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Chapter 4 Sequential Quadratic Programming

4.1 The Basic SQP Method

4.1.1 Introductory Definitions and Assumptions

Sequential Quadratic Programming (SQP) is one of the most successful methods
for the numerical solution of constrained nonlinear optimization problems. It
relies on a profound theoretical foundation and provides powerful algorithmic
tools for the solution of large-scale technologically relevant problems.

We consider the application of the SQP methodology to nonlinear optimization
problems (NLP) of the form

minimize f(x) (4.1a)

over x ∈ lRn

subject to h(x) = 0 (4.1b)

g(x) ≤ 0 , (4.1c)

where f : lRn → lR is the objective functional, the functions h : lRn → lRm and
g : lRn → lRp describe the equality and inequality constraints.
The NLP (4.1a)-(4.1c) contains as special cases linear and quadratic program-
ming problems, when f is linear or quadratic and the constraint functions h
and g are affine.

SQP is an iterative procedure which models the NLP for a given iterate xk , k ∈
lN0, by a Quadratic Programming (QP) subproblem, solves that QP subprob-
lem, and then uses the solution to construct a new iterate xk+1. This con-
struction is done in such a way that the sequence (xk)k∈lN0 converges to a local
minimum x∗ of the NLP (4.1a)-(4.1c) as k → ∞. In this sense, the NLP re-
sembles the Newton and quasi-Newton methods for the numerical solution of
nonlinear algebraic systems of equations. However, the presence of constraints
renders both the analysis and the implementation of SQP methods much more
complicated.

Definition 4.1 Feasible set

The set of points that satisfy the equality and inequality constraints, i.e.,

F := { x ∈ lRn | h(x) = 0 , g(x) ≤ 0 } (4.2)

is called the feasible set of the NLP (4.1a)-(4.1c). Its elements are referred to
as feasible points.

Note that a major advantage of SQP is that the iterates xk need not to be
feasible points, since the computation of feasible points in case of nonlinear
constraint functions may be as difficult as the solution of the NLP itself.
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Definition 4.2 Lagrangian functional associated with the NLP

The functional L : lRn×m×p → lR defined by means of

L(x, λ, µ) := f(x) + λT h(x) + µT g(x) (4.3)

is called the Lagrangian functional of the NLP (4.1a)-(4.1c). The vectors λ ∈
lRm and µ ∈ lRp

+ are referred to as Lagrangian multipliers.

For a functional f : lRn → lR, we denote by ∇f(x) the gradient of f at x ∈ lRn,
i.e.,

∇f(x) :=
(∂f(x)

∂x1

,
∂f(x)

∂x2

, ...,
∂f(x)

∂xn

)T
.

We further refer to Hf(x) as the Hessian of f at x ∈ lRn, i.e., the matrix of
second partial derivatives as given by

(Hf(x))ij :=
∂2f(x)

∂xi∂xj

, 1 ≤ i, j ≤ n .

For vector-valued functions h : lRn → lRm the symbol ∇ is also used for the
Jacobian of h according to

∇h(x) :=
(∇h1(x),∇h2(x), ...,∇hm(x)

)
.

Definition 4.3 Set of active constraints

For x ∈ lRn, the index set

Iac(x) := { i ∈ {1, ..., p} | gi(x) = 0 } (4.4)

is referred to as the set of active constraints at x. Its complement Iin(x) :=
{1, ..., p} \ Iac(x) is called the set of inactive constraints at x.

Definition 4.4 Strict complementary slackness

If x∗ ∈ lRn is a local minimum of the NLP (4.1a)-(4.1c), the condition

gi(x
∗)µ∗i = 0 , 1 ≤ i ≤ p , (4.5)

µ∗i > 0 , i ∈ Iac(x
∗) (4.6)

is called strict complementary slackness at x∗.

Setting qx := |Iac(x)| and assuming Iac(x) = {i1, ..., iq(x)}, we will denote by

G(x) ∈ lRn×(m+qx) the matrix given by

G(x) :=
(∇h1(x),∇h2(x), ...,∇hm(x),∇gi1(x), ...,∇giqx

(x)
)

.
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Throughout the following, we suppose that the functions f, g, and h are three
times continuously differentiable.

Definition 4.5 First order necessary optimality conditions

Let x∗ ∈ lRn be a local minimum of the NLP (4.1a)-(4.1c) and suppose there
exist Lagrange multipliers λ∗ ∈ lRm and µ∗ ∈ lRp

+ such that

(A1) ∇L(x∗, λ∗, µ∗) = ∇f(x∗) + ∇h(x∗)λ∗ + ∇g(x∗)µ∗ = 0

holds true. Then, (A1) is referred to as the first order necessary optimality or
Karush-Kuhn-Tucker (KKT) conditions.

