

Python Data Science
Essentials
Third Edition

A practitioner's guide covering essential data science
principles, tools, and techniques

Alberto Boschetti
Luca Massaron

BIRMINGHAM - MUMBAI

Python Data Science Essentials
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Namrata Patil
Content Development Editor: Snehal Kolte
Technical Editor: Dinesh Chaudhary
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Deepika Naik

First published: April 2015
Second edition: October 2016
Third edition: September 2018

Production reference: 1260918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-786-4

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Alberto Boschetti is a data scientist with expertise in signal processing and statistics. He
holds a Ph.D. in telecommunication engineering and currently lives and works in London.
In his work projects, he faces challenges ranging from natural language processing (NLP)
and behavioral analysis to machine learning and distributed processing. He is very
passionate about his job and always tries to stay updated about the latest developments in
data science technologies, attending meet-ups, conferences, and other events.

I would like to thank my family, my friends, and my colleagues. Also, big thanks to the
open source community.

Luca Massaron is a data scientist and marketing research director specialized in
multivariate statistical analysis, machine learning, and customer insight, with over a decade
of experience of solving real-world problems and generating value for stakeholders by
applying reasoning, statistics, data mining, and algorithms. From being a pioneer of web
audience analysis in Italy to achieving the rank of a top-10 Kaggler, he has always been
very passionate about every aspect of data and its analysis, and also about demonstrating
the potential of data-driven knowledge discovery to both experts and non-experts.
Favoring simplicity over unnecessary sophistication, Luca believes that a lot can be
achieved in data science just by doing the essentials.

To Yukiko and Amelia, for their loving patience.

"Roads go ever ever on, under cloud and under star, yet feet that wandering have gone
turn at last to home afar."

About the reviewers
Pietro Marinelli has been working with artificial intelligence, text analytics and many other
data science techniques, and has more than 10 years of experience in designing products
based on data for different industries.

He produced a variety of algorithms, ranging from predictive modeling to advanced
simulation algorithm to support top management's business decisions for different
multinational companies.

He has consistently been ranked among the top data scientists in the world in the Kaggle
rankings for years, reaching 3rd position among Italian data scientists.

Matteo Malosetti is a mathematical engineer working as a data scientist in insurance. He is
passionate about NLP applications and Bayesian statistics.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: First Steps 6
Introducing data science and Python 7
Installing Python 9

Python 2 or Python 3? 9
Step-by-step installation 10
Installing the necessary packages 12
Package upgrades 14
Scientific distributions 15

Anaconda 15
Leveraging conda to install packages 16
Enthought Canopy 17
WinPython 18

Explaining virtual environments 18
Conda for managing environments 21

A glance at the essential packages 22
NumPy 23
SciPy 23
pandas 24
pandas-profiling 24
Scikit-learn 24
Jupyter 25
JupyterLab 26
Matplotlib 26
Seaborn 27
Statsmodels 27
Beautiful Soup 28
NetworkX 28
NLTK 29
Gensim 29
PyPy 29
XGBoost 30
LightGBM 32
CatBoost 33
TensorFlow 33
Keras 34

Introducing Jupyter 35
Fast installation and first test usage 39
Jupyter magic commands 41
Installing packages directly from Jupyter Notebooks 43
Checking the new JupyterLab environment 44

Table of Contents

[ii]

How Jupyter Notebooks can help data scientists 45
Alternatives to Jupyter 51

Datasets and code used in this book 52
Scikit-learn toy datasets 53

The MLdata.org and other public repositories for open source data 57
LIBSVM data examples 58
Loading data directly from CSV or text files 58
Scikit-learn sample generators 62

Summary 63

Chapter 2: Data Munging 64
The data science process 64
Data loading and preprocessing with pandas 67

Fast and easy data loading 67
Dealing with problematic data 71
Dealing with big datasets 74
Accessing other data formats 78
Putting data together 81
Data preprocessing 85
Data selection 92

Working with categorical and textual data 95
A special type of data – text 98
Scraping the web with Beautiful Soup 104

Data processing with NumPy 106
NumPy's n-dimensional array 107
The basics of NumPy ndarray objects 108

Creating NumPy arrays 111
From lists to unidimensional arrays 112
Controlling memory size 113
Heterogeneous lists 114
From lists to multidimensional arrays 115
Resizing arrays 117
Arrays derived from NumPy functions 118
Getting an array directly from a file 120
Extracting data from pandas 120

NumPy fast operation and computations 122
Matrix operations 124
Slicing and indexing with NumPy arrays 126
Stacking NumPy arrays 129
Working with sparse arrays 131

Summary 135

Chapter 3: The Data Pipeline 136
Introducing EDA 136
Building new features 141
Dimensionality reduction 144

Table of Contents

[iii]

The covariance matrix 145
Principal component analysis 146
PCA for big data – RandomizedPCA 151
Latent factor analysis 152
Linear discriminant analysis 153
Latent semantical analysis 154
Independent component analysis 154
Kernel PCA 155
T-SNE 157
Restricted Boltzmann Machine 158

The detection and treatment of outliers 159
Univariate outlier detection 160
EllipticEnvelope 163
OneClassSVM 168

Validation metrics 172
Multilabel classification 172
Binary classification 175
Regression 176

Testing and validating 177
Cross-validation 182

Using cross-validation iterators 185
Sampling and bootstrapping 188

Hyperparameter optimization 190
Building custom scoring functions 193
Reducing the grid search runtime 195

Feature selection 198
Selection based on feature variance 199
Univariate selection 199
Recursive elimination 201
Stability and L1-based selection 203

Wrapping everything in a pipeline 206
Combining features together and chaining transformations 206
Building custom transformation functions 209

Summary 211

Chapter 4: Machine Learning 212
Preparing tools and datasets 212
Linear and logistic regression 214
Naive Bayes 218
K-Nearest Neighbors 221
Nonlinear algorithms 223

SVM for classification 224
SVM for regression 226
Tuning SVM 227

Ensemble strategies 230

Table of Contents

[iv]

Pasting by random samples 231
Bagging with weak classifiers 231
Random Subspaces and Random Patches 232
Random Forests and Extra-Trees 233
Estimating probabilities from an ensemble 235
Sequences of models – AdaBoost 237
Gradient tree boosting (GTB) 238
XGBoost 239
LightGBM 243
CatBoost 248

Dealing with big data 253
Creating some big datasets as examples 253
Scalability with volume 254
Keeping up with velocity 257
Dealing with variety 258
An overview of Stochastic Gradient Descent (SGD) 260

A peek into natural language processing (NLP) 262
Word tokenization 262
Stemming 264
Word tagging 264
Named entity recognition (NER) 265
Stopwords 266
A complete data science example – text classification 267

An overview of unsupervised learning 269
K-means 269
DBSCAN – a density-based clustering technique 273
Latent Dirichlet Allocation (LDA) 276

Summary 281

Chapter 5: Visualization, Insights, and Results 282
Introducing the basics of matplotlib 282

Trying curve plotting 284
Using panels for clearer representations 286
Plotting scatterplots for relationships in data 288
Histograms 289
Bar graphs 291
Image visualization 292
Selected graphical examples with pandas 295

Working with boxplots and histograms 296
Plotting scatterplots 299

Discovering patterns by parallel coordinates 302
Wrapping up matplotlib's commands 303

Introducing Seaborn 304
Enhancing your EDA capabilities 310

Advanced data learning representation 318
Learning curves 318

Table of Contents

[v]

Validation curves 321
Feature importance for RandomForests 322
Gradient Boosting Trees partial dependence plotting 325
Creating a prediction server with machine-learning-as-a-service 326

Summary 331

Chapter 6: Social Network Analysis 333
Introduction to graph theory 333
Graph algorithms 340

Types of node centrality 343
Partitioning a network 347

Graph loading, dumping, and sampling 350
Summary 354

Chapter 7: Deep Learning Beyond the Basics 355
Approaching deep learning 355
Classifying images with CNN 359
Using pre-trained models 371
Working with temporal sequences 375
Summary 378

Chapter 8: Spark for Big Data 379
From a standalone machine to a bunch of nodes 380

Making sense of why we need a distributed framework 381
The Hadoop ecosystem 382

Hadoop architecture 382
Hadoop Distributed File System 384
MapReduce 385
Introducing Apache Spark 387
PySpark 387

Starting with PySpark 388
Setting up your local Spark instance 388
Experimenting with Resilient Distributed Datasets 391

Sharing variables across cluster nodes 398
Read-only broadcast variables 398
Write-only accumulator variables 399
Broadcast and accumulator variables together—an example 400

Data preprocessing in Spark 403
CSV files and Spark DataFrames 403
Dealing with missing data 405
Grouping and creating tables in-memory 406
Writing the preprocessed DataFrame or RDD to disk 408
Working with Spark DataFrames 409

Machine learning with Spark 411
Spark on the KDD99 dataset 411
Reading the dataset 412

Table of Contents

[vi]

Feature engineering 415
Training a learner 418
Evaluating a learner's performance 420
The power of the machine learning pipeline 420
Manual tuning 422
Cross-validation 425
Final cleanup 427

Summary 428

Appendix A: Strengthen Your Python Foundations 429
Your learning list 430

Lists 430
Dictionaries 432
Defining functions 434
Classes, objects, and object-oriented programming 436
Exceptions 437
Iterators and generators 439
Conditionals 440
Comprehensions for lists and dictionaries 440

Learn by watching, reading, and doing 441
Massive open online courses (MOOCs) 441
PyCon and PyData 442
Interactive Jupyter 442
Don't be shy, take a real challenge 443

Other Books You May Enjoy 444

Index 447

Preface

"A journey of a thousand miles begins with a single step."

– Laozi (604 BC - 531 BC)

Data science is a relatively new knowledge domain that requires the successful integration
of linear algebra, statistical modeling, visualization, computational linguistics, graph
analysis, machine learning, business intelligence, and data storage and retrieval.

The Python programming language, having conquered the scientific community during the
last decade, is now an indispensable tool for the data science practitioner and a must-have
tool for every aspiring data scientist. Python will offer you a fast, reliable, cross-platform,
and mature environment for data analysis, machine learning, and algorithmic problem
solving. Whatever stopped you before from mastering Python for data science applications
will be easily overcome by our easy, step-by-step, and example-oriented approach, which
will help you apply the most straightforward and effective Python tools to both
demonstrative and real-world datasets.

As the third edition of Python Data Science Essentials, this book offers updated and
expanded content. Based on the recent Jupyter Notebook and JupyterLab interface
(incorporating interchangeable kernels, a truly polyglot data science system), this book
incorporates all the main recent improvements in NumPy, pandas, and scikit-
learn. Additionally, it offers new content in the form of new GBM algorithms (XGBoost,
LightGBM, and CatBoost), deep learning (by presenting Keras solutions based on
TensorFlow), beautiful visualizations (mostly due to seaborn), and web deployment (using
bottle).

This book starts by showing you how to set up your essential data science toolbox in
Python's latest version (3.6), using a single-source approach (implying that the book's code
will be easily reusable on Python 2.7 as well). Then, it will guide you across all the data
munging and preprocessing phases in a manner that explains all the core data science
activities related to loading data, transforming, and fixing it for analysis, and
exploring/processing it. Finally, the book will complete its overview by presenting you with
the principal machine learning algorithms, graph analysis techniques, and all the
visualization and deployment instruments that make it easier to present your results to an
audience of both data science experts and business users.

Preface

[2]

Who this book is for
If you are an aspiring data scientist and you have at least a working knowledge of data
analysis and Python, this book will get you started in data science. Data analysis with
experience of R or MATLAB/GNU Octave will also find the book to be a comprehensive
reference to enhance their data manipulation and machine learning skills.

What this book covers
Chapter 1, First Steps, introduces Jupyter Notebook and demonstrates how you can have
access to the data run in the tutorials.

Chapter 2, Data Munging, presents all the key data manipulation and transformation
techniques, highlighting best practices for munging activities.

Chapter 3, The Data Pipeline, discusses all the operations that can potentially improve data
science project results, rendering the reader capable of advanced data operations.

Chapter 4, Machine Learning, presents the most important learning algorithms available
through the scikit-learn library. The reader will be shown practical applications and what is
important to check and what parameters to tune for getting the best from each learning
technique.

Chapter 5, Visualization, Insights, and Results, offers you basic and upper-intermediate
graphical representations, indispensable for representing and visually understanding
complex data structures and results obtained from machine learning.

Chapter 6, Social Network Analysis, provides the reader with practical and effective skills for
handling data representing social relations and interactions.

Chapter 7, Deep Learning Beyond the Basics, demonstrates how to build a convolutional
neural network from scratch, introduces all the tools of the trade to enhance your deep
learning models, and explains how transfer learning works, as well as how to use recurrent
neural networks for classifying text and predicting series.

Chapter 8, Spark for Big Data, introduces a new way to process data: scaling big data
horizontally. This means running a cluster of machines, having installed the Hadoop and
Spark frameworks.

Appendix, Strengthening Your Python Foundations, covers a few Python examples and
tutorials that are focused on the key features of the language that are indispensable in order
to work on data science projects.

Preface

[3]

To get the most out of this book
In order to get the most out of this book, you will need the following:

A familiarity with the basic Python syntax and data structures (for example, lists
and dictionaries)
Some knowledge about data analysis, especially regarding descriptive statistics

You can build up both these skills as you are reading the book, though the book does not go
too much into the details, instead providing only the essentials for most of the techniques
that a data scientist has to know in order to be successful on her/his projects.

You will also need the following:

A computer with a Windows, macOS, or Linux operating system and at least 8
GB of memory (if you have just 4 GB on your machine, you should be fine with
most examples anyway)
A GPU installed on your computer if you want to speed up the computations
you will find in Chapter 7, Deep Learning Beyond the Basics.
A Python 3.6 installation, preferably from Anaconda (https:/ ​/​www. ​anaconda.
com/​download/ ​)

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Python-Data-Science-Essentials-Third-
Edition. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781789537864_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk
in your system."

A block of code is set as follows:

In: G.add_edge(3,4)
 G.add_edges_from([(2, 3), (4, 1)])
 nx.draw_networkx(G)
 plt.show()

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://github.com/PacktPublishing/Python-Data-Science-Essentials-Third-Edition
https://github.com/PacktPublishing/Python-Data-Science-Essentials-Third-Edition
https://github.com/PacktPublishing/Python-Data-Science-Essentials-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537864_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
First Steps

Whether you are an eager learner of data science or a well-grounded data science
practitioner, you can take advantage of this essential introduction to Python for data
science. You can use it to the fullest if you already have at least some previous experience in
basic coding, in writing general-purpose computer programs in Python, or in some other
data-analysis-specific language such as MATLAB or R.

This book will delve directly into Python for data science, providing you with a straight
and fast route to solving various data science problems using Python and its powerful data
analysis and machine learning packages. The code examples that are provided in this book
don't require you to be a master of Python. However, they will assume that you at least
know the basics of Python scripting, including data structures such as lists and dictionaries,
and the workings of class objects. If you don't feel confident about these subjects or have
minimal knowledge of the Python language, before reading this book, we suggest that you
take an online tutorial. There are good online tutorials that you may take, such as the one
offered by the Code Academy course at https:/ ​/​www. ​codecademy. ​com/ ​learn/ ​learn-
python, the one by Google's Python class at
https://developers.google.com/edu/python/, or even the Whirlwind tour of Python by
Jake Vanderplas (https:/ ​/ ​github. ​com/ ​jakevdp/ ​WhirlwindTourOfPython). All the courses
are free, and, in a matter of a few hours of study, they should provide you with all the
building blocks that will ensure you enjoy this book to the fullest. In order to provide an
integration of the two aforementioned free courses, we have also prepared a tutorial of our
own, which can be found in the appendix of this book.

In any case, don't be intimidated by our starting requirements; mastering Python enough
for data science applications isn't as arduous as you may think. It's just that we have to
assume some basic knowledge on the reader's part because our intention is to go straight to
the point of doing data science without having to explain too much about the general
aspects of the Python language that we will be using.

Are you ready, then? Let's get started!

https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
http://developers.google.com/edu/python/
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython

First Steps Chapter 1

[7]

In this short introductory chapter, we will work through the basics to set off in full swing
and go through the following topics:

How to set up a Python data science toolbox
Using Jupyter
An overview of the data that we are going to study in this book

Introducing data science and Python
Data science is a relatively new knowledge domain, though its core components have been
studied and researched for many years by the computer science community. Its
components include linear algebra, statistical modeling, visualization, computational
linguistics, graph analysis, machine learning, business intelligence, and data storage and
retrieval.

Data science is a new domain, and you have to take into consideration that, currently, its
frontiers are still somewhat blurred and dynamic. Since data science is made of various
constituent sets of disciplines, please also keep in mind that there are different profiles of
data scientists depending on their competencies and areas of expertise (for instance, you
may read the illustrative There’s More Than One Kind of Data Scientist by Harlan D Harris at
radar.oreilly.com/2013/06/theres-more-than-one-kind-of-data-scientist.html, or
delve into the discussion about type A or B data scientists and other interesting taxonomies
at https:/​/​stats. ​stackexchange. ​com/ ​questions/ ​195034/ ​what- ​is-​a- ​data- ​scientist).

In such a situation, what can be the best tool of the trade that you can learn and effectively
use in your career as a data scientist? We believe that the best tool is Python, and we intend
to provide you with all the essential information that you will need for a quick start.

In addition, other programming languages such as R and MATLAB provide data scientists
with specialized tools to solve specific problems in statistical analysis and matrix
manipulation in data science. However, only Python really completes your data scientist
skill set with all the key techniques in a scalable and effective way. This multipurpose
language is suitable for both development and production alike; it can handle small- to
large-scale data problems and it is easy to learn and grasp, no matter what your
background or experience is.

http://radar.oreilly.com/2013/06/theres-more-than-one-kind-of-data-scientist.html
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist
https://stats.stackexchange.com/questions/195034/what-is-a-data-scientist

First Steps Chapter 1

[8]

Created in 1991 as a general-purpose, interpreted, and object-oriented language, Python has
slowly and steadily conquered the scientific community and grown into a mature
ecosystem of specialized packages for data processing and analysis. It allows you to have
uncountable and fast experimentations, easy theory development, and prompt deployment
of scientific applications.

At present, the core Python characteristics that render it an indispensable data science tool
are as follows:

It offers a large, mature system of packages for data analysis and machine
learning. It guarantees that you will get all that you may need in the course of a
data analysis, and sometimes even more.
Python can easily integrate different tools and offers a truly unifying ground for
different languages, data strategies, and learning algorithms that can be fitted
together easily and which can concretely help data scientists forge powerful
solutions. There are packages that allow you to call code in other languages (in
Java, C, Fortran, R, or Julia), outsourcing some of the computations to them and
improving your script performance.
It is very versatile. No matter what your programming background or style is
(object-oriented, procedural, or even functional), you will enjoy programming
with Python.
It is cross-platform; your solutions will work perfectly and smoothly on
Windows, Linux, and macOS systems. You won't have to worry all that much
about portability.
Although interpreted, it is undoubtedly fast compared to other mainstream data
analysis languages such as R and MATLAB (though it is not comparable to C,
Java, and the newly emerged Julia language). Moreover, there are also static
compilers such as Cython or just-in-time compilers such as PyPy that can
transform Python code into C for higher performance.
It can work with large in-memory data because of its minimal memory footprint
and excellent memory management. The memory garbage collector will often
save the day when you load, transform, dice, slice, save, or discard data using
various iterations and reiterations of data wrangling.
It is very simple to learn and use. After you grasp the basics, there's no better
way to learn more than by immediately starting with the coding.
Moreover, the number of data scientists using Python is continuously growing:
new packages and improvements have been released by the community every
day, making the Python ecosystem an increasingly prolific and rich language for
data science.

First Steps Chapter 1

[9]

Installing Python
First, let's proceed and introduce all the settings you need in order to create a fully working
data science environment to test the examples and experiment with the code that we are
going to provide you with.

Python is an open source, object-oriented, and cross-platform programming language.
Compared to some of its direct competitors (for instance, C++ or Java), Python is very
concise. It allows you to build a working software prototype in a very short time, and yet it
has become the most used language in the data scientist's toolbox not just because of that. It
is also a general-purpose language, and it is very flexible due to a variety of available
packages that solve a wide spectrum of problems and necessities.

Python 2 or Python 3?
There are two main branches of Python: 2.7.x and 3.x. At the time of the revision of this
third edition of the book, the Python foundation (www.python.org/) is offering downloads
for Python Version 2.7.15 (release date January 5, 2018) and 3.6.5 (release date January 3,
2018). Although the Python 3 version is the newest, the older Python 2 has still been in use
in both scientific (20% adoption) and commercial (30% adoption) areas in 2017, as depicted
in detail by this survey by JetBrains: https:/ ​/ ​www.​jetbrains. ​com/ ​research/ ​python-
developers-​survey- ​2017. If you are still using Python 2, the situation could turn quite
problematic soon, because in just one year's time Python 2 will be retired and maintenance
will be ceased (pythonclock.org/ will provide you with the countdown, but for an official
statement about this, just read https:/ ​/ ​www. ​python. ​org/ ​dev/ ​peps/ ​pep-​0373/ ​), and there
are really only a handful of libraries still incompatible between the two versions
(py3readiness.org/) that do not give enough reasons to stay with the older version.

In addition to all these reasons, there is no immediate backward compatibility between
Python 3 and 2. In fact, if you try to run some code developed for Python 2 with a Python 3
interpreter, it may not work. Major changes have been made to the newest version, and that
has affected past compatibility. Some data scientists, having built most of their work on
Python 2 and its packages, are reluctant to switch to the new version.

In this third edition of the book, we will continue to address the larger audience of data
scientists, data analysts, and developers, who do not have such a strong legacy with Python
2. Consequently, we will continue working with Python 3, and we suggest using a version
such as the most recently available Python 3.6. After all, Python 3 is the present and the
future of Python. It is the only version that will be further developed and improved by the
Python foundation, and it will be the default version of the future on many operating
systems.

http://www.python.org/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://pythonclock.org/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
http://py3readiness.org/

First Steps Chapter 1

[10]

Anyway, if you are currently working with version 2 and you prefer to keep on working
with it, you can still use this book and all of its examples. In fact, for the most part, our code
will simply work on Python 2 after having the code itself preceded by these imports:

from __future__ import (absolute_import, division,
 print_function, unicode_literals)
from builtins import *
from future import standard_library
standard_library.install_aliases()

The from __future__ import commands should always occur at the
beginning of your scripts, or else you may experience Python reporting an
error.

As described in the Python-future website (python-future.org), these imports will help
convert several Python 3-only constructs to a form that's compatible with both Python 3
and Python 2 (and in any case, most Python 3 code should just simply work on Python 2,
even without the aforementioned imports).

In order to run the upward commands successfully, if the future package is not already
available on your system, you should install it (version >= 0.15.2) by using the following
command, which is to be executed from a shell:

$> pip install -U future

If you're interested in understanding the differences between Python 2 and Python 3
further, we recommend reading the wiki page offered by the Python foundation itself:
https://wiki.python.org/moin/Python2orPython3.

Step-by-step installation
Novice data scientists who have never used Python (who likely don't have the language
readily installed on their machines) need to first download the installer from the main
website of the project, www.python.org/downloads/, and then install it on their local
machine.

http://python-future.org/
http://wiki.python.org/moin/Python2orPython3
https://www.python.org/downloads/

First Steps Chapter 1

[11]

This section provides you with full control over what can be installed on
your machine. This is very useful when you have to set up single
machines to deal with different tasks in data science. Anyway, please be
warned that a step-by-step installation really takes time and effort.
Instead, installing a ready-made scientific distribution will lessen the
burden of installation procedures and it may be well-suited for first
starting and learning because it saves you time and sometimes even
trouble, though it will put a large number of packages (and we won't use
most of them) on your computer all at once. Therefore, if you want to start
immediately with an easy installation procedure, just skip this part and
proceed to the next section, Scientific distributions.

This being a multiplatform programming language, you'll find installers for machines that
either run on Windows or Unix-like operating systems.

Remember that some of the latest versions of most Linux distributions (such as CentOS,
Fedora, Red Hat Enterprise, and Ubuntu) have Python 2 packaged in the repository. In
such a case, and in the case that you already have a Python version on your computer
(since our examples run on Python 3), you first have to check what version you are exactly
running. To do such a check, just follow these instructions:

Open a python shell, type python in the terminal, or click on any Python icon1.
you find on your system.
Then, after starting Python, to test the installation, run the following code in the2.
Python interactive shell or REPL:

>>> import sys
>>> print (sys.version_info)

If you can read that your Python version has the major=2 attribute, it means that3.
you are running a Python 2 instance. Otherwise, if the attribute is valued 3, or if
the print statement reports back to you something like v3.x.x (for instance,
v3.5.1), you are running the right version of Python, and you are ready to move
forward.

To clarify the operations we have just mentioned, when a command is given in the terminal
command line, we prefix the command with $>. Otherwise, if it's for the Python REPL, it's
preceded by >>>.

First Steps Chapter 1

[12]

Installing the necessary packages
Python won't come bundled with everything you need unless you take a specific pre-made
distribution. Therefore, to install the packages you need, you can use either pip or
easy_install. Both of these two tools run in the command line and make the process of
installation, upgrading, and removing Python packages a breeze. To check which tools
have been installed on your local machine, run the following command:

$> pip

To install pip, follow the instructions given
at https://pip.pypa.io/en/latest/installing/.

Alternatively, you can also run the following command:

$> easy_install

If both of these commands end up with an error, you need to install any one of them. We
recommend that you use pip because it is thought of as an improvement over
easy_install. Moreover, easy_install is going to be dropped in the future and pip
has important advantages over it. It is preferable to install everything using pip because of
the following:

It is the preferred package manager for Python 3. Starting with Python 2.7.9 and
Python 3.4, it is included by default with the Python binary installers
It provides an uninstall functionality
It rolls back and leaves your system clear if, for whatever reason, the package's
installation fails

https://pip.pypa.io/en/latest/installing/

First Steps Chapter 1

[13]

Using easy_install in spite of the advantages of pip makes sense if you
are working on Windows because pip won't always install pre-compiled
binary packages. Sometimes, it will try to build the package's extensions
directly from C source, thus requiring a properly configured compiler
(and that's not an easy task on Windows). This depends on whether the
package is running on eggs (and pip cannot directly use their binaries,
but it needs to build from their source code) or wheels (in this case, pip
can install binaries if available, as explained
here: http://pythonwheels.com/). Instead, easy_install will always
install available binaries from eggs and wheels. Therefore, if you are
experiencing unexpected difficulties installing a package, easy_install
can save your day (at some price, anyway, as we just mentioned in the
list).

The most recent versions of Python should already have pip installed by default.
Therefore, you may have it already installed on your system. If not, the safest way is to
download the get-pi.py script from https:/ ​/​bootstrap. ​pypa. ​io/​get- ​pip. ​py and then
run it by using the following:

$> python get-pip.py

The script will also install the setup tool from pypi.org/project/setuptools, which also
contains easy_install.

You're now ready to install the packages you need in order to run the examples provided in
this book. To install the < package-name > generic package, you just need to run the
following command:

$> pip install < package-name >

Alternatively, you can run the following command:

$> easy_install < package-name >

Note that, in some systems, pip might be named as pip3 and easy_install as
easy_install-3 to stress the fact that both operate on packages for Python 3. If you're
unsure, check the version of Python that pip is operating on with:

$> pip -V

For easy_install, the command is slightly different:

$> easy_install --version

http://pythonwheels.com/
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://pypi.org/project/setuptools/

First Steps Chapter 1

[14]

After this, the <pk> package and all its dependencies will be downloaded and installed. If
you're not certain whether a library has been installed or not, just try to import a module
inside it. If the Python interpreter raises an ImportError error, it can be concluded that the
package has not been installed.

This is what happens when the NumPy library has been installed:

>>> import numpy

This is what happens if it's not installed:

>>> import numpy

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ImportError: No module named numpy

In the latter case, you'll need to first install it through pip or easy_install.

Take care that you don't confuse packages with modules. With pip, you
install a package; in Python, you import a module. Sometimes, the
package and the module have the same name, but in many cases, they
don't match. For example, the sklearn module is included in the package
named Scikit-learn.

Finally, to search and browse the Python packages available for Python, look at pypi.org.

Package upgrades
More often than not, you will find yourself in a situation where you have to upgrade a
package because either the new version is required by a dependency or it has additional
features that you would like to use. First, check the version of the library you have installed
by glancing at the __version__ attribute, as shown in the following example, numpy:

>>> import numpy
>>> numpy.__version__ # 2 underscores before and after
 '1.11.0'

Now, if you want to update it to a newer release, say the 1.12.1 version, you can run the
following command from the command line:

$> pip install -U numpy==1.12.1

https://pypi.org/

First Steps Chapter 1

[15]

Alternatively, you can use the following command:

$> easy_install --upgrade numpy==1.12.1

Finally, if you're interested in upgrading it to the latest available version, simply run the
following command:

$> pip install -U numpy

You can alternatively run the following command:

$> easy_install --upgrade numpy

Scientific distributions
As you've read so far, creating a working environment is a time-consuming operation for a
data scientist. You first need to install Python, and then, one by one, you can install all the
libraries that you will need (sometimes, the installation procedures may not go as smoothly
as you'd hoped for earlier).

If you want to save time and effort and want to ensure that you have a fully working
Python environment that is ready to use, you can just download, install, and use the
scientific Python distribution. Apart from Python, they also include a variety of preinstalled
packages, and sometimes, they even have additional tools and an IDE. A few of them are
very well-known among data scientists, and in the sections that follow, you will find some
of the key features of each of these packages.

We suggest that you first promptly download and install a scientific distribution, such as
Anaconda (which is the most complete one), and after practicing the examples in this book,
decide whether or not to fully uninstall the distribution and set up Python alone, which can
be accompanied by just the packages you need for your projects.

Anaconda
Anaconda (https:/ ​/​www. ​anaconda. ​com/ ​download/ ​) is a Python distribution offered by
Continuum Analytics that includes nearly 200 packages, which comprises NumPy, SciPy,
pandas, Jupyter, Matplotlib, Scikit-learn, and NLTK. It's a cross-platform distribution
(Windows, Linux, and macOS) that can be installed on machines with other existing Python
distributions and versions. Its base version is free; instead, add-ons that contain advanced
features are charged separately. Anaconda introduces conda, a binary package manager, as
a command-line tool to manage your package installations.

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/

First Steps Chapter 1

[16]

As stated on the website, Anaconda's goal is to provide enterprise-ready Python
distribution for large-scale processing, predictive analytics, and scientific computing.

Leveraging conda to install packages
If you've decided to install an Anaconda distribution, you can take advantage of the conda
binary installer we mentioned previously. conda is an open source package management
system, and consequently, it can be installed separately from an Anaconda distribution. The
core difference from pip is that conda can be used to install any package (not just Python's
ones) in a conda environment (that is, an environment where you have installed conda and
you are using it for providing packages). There are many advantages in using conda over
pip, as described by Jack VanderPlas in this famous blog post of
his: jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions.

You can test immediately whether conda is available on your system. Open a shell and
digit the following:

$> conda -V

If conda is available, your version will appear; otherwise, an error will be reported. If
conda is not available, you can quickly install it on your system by going to
http://conda.pydata.org/miniconda.html and installing the Miniconda software that's
suitable for your computer. Miniconda is a minimal installation that only includes conda
and its dependencies.

Conda can help you manage two tasks: installing packages and creating virtual
environments. In this paragraph, we will explore how conda can help you easily install
most of the packages you may need in your data science projects.

Before starting, please check that you have the latest version of conda at hand:

$> conda update conda

Now you can install any package you need. To install the <package-name> generic
package, you just need to run the following command:

$> conda install <package-name>

You can also install a particular version of the package just by pointing it out:

$> conda install <package-name>=1.11.0

https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
http://conda.pydata.org/miniconda.html

First Steps Chapter 1

[17]

Similarly, you can install multiple packages at once by listing all their names:

$> conda install <package-name-1> <package-name-2>

If you just need to update a package that you previously installed, you can keep on using
conda:

$> conda update <package-name>

You can update all the available packages simply by using the --all argument:

$> conda update --all

Finally, conda can also uninstall packages for you:

$> conda remove <package-name>

If you would like to know more about conda, you can read its documentation at
http://conda.pydata.org/docs/index.html. In summary, as its main advantage, it
handles binaries even better than easy_install (by always providing a successful
installation on Windows without any need to compile the packages from source) but
without its problems and limitations. With the use of conda, packages are easy to install
(and installation is always successful), update, and even uninstall. On the other hand,
conda cannot install directly from a git server (so it cannot access the latest version of
many packages under development), and it doesn't cover all the packages available on PyPI
like pip itself.

Enthought Canopy
Enthought Canopy (https://www.enthought.com/products/canopy/) is a Python
distribution by Enthought Inc. It includes more than 200 preinstalled packages, such as
NumPy, SciPy, Matplotlib, Jupyter, and pandas. This distribution is targeted at engineers,
data scientists, quantitative and data analysts, and enterprises. Its base version is free
(which is named Canopy Express), but if you need advanced features, you have to buy a
front version. It's a multi-platform distribution, and its command-line installation tool is
canopy_cli.

http://conda.pydata.org/docs/index.html
https://www.enthought.com/products/canopy/

First Steps Chapter 1

[18]

WinPython
WinPython (http:/ ​/​winpython. ​github. ​io/​) is a free, open-source Python distribution
that's maintained by the community. It is designed for scientists and includes many
packages such as NumPy, SciPy, Matplotlib, and Jupyter. It also includes Spyder as an IDE.
It is free and portable. You can put WinPython into any directory, or even into a USB flash
drive, and at the same time maintain multiple copies and versions of it on your system. It
only works on Microsoft Windows, and its command-line tool is the WinPython Package
Manager (WPPM).

Explaining virtual environments
No matter whether you have chosen to install a standalone Python or instead used a
scientific distribution, you may have noticed that you are actually bound on your system to
the Python version you have installed. The only exception, for Windows users, is to use a
WinPython distribution, since it is a portable installation and you can have as many
different installations as you need.

A simple solution to breaking free of such a limitation is to use virtualenv, which is a tool
for creating isolated Python environments. That means, by using different Python
environments, you can easily achieve the following things:

Testing any new package installation or doing experimentation on your Python
environment without any fear of breaking anything in an irreparable way. In this
case, you need a version of Python that acts as a sandbox.
Having at hand multiple Python versions (both Python 2 and Python 3), geared
with different versions of installed packages. This can help you in dealing with
different versions of Python for different purposes (for instance, some of the
packages we are going to present on Windows OS only work when using Python
3.4, which is not the latest release).
Taking a replicable snapshot of your Python environment easily and having your
data science prototypes work smoothly on any other computer or in production.
In this case, your main concern is the immutability and replicability of your
working environment.

You can find documentation about virtualenv at
http://virtualenv.readthedocs.io/en/stable/, though we are going to provide you
with all the directions you need to start using it immediately. In order to take advantage of
virtualenv, you first have to install it on your system:

$> pip install virtualenv

http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://winpython.github.io/
http://virtualenv.readthedocs.io/en/stable/

First Steps Chapter 1

[19]

After the installation completes, you can start building your virtual environments. Before
proceeding, you have to make a few decisions:

If you have more versions of Python installed on your system, you have to
decide which version to pick up. Otherwise, virtualenv will take the Python
version that was used when virtualenv was installed on your system. In order
to set a different Python version, you have to digit the argument -p followed by
the version of Python you want, or insert the path of the Python executable to be
used (for instance, by using -p python2.7, or by just pointing to a Python
executable such as -p c:Anaconda2python.exe).

With virtualenv, when required to install a certain package, it will install it
from scratch, even if it is already available at a system level (on the python
directory you created the virtual environment from). This default behavior
makes sense because it allows you to create a completely separated empty
environment. In order to save disk space and limit the time of installation of all
the packages, you may instead decide to take advantage of already available
packages on your system by using the argument --system-site-packages.
You may want to be able to later move around your virtual environment across
Python installations, even among different machines. Therefore, you may want
to make the functionality of all of the environment's scripts relative to the path it
is placed in by using the argument --relocatable.

After deciding on the Python version you wish to use, linking to existing global packages,
and the virtual environment being relocatable or not, in order to start, you just need to
launch the command from a shell. Declare the name you would like to assign to your new
environment:

$> virtualenv clone

virtualenv will just create a new directory using the name you provided, in the path from
which you actually launched the command. To start using it, you can just enter the
directory and digit activate:

$> cd clone
$> activate

At this point, you can start working on your separated Python environment, installing
packages, and working with code.

First Steps Chapter 1

[20]

If you need to install multiple packages at once, you may need some special function from
pip, pip freeze, which will enlist all the packages (and their versions) you have installed
on your system. You can record the entire list in a text file by using the following
command:

$> pip freeze > requirements.txt

After saving the list in a text file, just take it into your virtual environment and install all the
packages in a breeze with a single command:

$> pip install -r requirements.txt

Each package will be installed according to the order in the list (packages are listed in a
case-insensitive sorted order). If a package requires other packages that are later in the list,
that's not a big deal because pip automatically manages such situations. So, if your package
requires NumPy and NumPy is not yet installed, pip will install it first.

When you've finished installing packages and using your environment for scripting and
experimenting, in order to return to your system defaults, just issue the following
command:

$> deactivate

If you want to remove the virtual environment completely, after deactivating and getting
out of the environment's directory, you just have to get rid of the environment's directory
itself by performing a recursive deletion. For instance, on Windows, you just do the
following:

$> rd /s /q clone

On Linux and macOS, the command will be as follows:

$> rm -r -f clone

If you are working extensively with virtual environments, you should
consider using virtualenvwrapper, which is a set of wrappers for
virtualenv in order to help you manage multiple virtual environments
easily. It can be found at bitbucket.org/dhellmann/virtualenvwrapper.
If you are operating on a Unix system (Linux or macOS), another solution
we have to quote is pyenv, which can be found
at https://github.com/yyuu/pyenv. It lets you set your main Python
version, allows for the installation of multiple versions, and creates virtual
environments. Its peculiarity is that it does not depend on Python to be
installed and works perfectly at the user level (no need for sudo
commands).

https://bitbucket.org/dhellmann/virtualenvwrapper
https://github.com/yyuu/pyenv

First Steps Chapter 1

[21]

Conda for managing environments
If you have installed the Anaconda distribution, or you have tried conda by using a
Miniconda installation, you can also take advantage of the conda command to run virtual
environments as an alternative to virtualenv. Let's see how to use conda for that in
practice. We can check what environments we have available like this:

>$ conda info -e

This command will report to you what environments you can use on your system based on
conda. Most likely, your only environment will be root, pointing to your Anaconda
distribution folder.

As an example, we can create an environment based on Python Version 3.6, having all the
necessary Anaconda-packaged libraries installed. This makes sense, for instance, when
installing a particular set of packages for a data science project. In order to create such an
environment, just perform the following:

$> conda create -n python36 python=3.6 anaconda

The preceding command asks for a particular Python version, 3.6, and requires the
installation of all packages that are available on the Anaconda distribution (the argument
anaconda). It names the environment as python36 using the argument -n. The complete
installation should take a while, given a large number of packages in the Anaconda
installation. After having completed all of the installations, you can activate the
environment:

$> activate python36

If you need to install additional packages to your environment when activated, you just use
the following:

$> conda install -n python36 <package-name1> <package-name2>

That is, you make the list of the required packages follow the name of your environment.
Naturally, you can also use pip install, as you would do in a virtualenv environment.

You can also use a file instead of listing all the packages by name yourself. You can create a
list in an environment using the list argument and pipe the output to a file:

$> conda list -e > requirements.txt

First Steps Chapter 1

[22]

Then, in your target environment, you can install the entire list by using the following:

$> conda install --file requirements.txt

You can even create an environment, based on a requirements list:

$> conda create -n python36 python=3.6 --file requirements.txt

Finally, after having used the environment, to close the session, you simply use the
following command:

$> deactivate

Contrary to virtualenv, there is a specialized argument in order to completely remove an
environment from your system:

$> conda remove -n python36 --all

A glance at the essential packages
We mentioned previously that the two most relevant characteristics of Python are its ability
to integrate with other languages and its mature package system, which is well embodied
by PyPI (the Python Package Index: pypi.org), a common repository for the majority of
Python open source packages that are constantly maintained and updated.

The packages that we are now going to introduce are strongly analytical and they will
constitute a complete data science toolbox. All of the packages are made up of extensively
tested and highly optimized functions for both memory usage and performance, ready to
achieve any scripting operation with successful execution. A walkthrough on how to install
them is provided in the following section.

Partially inspired by similar tools present in R and MATLAB environments, we will explore
how a few selected Python commands can allow you to efficiently handle data and then
explore, transform, experiment, and learn from the same without having to write too much
code or reinvent the wheel.

https://pypi.org/

First Steps Chapter 1

[23]

NumPy
NumPy, which is Travis Oliphant's creation, is the true analytical workhorse of the Python
language. It provides the user with multidimensional arrays, along with a large set of
functions to operate a multiplicity of mathematical operations on these arrays. Arrays are
blocks of data that are arranged along multiple dimensions, which implement
mathematical vectors and matrices. Characterized by optimal memory allocation, arrays are
useful—not just for storing data, but also for fast matrix operations (vectorization), which
are indispensable when you wish to solve ad hoc data science problems:

Website: http://www.numpy.org/
Version at the time of print: 1.12.1
Suggested install command: pip install numpy

As a convention largely adopted by the Python community, when importing NumPy, it is
suggested that you alias it as np:

import numpy as np

We will be doing this throughout the course of this book.

SciPy
An original project by Travis Oliphant, Pearu Peterson, and Eric Jones, SciPy completes
NumPy's functionalities, which offers a larger variety of scientific algorithms for linear
algebra, sparse matrices, signal and image processing, optimization, fast Fourier
transformation, and much more:

Website: http://www.scipy.org/
Version at time of print: 1.1.0
Suggested install command: pip install scipy

http://www.numpy.org/
http://www.scipy.org/

First Steps Chapter 1

[24]

pandas
The pandas package deals with everything that NumPy and SciPy cannot do. Thanks to its
specific data structures, namely DataFrames and Series, pandas allows you to handle
complex tables of data of different types (which is something that NumPy's arrays cannot
do) and time series. Thanks to Wes McKinney's creation, you will be able to easily and
smoothly load data from a variety of sources. You can then slice, dice, handle missing
elements, add, rename, aggregate, reshape, and finally visualize your data at will:

Website: http://pandas.pydata.org/
Version at the time of print: 0.23.1
Suggested install command: pip install pandas

Conventionally, the pandas package is imported as pd:

import pandas as pd

pandas-profiling
This is a GitHub project that easily allows you to create a report from a pandas DataFrame.
The package will present the following measures in an interactive HTML report, which is
used to evaluate the data at hand for a data science project:

Essentials, such as type, unique values, and missing values
Quantile statistics, such as minimum value, Q1, median, Q3, maximum, range,
and interquartile range
Descriptive statistics such as mean, mode, standard deviation, sum, median
absolute deviation, the coefficient of variation, kurtosis, and skewness
Most frequent values
Histograms
Correlations highlighting highly correlated variables, and Spearman and
Pearson matrixes

Here is all the information about this package:

Website: https:/ ​/​github. ​com/ ​pandas- ​profiling/ ​pandas- ​profiling

Version at the time of print: 1.4.1
Suggested install command: pip install pandas-profiling

http://pandas.pydata.org/
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling

First Steps Chapter 1

[25]

Scikit-learn
Started as part of SciKits (SciPy Toolkits), Scikit-learn is the core of data science operations
in Python. It offers all that you may need in terms of data preprocessing, supervised and
unsupervised learning, model selection, validation, and error metrics. Expect us to talk at
length about this package throughout this book. Scikit-learn started in 2007 as a Google
Summer of Code project by David Cournapeau. Since 2013, it has been taken over by the
researchers at INRIA (Institut national de recherche en informatique et en automatique,
that is the French Institute for Research in Computer Science and Automation):

Website: http://Scikit-learn.org/stable
Version at the time of print: 0.19.1
Suggested install command: pip install Scikit-learn

Note that the imported module is named sklearn.

Jupyter
A scientific approach requires the fast experimentation of different hypotheses in a
reproducible fashion. Initially named IPython and limited to working only with the Python
language, Jupyter was created by Fernando Perez in order to address the need for an
interactive Python command shell (which is based on shell, web browser, and the
application interface), with graphical integration, customizable commands, rich history (in
the JSON format), and computational parallelism for an enhanced performance. Jupyter is
our favored choice throughout this book; it is used to clearly and effectively illustrate
operations with scripts and data, and the consequent results:

Website: http://jupyter.org/
Version at the time of print: 4.4.0 (ipykernel = 4.8.2)
Suggested install command: pip install jupyter

http://scikit-learn.org/stable
http://jupyter.org/

First Steps Chapter 1

[26]

JupyterLab
JupyterLab is the next user interface for the Jupyter project, which is currently in beta. It is
an environment devised for interactive and reproducible computing which will offer all the
usual notebook, terminal, text editor, file browser, rich outputs, and so on arranged in a
more flexible and powerful user interface. JupyterLab will eventually replace the classic
Jupyter Notebook after JupyterLab reaches Version 1.0. Therefore, we intend to introduce
this package now in order to make you aware of it and of its functionalities:

Website: https://github.com/jupyterlab/jupyterlab
Version at the time of print: 0.32.0
Suggested install command: pip install jupyterlab

Matplotlib
Originally developed by John Hunter, matplotlib is a library that contains all the building
blocks that are required to create quality plots from arrays and to visualize them
interactively.

You can find all the MATLAB-like plotting frameworks inside the PyLab module:

Website: http://matplotlib.org/
Version at the time of print: 2.2.2
Suggested install command: pip install matplotlib

https://github.com/jupyterlab/jupyterlab
http://matplotlib.org/

First Steps Chapter 1

[27]

You can simply import what you need for your visualization purposes with the following
command:

import matplotlib.pyplot as plt

Seaborn
Working out beautiful graphics using matplotlib can be really time-consuming, for this
reason, Michael Waskom (http:/ ​/​www. ​cns. ​nyu. ​edu/​~mwaskom/ ​) developed Seaborn, a
high-level visualization package based on matplotlib and integrated with pandas data
structures (such as Series and DataFrames) capable to produce informative and beautiful
statistical visualizations.

