

Evgeny Malygin

INVESTIGATION OF DIGITAL

CERTIFICATES
Creation of self-signed certificate on Windows 8

Bachelor’s Thesis
Information Technology

May 2014

DESCRIPTION

Date of the bachelor's thesis

27.05.2014

Author(s)

Evgeny Malygin

Degree programme and option

Information Technology

Name of the bachelor's thesis

Investigation of digital certificates
Creation of Self-signed certificate on Windows 8

Abstract

The purpose of this study was to create a free of charge self-signed certificate for a local domain. Such
certificate can be used for analysing and testing a web server, checking operability of a system with
SSL certificate, etc. The use of such certificate gives an idea about all challenges of working with
HTTPS protocol.

The practical part of this document includes all phases of creating a self-signed certificate on a local
web server. It starts from installation webserver itself, DNS server and configuration of all
parameters. The next step is creation of self-signed certificate on the server using OpenSSL and
applying it to the web site. The last phase of the practical part is testing and analysis of the certificate
in different browsers. The tests were analysed with Wireshark, as software for capturing packets
during the transmission.

The results of the project have shown that a self-signed certificate encrypts the transmitting data using
HTTPS protocol. Despite the fact that certificate works as a normal certificate, issued by Trusted
Certificate Authority, and vulnerabilities were not found, it has limited implementation. First of all it
should not be used for web services with critical data (banks, on-line stores, money exchange, etc.),
because it does not provide identity of the server and visitors could easily become a victim of a man-
in-the-middle attack.

The material contained in this project can be successfully used for education purposes, practical usage
of SSL certificates and for web development.

Subject headings, (keywords)

HTTPS, SSL, TLS, OpenSSL, self-signed certificate, digital certificate, Apache, browsers

Pages Language URN

51

English

Remarks, notes on appendices

Tutor

Matti Koivisto

Employer of the bachelor's thesis

Mikkeli University of Applied Sciences

CONTENTS

1 INTRODUCTION .. 1

2 DIGITAL CERTIFICATE ... 2

2.1 Authentication, integrity, confidentiality ... 3

2.1.1 Symmetric cryptography .. 5

2.1.2 Public key infrastructure and asymmetric cryptography 5

2.1.3 Hashing ... 10

2.2 Alternative CA types ... 12

2.3 Self-signed certificate .. 13

3 HTTP(s) .. 14

3.1 HyperText Transfer Protocol ... 14

3.1.1 Security issues of HTTP ... 18

3.2 HTTPS (HTTP Secure) .. 19

4 DNS – DOMAIN NAME SYSTEM .. 20

4.1 DNS queries ... 22

5 SELF-SIGNED CERTIFICATE CREATION ... 24

5.1 Environment and topology ... 24

5.2 Certificate creation and DNS installation .. 26

5.3 Testing with Firefox, Chrome, Opera and IE .. 29

5.3.1 Mozilla Firefox ... 29

5.3.2 Google Chrome .. 30

5.3.3 Opera .. 30

5.3.4 Internet Explorer ... 31

5.3.5 Trusted Root Certification Authorities ... 31

6 CONCLUSION .. 36

BIBLIOGRAPHY .. 37

APPENDIX

1

1 INTRODUCTION

In the modern computer world, the most attention is directed to security. Antivirus

programs, utilities, firewalls; specialists design all this software to protect personal

computers, laptops, mobile phones or other digital devices. However, how to protect a

web page? How to prove that this website can be trusted? Where is a warrant that

intruders do not try to steal users’ private information (passwords, bank information,

etc.) through fake sites that looks as a real one? Moreover, online purchases are quite

popular today, but not every user thinks about security of the transactions. Time flies

and every second counts, about this property by everyone tries to save time and does

not pay attention to minor changes on the usual web pages. To be sure, a web page is

secure and belongs to the safe source; digital certificates, SSL connection and HTTPS

protocol are used.

This work is a part of larger research security project “Investigation of Digital

Certificates” that were develop together with Evgeniia Gromyko. The aim of this

thesis is to create a digital certificate for a local web site, and aim of thesis of my

colleague is to verify of reliability of digital certificates.

My thesis consists of two parts: theoretical and practical. The aim of the theoretical

part is to research different types of certificates and ideas how to prove the actuality of

the sources. This part includes describing what the Digital Certificate and SSL are,

what is the different between HTTP and HTTPS, how to create own Certificate

Authorities and get Digital Certificate. Digital Certificates are covered in Chapter 2 of

this thesis. HyperText Transfer Protocol Secure (HTTPS) protects communication

over a computer network. Chapter 3 explains most important points of this protocol in.

For working with web services, the knowledge about DNS server is also significant

(Chapter 4).

How to create HTTPS instead of HTTP for web server is the main goal of this thesis

and practical part. Chapter 5 tells about creation of the Certificate without

intermediaries. The name of this certificate is “self-signed certificate”. Self-signed

certificate is unacceptable for organizations which work with private users’ data,

money transactions (banks, on-line stores), but can be useful for websites which are

necessary to encrypt login and password only. For the practical part, three virtual

machines are used. They are connected together in one local area network (LAN). One

2

of them is a server, the second one is a DNS server and the third one is a Client. The

server used OpenSSL software to create digital certificate and server Apache for a

local website.

The results of this research and analysing are discussed in the final chapter.

2 DIGITAL CERTIFICATE

Business Dictionary (2014) says that passport is a “document issued by a government

to allow its citizens to travel abroad, and request other governments to facilitate their

passage and provide protection, on a reciprocal basis.”

One of the earliest known references to paperwork that served in a role similar to a

passport was founded in the Old Testament dating from approximately 443 BC.

