" are reproduced in Figs 3.13
and 3.14. The curves @atimaﬁad by the method of
paragraph 3.2(a) are shown for comparison and there is

reasonable agreement with the experimental results.

L2

(19)



The maximum fibre strain at.a 1" central deflection
is approximately 3% for the copper beam and 5% for
the brass beam.

One application of the method which may
prove to be important is for the prediction of creep
rates in simple structures. The method suggests
that a uniaxial creep test conducted at one stress
level would be sufficient to predict a second stage
deformation ;ate in a structure for one va}ue of the
applied load. In studying the creep of uniformly
loaded beams of rectangular cross-section, Anderson,

(22)

Gardner and Hodgkins noted the existence of what
they termed a "representative stress," and the
possibility of conducting a single creep test at this
level. |

Furthermore, Marriot and Leckie(zﬁ) investigated
the stress redistribution which occurs during first
stage or primary creep in a number of structures, ahd
observed that the stress at a particular point
remaiﬁed nearly unchanged during the redistribution.
They termed this the "skeletal point" in the structure,
and for the beam of rectangular cross-section in
uniform bending and the thick-wall cylinder under

internal pressure, the skeletal point is the same as

the intersection point of Figs 3.1 and 3.9. This

w
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suggests that a single uniaxial test might be
sufficient to predict the creep behaviour of such
simple structures throughout both primary and
secondary stages. As discussed by Marriot and
Leckie, it also suggests methods of predicting creep
deformations when the temperatgre and/or loads are
changing with time. However, thése suggéstions must
be treated with caution until sufficient expérimental
results are available to put them to test.

(24)

Resulfs obtained by King for'creep of -
thick wall cylinders under internal pressure provide
an opporbunity for checking the method when applied

to creep‘conditions. The experiments were conducted
on cylinders of 0.07% Ti Aluminium alloy at ZSOOC,

the diameter ratio of the cylinders being 3.125.
Uniaxial tests were performed at six values of tensile

stress and the second stage creep rates are given

below.

Tensile .
Stress 738 .980 - 1134 1290 1493 | 1750

Ibf /in®

Minimum 5.3 2.6 6.4 1.1 2.9 7.2

Creep
rate x 10 31 x 102 |x 1072 | x 1072 |x 107%

/hr

i -
x 10

Plotted logarithmically these results are close to a

straighf line and thus obey approximately an n-power



law. King determined the wvalue of n to be 5.8.

A graph of second stage creep rate against
internal pressure in the cylinders obtained from
the uniaxial results by the approximate method
of paragraph S.Z(d) is plotted in Fig 3.15. To
cover the required pressure range, it was necessary
to extrapolate the tensile data, assuming an n-power
lJaw and n = 5.8. This part of the curve has been
drawn as a broken line. The minimum creep rates
observed by'King at four pressures are shown on the
graph. While the approximate method gives a
reasonable estimate of creep rates at the lower
pressures, it is considerably in error at the highest
experimental value.. One reason for this may be that
the cylinder became fully plastic when the highest
pressure was applied, and relatively large strains
occurred. King achieved an improved theoretical
prediction by using the Bailey analysis modified for
large strains.

There are very few experimental results
avaiiable in which deformation rates in structures and
the tensile creep data are adequately recorded. A
great deal more experimental work will have to be done
before a better understanding of the behaviour of

structures in creep can be claimed.
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61
CHAPTER U

RELATIONS BETWEEN FORCES AND MOMENTS
AND MID-SURFACE DEFORMATIONS FOR AN ELEMENT
OFF A ROTATIONALLY SYMMETRIC THIN SHELL '

4.1 Preliminary

An element of a thin shell which is
‘rotationally symmetric in geémetry and loading is
shown in Fig 4.1. The directions 1 and 2 are

orthogonal..




Tl’ T2 and Ml’ M2 are, respectively, mormal forces
and moments per unit length of mid—surface.E;ml,
ma are the corresponding mid-surfacec strains, and

K X, the changes in mid-surface curvatures.

1’ 2
It is convenient to have relations between

T T M M, and Ewmf En&” Kl, K2 for formulating

1’ 727 7L T2
problems of rotationally symmetric thin shells. If
the usual assumptions of thin shell theory are made,
these relations may be expressed in integral forﬁ for
a non-linear material obeying equations 2.9. ‘They
are referred to in this form as the exact relations.
As the integrations cannot be performed for
all values of n, the exact relations cannot be
obtained as closed-form analytical expressions,.
This difficulty leads in the present chapter to the
sugggstion 6f simpler approximate relations. These
are compared with the exact relations computed

'numerioally for particular wvalues of n, and with

approximate relations used by o6ther investigators.

4,2 The exact relations

In common with the general theory of thin shells,

it is assumed that normals to the undeformed middle
surface are doeformed without change in length dinto

normals to the deformed middle surface. This

62
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assumption leads to the strains Gl’ S at %

from the mid-surface being expressed in terms of

the mid-surface strains enﬂf Gimz and curvature

ha <. b
changes Kl, 12 v

e-(:_'f E-'W\l +%K\

(h.1)
€.

I

€ + ¥ K,

The stresses CZ and 0; at Bf from the mid-

surface can then be obtained from equations 2.9, i.e.

a = é/m(-y’x@wee +e ) h(@ =) ’ .
Y, 6/%(.._>%;\'<€. + €€+ € ) <€ id€)

by substituting for El_and. 62 from equations 4.1.

This gives finally

g ~é~/;—m (—g;)% E%\[(Em,-i—ﬁemaé-g,@,a{-"z {<2)]

kL

S R

where

B

(4.2)

Fo= (En + b tEL)

A 2%[&‘%‘ G(ﬁ--%f(,, < E%l(}(-z'a-'lz K,)] + s,zCKl"-_{. K K4+ Kzz)



If the ratios of shell thickness to radii of
curvature of the mid-surface are small compared to
unity, the forces and moments on the edges of the

element in Fig 4.1 are

+H +H
T] = {CZ dé 5 Ti ::,§<2_d8

o " (4.3)
R T Mz_-_foggoa;j

~H ~H

where 2 H is the shell thickness.

Substituting from equations 4.2 into equations

h.3 gives
T s
0= _é..%@ _HJE | gem)+ (i) Jdg
T _é; ) @"“?&j “[(e ,‘+?_ém)v%(1~,z+,,_t<)]
TSN | (4.1)
e b @[ R (e ey (2] 3 g
o

=

..! (4) Fe [(€mz{2(;m>+5,(i<z+z}<)]gda

This is a convenient stage at which to write

the relations in non-dimensional form.

6L



With
B = & -
a" ’ S) H
Q' - €7ﬂl ) e-g_ o g_xg_g_z
EO 60
&4 o .H_gii )' P{z ol HK'L .
2 <, 2-€, (4.5)
t( = 1: ; tl = 7; |
2HUJ, 2HT,
M= M 7 Mg = Me
M2, H* T,

equations 4.4 become

m+l“

€ . ‘5("3 [M[@He)us@h} )]s

-}

tz: %(i} &lg [(Q +z€)+2§(&‘+ @'ﬂd?

o o
M, — (,{335;)?? § L%[(e-;-ze)fs- Zﬁ@@- &)]SAS
s
A o (OB ORI i

where
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b, = (e_f re, e, + Qf) + 4 f [e‘(ﬁa, ‘t‘-"iﬂ&;- €, (ﬂlﬁ"‘i@,ﬂ

w47 (R Rhe+ &)

Baquations 4.6 are referred to as the exact relations.

4.3 Suggestion of approximate relations

In paragraph 4.2 the exact relations were
obtained by integration of stresses through the shell
thickness. 'They can also be obtained by applying
extremum principlegﬁtd‘the shell element. In

Appendix 4.1, it is shown that

‘& = (32-.@y : t, =/ é&&
ek | dQ, ? n+1 562

(4.7)

-

V‘ﬂ‘::' .._f.\_. @.E/_
N

5 : w, =<_y_\_.__a oV

mett) gk,

where

¥Application of the principles of minimum
potential and complementary energy 1s not restricted
to linear eclastic stress/strain relations - see,

for example, reference (25 )
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Al

i

V=1

e

{ (e +e.et+ef> L4 [k‘(ﬁﬁ‘%ﬁ;) +ﬂc1@1.+'—%e.)]

e |

2

p 48T (R LB, e ) “0{3

(4.8)

Equations 4.7 and 4.8 are a statement of the

exact relations - equations L4.6.

/. n + 1 R ,
Q{ is homogeneous of degree - in e, ;

€, kl and k, and Y = constant defines a family of

k., k, space. From equations

surfaces'ln el, eg, 1 2

4.7 the components of the normal vector to a ¥~ surface

in the 1, 62, kl, k2 directions are proportional to
1 5y My, M, respectively. Approximate expressions

for ’\V can be postulated; these, with equations 4.7,

t t

will give relations between e €5 kl, k2 and t., t©

1’ 1 2’

m, which approximate to the exact relations.

Mys My

Under some conditions equation 4.8 can be
integrated to give closed~form analytical expressions

and the results give a guide to approximate forms for

(a) Linear elasticity; n = 1

Yoy = %[ (e etez+e;“) + & (Q<f-.*— 9<,(%<,+“£%:)] (4.9)




(p)

Plane stress; kl = k2 = 0

Yo = (.4.9 (Q;+€l({1'l~&1>

(c)

Vg = 2'%’(_2_3%;>( “‘(!{uwe ke

(a)

Pure bending of plate element; e, = &, =

A3

Mid-surface strain aund curvature change

in one. direction suppressed; e, = k2 = 0

|

Ve = <¢> —ﬂ(mﬂ)zp% [(e-:-z!)z) ~(e- z&,) ]

(e)

Rigid - non - work - hardening plastic

material; 1 e GO,

43

/N/(g) = L %(QCH'Q"),/G-&Q:-!-C — ( 2040 1/0_—0;-;7:

where

_é_(éi-ac-ﬂrz) Qo%e(Zad?f +2dd A ae ot c> ‘%
ga* ~204+lr 4 240/ & -G

= 4 (&:er f%. @Z; + QZ:)
= a[k(este) s Rlerte)]

= (Q,2+ Q. ez + Q.zl>

(4.10)

(4.11)

(Lk.12)

(L.13)
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Details of the integrations leading to equations
4.12 and 4.13 are given in Appendix L.2.

Equations 4.12 and 4.13 show what complex
expressions would be necessary to obtain a close
approximation to Wy for all values of mn. Relations

m,. which

between e e k., k_ and tl"tz’ ml, 5

1’7 T2 71 2

would result from such expressions would be too
complex to be useful in further analysis.

It is desirable that approximate forms fofN/
should reduce to equations 4.9, 4.10, 4.11 under
conditions (a), (b), (c) respectively. The simplest
approximaté form which reduces in this manner, and
which gives coupling between in-plane and bending
actions, is obtained from the combination of qV (b)

and WV(C)

Vape = {{V@rﬂw + Vo l™ } -
Vo = (&) [ (elvaexel)
2, ko
+ Ar(’A_%b (92,+ Qz‘ﬂzw&f)} ooty 4

This expression is homogeneous of degree

n + l) . . . .
( ” ine,, ey, L kz, and with equations 4.7 leads
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to the relatively simple relations:

k| L7 ' :
- 'V\ =
tt = (ﬁ-) - F:'J' (e« * Pli'e‘:)
3
“+f t-

T
4 g (el ""'Ji ec)

-t
tu
|
TS
m‘
ol
3|

' [=4
. Z;_“f_.‘ i %{_}_ (Ll-.l))
mo= ()R 4(a YT (ks k)
3 T 4 i
' A ] [ T
wry 7 Tl '
oy = (4 £y g (0"-1*‘%@
3 24 |
where

w

re
= [erreeover) + 4(2n)" (k' kbt k)]
These are the approximate relations which are
investigated in this work and used in the solution of
boundary wvalue problems.. They are compared with the
exact relations in paragraph 4.4. Other approximate
relations are discussed in paragraph L.5.

4.4k, Comparison of exact and approximate
relations

A comparison of the exact and approximate

relations may be made by comparing the surfaces

”\n/"-::o(

and /\VQPP = ol

where o is a constant.



It is convenient to take o = 1; the curve
of intersection with the plane kl = k2 = 0 defined
by equation U4.10 is then the same for all values of
n.

Asvthe approximate'relations are intended in
the firgﬁ instance for the anqusis of circular

cylindrical shells, the comparison of Nk-surfaces

is made with

(in the circular cylindrical shell the curvature
change in the circumferential direction may be
disregarded for small displacements).
With k2 = 0, the surfaces QV = 1 and
Q%sz 1 aré reduced to three-~dimensional space.

From equation 4.8,“#:: 1 becomes
nal b !

