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Abstract: This article concerns the canonical empirical Bayes problem of estimating

normal means under squared-error loss. General empirical estimators are derived

which are asymptotically minimax and optimal. Uniform convergence and the

speed of convergence are considered. The general empirical Bayes estimators are

compared with the shrinkage estimators of Stein (1956) and James and Stein (1961).

Estimation of the mixture density and its derivatives are also discussed.
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1. Introduction

Let (Xj , θj), 1 ≤ j ≤ n, be random vectors such that conditionally on
θ1, . . . , θn, X1, . . . ,Xn are independent random variables with probability density
functions f(x|θj), where f(·|·) is a known family of densities with respect to some
σ-finite measure. We are interested in estimating θj based on observations Xj

under the average mean squared error (MSE)

1
n

n∑
j=1

E(θ̂j − θj)
2. (1)

If we want to estimate θj by θ̂j = t(Xj) for some Borel function t(·), then (1) is
minimized for

t∗n(x) = t∗(x;Gn) =
∫

θf(x|θ)dGn(θ)∫
f(x|θ)dGn(θ)

, (2)

where Gn(x) = n−1 ∑n
j=1 P{θj ≤ x}. In an empirical Bayes (EB) setting, θj are

assumed to be independent and identically distributed (IID) random variables
with a common but unknown distribution and t∗n(Xi) = E(θj |Xj) is the Bayes
estimator with the additional knowledge of the prior, whereas θj are assumed to
be unknown constants in compound estimation problems. Here and in the sequel,
the distributions Gn (and therefore implicitly the probability measure P in the
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EB setting) are allowed to be dependent on n. In both the EB and compound
cases, the distribution Gn is unknown, and a general empirical Bayes (GEB)
estimator is of the form θ̂j = t̂n(Xj), where t̂n(·) is some estimate of t∗n(·) based
on observations X1, . . . ,Xn. This EB approach was proposed by Robbins (1951,
1956). See also Robbins (1983). GEB estimators t̂n(Xj) are asymptotically
optimal at a distribution G, if

1
n

n∑
j=1

E(t̂n(Xj) − θj)
2 − 1

n

n∑
j=1

E(t∗n(Xj) − θj)
2 ≤ o(1) (3)

as (n,Gn) → (∞, G) in certain topology. This asymptotic optimality criterion
requires local uniformity and is slightly stronger than the usual one for fixed
G = Gn in the EB setting.

Alternatively, we may want to consider a linear empirical Bayes (LEB) esti-
mator which approximate the best linear estimator among θ̂j = A + BXj, given
by

A∗
n + B∗

nx =
1
n

n∑
j=1

Eθj +
∑n

j=1 Cov(θj ,Xj)∑n
j=1 Var(Xj)

(
x − 1

n

n∑
j=1

EXj

)
. (4)

For many families f(x|θ), the constants A∗
n and B∗

n are much easier to estimate
than the function t∗n(·) in (2). In general, the difference in the average MSE
between LEB estimators and the optimal linear estimator A∗

n + B∗
nXj converges

to zero faster and more uniformly than (3). LEB estimators may have other ad-
vantages over the GEB ones. For example when f(x|θ) ∼ N(θ, 1) is the normal
family with the unit variance, the estimators of Stein (1956) and James and Stein
(1961) have uniformly smaller average MSE than the usual maximum likelihood
estimators (MLE) θ̂j = Xj and are therefore minimax. However, LEB estima-
tors are in general not asymptotically optimal in the sense of (3). In view of all
these, for a given sample size n and under the risk (1), shall we use GEB estima-
tors? In this paper we provide a partial affirmative answer to this question in the
canonical case, the normal family with unit variance. Our GEB estimators are
asymptotically optimal at every G in the sense of (3) and asymptotically mini-
max. Since many asymptotically optimal GEB estimators have been constructed
in the past, we shall focus on global properties in terms of (1) and uniform speed
of convergence, instead of the behavior of the risk when Gn is in an infinitesi-
mal neighborhood of a fixed G as n → ∞. Uniform risk convergence of empirical
Bayes estimators is useful in certain semiparametric estimation problems (cf. e.g.
Lindsay (1985)).