Definition 4.6 Critical points

A feasible point x ∈ F that satisfies the first order necessary optimality condi-
tions (A1) is called a critical point of the NLP (4.1a)-(4.1c).

Note that a critical point need not to be a local minimum.

Definition 4.7 Second order sufficient optimality conditions

In addition to (A1) suppose that the following conditions are satisfied:

(A2) The columns of G(x∗) are linearly independent.

(A3) Strict complementary slackness holds at x∗.

(A4) The Hessian of the Lagrangian with respect to x is positive definite on
the null space of G(x∗)T , i.e.,

dT HL∗d > 0 for all d 6= 0 such that G(x∗)T d = 0 .

The conditions (A1)-(A4) are called the second order sufficient optimality con-
ditions of the NLP (4.1a)-(4.1c).

The second order sufficient optimality conditions guarantee that x∗ is an isolated
local minimum of the NLP (4.1a)-(4.1c) and that the Lagrange multipliers λ∗

and µ∗ are uniquely determined.

The convergence behavior of SQP methods will be measured by asymptotic
convergence rates with respect to the Euclidean norm ‖ · ‖.
Definition 4.8 Convergence rates

Let (xk)k∈lN0 be a sequence of iterates converging to x∗. The sequence is said
to convergence

• linearly, if there exist 0 < q < 1 and kmax ≥ 0 such that for all k ≥ kmax

‖xk+1 − x∗‖ ≤ q ‖xk − x∗‖ ,

• superlinearly, if there exist a null sequence (qk)k∈lN0 of positive numbers
and kmax ≥ 0 such that for all k ≥ kmax

‖xk+1 − x∗‖ ≤ qk ‖xk − x∗‖ ,
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• quadratically, if there exist c > 0 and kmax ≥ 0 such that for all k ≥ kmax

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2 .

• R-linearly, if there exist 0 < q < 1 such that

lim sup
k→∞

k
√
‖xk − x∗‖ ≤ k

√
q .

4.1.2 Construction of the QP Subproblems

The QP subproblems which have to be solved in each iteration step should
reflect the local properties of the NLP with respect to the current iterate xk.
Therefore, a natural idea is to replace the

• objective functional f by its local quadratic approximation

f(x) ≈ f(xk) + ∇f(xk)(x− xk) +
1

2
(x− xk)T Hf(xk)(x− xk) ,

• constraint functions g and h by their local affine approximations

g(x) ≈ g(xk) + ∇g(xk)(x− xk) ,

h(x) ≈ h(xk) + ∇h(xk)(x− xk) .

Setting

d(x) := x − xk , Bk := Hf(xk) , (4.7)

this leads to the following form of the QP subproblem:

minimize ∇f(xk)T d(x) +
1

2
d(x)T Bkd(x) (4.8a)

over d(x) ∈ lRn

subject to h(xk) + ∇h(xk)T d(x) = 0 (4.8b)

g(xk) + ∇g(xk)T d(x) ≤ 0 , (4.8c)

Remark 4.9 The following example shows that the computation of the incre-
ment d(x) as the solution of the associated QP may break down. Consider the
NLP

minimize − x1 − 1

2
x2

2

over x = (x1, x2)
T ∈ lR2

subject to x2
1 + x2

2 − 1 = 0 .
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Obviously, x∗ = (1, 0)T is a solution satisfying the second order sufficient opti-
mality conditions (A1)-(A4).
Choosing xk = (1 + ε, 0)T , ε > 0, and observing

∇f(x) =

( −1
−x2

)
, Hf(x) =

(
0 0
0 −1

)
,

∇h(x) =

(
2x1

2x2

)
,

the QP takes the form

minimize − d1(x) − 1

2
d2(x)2

over d(x) = (d1(x), d2(x))T ∈ lR2

subject to d1(x) = − 1

2
ε

2 + ε

1 + ε
.

Clearly, the QP is unbounded no matter how small ε is chosen.
With regard to convergence conditions for the SQP to be discussed in section
2.3, we remark that the Hessian Hf of f is singular in this particular example.