([ [(ef-.u et e)) + afk (e+he,) +4§Z»@f]ﬁd§’

PACY;

}

(4.16)
and, from equation 4.1k, WMW¢ = 1 becomes

2

4\ el r 2e) 4+ 4 m")'m
(:;) [(Q‘ ta&r 7'} ) 2-:\x+l) ,O&‘ = (h.17)

The curve of intersection of these surfaces

with the plane k, = O is shown in Fig L.2.



From equation 4.17 it follows that the

surfaces Wﬁmw = 1 are symmetrical about the plane
k, = 0. Equation 4.17 is also symmetrical in e,
and e, and it can thus be deduced that theWape = 1

surfaces are the samc in all four quadrants of

Pig b.3.

i

That the T/ 1 surfaces are also symmetrical

about the plane kl = O can be established from

equations 4,2 which, written in non-dimensional

72

form with k, = O, éfei-‘

nel . | -
g-H" [(etveeel) + Sk (ete)+aSt ]
g, 3

x [ (ette) + 28k ]

"“‘:U. L
; any - L 18
RN [CINR PR TR IZEL ) S
Us 3

i X[(ez"t"?lle‘B +§ij

7, . &
The values of — and -— at ? = +§  for the
. Jo Co !

deformation state (el, + kl) are the same as those

at ? = - 9 for the state (o e, - k) The
{ ' Y12 1’
distributions of jZ and %? through the shell
dJs . °

thickness for the two states are shown schematically



t m

in Pig. 4.k, Clearly the values of tl, X

l’
m, to produce the two states differ only in the

sense of m, and mz. The Qy = 1 surfaces must thus

be symmetrical about the plane kl = 0.

An extension of this argument is used in
Appendix 4.3 to show that the-%/ = 1 surfaces are the
same 1in the diagonal quadrants I, IIT and.II, Iv
in Fig 4.3. These symmetry properties are also
demonstrated mathematically for n —=00 in.Appenaix L.3.

Because of this symmetry, the exact and

approximate'uLﬁsurfaces need be comparecd only in the

quadrants I and IT. To make the comparison, the

2

—~

intersections of the surfaces with plarnes £, = E;&l
where ﬁ = 1, 0.4 etc (numbered @ to @ in Fig 4.5).
have beenn computed for m = 3, 5 and n = O -, This
computation is straightforward for théﬁw%pp = 1
surfaces, but numerical integration has to be performed
for the WM = 1L surfaces. Details are given in
Appendix 4.4,

The curves of idntersection are plotted for
n = 3 in Figs 4.6 to 4.10, and for n —»cO0 in Figs L4.11
to L.15. Curves for sections (1) and (@ , @ and
@5, C) and () etc are plotted on the same figure to
emphasise the difference in form of the’u/z 1 surfaces

in quadrants I and ITI. Similar curves are obtained

73
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for n = 5.

The exact and approximate surfaces are in
reasonably close agreement in quadrant IT, i.e. between
sections @ and @ , for n = 3 and n==eco The
surfaces are everywhere idenfical for n = 1, and it
is thus reasonable to conclude that in quadrant II
agreement is good for all values of n. In quadrant
I, however, agreement is poor, particularly for’
N —= 0 . Agreement 1is poorest in the region of.section
(3 (é2 = 0) and Figs 4.16 and 4.17 give further results
for this section. Fig 4.16 shows the curves of
intersection with the‘q/z 1 surfaces for n = 1, 1.5 3,
5 and n —=~c0 , and Fig 4.17 the corresponding curves
for‘\Jgpp = 1. Comparison of these two figures shows
that agreement improves for smaller wvalues of n.

A direct comparison of the exact and approximate

relations at section C@ can be made as follows:

from equations 4.6 with k, = e, = o]
g -

t i 4 SN (a ) 9 Q i ey QZ 5
—Lt o= LS U+ 48 + 48 (é L+2 (mﬁ a
Q%“ 2 (3 [ ey @, ] [ g Q ] ?

: ~l

_‘é_‘;},‘ = s j_:..‘.._

e In 2 Qy“

‘ it +

e

w = &) ) s

|5

Rl

Y

(]

S B

——

R~ 2 kim
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As shown in appendix 4.5, the integrals in

equations 4.19 can be cvaluated analytically,

and T, T, N, P
' n o ! RN
Q, Q‘ &‘ 4{

may be plotted against %_' .

t
The corresponding approximate relations are from

equations 4.15:

kil 4 1 =2
T PNl I 4’@7\ )*‘((&)} T
QVAA - 3 ?,'V\-i'l e(
Lo LG
ef“ 2 &%“
3 ?A‘\ .(:.3:.\_ | 2o =l
N RATY 2 Y e et ‘J-i-
A '\f\.(‘-}_4_(%>+:gi]'l 4(“ -t-lv[-)g;)n (4.20)
pd'/ﬂ 3 4l e, 2| e,
SAAT N T AT
SAE A A

Equations 4.19 and 4.20 are plotted in Figs

L.18 to 4.21 Tfor n = 1.5, 3, 5 and n —wc0 . To allow

s £ 11 1 N "z‘ I 1 Al
comparison for a vaiues o: ot s T arTic T
P Q‘ e‘vry\ tallfn.

&

\

have been plotted against from O to 1 and against

7
the reciprocal of ‘é* from 1 to O, the two graphs being
t

drawn adjacently. These results give a measure of the

divergence of the approximate and exact relations and
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confirm that this divergence is reduced for the
smaller values of n.
Similar comparison may be made for other sections,

but the integrals in the exact relations have to be

evaluated numerically. The results for section CD
(el = 0) are shown in Figs 4:.22 and 4.23 for n = 3
and n —=-o0o rcespectively. Section C) is typical of

the region in which there is close agreement between

the exact and approximate qy-surfaces. Although
agreement is good for t, and my it is poorer for t_L
and m, . The latter are proportional to the

components of the gradient in the e and k2 directions
which are mnot apparent from Figs 4.8 and 4.13. A
similar result is shown in Fig 4.24 for section (]

(62 = - el) with n = 3.

FPigs 4.25 and 4.26 show the relations for

section CD at which e, = - %.62' It is shown in
Appendix 4.6 that the condition e, = - 7 e, gives
tl = 0, and the relations in Figs 4.25 and L.26 are

those to be used in the analysis of a circular cylindrical
shell without axial load. There is reasonable

agreement between the exact and approximate relations
forn = 3 and n—=00, and similar agreement will exist

for all values of n > 1.



L,5 Discussion

While a detailced comparison has shown that there
are some fundamental diffecrences between the exact
relations and the approximate ones suggested in this
chapter, there is enough agreement to warrant the
use of the approximate relations in the analysis of
circular cylindrical shells. The errors incurred
will depend on the particular problem and on the value
of 1n. For example, results for a cylinder without
axial load would be cxpected to agree closely for all
values of n with the results which would be obtained
if the exact relations were used. Other boundary
value problems may involve a domain of the lymsurfaces_
where agrccment with the exact relations is poor,
particularly foxr large.values of n.

A convenient approach is to solve particular
problems with the approximate relations and then, from
the displacements obtained, to determine ﬁhe_domain of
the Y- surfaces in which the solution lies. If
necessary, refinements might then be made +to the
approximate relations to give better local agreement
and the solution repeated.‘ For example, the following

approximate expression for VY might be considered:
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i
(4 ¥\ ™ -
Warea = (""‘ ) | (h.21)
S5
h 2o,
where B e
c- 2' # N y, . ?o T
Vo= [jQiCQ‘+t;€2142;> 'y gﬁ 4/ N (Rﬂ4r&V&1+QQ)]
R
In paragraph L.3, Al and‘Az were taken as unity to give
agreement with \y when kl = kz = 0 and e, = 92 = 0.

ITf cither or both of these restrictions is relaxed,
better general agrecment can be obtained at particular
sections.

At section Cﬁ there is a discontinuity in the

exact relations for n ~=o3 as seen in Tig 4.21. It
& &
occurs at 'y = 0.5; for values of E! from O to 0.5,
¢ t
m, = 0O and tl = constant. This can also be seen from

the W-surface in Fig 4.13, the gradient to the WM-—
&

surface for k1 = 0.5 e being parallel to the e, — ¢

1 2

planc. An explanation is offered in. Appendix 4.7

1

In their analysis of a boundary value problem

(i)

in a thin cylinder, Bienielt and Freudenthal assumed
that forces tl, t2 are independent of mid-surface
curvature changes kl, k2 ancd that moments ml, m2 are
independent of mid—surface‘strains ey 62. The

relations they used are derived from one of the
possible expressions for ﬁ/ which reduce to equations

4,9, 4.10 and 4.11, namely



or
. N
WA?PS = -f}i\ (Q. 4 €& €,_>
5)
| ".:‘fi A :
pated 2 z AN
R
SR ORI
?.'V'\‘&’I \) . (“’-22)
Although there is no coupling between bending
and in-plane actions for n = 1, this assumption is a

serious simplificavion for n > 1.
. , . . (12)
The approximate relations used by Calladine

can be rcduced to

- . m%L )
e, = [(t-tp+tl)+ fvvu‘} (t- 4t
IG%;
e, = [(E-ttat)) v am,] (t,-3%) (. 23)
{
m-i
f‘ C20) v
-ﬁi = 9 L(ﬁf_‘t(t?_ ».'-’L:')‘v’rm_l____i ‘m(} m,
1&g, ‘&9,

where C% and %¢ were parameters, to which wvalues had
to be given depending on the index n and the stress

state tl, tg, mlu

79



Calladine obtained one equation between g,
and %Q from the relation between bending moment and

curvature, for a shell elcement in bending with the

anticlastic curvature suppresscd (equations h.15

with e, = e2 = k? = 0). Comparison with the third

) 2

of equations 4.23 for t t, = 0 gave a value for jiﬁ.
1 2 C?/';

A second equation relating ¢, and 9,, was obtained Ffoun

i

a particular set of strcess states tl = 0, when the

second and third of equations 4.23 give
= |

&, :(_9& , ta

T
The ratio if— was computed numerically for differcent
{
_ -~ 8 ] . Gre
values of 2x |, and for n = 3, to give values for

‘ o
The latter did not vary widely over the range of?{
i

considered, and Calladine selected a value to give,

finally, for n = 3

4y = 0.308
Qo = 3.33

With these values for qﬂ and %ﬂ ,

5?_ - 0.658
lG@(
% - 0.676

164,

Equations 4.23 can be compared with relations

and k.

obtained by solving equations 4.15 for e, ey 1
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with 1{2 = 0, 1.e.
"M, yy~4
=% g
. oA u "}‘\ /2‘1"\.-{*‘ ™ ‘M’L ( _..l. )
Q' = [( -t T},/ T %‘-—:\"L_) { ti Zt‘
-~ patd|
1 r ﬁ: ¢
e, = f(‘t( N Cz> 4 __3:(2-«\»51 w, ] (tz- J.)
e\ m
(4.24)
A _2_..*;
\ / N ' , - e K
&1 = (.Z_Eif_i) f- Lf« ¢ G f;) }-__.2_(27\’}'! AL
e U L 6\ m
For n = 3, the coefficients corresponding to
i 4
o and “#Q‘ in equations 4.23 have a value 0.668.
tG%q 10%4 ‘ :

Thus the relations used by Calladine tolsolve a
particular boundary wvalue problem in a cylindrical shell
are very ncar to those proposed more generally here.

It is noted finally that both theq( ; 1 and
/u@pp.: 1 surfaces as plotted in Figs 4.2 and 4.6 to L.17
are everywhere convex {or flat) but never concave. This
(26)

has been shown to be a condition for a stable

material. The surfaces also show the nesting property,
the existence of which has been proved by Calladine and
Drucker( >. A surface for a given value of n lies
inside , or in the 1imit touches, the surface for any

larger wvalue of n.
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CIHAPTER 5

FORMULATION O BOUNDARY VALUE PROBLEMS
IN CIRCULAR CYLINDRICAL SHELLS

5.1 Basic eqguations

Fipg. 5.1
Fig 5.1 shows a length of thin cylindrical shell
and defines the co-ordinate system. The shell has an
inner radius A and wall thickness 2H. Movement of a
point on the mid-surface from P in the undeformed shell
to 'Pl after deformation defines the positive axial and

radial displacements U aund W, respectively.
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ks
f
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Fig 5.2 shows an element of the shell at X and
defines the positive forces and moments acting on the
clement.

Forces Ex, 19 , Qx and moments Mx’ M9 are per

unit length of mid-surface.

Radial loading Px is per unit area of mid-surface.
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Equilibrium Tguations

The conditions for cauilibrium of the element
1

of Fig 5.2 are:

AT
ax -0 (5.1)
dg |
x 1 _ .
ax ~ A Te * P, =0 (5.2)
an_
Q, *+ 3 = O (5.3)

Strain/displacement relations

For small displacements, the mid-surface strains

¢ .» &

and curvature changes K , X_ , expressed in
mx me X

e

terms of displacements are approximately:

€ _ 4y

mx dx
W
e - X
A -
me : (5.4)
20y
K o=
* ax
Ke = 0

Non-dimensional form of equilibrium and
strain/displacement equations

It has becn found in the linear clastic analysis
of thin shells that the decay of edge effects can be
conveniently described in terms of a '"characteristic

length" AL, A similar behaviour is anticipatecd in
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shells obeying non-iincar stress/strain relations,

and a non-dimensional parameter.