Appearance of this document has changed over the years not only by influenced by

different cultures, but also from different regions. Nevertheless, main role has never

changed – identity. A passport has a unique key (passport number), and some

attributes (an expiration date, name of the holder, address, photo, etc.). It is issued by

a trusted agency and protected from being tampered with. The validity of such

document is easy to check.

Some security services require a way to authenticate users or protect data in transmit.

Authentication and confidentiality can be implemented in several ways, starting from

simple password exchanges to elaborate hardware-assisted security systems. One way

is to use digital certificates, since they can provide both authentication and

confidentiality. (Adams 2001, 611).

As a passport, digital certificate provides identifying information. It contains a copy of

the certificate holder's public key and several attributes, such as the name of the

certificate holder, a serial number, expiration dates, and the digital signature of the

certificate-issuing authority (CA) so that a recipient can verify that the certificate is

real. (Rouse 2013). (Figure 1.)

3

FIGURE 1. The certificate

Accuracy of this information is verified and confirmed by official, trusted agency such

as VeriSign, Inc., Thawte Consulting, Symantec, Comodo Group, etc. Generally, web

browsers and operation systems comprise list of trusted CA root certificates.

2.1 Authentication, integrity, confidentiality

Nowadays the amount of information, which is flowing over the Internet, is increasing

every minute. Eric Schmidt, the CEO of Google, estimated the size at roughly 5

million terabytes of data (wiseGEEK 2014). According to Evans (2013), by 2020

there will be 50 billion things connected to the Internet (Figure 2).

4

FIGURE 2. Amount of things connected to the Internet (canadablog.cisco.com

2013)

These things are not just some electronic devices such as smartphones and tablets, it

can be even a cattle or wireless cardiac monitor. However, even such things need to be

protected. To secure this communication a few primary tasks should be used:

authentication, integrity and confidentiality.

With authentication, the user can be sure that a message comes from the source that it

claims to come from. In private and public computer networks authentication is

commonly done through the use of logon passwords or personal information number

(PIN). This service allows to user to be identified. The password or PIN can be

assigned or self-declared. The weakness in this system for transactions that are

significant (such as the exchange of money) is that passwords can often be stolen,

accidentally revealed, or forgotten.

Integrity ensures that data can only be accessed or modified by those authorized to do

so. A receiver can be sure that information is not altered or misrepresent. As example

of integrity can be presented a wax seal. An unbroken seal on an envelope guaranteed

the integrity of its contents.

Data passes between client and server through one or more intermediary devices. It

may also be kept in some repositories. Moreover, some data can contain sensitive

information. There is a risk that intruder can get access to that sensitive data. For that

reasons data confidentiality is used. Data confidentiality ensures privacy so that only

5

the receiver can read the message. To gain the confidentiality is possible in two ways.

The first one is encryption.

Encryption uses a key to encrypt a plaintext to the ciphertext, and decrypt it to the

plain text. There are two types of cryptography to provide data confidentiality:

symmetric and asymmetric.

The second way is using a hash function.

2.1.1 Symmetric cryptography

With symmetric cryptography, both the sender and receiver use one key. This key is

used for encryption from one side and decryption from another (Figure 3) (Microsoft

2005a).

FIGURE 3. The process of symmetric encryption (Microsoft 2005a)

Some of the more common algorithms include DES, 3DES, AES, Software

Encryption Algorithm (SEAL), and the Rivest Ciphers (RC) series, which includes

RC2, RC4, RC5, and RC6 (Cisco Networking Academy 2012). However, the

symmetric encryption has one drawback. The sender and the recipient must exchange

a shared secret key, before communication can occur.

2.1.2 Public key infrastructure and asymmetric cryptography

Digital certificate allows a person, organization or computer with using the public key

infrastructure (PKI) to exchange the information in secure format over the internet.

The PKI assumes the use of public key cryptography. The basic idea of public key

6

cryptography is that for encryption and decryption are used two separated keys, which

are related and combined into a single key pair:

 A public key is a well-known key, which is designed to be spread freely

around

 A private or secret key is an encryption/decryption key known only to the

party or parties that exchange secret messages. Should take care to ensure that

this key should never be publicly disclosed

Data that is encrypted with one key can only be decrypted by the other key (Figure 4)

(Microsoft 2005a). This scheme of digital-signing process works also with the digital

certificate (DC) itself to identify it as being produced by the certifying authority and

serve as proof that digital certificate has not been changed or forged (Microsoft

2014a).

FIGURE 4. The process of asymmetric encryption (Microsoft 2005a)

A data can be decrypted with private key only if it were encrypted with public key,

which was created with private key by CA. Rouse (2006) offers the following

description of PKI that presented in table 1.

7

TABLE 1. The principle of public and private key cryptography (Rouse 2006)

To do this Use whose Kind of key

Send an encrypted message Use the receiver's Public key

Send an encrypted signature Use the sender's Private key

Decrypt an encrypted message Use the receiver's Private key

Decrypt an encrypted signature Use the sender's Public key

In a simple way, it might be represented as a box with a lock. According to Vyronis

(2013), Anna has a box with a lock, which has three states: A, B and C. This lock

might be opened with two separate keys. The first key could open the box only turned

clockwise (A B C) and the second one can turn only anticlockwise (C B

A). Anna keeps one key to herself (private key) and leaves the second one in a free

access (public key). Therefore, Anna has her private key that can turn from A to B to

C. Also, everyone else has her public key that can turn from C to B to A.

Now, everyone who wants to send to Anna documents should put it into the box and

lock it with the copy of her public key. Anna’s public key only turns anticlockwise, so

it is necessary to turn it to position A. Now the box is locked. Everyone who has

Anna’s public key, can put documents in her box, lock it, and know that the only

person who can unlock it is Anna.

It also has a possibility to transfer the documents from Anna to everyone. In this case,

the lock will be closed in the position C and can be open only with Anna’s private

key. (Vyronis 2013).

