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Abstract 6 

 7 

High-throughput comparative genomics has changed our view of bacterial 8 

evolution and relatedness. Many genomic comparisons, especially those 9 

regarding the accessory genome that is variably conserved across strains in a 10 

species, are performed using assembled genomes. For completed genomes, an 11 

assumption is made that the entire genome was incorporated into the genome 12 

assembly, while for draft assemblies, often constructed from short sequence 13 

reads, an assumption is made that genome assembly is an approximation of the 14 

entire genome. To understand the potential effects of short read assemblies on 15 

the estimation of the complete genome, we downloaded all completed bacterial 16 

genomes from GenBank, simulated short reads, assembled the simulated short 17 

reads and compared the resulting assembly to the completed assembly. 18 

Although most simulated assemblies demonstrated little reduction, others were 19 

reduced by as much as 25%, which was correlated with the repeat structure of 20 

the genome. A comparative analysis of lost coding region sequences 21 

demonstrated that up to 48 CDSs or up to ~112,000 bases of coding region 22 

sequence, were missing from some draft assemblies compared to their finished 23 

counterparts. Although this effect was observed to some extent in 32% of 24 

genomes, only minimal effects were observed on pan-genome statistics when 25 

using simulated draft genome assemblies. The benefits and limitations of using 26 

draft genome assemblies should be fully realized before interpreting data from 27 

assembly-based comparative analyses. 28 
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Introduction 1 

 2 

Advances in DNA sequencing technologies have allowed for large-scale 3 

whole genome sequencing of bacterial genomes. Short read technologies, such 4 

as those employed on the Illumina sequencing platforms, have facilitated high-5 

throughput analyses of organisms for the purposes of comparative genomics (1), 6 

phylogeography (2), and association of genomic attributes with antimicrobial 7 

resistance (3). While reference-guided methods, including the identification of 8 

single nucleotide polymorphisms (SNPs), are important for understanding 9 

population genetics (4), many analyses are typically performed with assembled 10 

genomes making genome assembly an important and standard method in the 11 

analysis of bacterial organisms. 12 

Studies that rely on assembled genomes include analyzing the conservation 13 

of genomic features within a set of isolates and estimating core and pan-14 

genomes. Core and pan-genome analyses, introduced by Tettelin and 15 

colleagues (5), have been applied to many bacterial species (6), and a number of 16 

tools have been developed to calculate and analyze the pan-genome (7-13). All 17 

of these tools rely on assembled genomes (or protein/nucleotide sequences from 18 

assemblies) as input. Most of the assembled genomes currently available in 19 

public databases are draft assemblies. Of the approximately 80,000 bacterial 20 

genomes available from NCBI on November 1, 2016, less than 6000 are 21 

complete. 22 

As assemblies generated from short read sequencing data have become an 23 

integral part of many research projects, potential limitations of this type of data 24 

must be considered. For instance, contaminating reads can be incorporated into 25 

assemblies (14-16) requiring post-assembly screening and quality control. 26 

Additionally, genome assemblies generated from short read technologies are 27 

typically fragmented due to the inability of short reads (and insert regions) to 28 

span large repeat regions of a genome (17), which often breaks assemblies into 29 

multiple contigs. This fragmentation can drop genomic regions from an assembly, 30 

which look like missing regions in comparative analyses. In this study, we 31 

evaluated how well assemblies generated from short read data estimate 32 

complete bacterial genomes. 33 

 34 

Methods and Materials 35 

 36 

Complete Genomes Used. We downloaded (September 16, 2016) all bacterial 37 

genomes from GenBank, then filtered the genomes to only include completed 38 

assemblies (n=5676). We then filtered out genomes that contained >10 non-39 

nucleotide characters (non A,T,G,C), which could indicate problems with genome 40 

assembly  (n=203). A complete list of genomes (n=5473) used in this study is 41 

shown in Table S1. 42 

 43 

Read simulation. Paired end illumina reads were simulated for each complete 44 

genome using ART (18) vMountRainier with the following parameters: -ss MSv3 -45 

l 250 -f 75 -m 300 -s 30. Genomes were then assembled with SPAdes v3.7.1 46 



(19) using the following parameters: -t 4 -k 21,33,55,77,99,127 -cov-cutoff auto -1 

careful -1 pair1 -2 pair2. Following assembly, genomes were polished with Pilon 2 

v.1.7, using the following parameters: --threads 4 --fix all,amb. Contigs shorter 3 

