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1. Intel® Hyperflex™ FPGA Architecture Introduction
This document describes design techniques to achieve maximum performance with the
Intel® Hyperflex™ FPGA architecture. This architecture supports new Hyper-Retiming,
Hyper-Pipelining, and Hyper-Optimization design techniques that enable the highest
clock frequencies for Intel Stratix® 10 devices.

"Registers everywhere” is a key innovation of the Intel Hyperflex FPGA architecture.
Intel Stratix 10 devices pack bypassable Hyper-Registers into every routing segment
in the device core, and at all functional block inputs.

Figure 1. Registers Everywhere
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With Intel Stratix 10 bypassable Hyper-Registers, the routing signal can travel through
the register first, or bypass the register direct to the multiplexer. One bit of the FPGA
configuration memory (CRAM) controls this multiplexer. This architecture increases
bandwidth and improves area and power efficiency.

Figure 2. Bypassable Hyper-Registers
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This document provides specific design guidelines, tool flows, and real world examples
to take advantage of the Intel Hyperflex FPGA architecture:

• RTL Design Guidelines—provides fundamental high-performance RTL design
techniques for Intel Stratix 10 designs.

• Compiling Intel Stratix 10 Designs—describes using the Intel Quartus® Prime Pro
Edition software to get the highest performance in Intel Stratix 10 devices.

• Intel Hyperflex Architecture Porting Guidelines—provides guidance for design
migration to Intel Stratix 10 devices.

• Design Example Walk-Through, Optimization Example, and the Appendices—
demonstrate performance improvement techniques using real design examples.

1.1. Intel Stratix 10 Basic Design Concepts

Table 1. Glossary

Term/Phrase Description

Critical Chain Any design condition that prevents retiming of registers. The limiting
factor can include multiple register-to-register paths in a chain. The fMAX
of the critical chain and its associated clock domain is limited by the
average delay of a register-to-register path, and quantization delays of
indivisible circuit elements like routing wires. Use Fast Forward
compilation to break critical chains.

Fast Forward Compilation Generates design-specific timing closure recommendations, and forward-
looking performance results after removal of each timing restriction.

Hyper-Aware Design Flow Design flow that enables the highest performance in Intel Stratix 10
devices through Hyper-Retiming, Hyper-Pipelining, Fast Forward
compilation, and Hyper-Optimization.

Intel Hyperflex FPGA Architecture Intel Stratix 10 device core architecture that includes additional
registers, called Hyper-Registers, everywhere throughout the core fabric.
Hyper-Registers provide increased bandwidth and improved area and
power efficiency.

Hyper-Optimization Design process that improves design performance through
implementation of key RTL changes recommended by Fast Forward
compilation, such as restructuring logic to use functionally equivalent
feed-forward or pre-compute paths, rather than long combinatorial
feedback paths.

Hyper-Pipelining Design process that eliminates long routing delays by adding additional
pipeline stages in the interconnect between the ALM registers. This
technique allows the design to run at a faster clock frequency.

Hyper-Retiming During Fast Forward compile, Hyper-Retiming speculatively removes
signals from registers to enable mobility in the netlist for retiming.

Multiple Corner Timing Analysis Analysis of multiple "timing corner cases" to verify your design's voltage,
process, and temperature operating conditions. Fast-corner analysis
assumes best-case timing conditions.

Related Information

• Hyper-Retiming (Facilitate Register Movement) on page 10

• Hyper-Pipelining (Add Pipeline Registers) on page 25

• Hyper-Optimization (Optimize RTL) on page 28
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2. RTL Design Guidelines
This chapter describes RTL design techniques to achieve the highest clock rates
possible in Intel Stratix 10 devices. The Intel Stratix 10 architecture supports
maximum clock rates significantly higher than previous FPGA generations.

2.1. High-Speed Design Methodology

Migrating a design to the Intel Stratix 10 architecture requires implementation of high-
speed design best practices to obtain the most benefit and preserve functionality. The
Intel Stratix 10 high-speed design methodology produces latency-insensitive designs
that support additional pipeline stages, and avoid performance-limiting loops. The
following high-speed design best practices produce the most benefit for Intel Stratix
10 designs:

• Set a high-speed target

• Experiment and iterate

• Compile design components individually

• Optimize design sub-modules

• Avoid broadcast signals

The following sections describe specific RTL design techniques that enable Hyper-
Retiming, Hyper-Pipelining, and Hyper-Optimization in the Intel Quartus Prime
software.

2.1.1. Set a High-Speed Target

For silicon efficiency, set your speed target as high as possible. The Intel Stratix 10
LUT is essentially a tiny ROM capable of a billion lookups per second. Operating an
Intel Stratix 10 LUT at 156 MHz uses only 15% of the capacity.

While setting a high-speed target, you must also maintain a comfortable guard band
between the speed at which you can close timing, and the actual system speed
required. Addressing the timing closure initially with margin is much easier.

2.1.1.1. Speed and Timing Closure

Failure to close timing occurs when actual circuit performance is lower than the fMAX
requirement of your design. If the target FPGA device has many available resources
for logic placement, timing closure is easier and requires less processing time.

Timing closure of a slow circuit is not inherently easier than timing closure of a faster
circuit, because slow circuits typically include more combinational logic between
registers. When a path includes many nodes, the Fitter must place nodes away from
each other, resulting in significant routing delay. In contrast, a heavily pipelined circuit
is much less dependent on placement, which simplifies timing closure.
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Figure 3. Acceptable and Slow Routing Delays

Acceptable Slow SlowGood

Use realistic timing margins when creating your design. Consider that portions of the
design can make contact an distort one another as you add logic to the system.
Adding stress to the system is typically detrimental to speed. Allowing more timing
margin at the start of the design process helps mitigate this problem.

2.1.1.2. Speed and Latency

The following table illustrates the rate of growth for various types of circuits as the bus
width increases. The circuit functions interleave with big O notations of area as a
function of bus width, starting at sub-linear with log(N), to super-linear with N*N.

Table 2. Effect of Bus Width on Area

Circuit Function

Bus Width (N) log N Mux ripple add N*log N barrel shift Crossbar N*N

16 4 5 16 64 64 80 256

32 5 11 32 160 160 352 1024

64 6 21 64 384 384 1344 4096

128 7 43 128 896 896 5504 16384

256 8 85 256 2048 2048 21760 65536

Typically, circuit components use more than 2X the area as the bus width doubles. For
a simple circuit like a mux, the area grows sub-linearly as the bus width increases.
Cutting the bus width of a mux in half provides slightly worse linear area benefit. A
ripple adder grows linearly as the bus width increases.

More complex circuits, like barrel shifters and crossbars, grow super-linearly as bus
width increases. If you cut the bus width of a barrel shifter, crossbar, or other complex
circuit in half, the area benefit can be significantly better than half, approaching
quadratic rates. For components in which all inputs affect all outputs, increasing the
bus width can cause quadratic growth. The expectation is then that, if you take
advantage of speed-up to work on half-width buses, you generate a design with less
than half the original area.

When working with streaming datapaths, the number of registers is a fair
approximation of the latency of the pipeline in bits. Reducing the width by half creates
the opportunity to double the number of pipeline stages, without negatively impacting
latency. This higher performance generally requires significantly less than double the
amount of additional registering to create a latency profit.

2. RTL Design Guidelines

S10HPHB | 2018.10.04

Send Feedback Intel® Stratix® 10 High-Performance Design Handbook

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.1.2. Experiment and Iterate

Experiment with settings and design changes if design performance does not initially
meet performance requirements. Intel FPGA reprogrammability allows
experimentation to achieve your goals. Design performance typically becomes
inadequate as technology requirements increase over time. For example, if you apply
an existing design element to a new context at a wider parameterization, the speed
performance likely declines.

When experimenting with circuit timing, there is no permanent risk from
experimentation that temporarily breaks the circuit to collect a data point. You can
add registers in illegal locations to determine the effect on overall timing. If the
prospective circuit then meets the timing objective, you can make further investment
to legalize the placement.

If a circuit remains too slow, even when liberally inserting registers, you can
reconsider more basic elements of the design. Moving up or down a speed grade, or
compressing circuitry in Logic Lock regions are good techniques for investigating
performance.

2.1.3. Compile Components Independently

To identify and optimize performance bottlenecks early, you can compile the design
subcomponents as stand-alone entities. Individual component compilation allows you
to test and optimize components in isolation, without the runtime and complexities of
the entire system.

As a margin of safety, establish a bright line rule for the speed you require for each
component. For example, when targeting a 20% timing margin, a component with
19.5% margin is a failure. Base your timing margin targets on the component context.
For example, you can allow a timing margin of 10% for a high-level component
representing half the chip. However, if the rule is not explicit, the margin can erode.

Use the Chip Planner to visualize the system level view. The following Chip Planner
view shows a component that uses 5% of the logic on the device (central orange) and
25% of the M20K blocks (red stripes).

Figure 4. M20K Spread in Chip Planner

The system level view indicates nothing alarming about the resource ratios. However,
significant routing congestion is apparent. The orange memory control logic fans out
across a large physical span to connect to all of the memory blocks. The design

2. RTL Design Guidelines
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functions satisfactorily alone, but becomes unsatisfactory when unrelated logic cells
occupy the intervening area. Restructuring this block to physically distribute the
control logic better relieves the high-level problem.

2.1.4. Optimize Sub-Modules

During design optimization, you can isolate the critical path in one or two sub-modules
of a large design, and then compile the sub-modules. Compiling part of a design
reduces compile time and allows you to focus on optimization of the critical part.

2.1.5. Avoid Broadcast Signals

Avoid using broadcast signals whenever possible. Broadcast signals are high fan-out
control nets that can create large latency differences between paths. Path latency
differences complicate the Compiler's ability to find a suitable location for registers,
resulting in unbalanced delay paths. Use pipelining to address this issue and duplicate
registers to drive broadcast signals.

Broadcast signals travel a large distance to reach individual registers. Because those
fan-out registers may be spread out in the floorplan, use manual register duplication
to improve placement. The correct placement of pipeline stages has a significant
impact on performance.

Figure 5. Sub-Optimal Pipelining of Broadcast Signals
The yellow box highlights registers inserted in a module to help with timing. The block broadcasts the output to
several transceiver channels. These extra registers may not improve timing sufficiently because the final
register stage fans out to destinations over a wide area of the device.
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A better approach to pipelining is to duplicate the last pipeline register, and then place
a copy of the register in the destination module (the transceiver channels in this
example). This method results in better placement and timing. The improvement
occurs because each channel's pipeline register placement helps cover the distance
between the last register stage in the yellow module, and the registers in the
transceivers, as needed.

2. RTL Design Guidelines
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In addition to duplicating the last pipeline register, apply the dont_merge synthesis
attribute to avoid merging of the duplicate registers during synthesis, which eliminates
any benefit. The Compiler automatically adds pipeline stages and moves registers into
Hyper-Registers, whenever possible. You can also use manual pipelining to drive even
better placement result.

Figure 6. Optimal Pipelining of Broadcast Signals

D Q

Channel 0

D Q

Channel 1

D Q

Channel n

D Q

D Q D Q D Q

D Q

2.2. Hyper-Retiming (Facilitate Register Movement)

The Retime stage of the Fitter can balance register chains by retiming (moving) ALM
registers into Hyper-Registers in the routing fabric. The Retime stage also performs
sequential optimization by moving registers backward and forward across
combinational logic. By balancing the propagation delays between each stage in a
series of registers, retiming shortens the critical paths, reduces the clock period, and
increases the frequency of operation.

The Retime stage then runs during Fitter processing to move the registers into ideal
Hyper-Register locations. This Hyper-Retiming process requires minimal effort, while
resulting in 1.1 – 1.3x performance gain for Intel Stratix 10 devices versus previous
devices.

2. RTL Design Guidelines
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Figure 7. Moving Registers across LUTs
Registers on the left before retiming, with worst case delay of two LUTs. Registers on the right after retiming,
with worst case delay of one LUT.
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When the Compiler cannot retime a register, this is a retiming restriction. Such
restrictions limit the design’s fMAX. Minimize retiming restrictions in performance-
critical parts of your designs to achieve the highest performance.

There are a variety of design conditions that limit performance. Limitations can relate
to hardware characteristics, software behavior, or the design characteristics. Use the
following design techniques to facilitate register retiming and avoid retiming
restrictions:

• Avoid asynchronous resets, except where necessary. Refer to the Reset Strategies
section.

• Avoid synchronous clears. Synchronous clears are usually broadcast signals that
are not conducive to retiming.

• Use wildcards or names in timing constraints and exceptions. Refer to the Timing
Constraint Considerations section.

• Avoid single cycle (stop/start) flow control. Examples are clock enables and FIFO
full/empty signals. Consider using valid signals and almost full/empty,
respectively.

• Avoid preserve register attributes. Refer to the Retiming Restrictions and
Workarounds section.

• For information about adding pipeline registers, refer to the Hyper-Pipelining (Add
Pipeline Registers) section.

• For information about addressing loops and other RTL restrictions to retiming,
refer to the Hyper-Optimization (Optimize RTL) section.

The following sections provide design techniques to facilitate register movement in
specific design circumstances.

2. RTL Design Guidelines

S10HPHB | 2018.10.04

Send Feedback Intel® Stratix® 10 High-Performance Design Handbook

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

• Reset Strategies on page 12

• Timing Constraint Considerations on page 17

• Hyper-Pipelining (Add Pipeline Registers) on page 25

• Retiming Restrictions and Workarounds on page 73

2.2.1. Reset Strategies

This section recommends techniques to achieve maximum performance when using
reset signals. For the best performance, avoid resets (asynchronous and
synchronous), except when necessary. Because Hyper-Registers do not have
asynchronous resets, the Compiler cannot retime any register with an asynchronous
reset into a Hyper-Register location.

Using a synchronous instead of asynchronous reset allows retiming of a register. Refer
to the Synchronous Resets and Limitations section for more detailed information about
retiming behavior for registers with synchronous resets. Some registers in your design
require synchronous or asynchronous resets, but you must minimize the number for
best performance.

Related Information

Synchronous Resets and Limitations on page 109

2.2.1.1. Removing Asynchronous Resets

Remove asynchronous resets if a circuit naturally resets when reset is held long
enough to reach a steady-state equivalent of full reset.

Table 3. Verilog HDL and VHDL Asynchronous Reset Examples
In the following code examples, the asynchronous reset (shown in bold) resets all registers in the pipeline,
preventing placement in Hyper-Registers.

Verilog HDL VHDL

always @(posedge clk, aclr)
   if (aclr) begin
      reset_synch <= 1'b0;
      aclr_int <= 1’b0;
   end
   else begin
      reset_synch <= 1'b1;
      aclr_int <= reset_synch;
   end

always @(posedge clk, aclr_int)
// Asynchronous reset===============
   if (!aclr_int) begin
      a <= 1'b0;
      b <= 1'b0;
      c <= 1'b0;
      d <= 1'b0;
      out <= 1'b0;
   end
//===============
   else begin
      a <= in;
      b <= a;
      c <= b;
      d <= c;
      out <= d;
   end

PROCESS(clk, aclr) BEGIN
   IF (aclr = '0') THEN
      reset_synch <= '0';
      aclr_int <= '0';
   ELSIF rising_edge(clk) THEN
      reset_synch <= '1';
      aclr_int <= reset_synch;
   END IF;
END PROCESS;

PROCESS(clk, aclr_int) BEGIN
// Asynchronous reset===============
   IF (aclr_int = '0') THEN
      a <= '0';
      b <= '0';
      c <= '0';
      d <= '0';
      output <= '0';
//===============
   ELSIF rising_edge(clk) THEN
      a <= input;
      b <= a;
      c <= b;
      d <= c;
      output <= d;
   END IF;
END PROCESS;

2. RTL Design Guidelines
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Figure 8. Circuit with Full Asynchronous Reset
The following shows the logic of Table 3 on page 12 in schematic form. When aclr is asserted, all the outputs
of the flops are zeros. Releasing aclr and applying two clock pulses causes all flops to enter functional mode.
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Figure 9. Partial Asynchronous Reset
After a partial reset, if the modified circuit settles to the same steady state as the original circuit, the
modification is functionally equivalent. The following figure illustrates the removal of asynchronous resets from
the middle of the circuit.
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Figure 10. Circuit with an Inverter in the Register Chain
Circuits that include inverting logic typically require additional synchronous resets to remain in the pipeline, as
the following figure illustrates.
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Figure 11. Circuit with an Inverter in the Register Chain with Asynchronous Reset
After removing reset and applying the clock, the register outputs do not settle to the reset state. If the
asynchronous reset is removed from the inverting register, the circuit cannot remain equivalent with Figure 10
on page 13 after settling out of reset.
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Figure 12. Validating the Output to Synchronize with Reset
To avoid resetting logic caused by non-naturally inverting functions, validate the output to synchronize with
reset removal. If the validating pipeline can enable the output when the computational pipeline is actually valid,
the behavior is equivalent with reset removal. This method is suitable even if the computation portion of the
circuit does not naturally reset.
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Table 4. Verilog HDL Example Using Minimal or No Asynchronous Resets
The following are Verilog HDL and VHDL examples of Figure 9 on page 13. You can adapt this example to your
design to remove unnecessary asynchronous resets.

Verilog HDL VHDL

always @(posedge clk, aclr)
   if (aclr) begin
      reset_synch_1 <= 1'b0;
      reset_synch_2 <= 1'b0;
      aclr_int <= 1'b0;
   end
   else begin
      reset_synch_1 <= 1'b1;
      reset_synch_2 <= reset_synch_1;
      aclr_int <= reset_synch_2;
   end

// Asynchronous reset for output register=====
always @(posedge clk, posedge aclr_int)

PROCESS (clk, aclr) BEGIN
   IF (aclr = '1') THEN
      reset_synch_1 <= '0';
      reset_synch_2 <= '0';
      aclr_int <= '0';
   ELSIF rising_edge(clk) THEN
      reset_synch_1 <= '1';
      reset_synch_2 <= reset_synch_1;
      aclr_int <= reset_synch_2;
   END IF;
END PROCESS;

// Asynchronous reset for output register=====
PROCESS (clk, aclr_int) BEGIN
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Verilog HDL VHDL

   if (aclr_int)
      out <= 1'b0;
   else
      out <= d;

// Synchronous reset for input register=====
always @(posedge clk)
   if (reset_synch_2)
      a <= 1'b0;
   else
      a <= in;

// Naturally resetting registers=====
always @(posedge clk) begin
   b <= a;
   c <= b;
   d <= c;

end

   IF (aclr_int = '1') THEN
      output <= '0';
   ELSIF rising_edge(clk) THEN
      output <= d;
   END IF;
END PROCESS;

// Synchronous reset for input register=====
PROCESS (clk) BEGIN
   IF rising_edge(clk) THEN
      IF (reset_synch_2 = '1') THEN
         a <= '0';
      ELSE
         a <= input;
      END IF;
   END IF;
END PROCESS;

// Naturally resetting registers=====
PROCESS (clk) BEGIN
   IF rising_edge(clk) THEN
      b <= a;
      c <= b;
      d <= c;
   END IF;
END PROCESS;

2.2.1.2.  Synchronous Resets on Global Clock Trees

Using a global clock tree to distribute a synchronous reset may limit retiming
performance improvements by the Compiler. Global clock trees do not have Hyper-
Registers. As such, there is less flexibility to retime registers that fan-out through a
global clock tree compared with fan-out to the routing fabric.

2.2.1.3.  Synchronous Resets on I/O Ports

The Compiler does not retime registers driving an output port, or registers that an
input port drives. If such an I/O register has a synchronous clear, you cannot retime
the register. This restriction is not typical of practical designs that contain logic driving
resets. However, this issue may arise in benchmarking a smaller piece of logic, where
the reset originates from an I/O port. In this case, you cannot retime any of the
registers that the reset drives. Adding some registers to the synchronous reset path
corrects this condition.

2.2.1.4.  Duplicate and Pipeline Synchronous Resets

If a synchronous clear signal causes timing issues, duplicating the synchronous clear
signal between the source and destination registers can resolve the timing issue. The
registers pushed forward need not contend for Hyper-Register locations with registers
being pushed back. For small logic blocks of a design, this method is a valid strategy
to improve timing.

2.2.2. Clock Enable Strategies

High fan-out clock enable signals can limit the performance achievable by retiming.
This section provides recommendations for the appropriate use of clock enables.
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2.2.2.1.  Localized Clock Enable

The localized clock enable has a small fan-out. The localized clock enable often occurs
in a clocked process or an always block. In these cases, the signal’s behavior is
undefined under a particular branch of a conditional case or if statement. As a
result, the signal retains its previous value, which is a clock enable.

To check whether a design has clock enables, view the Fitter Report ➤ Plan Stage
➤ Control Signals Compilation report and check the Usage column. Because the
localized clock enable has a small fan-out, retiming is easy and usually does not cause
any timing issues.