The QP (4.8a)-(4.8c) is related to a local quadratic model of the Lagrangian L
as the objective functional which leads to the QP subproblem

minimize ∇L(xk, λk, µk)T d(x) +
1

2
d(x)T HL(xk, λk, µk)d(x) (4.9a)

over d(x) ∈ lRn

subject to h(xk) + ∇h(xk)T d(x) = 0 (4.9b)

g(xk) + ∇g(xk)T d(x) ≤ 0 , (4.9c)

where λk and µk are the Lagrangian multipliers associated with this QP.
Considering the QP (4.9a)-(4.9c) is justified by the fact that the conditions
(A1)-(A4) imply that x∗ is a local minimum of the problem

minimize L(x, λ∗, µ∗)

over x ∈ lRn

subject to h(x) = 0

g(x) ≤ 0 .

Indeed, given an iterate (xk, λk, µk), the objective functional in (4.9a) stems
from the quadratic Taylor series approximation

L(xk, λk, µk) + ∇L(xk, λk, µk)T d(x) +
1

2
d(x)T HL(xk, λk, µk)d(x)



Optimization I; Chapter 4 82

of the Lagrangian L in x.

In general, the two QP subproblems (4.8a)-(4.8c) and (4.9a)-(4.9c) are not
equivalent. However, in special cases their equivalence can be established.

Lemma 4.10 Equivalence of QP subproblems, Part I

Consider the NLP (4.1a)-(4.1c) and the two QP subproblems (4.8a)-(4.8c),(4.9a)-
(4.9c). Then, there holds:

(i) If there are no inequality constraints in the NLP (4.1a)-(4.1c), then the QP
subproblems (4.8a)-(4.8c) and (4.9a)-(4.9c) are equivalent.

(ii) In the fully constrained case, assume that the multiplier µk in (4.9a)-(4.9c)
satisfies

µk
i = 0 , i ∈ Iin(xk) . (4.10)

Then, the SQ subproblems (4.8a)-(4.8c) and (4.9a)-(4.9c) are equivalent.

Proof: For the proof of part (i) we observe that due to the linearized equality
constraints the term ∇h(xk)T d(x) is a constant. Hence, in view of (4.3), the
objective functional in (4.9a) reduces to that in (4.8a).
The proof of part (ii) can be done in the same way taking into account that
in view of (4.10) only the active inequality constraints come into play. Since
∇h(xk)T d(x) and ∇gi(x

k)T d(x), i ∈ Ia(x
k) are constants, we conclude.

•
The second part of the previous lemma motivates to consider the slack-variable
formulation of the NLP (4.1a)-(4.1c) which can be stated in terms of an addi-
tional vector z ∈ lRp called the vector of slack variables:

minimize f(x) (4.11a)

over (x, z) ∈ lRn × lRp
+

subject to h(x) = 0 (4.11b)

g(x) + z = 0 . (4.11c)

For the slack-variable formulation (4.11a)-(4.11c) of the NLP (4.1a)-(4.1c) we
can show the equivalence of the associated QP subproblems.

Lemma 4.11 Equivalence of QP subproblems, Part II

Consider the QP subproblems associated with the slack-variable formulation
(4.11a)-(4.11c) of the NLP (4.1a)-(4.1c) as given by

minimize ∇f(xk)T d(x) +
1

2
d(x)T Bkd(x) (4.12a)

over (d(x), d(z)) ∈ lRn × lRp
+

subject to h(xk) + ∇h(xk)T d(x) = 0 (4.12b)

g(xk) + ∇g(xk)T d(x) + d(z) = 0 (4.12c)
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and

minimize ∇L(xk, λk, µk)T d(x) +
1

2
d(x)T HL(xk, λk, µk)d(x) (4.13a)

over (d(x), d(z)) ∈ lRn × lRp
+

subject to h(xk) + ∇h(xk)T d(x) = 0 (4.13b)

g(xk) + ∇g(xk)T d(x) + d(z) = 0 . (4.13c)

The two QP subproblems (4.12a)-(4.12c) and (4.13a)-(4.13c) are equivalent.

Proof: The proof is left as an exercise.
•

4.2 Local convergence

The local convergence analysis for the SQP method will be carried out under
the assumption that the active inequality constraints of the NLP at the local
minimum x∗ are known which is justified by the fact that the QP subproblem for
the iterate xk has the same active constraints at xk, provided xk is sufficiently
close to x∗.
Consequently, we restrict the analysis to QP problems of the form:

minimize ∇f(xk)T dx +
1

2
dT

x Bkdx , (4.14a)

subject to ∇h(xk)T dx + h(xk) = 0 . (4.14b)

Remark 4.12 Starting value for the Lagrange multiplier

A good starting value x0 for the solution can be used to obtain an appropriate
starting value λ0 for the Lagrange multiplier. Indeed, the first order necessary
condition (A1) and condition (A2) imply

λ∗ = − [∇h(x∗)T A∇h(x∗)
]−1 ∇h(x∗)T A∇f(x∗) (4.15)

for any nonsingular A which is positive definite on the null space of ∇h(x∗)T .
In particular, if A is chosen as the identity matrix, then (4.15) defines the
least squares solution of the first order necessary optimality conditions. Conse-
quently,

λ0 = − [∇h(x0)T∇h(x0)
]−1 ∇h(x0)T∇f(x0) (4.16)

is close to λ∗, if x0 is close to x∗.