than 200bp were filtered from the assembly to stay consistent with GenBank 4 

standards. The genome assembly was automated with the UGAP assembly 5 

pipeline (https://github.com/jasonsahl/UGAP), which was run using the Slurm 6 

management system on a high-performance computing (HPC) cluster at 7 

Northern Arizona University. 8 

In order to identify how well the simulated reads represented the completed 9 

genomes, we mapped the reads to the completed genome with BWA-MEM (20). 10 

The per base coverage was calculated with the GenomeCoverageBed method in 11 

BEDTOOLS (21). The number of bases with a minimum coverage of 1 was then 12 

divided by the total number of bases in the completed genome to calculate the 13 

percent coverage of simulated reads across each genome. 14 

 15 

Genome validation. In addition to simulated reads, we also analyzed a set of 49 16 

complete, or near complete, genomes that have been assembled separately with 17 

both Illumina and PacBio sequencing platforms (Table S2). To test the ability of 18 

ART to simulate representative short sequencing reads, we ran the Illumina 19 

reads through SPAdes using the same parameters as with the simulated reads. 20 

 21 

Genome size calculation. For each genome, we summed the entire sequence 22 

length across all sequences with a Python script 23 

(https://gist.github.com/jasonsahl/64d88d2858a915ee730b5f86e305e5d4). We 24 

divided the size of the simulated assembly by the size of the completed assembly 25 

to determine the amount of the genome retained. 26 

 27 

Repeat characterization. To identify the percentage of the genome associated 28 

with repeated regions, we aligned each genome against itself with NUCmer (22). 29 

We then divided the number of bases in repeated regions by the total length of 30 

the genome to characterize the repeat percentage. The identification of repeat 31 

regions was facilitated by methods implemented in the NASP pipeline (4). Using 32 

default parameters, NUCmer is unable to detect repeats shorter than 21 33 

nucleotides. 34 

 35 

Multi-locus Sequence Typing comparisons. The sequence type of E. coli and 36 

S. aureus assemblies was identified using the PubMLST system and a custom 37 

script (https://github.com/jasonsahl/mlst_blast.git). Each allele was assigned if an 38 

exact match to the database was observed. 39 

 40 

Comparative genomics. To identify the impact of regions collapsed or lost 41 

during the genome assembly using simulated reads, a large-scale Blast Score  42 

Ratio (LS-BSR) (12, 23) analysis was performed. Coding regions were predicted 43 

from the completed genome and the simulated genome with Prodigal (24). All 44 

coding regions were clustered with USEARCH (25) at an ID of 0.9 and aligned 45 

against both genomes with BLAT (26). The BSR values were then compared 46 



between the simulated and the completed genome to identify the number and 1 

combined length of regions that had a BSR value > 0.8 (~80% peptide identity 2 

over 100% of the peptide length) in the completed genome and a BSR value < 3 

0.4 in the simulated genome. These regions represent those that were lost from 4 

the assembly and could confound comparative analysis using genome 5 

assemblies of short read sequence data. 6 

 7 

Publicly available genomes. To characterize the quality of all genomes from a 8 

single species in public databases, all Escherichia coli genome assemblies 9 

(n=4842) were downloaded on September 16, 2016. Genomes were assessed 10 

for contig number and assembly size. 11 

 12 

Results 13 

 14 

Extent of genome reduction using simulated, short read assemblies. In 15 

order to understand the effects of short read assembly on the retention of 16 

sequence from bacterial genomes, we downloaded all completed genomes from 17 

GenBank with fewer than 10 ambiguities (n=5473) (Table S1) and simulated 18 

paired-end Illumina MiSeq reads with ART (18) at an average coverage of 75x. 19 

We assembled all genomes with SPAdes as it performs well compared to other 20 

assemblers (27), it recovers larger portions of reference genomes than other 21 

short read assembly algorithms (28), and we wanted to keep the assembly 22 

algorithm constant. The sizes of the complete and the simulated genomes were 23 

compared to understand the extent of reduction due to assembly problems. 24 

While the vast majority of the genome was recovered in most cases, some 25 

genomes showed significant reduction due to short read assembly (Figure 1, 26 

Table S3). The maximum percentage of observed genome reduction was 27 

approximately 25% in Orientia tsutsugamushi, which has been described as 28 

having one of the most duplicated genomes (29). In some cases, the simulated 29 

genome assembly was slightly larger than the complete genome (maximum of 30 

~0.76% larger), which may be due to the presence of contigs in the simulated 31 

genome that should have been merged during assembly. 32 

We then calculated the breadth of coverage of the completed genome, at a 33 

minimum depth of 1x, with simulated reads (Table S3). The breadth of coverage 34 

was meant to estimate how well the simulated reads represented the complete 35 

genome. Breadth of coverage values range from approximately 73% to 100%. A 36 

correlation of breadth of coverage and genome reduction (correlation 37 

coefficient=0.76) demonstrates that different methods (genome assembly and 38 

short read mapping) return a similar result (Figure 2, Table S3). 39 

 40 

Genome reduction using actual sequence data. To confirm that genome 41 

reduction wasn’t solely due to the short read simulation, a set of 49 complete or 42 