1s used to definec distances along the shell.
The non-dimensional forces, moments, and strains

defined in paragraph 4.2 are also used, i.e.

‘£ — o . e 4 . RT3 — X
’ = 21 3 Lo = 31 ) b - =
x 20T 21 J % H2 o
O
E mix e mse
O = — N (\0 —_— -
- €o Cyo
. . I %ﬁ y ) H K9
x = 2¢ ’ I 2€

These in equations 5.1 to 5.4 lead to the

definition of the further non-dimensional parameters

A ' -
b - Pe &0 g . Ox oEE
= H o = P
x C% H % Cf Hd
G
W = L M kb = 14 —
- - , -
28 € ‘ € VAH

Equations 5.1 to 5.4 become finally

dt_

ax = ° | (5.5)
d@{

ceviiie 2tg + p, = O (5.6)
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N
G,
Q + = O A 5.7
1}\’. dx i ( )
du E
e = ™ 1
X dx ?
")
eg = 2w i ( 5.8 )
7 !
d”w
k = ,;
X .
dx
- ]
1\9 = O j
Forco/deformation and moment/curvature
relations
In Chapter i, approximate relations between edge

forces and moments and mid-surface deformations were
obtained for an clement of a thin shell subject only to
in-plane edge forces and edge bending moments. It is
assumed that they can be applied without serious error
in the presence of transverse edge shear forces
associated with changing bending moments in the shell.

One effect of transverse shear forces is
distortion of normals to the undeformed mid-surface.
Solutions obtained for linear elastic thin shells have
shown satisfactory. agrcecement with experiment and suggest
that the strain field - equations 4.1 — obtained by
assuming that normals to the undeformed mid-surface
remain normals to the deformed mid-surface, is

sufficiently accurate for most purposes. In the



112

non-linear analysis, further errors will arise from
the presence of transverse shear forces because of the
coupling between normal and shear stresses and strains
in the stress/strain relations. However, to introduce
these effects would make the problem much more
complicated and is not justified at this stage.

Written in terms of the co-ordinates X, @ the

approximate relations are

n o+ 1 1l - n
" _ | ; 1
te =13 F oy (e + % s )
n + 1 1 ~'n
N 21 21
. — n - 1
tg = 3 PB (eg + 3 ex) |
- (5.9)
n + 1 1 - n 21
L 2n 2n n n+1
= _— : F - - 7}
m (3 3 i ) (LX+_k@)
n o+ 1L 1l - n : 21
/“ 2n 2n 0 n+l
Mg = | =% I L %
& »\3 3 (;n+l> (ke+2kx)
where e
' 2n
) { n+1 SN Lol
P, = (G)‘ T4 e + e 2) T Mt s \J.\.A -rn.An.w —rx&.w }
3 X X e @ \2n+1/ X X © Q
5.2 Recduction to form suitable for

analogue computation

For solutions to boundary wvalue problems in

cylindrical shells, ecqguations 5.5 to 5.9 must be
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satislied simultancously, together with the boundary

condibions, Thore ore sovepral ways din which Lhe

cquations may be reduced to a fourth order system
of non-lincar diffcrential equations. The followihg
formulation has proved suitable for analogue
computation.

substitution of equations 5.8 into equations

5.9 ecxpresses the forces and moments in terms of

113

displacements, i.e.
L -0 du
. — © N oy — .
b £, T, n (dx + w> (5.10)
1 - n du
t@ = fl FM- 21 <£hv + % a§f> (5.11)
1 - n
‘ P d 2w
m = f£,f,F ~2n é (5.12)
) dx
1 - 1 2
- d w
m = f_f£_ P, 2n +
o o) 2
172 ax2 (5.13)
wlhiere
F - (du + 2W du + Livw i) d w -
o 7 ldx W ax vooT ta 2
dx
n + 1
(h) 2n
£, = | =
L 3
2n
' _ n n + 1
f‘2 B (2n+l>



Integration of equation 5.5 gives

t = constant = T, say
X

anc, thus, from equation 5.10

11k

- 2 2 ;”“
2 n
T = flt<%23 + 2w %E o hw® s £, (d g\ 1
; < dx dx ) i
du
du 1k
X (dx + w> (5.14)
From equation 5.6
q, = f (2t - »p_)dx
and from equation 5.7
clm
L X
A 7 dx
coeoom = - JJ (2'te - px)dx dx (5.15)
Finally, substituting for t@ and mx from equations 5.11
and 5.12 in equation 5.15 gives
~ l-n
' 2}2n 2
flf2 [ (g%) + dw Sz +  hwt 4 fz(ﬂ"g d w
-’ dx"™ J dx
2 2 %;E du
, e 2 (lwe S
_ [f du . D‘du " uwz + (d W dx
- l 1| \ax =Vax z\dxz

- P, dx dx (5.26)



The problem is thus reduced to the solution
of the simultaneous cquations 5.14 and 5.16 in

du

T and w with the appropriate boundary conditions.

5.3 Simplification for zero axial load

With T = 0, equation 5.14 gives

cdu

—_— = - W
dx

Substitution for %% in equation 5.16 leads to

> 2 TJ - N )
£.7, [3 we 4 £, d 2’) | *n ——d‘g
dx 4 - dx
1-n
[' 2 c12w 2“211
= - |4 f 3wT o+ f : 3w - P dx dx (5.17)
”(, 1. 2\ 4.2 . x _

In the problems to be considered, the radial
loading b is assumed to be independent of x.
Rearranging equation 5.17, and with

p, = p = uniform radial loading

n - 1

: 2 g Fr——
)
dw 1 [3 2o (dzw) ] 2n
d:»c2 flfz 2 d.}{2 .

L - n

( 5 dzw 2 2n
X | t 3E,w | BwT o+ T, ( > - Pé{dx dx (5.18)

dx

i




5.4  Reduction to equations of linear elasticity

With n = 1

2n ‘
£ B I _n n+l _li
2 2n+l . 3

and equations 5.14 and 5.16 become

Ly clu .
3 <dx + W) = T
and
3
16 diw ( [ X (Mw + '(‘1“1*]"-) P :' dx dx
C — - H . bl -
9 dx2 J 3 dx x
or
L —
16 dw L L (Llw . du) o ]
IS N - - ) : P R .
9 dx4 3 dx x
From 5.19
clu _ 3
dx - 4 T - v
and substitution for %& in equation 5.20 gives
aw 9 9 .
v r vo= iz (o, -7
dx
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(5.19)

(5.20)

(5.21)

This is the governing ecquation for a cylindrical shell



of linear elastic material with the modulus of

elasticity written as 22 and Poisson's ration
€o
With. P, = P = constant, the general solution to

equation 5.21 is

W = e L X (’Cl cosoelx + C sin d.x)

2

+ e (C3 cos okx + C; sin o x)+ T (p-7)

.
2-

(

117

e

2

.22)
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CHAPTER 6

USE OF AN ANALOGUE COMPUTER TO SOLVE
PROBLEMS IN CYLINDRICAL SHELLS

6.1 Explanation of method

It is convenient to deécribe the method of
using an analogue computer to solve boundary wvalue
problems in semi-infinite cylindrical shells by .
referring to the linear problem. For this, the

governing differential equation is

a 9
———-—Z—-‘z = — E w + "i—" (P - T) ' (6'1)
dx

O

and it must be solved with four boundary conditions.
In a semi-infinite cylinder two of these are prescribed
at x = 0 and the other two are implied by the condition
that w assumes a constant value af large values of x.
The simple analogue computer circuit shown in
Fig 6.1 may be used to solve equation 6.1. The
distance variable x is represented by time, and voltages
represent the displacement w, its derivatives and the
applied loading p. The values of w and its derivatives
at x = 0 must be set bylapplying initial voltages at

the outputs of the integrators.
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Consider the problem of a semi-infinite
cylinder in which the following boundary conditions

have to be satisfied:

At x = O

W = W

o
dw _ dw
dx =~ dx

At x —&oo

W —w Wg , calculated for given applied
loading p and T.

(In what follows, subscripts O and o0 will always refer

to values of variables at x = 0 and x —=o0 , respectively)
%g and w0 are set as dnitial conditions on the
integrators 13 and IM' It is then necessary to find
2 3
the values of d W and a’w which will make
2 3
dx dx
o} o
. d2w d3
W o— W as X —wod . Since —(/— and —— are
o0 2 3
dx cx

proportional to the bending moment m_ and shear force S

respectively, this is equivalent to finding the correct

values of m_ and d,- Estimated values of
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: S |
d g and 47w are applied as initial conditions

dx”™ dx
o o)

wis

to integrators I, and I, and the displacement w is

2 1
monitored as the circuit operates. The procedure
2 3
is repeated with adjustments to d g and d g until
' dx dx o
[«

W — W At large values of x.
Four typical runs are shown diagrammatically

in Fig 6.2 for the boundary conditions

dw
Yo T E;} - O
o}

il
]
H
H|
o
~

We = 0.5 (p

The analytical solution is shown for comparison.

The two very different curves (a) and (b) are obtained

3
d _w and L¥X | yhich differ by only
2 3
dx o dx o

for values of

approximately I 0.5 % from the theoretical values and a
difference of only I 0.1% can give curves (c) and (d).

Although there are thus well-defined wvalues of

d2w djw
> and 3

dx dx
o) o

which make w— we for a short range

of x, the solutions become unstable at large wvalues of

b g The reason for the instability can be understood



from the general solution of equation 6.1, i.e.

W= IGC&X (Cl cos & x + 02 sino(X]
- r .
poe S LC3 cos olx + C sino(x] + 3 (p - T)

For the semi-infinite cylinder, the growth exponential
terms are removed by putting the constants Cl and C2
to zero. This dis effectively what is domne in an
analogue computer solution by adjusting the initial
values of w and dits derivatives. If the growth.
exponential is not completely suppressed, the result
is the behaviour shown in curves (c) and (d) of Fig
6.2; the two curves are associated with small growth
exponential terms of opposite sign.

The solutions represented by curves (c) and (d)
compare very favourably with the analytical solution
for values of 0 = x = 2.5 approximately. The most
important fcatures occur within this range and it is

concluded that the solutions are acceptable despite

the behaviour at large values of x. The same effects

occur in solutions to the non-linear probléms.

The early testé were performed on a 4O -
amplifier computer designed and constrycted in the
Engineering Department, and difficultiesiin obtaining
solutions were aggravated by drift in the circuit

components and by coarse potentiometer adjustment.
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Later tests, leading to all the solutions given in
Chapter 7, were conducted on an Electronic Associates

Ltd. Pace 231 R computer.

6.2 Time and Magnitude scaling

Records were required of the distribution of
m. and Ay along the shell and'rapid changes in these
variables occuxrred near x = 0. The only available
recorder which gave a record of reasonable size was
a Bryant x - y plotter which has a slow response.
It was mecessary thus to slow down the problem by
scaling the relationship between time T and x.
Running the problem for long times, however, leads to
a build-up in errors from drift in circuit components
and the final time scaling was a compromise between
the conflicting requirements., The chosen scaling

between the time T in seconds and x was

T = 4 x

and the relationships between derivatives are then

_Cl_ - L .____d . -————dz = 16 ‘—""(':E“'“ y
3 3 Ly i

_§§ = 64 _§§ ; _QE = 256 (14

dx art dx aft

For the linear problem the differential equation

becomes in terms of q’

122
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o
-

W

256

&

- - 2w 2 -1 (6.2)

(b) Magnitude scaling

Direct use of the circuit in Fig 6.1 will lead
_to very different wvalues for the maximum outputs of
the amplifiers and may lead to overloading in some
of them. This is because of the differences in
numerical values of w and its derivativés. The
purpose of ﬁagnitude scaling is to emnsure that the
output of each computing element covers as nearly as
possible the working range of I 100 volts. This gives
greatest accuracy and avoids overloading.

The method adopted was to estimate the
maximum values of all the variables and then to work

with the normalised variables

w dw
/ [wmaxl ’ d’i‘/l%]

The circuit is designed so that these normalised

etc.

’
max I

variables appear as the outputs of all computing elements.
If unity is represented by 100 wvolts in the computer, all
outputs will fall in the range I 100 volts.