According to Adams et al. (2001, 616) “PKI has to be able to do the following three

things:

 Manage Keys: A PKI makes it easy to issue new keys, review or revoke

existing keys, and manage the trust level attached to keys from different issues.

 Publish Keys: A PKI offers a way for clients to find and fetch public keys and

information about whether a specific key is valid or not.

 Use Keys: A PKI provides an easy-to-use way for users to use keys. Ranging

from moving keys around where they are needed up to providing easy-to-use

8

applications that perform public key cryptographic operations for securing e-

mail, network traffic, and other types of communication.”

PKI consist from several things, such as:

 Certificate authorities (CA) is a trusted third party that issues and verifies

digital certificate. PKIs can form different topologies of trust, including single-

root PKI topologies, hierarchical CA topologies, and cross-certified CA

topologies (Figures 5 – 7). (Cisco Networking Academy 2012).

FIGURE 5. Single-root PKI (Cisco Networking Academy 2012)

.

FIGURE 6. Hierarchical CA (Cisco Networking Academy 2012)

9

FIGURE 7. Cross-certified CA (Cisco Networking Academy 2012)

The root CA is the CA at the top of hierarchy. CAs, which are lower in the

hierarchy, are called intermediate or subordinate CAs. Each CA sings the

certificates it issued using its own private key and has own certificate, which

contains the CA’s public key.

 Registration authorities (RA) (Figure 8) verify the user request for a DC and

tell the CA to issue it.

FIGURE 8. Registration authorities (Cisco Networking Academy 2012)

The PKI might employ RAs to accept requests for enrollment in the PKI. RA

might be tusked to verify user identity, establishing passwords for certificate

management transactions, submitting enrollment requests along with

appropriate organizational attributes or other information to the CA. However,

10

RA is not allowed to issue certificates or publish certificate revocation lists

(CRLs). (Cisco Networking Academy 2012).

 Management tools is a system that allows an administrator to monitor of

which certificates were issued, when a given certificate expires.

2.1.3 Hashing

The hash function is designed to verify and ensure data integrity and authentication.

The Hash function takes a variable sized input message and produces a fixed-sized

string or message digest (Figure 9).

FIGURE 9. A cryptographic hash function (Cisco Networking Academy 2012)

The hash function can guarantee that message was not changed accidentally, but not

guarantee that message is not changed purposely. During the session the sending

device inputs the message to the hashing algorithm and calculates the fix-length

“fingerprint” of this message. The “fingerprint” is attached to the message and sent to

a receiver in plaintext. The receiver removes the hash from message and inputs this

message to the same hashing algorithm. If the hash that is computed by the receiving

device is equal to the one that is attached to the message, the message has not been

altered during transit (Cisco Networking Academy 2012). Since the hash depends on

all the bits in the input message, any alteration in the original message during the

transmission will change the hash. The example of change in hash code produced by

11

insignificant change in the original message, which was made with MD5 and SHA1

hash functions, is shown below:

To be, or not to be: that is the question.

99c0e4200a8fd19a278d419a881cd222 MD5

6857ddf2f544416ccfb9e1f0c924bd8e778d0227 SHA1

TO be, or not to be: that is the question.

5fb7d665841d9ca182619a855fc10807 MD5

559b890fdc066fc12ebab5c01ee3cc2f57b25c6f SHA1

However, during the transmission the message can be intercepted and changed. An

attacker can recalculate the hash and attach it to the message. To prevent man-in-the-

middle attacks and provides authentication of the data origin the HMAC was

presented.

The HMAC is calculated using a specific algorithm that combines a cryptographic

hash function with a secret key. Only the sender and receiver knows this key. The

sender puts data and secret key into the hash algorithm and calculates the HMAC

“fingerprint”. The receiver removes the “fingerprint” and uses the plaintext message

with its secret key as input to the same hashing function. If the fingerprint that is

calculated by the receiving device is equal to the fingerprint that was sent, the

message has not been altered (Figure 10). (Cisco Networking Academy2012).

12

FIGURE 10. HMAC (Cisco Networking Academy2012)

The security of HMAC depends on the security of hashing function and on size and

quality of the secret key.

2.2 Alternative CA types

In addition to the above can be added that most PKI systems support two different

types of CAs, and each type can operate in one of several roles.

 The enterprise CA. The Enterprise Administrator can install the enterprise

CA. It acts as a part of PKI for an enterprise. It issues and revoke certificates

for end users and intermediate CAs for purposes such as digital signatures,

secure e-mail using S/MIME (Secure Multipurpose Internet Mail Extensions),

authentication to a secure Web server using Secure Sockets Layer (SSL) or

Transport Layer Security (TLS). (Microsoft 2005b).

 The stand-alone CA. Stand-alone CAs are issued for external use. These

certificates made to issue certificates for Internet users or business partners. In

most cases stand-alone certificates is quite similar to enterprise CA. However,

stand-alone CA does not require the use of the Active Directory service as

enterprise CA. (Microsoft 2005c).

13

2.3 Self-signed certificate

In case when CA in not available, a self-signed certificate may be all that is required.

Self-signed certificate is signed by the same developer whose identify this certificate.

This is particularly true in development environment where a developer may simply

wish to test that his or her application works over SSL/TLS, or can be used to set up

temporary SSL servers. Another application area of self-signed certificate can be

situations that require the privacy – to encrypt passwords or other personal

information (non-financial).

Nevertheless, this certificate is not secure, and there is no chain of trust. Any remote

machine accessing the site will result in a warning being displayed to the user.

Schaefer et al. (2013, 487) emphasize that self-signed certificate is not needed to

supply a Common Name or any organization details when generating. With this type

of certificate, the Common Name is automatically set to the FQDN of the local IIS 8.0

server, and the Organizational Units and organizational details left blank. (Schaefer

2013).