Remark 4.13 KKT conditions for the quadratic subproblem

Denoting the optimal multiplier for (4.14a)-(4.14b) by λk+1, the KKT conditions
are as follows:

Bkdx + ∇h(xk)λk+1 = − ∇f(xk) ,

∇h(xk)T dx = − h(xk) .
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Thus, setting

dλ := λk+1 − λk , (4.17)

they can be rewritten according to

Bkdx + ∇h(xk)dλ = − ∇L(xk, λk) , (4.18)

∇h(xk)T dx = − h(xk) . (4.19)

4.2.1 The Newton SQP method

The local convergence of the SQP method follows from the application of New-
ton’s method to the nonlinear system given by the KKT conditions

Ψ(x, λ) =

[ ∇L(x, λ)
h(x)

]
= 0 .

Assumptions (A2) and (A4) imply that the Jacobian

J(x∗, λ∗) =

[
HL(x∗, λ∗) ∇h(x∗)
∇h(x∗)T 0

]
(4.20)

at the local solution (x∗, λ∗) is nonsingular.
Therefore, the Newton iteration

xk+1 = xk + sx ,

λk+1 = λk + sλ ,

where s = (sx, sλ) is the solution of

J(xk, λk)s = − Ψ(xk, λk) , (4.21)

converges quadratically, provided (x0, λ0) is sufficiently close to (x∗, λ∗).
The equations (4.21) correspond to (4.18),(4.19) for Bk = HL(xk, λk), dx = sx,
and dλ = sλ.
Consequently, the iterates (xk+1, λk+1) are exactly those generated by the SQP
algorithm.
We have thus proved:

Theorem 4.14 Convergence of the Newton SQP method

Let x0 be a starting value for the solution of the NLP. Assume the starting
value λ0 to be given by (4.16). Suppose further that the sequence of iterates is
given by

xk+1 = xk + dx ,

λk+1 = λk + dλ ,
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where dx and λk + dλ are the solution and the associated multiplier of the QP
subproblem (4.14a),(4.14b) with Bk = HL(xk, λk).
If ‖x0 − x∗‖ is sufficiently small, the sequence of iterates is well defined and
converges quadratically to the optimal solution (x∗, λ∗).

4.2.2 Conditions for local convergence

We impose the following conditions on HL(x∗, λ∗) and Bk that guarantee local
convergence of the SQP algorithm:

(A5) The matrix HL(x∗, λ∗) is nonsingular.

(B1) The matrices Bk are uniformly positive definite on the null spaces of
∇h(xk)T , i.e., there exists β1 > 0 such that for all k

dT Bkd ≥ β1‖d‖2 for all d such that ∇h(xk)T d = 0 .

(B2) The sequence {Bk}lN is uniformly bounded, i.e., there exists β2 > 0 such
that for all k

‖Bk‖ ≤ β2 .

(B3) The matrices Bk have uniformly bounded inverses, i.e., there is a constant
β3 > 0 such that B−1

k exists and

‖B−1
k ‖ ≤ β3 .

Theorem 4.15 Linear convergence of the SQP algorithm

Assume that the conditions (A1)-(A5) and (B1)-(B3) hold true. Let P be
the projection operator

P(x) := I − ∇h(x)
[∇h(x)T∇h(x)

]−1∇h(x)T . (4.22)

Then there exist constants ε > 0 and γ > 0 such that if

‖x0 − x∗‖ < ε , ‖λ0 − λ∗‖ < ε

and

‖P(xk)(Bk − HL(x∗, λ∗))(xk − x∗)‖ < γ ‖xk − x∗‖ , k ∈ lN , (4.23)

then the sequences {xk}lN and {(xk, λk)}lN are well defined and converge linearly
to x∗ and (x∗, λ∗), respectively. The sequence {λk}lN converges R-linearly to λ∗.
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Proof. Under assumptions (B1)-(B3) the equations (4.18),(4.19) have a
solution (dx, dλ), if (xk, λk) is sufficiently close to (x∗, λ∗). Observing λk+1 =
λk + dλ, the solutions can be written in the form

dx = − B−1
k ∇L(xk, λk+1) , (4.24)

dλ =
[∇h(xk)T B−1

k ∇h(xk)
]−1[

h(xk)−∇h(xk)T B−1
k ∇L(xk, λk)

]
.(4.25)

From (4.25) we deduce

λk+1 =
[∇h(xk)T B−1

k ∇h(xk)
]−1[

h(xk)−∇h(xk)T B−1
k ∇f(xk)

]
=: W (xk, Bk) .