The estimates of maximum values depend on the
particular boundary conditions, and a problem may have

’

to be rescaled when boundary conditions are changed.
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The procedure for magnitude scaling is illustrated

for the linear problem with the boundary conditions

x = 0 : dw
Vo T oax = 0
o

X = o0 weo = 0.5 (p =2, T=0),

In this case an analytical solution. can be obtained,

. and gives the following maximum values:

| o | = 0.521
div dw
W = 0.278 ; —~] = 0.06
ldx] max ’ ar maxl =
a” d
M_g] = 0.750 —~§] | = o.ok69
ax”™ : art .

max max

3 3

Q_%] ] = 1.298 Q—E] l = 0.0203
dx dTB

max max
ldhw dhw ’
— = 1.122 ; _”E] l = 0.00439
dax ] l . dT

max : max

Rounding out these maximum values leads to the

use of the normalised wvariables:

2 L
clw d W P 4w
BHE s AT aT? ; ar?s ; dq'u
: 0.08 0.05 0.03 - 0.005

The differential equation 6.2 then becomes
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dll'wa _
- - 2 2. -
256 x 0.005 %?005 = - § =x 0.6 (o.é)* 7 (2 0)
or
duw
1.281aT = - 1.35 (aﬂg) + %
0.005 ‘ "
Dividing through by 1.35, the highest coefficient, gives
finally
4
d 1w
0.948 atT? = - (Owg> + 0.833
0.005 ’

The computer diagram for solving this equation

with the given boundary conditions is shown in Fig 6.3.

6.3 Problems without axial load

The governing equation obtained in paragraph 5.3

for the non-linear problem without axial load may be

written
n - 1 1 - n
2 21 2n
d g _ flf G, [3ffﬂG1 - p}dx dx (6.3)
dx 172
where
2
2
2 d"w

Gl = 3w + f2 ( 2)

dx

n - 1
2n

To éolve this equation the function Gl

must be generated and a number of multiplying and dividing
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operations must be performed. A block diagram of a

suitable circuit is shown in Fig 6.L4.

n - 1
2n

The function G1 . was generated as a series

of straight line segments on a 20-segment diode function
generator. The following table gives the index

n - 1

5T for a number of wvalues of n.

n 1.5 3 5 7

n - 1 1 1 2 3
o /& /3 _/5 /7

Gl is always positive, and, as a normalised

variable in the scaled problem,varies in the range O
n - -

to + 1. G, Zn is plotted for this range, and for

n = 3, in Fig 6.5. The function is also plotted on
an extended scale for wvalues of Gl from O to O.1.

Use of the diode function generator (D.F.G.) to
represent the function presents two main difficulties:
(a) The maximum number of segments is available, and
hence the best fit to the curve is possible, when the
input to the function generator varies from - 100 to

+ 100 v;lts;

(b) There is a restriction on the maximum gradient

obtainable for any segment and the infinite gradient

at Gl = O cannoti be accommodated.



The first of these difficulties was overcome
by scaling the input to the D.F.G. in the following

simple circuit

~ { OO , v
(,\‘! )(l\ *OO;EG; G‘Z

G | xa;ﬁ;// | DEG. P

Clearly, as Gl varies from O to + lOQ volts, the input
to the D.F.G. varies from - 100 to + 100 volts. For
a given number and positioning of segments, scéling
the input in this way reduces the gradients by % and
thus partly relie#es the second difficulty.

The segment break points finally selected for

n = 3 are shown on the curves of Fig 6.5. With these

segments, the D.F.G. output was within approximately

A
2% of G,% for values of G, from 0.005 to 0.100 and the

1 1
difference was smaller for higher values of Gl, being
less than 1% as G, approached unity. For values of

L

Gl less that 0.005 it was not possible to represent

the function, Approximate calculations based on

solutions to the linear problem showed, however, that

Gl was not likely to have a value below 0.005 for the

boundary wvalue problems considered. This was verified

when the problems were run, the lowest value of Gl

recorded being about 0.01. The function was generated

127
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with similar accuracy for n = 5 and n = 7.
The problem was time scaled in the manner
described for the linear problem in paragraph 6.1,

i.e. with

T

1

Estimates of tlhie maximum values of w, %% and
da
~ﬂg for magnitude scaling were based on the linear
dx ‘
solution. It was also necessary to make estimates of

the maximum values of

n - 1 l - n
- 2n 2n
Gl , Gl , Gl 2
1 - n
2n
BleGl - pl dx,
1 - n
and [3 fl w Gl ~n - p] dx dx
Here it is dmportant to note that g [ ] dx and
gf‘ E ] dx dx are proportional to the shear force
e, and bending moment m > respectively. Detalls are

given in Appendix 5.1 of the estimates of maximum
values for the particular problem of the semi-infinite

cylinder with zero edge slope and displacement (termed
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in what follows themfiXed end cylinder).

The computer circuit used for the scaled problem
of the fixed end cylinder without axial load is shown
in Fig 6.6 for n = 3 and p = 2. The corresponding
diagrams for n = 5 and n = 7 are given in Appendix 5.1.

The technique of obtaining solutions was that
described in paragraph 6.1 for the linear problem.

The displacement w _, away from the end was calculated
for the particular loading p and value of n. The
initial conditions for w and %% were‘set and the values
of 9, and m estimated (initial estimates of d, and m
were obtainced from the 1inear solution). The problem
was run and 4, and m systematically adjusted until w
attained the calculated value of w . over a range of x.

As in the linear problem, the wvalues of q, and m to

give this behaviour were sharply defined.

6.4 Problems with axial load

For problems with axial load, the two equations

5.1 and 5.16 in the displacements u and w must be solved

simultaneously.  The equations may be written
1'12;1 - g:_.._—_....r.l.
12 1
i—g = - F7 Go [ £ G, 20 (4w+§§)~p dx dx
dx 12
(6.4)
n - 1
dun T G 2n - w
dx b 2
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where
G, = (2 : + = + f QEE )
2 dx ~ Tax U 2 {452
b
Fig 6.7 shows the block diagram of a circuit
to solve these equations. The upper loop is basically

the same as the circuit for zero axial load and the

lower loop is concerned with the generation of %% .

The potentiometer marked with an asterisk in the lower
loop is used to vary the axial load. Setting this
potentiometer to zero gives

du

= - W
dx .

and the solution can be compared with that obtained

from the simpler circuit for zero axial load.

The same time scaling was uscd as proviously,
and thoe solutions to problems without axial Load woire
usoed as a basis for magnitude scaling. PDetails arc

given in Appendix 5.2, and the time scaled computer

diagram with normalised variables is shown in Fig 6.8.
Apart from the increased number of components

in the circuit, this problem presented little more

difficulty than that without axial load; the technique

of solution was the same.
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6.5 Comments on accuracy and discussion

The accuracy of solutions depends on the accuracy
withh which the individual operations are perflformed in
the computer circuit. The makers of the Pace ZBlR‘
claim an accuracy of better than L 0.1% of full scale
(t 100 volts) on the outputs of operational amplifiers
and multipliers; dggade'coefficient potentiometers can
be set to I 0.0001 and wvoltages can be read to : 0.01
volt with the electroni§ digital wvoltmetexr.

In the course of solving the problem of a
fixed end cylinder, the output of each summing amplifier
and non-lincar element in the circuit of Fig 6.6 was
recordéd at x = 0 and x = 0.5 and 1.0 approximately.
(The problem can be stopped at any stage and voltages
read throughout the circuit.) The input to each
component was obtained from the outputs of preceding
components, and the output which shéuld have been
obtained from this input was céloulated. The results
are given in Appéndix 5.3. In many of the operations
no difference between measured and calculated outputs
could be detected and, with few exceptions, the
differences were within‘the makers' specified limits.
A multiplier output as low as 0.15 volts differed by
only approximately 5% from the calculated output.

Although it was not possible to calculate the outputs
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of the integrators;fseparate checks on these with
known inputs showed the errors to be generally within
the specified limits.

It would be very difficult, if possible at all,
to make a formal estimate of the combined effect of
these errors on the solution po'a boundary wvalue
problem. The effect is for a slightly different
equation’to be solved at each value of x. For example,
if all Phe operations were perforﬁed without error

clw

ax to give w, and a constant

except the integration of
error of + o« was dincurred in this operation, the equation

solved would be

n - 1
AdRw 1 2 A d2w 2 2n
5 T - T r 3 (w +o<) + f2 5
dx 12 dx
2 d2 2 e
X 3f. (wr ot ) | 3(wte) T+ F b 20 _ plax ax
1 2 dxz

and not equation 6.3

Two ﬁseful checks on the combined accuracy of
a number of circuit components, and on errors in setting
up the diode function geﬁerator can be made under the

following conditions.
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(a) Check on wes

With

-

dw

dx o o)
O

the problem is one of a cylinder under uniform radial
loading without end restraint. The displacement w
should remain at a constant value for all values of x.

This value for w can be obtained from equation 6.3 as

follows:
with w = constant, equation 6.3 becomes
n - 1 L -n
0 = - F % (3 w2) 2n S“{Bflw(B wz) n_ o) ]dx dx
_ 172
n - 1 l - n
1 2 2. 2 21
= - =5 (3 v°) =¥ [Bflw(jw ) - p] dx dx
1 2
This requires
1l - n
2 2n
3 fl w (3 w") ! - p =0 (6.5)
and with
n + 1
L 2n
gives a
W= T | (6.6)
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With the initial conditions set as

dw
ax ] = m = q = 0

successive runs were made until a value for w was Found
which was constant over a range of x of at least
O to 5. The value for w was compared with that
calculated from equation 6.6 for the particular wvalues
of p and n.

This’test checks the accuracy of a substantial
part of the circuit. It also gives & sensitive
indication of errors in the diodeifunction generator,

as can be deduced from equation 6.5. If a fractional

+ . . .
error - {3 occurs in generating the function

s

n - 1
2n . : .
G, , then equation 6.5 gives
3 fl W - p=0
n - 1
(3w%) % (1t p)
or
pn + n
WoE L Thvd (1 = @)
2
p +
L R (0 Eep) - (6:7)

This dependence of the error in w on n was observed,
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but with Gl approaching unity, where the error in

n - 1
generating Gl 2n is less than 1%, the error in w

-

was below 5% even for n = 7. For n = 3, the error.

was less than 2% .

(b) Check on gwgl
dx )
With W= 0, equation 6.3 may be written at
x = 0
~ n - L
d”w a 1 i £ dzw] 2 2n >\
[») - - a

dx”™ flfz { 2 dxz o ©

o

where KO is proportional to the value of the edge

bending moment m_, and thus

n
: L)
d7w - L o
dx? - n n + 1 ' (6.8)
o] fl f2 2
dzw
Values of 5 were read from the computer for
dx

O
a number of wvalues of A@ and checked with those
calculated from equation 6.8. This test was a check
on. the combined accuracy of a further combination of
circuit elements, and was again sensitive to errors in

the D.F.G. A similar argument to that used in
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establishing equation 6.7 gives

dx”~ 1 2 2
O

0Py | 1 A"
= £ Tt r n + 1 5 (l + 1’1(5 ) (6.9)

wliere ﬁ is the fractional error in generation of

With values of ,AO giving solutions to the fixed

end problem, differences between observed values of

1{-

G W

and those calculated from equation 6.8 were as

2
dx
o

high as 10% for n = 7. However, upsetting the D.F.G.
C12 r :

locally to produce errors in ; in the range O
dx :

O
to L 10% showed that corresponding differences in the

values of m_ and q, to give solutions were less than 2%,

Both the checks (a) and (b) were carried out as
part of the procedure of setting up the circuit for
each boundary wvalue problem.

Perhaps the best indication of likely errors in
the maximum, and for practical purposes the most
important, wvalues of the variables was obtained from
checks on reproducibility. It was found that for a
number of runs performed over a period of a few hours

with the same circuit and setting of the D.F.G., the



values of m_ and dg obtained for the fixed end problem
differed by less than 3%. When the solutions were
repcated after a'period of months with different
circuit components, and after the D.F.G. had been

reset, the values of m_ and q, were within & 2% of
the values obtained originally. This was true for
n values up to 7,, but reproducibility was generally
better for the lower n values. Reproducibility. of

cl 21\"

dx2
o

was more sensitive to n, and differences of the

order of = 10% were obtained with n = 7. This is
consistent with the findings of circuit check (b),
discussed above, the main factor governing

reproducibilify being the D.F.G. setting.

From observations on the accuracy of individual -

components and checks on reproducibility, it dis
reasonable to conclude that errors in the values
: . . ; ' +
obtained for m and q, are probably less than - 2%,

and unlikely to be greater than - 5%, Errors in

L2
T w
. 2
cx

, however, might be as high as 2 n %, but are

O

unlikely to be greater than : 5 n%.

137
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The analogue computer has proved to be a
usceful tool FTor solving boundary wvalue problems in
semi-infinite cylindrical shells, with an accuracy
acceptable for most engineering purposes. A big
advantage is the ease with which changes in boundary
conditions can be studied.

Although manual adjustment of two inmitial
conditions to achieve the required displacement away
from the restrained end might appear to be a tedious
procedure, a trend of adjustment i1s soon established,
and solutions can be obtained fairly quickly. It dis
likely that a method of automatic adjustment of these
initial conditions could be devised, although no
attempt was made to do this.