2. Estimation of Normal Means

Suppose throughout the sequel that the conditional density of Xi given θi

is
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f(x|θi) = ϕ(x − θi), ϕ(x) = (2π)−1/2 exp ( − x2/2). (5)

By (2) the Bayes estimator with prior Gn is

θ̂j = t∗n(Xj), t∗n(x) = t∗(x;Gn) = x +
f ′(x;Gn)
f(x;Gn)

, f(x;G) =
∫

ϕ(x − θ)dG(θ).

(6)
For ρ ≥ 0 define

J(ρ,G) =
∫ ∞

−∞

{
f ′(x;G)
f(x;G)

}2{
2− f(x;G)

max(f(x;G), ρ)

}{
f(x;G)

max(f(x;G), ρ)

}
f(x;G)dx.

(7)
The Bayes risk of t∗n(Xj) is (cf. Proposition 1)

1
n

n∑
j=1

E(t∗n(Xj) − θj)
2 = 1 − J(0, Gn).

A GEB estimator is satisfactory if its risk (1) is uniformly bounded by 1 −
J(0, Gn) + εn for some εn → 0+. But this is unfortunately unachievable without
the knowledge of Gn.

Example 1. Let G(M) be the collection of all discrete distributions with sparse
support set {a1, . . . , am} for some m ≥ 1 such that a� − a�−1 ≥ M for all 1 ≤
� ≤ m, a0 = −∞. Then for large enough Mn, the knowledge of Gn for some
Gn ∈ G(Mn) and the observation Xj provide the exact value of θj, the closest a�

to Xj , with large probability, so that the Bayes risk 1−J(0, Gn) of (6) converges
to 0 uniformly over G(Mn). But the minimax risk over G(Mn) is 1 without the
knowledge of Gn.

As a remedy for this deficiency of criterion (3) under uniform convergence,
we shall consider GEB estimators which approximate truncated Bayes estimators
of the form

θ̂j = t∗n,ρn
(Xj), t∗n,ρn

(x) = t∗(x; ρn, Gn)=x +
f ′(x;Gn)

max(f(x;Gn), ρn)
, 0 ≤ ρn → 0,

(8)
which have the risk (cf. Proposition 1)

1
n

n∑
j=1

E(t∗n,ρn
(Xj) − θj)

2 = 1 − J(ρn, Gn). (9)

For suitable ρn, (8) is closer to the best we can do based on observations X1, . . .,
Xn than (6) in the following sense: (a) if f(Xj ;Gn) is not too small (>> ρn),
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t∗n,ρn
(Xj) = t∗n(Xj) as we are able to pool information from nearby observations

to improve the MLE Xj ; and (b) if f(Xj;Gn) is too small (<< ρn), t∗n,ρn
(Xj) ≈

Xj as there are too few observations near Xj for us to approximate the Bayes
estimator (6). The truncated Bayes estimator is always between the MLE and
the Bayes estimator both almost surely and in risk,

{t∗n(x) − t∗n,ρn
(x)}{t∗n,ρn

(x) − x} ≥ 0, 1 > 1 − J(ρn, Gn) > 1 − J(0, Gn).

We shall provide GEB estimators θ̂j = t̂n(Xj) which uniformly approximate
(8) in risk for suitable 0 < ρn → 0 in the sense that

εn
def= sup

{
1
n

n∑
j=1

E(t̂n(Xj) − θj)
2 − 1

n

n∑
j=1

E(t∗n,ρn
(Xj) − θj)

2
}
→ 0, (10)

where the supremum is taken over all distributions Gn. Certain other desirable
properties of the GEB estimators will also be presented as consequences of the
main result.