Setting A = B−1
k in (4.15), we obtain

λ∗ = W (x∗, Bk) .

Consequently, we get

λk+1 − λ∗ = W (xk, Bk) − W (x∗, Bk) = (4.26)

=
[∇h(x∗)T B−1

k ∇h(x∗)
]−1∇h(x∗)T B−1

k (Bk −HL(x∗, λ∗))(xk − x∗) + wk ,

where due to (B2) and (B3) for some κ > 0 independent of k:

wk ≤ κ ‖xk − x∗‖2 .

Combining equations (4.24) and (4.26) and taking (A2) into account, we find

xk+1 − x∗ = xk − x∗ −B−1
k

[∇L(xk, λk+1)−∇L(x∗, λ∗)
]

= (4.27)

= B−1
k

[
(Bk −HL(x∗, λ∗))(xk − x∗)−∇h(x∗)(λk+1 − λ∗)

]
+ O(‖xk − x∗‖2) =

= B−1
k Vk(Bk −HL(x∗, λ∗)(xk − x∗) + O(‖xk − x∗‖2) ,

where

Vk := I − ∇h(x∗)
[∇h(x∗)T B−1

k ∇h(x∗)
]−1∇h(x∗)T B−1

k .

The projection operator P satisfies

Vk P(xk) = Vk ,

and hence, (4.27) implies

‖xk+1 − x∗‖ ≤ ‖B−1
k ‖‖Vk‖‖P(xk)(Bk −HL(x∗, λ∗)(xk − x∗)‖+ O(‖xk − x∗‖2) .(4.28)

In view of (B3), the assertions can be proved based on the above analysis by
using an induction argument.

•
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Remark 4.16 The role of the projection operator

The condition (4.23) is almost necessary for linear convergence of the sequence
{xk}lN: Indeed, if we have linear convergence of {xk}lN to x∗, then there exists
a 0 < ξ < 1 such that

‖P(xk)(Bk −HL(x∗, λ∗)(xk − x∗)‖ < ξ ‖xk − x∗‖ .

We note that (4.23) is satisfied under the stronger conditions

‖P(xk)(Bk −HL(x∗, λ∗)‖ ≤ γ , (4.29)

‖Bk −HL(x∗, λ∗)‖ ≤ γ . (4.30)

In order that (4.29) and (4.30) hold true, it is not necessary that {Bk}lN con-
verges to the true Hessian, but rather that the difference ‖Bk −HL(x∗, λ∗)‖ is
kept under control. This requirement gives rise to the following definition:

Definition 4.17 Bounded deterioration property

The sequence {Bk}lN of matrix approximations within the SQP approach is said
to have the bounded deterioration property, if there exist constants αi, 1 ≤ i ≤
2, independent of k ∈ lN such that

‖Bk+1 −HL(x∗, λ∗)‖ ≤ (1 + α1σk) ‖Bk −HL(x∗, λ∗)‖+ α2σk , (4.31)

where

σk := max {‖xk+1 − x∗‖, ‖xk − x∗‖, ‖λk+1 − λ∗‖, ‖λk − λ∗‖} .

Theorem 4.18 Linear convergence in case of the bounded deteriora-
tion property

Assume that the sequence {(xk, λk)}lN generated by the SQP algorithm and
the sequence {Bk}lN of symmetric matrix approximations satisfy (B1) and the
bounded deterioration property (4.31). If ‖x0− x∗‖ and ‖B0−HL(x∗, λ∗)‖ are
sufficiently small and λ0 is given by (4.16), then the hypotheses of Theorem
3.15 hold true.

Proof. The proof can be accomplished by an induction argument and is left
as an exercise.

