This is the html version of the file <u>http://www.unm.edu/~moreno/PDFS/chi.pdf</u>. **G o o g l e** automatically generates html versions of documents as we crawl the web. To link to or bookmark this page, use the following url: http://www.google.com/search? q=cache:pEKC1Gnbx8cJ:www.unm.edu/~moreno/PDFS/chi.pdf+cognitive+thoery+of+multimedia&hl=en&ct=clnk&cd=1&gl=us&client=safari

Google is neither affiliated with the authors of this page nor responsible for its content.

These search terms have been highlighted: **cognitive multimedia** These terms only appear in links pointing to this page: **thoery**

Page 1

Multimedia learning 1

A Cognitive Theory of Multimedia Learning: Implications for Design Principles

Richard E. Mayer and Roxana Moreno

University of California, Santa Barbara

Research on educational technologies--ranging from motion pictures to computer-based tutoring systems--documents a disapointing history in which strong claims for a new technology are followed by large-scale implementations which eventually fail (Cuban, 1986; Mayer, in press). For example, in 1922, the famous inventor Thomas Edison proclaimed that "the motion picture is destined to revolutionize our educational system and that in a few years it will supplant...the use of textbooks" (cited in Cuban, 1986, p. 9). Yet, in reviewing the role of motion pictures in schools over the decades since Edison's grand predictions, Cuban (1986, p. 17) concluded that "most teachers used films infrequently in classrooms." Similarly, fifty years later in the 1970s, the game-like computer-assisted instruction (CAI) programs that were tauted as the wave of the future in education eventually proved to be no more effective than teacher-based modes of instruction (Cognition and Technology Group at Vanderbilt, 1996). Today, similarly strong claims are being made for the potential of **multimedia** learning environments.

How canwe avoid a trail of broken promises concerning the educational benefits of new educational technologies such as **multimedia** learning evironments? A reasonable solution is to use instructional technology in ways that are grounded in research-based theory. The overarching theme of this paper is that effective use of a new instructional technology must be guided by a research-based theory of how students learn. Fortunately, advances in **cognitive** psychology provide the starting point for such theories. We are convinced that one of the most important avenues of **cognitive** psychology is to understanding how technology--such as **multimedia**--can be used to foster student learning. As an example, in this paper we provide a research-based review of five principles of **multimedia** design.

We begin with a **cognitive** theory of **multimedia** learning (Mayer, 1997), as outlined in Figure 1. The theory draws on Paivio's (1986; Clark & Paivio, 1991) dual coding theory,

Page 2

Multimedia learning 2

Baddeley's (1992) model of working memory, Sweller's (Chandler & Sweller, 1991; Sweller, Chandler, Tierney & Cooper, 1990) **cognitive** load theory, Wittrock's (1989) generative theory, and Mayer's (1996) SOI model of meaningful learning. According to the theory, the learner possesses a visual information processing system and a verbal information processing, such that auditory narration goes into the verbal system whereas animation goes into the visual system.

In **multimedia** learning the learner engages in three important **cognitive** processes. The first **cognitive** progress, selecting, is applied to incoming verbal information to yield a text base and is applied to incoming visual information to yield an image base. The second **cognitive** process, organizing, is applied to the word base to create a verbally-based model of the to-be-explained system and is applied to the image base to create a visually-based model of the to-be-explained system. Finally, the third process, integrating, occurs when the learner builds connections between corresponding events (or states or parts) in the verbally-based model and

the visually-based model. The model is explained more fully in Mayer (1997), and has generated a series of experiments yielding five major principles of how to use **multimedia** to help students understand a scientific explanation. Each principle of **multimedia** design is subject to further research.