A natural approximation of (8) is

θ̂j = t̂n(Xj), t̂n(x) = x +
f̂ ′

n(x)
max(f̂n(x), ρn)

, (11)

where f̂n(·) can be any “good” estimate of f(·;Gn) based on X1, . . . ,Xn. Con-
sider kernel estimators

f̂n(x) =
1
n

n∑
j=1

K(Xj − x, an) = (2π)−1
∫ an

−an

e−ixt
n∑

j=1

eitXj

n
dt (12)

for some suitable 0 < an → ∞ to be given later, where

K(x, a) = (2π)−1
∫ a

−a
eixtdt =

{
sin(ax)/(πx), x �= 0,
a/π, x = 0.

(13)

Although f̂n may take negative values,
∫

f̂n(x)dx = 1 always holds in the Rie-
mann sense. A reason for using this kernel is the extreme thin tail of f∗

n(t) =∫
eixtf(x;Gn)dx, bounded by e−t2/2 in absolute value, as

Ef̂ (k)
n (x) − f (k)(x;Gn) = −(2π)−1

∫
|t|>an

(−it)ke−ixtf∗
n(t)dt. (14)

Here and in the sequel h(0) = h and h(k) = (∂/∂x)kh for any function h if the
derivative exists.

Our main theorem asserts that the above GEB estimator approximates the
truncated Bayes estimator (8) in risk at the rate of O(1)(log n)3/2/(ρnn) uni-
formly in Gn.
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Theorem 1. Let θ̂j = t̂n(Xj) be the GEB estimators given by (11)-(13). Choose
a = an > 0 and ρ = ρn > 0 such that

√
2 log n ≤ a = O(

√
log n) and a/(ρ

√
n) =

o(1) as n → ∞. Then

1
n

n∑
j=1

E(t̂n(Xj) − θj)
2 ≤ 1 − J(ρ,Gn) + (1 + o(1))

{
a√
3

+
√
− log(ρ2)

}2 a

πρn
,

where the o(1) depends only on (n, a, ρ). Consequently the uniform convergence
(10) holds with εn = O(1)(log n)3/2/(ρn).

Theorem 1 is proved in Sections 4 and 5.

Corollary 1. The GEB estimators in Theorem 1 are asymptotically minimax in
the sense that

sup
{

1
n

n∑
j=1

E(t̂n(Xj) − θj)
2
}
≤ 1 + o(1),

where the supremum is taken over all distributions Gn.

For ρ ≥ 0 and f(x;G) =
∫

ϕ(x − θ)dG(θ) define

∆(ρ,G)=J(0, G)− J(ρ,G)=
∫ ∞

−∞

{
f ′(x;G)
f(x;G)

}2{
1− f(x;G)

max(f(x;G), ρ)

}2

f(x;G)dx.

(15)

Proposition 1. Let t(·) be a Borel function and t∗n(·) and f(·;Gn) be as in (6).
Then

1
n

n∑
j=1

E(t(Xj) − θj)
2 = 1 − J(0, Gn) +

∫
{t(x) − t∗n(x)}2f(x;Gn)dx.

In particular, (9) holds.
The first statement of Proposition 1 is a well known fact in the EB literature

(cf. e.g. Robbins (1983)), and the second follows from the first and (6), (8) and
(15).

Proposition 2. Let 1 < p < ∞, q = p/(p − 1) and Z be a N(0, 1) variable.
Then

∆(ρ,G) ≤ (E|Z|2q)1/q
{ ∫

f(x;G)I{f(x;G) ≤ ρ}dx

}1/p

,

where ∆(ρ,G) and f(·;G) are as in (15).