Website: http:/ ​/ ​seaborn. ​pydata. ​org/ ​

Version at the time of print: 0.9.0
Suggested install command: pip install seaborn

You can simply import what you need for your visualization purposes with the following
command:

import seaborn as sns

Statsmodels
Previously a part of SciKits, statsmodels was thought to be a complement to SciPy's
statistical functions. It features generalized linear models, discrete choice models, time
series analysis, and a series of descriptive statistics, as well as parametric and non-
parametric tests:

Website: http://statsmodels.sourceforge.net/
Version at the time of print: 0.9.0
Suggested install command: pip install statsmodels

http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://www.cns.nyu.edu/~mwaskom/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
http://statsmodels.sourceforge.net/

First Steps Chapter 1

[28]

Beautiful Soup
Beautiful Soup, a creation of Leonard Richardson, is a great tool to scrap out data from
HTML and XML files that are retrieved from the internet. It works incredibly well, even in
the case of tag soups (hence the name), which are collections of malformed, contradictory,
and incorrect tags. After choosing your parser (the HTML parser included in Python's
standard library works fine), thanks to Beautiful Soup, you can navigate through the objects
in the page and extract text, tables, and any other information that you may find useful:

Website: http://www.crummy.com/software/BeautifulSoup
Version at the time of print: 4.6.0
Suggested install command: pip install beautifulsoup4

Note that the imported module is named bs4.

NetworkX
Developed by the Los Alamos National Laboratory, NetworkX is a package specialized in
the creation, manipulation, analysis, and graphical representation of real-life network data
(it can easily operate with graphs made up of a million nodes and edges). Besides
specialized data structures for graphs and fine visualization methods (2D and 3D), it
provides the user with many standard graph measures and algorithms, such as the shortest
path, centrality, components, communities, clustering, and PageRank. We will mainly use
this package in Chapter 6, Social Network Analysis:

Website: http://networkx.github.io/
Version at the time of print: 2.1
Suggested install command: pip install networkx

Conventionally, NetworkX is imported as nx:

import networkx as nx

http://www.crummy.com/software/BeautifulSoup
http://networkx.github.io/

First Steps Chapter 1

[29]

NLTK
The Natural Language Toolkit (NLTK) provides access to corpora and lexical resources,
and to a complete suite of functions for Natural Language Processing (NLP), ranging from
tokenizers to part-of-speech taggers and from tree models to named-entity recognition.
Initially, Steven Bird and Edward Loper created the package as an NLP teaching
infrastructure for their course at the University of Pennsylvania. Now it is a fantastic tool
that you can use to prototype and build NLP systems:

Website: http://www.nltk.org/
Version at the time of print: 3.3
Suggested install command: pip install nltk

Gensim
Gensim, programmed by Radim Řehůřek, is an open source package that is suitable for the
analysis of large textual collections with the help of parallel distributable online algorithms.
Among advanced functionalities, it implements Latent Semantic Analysis (LSA), topic
modeling by Latent Dirichlet Allocation (LDA), and Google's word2vec, a powerful
algorithm that transforms text into vector features that can be used in supervised and
unsupervised machine learning:

Website: http://radimrehurek.com/gensim/
Version at the time of print: 3.4.0
Suggested install command: pip install gensim

PyPy
PyPy is not a package; it is an alternative implementation of Python 3.5.3 that supports
most of the commonly used Python standard packages (unfortunately, NumPy is currently
not fully supported). As an advantage, it offers enhanced speed and memory handling.
Thus, it is very useful for heavy-duty operations on large chunks of data, and it should be
part of your big data handling strategies:

Website: http://pypy.org/
Version at time of print: 6.0
Download page: http://pypy.org/download.html

http://www.nltk.org/
http://radimrehurek.com/gensim/
http://pypy.org/
http://pypy.org/download.html

First Steps Chapter 1

[30]

XGBoost
XGBoost is a scalable, portable, and distributed gradient boosting library (a tree ensemble
machine learning algorithm). Initially created by Tianqi Chen from Washington University,
it has been enriched by a Python wrapper by Bing Xu and an R interface by Tong He (you
can read the story behind XGBoost directly from its principal creator at
http://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-

evolution-of-xgboost.html). XGBoost is available for Python, R, Java, Scala, Julia, and
C++, and it can work on a single machine (leveraging multithreading) in both Hadoop and
Spark clusters:

Website: https://xgboost.readthedocs.io/en/latest/
Version at the time of print: 0.80
Download page: https://github.com/dmlc/xgboost

Detailed instructions for installing XGBoost on your system can be found
at https://github.com/dmlc/xgboost/blob/master/doc/build.md.

The installation of XGBoost on both Linux and macOS is quite straightforward, whereas it
is a little bit trickier for Windows users, though the recent release of a pre-built binary
wheel for Python has made the procedure a piece of cake for everyone. You simply have to
type this on your shell:

$> pip install xgboost

If you want to install XGBoost from scratch because you need the most recent bug fixes or
GPU support, you need to first build the shared library from C++ (libxgboost.so for
Linux/macOS and xgboost.dll for Windows) and then install the Python package. On a
Linux/macOS system, you just have to build the executable by the make command, but on
Windows, things are a little bit more tricky.

Generally, refer to https:/ ​/ ​xgboost. ​readthedocs. ​io/ ​en/​latest/ ​build. ​html#, which
provides the most recent instructions for building from scratch. For a quick reference, here,
we are going to provide specific installation steps to get XGBoost working on Windows:

First, download and install Git for Windows,1.
(https://git-for-windows.github.io/).
Then, you need a MINGW compiler present on your system. You can download2.
it from http://www.mingw.org/ or http:/ ​/​tdm- ​gcc. ​tdragon. ​net/ ​, according to
the characteristics of your system.

http://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html
http://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html
https://xgboost.readthedocs.io/en/latest/
https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://xgboost.readthedocs.io/en/latest/build.html#
https://git-for-windows.github.io/
http://www.mingw.org/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/

First Steps Chapter 1

[31]

From the command line, execute the following:3.

$> git clone --recursive https://github.com/dmlc/xgboost
$> cd xgboost
$> git submodule init
$> git submodule update

Then, always from the command line, copy the configuration for 64-byte systems4.
to be the default one:

$> copy make\mingw64.mk config.mk

Alternatively, you just copy the plain 32-byte version:5.

$> copy make\mingw.mk config.mk

After copying the configuration file, you can run the compiler, setting it to use6.
four threads in order to speed up the compiling procedure:

$> mingw32-make -j4

In MinGW, the make command comes with the name mingw32-make. If you are7.
using a different compiler, the previous command may not work. If so, you can
simply try this:

$> make -j4

Finally, if the compiler completes its work without errors, you can install the8.
package in your Python by using the following:

$> cd python-package
$> python setup.py install

After following all the preceding instructions, if you try to import
XGBoost in Python and it doesn't load and results in an error, it may well
be that Python cannot find MinGW's g++ runtime libraries.
You just need to find the location on your computer of MinGW's binaries
(in our case, it was in C:\mingw-w64\mingw64\bin; just modify the
following code and put yours) and place the following code snippet
before importing XGBoost:
import os
mingw_path = 'C:\mingw-w64\mingw64\bin'
os.environ['PATH']=mingw_path + ';' + os.environ['PATH']
import xgboost as xgb

First Steps Chapter 1

[32]

LightGBM
LightGBM is a gradient boosting framework that was developed by Microsoft that uses the
tree-based learning algorithm in a different fashion than other GBMs, favoring exploration
of more promising leaves (leaf-wise) instead of developing level-wise.

In graph terminology, LightGBM is pursuing a depth-first search strategy
than a breadth-first search one.

It has been designed to be distributed (Parallel and GPU learning supported), and its
unique approach really achieves faster training speed with lower memory usage (thus
allowing for the handling of the larger scale of data):

Website: https:/ ​/​github. ​com/ ​Microsoft/ ​LightGBM

Version at the time of print: 2.1.0

The installation of XGBoost requires some more actions on your side than usual Python
packages. If you are operating on a Windows system, open a shell and issue the following
commands:

$> git clone --recursive https://github.com/Microsoft/LightGBM
$> cd LightGBM
$> mkdir build
$> cd build
$> cmake -G "MinGW Makefiles" ..
$> mingw32-make.exe -j4

You may need to install CMake on your system first (https:/ ​/​cmake. ​org),
and you also may need to run cmake -G "MinGW Makefiles" .. if a
sh.exe was found in your PATH error is reported.

If you are instead operating on a Linux system, you just need to digit on a shell:

$> git clone --recursive https://github.com/Microsoft/LightGBM
$> cd LightGBM
$> mkdir build
$> cd build
$> cmake ..
$> make -j4

https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://cmake.org
https://cmake.org
https://cmake.org
https://cmake.org
https://cmake.org
https://cmake.org
https://cmake.org

First Steps Chapter 1

[33]

After you have completed compiling the package, no matter whether you are on Windows
or Linux, you just import it on your Python command line:

import lightgbm as lgbm

You can also build the package using MPI for parallel computing
architectures, HDFS, or GPU versions. You can find all the detailed
instructions at https:/ ​/ ​github. ​com/ ​Microsoft/ ​LightGBM/ ​blob/ ​master/
docs/ ​Installation- ​Guide. ​rst.

CatBoost
Developed by Yandex researchers and engineers, CatBoost (which stands for categorical
boosting) is a gradient boosting algorithm, based on decision trees, which is optimized in
handling categorical features without much preprocessing (non-numeric features
expressing a quality, such as a color, a brand, or a type). Since in most databases the
majority of features are categorical, CatBoost can really boost your results on prediction:

Website: https:/ ​/​catboost. ​yandex

Version at the time of print: 0.8.1.1
Suggested install command: pip install catboost
Download page: https:/ ​/​github. ​com/ ​catboost/ ​catboost

CatBoost requires msgpack, which can be easily installed by using the pip
install msgpack command.

TensorFlow
TensorFlow was initially developed by the Google Brain team to be used internally at
Google, and was then to be released to the larger public. On November 9, 2015, it was
distributed under the Apache 2.0 open source license, and since then it has become the
most widespread open source software library for high-performance numerical
computation (mostly used for deep learning). It is capable of computations across a variety
of platforms (systems with multiple CPUs, GPUs, and TPUs), and from desktops to clusters
of servers to mobile and edge devices.

https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://catboost.yandex
https://catboost.yandex
https://catboost.yandex
https://catboost.yandex
https://catboost.yandex
https://catboost.yandex
https://catboost.yandex
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost

First Steps Chapter 1

[34]

In this book, we will use TensorFlow as the backend of Keras, that is, we won't use it
directly, but we will need to have it running on our system:

Website: https://tensorflow.org/
Version at the time of print: 1.8.0

Installing TensorFlow on a CPU system is quite straightforward: just use pip install
tensorflow. But if you have an NVIDIA GPU (you actually need a GPU card with CUDA
Compute Capability 3.0 or higher) on your system, the requirements ramp up and you first
have to install the following:

CUDA Toolkit 9.0
The NVIDIA drivers associated with CUDA Toolkit 9.0
cuDNN v7.0

For each operation, you need to accomplish various steps depending on your system, as
detailed on the NVIDIA website. You can find all the directions for installation depending
on your system (Ubuntu, Windows, or macOS) at https:/ ​/​www. ​tensorflow. ​org/ ​install/ ​.

After having accomplished all the necessary steps, pip install tensorflow-gpu will
install the TensorFlow package that's optimized for GPU computations.

Keras
Keras is a minimalist and highly modular neural networks library, written in Python and
capable of running on top of TensorFlow (the source software library for numerical
computation released by Google) as well as Microsoft Cognitive Toolkit (previously known
as CNTK), Theano, or MXNet. Its primary developer and maintainer is François Chollet, a
machine learning researcher working at Google:

Website: https://keras.io/
Version at the time of print: 2.2.0
Suggested install command: pip install keras

As an alternative, you can install the latest available version (which is advisable since the
package is in continuous development) by using the following command:

$> pip install git+git://github.com/fchollet/keras.git

https://tensorflow.org/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://keras.io/

First Steps Chapter 1

[35]

Introducing Jupyter
Initially known as IPython, this project was initiated in 2001 as a free project by Fernando
Perez. By his work, the author intended to address a lack in the Python stack and provide
to the public a user programming interface for data investigations that could easily
incorporate the scientific approach (mainly meaning experimenting and interactively
discovering) in the process of data discovery and software development.

A scientific approach implies fast experimentation of different hypotheses in a reproducible
fashion (as does data exploration and analysis in data science), and when using this
interface, you will be able more naturally to implement an explorative, iterative, trial and
error research strategy during your code writing.

Recently (during Spring 2015), a large part of the IPython project was moved to a new one
called Jupyter. This new project extends the potential usability of the original IPython
interface to a wide range of programming languages, such as these:

R (https://github.com/IRkernel/IRkernel)
Julia (http://github.com/JuliaLang/IJulia.jl)
Scala (https://github.com/mattpap/IScala)

For a more complete list of available kernels for Jupyter, please
visit https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-language
s.

For instance, once having installed Jupyter and its IPython kernel, you can easily add
another useful kernel, such as the R kernel, in order to access the R language through the
same interface. All you have to do is have an R installation, run your R interface, and enter
the following commands:

install.packages(c('pbdZMQ', 'devtools'))
devtools::install_github('IRkernel/repr')
devtools::install_github('IRkernel/IRdisplay')
devtools::install_github('IRkernel/IRkernel')
IRkernel::installspec()

The commands will install the devtools library on your R, then pull and install all the
necessary libraries from GitHub (you need to be connected to the internet while running
the other commands), and finally register the R kernel both in your R installation and on
Jupyter. After that, every time you call the Jupyter Notebook, you will have the choice of
running either a Python or an R kernel, allowing you to use the same format and approach
for all your data science projects.

https://github.com/IRkernel/IRkernel
http://github.com/JuliaLang/IJulia.jl
https://github.com/mattpap/IScala
https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages
https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages

First Steps Chapter 1

[36]

You cannot mix the same notebook commands for different kernels; each
notebook only refers to a single kernel, that is, the one it was initially
created with.

Thanks to the powerful idea of kernels, programs that run the user's code that's
communicated by the frontend interface and provide feedback on the results of the
executed code to the interface itself, you can use the same interface and interactive
programming style no matter what language you are using for development.

In such a context, IPython is the zero kernel, the original starting one, still existing but not
intended to be used anymore to refer to the entire project.

Therefore, Jupyter can simply be described as a tool for interactive tasks that are operable
by a console or by a web-based notebook, which offers special commands that help
developers to better understand and build the code that is being currently written.

Contrary to an IDE—which is built around the idea of writing a script, running it
afterward, and finally evaluating its results—Jupyter lets you write your code in chunks,
named cells, run each of them sequentially, and evaluate the results of each one separately,
examining both textual and graphical outputs. Besides graphical integration, it provides
you with further help, thanks to customizable commands, a rich history (in the JSON
format), and computational parallelism for an enhanced performance when dealing with
heavy numeric computations.

Such an approach is also particularly fruitful for tasks involving developing code based on
data, since it automatically accomplishes the often neglected duty of documenting and
illustrating how data analysis has been done, its premises and assumptions, and its
intermediate and final results. If a part of your job is to also present your work and
persuade an internal or external stakeholder in the project, Jupyter can really do the magic
of storytelling for you with little additional effort.

You can easily combine code, comments, formulas, charts, interactive plots, and rich media
such as images and videos, making each Jupyter Notebook a complete scientific sketchpad
to find all your experimentations and their results together.

Jupyter works on your favorite browser (which could be Explorer, Firefox, or Chrome, for
instance) and, when started, presents a cell waiting for code to be written in. Each block of
code enclosed in a cell can be run, and its results are reported in the space just after the cell.
Plots can be represented in the notebook (inline plot) or in a separate window. In our
example, we decided to plot our chart inline.

First Steps Chapter 1

[37]

Moreover, written notes can be written easily using the Markdown language, a very easy
and fast-to-grasp markup language (http://daringfireball.net/projects/markdown/).
Math formulas can be handled using MathJax (https://www.mathjax.org/) to render any
LaTeX script inside HTML/markdown.

There are several ways to insert LaTeX code in a cell. The easiest way is to simply use the
Markdown syntax, wrapping the equations with a single dollar sign, $, for an inline LaTeX
formula, or with a double dollar sign, $$, for a one-line central equation. Remember that to
have a correct output, the cell should be set as Markdown. Here's an example:

In Markdown:

This is a $LaTeX$ inline equation: $x = Ax+b$

And this is a one-liner: $$x = Ax + b$$

This produces the following output:

If you're looking for something more elaborate, that is, a formula that spans for more than
one line, a table, a series of equations that should be aligned, or simply the use of special
LaTeX functions, then it's better to use the %%latex magic command offered by the Jupyter
Notebook. In this case, the cell must be in code mode and contain the magic command as
the first line. The following lines must define a complete LaTeX environment that can be
compiled by the LaTeX interpreter.

Here are a couple of examples that show you what you can do:

In:%%latex
 [
 |u(t)| =
 begin{cases}
 u(t) & text{if } t geq 0 \
 -u(t) & text{otherwise }
 end{cases}
]

http://daringfireball.net/projects/markdown/
https://www.mathjax.org/

First Steps Chapter 1

[38]

Here is the output of the first example:

In:%%latex
 begin{align}
 f(x) &= (a+b)^2 \
 &= a^2 + (a+b) + (a+b) + b^2 \
 &= a^2 + 2cdot (a+b) + b^2
 end{align}

The new output when the second example is run is:

Remember that by using the %%latex magic command, the whole cell must comply with
the LaTeX syntax. Therefore, if you just need to write a few simple equations in the text, we
strongly advise that you use the Markdown method (a text-to-HTML conversion tool for
web writers developed by John Gruber, with the help of Aaron Swartz: https:/ ​/
daringfireball.​net/ ​projects/ ​markdown/ ​).

Being able to integrate technical formulas in markdown is particularly fruitful for tasks
involving the development of code based on data since it automatically accomplishes the
often neglected duty of documenting and illustrating how data analysis has been managed
as well as its premises, assumptions, and intermediate and final results. If a part of your job
is to also present your work and persuade internal or external stakeholders in the project,
Jupyter can really do the magic of storytelling for you with little additional effort.

On the web page
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebo

oks, there are many examples, some of which you may find inspiring for your work, as it
did for ours. Actually, we have to confess that keeping a clean, up-to-date Jupyter
Notebook has saved us uncountable times when meeting with managers and stakeholders
have suddenly popped up, requiring us to present the state of our work hastily.

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

First Steps Chapter 1

[39]

In short, Jupyter allows you to do the following:

See intermediate (debugging) results for each step of the analysis
Run only some sections (or cells) of the code
Store intermediate results in JSON format and have the ability to perform version
control on them
Present your work (this will be a combination of text, code, and images), share it
via the Jupyter Notebook Viewer service (http://nbviewer.jupyter.org/), and
easily export it into HTML, PDF, or even slideshows

In the next section, we will discuss Jupyter's installation in more detail and show an
example of its usage in a data science task.

Fast installation and first test usage
Jupyter is our favored choice throughout this book. It is used to clearly and effectively
illustrate and narrate operations using scripts and data, and their consequent results.

Though we strongly recommend using Jupyter, if you are using a REPL or an IDE, you can
use the same instructions and expect identical results (except for the print formats and
extensions of the returned results).

If you do not have Jupyter installed on your system, you can promptly set it up by using
the following command:

$> pip install jupyter

You can find complete instructions about Jupyter installation (covering different operating
systems) at http://jupyter.readthedocs.io/en/latest/install.html.

After installation, you can immediately start using Jupyter by calling it from the command
line:

$> jupyter notebook

Once the Jupyter instance has opened in the browser, click on the New button; in the
Notebooks section, choose Python 3 (other kernels may be present in the section depending
on what you installed).

http://nbviewer.jupyter.org/
http://jupyter.readthedocs.io/en/latest/install.html

First Steps Chapter 1

[40]

At this point, your new empty notebook will look like the following image:

At this point, you can start entering the commands in the first cell. For instance, you may
start trying typing the following into the cell where the cursor is flashing:

In: print ("This is a test")

After writing in the cell, you just press the Play button which is below the cell tab (or, as a
keyboard hotkey, you can push shift and enter buttons at the same time) to run it and
obtain an output. Then, another cell will appear for your input. As you are writing in a cell,
if you press the plus button on the menu bar, you will get a new cell, and you can move
from one cell to another using the arrows on the menu.

Most of the other functions are quite intuitive, and we invite you to try them. In order to
learn how Jupyter works, you may use a quick start guide such as
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/, or buy a book
specializing in Jupyter functionalities.

For a complete treatise of the full range of Jupyter functionalities when
running the IPython kernel, refer to the following Packt Publishing books:

IPython Interactive Computing and Visualization Cookbook by
Cyrille Rossant, Packt Publishing, September 25, 2014

Learning IPython for Interactive Computing and Data Visualization
by Cyrille Rossant, Packt Publishing, April 25, 2013

For illustrative purposes, just consider that every Jupyter block of instructions has a
numbered input statement and an output of one. Therefore, you will find the code
presented in this book structured in two blocks, at least when the output is not trivial at all.
Otherwise, expect only the input part:

In: <the code you have to enter> Out: <the output you should get>

http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/

First Steps Chapter 1

[41]

As a rule, you just have to type the code after In: in your cells and run it. You can then
compare your output with the output that we may provide using Out:, followed by the
output that we actually obtained on our computers when we tested the code.

If you are using conda or env environments, it may happen that you
cannot find your new environments in the Jupyter interface. If that
happens, just issue conda install ipykernel from a command line
and restart the Jupyter Notebook. Your kernels should appear among the
notebook options under the New button.

Jupyter magic commands
As a special tool for interactive tasks, Jupyter offers special commands that help to better
understand the code that you are currently writing.

For instance, some of the commands are as follows:

* <object>? and <object>??: This prints a detailed description (with ??
being even more verbose) of <object>
%<function>: This uses the special <magic function>

Let's demonstrate the usage of these commands with an example. We first start the
interactive console with the jupyter command, which is used to run Jupyter from the
command line, as shown here:

$> jupyter console
 Jupyter Console 4.1.1

In [1]: obj1 = range(10)

Then, in the first line of code, which is marked by Jupyter as [1], we create a list of 10
numbers (from 0 to 9), assigning the output to an object named obj1:

In [2]: obj1?
 Type: range
 String form: range(0, 10)
 Length: 10
 Docstring:
 range(stop) -> range object
 range(start, stop[, step]) -> range object
 Return an object that produces a sequence of integers from
 start (inclusive)
 to stop (exclusive) by step. range(i, j) produces i, i+1, i+2,
 ..., j-1.

First Steps Chapter 1

[42]

 start defaults to 0, and stop is omitted! range(4) produces 0,
 1, 2, 3.
 These are exactly the valid indices for a list of 4 elements.
 When step is given, it specifies the increment (or decrement).

In [3]: %timeit x=100
 The slowest run took 184.61 times longer than the fastest.
 This could mean that an intermediate result is being cached.
 10000000 loops, best of 3: 24.6 ns per loop

In [4]: %quickref

In the next line of code, which is numbered [2], we inspect the obj1 object using the
Jupyter command ?. Jupyter introspects the object, prints its details (obj is a range object
that can generate the values [1, 2, 3..., 9] and elements), and finally prints some
general documentation on the range objects. For complex objects, the usage of ?? instead of
? provides even more verbose output.

In line [3], we use the timeit magic function with a Python assignment (x=100). The
timeit function runs this instruction many times and stores the computational time
needed to execute it. Finally, it prints the average time that was taken to run the Python
function.

We complete the overview with a list of all the possible special Jupyter functions by
running the quickref helper function, as shown in line [4].

As you must have noticed, each time we use Jupyter, we have an input cell and, optionally,
an output cell if there is something that has to be printed on stdout. Each input is
numbered so it can be referenced inside the Jupyter environment itself. For our purposes,
we don't need to provide such references in the code of this book. Therefore, we will just
report inputs and outputs without their numbers. However, we'll use the generic In: and
Out: notations to point out the input and output cells. Just copy the commands after In: to
your own Jupyter cell and expect an output that will be reported on the following Out:.

Therefore, the basic notations will be as follows:

The In: command
The Out: output (wherever it is present and useful to be reported in this book)

Otherwise, if we expect you to operate directly on the Python console, we will use the
following form:

>>> command

First Steps Chapter 1

[43]

Wherever necessary, the command-line input and output will be written as follows:

$> command

Moreover, to run the bash command in the Jupyter console, prefix it with a ! (exclamation
mark):

In: !ls
 Applications Google Drive Public Desktop
 Develop
 Pictures env temp
 ...

In: !pwd
 /Users/mycomputer

Installing packages directly from Jupyter
Notebooks
Jupyter magic commands are really efficient in accomplishing different tasks, but you may
sometimes find it difficult to achieve installing new packages during a Jupyter session (and
it will happen often since you are using different environments based on conda or env). As
Jake VanderPlas explained in his blog post Installing Python Packages from a Jupyter
Notebook (https:/ ​/ ​jakevdp. ​github. ​io/ ​blog/ ​2017/ ​12/ ​05/​installing- ​python- ​packages-
from-​jupyter/​), it is a matter of fact that Jupyter kernels are different from the shell you
started from, that is, you may be upgrading a wrong environment when you issue magic
commands such as !pip install numpy or !conda install --yes numpy.

Unless you are using the default Python kernel that's active on the shell on
the notebook, you actually won't succeed because your Jupyter Notebook
is pointing to a different kernel than the one operated by pip and conda
at a shell level.

The correct approach for installing, let's say, NumPy, using pip under a Jupyter Notebook
is by creating a cell like this:

In: import sys
 !"{sys.executable}" -m pip install numpy

Instead, if you want to use conda, this is the cell you have to create:

In: import sys
 !conda install --yes --prefix "{sys.prefix}" numpy

https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/

First Steps Chapter 1

[44]

Just replace numpy with any package you would like to install and then run, and the
installation is guaranteed to succeed.

Checking the new JupyterLab environment
If you feel like using JupyterLab and want to be a precursor of using the interface that will
become a standard in a short time, you can just switch from issuing $> jupyter
notebook to $> jupyter lab. JupyterLab will start automatically on your browser at the
http://localhost:8888 address:

You will be welcomed by a user interface composed of a launcher, where you can find
many starting options represented as icons (in the original interface they were menu items),
and a series of tabs offering direct access to files on disks, on Google Drive, showing the
running kernels and notebooks, and commands for configuring the notebook and
formatting the information in it.

Basically, it is an advanced and flexible interface, which is especially useful if you access all
such resources on a remote server, allowing you to have everything at a glance on the very
same workbench.

First Steps Chapter 1

[45]

How Jupyter Notebooks can help data scientists
The main goal of the Jupyter Notebook is easy storytelling. Storytelling is essential in data
science because you must have the power to do the following:

See intermediate (debugging) results for each step of the algorithm you're
developing
Run only some sections (or cells) of the code
Store intermediate results and have the ability to version them
Present your work (this will be a combination of text, code, and images)

Here comes Jupyter; it actually implements all of the preceding actions:

To launch the Jupyter Notebook, run the following command:1.

 $> jupyter notebook

A web browser window will pop up on your desktop, backed by a Jupyter server2.
instance. This is what the main window looks like:

First Steps Chapter 1

[46]

Then, click on New Notebook. A new window will open, as shown in the3.
following screenshot. You can start using the notebook as soon as the kernel is
ready. The small circle on the top right, below the Python icon, indicates the state
of the kernel: if it's filled, it means that the kernel is busy working; if it's empty
(like the one in the screenshot), it means that the kernel is in idle, that is, ready to
run any code:

This is the web app that you'll use to compose your story. It's very similar to a Python IDE,
with the bottom section (where you can write the code) composed of cells.

A cell can be either a piece of text (eventually formatted with a markup language) or a piece
of code. In the second case, you have the ability to run the code, and any eventual output
(the standard output) will be placed under the cell. The following is a very simple example
of the same:

In: import random
 a = random.randint(0, 100)
 a

Out: 16

In: a*2

Out: 32

In the first cell, which is denoted by In:, we import the random module, assign a random
value between 0 and 100 to the variable a, and print the value. When this cell is run, the
output, which is denoted as Out:, is the random number. Then, in the next cell, we will just
print the double of the value of the variable a.

First Steps Chapter 1

[47]

As you can see, it's a great tool for debugging and deciding which parameter is best for a
given operation. Now, what happens if we run the code in the first cell? Will the output of
the second cell being modified since a is different? Actually, no, it won't. Each cell is
independent and autonomous. In fact, after we run the code in the first cell, we end up with
this inconsistent status:

In: import random
 a = random.randint(0, 100)
 a

Out: 56

In: a*2

Out: 32

Note that the number in the squared parentheses has changed (from 1 to
3) since it's the third executed command (and its output) from the time the
notebook started. Since each cell is autonomous, by looking at these
numbers, you can understand their order of execution.

Jupyter is a simple, flexible, and powerful tool. However, as seen in the preceding example,
you must note that when you update a variable that is going to be used later on in your
Notebook, remember to run all the cells following the updated code so that you have a
consistent state.

When you save a Jupyter Notebook, the resulting .ipynb file is JSON formatted, and it
contains all the cells and their content plus the output. This makes things easier because
you don't need to run the code to see the notebook (actually, you also don't need to have
Python and its set of toolkits installed). This is very handy, especially when you have
pictures featured in the output and some very time-consuming routines in the code. A
downside of using the Jupyter Notebook is that its file format, which is JSON structured,
cannot be easily read by humans. In fact, it contains images, code, text, and so on.

Now, let's discuss a data science-related example (don't worry about understanding it
completely):

In: %matplotlib inline
 import matplotlib.pyplot as plt
 from sklearn import datasets
 from sklearn.feature_selection import SelectKBest, f_regression
 from sklearn.linear_model import LinearRegression
 from sklearn.svm import SVR
 from sklearn.ensemble import RandomForestRegressor

First Steps Chapter 1

[48]

In the following cell, some Python modules are imported:

In: boston_dataset = datasets.load_boston()
 X_full = boston_dataset.data
 Y = boston_dataset.target
 print (X_full.shape)
 print (Y.shape)

Out:(506, 13)
 (506,)

Then, in cell [2], the dataset is loaded and an indication of its shape is shown. The
dataset contains 506 house values that were sold in the suburbs of Boston, along with their
respective data arranged in columns. Each column of the data represents a feature. A
feature is a characteristic property of the observation. Machine learning uses features to
establish models that can turn them into predictions. If you are from a statistical
background, you can add features that can be intended as variables (values that vary with
respect to the observations).

To see a complete description of the dataset, use print boston_dataset.DESCR.

After loading the observations and their features, in order to provide a demonstration of
how Jupyter can effectively support the development of data science solutions, we will
perform some transformations and analysis on the dataset. We will use classes, such as
SelectKBest, and methods, such as .getsupport() or .fit(). Don't worry whether
these are not clear to you now; they will all be covered extensively later in this book. Try to
run the following code:

In: selector = SelectKBest(f_regression, k=1)
 selector.fit(X_full, Y)
 X = X_full[:, selector.get_support()]
 print (X.shape)

Out:(506, 1)

For In:, we select a feature (the most discriminative one) of the SelectKBest class that is
fitted to the data by using the .fit() method. Thus, we reduce the dataset to a vector with
the help of a selection operated by indexing on all the rows and on the selected feature,
which can be retrieved by the .get_support() method.

First Steps Chapter 1

[49]

Since the target value is a vector, we can, therefore, try to see whether there is a linear
relationship between the input (the feature) and the output (the house value). When there is
a linear relationship between two variables, the output will constantly react to changes in
the input by the same proportional amount and direction:

In: def plot_scatter(X,Y,R=None):
 plt.scatter(X, Y, s=32, marker='o', facecolors='white')
 if R is not None:
 plt.scatter(X, R, color='red', linewidth=0.5)
 plt.show()

In: plot_scatter(X,Y)

The following is the output obtained after executing the preceding command:

In our example, as X increases, Y decreases. However, this does not happen at a constant
rate, because the rate of change is intense up to a certain X value, and then it decreases and
becomes constant. This is a condition of nonlinearity, and we can further visualize it using a
regression model. This model hypothesizes that the relationship between X and Y is linear
in the form of y=a+bX. Its a and b parameters are estimated according to certain criteria.

In the fourth cell, we scatter the input and output values for this problem:

In: regressor = LinearRegression(normalize=True).fit(X, Y)
 plot_scatter(X, Y, regressor.predict(X))

First Steps Chapter 1

[50]

The following is the output obtained after executing the preceding code:

In the next cell, we create a regressor (a simple linear regression with feature
normalization), train the regressor, and finally plot the best linear relation (that's the linear
model of the regressor) between the input and output. Clearly, the linear model is an
approximation that is not working well. We have two possible paths that we can follow at
this point. We can transform the variables in order to make their relationship linear, or we
can use a nonlinear model. Support Vector Machine (SVM) is a class of models that can
easily solve nonlinearities. Also, Random Forests is another model for automatic solving of
similar problems. Let's see them in action in Jupyter:

In: regressor = SVR().fit(X, Y)
 plot_scatter(X, Y, regressor.predict(X))

The following is the output obtained after executing the preceding code:

First Steps Chapter 1

[51]

Now we proceed using the even more sophisticated algorithm, the Random Forests
regressor:

In: regressor = RandomForestRegressor().fit(X, Y)
 plot_scatter(X, Y, regressor.predict(X))

The following is the output obtained after executing the preceding code:

Finally, in the last two cells, we will repeat the same procedure. This time, we will use two
nonlinear approaches: an SVM and a Random Forest-based regressor.

This demonstrative code solves the nonlinearity problem. At this point, it is very easy to
change the selected feature, regressor, and the number of features we use to train the
model, and so on by simply modifying the cells where the script is. Everything can be done
interactively, and according to the results we see, we can decide on both what should be
kept or changed and what is to be done next.

Alternatives to Jupyter
If you don't like using Jupyter, there are actually a few alternatives that can help you test
the code you will find in this book. If you have experience with R, the RStudio
(http://www.rstudio.com/) layout may appeal more to you. In this case, Yhat, a company
providing data science solutions for decision APIs, offers their data science IDE for Python
free of charge, named Rodeo (http://www.yhat.com/products/rodeo). Rodeo works by
using the IPython kernel of Jupyter under the hood, yet it is an interesting alternative given
its different user interface.

http://www.rstudio.com/
http://www.yhat.com/products/rodeo

First Steps Chapter 1

[52]

The main advantages of using Rodeo are as follows:

A video layout arranged in four Windows: editor, console, plots, and
environment
Autocomplete for the editor and console
Plots are always visible inside the application in a specific Window
You can easily inspect the working variables in the environment Window

Rodeo can be simply installed using the installer. You can download it from its website, or
you can simply use the following in the command line:

$> pip install rodeo

After the installation, you can immediately run the Rodeo IDE with the following
command:

$> rodeo .

Instead, if you have experience with MATLAB from Mathworks, you will find it easier to
work with Spyder (http://pythonhosted.org/spyder/), a scientific IDE that can be found
in major Scientific Python distributions (it is present in Anaconda, WinPython, and Python
(x, y)—all distributions that we have suggested in this book). If you don't use a distribution,
in order to install Spyder, you have to follow the instructions that can be found
at http://pythonhosted.org/spyder/installation.html. Spyder allows for advanced
editing, interactive editing, debugging, and introspection features, and your scripts can be
run in a Jupyter console or in a shell-like environment.

Datasets and code used in this book
As we progress through the concepts presented in this book, in order to facilitate the
reader's understanding, learning, and memorizing processes, we will illustrate practical
and effective data science Python applications on various explicative datasets. The reader
will always be able to immediately replicate, modify, and experiment with the proposed
instructions and scripts on the data that we will use in this book.

As for the code that you are going to find in this book, we will limit our discussions to the
most essential commands in order to inspire you from the beginning of your data science
journey with Python to do more with less by leveraging key functions from the packages
we presented beforehand.

http://pythonhosted.org/spyder/
http://pythonhosted.org/spyder/installation.html

First Steps Chapter 1

[53]

Given our previous introduction, we will present the code to be run interactively as it
appears on a Jupyter console or Notebook.

All the presented code will be offered in Notebooks, which is available on the Packt website
(as pointed out in the Preface). As for the data, we will provide different examples of
datasets.

Scikit-learn toy datasets
The Scikit-learn toy dataset module is embedded in the Scikit-learn package. Such datasets
can easily be directly loaded into Python by the import command, and they don't require
any download from any external internet repository. Some examples of this type of dataset
are the Iris, Boston, and Digits datasets, to name the principal ones mentioned in
uncountable publications and books, and a few other classic ones for classification and
regression.

Structured in a dictionary-like object, besides the features and target variables, they offer
complete descriptions and contextualization of the data itself.

For instance, to load the Iris dataset, enter the following commands:

In: from sklearn import datasets
 iris = datasets.load_iris()

After loading the dataset, we can explore the data description and understand how the
features and targets are stored. All Scikit-learn datasets present the following methods:

.DESCR: This provides a general description of the dataset

.data: This contains all the features

.feature_names: This reports the names of the features

.target: This contains the target values, expressed as values or numbered
classes
.target_names: This reports the names of the classes in the target
.shape: This is a method that you can apply to both .data and .target; it
reports the number of observations (the first value) and features (the second
value, if present) that are present

First Steps Chapter 1

[54]

Now, let's just try to implement them (no output is reported, but the print commands will
provide you with plenty of information):

In: print (iris.DESCR)
 print (iris.data)
 print (iris.data.shape)
 print (iris.feature_names)
 print (iris.target)
 print (iris.target.shape)
 print (iris.target_names)

You should know something else about the dataset—how many examples and variables are
present, and what their names are. Notice that the main data structures that are enclosed in
the iris object are the two arrays, data, and target:

In: print (type(iris.data))

Out: <class 'numpy.ndarray'>

Iris.data offers the numeric values of the variables named sepal length, sepal
width, petal length, and petal width, arranged in a matrix form (150,4), where 150 is
the number of observations and 4 is the number of features. The order of the variables is the
order presented in iris.feature_names.

Iris.target is a vector of integer values, where each number represents a distinct class
(refer to the content of target_names; each class name is related to its index number and
setosa, which is the zero element of the list, is represented as 0 in the target vector).

The Iris flower dataset was first used in 1936 by Ronald Fisher, who was one of the
fathers of modern statistical analysis, in order to demonstrate the functionality of linear
discriminant analysis on a small set of empirically verifiable examples (each of the 150 data
points represented iris flowers). These examples were arranged into tree-balanced species
classes (each class consisted of one-third of the examples) and were provided with four
metric descriptive variables that, when combined, were able to separate the classes.

First Steps Chapter 1

[55]

The advantage of using such a dataset is that it is very easy to load, handle, and explore for
different purposes, from supervised learning to a graphical representation. Modeling
activities take almost no time on any computer, no matter what its specifications are.
Moreover, the relationship between the classes and the role of the explicative variables are
well-known. Therefore, the task is challenging, but it is not very arduous.

For example, let's just observe how classes can be easily separated when you wish to
combine at least two of the four available variables by using a scatterplot matrix.

Scatterplot matrices are arranged in a matrix format, whose columns and rows are the
dataset variables. The elements of the matrix contain single scatterplots whose x values are
determined by the row variable of the matrix and y values by the column variable. The
diagonal elements of the matrix may contain a distribution histogram or some other
univariate representation of the variable at the same time in its row and column.

The pandas library offers an off-the-shelf function to quickly build scatterplot matrices and
start exploring relationships and distributions between the quantitative variables in a
dataset:

In: import pandas as pd
 import numpy as np
 colors = list()
 palette = {0: "red", 1: "green", 2: "blue"}

In: for c in np.nditer(iris.target): colors.append(palette[int(c)])
 # using the palette dictionary, we convert
 # each numeric class into a color string
 dataframe = pd.DataFrame(iris.data, columns=iris.feature_names)

In: sc = pd.scatter_matrix(dataframe, alpha=0.3, figsize=(10, 10),
 diagonal='hist', color=colors, marker='o', grid=True)

First Steps Chapter 1

[56]

The following is the output obtained after executing the preceding code:

We encourage you to experiment a lot with this dataset and with similar ones before you
work on other complex real data because the advantage of focusing on an accessible, non-
trivial data problem is that it can help you to quickly build your foundations on data
science.

First Steps Chapter 1

[57]

After a while anyway, though they are useful and interesting for your learning activities,
toy datasets will start limiting the variety of different experimentations that you can
achieve. In spite of the insights provided, in order to progress, you'll need to gain access to
complex and realistic data science topics. Consequently, we will have to resort to some
external data.

The MLdata.org and other public repositories for open
source data
The second type of example dataset that we will present can be downloaded directly from
the machine learning dataset repository, or from the LIBSVM data website. Contrary to the
previous dataset, in this case, you will need access to the internet.

First, mldata.org is a public repository for machine learning datasets that is hosted by the
TU Berlin University and supported by Pattern Analysis, Statistical Modelling, and
Computational Learning (PASCAL), a network funded by the European Union. You are
free to download any dataset from this repository and experiment with it.

For example, if you need to download all the data related to earthquakes since 1972, as
reported by the United States Geological Survey, in order to analyze the data to search for
predictive patterns, you will find the data repository at
http://mldata.org/repository/data/viewslug/global-earthquakes/ (here, you will
find a detailed description of the data).

Note that the directory that contains the dataset is global-earthquakes; you can directly
obtain the data by using the following commands:

In: from sklearn.datasets import fetch_mldata
 earthquakes = fetch_mldata('global-earthquakes')
 print (earthquakes.data)
 print (earthquakes.data.shape)

Out: (59209L, 4L)

As in the case of the Scikit-learn package toy dataset, the obtained object is a complex
dictionary-like structure, where your predictive variables are earthquakes.data and
your target to be predicted is earthquakes.target. This being the real data, in this case,
you will have quite a lot of examples and just a few variables available.

http://mldata.org/repository/data/viewslug/global-earthquakes/

First Steps Chapter 1

[58]

LIBSVM data examples
LIBSVM Data (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/) is a page
that gathers data from many other collections. It is maintained by Chih-Jen Lin, one of the
authors of LIBSVM, a support vector machines learning algorithm for predictions (Chih-
Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011). This offers different
regression, binary, and multilabel classification datasets that are stored in the LIBSVM
format. This repository is quite interesting if you wish to experiment with the support
vector machine's algorithm, and, again, it is free for you to download and use the data.

If you want to load a dataset, first go to the web page where you can visualize the data on
your browser. In the case of our example, visit
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a1a and note down
the address (a1a is a dataset that's originally from the UC Irvine Machine Learning
Repository, another open source data repository). Then, you can proceed by performing a
direct download using that address:

In: import urllib2
 url =
 'http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a1a'
 a2a = urllib2.urlopen(url)

In: from sklearn.datasets import load_svmlight_file
 X_train, y_train = load_svmlight_file(a2a)
 print (X_train.shape, y_train.shape)

Out: (1605, 119) (1605,)

In return, you will get two single objects: a set of training examples in a sparse matrix
format and an array of responses.

Loading data directly from CSV or text files
Sometimes, you may have to download the datasets directly from their repository by using
a web browser or a wget command (on Linux systems).

If you have already downloaded and unpacked the data (if necessary) into your working
directory, the simplest way to load your data and start working is offered by the NumPy
and the pandas library with their respective loadtxt and read_csv functions.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a1a

First Steps Chapter 1

[59]

For instance, if you intend to analyze the Boston housing data and use the version present
at http://mldata.org/repository/data/viewslug/regression-datasets-housing, you
first have to download the regression-datasets-housing.csv file in your local
directory.

You can use the following link for a direct download of the
dataset: http://mldata.org/repository/data/download/csv/regression-datasets-hous
ing.

Since the variables in the dataset are all numeric (13 continuous and one binary), the fastest
way to load and start using it is by trying out the loadtxt NumPy function and directly
loading all the data into an array.

Even in real-life datasets, you will often find mixed types of variables, which can be
addressed by pandas.read_table or pandas.read_csv. Data can then be extracted by
the values method; loadtxt can save a lot of memory if your data is already numeric. In
fact, the loadtxt command doesn't require any in-memory duplication:

In: housing = np.loadtxt('regression-datasets-housing.csv',
 delimiter=',')
 print (type(housing))

Out: <class 'numpy.ndarray'>

In: print (housing.shape)

Out: (506, 14)

The loadtxt function expects, by default, tabulation as a separator between the values on a
file. If the separator is a colon (,) or a semicolon(;), you have to make it explicit by using
the parameter delimiter:

>>> import numpy as np
>>> type(np.loadtxt)
 <type 'function'>
>>> help(np.loadtxt)

Help on the loadtxt function can be found in
the numpy.lib.npyio module.

Another important default parameter is dtype, which is set to float.

http://mldata.org/repository/data/viewslug/regression-datasets-housing
http://mldata.org/repository/data/download/csv/regression-datasets-housing
http://mldata.org/repository/data/download/csv/regression-datasets-housing

First Steps Chapter 1

[60]

This means that loadtxt will force all of the loaded data to be converted
into a floating-point number.

If you need to determinate a different type (for example, int), you have to declare it
beforehand.

For instance, if you want to convert numeric data to int, use the following code:

In: housing_int =housing.astype(int)

Printing the first three elements of the row of the housing and housing_int arrays can
help you understand the difference:

In: print (housing[0,:3], 'n', housing_int[0,:3])

Out: [6.32000000e-03 1.80000000e+01 2.31000000e+00]
 [0 18 2]

Frequently, though not always the case in our example, the data on files feature in the first
line of a textual header contains the name of the variables. In this situation, the parameter
that is skipped will point out the row in the loadtxt file from where it will start reading
the data. Being the header on row 0 (in Python, counting always starts from 0),
the skip=1 parameter will save the day and allow you to avoid an error and fail to load
your data.

The situation would be slightly different if you were to download the Iris dataset, which is
present at http://mldata.org/repository/data/viewslug/datasets-uci-iris/. In fact,
this dataset presents a qualitative target variable, class, which is a string that expresses the
iris species. Specifically, it's a categorical variable with four levels.