•
Conditions that yield an improvement of linear convergence still depend on the
projection of the difference between the approximation and the true Hessian of
the Lagrangian:

Theorem 4.19 Superlinear convergence of the SQP algorithm

Let {(xk, λk)}lN be the sequence generated by the SQP algorithm and suppose
that conditions (B1)-(B3) are satisfied. Further assume that xk → x∗ as
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k →∞.
Then, {xk}lN converges superlinearly to x∗ if and only if the sequence {Bk}lN

satisfies

lim
k→∞

‖P(xk)(Bk −HL(x∗, λ∗))(xk+1 − x∗)‖
‖xk+1 − xk‖ = 0 . (4.32)

Moreover, if (4.32) holds true, then the sequences {λk}lN and {(xk, λk)}lN con-
verge R-superlinearly and superlinearly, respectively.

Proof. The proof is left as an exercise.

4.3 Approximations of the Hessian

Approximations Bk of the Hessian of the Lagrangian can be obtained based on
the relationship

∇L(xk+1, λk+1) − ∇L(xk, λk+1) ∼ HL(xk+1, λk+1)(xk+1 − xk) . (4.33)

Indeed, (4.33) leads to the so-called secant condition

Bk+1(x
k+1 − xk) = ∇L(xk+1, λk+1) − ∇L(xk, λk+1) . (4.34)

A common strategy is to compute (xk+1, λk+1) for a given Bk and then to update
Bk by means of a rank-one or rank-two update

Bk+1 = Bk + Uk (4.35)

so that the sequence {Bk}lN has the bounded deterioration property.

4.3.1 Rank-two Powell-Symmetric-Broyden update

An update satisfying the bounded deterioration property is the rank-two Powell-
Symmetric-Broyden (PSB) formula

Bk+1 = Bk +
1

sT s

[
(y −Bks)s

T + s(y −Bks)
T
]− (y −Bks)

T s

(sT s)2
ssT , (4.36)

where

s = xk+1 − xk , (4.37)

y = ∇L(xk+1, λk+1) − ∇L(xk, λk+1) . (4.38)

Theorem 4.20 Properties of the Powell-Symmetric-Broyden update

Assume that the sequence {(xk, λk)}lN is generated by the SQP algorithm where
the sequence {Bk}lN of matrix approximations is obtained by the PSB update
formulas (4.36)-(4.38). Assume further that ‖x0 − x∗‖ and ‖B0 −HL(x∗, λ∗)‖
are sufficiently small and λ0 is given by means of (4.16).
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Then, the sequence {Bk}lN has the bounded deterioration property and the
sequence of iterates {(xk, λk)}lN converges superlinearly to (x∗, λ∗) .

Remark 4.21 Comments on the PSB update

A drawback of the PSB update is that the matrices Bk are not required to be
positive definite. As a consequence, the solvability of the equality constrained
QP subproblems is not guaranteed.

4.3.2 Rank-two Broyden-Fletcher-Goldfarb-Shanno update

A more suitable two-rank update with regard to postive definiteness is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update given by

Bk+1 = Bk +
yyt

yT s
− Bkss

T Bk

sT Bks
, (4.39)

where s and y are given as in (4.37),(4.38).
In particular, if Bk is positive definite and there holds

yT s > 0 , (4.40)

then Bk+1 is positive definite as well.

Theorem 4.22 Properties of the BFGS update

Assume that the sequence {(xk, λk)}lN is generated by the SQP algorithm where
the sequence {Bk}lN of matrix approximations is obtained by the PSB update
formulas (4.39). Suppose further that HL(x∗, λ∗) and B0 are positive defi-
nite. Then, if ‖x0 − x∗‖ and ‖B0 − HL(x∗, λ∗)‖ are sufficiently small and λ0

is given by means of (4.16), the sequence {Bk}lN has the bounded deterioration
property, (4.32) is satisfied, and the sequence of iterates {(xk, λk)}lN converges
superlinearly to (x∗, λ∗) .

Remark 4.23 Comments on the BFGS update

The drawback of the BFGS update is that the condition (4.40) is not always
satisfied, i.e., there is no guarantee that Bk+1 turns out to be positive definite.

Remark 4.24 The Powell-SQP update

Replacing y in the BFGS-update formula (4.39) by

ŷ = θy + (1− θ)Bks , θ ∈ (0, 1] , (4.41)

is called the Powell-SQP update. In this case, condition (4.40) can always be
satisfied, whereas the updates do not longer satisfy the secant condition.