However, self signed certificates have their place in:

 An Intranet. When clients only have to go through a local Intranet to get to

the server, there is virtually no chance of a man-in-the-middle attack.

 A development server. There is no need to spend extra cash buying a trusted

certificate for developing or testing an application.

 Personal sites with few visitors. A small personal site that transfers non-

critical information, there is very little incentive for someone to attack the

connections.

In this way a web site, which uses self-signed certificate is saying to a customer:

“Trust me – I am who I say I am.” Meanwhile the use of certificate signed by an

official CA the web site saying, “Trust me – Verisign agrees I am who I say I am.”

14

3 HTTP(S)

SSL certificates are required in order to run web sites using the HTTPS protocol. In

general, a web site is a set of images, video, pages and other digital content that is

available via common host name (http://www.mysite.com), or IP address

(http://10.10.10.1). For today, the dominant protocols for access to a web site are

HTTP (HyperText Transfer Protocol) and HTTPS (HyperText Transfer Protocol

Secure).

3.1 HyperText Transfer Protocol

HTTP is an application level protocol for transferring files on the World Wide Web. It

assumes a reliable, connection – oriented transport protocol such as TCP, but HTTP

does not provide reliability or retransmission itself. This protocol was originally

developed to publish and retrieve HTML pages. When a user types the URL (Uniform

Resource Locator) into address bar of a web browser, the web browser create a

connection to the web service with HTTP protocol. After the connection was

established, the web server sends the HTML code to the client. Web browser

deciphers the HTML code and formats the page for the browser window (Figure 11)

(Cisco Networking Academy 2013).

15

FIGURE 11. Web browser and web client interaction (Cisco Networking

Academy 2013)

HTTP specifies as request/response protocol. Each HTTP request is autonomous. This

means that the server does not keep the history of previous requests or sessions. When

a client sends a request to the server in the form of request method, the HTTP defines

16

the type of this message and the type of message, which was send from the server as

respond. The set of common methods are shown in Table 2 (Sosinsky 2009, 609).

TABLE 2. HTTP Methods (Sosinsky 2009, 609)

Method Action Safe

CONNECT

Creates a tunnel using an established network connection.

CONNECT is most often used to send encrypted data over

HTTPS.

No

DELETE Deletes the specified resources given by URL. No

GET

Requests a resource. Requests using GET should only retrieve

data and should have no other effect on the data. Refresh button

of a browser.

Yes

HEAD
Requests a resource, but only transfer the status line and header

section. This is used for retrieving metadata.
Yes

OPTIONS
Requests that the server return a list of methods that the server

supports for the resource that is specified.
Yes

POST Sends data to the server. Submit button of a browser. No

PUT Uploads a resource. No

TRACE
Requires an echo response for a request. TRACE allows the

action of any intermediaries to be examined.
Yes

The Tutoriaspoint (2014) gives the examples of each method and you can find it in

Appendix 1.

For improving response time, a browser creates cache copy of each web page, which

was visited by the client earlier. If the user decides to visit some of the previous pages

again, browser creates the request, simultaneously HTTP allows the browser to ask the

server to determinate whether the content of this page has changed since the copy was

cached. (Comer 2000, 530).

17

However, if there is any problem, the web server will return a one-line status code to

the client, which interprets the response and either displays it in the browser or acts

upon it. Error message, usually in valid HTML format, is displayed when a server

cannot respond for a request for some reasons. Comer (2000, 531) in his book gives

the example of the following error message:

<HTML>

 <HEAD><TITLE>400 Bad Request</TITLE>

 </HEAD>

 <BODY>

 <H1>Bad Request</H1> Your browser sent a request that this server

could not understand.

 </BODY>

</HTML>

User can see only the “body” (i.e., the items between <BODY> and </BODY>). Bad

Request as a head of message.

The most famous “Error 404 – Not Found” might be displayed differently in different

browsers (Figure 12 – 14).

FIGURE 12. Error message in Internet explorer ver. 11

18

FIGURE 13. Error message in Google Chrome ver. 33.0

FIGURE 14. Error message in Mozilla Firefox ver. 28.0

At the HTTP level, a response code is followed by a human-readable "reason phrase".

Generally, the 404 error returned when page have been moved or deleted.

3.1.1 Security issues of HTTP

In this section some essential security issues of HTTP are covered and it is mainly

based on information from w3 (2004) web site. Because, the HTTP is a dominant

protocol for access to the web, and the request messages send information to the

server in plain text. This situation makes the protocol vulnerable for malefactors.

HTTP clients are often privy to large amounts of personal information, such as

passwords, e-mail addresses the user’s name, locations, etc. All this information can

be used against the user or his/her privacy. Like any generic data transfer protocol,

HTTP cannot regulate the content of data that is transferred. Therefore, applications

should supply as much information to provider, as possible. The opened name of

software version of the server also can be a reason for attacks against software that is

known to contain security holes. Clients using HTTP rely heavily on the Domain

19

Name Service, and are thus generally prone to security attacks based on the deliberate

mis-association of IP addresses and DNS names. So, clients need to be cautions with

DNS name association and IP addresses.

3.2 HTTPS (HTTP Secure)

HTTPS is used for secure communication across the Internet. As a result of

combination the HTTP and SSL (Secure Sockets Layer) or TLS (Transport Layer

Security), HTTPS can use authentication and encryption to secure data during the

transferring between client and server. The use of HTTPS protects against

eavesdropping, tampering and man-in-the-middle attack. In practice, this provides a

guarantee that the contents of communications between the client and server cannot be

read or forged by any third party. To determine if HTTPS is used or not, it is enough

to check URL address. HTTP URLs begin with "http://" and use port 80 by default,

whereas HTTPS URLs begin with "https://" and use port 443 by default.