Therefore, if you were to use the loadtxt function, you will get a value error because an
array must have all its elements of the same type. The variable class is a string, whereas the
other variables are constituted by floating-point values.

The pandas library offers the solution to this and many similar cases, thanks to its
DataFrame data structure that can easily handle datasets in a matrix form (row per
columns) that is made up of different types of variables.

First, just download the datasets-uci-iris.csv file and have it saved in your local
directory.

http://mldata.org/repository/data/viewslug/datasets-uci-iris/

First Steps Chapter 1

[61]

The dataset can be downloaded from
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/. This archive is the
UC Irvine Machine Learning Repository, which currently maintains 440 datasets as a
service to the machine learning community. Apart from this Iris dataset, you are free to
download and try any other dataset present in the repository.

At this point, using read_csv from pandas is quite straightforward:

In: iris_filename = 'datasets-uci-iris.csv'
 iris = pd.read_csv(iris_filename, sep=',', decimal='.',
 header=None, names= ['sepal_length', 'sepal_width', \
 'petal_length', 'petal_width', 'target'])
 print (type(iris))

Out: <class 'pandas.core.frame.DataFrame'>

In order to not make the snippets of code printed in this book too cumbersome, we often
wrap it and make it nicely formatted. When necessary, in order to safely interrupt the code
and wrap it to a new line, we use the backslash symbol \ as in the preceding code example.
When rendering the code of the book by yourself, you can ignore backslash symbols and go
on writing all of the instructions on the same line, or you can digit the backslash and start a
new line continuing with the code instructions. Please be warned that typing the backslash
and then continuing the instruction on the same line will cause an execution error.

Apart from the filename, you can specify the separator (sep), the way the decimal points
are expressed (decimal), whether there is a header (in this case, header=None; normally, if
you have a header, then header=0), and the name of the variable where there is one (you
can use a list; otherwise, pandas will provide some automatic naming).

Also, we have defined names that use single words (instead of spaces, we
used underscores). Thus, we can later directly extract single variables by
calling them as we do for methods; for instance, iris.sepal_length
will extract the sepal length data.

At this point, if you need to convert the pandas DataFrame into a couple of NumPy arrays
that contain the data and target values, this can be done easily in a couple of commands:

In: iris_data = iris.values[:,:4]
 iris_target, iris_target_labels = pd.factorize(iris.target)
 print (iris_data.shape, iris_target.shape)

Out: (150, 4) (150,)

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/

First Steps Chapter 1

[62]

Scikit-learn sample generators
As a last learning resource, the Scikit-learn package also offers the possibility to quickly
create synthetic datasets for regression, binary and multilabel classification, cluster analysis,
and dimensionality reduction.

The main advantage of recurring synthetic data lies in its instantaneous creation in the
working memory of your Python console. It is, therefore, possible to create bigger data
examples without having to engage in long downloading sessions from the internet (and
saving a lot of stuff on your disk).

For example, you may need to work on a classification problem involving a million data
points:

In: from sklearn import datasets
 X,y = datasets.make_classification(n_samples=10**6,
 n_features=10, random_state=101)
 print (X.shape, y.shape)

Out: (1000000, 10) (1000000,)

After importing just the datasets module, we ask, using the make_classification
command, for one million examples (the n_samples parameter) and 10 useful features
(n_features). The random_state should be 101, so we are assured that we can replicate
the same datasets at a different time and in a different machine.

For instance, you can type the following command:

In: datasets.make_classification(1, n_features=4, random_state=101)

This will always give you the following output:

Out: (array([[-3.31994186, -2.39469384, -2.35882002, 1.40145585]]),
 array([0]))

No matter what the computer and the specific situation are, random_state assures
deterministic results that make your experimentations perfectly replicable.

Defining the random_state parameter using a specific integer number (in this case, it's
101, but it may be any number that you prefer or find useful) allows easy replication of the
same dataset on your machine, the way it is set up, on different operating systems, and on
different machines.

By the way, did it take too long?

First Steps Chapter 1

[63]

On a i3-2330M CPU @ 2.20 GHz machine, it takes this:

In: %timeit X,y = datasets.make_classification(n_samples=10**6,
 n_features=10, random_state=101)

Out: 1 loops, best of 3: 1.17 s per loop

If it doesn't seem like it did take too long on your machine, and if you are ready, having set
up and tested everything up to this point, we can start our data science journey.

Summary
In this introductory chapter, we installed everything that we will be using throughout this
book, from Python packages to examples. They were installed either directly or by using a
scientific distribution. We also introduced Jupyter Notebooks and demonstrated how you
can have access to the data run in the tutorials.

In the next chapter, Data Munging, we will have an overview of the data science pipeline
and explore all the key tools to handle and prepare data before you apply any learning
algorithm and set up your hypothesis experimentation schedule.

2
Data Munging

We are just getting into the action with data! In this chapter, you'll learn how to munge
data. What does data munging mean ?

The term mung is a technical term that was coined about half a century ago by students of
at Massachusetts Institute of Technology (MIT). Munging means to change, in a series of
well-specified and reversible steps, a piece of original data to a completely different (and
hopefully more useful) one. Deep-rooted in hacker culture, munging is often described in
the data science pipeline using other, almost synonymous, terms such as data wrangling or
data preparation.

Given such premises, in this chapter, the following topics will be covered:

The data science process (so that you'll know what is going on and what's next)
Uploading data from a file
Selecting the data you need
Cleaning up any missing or wrong data
Adding, inserting, and deleting data
Grouping and transforming data to obtain new and meaningful information
Managing to obtain a dataset matrix or an array to feed into the data science
pipeline

The data science process
Although every data science project is different, for our illustrative purposes, we can
partition an ideal data science project into a series of reduced and simplified phases.

The process starts by obtaining data (a phase known as data ingestion). Data ingestion
implies a series of possible alternatives, from simply uploading data to assembling it from
RDBMS or NoSQL repositories, or from synthetically generating it to scraping it from web
APIs or HTML pages.

Data Munging Chapter 2

[65]

Especially when faced with novel challenges, uploading data can reveal itself as a critical
part of a data scientist's work. Your data can arrive from multiple sources: databases, CSV
or Excel files, raw HTML, images, sound recordings, APIs (if you are clueless about what
an API is, you can read a good tutorial about APIs with Python here: https:/ ​/​www.
dataquest.​io/​blog/ ​python- ​api- ​tutorial/ ​) providing JavaScript Object Notation
(JSON) files, and so on. Given the wide range of alternatives, we will just briefly touch
upon this aspect by offering the basic tools to get your data (even if it is too big) into your
computer memory by using either a textual file that's present on your hard disk or the web,
or tables in a relational database management system (RDBMS).

After successfully uploading your data comes the data munging phase. Although now
available in-memory, inevitably, your data will surely be in a form that's unsuitable for any
analysis and experimentation. Data in the real world is complex, messy, and sometimes
even erroneous or missing. Yet, thanks to a bunch of basic Python data structures and
commands, you'll address all the problematic data and feed it into the next phases of the
project, appropriately transformed into a typical dataset that has observations in rows and
variables in columns. A dataset is a basic requirement for any statistical and machine
learning analysis, and you may hear it being mentioned as the flat file (when it is the result
of joining together multiple relational tables from a database) or data matrix (when
columns and rows are unlabeled and the values it contains are just numeric).

Though less rewarding than other intellectually stimulating phases (such as the application
of algorithms or machine learning), data munging creates the foundations for every
complex and sophisticated value-added analysis that you may have in mind to obtain. The
success of your project heavily relies on it.

Having completely defined the dataset that you'll be working on, a new phase opens up. At
this time, you'll start observing your data; then, you will proceed to develop and test your
hypothesis in a recurring loop. For instance, you'll explore your variables graphically. With
the help of descriptive stats, you'll figure out how to create new variables by putting your
domain knowledge into action. You'll address redundant and unexpected information
(outliers, first of all) and select the most meaningful variables and effective parameters to be
tested by a selection of machine learning algorithms.

This phase is structured as a pipeline, where your data is processed according to a series of
steps. After that, a model is finally created, but you may realize that you have to reiterate
and start again from data munging or somewhere in the data pipeline, supplying
corrections or trying different experiments, until you have reached a meaningful result.

https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/
https://www.dataquest.io/blog/python-api-tutorial/

Data Munging Chapter 2

[66]

From our experience on the field, we can assure you that no matter how promising your
plans were when starting to analyze the data, in the end, your solution will be much
different from any first envisioned idea. The confrontation with the experimental results
you will obtain rules the kind of data munging, optimizations, models, and the overall
number of iterations you have to go through before reaching a satisfactory end to your
project. That is why if you want to be a successful data scientist, it won't suffice at all just to
provide theoretically sound solutions. It is necessary to be able to quickly prototype a large
number of possible solutions in the fastest time in order to ascertain which is the best path
to take. It is our purpose to help you accelerate to the maximum by using the code snippets
provided by this book in your data science process.

A result from your project is represented by an error or optimization measure (that you
have chosen carefully in order to represent your business targets). Besides an error
measurement, your achievement can also be communicated by an interpretable insight that
has to be verbally or visually described to your data science project's sponsors or other data
scientists. At this point, being able to visualize results and insights appropriately using
tables, charts, and plots is indeed essential.

This process can also be described using the acronym OSEMN (Obtain, Scrub, Explore,
Model, iNterpret), as introduced by Hilary Mason and Chris Wiggins in a famous post on
the blog dataists (http://www.dataists.com/2010/09/a-taxonomy-of-data-science/),
describing a data science taxonomy. OSEMN is also quite memorable since it rhymes with
the words possum and awesome:

We won't ever get tired of remarking how everything starts with munging your data and
that munging can easily require up to 80% of your efforts in a data project. Since even the
longest journey starts with a single step, let's immediately step into this chapter and learn
the building blocks of a successful munging phase!

http://www.dataists.com/2010/09/a-taxonomy-of-data-science/

Data Munging Chapter 2

[67]

Data loading and preprocessing with pandas
In the previous chapter, we discussed where to find useful datasets and examined the basic
import commands of Python packages. In this section, having kept your toolbox ready, you
are about to learn how to structurally load, manipulate, process, and polish data using
pandas and NumPy.

Fast and easy data loading
Let's start with a CSV file and pandas. The pandas library offers the most accessible and
complete functionality to load tabular data from a file (or a URL). By default, it will store
data in a specialized pandas data structure, index each row, separate variables by custom
delimiters, infer the right data type for each column, convert data (if necessary), as well as
parse dates, missing values, and erroneous values.

We will start by importing the pandas package and reading our Iris dataset:

In: import pandas as pd
 iris_filename = 'datasets-uci-iris.csv'
 iris = pd.read_csv(iris_filename, sep=',', decimal='.', header=None,
 names= ['sepal_length', 'sepal_width',
 'petal_length', 'petal_width',
 'target'])

You can specify the name of the file, the character used as a separator (sep), the character
used for the decimal placeholder (decimal), whether there is a header (header), and the
variable names (using names and a list). The settings of the sep=',' and decimal='.'
parameters have default values, and they are redundant in function. For European-style
CSV, it is important to point out both since, in many European countries, the separator
character and the decimal placeholder are different from the default ones.

If the dataset is not available online, you can follow these steps to download it from the
internet:

In: import urllib
 url = "http://aima.cs.berkeley.edu/data/iris.csv"
 set1 = urllib.request.Request(url)
 iris_p = urllib.request.urlopen(set1)
 iris_other = pd.read_csv(iris_p, sep=',', decimal='.',
 header=None, names= ['sepal_length', 'sepal_width',
 'petal_length', 'petal_width',
 'target'])
 iris_other.head()

Data Munging Chapter 2

[68]

The resulting object, named iris, is a pandas DataFrame. It's more than a simple Python
list or dictionary, and in the sections that follow, we will explore some of its features. To get
an idea of its content, you can print the first (or the last) row(s) by using the following
commands:

In: iris.head()

The head of the DataFrame will be printed in the output:

In: iris.tail()

The function, if called without arguments, will print five lines. If you want to get back a
different number of rows, just call the function using the number of rows you want to see
as an argument, as follows:

In: iris.head(2)

The preceding command will print only the first two lines. Now, to get the names of the
columns, you can simply use the following method:

In: iris.columns
Out: Index(['sepal_length', 'sepal_width',
 'petal_length', 'petal_width',
 'target'], dtype='object')

The resulting object is a very interesting one. It looks like a list, but it is actually a pandas
index. As suggested by the object's name, it indexes the columns' names. To extract the
target column, for example, you can simply do the following:

In: y = iris['target']
 y

Out: 0 Iris-setosa
 1 Iris-setosa

Data Munging Chapter 2

[69]

 2 Iris-setosa
 3 Iris-setosa
 ...
 149 Iris-virginica
 Name: target, dtype: object

The type of the object y is a pandas series. Right now, think of it as a one-dimensional array
with axis labels, as we will investigate it in depth later on. Now, we just understood that a
pandas Index class acts like a dictionary index of the table's columns. Note that you can
also get a list of columns referring to them by their indexes, as follows:

In: X = iris[['sepal_length', 'sepal_width']]
 X

Out: [150 rows x 2 columns]

Here are the four head rows of the X dataset:

And here are the four tail ones:

Data Munging Chapter 2

[70]

In this case, the result is a pandas DataFrame. Why such a difference in results when using
the same function? In the first case, we asked for a column. Therefore, the output was a 1D
vector (that is, a pandas series). In the second example, we asked for multiple columns and
we obtained a matrix-like result (and we know that matrices are mapped as pandas
DataFrames). A novice reader can simply spot the difference by looking at the heading of
the output; if the columns are labeled, then you are dealing with a pandas DataFrame. On
the other hand, if the result is a vector and it presents no heading, then that is a pandas
series.

So far, we have learned some common steps from the data science process; after you load
the dataset, you usually separate the features and target labels.

In a classification problem, target labels are the ordinal numbers or textual strings that
indicate the class associated with every set of features.

Then, the following steps require you to get an idea of how large the problem is, and
therefore, you need to know the size of the dataset. Typically, for each observation, we
count a line, and for each feature, a column.

To obtain the dimensions of the dataset, just use the attribute shape on either a pandas
DataFrame or series, as shown in the following example:

In: print (X.shape)

Out: (150, 2)

In: print (y.shape)

Out: (150,)

The resulting object is a tuple that contains the size of the matrix/array in each dimension.
Also, note that a pandas series follow the same format (that is, a tuple with only one
element).

Data Munging Chapter 2

[71]

Dealing with problematic data
Now, you should be more confident with the basics of the process and be ready to face
datasets that are more problematic, since it is very common to have messy data in reality.
Consequently, let's see what happens if the CSV file contains a header and some missing
values and dates. For example, to make our example realistic, let's imagine the situation of a
travel agency:

According to the temperature of three popular destinations, they record whether1.
the user picks the first, second, or third destination:

Date,Temperature_city_1,Temperature_city_2,Temperature_city_3,Which
_destination
20140910,80,32,40,1
20140911,100,50,36,2
20140912,102,55,46,1
20140912,60,20,35,3
20140914,60,,32,3
20140914,,57,42,2

In this case, all the numbers are integers and the header is in the file. In our first2.
attempt to load this dataset, we can provide the following command:

In: import pandas as pd

In: fake_dataset = pd.read_csv('a_loading_example_1.csv', sep=',')
 fake_dataset

The top rows of the fake_dataset are printed:

Data Munging Chapter 2

[72]

Pandas automatically gave the columns their actual name after picking them from the first
data row. We first detect a problem: all of the data, even the dates, have been parsed as
integers (or, in other cases, as strings). If the format of the dates is not very strange, you can
try the auto-detection routines that specify the column that contains the date data. In the
following example, it works well when using the following arguments:

In: fake_dataset = pd.read_csv('a_loading_example_1.csv',
 parse_dates=[0])
 fake_dataset

Here is the fake_dataset whose date column is now correctly interpreted by the
read_csv:

Now, in order to get rid of the missing values that are indicated by NaN, replace them with
a more meaningful number (let's say, 50 Fahrenheit). We can execute our command in the
following way:

In: fake_dataset.fillna(50)

At this point you will notice that there no more missing variables:

Data Munging Chapter 2

[73]

After that, all of the missing data has disappeared and it has been replaced by the constant
50.0. Treating missing data can also require different approaches. As an alternative to the
previous command, values can be replaced by a negative constant value to mark the fact
that they are different from others (and leave the guess for the learning algorithm):

In: fake_dataset.fillna(-1)

Note that this method only fills missing values in the view of the data
(that is, it doesn't modify the original DataFrame). In order to actually
change them, use the inplace=True argument command.

NaN values can also be replaced by the column's mean or median value as a way to
minimize the guessing error:

In: fake_dataset.fillna(fake_dataset.mean(axis=0))

The .mean method calculates the mean of the specified axis.

Please note that axis= 0 implies a calculation of means that spans the
rows; the consequently obtained means are derived from column-wise
computations. Instead, axis=1 spans columns and, therefore, row-wise
results are obtained. This works in the same way for all other methods
that require the axis parameter, both in pandas and NumPy.

The .median method is analogous to .mean, but it computes the median value, which is
useful if the mean is not a very good representation of the central value in the data, given a
too skewed distribution (for instance, when there are many extreme values in your feature).

Another possible problem when handling real-world datasets is when loading a dataset
containing errors or bad lines. In this case, the default behavior of the read_csv method is
to stop and raise an exception. A possible workaround, which is feasible when erroneous
examples are not the majority, is to ignore the lines causing exceptions. In many cases, such
a choice has the sole implication of training the machine learning algorithm without the
erroneous observations. As an example, let's say that you have a badly formatted dataset
and you want to load just all the good lines and ignore the badly formatted ones.

This is now your a_loading_example_2.csv file:

Val1,Val2,Val3
0,0,0
1,1,1
2,2,2,2
3,3,3

Data Munging Chapter 2

[74]

And here is what you can do with the error_bad_lines option:

In: bad_dataset = pd.read_csv('a_loading_example_2.csv',
 error_bad_lines=False)
 bad_dataset

Out: Skipping line 4: expected 3 fields, saw 4

The resulting output has the fourth line skipped because it has four values instead of three:

Dealing with big datasets
If the dataset you want to load is too big to fit in the memory, you can deal with it by using
a batch machine learning algorithm, which works with only a part of the data at once.
Using a batch approach also makes sense if you just need a sample of the data (let's say that
you want to take a peek at the data). Thanks to Python, you can actually load the data in
chunks. This operation is also called data streaming since the dataset flows into a
DataFrame or some other data structure as a continuous flow. As opposed to all the
previous cases, the dataset has been fully loaded into the memory in a standalone step.

With pandas, there are two ways to chunk and load a file. The first way is by loading the
dataset in chunks of the same size; each chunk is a piece of the dataset that contains all the
columns and a limited number of lines, no more than the number you actually have set in
the function call (the chunksize parameter). Note that the output of the read_csv
function, in this case, is not a pandas DataFrame, but an iterator-like object. In fact, to get
the results in memory, you need to iterate that object:

In: import pandas as pd
 iris_chunks = pd.read_csv(iris_filename, header=None,
 names=['C1', 'C2', 'C3', 'C4', 'C5'],
 chunksize=10)
 for chunk in iris_chunks:
 print ('Shape:', chunk.shape)
 print (chunk,'n')

Out: Shape: (10, 5)

Data Munging Chapter 2

[75]

 C1 C2 C3 C4 C5
 0 5.1 3.5 1.4 0.2 Iris-setosa
 1 4.9 3.0 1.4 0.2 Iris-setosa
 2 4.7 3.2 1.3 0.2 Iris-setosa
 3 4.6 3.1 1.5 0.2 Iris-setosa
 4 5.0 3.6 1.4 0.2 Iris-setosa
 5 5.4 3.9 1.7 0.4 Iris-setosa
 6 4.6 3.4 1.4 0.3 Iris-setosa
 7 5.0 3.4 1.5 0.2 Iris-setosa
 8 4.4 2.9 1.4 0.2 Iris-setosa
 9 4.9 3.1 1.5 0.1 Iris-setosa
 ...

There will be 14 other pieces like these, each of them of Shape: 10, 5. The other method
to load a big dataset is by specifically asking for an iterator of it. In this case, you can
dynamically decide the length (that is, how many lines to get) you want for each piece of
the pandas DataFrame:

In: iris_iterator = pd.read_csv(iris_filename, header=None,
 names=['C1', 'C2', 'C3', 'C4', 'C5'],
 iterator=True)

In: print (iris_iterator.get_chunk(10).shape)

Out: (10, 5)

In: print (iris_iterator.get_chunk(20).shape)

Out: (20, 5)

In: piece = iris_iterator.get_chunk(2)
 piece

The output represents just a chunk of the original dataset:

In this example, we first defined the iterator. Next, we retrieved a piece of data containing
10 lines. We then obtained 20 further rows, and finally the two rows that are printed at the
end.

Data Munging Chapter 2

[76]

Besides pandas, you can also use the CSV package, which offers two functions to iterate
small chunks of data from files: the reader and DictReader functions. Let's illustrate such
functions by importing the CSV package:

In:import csv

The reader inputs the data from disks to the Python lists. DictReader instead transforms
the data into a dictionary. Both functions work by iterating over the rows of the file being
read. The reader returns exactly what it reads, stripped of the return carriage, and splits
into a list by the separator (which is a comma by default, but this can be modified).
DictReader will map the list's data into a dictionary, whose keys will be defined by the
first row (if a header is present) or the fieldnames parameter (using a list of strings that
reports the column names).

The reading of lists in a native manner is not a limitation. For instance, it will be easier to
speed up the code using a fast Python implementation, such as PyPy. Moreover, we can
always convert lists into NumPy ndarrays (a data structure that we are going to introduce
soon). By reading the data into JSON-style dictionaries, it will be quite easy to get a
DataFrame.

Here is a simple example that uses such functionalities from the CSV package.

Let's pretend that our datasets-uci-iris.csv file, that was downloaded from
http://mldata.org/, is a huge file that we cannot fully load in the memory (actually, we
just pretend that this is the case because we remember that we saw the file at the beginning
of this chapter; it is made up of just 150 examples, and the CSV lacks a header row).

Therefore, our only choice is to load it into chunks. First, let's conduct an experiment:

In: with open(iris_filename, 'rt') as data_stream:
 # 'rt' mode
 for n, row in enumerate(csv.DictReader(data_stream,
 fieldnames = ['sepal_length', 'sepal_width',
 'petal_length', 'petal_width',
 'target'],
 dialect='excel')):
 if n== 0:
 print (n, row)
 else:
 break

Out: 0 OrderedDict([('sepal_length', '5.1'), ('sepal_width', '3.5'),
 ('petal_length', '1.4'), ('petal_width', '0.2'), ('target', 'Iris-
 setosa')])

http://mldata.org/

Data Munging Chapter 2

[77]

What does the preceding code accomplish? First, it opens a read-binary connection to the
file that aliases it as data_stream. Using the with command assures that the file is closed
after the commands placed in the preceding indentation are completely executed.

Then, it iterates (for...in) and it enumerates a csv.DictReader call, which wraps the
flow of the data from data_stream. Since we don't have a header row in the file,
fieldnames provides information about the fields' names. dialect just specifies that we
are calling the standard comma-separated CSV (we'll provide some hints on how to modify
this parameter later).

Inside the iteration, if the row being read is the first one, then it is printed. Otherwise, the
loop is stopped by a break command. The print command presents us with the row
number 0 and a dictionary. Therefore, you can recall every piece of data of the row by just
calling the keys bearing the variables' names.

Similarly, we can make the same code work for the csv.reader command, as follows:

In: with open(iris_filename, 'rt') as data_stream:
 for n, row in enumerate(csv.reader(data_stream,
 dialect='excel')):
 if n==0:
 print (row)
 else:
 break

Out: ['5.1', '3.5', '1.4', '0.2', 'Iris-setosa']

Here, the code is even more straightforward and the output is simpler, providing a list that
contains the row values in a sequence.

At this point, based on this second piece of code, we can create a generator callable from a
for-loop iteration. This retrieves the data on the fly from the file in the blocks of the size
defined by the batch parameter of the function:

In: def batch_read(filename, batch=5):
 # open the data stream
 with open(filename, 'rt') as data_stream:
 # reset the batch
 batch_output = list()
 # iterate over the file
 for n, row in enumerate(csv.reader(data_stream, dialect='excel')):
 # if the batch is of the right size
 if n > 0 and n % batch == 0:
 # yield back the batch as an ndarray
 yield(np.array(batch_output))
 # reset the batch and restart

Data Munging Chapter 2

[78]

 batch_output = list()
 # otherwise add the row to the batch
 batch_output.append(row)
 # when the loop is over, yield what's left
 yield(np.array(batch_output))

Similar to the previous example, the data is drawn out, thanks to the csv.reader function
wrapped by the enumerate function that accompanies the extracted list of data along with
the example number (which starts from zero). Based on the example number, a batch list is
either appended with the data list or returned to the main program using the generative
yield function. This process is repeated until the entire file is read and returned in batches:

In: import numpy as np
 for batch_input in batch_read(iris_filename, batch=3):
 print (batch_input)
 break

Out: [['5.1' '3.5' '1.4' '0.2' 'Iris-setosa']
 ['4.9' '3.0' '1.4' '0.2' 'Iris-setosa']
 ['4.7' '3.2' '1.3' '0.2' 'Iris-setosa']]

Such a function can provide the basic functionality for learning with stochastic gradient
descent, as will be presented in Chapter 4, Machine Learning, where we will come back to
this piece of code and expand this example by introducing some more advanced examples.

Accessing other data formats
So far, we have worked on CSV files only. The pandas package offers similar functionality
(and functions) in order to load MS Excel, HDFS, SQL, JSON, HTML, and Stata datasets.
Since most of these formats are not used routinely in data science, the understanding of
how one can load and handle each of them is mostly left to you, who can refer to the
documentation available on the pandas website (http:/ ​/​pandas. ​pydata. ​org/ ​pandas-
docs/​version/​0.​16/ ​io. ​html). Here, we will only demonstrate the essentials on how to
effectively use your disk space to store and retrieve information for machine learning
algorithms in a fast and efficient way. In such a case, you can leverage an SQLite database
(https:/​/​www.​sqlite. ​org/ ​index. ​html) in order to access specific subsets of information
and convert them into a pandas DataFrame. If you don't need to make particular selections
or filterings on the data, but your only problem is that reading data from a CSV file is time-
consuming and requires a lot of effort every time (for instance, setting the right variables
types and names), you can speed up saving and loading your data by using the HDF5 data
structure (https:/​/ ​support. ​hdfgroup. ​org/ ​HDF5/ ​whatishdf5. ​html).

http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
http://pandas.pydata.org/pandas-docs/version/0.16/io.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html

Data Munging Chapter 2

[79]

In our first example, we are going to use SQLite and the SQL language to store away some
data and retrieve a filtered version of it. SQLite has quite a few advantages over other
databases: it is self-contained (all your data will be stored into a single file), serverless
(Python will provide the interface to store, manipulate, and access the data), and fast. After
importing the sqlite3 package (which is part of the Python stack, so there's no need to
install it anyway), you define two queries: one to drop any previous data table of the same
name, and one to create a new table that's capable of keeping the date, city, temperature,
and destination data (and you use integer, float, and varchar types, which correspond to
int, float, and str).

After opening the database (which at this point is created, if not present on disk), you
execute the two queries and then commit the changes (by committing, you actually start the
execution of all the previous database commands in a single batch: https:/ ​/​www. ​sqlite.
org/​atomiccommit.​html):

In: import sqlite3
 drop_query = "DROP TABLE IF EXISTS temp_data;"
 create_query = "CREATE TABLE temp_data \
 (date INTEGER, city VARCHAR(80), \
 temperature REAL, destination INTEGER);"
 connection = sqlite3.connect("example.db")
 connection.execute(drop_query)
 connection.execute(create_query)
 connection.commit()

At this point, the database has been created on disk with all of its data tables.

In the previous example, you created a database on disk. You can also
create it in-memory by changing the connection output to ':memory:',
as shown in this snippet of code: connection =
sqlite3.connect(':memory:') you can use ':memory:' to

create an in-memory database.

In order to insert the data into the database table, the best approach is to create a list of
tuples of values containing the rows of data you need to store. Then, an insert query will
take care of recording each data row. Please note that this time we are using the
executemany method for multiple commands (each row is inserted separately into the
table) instead of the previous command, execute:

In: data = [(20140910, "Rome", 80.0, 0),
 (20140910, "Berlin", 50.0, 0),
 (20140910, "Wien", 32.0, 1),
 (20140911, "Paris", 65.0, 0)]
 insert_query = "INSERT INTO temp_data VALUES(?, ?, ?, ?)"

https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html

Data Munging Chapter 2

[80]

 connection.executemany(insert_query, data)
 connection.commit()

At this point, we simply decide, by a selection query, what data, based on specific criteria,
we need to get in-memory, and we retrieve it by using the read_sql_query command:

In: selection_query = "SELECT date, city, temperature, destination \
 FROM temp_data WHERE Date=20140910"
 retrieved = pd.read_sql_query(selection_query, connection)

Now, all the data you need, in pandas DataFrame format, is contained in the retrieved
variable. All you need to do is to close the connection with the database:

In: connection.close()

In the following example, we will instead face the situation of a large CSV file that requires
a long amount of time for both loading and parsing its column variables. In such a case, we
will use a data format, HDF5, which is suitable for storing and retrieving DataFrames in a
fast fashion.

HDF5 is a file format that was originally developed by the National Center for
Supercomputing Applications (NCSA) to store and access large amounts of scientific data,
based on the requirements of NASA in the 1990s in order to have a portable file format for
the data produced by the Earth Observing System and other space observation systems.
HDF5 is arranged as a hierarchical data storage that allows saving multidimensional arrays
of a homogeneous type or group which are containers of arrays and other groups. As a
filesystem, it perfectly fits the DataFrame structure, and by means of automatic data
compressions, such a filesystem can make data loading much faster than simply reading a
CSV file, in case of large files.

The pandas package allows you to use the HDF5 format to store series
and DataFrame data structures. You may find it invaluable for storing
binary data as well, such a preprocessed images or video files. When you
need to access a large number of files from disk, you may experience some
latency in getting the data in-memory because the files are scattered in the
filesystem. Storing all the files into a single HDF5 file will simply solve the
problem. You can read how to use the h5py package, a Python package
providing an interface for storing and retrieving data in NumPy array
form, at https:/ ​/​www. ​h5py. ​org/​ and especially at http:/ ​/​docs. ​h5py.
org/​en/ ​stable/ ​, its main documentation website. You also can install
h5py by issuing the conda install h5py or pip install h5py
commands.

https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
https://www.h5py.org/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/

Data Munging Chapter 2

[81]

We will start by initializing the HDF5 file, example.h5, using the HDFStore command,
which allows for a low-level manipulation of the data file. After instantiating the file, you
can start using it as if it were a Python dictionary. In the following code snippet, you store
the Iris dataset under the dictionary key iris. After that, you simply close the HDF5 file:

In: storage = pd.HDFStore('example.h5')
 storage['iris'] = iris
 storage.close()

When you need to retrieve the data stored in the HDF5 file, you can reopen the file using
the HDFStore command. First, you check the available keys (as you would do in a
dictionary):

In: storage = pd.HDFStore('example.h5')
 storage.keys()

Out: ['/iris']

Then, you allocate the desired values by recalling them through the corresponding key:

In: fast_iris_upload = storage['iris']
 type(fast_iris_upload)

Out: pandas.core.frame.DataFrame

The data is promptly loaded, and the previous DataFrame is now available for further
processing under the variable fast_iris_upload.

Putting data together
Finally, pandas DataFrames can be created by merging series or other list-like data. Note
that scalars are transformed into lists, as follows:

In: import pandas as pd
 my_own_dataset = pd.DataFrame({'Col1': range(5),
 'Col2': [1.0]*5,
 'Col3': 1.0,
 'Col4': 'Hello World!'})
 my_own_dataset

Data Munging Chapter 2

[82]

Here is the output for my_own_dataset:

It can be easily said that for each of the columns you want to be stacked together, you
provide their names (as the dictionary key) and values (as the dictionary value for that
key). As seen in the preceding example, Col2 and Col3 are created in two different ways,
but they provide the same resulting column of values. In this way, you can create a pandas
DataFrame that contains multiple types of data with a very simple function.

In this process, please ensure that you don't mix lists of different sizes; otherwise, an
exception will be raised, as shown here:

In: my_wrong_own_dataset = pd.DataFrame({'Col1': range(5),
 'Col2': 'string', 'Col3': range(2)})

Out: ...
 ValueError: arrays must all be same length

In order to assemble entire already existing DataFrames, you have to use a different
approach based on concatenation. The pandas package offers the concat command, which
operates on pandas data structures (Series and DataFrames) by stacking rows when
working on axis 0 (the default option) or stacking columns when concatenating on axis 1:

In: col5 = pd.Series([4, 3, 2, 1, 0])
 col6 = pd.Series([0, 0, 1, 1, 1])
 a_new_dataset = pd.concat([col5, col6], axis=1,
 ignore_index = True,
 keys=['Col5', 'Col6'])

 my_new_dataset = pd.concat([my_own_dataset, a_new_dataset], axis=1)
 my_new_dataset

Data Munging Chapter 2

[83]

The resulting dataset is a concatenation of the col5 and col6 series:

In the preceding example, we created a new DataFrame, a_new_dataset, based on two
Series. We just stacked the two series together, regardless of their indexes, because we
used the ignore_index parameter, which is set to True. If matching accordingly to the
indexes is important for your project, just don't use the ignore_index parameter (its
default value is False) and you'll have a new DataFrame based on the union of the two
indexes or on only the index elements that match as a result.

Joining two distinct datasets on the basis of a common column is achieved
in pd.concat by adding the parameter join='inner', which is
equivalent to a SQL inner join, (more on the topic about joins will be dealt
with after the following example).

Matching based on indexes could sometimes not be enough for your needs. Sometimes, you
may need to match different Series or DataFrames on specific columns or series of
columns. In that case, you need the merge method, which can be run from every
DataFrame.

In order to see the merge method in action, we will create a reference table containing some
values to be matched based on Col5:

In: key = pd.Series([1, 2, 4])
 value = pd.Series(['alpha', 'beta', 'gamma'])
 reference_table = pd.concat([key, value], axis=1,
 ignore_index = True,
 keys=['Col5', 'Col7'])
 reference_table

Data Munging Chapter 2

[84]

Here is the concatenation between key and value into a DataFrame:

The merge is operated by setting the how parameter to left, thus achieving a SQL left
outer join. Apart from left, other possible settings of this parameter are as follows:

right: Equivalent to a SQL right outer join
outer: Equivalent to a SQL full outer join
inner: Equivalent to a SQL inner join (as previously mentioned)

In: my_new_dataset.merge(reference_table,
 on='Col5', how='left')

The resulting DataFrame is a left outer join:

Getting back to our initial my_own_dataset, in order to check the type of data present in
each column, you can check the output of the dtypes attribute:

In: my_own_dataset.dtypes

Out: Col1 int64
 Col2 float64
 Col3 float64
 Col4 object
 dtype: object

Data Munging Chapter 2

[85]

The last method seen in this example is very handy if you wish to check whether a datum is
categorical, integer numerical, or floating point, and its precision. In fact, sometimes, it is
possible to increase the processing speed by rounding up floats to integers and casting
double-precision floats to single-precision floats, or by using only a single type of data. Let's
see how you can cast the type in the following example. This example can also be seen as a
broad example on how to reassign column data:

In: my_own_dataset['Col1'] = my_own_dataset['Col1'].astype(float)
 my_own_dataset.dtypes

Out: Col1 float64
 Col2 float64
 Col3 float64
 Col4 object
 dtype: object

You can also obtain information about your DataFrame structure and data
types using the info() as shown in this example:
my_own_dataset.info().

Data preprocessing
We are now able to import datasets, even a big, problematic ones. Now, we need to learn
the basic preprocessing routines in order to make it feasible for the next data science step.

First, if you need to apply a function to a limited section of rows, you can create a mask. A
mask is a series of Boolean values (that is, True or False) that tells you whether the line is
selected or not.

For example, let's say we want to select all the lines of the Iris dataset that have a sepal
length greater than 6. We can simply do the following:

In: mask_feature = iris['sepal_length'] > 6.0
In: mask_feature

Out: 0 False
 1 False
 ...
 146 True
 147 True
 148 True
 149 False

Data Munging Chapter 2

[86]

In the preceding simple example, we can immediately see which observations are True and
which are not (False), and which ones fit the selection query.

Now, let's check how you can use a selection mask on another example. We want to
substitute the Iris-virginica target label with the New label label. We can do this by
using the following two lines of code:

In: mask_target = iris['target'] == 'Iris-virginica'
 iris.loc[mask_target, 'target'] = 'New label'

You'll see that all occurrences of Iris-virginica are now replaced by New label. The
loc() method is explained in the following code. Just think of it as a way to access the data
of the matrix with the help of row-column indexes.

To see the new list of the labels in the target column, we can use the unique() method.
This method is very handy if you want to first evaluate the dataset:

In: iris['target'].unique()

Out: array(['Iris-setosa', 'Iris-versicolor', 'New label'],
 dtype=object)

If you want to see some statistics about each feature, you can group each column
accordingly; eventually, you can also apply a mask. The pandas method groupby will
produce a similar result to the GROUP BY clause in a SQL statement. The next method to
apply should be an aggregate method on one or multiple columns. For example, the
mean() pandas aggregate method is the counterpart of the AVG() SQL function to compute
the mean of the values in the group; the pandas aggregate method var() calculates the
variance; sum() the summation; count() the number of rows in the group; and so on.
Note that the result is still a pandas DataFrame, and therefore multiple operations can be
chained together.

Data Munging Chapter 2

[87]

Many common operations on variables, such as mean or sum, are
DataFrame methods that can be directly used on all the data, by columns
(using the parameter axis=0, that is, iris.sum(axis=0) or by rows
(using axis=1):

count: The count of non-null (NaN) values
median: Returns the median; that is, the 50th percentile
min: The lowest value
max: The highest value
mode: The mode, which is the most frequently occurring value
var: The variance, which measures the dispersion of the values
std: The standard deviation, which is the square root of the
variance
mad: The mean absolute deviation, which is a way to measure
the dispersion of the values robust to outliers
skew: The measure of skewness, indicative of the distribution
symmetry
kurt: The measure of kurtosis, indicative of the distribution
shape

As a next step, we can try a couple of examples with groupby in action. By grouping
observations by the target (that is, the label), we can check the difference between the
average value and the variance of the features for each group:

In: grouped_targets_mean = iris.groupby(['target']).mean()
 grouped_targets_mean

The output is a grouped Iris dataset and the grouping function is the mean:

In: grouped_targets_var = iris.groupby(['target']).var()
 grouped_targets_var

Data Munging Chapter 2

[88]

Now the grouping function is the variance:

As you may need multiple statistics on each variable, instead of creating multiple
aggregated datasets to be put together by concatenation, you can directly use the agg
method, and for each variable to apply specific functions. You define the variables by a
dictionary where keys are the variable labels and values are lists of functions to be applied
– to be called by a string (such as 'mean', 'std', 'min', 'max', 'sum', and 'prod') or by
a pre-defined function or even a lambda function declared on the spot:

In: funcs = {'sepal_length': ['mean','std'],
 'sepal_width' : ['max', 'min'],
 'petal_length': ['mean','std'],
 'petal_width' : ['max', 'min']}
 grouped_targets_f = iris.groupby(['target']).agg(funcs)
 grouped_targets_f

Now each column has different grouping functions:

Later, if you need to sort the observations using a function, you can use the
.sort_index() method, as follows:

In: iris.sort_index(by='sepal_length').head()

Data Munging Chapter 2

[89]

As an output, you get the top rows of the dataset:

Finally, if your dataset contains a time series (for example, in the case of a numerical target)
and you need to apply a rolling operation to it (in the case of noisy data points), you can
simply do the following:

In: smooth_time_series = pd.rolling_mean(time_series, 5)

This can be performed for a rolling average of the values. Alternatively, you can give the
following command:

In: median_time_series = pd.rolling_median(time_series, 5)

Instead, this can be performed in order to obtain a rolling median of the values. In both of
these cases, the window had size 5 samples.

More generically, the apply() pandas method is able to perform any row-wise or column-
wise operation programmatically. apply() should be called directly on the DataFrame; the
first argument is the function to be applied row-wise or column-wise; the second argument
is the axis to apply it on. Note that the function can be a built-in, library-provided, lambda,
or any other user-defined function.

As an example of this powerful method, let's try to count how many non-zero elements
there are in each line. With the apply method, this is simple:

In: iris.apply(np.count_nonzero, axis=1).head()

Out: 0 5
 1 5
 2 5
 3 5
 4 5
 dtype: int64

Data Munging Chapter 2

[90]

Similarly, to compute the non-zero elements feature-wise (that is, per column), you just
need to change the second argument and set it to 0:

In: iris.apply(np.count_nonzero, axis=0)

Out: sepal_length 150
 sepal_width 150
 petal_length 150
 petal_width 150
 target 150
 dtype: int64

Finally, to operate element-wise, the applymap() method should be used on the
DataFrame. In this case, just one argument should be provided: the function to apply.

For example, let's say you're interested in the length of the string representation of each cell.
To obtain that value, you should first cast each cell to a string value and then compute the
length. With applymap, this operation is very easy:

In: iris.applymap(lambda x:len(str(x))).head()

The top rows of the transformed DataFrame are:

When applying transformations to your data, you actually don't need to apply the same
function to each column. Using pandas apply methods, you can actually apply a
transformation to a single variable or to multiple ones, by modifying the same variables or
creating new ones in addition:

In: def square(x):
 return x**2

 original_variables = ['sepal_length', 'sepal_width',
 'petal_length', 'petal_width']
 squared_iris = iris[original_variables].apply(square)

Data Munging Chapter 2

[91]

One weak point of such an approach is that transformations can take a long time because
the pandas library is not leveraging the multiprocessing capabilities of recent CPU models.

Because of issues with multiprocessing in Windows when using Jupyter,
the following example can only run on Linux machines or on Windows
machines if transformed into a script, just as this Stack Overflow answer
suggests: https:/ ​/​stackoverflow. ​com/​questions/ ​37103243/
multiprocessing- ​pool- ​in- ​jupyter- ​notebook- ​works- ​on-​linux- ​but-​not-
windows.

In order to shorten such computation latency, you can leverage the multiprocessing
package by creating the parallel_apply function. Such a function takes a DataFrame, a
function, and the arguments of the function as input, and it creates a pool of workers (many
Python duplicates in-memory, where ideally each one is operating on a different CPU of
your system) to work in parallel and execute the required transformations:

In: import multiprocessing

 def apply_df(args):
 df, func, kwargs = args
 return df.apply(func, **kwargs)

 def parallel_apply(df, func, **kwargs):
 workers = kwargs.pop('workers')
 pool = multiprocessing.Pool(processes=workers)
 df_split = np.array_split(df, workers)
 results = pool.map(apply_df, [(ds, func, kwargs)
 for ds in df_split])
 pool.close()
 return pd.concat(list(results))

When using this function, it is important to specify the correct number of workers
(depending on your system) and the axis the computation will take place on (since you
operate by columns, axis=1 is the usual parameter configuration you'll be using):

In: squared_iris = parallel_apply(iris[['sepal_length', 'sepal_width',
 'petal_length', 'petal_width']],
 func=square,
 axis=1,
 workers=4)
 squared_iris

The Iris dataset is a tiny one, and in this case, the execution may take even longer than
simply applying a command, but on larger sets of data, the difference could be quite
notable, especially if you can count on a large number of workers.

https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows
https://stackoverflow.com/questions/37103243/multiprocessing-pool-in-jupyter-notebook-works-on-linux-but-not-windows

Data Munging Chapter 2

[92]

As a tip, on an Intel i5 CPU, you can set workers=4 for optimal results,
while on Intel i7, you can set workers=8.

Data selection
The last topic on pandas that we'll focus on is data selection. Let's start with an example.
We might come across a situation where the dataset contains an index column. How do we
properly import it with pandas? And then, can we actively exploit it to make our job
simpler?

We will use a very simple dataset that contains an index column (this is just a counter and
not a feature). To make the example very generic, let's start the index from 100. So, the
index of row number 0 is 100:

n,val1,val2,val3
100,10,10,C
101,10,20,C
102,10,30,B
103,10,40,B
104,10,50,A

When trying to load a file the classic way, you'll find yourself in a situation where you have
got n as a feature (or a column). Nothing is practically incorrect, but an index should not be
used by mistake as a feature. Therefore, it is better to keep it separated. If instead, by
chance, it is used during the learning phase of your model, you may possibly incur a case of
leakage, which is one of the major sources of error in machine learning.

In fact, if the index is a random number, no harm will be done to your model's efficacy.
However, if the index contains progressive, temporal, or even informative elements (for
example, certain numeric ranges may be used for positive outcomes, and others for the
negative ones), you might incorporate into the model's leaked information. This will be
impossible to replicate when using your model on fresh data:

In: import pandas as pd

In: dataset = pd.read_csv('a_selection_example_1.csv')
 dataset

Data Munging Chapter 2

[93]

Here is the read dataset:

Therefore, while loading such a dataset, we might want to specify that n is the index
column. Since the index n is the first column, we can give the following command:

In: dataset = pd.read_csv('a_selection_example_1.csv', index_col=0)
 dataset

The read_csv function now uses the first column as the index:

Here, the dataset is loaded and the index is correct. Now, to access the value of a cell, there
are a few things we can do. Let's list them one by one:

First, you can simply specify the column and the line (by using its index) you are1.
interested in.
To extract the val3 of the fifth line (indexed with n=104), you can give the2.
following command:

In: dataset['val3'][104]

Out: 'A'

Data Munging Chapter 2

[94]

Apply this operation carefully since it's not a matrix and you might be tempted3.
to first input the row and then the column. Remember that it's actually a pandas
DataFrame, and the [] operator works first on columns and then on the element
of the resulting pandas Series.
To have something similar to the preceding method of accessing data, you can4.
use the .loc() method, which is label-based; that is, it works by the index and
column labels:

In: dataset.loc[104, 'val3']

Out: 'A'

In this case, you should first specify the index and then the columns you're interested in.

Please note that, sometimes, the index in a DataFrame can be expressed in
numbers. In such a case, it is easy to confuse it with a positional index, but
a numeric index is not necessarily ordered or continuous.