2.2.2.2.  High Fan-Out Clock Enable

Avoid high fan-out signals whenever possible. The high fan-out clock enable feeds a
large amount of logic. The amount of logic is so large that the registers that you
retime are pushing or pulling registers up and down the clock enable path for their
specific needs. This pushing and pulling can result in conflicts along the clock enable
line. This condition is similar to the aggressive retiming in the Synchronous Resets
Summary section. Some of the methods discussed in that section, like duplicating the
enable logic, are also beneficial in resolving conflicts along the clock enable line.

You typically use these high fan-out signals to disable a large amount of logic from
running. These signals might occur when a FIFO’s full flag goes high. You can often
design around these signals. For example, you can design the FIFO to specify almost
full a few clock cycles earlier, and allow the clock enable a few clock cycles to
propagate back to the logic that disables. You can retime these extra registers into the
logic if necessary.

Related Information

Synchronous Resets Summary on page 112

2.2.2.3.  Clock Enable with Timing Exceptions

The Compiler cannot retime registers that are endpoints of multicycle or false path
timing exceptions. Clock enables are sometimes used to create a sub-domain that
runs at half or quarter the rate of the main clock. Sometimes these clock enables
control a single path with logic that changes every other cycle. Because you typically
use timing exceptions to relax timing, this case is less of an issue. If a clock enable
validates a long and slow data path, and the path still has trouble meeting timing, add
a register stage to the data path. Remove the multicycle timing constraint on the path.
The Hyper-Aware CAD flow allows the Retimer to retime the path to improve timing.

2.2.3. Synthesis Attributes

You can use synthesis attributes to control how the Compiler optimizes registers
during synthesis. For example, you can specify the preserve attribute to preserve a
register for debugging observability. However, the Compiler does not retime registers
with the preserve attribute, because this attribute prevents synthesis optimization.
Consider whether you can remove such attributes to allow the Compiler to retime
affected registers.

Alternatively, you can use the preserve_syn_only synthesis attribute to preserve a
register through synthesis, without restricting Hyper-Retimer optimization. For
example, the Compiler can still move a register with the preserve_syn_only
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attribute into a Hyper-Register location. Use the dont_merge or
preserve_syn_only attribute to preserve registers without restricting retiming
optimization.

2.2.4. Timing Constraint Considerations

The use of timing constraints impacts compilation results. Timing constraints influence
how the Fitter places logic. This section describes timing constraint techniques that
maximize design performance.

2.2.4.1. Optimize Multicycle Paths

The Compiler does not retime registers that are the endpoints of an .sdc timing
constraint, including multicycle or false path timing constraints. Therefore, assign any
timing constraints or exceptions as specifically as possible to avoid retiming
restrictions.

Using actual register stages, rather than a multicycle constraint, allows the Compiler
the most flexibility to improve performance. For example, rather than specifying a
multicycle exception of 3 for combinational logic, remove the multicycle exception and
insert two extra register stages before or after the combinational logic. This change
allows the Compiler to balance the extra register stages optimally through the logic.

2.2.4.2. Overconstraints

Overconstraints direct the Fitter to spend more time optimizing specific parts of a
design. Overconstraints are appropriate in some situations to improve performance.
However, because legacy overconstraint methods restrict retiming optimization, Intel
Stratix 10 devices support a new is_post_route function that allows retiming. The
is_post_route function allows the Fitter to adjust slack delays for timing
optimization.

Example 1. Intel Stratix 10 Overconstraints Syntax (Allows Hyper-Retiming)

if { ! [is_post_route] } {
     # Put overconstraints here
}

Example 2. Legacy Overconstraints Example (Prevents Hyper-Retiming)

### Over Constraint ###
# if {$::quartus(nameofexecutable) == "quartus_fit"} {
#     set_min_delay 0.050 -from [get_clocks {CPRI|PHY|TRX*|*|rx_pma_clk}] -to 
[get_clocks {CPRI|PHY|TRX*|*|rx_clkout}]
# }

2.2.5. Clock Synchronization Strategies

Use a simple synchronization strategy to reach maximum speeds in the Intel Stratix
10 architecture. Adding latency on paths with simple synchronizer crossings is
straightforward. However, adding latency on other crossings is more complex.
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Figure 13. Simple Clock Domain Crossing
This example shows a simple synchronization scheme with a path from one register of the first domain (blue),
directly to a register of the next domain (red).

Figure 14. Simple Clock Domain Crossing After Adding Latency
To add latency in the red domain for retiming, add the registers as shown.

The following figure shows a domain crossing structure that is not optimum in Intel
Stratix 10 designs, but exists in designs that target other device families. The design
contains some combinational logic between the blue clock domain and the red clock
domain. The design not properly synchronize the logic and you cannot add registers
flexibly. The blue clock domain drives the combinational logic and the logic contains
paths that the red domain launches.

Figure 15. Clock Domain Crossing at Multiple Locations

Add latency at the boundary of the red clock domain, but do not add registers on a
red to red domain path. Otherwise, the paths become unbalanced, potentially
changing design functionality. Although possible, adding latency in this scenario is
risky. Thoroughly analyze the various paths before adding latency.
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Figure 16. Clock Domain Crossing at Multiple Locations After Adding Latency

For Intel Stratix 10 designs, synchronize the clock crossing paths before entering
combinational logic. Adding latency is then more simple when you compare with the
previous example. Blue domain registers synchronize to the red domain before
entering the combinational logic. This method allows safe addition of pipeline registers
in front of synchronizing registers, without contacting a red to red path inadvertently.
Implement this synchronization method for the highest Intel Stratix 10 architecture
performance.

Figure 17. Clock Domain Synchronization Improvement

2.2.6. Metastability Synchronizers

The Compiler detects registers that are part of a synchronizer chain. The Compiler
cannot retime the registers in a synchronizer chain. To allow retiming of the registers
in a synchronizer chain, add more pipeline registers at clock domain boundaries.

Metastability synchronizer chain length for Intel Stratix 10 devices is three. The
Critical Chain report now marks the registers that metastability requires with REG
(Metastability required).
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2.2.7. Initial Power-Up Conditions

The initial condition of your design at power-up represents the state of the design at
clock cycle 0. The initial condition is highly dependent on the underlying device
technology. Once the design leaves the initial state, there is no automated method to
return to that state. In other words, the initial condition state is a transitional rather
than functional state. In addition, other design components can affect the validity of
the initial state. For example, a PLL that is not yet locked upon power-up can impact
the initial state.

Therefore, do not rely on initial conditions when designing for Intel Stratix 10 FPGAs.
Rather, use a single reset signal to place the design in a known, functional state until
all the interfaces have powered up, locked, and trained.

2.2.7.1. Specifying Initial Conditions

You can specify initial power-up conditions by inference in your RTL code. Intel
Quartus Prime synthesis automatically converts default values for registered signals
into Power-Up Level constraints. Alternatively, specify the Power-Up Level constraints
manually.

Example 3. Initial Power-Up Conditions Syntax (Verilog HDL)

reg q = 1’b1; //q has a default value of ‘1’
always @ (posedge clk)
begin
   q <= d;
end

Example 4. Initial Power-Up Conditions Syntax (VHDL)

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'
PROCESS (clk, reset)
BEGIN
    IF (rising_edge(clk)) THEN
        q <= d;
    END IF;
END PROCESS;

2.2.7.2. Initial Conditions and Retiming

The initial power-up conditions can limit the Compiler's ability to:

• Perform logic optimization during synthesis

• Move registers into Hyper-Registers during retiming

The following examples show how setting initial conditions to a known state ensures
that circuits are functionality equivalent after retiming.

Figure 18. Circuit Before Retiming
This sample circuit shows register F1 at power-up can have either state ‘0’ or state ‘1’. Assuming the clouds of
logic are purely combinational, there are two possible states in the circuit C1 (F1=‘0’ or F1=‘1’).

D Q
F1
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Figure 19. Circuit After Retiming Forward
If the Retimer pushes register F1 forward, the Retimer must duplicate the register in each of the branches that
F1 drives.

F12

D Q
F11

D Q
F12

D Q
F12

After retiming and register duplication, the circuit now has four possible states at
power-up. The addition of two potential states in the circuit after retiming potentially
changes the design functionality.

Table 5. Possible Power-Up States After Retiming

F11 States F12 States

0 0

0 1

1 0

1 1

C-Cycle Equivalence

The c-cycle refers to the number of clock cycles a design requires after power-up to
ensure functional equivalence. The c-cycle value is an important consideration in
structuring your design's reset sequence. To ensure the design's functional
equivalence after retiming, apply an extra clock cycle after power-up. This extra clock
cycle ensures that the states of F11 and F12 are always identical. This technique
results in only two possible states for the registers, 0/0 or 1/1, assuming the
combinational logic is non-inverting on both paths.

Retiming Backward

Retiming registers backward is always a safe operation with a c-cycle value of 0. In
this scenario, the Compiler merges F11 and F12 together. If you do not specify initial
conditions for F11 and F12, the Compiler always permits merging. If you specify initial
conditions, the Compiler accounts for the initial state of F11 and F12. In this case, the
retiming transformation only occurs if the transformation preserves the initial states.

If the Compiler transformation cannot preserve the initial states of F11 and F12, the
Compiler does not allow the retiming operation. To avoid changing circuit functionality
during retiming, apply an extra clock cycle after power-up to ensure the content of
F11 and F12 are always identical.
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2.2.7.3. Retiming Reset Sequences

Under certain conditions, the Retime stage performs transformation of registers with a
c-cycle value greater than zero. This ability can help improve the maximum frequency
of the design. However, register retiming with a c-cycle equivalence value greater than
zero requires extra precaution to ensure functional equivalence after retiming. To
retain functional equivalence, reuse existing reset sequences, and add the appropriate
number of clock, as the following sections describe:

Reset Retiming Behavior

The Compiler has the following behavior when retiming resets:

• Backward retiming with reset is safe and occurs, taking into consideration any
initial conditions.

• Forward retiming with reset always preserves the initial conditions.

• Register retiming assumes that registers with no initial conditions power up to 0
for retiming purpose. Retiming preserves this initial condition.

Ignoring Initial Conditions

Retime more registers by ignoring initial conditions on registers. Specify the
ALLOW_POWER_UP_DONT_CARE option in the .qsf to ignore initial reset conditions
and continue with retiming:

set_global_assignment -name ALLOW_POWER_UP_DONT_CARE ON

When using ALLOW_POWER_UP_DONT_CARE, ensure that the registers your reset
sequence covers do not have initial conditions in RTL code.

Modifying the Reset Sequence

Follow these recommendations to maximize operating frequency of resets during
retiming:

• Remove sclr signals from all registers that reset naturally. This removal allows
the registers to move freely in the logic during retiming.

• Assign the power-up state of the registers that the reset sequence covers as
don’t care. Ignore initial conditions on those registers.

• Set the ALLOW_POWER_UP_DONT_CARE global assignment to ON. This setting
maximizes register movement.

• Compute and add to the reset synchronizer the relevant amount of extra clock
cycles due to c-cycle equivalence.

Adding Clock Cycles to Reset

The Compiler reports the number of clock cycles to add to your reset sequence in the
Fitter ➤ Retime Stage ➤ Reset Sequence Requirement report. The report lists
the number of cycles to add on a clock domain basis.
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Figure 20. Reset Sequence Requirement Report

Register duplication into multiple branches has a c-cycle of 1. Regardless of the
number of duplicate registers, the register is always one connection away from its
original source. After one clock cycle, all the branches have the same value again.

The following examples show how adding clock cycles to the reset sequence ensures
the functional equivalence of the design after retiming.

Figure 21. Pipelining and Register Duplication
This example shows pipelining of registers with potential for forward retiming. The c-cycle value equals 0.
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Figure 22. Impact of One Register Move
This example shows a pipelining of registers after forward retiming of one register. Because the c-cycle value
equals 1, the reset sequence for this circuit requires one additional clock cycle for functional equivalence after
reset.
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Figure 23. Impact of Two Register Moves
This example shows a pipelining of registers after forward retiming of two registers. Because the c-cycle value
equals 2, the reset sequence for this circuit requires two additional clock cycles for functional equivalence after
reset.
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Each time a register from the pipeline moves into the logic, the register duplicates and
the C-cycle value of the design increases by one.

2.2.8. Retiming through RAMs and DSPs

By default, retiming of RAMs and DSPs normally ends at the boundary of those
objects. The Compiler does not move registers into Hyper-Register locations on paths
to and from the RAM or DSP by default. However, you can specify options that change
the Compiler's default behavior to allow even greater register movement by optimizing
logic through RAMs and DSPs. Turn on the Allow RAM Retiming or Allow DSP
Retiming Compiler options (Assignments ➤ Settings ➤ Compiler Settings ➤
Register Optimizations) to enable this behavior. When you specify any High effort
or Aggressive Compiler Optimization mode, the Compiler automatically retimes
registers through RAMs and DSPs if this improves timing.

Figure 24. Register Optimization Settings
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The following diagrams illustrate the impact of these settings:

Figure 25. RAM or DSP Timing Path

RAM
or

DSP

Figure 26. Default RAM or DSP Retiming Optimization
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DSP

Retimer Scope Retimer Scope

Figure 27. Allow RAM Retiming or Allow DSP Retiming
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2.3. Hyper-Pipelining (Add Pipeline Registers)

Hyper-Pipelining is a design process that eliminates long routing delays by adding
additional pipeline stages in the interconnect between the ALMs. This technique allows
the design to run at a faster clock frequency. First run Fast-Forward compilation to
determine the best location and performance you can expect from adding pipeline
stages. This process requires minimal effort, resulting in 1.3 – 1.6x performance gain
for Intel Stratix 10 devices, versus previous generation high-performance FPGAs.

Adding registers in your RTL is much easier if you plan ahead to accommodate
additional latency in your design. At the most basic level, planning for additional
latency means using parameterizable pipelines at the inputs and outputs of the clock
domains in your design. Refer to the Appendix: Pipelining Examples for pre-written
parameterizable pipeline modules in Verilog HDL, VHDL, and SystemVerilog.

Changing latency is more complex than simply adding pipeline stages. Changing
latency can require reworking control logic, and other parts of the design or system
software, to work properly with data arriving later. Making such changes is often
difficult in existing RTL, but is typically easier in new parts of a design. Rather than
hard-coding block latencies into control logic, implement some latencies as
parameters. In some types of systems, a “valid data” flag is present to pipeline stages
in a processing pipeline to trigger various computations, instead of relying on a high-
level fixed concept of when data is valid.

Additional latency may also require changes to testbenches. When you create
testbenches, use the same techniques you use to create latency-insensitive designs.
Do not rely on a result becoming available in a predefined number of clock cycles, but
consider checking a “valid data” or “valid result” flag.

Latency-insensitive design is not appropriate for every part of a system. Interface
protocols that specify a number of clock cycles for data to become ready or valid must
conform to those requirements and may not accommodate changes in latency.
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After you modify the RTL and place the appropriate number of pipeline stages at the
boundaries of each clock domain, the Retime stage automatically places the registers
within the clock domain at the optimal locations to maximize the performance. The
combination of Hyper-Retiming and Fast-Forward compilation helps to automate the
process in comparison with conventional pipelining.

Related Information

• Appendix A: Parameterizable Pipeline Modules on page 107

• Precomputation on page 37

2.3.1. Conventional Versus Hyper-Pipelining

Hyper-Pipelining simplifies this process of conventional pipelining. Conventional
pipelining includes the following design modifications:

• Add two registers between logic clouds.

• Modify HDL to insert a third register (or pipeline stage) into the design’s logic
cloud, which is Logic Cloud 2. This register insertion effectively creates Logic Cloud
2a and Logic Cloud 2b in the HDL

Figure 28. Conventional Pipelining User Modifications
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Figure 29. Hyper-Pipelining User Modifications
Hyper-Pipelining simplifies the process of adding registers. Add the registers—Pipe 1, Pipe 2, and Pipe 3—in
aggregate at one location in the design RTL. The Compiler retimes the registers throughout the circuit to find
the optimal placement along the path. This optimization reduces path delay and maximizes the design's
operating frequency.
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Figure 30. Hyper-Pipelining and Hyper-Retiming Implementation
The following figure shows implementation of additional registers after the retiming stage completes
optimization.
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The resulting implementation in the Hyper-Pipelining flow differs from the conventional
pipelining flow by the location of the Pipe 3 register. Because the Compiler is aware of
the current circuit implementation, including routing, the Compiler can more
effectively locate the aggregate registers to meet the design’s maximum operating
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frequency. Hyper-Pipelining requires significantly less effort than conventional
pipelining techniques because you can place registers at a convenient location in a
data path. The Compiler optimizes the register placements automatically.

2.3.2. Pipelining and Latency

Adding pipeline registers within a path increases the number of clock cycles necessary
for a signal value to propagate along the path. Increasing the clock frequency can
offset the increased latency.

Figure 31. Hyper-Pipeline Reduced Latency
This example shows a previous generation Intel FPGA, with a 275 MHz fMAX requirement. The path on the left
achieves 286 MHz because the 3.5 ns delay limits the path. Data requires three cycles to propagate through
the register pipeline. Three cycles at 275 MHz calculates to 10.909 ns requirement to propagate through the
pipeline.

1.5 ns 3.5 ns 1.5 ns 1.7 ns 1.8 ns

If re-targeting an Intel Stratix 10 device doubles the fMAX requirement to 550 MHz, the
path on the right side of the figure shows how an additional pipeline stage retimes.
The path now achieves 555 MHz, due to the limits of the 1.8 ns delay. The data
requires four cycles to propagate through the register pipeline. Four cycles at 550 MHz
equals 7.273 ns to propagate through the pipeline.

To maintain the time to propagate through the pipeline with four stages compared to
three, meet the 10.909 ns delay of the first version by increasing the fMAX of the
second version to 367 MHz. This technique results in a 33% increase from 275 MHz.

2.3.3. Use Registers Instead of Multicycle Exceptions

Often designs contain modules with complex combinational logic (such as CRCs and
other arithmetic functions) that require multiple clock cycles to process. You constrain
these modules with multicycle exceptions that relax the timing requirements through
the block. You can use these modules and constraints in designs targeting Intel Stratix
10 devices. Refer to the Design Considerations for Multicycle Paths section for more
information.

Alternatively, you can insert a number of register stages in one convenient place in a
module, and the Compiler balances them automatically for you. For example, if you
have a CRC function to pipeline, you do not need to identify the optimal decomposition
and intermediate terms to register. Add the registers at its input or output, and the
Compiler balances them.

Related Information

• Optimize Multicycle Paths on page 17

• Appendix A: Parameterizable Pipeline Modules on page 107
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2.4. Hyper-Optimization (Optimize RTL)

After you accelerate data paths through Hyper-Retiming, Fast Forward compilation,
and Hyper-Pipelining, the design may still have limits of control logic, such as long
feedback loops and state machines.

To overcome such limits, use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback paths. The following sections describe
specific Hyper-Optimization for various design structures. This process can result in 2x
performance gain for Intel Stratix 10 devices, compared to previous generation high-
performance FPGAs.

2.4.1.  General Optimization Techniques

Use the following general RTL techniques to optimize your design for the Intel
Hyperflex FPGA architecture.

2.4.1.1. Shannon’s Decomposition

Shannon’s decomposition plays a role in Hyper-Optimization. Shannon’s
decomposition, or Shannon’s expansion, is a way of factoring a Boolean function. You
can express a function as F = x.Fx + x′Fx′ where x.Fx and x′Fx′ are the positive and
negative co-factors of the function F with respect to x. You can factor a function with
four inputs as, (a, b, c, x) = x.(a, b, c, 1) + x′.F(a, b, c, 0), as shown in the following
diagram. In Hyper-Optimization, Shannon’s decomposition pushes the x signal to the
head of the cone of input logic, making the x signal the fastest path through the cone
of logic. The x signal becomes the fastest path at the expense of all other signals.
Using Shannon’s decomposition also doubles the area cost of the original function.

Figure 32. Shannon's Decomposition

a
b
c
x

F

a
b
c
1

F

a
b
c
0

F

x

1
0

Figure 33. Shannon's Decomposition Logic Reduction
Logic synthesis can take advantage of the constant-driven inputs and slightly reduce the cofactors, as shown in
the following diagram.
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Figure 34. Repeated Shannon's Decomposition
The following diagram shows how you can repeatedly use Shannon's decomposition to decompose functions
with more than one critical input signal, thus increasing the area cost.
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Shannon’s decomposition can be an effective optimization technique for loops. When
you perform Shannon’s decomposition on logic in a loop, the logic in the loop moves
outside the loop. The Compiler can now pipeline the logic moved outside the loop.

Figure 35. Loop Example before Shannon's Decomposition
This diagram shows a loop that contains a single register, four levels of combinational logic, and an additional
input. Adding registers in the loop changes the functionality, but you can move the combinational logic outside
the loop by performing Shannon’s decomposition.

