## Solutions to selected homework problems

## Section 4.1, Problem 22:

Is it possible to define a quadratic polynomial whose graph contains the four points $(-1,-2),(0,-2),(1,0)$, and $(2,2)$ ?

## Solution:

Suppose such a guadratic polynomial $a x^{2}+b x+c$ exists. Then, plugging in the above $x$-values and setting the value of the polynomial to the corresponding $y$-values, we have:
$a-b+c=-2$,
$c=-2$,
$a+b+c=0$,
$4 a+2 b+c=2$.
Since $c=-2$, the other three equations become:
$a-b=0$,
$a+b=2$,
$4 a+2 b=4$.
Now adding the first two of these gives $2 a=2$, so $a=1$, then $b=1$, however, the third equation gives $4+2=4$, a contradiction.

Therefore there is no such quadratic polynomial.