Finally, a fully-optimized function that specifies the positions (positional5.
indexing, as in a matrix) is iloc(). With it, you must specify the cell by using
the row number and column number:

In: dataset.iloc[4, 2]

Out: 'A'

The retrieval of submatrixes is a very intuitive operation; you simply need to6.
specify the lists of indexes instead of scalars:

In: dataset[['val3', 'val2']][0:2]

This command is equivalent to this:7.

In: dataset.loc[range(100, 102), ['val3', 'val2']]

And it is also equivalent to the following:8.

In: dataset.iloc[range(2), [2,1]]

Data Munging Chapter 2

[95]

In all the cases, the resulting DataFrame is as follows:

There is another method available for indexing in a pandas DataFrame:
the ix method works by a mix of label-based and positional
indexes: dataset.ix[104, 'val3']. Note that ix has to guess what
you are referring to. Therefore, if you don't want to mix labels and
positional indexes, loc and iloc are absolutely preferred in order to
create a more safe and effective approach. ix is to be deprecated in the
upcoming versions of pandas.

Working with categorical and textual data
Typically, you'll find yourself dealing with two main kinds of data: categorical and
numerical. Numerical data, such as temperature, amount of money, days of usage, or house
number, can be composed of either floating-point numbers (such as 1.0, -2.3, 99.99, and so
on) or integers (such as -3, 9, 0, 1, and so on). Each value that the data can assume has a
direct relation with others since they're comparable. In other words, you can say that a
feature with a value of 2.0 is greater (actually, it is double) than a feature that assumes a
value of 1.0. This type of data is very well-defined and comprehensible, with binary
operators such as equal to, greater than, and less than.

The other type of data you might see in your career is the categorical type. A categorical
datum expresses an attribute that cannot be measured and assumes values in a finite or
infinite set of values, often named levels. For example, the weather is a categorical feature,
since it takes values in a discrete set [sunny, cloudy, snowy, rainy, and foggy]. Other
examples are features that contain URLs, IPs, device brands, items you put in your e-
commerce cart, devices IDs, and so on. On this data, you cannot define the equal to, greater
than, and less than binary operators and therefore, you cannot rank them.

A plus point for both categorical and numerical values is Booleans. In fact, they can be seen
as categorical (presence/absence of a feature) or, on the other hand, as, the probability of a
feature having an exhibit (has displayed, has not displayed). Since many machine learning
algorithms do not allow the input to be categorical, Boolean features are often used to
encode categorical features as numerical values.

Data Munging Chapter 2

[96]

Let's continue with the example of the weather. If we want to map a feature that contains
the current weather and which takes values in the set [sunny, cloudy, snowy, rainy, and
foggy] and encodes them to binary features, we should create five True/False features,
with one for each level of the categorical feature. Now, the map is straightforward:

Categorical_feature = sunny binary_features = [1, 0, 0, 0, 0]
Categorical_feature = cloudy binary_features = [0, 1, 0, 0, 0]
Categorical_feature = snowy binary_features = [0, 0, 1, 0, 0]
Categorical_feature = rainy binary_features = [0, 0, 0, 1, 0]
Categorical_feature = foggy binary_features = [0, 0, 0, 0, 1]

Only one binary feature reveals the presence of the categorical feature; the others remain 0.
This is called binary encoding or one hot encoding. By performing this easy step, we moved
from the categorical world to a numerical one. The price of this operation is its complexity
in terms of memory and computations; instead of a single feature, we now have five
features. Generically, instead of a single categorical feature with N possible levels, we will
create N features, each with two numerical values (1/0). This operation is named dummy
coding.

The pandas package helps us in this operation, making the mapping easy with one
command:

In: import pandas as pd
 categorical_feature = pd.Series(['sunny', 'cloudy',
 'snowy', 'rainy', 'foggy'])
 mapping = pd.get_dummies(categorical_feature)
 mapping

Here is the mapping dataset:

Data Munging Chapter 2

[97]

The output is a DataFrame that contains the categorical levels as column labels and the
respective binary features along the column. To map a categorical value to a list of
numerical ones, just use the power of pandas:

In: mapping['sunny']

Out: 0 1.0
 1 0.0
 2 0.0
 3 0.0
 4 0.0
 Name: sunny, dtype: float64

In: mapping['cloudy']

Out: 0 0.0
 1 1.0
 2 0.0
 3 0.0
 4 0.0
 Name: cloudy, dtype: float64

As seen in this example, sunny is mapped into the list of Boolean values [1, 0, 0, 0,
0], cloudy to [0, 1, 0, 0, 0], and so on.

The same operation can be done with another toolkit, Scikit-learn. It's somehow more
complex since you must first convert text to categorical indices, but the result is the same.
Let's take a peek at the previous example again:

In: from sklearn.preprocessing import OneHotEncoder
 from sklearn.preprocessing import LabelEncoder
 le = LabelEncoder()
 ohe = OneHotEncoder()
 levels = ['sunny', 'cloudy', 'snowy', 'rainy', 'foggy']
 fit_levs = le.fit_transform(levels)
 ohe.fit([[fit_levs[0]], [fit_levs[1]], [fit_levs[2]],
 [fit_levs[3]], [fit_levs[4]]])
 print (ohe.transform([le.transform(['sunny'])]).toarray())
 print (ohe.transform([le.transform(['cloudy'])]).toarray())

Out: [[0. 0. 0. 0. 1.]]
 [[1. 0. 0. 0. 0.]]

Basically, LabelEncoder maps the text to a 0-to-N integer number (note that in this case,
it's still a categorical variable since it makes no sense to rank it). Now, these five values are
mapped to five binary variables.

Data Munging Chapter 2

[98]

A special type of data – text
Let's introduce another type of data. Text data is a frequently used input for machine
learning algorithms since it contains a natural representation of data in our language. It's so
rich that it also contains the answer to what we're looking for. The most common approach
when dealing with text is to use a bag-of-words approach. According to this approach,
every word becomes a feature and the text becomes a vector that contains non-zero
elements for all the features (that is, the words) in its body. Given a text dataset, what's the
number of features? It is simple. Just extract all the unique words in it and enumerate them.
For a very rich text that uses all the English words, that number is in the 1 million range. If
you're not going to further process it (removal of any third person, abbreviations,
contractions, and acronyms), you might find yourself dealing with more than that, but
that's a very rare case. In a plain and simple approach, which is the target of this book, we
just let Python do its best.

The dataset used in this section is textual; it's the famous 20newsgroup (for more information
about this, visit http://qwone.com/~jason/20Newsgroups/). It is a collection of about
20,000 documents that belong to 20 topics of newsgroups. It's one of the most frequently
used (if not the topmost used) datasets that's presented while dealing with text
classification and clustering. To import it, we're going to use its restricted subset, which
contains all the science topics (medicine and space):

In: from sklearn.datasets import fetch_20newsgroups
 categories = ['sci.med', 'sci.space']
 twenty_sci_news = fetch_20newsgroups(categories=categories)

The first time you run this command, it automatically downloads the dataset and places it
in the $HOME/scikit_learn_data/20news_home/ default directory. You can query the
dataset object by asking for the location of the files, their content, and the label (that is, the
topic of the discussion where the document was posted). They're located in the
.filenames, .data, and .target attributes of the object, respectively:

In: print(twenty_sci_news.data[0])

Out: From: flb@flb.optiplan.fi ("F.Baube[tm]")
 Subject: Vandalizing the sky
 X-Added: Forwarded by Space Digest
 Organization: [via International Space University]
 Original-Sender: isu@VACATION.VENARI.CS.CMU.EDU
 Distribution: sci
 Lines: 12
 From: "Phil G. Fraering" <pgf@srl03.cacs.usl.edu>
 [...]

http://localhost/qwone.com/~jason/20Newsgroups/

Data Munging Chapter 2

[99]

In: twenty_sci_news.filenames

Out: array([
 '/Users/datascientist/scikit_learn_data/20news_home/20news-bydate-
 train/sci.space/61116',
 '/Users/datascientist/scikit_learn_data/20news_home/20news-
 bydate-train/sci.med/58122',
 '/Users/datascientist/scikit_learn_data/20news_home/20news-
 bydate-train/sci.med/58903',
 ...,
 '/Users/datascientist/scikit_learn_data/20news_home/20news-
 bydate-train/sci.space/60774',
 [...]

In: print (twenty_sci_news.target[0])
 print (twenty_sci_news.target_names[twenty_sci_news.target[0]])

Out: 1
 sci.space

The target is categorical, but it's represented as an integer (0 for sci.med and 1 for
sci.space). If you want to read it, check against the index of the
twenty_sci_news.target array.

The easiest way to deal with the text is by transforming the body of the dataset into a series
of words. This means that, for each document, the number of times a specific word appears
in the body will be counted.

For example, let's make a small, easy-to-process dataset:

Document_1: We love data science
Document_2: Data science is hard

In the entire dataset, which contains Document_1 and Document_2, there are only six
different words: we, love, data, science, is, and hard. Given this array, we can associate
each document with a feature vector:

In: Feature_Document_1 = [1 1 1 1 0 0]
 Feature_Document_2 = [0 0 1 1 1 1]

Note that we're discarding the positions of the words and retaining only the number of
times the word appears in the document. That's all.

Data Munging Chapter 2

[100]

In the 20newsletter database, with Python, this can be done in a simple way:

In: from sklearn.feature_extraction.text import CountVectorizer
 count_vect = CountVectorizer()
 word_count = count_vect.fit_transform(twenty_sci_news.data)
 word_count.shape

Out: (1187, 25638)

First, we instantiate a CountVectorizer object. Then, we call the method to count the
terms in each document and produce a feature vector for each of them (fit_transform).
We then query the matrix size. Note that the output matrix is sparse because it's very
common to have only a limited selection of words for each document (since the number of
non-zero elements in each line is very low and it makes no sense to store all the redundant
zeros). Anyway, the output shape is (1187, 25638). The first value is the number of
observations in the dataset (the number of documents), while the latter is the number of
features (the number of unique words in the dataset).

After the CountVectorizer transforms, each document is associated with its feature
vector. Let's take a look at the first document:

In: print (word_count[0])

Out: (0, 10827) 2
 (0, 10501) 2
 (0, 17170) 1
 (0, 10341) 1
 (0, 4762) 2
 (0, 23381) 2
 (0, 22345) 1
 (0, 24461) 1
 (0, 23137) 7
 [...]

You will notice that the output is a sparse vector where only non-zero elements are stored.
To check the direct correspondence to words, just try the following code:

In: word_list = count_vect.get_feature_names()
 for n in word_count[0].indices:
 print ('Word "%s" appears %i times' % (word_list[n],
 word_count[0, n]))

Out: Word: from appears 2 times
 Word: flb appears 2 times
 Word: optiplan appears 1 times
 Word: fi appears 1 times
 Word: baube appears 2 times

Data Munging Chapter 2

[101]

 Word: tm appears 2 times
 Word: subject appears 1 times
 Word: vandalizing appears 1 times
 Word: the appears 7 times
 [...]

So far, everything has been pretty simple, hasn't it? Let's move forward to another task of
increasing complexity and effectiveness. Counting words is good, but we can manage
more; we can compute their frequency. It's a measure that you can compare across
differently-sized datasets. It gives an idea of whether a word is a stop word (that is, a very
common word such as a, an, the, or is) or a rare, unique one. Typically, these terms are the
most important because they're able to characterize an instance and the features based on
these words, which are very discriminative in the learning process. To retrieve the
frequency of each word in each document, try the following code:

In: from sklearn.feature_extraction.text import TfidfVectorizer
 tf_vect = TfidfVectorizer(use_idf=False, norm='l1')
 word_freq = tf_vect.fit_transform(twenty_sci_news.data)
 word_list = tf_vect.get_feature_names()
 for n in word_freq[0].indices:
 print ('Word "%s" has frequency %0.3f' % (word_list[n],
 word_freq[0, n]))

Out: Word "from" has frequency 0.022
 Word "flb" has frequency 0.022
 Word "optiplan" has frequency 0.011
 Word "fi" has frequency 0.011
 Word "baube" has frequency 0.022
 Word "tm" has frequency 0.022
 Word "subject" has frequency 0.011
 Word "vandalizing" has frequency 0.011
 Word "the" has frequency 0.077
 [...]

The sum of the frequencies is 1 (or close to 1 due to the approximation). This happens
because we chose the l1 norm. In this specific case, the word frequency is a probability
distribution function. Sometimes, it's nice to increase the difference between rare and
common words. In such cases, you can use the l2 norm to normalize the feature vector.

Data Munging Chapter 2

[102]

An even more effective way to vectorize text data is by using tf-idf. In brief, you can
multiply the term frequency of the words that compose a document by the inverse
document frequency of the word itself (that is, in the number of documents it appears in, or
in its logarithmically scaled transformation). This is very handy for highlighting words that
effectively describe each document and which are powerful discriminative elements among
the dataset:

In: from sklearn.feature_extraction.text import TfidfVectorizer
 tfidf_vect = TfidfVectorizer() # Default: use_idf=True
 word_tfidf = tfidf_vect.fit_transform(twenty_sci_news.data)
 word_list = tfidf_vect.get_feature_names()
 for n in word_tfidf[0].indices:
 print ('Word "%s" has tf-idf %0.3f' % (word_list[n],
 word_tfidf[0, n]))

Out: Word "fred" has tf-idf 0.089
 Word "twilight" has tf-idf 0.139
 Word "evening" has tf-idf 0.113
 Word "in" has tf-idf 0.024
 Word "presence" has tf-idf 0.119
 Word "its" has tf-idf 0.061
 Word "blare" has tf-idf 0.150
 Word "freely" has tf-idf 0.119
 Word "may" has tf-idf 0.054
 Word "god" has tf-idf 0.119
 Word "blessed" has tf-idf 0.150
 Word "is" has tf-idf 0.026
 Word "profiting" has tf-idf 0.150
 [...]

In this example, the four most characterizing words of the first documents are caste,
baube, flb, and tm (they have the highest tf-idf score). This means that their term
frequency within the document is high, whereas they're pretty rare in the remaining
documents.

So far, for each word, we have generated a feature. What about taking a couple of words
together? That's exactly what happens when you consider bigrams instead of unigrams.
With bigrams (or generically, n-grams), the presence or absence of a word – as well as its
neighbors – matters (that is, the words near it and their disposition). Of course, you can mix
unigrams and n-grams and create a rich feature vector for each document. In the following
simple example, let's test how n-grams work:

In: text_1 = 'we love data science'
 text_2 = 'data science is hard'
 documents = [text_1, text_2]
 documents

Data Munging Chapter 2

[103]

Out: ['we love data science', 'data science is hard']

In: # That is what we say above, the default one
 count_vect_1_grams = CountVectorizer(ngram_range=(1, 1),
 stop_words=[], min_df=1)
 word_count = count_vect_1_grams.fit_transform(documents)
 word_list = count_vect_1_grams.get_feature_names()
 print ("Word list = ", word_list)
 print ("text_1 is described with", [word_list[n] + "(" +
 str(word_count[0, n]) + ")" for n in word_count[0].indices])

Out: Word list = ['data', 'hard', 'is', 'love', 'science', 'we']
 text_1 is described with ['we(1)', 'love(1)', 'data(1)', 'science(1)']

In: # Now a bi-gram count vectorizer
 count_vect_1_grams = CountVectorizer(ngram_range=(2, 2))
 word_count = count_vect_1_grams.fit_transform(documents)
 word_list = count_vect_1_grams.get_feature_names()
 print ("Word list = ", word_list)
 print ("text_1 is described with", [word_list[n] + "(" +
 str(word_count[0, n]) + ")" for n in word_count[0].indices])

Out: Word list = ['data science', 'is hard', 'love data',
 'science is', 'we love']
 text_1 is described with ['we love(1)', 'love data(1)',
 'data science(1)']

In: # Now a uni- and bi-gram count vectorizer
 count_vect_1_grams = CountVectorizer(ngram_range=(1, 2))
 word_count = count_vect_1_grams.fit_transform(documents)
 word_list = count_vect_1_grams.get_feature_names()
 print ("Word list = ", word_list)
 print ("text_1 is described with", [word_list[n] + "(" +
 str(word_count[0, n]) + ")" for n in word_count[0].indices])

Out: Word list = ['data', 'data science', 'hard', 'is', 'is hard', 'love',
 'love data', 'science', 'science is', 'we', 'we love']
 text_1 is described with ['we(1)', 'love(1)', 'data(1)', 'science(1)',
 'we love(1)', 'love data(1)', 'data science(1)']

The preceding example very intuitively combines the first and second approach we
previously presented. In this case, we used a CountVectorizer, but this approach is very
common with a TfidfVectorizer. Note that the number of features explodes
exponentially when you use n-grams.

Data Munging Chapter 2

[104]

If you have too many features (the dictionary may be too rich, there may be too many n-
grams, or the computer may be just limited), you can use a trick that lowers the complexity
of the problem (but you should first evaluate the trade-off performance/trade-off
complexity). It's common to use the hashing trick where many words (or n-grams) are
hashed and their hashes collide (which makes a bucket of words). Buckets are sets of
semantically unrelated words but with colliding hashes. With HashingVectorizer(), as
shown in the following example, you can decide on the number of buckets of words you
want. The resulting matrix, of course, reflects your setting:

In: from sklearn.feature_extraction.text import HashingVectorizer
 hash_vect = HashingVectorizer(n_features=1000)
 word_hashed = hash_vect.fit_transform(twenty_sci_news.data)
 word_hashed.shape

Out: (1187, 1000)

Note that you can't invert the hashing process (since it's a digest operation). Therefore, after
this transformation, you will have to work on the hashed features as they are. Hashing
presents quite a few advantages: allowing quick transformation of a bag of words into
vectors of features (hash buckets are our features, in this case), easily accommodating
never-previously-seen words among the features, and avoiding overfitting by having
unrelated words collide together in the same feature.

Scraping the web with Beautiful Soup
In the previous section, we discussed how to operate on textual data, given the fact that we
already have the dataset. What if we need to scrape the web and download it manually?
This process happens more often than you can expect, and it's a very popular topic of
interest in data science. For example:

Financial institutions scrape the web to extract fresh details and information
about the companies in their portfolio. Newspapers, social networks, blogs,
forums, and corporate websites are the ideal targets for these analyses.
Advertisement and media companies analyze sentiment and the popularity of
many pieces of the web to understand people's reactions.
Companies specialized in insight analysis and recommendation scrape the web
to understand patterns and model user behaviors.
Comparison websites use the web to compare prices, products, and services,
offering the user an updated synoptic table of the current situation.

Data Munging Chapter 2

[105]

Unfortunately, understanding websites is very hard work since each website is built and
maintained by different people, with different infrastructures, locations, languages, and
structures. The only common aspect among them is represented by the standard exposed
language, which, most of the time, is Hypertext Markup Language (HTML).

That's why the vast majority of web scrapers, available as of today, are only able to
understand and navigate HTML pages in a general-purpose way. One of the most used
web parsers is named Beautiful Soup. It's written in Python, it's open source, and it's very
stable and simple to use. Moreover, it's able to detect errors and pieces of malformed code
in the HTML page (always remember that web pages are often human-made products and
prone to errors).

A complete description of Beautiful Soup would require an entire book; here, we will see
just a few bits. First of all, Beautiful Soup is not a crawler. In order to download a web page,
we can (as an example) use the urllib library:

Let's download the code behind the William Shakespeare page on Wikipedia:1.

In: import urllib.request
 url = 'https://en.wikipedia.org/wiki/William_Shakespeare'
 request = urllib.request.Request(url)
 response = urllib.request.urlopen(request)

It's time to instruct Beautiful Soup to read the resource and parse it using the2.
HTML parser:

In: from bs4 import BeautifulSoup
 soup = BeautifulSoup(response, 'html.parser')

Now, the soup is ready and can be queried. To extract the title, we can simply3.
ask for the title attribute:

In: soup.title

Out: <title>William Shakespeare - Wikipedia,
 the free encyclopedia</title>

As you can see, the whole title tag is returned, allowing for a deeper investigation of the
nested HTML structure. What if we want to know about the categories associated with the
Wikipedia page of William Shakespeare? It can be very useful to create a graph of the entry,
simply by recurrently downloading and parsing adjacent pages. We should first manually
analyze the HTML page itself to figure out what the best HTML tag containing the
information we're looking for is. Remember here the no free lunch theorem in data science:
there are no auto-discovery functions, and furthermore, things can change if Wikipedia
modifies its format.

Data Munging Chapter 2

[106]

After a manual analysis, we discover that categories are inside a div named 'mw-normal-
catlinks'; excluding the first link, all the others are okay. Now, it's time to program. Let's
put what we've observed into some code, printing for each category the title of the linked
page and the relative link to it:

In: section = soup.find_all(id='mw-normal-catlinks')[0]
 for catlink in section.find_all("a")[1:]:
 print(catlink.get("title"), "->", catlink.get("href"))

Out: Category:William Shakespeare -> /wiki/Category:William_Shakespeare
 Category:1564 births -> /wiki/Category:1564_births
 Category:1616 deaths -> /wiki/Category:1616_deaths
 Category:16th-century English male actors -> /wiki/Category:16th-
 century_English_male_actors
 Category:English male stage actors -> /wiki/Category:
 English_male_stage_actors
 Category:16th-century English writers -> /wiki/Category:16th-
 century_English_writers

We've used the find_all method twice to find all the HTML tags with the text contained
in the argument. In the first case, we were specifically looking for an ID; in the second case,
we were looking for all the "a" tags.

Given the output, then, and using the same code with the new URLs, it's possible to
recursively download the Wikipedia category pages, arriving at this point at the ancestor
categories.

A final note about scraping: always remember that this practice is not always allowed, and
when so, remember to tune down the rate of the download (at high rates, the website's
server may think you're doing a small-scale DoS attack and might eventually blacklist/ban
your IP address). For more information, you can read the terms and conditions of the
website, or simply contact the administrators.

Data processing with NumPy
Having introduced the essential pandas commands to upload and preprocess your data in
memory completely, in smaller batches, or even in single data rows, at this point of the data
science pipeline, you'll have to work on it in order to prepare a suitable data matrix for
your supervised and unsupervised learning procedures.

Data Munging Chapter 2

[107]

As a best practice, we advise that you divide the task between a phase of your work when
your data is still heterogeneous (a mix of numerical and symbolic values) and another
phase when it is turned into a numeric table of data. A table of data, or matrix, is arranged
in rows that represent your examples, and columns that contain the characteristic observed
values of your examples, which are your variables.

Following our advice, you have to wrangle between two key Python packages for scientific
analysis, pandas and NumPy, and their two pivotal data structures, DataFrame and
ndarray. This means that your data science pipeline will be more efficient and fast.

Since the target data structure that we want to feed into the following machine learning
phase is a matrix represented by the NumPy ndarray object, let's start from the result we
want to achieve, that is, how to generate a ndarray object.

NumPy's n-dimensional array
Python presents native data structures, such as lists and dictionaries, which you should use
to the best of your ability. Lists, for example, can store sequentially heterogeneous objects
(for instance, you can save numbers, texts, images, and sounds in the same list). On the
other hand, because being based on a lookup table (a hash table), dictionaries can recall
content. The content can be any Python object, and often it is a list of another dictionary.
Thus, dictionaries allow you to access complex, multidimensional data structures.

Anyway, lists and dictionaries have their own limitations, such as the following:

There's the problem with memory and speed. They are not really optimized for
using nearly contiguous chunks of memory, and this may become a problem
when trying to apply highly optimized algorithms or multiprocessor
computations, because memory handling may turn into a bottleneck.
They are excellent for storing data but not for operating on it. Therefore,
whatever you may want to do with your data, you have to first define custom
functions and iterate or map over the list or dictionary elements.
Iterating may often prove suboptimal when working on a large amount of data.

NumPy offers a ndarray object class (n-dimensional array) that has the following
attributes:

It is memory optimal (and, besides other aspects, configured to transmit data to
C or Fortran routines in the best-performing layout of memory blocks)

Data Munging Chapter 2

[108]

It allows for fast linear algebra computations (vectorization) and element-wise
operations (broadcasting) without any need to use iterations with for loops
Critical libraries, such as SciPy or Scikit-learn, expect arrays as an input for their
functions to operate correctly

All of this comes with some limitations. In fact, ndarray objects have the following
drawbacks:

They usually store only elements of a single, specific data type, which you can
define beforehand (but there's a way to define complex data and heterogeneous
data types, though they could be very difficult to handle for analysis purposes).
After they are initialized, their size is fixed. If you want to change their shape,
you have to create them anew.

The basics of NumPy ndarray objects
In Python, an array is a block of memory-contiguous data of a specific type with a header
that contains the indexing scheme and the data type descriptor.

Thanks to the indexing scheme, an array can represent a multidimensional data structure
where each element is indexed with a tuple of n integers, where n is the number of
dimensions. Therefore, if your array is unidimensional (that is, a vector of sequential data),
the index will start from zero (as in Python lists).

If it is bidimensional, you'll have to use two integers as an index (a tuple of coordinates of
type x,y); if there are three dimensions, the number of integers used will be three (a tuple
x,y,z), and so on.

At each indexed location, the array will contain data of the specified data type. An array
can store many numerical data types, as well as strings, and other Python objects. It is also
possible to create custom data types and therefore handle data sequences of different types,
though we advise against it and we suggest that you use the pandas DataFrame in such
cases. pandas data structures are indeed much more flexible for any intensive usage of
heterogeneous data types as necessary for a data scientist. Consequently, in this book, we
will consider only NumPy arrays of a specific, defined type, and leave pandas to deal with
heterogeneity.

Data Munging Chapter 2

[109]

Since the type (and the memory space it occupies in terms of bytes) of an array should be
defined from the beginning, the array creation procedure reserves the exact memory space
to contain all the data. The access, modification, and computation of the elements of an
array are therefore quite fast, though this also consequently implies that the array is fixed
and cannot be changed in its structure.

The Python list data structure is actually much more cumbersome and slow, being a
collection of pointers linking the list structure to the scattered memory locations containing
the data itself. Instead, as depicted in the following diagram, a NumPy ndarray is made of
just a pointer addressing a single memory location where data, arranged sequentially, is
stored. When you access the data in a NumPy ndarray, you'll actually require fewer
operations and less access to different memory parts than when using a list, hence the
major efficiency and speed when working with large amounts of data. As a drawback, data
connected to a NumPy array cannot be changed; it has to be recreated when inserting or
removing data:

No matter the dimensions of the NumPy array, data will always be arranged as a
continuous sequence of values (a contiguous block of memory). It is the knowledge of the
size of the array and of the strides (telling us how many bytes we have to skip in memory
to move to the next position along a certain axis) that renders it easy to correctly represent
and operate on the array.

Data Munging Chapter 2

[110]

Talking of memory optimization for fast performances, in order to store
multidimensional arrays, there are strictly two methods called row-major
order and column-major order. Since RAM (random access memory) is
arranged into a linear storage of memory cells (memory cells are
contiguous as the points of a line – there is no such thing as an array in
RAM), you have to flatten the array to a vector and store it in memory.
When flattening, you can just proceed row by row (row-major order),
which is typical of C/C++, or column by column (column-major order),
which is typical of Fortran or R. Python, in the NumPy package
implementation, uses the row-major ordering (also called C-contiguous,
whereas the column-major ordering is also called Fortran-contiguous),
which means that it is faster in computing operations applied row by row
than working column after column. Anyway, when creating your NumPy
array, you can decide the ordering of your data structure, based on your
expectation of manipulating it more by rows or columns. After importing
the package, import numpy as np, given an array such as a =
[[1,2,3],[4,5,6],[7,8,9]], you can redefine it in row-major order: c
= np.array(a, order='C') or in column-major order: f =
np.array(a, order='F')

In contrast, lists of data structures, that represent multiple dimensions, cannot but turn
themselves into nested lists, thus increasing both overhead and memory fragmentation
when accessing data.

All that you have read so far may sound like a computer scientist
blabbering. After all, all data scientists care about is getting Python to do
something useful and quick. That's surely true, but doing something
quickly from a syntactic point of view sometimes doesn't automatically
equate into doing something quick from the point of view of the execution
itself. If you can grasp the internals of NumPy and pandas, you could
really make your code speed up and achieve more in your projects in less
time. We have experience of syntactically correct data munging code
using NumPy and pandas that, by the right refactoring, reduced its
execution time by half or more.

Data Munging Chapter 2

[111]

For our purposes, it is also very important to understand that, when accessing or
transforming an array, we may be just viewing it or we may be copying it. When we are
viewing an array, we actually call a procedure that allows us to convert the data that's
present in its structure into something else, but the sourcing array is unaltered. Based on
the previous example, when viewing, we are just changing the size attribute of a ndarray;
the data is left untouched. Consequently, any data transformation experienced as viewing
an array is merely ephemeral, unless we fix them into a new array.

Instead, when we are copying an array, we are effectively creating a new array with a
different structure (thus occupying fresh memory). We do not just change the parameter
relative to the size of the array; we are also reserving another sequential chunk of memory
and copying our data there.

All pandas DataFrames are actually made of one-dimensional NumPy
arrays. For this reason, they inherit the speed and memory efficiency of
ndarrays when you operate by columns (since each column is a NumPy
array). When operating by rows, DataFrames are more inefficient because
you are accessing sequentially different columns; that is, different NumPy
arrays. For the same reason, it is speedier to address portions of a pandas
DataFrame by a positional index, not by a pandas index, because NumPy
arrays work using integer numbers as positions. Using pandas indexes
(which can also be textual, not just numerical) actually requires a
transformation of the index into its corresponding position for the
DataFrame to operate correctly on the data.

Creating NumPy arrays
There is more than one way to create NumPy arrays. The following are some of the ways
you can create them:

By transforming an existing data structure into an array
By creating an array from scratch and populating it with default or calculated
values
By uploading some data from a disk into an array

If you are going to transform an existing data structure, the odds are in favor of you
working with a structured list or a pandas DataFrame.

Data Munging Chapter 2

[112]

From lists to unidimensional arrays
One of the most common situations you will encounter when working with data is
transforming a list into an array.

When operating such a transformation, it is important to consider the objects the lists
contain because this will determine the dimensionality and the dtype of the resulting
array.

Let's start with this first example of a list containing just integers:

In: import numpy as np

In: # Transform a list into a uni-dimensional array
 list_of_ints = [1,2,3]
 Array_1 = np.array(list_of_ints)

In: Array_1

Out: array([1, 2, 3])

Remember that you can access a one-dimensional array as you would with a standard
Python list (the indexing starts from zero):

In: Array_1[1] # let's output the second value

Out: 2

We can ask for further information about the type of the object and the type of its elements
(the effectively resulting type depends on whether your system is 32-bit or 64-bit):

In: type(Array_1)

Out: numpy.ndarray

In: Array_1.dtype

Out: dtype('int64')

The default dtype depends on the system you're operating on.

Data Munging Chapter 2

[113]

Our simple list of integers will turn into a one-dimensional array; that is, a vector of 32-bit
integers (ranging from -231 to 231-1, the default integer on the platform we used for our
examples).

Controlling memory size
You may think that it is a waste of memory to use an int64 data type if the range of your
values is so limited.

In fact, conscious of data-intensive situations, you can calculate how much memory space
your Array_1 object is taking:

In: import numpy as np
 Array_1.nbytes

Out: 24

Please note that on 32-bit platforms (or when using a 32-bit Python
version on a 64-bit platform), the result is 12.

In order to save memory, you can specify the type that best suits your array beforehand:

In: Array_1 = np.array(list_of_ints, dtype= 'int8')

Now, your simple array occupies just a fourth of the previous memory space. It may seem
an obvious and overly simplistic example, but when dealing with millions of rows and
columns, defining the best data type for your analysis can really save the day, allowing you
to fit everything nicely into memory.

For your reference, here is a table that presents the most common data types for data
science applications and their memory usage for a single element:

Type Size in bytes Description
bool 1 Boolean (True or False) stored as a byte
int 4 Default integer type (normally int32 or int64)
int8 1 Byte (-128 to 127)
int16 2 Integer (-32768 to 32767)
int32 4 Integer (-2**31 to 2**31-1)
int64 8 Integer (-2**63 to 2**63-1)

Data Munging Chapter 2

[114]

Type Size in bytes Description
uint8 1 Unsigned integer (0 to 255)
uint16 2 Unsigned integer (0 to 65535)
uint32 4 Unsigned integer (0 to 2**32-1)
uint64 8 Unsigned integer (0 to 2**64-1)
float_ 8 Shorthand for float64
float16 2 Half-precision float (exponent 5 bits, mantissa 10 bits)
float32 4 Single-precision float (exponent 8 bits, mantissa 23 bits)
float64 8 Double-precision float (exponent 11 bits, mantissa 52 bits)

There are some more numerical types, such as complex numbers, that are
less usual but which may be required by your application (for example, in
a spectrogram). You can get the complete idea from the NumPy user
guide at http://docs.scipy.org/doc/numpy/user/basics.types.html.

If an array has a type that you want to change, you can easily create a new array by casting
a new, specified type:

In: Array_1b = Array_1.astype('float32')
 Array_1b

Out: array([1., 2., 3.], dtype=float32)

In case your array is memory consuming, note that the .astype method will copy the
array, and thus it always creates a new array.

Heterogeneous lists
What if the lists were made of heterogeneous elements, such as integers, floats, and strings?
This gets trickier. A quick example can describe the situation to you:

In: import numpy as np
 complex_list = [1,2,3] + [1.,2.,3.] + ['a','b','c']
 # at first the input list is just ints
 Array_2 = np.array(complex_list[:3])
 print ('complex_list[:3]', Array_2.dtype)
 # then it is ints and floats
 Array_2 = np.array(complex_list[:6])
 print ('complex_list[:6]', Array_2.dtype)
 # finally we add strings print
 Array_2 = np.array(complex_list)
 ('complex_list[:] ',Array_2.dtype)

http://docs.scipy.org/doc/numpy/user/basics.types.html

Data Munging Chapter 2

[115]

Out: complex_list[:3] int64
 complex_list[:6] float64
 complex_list[:] <U32

As explicated by our output, it seems that float types prevail over int types, and strings
(<U32 means a Unicode string of size 32 or less) take over everything else.

While creating an array using lists, you can mix different elements, and the most Pythonic
way to check the results is by questioning the dtype of the resulting array.

Be aware that if you are uncertain about the contents of your array, you really have to
check. Otherwise, you may find it impossible to operate on your resulting array and you
may incur in an error later (unsupported operand type):

In: # Check if a NumPy array is of the desired numeric type
 print (isinstance(Array_2[0],np.number))

Out: False

In our data munging process, unintentionally finding out an array of the string type as
output would mean that we forgot to transform all variables into numeric ones in the
previous steps; for example, when all the data was stored in a pandas DataFrame. In the
previous section, Working with categorical and textual data, we provided some simple and
straightforward ways to deal with such situations.

Before that, let's complete our overview of how to derive an array from a list object. As we
mentioned previously, the type of objects in the list influences the dimensionality of the
array, too.

From lists to multidimensional arrays
If a list containing numeric or textual objects is rendered into a unidimensional array (that
could represent a coefficient vector, for instance), a list of lists translates into a two-
dimensional array, and a list of list of lists becomes a three-dimensional one:

In: import numpy as np
 # Transform a list into a bidimensional array
 a_list_of_lists = [[1,2,3],[4,5,6],[7,8,9]]
 Array_2D = np.array(a_list_of_lists)
 Array_2D

Out: array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Data Munging Chapter 2

[116]

As mentioned previously, you can call out single values with indices, as in a list, though
here you'll have two indices—one for the row dimension (also called axis 0) and one for the
column dimension (axis 1):

In: Array_2D[1, 1]

Out: 5

Two-dimensional arrays are usually the norm in data science problems, though three-
dimensional arrays may be found when a dimension represents time, for instance:

In: # Transform a list into a multi-dimensional array
 a_list_of_lists_of_lists = [[[1,2],[3,4],[5,6]],
 [[7,8],[9,10],[11,12]]]
 Array_3D = np.array(a_list_of_lists_of_lists)
 Array_3D

Out: array([[[1, 2],
 [3, 4],
 [5, 6]],
 [[7, 8],
 [9, 10],
 [11, 12]]])

To access single elements of a three-dimensional array, you just have to point out three
indexes:

In: Array_3D[0,2,0] # Accessing the 5th element

Out: 5

Arrays can be made from tuples in a way that is similar to the method of creating lists.
Also, dictionaries can be turned into two-dimensional arrays thanks to the .items()
method, which returns a copy of the dictionary's list of key-value pairs:

In: np.array({1:2,3:4,5:6}.items())

Out: array([[1, 2],
 [3, 4],
 [5, 6]])

Data Munging Chapter 2

[117]

Resizing arrays
Earlier, we mentioned how you can change the type of the elements of an array. We will
now shortly stop for a while to examine the most common instructions to modify the shape
of an existing array.

Let's start with an example that uses the .reshape method, which accepts an n-tuple
containing the size of the new dimensions as a parameter:

In: import numpy as np
 # Restructuring a NumPy array shape
 original_array = np.array([1, 2, 3, 4, 5, 6, 7, 8])
 Array_a = original_array.reshape(4,2)
 Array_b = original_array.reshape(4,2).copy()
 Array_c = original_array.reshape(2,2,2)
 # Attention because reshape creates just views, not copies
 original_array[0] = -1

Our original array is a unidimensional vector of integer numbers from 1 to 8. Here is what
we execute in the code:

We assign Array_a to a reshaped original_array of size 4 x 21.
We do the same with Array_b, though we append the .copy() method, which2.
will copy the array into a new one
Finally, we assign Array_c to a reshaped array in three dimensions of size 2 x 2 x3.
2
After having done such an assignment, the first element of original_array is4.
changed in value from 1 to -1

Now, if we check the content of our arrays, we will notice that Array_a and Array_c,
though they have the desired shape, are characterized by -1 as the first element. That's
because they dynamically mirror the original array they are in view from:

In: Array_a

Out: array([[-1, 2],
 [3, 4],
 [5, 6],
 [7, 8]])

In: Array_c

Out: array([[[-1, 2],
 [3, 4]],

Data Munging Chapter 2

[118]

 [[5, 6],
 [7, 8]]])

Only the Array_b array, having been copied before mutating the original array, has a first
element with a value of 1:

In: Array_b

Out: array([[1, 2],
 [3, 4],
 [5, 6],
 [7, 8]])

If it is necessary to change the shape of the original array, then the resize method is to be
favored:

In: original_array.resize(4,2)
 original_array

Out: array([[-1, 2],
 [3, 4],
 [5, 6],
 [7, 8]])

The same results may be obtained by acting on the .shape value by assigning a tuple of
values representing the size of the intended dimensions:

In: original_array.shape = (4,2)

Instead, if your array is two-dimensional and you need to exchange the rows with the
columns, that is, to transpose the array, the .T or .transpose() methods will help you
obtain such a kind of transformation (which is a view, like .reshape):

In: original_array

Out: array([[-1, 2],
 [3, 4],
 [5, 6],
 [7, 8]])

Arrays derived from NumPy functions
If you need a vector or a matrix characterized by a particular numeric series (zeros, ones,
ordinal numbers, and particular statistical distributions), NumPy functions provide you
with quite a large range of choices.

Data Munging Chapter 2

[119]

First, creating a NumPy array of ordinal values (integers) is straightforward if you use the
arange function, which returns integer values in a given interval (usually from zero) and
reshapes its results:

In: import numpy as np

In: ordinal_values = np.arange(9).reshape(3,3)
 ordinal_values

Out: array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

If the array has to be reversed in the order of values, use the following command:

In: np.arange(9)[::-1]

Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])

If the integers are just random (with no order and possibly repeated), provide the following
command:

In: np.random.randint(low=1,high=10,size=(3,3)).reshape(3,3)

Other useful arrays are either made of just zeros and ones or are identity matrices:

In: np.zeros((3,3))

In: np.ones((3,3))

In: np.eye(3)

If the array will be used for a grid search to search for optimal parameters, fractional values
in an interval or a logarithmic growth should prove most useful:

In: fractions = np.linspace(start=0, stop=1, num=10)
 growth = np.logspace(start=0, stop=1, num=10, base=10.0)

Instead, statistical distributions, such as normal or uniform, may be handy for the
initialization of a vector or matrix of coefficients.

A 3 x 3 matrix of standardized normal values (mean=0, std=1) can be seen here:

In: std_gaussian = np.random.normal(size=(3,3))

Data Munging Chapter 2

[120]

If you need to specify a different mean and standard deviation, just give the following
command:

In: gaussian = np.random.normal(loc=1.0, scale= 3.0, size=(3,3))

The loc parameter stands for the mean, and the scale is actually the standard deviation.

Another frequent choice for a statistical distribution that is used to initialize a vector is
certainly the uniform distribution:

In: rand = np.random.uniform(low=0.0, high=1.0, size=(3,3))

Getting an array directly from a file
NumPy arrays can also be created directly from the data present in a file.

Let's use an example from the previous chapter:

In: import numpy as np
 housing = np.loadtxt('regression-datasets-housing.csv',
 delimiter=',', dtype=float)

NumPy loadtxt, given a filename, delimiter, and dtype, will upload the data to an
array, unless the dtype is wrong; for instance, there's a string variable and the required
array type is a float, as shown in the following example:

In: np.loadtxt('datasets-uci-iris.csv',delimiter=',',dtype=float)

Out: ValueError: could not convert string to float: Iris-setosa

In this case, a feasible solution could be to be aware of what column is a string (or any other
non-numeric format) and prepare a converter function to turn it into numeric thanks to
the converters parameter of loadtxt, which allows you to apply specific transformation
functions to specific columns of the array, such as in the following example:

In: def from_txt_to_iris_class(x):
 if x==b'Iris-setosa': return 0
 elif x==b'Iris-versicolor': return 1
 elif x== b'Iris-virginica': return 2
 else: return np.nan

 np.loadtxt('datasets-uci-iris.csv', delimiter=',',
 converters= {4: from_txt_to_iris_class})

Data Munging Chapter 2

[121]

Extracting data from pandas
Interacting with pandas is quite easy. In fact, with pandas being built upon NumPy, arrays
can easily be extracted from DataFrame objects, and they can be transformed into
DataFrames themselves.

First, let's upload some data into a DataFrame. The BostonHouse example we downloaded
in the previous chapter from the ML repository is suitable:

In: import pandas as pd
 import numpy as np
 housing_filename = 'regression-datasets-housing.csv'
 housing = pd.read_csv(housing_filename, header=None)

As demonstrated in the Heterogeneous lists section, at this point, the .values method will
extract an array of a type that accommodates all the different types that are present in the
DataFrame:

In: housing_array = housing.values
 housing_array.dtype

Out: dtype('float64')

In such a case, the selected type is float64 because the float type prevails over the int
type:

In: housing.dtypes

Out: 0 float64
 1 int64
 2 float64
 3 int64
 4 float64
 5 float64
 6 float64
 7 float64
 8 int64
 9 int64
 10 int64
 11 float64
 12 float64
 13 float64
 dtype: object

Data Munging Chapter 2

[122]

Asking for the types used by the DataFrame object before extracting your NumPy array by
using the .dtypes method on the DataFrame allows you to anticipate the dtype of the
resulting array. Consequently, it allows you to decide whether to transform or change the
type of the variables in the DataFrame object before proceeding (please consult
the Working with categorical and textual data section of this chapter).

NumPy fast operation and computations
When arrays need to be manipulated by mathematical operations, you just need to apply
the operation on the array with respect to a numerical constant (a scalar), or an array of the
same shape:

In: import numpy as np
 a = np.arange(5).reshape(1,5)
 a += 1
 a*a

Out: array([[1, 4, 9, 16, 25]])

As a result, the operation is to be performed element-wise; that is, every element of the
array is operated by either the scalar value or the corresponding element of the other array.

When operating on arrays of different dimensions, it is still possible to obtain element-wise
operations without having to restructure the data if one of the corresponding dimensions is
1. In fact, in such a case, the dimension of size 1 is stretched until it matches the dimension
of the corresponding array. This conversion is called broadcasting.

For instance:

In: a = np.arange(5).reshape(1,5) + 1
 b = np.arange(5).reshape(5,1) + 1
 a * b

Out: array([[1, 2, 3, 4, 5],
 [2, 4, 6, 8, 10],
 [3, 6, 9, 12, 15],
 [4, 8, 12, 16, 20],
 [5, 10, 15, 20, 25]])

The preceding code is equivalent to the following:

In: a2 = np.array([1,2,3,4,5] * 5).reshape(5,5)
 b2 = a2.T
 a2 * b2

Data Munging Chapter 2

[123]

However, it won't require an expansion of memory of the original arrays in order to obtain
pair-wise multiplication.

Furthermore, there exists a wide range of NumPy functions that can operate element-wise
on arrays: abs(), sign(), round(), floor(), sqrt(), log(), and exp().

Other usual operations that could be operated by NumPy functions are sum() and prod(),
which provide the summation and product of the array rows or columns on the basis of the
specified axis:

In: print (a2)

Out: [[1 2 3 4 5]
 [1 2 3 4 5]
 [1 2 3 4 5]
 [1 2 3 4 5]
 [1 2 3 4 5]]

In: np.sum(a2, axis=0)

Out: array([5, 10, 15, 20, 25])

In: np.sum(a2, axis=1)

Out: array([15, 15, 15, 15, 15])

When operating on your data, remember that operations and NumPy functions on arrays
are extremely fast when compared to simple Python lists. Let's try out a couple of
experiments. First, let's try to compare a list comprehension to an array when dealing with
a sum of a constant:

In: %timeit -n 1 -r 3 [i+1.0 for i in range(10**6)]
 %timeit -n 1 -r 3 np.arange(10**6)+1.0

Out: 1 loops, best of 3: 158 ms per loop
 1 loops, best of 3: 6.64 ms per loop

On Jupyter, %time allows you to easily benchmark operations. Then, the -n 1 parameter
just requires the benchmark to execute the code snippet for only one loop; -r 3 requires
you to retry the execution of the loops (in this case, just one loop) three times and report the
best performance recorded from such repetitions.