Proposition 2 can be proved by the Hölder inequality and the fact that
f ′(x)/f(x) = E[Z|Y = x] for some variable Y with density f(·) = f(·;G). By
Proposition 2, ∆(ρn, Gn) → 0 when Gn → G in distribution and ρn → 0, so
that Theorem 1 implies the asymptotic optimality of our GEB estimators in the
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sense of (3) at every G. By Corollary 1, our GEB estimators are also asymptot-
ically minimax. But does there exist a sequence of minimax estimators which is
also asymptotically optimal? We don’t know the answer to this question. George
(1986) considered Stein-type minimax multiple shrinkage estimators, but his esti-
mators depend on prespecified target shrinkage regions and weights. Proposition
2 also allows us to consider certain cases where the mass of Gn escapes towards
±∞.

For the normal case (5), the best linear estimator (4) can be written as

θ̂j = A∗
n + B∗

nXj , A∗
n + B∗

nx = µn +
σ2

n − 1
σ2

n

(x − µn),

and its risk is
1
n

n∑
j=1

E(A∗
n + B∗

nXj − θj)
2 =

σ2
n − 1
σ2

n

, (16)

where µn =
∫

xf(x;Gn)dx and σ2
n =

∫
x2f(x;Gn)dx − µ2

n are respectively the
mean and variance of f(·;Gn) in (6).

Corollary 2. Let θ̂j = t̂n(Xj) be the GEB estimators in Theorem 1. Then

sup
{

1
n

n∑
j=1

E(t̂n(Xj) − θj)
2 − σ2

n − 1
σ2

n

}
= o(1),

where the supremum is taken over all distributions Gn.

Corollary 2 follows from Theorem 1, Proposition 2 and the fact that∫
f(x;Gn)I{f(x;Gn) ≤ ρn}dx ≤ σ2

n/M2 + 2Mρn,

for all positive M and ρn. Since the risk of the centered James-Stein estimator
is (σ2

n − 1)/σ2
n + o(1), Corollary 2 implies that the risk of the GEB estimator is

at most slightly larger than the James-Stein estimator for large n. Examples can
be easily given in which the difference between the James-Stein and the GEB
estimator is nearly 1 (cf. George (1986)).

Let Gm be the collection of all discrete distributions G supported by at most
m points, G(θ) =

∑m
�=1 π�I{a� ≤ θ} for some π� ≥ 0 and real a�.

Corollary 3. Let mn = o(1/ρn) and θ̂j = t̂n(Xj) be the GEB estimators in
Theorem 1. Then

sup
Gn∈Gmn

{
1
n

n∑
j=1

E(t̂n(Xj) − θj)
2 − 1 + J(0, Gn)

}
= o(1).
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Corollary 3 follows from Theorem 1, Proposition 2 and the fact that∫
f(x;G)I{f(x;G)≤ρ}dx ≤ mρM +

∑
π�≥Mρ

π�

∫
ϕ(x−a�)I{π�ϕ(x−a�)≤ρ}dx

≤ mρM+
∫

ϕ(x)I{ϕ(x)≤1/M}dx

for all positive ρ and M and G(θ) =
∑m

�=1 π�I{a� ≤ θ} ∈ Gm. It states that
the GEB estimator is uniformly close to the Bayes estimator in risk if the means
θ1, . . . , θn are sampled from a set of at most mn real numbers. Due to the con-
dition an/(ρn

√
n) = o(1) of Theorem 1, here mn is allowed to be o(1)

√
n/ log n.

But we are not sure whether this is the best rate for mn.

3. Estimation of the Mixture Density

In this section we consider properties of the estimator (12) for the mixture
density fn(·) = f(·;Gn) in (6). Let ‖h‖p be the Lp norm with respect to the
Lebesgue measure.

Theorem 2. Let f̂n(·) be defined by (12) with a = an ≥ √
log n and fn(·) =

f(·;Gn) be as in (6). Then for p ≥ 1 and integers k ≥ 0

{E‖f̂ (k)
n − f (k)

n ‖2p
2 }1/p ≤ {B2

2p + o(1)}a2k+1

π(2k + 1)n

and

{E‖f̂ (k)
n − f (k)

n ‖p
∞}1/p ≤ {Bp + o(1)}ak+1

π(k + 1)
√

n
,

where Bp are constants, depending on p only, such that Bp = 1 for 1 ≤ p ≤ 4.