Cannot Be Pipelined

The output of the register in the loop is 0 or 1. You can duplicate the combinational
logic that feeds the register in the loop, tying one copy’s input to 0, and the other
copy’s input to 1.

Figure 36. Loop Example after Shannon's Decomposition
The register in the loop then selects one of the two copies, as the following diagram shows.
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Performing Shannon’s decomposition on the logic in the loop reduces the amount of
logic in the loop. The Compiler can now perform register retiming or Hyper-Pipelining
on the logic you remove from the loop, thereby increasing the circuit performance.

2.4.1.1.1.  Shannon’s Decomposition Example

The sample circuit adds or subtracts an input value from the internal_total value
based on its relationship to a target value. The core of the circuit is the target_loop
module, shown in the following example.

Example 5. Source Code before Shannon's Decomposition

module target_loop (clk, sclr, data, target, running_total);
parameter WIDTH = 32;

input clk;
input sclr;
input [WIDTH-1:0] data; 
input [WIDTH-1:0] target; 
output [WIDTH-1:0] running_total; 

reg [WIDTH-1:0] internal_total; 

always @(posedge clk) begin
        if (sclr)
        begin
             internal_total <= 0;
        end
        else begin
          internal_total <= internal_total + ((( internal_total > target) ? -
data:data)* (target/4));
        end
end
assign running_total = internal_total;
end module 

The module uses a synchronous clear, based on the recommendations to enable
Hyper-Retiming.

The following figure shows the Fast Forward Compile report for the target_loop
module instantiated in a register ring.

Figure 37. Fast Forward Compile Report before Shannon’s Decomposition

Hyper-Retiming reports about 302 MHz by adding a pipeline stage in the Fast Forward
Compile. The last Fast Forward Limit row indicates that the critical chain is a loop.
Examining the critical chain report reveals that there is a repeated structure in the
chain segments. The repeated structure is shown as an example in the Optimizing
Loops section.
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The following diagram shows a structure that implements the expression in the
previous example code. The functional blocks correspond to the comparison, addition,
and multiplication operations. The zero in each arithmetic block’s name is part of the
synthesized name in the netlist. The zero is because the blocks are the first zero-
indexed instance of those operators created by synthesis.

Figure 38. Elements of a Critical Chain Sub-Loop

internal_total

LessThan0 Add0

Mult0

This expression is a candidate for Shannon’s decomposition. Instead of performing
only one addition with the positive or negative value of data, you can perform the
following two calculations simultaneously:

• internal_total - (data * target/4)

• internal_total + (data * target/4)

You can then use the result of the comparison internal_total > target to select
which calculation result to use. The modified version of the code that uses Shannon’s
decomposition to implement the internal_total calculation is shown in the
following example.

Example 6. Source Code after Shannon's Decomposition

module target_loop_shannon (clk, sclr, data, target, running_total);
  parameter WIDTH = 32;

input clk;
input sclr;
input [WIDTH-1:0] data;
input [WIDTH-1:0] target;
output [WIDTH-1:0] running_total;

reg [WIDTH-1:0] internal_total;
wire [WIDTH-1:0] total_minus;
wire [WIDTH-1:0] total_plus;

assign total_minus = internal_total - (data * (target / 4));
assign total_plus = internal_total + (data * (target / 4));

always @(posedge clk) begin
  if (sclr)
  begin 
     internal_total <= 0;
  end
  else begin
     internal_total <= (internal_total > target) ? total_minus:total_plus);
  end
end

assign running_total = internal_total;
endmodule

As shown in the following figure, the performance almost doubles after recompiling
the design with the code change.
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Figure 39. Fast Forward Summary Report after Shannon's Decomposition

2.4.1.1.2.  Identifying Circuits for Shannon’s Decomposition

Shannon's decomposition is a good solution for circuits in which you can rearrange
many inputs to control the final select stage. Account for new logic depths when
restructuring logic to use a subset of the inputs to control the select stage. Ideally, the
logic depth to the select signal is similar to the logic depth to the selector inputs.
Practically, there is a difference in the logic depths because of difficulty in perfectly
balancing the number of inputs feeding each cloud of logic.

Shannon’s decomposition may also be a good solution for a circuit with only one or
two signals in the cone of logic that are truly critical, and others are static, or with
clearly lower priority.

Shannon’s decomposition can incur a significant area cost, especially if the function is
complex. There are other optimization techniques that have a lower area cost, as
described in this document.

2.4.1.2. Time Domain Multiplexing

Time domain multiplexing increases circuit throughput by using multiple threads of
computation. This technique is also known as C-slow retiming, or multithreading.

Time domain multiplexing replaces each register in a circuit with a set of C registers in
series. Each extra copy of registers creates a new computation thread. One
computation through the design requires C times as many clock cycles as the original
circuit. However, the Compiler can retime the additional registers to improve the fMAX
by a factor of C. For example, instead of instantiating two modules running at 400
MHz, you can instantiate one module running at 800 MHz.

The following set of diagrams shows the process of C-slow retiming, beginning with an
initial circuit.

Figure 40. C-slow Retiming Starting Point

Edit the RTL design to replace every register, including registers in loops, with a set of
C registers, comprising one register per independent thread of computation.

Figure 41. C-slow Retiming Intermediate Point
This example shows replacement of each register with two registers.
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Compile the circuit at this point. When the Compiler optimizes the circuit, there is
more flexibility to perform retiming with the additional registers.

Figure 42. C-Slow Retiming Ending Point

In addition to replacing every register with a set of registers, you must also multiplex
the multiple input data streams into the block, and demultiplex the output streams out
of the block. Use time domain multiplexing when a design includes multiple parallel
threads, for which a loop limits each thread. The module you optimize must not be
sensitive to latency.

2.4.1.3. Loop Unrolling

Loop unrolling moves logic out of the loops and into feed-forward flows. You can
further optimize the logic with additional pipeline stages.

2.4.1.4. Loop Pipelining

Loops are omnipresent and an integral part of design functionality. However, loops are
a limiting factor to Hyper-Retiming optimization. The Compiler cannot automatically
pipeline any logic inside of a loop. Adding or removing a sequential element inside the
loop potentially breaks the functionality of the design.

However, you can modify the loop structure to allow the Compiler to insert pipeline
stages, without changing the functionality of the design, as the following topics
demonstrate. Properly pipelining a loop involves the following steps:

1. Restructure loop and non-loop logic

2. Manually add pipeline stages to the loop

3. Cascade the loop logic

2.4.1.4.1. Loop Pipelining Theory

The following figure illustrates the definition of a logical loop. The result (Zn) is a
function of input Xn and a delayed version of that input.

Figure 43. Simple Loop Example
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If the function f(.) satisfies commutative, associative, and distributive properties (for
example, addition, XOR, maximum), the equivalence of the following figures is
mathematically provable.
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Figure 44. Equivalent Loop After Modification
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Commutative: f(x,y) = f(y,x)
Associative: f(f(x,y),z) = f(x,f(y,z))
Distributive: f(g . x,y) = g . f(x,y/g)

2.4.1.4.2. Loop Pipelining Demonstration

The following demonstrates proper loop pipelining to optimize an accumulator in an
example design. In the original implementation, the accumulator data input in
multiplies by x, adds to the previous value out, multiplied by y. This demonstration
improves performance using these techniques:

1. Implement separation of forward logic

2. Retime the loop register

3. Create the feedback loop equivalence with cascade logic

Figure 45. Original Loop Structure

D QIN D Q OUT

y B
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Example 7. Original Loop Structure Example Verilog HDL Code

module orig_loop_strct (rstn, clk, in, x, y, out);
   input clk, rstn, in, x, y;
   output out;
   reg    out;
   reg in_reg;

always @ ( posedge clk )
   if ( !rstn ) begin
      in_reg <= 1'b0;
   end else begin
      in_reg <= in;
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   end

always @ ( posedge clk )
   if ( !rstn ) begin
      out <= 1'b0;
   end else begin
      out <= y*out + x*in_reg;
   end
endmodule //orig_loop_strct

The first stage of optimization is rewriting logic to remove as much logic as possible
from the loop, and create a forward logic block. The goal of rewriting is to remove as
much work as possible from the feedback loop. The Compiler cannot automatically
optimize any logic in a feedback loop. Consider the following recommendations in
removing logic from the loop:

• Evaluate as many decisions and perform as many calculations in advance of the
loop, that do not directly rely on the loop value.

• Potentially pass logic into the register stage before passing into the loop.

After rewriting the logic, the Compiler can now freely retime the logic that you move
to the forward path.

Figure 46. Separation of Forward Logic from the Loop
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In the next optimization stage, retime the loop register to ensure that the design
functions the same as the original loop circuitry.

Figure 47. Retime Loop Register
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Finally, further optimize the loop by repeating the first optimization steps with the
logic in the highlighted boundary.

Figure 48. Results of Cascade Loop Logic, Hyper-Retimer, and Synthesis Optimizations
(Four Level Optimization)
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Example 8. Four Level Optimization Example Verilog HDL Code

module cll_hypr_rtm_synopt ( rstn, clk, x, y, in, out);
   input rstn, clk, x, y, in;

   output out;
   reg    out;

   reg in_reg;

   wire out_add1;
   wire out_add2;
   wire out_add3;
   wire out_add4;

   reg out_add1_reg1;
   reg out_add1_reg2;
   reg out_add1_reg3;
   reg out_add1_reg4;

always @ ( posedge clk )
   if ( !rstn ) begin
      in_reg <= 0;
   end else begin
      in_reg <= in;
   end

always @ ( posedge clk )
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   if ( !rstn ) begin
      out_add1_reg1 <= 0;
      out_add1_reg2 <= 0;
      out_add1_reg3 <= 0;
      out_add1_reg4 <= 0;
   end else begin
      out_add1_reg1 <= out_add1;
      out_add1_reg2 <= out_add1_reg1;
      out_add1_reg3 <= out_add1_reg2;
      out_add1_reg4 <= out_add1_reg3;
   end

assign out_add1 = x*in_reg  + ((((y*out_add1_reg4)*y)*y)*y);
assign out_add2 = out_add1 + (y*out_add1_reg1);
assign out_add3 = out_add2 + ((y*out_add1_reg2)*y);
assign out_add4 = out_add3 + (((y*out_add1_reg3)*y)*y);

always @ ( posedge clk ) begin
   if ( !rstn )
      out <= 0;
   else
      out <= out_add4;
end
endmodule //cll_hypr_rtm_synopt

2.4.1.4.3. Loop Pipelining and Synthesis Optimization

The loop pipelining technique initially appears to create more logic to optimize this
loop, resulting in less devices resources. While this technique may increase logic use
in some cases, design synthesis further reduces logic through during optimization.

Synthesis optimizes the various clouds of logic. In the preceding example, synthesis
ensure that the cloud of logic containing g*g*g*g is smaller than implementing four
instances of block g. This reduction in size is because the LUT actually has six inputs,
and logic collapses, sharing some LUTs. In addition, the Hyper-Retimer retimes
registers in and around this smaller cloud of logic, thus making the logic less timing-
critical.

2.4.1.5. Precomputation

Precomputation is one of the easiest and most beneficial techniques for optimizing
overall design speed. When confronted with critical logic, verify whether the signals
the computation implies are available earlier. Always compute signals as early as
possible to keep these computations outside of critical logic.

When trying to keep critical logic outside your loops, try precomputation first. The
Compiler cannot optimize logic within a loop easily using retiming only. The Compiler
cannot move registers inside the loop to the outside of the loop. The Compiler cannot
retime registers outside the loop into the loop. Therefore, keep the logic inside the
loop as small as possible so that the logic does not negatively impact fMAX.

After precomputation, logic is minimized in the loop and the design precomputes the
encodings. The calculation is outside of the loop, and you can optimize the calculation
with pipelining or retiming. You cannot remove the loop, but can better control the
effect of the loop on the design speed.
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Figure 49. Restructuring a Design with an Expensive Loop

FIFO

readen
Expensive

Calculation

Payload

Before Precomputation

FIFO

readen
Simple
Logic

Payload

After Precomputation

Simple
LogicPort Count

Precompute
New Encoding

The following code example shows a similar problem. The original loop contains
comparison operators.

StateJam:if
        (RetryCnt <=MaxRetry&&JamCounter==16)
            Next_state=StateBackOff;
        else if (RetryCnt>MaxRetry)
            Next_state=StateJamDrop;
        else
            Next_state=Current_state;

Precomputing the values of RetryCnt<=MaxRetry and JamCounter==16 removes
the expensive computation from the StateJam loop and replaces the computation
with simple boolean operations. The modified code is:

reg RetryCntGTMaxRetry;
reg JamCounterEqSixteen; 
StateJam:if
        (!RetryCntGTMaxRetry && JamCounterEqSixteen)
            Next_state=StateBackOff;
        else if (RetryCntGTMaxRetry)
            Next_state=StateJamDrop;
        else
            Next_state=Current_state; 
        always @ (posedge Clk or posedge Reset)
        if (Reset)
            JamCounterEqSixteen <= 0;
        else if (Current_state!=StateJam)
            JamCounterEqSixteen <= 0;
        else 
            JamCounterEqSixteen <= (JamCounter == 15) ? 1:0; 
        always @ (posedge Clk or posedge Reset)
        if (Reset)
            RetryCntGTMaxRetry <= 0;
        else if (Current_state==StateSwitchNext)
            RetryCntGTMaxRetry <= 0;
        else if (Current_state==StateJam&&Next_state==StateBackOff)
            RetryCntGTMaxRetry <= (RetryCnt >= MaxRetry) ? 1: 0;
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2.4.2. Optimizing Specific Design Structures

This section describes common performance bottleneck structures, and
recommendations to improve fMAX performance for each case.

2.4.2.1. High-Speed Clock Domains

Intel Stratix 10 devices support very high-speed clock domains. The Compiler uses
programmable clock tree synthesis to minimize clock insertion delay, reduce dynamic
power dissipation, and provide clocking flexibility in the device core.

Device minimum pulse width constraints can limit the highest performance of Intel
Stratix 10 clocks. As the number of resources on a given clock path increase,
uncertainty and skew increases on the clock pulse. If clock uncertainty exceeds the
minimum pulse width of the target device, this lowers the minimum viable clock
period. This effect is a function of total clock insertion delay on the path. To counter
this effect for high-speed clock domains, use the Chip Planner and Timing Analyzer
reports to optimize clock source placement in your design.

If reports indicate limitation from long clock routes, adjust the clock pin assignment or
use Clock Region or Logic Lock Region assignments to constrain fan-out logic closer to
the clock source. Use Clock Region assignments to specify the clock sectors and
optimize the size of the clock tree.

After making any assignment changes, recompile the design and review the clock
route length and clock tree size. Review the Compilation Report to ensure that the
clock network does not restrict the performance of your design.

2.4.2.1.1. Visualizing Clock Networks

After running the Fitter, visualize clock network implementation in the Chip Planner.
The Chip Planner shows the source clock pin location, clock routing, clock tree size,
and clock sector boundaries. Use these views to make adjustment and reduce the
total clock tree size.

To visualize design clock networks in the Chip Planner:

1. Open a project.

2. On the Compilation Dashboard, click Fitter, Early Place, Place, Route, or
Retime to run the Fitter.

3. On the Tasks pane, double-click Chip Planner. The Chip Planner loads device
information and displays color coded chip resources.

4. On the Chip Planner Tasks pane, click Report Clock Details. The Chip Planner
highlights the clock pin location, routing, and sector boundaries. Click elements
under the Clock Details Report to display general and fan-out details for the
element.

5. To visualize the clock sector boundaries, click the Layers Settings tab and enable
Clock Sector Region. The green lines indicate the boundaries of each sector.
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Figure 50. Clock Network in Chip Planner
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Figure 51. Clock Sector Boundary Layer in Chip Planner
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2.4.2.1.2. Viewing Clock Networks in the Fitter Report

The Compilation Report provides detailed information about clock network
implementation following Fitter placement. View the Global & Other Fast Signals
Details report to display the length and depth of the clock path from the source clock
pin to the clock tree.

To view clock network implementation in Fitter reports:

1. Open a project.

2. On the Compilation Dashboard, click Fitter, Place, Route to run the Fitter.

3. On the Compilation Dashboard, click the Report icon for the completed stage.

4. Click Global & Other Fast Signals Details. The table displays the length of the
clock route from source to the clock tree, and the clock region depth.

Figure 52. Clock Network Details in Fitter Report

2.4.2.1.3. Viewing Clocks in the Timing Analyzer

The Timing Analyzer reports high speed clocks that are limited by long clock paths.
Open the Fmax Summary report to view any clock fMAX that is restricted by high
minimum pulse width violations (tCH), or low minimum pulse width violation (tCL).

To view clock network data in the Timing Analyzer:

1. Open a project.

2. On the Compilation Dashboard, click Timing Analysis. After timing analysis is
complete, the Timing Analyzer folder appears in the Compilation Report.

3. Under the Slow 900mV 100C Model folder, click the Fmax Summary report.
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4. To view path information details for minimum pulse width violations, in the
Compilation Report, right-click the Minimum Pulse Width Summary report and
click Generate Report in Timing Analyzer. The Timing Analyzer loads the
timing netlist.

5. Click Reports ➤ Custom Reports ➤ Report Minimum Pulse Width.

6. In the Report Minimum Pulse Width dialog box, specify options to customize
the report output and then click OK.

7. Review the data path details for report of long clock routes in the Slow 900mV
100C Model report.

Figure 53. Minimum Pulse Width Details Show Long Clock Route

Reports show 
long clock delay

2.4.2.2. Restructuring Loops

Loops are a primary target of restructuring techniques because loops fundamentally
limit performance. A loop is a feedback path in a circuit. Some loops are simple and
short, with a small amount of combinational logic on a feedback path. Other loops are
very complex, potentially traveling through multiple registers before returning to the
original register.

The Compiler never retimes registers into a loop, because adding a pipeline stage to a
loop changes functionality. However, change your RTL manually to restructure loops to
improve performance. Perform loop optimization after analyzing performance
bottlenecks with Fast Forward compile. Also apply these techniques to any new RTL in
your design.
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2.4.2.3. Control Signal Backpressure

This section describes RTL design techniques to control signal backpressure. The Intel
Stratix 10 architecture efficiently streams data. Because the architecture supports
very high clock rates, it is difficult to send feedback signals to reach large amounts of
logic in one clock cycle. Inserting extra pipeline registers also increases backpressure
on control signals. Data must flow forward as much as possible.

Single clock cycle control signals create loops that can prevent or reduce the
effectiveness of pipelining and register retiming. This example depicts a ready signal
that notifies the upstream register of readiness to consume data. The ready signals
must freeze multiple data sources at the same time.

Figure 54. Control Signal Backpressure

I Am Not Ready for the Next Data

Modifying the original RTL to add a small FIFO buffer that relieves the pressure
upstream is a straightforward process. When the logic downstream of this block is not
ready to use the data, the FIFO stores the data.

Figure 55. Using a FIFO Buffer to Control Backpressure
This Is Valid Data

FIFO
Buffer

Please Try to Slow Down Soon

The goal is for data to reach the FIFO buffer every clock cycle. An extra bit of
information decides whether the data is valid and should be stored in the FIFO buffer.
The critical signal now resides between the FIFO buffer and the downstream register
that consumes the data. This loop is much smaller. You can now use pipelining and
register retiming to optimize the section upstream of the FIFO buffer.

2.4.2.4. Flow Control with FIFO Status Signals

High clock speeds require consideration when dealing with flow control signals. This
consideration is particularly important with signals that gate a data path in multiple
locations at the same time. For example, with clock enable or FIFO full or empty
signals. Instead of working with immediate control signals, use a delayed signal. You
can build a buffer within the FIFO block. The control signals indicate to the upstream
data path that the path is almost full, leaving a few clock cycles for the upstream data
to receive their gating signal. This approach alleviates timing closure difficulties on the
control signals.

When you use FIFO full and empty signals, you must process these signals in one
clock cycle to prevent overflow or underflow.
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Figure 56. FIFO Flow Control Loop
The loop forms while reading control signals from the FIFO.
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If you use an almost full or almost empty signal instead, you can add pipeline
registers in the flow control loop. The lower the almost full threshold, and the higher
the almost empty threshold, the more registers you can add to the signal.

Figure 57. Improved FIFO Flow Control Loop with Almost Full instead of Full FIFO
The following example shows two extra registers in the full control flow signal. After the FIFO generates the
almost full flag, it takes two cycles for the signal to reach the data producer block. Two additional cycles are
then required before the data sent stops arriving at the FIFO. This condition results in four cycles of latency.
Anytime the almost full flag is asserted, the data producer can send 4 more words before the FIFO is actually
full. Size the FIFO block to allow for proper storage of those extra valid data. The extra two pipeline registers in
the control path help with routing, and enable higher speed than with traditional single-cycle FIFO control
scheme.
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2.4.2.5. Flow Control with Skid Buffers

You can use skid buffers to pipeline a FIFO. If necessary, you can cascade skid buffers.
When you insert skid buffers, they unroll the loop that includes the FIFO control
signals. The skid buffers do not eliminate the loop in the flow control logic, but the
loop transforms into a series of shorter loops. In general, switch to almost empty and
almost full signals instead of using skid buffers when possible.