Because the HTTPS is a combination of SSL/TLS and HTTP, it uses the same client

request-server response process as HTTP, but the data stream is encrypted with SSL

before being transported across the network. This means that the request URL query

parameters, headers and cookies will be encrypted. However, TCP-port and host

address are part of TCP/IP protocols and cannot be protected. This makes a possibility

for malefactors to indicate the IP address and port number of the server. However, this

information cannot be too beneficial.

According to Symantec (2011), HTTPS connection to a website can be trusted if and

only if all of the following are true:

 The user trusts that their browser software correctly implements HTTPS with

correctly pre-installed certificate authorities.

 The user trusts the certificate authority to vouch only for legitimate websites

without misleading names.

 The website provides a valid certificate, which means it was signed by a

trusted authority.

20

 The certificate correctly identifies the website (e.g., when the browser visits

"https://example", the received certificate is properly for "Example Inc." and

not some other entity).

 Either the intervening hops on the Internet are trustworthy, or the user trusts

that the protocol's encryption layer (TLS or SSL) is unbreakable by an

eavesdropper.

As of 04/03/2014, 23,9% from 158270 most popular surveyed sites have a secure

implementation of HTTPS (Figure 15) (TIM 2014).

FIGURE 15. The effective SSL security implemented by the most popular web

sites (TIM 2014)

Such a small percentage explained by the fact that not for all websites needed

encrypted connection, if there is no any private information or information, which is

sensitive for users.

4 DNS – DOMAIN NAME SYSTEM

In the computer world everything is decided by numbers. The address of MAMK web

site is www.mamk.fi, presented as a simple, recognizable name, but the real address of

this web site is http://195.148.216.131/. Most people cannot remember numeric

addresses of the favourite web sites. Domain names were created to make life easier.

DNS automatically converts the names, which the user types in a web browser address

21

bar to the IP addresses of web servers hosting those sites (Figure 16). Even if the

numeric IP address will change, users will not see any changes. The new address is

replaced with former, linked to the existing domain name and connectivity is retained.

FIGURE 16. Domain Name System

The user’s computer sends to the server a special packet – DNS request. This packet

contains the alphabetical form of the web site. If the server knows an answer to the

request it responds and sends back the numerical address. If the server does not know

the answer, the error message will be returned. (Garfinkel & Spafford 2002, 25 - 28).

The DNS protocol uses a hierarchical system to create a database to provide name

resolution. After top-level domains are second-level domain names, and below them

are other lower level domains (Figure 17).

FIGURE 17. A hierarchy of DNS servers (Gromyko 2014)

22

Each DNS server is responsible for small part of domain names. If the requirement

domain is not in the list of the current DNS server, this server sends the request to the

upper level. (Cisco Networking Academy 2013).

4.1 DNS queries

Two types of DNS queries are exists: recursive and iterative (non-recursive).

With the recursive query, DNS server responds to the client with either the requested

resource record or an error message stating that the record or domain name does not

exist (Microsoft 2014b). Therefore, if client needs information about web site, it sends

request to a nearby DNS server. When the DNS server receives a request for a name

translation that is not within its DNS zone, the DNS server forwards the request to

another DNS server within the proper zone for translation until it gets the information,

or until the name query fails. For example:

1. Client Local DNS server .com DNS server Root DNS server .fi

DNS server: “I need information about www.mamk.fi”.

2. .fi DNS server Root DNS server .com DNS server Local DNS server

 Client: “IP address of www.mamk.fi is 195.148.216.131”.

With the iterative query, DNS server to return the best answer it can give based on its

cache or zone data. If nearby DNS server does not have an exact information, the best

possible information it can return is a referral to the DNS server, which “could know”.

The client can send the same request to the DNS server for which it obtained a

referral. This process will stop when (Microsoft 2014b):

 it locates a DNS server that is authoritative for the queried name;

 receive an error message;

 time-out condition is met.

The example of iterative query is shown below.

1. Client: “I need information about www.mamk.fi”.

Local DNS server: “I do not know, but .com DNS server could know it.”

23

2. Client: “I need information about www.mamk.fi”.

.com DNS server: “I do not know, but Root DNS server could know it.”

3. Client: “I need information about www.mamk.fi”.

Root DNS server: “I do not know, but .fi DNS server could know it.”

4. Client: “I need information about www.mamk.fi”.

.fi DNS server: “IP address of www.mamk.fi is 195.148.216.131”

However, the usage of one type of queries is inefficient, because top level and root

DNS servers could not store all query information in cache. A combination of DNS

queries is usually used (Figure 18).

FIGURE 18. Combination of DNS queries

As presented above, iterative query is easier to use on the high levels of DNS

hierarchy. It will not take extra time for server to find the information in cache and do

not consume overmuch bandwidth.

24

5 SELF-SIGNED CERTIFICATE CREATION

A certificate serves two essential purposes: distributing the public key and verifying

the identity of the server so visitors know they are not sending their information to the

wrong person. User or company can buy the digital certificate from trusted certificate

authority. However, if the certificate is needed only for testing or local network it is

not reasonable to pay for it. In this section, I create free digital certificate for my own

www.mywebpage.fi.

5.1 Environment and topology

For creation of the digital certificate, I use Windows OS. The most software for these

purposes are made for UNIX. For that reason, to find the solution for Windows was

another challenge.

Creation and checking of operability of the certificate require at least:

 Server with my website

 DNS server

 Client PC

It is realised using VMware Player 6.0.2. with three virtual machines under Windows

8.1 OS (Figure 19).

25

FIGURE 19. Topology and IP settings

In addition to that, on the Web Server machine Apache 2.2.25 with Openssl-0.9.8y

mod are installed, DNS server machine has Unbound DNS server and the Client

machine use Wireshark and web browsers (Opera, Chrome, Firefox, Internet

Explorer).