near complete Burkholderia genomes (30) was compared to the same isolates 43 

where the genomes were also sequenced on the Illumina MiSeq platform. When 44 

the genome reduction percentages were compared between real and simulated 45 

reads, similar results were observed (correlation coefficient=0.50) (Table 1). In 46 



some cases, the Illumina assembly was larger than the completed genome, 1 

which may be due to bleed over between multiplexed samples on the same 2 

sequencing run (31) or assembly error. This analysis demonstrates that the 3 

simulated short reads should be generally representative of the extent of genome 4 

reduction across other species. 5 

 6 

Repeat structure of all genomes. In order to understand the repeat structure of 7 

each genome, NUCmer self-alignments were performed on all genomes and the 8 

summed repeat regions were divided by the entire genome length. The results 9 

demonstrate that several of the genomes with a high level of reduction were also 10 

highly repetitive (Figure 3). In general, genomes with a low level of repeats also 11 

had a low level of reduction. The inability to span repeats largely explains the 12 

reduction in genome size following genome assembly. As mentioned above, 13 

genome reduction is correlated to breadth of coverage (short read mapping), 14 

which highlights the limitations of short reads in resolving repeats using 15 

independent approaches. 16 

 17 

Draft genome assembly effects on comparative genomics. The potential 18 

effects of a reduced genome on comparative genomics was investigated using 19 

LS-BSR. The number and length of regions that were missing from the simulated 20 

genome was calculated (Table S3). In 3729 of 5473 queried genomes, there 21 

were no coding regions (CDSs) that were missing from the simulated genome 22 

compared to the completed genome, despite seeing simulated genome assembly 23 

sizes that were up to 16% smaller than the completed genome. Of all simulated 24 

genomes, 780 were missing more than one CDS identified in the complete 25 

genome. The maximum number of CDSs missing from a simulated genome 26 

compared to a completed genome was 48, while the maximum length of coding 27 

region sequence lost in any genome was approximately 112,000 nucleotides. 28 

Reads were aligned to CDSs identified in complete genome assemblies but 29 

missing from simulated genome assemblies to determine if short read alignment 30 

could be used to verify the presence or absence of CDSs in a genome. The 31 

breadth of coverage was determined at a minimum depth of 1X as described 32 

above. In two test cases (GCA_000017805.1, missing 48 CDSs in the simulated 33 

genome; GCA_000147815.3, missing 8 CDSs corresponding to ~112,000 34 

nucleotides), all missing CDSs were at least partially covered by simulated reads 35 

(minimum of ~46% coverage breadth). Mapped reads provided 100% breadth of 36 

coverage for 50 of the 56 CDSs evaluated for both genomes, which suggests 37 

that read mapping is a valuable method for confirming the presence/absence of 38 

potentially missing genomic features. 39 

 40 

Draft genome assembly effects on pan-genome calculations. The effect of 41 

genome reduction on core and pan genome calculations was identified in an 42 

analysis of Escherichia coli, Staphylococcus aureus, and Salmonella enterica, 43 

species for which numerous (>100) complete genomes are available. In each 44 

case, the core genome was calculated with LS-BSR for coding region sequences 45 

with a BSR value of > 0.8 across all genomes tested; in each case, the average 46 



core genome was calculated across 10 replicates at each level of sampling. The 1 

core genome results demonstrate the simulated and completed genomes 2 

generally return a consistent core genome size (Figure 4). Additionally, the pan-3 

genome size was slightly larger using simulated reads, which is likely a result of 4 

fragmented coding regions that appear to be separate sequences during the 5 

clustering step in LS-BSR. The same general trends were observed across each 6 

species. 7 

 8 

MLST comparisons between complete and simulated genome assemblies. 9 

The relationships between bacterial isolates has typically been performed with 10 

multi-locus sequence type (MLST) approaches (32). To test the quality of 11 

assembled genomes, we extracted the 7 genes from the E. coli and S. aureus 12 

MLST schemes (33) and compared the sequence type (ST) calls between 13 

finished and simulated genome assemblies. In both species, all called sequence 14 

types matched between complete and simulated genome assemblies. This 15 

demonstrates that high quality draft genome assemblies can often provide 16 

important sequence type information for comparison to previous or future studies. 17 

 18 

Comparison of real and simulated data. Although simulated draft genome 19 

assemblies provide comparable MLST and core genome information, they don’t 20 

represent real data, which can be of variable quality. A comparison of contig 21 

numbers between E. coli genomes downloaded from GenBank and simulated 22 

assemblies generated in this study demonstrates this variability (Figure 5, panel 23 