Figure 58. FIFO Flow Control Loop with Two Skid Buffers in a Read Control Loop
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If you have loops involving FIFO control signals, and they are broadcast to many
destinations for flow control, consider whether you can eliminate the broadcast
signals. Pipeline broadcast control signals, and use almost full and almost empty
status bits from FIFOs.

2. RTL Design Guidelines

S10HPHB | 2018.10.04

Intel® Stratix® 10 High-Performance Design Handbook Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Example 9. Skid Buffer Example (Single Clock)

/ synopsys translate_off
//`timescale 1 ps / 1 ps
// synopsys translate_on

module  singleclock_fifo_lowell
#(

    parameter DATA_WIDTH      = 8,
    parameter FIFO_DEPTH      = 16,
    parameter SHOWAHEAD       = "ON",   // "ON" = showahead mode ('pop' is an 
acknowledgement); /
         "OFF" = normal mode ('pop' is a request).
    parameter RAM_TYPE        = "AUTO", // "AUTO" or "MLAB" or "M20K".
    // Derived                
    parameter ADDR_WIDTH      = $clog2(FIFO_DEPTH) + 1  // e.g. clog2(64) = 
6, but 7 bits /
         needed to store 64 value
) 
(
    input  wire                   clk,
    input  wire                   rst,
    input  wire  [DATA_WIDTH-1:0] in_data,    // write data
    input  wire                   pop,        // rd request
    input  wire                   push,       // wr request
    output wire                   out_valid,  // not empty
    output wire                   in_ready,   // not full
    output wire [DATA_WIDTH-1:0]  out_data,   // rd data
    output wire [ADDR_WIDTH-1:0]  fill_level
);  
    wire                      scfifo_empty;
    wire                      scfifo_full;
    wire [DATA_WIDTH-1:0]     scfifo_data_out;
    wire [ADDR_WIDTH-1:0]       scfifo_usedw;

    logic [DATA_WIDTH-1:0] out_data_1q;
    logic [DATA_WIDTH-1:0] out_data_2q;
    logic                  out_empty_1q;
    logic                  out_empty_2q;
    logic                  e_pop_1;
    logic                  e_pop_2;
    logic                  e_pop_qual;
    
    assign out_valid         = ~out_empty_2q; 
    assign in_ready          = ~scfifo_full;
    assign out_data          = out_data_2q; 
    assign fill_level        = scfifo_usedw + !out_empty_1q + !out_empty_2q;

// add output pipe 
    assign e_pop_1      = out_empty_1q || e_pop_2; 
    assign e_pop_2      = out_empty_2q || pop; 
    assign e_pop_qual = !scfifo_empty && e_pop_1;
    always_ff@(posedge clk)
    begin
      if(rst == 1'b1) 
      begin
        out_empty_1q <= 1'b1;  // empty is 1 by default
        out_empty_2q <= 1'b1;  // empty is 1 by default
      end 
      else begin 
        if(e_pop_1) 
        begin
          out_empty_1q <= scfifo_empty; 
        end 
        if(e_pop_2) 
        begin
          out_empty_2q <= out_empty_1q; 
        end 
      end 
    end 
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    always_ff@(posedge clk)
    begin
      if(e_pop_1) 
        out_data_1q  <= scfifo_data_out; 
      if(e_pop_2) 
        out_data_2q   <= out_data_1q;
    end 

    scfifo scfifo_component 
    (
        .clock        (clk),
        .data         (in_data),

        .rdreq        (e_pop_qual),
        .wrreq        (push),

        .empty        (scfifo_empty),
        .full         (scfifo_full),
        .q            (scfifo_data_out),
        .usedw        (scfifo_usedw),
//        .aclr         (rst),
        .aclr         (1'b0),
        .almost_empty (),
        .almost_full  (),
        .eccstatus    (),
        //.sclr         (1'b0)
        .sclr         (rst)  // switch to sync reset
    );
    defparam
        scfifo_component.add_ram_output_register  = "ON",
        scfifo_component.enable_ecc               = "FALSE",
        scfifo_component.intended_device_family   = "Stratix",
        scfifo_component.lpm_hint                 = (RAM_TYPE == "MLAB") ? 
"RAM_BLOCK_TYPE=MLAB" : /
             ((RAM_TYPE == "M20K") ? "RAM_BLOCK_TYPE=M20K" : ""),
        scfifo_component.lpm_numwords             = FIFO_DEPTH,
        scfifo_component.lpm_showahead            = SHOWAHEAD,
        scfifo_component.lpm_type                 = "scfifo",
        scfifo_component.lpm_width                = DATA_WIDTH,
        scfifo_component.lpm_widthu               = ADDR_WIDTH,
        scfifo_component.overflow_checking        = "ON",
        scfifo_component.underflow_checking       = "ON",
        scfifo_component.use_eab                  = "ON";

endmodule

Example 10. Skid Buffer Example (Dual Clock)

// synopsys translate_off
//`timescale 1 ps / 1 ps
// synopsys translate_on

module  skid_dualclock_fifo
#(

    parameter DATA_WIDTH      = 8,
    parameter FIFO_DEPTH      = 16,
    parameter SHOWAHEAD       = "ON",   
    parameter RAM_TYPE        = "AUTO", // "AUTO" or "MLAB" or "M20K".
    // Derived                
    parameter ADDR_WIDTH      = $clog2(FIFO_DEPTH) + 1  
) 
(
    input  wire                   rd_clk,
    input wire                    wr_clk,
    input  wire                   rst,
    input  wire  [DATA_WIDTH-1:0] in_data,    // write data
    input  wire                   pop,        // rd request
    input  wire                   push,       // wr request
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    output wire                   out_valid,  // not empty
    output wire                   in_ready,   // not full
    output wire [DATA_WIDTH-1:0]  out_data,   // rd data
    output wire [ADDR_WIDTH-1:0]  fill_level
);  
    wire                      scfifo_empty;
    wire                      scfifo_full;
    wire [DATA_WIDTH-1:0]     scfifo_data_out;
    wire [ADDR_WIDTH-1:0]       scfifo_usedw;

    logic [DATA_WIDTH-1:0] out_data_1q;
    logic [DATA_WIDTH-1:0] out_data_2q;
    logic                  out_empty_1q;
    logic                  out_empty_2q;
    logic                  e_pop_1;
    logic                  e_pop_2;
    logic                  e_pop_qual;
    
    assign out_valid         = ~out_empty_2q; 
    assign in_ready          = ~scfifo_full;
    assign out_data          = out_data_2q; 
    assign fill_level        = scfifo_usedw + !out_empty_1q + !out_empty_2q;

// add output pipe 
    assign e_pop_1      = out_empty_1q || e_pop_2; 
    assign e_pop_2      = out_empty_2q || pop; 
    assign e_pop_qual = !scfifo_empty && e_pop_1;
    always_ff@(posedge rd_clk)
    begin
      if(rst == 1'b1) 
      begin
        out_empty_1q <= 1'b1;  // empty is 1 by default
        out_empty_2q <= 1'b1;  // empty is 1 by default
      end 
      else begin 
        if(e_pop_1) 
        begin
          out_empty_1q <= scfifo_empty; 
        end 
        if(e_pop_2) 
        begin
          out_empty_2q <= out_empty_1q; 
        end 
      end 
    end 
    always_ff@(posedge rd_clk)
    begin
      if(e_pop_1) 
        out_data_1q  <= scfifo_data_out; 
      if(e_pop_2) 
        out_data_2q   <= out_data_1q;
    end 
dcfifo  dcfifo_component
    (
        .data      (in_data),
        .rdclk     (rd_clk),
        .rdreq     (e_pop_qual),
        .wrclk     (wr_clk),
        .wrreq     (push),
        .q         (scfifo_data_out),
        .rdempty   (scfifo_empty),
        .rdusedw   (scfifo_usedw),
        .wrfull    (scfifo_full),
        .wrusedw   (),
        .aclr      (1'b0),
        .eccstatus (),
        .rdfull    (),
        .wrempty   ()
    );
    defparam
        dcfifo_component.add_usedw_msb_bit       = "ON",
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        dcfifo_component.enable_ecc              = "FALSE",
        dcfifo_component.intended_device_family  = "Stratix 10",
        dcfifo_component.lpm_hint                =  (RAM_TYPE == "MLAB") \
             ? "RAM_BLOCK_TYPE=MLAB" : ((RAM_TYPE == "M20K") \
             ? "RAM_BLOCK_TYPE=M20K" : ""),
        dcfifo_component.lpm_numwords            = FIFO_DEPTH,
        dcfifo_component.lpm_showahead           = SHOWAHEAD,
        dcfifo_component.lpm_type                = "dcfifo",
        dcfifo_component.lpm_width               = DATA_WIDTH,
        dcfifo_component.lpm_widthu              = ADDR_WIDTH+1,
        dcfifo_component.overflow_checking       = "ON",
        dcfifo_component.read_aclr_synch         = "ON",
        dcfifo_component.rdsync_delaypipe        = 5,
        dcfifo_component.underflow_checking      = "ON",
        dcfifo_component.write_aclr_synch        = "ON",
        dcfifo_component.use_eab                 = "ON",
        dcfifo_component.wrsync_delaypipe        = 5;

endmodule

2.4.2.6. Read-Modify-Write Memory

Intel Stratix 10 M20K memory blocks support coherent reads to simplify implementing
read-modify-write memory. Read-modify-write memory is useful in applications such
as networking statistics counters. Read-modify-write memory is also useful in any
application that stores a value in memory, that requires incrementing and re-writing in
a single cycle.

Intel Stratix 10 M20K memory blocks simplify implementation by eliminating any need
for hand-written caching circuitry. Caching circuitry that pipelines the modify operation
over multiple clock cycles becomes complex because of high clock speeds or large
counters.

To use the coherent read feature, connect memory according to whether you register
the output data port. If you register the output data port, add two register stages to
the write enable and write address lines when you instantiate the memory.

Figure 59. Registered Output Data Requires Two Register Stages
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If you do not register the output data port, add one register stage to the write enable
and write address lines when you instantiate the memory.
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Figure 60. Unregistered Output Data Requires One Register Stage
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Use of coherent read has the following restrictions:

• Must use the same clock for reading and writing.

• Must use the same width for read and write ports.

• Cannot use ECC.

• Cannot use byte enable.

Figure 61 on page 49 shows a pipelining method for a read-modify-write memory
that improves performance, without maintaining a cache for tracking recent activity.

Figure 61. Pipelining Read-Modify-Write Memory
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If you require M20K memory features that are incompatible with coherent read, or if
you do not want to use coherent read, use the following alternative approaches to
improve the fMAX performance of memory:

• Break the modification operation into smaller blocks that can complete in one
clock cycle.

• Ensure that each chunk is no wider than one M20K memory block. The Compiler
splits data words into multiple n-bit chunks, where each chunk is small enough for
efficient processing in one clock cycle.

• To increase fMAX, increase the number of memory blocks, use narrower memory
blocks, and increase the latency. To decrease latency, use fewer and wider
memory blocks, and remove pipeline stages appropriately. A loop in a read-
modify-write circuit is unavoidable because of the nature of the circuit, but the
loop in this solution is small and short. This solution is scalable, because the
underlying structure remains the same regardless of the number of pipeline
stages.

2.4.2.7. Counters and Accumulators

Performance-limiting loops occur rarely in small, simple counters. Counters with
unnatural rollover conditions (not a power of two), or irregular increments, are more
likely to have a performance-limiting critical chain. When a performance-limiting loop
occurs in a small counter (roughly 8 bits or less), write the counter as a fully decoded
state machine, depending on all the inputs that control the counter. The counter still
contains loops, but they are smaller, and not performance-limiting. When the counter
is small (roughly 8 bits or less), the Fitter implements the counter in a single LAB. This
implementation makes the counter fast because all the logic is placed close together.

You can also use loop unrolling to improve counter performance.

Figure 62. Counter and Accumulator Loop
In a counter and accumulator loop, a register's new value depends on its old value. This includes variants like
LFSRs (linear feedback shift register) and gray code counters.

Counter

+1

Accumulator

2.4.2.8.  State Machines

Loops related to state machines can be difficult to optimize. Carefully examine the
state machine logic to determine whether you can precompute any signals that the
next state logic uses.

To effectively pipeline the state machine loop, consider adding skips states to a state
machine. Skips states are states that you to allow more transition time between two
adjacent states.
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Optimization of state machine loops may require a new state machine.

Figure 63. State Machine Loop
In a state machine loop, the next state depends on the current state of the circuit.

S0

S1

S2S3

S4

Related Information

• Appendix A: Parameterizable Pipeline Modules on page 107

• Precomputation on page 37

2.4.2.9. Memory

The section covers various topics about optimization for hard memory blocks in Intel
Stratix 10 devices.

2.4.2.9.1. True Dual-Port Memory

Intel Stratix 10 devices support true dual-port memory structures. True dual-port
memories allow two write and two read operations at once.

Intel Stratix 10 embedded memory components (M20K) have slightly different modes
of operation compared to previous Intel FPGA technology, including mixed-width ratio
for read/write access.

Intel Stratix 10 devices support true dual-port memories in independent clock mode.
When you use memory in this mode, the maximum fMAX associated with this memory
is 600 MHz

2.4.2.9.2. Use Simple Dual-Port Memories

When migrating a design to an Intel Stratix 10 device, consider whether your original
design contains a dual-port memory that uses different clocks on each port, and the
maximum frequency you plan to operate the memory. If your design is actually using
the same clock on both write ports, restructure it using two simple dual-clock
memories.

The advantage of this method is that the simple dual-port blocks support frequencies
up to 1 GHz. The disadvantage is the doubling of the number of memory blocks
required to implement your memory.
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Figure 64. Intel Arria® 10 True Dual-Port Memory Implementation
Previous versions of the Intel Quartus Prime Pro Edition software generate this true dual-port memory
structure for Intel Arria® 10 devices.

Example 11. Dual Port, Dual Clock Memory Implementation

module true_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
    input [(DATA_WIDTH-1):0] data_a, data_b,
    input [(ADDR_WIDTH-1):0] addr_a, addr_b,
    input we_a, we_b, clk_a, clk_b,
    output reg [(DATA_WIDTH-1):0] q_a, q_b
);

    // Declare the RAM variable
    reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

    always @ (posedge clk_a)
    begin
        // Port A 
        if (we_a) 
        begin
            ram[addr_a] <= data_a;
            q_a <= data_a;
        end
        else 
        begin
            q_a <= ram[addr_a];
        end 
    end

    always @ (posedge clk_b)
    begin
        // Port B 
        if (we_b) 
        begin
            ram[addr_b] <= data_b;
            q_b <= data_b;
        end
        else 
        begin
            q_b <= ram[addr_b];
        end 
    end

endmodule
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Synchronizing dual-port memory that uses different write clocks can be difficult.
Ensure that both ports do not simultaneously write to a given address. In many
designs the dual-port memory often performs a write operation on one of the ports,
followed by two read operations using both ports (1W2R). You can model this behavior
by using two simple dual-port memories. In simple dual-port memories, a write
operation always writes in both memories, while a read operation is port dependent.

2.4.2.9.3. Simple Dual-Port Memory Example

Using two simple dual-port memories can double the use of M20K blocks in the device.
However, this memory structure can perform at a frequency up to 1 GHz. This
frequency is not possible when using true dual-port memory with independent clocks
in Intel Stratix 10 devices.

Figure 65. Simple Dual-Port Memory Implementation

You can achieve similar frequency results by inferring simple dual-port memory in RTL,
rather than by instantiation in the GUI.

Example 12. Simple Dual-Port RAM Inference

module simple_dual_port_ram_with_SDPs
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
        input [(DATA_WIDTH-1):0] wrdata,
        input [(ADDR_WIDTH-1):0] wraddr, rdaddr,
        input we_a, wrclock, rdclock,
        output reg [(DATA_WIDTH-1):0] q_a
);

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge wrclock)
begin
        // Port A  is for writing only
        if (we_a)
        begin
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        ram[wraddr] <= wrdata;
        end
end

always @ (posedge rdclock)
begin
// Port B is for reading only
begin
q_a <= ram[rdaddr];
end
end
endmodule

Example 13. True Dual-Port RAM Behavior Emulation

module test (wrdata, wraddr, rdaddr_a, rdaddr_b, 
    clk_a, clk_b, we_a, q_a, q_b);
    
    input [7:0] wrdata;
    input clk_a, clk_b, we_a;
    input [5:0] wraddr, rdaddr_a, rdaddr_b;
    output [7:0] q_a, q_b;
    
    simple_dual_port_ram_with_SDPs myRam1 (
        .wrdata(wrdata),
        .wraddr(wraddr),
        .rdaddr(rdaddr_a),
        .we_a(we_a),
        .wrclock(clk_a), .rdclock(clk_b),
        .q_a(q_a)
        );

    simple_dual_port_ram_with_SDPs myRam2 (
        .wrdata(wrdata),
        .wraddr(wraddr),
        .rdaddr(rdaddr_b),
        .we_a(we_a),
        .wrclock(clk_a), .rdclock(clk_a),
        .q_a(q_b)
        );
        
endmodule

2.4.2.9.4. Memory Mixed Port Width Ratio Limits

Intel Stratix 10 device block RAMs enable clocks speeds of up to 1GHz. The new RAM
block design is more restrictive with respect to use of mixed ports data width. Intel
Stratix 10 device block RAMs do not support 1/32, 1/16, or 1/8 mixed port ratios. The
only valid ratios are 1, ½, and ¼ mixed port ratios. The Compiler generates an error
message for implementation of invalid mixed port ratios.

When migrating a design that uses invalid port width ratios for Intel Stratix 10
devices, modify the RTL to create the desired ratio.
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Figure 66. Dual-Port Memory with Invalid 1/8 Mixed Port Ratio

To create a functionally equivalent design for Intel Stratix 10 devices, create and
combine smaller memories with valid mixed port width ratios. For example, the
following steps implement a mixed port width ratio:

1. Create two memories with ¼ mixed port width ratio by instantiating the 2-Ports
memory IP core from the IP Catalog.

2. Define write enable logic to ping-pong writing between the two memories.

3. Interleave the output of the memories to rebuild a 1/8 ratio output.

Figure 67. 1/8 Width Ratio Example

This example shows the interleaving of two memories and the write logic. The chosen write logic uses the least
significant bit of the write address to decide which memory to write. Even addresses write in memory mem_A,
odd addresses write in memory mem_B.

Because of the scheme that controls writing to the memories, carefully reconstruct the
full 64-bit output during a write. You must account for the interleaving of the
individual 8-bit words in the two memories.
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Figure 68. Memory Output Descrambling Example

This example shows the descrambled output when attempting to read at address 0h0.

The following RTL examples implement the extra stage to descramble the data from
memory on the read side.

Example 14. Top-Level Descramble RTL Code

module test 
#(    parameter WR_DATA_WIDTH = 8,
        parameter RD_DATA_WIDTH = 64,
        parameter WR_DEPTH = 64,
        parameter RD_DEPTH = 4,
        parameter WR_ADDR_WIDTH = 6,
        parameter RD_ADDR_WIDTH = 4
)(
    data, wraddress, rdaddress,    wren,
    wrclock, rdclock,    q
);

input    [WR_DATA_WIDTH-1:0]    data;
input    [WR_ADDR_WIDTH-1:0]    wraddress;
input    [RD_ADDR_WIDTH-1:0]    rdaddress;
input        wren;
input        wrclock;
input        rdclock;
output    [RD_DATA_WIDTH-1:0]    q;

wire wrena, wrenb;
wire [(RD_DATA_WIDTH/2)-1:0] q_A, q_B;

memorySelect memWriteSelect (
    .wraddress_lsb(wraddress[0]),
    .wren(wren),
    .wrena(wrena),
    .wrenb(wrenb)
);

myMemory mem_A (
    .data(data),
    .wraddress(wraddress),
    .rdaddress(rdaddress),
    .wren(wrena),
    .wrclock(wrclock),
    .rdclock(rdclock),
    .q(q_A)
);

myMemory mem_B (
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    .data(data),
    .wraddress(wraddress),
    .rdaddress(rdaddress),
    .wren(wrenb),
    .wrclock(wrclock),
    .rdclock(rdclock),
    .q(q_B)
);

descrambler #(
    .WR_WIDTH(WR_DATA_WIDTH),
    .RD_WIDTH(RD_DATA_WIDTH)
) outputDescrambler (
    .qA(q_A),
    .qB(q_B),
    .qDescrambled(q)
);

endmodule 

Example 15. Supporting RTL Code

module memorySelect (wraddress_lsb, wren, wrena, wrenb);
    input wraddress_lsb;
    input wren;
    output wrena, wrenb;

    assign wrena = !wraddress_lsb && wren;
    assign wrenb = wraddress_lsb && wren;
endmodule

module descrambler #(
    parameter WR_WIDTH = 8,
    parameter RD_WIDTH = 64
) (
    input [(RD_WIDTH/2)-1 : 0] qA,
    input [(RD_WIDTH/2)-1 : 0] qB,
    output [RD_WIDTH:0] qDescrambled
);

    genvar i;
    generate
      for (i=WR_WIDTH*2; i<=RD_WIDTH; i += WR_WIDTH*2) begin: descramble
         assign qDescrambled[i-WR_WIDTH-1:i-(WR_WIDTH*2)] = qA[(i/2)-1:(i/2)-
WR_WIDTH];
      assign qDescrambled[i-1:i-WR_WIDTH] = qB[(i/2)-1:(i/2)-WR_WIDTH];
    end
  endgenerate

endmodule 

2.4.2.9.5. Unregistered RAM Outputs

To achieve the highest performance, register the output of memory blocks before
using the data in any combinational logic. Driving combinational logic directly, with
unregistered memory outputs, can result in a critical chain with insufficient registers.