It should also be ppssible to solve problems of
cylinders of finite length. Consider, for example,

a cylinder of length 1 under internal pressure, having

the prescribed boundary condifions

x = 0 H W o= W
o)
dw _  dw
dx 7 dx
o)
x = 1 ; W o= Wl
dw Q‘_{}
dx dx 1
. dw | \
The values of w and O can be set at x = 0, and the
“lo
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values of m and q, adjusted to give the required

values w, and dw at x = 1. Both w and dw would
1 dx 1 dx

have to be moniltored, and adjustment of m and qo

to satisfy the two conditions at x = 1 would be
considerably more tedious than in the semi-infinite
problem.

A preliminary investigation has also shown that,
in principle, the analogue computer may be used to solve
problems in shells of revolution of other shapes. The
governing equations are considerably more complex than
those for the cylindrical shell, and a greater number
of computing elements are required. There are not
enough elements in the computer at present available

in the Department for such solutions to be attempted.
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CHAPTER 7

RESULTS FOR A SEMI-INFINITE CYLINDER
WITH FIXED END

7.1 Cylinder without axial load

The boundary conditions: for the semi-infinite

cylinder with fixed end are:

at x = 0O w = O
clw
dx O
at x =00 W ot Wg,

If solutions are obtained for an arbitrary wvalue
of the loading parameter p, Weo is different for each
value of n. However, p can be chosen such that w,,
is the same for all values of n, and this gives a better
basis for comparison of solutioné.

p has becen defined as

o
If g, is taken as the circumferential stress in the
cylinder at x — 0@ the circumferential strain, and
hence the radial displacement w,, , will be the same
for all values of n.

The circumferential stress at x —w is

)
%% and if J, is given this wvalue
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bo BA

PA
(:’2«7{:[- H

This result also follows from equation 6.6.

The corresponding value of wg, 1is obtained

from
Wen _ -
A = € 0
- ‘ - W - L
and Wy = 5A € B
O
dzw
The distributions of w, —~ m,., q. and t,are
dx2 b p A ()

plotted in Figs 7.1 to 7.5 for p = 2 and n =3, 5 and 7.
The curves for n = 1 are shown fér comparison., For

x > 3.0 the curves for nl= 3, 5 and 7 are shown with
broken lines; the analogue computer solutions cannot

be relied on for detailed trends in this region:

7.2 The effect of axial load

The effect of changeé in axial locad T was
investigated with p = 2 and n = 3. Solutions were
obtained for 0= T =£0.6. The value of Wes is
different for each wvalue of T and can be deduced as

follows:
For p = 2, C%] = U

2 Usloo «
S



150

From equations 4.24 with, m_ = O,

-1

2 2 2
g T (t@ - t@tx + LX ) (te - 3 tx)
.. owith to]_ =1 and t_ = 7
n-1
2 2 T

e = (1 -7+ 1T%) (1 - 3)
o). :
But ee] = 2 W from equations 5 &

n-1

Ve =k (1-Ts1?)? (1-D)

and, for n

1
L

) (7.1)

ol

W = (1 -~ T+ 7)Y (1 -

i

Vales of Wen computed from equation 7.1 are
plotted against T in Fig 7.6 together with wvalues

obtained from computer solutions for the curvature and

2
axial strain at the fixed end, d 2 and %& R
dx
o} o
respectively. Th.e bending moment m and shear force

Uy at the fixed end are plotted against T in Fig 7.7.
The curves for n = 1 are shown in each case.
The value T = 0.5 is the axial load in a cylinder

with closed ends under uniform internal pressure p = 2.



This follows from

oL X A% p
T 2HG, 2 A 2HG,
o, H

with P = p iy
T =}
and for p = 2, T = %

7.3 Cvlinder under internal pressure

Because of dts practical importance, the long
cylinder with fixed ends under internal pressure was
investigated further for n = 3. With the result
obtained in paragraph 3.2 (c), it is again possible to
choose a value of p which will give the same w,
for all wvalues of n. IFrom equation 3.9, the condition

for this is

Do

1]
O
w
W
HI’U
e

_ PA H PA

H
&
-
=

It can be shown, as in paragraph 7.2, that with

this wvalue of ?

We = 0.433
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2
d w du .
Graphs of w, 5 0 dx gnd Aye» M plotted
dx
against x are given in Figs 7.8 to 7.10 for n = 3

and n = 1.
It was considered to be of interest to compare
the solution for the cylinder under internal pressure

with that for a cylinder under uniform radial loading

p = 2 and zero axial load, when w g was the same in
the two cases. Tt is easily shown that this cordition
is achieved if p = 2.42 for internal pressure. The

.so0lutions for the two conditions are plotted together

in Figs 7.11 to 7.13.

7.4 Discussion

The rate at which the radial displacement w
builds up from the fixed end in the cylinder without

axial load, depends on the value of n, and is greatest

2
when n = 1. The curvature d g reduces rapidly
dx
from a maximum value at the fixed end; +the higher

the value of n, the greater is the rate of decay.

For n = 1, the bending moment m_ is directly
2’;* d2
proportional to =~ , and the curves of m_ and -
2 X 2
dx cdx
plotted against x have the same shape. With n> 1,

W

2

m_ is a mnon-linear function of both and w, and the

) dx

152
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c 2w
dx”™

curves of and m have markedly different shapes;

although raising the value of n increases thc rate at

2
which =% decays, it reduces the rate of decay of m_ .
dx

N

The curves of w and tgy for different values of n show
a similar effect, t, being difectly proportional to
w for n = 1.

The analogue computer results are not accurate
enough at large values of x to give precise
information on the—decay of end effects. The
indications are, however, that even for n = 7, a

cylinder having a length x = 8, approximately, may be

regarded as scemi-infinite. FFor a thickness to radius
ratio of ===, for exampl = 8 is 0.56 as
ratio ol 755, or example, x = is 0.565x radius,

. ~ 4 . . .
and for a ratio of 70 it is 1.79X radius.
Two important factors in the design of

cylindrical shells with fixed cnds are the maximum

values of bending moment and curvature change, m and

5 , respectively; the former in calculations for

the maximum stress, the latter in calculations for the
maximum strain. The results for the cylinder without

axial load show small wvariations in these maximum values

withh n. m_  decreases with n, being about 8% lower for



n = 3 than for n = 1, and about 12% lower for n = 7.
d2w E P . - . .
The wvalues of Y | for n = 3, 5 and 7 fall within
dx j
o
10% of the wvalue for n = 1. Observations made on -
2
errors in paragraph 6.5 suggest that d w might be
clxZ
o)
in error by T2 n%. Even with allowance for such

error, the value for n = 7 is unlikely to be more
than 20 - 30% greater than that for‘n = 1.

Thesé results suggest that the linear solution
may be used to make reasonable estimates of imporrtant
quantities in shells behaving in the assumed non-
linear manner. FFor given radial loading P and
dimensions of shell A, II, the loading parameter p = 2

defines the reference strcss GZ, i.e.

g = BA

0 I

1o

The reference strain is obtained from equation

.l , or directly from the stress/strain diagram, and
Do
€o

in the linear analysis, Poisson's ratio being taken as

the ratio is used for the modulus of elasticity

. The solution so obtained gives the correct value

for the radial displacement away from the fixed end

2
d‘z" for 1 = n =
dx

and reasonable estimates of mO and

154



This method for estimating important guantitics
in the fixed end cylinder is analogous to that applied
to simple structures in Chapter 3. It may be
expected to give reasenable estimates with non-lincar
laws besides the n-power law.

It is likely, furthermore, that the method may
be useful for other boundary value problems, In a
preliminary investigation, a series of solutions

dw

was obtaincd in which the edge slope E;] was zZero,
o

but the edge displacement W, was given different

values. The displacement w g was again made the
same for all wvalues of n by choosing p = 2. In Figs
dzw

7.14 to 7.16 m_, - and q _ are plotted for w

o 2 o o]

: dx
o]

varying from O to weg for n = 1, 3 and 7. For this
range of W the n = 1 solution will always lead to
overestimation of m and a,- Except with small wvalues

of W it should also give conservative estimates for

P

?

cl ~K\'

dxz

For a given uniform radial loading, the effect

of increasing the axial load in a fixed end cylinder is

2
a~w .
to rcduce wegs , mo and qo and to increase the

2
dx

O



. . ' . . du .
maximum mid-surface axial strain — —Figs 7.6 and

dx
7.7, For n = 3, Wgm ézi'] and %% are non-
x7 o}
lincar functions of the axial load T but d, and
m depend linearly on T . It_may be shown(gjl(za)

that for the assumed homogcneous stress/strain relations,
the stresses in the shell vary linearly with the

applied load for all values of n. The results Qf

Fig 7.7 are thus a further indication of the'accuracy

of solutions obtainable on the analogue computer.
Solutions were obtained at 0.1 intervals of T and

the maximum deviation of q4, and m_ from the straight
lines drawn was less than 1%.

The solution for the fixed end cylinder under
internal pressure with n = 3 - Pigs 7.8 to 7.10 -
again suggests that the linear solution may be used to
malke reasonable.estimates of important quantities i€
p is chosen to make w4 the same for all n-values.

d2w

dx

The values for , mo and 9, for the cylinder under

~

o}
internal pressure are close to those for the cylinder
under radial loading with zero axial load when wg,

is made the same, and there is little difference in the

defleccted shapes - Figs 7.11 to 7.13. The
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distribution of mid-surface axial strain %%, however,
is entirely different in the two cases - Fig 7.13.
In paragraph 4.5, it was suggested that when
solutions to boundary walue problems had been obtained
with the approximate relations, a check should be

made on the domain of the /V/Jsurface in which the

solutions lie. This has been done for the fixed
end cylinder under internal pressure with n = 3. In
&, kx
Table 7.1, the ratios —, and =-~= are given for
e €x
X

l &
3 Co &, N
x € e €x ex
0 0.000 0.614
0.1 | 0.012 0.709
0,2 | 0.089 0.822
0.4 0. 447 0.987
0.6 0.910 0.791
0.8 0.518 0.567
1.0 0.338 0.267
1.5 0.149 -0.594
2.0 0.073 ~0.705
3.0 0.005 -0.125

Table 7.1
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Referring to Fig 4.5, and identifying e

with e, and @ with e, (kg = k, = 0) shows that the

solution lies between e, = 0O and e, = 0O and idincludes

sections @ , @ R @ y ancd @ It was in

the regibn of section (3 that agreement betwecen the

exact and approximate relationé was poorest. Experiments
on the fixed and cylinder under intermnal pressure might
provide a critical test of amalyses based on the,

approximate relations.
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CHAPTER 8

CONCLUSIONS.

1. Deformations in a number of structures obeying
an n-power stfess/strain law can be predicted by a
simple method baséd on the linear elastic solution;

it makes difect use of the stress/strain curve without
need to determine material constants. The basis for
the method suggests thal it may give reasonable
estimates of deformations with other non-linear laws.
The limited experimental evidence available supports

.this claim.

2. The relations between forces and moments and
mid-surface deformations for a thin shell obeying an
n-power law can be derived from an energy function.
This function gives a basls for postulating approximate
relations and for comparing them with exact relations
computed numerically. . Approximate relations have been
suggested for shells which are rotationally symmetric
both in geometry and loading. In the form in which
they are used for the analysis of circular cylindrical

shells, they compare favourably with the exact relations.

3. IFor the cylindrical shell, the approximate

relations lead to non-linear differential equations
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which can be solved, with particular boundary conditions,

on an analogue computer.

L, Solutions obtained for a cylinder.with fixed -
ends under uniform radial loading, and undex uniform
internal pressure, suggest thaﬁ the linear elastic

solution may be used to give reasonable estimates of

gquantities important in the design of such shells.

5. The solution for the fixed end cylinder under
intermal pressure includes the region of the strain
field in which the agreement between approximate and
exact relations was poorest. Experiments on the fixed
and cylinder may ptgyidé a critical test of analyses

based on the approximate relations.

Purther Work

Analvytical

The comparison of exact and approximate relations
between forces and moments and mid-surface deférmations
has 5een made with one curvature change =zero (k2 = 0),
the condition which applies in the analysis of circular

; (29)

cylindriéal shells. Drucker and Shield have
suggested that, for n—eo , relations for the cylindrical

shell may be uscd with sufficient accuracy for the

analysis of more general shells of revolution, and have
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suggested a formulation of the mofe general problem

in which m,, and kz are assumed to be =zero. The

writer hopes to examine these suggestions for other
values of n. An indication of whether or not they

are likely to be generally useful may be had ffom
examination of available linear solutions tﬁ particular
shell problems. If it is desirable to use the
approximate welations with k2 >; 0, it may be worth-
while to compare them with the exact relations for a
number of wvalues of k, in a manner similar +to that

2
described for k, = O in Chapter b,
As a check on the analogue computer solutions
given in Chapter 7, and to include the effect of a
change in wall thickness, a numerical method has

recently been developed(oo)

for the analysis of
cylindrical shells with the approximate relations.
Where solutions have been obtained both with the

analogue computer and by the numerical method, there

is better than = 5% agreement in all important values.