A). The genome size is also highly variable in the real data (Figure 5, panel B), 24 

which could be due to either insufficient coverage or contamination with other 25 

genomes. If strict filtering on real genome sequence data is implemented, then 26 

much of this variation can and should be eliminated prior to comparative 27 

analyses. 28 

 29 

Discussion 30 

 31 

Short read sequencing technologies have been key in understanding the 32 

movement (34) and population structure (35) of bacterial species. Recent 33 

advances in DNA sequencing now allow for the push button assembly of 34 

bacterial genomes using long read sequencing approaches (36), which holds the 35 

promise of automated and complete genome assembly even for highly duplicated 36 

and repetitive genomes. However, due to cost limitations, many laboratories still 37 

rely on short read technologies for high-throughput SNP identification and 38 

genome assembly ensuring that short read applications will continue to be used 39 

for large-scale comparative genomics. While benefits to these approaches exist 40 

in the consensus calling of variants, limitations also exist due to the short nature 41 

of the read composition, which depending on the length of the read and length of 42 

the repeat, cannot span many repeat regions resulting in fragmented genome 43 

assemblies. Previous work has demonstrated the effects of different genome 44 

assembly algorithms on the recovery of a reference genome using short read 45 

technologies (27, 37, 38), and the GAGE-B study (27) evaluated assemblies of 46 



eight different bacterial species genomes with a number of different assemblers. 1 

However, less is known about how the composition of genomes from diverse 2 

species affects the ability to resolve the full genome with short read sequencing 3 

technology by keeping the assembly algorithm constant. In this study, we 4 

performed a comprehensive analysis of this issue through the assembly of 5 

greater than 5000 finished bacterial genomes. The results demonstrate that 6 

simulated short read assemblies recovered high percentages of most genomes; 7 

however, significant genome reduction was observed in some highly repetitive 8 

genomes, which has the ability to affect downstream comparative analyses. 9 

Comparative genomics studies include the identification of genomic features 10 

that are differentially conserved between genomes from isolates in the same or 11 

closely-related species. These comparisons are important for identifying gene 12 

differences that may be associated with diagnostics, virulence, or differential 13 

phenotypes (39-44). Artifacts generated from the assembly of short read data 14 

could potentially impact these sorts of comparisons. Our results indicate that 15 

coding region sequences identified in simulated draft genome assemblies were 16 

representative of the coding regions identified in complete genomes in most 17 

cases. Thus, draft assemblies can provide important information on genomic 18 

feature variation between strains, core and pan-genome comparisons, and 19 

isolate relationships based upon MLST genes extracted from draft assembles. 20 

The results of this study also demonstrate that draft genome quality in public 21 

repositories is variable and that quality control and filtering should be applied 22 

prior to comparative genomics studies. The results also indicate that genome 23 

reduction due to short read assembly can be a problem in downstream analyses 24 

for some genomes, although the impacts are variable, and perhaps predictable 25 

based on the repeat structure of a given genome. For large-scale comparative 26 

analyses, results must be interpreted with these limitations in mind. If missing 27 

genes are observed between groups of genomes, raw read mapping can be 28 

used to verify the gene presence or absence, although short read mapping may 29 

also suffer from some of the same limitations as short read genome assembly. 30 

Additionally, complete genomes representing species or clades of interest can 31 

provide a reference point for evaluating draft genome assemblies (e.g. provide 32 

information about repeat structure). This study indicates that draft genome 33 

assemblies generated from short read data often provide an acceptable 34 

representation of a bacterial genome for many comparative genomics 35 

applications. 36 
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Table 1: Correlations between simulated and true assemblies 3 
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Figure 1: Frequency plot of the number of genomes against the extent of 6 

genome reduction.  7 
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Figure 2: Breadth of coverage of simulated sequencing reads across complete 6 

genomes compared to the genome reduction of simulated genome assemblies 7 

compared to completed genomes. 8 
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Figure 3: A plot of the % of the genome that is repetitive against the % of the 12 

genome that is reduced 13 
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 2 

Figure 4: Comparative pan-genome plots for 3 species with a large number of 3 

complete genomes. The plots either demonstrate the accumulation of coding 4 

regions in the pan-genome (upper lines) or reduction of coding regions in the 5 

core genome (lower lines).  6 
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 8 

 9 

 10 

Figure 5: A comparison between all Escherichia coli genomes in Genbank (black) 11 

and simulated short read assemblies (red) in terms of (A) the number of total 12 

contigs, and (B) the summed genome assembly size.  13 
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