Data Munging Chapter 2

[124]

Results on your computer may vary depending on your configuration and operating
system. Anyway, the difference between the standard Python operations and the NumPy
ones will remain quite large. Though unnoticeable when working on small datasets, this
difference can really impact your analysis when dealing with larger data or when looping
over and over the same analysis pipeline for parameter or variable selection.

This also happens when applying sophisticated operations, such as finding a square root:

In: import math
 %timeit -n 1 -r 3 [math.sqrt(i) for i in range(10**6)]

Out: 1 loops, best of 3: 222 ms per loop

In: %timeit -n 1 -r 3 np.sqrt(np.arange(10**6))

Out: 1 loops, best of 3: 6.9 ms per loop

Sometimes, you may need to apply custom functions to your array instead.
The apply_along_axis function lets you use a custom function and apply it on an axis of
an array:

In: def cube_power_square_root(x):
 return np.sqrt(np.power(x, 3))

 np.apply_along_axis(cube_power_square_root,
 axis=0, arr=a2)

Out: array([[1., 2.82842712, 5.19615242, 8., 11.18033989],
 [1., 2.82842712, 5.19615242, 8., 11.18033989],
 [1., 2.82842712, 5.19615242, 8., 11.18033989],
 [1., 2.82842712, 5.19615242, 8., 11.18033989],
 [1., 2.82842712, 5.19615242, 8., 11.18033989]])

Matrix operations
Apart from element-wise calculations using the np.dot() function, you can also apply
multiplications to your two-dimensional arrays based on matrix calculations, such as
vector-matrix and matrix-matrix multiplications:

In: import numpy as np
 M = np.arange(5*5, dtype=float).reshape(5,5)
 M

Out: array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.],

Data Munging Chapter 2

[125]

 [10., 11., 12., 13., 14.],
 [15., 16., 17., 18., 19.],
 [20., 21., 22., 23., 24.]])

As an example, we will create a 5 x 5 two-dimensional array of ordinal numbers from 0 to
24:

We will define a vector of coefficients and an array column stacking the vector1.
and its reverse:

In: coefs = np.array([1., 0.5, 0.5, 0.5, 0.5])
 coefs_matrix = np.column_stack((coefs,coefs[::-1]))
 print (coefs_matrix)

Out: [[1. 0.5]
 [0.5 0.5]
 [0.5 0.5]
 [0.5 0.5]
 [0.5 1.]]

We can now multiply the array with the vector by using the np.dot function:2.

In: np.dot(M,coefs)

Out: array([5., 20., 35., 50., 65.])

Or the vector by the array:3.

In: np.dot(coefs,M)

Out: array([25., 28., 31., 34., 37.])

Or the array by the stacked coefficient vectors (which is a 5 x 2 matrix):4.

In: np.dot(M,coefs_matrix)

Out: array([[5., 7.],
 [20., 22.],
 [35., 37.],
 [50., 52.],
 [65., 67.]])

NumPy also offers an object class, matrix, which is actually a subclass of ndarray,
inheriting all its attributes and methods. NumPy matrices are exclusively two-dimensional
(as arrays are actually multi-dimensional) by default. When multiplied, they apply matrix
products, not element-wise ones (the same happens when raising powers), and they have
some special matrix methods (.H for the conjugate transpose and .I for the inverse).

Data Munging Chapter 2

[126]

Apart from the convenience of operating in a fashion that is similar to that of MATLAB,
they do not offer any other advantage. You may risk confusion in your scripts since you'll
have to handle different product notations for matrix objects and arrays.

Since Python 3.5, a new operator, the @ (at) operator, dedicated to matrix
multiplication, has been introduced in Python (the change is for all the
packages in Python, not just NumPy). The introduction of this new
operator brings a couple of advantages.
First, there won't be any more cases where the * operator will be meant to
be used for matrix multiplication. The * operator will be used exclusively
for element-wise operations (those operations where, having two matrices
(or vectors) of the same dimension, you apply the operation between the
elements having the same position in the two matrices).
Then, code that is representing formulas will gain in readability, thus
becoming much easier to read and interpret. You won't have to evaluate
operators (+ - / *) and methods (.dot) together anymore, only operators (+ -
/ * @).
You can learn more about this introduction (which is just formal –
everything you could apply before using the .dot method works with the
@ operator) and look at some examples of applications by reading the
Python Enhancement Proposal (PEP) 465 at the Python foundation
website: https://www.python.org/dev/peps/pep-0465/.

Slicing and indexing with NumPy arrays
Indexing allows us to take a view of a ndarray by pointing out either what slice of
columns and rows to visualize, or an index:

Let's define a working array:1.

In: import numpy as np
 M = np.arange(10*10, dtype=int).reshape(10,10)

Our array is a 10 x 10 two-dimensional array. We can initially start by slicing it2.
into a single dimension. The notation for a single dimension is the same as that in
Python lists:

[start_index_included:end_index_exclude:steps]

https://www.python.org/dev/peps/pep-0465/

Data Munging Chapter 2

[127]

Let's say that we want to extract even rows from 2 to 8:3.

In: M[2:9:2,:]

Out: array([[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [80, 81, 82, 83, 84, 85, 86, 87, 88, 89]])

After slicing the rows, we can slice the columns even further by taking only the4.
columns from index 5:

In: M[2:9:2,5:]

Out: array([[25, 26, 27, 28, 29],
 [45, 46, 47, 48, 49],
 [65, 66, 67, 68, 69],
 [85, 86, 87, 88, 89]])

As in lists, it is possible to use negative index values in order to start counting5.
from the end. Moreover, a negative number for parameters, such as steps,
reverses the order of the output array, like in the following example, where the
counting starts from column index 5 but in the reverse order and goes toward
index 0:

In: M[2:9:2,5::-1]

Out: array([[25, 24, 23, 22, 21, 20],
 [45, 44, 43, 42, 41, 40],
 [65, 64, 63, 62, 61, 60],
 [85, 84, 83, 82, 81, 80]])

We can also create Boolean indexes that point out which rows and columns to6.
select. Therefore, we can replicate the previous example by using a row_index
and a col_index variable:

In: row_index = (M[:,0]>=20) & (M[:,0]<=80)
 col_index = M[0,:]>=5
 M[row_index,:][:,col_index]
Out: array([[25, 26, 27, 28, 29],
 [35, 36, 37, 38, 39],
 [45, 46, 47, 48, 49],
 [55, 56, 57, 58, 59],
 [65, 66, 67, 68, 69],
 [75, 76, 77, 78, 79],
 [85, 86, 87, 88, 89]])

Data Munging Chapter 2

[128]

We cannot contextually use Boolean indexes on both columns and rows in the
same square brackets, though we can apply the usual indexing to the other
dimension using integer indexes. Consequently, we have to first operate a
Boolean selection on rows and then reopen the square brackets and operate a
second selection on the first, this time focusing on the columns.

If we need a global selection of elements in the array, we can also use a mask of7.
Boolean values, as follows:

In: mask = (M>=20) & (M<=90) & ((M / 10.) % 1 >= 0.5)
 M[mask]

Out: array([25, 26, 27, 28, 29, 35, 36, 37, 38, 39, 45, 46, 47, 48,
49,
 55, 56, 57, 58, 59, 65, 66, 67, 68, 69, 75, 76, 77, 78,
79,
 85, 86, 87, 88, 89])

This approach is particularly useful if you need to operate on the partition of the array
selected by the mask (for example, M[mask]=0).

Another way to point out which elements need to be selected from your array is by
providing a row or column index consisting of integers. Such indexes may be defined either
by a np.where() function that transforms a Boolean condition on an array into indexes or
by simply providing a sequence of integer indexes, where integers may be in a particular
order or might even be repeated. Such an approach is called fancy indexing:

In: row_index = [1,1,2,7]
 col_index = [0,2,4,8]

Having defined the indexes of your rows and columns, you have to apply them
contextually to select elements whose coordinates are given by the tuple of values of both
the indexes:

In: M[row_index,col_index]

Out: array([10, 12, 24, 78])

In this way, the selection will report the following points: (1,0),(1,2),(2,4), and (7,8).
Otherwise, as seen previously, you just have to select the rows first and then the columns,
which are separated by square brackets:

In: M[row_index,:][:,col_index]

Out: array([[10, 12, 14, 18],
 [10, 12, 14, 18],

Data Munging Chapter 2

[129]

 [20, 22, 24, 28],
 [70, 72, 74, 78]])

Finally, please remember that slicing and indexing are just views of the data. If you need to
create new data from such views, you have to use the .copy method on the slice and assign
it to another variable. Otherwise, any modification to the original array will be reflected on
your slice and vice versa. The copy method is shown here:

In: N = M[2:9:2,5:].copy()

Stacking NumPy arrays
When operating with two-dimensional data arrays, there are some common operations,
such as the adding of data and variables, that NumPy functions can render easily and
quickly.

The most common such operation is the addition of more cases to your array:

Let's start off by creating an array:1.

In: import numpy as np
 dataset = np.arange(10*5).reshape(10,5)

Now, let's add a single row and a bunch of rows that are to be concatenated after2.
each other:

In: single_line = np.arange(1*5).reshape(1,5)
 a_few_lines = np.arange(3*5).reshape(3,5)

We can first try to add a single line:3.

In: np.vstack((dataset,single_line))

All you have to do is provide a tuple containing the vertical array preceding it4.
and the one following it. In our example, the same command can work if you
have more lines to be added:

In: np.vstack((dataset,a_few_lines))

Or, if you want to add the same single line more than once, the tuple can5.
represent the sequential structure of your newly concatenated array:

In: np.vstack((dataset,single_line,single_line))

Data Munging Chapter 2

[130]

Another common situation is when you have to add a new variable to an existing array. In
this case, you have to use hstack (h stands for horizontal) instead of the just-presented
vstack command (where v is vertical).

Let's pretend that you have to add a bias of unit values to your original array:1.

In: bias = np.ones(10).reshape(10,1)
 np.hstack((dataset,bias))

Without reshaping bias (this, therefore, can be any data sequence of the same2.
length as the rows of the array), you can add it as a sequence by using the
column_stack() function, which obtains the same result but with fewer
concerns regarding data reshaping:

In: bias = np.ones(10)
 np.column_stack((dataset,bias))

Adding rows and columns to two-dimensional arrays is basically all that you need to do to
effectively wrangle your data in data science projects. Now, let's see a couple of more
specific functions for slightly different data problems.

First, although two-dimensional arrays are the norm, you can also operate on a three-
dimensional data structure. So, dstack(), which is analogous to hstack() and vstack()
but operates on the third axis, will come in quite handy:

In: np.dstack((dataset*1,dataset*2,dataset*3))

In this example, the third dimension offers the original 2D array with a multiplicand,
presenting a progressive rate of change (a time or change dimension).

A further problematic variation could be the insertion of a row or, more frequently, a
column to a specific position into your array. As you may recall, arrays are contiguous
chunks of memory. Insertion actually requires the recreation of a new array, splitting the
original array. The NumPy insert command helps you to do so in a fast and hassle-free
way:

In: np.insert(dataset, 3, bias, axis=1)

You just have to define the array where you wish to insert (dataset), the position (index
3), the sequence you want to insert (in this case, the array bias), and the axis along which
you would like to operate the insertion (axis 1 is the vertical axis).

Data Munging Chapter 2

[131]

Naturally, you can insert entire arrays (not just vectors), such as bias, by ensuring that the
array to be inserted is aligned with the dimension along which we are operating the
insertion. In this example, in order to insert the same array into itself, we have to transpose
it as an inserted element:

In: np.insert(dataset, 3, dataset.T, axis=1)

You can also make insertions on different axes (in the following case, axis 0, which is the
horizontal one, but you can also operate on any dimension of an array that you may have):

In: np.insert(dataset, 3, np.ones(5), axis=0)

What is being done is that the original array is split at the specified position along the
chosen axis. Then, the split data is concatenated with the new data to be inserted.

Working with sparse arrays
Sparse matrices are matrices whose values are mostly zero values. They occur naturally
when working with certain kinds of data problems such as natural language processing
(NLP), data counting events (such as customers' purchases), categorical data transformed
into binary variables (a technique called one-hot-encoding, which we will be discussing in
the next chapter), or even images if they have lots of black pixels.

sparse matrices with the right tools because they represent a memory and computational
challenge for most machine learning algorithms.
First of all, sparse matrices are huge (if treated as a normal matrix, they cannot fit into
memory) and they mostly contain zero values but for a few cells. Data structures that are
optimized for sparse matrices allow us to efficiently store matrices where most of the
elements valued as zero do not occupy any memory space. Instead, in any NumPy array (in
contrast, we will be calling it a dense array), any zero value occupies some memory space
because arrays keep track of all the values.

In addition, sparse matrices, being large, require a lot of computations in order to be
processed, yet, most of their values are not used for any prediction. Algorithms that can
take advantage of sparse matrix data structures can perform in much less computation time
than standard algorithms operating on dense matrices.

Data Munging Chapter 2

[132]

In Python, SciPy's sparse module offers different sparse data structures that are able to
address sparse problems. More specifically, it offers seven different kinds of sparse
matrices:

csc_matrix: Compressed Sparse Column format
csr_matrix: Compressed Sparse Row format
bsr_matrix: Block Sparse Row format
lil_matrix: List of Lists format
dok_matrix: Dictionary of Keys format
coo_matrix: COOrdinate format (also known as IJV, triplet format)
dia_matrix: DIAgonal format

Each kind of matrix features a different way to store sparse information, a particular way
that affects how the matrix performs under different circumstances. We are going to
illustrate each sparse matrix kind and look at what operations are fast and efficient, and
what operations are not performing at all. For instance, the documentation points out
dok_matrix, lil_matrix, or coo_matrix as the best ones to construct a sparse matrix
from scratch. We will start with this problem and from the coo_matrix.

You can find all of SciPy's documentation about sparse matrices at
https:/ ​/​docs. ​scipy. ​org/ ​doc/ ​scipy/ ​reference/ ​sparse. ​html.

Let's start by creating a sparse matrix:

In order to create a sparse matrix, you can either generate it from a NumPy array1.
(just by passing the array to one of SciPy's sparse matrix formats), or by
providing three vectors containing row indexes, column indexes, and data values
to a COO matrix, respectively:

In: row_idx = np.array([0, 1, 3, 3, 4])
 col_idx = np.array([1, 2, 2, 4, 2])
 values = np.array([1, 1, 2, 1, 2], dtype=float)
 sparse_coo = sparse.coo_matrix((values, (row_idx, col_idx)))
 sparse_coo

Out: <5x5 sparse matrix of type '<class 'numpy.float64'>'
 with 5 stored elements in COOrdinate format>

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html

Data Munging Chapter 2

[133]

Calling the COO matrix will tell you the shape and how many non-zero elements2.
it contains. The number of zero elements against the size of the matrix will
provide you with the sparsity measure, which is something that can be otherwise
computed as the following:

In: sparsity = 1.0 - (sparse_coo.count_nonzero() /
 np.prod(sparse_coo.shape))
 print(sparsity)

Out: 0.8

The sparsity is 0.8; that is, 80% of the matrix is actually empty.

You can investigate sparsity graphically as well by using the spy command from
matplotlib. In the following example, we will create a random sparse matrix and easily
represent it in graphic form to provide an idea of how much data is effectively available in
the matrix:

In: import matplotlib.pyplot as plt

 %matplotlib inline
 large_sparse = sparse.random(10 ** 3, 10 ** 3, density=0.001,
format='coo')
 plt.spy(large_sparse, marker=',')
 plt.show()

The resulting graph will provide you with an idea of the empty space in the matrix:

Data Munging Chapter 2

[134]

If needed, you can always convert a sparse matrix into a dense one by using the
method to_dense: sparse_coo.to_dense().

You can try to figure out how a COO matrix is constituted by printing it:

In: print(sparse_coo)

Out: (0, 1) 1.0
 (1, 2) 1.0
 (3, 2) 2.0
 (3, 4) 1.0
 (4, 2) 2.0

From the output representation, we can figure out that a sparse coordinate format matrix
works by storing the printed values in three separated storage arrays: one for x coordinates,
one for y coordinates, and one for the values. This means that COO matrices are really fast
when inserting the information (each new element is a new row in each storage array) but
slowly processing it because it cannot immediately figure out what the values in a row or in
a column are in order to scan the arrays.

The same is true for dictionaries of keys (dok) and lists in list (lil) matrices. The first
operates by using a dictionary of coordinates (so it is fast retrieving single elements), the
second uses two lists, both arranged to represent rows, containing the non-zero coordinates
in the row, and the other its values (it is easy to expand by adding more rows).
Another advantage of COO matrices is that they can be promptly converted into other
kinds of matrices that are specialized in working efficiently at a row or column level: csr
and csc matrics.

Compressed sparse row (csr) and compressed sparse column (csc) are the most used
formats for operating on sparse matrices after having created them. They use an indexing
system that favors computations over the rows for csr and over the columns for csc.
However, that makes editing quite computationally costly (for this reason, it is not
convenient to change them after having created them).

The performances of csr and csc really depend on the algorithm used and
how it optimizes its parameters. You have to actually try them out on
your algorithm to find out which performs best.

Finally, diagonal format matrices are sparse data structures that are specialized for
diagonal matrices and block sparse row format matrices. These resemble csr matrices in
characteristics, apart from the way they store data, which is based on entire blocks of data.

Data Munging Chapter 2

[135]

Summary
In this chapter, we discussed how pandas and NumPy can provide you with all the tools to
load and effectively mung your data.

We started with pandas and its data structures, DataFrames and series, and went through
to the final NumPy two-dimensional arrays with a data structure suitable for subsequent
experimentation and machine learning. In doing so, we touched upon subjects such as the
manipulation of vectors and matrices, categorical data encoding, textual data processing,
fixing missing data and errors, slicing and dicing, merging, and stacking.

pandas and NumPy surely offer many more functions than the essential building blocks we
presented here, as well as the commands and procedures illustrated. You can now take any
available raw data and apply all the cleaning and shaping transformations necessary for
your data science project.

In the next chapter, we will take our data operations to the next step. We have already had
a brief overview of all the essential data munging operations necessary for a machine
learning process to work. In the next chapter, we will discuss all the operations that can
potentially improve or even boost your results.

3
The Data Pipeline

Up until this point, we've explored how to load data into Python and process it to create a
bidimensional NumPy array containing numerical values (your dataset). Now, we are
ready to be immersed fully in data science, extract meaning from data, and develop
potential data products. This chapter on data treatment and transformations and the next
one on machine learning are the most challenging sections of this entire book.

In this chapter, you will learn how to do the following:

Briefly explore data and create new features
Reduce the dimensionality of data
Spot and treat outliers
Decide on the best score or loss metrics for your project
Apply scientific methodology and effectively test the performance of your
machine learning hypothesis
Reduce the complexity of the data science problem by decreasing the number of
features
Optimize your learning parameters

Introducing EDA
Exploratory data analysis (EDA), or data exploration, is the first step in the data science
process. John Tukey coined this term in 1977 when he first wrote his, book Exploratory Data
Analysis, emphasizing the importance of EDA. EDA is required to understand the dataset
better, check its features and its shape, validate some first hypothesis that you have in
mind, and get a preliminary idea about the next step that you want to pursue in subsequent
subsequent data science tasks.

The Data Pipeline Chapter 3

[137]

In this section, you will work on the Iris dataset, which was already used in the previous
chapter. First, let's load the dataset:

In: import pandas as pd
 iris_filename = 'datasets-uci-iris.csv'
 iris = pd.read_csv(iris_filename, header=None,
 names= ['sepal_length', 'sepal_width',
 'petal_length', 'petal_width', 'target'])
 iris.head()

Calling the head method will display the first five rows:

Great! Using a few commands, you have already loaded the dataset. Now, the investigation
phase starts. Some great insights are provided by the .describe() method, which can be
used as follows:

In: iris.describe()

Promptly, a description of the dataset, comprising frequencies, means, and other
descriptives appears:

The Data Pipeline Chapter 3

[138]

For all numerical features, you have the number of observations, their respective average
values, standard deviations, minimum and maximum values, and some routinely reported
quantiles (at 25 percent, 50 percent, and 75 percent), the so-called quartiles. This provides
you with a good idea about the distribution of each feature. If you want to visualize this
information, just use the boxplot() method, as follows:

In: boxes = iris.boxplot(return_type='axes')

A boxplot for each variable will appear:

Sometimes, the graphs/diagrams presented in this chapter can be slightly
different from the ones obtained on your local computer because
graphical layout initialization is made with random parameters.

If you need to learn about other quantile values, you can use the .quantile() method. For
example, if you need the values at 10 % and 90 % of the distribution of values, you can try
out the following code:

In: iris.quantile([0.1, 0.9])

The Data Pipeline Chapter 3

[139]

Here are the values for the required percentiles:

Finally, to calculate the median, you can use the .median() method. Similarly, to obtain
the mean and standard deviation, the .mean() and .std() methods are used, respectively.
In the case of categorical features, to get information about the levels present in a feature
(that is, the different values the feature assumes), you can use the .unique() method, as
follows:

In: iris.target.unique()

Out: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'],
 dtype=object)

To examine the relationship between features, you can create a co-occurrence matrix or a
similarity matrix.
In the following example, we will count the number of times the petal_length feature
appears more than the average against the same count for the petal_width feature. To do
this, you need to use the crosstab method, as follows:

In: pd.crosstab(iris['petal_length'] > 3.758667,
 iris['petal_width'] > 1.198667)

The command produces a two-way table:

The Data Pipeline Chapter 3

[140]

As a result, you will notice that the features will almost always occur conjointly.
Consequently, you can suppose that there's a strong relationship between the two events.
Graphically, you can check such a hypothesis by using the following code:

In: scatterplot = iris.plot(kind='scatter',
 x='petal_width', y='petal_length',
 s=64, c='blue', edgecolors='white')

You obtain a scatterplot of the variables you specified as x and y:

The trend is quite marked; we deduce that x and y are strongly related. The last operation
that you usually perform during an EDA is checking the distribution of the feature. To
manage this with pandas, you can approximate the distribution using a histogram, which
can be done thanks to the following snippet:

In: distr = iris.petal_width.plot(kind='hist', alpha=0.5, bins=20)

The Data Pipeline Chapter 3

[141]

As a result, a histogram is displayed:

We chose 20 bins after a careful search. In other situations, 20 bins might be an extremely
low or high value. As a rule of thumb, when drawing a distribution histogram, the starting
value is the square root of the number of observations. After the initial visualization, you
will then need to modify the number of bins until you recognize a well-known shape in the
distribution.

We suggest that you explore all of the features in order to check their relationships and
estimate their distribution. In fact, given its distribution, you may decide to treat each
feature differently in order subsequently to achieve maximum classification or regression
performance.

Building new features
Sometimes, you'll find yourself in a situation where features and target variables are not
really related. In this case, you can modify the input dataset. You can apply linear or
nonlinear transformations that can improve the accuracy of the system, and so on. It's a
very important step for the overall process because it completely depends on the skills of
the data scientist, who is the one responsible for artificially changing the dataset and
shaping the input data for a better fit for the learning model. Although this step intuitively
just adds complexity, this approach often boosts the performance of the learner; that's why
it is used by bleeding-edge techniques, such as deep learning.

The Data Pipeline Chapter 3

[142]

For example, if you're trying to predict the value of a house and you know the height,
width, and the length of each room, you can artificially build a feature that represents the
volume of the house. This is strictly not an observed feature, but it's a feature that's built on
top of the existing ones. Let's start with some code:

In: import numpy as np
 from sklearn import datasets
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import mean_squared_error
 cali = datasets.california_housing.fetch_california_housing()
 X = cali['data']
 Y = cali['target']
 X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
 test_size=0.2)

We imported the dataset containing house prices in California. This is a regression problem
because the target variable is the house price (that is, a real number). Applying a simple
regressor straight away, called the KNN regressor (take it as an example of a simple
learner; an in-depth description of regressors will be provided in Chapter 4, Machine
Learning), ends with a mean absolute error (MAE) of around 1.15 on the test dataset. Don't
worry if you cannot fully understand the code; MAE and other regressors are described
later on in this book. Right now, assume that the MAE represents the error. Thus, the lower
the value of MAE, the better the solution:

In: from sklearn.neighbors import KNeighborsRegressor
 regressor = KNeighborsRegressor()
 regressor.fit(X_train, Y_train)
 Y_est = regressor.predict(X_test)
 print ("MAE=", mean_squared_error(Y_test, Y_est))

Out: MAE= 1.07452795578

An MAE result of 1.07 could seem good, but let's strive to do better. We're going to
normalize the input features using Z-scores and compare the regression tasks on this new
feature set. Z-normalization is simply the mapping of each feature to a new one with a null
mean and unitary variance. With Scikit-learn, this is achieved in the following way:

In: from sklearn.preprocessing import StandardScaler
 scaler = StandardScaler()
 X_train_scaled = scaler.fit_transform(X_train)
 X_test_scaled = scaler.transform(X_test)
 regressor = KNeighborsRegressor()
 regressor.fit(X_train_scaled, Y_train)

The Data Pipeline Chapter 3

[143]

 Y_est = regressor.predict(X_test_scaled)
 print ("MAE=", mean_squared_error(Y_test, Y_est))

Out: MAE= 0.402334179429

With the help of this easy step, we drop the MAE by more than a half, which now has a
value of about 0.40.

Note that we didn't use the original features; we used their linear
modification, which is more suitable for learning with a KNN regressor.

Instead of Z-normalization, we can use a scaling function on the features that are more
robust to outliers, namely, RobustScaler. Such a scaler, instead of using mean and
standard deviation, uses median and interquartile range (IQR), that is, the first and the
third quartile) to scale each feature independently. It is more robust than outliers since the
median and IQR are not influenced as much as mean and variance if a few points
(eventually just one) are far away from the center, for example, due to a faulty reading, a
transmission error, or a broken sensor:

In: from sklearn.preprocessing import RobustScaler
 scaler2 = RobustScaler()
 X_train_scaled = scaler2.fit_transform(X_train)
 X_test_scaled = scaler2.transform(X_test)
 regressor = KNeighborsRegressor()
 regressor.fit(X_train_scaled, Y_train)
 Y_est = regressor.predict(X_test_scaled)
 print ("MAE=", mean_squared_error(Y_test, Y_est))

Out: MAE=0.41749216189

Now, let's try to add a nonlinear modification to a specific feature. We can assume that the
output is related roughly to the number of occupiers of a house. In fact, there is a big
difference between the price of a house occupied by a single person and the price for three
people staying in the same house. However, the difference between the price for 10 people
living there and the price for 12 people living there is not that great (though there is still a
difference of two). So, let's try to add another feature that's built as a nonlinear
transformation of another one:

In: non_linear_feat = 5 # AveOccup
 X_train_new_feat = np.sqrt(X_train[:,non_linear_feat])
 X_train_new_feat.shape = (X_train_new_feat.shape[0], 1)
 X_train_extended = np.hstack([X_train, X_train_new_feat])
 X_test_new_feat = np.sqrt(X_test[:,non_linear_feat])
 X_test_new_feat.shape = (X_test_new_feat.shape[0], 1)

The Data Pipeline Chapter 3

[144]

 X_test_extended = np.hstack([X_test, X_test_new_feat])
 scaler = StandardScaler()
 X_train_extended_scaled = scaler.fit_transform(X_train_extended)
 X_test_extended_scaled = scaler.transform(X_test_extended)
 regressor = KNeighborsRegressor()
 regressor.fit(X_train_extended_scaled, Y_train)
 Y_est = regressor.predict(X_test_extended_scaled)
 print ("MAE=", mean_squared_error(Y_test, Y_est))

Out: MAE= 0.325402604306

By adding this new feature, we have additionally reduced the MAE and finally obtained a
more satisfying regressor. Of course, we may try out other transformations in order to
improve this, but this straightforward example should hint at how important it is for you to
analyze the application of linear and nonlinear transformations found by EDA and obtain
features that are conceptually more related to the output variable.

Dimensionality reduction
Oftentimes, you will have to deal with a dataset containing a large number of features,
many of which may be unnecessary. This is a typical problem where some features are very
informative for the prediction, some are somehow related, and some are completely
unrelated (that is, they only contain noise or irrelevant information). Keeping only the
interesting features is a way to not only make your dataset more manageable but also have
predictive algorithms work better instead of being fooled in their predictions by the noise
in the data.

Hence, dimensionality reduction is the operation of eliminating some features of the input
dataset and creating a restricted set of features that contains all of the information you need
to predict the target variable in a more effective and reliable way. As mentioned
previously, reducing the number of features usually also reduces the output variability and
complexity of the learning process (as well as the time required).

The main hypothesis behind many algorithms used in reduction is the one pertaining to
additive white Gaussian noise (AWGN). We suppose that an independent Gaussian-
shaped noise has been added to every feature of the dataset. Consequently, reducing the
dimensionality also reduces the energy of the noise since you're decreasing its span set.

The Data Pipeline Chapter 3

[145]

The covariance matrix
The covariance matrix provides you with an idea of the correlation between all of the
different pairs of features. It's usually the first step of dimensionality reduction because it
gives you an idea of the number of features that are strongly related (and therefore, the
number of features that you can discard) and the ones that are independent. Using the Iris
dataset, where each observation has four features, a correlation matrix can be computed
easily, and you can understand its results with the help of a simple graphical
representation, which can be obtained with the help of the following code:

In: from sklearn import datasets
 import numpy as np
 iris = datasets.load_iris()
 cov_data = np.corrcoef(iris.data.T)
 print (iris.feature_names)
 print (cov_data)

Out: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
 'petal width (cm)']
 [[1. -0.10936925 0.87175416 0.81795363]
 [-0.10936925 1. -0.4205161 -0.35654409]
 [0.87175416 -0.4205161 1. 0.9627571]
 [0.81795363 -0.35654409 0.9627571 1.]]

Using a heat map, let's visualize the covariance matrix in a graphical form:

In: import matplotlib.pyplot as plt
 img = plt.matshow(cov_data, cmap=plt.cm.rainbow)
 plt.colorbar(img, ticks=[-1, 0, 1], fraction=0.045)
 for x in range(cov_data.shape[0]):
 for y in range(cov_data.shape[1]):
 plt.text(x, y, "%0.2f" % cov_data[x,y],
 size=12, color='black', ha="center", va="center")
 plt.show()

The Data Pipeline Chapter 3

[146]

Here is the resulting heat map:

From the previous diagram, you can see that the value of the primary diagonal is 1. This is
because we're using the normalized version of the covariance matrix (normalizing each
feature covariance to 1.0). We can also notice a high correlation between the first and the
third, the first and the fourth, and the third and the fourth features. In addition, we can
verify that only the second feature is almost independent of the others; all the other features
are somehow correlated to each other.

We now have an idea about the potential number of features in the reduced set, imagining
compressing the duplicated information as pointed out by the correlation matrix – we can
reduce everything simply to two features.

Principal component analysis
Principal component analysis (PCA) is a technique that helps define a smaller and more
relevant set of features. The new features obtained from PCA are linear combinations (that
is, rotation) of the current features, even if they are binary. After the rotation of the input
space, the first vector of the output set contains most of the signal's energy (or, in other
words, its variance). The second is orthogonal to the first, and it contains most of the
remaining energy; the third is orthogonal to the first two vectors and contains most of the
remaining energy, and so on. It's just like restructuring the information in the dataset by
aggregating as much as possible of the information onto the initial vectors produced by the
PCA.

The Data Pipeline Chapter 3

[147]

In the (ideal) case of AWGN, the initial vectors contain all of the information of the input
signal; the ones toward the end only contain noise. Moreover, since the output basis is
orthogonal, you can decompose and synthesize an approximate version of the input
dataset. The key parameter, which is used to decide how many basis vectors one can use, is
the energy. Since the algorithm, under the hood, is for singular value decomposition,
eigenvectors (the basis vectors) and eigenvalues (the standard deviation associated with
that vector) are two terms that are often referred to when reading about PCA. Typically, the
cardinality of the output set is the one that guarantees the presence of 95% (in some cases,
90 or 99% are needed) of the input energy (or variance). A rigorous explanation of PCA is
beyond the scope of this book, and hence, we will just inform you about the guidelines on
how to use this powerful tool in Python.

Here's an example on how to reduce the dataset to two dimensions. In the previous section,
we deduced that 2 was a good choice for a dimensionality reduction; let's check if we were
right:

In: from sklearn.decomposition import PCA
 pca_2c = PCA(n_components=2)
 X_pca_2c = pca_2c.fit_transform(iris.data)
 X_pca_2c.shape

Out: (150, 2)

In: plt.scatter(X_pca_2c[:,0], X_pca_2c[:,1], c=iris.target, alpha=0.8,
 s=60, marker='o', edgecolors='white')
 plt.show()
 pca_2c.explained_variance_ratio_.sum()

Out: 0.97763177502480336

The Data Pipeline Chapter 3

[148]

When executing the code, you also get a scatterplot of the first two components:

Scatterplot of the first two components

We can immediately see that, after applying the PCA, the output set has only two features.
This is because the PCA() object was called with the n_components parameter set to 2. An
alternative way to obtain the same result would be to run PCA() for 1, 2, and 3 components
and then conclude from the explained variance ratio and the visual inspection that for
n_components = 2, we got the best result. Then, we will have evidence that when using
two basis vectors, the output dataset contains almost 98% of the energy of the input signal,
and in the schema, the classes are pretty much neatly separable. Each color is located in a
different area of the two dimensional Euclidean space.

Please note that this process is automatic and you don't need to provide
labels while training PCA. In fact, PCA is an unsupervised algorithm, and
it does not require data related to the independent variable to rotate the
projection basis.

For curious readers, the transformation matrix (which turns the initial dataset into the PCA-
restructured one) can be seen with the help of the following code:

In: pca2c.components

Out: array([[0.36158968, -0.08226889, 0.85657211, 0.35884393],
 [-0.65653988, -0.72971237, 0.1757674 , 0.07470647]])

The Data Pipeline Chapter 3

[149]

The transformation matrix is comprised of four columns (which is the number of input
features) and two rows (which is the number of the reduced ones).

Sometimes, you will find yourself in a situation where PCA is not effective enough,
especially when dealing with high dimensionality data, since the features may be very
correlated and, at the same time, the variance is unbalanced. A possible solution for such a
situation is to try to whiten the signal (or make it more spherical). In this occurrence,
eigenvectors are forced to unit component-wise variances. Whitening removes information,
but sometimes it improves the accuracy of the machine learning algorithms that will be
used after the PCA's reduction. Here's what the code looks like when resorting to
whitening (in our example, it doesn't change anything except for the scale of the dataset
with the reduced output):

In: pca_2cw = PCA(n_components=2, whiten=True)
 X_pca_1cw = pca_2cw.fit_transform(iris.data)
 plt.scatter(X_pca_1cw[:,0], X_pca_1cw[:,1], c=iris.target, alpha=0.8,
 s=60, marker='o', edgecolors='white')
 plt.show()
 pca_2cw.explained_variance_ratio_.sum()

Out: 0.97763177502480336

You also get the scatterplot of the first components of the PCA using whitening:

Now, let's see what happens if we project the input dataset on a 1-D space that's generated
with PCA, as follows:

In: pca_1c = PCA(n_components=1)
 X_pca_1c = pca_1c.fit_transform(iris.data)
 plt.scatter(X_pca_1c[:,0], np.zeros(X_pca_1c.shape),
 c=iris.target, alpha=0.8, s=60, marker='o', edgecolors='white')

The Data Pipeline Chapter 3

[150]

 plt.show()
 pca_1c.explained_variance_ratio_.sum()

Out: 0.9246162071742684

The projection is distributed along a single horizontal line:

In this case, the output energy is lower (92.4% of the original signal), and the output points
are added to the mono-dimensional Euclidean space. This might not be a great feature
reduction step since many points with different labels are mixed together.

Finally, here's a trick. To ensure that you generate an output set
containing at least 95% of the input energy, you can just specify this value
to the PCA object during its first call. A result equal to the one with two
vectors can be obtained with the following code:

In: pca_95pc = PCA(n_components=0.95)
 X_pca_95pc = pca_95pc.fit_transform(iris.data)
 print (pca_95pc.explained_variance_ratio_.sum())
 print (X_pca_95pc.shape)

Out: 0.977631775025
 (150, 2)

The Data Pipeline Chapter 3

[151]

PCA for big data – RandomizedPCA
The main issue with PCA is the complexity of the underlying singular value
decomposition (SVD) algorithm that does the reduction work, making the whole process
very difficult to scale. There is a faster algorithm in Scikit-learn based on randomized SVD.
It is a lighter but approximate iterative decomposition method. Using randomized SVD, the
full-rank reconstruction is not perfect, and the basis vectors are optimized locally during
every iteration. On the other hand, it requires only a few steps to get a good approximation,
demonstrating how randomized SVD is much faster than the classical SVD algorithms.
Therefore, this reduction algorithm is a great choice if the training dataset is large. In the
following code, we will apply it to the Iris dataset. The output is pretty close to the classical
PCA since the size of the problem is very small. However, the results vary significantly
when the algorithm is applied to large datasets:

In: from sklearn.decomposition import PCA
 rpca_2c = PCA(svd_solver='randomized', n_components=2)
 X_rpca_2c = rpca_2c.fit_transform(iris.data)
 plt.scatter(X_rpca_2c[:,0], X_rpca_2c[:,1],
 c=iris.target, alpha=0.8, s=60, marker='o', edgecolors='white')
 plt.show()
 rpca_2c.explained_variance_ratio_.sum()

Out: 0.97763177502480414

Here is the scatterplot of the first two components of the PCA using SVD solver:

The Data Pipeline Chapter 3

[152]

Latent factor analysis
Latent factor analysis (LFA) is another technique that helps you reduce the dimensionality
of the dataset. The overall idea is similar to PCA. However, in this case, there's no
orthogonal decomposition of the input signal, and therefore, no output basis. Some data
scientists think that LFA is a generalization of PCA that removes the constraint of
orthogonality. Generally, LFA is used when a latent factor or a construct is expected to be
present in the system. Under such a hypothesis, all of the features are observations of
variables that are derived or influenced by the latent factor that is transformed linearly and
which has an arbitrary waveform generator (AWG) noise. It is generally assumed that the
latent factor has a Gaussian distribution and a unitary covariance. Therefore, in this case,
instead of collapsing the energy/variance of the signal, the covariance among the variables
is explained in the output dataset. The Scikit-learn toolkit implements an iterative
algorithm, making it suitable for large datasets.

Here's the code to lower the dimensionality of the Iris dataset by assuming two latent
factors in the system:

In: from sklearn.decomposition import FactorAnalysis
 fact_2c = FactorAnalysis(n_components=2)
 X_factor = fact_2c.fit_transform(iris.data)
 plt.scatter(X_factor[:,0], X_factor[:,1],
 c=iris.target, alpha=0.8, s=60,
 marker='o', edgecolors='white')
 plt.show()

Here are the two latent factors as represented in a scatterplot (a different solution than the
previous PCA):

The Data Pipeline Chapter 3

[153]

Linear discriminant analysis
Strictly speaking, linear discriminant analysis (LDA) is a classifier (a classical statistical
method developed by Ronald Fisher, the father of modern statistics), but it is often used for
dimensionality reduction. It doesn't scale so well to larger datasets (like many statistical
methods), but it's something to be tried, which could bring better results than other
classification methods such as logistic regression. Since it's a supervised approach, it
requires the label set to optimize the reduction step. LDA outputs linear combinations of
the input features, trying to model the difference between the classes that best discriminate
them (since LDA uses label information). Compared to PCA, the output dataset that is
obtained with the help of LDA contains a neat distinction between classes. However, it
cannot be used in regression problems, since it is derived from a classification process.

Here's the application of LDA on the Iris dataset:

In: from sklearn.lda import LDA
 lda_2c = LDA(n_components=2)
 X_lda_2c = lda_2c.fit_transform(iris.data, iris.target)
 plt.scatter(X_lda_2c[:,0], X_lda_2c[:,1],
 c=iris.target, alpha=0.8, edgecolors='none')
 plt.show()

This scatterplot is derived from the first two components generated by the LDA:

The Data Pipeline Chapter 3

[154]

Latent semantical analysis
Typically, latent semantical analysis (LSA) is applied to text after it has been processed by
TfidfVectorizer or CountVectorizer. Compared to PCA, it applies SVD to the input
dataset (which is usually a sparse matrix), producing semantic sets of words that are
usually associated with the same concept. This is why LSA is used when the features are
homogeneous (that is, all the words in the documents) and are present in large numbers.

An example of the same in Python with text and TfidfVectorizer is as follows. The
output shows part of the content of a latent vector:

In: from sklearn.datasets import fetch_20newsgroups
 categories = ['sci.med', 'sci.space']
 twenty_sci_news = fetch_20newsgroups(categories=categories)
 from sklearn.feature_extraction.text import TfidfVectorizer
 tf_vect = TfidfVectorizer()
 word_freq = tf_vect.fit_transform(twenty_sci_news.data)
 from sklearn.decomposition import TruncatedSVD
 tsvd_2c = TruncatedSVD(n_components=50)
 tsvd_2c.fit(word_freq)
 arr_vec = np.array(tf_vect.get_feature_names())
 arr_vec[tsvd_2c.components_[20].argsort()[-10:][::-1]]

Out: array(['jupiter', 'sq', 'comet', 'of', 'gehrels', 'zisfein',
 'jim', 'gene', 'are', 'omen'], dtype='<U79')

Independent component analysis
As you can guess from the name, independent component analysis (ICA) is an approach
where you try to derive independent components from the input signal. In fact, ICA is a
technique that allows you to create maximally independent additive subcomponents from
the initial multivariate input signal. The main hypothesis of this technique focuses on the
statistical independence of the subcomponents and their non-Gaussian distribution. ICA
has a lot of applications in neurological data and is widely used in the neuroscience
domain.

The Data Pipeline Chapter 3

[155]

A typical scenario that may require the use of ICA is blind source separation. For example,
two or more microphones will record two sounds (for instance, a person speaks and a song
plays at the same time). In this case, ICA is able to separate the two sounds into two output
features.

The Scikit-learn package offers a faster version of the algorithm
(sklearn.decomposition.FastICA), whose use is similar to the other techniques that
have been presented thus far.

Kernel PCA
Kernel PCA is a technique that uses a kernel to map the signal on a (typically) nonlinear
space and makes it linearly separable (or close to attaining the same). It's an extension of
PCA, where the mapping is an actual projection on a linear subspace. There are many well-
known kernels (and of course, you can always build your own on the fly), but the most
used ones are linear, poly, RBF, sigmoid, and cosine. They all serve different configurations of
input datasets as they are only able to linearize some selected types of data. For example,
let's imagine that we have a disk-shaped dataset, like the one we are going to create with
the following code:

In: def circular_points (radius, N):
 return np.array([[np.cos(2*np.pi*t/N)*radius,
 np.sin(2*np.pi*t/N)*radius] for t in range(N)])
 N_points = 50
 fake_circular_data = np.vstack([circular_points(1.0, N_points),
 circular_points(5.0, N_points)])
 fake_circular_data += np.random.rand(*fake_circular_data.shape)
 fake_circular_target = np.array([0]*N_points + [1]*N_points)
 plt.scatter(fake_circular_data[:,0], fake_circular_data[:,1],
 c=fake_circular_target, alpha=0.8,
 s=60, marker='o', edgecolors='white')
 plt.show()

The Data Pipeline Chapter 3

[156]

Here is the output of the example:

With this input dataset, all the linear transformations will fail to separate blue and red dots,
since the dataset contains circumference-shaped classes. Now, let's try this with the Kernel
PCA by using an RBF kernel and see what happens:

In: from sklearn.decomposition import KernelPCA
 kpca_2c = KernelPCA(n_components=2, kernel='rbf')
 X_kpca_2c = kpca_2c.fit_transform(fake_circular_data)
 plt.scatter(X_kpca_2c[:,0], X_kpca_2c[:,1], c=fake_circular_target,
 alpha=0.8, s=60, marker='o', edgecolors='white')
 plt.show()

The following figure represents the transformation of the example:

The Data Pipeline Chapter 3

[157]

Graphs/diagrams in this chapter may be different to the ones obtained on
your local computer because graphical layout initialization is made with
random parameters.

We achieved our goal – the blue dots are on the left and the red dots are on the right.
Thanks to the Kernel PCA's transformation, you can now deal with this dataset by using
linear techniques.

T-SNE
PCA is a widespread technique for dimensionality reduction, yet when we deal with large
data, presenting many features, we first need to understand what's going on in the feature
space. In fact, in the EDA phase, you'll usually make several scatterplots of the data to
understand what the relationship between features is. At this point, T-distributed stochastic
neighbor embedding, or T-SNE, comes to your aid since it has been designed with the goal
of embedding high-dimensional data in a 2-D or 3-D space to make the most of a
scatterplot. It is a nonlinear dimensionality reduction technique developed by Laurens van
der Maaten and Geoffrey Hinton and the core of the algorithm is based on two rules: the
first is that recurrent similar observations must have a greater contribution to the output
(and that's achieved with a probability distribution function); second, the distribution in the
high-dimensional space must be similar to the one in the small space (and that's achieved
by minimizing the Kullback-Leibler (KL), divergence between the two probability
distribution functions). The output is visually nice and allows you to guess nonlinear
interactions between features.

Let's see how a simple example works by applying the T-SNE to the Iris dataset and
plotting it to a two-dimensional space:

In: from sklearn.manifold import TSNE
 from sklearn.datasets import load_iris

 iris = load_iris()
 X, y = iris.data, iris.target
 X_tsne = TSNE(n_components=2).fit_transform(X)
 plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, alpha=0.8,
 s=60, marker='o', edgecolors='white')
 plt.show()

The Data Pipeline Chapter 3

[158]

Here is the result from the T_SNE, completely separating one class from the others:

Restricted Boltzmann Machine
The Restricted Boltzmann Machine (RBM) is another technique that, composed of linear
functions (which are usually called hidden units or neurons), creates a nonlinear
transformation of the input data. The hidden units represent the status of the system, and
the output dataset is actually the status of that layer.