In the EB setting with IID θj, the estimator (12) is related to the kernel
deconvolution estimator of the mixing densities considered by Carroll and Hall
(1988), Carroll and Stefanski (1990), Fan (1991) and Zhang (1990). The kernel
deconvolution estimator for gn = G′

n can be written as

ĝn(θ) = (2π)−1
∫ ∞

−∞
e−iθtet2/2

{ ∫ ∞

−∞
eixtf̂n(x)dx

}
dt,

motivated by the fact that the ratio of the characteristic functions of fn and gn

is e−t2/2, the characteristic function of N(0, 1). But the optimal choice of the
bandwidth an = c

√
log n is different: c < 1 for the estimation of mixing density

gn, while c ≥ 1 for the estimation of mixture density fn. This indicate that
good estimates of the mixing density gn may not produce good estimates of the
mixture density fn via the Fourier inversion. The rate of convergence for f̂n
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in Theorem 3 is slightly better than the rate obtained by Edelman (1987) who
considered minimum distance estimates of fn.

Proof of Theorem 2. Let f∗
n(t) =

∫
eitxfn(x)dx and Zn(t) = n−1 ∑n

j=1

exp(itXj). Since EZn(t) = f∗
n(t), there exist constants Bp and B′

p depending
on p only such that

{E|Zn(t) − f∗
n(t)|p}1/p ≤ n−1/2

(
Bp + B′

pe
−t2/2

)
. (17)

Here, B4 = B′
4 = 1 by direct computation, Bp = B4 and B′

p = B′
4 by the Hölder

inequality for 1 ≤ p ≤ 4, and B′
p = 0 for some Bp < ∞ by the Marcinkiewicz-

Zygmund inequality (Chow and Teicher (1988), page 368) for p > 4. Further-
more, since f̂n(x) = (2π)−1

∫ a
−a e−ixtZn(t)dt by (12) and |f∗

n(t)| ≤ exp(−t2/2),
we have

‖f̂ (k)
n − f (k)

n ‖2
2 ≤ 1

2π

∫ a

−a
t2k|Zn(t) − f∗

n(t)|2dt +
1
π

∫ ∞

a
t2ke−t2dt (18)

and

‖f̂ (k)
n − f (k)

n ‖∞ ≤ 1
2π

∫ a

−a
|t|k|Zn(t) − f∗

n(t)|dt +
1
π

∫ ∞

a
|t|ke−t2/2dt. (19)

Putting (17)-(19) together, we obtain by the Hölder inequality

2π{E‖f̂ (k)
n − f (k)

n ‖2p
2 }1/p

≤
{(

2a2k+1

2k + 1

)p−1 ∫ a

−a
t2kE|Zn(t) − f∗

n(t)|2pdt

}1/p

+ O(a2k−1/n)

≤ 2a2k+1

2k + 1
{B2

2p + o(1)}/n + O(a2k−1/n) =
2B2

2p + o(1)
2k + 1

a2k+1/n

as a >
√

log n implies
∫ ∞
a t2ke−t2dt = O(a2k−1/n). Similarly

2π{E‖f̂ (k)
n − f (k)

n ‖p
∞}1/p

≤
{(

2ak+1

k + 1

)p−1 ∫ a

−a
|t|kE|Zn(t) − f∗

n(t)|pdt

}1/p

+ O(ak−1/
√

n)

≤ 2Bp + o(1)
k + 1

ak+1/
√

n.

4. Proof of Theorem 1 (Part I)

Let (Yn, λn) be a random vector independent of (Xj , θj), 1 ≤ j ≤ n, such
that

Yn|λn ∼ N(λn, 1), P{λn ≤ t} = Gn(t) =
1
n

n∑
j=1

P{θj ≤ t}. (20)
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The proof of Theorem 1 has two steps. The first step is equivalent to the proof
of the result in a sequential EB setting: estimating λn based on Yn,X1, . . . ,Xn.
This is done here and the second step in Section 5.