You can unknowingly use unregistered memory outputs, followed by combinational
logic, if you implement a RAM using the read-during-write new data mode. The
Compiler implements this mode with soft logic outside of the memory block that
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compares the read and write addresses. This mode muxes the write data straight to
the output. If you want to achieve the highest performance, do not use the read-
during-write new data mode.

2.4.2.10. DSP Blocks

DSP blocks support frequencies up to 1 GHz. However, you must use all of the
registers, including the input register, two stages of pipeline registers, and the output
register.

2.4.2.11. General Logic

Avoid using one-line logic functions that while structurally sound, generate multiple
levels of logic. The only exception to this is adding a couple of pipeline registers on
either side, so that Hyper-Retiming can retime through the cloud of logic.

2.4.2.12. Modulus and Division

The modulus and division operators are costly in terms of device area and speed
performance, unless they use powers of two. If possible, use an implementation that
avoids a modulus or division operator. The Round Robin Scheduler topic shows the
replacement of a modulus operator with a simple shift, resulting in a dramatic
performance increase.

2.4.2.13. Resets

Use resets for circuits with loops in monitoring logic to detect erroneous conditions,
and pipeline the reset condition.

2.4.2.14. Hardware Re-use

To resolve loops caused by hardware re-use, unroll the loops.

2.4.2.15. Algorithmic Requirements

These loops can be difficult to improve, but can sometimes benefit from a combination
of optimization techniques described in the General Optimization Techniques section.

2.4.2.16. FIFOs

FIFOs always contain loops. There are efficient methods to implement the internal
FIFO logic that provide excellent performance.

One feature of some FIFOs is a bypass mode where data bypasses the internal
memory completely when the FIFO is empty. If you implement this mode in any of
your FIFOs, be aware of the possible performance limitations inherent in unregistered
memory outputs.

2.4.2.17. Ternary Adders

Implementing ternary adders can increase resource usage in Intel Stratix 10 devices.
However, unless your design heavily relies on ternary adder structure, additional
resource usage may not be noticeable at the top design level. However, a review of
the design level at which you add a ternary adder structure can show an increase in
LUT count. In addition, the amount of resource increase directly correlates to the size
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of the adder. Small width adders (size < 16 bits) do not cause much resource
difference. However, increasing the size of the adder increases the resource count
differential for Intel Stratix 10 devices, in comparison with older FPGA technology.

Ternary Adder RTL Code

module ternary_adder (CLK, A, B, C, OUT);
    parameter WIDTH = 16;
    input [WIDTH-1:0] A, B, C;
    input               CLK;
    output [WIDTH-1:0] OUT;

    wire [WIDTH-1:0]    sum1;    
    reg [WIDTH-1:0]   sumreg1;

       // 3-bit additions
    assign               sum1 = A + B + C;        
    assign               OUT = sumreg1;

    // Registers
    always @ (posedge CLK)
        begin
            sumreg1 <= sum1;
        end
endmodule

This increase in device resource use occurs because the Intel Stratix 10 ALM does not
have a shared arithmetic mode that previous FPGA technologies have. The ALM in
shared arithmetic mode can implement a three-input add in the ALM. By contrast, the
Intel Stratix 10 ALM can implement only a two-input add in the ALM.

Figure 69. RTL View of Intel Arria 10 versus Intel Stratix 10 to add 2 LSBs from a three
8-bit input adder
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In shared arithmetic mode, the Intel Arria 10 ALM allows a three-input adder to use
three adaptive LUT (ALUT) inputs: CIN, SHAREIN, COUT, SUMOUT, and SHAREOUT.
The absence of the shared arithmetic mode restricts ALM use with only two ALUT
inputs: CIN, COUT and SUMOUT. The figure below shows the resulting implementation
of a ternary adder on both Intel Arria 10 and Intel Stratix 10 FPGAs.
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Figure 70. Intel Arria 10: ALMs used to add 2 LSBs from a three 8-bit input adder

Technology Map Viewer (Intel Arria 10 Design)

Chip Planner

Figure 71. Intel Stratix 10: ALMs used to add 2 LSBs from a three 8-bit input adder

Technology Map Viewer (Intel Stratix 10 Design) 

Chip Planner

2. RTL Design Guidelines

S10HPHB | 2018.10.04

Intel® Stratix® 10 High-Performance Design Handbook Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3. Compiling Intel Stratix 10 Designs
The Intel Quartus Prime Pro Edition Compiler is optimized take full advantage of the
Intel Hyperflex FPGA architecture in Intel Stratix 10 devices. The Intel Quartus Prime
Pro Edition Compiler support the Hyper-Aware design flow, in which the Compiler
maximizes retiming of registers into Hyper-Registers.

Hyper-Aware Design Flow

Use the Hyper-Aware design flow to shorten design cycles and optimize performance.
The Hyper-Aware design flow combines automated register retiming, with
implementation of targeted timing closure recommendations (Fast Forward
compilation), to maximize use of Hyper-Registers and drive the highest performance
for Intel Stratix 10 designs.

Figure 72. Hyper-Aware Design Flow
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A key innovation of the Intel Stratix 10 architecture is the addition of multiple Hyper-
Registers in every routing segment and block input. Maximizing the use of Hyper-
Registers improves design performance. The prevalence of Hyper-Registers improves
balance of time delays between registers and mitigates critical path delays. The
Compiler's Retime stage moves registers out of ALMs and retimes them into Hyper-
Registers, wherever advantageous. Register retiming runs automatically during the
Fitter, requires minimal effort, and can result in significant performance improvement.
Following retiming, the Finalize stage corrects connections with hold violations.

Fast Forward Compilation

If you require optimization beyond simple register retiming, run Fast Forward
compilation to generate timing closure recommendations that break key performance
bottlenecks that prevent further movement into Hyper-Registers. For example, Fast
Forward recommends removing specific retiming restrictions that prevent further
retiming into Hyper-Registers. Fast Forward compilation shows precisely where to
make the most impact with RTL changes, and reports the predictive performance
benefits you can expect from removing restrictions and retiming into Hyper-Registers

S10HPHB | 2018.10.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


(Hyper-Retiming). The Fitter does not automatically retime registers across RAM and
DSP blocks. However, Fast Forward analysis shows the potential performance benefit
from this optimization.

Figure 73. Hyper-Register Architecture
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Fast-Forward compilation identifies the best location to add pipeline stages (Hyper-
Pipelining), and the expected performance benefit in each case. After you modify the
RTL to place pipeline stages at the boundaries of each clock domain, the Retime
stage automatically places the registers within the clock domain at the optimal
locations to maximize performance. Implement the recommendations in RTL to
achieve similar results. After implementing any changes, re-run the Retime stage
until the results meet performance and timing requirements. Fast Forward compilation
does not run automatically as part of a full compilation. Enable or run Fast Forward
compilation in the Compilation Dashboard.

Table 6. Optimization Steps

Optimization Step Technique Description

Step 1 Register Retiming The Retime stage performs register retiming and moves existing
registers into Hyper-Registers to increase performance by removing
retiming restrictions and eliminating critical paths.

Step 2 Fast Forward Compile Compiler generates design-specific timing closure recommendations
and predicts performance improvement with removal of all barriers
to Hyper-Registers (Hyper-Retiming).

Step 3 Hyper-Pipelining Use Fast Forward compilation to identify where to add new registers
and pipeline stages in RTL.

Step 4 Hyper-Optimization Design optimization beyond Hyper-Retiming and Hyper-Pipelining,
such as restructuring loops, removing control logic limits, and
reducing the delay along long paths.

Related Information

Compiler User Guide
For complete step by step information about compiling Intel Stratix 10 designs.
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4. Design Example Walk-Through
This walk-through illustrates performance optimization after Fast-Forward compilation
and Hyper-Retiming techniques on a real-world Median Filter image processing design.
Fast Forward compilation generates recommendations for design RTL changes to
achieve the highest performance with the Intel Hyperflex architecture. This walk-
through describes project setup, design compilation, results analysis, and RTL
optimization.

Figure 74. Median Filter Operational Diagram
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4.1. Median Filter Design Example

The Median filter is a non-linear filter that removes impulsive noise from an image.
These filters require the highest performance. The design requirement is to perform
real time image processing on a factory floor.

You can find the supporting design example project and design files for this walk-
through at https://www.altera.com/content/dam/altera-www/global/en_US/others/
literature/tt/Median_filter_17_1.zip. You can download and unzip the verified project,
constraint, design, RTL from the median.zip to complete this walkthrough.(1)
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Figure 75. Before and After Images Processed with Median Filtering

Median Filter Design Example Files

After download and extraction, the Median filter design example .zip file contains the
following directories under the Median_filter_design_example_<version>
directory:

Table 7. Median Filter Design Example Files

File Name Description

Base Contains the original version of the design and project files.

Final Contains the final version of the design and project files with all RTL
optimizations in place.

fpga-median.ORIGINAL Contains the original OpenSource version of the Median filter and the associated
research paper.

Step_1 Incremental RTL design changes and project files for Fast Forward optimization
step 1.

Step_2 Incremental RTL design changes and project files for Fast Forward optimization
step 2.

This walk-through covers the following steps:

1. Step 1: Compile the Base Design on page 64

2. Step 2: Add Pipeline Stages and Remove Asynchronous Resets on page 66

3. Step 3: Add More Pipeline Stages and Remove All Asynchronous Resets on page
68

4. Step 4: Optimize Short Path and Long Path Conditions on page 70

4.1.1. Step 1: Compile the Base Design

Follow these steps to compile the base design of the median project:

(1) The paper An FPGA-Based Implementation for Median Filtering Meeting the Real-Time
Requirements of Automated Visual Inspection Systems first presented this design at the 10th
Mediterranean Conference on Control and Automation, Lisbon, Portugal, 2002. The design is
publicly available under GNU General Public License that the Free Software Foundation
publishes.

4. Design Example Walk-Through
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1. In the Intel Quartus Prime Pro Edition software, click File ➤ Open Project and
select the Median_filter_<version>/Base/median.qpf project file. The
base version of the design example opens.

2. To compile the base design, click Compile Design on the Compilation Dashboard.
By default, the Fast Forward Timing Recommendations stage runs during the
Fitter, and generates detailed recommendations in the Fast Forward Timing
Closure Recommendations ➤ Fast Forward Details report.

Fast Forward 
Flow

3. In the Fast Forward Details report, view the compilation results for the Clk clock
domain.

Fast Forward reports asynchronous registers,
a need for pipeline stages, and short path/long path combinations

4. Design Example Walk-Through
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The report indicates a Base Performance of 120 MHz, with the following design
conditions limiting further optimization:

• The design contains asynchronous resets (clears).

• Additional pipeline stages (registers) can improve performance.

• Short path and long path combinations limit further optimization.

The following steps describe implementation of these recommendations in the
design RTL.

4.1.2. Step 2: Add Pipeline Stages and Remove Asynchronous Resets

This first optimization step adds five levels of pipeline registers in the design locations
that Fast Forward suggests, and removes the asynchronous resets present in a design
module. This optimization step increases fMAX performance to the level that Fast
Forward estimates.

To add pipeline stages and remove asynchronous resets from the design:

1. Open the Median_filter_<version>/Step_1/rtl/hyper_pipe.sv. This file
defines a parameterizable hyper_pipe pipeline component that you can easily
use in any design. The following shows this component's code with
parameterizable width (WIDTH) and depth (NUM_PIPES):

module hyper_pipe #(
    parameter WIDTH = 1,
    parameter NUM_PIPES = 1)

(
input clk,
input [WIDTH-1:0] din,
output [WIDTH-1:0] dout);

reg [WIDTH-1:0] hp [NUM_PIPES-1:0];

genvar i;
generate
  if (NUM_PIPES == 0) begin
    assign dout = din;
  end
  else begin
    always @ (posedge clk) 
      hp[0] <= din;
      for (i=1;i < NUM_PIPES;i++) begin : hregs
        always @ ( posedge clk) begin
          hp[i] <= hp[i-1];
        end
      end
    assign dout = hp[NUM_PIPES-1];
  end
endgenerate
endmodule

2. Use the parameterizable module to add some levels of pipeline stages to the
locations that Fast Forward recommends. The following example shows how to add
latency before the q output of the dff_3_pipe module:

. . .

hyper_pipe #( 
    .WIDTH (DATA_WIDTH),
    .NUM_PIPES(4)
) hp_d0 (
    .clk(clk),

4. Design Example Walk-Through
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    .din(d0),
    .dout(q0_int)
);

. . .
always @(posedge clk)
begin : register_bank_3u
    if(~rst_n) begin
        q0 <= {DATA_WIDTH{1'b0}};
        q1 <= {DATA_WIDTH{1'b0}};
        q2 <= {DATA_WIDTH{1'b0}};
    end else begin
          q0 <= q0_int;
          q1 <= q1_int;
          q2 <= q2_int;
    end
end

3. Remove the asynchronous resets inside the dff_3_pipe module by simply
changing the registers to synchronous registers, as shown below. Refer to Reset
Strategies on page 12 for general examples of efficient reset implementations.

always @(posedge clk or negedge rst_n) // Asynchronous reset

begin : register_bank_3u
    if(~rst_n) begin
        q0 <= {DATA_WIDTH{1'b0}};
        q1 <= {DATA_WIDTH{1'b0}};
        q2 <= {DATA_WIDTH{1'b0}};
    end else begin
        q0_reg <= d0;
        q1_reg <= d1;
        q2_reg <= d2;
          q0 <= q0_reg;
          q1 <= q1_reg;
          q2 <= q2_reg;
    end
end

always @(posedge clk)
begin : register_bank_3u
    if(~rst_n_int) begin  // Synchronous reset

        q0 <= {DATA_WIDTH{1'b0}};
        q1 <= {DATA_WIDTH{1'b0}};
        q2 <= {DATA_WIDTH{1'b0}};
    end else begin
          q0 <= q0_int;
          q1 <= q1_int;
          q2 <= q2_int;
    end
end

These RTL changes add five levels of pipeline to the inputs of the
median_wrapper design (word0, word1, and word2 buses), and five levels of
pipeline into the dff_3_pipe module. The following steps show the results of
these changes.

4. To implement the changes, save all design changes and click Compile Design on
the Compilation Dashboard.

5. Following compilation, once again view the compilation results for the Clk clock
domain in the Fast Forward Details report.

4. Design Example Walk-Through
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The report shows the effect of the RTL changes on the Base Performance fMAX of
the design. The design performance now increases to 495 MHz.

The report indicates that you can achieve further performance improvement by
removing more asynchronous registers, adding more pipeline registers, and
addressing optimization limits of short path and long path. The following steps
describe implementation of these recommendations in the design RTL.

Note: As an alternative to completing the preceding steps, you can open and
compile the Median_filter_<version>/Step_1/median.qpf project
file that already includes these changes, and then observe the results.

Related Information

• Removing Asynchronous Resets on page 12

• Hyper-Pipelining (Add Pipeline Registers) on page 25

4.1.3. Step 3: Add More Pipeline Stages and Remove All Asynchronous
Resets

The Fast Forward Timing Closure Recommendations suggest further changes that you
can make to enable additional optimization during retiming. The Optimizations
Analyzed tab reports the specific registers in the analysis for you to modify. The
report indicates that state_machine.v still contains asynchronous resets that limit
optimization. Follow these steps to remove remaining asynchronous resets in
state_machine.v, and add more pipeline stages:

1. Use the techniques and examples in Step 2: Add Pipeline Stages and Remove
Asynchronous Resets on page 66 to change all asynchronous resets to
synchronous resets in state_machine.v. These resets are in multiple locations
in the file, as the report indicates.

2. In the Fast Forward Details report, select the last optimization row before the Fast
Forward Limit row, and then click the Optimizations Analyzed tab.
Optimizations Analyzed indicates the location and number of registers to add.

4. Design Example Walk-Through
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3. Use the techniques and examples in Step 2: Add Pipeline Stages and Remove
Asynchronous Resets on page 66 to add the number of pipeline stages at the
locations in the Optimizations Analyzed tab.

4. Once again, compile the design and view the Fast Forward Details report. The
performance increase is similar to the estimates, but short path and long path
combinations still limit further performance. The next step addresses this
performance limit.

Note: As an alternative to completing the preceding steps, you can open and
compile the Median_filter_<version>/Step_2/median.qpf project
file that already includes these changes, and then observe the results.

4. Design Example Walk-Through
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4.1.4. Step 4: Optimize Short Path and Long Path Conditions

After removing asynchronous registers and adding pipeline stages, the Fast Forward
Details report suggests that short path and long path conditions limit further
optimization. In this example, the longest path limits the fMAX for this specific clock
domain. To increase the performance, follow these steps to reduce the length of the
longest path for this clock domain.

1. To view the long path information, click the Critical Chain Details tab in the Fast
Forward Details report. Review the structure of the logic around this path, and
consider the associated RTL code. This path involves the node module of the
node.v file. The critical path relates to the computation of registers data_hi and
data_lo, which are part of several comparators.

The following shows the original RTL for this path:

always @(*)
  begin : comparator
    if(data_a < data_b) begin
      sel0 = 1'b0; // data_a : lo / data_b : hi
    end else begin
      sel0 = 1'b1; // data_b : lo / data_a : hi
    end
  end

always @(*)
    begin : mux_lo_hi
        case (sel0)
            1'b0 :
            begin
                if(LOW_MUX == 1)
                    data_lo = data_a;
                if(HI_MUX == 1)
                    data_hi = data_b;
            end
            1'b1 :
            begin
                if(LOW_MUX == 1)

4. Design Example Walk-Through
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                    data_lo = data_b;
                if(HI_MUX == 1)
                    data_hi = data_a;
            end
            default :
            begin
                data_lo = {DATA_WIDTH{1'b0}};
                data_hi = {DATA_WIDTH{1'b0}};
            end
        endcase
    end

The Compiler infers the following logic from this RTL:

• A comparator that creates the sel0 signal

• A pair of muxes that create the data_hi and data_lo signals, as the
following figure shows:

Figure 76. Node Component Connections

2. Review the pixel_network.v file that instantiates the node module. The node
module's outputs are unconnected when you do not use them. These unconnected
outputs result in no use of the LOW_MUX or HI_MUX code. Rather than inferring
muxes, use bitwise logic operation to compute the values of the data_hi and
data_lo signals, as the following example shows:

reg [DATA_WIDTH-1:0] sel0;

always @(*)
  begin : comparator
    if(data_a < data_b) begin
      sel0 = {DATA_WIDTH{1'b0}}; // data_a : lo / data_b : hi
    end else begin
      sel0 = {DATA_WIDTH{1'b1}}; // data_b : lo / data_a : hi
 end
    
 data_lo = (data_b & sel0) | (data_a & sel0);
 data_hi = (data_a & sel0) | (data_b & sel0);
end

3. Once again, compile the design and view the Fast Forward Details report. The
performance increase is similar to the estimates, and short path and long path
combinations no longer limit further performance. After this step, only a logical
loop limits further performance.

4. Design Example Walk-Through
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Figure 77. Short Path and Long Path Conditions Optimized

Note: As an alternative to completing the preceding steps, you can open and
compile the Median_filter_<version>/Final/median.qpf project file
that already includes these changes, and then observe the results.

4. Design Example Walk-Through
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5. Retiming Restrictions and Workarounds
The Compiler identifies the register chains in your design that limit further
optimization through Hyper-Retiming. The Compiler refers to these related register-to-
register paths as a critical chain. The fMAX of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path, and quantization
delays of indivisible circuit elements like routing wires. There are a variety of
situations that cause retiming restrictions. Retiming restrictions exist because of
hardware characteristics, software behavior, or are inherent to the design. The
Retiming Limit Details report the limiting reasons preventing further retiming, and
the registers and combinational nodes that comprise the chain. The Fast Forward
recommendations list the steps you can take to remove critical chains and enable
additional register retiming.