The main hypothesis of this technique is that the input dataset is composed of features that
represent probability (binary values or real values in the [0,1] range), since RBM is a
probabilistic approach. In the following example, we will feed the RBM using binarized
pixels of images as features (1=white, 0=black), and we will print the latent components of
the system. These components represent different generic faces that appear in the original
images:

In: from sklearn import preprocessing
 from sklearn.neural_network
 import BernoulliRBM
 n_components = 64 # Try with 64, 100, 144
 olivetti_faces = datasets.fetch_olivetti_faces()
 X = preprocessing.binarize(
 preprocessing.scale(olivetti_faces.data.astype(float)),
 0.5)
 rbm = BernoulliRBM(n_components=n_components, learning_rate=0.01,
 n_iter=100)
 rbm.fit(X)
 plt.figure(figsize=(4.2, 4))
 for i, comp in enumerate(rbm.components_):

The Data Pipeline Chapter 3

[159]

 plt.subplot(int(np.sqrt(n_components+1)),
 int(np.sqrt(n_components+1)), i + 1)
 plt.imshow(comp.reshape((64, 64)), cmap=plt.cm.gray_r,
 interpolation='nearest')
 plt.xticks(()); plt.yticks(())
 plt.suptitle(str(n_components) + ' components extracted by RBM',
 fontsize=16)
 plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)
 plt.show()

Here are the 64 components extracted by RBM:

Note that Scikit-learn contains just the base layer of RBM processing. If
you are working on big datasets, you are better off using GPU-based
toolkits (such as the ones built on the top of CUDA or OpenCL) since
RBMs are highly parallelizable.

The detection and treatment of outliers
In data science, examples are at the core of learning from data processes. If unusual,
inconsistent, or erroneous data is fed into the learning process, the resulting model may be
unable to generalize the accommodation of any new data correctly. An unusually high
value present in a variable, apart from skewing descriptive measures such as the mean and
variance, may also distort how many machine learning algorithms learn from data, causing
distorted predictions as a result.

The Data Pipeline Chapter 3

[160]

When a data point deviates markedly from the others in a sample, it is called an outlier. Any
other expected observation is labeled as an inlier.

A data point may be an outlier due to the following three general causes (and each one
implies different remedies):

The point represents a rare occurrence, but it is also a possible value, given the
fact that the available data is just a sample of the original data distribution. In
such an occurrence, the generative underlying process is the same for all the
points, but the outlying point may be deemed as unsuitable for a generalization
by machine learning due to its rarity. In such a case, the point is commonly
removed or underweighted. Another solution is to increase the sample number,
thus making the unusual value less relevant in the dataset.
The point represents the usual occurrence of another distribution. When similar
situations occur, it is plausible to imagine an error or a misspecification that has
affected the generation of the sample. In any case, your learning algorithm is
going to learn from data coming from an extraneous distribution that is not the
focus of interest of your data science project (the focus is on the generalization).
In such a case, the outlier simply has to be removed.
The point is clearly some kind of a mistake. For some reason, there has been a
data entry error or a problem with data integrity that modified the original value
and replaced it with an inconsistent value. The best course of action is to remove
the value and treat it as a value that is missing at random. In this case, it is
common to replace the outlier with a mean or the most common class depending
on whether it is a regression or a classification problem. If it is not convenient or
possible to do so, then we suggest that you just remove the example from the
dataset.

Univariate outlier detection
To explain the reason behind why a data point is an outlier, you are first required to locate
the possible outliers in your data. There are quite a few approaches – some are univariate
(you can observe each singular variable at once), while the others are multivariate (they
consider more variables at the same time). The univariate methods are usually based on
EDA and visualizations such as boxplots (which have been introduced at the beginning of
the present chapter; we will talk more about boxplots more specifically in Chapter 5,
Visualization, Insights, and Results).

The Data Pipeline Chapter 3

[161]

There are a couple of rules of thumb to keep in mind when chasing outliers by examining
single variables. In fact, outliers may be spotted as extreme values:

If you are observing Z-scores, observations with scores higher than 3 in an
absolute value have to be considered as suspect outliers.
If you are observing a description of data, you can consider the observations that
are smaller than the 25th percentile value minus the IQR (that is, the difference
between the 75th and 25th percentile values) as suspect outliers – *1.5 and those
greater than the 75th percentile value plus the IQR * 1.5. Usually, you can achieve
such distinction with the help of a boxplot graph.

In order to present how we can easily detect some outliers using Z-scores, let's load and
explore the Boston House Prices dataset. As pointed out by the description of the dataset
(which you can get with the help of boston.DESCR), the variable CHAS, which is indexed
as 3, is a binary. Therefore, it makes little sense to use it while detecting anomalous values.
In fact, such a variable can have just a value of either 0 or 1:

In: from sklearn.datasets import load_boston
 boston = load_boston()
 continuous_variables = [n for n in range(boston.data.shape[1]) if n!=3]

Now, let's quickly standardize all the continuous variables by using the StandardScaler
function from sklearn. Our target is the fancy indexing of boston.data
boston.data[:,continuous_variables] in order to create another array containing all
the variables except the previous one, which was indexed 3.

StandardScaler automatically standardizes to zero mean and unit variance. This is a
necessary routine operation that should be performed before feeding the data to the
learning phase. Otherwise, many algorithms won't work properly (such as linear models
powered by gradient descent and support vector machines).

Finally, let's locate the values that are above the absolute value of three standard
deviations:

In: import numpy as np
 from sklearn import preprocessing
 scaler= preprocessing.StandardScaler()
 normalized_data = scaler.fit_transform(
 boston.data[:,continuous_variables])
 outliers_rows, outliers_columns = np.where(np.abs(normalized_data)>3)

The Data Pipeline Chapter 3

[162]

The outliers_rows and outliers_columns variables contain the row and column
indexes of the suspect outliers. We can print the index of the examples:

In: print(outliers_rows)

Out: [55 56 57 102 141 199 200 201 202 203 204 225 256 257 262 283 284
 ...

Alternatively, we can display the tuple of the row/column coordinates in the array:

In: print (list(zip(outliers_rows, outliers_columns)))

Out: [(55, 1), (56, 1), (57, 1), (102, 10), (141, 11), (199, 1), (200, 1),
 ...

The univariate approach can reveal quite a lot of potential outliers. It won't disclose an
outlier that does not have an extreme value – instead, it is characterized by an unusual
combination of values in two or more variables. In such cases, the values of the involved
variables may not even be extreme ones, and therefore, the outlier may slip away unnoticed
by a univariate inspection. These outliers are called multivariate outliers.

In order to discover multivariate outliers, you can use a dimensionality reduction
algorithm, such as the previously illustrated PCA, and then check the absolute values of the
components that are beyond three standard deviations, or visually inspect bivariate plots in
order to locate isolated clusters of data points.

The Scikit-learn package offers a couple of classes that can automatically work for you
straight out of the box and signal all suspect cases:

The covariance.EllipticEnvelope class fits a robust distribution estimation
of your data, pointing out the outliers that might be contaminating your dataset
because they are the extreme points in the general distribution of the data.
The svm.OneClassSVM class is a support vector machine algorithm that can
approximate the shape of your data and find out if any new instances provided
should be considered as a novelty (it acts as a novelty detector because, by
default, it presumes that there is no outlier in the data). By just modifying its
parameters, it can also work on a dataset where outliers are present, providing
an even more robust and reliable outlier detection system than
EllipticEnvelope.

Both classes, based on different statistical and machine learning approaches, need to be
known and applied during your modeling phase.

The Data Pipeline Chapter 3

[163]

EllipticEnvelope
EllipticEnvelope is a function that tries to figure out the key parameters of your data's
general distribution by assuming that your entire data is an expression of an underlying
multivariate Gaussian distribution. That's an assumption that cannot hold true for all
datasets, yet when it does, it proves an effective method indeed for spotting outliers.
Simplifying the complex estimations working behind the algorithm as much as possible, we
can say that it checks the distance of each observation with respect to a grand mean that
takes into account all the variables in your dataset. For this reason, it is able to spot both
univariate and multivariate outliers.

The only parameter that you have to take into account when using this function from the
covariance module is the contamination parameter, which can take a value of up to 0.5. It
provides information to the algorithm about the proportion of the outliers present in your
dataset. Situations may vary from dataset to dataset. However, as a starting figure, we
suggest a value from 0.01 - 0.02 since it is the percentage of observations that should fall
over the absolute value 3 in the Z score distance from the mean in a standardized normal
distribution. For this reason, we deem the default value of 0.1 as too high.

Let's see this algorithm in action with the help of a synthetic distribution:

In: from sklearn.datasets import make_blobs
 blobs = 1
 blob = make_blobs(n_samples=100, n_features=2, centers=blobs,
 cluster_std=1.5, shuffle=True, random_state=5)
 # Robust Covariance Estimate
 from sklearn.covariance import EllipticEnvelope
 robust_covariance_est = EllipticEnvelope(contamination=.1).fit(blob[0])
 detection = robust_covariance_est.predict(blob[0])
 outliers = np.where(detection==-1)[0]
 inliers = np.where(detection==1)[0]
 # Draw the distribution and the detected outliers
 from matplotlib import pyplot as plt
 # Just the distribution
 plt.scatter(blob[0][:,0],blob[0][:,1], c='blue', alpha=0.8, s=60,
 marker='o', edgecolors='white')
 plt.show()
 # The distribution and the outliers
 in_points = plt.scatter(blob[0][inliers,0],blob[0][inliers,1],
 c='blue', alpha=0.8,
 s=60, marker='o',
 edgecolors='white')
 out_points = plt.scatter(blob[0][outliers,0],blob[0][outliers,1],
 c='red', alpha=0.8,
 s=60, marker='o',
 edgecolors='white')

The Data Pipeline Chapter 3

[164]

 plt.legend((in_points,out_points),('inliers','outliers'),
 scatterpoints=1,
 loc='lower right')
 plt.show()

Let's examine this code closely.

The make_blobs function creates a certain number of distributions in a bidimensional
space for a total of 100 examples (the n_samples parameter). The number of distributions
(parameter centers) is related to the user-defined variable blobs, which is initially set to 1.

After creating the artificial example data, running EllipticEnvelope with a
contamination rate of 10% helps you find out the extreme values in the distribution. The
model first deploys the fit by using the .fit() method on the EllipticEnvelope class.
Then, a prediction is obtained by using the .predict() method on the data that was used
for the fit.

The results, corresponding to a vector of values 1 and -1 (with -1 being the mark for
anomalous examples), can be displayed thanks to a couple of scatterplots by using the plot
function from the pyplot module in matplotlib.

The distinction between inliers and outliers is recorded in the variable's outliers and inliers,
which contain the indexes of the examples.

Now, let's run the code a few more times after changing the number of blobs and examine
the results when the blobs have a value of 1 and 4:

The Data Pipeline Chapter 3

[165]

The distributions of data points after changing the number of blobs is as follows:

In the case of a unique, underlying multivariate distribution (when the variable blobs = 1),
the EllipticEnvelope algorithm has successfully located 10% of the observations on the
fringe of the distribution itself and has consequently signaled all the suspect outliers.

Instead, when multiple distributions are present in the data as if there were two or more
natural clusters, the algorithm, trying to fit a unique general distribution, tends to locate the
potential outliers on just the most remote cluster, thus ignoring other areas of data that
might be potentially affected by outlying cases.

This is not an unusual situation with real data, and it represents an important limitation of
the EllipticEnvelope algorithm.

Now, let's get back to our initial Boston House Prices dataset for the verification of some
more data that is more realistic than our synthetic blobs. Here is the first part of the code
that we can use for our experiment:

In: from sklearn.decomposition import PCA
 # Normalized data relative to continuos variables
 continuous_variables = [n for n in range(boston.data.shape[1]) if n!=3]
 scaler = preprocessing.StandardScaler()
 normalized_data = scaler.fit_transform(
 boston.data[:,continuous_variables])
 # Just for visualization purposes pick the first 2 PCA components
 pca = PCA(n_components=2)
 Zscore_components = pca.fit_transform(normalized_data)
 vtot = 'PCA Variance explained ' + str(round(np.sum(

The Data Pipeline Chapter 3

[166]

 pca.explained_variance_ratio_),3))
 v1 = str(round(pca.explained_variance_ratio_[0],3))
 v2 = str(round(pca.explained_variance_ratio_[1],3))

In this script, we will first standardize the data and then, just for subsequent visualization
purposes, generate a reduction of two components by using PCA.

The two PCA components account for about 62% of the initial variance that is expressed by
the 12 continuous variables that are available in the dataset (the summed value of the
.explained_variance_ratio_ variable, which is internal to the fitted PCA class).

Although only two PCA components are sufficient for visualization purposes, normally,
you'd get more than two components for this dataset since the target is to have enough to
account for at least 95% of the total variance (as stated previously in this chapter).

We will continue with the script:

In: robust_covariance_est = EllipticEnvelope(store_precision=False,
 assume_centered = False,
 contamination=.05)
 robust_covariance_est.fit(normalized_data)
 detection = robust_covariance_est.predict(normalized_data)
 outliers = np.where(detection==-1)
 regular = np.where(detection==1)

In: # Draw the distribution and the detected outliers
 from matplotlib import pyplot as plt
 in_points = plt.scatter(Zscore_components[regular,0],
 Zscore_components[regular,1],
 c='blue', alpha=0.8, s=60, marker='o',
 edgecolors='white')
 out_points = plt.scatter(Zscore_components[outliers,0],
 Zscore_components[outliers,1],
 c='red', alpha=0.8, s=60, marker='o',
 edgecolors='white')
 plt.legend((in_points,out_points),('inliers','outliers'),
 scatterpoints=1, loc='best')
 plt.xlabel('1st component ('+v1+')')
 plt.ylabel('2nd component ('+v2+')')
 plt.xlim([-7,7])
 plt.ylim([-6,6])
 plt.title(vtot)
 plt.show()

The Data Pipeline Chapter 3

[167]

The visualization of the first two components accounts for 62.2% of the original variance:

As in the previous example, where we assumed a low contamination that is equivalent to
0.05, the code based on EllipticEnvelope predicts the outliers and stores them in an
array in the same way as it stores the inliers. Finally, there's the visualization (as mentioned
previously, we are going to discuss all of the visualization methods in Chapter 5,
Visualization, Insights, and Results).

Now, let's observe the result offered by the scatterplot we generated to visualize the first
two PCA components of the data and mark the outlying observations. Concerning the
general distribution of the data points in our example, as provided by the two components
that account for about 62% of the variance in the data, it appears as if there are two distinct
clusters of house prices in Boston, which correspond to the high-end and low-end units
present in the market. Generally speaking, the presence of clusters in the data is a no
optimal situation for EllipticEnvelope estimations. In fact, according to what we've
already noticed while experimenting using synthetic blobs, the algorithm has pointed out
the outliers on just a cluster – the lesser one. Given such results, there is a strong reason to
believe that we just received a biased, partial response, and some further investigation will
be required before deeming such points as outliers. The Scikit-learn package actually
integrates the robust covariance estimation method, which is fundamentally a statistical
approach, with another methodology that is well-rooted in machine learning: the
OneClassSVM class. Now, we will move on to experimenting with it.

The Data Pipeline Chapter 3

[168]

Before leaving this example, please note that to fit both PCA and
EllipticEnvelope, we used an array named normalized_data, which
contains just the standardized continuous dataset variables. Please always
take into account that using nonstandardized data and mixing binary or
categorical data with continuous ones may induce errors and
approximated estimations for the EllipticEnvelope algorithm.

OneClassSVM
As EllipticEnvelope fits a hypothetical Gaussian distribution, leveraging parametric
and statistical assumptions, OneClassSVM is a machine learning algorithm that learns what
the distribution of the features should be from the data itself, and therefore is applicable in
a large variety of situations when you want to be able to catch all the outliers but also the
unusual data examples.

It is great if you already have a clean dataset and have it fitted by machine learning
algorithms. Afterwards, OneClassSVM can be summoned to check if any new example fits
in the historical distribution, and if it doesn't, it will signal a novel example, which might be
both an error or some new, previously unseen situation.

Just think of data science situations as a machine learning classification algorithm trained to
recognize posts and news on a website and take online actions. OneClassSVM can easily
spot a post that is different from the others present on the website (spam, maybe?), whereas
other algorithms will just try to fit the new example into the existing topic's categorization.

However, OneClassSVM can also be used to spot existing outliers. If this specialized SVM
class cannot fit some data, which is pointed out as being at the margins of the data
distribution, then there is surely something fishy about those examples.

In order to have OneClassSVM work as an outlier detector, you need to work on its core
parameters; it requires you to define the kernel, degree, gamma, and nu:

Kernel and degree: These are interconnected. Usually, the values that we suggest
based on our experience are the default ones; the type of kernel should be rbf
and its degree should be 3. Such parameters will inform OneClassSVM to create a
series of classification bubbles that span through three dimensions, allowing you
to model even the most complex multidimensional distribution forms.

The Data Pipeline Chapter 3

[169]

Gamma: This is a parameter that's connected to the RBF kernel. We suggest that
you keep it as low as possible. A good rule of thumb should be to assign it a
minimum value that lies between the inverse of the number of cases and the
variables. The role of gamma in SVM will be explained further in Chapter 4,
Machine Learning. It will suffice for now to say that higher values of gamma tend
to lead the algorithm to follow the data, but more so define the shape of the
classification bubbles.
Nu: This parameter determines whether we have to fit the exact distribution or if
we try to obtain a certain degree of generalization by not adapting too much to
the present data examples (a necessary choice if outliers are present). It can be
easily determined with the help of the following formula:

nu_estimate = 0.95 * outliers_fraction + 0.05

If the value of the outliers' fraction is very small, nu will be small and the SVM
algorithm will try to fit the contour of the data points. On the other hand, if the
fraction is high, so will the parameter be, forcing a smoother boundary of the
inliers' distributions.

Let's immediately observe the performance of this algorithm on the problem that we faced
before on the Boston House Prices dataset:

In: from sklearn.decomposition import PCA
 from sklearn import preprocessing
 from sklearn import svm
 # Normalized data relative to continuos variables
 continuous_variables = [n for n in range(boston.data.shape[1]) if n!=3]
 scaler = preprocessing.StandardScaler()
 normalized_data = scaler.fit_transform(
 boston.data[:,continuous_variables])
 # Just for visualization purposes pick the first 5 PCA components
 pca = PCA(n_components=5)
 Zscore_components = pca.fit_transform(normalized_data)
 vtot = 'PCA Variance explained ' + str(round(
 np.sum(pca.explained_variance_ratio_),3))
 # OneClassSVM fitting and estimates
 outliers_fraction = 0.02 #
 nu_estimate = 0.95 * outliers_fraction + 0.05
 machine_learning = svm.OneClassSVM(kernel="rbf",
 gamma=1.0/len(normalized_data),
 degree=3, nu=nu_estimate)
 machine_learning.fit(normalized_data)
 detection = machine_learning.predict(normalized_data)
 outliers = np.where(detection==-1)

The Data Pipeline Chapter 3

[170]

 regular = np.where(detection==1)

We will now proceed to visualize the results:

In: # Draw the distribution and the detected outliers
 from matplotlib import pyplot as plt
 for r in range(1,5):
 in_points = plt.scatter(Zscore_components[regular,0],
 Zscore_components[regular,r],
 c='blue', alpha=0.8, s=60,
 marker='o', edgecolors='white')
 out_points = plt.scatter(Zscore_components[outliers,0],
 Zscore_components[outliers,r],
 c='red', alpha=0.8, s=60,
 marker='o', edgecolors='white')
 plt.legend((in_points,out_points),('inliers','outliers'),
 scatterpoints=1, loc='best')
 plt.xlabel('Component 1 (' + str(round(
 pca.explained_variance_ratio_[0],3))+')')
 plt.ylabel('Component '+str(r+1)+'('+str(round(
 pca.explained_variance_ratio_[r],3))+')')
 plt.xlim([-7,7])
 plt.ylim([-6,6])
 plt.title(vtot)
 plt.show()

Compared to the code presented previously, this snippet is different because the resulting
PCA decomposition is made up of five components. The larger number is due in order to
explore more data dimensions. Another reason for increasing the number of resulting PCA
components is because of our intention to use the transformed dataset with OneClassSVM.

The core parameters are calculated from the number of observations, as follows:

gamma=1.0/len(normalized_data)

nu=nu_estimate

In particular, nu depends on:

nu_estimate = 0.95 * outliers_fraction + 0.05

So, by changing the outliers_fraction (from 0.02 to a larger value, such as 0.1), you
require the algorithm to give more attention to possible anomalies when supposing a larger
incidence of anomalous cases in your data.

The Data Pipeline Chapter 3

[171]

Let's also observe the graphical output of PCA components from 2 to 5 and compare it with
the principal component (51% of the explained variance). The first graph of the series
(comprised of a total of four scatterplots) is as follows:

From our graphical exploration, it looks as if OneClassSVM modeled the distribution of
house price data with a good fit and it helped spot a few extreme values on the borders of
the distribution.

At this point, you can decide on one of the novelties and outlier detection approaches that
we are about to propose. You may even use both:

To scrutinize the characteristics of the outliers in order to figure out a reason for
their presence (a fact that could further make you reflect on the generative
processes underlying your data)
To try to build some machine learning models by using under-weighting for the
outlying observations or by just excluding them

In the end, with a pure data science approach, what will help you decide what to do next
with any outlying observation is testing the results of your decisions and consequent
operations on data. How to test and experiment with a hypothesis about your data is a
topic that we are going to discuss with you in the upcoming sections.

The Data Pipeline Chapter 3

[172]

Validation metrics
In order to evaluate the performance of the data science system that you have built and
check how close you are to the goal that you have in mind, you need to use a function that
scores the outcome. Typically, different scoring functions are used to deal with binary
classification, multilabel classification, regression, or a clustering problem. Now, let's see
the most popular functions for each of these tasks and how they are used by machine
learning algorithms.

Learning how to choose the right score/error measure for your data
science project is really a matter of experience. We found it very helpful to
consult (and participate in) the data science competitions held by Kaggle
(kaggle.com), a company devoted to organizing data challenges between
data scientists from all over the world. By observing the various
challenges and what score or error measure they try to optimize, you can
surely get useful insights for your own problems. Kaggle's CTO, Ben
Hammer, has even created a Python library of commonly used metrics in
competitions, which you can consult at github.com/benhamner/Metrics
and install on your computer by using pip install ml_metrics.

Multilabel classification
When your task is to predict more than a single label (for instance: What's the weather like
today? Which flower is this? What's your job?), we call the problem a multilabel
classification. Multilabel classification is a very popular task, and many performance
metrics exist to evaluate classifiers. Of course, you can use all of these measures in the case
of a binary classification. Now, let's explain how it works by using a simple, real-world
example:

In: from sklearn import datasets
 iris = datasets.load_iris()
 # No crossvalidation for this dummy notebook
 from sklearn.model_selection import train_test_split
 X_train, X_test, Y_train, Y_test = train_test_split(iris.data,
 iris.target, test_size=0.50, random_state=4)
 # Use a very bad multiclass classifier
 from sklearn.tree import DecisionTreeClassifier
 classifier = DecisionTreeClassifier(max_depth=2)
 classifier.fit(X_train, Y_train)
 Y_pred = classifier.predict(X_test)
 iris.target_names

Out: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

https://www.kaggle.com/
http://github.com/benhamner/Metrics

The Data Pipeline Chapter 3

[173]

Now, let's take a look at the measures that are commonly used in multilabel classification:

Confusion matrix: Before we describe the performance metrics for multilabel
classification, let's take a look at the confusion matrix, a table that gives us an
idea about what the misclassifications are for each class. Ideally, in a perfect
classification, all the cells that are not on the diagonal should be 0s. In the
following example, you will instead see that class 0 (Setosa) is never misclassified,
class 1 (Versicolor) is misclassified twice as Virginica, and class 2 (Virginica) is
misclassified twice as Versicolor:

In: from sklearn import metrics
 from sklearn.metrics import confusion_matrix
 cm = confusion_matrix(y_test, y_pred)
 print cm

Out: [[30 0 0]
 [0 19 3]
 [0 2 21]]

In: import matplotlib.pyplot as plt
 img = plt.matshow(cm, cmap=plt.cm.autumn)
 plt.colorbar(img, fraction=0.045)
 for x in range(cm.shape[0]):
 for y in range(cm.shape[1]):
 plt.text(x, y, "%0.2f" % cm[x,y],
 size=12, color='black', ha="center", va="center")
 plt.show()

The confusion matrix is represented graphically in this way:

The Data Pipeline Chapter 3

[174]

Accuracy: Accuracy is the portion of the predicted labels that are exactly equal to
the real ones. In other words, it's the percentage of overall correctly classified
labels:

In: print ("Accuracy:", metrics.accuracy_score(Y_test, Y_pred))

Out: Accuracy: 0.933333333333

Precision: It is a measure that is taken from the information retrieval world. It
counts the number of relevant results in the result set. Equivalently, in a
classification task, it counts the number of correct labels in each set of classified
labels. Then, results are averaged on all of the labels:

In: print ("Precision:", metrics.precision_score(y_test, y_pred))

Out: Precision: 0.933333333333

Recall: This is another concept taken from information retrieval. It counts the
number of relevant results in the result set, compared to all of the relevant labels
in the dataset. In classification tasks, this is the amount of correctly classified
labels in the set divided by the total count of labels for that set. Finally, the results
are averaged, just like in the following code:

In: print ("Recall:", metrics.recall_score(y_test, y_pred))

Out: Recall: 0.933333333333

F1 Score: This is the harmonic average of precision and recall, which is mostly
used when dealing with unbalanced datasets in order to reveal if the classifier is
performing well with all the classes:

In: print ("F1 score:", metrics.f1_score(y_test, y_pred))

Out: F1 score: 0.933267359393

These are the most used measures in multilabel classification. A convenient function,
classification_report, shows a report on these measures, which is very handy.
Support is simply the number of observations with that label. It's pretty useful to
understand whether a dataset is balanced (that is, whether it has the same share of
examples for every class) or not:

In: from sklearn.metrics import classification_report
 print classification_report(y_test, y_pred,
 target_names=iris.target_names)

The Data Pipeline Chapter 3

[175]

Here is the complete report with precision, recall, f1-score and support (the number of
cases for the class):

In data science practice, precision and recall are used more extensively than accuracy, as
most datasets in data problems tend to be unbalanced. To account for this imbalance, data
scientists often present their results in terms of precision, recall, and f1-score. In addition,
we have to notice how accuracy, precision, recall, and f1-score assume values in the [0.0,
1.0] range. Perfect classifiers achieve the score of 1.0 for all of these measures (but beware of
any perfect classification if it's too good to believe, as this usually means that something
wrong has happened; real-world data problems never have a perfect solution).

Binary classification
In addition to the error measures shown in the preceding section, in problems where you
have only two output classes (for instance, if you have to guess the gender of a user or
predict whether the user will click/buy/like the item), there are some additional measures.
The most used one, since it's very informative, is the area under the receiver operating
characteristics curve (ROC) or area under a curve (AUC).

The ROC curve is a graphical way to express how the performances of the classifier change
over all the possible classification thresholds (that is, changes in the outcome when its
parameters change). Specifically, these performances have a true positive (or hit) rate and a
false positive (or miss) rate. The first is the rate of the correct positive results, and the
second is the rate of the incorrect ones. The area under that curve represents how well the
classifier performs with respect to a random classifier (whose AUC is 0.50).

The Data Pipeline Chapter 3

[176]

Here, we have a graphical example of a random classifier (dotted line) and a better one
(solid line). You can see that the AUC of a random classifier is 0.5 (it is half of the square),
and the other has a higher AUC (with its upper bound at 1.0):

The function that is used to compute the AUC with Python is
sklearn.metrics.roc_auc_score().

Regression
In tasks where you have to predict real numbers or regression, many error measures are
derived from Euclidean algebra:

Mean absolute error or MAE: This is the mean L1 norm of the difference vector
between the predicted and real values:

In: from sklearn.metrics import mean_absolute_error
 mean_absolute_error([1.0, 0.0, 0.0], [0.0, 0.0, -1.0])

Out: 0.66666666666666663

The Data Pipeline Chapter 3

[177]

Mean squared error or MSE: This is the mean L2 norm of the difference vector
between the predicted and real values:

In: from sklearn.metrics import mean_squared_error
 mean_squared_error([-10.0, 0.0, 0.0], [0.0, 0.0, 0.0])

Out: 33.333333333333

R2 score: R2 is also known as the coefficient of determination. In a nutshell, R2

determines how good a linear fit there is that exists between the predictors and
the target variable. It takes values between 0 and 1 (inclusive); the higher R2 is,
the better the model. It is a good score measure, yet it doesn't tell everything
about the story, especially if there are outliers in your data. There are even more
intricacies about this metric that you can find in reference books on Statistics. As
a suggestion, use it, but accompany it with other score or error measurements.
The function to use in this case is sklearn.metrics.r2_score.

Testing and validating
After loading our data, preprocessing it, creating new, useful features, checking for outliers
and other inconsistent data points, and finally choosing the right metric, we are ready to
apply a machine learning algorithm.

A machine learning algorithm, by observing a series of examples and pairing them with
their outcome, is able to extract a series of rules that can be successfully generalized to new
examples by correctly guessing their resulting outcome. Such is the supervised learning
approach, where it applies a series of highly specialized learning algorithms that we expect
can correctly predict (and generalize) on any new data.

But how can we correctly apply the learning process in order to achieve the best model for
prediction to be generally used with similar yet new data?

In data science, there are some best practices to be followed that can assure you the best
results in the future generalization of your model to any new data. Let's explain this
practice by proceeding step by step, first loading the dataset that we will be working on in
the following example:

In: from sklearn.datasets import load_digits
 digits = load_digits()
 print (digits.DESCR)
 X = digits.data
 y = digits.target

The Data Pipeline Chapter 3

[178]

The digit dataset contains images of handwritten numbers from 0 to 9. The data format
consists of a matrix of 8 x 8 images of this kind:

These digits are actually stored as a vector (resulting from the flattening of each 8 x 8
image) of 64 numeric values from 0 to 16, representing grayscale tonality for each pixel:

In: X[0]

Out: array([0., 0., 5., 13., 9., 1., 0., 0., ...])

We will also upload three different machine learning hypotheses (a hypothesis, in machine
learning language, is an algorithm that's complete with all of its parameters set ready for
learning) using three different support vector machines for classification. They will be
useful for our practical example:

In: from sklearn import svm
 h1 = svm.LinearSVC(C=1.0)
 h2 = svm.SVC(kernel='rbf', degree=3, gamma=0.001, C=1.0)
 h3 = svm.SVC(kernel='poly', degree=3, C=1.0)

As a first experiment, let's fit the linear SVM classifier to our data and verify the results:

In: h1.fit(X,y)
 print (h1.score(X,y))

Out: 0.984974958264

The first method fits a model by using the X array in order to correctly predict one of the 10
classes indicated by the y vector. After that, by calling the .score() method and
specifying the same predictors (the X array), the method evaluates the performance in terms
of mean accuracy with respect to the true values given by the y vector. The result is about
98.5% accurate in predicting the correct digit.

The Data Pipeline Chapter 3

[179]

This number represents the in-sample performance, which is the performance of the
learning algorithm. It is purely indicative, though it represents an upper bound of the
performance (providing different examples, the average performance will always be
inferior). In fact, every learning algorithm has a certain capability of memorizing the data
that it has been trained with. Therefore, the in-sample performance is partly due to the
capability of the algorithm to learn some general inference from the data, and partly from
its memorization capabilities. In extreme cases, if the model is overtrained or too complex
with respect to the available data, the memorized patterns prevail over the derived rules,
and the algorithm becomes unfit to predict correctly new observations (though it will be
very good on past ones). Such a problem is called overfitting. Since, in machine learning,
we cannot separate these two concomitant effects, in order to have a proper estimate of the
predictive performances of our hypothesis, we need to test it on some fresh data where
there is no memorization effect.

Memorization happens because of the complexity of the algorithm.
Complex algorithms own many coefficients, where information about the
training data can be stored. Unfortunately, the memorization effect causes
high variance in the estimation when predicting unseen examples since its
predictive processes become random. Three solutions are possible:

First, you can increase the number of examples so that it will
become infeasible to store information about all the previously
seen cases, but it may become more expensive to find all of the
necessary data
Second, you can use a simpler machine learning algorithm
which is less prone to memorization, but at the cost of using a
machine learning solution that's less capable of fitting the
complexity of the rules underlying the data.
Third, you can use regularization to penalize extremely
complex models and force the algorithm to be underweight or
even exclude a certain number of variables from the model,
thus effectively reducing the number of coefficients in the
model and its capacity to memorize data.

The Data Pipeline Chapter 3

[180]

In many cases, fresh data is not available, if not at a certain cost. In such a common case, a
good approach would be to divide the initial data into a training set (usually 70-80% of the
total data) and a test set (the remaining 20-30%). The split between the training and the test
set should be completely random, taking into account any possible unbalanced class
distribution:

In: chosen_random_state = 1
 X_train, X_test, y_train, y_test = model_selection.train_test_split(
 X, y,
 test_size=0.30, random_state=chosen_random_state)
 print ("(X train shape %s, X test shape %s, n/y train shape %s, \
 y test shape %s" % (X_train.shape, X_test.shape,
 y_train.shape, y_test.shape))
 h1.fit(X_train,y_train)
 print (h1.score(X_test,y_test))
 # Returns the mean accuracy on the given test data and labels

Out: (X train shape (1257, 64), X test shape (540, 64),
 y train shape (1257,), y test shape (540,)
 0.953703703704

By executing the preceding code, the initial data is randomly split into two mutually
exclusive sets by the model_selection.train_test_split() function on the basis of
the parameter test_size (which could be an integer indicating the exact number of
examples for the test set or a floating point number, indicating the percentage of the total
data to be used for testing purposes). The split is governed by random_state, which
assures that the operation is reproducible at different times and on different computers
(even when you're using completely different operating systems).

The present average accuracy is 0.94. If you try to run the same cell again, using a different
integer value for the chosen_random_state parameter, you will actually notice that the
accuracy will change, hinting that the performance evaluation by a test set is not an
absolute measure of performance and that it should be used with care. You have to be
aware of its mutability, given different test samples.

Actually, we can even get biased performance estimations from the test set. This could
happen if we either choose (after various trials with random_state) a test set that can
confirm our hypothesis, or start using the test set as a reference in order to take decisions in
regard to the learning process (for example, selecting the best hypothesis that fits a certain
test sample).

The Data Pipeline Chapter 3

[181]

As with evaluating just the fit on the training data, working on a selected test set will make
the resulting performance surely look great. Yet, the model you have built would not be
replicating the same performances on a different test set (an overfitting problem again).

Therefore, when we have to choose between multiple hypotheses (a common experiment in
data science) after fitting each of them onto the training data, we need a data sample that
can be used to compare their performances, and it cannot be the test set (because of the
reasons that we mentioned previously).

A correct approach is to use a validation set. We suggest that you split the initial data – 60%
of the initial data can be reserved for the training set, 20% for the validation set, and 20% for
the test set. Our initial code can be changed in order to consider this, and it can be adapted
to test all three hypotheses:

In: chosen_random_state = 1
 X_train, X_validation_test, y_train, y_validation_test =
 model_selection.train_test_split(X, y,
 test_size=.40,
 random_state=chosen_random_state)
 X_validation, X_test, y_validation, y_test =
 model_selection.train_test_split(X_validation_test, y_validation_test,
 test_size=.50,
 random_state=chosen_random_state)
 print ("X train shape, %s, X validation shape %s, X test shape %s,
 /ny train shape %s, y validation shape %s, y test shape %s/n" %
 (X_train.shape, X_validation.shape, X_test.shape,
 y_train.shape, y_validation.shape, y_test.shape))
 for hypothesis in [h1, h2, h3]:
 hypothesis.fit(X_train,y_train)
 print ("%s -> validation mean accuracy = %0.3f" % (hypothesis,
 hypothesis.score(X_validation,y_validation)))
 h2.fit(X_train,y_train)
 print ("n%s -> test mean accuracy = %0.3f" % (h2,
 h2.score(X_test,y_test)))

Out: X train shape, (1078, 64), X validation shape (359, 64),
 X test shape (360, 64),
 y train shape (1078,), y validation shape (359,), y test shape (360,)

 LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
 intercept_scaling=1, loss='squared_hinge', max_iter=1000,
 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
 verbose=0) -> validation mean accuracy = 0.958

 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,

The Data Pipeline Chapter 3

[182]

 tol=0.001, verbose=False) -> validation mean accuracy = 0.992

 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape=None, degree=3, gamma='auto', kernel='poly',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False) -> validation mean accuracy = 0.989

 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False) -> test mean accuracy = 0.978

As reported by the output, now, the training set is made up of 1,078 cases (60% of the total
cases). In order to divide the data into three parts – training, validation, and test – the data
is at first split between the train set and a test/validation dataset (thus extracting the
training sample) using the function model_selection.train_test_split. Then, the
test/validation dataset is furthermore split into two parts using the same function. Each
hypothesis, after being trained, is tested against the validation set. Obtaining an accuracy of
0.992, the SVC using an RBF kernel is the best model according to the validation set. Having
decided to use this model, its performance is evaluated on the test set, resulting in an
accuracy of 0.978 (which is a measured representative of the real performances of the
model).

Since the test's accuracy is different from that of the validation one, is the chosen hypothesis
really the best one? We suggest that you try to run the code in the cell multiple times
(ideally, running the code at least 30 times should ensure statistical significance), each time
changing the chosen_random_state value. In such a way, the same learning procedure
will be validated with respect to different samples and you can be more confident of your
expectations.

Cross-validation
If you have run the previous experiment, you may have realized that:

Both the validation and test results vary, as their samples are different.
The chosen hypothesis is often the best one, but this is not always the case.

Unfortunately, relying on the validation and testing phases of samples brings uncertainty,
along with a reduction of the learning examples dedicated to training (the fewer the
examples, the more the variance of the estimates from the model).

The Data Pipeline Chapter 3

[183]

A solution would be to use cross-validation, and Scikit-learn offers a complete module for
cross-validation and performance evaluation (sklearn.model_selection).

By resorting to cross-validation, you'll just need to separate your data into a training and
test set, and you will be able to use the training data for both model optimization and
model training.

How does cross-validation work? The idea is to divide your training data into a certain
number of partitions (called folds) and train your model as many times as the number of
partitions there are, keeping out a different partition every time from the training phase.
After every model training, you will test the result on the fold that is left out and store it
away. In the end, you will have as many results as there are folds, and you can calculate
both the average and standard deviation on them:

In the preceding graphical example, the chart depicts a dataset that's been divided into five
equally sized folds, which are differently used, depending on the iteration, as part of the
train or test set during the machine learning process.

Ten folds is quite a common configuration in the cross-validation that we
recommend. Using fewer folds can be fine with biased estimators such as
linear regression, but it may penalize machine learning algorithms that are
more complex. In some cases, you really need to use more folds to ensure
that there is enough training data for the machine learning algorithm to
generalize properly. This happens quite commonly in medical datasets
where there are not enough data points. On the other hand, if the number
of examples at hand is not an issue, using more folds is more
computationally intensive and it may take longer for the cross-validation
to complete. Sometimes, using five folds is a good compromise between
accuracy of estimates and running times.

The Data Pipeline Chapter 3

[184]

The standard deviation will provide a hint on how your model is influenced by the data
that is provided for training (the variance of the model, actually), and the mean provides a
fair estimate of its general performance. Using the mean of the cross-validation results
obtained from different models (because of a different model type employed, or because a
different selection of the training variables has been used, or because the different
hyperparameters of the model), you can confidently choose the best performing hypothesis
to be tested for general performance.

We strongly suggest that you use cross-validation just for optimization
purposes and not for performance estimation (that is, to figure out what
the error of the model might be on fresh data). Cross-validation just points
out the best possible algorithm and parameter choice based on the best
averaged result. Using it for performance estimation would mean using
the best result found, a more optimistic estimation than it should be. In
order to report an unbiased estimation of your possible performance, you
should prefer using a test set.

Let's execute an example in order to see cross-validation in action. At this point, we can
review the previous evaluation of three possible hypotheses for our digits dataset:

In: choosen_random_state = 1
 cv_folds = 10 # Try 3, 5 or 20
 eval_scoring='accuracy' # Try also f1
 workers = -1 # this will use all your CPU power
 X_train, X_test, y_train, y_test = model_selection.train_test_split(
 X, y,
 test_size=0.30,
 random_state=choosen_random_state)
 for hypothesis in [h1, h2, h3]:
 scores = model_selection.cross_val_score(hypothesis,
 X_train, y_train,
 cv=cv_folds, scoring= eval_scoring, n_jobs=workers)
 print ("%s -> cross validation accuracy: mean = %0.3f \
 std = %0.3f" % (hypothesis, np.mean(scores),
 np.std(scores)))

Out: LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
 intercept_scaling=1, loss='squared_hinge', max_iter=1000,
 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
 verbose=0) -> cross validation accuracy: mean = 0.930 std = 0.021

 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False) -> cross validation accuracy:
 mean = 0.990 std = 0.007

The Data Pipeline Chapter 3

[185]

 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape=None, degree=3, gamma='auto', kernel='poly',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False) -> cross validation accuracy:
 mean = 0.987 std = 0.010

The core of the script is the model_selection.cross_val_score function. The function
in our script receives the following parameters:

A learning algorithm (estimator)
A training set of predictors (X)
A target variable (y)
The number of cross-validation folds (cv)
A scoring function (scoring)
The number of CPUs to be used (n_jobs)

Given such an input, the function wraps some other complex functions. It creates n-
iterations, training a model of the n-cross-validation in-samples, testing the results, and
storing scores derived at each iteration from the out-of-sample fold. In the end, the function
reports a list of the recorded scores of this kind:

In: scores

Out: array([0.96899225, 0.96899225, 0.9921875, 0.98412698, 0.99206349,
 1, 1., 0.984, 0.99186992, 0.98347107])

The main advantage of using cross_val_score resides in its simplicity of usage and in
the fact that it automatically incorporates all of the necessary steps for a correct cross-
validation. For example, when deciding on how to split the training sample into folds, if a y
vector is provided, it keeps the same target class label's proportion in each fold as it was in
the y that was initially provided.

Using cross-validation iterators
Though the cross_val_score function from the model_selection module acts as a
complete helper function for most of the cross-validation purposes, you may have the need
to build up your own cross-validation process. In this case, the same model_selection
module guarantees a formidable selection of iterators.

The Data Pipeline Chapter 3

[186]

Before examining the most useful ones, let's provide a clear overview of how they function
by studying how one of the iterators, model_selection.KFold, works.

KFold is quite simple in its functionality. If n-number of folds is given, it returns n
iterations to the indexes of the training and validation sets for the testing of each fold.

Let's say that we have a training set made up of 100 examples and we would like to create a
10-fold cross-validation. First, let's set up our iterator:

In: kfolding = model_selection.KFold(n_splits=10, shuffle=True,
 random_state=1)
 for train_idx, validation_idx in kfolding.split(range(100)):
 print (train_idx, validation_idx)

Out: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26
27
 28 29 30 31 32 34 35 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53
 54 55 56 57 58 59 60 61 62 63 64 66 67 68 70 71 72 73 74 75 76 77 78
79
 83 85 86 87 88 89 90 91 92 94 95 96 97 98 99] [17 33 36 65 69 80 81
82
 84 93] ...

By using the n parameter, we can instruct the iterator to perform the folding on 100
indexes. n_splits specifies the number of folds. While shuffle is set to True, it will
randomly choose the fold components. Instead, if it is set to False, the folds will be created
with respect to the order of the indexes (so, the first fold will be [0 1 2 3 4 5 6 7 8
9]).

As usual, the random_state parameter allows for the reproducibility of the fold's
generation.

During the iterator loop, the indexes for training and validation are provided with respect
to your hypothesis for evaluation. (Let's figure out how it works by using h1, the linear
SVC.) You just have to select both X and y accordingly with the help of fancy indexing:

In: h1.fit(X[train_idx],y[train_idx])
 h1.score(X[validation_idx],y[validation_idx])

Out:0.90000000000000002

As you can see, a cross-validation iterator provides you with just the index functionality,
and it is up to you when it comes to using indexes for your scoring evaluation on your
hypothesis. This opens up opportunities for sophisticated operations of validation.

The Data Pipeline Chapter 3

[187]

Among the other most useful iterators, the following are worth mentioning:

 StratifiedKFold works like Kfold, but it always returns folds with
approximately the same class percentage as the training set. This leaves each fold
balanced; therefore, the learner is fitted on the correct proportion of classes.
Instead of the number of cases, as an input parameter, it needs the target variable
y. It is the iterator that is wrapped, by default, in the cross_val_score
function, as we saw in the preceding section.
 LeaveOneOut works like Kfold, but it returns as a validation set of only one
observation. Therefore, in the end, the number of folds will be equivalent to the
number of examples in the training set. We recommend that you use this cross-
validation approach only when the training set is heavily unbalanced (such as in
fraud detection problems) or very small, especially if there are less than 100
observations – a k-fold validation would reduce the training set a lot.
 LeavePOut is similar in regards to the advantages and limitations
of LeaveOneOut, but its validation set is made up of P cases. Therefore, the
number of total folds will be the combination of P cases from all the available
cases (which actually could be quite a large number as the size of your dataset
grows).
 LeaveOneLabelOut provides a convenient way to cross-validate according to a
scheme that you have prepared or computed in advance. In fact, it will act like
Kfolds, but for the fact that the folds will already be labeled and provided to the
labels parameter.
LeavePLabelOut is a variant of LeaveOneLabelOut. In this instance, the test
folds are made of a number of labels according to the scheme that you prepare in
advance.

To learn more about the specific parameters required by each iterator, we
suggest that you check out the Scikit-learn website:
http://Scikit-learn.org/stable/modules/classes.html#module-sklea

rn.model_selection.

As a matter of fact, cross-validation can also be used for prediction purposes. In fact, for
specific data science projects, you may be required to build a model from your available
data and then produce predictions on the very same data. As seen previously, using
training predictions will lead to high variance estimates, given that the model has been
fitted on that very data and thus it has memorized much of its characteristics.

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation

The Data Pipeline Chapter 3

[188]

The cross-validation process applied to prediction can come to the rescue:

Create a cross-validation iterator (preferably with a large number of k folds).
Iterate through the cross-validation and each time train your model with the k-1
training folds.
At each iteration, on the validation fold (which is an out-of-sample fold,
actually), produce predictions and store them away, keeping track of their index.
The best way of doing so is to have a prediction matrix which will be populated
with predictions by using fancy indexing.