The Bayes estimator of λn is E{λn|Yn} = t∗n(Yn) by (6) with the squared
error loss, and the Bayes risk is 1 − J(0, Gn) by (7).

Theorem 3. Let t̂n(Yn) be the GEB estimator of λn with the t̂n(·) given by
(11)-(13). Choose a = an > 0 and ρ = ρn > 0 such that

√
log n ≤ a = O(

√
log n)

and a/(ρ
√

n) = o(1) as n → ∞. Then

E(t̂n(Yn) − λn)2 ≤ 1 − J(ρ,Gn) + (2 + o(1)){∆(ρ,Gn)}1/2ϕ(a)
√

a

ρ

+(1 + o(1))
{

a√
3

+
√
− log(ρ2)

}2 a

πρn
, (21)

where J(ρ,G) and ∆(ρ,G) are given by (7) and (15) respectively.

Remark. If
√

2 log n ≤ a = O(
√

log n), then the third term of the right-hand
side of (21) is of smaller order than the fourth, and the statements of Theorems
1 and 3 are comparable.

Lemma 1. Suppose a/(ρ
√

n) = o(1). Let fn(·) = f(·;Gn) be as in (6). Then

E

∫ {
f̂ (k)

n (y) − f (k)
n (y)

}2 max(fn(y), ρ)
max(f̂n(y), ρ)

dy ≤ (1 + o(1))a2k+1

(2k + 1)πn
.

Proof. Since |max(fn, ρ) − max(f̂n, ρ)| ≤ |fn − f̂n|,{
f̂ (k)

n − f (k)
n

}2 max(fn, ρ)
max(f̂n, ρ)

≤ (f̂ (k)
n − f (k)

n )2{1 + |f̂n − fn|/ρ}.

It follows from Theorem 2 and the condition a/(ρ
√

n) = o(1) that

E

∥∥∥∥(f̂ (k)
n − f (k)

n )
√
|f̂n − fn|

∥∥∥∥2

2
≤

√
E‖f̂ (k)

n − f
(k)
n ‖4

2E‖f̂n − fn‖2∞

= O

(
a2k+2

n3/2

)
= o(a2k+1ρ/n).

This proves the lemma as E‖f̂ (k)
n − f

(k)
n ‖2

2 ≤ (1 + o(1))a2k+1/{(2k + 1)πn} by
Theorem 2.

Lemma 2. Let f(x) =
∫

ϕ(x− θ)dG(θ) for some distribution function G. Then,
{f ′(x)/f(x)}2 ≤ − log{2πf2(x)} for all x, and for ρ ≤ {e√2π}−1

{f ′(x)/f(x)}2f(x)/max(f(x), ρ) ≤ − log{2πρ2}, ∀x. (22)
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Proof. Let z = −f ′(x)/f(x) and dH(t) = ϕ(t)dG(t + x)/f(x). Then z =∫
tdH(t). Since 1/ϕ(t) is convex in t, by the Jensen inequality 1/ϕ(z) ≤∫ {1/ϕ(t)}dH(t) = 1/f(x), which gives

{f ′(x)/f(x)}2 = z2 ≤ − log {2πf2(x)}.
For (22), we notice that −t log(

√
2πt) is increasing in t for 0 ≤ √

2πt ≤ e−1.

Proof of Theorem 3. By definition t̂n−t∗n = f̂ ′
n/max(f̂n, ρ)−f ′

n/fn = ξ1n+ξ2n,
where

ξ1n =
f̂ ′

n − f ′
n

max(f̂n, ρ)
, ξ2n =

(
f ′

n

fn

)
fn − max(f̂n, ρ)

max(f̂n, ρ)
, fn(x) = f(x;Gn).