Figure 78. Sample Critical Chain
In this figure the red line represents a same critical chain. Timing restrictions prevent register A from retiming
forward. Timing restrictions also prevent register B from retiming backwards. A loop occurs when register A
and register B are the same register.

A B

Fast Forward recommendations for the critical chain include:

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Combinational logic, sub-optimal placement, and
routing congestion, are among the reasons for path delay..

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths are the parts
of the critical chain that have the most delay between registers.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

Particular registers in critical chains can limit performance for many other reasons.
The Compiler classifies the following types of reasons that limit further optimization by
retiming:

• Insufficient Registers

• Loop

• Short path/long path

• Path limit

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.
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Table 8. Hyper-Register Support for Various Design Conditions

Design Condition Hyper-Register Support

Initial conditions that cannot be preserved Hyper-Registers do have initial condition support. However, you cannot
perform some retiming operations while preserving the initial condition stage
of all registers (that is, the merging and duplicating of Hyper-Registers). If
this condition occurs in the design, the Fitter does not retime those registers.
This retiming limit ensures that the register retiming does not affect design
functionality.

Register has an asynchronous clear Hyper-Registers support only data and clock inputs. Hyper-Registers do not
have control signals such as asynchronous clears, presets, or enables. The
Fitter cannot retime any register that has an asynchronous clear. Use
asynchronous clears only when necessary, such as state machines or control
logic. Often, you can avoid or remove asynchronous clears from large parts
of a datapath.

Register drives an asynchronous signal This design condition is inherent to any design that uses asynchronous
resets. Focus on reducing the number of registers that are reset with an
asynchronous clear.

Register has don’t touch or preserve
attributes

The Compiler does not retime registers with these attributes. If you use the
preserve attribute to manage register duplication for high fan-out signals, try
removing the preserve attribute. The Compiler may be able to retime the
high fan-out register along each of the routing paths to its destinations.
Alternatively, use the dont_merge attribute. The Compiler retimes registers
in ALMs, DDIOs, single port RAMs, and DSP blocks.

Register is a clock source This design condition is uncommon, especially for performance-critical parts
of a design. If this retiming restriction prevents you from achieving the
required performance, consider whether a PLL can generate the clock, rather
than a register.

Register is a partition boundary This condition is inherent to any design that uses design partitions. If this
retiming restriction prevents you from achieving the required performance,
add additional registers inside the partition boundary for Hyper-Retiming.

Register is a block type modified by an
ECO operation

This restriction is uncommon. Avoid the restriction by making the functional
change in the design source and recompiling, rather than performing an
ECO.

Register location is an unknown block This restriction is uncommon. You can often work around this condition by
adding extra registers adjacent to the specified block type.

Register is described in the RTL as a latch Hyper-Registers cannot implement latches. The Compiler infers latches
because of RTL coding issues, such as incomplete assignments. If you do not
intend to implement a latch, change the RTL.

Register location is at an I/O boundary All designs contain I/O, but you can add additional pipeline stages next to
the I/O boundary for Hyper-Retiming.

Combinational node is fed by a special
source

This condition is uncommon, especially for performance-critical parts of a
design.

Register is driven by a locally routed clock Only the dedicated clock network clocks Hyper-Registers. Using the routing
fabric to distribute clock signals is uncommon, especially for performance-
critical parts of a design. Consider implementing a small clock region instead.

Register is a timing exception end-point The Compiler does not retime registers that are sources or destinations
of .sdc constraints.

continued...   
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Design Condition Hyper-Register Support

Register with inverted input or output This condition is uncommon.

Register is part of a synchronizer chain The Fitter optimizes synchronizer chains to increase the mean time between
failure (MTBF), and the Compiler does not retime registers that are detected
or marked as part of a synchronizer chain. Add more pipeline stages at the
clock domain boundary adjacent to the synchronizer chain to provide
flexibility for the retiming.

Register with multiple period requirements
for paths that start or end at the register
(cross-clock boundary)

This situation occurs at any cross-clock boundary, where a register latches
data on a clock at one frequency, and fans out to registers running at
another frequency. The Compiler does not retime registers at cross-clock
boundaries. Consider adding additional pipeline stages at one side of the
clock domain boundary, or the other, to provide flexibility for retiming.

The following topics describes RTL design techniques that you can use to remove
retiming restrictions.

Related Information

Timing Constraint Considerations on page 17

5.1. Interpreting Critical Chain Reports

The Compiler identifies the register chains in your design that limit further
optimization through Hyper-Retiming. The Compiler refers to these related register-to-
register paths as a critical chain. The fMAX of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path, and quantization
delays of indivisible circuit elements like routing wires.

The Retiming Limit Details report the limiting reasons preventing further retiming, and
the registers and combinational nodes that comprise the chain. The Fast Forward
recommendations list the steps you can take to remove critical chains and enable
additional register retiming.

Figure 79. Sample Critical Chain
In this figure the red line represents the same critical chain. Timing restrictions prevent register A from
retiming forward. Timing restrictions also prevent register B from retiming backwards. A loop occurs when
register A and register B are the same register.

A B

Fast Forward recommendations include:

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Combinational logic, sub-optimal placement, and
routing congestion, are among the reasons for path delay..

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths are the parts
of the critical chain that have the most delay between registers.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

Particular registers in critical chains can limit performance for many other reasons.

5. Retiming Restrictions and Workarounds
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The Compiler classifies the following types of reasons that limit further optimization by
retiming:

• Insufficient Registers

• Loop

• Short path/long path

• Path limit

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.

5.1.1. Insufficient Registers

When the Compiler cannot retime registers at either end of the chain, but adding
more registers would improve performance, the Retiming Limit Details report shows
Insufficient Registers as the Limiting Reason.

Figure 80. Insufficient Registers Reported as Limiting Reason

5.1.1.1. Insufficient Registers Example

The following screenshots show the relevant parts of the Retiming Limit Details report
and the logic in the critical chain.

The Retiming Limit Details report indicates that the performance of the clk domain
fails to meet the timing requirement .

Figure 81. Retiming Limit Details

5. Retiming Restrictions and Workarounds
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The circuit has an inefficient crossbar switch implemented with one stage of input
registers, one stage of output registers, and purely combinational logic to route the
signals. The input and output registers have asynchronous resets. Because the
multiplexer in the crossbar is not pipelined, the implementation is inefficient and the
performance is limited.

Figure 82. Critical Chain in Post-Fit Technology Map Viewer
The critical chain goes from the input register, through a combinational logic cloud, to the output register. The
critical chain contains only one register-to-register path.

Figure 83. Critical Chain with Insufficient Registers Reported During Hyper-Retiming
In the following figure, line 1 shows a timing restriction in the Path Info column. Line 33 also lists a retiming
restriction. The asynchronous resets on the two registers cause the retiming restrictions.
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The following table shows the correlation between critical chain elements and the
Technology Map Viewer examples.

Table 9. Correlation Between Critical Chain Elements and Technology Map Viewer

Line Numbers in Critical Chain
Report

Circuit Element in the Technology Map Viewer

1-2 din_reg[0][0] source register and its output

3-9 FPGA routing fabric between din_reg[0][0] and Mux_0~20, the first stage of mux in
the crossbar

10-11 Combinational logic implementing Mux_0~20

12-15 Routing between Mux_0~20 and Mux_0~24, the second stage of mux in the crossbar

16-17 Combinational logic implementing Mux0~24

18-20 Routing between Mux0~24 and Mux0~40, the third stage of mux in the crossbar

21-22 Combinational logic implementing Mux_0~40

23-29 Routing between Mux_0~40 and Mux_0~41, the fourth stage of mux in the crossbar

30-31 Combinational logic implementing Mux_0~41

32-33 dout_reg[16][0] destination register

In the critical chain report in Figure 83 on page 77, there are 11 lines that list bypass
Hyper-Register in the Register column. Bypassed Hyper-Register indicates the
location of a Hyper-Register for use if there are more registers in the chain, or if there
are no restrictions on the endpoints. If there are no restrictions on the endpoints, the
Compiler can retime the endpoint registers, or retime other registers from outside the
critical chain into the critical chain. If the RTL design contains more registers through
the crossbar switch, there are more registers that the Compiler can retime. Fast
Forward compilation can also insert more registers to increase the performance.

In the critical chain report, lines 2 to 32 list "Long Path (Critical)" in the Path Info
column. This indicates that the path is too long to run above the listed frequency. The
"Long Path" designation is also related to the Short Path/Long Path type of critical
chain. Refer to the Short Path/Long Path section for more details. The (Critical)
designation exists on one register-to-register segment of a critical chain. The (Critical)
designation indicates that the register-to-register path is the most critical timing path
in the clock domain.

The Register ID column contains a "#1" on line 1, and a "#2" on line 33. The
information in the Register ID column helps interpret more complex critical chains.
For more details, refer to Complex Critical Chains section.

The Element column in Figure 83 on page 77 shows the name of the circuit element
or routing resource at each step in the critical chain. You can right-click the names to
copy them, or cross probe to other parts of the Intel Quartus Prime software with the
Locate option.

Related Information

• Short Path/Long Path on page 79

• Complex Critical Chains on page 88

• Hyper-Retiming (Facilitate Register Movement) on page 10

5. Retiming Restrictions and Workarounds

S10HPHB | 2018.10.04

Intel® Stratix® 10 High-Performance Design Handbook Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.1.1.2. Optimizing Insufficient Registers

Use the Hyper-Pipelining techniques that this documents describes to resolve critical
chains limited by reported insufficient registers.

Related Information

• Hyper-Retiming (Facilitate Register Movement) on page 10

• Hyper-Pipelining (Add Pipeline Registers) on page 25

5.1.1.3. Critical Chains with Dual Clock Memories

Hyper-Retiming does not retime registers through dual clock memories. Therefore, the
Compiler can report a functional block between two dual clock FIFOs or memories, as
the critical chain. The report specifies a limiting reason of Insufficient Registers, even
after Fast Forward compile.

If the limiting reason is Insufficient Registers, and the chain is between dual clock
memories, you can add pipeline stages to the functional block. Alternatively, add a
bank of registers in the RTL, and then allow the Compiler to balance the registers.
Refer to the Hyper-Pipelining (Add Pipeline Registers), Add Pipeline Stages and
Remove Asynchronous Resets, and Appendix A: Parameterizable Pipeline Modules for
a pipelining techniques and examples.

A functional block between two single-clock FIFOs is not affected by this behavior,
because the FIFO memories are single-clock. The Compiler can retime registers across
a single-clock memory. Additionally, a functional block between a dual-clock FIFO and
registered device I/Os is not affected by this behavior, because the Fast Forward
Compile can pull registers into the functional block through the registers at the device
I/Os.

Related Information

• Appendix A: Parameterizable Pipeline Modules on page 107

• Hyper-Pipelining (Add Pipeline Registers) on page 25

• Step 2: Add Pipeline Stages and Remove Asynchronous Resets on page 66

5.1.2.  Short Path/Long Path

When the critical chain has related paths with conflicting characteristics, where one
path can improve performance with more registers, and another path has no place for
additional registers, the limiting reason reported is Short Path/Long Path.

A critical chain is categorized as short path/long path when there are conflicting
optimization goals for Hyper-Retiming. Short paths and long paths are always
connected in some way, with at least one common node. Retimed registers must
maintain functional correctness and ensure identical relative latency through both
critical chains. This requirement can result in conflicting optimization goals. Therefore,
one segment (the long path) can accept the retiming move, but the other segment
(the short path) cannot accept the retiming move. The retiming move is typically
retiming an additional register into the short and long paths.
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Critical chains are categorized as short path/long path for the following reasons:

• When Hyper-Register locations are not available on the short path to retime into.

• When retiming a register into both paths to improve the performance of the long
path does not meet hold time requirement on the short path. Sometimes, short
path/long path critical chains exist as a result of the circuit structures used in a
design, such as broadcast control signals, synchronous clears, and clock enables.

Short path/long path critical chains are a new optimization focus associated with post-
fit retiming. In conventional retiming, the structure of the netlist can be changed
during synthesis or placement and routing. However, during Hyper-Retiming, short
path/long path can occur because the netlist structure, and the placement and routing
cannot be changed.

5.1.2.1.  Hyper-Register Locations Not Available

The Fitter may place the elements in a critical chain segment very close together, or
route them such that there are no Hyper-Register locations available. When all Hyper-
Register locations in a critical chain segment are in use, there are no more locations
available for further optimization.

In the following example, the short path includes two Hyper-Register locations that
are in use. One or more names in the Element column end in _dff, indicating that
the Hyper-Registers in those locations are in use. The _dff represents the D flop-flop.
No other Hyper-Register locations are available for use in that chain segment.
Available Hyper-Register locations indicate status with a bypassed Hyper-Register
entry in the Register column.

Figure 84. Critical Chain Short Path Segment with no Available Hyper-Register Locations

5.1.2.2. Example for Hold Optimization

For some designs, the Register column indicates unusable (hold). This data implies
that you cannot use this register location because the location does not meet hold
time requirements. The Compiler cannot retime (forward or backward) the registers
that occur before or after the register that indicates unusable (hold).
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5.1.2.3. Optimizing Short Path/Long Path

Evaluate the Fast Forward recommendations to optimize performance limitations due
to short path/long path constraints.

5.1.2.4. Add Registers

Manually adding registers on both the short and long paths can be helpful if you can
accommodate the extra latency in the critical chain.

Figure 85. Critical Chain with Alternating Short Path/Long Path

Cannot Retime
Forwards Due
to Short Path

Long Path (LP)
Short Path (SP)

Legend

Cannot Retime
Backwards Due
to Short Path

If you add registers to the four chain segments, the Compiler can optimize the critical
chain. When additional registers are available in the RTL, the Compiler can optimize
their positions.

Figure 86. Sample Short Path/Long Path with Additional Latency

Long Path (LP)
Short Path (SP)

Legend
Manually Added
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5.1.2.5. Duplicate Common Nodes

When the short path/long path critical chain contains common segments originating
from same register, you can duplicate the register so one duplicate feeds the short
path and one duplicate feeds the long path.

Figure 87. Critical Chain with Alternating Short Path/Long Path

Cannot Retime
Forwards Due
to Short Path

Long Path (LP)
Short Path (SP)

Legend

Cannot Retime
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Figure 88. Short Path/Long Path with Two Duplicate Nodes

Long Path (LP)

Short Path (SP)

Legend

Duplicated Nodes

The Fitter can optimize the newly-independent segments separately. The duplicated
registers have common sources themselves, so they are not completely independent,
but the optimization is easier with an extra, independent register in each part of the
critical chain.

You can apply a maximum fan-out synthesis directive to the common source registers.
Use a value of one, because a value greater than one can result in the short and long
path segments having the same source node, which you tried to avoid.
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Alternately, use a synthesis directive to preserve the duplicate registers if you
manually duplicate the common source register in a short path/long path critical
chain. Otherwise, the duplicates may get merged during synthesis. Using a synthesis
directive to preserve the duplicate registers can cause an unintended retiming
restriction. Use a maximum fan-out directive.

5.1.2.6. Data and Control Plane

Sometimes, the long path can be in the data plane, and the short path can be in the
control plane. If you add registers to the data path, change the control logic. This can
be a time-consuming process. In cases where the control logic is based on the number
of clock cycles in the data path, you can add registers in the data path (the long path)
and modify a counter value in the control logic (the short path) to accommodate the
increased number of cycles used to process the data.

5.1.3. Fast Forward Limit

The critical chain has the limiting reason of Path Limit when there are no more Hyper-
Register locations available on the critical path, and the design cannot run any faster
or implement further retiming. Path Limit also indicates reaching a performance limit
of the current place and route result.

The Path Info column displays the information when the critical chain is a Path Limit.
This column indicates that the chain is too long. However, you can improve
performance by retiming a register into the chain. If the report lists no entries for
bypassed Hyper-Register in the Register column, this absence indicates that there
are no Hyper-Register locations available.

Path Limit does not imply that the critical chain reaches the inherent silicon
performance limit. Path Limit indicates that the current place and route result reaches
a performance limit. Another compilation can result in a different placement that
allows Hyper-Retiming to achieve better performance on the particular critical chain.
Typically, path limit occurs when registers do not pack into dedicated input or output
registers in a hard DSP or RAM block.

5.1.3.1. Optimizing Path Limit

Evaluate the Fast Forward recommendations. If your critical chain has a limiting
reason of Path Limit, and the chain is entirely in the core logic and in the routing
elements of the Intel FPGA fabric, the design can run at the maximum performance of
the core fabric. When the critical chain has a limiting reason of Path limit, and chain is
through a DSP block or hard memory block, you can improve performance by
optimizing the path limit.

To optimize path limit, enable the optional input and output registers for DSP blocks
and hard memory blocks. If you do not use the optional input and output registers for
DSP blocks and memory blocks, the locations for the optional registers are not
available for Hyper-Retiming, and do not appear as bypassed Hyper-Registers in the
critical chain. The path limit is the silicon limit of the path, without the optional input
or output registers. You can improve the performance by enabling optional input and
output registers.

Turn on optional registers using the IP parameter editor to parameterize hard DSP or
memory blocks. If you infer DSP or memory functions from your RTL, ensure that you
follow the Recommended HDL Coding Styles to ensure that you use the optional input
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and output registers of the hard blocks. The Compiler does not retime into or out of
DSP and hard memory block registers. Instantiate the optional registers to achieve
maximum performance.

If your critical chain includes true dual port memory, refer to True Dual-Port Memory
for optimizing techniques.

Related Information

• Recommended HDL Coding Styles

• True Dual-Port Memory on page 51

5.1.4. Loops

A loop is a feedback path in a circuit. When a circuit is heavily pipelined, loops are
often a limiting reason to increasing design fMAX through register retiming. A loop may
be very short, containing only a single register or much longer, containing dozens of
registers and combinational logic clouds. A register in a divide-by-two configuration is
a short loop.

Figure 89. Simple Loop

Toggle
FlipFlop

When the critical chain is a feedback loop, register retiming cannot change the
number of registers in a loop without changing functionality. Registers can retime
around a loop without changing functionality, but adding registers to the loop changes
functionality. To explore performance gains, the Fast Forward Compile process adds
registers at particular boundaries of the circuit, such as clock domain boundaries.

Figure 90. FIFO Flow Control Loop
In a FIFO flow control loop, upstream processing stops when the FIFO is full, and downstream processing stops
when the FIFO is empty.

Data
Producer

FIFO

FIFO Full

5. Retiming Restrictions and Workarounds

S10HPHB | 2018.10.04

Intel® Stratix® 10 High-Performance Design Handbook Send Feedback

84

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409959570946
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 91. Counter and Accumulator Loop
In a counter and accumulator loop, a register's new value depends on the old value. This includes variants like
LFSRs (linear feedback shift register) and gray code counters.

Counter

+1

Accumulator

Figure 92. State Machine Loop
In a state machine loop, the next state depends on the current state of the circuit.

S0

S1

S2S3

S4

Figure 93. Reset Circuit Loop
Reset circuit loops include monitoring logic to reset on an error condition.
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Logic
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Use loops to save area through hardware re-use. Components that you re-use over
several cycles typically involve loops. Such components include CRC calculations,
filters, floating point dividers, and word aligners. Closed loop feedback designs, such
as IIR filters and automatic gain control for transmitter power in remote radiohead
designs, also use loops.

5.1.4.1.  Example of Loops Limiting the Critical Chain

The following screenshots show the relevant panels from the Fast Forward Details
report and the logic contained in the critical chain.

Figure 94. Fast Forward Details Report showing Limiting Reason for Hyper-Optimization
is a Loop

In the following figure, the Register ID for the start and end points is the same,
which is #1. This case indicates that the start and end points of the chain are the
same, thereby creating a loop.

Figure 95. Critical Chain with Loop (lines 1-34)
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Figure 96. Critical Chain with Loop (lines 35-65)

Figure 97. Critical Chain in Technology Map Viewer
The output of the Addr_wr[0] register feeds back to its enable input through eight levels of combinational
logic. The figure does not show the other inputs to the logic cone for the Addr_wr[0] register, but the
following source code shows portions of the source, and some inputs to the Addr_wr registers.

Example 16. Source Code for Critical Chain

assign          Add_wr_pluse        =Add_wr+1;
assign          Add_wr_pluse_pluse  =Add_wr+4;

always @ (Add_wr_pluse or Add_rd_ungray)
    if (Add_wr_pluse==Add_rd_ungray)
        Full    =1;
    else
        Full    =0;
 
always @ (posedge Clk_SYS or posedge Reset)
    if (Reset)
        Add_wr  <= 0;
    else if (Wr_en&&!Full)
        Add_wr  <= Add_wr +1;

5.1.5. One Critical Chain per Clock Domain

Hyper-Retiming reports one critical chain per clock domain, except in a special case
that Critical Chains in Related Clock Groups describes. If you perform a Fast Forward
compile, Hyper-Retiming reports show one critical chain per clock domain per Fast
Forward optimization step. Hyper-Retiming does not report multiple critical chains per
clock domain, because only one chain is the critical chain.
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Review other chains in your design for potential optimization. View other chains in
each step of the Fast Forward compilation report. Each step in the report tests a set of
changes, such as removing or converting asynchronous clears, and adding pipeline
stages. The reports detail the performance, assuming implementation of those
changes.