Experimental

A start has been 'made on an experimental
programme in which thin fixed end cylinders of annealed
copper and other soft metals are to be tested under

short term loading conditions of both uniform radial
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load and internal pressure. Measurements are to be
made of radial displacements and surface strains, and
the results compared with the findings of Chapter 7.

(30)

In a further experimental programme, thé
creep behaviour of long, fixed end thin cylinders
with a change in wall thickness is to be examined.
Cylinders of polymeric materials and soft metals are
to be.tested at reiatively low temperatures (ambient
to 15000), and with the collaboration of the Reséarch
Department of Babqggk.and Wilcox Ltd, similar tests
are being performed on steel cylinders at temperatures
encountered in the opérétion of steam raising plant.
The writer also hopes to initiate further
experimental work on the simple.structures discuséed

in Chapter 3 and to test further the approximate method

suggested for estimating deformations.
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APPENDIX 2

2.1 Derivation of equations 2.7

From equation 2.3

c . 3 &

el“cz - 2&(0’1“0;)

¢ . 3 & -

C2-€3 = 2 ,é,(UZ—OB)
Substracting,

c _ .e _ 3 &

€, -2€6,+€, - 25(01_2d2+ T,)

-3¢, + (E, + €, + &) -;ijz 20, + (O, +T, )]
2 1 %2 "% 2@ 2 179

But €l + 62 + 63 = O for constant volume

-t im 17,
With equation 2.5, i.e. - & =BU
e —n - 1
= BT [ 1 J
El and 63 follow by symmetry.
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APPENDIX 3

3.1 Beam in uniform bending

(a) Rectangular cross-section

Arguments of symmetry can be used(Si) to show
that plane sections remain plane and the strain at y
from the neutral axis of the beam when bent to curvature

K is
€ = Ky

With equation 2.1 written in the form of equation

2.2b, the bending stress T is given by

1
/
T = (signy) T Kly| N
. 6,0
1/n +d/2 el
M = 62 K Q& (sign y) (Iyl) n dy
- O
-d/2

I

2n+1 ]+d/2

ol (K )l/n b (n >[i(signty)(hfl) i
ol ¢, 2n+1 ' ‘

-d/2
1/ 2n+1
. Jd LK " [n o [d °
= © €o 2n+1 2
ér K = (2n+1)n 5 n+1 é o) M3
1 nan 2n4+1
g, &7 d
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Note In this special case of a cross-section
symmetrical about the neutral axis, the stress/strain
law can be used in the form of equation 2.1 and
integrated over half the cross-section, i.e.

d/p

2 " CTer.ldy

M

i

?‘ywd

| !

beot
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Integrating over half the cross-section

d .
e b
(2 ld) -+l

1
/n '
M= 2 (—é} o 2er T oay

-2_ n+1’
. Q‘_ — ]
. - }

dy S
(8 - =a)
L

< g (&) b ()

2n+1 2n+1 2n+1

i, [2 0] T u[2] T - [Bamewy] T

-+

| L, 2n+1 2n+1
=20 (£ & -———i-) ay * 1 ~(1=>)(1-2 &l ) N
o \'E, an+l ) \2 2 1
. c - on+l nZ n+1 : 60 M
LT n C7.n an Cierl 2n+1 4 a
o -(1- -
! [.'L (1-24,) (1 20!.1‘) n ]
(v\r'h.ennc;{2 = 1, or‘ai =' %, this reduces to the expression

for a rectangular cross-section)

For n = 1
12 €, M

1 ~O'O@d3 | [1-(1-‘»(2)(1-20(1)3]

K



and the expression for K may be written

n-1L n-1 n
M 2 2n4+1
K = K, |——— = < .5
1(0‘00)_(:12) 3 n

[1-(1-“9)(l~2dﬂ)3 ]

X 21n+1
p 1
E’41“°E)(1"2“i) ]
For K = K1
_ 2n+1 n 1 1
, 1 n-1- - n-1l
" ) [i—(l—dQ)(l~2ﬁl) ] ) 3
————— =
G d [1-(1-w)) (1-2%)7 ]

1l
o<

; (n)
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(;n+

The variation of \{5 (n) with n is shown below for

C*l = o, = 0.1
n ¥ (n)
2 0.1045
3 - | o.io47
5 0.1058
7 0.1060

For the beam tested by Gill - Fig 3.5
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o(l = 1.75 = 0.143
- 0.375 _
o(2 = s = 0.250

Taking ?aﬁzgg as the valug-of Xg(n) for n = 5 gives

M :
-~ =  0.153
To 4rd® -

or CE = 1.425 M.
3.2 Lt X1‘n) as n —s= 1%
1 11
~ T=1 n-1

e dT )

1 2 2n+1

I

[,

_oL (m )\
-6 2n+1.

Taking logarithms of both sides

. _ 1 n In
Log, Xl. = log, T ¢ (nfl ) Log, 2n+l)

- g 1 3n
Lt loge X:L = . Lt [ Loge g T log (2n+¥>
n -l n et L o

Applying L‘ngital‘s rule to the second term and

differentiating,

* The writer 4is grateful to Professor Maclellan for

suggesting this method of investigating Lt X 1
as n —~ 1.

189 .
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3n>
Lt n loge V]
n —= 1 n-1 :

- Lt log 3n\ | n2n+l). (2n+1).3-3n.2

e \ 2n+1 3n (2n+l)2
n~=1 :
1 :
= 0] + Lt =
- ' 2n+1
n —=1
= X
- 3
: 1 1
Lt loge X 1 = loge ¢ 3
n-~1
1
1 /s
or Lt K}_ = 7z e
Il e 1

This limit can also be obtained by writing n = 1 +<5

and investigating the behaviour of K&K 5 ) as 5 - O,

3.3 Simply supported beam with central
point load - efuation 3.7

étf

NS
o

fols,
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It 1s assumed that the. moment/curvature
relation developed for the beam in uniform bending
can be appliedlwithout serious error in the presence
of shear stresses associated with the shear forces
in the beam. |

Thus, with

K - g—lz‘"- for small deflections
dx
A
< 14
and M = % x, ~
equation 3.1 gives e
W
e e
a®v R w
2 2
dx
where

n+1

0 .
51__ 2n+1 €o
- S n 2 nan g2n+l

' G U od

This, with the boundary conditions, gives

) [ T ()

At x = L/z, and substituting forﬂ ,

=d = yﬁ L n+2 €o 2n+1) ¥ 1
v = = - : 1

Qn d2n+1 _d;n — 2n+l




3.4 Other examples of non-uniform bending

(i)

W

i
NN &

An alternative, and often simpler, method of
determining the deflection under a single point }oad
is to use the principle of wvirtual work. In this
simple case, considering only the uniaxial bending

stress, the principle may be written as

Jd € av - wd= o A3.1
x x
vV
where
O;, €x are stress and strain in the x-direction,

W is the applied point load

6’is the deflection under W.

Also
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i

O; €X dv O”x Ky dv

i
A
—
Q
"
o}
o>
| N |
&

" But

y [0‘6 dV = M K dx
. e X X .
v L

with K = SU M* (L as{n Appendix 3.8),

equation A3.1 gives finally

\‘\/CS = .Q. [ M n+l dx
: L .

Thus, in the above example,

a n+1
Wdé - Sz [.VJ (1 - %) x ] dx -

o]

L : n+l
-}- g[\!\/a(l - %) ] dx

which gives finally



d- o wnL.‘t‘H-2 €n (l ) 2) n+1l <,§) n+l(2n+l>n 2 n+l .
o non _ 2n+1 L L hot n+2
g e | -

with n = 1

eo N
and
_ VLo &y (@) n-loy (2n+l)n p 0l
1 OerdZ L"*L n n+2
i
Thus,
5.4,
1 n 1

= XG' (n)

e

1S - n
6(n) varies from 0.325 fotrn = 1.1 to 0.298 for

Wa

n = 7. A wvalue of 0.300 for
g & a?

(1 - )

giw;es 5: (gl z 10% for 1.1 =n _‘57.
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W
Y L/
1 = { f %
e f 7)d
/1 e s
qu y L/ﬁ Lyé Pﬂo

Fdr this encastre beam, the edge fixing moment

M  for a linear elastic material (n = 1) is %%,,
With a rigid - non - work -~ hardening plastic material .

(n—= 00 ), plastic hinges develop under equal moments

Mo at tlie ends and centre of the beam, and equilibrium

requires that M0= %% . A more general analysis shows
WL
that Mo =g for all wvalues of n.

Again, using the principle of virtual work,

% : n+l
W(g 251 (-W-x - MO> dx

fi

. 2
RN ORI RO

which gives finally¥

* A change in the sign of M occurs in the range O - L/2.
To avoid difficulty when n is even, the moment/curvature
relation can be used in form analogous to equation 2.2a,

e K = S (sign M)( | M| )™
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Cg e-o ' 1n n+2 2n+1 e 1

= W L — 1
n,n 2n+l ' n 2n+2
a N 2

d I}+2

Proceeding as before

$ = d

1

1

‘ n
. wi _ [/ n_ \n-1 n-1 B
if J642 = (2n+l> (n + 2) | e X,7 (n),

'\67(11) varies from 2.60 fron = 1.1 to 2.37 for n = 7

and ML oy gives

O;Q;dz

J - 51 Y1094 for 1.1 = n =7,

i) |

A OJ/UNlTLENGTH

e

-

5 O I &

g 5 X %z

g

A -

P s
M:--g—(L—x)2
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AL RN R

is integrated to give the end deflection

S - €o '(ggi;

n n+l n 2n+2
2
d. n 'Q:nd2n+1 n )
©

Also

5.6,

' 5 n i 1 '

LA LT n n-1 {3in-1 n-1

11 ) Q)dz - (211+1> (2) (n+1) - XS(n)
[+

X8(n) varies from 0.762 for m = 1.1 to 0.621 for

2 .
n =7 and 2L . 0.635 gives

g, b a?

.(5= Cg ilS%for 1‘.1.;“511_‘:4.'7.

3.5 The intersection "point" in Figs 3.9 and 3.10

(i) Tig 3.9 - the thick wall cylinder, o = 2
g : : :
The wvalue of ) at the intersection "“point" for
1.1 == 7 is approximately
»CZ = 1.27
P
or g = 1.27 P.



e (J is taken to be 1.27 P, then the
equivalent strain Ei at. the intersection '"point"
will be Qb, and the same for all n in the range
1.3 to 7.

Bailey's solution was based on the assumption
that the axial strain in the cylinder wall is zero.
The strain ratios are thus constant and E. is directly
proportional to C@ Thus if & at the intersection
"point" is the same for a range of n, so is 66 .
Furthermore,'the distribution of E@ through the
cylinder wall is independent of n (equation 3.11) and
if €g has a value at onelpoint in the wall which is
the same for a range of n, it has values at all points -

in the wall which are independent of m in this range.

The assumption that CZD = 1.27 P

198

gives g; = 0.789, This result compares with the wvalue
o

2 o= 0.79 obtained for <A\ = 2 in paragraph- 3.2(d

Yo

(ii) PFig 3.10 Beam in 3-point bending

e B EL ¢ one point in the beam has the same
W d .
value for a range of n = 1, then, since the bending

moment M is independent of n, the curvature XK at the

point would have to be the same for the range of n.
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(\N,c? and I, are the same for
the condition for K to b

3.1,

for 1.1 n &7 is

M
g, = 0. 2h5 La?

MKL
wd
that for n = 1 at %? =

From Fig. 3.10, for n =

0.82

this point

all n). From paragraph

e approximately the same

3, 5, 7 is closest to

approximately. At

M =
Thué
O~=\31/X(0.82>L 1
0 2 2 2
0.245@61
. o0.837 WL
2
b a

The value suggested in paragr

C7 _ W

-0.833

&a

aph 3.2(a) was

L

[ —)

2
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APPENDIX 4

L, 1 To demonstrate that t, = 1' ! etc.

1 1+ 1 ael

Consider the shell element of Fig 4.1, having

T

sides of unit length and subject to edge forces Tl’ 5

M

and edge moments Ml"“

2%
The strain field described by equationsi.l will

give rise to stress distributions in the element which,

€

K., K. will be in

for the correct values of & mo' X0 K,

ml’

N
T., M, and M. The potential &l

equilibrium with T 5 1 5

l 2

defined for zero body forces by

= 4 vav - T, u, dF (AL.1)

il

- where du (O_ldﬁl‘+0‘2d,€2+d.3d€3),

dv is an element of volume,

drr is a surface element,

P is that part of the surface on which
forces Ti are prescribed,

u. are displacements associated with

prescribed forces,

is thus to be regarded as a function of €ml, €m2’



XK., and K., and will be a minimum when & ., €
1 2 ml

Kl and K2 have their correct wvalues.