Used software

VMware Player 6.0.2

Windows 8.1 Pro

Unbound 1.4.22

Apache 2.2.25 with Openssl 0.9.8y

Wireshark 1.10.7

Mozilla Firefox 29.0.1

Google Chrome 34.0.1847.131 m

26

Opera 21.0.1432.57

Internet Explorer 11.0.96

5.2 Certificate creation and DNS installation

The information and commands for certificate creation is based on information from

Rubayat (2010). The description of the commands, which were used for creation this

certificate, is based on information from OpenSSL Documents (2014). To create the

certificate on Windows OS OpenSSL is required. For some reasons, OpenSSL does

not contain openssl.cnf, which is the OpenSSL configuration file. It should be

downloaded separately and replaced to the \bin directory

In the command line, I open the directory where OpenSSL is.

C:\Windows\system32>cd C:\Program Files\Apache Software

Foundation\Apache2.2\bin

To create a new certificate request the following command is needed.

openssl req -new -out server.csr

This generates a 1024-bit RSA private key.

The req command primarily creates and processes certificate requests.

The –new command generates a new certificate request.

The –out command specifies the output filename to write to or standard output by

default.

After that, OpenSSL promoted to answer some questions, where a field “Common

Name” should be filled in with the fully qualified domain name or IP address of the

server to be protected by SSL. An extension “.pem” is a password associated with the

private key.

The command below creates a non-password protected key.

openssl rsa -in privkey.pem -out server.key

27

The command rsa is RSA key management.

The last command creates an X.509 certificate, for 365 days.

openssl x509 -in server.csr -out server.crt -req -signkey server.key -days 365

The x509 command outputs a self signed certificate instead of a certificate request.

The –in command specifies the input filename to read a request from or standard input

if this option is not specified.

The –days command specifies the number of days to certify the certificate for.

The self-signed certificate is ready now (Figure 20). Full list of commands you can

find in Appendix 2.

FIGURE 20. Self-signed certificate

In Apache 2.2.25 open httpd.conf file which is located in the \conf folder. Change the

ServerRoot… to the ServerRoot "C:/Program Files/Apache Software

Foundation/Apache2.2". In the lines DocumentRoot… and Directory… indicate the

way to the place where website is. Uncomment (remove # sign) from lines:

28

 LoadModule ssl_module modules/mod_ssl.so – it allows to use SSL mod on

Apache server

 LoadModule rewrite_module modules/mod_rewrite.so – mod for rewrite

requested URLs.

To display the page www.mywebpage.fi only in https:// form at the end of the

document is necessary to add next lines.

<VirtualHost *:80>

RewriteEngine On

 RewriteCond %{HTTPS} off

 RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI}

</VirtualHost>

In the \conf crerate \ssl directory and copy server.crt and server.key there.

In the \conf\extra\httpd-ssl.conf file modify DocumentRoot and ServerName for own

data.

General setup for the virtual host

DocumentRoot "C:/Program Files/Apache/Apache2/htdocs/website"

ServerName www.mywebpage.fi:443

At the end of configuration is needed to show the way to certificate and key.

SSLCertificateFile "C:/Program Files/Apache Software

Foundation/Apache2.2/conf/ssl/server.crt"

SSLCertificateKeyFile "C:/Program Files/Apache Software

Foundation/Apache2.2/conf/ssl/server.key"

Restart the Apache server.

29

For DNS server in the Unbound directory find and change service.conf file. The line

interface:… should be changed to interface: 192.168.0.112. This is the interface for

DNS server and this interface should be mark as DNS server address on all computers.

Add lines for local network:

private-domain: "mywebpage.fi"

local-zone: " mywebpage.fi" redirect

local-data: " mywebpage.fi A 192.168.0.111"

local-data-ptr: "192.168.0.111 www. mywebpage.fi"

Last two lines connect the IP address (192.168.0.111) and the domain name

(www.mywebpage.fi) together.

The last thing is to restart DNS server.

5.3 Testing with Firefox, Chrome, Opera and IE

5.3.1 Mozilla Firefox

If the certificate was not added to the Authorities in Certificate Manager, when the

line www.mywebpage.fi is added to the address bar, the Firefox shows warning that

connection is untrusted (Figures 21).

FIGURE 21. Mozilla Firefox warning

30

The connection is encrypted with SSL protocol and verified by MAMK (Figure 22).

FIGURE 22. Secure connection in the Firefox

5.3.2 Google Chrome

The first start of www.mywebpage.fi in Chrome also gives warning that certificate is

not trusted. Moreover, the field https:// crossed out (Figure 23).

FIGURE 23. Google Chrome https connection

However, it allows encrypted connection with using AES.

5.3.3 Opera

After the warning was accepted, Opera browser does not show https//: in the address

bar absolutely (Figure 24).

31

FIGURE 24. Opera warnings

Nevertheless, connection is used TLS 1.0 and AES encryption.

5.3.4 Internet Explorer

As the three previous browsers, Internet Explorer also gives warning that certificate is

not trusted, but it uses secured connection (Figure 25).

FIGURE 25. Internet Explorer warnings

It occurs when the web site is available in the Internet. To avoid these warnings users

need to install the root certificate to the local computers manually.

5.3.5 Trusted Root Certification Authorities

The situation is changed when the certificate is added to the Trusted Root

Certification Authorities. The way to this directory is different in different browsers.

For Firefox Mozilla it is needed to open Certificate Manager, which located on:

Menu Options Advanced Certificates View Certificates

Choose Authorities and Import server.crt file to the directory (Figure 26).