4.3.3 The SALSA-SQP update

The SALSA-SQP update relies on an augmented Lagrangian approach, where
the objective functional in the NLP is replaced by

fA(x) = f(x) +
η

2
‖h(x)‖2 , η > 0 . (4.42)
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The associated Lagrangian is usually referred to as the augmented Lagrangian

LA(x, λ) = L(x, λ) +
η

2
‖h(x)‖2 , (4.43)

which also has (x∗, λ∗) as a critical point with the Hessian

HLA(x∗, λ∗) = HL(x∗, λ∗) + η ∇h(x∗)∇h(x∗)T . (4.44)

If

yA = ∇LA(xk+1, λk+1) − ∇LA(xk, λk+1) ,

then

yA = y + η∇h(xk+1)h(xk+1)T ,

where y is given by (4.38). Choosing η such that

yT
As > 0 ,

then Bk+1 obtained by the BFGS-update formula (with y replaced by yA) is
positive definite.
However, since the bounded deterioration property is not guaranteed, a local
convergence result is not available.

4.4 Reduced Hessian SQP methods

The basic assumption (A4) requires HL(x∗, λ∗) to be positive definite only on a
particular subspace. Therefore, the reduced Hessian SQP methods approximate
the Hessian of the Lagrangian only with respect to that subspace.
We assume that xk is an iterate for which ∇h(xk) has full rank and that Zk

and Yk are matrices whose columns span the null space of ∇h(xk)T and the
range space of ∇h(xk), respectively. We further suppose that the columns of
Zk are orthogonal (note that Zk and Yk can be computed by an appropriate
QR-factorization of ∇h(xk)).

Definition 4.25 Reduced Hessian

Let (xk, λk) be a given iterate such that ∇h(xk) has full rank. Then, the matrix

ZT
k HL(xk, λk)Zk (4.45)

is called a reduced Hessian for the Lagrangian at (xk, λk).

Remark 4.26 Positive definiteness of the reduced Hessian

Condition (A4) guarantees that the reduced Hessian is positive definite, pro-
vided (xk, λk) is sufficiently close to (x∗, λ∗).
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The construction of the update formula for the approximation of the reduced
Hessian proceeds very much like the null space approach for solving the KKT
system in case of QP problems:
Decomposing the increment dx according to

dx = ZkpZ + YkpY , (4.46)

the constraint equation of the associated equality constrained QP subproblem
reads as

∇h(xk)T YkpY = − h(xk) . (4.47)

Observing (A2), (4.47) has the solution

pY = − [∇h(xk)T Yk

]−1
h(xk) . (4.48)

The equality constrained QP subproblem then reduces to

minimize
1

2
pT

ZZT
k BkZkpZ + (∇f(xk)T + pT

Y Bk)ZkpZ . (4.49)

The idea is to use an update of the reduced matrix directly, instead of updating
Bk and then computing ZT

k BkZk. Let us assume that we know such a matrix
Rk as well as the iterate (xk, λk). Then, we first compute pY by means of (4.48)
and obtain pZ according to

pZ = − R−1
k ZT

k (∇f(xk) + BkpY ) . (4.50)

We further set

xk+1 = xk + dx (4.51)

determine a new multiplier λk+1 by

λk+1 = − [∇h(xk)T∇h(xk)
]−1∇h(xk)T∇f(xk) , (4.52)

and finally update Rk by the BFGS-type update

Rk+1 = Rk +
yyT

sT s
− Rkss

T Rk

sT Rks
, (4.53)

where

s = ZT
k (xk+1 − xk) = ZT

k ZkpZ , (4.54)

y = ZT
k

[∇L(xk + ZkpZ , λk)−∇L(xk, λk)
]

. (4.55)

Remark 4.27 Determination of Zk

The null space basis matrices Zk have to be chosen such that

‖Zk − Z(x∗)‖ = O(‖xk − x∗‖) (4.56)

in order to achieve superlinear convergence.
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4.5 Convergence monitoring by merit functions

Within the SQP approach global convergence can be achieved by means of
appropriately chosen merit functions M . The merit functions are chosen in
such a way that the solutions of the NLP are unconstrained minimizers of
the merit function M . At the (k+1)-st iteration step, having determined the
Newton increment dx, a suitable steplength α is computed such that

M(xk + αdx) < M(xk) . (4.57)

The following assumptions will be made to guarantee a steadily decreasing merit
function:

(C1) The starting point x0 and all subsequent iterates xk, k ∈ lN, are located
in some compact set K ⊂ lRn.

(C2) The columns of ∇h(x) are linearly independent for all x ∈ K.

The most popular choices of merit functions are augmented Lagrangians and
`p-norms, p ≥ 1, of the residual with respect to the KKT conditions.