Such an approach is commonly referred to as out-of-cross-validation fold prediction.

Sampling and bootstrapping
After illustrating iterators based on folds, p-out, and custom schemes, we'll continue our
overview on cross-validation iterators and quote all of the sampling-based ones.

The sampling schemes are different because they do not split the training set, but they
sample it using different approaches: subsampling or bootstrapping.

Subsampling is performed when you randomly select a part of the available data, obtaining
a smaller dataset than the initial one.

Subsampling is very useful, especially when you need to test your hypothesis extensively,
but you prefer not to obtain your validation from extremely small test samples (so, you can
opt out of a leave-one-out approach or a KFold using a large number of folds). The
following is an example of the same:

In: subsampling = model_selection.ShuffleSplit(n_splits=10,
 test_size=0.1, random_state=1)
 for train_idx, validation_idx in subsampling.split(range(100)):
 print (train_idx, validation_idx)

Out:[92 39 56 52 51 32 31 44 78 10 2 73 97 62 19 35 94 27 46 38 67 99 54
 95 88 40 48 59 23 34 86 53 77 15 83 41 45 91 26 98 43 55 24 4 58 49
 21 87 3 74 30 66 70 42 47 89 8 60 0 90 57 22 61 63 7 96 13 68 85
 14 29 28 11 18 20 50 25 6 71 76 1 16 64 79 5 75 9 72 12 37] [80
 84 33 81 93 17 36 82 69 65]
 ...

The Data Pipeline Chapter 3

[189]

Similar to the other iterators, n_splits will set the number of subsamples and test_size
the percentage (if a float is given) or the number of observations to be used as a test.

Bootstrapping, as a resampling method, has been used for a long time to estimate the
sampling distribution of statistics. Therefore, it is a proper method according to the
evaluation of the out-of-sample performance of a machine learning hypothesis.

Bootstrapping works by randomly choosing observations and allowing repetitions, until a
new dataset, which is of the same size as the original one, is built.

Unfortunately, since bootstrapping works by sampling with replacement (that is, by
allowing the repetition of the same observation), there are issues that arise due to the
following:

Cases that may appear both on the training and the test set (you just have to use
out-of-bootstrap sample observations for test purposes)
There is less variance and more bias than for the cross-validation estimations due
to nondistinct observations resulting from sampling with replacement.

Although the function is useful (at least from our point of view as data science
practitioners), we propose to you a simple replacement for Bootstrap that is suitable for
cross-validating and which can be called by an iteration. It generates a sample bootstrap of
the same size as the input data (the length of the indexes) and a list of the excluded indexes
(out of the sample) that could be used for testing purposes:

In: import random
 def Bootstrap(n, n_iter=3, random_state=None):
 """
 Random sampling with replacement cross-validation generator.
 For each iter a sample bootstrap of the indexes [0, n) is
 generated and the function returns the obtained sample
 and a list of all the excluded indexes.
 """
 if random_state:
 random.seed(random_state)
 for j in range(n_iter):
 bs = [random.randint(0, n-1) for i in range(n)]
 out_bs = list({i for i in range(n)} - set(bs))
 yield bs, out_bs

 boot = Bootstrap(n=100, n_iter=10, random_state=1)
 for train_idx, validation_idx in boot:
 print (train_idx, validation_idx)

Out:[37, 12, 72, 9, 75, 5, 79, 64, 16, 1, 76, 71, 6, 25, 50, 20, 18, 84,

The Data Pipeline Chapter 3

[190]

 11, 28, 29, 14, 50, 68, 87, 87, 94, 96, 86, 13, 9, 7, 63, 61, 22, 57,
 1, 0, 60, 81, 8, 88, 13, 47, 72, 30, 71, 3, 70, 21, 49, 57, 3, 68,
 24, 43, 76, 26, 52, 80, 41, 82, 15, 64, 68, 25, 98, 87, 7, 26, 25,
 22, 9, 67, 23, 27, 37, 57, 83, 38, 8, 32, 34, 10, 23, 15, 87, 25, 71,
 92, 74, 62, 46, 32, 88, 23, 55, 65, 77, 3] [2, 4, 17, 19, 31, 33, 35,
 36, 39, 40, 42, 44, 45, 48, 51, 53, 54, 56, 58, 59, 66, 69, 73, 78,
 85, 89, 90, 91, 93, 95, 97, 99]
 ...

The function performs subsampling and accepts the parameter n for the n_iter index to
draw the bootstrap samples and the random_state index for reproducibility.

Hyperparameter optimization
A machine learning hypothesis is not simply determined by the learning algorithm but also
by its hyperparameters (the parameters of the algorithm that have to be fixed prior, and
which cannot be learned during the training process) and the selection of variables to be
used to achieve the best learned parameters.

In this section, we will explore how to extend the cross-validation approach to find the best
hyperparameters that are able to generalize to our test set. We will keep on using the
handwritten digits dataset offered by the Scikit-learn package. Here's a useful reminder
about how to load the dataset:

In: from sklearn.datasets import load_digits
 digits = load_digits()
 X, y = digits.data, digits.target

In addition, we will keep on using support vector machines as our learning algorithm:

In: from sklearn import svm
 h = svm.SVC()
 hp = svm.SVC(probability=True, random_state=1)

This time, we will work with two hypotheses. The first hypothesis is just the plain SVC that
outputs a label as a prediction. The second hypothesis is SVC enhanced by the computation
of label probabilities (the probability=True parameter) with the random_state fixed to
the value 1 in order to guarantee the reproducibility of the results. SVC outputting
probabilities can be evaluated by all of the loss metrics that require a probability and not a
label prediction as a result, such as AUC.

The Data Pipeline Chapter 3

[191]

After running the preceding code snippet, we are ready to import the model_selection
module and set the list of hyperparameters that we want to test by cross-validation.

We are going to use the GridSearchCV function, which will automatically search for the
best parameters according to a search schedule and score the results with respect to a
predefined or custom scoring function:

In: from sklearn import model_selection
 search_grid = [
 {'C': [1, 10, 100, 1000], 'kernel': ['linear']},
 {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
 'kernel': ['rbf']},
]
 scorer = 'accuracy'

Now, we have imported the module, set the scorer variable using a string parameter
('accuracy'), and created a list made of two dictionaries.

The scorer is a string that we chose from a range of possible ones that you can find in the
predefined values section of the Scikit-learn documentation, which can be viewed at
Scikit-learn.org/stable/modules/model_evaluation.html.

Using predefined values just requires you to pick an evaluation metric from the list (there
are some for classification and regression, and there are some for clustering) and use the
string by plugging it directly, or by using a string variable, into the GridSearchCV
function.

GridSearchCV also accepts a parameter called param_grid, which can be a dictionary
containing, as keys, an indication of all the hyperparameters to be changed and, as values
referring to the dictionary keys, lists of parameters to be tested. Therefore, if you want to
test the performances of your hypothesis with respect to the hyperparameter C, you can
create a dictionary like this:

{'C' : [1, 10, 100, 1000]}

Alternatively, according to your preference, you can use a specialized NumPy function to
generate numbers that are evenly spaced on a log scale (like we saw in the previous
chapter):

{'C' :np.logspace(start=-2, stop=3, num=6, base=10.0)}

http://scikit-learn.org/stable/modules/model_evaluation.html

The Data Pipeline Chapter 3

[192]

You can, therefore, enumerate all of the possible parameters' values and test all of their
combinations. However, you can also stack different dictionaries, having each dictionary
containing only a portion of the parameters that should be tested together. For example,
when working with SVC, the kernel set to linear automatically excludes the gamma
parameter. Combining it with the linear kernel would be, in fact, a waste of computational
power since it would not have any effect on the learning process.

Now, let's proceed with the grid search, timing it (thanks to the %timeit command magic
command) to know how much time it will take to complete the entire procedure:

In: search_func = model_selection.GridSearchCV(estimator=h,
 param_grid=search_grid, scoring=scorer,
 n_jobs=-1, iid=False, refit=True, cv=10)
 %timeit search_func.fit(X,y)
 print (search_func.best_estimator_)
 print (search_func.best_params_)
 print (search_func.best_score_)

Out: 4.52 s ± 75.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
 SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
 gamma=0.001,
 kernel='rbf', max_iter=-1, probability=False, random_state=None,
 shrinking=True, tol=0.001, verbose=False)
 {'kernel': 'rbf', 'C': 10, 'gamma': 0.001}
 0.981081122784

It took about 10 seconds to complete the search on our computer. The search pointed out
that the best solution is an support vector machine classifier with rbf kernel, C=10, and
gamma=0.001 with a cross-validated mean accuracy of 0.981.

As for the GridSearchCV command, apart from our hypothesis (the estimator parameter),
param_grid, and the scoring we just talked about, we decided to set other optional but
useful parameters:

First, we will set n_jobs=-1. This forces the function to use all the processors1.
available on the computer, and so we run the Jupyter cell.
We will then set refit=True so that the function fits the whole training set,2.
using the best estimator's parameters. Now, we just need to apply the
search_funct.predict() method to fresh data in order to obtain new
predictions.
The cv parameter is set to 10 folds (however, you can go for a smaller number,3.
trading off speed with the accuracy of testing).

The Data Pipeline Chapter 3

[193]

The iid parameter is set to False. This parameter decides how to compute the4.
error measure with respect to the classes. If the classes are balanced (as in this
case), setting iid won't have much effect. However, if they are unbalanced, by
default, iid=True will make the classes with more examples weigh more on the
computation of the global error. Instead, iid=False means that all the classes
should be considered the same. Since we wanted SVC to recognize every
handwritten number from 0 to 9, no matter how many examples were given for
each of them, setting the iid parameter to False is the right choice. According
to your data science project, you may decide that you actually prefer the default
being set to True.

Building custom scoring functions
For our experiment, we picked a predefined scorer function. For classification, there are five
measures available (accuracy, AUC, precision, recall, and f1-score), and for regression, there
are three (R2, MAE, and MSE). Though they are some of the most common measures, you
may have to use a different measure. In our example, we find it useful to use a loss function
in order to figure out if the right answer is still ranked high in probability, even when the
classifier is wrong (thus considering if the right answer is the second or the third option of
the algorithm). How do we manage that?

In the sklearn.metrics module, there's actually a log_loss function. All we have to do
is wrap it in a way that GridSearchCV might use it:

In: from sklearn.metrics import log_loss, make_scorer
 Log_Loss = make_scorer(log_loss,
 greater_is_better=False,
 needs_proba=True)

Here it is. Basically, it's a one-liner. We created another function (Log_Loss) by calling
make_scorer to the log_loss error function from sklearn.metrics. We also want to
point out that we want to minimize this measure (it is a loss, not a score) by setting
greater_is_better=False. We will also specify that it works with probabilities, not
predictions (so, set needs_proba=True). Since it works with probabilities, we will use the
hp hypothesis, which was just defined in the preceding section, since SVC won't emit any
probability for its predictions otherwise:

In: search_func = model_selection.GridSearchCV(estimator=hp,
 param_grid=search_grid, scoring=Log_Loss,
 n_jobs=-1, iid=False, refit=True, cv=3)
 search_func.fit(X,y)
 print (search_func.best_score_)

The Data Pipeline Chapter 3

[194]

 print (search_func.best_params_)

Out: -0.16138394082
 {'kernel': 'rbf', 'C': 1, 'gamma': 0.001}

Now, our hyperparameters are optimized for log loss, not for accuracy.

A nice thing to remember is that optimizing for the right function can
bring much better results to your project. So, time spent working on the
score function is always time well spent in data science.

At this point, let's imagine that you have a challenging task. Since it is easy to mistake the
handwritten numbers 1 and 7, you have to optimize your algorithm to minimize its
mistakes on these two numbers. You can achieve this target by defining a new loss
function:

In: import numpy as np
 from sklearn.preprocessing import LabelBinarizer
 def my_custom_log_loss_func(ground_truth,
 p_predictions,
 penalty = list(),
 eps=1e-15):
 adj_p = np.clip(p_predictions, eps, 1 - eps)
 lb = LabelBinarizer()
 g = lb.fit_transform(ground_truth)
 if g.shape[1] == 1:
 g = np.append(1 - g, g, axis=1)
 if penalty:
 g[:,penalty] = g[:,penalty] * 2
 summation = np.sum(g * np.log(adj_p))
 return summation * (-1.0/len(ground_truth))

As a rule, the first parameter of your function should be the actual answer, and the second
should be the predictions or the predicted probabilities. You can also add parameters that
have a default value or allow you to have their values fixed later on when you call the
make_scorer function:

In: my_custom_scorer = make_scorer(my_custom_log_loss_func,
 greater_is_better=False,
 needs_proba=True, penalty = [4,9])

The Data Pipeline Chapter 3

[195]

In this case, we set the penalty for the highly confusable numbers 4 and 9 (however, you
can change it or even leave it empty to check whether the resulting loss will be the same as
that of the previous experiment with the sklearn.metrics.log_loss function).

Now, the new loss function computes the log_loss error as double when evaluating the
results of the classes of numbers 4 and 9:

In: from sklearn import model_selection
 search_grid = [{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
 {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']}]
 search_func = model_selection.GridSearchCV(estimator=hp,
 param_grid=search_grid, scoring=my_custom_scorer, n_jobs=1,
 iid=False, cv=3)
 search_func.fit(X,y)
 print (search_func.best_score_)
 print (search_func.best_params_)

Out: -0.199610271298
 {'kernel': 'rbf', 'C': 1, 'gamma': 0.001}

Please note that, for the last example, we set n_jobs=1. There's a technical
reason behind this choice. If you are running this code on Windows (in
any Unix or macOS system, it is actually fine), you may incur an error that
may block your Jupyter notebook. All cross-validation functions (and
many others) on the Scikit-learn package work by using multiprocessors,
thanks to the joblib package. Such a package requires all the functions to
be run on multiple processors so that they are imported, and it cannot
accept them if they are defined on the fly (they should be pickable). A
possible workaround is saving the function into a file on the disk, such as
custom_measure.py, and importing it by using the from
custom_measure import Log_Loss command.

Reducing the grid search runtime
The GridSearchCV function can really manage an extensive amount of work for you by
checking all combinations of parameters, as required by your grid specification. Anyway,
when the data or grid search space is big, the procedure may take a long time to compute.

The Data Pipeline Chapter 3

[196]

A potential remedy to this issue would be the following approach from the
model_selection module. RandomizedSearchCV offers a procedure that randomly
draws a sample of combinations and reports the best combination found.

This has some clear advantages:

You can limit the number of computations.
You can obtain a good result or, at worst, understand where to focus your efforts
on in the grid search.
RandomizedSearchCV has the same options as GridSearchCV but:

Has a n_iter parameter, which is the number of random samples.1.
Includes param_distributions, which has the same function as that2.
of param_grid. However, it only accepts dictionaries and it works
even better if you assign distributions as values and not lists of discrete
values. For instance, instead of C: [1, 10, 100, 1000], you can
assign a distribution such as C:scipy.stats.expon(scale=100).

Let's test this function with our previous settings:

In: search_dict = {'kernel': ['linear','rbf'],'C': [1, 10, 100, 1000],
 'gamma': [0.001, 0.0001]}
 scorer = 'accuracy'
 search_func = model_selection.RandomizedSearchCV(estimator=h,
 param_distributions=search_dict,
 n_iter=7,
 scoring=scorer,
 n_jobs=-1,
 iid=False,
 refit=True,
 cv=10,
 return_train_score=False)
 %timeit search_func.fit(X,y)
 print (search_func.best_estimator_)
 print (search_func.best_params_)
 print (search_func.best_score_)

Out: 1.53 s ± 265 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
 SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
 gamma=0.001, kernel='rbf', max_iter=-1, probability=False,
 random_state=None, shrinking=True, tol=0.001, verbose=False)
 {'kernel': 'rbf', 'C': 1000, 'gamma': 0.001}
 0.981081122784

The Data Pipeline Chapter 3

[197]

Using just half of the computations (7 draws against 14 trials with the exhaustive grid
search), it found an equivalent solution. Let's also have a look at the combinations that have
been tested:

In: res = search_func.cvresults
 for el in zip(res['mean_test_score'],
 res['std_test_score'],
 res['params']):
 print(el)

Out: (0.9610800248897716, 0.021913085707003094, {'kernel': 'linear',
 'gamma': 0.001, 'C': 1000})
 (0.9610800248897716, 0.021913085707003094, {'kernel': 'linear',
 'gamma': 0.001, 'C': 1})
 (0.9716408520553866, 0.02044204452092589, {'kernel': 'rbf',
 'gamma': 0.0001, 'C': 1000})
 (0.981081122784369, 0.015506818968315338, {'kernel': 'rbf',
 'gamma': 0.001, 'C': 10})
 (0.9610800248897716, 0.021913085707003094, {'kernel': 'linear',
 'gamma': 0.001, 'C': 10})
 (0.9610800248897716, 0.021913085707003094, {'kernel': 'linear',
 'gamma': 0.0001, 'C': 1000})
 (0.9694212166750269, 0.02517929728858225, {'kernel': 'rbf',
 'gamma': 0.0001, 'C': 10})

Even without a complete overview of all combinations, a good sample can prompt you to
look for just the RBF kernel and for certain C and gamma ranges, limiting the following grid
search to a limited portion of the potential search space.

Resorting to optimization based on random processes may appear to rely on blind luck, but
actually, it is a very efficient way to explore the hyperparameters' space, especially when it
is a high-dimensional space. If properly arranged, random search does not sacrifice the
completeness of exploration for its extent. In high-dimensional hyperparameter spaces, grid
search exploration tends to repeat the testing of similar parameter combinations, proving to
be computationally highly inefficient in those case where there are irrelevant parameters or
parameters whose effects are very correlated.

Random Search has been devised by James Bergstra and Yoshua Bengio in order to make
the search of optimal combinations of hyperparameters in deep learning more efficient. The
original paper is a great source for further insight into this method: http:/ ​/ ​www.​jmlr. ​org/
papers/​volume13/ ​bergstra12a/ ​bergstra12a. ​pdf.

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

The Data Pipeline Chapter 3

[198]

Statistical tests have demonstrated that for a randomized search to
perform well, you should try from a minimum of 30 trials to a maximum
of 60 (this rule of thumb is based on the assumption that the optimum
covers from 5% to 10% of the hyperparameters' space, and a 95% success
rate is an acceptable one). Consequently, it generally makes sense to resort
to random search if your grid searching requires a comparable (so you can
take advantage of random searching's properties) or a larger number of
experiments (allowing you to save on computations).

Feature selection
With respect to the machine learning algorithm that you are going to use, irrelevant and
redundant features may play a role in the lack of interpretability of the resulting model,
long training times and, most importantly, overfitting and poor generalization.

Overfitting is related to the ratio of the number of observations and the variables available
in your dataset. When the variables are many compared to the observations, your learning
algorithm will have more chance of ending up with some local optimization or the fitting of
some spurious noise due to the correlation between variables.

Apart from dimensionality reduction, which requires you to transform data, feature
selection can be the solution to the aforementioned problems. It simplifies high-
dimensional structures by choosing the most predictive set of variables; that is, it picks the
features that work well together, even if some of them are not such good predictors on an
independent level.

The Scikit-learn package offers a wide range of feature selection methods:

Selection based on the variance
Univariate selection
Recursive elimination
Randomized logistic regression/stability selection
L1-based feature selection
Tree-based feature selection

Variance, univariate, and recursive elimination can be found in the feature_selection
module. The others are a byproduct of specific machine learning algorithms. Apart from
tree-based selection (which will be mentioned in Chapter 4, Machine Learning), we are
going to present all the preceding methods and point out how they can help you improve
your learning from the data.

The Data Pipeline Chapter 3

[199]

Selection based on feature variance
This method is the simplest approach to feature selection, and it's often used as the
baseline. It simply removes all the features which have small variance; typically, lower than
the one set. By default, the VarianceThresholder object removes all the zero-variance
features, but you can control it with the threshold parameter.

Let's create a small dataset composed of 10 observations and 5 features, 3 of them
informative:

In: from sklearn.datasets import make_classification
 X, y = make_classification(n_samples=10, n_features=5,
 n_informative=3, n_redundant=0, random_state=101)

Now, let's measure their Variance:

In: print ("Variance:", np.var(X, axis=0))

Out: Variance: [2.50852168 1.47239461 0.80912826 1.51763426
 1.37205498]

The lower variance is associated with the third feature; therefore if we want to select the
four best features, we should set the threshold of minimum variance to 1.0. Let's do that,
and see what happens with the first observation of the dataset:

In: from sklearn.feature_selection import VarianceThreshold
 X_selected = VarianceThreshold(threshold=1.0).fit_transform(X)
 print ("Before:", X[0, :])
 print ("After: ", X_selected[0, :])

Out: Before: [1.26873317 -1.38447407 0.99257345 1.19224064 -2.07706183]
 After: [1.26873317 -1.38447407 1.19224064 -2.07706183]

As expected, the third column is removed in the feature selection process, and none of the
output observations have it. Only the ones with variance greater than 1.0 have remained.
Remember not to Z-normalize your dataset (with the StandardScaler, for example)
before applying VarianceThresholder; otherwise, all the features will have unitary
variance.

Univariate selection
With the help of univariate selection, we intend to select single variables that are associated
the most with your target variable according to a statistical test.

The Data Pipeline Chapter 3

[200]

There are three available tests to base our selection on:

The f_regression object uses an F-test and a p-value according to the ratio of
explained variance against the unexplained one in a linear regression of the
variable with the target. This is only useful for regression problems.
The f_classif object is an ANOVA F test that can be used when dealing with
classification problems.
The Chi2 object is a chi-squared test, which is suitable when the target is a
classification and the variables are count or binary data (they should be positive).

All of the tests have a score and a p-value. Higher scores and p-values indicate that the
variable is associated and is consequently useful to the target. The tests do not take into
account instances where the variable is a duplicate or is highly correlated to another
variable. It is, therefore, most suited to rule out the not-so-useful variables than to highlight
the most useful ones.

In order to automate the procedure, there are also some selection routines that are
available:

 SelectKBest, based on the score of the test, takes the k best variables.
SelectPercentile, based on the score of the test, takes the top percentile of
performing variables.
Based on the p-values of the tests, SelectFpr (false positive rate test),
SelectFdr (false discovery rate test), and SelectFwe (family-wise error rate
procedure).

You can also create your own selection procedure with the GenericUnivariateSelect
function by using the score_func parameter, which takes predictors and the target and
returns a score and a p-value based on your favorite statistical test.

The great advantage offered by these functions is that they present a series of methods to
select the variables (fit) and later on automatically reduce (transform) all the sets to the best
variables. In our example, we use the .get_support() method in order to get a Boolean
indexing from both the Chi2 and f_classif tests on the top 25 percent predictive
variables. We then decide on the variables that have been selected by both tests:

In: X, y = make_classification(n_samples=800, n_features=100,
 n_informative=25,
 n_redundant=0, random_state=101)

The Data Pipeline Chapter 3

[201]

make_classification creates a dataset of 800 cases and 100 features. The important
variables are a quarter of the total:

In: from sklearn.feature_selection import SelectPercentile
 from sklearn.feature_selection import chi2, f_classif
 from sklearn.preprocessing import Binarizer, scale
 Xbin = Binarizer().fit_transform(scale(X))
 Selector_chi2 = SelectPercentile(chi2, percentile=25).fit(Xbin, y)
 Selector_f_classif = SelectPercentile(f_classif,
 percentile=25).fit(X, y)
 chi_scores = Selector_chi2.get_support()
 f_classif_scores = Selector_f_classif.get_support()
 selected = chi_scores & f_classif_scores # use the bitwise and operator

If you use the chi-squared association measure, as in the above example, the input X must
be non-negative: X must contain Booleans or frequencies, hence the choice to binarize after
the normalization if the variable is above the average.

The final selected variable contains a Boolean vector, pointing out 21 predictive variables
that have been made evident by both of the tests.

As a suggestion based on experience, by operating with different
statistical tests and retaining a high percentage of your variables, you can
usefully exploit univariate selection by ruling out less informative
variables and thus simplify your set of predictors.

Recursive elimination
The problem with univariate selection is the likelihood of selecting a subset containing
redundant information, whereas our interest is to get a minimum set that works with our
predictor algorithm. In this case, recursive elimination could help provide the answer.

By running the following script, you'll find the reproduction of a problem that is quite
challenging and which you may also often come across in datasets of different cases and
variable sizes:

In: from sklearn.model_selection import train_test_split
 X, y = make_classification(n_samples=100, n_features=100,
 n_informative=5,
 n_redundant=2, random_state=101)
 X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.30,
 random_state=101)

The Data Pipeline Chapter 3

[202]

In: from sklearn.linear_model import LogisticRegression
 classifier = LogisticRegression(random_state=101)
 classifier.fit(X_train, y_train)
 print ('In-sample accuracy: %0.3f' %
 classifier.score(X_train, y_train))
 print ('Out-of-sample accuracy: %0.3f' %
 classifier.score(X_test, y_test))

Out: In-sample accuracy: 1.000
 Out-of-sample accuracy: 0.667

We have a small dataset with quite a large number of variables. It is a problem of the p>n
type, where p is the number of variables and n is the number of observations.

In such cases, there are surely some informative variables in the dataset, but the noise
provided by the others may fool the learning algorithm while assigning the correct
coefficients to the correct features. Keep in mind that this situation is not the best operative
environment to do data science; therefore, expect mediocre results at best.

This reflects in high (in our case, perfect) in-sample accuracy, which drops sharply when
tested on an out-of-sample, or when using cross-validation.

In such a case, provided with a learning algorithm, instructions about the scoring/loss
function and the cross-validation procedure, the RFECV class, starts fitting an initial model
on all variables and calculates a score based on cross-validation. At this point, RFECV starts
pruning the variables until it reaches a set of variables where the cross-validated score
starts decreasing (whereas, by pruning, the score should have stayed stable or increased):

In: from sklearn.feature_selection import RFECV
 selector = RFECV(estimator=classifier, step=1, cv=10,
 scoring='accuracy')
 selector.fit(X_train, y_train)
 print('Optimal number of features : %d' % selector.n_features_)

Out: Optimal number of features : 4

The Data Pipeline Chapter 3

[203]

In our example, from 100 variables, the RFECV ended up selecting just four of them. We can
check the result on the test set after transforming both the training and test set in order to
reflect the variable pruning:

In: X_train_s = selector.transform(X_train)
 X_test_s = selector.transform(X_test)
 classifier.fit(X_train_s, y_train)
 print ('Out-of-sample accuracy: %0.3f' %
 classifier.score(X_test_s, y_test))

Out: Out-of-sample accuracy: 0.900

As a rule, when you notice a large discrepancy between the training results (based on cross-
validation, not the in-sample score) and the out-of-sample results, recursive selection can
help you achieve better performance from your learning algorithms by pointing out some
of the most important variables.

Stability and L1-based selection
Though effective, recursive elimination is actually a step-by-step algorithm that bases its
choices on sequences of single evaluations. While pruning, it opts for certain selections,
potentially excluding many others. That's a good way to reduce a particularly challenging
and time-consuming problem, such as an exhaustive search among possible sets, into a
more manageable one. Anyway, there's another way to solve the problem, which is by
using all the variables at hand conjointly. Some algorithms use regularization to limit the
weight of the coefficients, thus preventing overfitting and the selection of the most relevant
variables without losing predictive power. In particular, the regularization L1 (the lasso) is
well-known for the creation of sparse selections of variables' coefficients since it pushes
many variables to the 0 value according to the set strength of regularization.

An example will clarify the usage of the logistic regression classifier and the synthetic
dataset that we used for recursive elimination.

The Data Pipeline Chapter 3

[204]

By the way, linear_model.Lasso will work out the L1 regularization for regression,
whereas linear_model.LogisticRegression and svm.LinearSVC will do so for the
classification:

In: from sklearn.svm import LinearSVC
 classifier = LogisticRegression(C=0.1, penalty='l1', random_state=101)
 classifier.fit(X_train, y_train)
 print ('Out-of-sample accuracy: %0.3f' %
 classifier.score(X_test, y_test))

Out: Out-of-sample accuracy: 0.933

The out-of-sample accuracy is better than the previous one that was obtained by using the
greedy approach. The secret is the penalty='l1' and the C value that was assigned when
initializing the LogisticRegression class. Since C is the main ingredient of the L1-based
selection, it is important to choose it correctly. This can be done by using grid search and
cross-validation, but there's an easier and an even more effective way to obtain variable
selection through regularization: stability selection.

Stability selection successfully uses L1 regularization, even under the default values
(though you may need to change them in order to improve the results) because it verifies its
results by subsampling, that is, by recalculating the regularization process a large number
of times by using a randomly chosen part of the training dataset.

The result excludes all of the variables that often had their coefficient estimated to be zero.
Only if a variable has a nonzero coefficient will the variable be considered stable to the
dataset and feature set variations, which is something important to be included in the
model (hence the name, "stability selection").

Let's test this by implementing the selection approach (by using the dataset that we used
before):

In: from sklearn.linear_model import RandomizedLogisticRegression
 selector = RandomizedLogisticRegression(n_resampling=300,
 random_state=101)
 selector.fit(X_train, y_train)
 print ('Variables selected: %i' % sum(selector.get_support()!=0))
 X_train_s = selector.transform(X_train)
 X_test_s = selector.transform(X_test)
 classifier.fit(X_train_s, y_train)
 print ('Out-of-sample accuracy: %0.3f' %
 classifier.score(X_test_s, y_test))

Out: Variables selected: 3
 Out-of-sample accuracy: 0.933

The Data Pipeline Chapter 3

[205]

Actually, we obtained results that were similar to that of the L1-based selection by just
using the default parameters of the RandomizedLogisticRegression class.

The algorithm works fine. It is reliable and it works out of the box (there are no parameters
to tweak unless you want to try lowering the C values in order to speed it up). We just
suggest that you set the n_resampling parameter to a large number so that your computer
can handle stability selection in a reasonable amount of time.

If you want to resort to the same algorithm for a regression problem, you should use the
RandomizedLasso class instead. Let's see how to use it. First, we create a dataset that's
adequate for a regression problem. For simplicity, we will use a 100-sample, 10-feature
observation matrix; the number of informative features is 4.

Then, we can leave RandomizezLasso to figure out which are the most important features
(the informative ones) by printing their score. Note that a resulting score is a floating-point
number:

In: from sklearn.linear_model import RandomizedLasso
 from sklearn.datasets import make_regression
 X, y = make_regression(n_samples=100, n_features=10,
 n_informative=4,
 random_state=101)
 rlasso = RandomizedLasso()
 rlasso.fit(X, y)
 list(enumerate(rlasso.scores_))

Out: [(0, 1.0),
 (1, 0.0),
 (3, 0.0),
 (4, 0.0),
 (5, 1.0),
 (6, 0.0),
 (7, 0.0),
 (8, 1.0),
 (9, 0.0)]

As expected, the number of features with nonzero weights is 4. Select them, since they're
the most informative to conduct any further analysis. That is, demonstrate the effectiveness
of the method and that you can apply it safely in most feature selection situations in order
to quickly have a working selection of useful features to be used in logistic or linear
regression models as well as in other linear models.

The Data Pipeline Chapter 3

[206]

Wrapping everything in a pipeline
As a concluding topic, we will discuss how to wrap the operations of transformation and
selection we have seen so far together, into a single command, a pipeline that will take your
data from source to your machine learning algorithm.

Wrapping all of your data operations into a single command offers some advantages:

Your code becomes clear and more logically constructed because pipelines force
you to rely on functions for your operations (each step is a function).
You treat the test data in the exact same way as your train data without code
repetitions or the possibility of any mistakes being made in the process.
You can easily grid search the best parameters on all the data pipelines you have
devised, not just on the machine learning hyperparameters.

We distinguish between two kinds of wrappers, depending on the data flow you need to
build: serial or parallel.

Serial processing means that your transformation steps are dependent one on the other, and
consequently, they have to be executed in a certain sequence. For serial processing, Scikit-
learn offers the Pipeline class, which can be found in the pipeline module.

On the other hand, parallel processing implies that all of your transformations just take
origin from the same data and that they can be easily executed by separate processes,
whose results are to be gathered together at the end. Scikit-learn also has a class for parallel
processing, FeatureUnion, which again is in the pipeline module. The interesting aspect
of FeatureUnion is that it can parallelize any serial pipeline, too.

Combining features together and chaining
transformations
What's the best way to figure out how FeatureUnion and Pipeline operate? Just recall
how the Scikit-learn API works: first, a class is instantiated, then it is fitted to some data,
and then the same data (or some different data) is transformed based on the previous
fitting. Instead of doing so along with your script, you just instruct a pipeline by providing
tuples containing the name of the step and the command to be executed. According to the
sequence, the operations will be executed by your Python's thread or distributed to
different threads on multiple processors.

The Data Pipeline Chapter 3

[207]

In our example, we are trying to replicate our previous example, building a logistic
regression classifier by stability selection. First, we add some unsupervised learning and
feature creation on top of it. We start by setting up the problem by creating train and test
datasets:

In: import numpy as np
 from sklearn.model_selection import train_test_split
 from sklearn.datasets import make_classification
 from sklearn.linear_model import LogisticRegression
 from sklearn.pipeline import Pipeline
 from sklearn.pipeline import FeatureUnion
 X, y = make_classification(n_samples=100, n_features=100,
 n_informative=5,
 n_redundant=2, random_state=101)
 X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.30,
 random_state=101)
 classifier = LogisticRegression(C=0.1, penalty='l1', random_state=101)

After doing so, we instruct the parallel execution of a PCA, a KernelPCA, and two custom
transformers—one just passing the features as they are and the other one computing the
inverse. You can expect each element in transformer_list to be fitted, the
transformation applied, and all the results stacked together by column, but only when a
transform method is executed (it is a lazy execution; defining FeatureUnion won't
trigger any execution).

You will also find it useful to use the make_pipeline and make_union commands with
the same results. In fact, these commands can produce the FeatureUnion and Pipeline
classes, which are ready to set as an output. It is worth mentioning that they do not require
you to name the steps since the naming will be done automatically by the function:

In: from sklearn.decomposition import PCA
 from sklearn.decomposition import KernelPCA
 from sklearn.preprocessing import FunctionTransformer

 def identity(x):
 return x

 def inverse(x):
 return 1.0 / x

 parallel = FeatureUnion(transformer_list=[
 ('pca', PCA()),
 ('kernelpca', KernelPCA()),
 ('inverse', FunctionTransformer(inverse)),
 ('original',FunctionTransformer(identity))], n_jobs=1)

The Data Pipeline Chapter 3

[208]

Please note that we have set n_jobs to 1, thus avoiding multiprocessing completely. That's
because the joblib package, which is responsible for multicore parallelism on Scikit-learn,
is not working properly with custom-made functions on a Jupyter Notebook running on
Windows. If you are working on macOS or Linux, you can safely set n_jobs to multiple
workers or set all the multicore resources on the problem (setting it to -1). However, when
running on Windows, unless you are not using the custom function but picking them from
a package, or you are running your code in a script having set the __name__ variable to
__main__, you will surely experience some problems. We already discussed this very same
problem in more technical detail at the end of the Building custom scoring functions section in
this chapter. Please also refer to our advice in the tip in that section for more insights into
the problem.

After having defined the parallel operations, we can proceed to get the complete pipeline
ready:

In: from sklearn.preprocessing import RobustScaler
 from sklearn.linear_model import RandomizedLogisticRegression
 from sklearn.feature_selection import RFECV
 selector = RandomizedLogisticRegression(n_resampling=300,
 random_state=101,
 n_jobs=1)
 pipeline = Pipeline(steps=[('parallel_transformations', parallel),
 ('random_selection', selector),
 ('logistic_reg', classifier)])

One great advantage of having a complete pipeline of transformation and learning put
together is the possibility to control all of its parameters. We can test a grid search on the
pipeline in order to find the best configuration of the hyperparameters:

In: from sklearn import model_selection
 search_dict = {'logistic_reg__C':[10,1,0.1], 'logistic_reg__penalty':
 ['l1','l2']}
 search_func = model_selection.GridSearchCV(estimator=pipeline,
 param_grid =search_dict, scoring='accuracy', n_jobs=1,
 iid=False, refit=True, cv=10)
 search_func.fit(X_train,y_train)
 print (search_func.best_estimator_)
 print (search_func.best_params_)
 print (search_func.best_score_)

The Data Pipeline Chapter 3

[209]

When defining your parameter grid search, you can refer to the different parts of the
pipeline by writing its name, adding a couple of underscores, and then the name of the
parameters to tweak. For instance, acting on the C hyperparameter of the logistic regression
requires you to address it as 'logistic_reg__C'. If a parameter is nested in multiple
pipelines, you just have to name them all, separated by a double underscore, as if you were
navigating into a disk directory.

Since a double underscore is used to structure the hierarchy of a pipeline's steps and
hyperparameters, you cannot use it when naming the steps of your pipeline.

As a concluding step, we just use the resulting search for predictions on the test set. When
this is done, Python will execute the complete pipeline, with the hyperparameters set by the
grid search, and provide you with the result. You do not have to worry about replicating to
the test set what you've done on the train set; a set of instructions in a pipeline will always
assure consistency and reproducibility to your data munging operations:

In: from sklearn.metrics import classification_report
 print (classification_report(y_test, search_func.predict(X_test)))

Out: precision recall f1-score support

 0 0.94 0.94 0.94 17
 1 0.92 0.92 0.92 13

 avg / total 0.93 0.93 0.93 30

Building custom transformation functions
As you will have noticed, in our example, we used a couple of custom transformation
functions, an identity, and an inverse, in order to have the original features along the
transformed one and to make features inverse. Custom transformations can help you deal
with the specific munging you have in mind for your problem, and you will also find them
useful because they can act as a filter by filtering unwanted or erroneous values.

You can create a custom transformation just by applying the FunctionTransformer
function from sklearn.preprocessing, which turns any function into a Scikit-learn class
with the fit and transform method. Creating a transformation from scratch may help to
make things clear for you regarding how it works.

The Data Pipeline Chapter 3

[210]

First, you have to create a class. Let's see an example for filtering certain columns, which
you previously defined from your dataset:

In: from sklearn.base import BaseEstimator, TransformerMixin

 class filtering(BaseEstimator, TransformerMixin):
 def __init__(self, columns):
 self.columns = columns

 def fit(self, X, y=None):
 return self

 def transform(self, X):
 if len(self.columns) == 0:
 return X
 else:
 return X[:,self.columns]

Using the __init__ method, you can define the parameters to instantiate the class. In this
case, you just record a list with the position of the columns you want to filter. Then, you
have to prepare both a fit and transform method for the class.

In the case of our example, the fit method just returns itself. In different situations, it may
be useful to use the fit method in order to keep track of characteristics of the training set
that you will later have to apply on the test set (for instance, the mean and the variance of
the features, the maximum and minimum, and so on).

The real operation that you want to achieve on data is executed in the transform method.

As you may recall, since Scikit-learn operates internally using NumPy arrays, it is
important to treat the data that you transform as a NumPy array.

After defining the class, you can wrap it in a Pipeline or a FeatureUnion according to
your needs. In our example, we just created a pipeline by selecting the first five features of
the training set and operating a PCA transformation on them:

In: ff = filtering([1,2,3])
 ff.fit_transform(X_train)

Out: array([[0.78503915, 0.84999568, -0.63974955],
 [-2.4481912 , -0.38522917, -0.14586868],
 [-0.6506899 , 1.71846072, -1.14010846],
 ...

The Data Pipeline Chapter 3

[211]

Summary
In this chapter, we extracted significant meanings from data by applying a number of
advanced data operations, from EDA and feature creation to dimensionality reduction and
outlier detection.

More importantly, we started developing, with the help of many examples, our data
pipeline. This was achieved by encapsulating a train/cross-validation/test setting into our
hypothesis, which was expressed in terms of various activities – from data selection and
transformation to the choice of learning algorithm and its best hyperparameters.

In the next chapter, we will delve into the principal machine learning algorithms offered by
the Scikit-learn package, such as linear models, support vectors machines, ensembles of
trees, and unsupervised techniques for clustering, among others.

4
Machine Learning

Having illustrated all the data preparation steps in a data science project, we have finally
arrived at the learning phase, where learning algorithms are applied. To introduce you to
the most effective machine learning tools that are readily available in scikit-learn and in
other Python packages, we have prepared a brief introduction to all the major families of
algorithms. We completed it with examples and tips on the hyper-parameters that
guarantee the best possible results.

In this chapter, we will present the following topics:

Linear and logistic regression
Naive Bayes
K-Nearest Neighbors (k-NN)
Support Vector Machines (SVM)
Ensemble solutions
Bagged and boosted classifiers
Stochastic gradient-based classification and regression for big data
Unsupervised clustering with K-means and DBSCAN

Neural networks and deep learning, instead, will be dealt with in the following chapter.

Preparing tools and datasets
As introduced in the previous chapters, the Python package for machine learning with the
lion's share is scikit-learn. In this chapter, we also will use XGboost, LightGBM, and
Catboost: you'll find the instructions in the relevant sections.

Machine Learning Chapter 4

[213]

The motivations for using scikit-learn developed at Inria, the French Institute for Research
in Computer Science and Automation (inria.fr/en/), are multiple. It is worthwhile at this
point to mention the most important reasons for using scikit-learn for the success of your
data science project:

A consistent API (fit, predict, transform, and partial_fit) across models
that naturally helps to correctly implement data science procedures working on
data organized in NumPy arrays
A complete selection of well-tested and scalable classical models for machine
learning, offering many out-of-core implementations for learning from data that
won't fit in your RAM memory
A steady development with many new additions in the pipeline thanks to a
group of top contributors (Andreas Mueller, Olivier Grisel, Fabian Pedregosa,
Gael Varoquaux, Gilles Loupe, Peter Prettenhofer, and many others)
Extensive documentation with many examples, to be consulted online or inline
using the help command

In this chapter, we will apply scikit-learn's machine learning algorithms to some example
datasets. We will put apart the very instructive but too commonly used Iris and Boston
datasets to demonstrate machine learning as applied to more real-life datasets. We have
selected interesting examples from the following:

The machine learning dataset repository (mldata.org) hosted by Technische
Universität at Berlin
The UCI machine learning repository (archive.ics.uci.edu/ml/datasets.html)
LIBSVM datasets (offered by Chih-Jen Lin from National Taiwan University)

To let you have such datasets, and not having to rely on an internet connection every time
you want to test the examples, we advise you to download them and store them on your
hard disk. Consequently, we have prepared some scripts for automatic downloading of the
datasets that will be placed exactly in the directory in which you are working with Python,
thus rendering easier data access:

In: import pickle
 import urllib
 import ssl
 ssl._create_default_https_context = ssl._create_unverified_context
 from sklearn.datasets import fetch_mldata
 from sklearn.datasets import load_svmlight_file
 from sklearn.datasets import fetch_covtype
 from sklearn.datasets import fetch_20newsgroups
 mnist = fetch_mldata("MNIST original")
 pickle.dump(mnist, open("mnist.pickle", "wb"))

https://www.inria.fr/en/
http://mldata.org/
http://archive.ics.uci.edu/ml/datasets.html

Machine Learning Chapter 4

[214]

 target_page =
'http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/ijcnn1.bz2'
 with urllib.request.urlopen(target_page) as response:
 with open('ijcnn1.bz2','wb') as W:
 W.write(response.read())
 target_page =
'http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/cadata'
 cadata = load_svmlight_file(urllib.request.urlopen(target_page))
 pickle.dump(cadata, open("cadata.pickle", "wb"))

 covertype_dataset = fetch_covtype(random_state=101, shuffle=True)
 pickle.dump(covertype_dataset, open(
 "covertype_dataset.pickle", "wb"))

 newsgroups_dataset = fetch_20newsgroups(shuffle=True,
 remove=('headers', 'footers', 'quotes'), random_state=6)

 pickle.dump(newsgroups_dataset, open(
 "newsgroups_dataset.pickle", "wb"))

If any part of the download procedure doesn't work for you, we will provide you a direct
download for the datasets. After getting our compressed zip package, all you will have to
do is unpack its data into the current working Python directory, which you can discover by
running on your Python interface (a Jupyter notebook or any Python IDE) using this
command:

In: import os
 print ("Current directory is: "%s"" % (os.getcwd()))

You can test all the algorithms in the book with other open source and free
to use datasets if you feel like. Google provides a search engine for
looking for the right data for your experiments at https:/ ​/​toolbox.
google. ​com/ ​datasetsearch: you just ask the search engine what you are
looking for.

Linear and logistic regression
Linear and logistic regressions are the two methods that can be used to linearly predict a
target value or a target class, respectively. Let's start with an example of linear regression
predicting a target value.

https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch

Machine Learning Chapter 4

[215]

In this section, we will again use the Boston dataset, which contains 506 samples, 13
features (all real numbers), and a (real) numerical target (which renders it ideal for
regression problems). We will divide our dataset into two sections by using a train/test split
cross-validation to test our methodology (in the example, 80 percent of our dataset goes in
training and 20 percent in the test set):

In: from sklearn.datasets import load_boston
 boston = load_boston()
 from sklearn.model_selection import train_test_split
 X_train, X_test, Y_train, Y_test = train_test_split(boston.data,
 boston.target, test_size=0.2,
random_state=0)

The dataset is now loaded and the train/test pairs have been created. In the next few steps,
we're going to train and fit the regressor in the training set and predict the target variable in
the test dataset. We are then going to measure the accuracy of the regression task by using
the MAE score (as explained in Chapter 3, The Data Pipeline). As for the scoring function,
we decided for the mean absolute error, to penalize errors just proportionally to the size of
the error itself (using the more common mean squared error would have emphasized larger
errors more, since errors are squared):

In: from sklearn.linear_model import LinearRegression
 regr = LinearRegression()
 regr.fit(X_train, Y_train)
 Y_pred = regr.predict(X_test)

 from sklearn.metrics import mean_absolute_error
 print ("MAE", mean_absolute_error(Y_test, Y_pred))

Out: MAE 3.84281058945

Great! We achieved our goal in the simplest possible way. Now let's take a look at the time
needed to train the system:

In: %timeit regr.fit(X_train, y_train)

Out: 544 µs ± 37.4 µs per loop
 (mean ± std. dev. of 7 runs, 1000 loops each)

Machine Learning Chapter 4

[216]

That was really quick! The results, of course, are not all that great (if you see the
comparison with another regressor based on Random Forest in the Jupyter notebook
presented earlier in the book, in Chapter 1, First Steps). However, linear regression offers a
very good trade-off between performance against the speed of training and simplicity.
Now, let's take a look under the hood of the algorithm. Why is it so fast but not that
accurate? The answer is somewhat expected—this is because it's a very simple linear
method.