32

FIGURE 26. Downloading a new certificate into the Mozilla Firefox

Select checkbox “Trust this CA to identify web sites.”, otherwise Certificate Manager

will not trust web site certificates issued by this CA. After downloading, the certificate

will be added to the list of trusted certificates (Figure 27).

FIGURE 27. Self-signed certificate in the Firefox Authorities

When the certificate was added to the Google Chrome web browser trusted

certificates, it was also added to the Opera and Internet Explorer automatically. So, I

explain the steps only for Google Chrome.

For Google Chrome Certificate Manager located on:

Settings HTTPS/SSL Manage certificates…

Choose Trusted Root Certification Authorities and Import server.crt file to this

directory following the instructions. After successful completion, the certificate will

be added to the trusted root certificates (Figure 28).

33

FIGURE 28. Trusted Root Certification Authorities

After these actions, none of the browsers does not open any warnings and access to

the www.mywebpage.fi is freely open under HTTPS protocol (Figures 29 –31).

FIGURE 29. Google Chrome

FIGURE 30. Opera

34

FIGURE 31. Internet Explorer

This certificate is valid only for www.mywebpage .fi and do not accept mywebpage.fi

(Figures 32 – 34). Nonetheless, the connection to the web page has occurred, but

certificate is not trusted.

FIGURE 32. Firefox certificate warning

FIGURE 33. Chrome certificate warning

35

FIGURE 34. Internet Explorer certificate warning

During connection setup, Encrypted Alert message has occurred with Content Type:

Alert (21) (Figure 35).

FIGURE 35. Encrypted alert

This alert warns that, “handshake cryptographic operation failed, including being

unable to correctly verify a signature, decrypt a key exchange, or validate a finished

message” (RFC_2246 1999). The message can be sent at any time during the

handshake and up to the closure of the session. This is a fatal error and the session is

closed immediately after alert was sent. Fatal errors occurs when connection or

security may be compromised. In this project an alert was sent because the certificate

is untrusted and asks additional verifying. However, Internet Explorer does not show

any alerts during the session. After certificate was added to the trusted root certificates

this alert is disappeared.

36

6 CONCLUSION

Theme of obtaining digital certificates is very important because certificate provides

the necessary level of protection for personal information. In the rapidly growing

volume of information on the Internet, including sensitive information, encryption,

authentication, and data integrity is highly relevant. There are many organizations

issuing digital certificates, but they all cost money, what is not always justified. In this

project, I considered an alternative method of obtaining the certificate without

additional cost. A self-signed certificate is such certificate that is created, signed and

used by one person or a company. The main advantages are availability, ease of

establishment and free of charge. Any operating system may be used for creation, but

I used Windows 8.1. In this project, I proved the possibility of creation and

implementation of a self-signed certificate on the example of a local web site

www.mywebpage.fi. It uses AES encryption and establishes HTTPS connection

instead of HTTP. The certificate has been analysed in four different browsers. The

warnings were displayed only for those users, who did not install it into trusted

certificates authorities in the browser. Other series of experiments with Wireshark

showed that connection works with TLS and HTTPS protocol in any cases.

This certificate can be used on a development server, local network or for small web

sites with a small amount of visitor. It provides necessary encryption and can be made

easily by free sources.

However, a self-signed certificate is not as trusted as certificate, which have been

issued by a CA. It is not recommended to use the certificate for e-commerce or any

site that transfers valuable personal information as credit cards, social security

numbers, etc.

37

BIBLIOGRAPHY

Adams, Maureen (ed.) 2001. Networking complete second edition. San Francisco,

Paris, Düsseldorf, Soest, London: Sybex, Inc.

Business Dictionary 2014. Definition of passport. WWW-document.

http://www.businessdictionary.com/definition/passport.html/. No updating

information. Referred 4.2.2014.

Cisco Networking Academy 2012. CCNA Security 1.1. Cryptographic Systems.

WWW-lecture. http://cna.mikkeliamk.fi/Cisco/CCNASecurity. Updated 2012.

Referred 11.4.2014.

Cisco Networking Academy 2013. Introduction to Networks, Application Layer.

WWW-lecture.

http://cna.mikkeliamk.fi/cisco/CCNAv_5/Introd_To_Netw/index.html. Updated 2013.

Referred 7.4.2014.

Comer, Douglas 2000. Internetworking with TCP/IP Principles, protocols, and

architectures 4th ed. USA: Prentice Hall.

Evans, Dave 2011. The Internet of Things. WWW-document.

http://blogs.cisco.com/diversity/the-internet-of-things-infographic/. Updated

15.6.2011. Referred 8.4.2014.

Garfinkel, Simson & Spafford, Gene 2000. Web security, privacy & commerce, 2nd

ed. USA: O’Reilly & Associates, Inc.

Gromyko Evgeniia 2014. Investigation of digital certificate: Verification of reliability

and resistance to external attacks. Finland: MAMK.

Microsoft 2005a. Data confidentiality. WWW-document.

http://msdn.microsoft.com/en-us/library/ff650720.aspx. Updated 12.2005. Referred

8.4.2014.

38

Microsoft 2005b. Enterprise certification authorities. WWW-document.

http://technet.microsoft.com/en-us/library/cc776874(v=ws.10).aspx. Updated

21.1.2005. Referred 15.2.2014.

Microsoft 2005c. Stand-alone certification authorities. WWW-document.

http://technet.microsoft.com/en-us/library/ cc780501(v=ws.10).aspx. Updated

21.1.2005. Referred 15.2.2014.

Microsoft 2014a. What are digital certificates? WWW-document.

http://msdn.microsoft.com/en-us/library/office/. No updating information. Referred

4.2.2014.

Microsoft 2014b. Recursive and iterative queries. WWW-document.

http://technet.microsoft.com/en-us/library/cc961401.aspx/. No updating information.

Referred 18.4.2014.