Multiple Representation Principle: Its is better to present an explanation in words and pictures than solely in words. The first principle is simply that it is better to present an explanation using two modes of representation rather than one. For example, students who listened to a narration explaining how a bicycle tire pump works while also viewing a corresponding animation generated twice as many useful solutions to subsequent problem-solving transfer questions than did students who listened to the same narration without viewing any animation (Mayer & Anderson, 1991, 1992). Similarly, students who read a text containing captioned illustrations placed near the corresponding words generated about 65% more useful solutions on a subsequent problem-solving transfer test than did students who simply read the text (Mayer, 1989; Mayer & Gallini, 1990). We call this result a **multimedia**

Multimedia learning 3

effect. The **multimedia** effect is consistent with a **cognitive** theory of **multimedia** learning because students given **multimedia** explanations are able to build two different mental representations--a verbal model and a visual model--and build connections between them.

Contiguity Principle: When giving a **multimedia** explanation, present corresponding words and pictures contiguously rather than separately. The second principle is that students better understand an explanation when corresponding words and pictures are presented at the same time than when they are separated in time. For example, students who listened to a narration explaining how a bicycle tire pump works while also viewing a corresponding animation generated 50% more useful solutions to subsequent problem-solving transfer questions than did students who viewed the animation before or after listening to the narration (Mayer & Anderson, 1991, 1992; Mayer & Sims, 1994). Similarly, students who read a text explaining how tire pumps work that included captioned illustrations placed near the text generated about 75% more useful solutions on problem-solving transfer questions than did students who read the same text and illustrations presented on separate pages (Mayer, 1989; Mayer, Steinhoff, Bower, & Mars, 1995). We call this result a contiguity effect, and similar patterns have been noted by other researchers (Chandler & Sweller, 1991; Sweller & Chandler, 1994; Sweller, Chandler, Tierney and Cooper, 1990; Paas & Van Merrienboer, 1994). This result is consistent with the **cognitive** theory of **multimedia** learning because corresponding words and pictures must be in working memory at the same time in order to facilitate the construction of referential links between them.

Split-Attention Principle: When giving a **multimedia** explanation, present words as auditory narration rather than as visual on-screen text. The third principle is that words should be presented auditorily rather than visually. For example, students who viewed an animation depicting the formation of lightning while also listening to a corresponding narration generated approximately 50% more useful solutions on a subsequent problem-solving transfer test than did students who viewed the same animation with corresponding on-screen text consisting of the same words as the narration (Mayer & Moreno, in press). Sweller and his colleagues call this a

Page 4

Multimedia learning 4

split attention effect (Chandler & Sweller, 1991; Mousavi, Low & Sweller, 1995; Sweller, Chandler, Tierney and Cooper, 1990). This result is consistent with the **cognitive** theory of **multimedia** learning because the on-screen text and animation can overload the visual information processing system whereas narration is processed in the verbal information processing system and animation is processed in the visual information processing system.

Individual Differences Principle: The foregoing principles are more important for lowknowledge than high-knowledge learners, and for high-spatial rather than low-spatial learners. The fourth principle is that **multimedia** effects, contiguity effects, and split-attention effects depend on individual differences in the learner. For example, students who lack prior knowledge tended to show stronger **multimedia** effects and contiguity effects than students who possessed high levels of prior knowledge (Mayer & Gallini, 1991, Mayer, Steinhoff, Bower & Mars, 1995). According to a **cognitive** theory of **multimedia** learning, students with high prior knowledge may be able to generate their own mental images while listening to an animation or reading a verbal text so having a contiguous visual presentation is not needed. Additionally, students who scored high on tests of spatial ability showed greater **multimedia** effects than did students who scored low on spatial ability (Mayer & Sims, 1994). According to a **cognitive** theory of **multimedia** learning, students with high spatial ability are able to hold the visual image in visual working memory and thus are more likely to benefit from contiguous presentation of words and pictures.