Related Information

Critical Chains in Related Clock Groups on page 88

5.1.6. Critical Chains in Related Clock Groups

When two or more clock domains have the exact same timing requirement, and there
are paths between the domains, and the registers on the clock domain boundaries do
not have a Don’t Touch attribute, the Hyper-Retiming reports a critical chain for a
Related Clock Group. The optimization techniques critical chain types also apply to
critical chains in related clock groups.

5.1.7. Complex Critical Chains

Complex critical chains consist of several segments connected with multiple join
points. A join point is indicated with a positive integer in the Register ID column in
the Fitter reports. Join points are listed at the ends of segments in a critical chain, and
they indicate where segments diverge or converge. Join points indicate connectivity
between chain segments when the chain is listed in a line-oriented text-based report.
Join points correspond to elements in your circuit, and show how they are connected
to other elements to form a critical chain.

The following example shows how join points correspond to circuit connectivity, using
the sample critical chain in the following table.

Table 10. Sample Critical Chain

Path Info Register Register ID Element

REG #1 a

b

REG #2 c

------------ ------------ ------------ ------------

REG #3 d

e

REG #2 c

------------ ------------ ------------ ------------

REG #3 d

f

REG #4 g

------------ ------------ ------------ ------------

g

h

a
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Figure 98. Visual Representation of Sample Critical Chain
Each circle in the diagram contains the element name and the join point number from the critical chain table.

d
#3

g
#4

a
#1

c
#2

For long critical chains, identify smaller parts of the critical chain for optimization.
Recompile the design and analyze the changes in the critical chain. Refer to Optimizing
Loops for other approaches to focus your optimization effort on part of a critical chain.

5.1.8. Extend to locatable node

You may see a path info entry of “Extend to locatable node” in a critical chain. This is
a convenience feature to allow you to correlate nodes in the critical chain to design
names in your RTL.

Not every line in a critical chain report corresponds to a design entry name in an RTL
file. For example, individual routing wires have no correlation with names in your RTL.
Typically that is not a problem, because another name on a nearby or adjacent line
corresponds with, and is locatable to, a name in an RTL file. Sometimes a line in a
critical chain report may not have an adjacent or nearby line that you can locate in an
RTL file. This condition occurs most frequently with join points. When this condition
occurs, the critical chain segment extends as necessary until the critical chain reaches
a line that you can locate in an HDL file.

5.1.9. Domain Boundary Entry and Domain Boundary Exit

The Path Info column lists the Domain Boundary Entry or Domain Boundary Exit for a
critical chain. Domain boundary entry and domain boundary exit refer to paths that
are unconstrained, paths between asynchronous clock domains, or between a clock
domain and top-level device input-outputs. Domain boundary entry and exit can also
be indicated for some false paths as well.

A domain boundary entry refers to a point in the design topology, at a clock domain
boundary, where Hyper-Retiming can insert register stages (where latency can enter
the clock domain) if Hyper-Pipelining is enabled. The concept of a domain boundary
entry is independent of the dataflow direction. Hyper-Retiming can insert register
stages at the input of a module, and perform forward retiming pushes. Hyper-
Retiming can also insert register stages at the output of a module, and perform
backward retiming pushes. These insertions occur at domain boundary entry points.

A domain boundary exit refers to a point in the design topology, at a clock domain
boundary, where Hyper-Retiming can remove register stages and the latency can exit
the clock domain, if Hyper-Pipelining is enabled. Removing a register seems counter
intuitive. However, this method is often necessary to retain functional correctness,
depending on other optimizations that Hyper-Retiming performs.
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Sometimes a critical chain indicates a domain boundary entry or exit when there is an
unregistered I/O feeding combinational logic on a register-to-register path as shown in
the following figure.

Figure 99. Domain Boundary with Unregistered Input/Output

Combinational
Logic

The register-to-register path might be shown as a critical chain segment with a
domain boundary entry or a domain boundary exit, depending on how the path
restricts Hyper-Retiming. The unregistered input prevents the Hyper-Retiming from
inserting register stages at the domain boundary, because the input is unregistered.
Likewise, the unregistered input can also prevent Hyper-Retiming from removing
register stages at the domain boundary.

Critical chains with a domain boundary exit do not provide complete information for
you to determine what prevents retiming a register out of the clock domain. To
determine why a register cannot retime, review the design to identify the signals that
connect to the other side of a register associated with a domain boundary exit.

Domain boundary entry and domain boundary exit can appear independently in critical
chains. They can also appear in combination such as, a domain boundary exit without
a domain boundary entry, or a domain boundary entry at the beginning and end of a
critical chain.

The following critical chain begins and ends with domain boundary entry. The domain
boundary entries are the input and output registers connecting to top-level device
I/Os. The input register is round_robin_requests_r and the output register is
round_robin_next.

Figure 100. Critical Chain Schematic with Domain Boundary

The limiting reason for the base compile is Insufficient Registers.

Figure 101. Retiming Limit Summary with Insufficient Registers
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The following parts of the critical chain report show that the endpoints are labeled with
Domain Boundary Entry.

Figure 102. Critical Chain with Domain Boundary Entry

Both the input and output registers are indicated as Domain Boundary Entry because
the Fast Forward Compile often inserts register stages at these boundaries if Hyper-
Pipelining were enabled.

5.1.10. Critical Chains with Dual Clock Memories

Hyper-Retiming does not retime registers through dual clock memories. Therefore, the
Compiler can report a functional block between two dual clock FIFOs or memories, as
the critical chain. The report specifies a limiting reason of Insufficient Registers, even
after Fast Forward compile.

If the limiting reason is Insufficient Registers, and the chain is between dual clock
memories, you can add pipeline stages to the functional block. Alternatively, add a
bank of registers in the RTL, and then allow the Compiler to balance the registers.
Refer to the Hyper-Pipelining (Add Pipeline Registers), Add Pipeline Stages and
Remove Asynchronous Resets, and Appendix A: Parameterizable Pipeline Modules for
a pipelining techniques and examples.

A functional block between two single-clock FIFOs is not affected by this behavior,
because the FIFO memories are single-clock. The Compiler can retime registers across
a single-clock memory. Additionally, a functional block between a dual-clock FIFO and
registered device I/Os is not affected by this behavior, because the Fast Forward
Compile can pull registers into the functional block through the registers at the device
I/Os.

Related Information

• Appendix A: Parameterizable Pipeline Modules on page 107

• Hyper-Pipelining (Add Pipeline Registers) on page 25

• Step 2: Add Pipeline Stages and Remove Asynchronous Resets on page 66
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5.1.11. Critical Chain Bits and Buses

The critical chain of a design commonly includes registers that are single bits in a
wider bus or register bank. When you analyze such a critical chain, focus on the bus
as a whole, instead of analyzing the structure related to the single bit. For example, a
critical chain that refers to bit 10 in a 512 bit bus probably corresponds to similar
structures for all the bits in the bus. A technique that can help with this approach is to
mentally replace each bit index, such as [10], with [*].

If the critical chain includes a register in a bus where different slices go through
different logic, then focus your analysis on the appropriate slice based on which
register is reported in the critical chain.

5.1.12. Delay Lines

If your design includes a module that delays a bus by some number of clock cycles,
the Compiler may implement such structures using the altshift_taps Intel FPGA IP.
When this implementation occurs, the critical chain includes the design hierarchy of
altshift_taps:r_rtl_0, indicating that synthesis replaces the bank of registers
with the altshift_taps IP core.

When the Fitter places the chain of registers so close together, the Fitter cannot meet
hold time requirements when using any intermediate Hyper-Register locations. Turning
off the Auto Shift Register Replacement option for the bank of registers prevents
synthesis from using the altshift_taps IP core, and resolves any short path part of that
critical chain.

Consider whether a RAM-based FIFO implementation is an acceptable substitute for a
register delay line. If one function of the delay line is pipelining routing (to move
signals a long distance across the chip), then a RAM-based implementation is typically
not an acceptable substitute. If you do not require movement of data over long
distance, a RAM-based implementation is a compact method to delay a bus of data.
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6. Optimization Example
This section contains a round robin scheduler optimization example.

6.1. Round Robin Scheduler

The round robin scheduler is a basic functional block. The following example uses a
modulus operator to determine the next client for service. The modulus operator is
relatively slow and area inefficient because the modulus operator performs division.

Example 17. Source Code for Round Robin Scheduler

module round_robin_modulo (last, requests, next);

parameter CLIENTS       = 7;
parameter LOG2_CLIENTS  = 3;

// previous client to be serviced
input wire [LOG2_CLIENTS -1:0]  last;
// Client requests:- 
input wire [CLIENTS -1:0] requests;
// Next client to be serviced: -
output reg [LOG2_CLIENTS -1:0] next;

//Schedule the next client in a round robin fashion, based on the previous
always @*
begin
   integer J, K;

   begin : find_next
   next = last; // Default to staying with the previous
   for (J = 1; J < CLIENTS; J=J+1)
      begin
      K = (last + J) % CLIENTS;
      if (requests[K] == 1'b1)
         begin
              next = K[0 +: LOG2_CLIENTS];
              disable find_next;
            end
        end // of the for-loop
    end   // of 'find_next'
end 

 endmodule

Figure 103. Fast Forward Compile Report for Round Robin Scheduler
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The Retiming Summary report identifies insufficient registers limiting Hyper-Retiming
on the critical chain. The chain starts from the register that connects to the last input,
through the modulus operator implemented using a divider, and continuing to the
register that connects to the next output.

Figure 104. Critical Chain for Base Performance for Round Robin Scheduler

The 44 elements in the critical chain above correspond to the circuit diagram below
that has 10 levels of logic. The modulus operator contributes significantly to the low
performance. Seven of the 10 levels of logic are part of the implementation for the
modulus operator.

Figure 105. Schematic for Critical Chain

As Figure 103 on page 93 shows, Fast Forward compilation estimates a 140%
performance improvement from adding two pipeline stages at the module inputs, for
retiming through the logic cloud. At this point, the critical chain is a short path/long
path and the chain involves the modulus operator.
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Figure 106. Critical Chain Fast Forward Compile for Round Robin Scheduler

The divider in the modulus operation is the bottleneck that requires RTL modification.
Paths through the divider exist in the critical chain for all steps in the Fast Forward
compile. Consider alternate implementations to calculate the next client to service,
and avoid the modulus operator. If you switch to an implementation that specifies the
number of clients as a power of two, determining the next client to service does not
require a modulus operator. When you instantiate the module with fewer than 2n

clients, tie the unused request inputs to logic 0.
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Example 18. Source Code for Round Robin Scheduler with Performance Improvement with
2n Client Inputs

module round_robin_modulo (last, requests, next);

parameter LOG2_CLIENTS  = 3;
parameter CLIENTS       = 2**LOG2_CLIENTS;

// previous client to be serviced
input wire [LOG2_CLIENTS -1:0]  last;
// Client requests:- 
input wire [CLIENTS -1:0] requests;
// Next client to be serviced: -
output reg [LOG2_CLIENTS -1:0] next;

//Schedule the next client in a round robin fashion, based on the previous
always @(next or last or requests)
begin
   integer J, K;

   begin : find_next
   next = last; // Default to staying with the previous
   for (J = 1; J < CLIENTS; J=J+1)
      begin
      K = last + J;
      if (requests[K[0 +: LOG2_CLIENTS]] == 1'b1)
         begin
              next = K[0 +: LOG2_CLIENTS];
              disable find_next;
            end
    end // of the for-loop
  end   // of 'find_next'
end

 endmodule

Figure 107. Fast Forward Summary Report for Round Robin Scheduler with Performance
Improvement with 2n Client Inputs

Even without any Fast Forward optimizations (the Base Performance step), this round
robin implementation runs at double the frequency compared with the version without
the performance improvement in Source Code for Round Robin Scheduler on page 93.
Although critical chains in both versions contain only two registers, the critical chain
for the 2n version contains only 26 elements, compared to 44 elements in the modulus
version.
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Figure 108. Critical Chain for Round Robin Scheduler with Performance Improvement

The 26 elements in the critical chain correspond to the following circuit diagram with
only four levels of logic.

Figure 109. Schematic for Critical Chain with Performance Improvement

By adding three register stages at the input, for retiming through the logic cloud, Fast
Forward Compile takes the circuit performance to 1 GHz, which is the architectural
limit of Intel Stratix 10 devices. Similar to the modulus version, the final critical chain
after Fast Forward optimization has a limiting reason of short path/long path, as 
Figure 110 on page 98 shows, but the performance is 1.6 times the performance of
the modulus version
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Figure 110. Critical Chain for Round Robin Scheduler with Best Performance

Removing the modulus operator, and switching to a power-of-two implementation, are
small design changes that provide a dramatic performance increase.

• Use natural powers of two for math operations whenever possible

• Explore alternative implementations for seemingly basic functions.

In this example, changing the implementation of the round robin logic provides more
performance increase than adding pipeline stages.
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7. Intel Hyperflex Architecture Porting Guidelines
This chapter provides guidelines for migrating a Stratix V or an Intel Arria 10 design to
the Intel Stratix 10 Intel Hyperflex FPGA architecture. These guidelines allow you to
quickly evaluate the benefits of design optimization in the Intel Hyperflex architecture,
while still preserving your design’s functional intent.

Porting requires minor modifications to the design, but can achieve major performance
gains for your design’s most critical modules.

To experiment with performance exploration, select for migration a large, second-level
module that does not contain periphery IP (transceiver, memory, etc.). During
performance exploration, review reported performance improvements.

7.1. Design Migration and Performance Exploration

You can migrate a Stratix V or an Intel Arria 10 design to an Intel Stratix 10 device to
evaluate performance improvement. Migrating a design for Intel Stratix 10 devices
requires only minor changes. However, additional non-required changes further
performance improvement. This performance improvement helps you to close timing
and add functionality to your design.

Any device migration typically requires some common design changes. These changes
include updating PLLs, high-speed I/O pins, and other device resources. The Intel
Stratix 10 version of these components have the same general functionality as in
previous device families. However, the Intel Stratix 10 components include features to
enable higher operational speeds:

• DSP blocks include pipeline registers and support a floating point mode.

• Memory blocks include additional logic for coherency, and width restrictions.

The high level steps in the migration process are:

1. Select for migration a lower-level block in the design, without any specialized IP.

2. Black-box any special IP component and only retain components that the current
level requires. Only retain the following key blocks for core performance
evaluation:
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• PLLs for generating clocks

• Core blocks (logic, registers, memories, DSPs)

Note: If you migrate a design from a previous version of the Intel Quartus
Prime software, some Intel FPGA IP may require replacement if
incompatible with the current software version.

3. Maintain module port definitions when black-boxing components. Do not simply
remove the source file from the project.

4. Specify the port definition and direction of every component that the design uses
to the synthesis software. Failure to define the ports results in compilation errors.

5. During design synthesis, review the error messages and correct any missing port
or module definitions.

The easiest way to black-box a module is to empty the functional content. The
following examples show black-boxing in Verilog HDL or VHDL.

7.1.1. Black-boxing Verilog HDL Modules

In black-boxing Verilog HDL, keep the module definition but delete the functional
description.

Before:

// k-bit 2-to-1 multiplexer
module mux2tol (V, W, Sel, F);
    parameter k = 8;
    input [k-1:0] V, W;
    input Sel;
    output [k-1:0] F;
    reg [k-1:0] F;

    always @(V or W or Sel)
        if (Sel == 0)
              F = V;
        else
              F = W;
endmodule

After:

// k-bit 2-to-1 multiplexer
module mux2tol (V, W, Sel, F);
    parameter k = 8;
    input [k-1:0] V, W;
    input Sel;
    output [k-1:0] F;
endmodule

7.1.2. Black-boxing VHDL Modules

In black-boxing VHDL, keep the entity as-is, but delete the architecture. In the case
when you have multiple architectures, make sure you remove all of them.

Before:

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
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GENERIC ( k : INTEGER := 8) ;
    PORT (    V, W : IN    STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
              Sel  : IN    STD_LOGIC ;
              F    : OUT   STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
    PROCESS ( V, W, Sel )
    BEGIN
        IF Sel = '0' THEN
            F <= V ;
        ELSE
            F <= W ;
        END IF ;
    END PROCESS ;
END Behavior ;

After:

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC ( k : INTEGER := 8) ;
    PORT (    V, W : IN    STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
              Sel  : IN    STD_LOGIC ;
              F    : OUT   STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
END Behavior ;

In addition to black-boxing modules, you must assign the modules to a an empty
design partition. The partition prevents the logic connected to the black-boxed
modules from being optimized away during synthesis.

To create a new partition:

1. In the Project Navigator Hierarchy tab, right-click the black-boxed module, and
then click Design Partition ➤ Set as Design Partition.

2. For Empty, select Yes.

3. Add all the black-box modules into this partition.

Figure 111. Create New Empty Partition
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7.1.3. Clock Management

After black-boxing appropriate logic, ensure that all registers in the design are still
receiving a clock signal. All the PLLs must still be present. Identify any clock existing a
black-boxed module. If this occurs in your design, recreate this clock. Failure to
recreate the clock marks any register downstream as unclocked. This condition
changes the logic function of your design, because synthesis can remove registers that
do not receive a clock. Examine the clock definitions in the .sdc file to determine if
this file specifies a clock definition in one of the black-boxed modules. Looking at a
particular module, several conditions can occur:

• There is a clock definition in that module:

— Does the clock signal reach the primary output of the module and a clock pin
of a register downstream of the module?

• No: this clock is completely internal and no action required.

• Yes: create a clock on the output pin of that module matching the
definition in the .sdc.

• There is no clock definition in that module:

— Is there a clock feedthrough path in that module?

• No: there is no action required.

• Yes: create a new clock on the feedthrough output pin of the module.

7.1.4. Pin Assignments

Black-boxing logic can be the cause of some pin assignment errors. Use the following
guidelines to resolve pin assignments. Reassign high-speed communication input pins
to correct such errors.

The checks for the status of high-speed pins and generates some errors if you do not
connect these pins. When you black-box transceivers, you may encounter this
situation. To address these errors, re-assign the HSSI pins to a standard I/O pin.
Verify and change the I/O bank if necessary.

Figure 112. High-speed Pin Error Messages

In the .qsf file, the assignment translates to the following:

set_instance_assignment –name IO_STANDARD “2.5 V” –to hip_serial_rx_in1
set_instance_assignment –name IO_STANDARD “2.5 V” –to hip_serial_rx_in2
set_instance_assignment –name IO_STANDARD “2.5 V” –to hip_serial_rx_in3
set_location_assignment IOBANK_4A –to hip_serial_rx_in1
set_location_assignment IOBANK_4A –to hip_serial_rx_in2
set_location_assignment IOBANK_4A –to hip_serial_rx_in3
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Figure 113. Pins Error Messages

Dangling pins

If you have high-speed I/O pins dangling because of black-boxing components, set
them to virtual pins. Enter this assignment in the Assignment Editor, or in the .qsf file
directly, as shown below:

set_instance_assignment –name VIRTUAL_PIN ON –to hip_serial_tx_in1
set_instance_assignment –name VIRTUAL_PIN ON –to hip_serial_tx_in2
set_instance_assignment –name VIRTUAL_PIN ON –to hip_serial_tx_in3

GPIO pins

If you have GPIO pins, make them virtual pins using this qsf assignment:

set_instance_assignment VIRTUAL_PIN –to *

7.1.5. Transceiver Control Logic

Your design may have some components with added logic that controls them. For
example, you might have a small design which controls the reset function of a
transceiver. You can leave these blocks in the top-level design and their logic is
available for optimization.
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7.1.6. Upgrade Outdated IP Cores

The Intel Quartus Prime software alerts you to outdated IP components in your
design. Unless black-boxed, upgrade every outdated IP component to the current
version:

1. Click Project ➤ Upgrade IP Components to upgrade the components to the
latest version.

2. To upgrade one or more IP cores that support automatic upgrade, ensure that you
turn on the Auto Upgrade option for the IP core, and click Perform Automatic
Upgrade. The Status and Version columns update when upgrade is complete.
Example designs provided with any IP core regenerate automatically whenever
you upgrade an IP core.

3. To manually upgrade an individual IP core, select the IP core and click Upgrade in
Editor (or simply double-click the IP core name). The parameter editor opens,
allowing you to adjust parameters and regenerate the latest version of the IP core.

Note: Some IP components cannot upgrade for Intel Stratix 10 devices. If those
components are critical (for example, PLL), modify your design and replace
them with Intel Stratix 10-compatible IP components.