For the shell element, since CTB = 0,

du = O’ldel + O“2d€2

Substituting for CtL and 672 from equations 2.9

n+1 1L-n

21n 21
1 L 2 2
du iy (5) (el TrE, &, r € ) (61'
1l-n
2 . 2\ *%
+<€l -+€1 62 + €2 ) <€

) 2n
= 1/ <§) (n?l) d[<€12+el €, + €

11

[}

B

€. <,

U = d U

o

n+1

2n

1 L n 2 - - 2
= l/ <§) (n+l><€l * é:l CZ * C2>
n

B

Thus, with equationsk.1,

201

m2’

of=

-+

‘€2> a€,

2t €l>d€'2

D7

n+1
21
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n+1
2n r
U = 1k o S K - (E K.Y € _+ K)
- 1/ 3 n+ 1L ml +8 i + ml+ 3 1 m2 5’ 2
N ' .
. n+1
: 2 2n
+ (€m2 +3 1«:2>
n+ L
2n

_ 1 L n 2 . ¢ 2
1/n (3 > (.n+l>{( 1 S )

* })’ |:K (2 ml * E-:1112) +'K2(2ém2 + €ml)]

) n+1
2 ) 20
+ 8 (K + KlKZ -+ K2 S
n+l n+l
2n 21
1 L 1n
or U = =3 3) <n+l> Fq
/l’l
B .
For unit area of element
+H
Udv = Udg
Vv -H
n+1 +H n+ 1

N 21 n 2n
3 <n+ 1 F1 d B
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Also, for unit length of side,

T, u; dF = T, (le x 1) + T, (€., x 1)

+ My (1 x Kl),+ M, (1 x Kz).
Thus, from equation Ak.1
e+ 1 - n+l
~ 1 L 2n n +H 2n
= l/ 5 n+l Fl d%
B n ~H
- - - -V -
T, Q,ml T, € M, K M, K

m2 1 71 2 2
Introduction of the non-dimensional parameters defined

by equationsl.5 gives

e
! = (’n )’W/ - t.e., - t_ e, - m k., - m_k

1

20 ¢ 1 Tl 1%1 2%2 171 22
where #1
%
Y = La(f'g,> (etreer et)+4% [&(e‘w‘;ez) &, (@.-t-“'?:al)]
; el
=~ 4-53(9\’,14- &, + Qﬁi) d&
oy sl

I

3

L (5% “ | F S
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(\-—'
If H is a minimum

. by = (nfl) 33}' b By = (nl:l ggt

.

e (B H o () %

These relations can be verified diréectly by obtaining

%%L , etc.

For example,

n+1. +1 1-n

21n el 21
atl F, (Zel+e2)+M? (kl+%k2) al

-1

.
<
I
roj
N

Wl
N’

de,

The right hand side of this eguation is the expression

obtained for tl by direct integration of stresses through

the thickness - the first of equations 4.6.

.2 Tntegration of'xy to obtain qv(d) and Qw(e)
(a) Ma)
With k = e = O
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Dl vl . | n+1
ACIERIC R S O
(d) = ) "5' el 4+ 4 k]_ el+ i k-l
-1 ’ .
n+l o+l n+1
21 -
lp ( ) \
= o S S
= 2(3) [ el+ 2§k1 dS
-1 '
| n+1l 2n+l a4 +1
_ L=
B 2(3) 2n+1) 2k (el+2? k. )
1 .
- -1
e an+l An+1

or .\(j(d)

) Ve

I
=

en = x
L n 1 |
(§> <2n+l> 21<:l [ ( e, * 21{1) ~( ey —21{1) J

As no—=90, 73 = Tty T
and
1 +1 N
2 2
,\{) 1 L‘ 2 ] L
@)= =z (3 (2§ + bS + ) a$ (Al .2)
-1
= 2 2
where a = Lp(kl + kg 1{2 + 1\2 )
C = e 2 + e.e + e 2
1 172 2

The integral in equation AlL.2 can be evaluated,(sa) i.e.




206

+1 | : +1

(a.g2 FbY + c)al = GEQ%E;~E>,V/a§)2 +bf+ e
1 ' -1
!
(remet) | =8
- W/agz + bg4- C
But for a > O
o1 ~ +1
o’ —“‘]'"'1 (228 + b 2 o/ Val2ps ) -
/a§2+by'+c'ﬁ PBertE T M T T e 1
Hence

il

j{/(e) q/ii <2a+b>V ¥ b+ o _C%:E)l/a - —

Lac - b~ 2a + b + 2¥aYa + b + c 1
+ ———~—§7— loge
2 -2a+ b + 2Y¥a¥a - b + ¢ 3
8a.
4.3 Symmetry of the q# = 1 surfaces.

Adjacent quadrants.

For given el, e2, kl, the stress. distributions

through the thickness of the shell are given by equations

L,18, 4i.e.



207

n+1 | i1-n
211 2 . . R ) 1 2. 2} 2n
) (el + eje, + e, ) + +§>k1(el + 262)+4g I,

i\ _
g, )"

(O By

x[(el + %e2) + 2?1{1]

n+l1 1-n

a L) A% 2 2 : 2 2| ="
2 = (51-’) (el +elez+92 )+4§)1{l(el+%—62)+}__’.g 1(1 J

x[}e2+%el)+ S kl]

These expressions are not symmetrical in e, and

e

i.e. the deformation states (e1 = e; e, =de;

2 ?
kl) and(el =de; e, = e; kl) will give different stress

distributions and are associated with different wvalues

of t m m_ . The'V/wsurfaces are thus not the

1 72

same in the adjacent quadrants of Fig 4.3.

1’ t2’

Diagonal quadrants

Fig A4
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Consider the deformation states (a) in the diagonal

quadrants I and III of Fig A.L.1, i.e.

quadrant T (e1 = e; e, =cde; k

2 l)

quadrant ITT (el = - e; e, = -{e; k

1)
The distributions of Czl associaﬁed with these deformation

states are:

: n+1 l-n
. 21 2n
!
5% = % [e2(1+d~+ck2) + 4?kle(l+€§)+4§2k12.]
I
el
x _[e(l+ 2) + 25 kl]
n+1 1-n
2n : 2n
d1 L 2 2 2 21
—_— =] = ot - & L <
G 5 e“(Lrebred “) = 45 Kk e(1+ 2)“? ke, |
ITT '
. _ _ SA '
x [( e) (14 2) +25 ke, }
Clearly, for a given kl}
a
—L at § = + g = - CT at g = - g
JO L 'Oo 1
I ITT

This leads to the distributions of 2L shown schematically

o

in Fig A4.2 and the distributions of

2 will be

Jo

similar.
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SIS

Y

‘i‘i

Fig AL.2.

The only difference in the applied forces t, and

1’ "2
moments m,, m, to produce the deformation states (a)

in the diagonal quadrants .I and III is in the sense of

t, and t,. Furthermore, replacing o by - @ to give

the deformation states (b) in Fig Al.l shows again that

the only difference in tl, tz, ml, m2 to produce states

(b) in the diagonal quadrants I and IIT is in the sense
of t. and t,.. The fq/= 1 surface must thus be the same
1 2
in the two quadrants.
The argument can be repeated to show that the

ﬁy = 1 surfaces must also be the same in the diagonal

quadrants II and IV.




210

Mathematical demonstration of symmetry

Properties of’u/ = 1 surface for n-0,

As shown in Appendix 4.2,

| 2a+b -2a+b
lynj¢¢b = 75 - Ya + b + ¢ - (—Ea~* va - b + ¢
bhac—b"
—5 log, {22 + b + 2 Ja Ya + b + ¢
sa /2 -2a+b + 27Yava - b + c
where, for k2 = 0O
2
= L
a kl
b= bk (e, + % e2)
c = e 2 + e,e,. + e 2
- 1 12 2
Symmetry about kl = O
A change from kl = + k to kl = -~ k affects b, and not a
or c.
Let b = + b1 for kl = + k
b = - bl‘for kl = - k

In the expression for q?’, the first two terms taken

together, i.e.

(Zi;b>{a+b+ c - (__[L___—Za-;bv ~a - b + c
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has the same value for b = + bl and b = - bl. Also)
Lhac - b2 + ) )
— 3 is the same for b = - bl' Thus it is only
/ .
2

8a

necessary to prove that

1o 2a + b + 2 +/a va + b + ¢
€e
-2a + b+ 2vava - b + ¢

has the same wvalue for b = T bl'

For b = +-bl, the expression becomes
(2a + bl) + 2 ¥Ya va + by + c
(-2a+ bl) + 2 va Va - b, + ¢

If both the numerator and denominator are

rationalised the expression may be written

2
(2a + bl) - ha(a + b, o+ c) (-2a + bl) - 2 a2 ya - b, + o

(-2a+ bl)2 - ha(a - by + c) (2a «+ bl) - 2va va + b, + ¢

2a - b, + 2 of/a /a - b, + ¢
—-2a~- bl + 2 v@.yd DR C

This is the original expression with b = - bl

2a + b + 24va+va + b + ¢
-2a+ b + 2 VYa Ya = b + ¢

has the same value for

_i_
b= = by
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The,u/= 1 surface for n —=o0 is thus symmetrical about

the plane kl = 0.

Symmetry in diagonal quadrants

The deformation states (el = e; e, =ole; kl) and

(el = - e; e, = -ole; kl)‘in diagonal quadrants give

the same magnitude and sign for a and ¢, and the same
magnitude but opposite signs for b. So do the deformation

states (el = e; e, = —-ﬁe; kl) and (el = - e; e, = ﬁe; kl)

Thus, by the argument used above to prove symmetry for
ok

diagonal quadrants.

the surfaces W= 1 for n=-wo00 are the same in

Lok Computing the ’E/= 1 surfaces for k, = O

Although for given values of el, €y kl, Wk/could

be obtained directly by numerical integration of equation

L.8 with k2 = 0, it was convenient to have values for

m, as well as wvalues forﬁqj. The following

" procedure was thus adopted.

(a) For a particular value of n, and values of eys g,

kl’ equations 4.18 were used to compute the non-dimensional
5 Jo .

stresses and at the mid-surface and at ten

O O



equal intervals of ? onn both sides of the mid-surface.

A standard numerical integration techmique based on

Simpson's rule was used to evaluate ty, t

from

-1

G%DS&

It

+1
m
-1

(b) WJ was obtained by

work to the unit shell

QM— tl e, - tz 62 -

element,

5 my and m2.

+1

i
o=
b
o.
[ )

o
-1
+1 : :
- | (3
-1

applying the equation of wvirtual

i.e. (with k, = 0),

Steps (a) and (b) were performed on an English Electric

Deuce computer.

(c) To obtain a point on the /H/z 1 surface for given

2 )

A graph of \/ against k

Y= 1.

gave the wvalue of k

'\V was calculated for a number of wvalues of k., .

1

1

h,.5 Integration of eguationsi.19
y
(=) 1
1
o n

for which

213
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n+li 1l-n
5 1 < n i k
b (Lol )T o)
e, | n -1
n+1 +1 y 1 n
2n :
= 1 %‘) (1+2§ —é-i) a$
-1
n+l n+l n+1l
210
= ( ) (1'14—1) (k 3{14"2 ——> ( -2 .......) :I
(b) my
l/n
kl
n+1 1l-n
on ot 2 - 2n .
1“11/ : (%) (%)M [ 1T+4 §(_—I> + 4? (—e—”-L-) } 1+2§(‘ \]gd?
ke = ‘ -1
n+l +1 l/
_—,(%> Zné?ﬂ« e rzzg?l& ng dg
-1
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which gives finally

n+1 n+l n+ 1
m T 2n ( n jid n
1 = % )( ) -—.—-— n+l (1+2 —= + (1«2——l—>
1 n+1 c e
/ ( ) [ 1
. ''n
kl ey
- ’ 2n+ 1 2n+1
k n k n ]
(2:2 1) = l_ (1*’ 26_1) “(1"2?l">
* 2 3 1 1 j
€1
L.6 To show that t, = O when e, = - i e,
From equationsl.6, with k, = O,
n+1 + 1 1l-n
2n 2n
I
~ 1 — L
t, = 2 (3) F, [ (el+2e2) + Zf)kl ] df
-1 '
e T _ 2 2 1 ‘ 2 2
where F, = (el * e e, + e, )-flt?ki(el + gez) + 4§ Ky
sz -
_ 4
But *Q = 4 Ik, [:(el + 2e2) + 28 k) J
o
4L o n+l +1
. ~ 1 5‘_ 21n 1 on P 2n
1 23 : 1+kl n+1 2
-1
Thus, for t, = 0
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n+1
FP 211} for ?=+l

This requires

1

n+1l
2n .
[FZ ]forgzdu 1

The approximate relations

|

equations 4.{§ — also give

- . = - + &
tl = O for el.— 5 02.
h.7 Discontinuity at section CD for n «—» 60
For the particular conditions e, = k, = 0 (and only for

2 2
these conditions), the strain €2 is zero for all ¥

For €2 = 0, the first of equation 2.9 gives with

(T
o]

Oq
5

As n ~—u © , CTl = . = CTO, the sign depending on

the sign of é’l'

I1ow e

il

1 éml - Klzi

c ' Kl H .k
= Sm1 (i * éml ' g

216
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Clearly, since '8 varies from - H to + H, the sign of

€l for given values of Qnﬂ'and Kl will depend on the

I I
{1 H K, H

. For L fEIL,éj'will be positive
eml Cml

ratio.

throughout the thickness, and the stress <§1 will be

2
- = d ;
4 3 o throughout. Application of a curvature

= ol will mot change the stress distribution, and

Ky q

hence will not require an applied moment Ml. The

magnitude of the force Tl to maintain eml will remain

unchanged.