4.5.1 Augmented Lagrangian merit functions

We consider augmented Lagrangian merit functions MA of the form

MA(x; η) = f(x) + h(x)T λ(x) +
η

2
‖h(x)‖2 , (4.58)

where η > 0 is a penalty parameter and the multiplier λ(x) is chosen as the
least squares estimate of the optimal multiplier based on the KKT conditions

λ(x) = − [∇h(x)T∇h(x)
]−1∇h(x)T∇f(x) . (4.59)

Obviously, λ(x∗) = λ∗.
Moreover, under assumptions (C1),(C2) we have that MA and λ are differen-
tiable and MA is bounded from below on K for sufficiently large η.
In particular, for the gradients of λ(x) and MA(x; η) we obtain

∇λ(x) = −H∇L(x, λ(x))∇h(x)
[∇h(x)T∇h(x)

]−1
+ R1(x) ,(4.60)

∇MA(x; η) = ∇f(x) +∇h(x)λ(x) +∇λ(x)h(x) + η∇h(x)h(x) , (4.61)

where the remainder term R1 in (4.60) is bounded on K and satisfies R1(x
∗) = 0,

provided x∗ satisfies the KKT conditions.

Theorem 4.28 Properties of augmented Lagrangian merit functions

Assume that the conditions (B1),(B2), and (C1),(C2) hold true. Then, for
sufficiently large η > 0 we have:
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(i) x∗ ∈ K is a strict local minimum of the NLP if and only if x∗ is a strict
local minimum of MA.

(ii) If x is not a critical point of the NLP, then dx is a descent direction for
the merit function MA.

Proof. Assume that x∗ ∈ K is a feasible point and satisfies the KKT condi-
tions. In view of (4.61) we get

∇MA(x∗; η) = 0 . (4.62)

Conversely, if x∗ ∈ K satisfies (4.62), and η is chosen sufficiently large, then it
follows from (C1),(C2) that h(x∗) = 0, i.e., x∗ is feasible, and x∗ satisfies (A1).
In order to prove (i) we have to elaborate on the relationship between HMA(x∗; η)
and HL(x∗, λ∗).
Reminding that G(x) ∈ lRn×m·qx is the matrix given by

G(x) :=
(∇h1(x),∇h2(x), ...,∇hm(x),∇gi1(x), ...,∇giqx

(x)
)

,

we refer to

P(x) = I − G(x)
[
G(x)T G(x)

]−1
G(x)T (4.63)

as the projection onto the null space of G(x)T and to

Q(x) = I − P(x) (4.64)

as the projection onto the range space of G(x).
Then, it follows from (4.61) that

HMA(x∗; η) = HL(x∗, λ∗)−Q(x∗)HL(x∗, λ∗)− (4.65)

− HL(x∗, λ∗)Q(x∗) + η∇h(x∗)∇h(x∗)T .

Choosing now y ∈ lRn and setting y = Q(x∗)y + P(x∗)y, from (4.65) we get

yT HMA(x∗; η)y = (P(x∗)y)T HL(x∗, λ∗)P(x∗)y − (4.66)

− (Q(x∗)y)T HL(x∗, λ∗)Q(x∗)y + η(Q(x∗)y)T
[∇h(x∗)∇h(x∗)T

]Q(x∗)y .

Let us first assume that x∗ is a strict local minimum of the NLP. Since Q(x∗) is
in the range of ∇h(x∗), it follows from (A2) that there exists a constant µ > 0
such that

(Q(x∗)y)T
[∇h(x∗)∇h(x∗)T

]Q(x∗)y ≥ µ ‖Q(x∗)y‖2 . (4.67)

We denote by σmin and σmax the extreme eigenvalues in the spectrum of
Σ(HL(x∗, λ∗))

σmin := min{σ ∈ Σ(HL(x∗, λ∗)} , σmax := max{σ ∈ Σ(HL(x∗, λ∗)} ,
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which are both positive in view of (A4). We further define

ε :=
‖Q(x∗)y‖
‖y‖

so that

‖P(x∗)y‖2

‖y‖2
= 1 − ε2 .

Dividing (4.66) by ‖y‖2 then leads to

yT HMA(x∗; η)y

‖y‖2
≥ σmin + (ηµ− σmax − σmin) ε2 . (4.68)

For sufficiently large η the right-hand side in (4.68) is positive, which proves
that x∗ is a strict local minimum of MA.
Conversely, if x∗ is a strict local minimum of MA, then (4.66) is positive for all
y, i.e., HL(x∗, λ∗) is positive definite on the null space of ∇h(x∗)T , and hence,
x∗ is a strict local minimum of the NLP.