7.2. Top-Level Design Considerations

I/O constraints

In order to get the maximum performance from register retiming, wrap the top-level
in a register ring and remove the following constraints from your .sdc file:

• set_input_delay

• set_output_delay

These constraints model external delay outside of the block. For the purposes of
analyzing the effect of design optimizations, use all the available slack within the
block. This technique helps maximize performance at the module level. Replace these
constraints when moving to full chip timing closure.

Resets

If you remove reset generation from the design, provide a replacement signal by
direct connection to an input pin of your design. This configuration may affect the
retiming capabilities in Intel Stratix 10 architectures. Add two pipeline stages to your
reset signal. This technique allows the Compiler to optimize between the reset input
and the first level of registers.
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Special Blocks

Retiming does not automatically change some components. Some examples are DSP
and M20K blocks. In order to achieve higher performance through retiming, manually
recompile these blocks. Look for the following conditions:

• DSPs: Watch the pipelining depth. More pipeline stages results in a faster design.
If the logic levels in a DSP block limits retiming, add more pipeline stages.

• M20Ks: Retiming relies heavily on the presence of registers to move logic. With
M20K blocks, you can help the Compiler by registering the logic memory twice:

— Once inside the M20K block directly

— Once in the fabric, at the pins of the block

Register the Block

Register all inputs and all outputs of your block. This register ring mimics driving the
block when embedded in the full design. The ring also avoids the retiming restriction
with registers connected to inputs or outputs. The Compiler can now retime the first
and last level of registers more realistically.
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8.1. Appendix A: Parameterizable Pipeline Modules

The following examples show parameterizable pipeline modules in Verilog HDL,
SystemVerilog, and VHDL. Use these code blocks at top-level I/Os and clock domain
boundaries to change the latency of your circuit.

Example 19. Parameterizable Hyper-Pipelining Verilog HDL Module

(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION off" *) 
module hyperpipe 
#(parameter CYCLES = 1, parameter WIDTH = 1) 
(
    input clk,
    input [WIDTH-1:0] din,
    output [WIDTH-1:0] dout
);

    generate if (CYCLES==0) begin : GEN_COMB_INPUT
        assign dout = din;
    end 
    else begin : GEN_REG_INPUT  
        integer i;
        reg [WIDTH-1:0] R_data [CYCLES-1:0];
        
        always @ (posedge clk) 
        begin   
            R_data[0] <= din;      
            for(i = 1; i < CYCLES; i = i + 1) 
                R_data[i] <= R_data[i-1];
        end
        assign dout = R_data[CYCLES-1];
    end
    endgenerate  

endmodule

Example 20. Parameterizable Hyper-Pipelining Verilog HDL Instance

hyperpipe # (
        .CYCLES  ( ),
        .WIDTH   ( )
    ) hp (
        .clk      ( ),
        .din      ( ),
        .dout     ( )
    );

Example 21. Parameterizable Hyper-Pipelining SystemVerilog Module

(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION off" *) 
module hyperpipe 
    #(parameter int
        CYCLES = 1,
        PACKED_WIDTH = 1,
        UNPACKED_WIDTH = 1
) 
(
    input clk,
    input [PACKED_WIDTH-1:0] din [UNPACKED_WIDTH-1:0],
    output [PACKED_WIDTH-1:0] dout [UNPACKED_WIDTH-1:0]
);

    generate if (CYCLES == 0) begin : GEN_COMB_INPUT
        assign dout = din;
    end
    else begin : GEN_REG_INPUT
        integer i;
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        reg [PACKED_WIDTH-1:0] R_data [CYCLES-1:0][UNPACKED_WIDTH-1:0];
          
        always_ff@(posedge clk) 
        begin
            R_data[0] <= din;
            for(i = 1; i < CYCLES; i = i + 1)
                R_data[i] <= R_data[i-1];
        end
        assign dout = R_data[CYCLES-1];
    end
    endgenerate

endmodule : hyperpipe

Example 22. Parameterizable Hyper-Pipelining SystemVerilog Instance

// Quartus Prime SystemVerilog Template
//
// Hyper-Pipelining Module Instantiation

hyperpipe # (
        .CYCLES         ( ),
        .PACKED_WIDTH   ( ),
        .UNPACKED_WIDTH ( )
    ) hp (
        .clk      ( ),
        .din      ( ),
        .dout     ( )
    );

Example 23. Parameterizable Hyper-Pipelining VHDL Entity

library IEEE;
use IEEE.std_logic_1164.all;
library altera;
use altera.altera_syn_attributes.all;

entity hyperpipe is
    generic (
         CYCLES : integer := 1;
         WIDTH : integer := 1
     );
     port (
         clk : in std_logic;
         din : in std_logic_vector (WIDTH - 1 downto 0);
         dout : out std_logic_vector (WIDTH - 1 downto 0)
     );
end entity;

architecture arch of hyperpipe is
 
    type hyperpipe_t is array(CYCLES-1 downto 0) of
         std_logic_vector(WIDTH-1 downto 0);
    signal HR : hyperpipe_t;
    
    -- Prevent large hyperpipes from going into memory-based altshift_taps,
    -- since that won't take advantage of Hyper-Registers
     attribute altera_attribute of HR :
         signal is "-name AUTO_SHIFT_REGISTER_RECOGNITION off";
 
begin
     wire : if CYCLES = 0 GENERATE
         -- The 0 bit is just a pass-thru, when CYCLES is set to 0
         dout <= din;
     end generate wire;
 
     hp : if CYCLES > 0 GENERATE
         process (clk) begin
             if (clk'event and clk = '1')then
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                 HR <= HR(HR'high-1 downto 0) & din;
             end if;
         end process;
         dout <= HR(HR'high);
     end generate hp;

end arch;

Example 24. Parameterizable Hyper-Pipelining VHDL Instance

-- Template Declaration
component hyperpipe
    generic (
        CYCLES : integer;
        WIDTH : integer
     );
     port (
         clk : in std_logic;
         din : in std_logic_vector(WIDTH - 1 downto 0);
         dout : out std_logic_vector(WIDTH - 1 downto 0)
     );
end component;

-- Instantiation Template:
    hp : hyperpipe
         generic map (
             CYCLES => ,
             WIDTH => 
         )
         port map (
             clk => ,
             din => ,
             dout =>
         );

8.2. Appendix B: Clock Enables and Resets

8.2.1.  Synchronous Resets and Limitations

Converting asynchronous resets to synchronous eases retiming restrictions, but does
not remove all performance restrictions. The ALM register's dedicated LAB-wide signal
often performs synchronous clears. The signal’s fan-out determines use of this signal
during synthesis. The Compiler typically implements a synchronous clear with a small
fan-out in logic. Larger fan-outs use this dedicated signal. Even if synthesis uses the
synchronous clear, the Compiler still retimes the register into Hyper-Registers. The
bypass mode of the ALM register enables this functionality. When the Compiler
bypasses the register, the sclr signal and other control signals remain accessible.

In the following example, the LAB-wide synchronous clear feeds multiple ALM
registers. A Hyper-Register is available along the synchronous clear path for every
register.
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Figure 114. Retiming Example for Synchronous Resets
Circles represent Hyper-Registers and rectangles represent ALM registers. An unfilled object represents an
unoccupied location and a blue-filled object is occupied.

LAB-Wide
Synchronous

Clear

a)

b)

c)

LAB-Wide
Synchronous

Clear

During retiming, the Compiler pushes top register in row (a) into a Hyper-Register.
The Compiler implements this by bypassing the ALM register, but still using the SCLR
logic that feeds that register. When you use the LAB-wide SCLR signal, an ALM register
must exist on the data path, but you need not use the register.

Register retiming pushes the register in row (b) left into its data path. The register
pushes through a signal split of the data path and synchronous clear. The Compiler
must push this register onto both nets: one register in the data path, and one register
in the synchronous clear path. This implementation is possible because each path has
a Hyper-Register.

Retiming is more complex when another register pushes forward into the ALM. As
shown in the following figure, a register from the asynchronous clear port, and a
register from the data path, merge together.

Figure 115. Retiming Example – Second Register Pushes out of ALM

LAB-Wide
Clock sclr

LAB-Wide
Clock sclr

Before
Retiming

After
Retiming

Because other registers share the synchronous clear path, the register splits on the
path to other synchronous clear ports.

8. Appendices

S10HPHB | 2018.10.04

Intel® Stratix® 10 High-Performance Design Handbook Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20High-Performance%20Design%20Handbook%20(S10HPHB%202018.10.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 116. Retiming Example – Register Splits on the Path to other Synchronous Clear
Ports

Before
Retiming

After
Retiming

In the following figure, the Hyper-Register at a synchronous clear is in use and cannot
accept another register. The Compiler cannot retime this register for the second time
through the ALM.

Figure 117. Retiming Example – Conflict at Synchronous Clear

Conflict

Two key architectural components enable movement of ALM registers with a
synchronous clear forward or backward:

• The ability to bypass the ALM register

• A Hyper-Register on the synchronous clear path

To push more registers through, retiming becomes difficult. Performance improvement
is better with asynchronous reset removal than conversion to synchronous resets.
Synchronous clears are often difficult to retime because of their wide broadcast
nature.
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8.2.1.1.  Synchronous Resets Summary

Synchronous clears can limit the amount of retiming. There are two issues with
synchronous clears that cause problems for retiming:

• A short path, usually traveling directly from the source register to the destination
register without any logic between them. Short paths are not normally a problem,
because the Compiler retimes the positive slack to longer paths. This retiming
improves performance. However, short paths typically connect to long data paths
that require retiming. By retiming many registers along long paths, registers push
down or pull up this short path. This problem is not significant in normal logic, but
becomes significant when synchronous clears have large fan-outs.

• Synchronous clears have large fan-outs. When aggressive retiming pushes
registers up or down the synchronous clear path, paths can clutter until they
cannot accept more registers. This situation results in path length imbalances, and
the Compiler can pull no more registers from the synchronous clear paths.

Aggressive retiming occurs when the Compiler retimes a second register through the
ALM register.

Figure 118. Aggressive Retiming

SCLR

ALM Register with
Synchronous Clear

SCLR

ALM Register Bypassed to
Push Register Forward

SCLR

SCLR HyperRegister Used to
Push ALM Register Backward

Intel Stratix 10 devices have a dedicated Hyper-Register on the SCLR path, with the
ability to place the ALM register into bypass mode. This ability allows you to push and
pull this register. If you push the register forward, then you must pull a register down
the SCLR path and merge the two. If you push the register back, then you must push
a duplicate register up the SCLR path. You can use both of these options. However,
you create bottlenecks when multiple registers push and pull registers up and down
the synchronous clear routing.

Use resets in a practical manner. Control logic mostly requires synchronous reset.
Logic that may not require a synchronous reset helps with timing. Refer to the
following guidelines about synchronous resets:

• Avoid synchronous resets in new code that must run at high speed. This limitation
generally applies to data path logic that flushes out while the system is in reset, or
logic with values that the system ignores when coming out of reset.

• Control logic often requires a synchronous reset, so there is no avoiding the reset
in that situation.

• For existing logic that runs at high speeds, remove the resets wherever possible.
If you do not understand the logic behavior at reset, retail the synchronous reset.
Only remove the synchronous clear if a timing issue arises.
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• Pipeline the synchronous clear. This technique does not help when you must pull
registers back, but can help when you need to pull registers forward into the data
path.

• Duplicate synchronous clear logic for different hierarchies. This technique limits
the fan-out of the synchronous clear, so that the Compiler can retime the clear
with the local logic. Apply this technique only after you determine that an existing
synchronous clear with large fan-out limits retiming. This technique is not difficult
on the back-end, because the technique does not change design functionality.

• Duplicate synchronous clear for different clock domain and inverted clocks. This
technique can overcome some retiming restrictions due to boundary or multiple
period requirement issues.

8.2.2. Retiming with Clock Enables

Like synchronous resets, clock enables use a dedicated LAB-wide resource that feeds a
specific function in the ALM register. Similarly, Intel Stratix 10 devices support special
logic that simplifies retiming logic with clock enables. However, wide broadcast control
signals, such as clock enables (and synchronous clears), are difficult to retime.

Figure 119. ALM Representing Clock Enables
The following figure shows the sequence of retiming moves for the asynchronous clears in the Synchronous
Resets and Limitations section.

LAB-Wide
Clock Enable

LAB-Wide
Clock Enable

The top circuit contains a dedicated Hyper-Register on the clock enable path. To push
back the register, the Compiler must split the register, so that another register pushes
up the clock enable path. In this case, the Hyper-Register location absorbs the register
without problem. These features allow the Compiler to easily retime an ALM register
with a clock enable backward or forward (middle circuit), to improve timing. A useful
feature of a clock enable is that logic usually generates by synchronous signals, so
that the Compiler can retime the clock enable path alongside the data path.
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Figure 120. Retiming Steps and Structure with an ALM register and Hyper-Registers

CLKEN

CLKEN

CLKEN

LUT
Hyper-Register

Used Register
Bypassed Register

Legend

The figure shows retiming of the clock enable signal clken typical broadcast type
control signal. In the top circuit, before retiming, the circuit uses an ALM register. The
circuit also uses the Hyper-Registers on the clock enable and data paths. In the middle
circuit, the ALM register retimes forward into a Hyper-Register outside the ALM, into
the routing fabric. The circuit still uses the ALM register, but the register is not on the
data path through the ALM. The ALM holds the previous value of the register. The
clock enable mux now selects between this previous value and the new value, based
on the clock enable. The diagram shows retiming forward of a second register from
the clock enable and data paths into the ALM register. The circuit now uses the ALM
register in the path. You can repeat this process and iteratively retime multiple
registers across an enabled ALM register.

Related Information

Synchronous Resets and Limitations on page 109
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8.2.2.1. Example for Broadcast Control Signals

Broadcast control signals that fan-out to many destinations limit retiming.
Asynchronous clears can limit retiming due to device support of specific register
control signals. However, even synchronous signals, such as synchronous clear and
clock enable, can limit retiming when part of a short path or long path critical chain.
The use of a synchronous control signal is not a limiting reason by itself; rather the
structure and placement of the circuit causes the limit.

A register must be available on all of the node’s inputs to forward retime a register
over a node. To retime register A over register B in the following diagram, the
Compiler must pull a register from all inputs, including register C on the clock enable
input. Additionally, if the Compiler retimes a register down one side of a branch point,
the Compiler must retime a copy of the register down all sides of a branch point. This
requirement is the same for conventional retiming and Hyper-Retiming.

Figure 121. Retiming through a Clock Enable

B

CLKEN

B

CLKEN

A

C

A

There is a branch point at the clock enable input of register B. The branch point
consists of additional fan-out to other destinations besides the clock enable. To retime
register A over register B, the operation is the same as the previous diagram.
However, the presence of the branch point means that a copy of register C must
retime along the other side of the branch point, to register C.

Figure 122. Retiming through a Clock Enable with a Branch Point

CLKEN CLKEN

Retiming Example

The following diagrams combine the previous two steps to illustrate the process of a
forward Hyper-Retiming push in the presence of a broadcast clock enable signal or a
branch point.

Figure 123. Retiming Example Starting Point
Hyper-Retiming can move a retimed register into the Hyper-Registers.

CLKEN
Hyper-Register

Combinational Logic
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Each register’s clock enable has one Hyper-Register location at its input. Because of
the placement and routing, the register-to-register path includes three Hyper-Register
locations. A different compilation can result in more or fewer Hyper-Register locations.
Additionally, there are registers on the data and clock enable inputs to this chain that
Hyper-Retiming can retime. These registers exist in the RTL, or you can define them
with options that the Pipeline Stages section describes.

One stage of the input registers retime into a Hyper-Register location between the two
registers. Figure 124 on page 116 shows one part of the Hyper-Retiming forward
push. One of the registers on the clock enable input retimes over the branch point,
with a copy going to a Hyper-Register location at each clock enable input.

Figure 124. Retiming Example Intermediate Point

CLKEN

Figure 125 on page 116 shows the positions of the registers in the circuit after Hyper-
Retiming completes the forward push. The two registers at the inputs of the left
register retime to a Hyper-Register location. This diagram is functionally equivalent to
the two previous diagrams. The one Hyper-Register location at the clock enable input
of the second register remains occupied. There are no other Hyper-Register locations
on the clock enable path to the second register, yet there is still one register at the
inputs that the Compiler can retime.

Figure 125. Retiming Example Ending Point

CLKEN

Figure 126 on page 116 shows the register positions Hyper-Retiming uses if a short
path/long path critical chain do not limit the path. However, because no Hyper-
Registers are available on the right-hand clock enable path, Hyper-Retiming cannot
retime the circuit as shown in the diagram.

Figure 126. Retiming Example Limiting condition

CLKEN Short Path Limits
Performance
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Because the clock enable path to the second register has no more Hyper-Register
locations available, the Compiler reports this as the short path. Because the register-
to-register path is too long to operate at the performance requirement, although
having more available Hyper-Register locations for the retimed registers, the Compiler
reports this as the long path.

The example is intentionally simple to show the structure of a short path/long path
critical chain. In reality, a two-fan-out load is not the critical chain in a circuit.
However, broadcast control signals can become the limiting critical chains with higher
fan-out. Avoid or rewrite such structures to improve performance.

Related Information

Appendix A: Parameterizable Pipeline Modules on page 107

8.2.3.  Resolving Short Paths

Retiming registers that are close to each other can potentially trigger hold violations at
higher speeds. The following figure shows how a short path limits retiming.

Figure 127. Short Paths Limiting Retiming
In this example, forward retiming pushes a register onto two paths, but one path has an available register for
retiming, while the other does not.

Unusable Slot Due to Hold

#2#2

Routed Longer to 
Pick Up Extra Slots

#1#1

Register already used and not available for retiming
Register not used and available for retiming

Legend

In the circuit on the left, if register #1 retimes forward, the top path has an available
slot. However, the lower path cannot accept a retimed register. The retimed register is
too close to an adjacent used register, causing hold time violations. The Compiler
detects these short paths, and routes the registers to longer paths, as shown in the
circuit on the right. This practice ensures that sufficient slots are available for
retiming.

The following two examples address short paths:

Case 1: A design runs at 400 MHz. Fast Forward compile recommends adding a
pipeline stage to reach 500 MHz and a second pipeline stage to achieve 600 MHz
performance.
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The limiting reason is the short path / long path. Add the two-stage pipelining the
Compiler recommends to reach 600 MHz performance. If the limiting reason is short
path / long path again, this means the Router reaches a limitation fixing the short
paths in the design. At this point you may have already reached your target
performance, or this is no longer the critical path.

Case 2: A design runs at 400 MHz. Fast Forward compile does not make any
recommendations to add pipeline stages.

If the short path / long path is the immediate limiting reason for retiming, this means
that the Router reaches a limitation in trying to fix the short paths. Adding pipeline
stages to the reported path does not help. You must optimize the design.

Retiming registers that are close to each other can potentially trigger hold violations at
higher speeds. The Compiler reports this situation in the retiming report under Path
Info. The Compiler also reports short paths if enough Hyper-Registers are not
available. When nodes involve both a short path and a long path, adding pipeline
registers to both paths helps with retiming.
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Date Version Changes

2017.11.06 17.1.0 • Revised Design Example Walkthrough steps and results.
• Provided link to available design example files for each stage.
• Moved step-by-step design compilation instructions to Design

Compilation chapter, Intel Quartus Prime Pro Edition Handbook.
• Added Ternary Adders topic and examples.
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Date Version Changes

• Added Loop Pipelining topic and examples.
• Added description of Reset Sequence Requirement report.
• Updated for latest Intel branding conventions.

2017.05.08 Quartus Prime Pro v17.1
Stratix 10 ES Editions

• Updated software support version to Quartus Prime Pro v17.1 Stratix 10
ES Editions.

• Added Initial Power-Up Conditions topic.
• Added Retiming Reset Sequences topic.
• Added guidelines for high-speed clock domains.
• Added Fitter Overconstraints topic.
• Described Hold Fix-up in Fitter Finalize stage.
• Added statement about Fast Forward compilation support for retiming

across RAM and DSP blocks.
• Added details on coherent RAM to read-modify-write memory

description.
• Added description of Fast Forward Viewer and Hyper-Optimization

Advisor.
• Added Advanced HyperFlex Settings topic.
• Added Prevent Register Retiming topic.
• Added Preserve Registers During Synthesis topic.
• Added Fitter Commands topic.
• Added Finalize Stage Reports topic.
• Replaced command line instructions with new GUI steps in compilation

flows.
• Described concurrent analysis controls in Compilation Dashboard.
• Consolidated duplicate content and grouped Appendices together.
• Updated diagrams and screenshots.

2016.08.07 2016.08.07 • Added clock crossing and initial condition timing restriction details.
• Described true dual-port memory support and memory width ratio with

examples
• Updated code samples and narrative in Design Example Walk-through
• Added reference to provided Design Example files
• Re-branded for Intel
• Updated for latest changes to software GUI and capabilities.

2016.03.16 2016.03.16 First public release.
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