K., H

For L > 1, €l will be negative over part

&

ml

of the thickness and the stress will be -

Cr, i.e.
o

Ol

as
the stress distribution will be, shown Dbelow.

9 .
O 75 e
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: €
Application of a curvature Kl ::> gl will thus require

an applied moment and the wvalue of T. to maintain éll

nl
is reduced.

In non-dimensional form, the ratio

Kl H _ 2 6o kl H 4 Ei
_— P — -8
€ m1 H €1 g ©1
Kl H : kl
and = 1 gives —= = i
G;ml 1
k

This was the wvalue of —

€1

occurred at section (3).,

at which the discontinuity
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APPENDIX 5

5.1 Semi-infinite, fixed end cylinder without
axial load -~ magnitude scaling for
n = 3 and computer circuits for mn = 5, 7.
(a) Magnitude scaling for n = 3
‘/\»- .
With time scaling | = 4 x, equation 6.3 is
-1
2 2 2 2n
16 X = o [3w2+f2><256d‘; J
aT= 172 dT
l-n
2 2 21 -
2 : d"w ) d dq
o’ o) oA - — .
e Bfl'w[fiw + ;.56f2 de J pS n n (AS
For n =3,
n_- 1 1
2n - 3
n+l
L[_ 210
fl = § = 1.212
21,
n n+1
f2 = L (2n+l> = 1,122

and equation A5

.1l becomes with p

2
256 i—;ﬁ% = - O.735[3w2+287

X 3.636W'3w2+287 ( W ] _? }d?‘d?’ (A5.2)
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Based on the maximum values obtained in the
linear solution - paragraph G.Z(b) - the following
normalised variables were sclected for w and its

derivatives:

2

d w
] dw )

ONP , av R AT
-7 0.2 0.05

with these, equation A5.2 becomes finally

2
d_w ‘ 1 1
3 3
at® | = - 0.146 G [ NG - 0.89u]dT at (45.3)
Mr’ 3 O'/ 3 :
0.05
where
d2
. 5 wo
Gr3 = 5. + 0.488 | at”
’ 0.05
The linear solution shows that the decay of
d2w
2 . . A W .
at” is more rapid than the growth of ( and 1t was
0.05 0.7

assumed that G3 would not have a value. greater than 1.

Furthermore, in setting up the D.IF.G.. it was assumed that

G, would not have a value less than 0.005. This gives a

3

-

maximum value for G.° of 0.171, and a reasonable estimate

3

-t i
3 ~3

of the maximum wvalue for G3 is 5.0. With G3 scaled

by 5, equation A5.3 becomes
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1 / G3~% 1 »
- El : W - 0.1 at a®T (as.!
J 0.730 G, [@.7) G 79 (A5.4)

It was necessary then to make estimates of the

#aximum values of {\[ ECﬂ’ and j}hf . ] d@hAT'.

From equation 5.6

4, = (2 Tty -p) dx
and substituting for t g from equation 5.11 with %% = - W
gives
l-n
( ] 2 dgx 2 20
[~ NT
a, = {Bfl w LBW + f2 (d 2) J ~ P dx dx
b

With time scaling and normalised variables, this becomes

form = 3, p = 2

a, = 2.8 [(O"\”?X GEj) . 0.1791 al (45.5)

The maximum value for . in the linear solution is

q _ 16 cl3w
° 9. de
o)
= %é X 1.298

An estimate of the maximum wvalue of‘{[ ]dq‘ is thus
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I - 2
(L fat = 3—5/2 x 1228 - o.sa
j rd..o .
It was assumed that %'[L tld%;zmax = 1.0.
From equation 5.7,

m = - dx
X f qx

and substituting for A from equation A5.5

e L)
_ '-, 1w 3 o
m_ = - m J L (0.7) E - 0.179] aT a1

With the maximum value of mx from the linear solution, di.e.

N

N

m = =2 < 0.75

[f [ u_\d'{- d’r = 1_9‘6" X 0.75 X --—}:-I-—- = 1_9

It was assumed that

{H"[ laT dT%maX = 2.5

These estimates of maximim values lead to the final

equation
G
2 W 3 . ~
d w N fﬂ [(0.7>( 5 )'*(JfWQ } at dr
o.s5u8 aT*1= - G,°
0.05 2.5

and to the circuit diagram of Fig 6.6.
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Similar reasoning leads to the following time

and magnitude scaled cquations for n = 5 and n = 7.
n = 5
1™ w 2
ﬂ—}_z"\ /5 W G)_‘_—'e/.’i .
0.653 aT J = -G, (6-——- —t ) - 0.935{aT ar
- 7L 10
0.05
5 d w 2
where Cﬁ. = (~w > + 0.469 dﬁ“z
i 0.7 '
- 0.05
n = 7
19 —
(_].Hw‘ 3/7
2 37 w \[%5 .
0.6U2 al = - G 5.7 Z 0.0953|aT 4t
5.65 > ' ¥¢
5 dzw 2
where G, = O—“-) + 0.459 aT?
- ’ 0.05
The circuit diagrams for n = 5 and n = 7 are given in

Figs A5.1 and A5.2.

5.2 Magnitude scaling for cvlinder with axial load.

When time scaled with T = hx, equations 6.4 become with

n =3 and p = 2
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120 1, r -1/ .
256 (d “): -~ 0.735 G /3 ji | 4848 G 3w d“)-ﬂ ar ar
~ J

, du T Y3
N 1.212

wlhiere

\ 2 du 2 d2w 2
G. = 16. ﬁ% 8"(f- + hw + 287 .
6 <dﬁ) e AT e

The estimates of maximum values made Tfor the cylinder
without axial load werc assumed to apply here. The only

additional estimate that had to be made was '%%] v
' max.

In the linear problem, cquation 5.19 gives

clu

dx T

- W+

I

It was intended to wvary T in the range O to 0.6, and thus

the maximum value of g% for the linear case would be
lwmaX 1: 0.521. For the non-linear problem, .a value
du_T du ] o
dx.{ = 1.0 or e = 0.25
max max

was assumed.
The final forms for equations A5.6 with normalised wvariables

are:
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cdTw

\J

0.410 atT”®
0.05
[ ET . |
G, N7, _du_
& ( = / —:—) + 0.357( 4T -~ 0.148¢ aT 4T
A1 i O. 0 25
= - G -
7 2.5
du 1 w
art = 1.033 T G7 - 0.7 (()J7>
0.25
where
. 2 2 dgw =
du clu _ )
G, = 0.510 (dﬁv + 0.71h (C)[D(djr W7> + 0.366 | d1
0.25 0.25 ’ 0.05
5.3 Checlk on outputs of circuit components of Fig 6.6

Results are given in Tables A, B and C.

Table A - x = 0
Table B - x = 0.5 appr6x.
Table C ‘ - x = 1.0 approx.
notes
(i) A - amplifier
M - multiplier
D —~ multiplier used as divider.
(4d) Sign dnversion occurs in all amplifiers and multipliers.

(iii) 1.0000 represents 100.00 volts.



TABLE A
Circudit Thnout Recorded |Calculated|{Difference in Qutput
Component bt Output Output Absolute |Percentage
Al 0.0000 0.0000 0.0000 0.0000 -
A2 +0.0001 - I
_0'54201 +0.5420 +0.5419 | +0.0001 0.02
-1.0000" )
A3 +1.08uo§+ -0.0839 -0.0840 | +0.0001 0.01
Al +0.8169 ~0.8169 ~0.8169 | 0.0000 0.00
A5 -0.8169 +0.8169 +0.8169 0.0000 0.00
A6 -0.2000 +0.2000 -0.2000 0.0000 0.00
A7 +0.2450 E-o.zuso -0.2450 0.0000 0. 00
8 -0.0001 N
A8 +o.179o]'k -0.1789 -0.1789 0.0000 0.00
A9 +0.5750 -0.5750 -0« 5750 0.0000 0.00
A10 -0.57530 +0.5750 +0.5750 0.0000 0.00
A1l -0.7350 +0.7360 +0.7350 | +0.0010 O.1L4
Al2 +0.7360 ~0.7361 ~-0.7360 | -0.0001 0.01
M1 0.0000
O.OOOO%L +0.0001 0.0000 | +0.0001L -
+0.2450
M2 5 oooo}‘ -0.0001 0.0000 | -0.0001 ~
+0.6975 _
M c — —- —
M3 hips 8169%x 0.5750 0.5698 0.0052 0.91
i +0 7360%, I - - :
My | +0.73601% ~-0.5420 ~-0.5417 {~-0.000 3 0.06
+0.20007 -
D1 +O.8169%7 +0.2450 +0.2448 | +0.0002 0.08
D.F.G -0.0839 +0.8169 +0.8153 | +0,0016 0.20
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TABLE B
Circuit Trput Recorded {Calculated| Difference in output
Component pu Qutput Output Absolute {Percentage
Al +0.0752 -0.0751 -0.0752 +0.0001 0.0L
A2 '0'0056)+ +0.0148 +0.0148 0.0000 0.00
~ ~0.0092]} :
-1.0000 '

£ ’ ' - ' ! .

A3 +o.0296}’ +0.9705 +0.9704 +0.0001 0.01

Al +0.2500 -0.2510 ~0.2509 -0.0001 0.0k

A5 ~0.2510 +0.2510 +0.2510 0.0000 0.00

AG ~0.2000 +0.2000 +0.2000 0.0000 0.00

A7 +0.7999 ~0.7999 -0.7999 0.0000 0.00
~0.0604 o |

A8 +0.1790 + 1 -0.1186 ~-0.1186 0.0000 0.00

A9 +0.0745 -0.0746 -0.0745 -0,0001 0.13

Al1O -0.0746 +0.0746 +0.0746 0.0000 0.00

All -0.0953 +0.0953 +0.0953 0.0000 0.00

Al2 +0.0953 -0.0954 ~0.0953 -0.0001 0.10
+0.0752] | _ .

M1 +O_O752§x 0.0056 ~0.0057 +0.0001 1.80

_ +0.7999

™ - I - -

M2 +O_o7521x 0.060k 0.0602 0.0002 0.33
_0-29'}4'3 ..I_ ~ = L

M3 +0.2509%x +O. 0745 +0.0738 +0.0007 0.94
~0.0953]

MU x | -0.0092 -0.00 ~-0.00 )
~0.0053¢% 9 91 o1 1.10
+0.2000% .

D1 +0.2510%% +0.7999 +0.7969 +0.0030 0.38

D.F.G. | +0.9705 +0.2509 +0.2455 +0.0054 2.15




TABLE C
Circuit I“ L Recorded | Calculated| Difference in Output
Component L HRpU Output Cutput Absolute | Percentage
Al +0.1957 -0.1957 -0.1957 0.0000 0.00
~-0.0382 . '
T . . . 0.00
A2 -0.0016]+ +0.0398 +0.0398 0.0000
-1.0000 .
A 0.9206 0.9204 0.0002 0.02
A3 +o.o7961* *0.9% 0.9
Al +0.3430 -0.3430 -0.3430 0.0000 0.00
A5 ~-0.3430 +0.3430 +0.3430 0.0000. 0.00
A6 ~-0.2000 +0.2000 +0.2000 0.0000 0.00
A7 +0.5830 -0.5829 -0.5830 -0.0001 0.02
~0.11h1 .
A8 +o.179o%+ -0.0648 -0.0649 -0.0001 0.17
A9 +0.0304 -0.0305 -0.0304 ~0.0001 0.33
A1O -0.0305 +0.0305 +0.0305 0.0000 0.00
A1l -0.0390 +0.0390 +0.0390 0.0000 0.00
Al2 +0.0390 -0.0391 -0.0390 -0.0001 0.25
) +0.1957
M1 +O.1957§x ~-0.0382 -0.0383 +0.0001 0.26
M2 +0.1957
(| ~0.114 -0.114 . .
+O.5829}k 1141 1141 0.0000 0.00
~0.0878] | ) '
M3 +o.3430§h +0.0304 +0.0301 +0.0003 1.00
. +0, 07390}
i bl ] - - -
ML +030390$3i 0.0016 0.00152 0.00008 5.25
. +0.2000] 1 _o ,
D1 P 3430} 1+0 ;&3p +0.5830 0.0000 0.00
D.F.G.J +0.9206 |+0.3430 +0. 3414 +0.0016 0.h47
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