OpenSSL Documents 2014. OpenSSL Documents. WWW-document.

https://www.openssl.org/docs. No updating information. Referred 11.5.2014.

RFC_2216 1999. The TLS Protocol Version 1.0. WWW-document.

http://tools.ietf.org/html/rfc2246 Updated 01.1999. Referred 12.5.2014.

Rouse, Margaret 2006. PKI (Public key infrastructure). WWW-document.

http://searchsecurity.techtarget.com/definition/PKI/. Updated 10.2006. Referred

11.2.2014.

Rouse, Margaret 2013. Digital certificate. WWW-document.

http://searchsecurity.techtarget.com/definition/digital-certificate/. Updated 11.2013.

Referred 4.2.2014.

Rubayat, Hasan 2010. Setting up Apache HTTP/SSL on Windows. WWW-document.

http://rubayathasan.com/tutorial/apache-ssl-on-windows/. Updated 2.4.2010. Referred

11.5.2014.

39

Schaefer, Ken (ed.) 2013. Professional Microsoft IIS 8. Indianapolis: John Wiley &

Sons Inc.

Sosinsky, Barrie 2009. Networking Bible. Indianapolis: Wiley Publishing, Inc.

Symantec 2011. HTTPS. WWW-document.

http://www.symantec.com/business/support/index?page=content&pmv=print&impres

sions=&viewlocale=es_ES&id=GL1377. Updated 15.8.2011. Referred 5.4.2014.

TIM 2014. SSL Pulse. WWW-document. https://www.trustworthyinternet.org/ssl-

pulse/. Updated 4.3.2014. Referred 5.4.2014.

Tutorialspoint 2014. HTTP – Methods. WWW-document.

http://www.tutorialspoint.com/http/http_methods.htm. No updating information.

Referred 28.2.2014.

Vyronis, Panayotis 2013. Explaining public-key cryptography to non-geeks. WWW-

document. https://medium.com/how-to-use-the-internet/f0994b3c2d5. Updated

22.12.2013. Referred 11.2.2014.

w3 2004. Security Considerations. WWW-document.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html. Updated 1.9.2004.

Referred 15.3.2014.

wiseGEEK 2014. How big is the Internet? WWW-document.

http://www.wisegeek.org/how-big-is-the-internet.htm. Updated 18.3.2013. Referred

8.4.2014.

APPENDIX 1 (1)

HTTP Methods (Tutorialspoint 2014)

HTTP Method

Request Server response

CONNECT

CONNECT

www.tutorialspoint.com

HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

HTTP/1.1 200 Connection

established

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

DELETE

DELETE /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

Content-type: text/html

Content-length: 30

Connection: Closed

<html>

<body>

APPENDIX 1 (2)

<h1>URL deleted.</h1>

</body>

</html>

GET

GET /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip,

deflate

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

Last-Modified: Wed, 22 Jul

2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Hello, World!</h1>

</body>

APPENDIX 1 (3)

</html>

HEAD

HEAD /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip,

deflate

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

Last-Modified: Wed, 22 Jul

2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

OPTIONS

OPTIONS * HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

Allow:

GET,HEAD,POST,OPTIONS,TRACE

APPENDIX 1 (4)

Content-Type: httpd/unix-

directory

POST

POST /cgi-bin/process.cgi

HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

Host: www.tutorialspoint.com

Content-Type: text/xml;

charset=utf-8

Content-Length: 88

Accept-Language: en-us

Accept-Encoding: gzip,

deflate

Connection: Keep-Alive

<?xml version="1.0"

encoding="utf-8"?>

<string

xmlns="http://clearforest.co

m/">string</string>

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

Last-Modified: Wed, 22 Jul

2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Request Processed

Successfully</h1>

</body>

</html>

APPENDIX 1 (5)

PUT

PUT /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Connection: Keep-Alive

Content-type: text/html

Content-Length: 182

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

HTTP/1.1 201 Created

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

Content-type: text/html

Content-length: 30

Connection: Closed

<html>

<body>

<h1>The file was

created.</h1>

</body>

</html>

TRACE

TRACE / HTTP/1.1

Host: www.tutorialspoint.com

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009

12:28:53 GMT

Server: Apache/2.2.14

(Win32)

APPENDIX 1 (6)

Connection: close

Content-Type: message/http

Content-Length: 39

TRACE / HTTP/1.1

Host:

www.tutorialspoint.com

User-Agent: Mozilla/4.0

(compatible; MSIE5.01;

Windows NT)

APPENDIX 2 (1)

List of required commands for creating self-signed certificate in OpenSSL

C:\Program Files\Apache Software Foundation\Apache2.2\bin>openssl req -new -out

server.csr

Loading 'screen' into random state - done

Generating a 1024 bit RSA private key

......++++++

..................++++++

writing new private key to 'privkey.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated into your

certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI

State or Province Name (full name) [Some-State]:Etelä-Savo

Locality Name (eg, city) []:Mikkeli

Organization Name (eg, company) [Internet Widgits Pty Ltd]:MAMK

APPENDIX 2 (2)

Organizational Unit Name (eg, section) []:IT

Common Name (e.g. server FQDN or YOUR name) []:www.mywebpage.fi

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

C:\Program Files\Apache Software Foundation\Apache2.2\bin>openssl rsa -in

privkey.pem -out server.key

Enter pass phrase for privkey.pem:

writing RSA key

C:\Program Files\Apache Software Foundation\Apache2.2\bin>openssl x509 -in

server.csr -out server.crt -req -signkey server.key -days 365

Loading 'screen' into random state - done

Signature ok

subject=/C=FI/ST=Etel\x84-

Savo/L=Mikkeli/O=MAMK/OU=IT/CN=www.mywebpage.fi

Getting Private key