Coherence Principle: When giving a **multimedia** explanation, use few rather than many extraneous words and pictures. The fifth principle is that students learn better from a coherent summary which highlights the relevant words and pictures than from a longer version of the summary. For example, students who read a passage explaining the steps in how lightning forms along with corresponding illustrations generated 50% more useful solutions on a subsequent problem-solving transfer test than did students who read the same information with additional details inserted in the materials (Mayer, Bove, Bryman, Mars & Tapangco, 1996; Harp & Mayer, 1997). Sweller and his colleagues refer to this as the redundancy effect and

Page 5

Multimedia learning 5

they have found a similar pattern of results (Bobis, Sweller & Cooper, 1993; Chandler & Sweller, 1991). This result is consistent with a **cognitive** theory of **multimedia** learning, in which a shorter presentation primes the learner to select relevant information and organize it

productively.

By beginning with a theory of how learners process **multimedia** information, we have been able to conduct focused research that yields some preliminary principles of **multimedia** design. Although all of the principles are subject to further testing, this work demonstrates how it is possible to take a learner-centered approach to instructional technology. This work can be considered a success to the extent that this line of research contributes to the implementation of successful **multimedia** instruction.

Page 6

Multimedia learning 6

References

Baddeley, A. (1992). Working memory. Science, 255, 556-559.

Bobis, J., Sweller, J. & Cooper, J. (1993). Cognitive load effects in a primary-school geometry task. Learning and Instruction, 3, 1-21.

Chandler, P. & Sweller, J. (1991). **Cognitive** load theory and the format of instruction. Cognition and Instruction, 8, 293-332.

Clark, J. M. & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, 149-210.

Cognition and Technology Group at Vanderbilt (1996). Looking at technology in context: A framework for understanding technology and education research. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 807-840). New York: Macmillan.

Cuban, L. (1986). Teachers and machines: The classroom use of technology since 1920. New York: Teachers College Press.

Harp, S. & Mayer, R. E. (1997). Role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and **cognitive** interest. Journal of Educational Psychology, 89, 92-102.

Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational Psychology, 81, 240-246.

Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three **cognitive** processes in knowledge construction. Educational Psychology Review, 8, 357-371.

Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions.

Educational Psychologist, 32, 1-19.

Mayer, R.E. (in press). Educational technology. In F. Durso (Ed.), Handbook of applied cognition. Chichester, England: Wiley.

Multimedia learning 7

Mayer, R. E. & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83, 484-490.

Mayer, R. E. & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in **multimedia** learning. Journal of Educational Psychology, 84, 444-452.

Mayer, R. E., Bove, W., Bryman, A., Mars, R. & Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88, 64-73.

Mayer, R. E. & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82, 715-726.

Mayer, R. E. & Moreno, R. (in press). A split-attention effect in **multimedia** learning: Evidence for dual information processing systems in working memory. Journal of Educational Psychology, 90, 000-000.

Mayer, R. E. & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of **multimedia** learning. Journal of Educational Psychology, 86, 389-401.

Mayer, R. E., Steinhoff, K., Bower, G. & Mars, R. (1995). A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text. Educational Technology Research and Development, 43, 31-44.

Mousavi, S. Y., Low, R. & Sweller, J. (1995). Reducing **cognitive** load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319-334.

Paas, F. G. W. & Van Merrienboer, J. G. (1994). Instructional control of cognitive

load in the training of complex cognitive tasks. Educational Psychology Review, 6, 351-372.

Paivio, A. (1986). Mental representations: A dual coding approach. Oxford, England: Oxford University Press.

Sweller, J. & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185-233.

Multimedia learning 8

Sweller, J., Chandler, P., Tierney, P. & Cooper, M. (1990). Cognitive load as a factor

in the structure of technical material. Journal of Experimental Psychology: General, 119, 176-

192.

Wittrock, M. C. (1989). Generative processes of comprehension. Educational

Psychologist, 24, 345-376.

Multimedia learning 9

Note

This paper is based on an entry entitled "Instructional Technology" in the forthcoming Handbook of Applied Cognition, edited by Frank Durso and published by Wiley. The authors' email addresses are mayer@psych.ucsb.edu and moreno@psych.ucsb.edu.

Multimedia learning 10

Figure Caption

Figure 1. A cognitive model of multimedia learning.