Since Yn is independent of t̂n and t∗n(Yn) is the Bayes rule

E(t̂n(Yn) − λn)2 = 1 − J(0, Gn) + E{t̂n(Yn) − t∗n(Yn)}2,

so that by (15) it suffices to show

E{t̂n(Yn) − t∗n(Yn)}2 = E

∫
{ξ1n(y) + ξ2n(y)}2fn(y)dy

≤ ∆(ρ,Gn) + (2 + o(1)){∆(ρ,Gn)}1/2ϕ(a)
√

a

ρ

+(1 + o(1))
{

a√
3

+
√
− log(ρ2)

}2 a

πρn
. (23)

By Lemma 1

E

∫
ξ2
1n(y)fn(y)dy ≤ (1 + o(1))a3

3πρn
. (24)

Since |fn −max(f̂n, ρ)| ≤ |fn − f̂n| for max(fn, f̂n) ≥ ρ, it follows from Lemma 2
that

ξ2
2n ≤ − log(2πρ2)

max(fn, ρ)
fn

(
fn − f̂n

max(f̂n, ρ)

)2

+
(

f ′
n

fn

)2(fn − ρ

ρ

)2

I{fn < ρ},

so that by Lemma 1 and (15)

E

∫
ξ2
2n(y)fn(y)dy ≤ (1 + o(1))

− log(ρ2)a
πρn

+ ∆(ρ,Gn). (25)

Since |(fn/c2 − 1/c) − (fn/ρ2 − 1/ρ)| ≤ |1/c − 1/ρ| for fn ≤ ρ ≤ c (e.g. c =
max(f̂n, ρ)),

ξ1nξ2n ≤ |f ′
n|

fn

|(f̂ ′
n − f ′

n)(fn − f̂n)|
ρmax(f̂n, ρ)

+ (f̂ ′
n − f ′

n)
f ′

n(fn − ρ)
fnρ2

I{fn < ρ}.
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By the Schwarz inequality and Lemmas 1 and 2

E

∫ { |f ′
n|

fn

|(f̂ ′
n − f ′

n)(fn − f̂n)|
ρmax(f̂n, ρ)

}
(y)fn(y)dy ≤ (1 + o(1))

√− log(ρ2)/3a2

πρn
.

Since |f∗
n(t)| ≤ exp(−t2/2), by (14)∫

{Ef̂ ′
n − f ′

n}2(y)dy =
1
2π

∫
|t|>a

|tf∗
n(t)|2dt ≤ 1

π

∫
t>a

t2e−t2dt = (1 + o(1))aϕ2(a).

These and (15) and the Schwarz inequality imply

E

∫
2ξ1n(y)ξ2n(y)fn(y)dy≤(2+o(1))

{√−log(ρ2)/3a2

πρn
+{∆(ρ,Gn)}1/2ϕ(a)

√
a

ρ

}
.

(26)
Hence, we have (23) and the conclusion by summing up (24)-(26).

5. Proof of Theorem 1 (Part II)

In the EB setting with IID θj, we may use θ̂j = t̃n,[j](Xj) and obtain the
upper bound of (1) by Theorem 3, where t̃n,[j](·) is the estimation of t∗n(·) based
on n − 1 observations X1, . . . ,Xj−1,Xj+1, . . . ,Xn. But this does not directly
imply Theorem 1, as the θj are possibly dependent and not necessarily identically
distributed. This technical point is handled here.

Let X ′
1, . . . ,X

′
n be random variables such that conditionally on θ1, . . . , θn,

λn, they are independent of X1, . . . ,Xn, Yn and distributed according to X ′
j ∼

N(θj, 1). Define for 1 ≤ j ≤ n

t̂n,[j](x) = x + f̂ ′
n,[j](x)/max(f̂n,[j](x), ρn), (27)

where f̂n,[j](·) is the estimate of fn based on X1, . . . ,Xj−1,X
′
j ,Xj+1, . . . ,Xn,

f̂n,[j](x) =
1
n

K(X ′
j − x, an) +

∑
1≤�≤n,� �=j

K(X� − x, an)

 . (28)

Lemma 3. Let t̂n(·) and t̂n,[j](·) be given by (6) and (27) respectively. Suppose
the conditions of Theorem 3 hold. Thenn−1

n∑
j=1

E(t̂n,[j](X
′
j) − t̂n(X ′

j))
2


1/2

≤ O(1)a3/2
n /(ρnn).

Proof. By (27) and (11)-(13)

t̂n,[j](X
′
j) − t̂n(X ′

j) = f̂ ′
n,[j](X

′
j)/max(f̂n,[j](X

′
j), ρ) − f̂ ′

n(X ′
j)/max(f̂n(X ′

j), ρ)
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= [f̂ ′
n,[j](X

′
j)−f̂ ′

n(X ′
j)]/max(f̂n,[j](X

′
j), ρ)

+
[f̂ ′

n(X ′
j)/max(f̂n(X ′

j), ρ)][max(f̂n(X ′
j), ρ)−max(f̂n,[j](X ′

j), ρ)]

max(f̂n,[j](X ′
j), ρ)

.

Since K ′(0, a) = 0 by (13) and Xj −X ′
j ∼ N(0, 2), it follows from definition (12)

and (28) that

E{f̂ ′
n,[j](X

′
j)−f̂ ′

n(X ′
j)}2 ≤ E{K ′(Xj−X ′

j , a)}2/n2≤{1/
√

4π}
∫
{K ′(x, a)}2dx/n2

= {1/
√

4π}(2π)−1
∫ a

−a
t2dt/n2 = {2√π/3}a3/(2πn)2.

By (12), (13) and (28),

|max(f̂n(X ′
j), ρ) − max(f̂n,[j](X

′
j), ρ)| ≤ |K(Xj − X ′

j , a) − a/π|/n ≤ 2a/(πn).

Putting these together, we have{
n−1

n∑
j=1

E(t̂n,[j](X
′
j) − t̂n(X ′

j))
2
}1/2

≤
{
n−1

n∑
j=1

E(f̂ ′
n,[j](X

′
j) − f̂ ′

n(X ′
j))

2
}1/2

/ρ

+
{
n−1

n∑
j=1

E(f̂ ′
n(X ′

j)/max(f̂n(X ′
j), ρ))2

}1/2
2a/(πρn)

≤ {2√π/3}1/2a3/2/(2πnρ) +
{
n−1

n∑
j=1

E(f̂ ′
n(X ′

j)/max(f̂n(X ′
j), ρ))2

}
2a/(πρn).

Hence, the conclusion holds, as Theorem 3 implies

n−1
n∑

j=1

E[f̂ ′
n(X ′

j)/max(f̂n(X ′
j), ρ)]2

= E[t̂n(Yn) − Yn]2 ≤ 2E[t̂n(Yn) − λn]2 + 2E[Yn − λn]2 ≤ 4 + o(1).

Proof of Theorem 1. It follows from Lemma 3 that{
n−1

n∑
j=1

E(t̂n(Xj) − θj)2
}1/2

=
{
n−1

n∑
j=1

E[t̂n,[j](X
′
j) − θj]2

}1/2

≤
{
n−1

n∑
j=1

E[t̂n(X ′
j) − θj]2

}1/2
+

{
n−1

n∑
j=1

E[t̂n,[j](X
′
j) − t̂n(X ′

j)]
2
}1/2

= {E[t̂n(Yn) − λn]2}1/2 + O(1)a3/2/(ρn).
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Since E{t̂n(Yn)− λn}2 ≤ 1 + o(1) by Theorem 3 and 1/(ρn) = o(1), this implies

n−1
n∑

j=1

E(t̂n(Xj) − θj)2 = E[t̂n(Yn) − λn]2 + o(1)a3/(ρn).

Hence the conclusion follows from Theorem 3.
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