Let's briefly dig into a mathematical explanation of this technique. Let's name X(i) the ith
sample (it is actually a row vector of numerical features) and Y(i) its target. The goal of
linear regression is to find a good weight (column) vector W, which is best suited at
approximating the target value when multiplied by the observation vector, that is, X(i) * W
Ɉ Y(i) (note that this is a dot product). W should be the same, and the best for every
observation. Thus, solving the following equation becomes easy:

W can be found easily with the help of a matrix inversion (or, more likely, a pseudo-
inversion, which is a computationally efficient way) and a dot product. Here's the reason
linear regression is so fast. Note that this is a simplistic explanation—the real method adds
another virtual feature to compensate for the bias of the process. Yet, this does not change
the complexity of the regression algorithm much.

We progress now to logistic regression. In spite of what the name suggests, it is a classifier
and not a regressor. It must be used in classification problems where you are dealing with
only two classes (binary classification). Typically, target labels are Boolean; that is, they
have values as either True/False or 0/1 (indicating the presence or absence of the expected
outcome). In our example, we keep on using the same dataset. The target is to guess
whether a house value is over or under the average of a threshold value we are interested
in. In essence, we moved from a regression problem to a binary classification one because
now our target is to guess how likely an example is to be a part of a group. We start
preparing the dataset by using the following commands:

In: import numpy as np
 avg_price_house = np.average(boston.target)
 high_priced_idx = (Y_train >= avg_price_house)
 Y_train[high_priced_idx] = 1

Machine Learning Chapter 4

[217]

 Y_train[np.logical_not(high_priced_idx)] = 0
 Y_train = Y_train.astype(np.int8)
 high_priced_idx = (Y_test >= avg_price_house)
 Y_test[high_priced_idx] = 1
 Y_test[np.logical_not(high_priced_idx)] = 0
 Y_test = Y_test.astype(np.int8)

Now we will train and apply the classifier. To measure its performance, we will simply
print the classification report:

In: from sklearn.linear_model import LogisticRegression
 clf = LogisticRegression()
 clf.fit(X_train, Y_train)
 Y_pred = clf.predict(X_test)
 from sklearn.metrics import classification_report
 print (classification_report(Y_test, Y_pred))

 Out:
 precision recall f1-score support

 0 0.81 0.92 0.86 61
 1 0.85 0.68 0.76 41

avg / total 0.83 0.82 0.82 102

The output of this command can change on your machine depending on
the optimization process of the LogisticRegression classifier (no seed
has been set for replicability of the results).

The precision and recall values are over 80 percent. This is already a good result for a
very simple method. The training speed is impressive, too. Thanks to Jupyter Notebook, we
can have a comparison of the algorithm with a more advanced classifier in terms of
performance and speed:

In: %timeit clf.fit(X_train, y_train)

Out: 2.75 ms ± 120 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

What's under the hood of a logistic regression? The simplest classifier a person could
imagine (apart from a mean) is a linear regressor followed by a hard threshold:

y_predi = sign (Xi * W)

Here, sign(a) = +1 if a is greater or equal than zero, and 0 otherwise.

Machine Learning Chapter 4

[218]

To smooth down the hardness of the threshold and predict the probability of belonging to a
class, logistic regression resorts to the logit function. Its output is a (0 to 1) real number
(0.0 and 1.0 are attainable only via rounding; otherwise, the logit function just tends toward
them), which indicates the probability that the observation belongs to class 1. Using a
formula, that becomes as follows:

In the above formula, you have: logistic(α) = .

Why the logistic function instead of some other function? Well, because it
just works pretty well in most real cases. In the remaining cases, if you're
not completely satisfied with its results, you may want to try some other
nonlinear functions instead (there is a limited variety of suitable ones,
though).

Naive Bayes
Naive Bayes is a very common classifier used for probabilistic binary and multiclass
classification. Given the feature vector, it leverages the Bayes rule to predict the probability
of each class. It's often applied to text classification since it's very effective with large and
fat data (that is a data set with many features), characterized by a consistent a priori
probability, handling effectively the curse of dimensionality issue.

There are three kinds of Naive Bayes classifiers; each of them has strong assumptions
(hypotheses) about the features. If you're dealing with real/continuous data, the Gaussian
Naive Bayes classifier assumes that features are generated from a Gaussian process (that is,
they are normally distributed). Alternatively, if you're dealing with an event model where
events can be modeled with a multinomial distribution (in such a case, features are
counters or frequencies), you need to use the Multinomial Naive Bayes classifier. Finally, if
all your features are independent and Boolean, and it is safe to assume that they're the
outcome of a Bernoulli process, you can use the Bernoulli Naive Bayes classifier.

Let's now try an example of the application of the Gaussian Naive Bayes classifier.
Moreover, an example of text classification is given at the end of this chapter. You can test it
working with a Naive Bayes by simply substituting the SGDClassifier of the example with a
MultinomialNB.

Machine Learning Chapter 4

[219]

In the following example, we're going to use the Iris dataset, assuming that the features are
Gaussian ones:

In: from sklearn import datasets
 iris = datasets.load_iris()
 from sklearn.model_selection import train_test_split
 X_train, X_test, Y_train, Y_test = train_test_split(iris.data,
 iris.target, test_size=0.2, random_state=0)

In: from sklearn.naive_bayes import GaussianNB
 clf = GaussianNB()
 clf.fit(X_train, Y_train)
 Y_pred = clf.predict(X_test)

In: from sklearn.metrics import classification_report
 print (classification_report(Y_test, Y_pred))

Out:
 precision recall f1-score support

 0 1.00 1.00 1.00 11
 1 0.93 1.00 0.96 13
 2 1.00 0.83 0.91 6

avg / total 0.97 0.97 0.97 30

In: %timeit clf.fit(X_train, y_train)

Out: 685 µs ± 9.86 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

The resulting model seems to have a good performance and a high training speed, although
we shouldn't forget that our dataset is also very small. Now, let's see how it works on
another multiclass problem.

The aim of the classifier is to predict the probability that a feature vector belongs to the Ck
class. In the example, there are three classes (setosa, versicolor, and virginica). So,
we need to compute the membership probability for all classes; to make the explanation
simple, let's name them 1, 2, and 3. Therefore, the goal of the Naive Bayes classifier for the
ith observation is to compute the following:

Here, X(i) is the vector of the features (in the example, it is composed of four real numbers),
whose components are [X(i, 0), X(i, 1), X(i, 2), X(i, 3)].

Machine Learning Chapter 4

[220]

Using the Bayes rule, it becomes the following:

We can describe the same formula, as follows:

The a-posteriori probability is the a-priori probability of the class multiplied by the likelihood and
then divided by the evidence.

From this probability theory, we know that joint probability can be expressed as follows
(simplifying the problem):

Then, the second factor of the multiplication can be rewritten as follows (conditional
probability):

You can then use the conditional probability definition to express the second member of the
multiplication. In the end, you'll have a very long multiplication:

The naive assumption is that each feature is considered conditionally independent of the
other features when related to each class. Thus, the probabilities can be simply multiplied.
The formula for the same is as follows:

Therefore, wrapping up the math, to select the best class, the following formula is used:

That's a simplification because the evidence probability (the denominator of the Bayes rule)
has been removed, since all the classes would have the same probability of the event.

Machine Learning Chapter 4

[221]

From the previous formula, you can understand why the learning phase is so fast, as it's
just a counting of occurrences.

Note that for this classifier, a corresponding regressor doesn't exist, but you can achieve
modeling a continuous target variable by binning it, that is, by transforming it into classes
(for instance, low, average, and high values for our housing price problem).

K-Nearest Neighbors
K-Nearest Neighbors, or simply k-NN, belongs to the class of instance-based learning, also
known as lazy classifiers. It's one of the simplest classification methods because the
classification is done by just looking at the K-closest examples in the training set (in terms
of Euclidean distance or some other kind of distance) in the case that we want to classify.
Then, given the K-similar examples, the most popular target (majority voting) is chosen as
the classification label. Two parameters are mandatory for this algorithm: the neighborhood
cardinality (K), and the measure to evaluate the similarity (although the Euclidean distance,
or L2, is the most used and is the default parameter for most implementations).

Let's take a look at an example. We are going to use a large dataset, the MNIST handwritten
digits. We will later explain why we decided using this dataset for our example. We intend
to use only a small portion of it (1,000 samples) to keep the computational time reasonable,
and we shuffle the observations to obtain better results (though as a consequence, your
final output may be slightly different than ours):

In: from sklearn.utils import shuffle
 from sklearn.datasets import fetch_mldata
 from sklearn.model_selection import train_test_split

 import pickle
 mnist = pickle.load(open("mnist.pickle", "rb"))
 mnist.data, mnist.target = shuffle(mnist.data, mnist.target)
 # We reduce the dataset size, otherwise it'll take too much time to run
 mnist.data = mnist.data[:1000]
 mnist.target = mnist.target[:1000]
 X_train, X_test, y_train, y_test = train_test_split(mnist.data,
 mnist.target, test_size=0.8, random_state=0)

In: from sklearn.neighbors import KNeighborsClassifier
 # KNN: K=10, default measure of distance (euclidean)
 clf = KNeighborsClassifier(3)
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)

Machine Learning Chapter 4

[222]

In: from sklearn.metrics import classification_report
 print (classification_report(y_test, y_pred))

Out:
 precision recall f1-score support

 0.0 0.79 0.91 0.85 82
 1.0 0.62 0.98 0.76 86
 2.0 0.88 0.68 0.76 77
 3.0 0.71 0.83 0.77 69
 4.0 0.68 0.88 0.77 91
 5.0 0.69 0.66 0.67 56
 6.0 0.93 0.86 0.89 90
 7.0 0.91 0.85 0.88 102
 8.0 0.91 0.41 0.57 73
 9.0 0.79 0.50 0.61 74

avg / total 0.80 0.77 0.76 800

The performance is not so high on this dataset. However, please keep under consideration
that the classifier has to work on ten different classes. Now let's check the time the classifier
needs for the training and predicting:

In: %timeit clf.fit(X_train, y_train)
Out: 1.18 ms ± 119 µs per loop (mean ± std. dev. of 7 runs,
 1000 loops each)

In: %timeit clf.predict(X_test)
Out: 179 ms ± 1.68 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The training speed is exceptional. Now consider the algorithm. The training phase is just
copying the data into some data structure the algorithm will later use and nothing else
(that's the reason it is called a lazy learner). On the contrary, the prediction speed is
connected to the number of samples you have in your training step and to the number of
features composing it (that's actually the feature matrix number of elements). In all the
other algorithms that we've seen, the prediction speed is independent of the number of
training cases that we have in our dataset. In conclusion, we can say that k-NN is great for
small datasets, but it's definitely not the algorithm you would use when dealing with big
data.

Just one last remark about this classification algorithm—you can also try the analogous
regressor, KNeighborsRegressor, which works in the same way. Its algorithm is pretty
much the same, except that the predicted value is the average of the K-target values of the
neighborhood.

Machine Learning Chapter 4

[223]

Nonlinear algorithms
Support Vector Machine (SVM) is a powerful and advanced supervised learning
technique for classification and regression that can automatically fit linear and nonlinear
models.

SVM algorithms have quite a few advantages against other machine learning algorithms:

They can handle the majority of supervised problems such as regression,
classification, and anomaly detection (anyway, they are actually best at binary
classification).
They provide a good handling of noisy data and outliers. They tend to overfit
less, since they only work with some particular examples, the support vectors.
They work fine with datasets presenting more features than examples, though, as
with other machine learning algorithms, SVM would gain both from
dimensionality reduction and feature selection.
As for drawbacks, we have to mention these:
They provide only estimates, but no probabilities unless you run some time-
consuming and computationally intensive probability calibration by means of
Platt scaling
They scale super-linearly with the number of examples (so they cannot work
with very large datasets)

Scikit-learn offers an implementation based on LIBSVM, a complete library of SVM
classification and regression implementations, and LIBLINEAR, a scalable library for linear
classification ideal of large datasets, especially any sparse text-based one. Both libraries
have been developed at the National Taiwan University, and both have been written in C++
with a C API to interface with other languages. Both libraries have been extensively tested
(being free, they have been used in other open source machine learning toolkits) and have
long since been proven to be both fast and reliable. The C API explains well two tricky
needs for them to operate optimally under the Python scikit-learn:

LIBSVM, when operating, needs to reserve some memory for kernel operations.
The cache_size parameter is used to set the size of the kernel cache, which is
specified in megabytes. Though the default value is 200, it is advisable to raise it
to 500 or 1000, depending on your available resources.
They both expect C-ordered NumPy ndarray or SciPy sparse.csr_matrix (a
row-optimized sparse matrix kind), preferably with float64 type. If the Python
wrapper receives them under a different data structure, it will have to copy the
data in a suitable format, slowing down the training process and consuming
more RAM memory.

Machine Learning Chapter 4

[224]

Neither LIBSVM or LIBLINEAR offer an implementation capable of
handling large datasets. SGDClassifier and SGDRegressor are the scikit-
learn classes that can produce a solution in a reasonable computational
time, even when data is too big to fit into memory. They will be discussed
in the following paragraph about handling big data.

SVM for classification
The implementations for SVM classification offered by scikit-learn are shown here:

Class Purpose Hyperparameters

sklearn.svm.SVC
The LIBSVM implementation
for binary and multiclass linear
and kernel classification

C, kernel, degree, and
gamma

sklearn.svm.NuSVC Same as for the .SVC version nu, kernel, degree, and
gamma

sklearn.svm.OneClassSVM
Unsupervised detection of
outliers

nu, kernel, degree, and
gamma

sklearn.svm.LinearSVC
Based on LIBLINEAR; it is a
binary and multiclass linear
classifier

Penalty, loss, and C

As an example for classification using SVM, we will use SVC with both a linear and an RBF
kernel (RBF stands for Radial Basis Function, which is an effective nonlinear function).
LinearSVC will instead be employed for a complex problem presenting a large number of
observations (standard SVC won't perform well when working on more than 10,000
observations, due to the growing cubic complexity; LinearSVC can instead scale linearly).

For our first classification example, a binary one, we'll take on a dataset from the IJCNN'01
neural network competition. It is a time series of 50,000 samples produced by a physical
system of a 10-cylinder internal combustion engine. Our target is binary: normal engine
firing or misfiring. We will use the dataset as retrieved from the LIBSVM website using the
scripts at the beginning of the chapter. The data file is in the LIBSVM format and it is
compressed by Bzip2. We operate on it using the load_svmlight_file function from
scikit-learn:

In: from sklearn.datasets import load_svmlight_file
 X_train, y_train = load_svmlight_file('ijcnn1.bz2')
 first_rows = 2500
 X_train, y_train = X_train[:first_rows,:], y_train[:first_rows]

Machine Learning Chapter 4

[225]

For exemplification purposes, we will limit the number of observations from 25,000 to
2,500. The number of available features is 22. Furthermore, we won't preprocess the data,
since it is already compatible with the SVM requirements, having already rescaled features
in the range between 0 and 1:

In: import numpy as np
 from sklearn.model_selection import cross_val_score
 from sklearn.svm import SVC
 hypothesis = SVC(kernel='rbf', random_state=101)
 scores = cross_val_score(hypothesis, X_train, y_train,
 cv=5, scoring='accuracy')
 print ("SVC with rbf kernel -> cross validation accuracy: \
 mean = %0.3f std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: SVC with rbf kernel -> cross validation accuracy:
 mean = 0.910 std = 0.001

In our example, we tested an SVC with an RBF kernel. All the other parameters were kept
at the default values. You can try to modify first_rows to larger values (up to 25,000) and
verify how well the algorithm scales up to an increase in the number of observations.
Keeping track of the computation time, you will notice that the scaling is not linear; that is,
the computation time will increase more than proportionally with the size of the data.
Concerning the SVM scalability, it is interesting to see how such an algorithm behaves
when faced with a multiclass problem and a large number of cases. The Covertype dataset,
which we are going to use, features as examples a large number of 30x30 meter patches of
forest in the US. The data pertaining to them is collected for the task of predicting the
dominant species of tree of each patch (cover type). It is a multiclass classification problem
(seven covertypes to predict). Each sample has 54 features, and there are over 580,000
examples (but for performance reasons, we will work with just 25,000 of such cases).
Moreover, the classes are unbalanced, having two kinds of trees with most examples.

Here is the script that you can use to load the previously prepared dataset:

In: import pickle
 covertype_dataset = pickle.load(open("covertype_dataset.pickle", "rb"))
 covertype_X = covertype_dataset.data[:25000,:]
 covertype_y = covertype_dataset.target[:25000] -1

Using this script, you can have an idea of the examples, features, and targets to be
predicted:

In: import numpy as np
 covertypes = ['Spruce/Fir', 'Lodgepole Pine', 'Ponderosa Pine',
 'Cottonwood/Willow', 'Aspen', 'Douglas-fir', 'Krummholz']
 print ('original dataset:', covertype_dataset.data.shape)
 print ('sub-sample:', covertype_X.shape)

Machine Learning Chapter 4

[226]

 print('target freq:', list(zip(covertypes,np.bincount(covertype_y))))

Out: original dataset: (581012, 54)
 sub-sample: (25000, 54)
 target freq: [('Spruce/Fir', 9107), ('Lodgepole Pine', 12122),
 ('Ponderosa Pine', 1583), ('Cottonwood/Willow', 120), ('Aspen', 412),
 ('Douglas-fir', 779), ('Krummholz', 877)]

Suppose we consider that since we have seven classes, we will need to train seven different
classifiers focused on predicting a single class against the others (one-versus-rest is the
default behavior for LinearSVC in multiclass problems). We will then have 175,000 data
points for each cross-validation test (so it has to be repeated three times if cv=3). This is
quite a challenge for many algorithms, considering that there are 54 variables, but
LinearSVC can demonstrate how to handle it in a reasonable amount of time:

In: from sklearn.cross_validation import cross_val_score, StratifiedKFold
 from sklearn.svm import LinearSVC
 hypothesis = LinearSVC(dual=False, class_weight='balanced')
 cv_strata = StratifiedKFold(covertype_y, n_folds=3,
 shuffle=True, random_state=101)
 scores = cross_val_score(hypothesis, covertype_X, covertype_y,
 cv=cv_strata, scoring='accuracy')
 print ("LinearSVC -> cross validation accuracy: \
 mean = %0.3f std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: LinearSVC -> cross validation accuracy: mean = 0.645 std = 0.007

The resulting accuracy is 0.65, which is a good result. Yet, it surely leaves room for some
further improvement. On the other hand, the problem seems to be a nonlinear one, though
applying SVC with a nonlinear kernel would result in a very long training process as the
number of observations is large. We will reprise this problem in the following examples by
using other nonlinear algorithms in order to check whether we can improve the score
obtained by LinearSVC.

SVM for regression
As for regression, the SVM algorithms presented by scikit-learn are shown here:

Class Purpose Hyperparameters

sklearn.svm.SVR
The LIBSVM implementation
for regression

C, kernel, degree, gamma, and
epsilon

sklearn.svm.NuSVR Same as for .SVR nu, C, kernel, degree, and gamma

Machine Learning Chapter 4

[227]

To provide an example of regression, we decided on a dataset of real estate prices of houses
in California (a slightly different problem than the previously seen Boston housing prices
dataset):

In: import pickle
 X_train, y_train = pickle.load(open("cadata.pickle", "rb"))
 from sklearn.preprocessing import scale
 first_rows = 2000
 X_train = scale(X_train[:first_rows,:].toarray())
 y_train = y_train[:first_rows]/10**4.0

The cases from the dataset are reduced to 2,000 for performance reasons. The features
have been scaled to avoid the influence of the different scale of the original variables. Also,
the target variable is divided by 1,000 to render it more readable in thousand-dollar
values:

In: import numpy as np
 from sklearn.cross_validation import cross_val_score
 from sklearn.svm import SVR
 hypothesis = SVR()
 scores = cross_val_score(hypothesis, X_train, y_train, cv=3,
 scoring='neg_mean_absolute_error')
 print ("SVR -> cross validation accuracy: mean = %0.3f \
 std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: SVR -> cross validation accuracy: mean = -4.618 std = 0.347

The chosen error is the mean absolute error, which is reported by the sklearn class as a
negative number (but it is actually to be interpreted without a sign; the negative sign is just
a computational trick used by scikit-learn's internal functions).

Tuning SVM
Before we start working on the hyperparameters (which are typically a different set of
parameters depending on the implementation), there are two aspects that are left to be
clarified when working with an SVM algorithm.

Machine Learning Chapter 4

[228]

The first is about the sensitivity of the SVM to variables of different scale and large
numbers. Similar to other learning algorithms based on linear combinations, having
variables at different scales leads the algorithm to be dominated by features with the larger
range or variance. Moreover, extremely high or low numbers may cause problems in the
optimization process of the learning algorithms. It is advisable to scale all the data at
limited intervals, such as [0,+1], which is a necessary choice if you are working with sparse
arrays. In fact, it is desirable to preserve zero entries. Otherwise, data will become dense,
consuming more memory. You can also scale the data into the [-1,+1] interval.
Alternatively, you can standardize them to zero mean and unit variance. You can use, from
the preprocessing module, the MinMaxScaler and StandardScaler utility classes by first
fitting them on the training data and then transforming both the train and test sets.

The second aspect is regarding unbalanced classes. The algorithm tends to favor the
frequent classes. A solution, apart from resampling or downsampling (reducing the
majority class to the same number of the lesser one), is to weigh the C penalty parameter
according to the frequency of the class (low values will penalize the class more, high values
less). There are two ways to achieve this with respect to the different implementations; first,
there is the class_weight parameter in SVC (which can be set to the keyword balanced,
or provided with a dictionary containing specific values for each class). Then, there is also
the sample_weight parameter in the .fit() method of SVC, NuSVC, SVR, NuSVR, and
OneClassSVM (it requires a one-dimensional array as input, where each position refers to
the weight of each training example).

Having dealt with scale and class balance, you can exhaustively search for optimal settings
of the other parameters using GridSearchCV from the model_selection module in
sklearn. Though SVM works fine with default parameters, they are often not optimal, and
you need to test various value combinations using cross-validation in order to find the best
ones.

According to their importance, you have to set the following parameters:

C: The penalty value. Decreasing it makes the margin larger, thus ignoring more
noise but also making the model more generalizable. A best value can be
normally considered in the range of np.logspace(-3, 3, 7).
kernel: The non-linearity workhorse for SVM can be set to linear, poly, rbf,
sigmoid, or a custom kernel (for experts!). The most commonly used one is
certainly rbf.
degree: This works with kernel='poly', signaling the dimensionality of the
polynomial expansion. Instead, it is ignored by other kernels. Usually, setting its
value from 2 to 5 works the best.

Machine Learning Chapter 4

[229]

gamma: A coefficient for 'rbf', 'poly', and 'sigmoid'. High values tend to fit
data in a better way but can lead to some overfitting. Intuitively, we can imagine
gamma as the influence that a single example exercises on the model. Low values
make the influence of each example felt quite far. Since many points have to be
considered, the SVM curve will tend to take a shape less influenced by local
points and the result will be a morbid contour curve. High values of gamma,
instead, make the curve take into account more of how points are arranged
locally. Many small bubbles explicating the influence exerted by local points will
usually represent the results. The suggested grid search range for this
hyperparameter is np.logspace(-3, 3, 7).
nu: For regression and classification with nuSVR and nuSVC, this parameter
approximates the training points that are not classified with confidence, that is,
mis-classified points and correct points inside or on the margin. It should be in
the range of [0,1], since it is a proportion relative to your training set. In the end,
it acts as C, with high proportions enlarging the margin.
epsilon: This parameter specifies how much error SVR is going to accept by
defining an epsilon large range where no penalty is associated with respect to the
true value of the point. The suggested search range is
np.insert(np.logspace(-4, 2, 7),0,[0]).
penalty, loss, and dual: For LinearSVC, these parameters accept the
('l1','squared_hinge',False), ('l2','hinge',True), ('l2','squared_hinge',True), and
('l2','squared_hinge',False) combinations. The ('l2','hinge',True) combination is
analogous to the SVC (kernel='linear') learner.

As an example, we will load the IJCNN'01 dataset again, and we will try to improve the
initial accuracy of 0.91 by looking for better degree, C, and gamma values. To save time, we
will use the RandomizedSearchCV class to increase the accuracy to 0.989 (cross-validation
estimate):

In: from sklearn.svm import SVC
 from sklearn.model_selection import RandomizedSearchCV
 X_train, y_train = load_svmlight_file('ijcnn1.bz2')
 first_rows = 2500
 X_train, y_train = X_train[:first_rows,:], y_train[:first_rows]
 hypothesis = SVC(kernel='rbf', random_state=101)
 search_dict = {'C': [0.01, 0.1, 1, 10, 100],
 'gamma': [0.1, 0.01, 0.001, 0.0001]}
 search_func = RandomizedSearchCV(estimator=hypothesis,
 param_distributions=search_dict,
 n_iter=10, scoring='accuracy',
 n_jobs=-1, iid=True, refit=True,
 cv=5, random_state=101)
 search_func.fit(X_train, y_train)

Machine Learning Chapter 4

[230]

 print ('Best parameters %s' % search_func.best_params_)
 print ('Cross validation accuracy: mean = %0.3f' %
 search_func.best_score_)

Out: Best parameters {'C': 100, 'gamma': 0.1}
 Cross validation accuracy: mean = 0.989

Ensemble strategies
Until now, we have seen single learning algorithms of growing complexity. Ensembles
represent an effective alternative since they achieve better predictive accuracy by
combining or chaining the results from models based on different data samples and
algorithm settings. Ensemble strategies divide themselves into two branches. According to
the method used, they assemble predictions together by the following:

Averaging algorithms: These make predictions by averaging the results of
various parallel estimators. The variations in the estimators provide further
division into four families: pasting, bagging, subspaces, and patches.
Boosting algorithms: These make predictions by using a weighted average of
sequential aggregated estimators.

Before delving into some examples for both classification and regression, we will provide
you with the necessary steps to reload the Covertype dataset, a multiclass classification
problem that we started exploring before when dealing with linear SVC:

In: import pickle
 covertype_dataset = pickle.load(open("covertype_dataset.pickle", "rb"))
 print (covertype_dataset.DESCR)
 covertype_X = covertype_dataset.data[:15000,:]
 covertype_y = covertype_dataset.target[:15000]
 covertypes = ['Spruce/Fir', 'Lodgepole Pine', 'Ponderosa Pine',
 'Cottonwood/Willow', 'Aspen', 'Douglas-fir', 'Krummholz']

Machine Learning Chapter 4

[231]

Pasting by random samples
Pasting is the first type of averaging ensembling we will discuss. In pasting, a certain
number of estimators are built using small samples taken from the data (using sampling
without replacement). Finally, the results are pooled and the estimate is obtained by
averaging the results, in the case of regression, or by taking the most voted class when
dealing with classification. Pasting is very useful when dealing with very large data (such
as the case where it cannot fit into the memory) because it allows dealing with only those
portions of data manageable by the available RAM and computational resources of your
computer.

As a method, Leo Breiman, the creator of the RandomForest algorithm, first devised this
strategy. There are no specific algorithms in the scikit-learn package that leverage pasting,
though it is easily achievable by using the available bagging algorithms
(BaggingClassifier or BaggingRegressor, the topic of the following paragraph) and
setting their bootstrap parameter to False and max_features to 1.0.

Bagging with weak classifiers
Bagging works with samples in a way that is similar to that of pasting, but it allows
replacement. Also, theoretically elaborated by Leo Breiman, bagging is implemented in a
specific scikit-learn class for regression and one for classification. You just have to decide
the algorithm that you'd like to use for the training. Plug it into BaggingClassifier, or
BaggingRegressor for regression problems, and set a sufficiently high number of
estimators (and consequently a high number of samples):

In: import numpy as np
 from sklearn.model_selection import cross_val_score
 from sklearn.ensemble import BaggingClassifier
 from sklearn.neighbors import KNeighborsClassifier
 hypothesis = BaggingClassifier(KNeighborsClassifier(n_neighbors=1),
 max_samples=0.7, max_features=0.7,
 n_estimators=100)
 scores = cross_val_score(hypothesis, covertype_X, covertype_y, cv=3,
 scoring='accuracy', n_jobs=-1)
 print ("BaggingClassifier -> cross validation accuracy: mean = %0.3f
 std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: BaggingClassifier -> cross validation accuracy:
 mean = 0.795 std = 0.001

Machine Learning Chapter 4

[232]

Weak predictors are good choices for the estimator to be used with bagging. A weak
learner in classification or prediction is just an algorithm that performs poorly—just above
the chance baseline with your data problem—because of its simplicity or high bias in
estimation. Some good examples of this are Naive Bayes and K Nearest Neighbors. The
advantage of using weak learners and ensembling them is that they can be trained more
quickly than complex algorithms. Though weak in prediction, when combined, they
usually achieve comparable or even better predictive performances than more sophisticated
single algorithms.

Random Subspaces and Random Patches
With random Subspaces, estimators differentiate because of random subsets of the features.
Again, such a solution is achievable by tuning the parameters of BaggingClassifier and
BaggingRegressor, by setting max_features to a number less than 1.0, representing the
percentage of features to be chosen randomly for each model of the ensemble.

Instead, in Random Patches, estimators are built on subsets of both samples and features.

Let's now examine in a table the different characteristics of pasting, bagging, random
subspaces, and random patches as implemented using the BaggingClassifier and
BaggingRegressor in scikit-learn:

Ensembling Purpose Hyperparameters

Pasting
A number of models are built using subsamples
(sampling without replacement of samples smaller than
the original dataset)

bootstrap=False
max_samples <1.0
max_features=1.0

Bagging
A number of models is built using random selections of
bootstrapped cases (sampling with replacement of the
same size of the original sample)

bootstrap=True
max_samples = 1.0
max_features=1.0

Random
Subspaces

This is the same as bagging, but also features are
sampled when each model is selected

bootstrap=True
max_samples = 1.0
max_features<1.0

Random
Patches

This is the same as bagging, but also features are
sampled when each model is selected

bootstrap=False
max_samples <1.0
max_features<1.0

When max_features or max_samples have to be less than 1.0, they can
be set at any value in the range (0,1) and you can test the best one by grid
search. As per our experience, if you need to limit or speed up your
search, the values that work best most frequently are between 0.7 and 0.9.

Machine Learning Chapter 4

[233]

Random Forests and Extra-Trees
Leo Breiman and Adele Cutler have originally devised the idea at the core of the Random
Forests algorithms, and the name of the algorithm remains today a trademark of theirs
(though the algorithm is open source). Random Forests are implemented in scikit-learn as
RandomForestClassifier / RandomForestRegressor.

Random Forests works in a similar way as bagging, also devised by Leo Breiman, but it
operates only using binary split decision trees, which are left to grow to their extremes.
Moreover, it samples the cases to be used in each of its models using bootstrapping. And, as
the tree is grown, at each split of a branch, the set of variables to be considered for the split
is drawn randomly, too. In the end, that's the secret at the heart of the algorithm, because it
ensembles trees that, due to different samples and considered variables at splits, are very
different than each other. Being different, they are also uncorrelated. That's beneficial
because when the results are ensembled, much variance is ruled out as in a mean the
extreme values on both sides of a distribution tend to balance each other. In other words,
bagging algorithms guarantee a certain level of diversity in the predictions, allowing for
developing rules that a single learner (such as a decision tree) might never come across.

Extra-Trees, represented in scikit-learn by the
ExtraTreesClassifier/ExtraTreesRegressor class, are a more randomized kind of
Random Forests that produce a lower variance in the estimates, but at a price of greater bias
of estimators. Anyway, when it comes to CPU efficiency, Extra-Trees can deliver a
considerable speed-up compared to Random Forests, so they can be ideal when you are
working with large datasets in terms of both examples and features. The reason for the
resulting higher bias but better speed is the way splits are built in an Extra-Tree. Whereas
Random Forests carefully search the best values to assign to each branch from among the
sampled features to be considered for splitting a branch of a tree, in Extra-Trees this is
decided randomly. So, there's no need for much computation, though the randomly chosen
split may not be the most effective one (hence the bias).

Let's see how the two algorithms compare with the Covertype forest problem, both in terms
of accuracy of the prediction and execution time. To do so, we will use the magic %%time
cell in a Jupyter notebook's cell in order to measure computational performance:

In: import numpy as np
 from sklearn.model_selection import cross_val_score
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.ensemble import ExtraTreesClassifier

In: %%time
 hypothesis = RandomForestClassifier(n_estimators=100, random_state=101)
 scores = cross_val_score(hypothesis, covertype_X, covertype_y,

Machine Learning Chapter 4

[234]

 cv=3, scoring='accuracy', n_jobs=-1)
 print ("RandomForestClassifier -> cross validation accuracy: \
 mean = %0.3f std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: RandomForestClassifier -> cross validation accuracy:
 mean = 0.809 std = 0.009
 Wall time: 7.01 s

In: %%time
 hypothesis = ExtraTreesClassifier(n_estimators=100, random_state=101)
 scores = cross_val_score(hypothesis, covertype_X, covertype_y, cv=3,
 scoring='accuracy', n_jobs=-1)
 print ("ExtraTreesClassifier -> cross validation accuracy: mean = %0.3f
 std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: ExtraTreesClassifier -> cross validation accuracy:
 mean = 0.821 std = 0.009
 Wall time: 6.48 s

For both algorithms, the key hyperparameters that should be set are as follows:

max_features: This is the number of sampled features that are present at every
split that can determine the performance of the algorithm. The lower the number,
the speedier, but with higher bias.
min_samples_leaf : This allows you to determine the depth of the trees. Large
numbers diminish the variance and increase the bias.
bootstrap : This is a Boolean that allows bootstrapping.
n_estimators : This is the number of trees (remember that the more trees the
better, but this comes at a computational cost that you have to take into account).

Both RandomForests and Extra-Trees are indeed parallel algorithms. Don't forget to set the
appropriate number of n_jobs to speed up their execution. When classifying, they decide
for the most voted class (majority voting); when regressing, they simply average the
resulting values. As an exemplification, we propose a regression example based on the
California house prices dataset:

In: import pickle
 from sklearn.preprocessing import scale
 X_train, y_train = pickle.load(open("cadata.pickle", "rb"))
 first_rows = 2000

In: import numpy as np
 from sklearn.ensemble import RandomForestRegressor
 X_train = scale(X_train[:first_rows,:].toarray())
 y_train = y_train[:first_rows]/10**4.

Machine Learning Chapter 4

[235]

 hypothesis = RandomForestRegressor(n_estimators=300, random_state=101)
 scores = cross_val_score(hypothesis, X_train, y_train, cv=3,
 scoring='neg_mean_absolute_error', n_jobs=-1)
 print ("RandomForestClassifier -> cross validation accuracy: mean =
%0.3f
 std = %0.3f" % (np.mean(scores), np.std(scores)))

Out: RandomForestClassifier -> cross validation accuracy:
 mean = -4.642 std = 0.514

Estimating probabilities from an ensemble
Random Forests offer a large range of advantages, and they are deemed the first algorithm
you should try on your data to figure out what kind of results can be obtained. This is
because the Random Forests do not have too many hyperparameters to be fixed, and they
work perfectly fine out of the box. They can naturally work with multiclass problems.
Moreover, Random Forests offer a way to estimate the importance of variables for your
insight or feature selection, and they help in estimating the similarity between the examples
since similar cases should end up in the same terminal leaves of many trees of the
ensemble.

However, in classification problems, the algorithm lacks the capability of predicting
probabilities of an outcome (unless calibrated using the probability calibration offered in
scikit-learn by the CalibratedClassifierCV). In classification problems, often it does not
suffice to predict a response label; we also need the probability associated to it (how likely
it is to be true; that's a confidence of the prediction). This is particularly useful for
multiclass problems since the right answer may be the second- or the third-most probable
one (therefore, probability provides ranks of answers).

However, when Random Forests is required to estimate the probability of the response
classes, the algorithm will just report the number of times an example has been classified
into a class in the ensemble with respect to the number of all the trees in the ensemble itself.
Such a ratio actually doesn't correspond to the correct probability, but it is a biased one (the
predicted probability is just correlated to the true one; it doesn't represent it in a
numerically correct way).

To help Random Forests and other algorithms affected by a similar situation, such as Naive
Bayes or linear SVM, to emit correct response probabilities, the CalibratedClassifierCV
wrapper class has been introduced in scikit-learn.

Machine Learning Chapter 4

[236]

CalibrateClassifierCV remaps the response of a machine learning algorithm to
probabilities using two methods: Platt's scaling and Isotonic regression (the latter is a better
performing non-parameter method with the condition that you have enough examples, that
is, at least 1,000). Both approaches are, kind of, a second-level model aimed at just modeling
a link between the original response of an algorithm and the expected probabilities. The
results can be plotted by comparing the original probability distribution against the
calibrated ones.

As an example, here we refit the Covertype problem using CalibratedClassifierCV:

In: import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.calibration import CalibratedClassifierCV
 from sklearn.calibration import calibration_curve
 hypothesis = RandomForestClassifier(n_estimators=100, random_state=101)
 calibration = CalibratedClassifierCV(hypothesis, method='sigmoid',
 cv=5)
 covertype_X = covertype_dataset.data[:15000,:]
 covertype_y = covertype_dataset.target[:15000]
 covertype_test_X = covertype_dataset.data[15000:25000,:]
 covertype_test_y = covertype_dataset.target[15000:25000]

To evaluate the behavior of the calibration, we prepare a test set made of 10,000 examples
that we do not use for training. Our calibration model will be based on Platt's model
(method='sigmoid') and use five cross-validation folds to tune the calibration:

In: hypothesis.fit(covertype_X,covertype_y)
 calibration.fit(covertype_X,covertype_y)
 prob_raw = hypothesis.predict_proba(covertype_test_X)
 prob_cal = calibration.predict_proba(covertype_test_X)

After fitting both the raw and the calibrated model, we estimate the probabilities, and we
now plot them in a scatterplot to highlight the differences. After projecting the estimated
probabilities for the ponderosa pine, it appears that the original Random Forests
probabilities (actual percentages of votes) have been rescaled to resemble a logistic curve.
We now try to write some code and explore the type of changes that calibration brings
about to probability outputs:

In: %matplotlib inline
 tree_kind = covertypes.index('Ponderosa Pine')
 probs = pd.DataFrame(list(zip(prob_raw[:,tree_kind],
 prob_cal[:,tree_kind])),
 columns=['raw','calibrted'])
 plot = probs.plot(kind='scatter', x=0, y=1, s=64,
 c='blue', edgecolors='white')

Machine Learning Chapter 4

[237]

Calibration, though not changing the performance of the model, by reshaping the
probability output helps you obtain probabilities that are more correspondent to your
training data. In the following plot you can observe how the calibration procedure has
modified the original probabilities by adding some non-linearity as a correction:

Sequences of models – AdaBoost
AdaBoost is a boosting algorithm based on the Gradient Descent optimization method. It
fits a sequence of weak learners (originally stumps, that is, single-level decision trees) on re-
weighted versions of the data. Weights are assigned based on the predictability of the case.
Cases that are more difficult are weighted more. The idea is that the trees first learn easy
examples and then concentrate more on the difficult ones. In the end, the sequence of weak
learners is weighted to maximize the overall performance:

In: import numpy as np
 from sklearn.ensemble import AdaBoostClassifier
 hypothesis = AdaBoostClassifier(n_estimators=300, random_state=101)
 scores = cross_val_score(hypothesis, covertype_X, covertype_y, cv=3,
 scoring='accuracy', n_jobs=-1)
 print ("Adaboost -> cross validation accuracy: mean = %0.3f
 std = %0.3f" % (np.mean(scores), np.std(scores)))
 Out: Adaboost -> cross validation accuracy: mean = 0.610 std = 0.014

Machine Learning Chapter 4

[238]

Gradient tree boosting (GTB)
Gradient boosting is another improved version of boosting. Like AdaBoost, it is based on a
gradient descent function. The algorithm has proven to be one of the most proficient ones
from the ensemble, though it is characterized by an increased variance of estimates, more
sensibility to noise in data (both problems could be attenuated by using sub-sampling), and
significant computational costs due to nonparallel operations.

To demonstrate how GTB performs, we will again try checking whether we can improve
our predictive performance on the covertype dataset, which was already examined when
illustrating linear SVM and ensemble algorithms:

In: import pickle
 covertype_dataset = pickle.load(open("covertype_dataset.pickle", "rb"))
 covertype_X = covertype_dataset.data[:15000,:]
 covertype_y = covertype_dataset.target[:15000] -1
 covertype_val_X = covertype_dataset.data[15000:20000,:]
 covertype_val_y = covertype_dataset.target[15000:20000] -1
 covertype_test_X = covertype_dataset.data[20000:25000,:]
 covertype_test_y = covertype_dataset.target[20000:25000] -1

After loading the data, the training sample size is limited to 15000 observations to achieve a
reasonable training performance. We also extract a validation sample made of 5,000
examples and a test sample made of another 5,000 cases. We now proceed to train our
model:

In: import numpy as np
 from sklearn.model_selection import cross_val_score, StratifiedKFold
 from sklearn.ensemble import GradientBoostingClassifier
 hypothesis = GradientBoostingClassifier(max_depth=5,
 n_estimators=50,
 random_state=101)
 hypothesis.fit(covertype_X, covertype_y)

In: from sklearn.metrics import accuracy_score
 print ("GradientBoostingClassifier -> test accuracy:",
 accuracy_score(covertype_test_y,
 hypothesis.predict(covertype_test_X)))

Out: GradientBoostingClassifier -> test accuracy: 0.8202

Machine Learning Chapter 4

[239]

To obtain the best performance from GradientBoostingClassifier and
GradientBoostingRegression, you have to tweak the following:

n_estimators: Exceeding with estimators, it increases variance. Anyway, if the
estimators are not enough, the algorithm will suffer from high bias. The right
number cannot be known a-priori and has to be found heuristically, by testing
various configurations by cross-validation.
max_depth: It increases the variance and complexity.
subsample: It can effectively reduce variance of the estimates using values from
0.9 to 0.7.
learning_rate: Smaller values can improve optimization in the training
process, though that will require more estimators to converge, and thus more
computational time.
in_samples_leaf: This can reduce the variance due to noisy data, reserving
overfitting to rare cases.

Apart from deep learning, gradient boosting is actually the most developed machine
learning algorithm. Since Adaboost and the following Gradient Boosting implementation as
developed by Jerome Friedman, there appeared various implementations of the algorithms,
the most recent ones being XGBoost, LightGBM, and CatBoost. In the following
paragraphs, we will be exploring these new solutions and testing them on the road using
the Forest Covertype data.

XGBoost
XGBoost stands for eXtreme Gradient Boosting, an open source project that is not part of
scikit-learn, though recently it has been expanded by a scikit-Learn wrapper interface that
renders using models based on XGBoost more integrated into your data pipeline
(xgboost.readthedocs.io/en/latest/python/python_api.html#module-
xgboost.sklearn).

The XGBoost source code is available on GitHub, at
github.com/dmlc/XGBoost; its documentation and some tutorials can be
found at xgboost.readthedocs.io/en/latest.

http://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn
http://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn
http://github.com/dmlc/XGBoost
http://xgboost.readthedocs.io/en/latest

Machine Learning Chapter 4

[240]

The XGBoost algorithm has gained momentum and popularity in data-science competitions
such as Kaggle (www.kaggle.com) and the KDD-cup 2015. As the authors (Tianqui Chen,
Tong He, Carlos Guestrin) report on papers on the algorithm, among 29 challenges were
held on Kaggle during 2015, and 17 winning solutions used XGBoost as a standalone
solution or as part of an ensemble of multiple different models.

In their paper XGBoost: A Scalable Tree Boosting System (which can be
found at learningsys.org/papers/LearningSys_2015_paper_32.pdf), the
authors report that XGBoost was also used by every team that ended in
the top 10 of the recent KDD-cup 2015.

Apart from the successful performances in both accuracy and computational efficiency,
XGBoost is also a scalable solution from different points of view. XGBoost represents a new
generation of GBM algorithms thanks to important tweaks to the initial tree boost GBM
algorithm:

A sparse-aware algorithm; it can leverage sparse matrices, saving both memory
(no need for dense matrices) and computation time (zero values are handled in a
special way).
Approximate tree learning (weighted quantile sketch), which bears similar
results but in much less time than the classical complete explorations of possible
branch cuts.
Parallel computing on a single machine (using multi-threading in the phase of
the search for the best split) and similarly distributed computations on multiple
ones.
Out-of-core computations on a single machine leveraging a data storage solution
called Column Block. This arranges data on disk by columns, thus saving time by
pulling data from the disk as the optimization algorithm (which works on
column vectors) expects it.
XGBoost can also deal with missing data in an effective way. Other tree
ensembles based on standard decision trees require missing data first to be
imputed using an off-scale value, such as a negative number, in order to develop
an appropriate branching of the tree to deal with missing values.

XGBoost, instead, first fits all the non-missing values. After having created the branching
for the variable, it decides which branch is better for the missing values to take in order to
minimize the prediction error. Such an approach leads to both trees that are more compact
and an effective imputation strategy, leading to more predictive power.

http://www.kaggle.com
http://learningsys.org/papers/LearningSys_2015_paper_32.pdf

Machine Learning Chapter 4

[241]

From a practical point of view, XGBoost features mostly the same parameters as Scikit-
learn's GBT. The key parameters are as follows:

eta: An equivalent of the learning rate in Scikit-learn's GTB. It impacts how fast
the algorithm is learning and thus how many trees are necessary. Higher values
help with a better convergence of the learning process, but at the price of more
training time and a larger number of trees.
gamma: This acts as a stopping criterion in the tree development since it
represents the minimum loss reduction required to make a further partition on a
leaf node of the tree. Higher values make the learning more conservative.
min_child_weight: These represent the minimum weight (examples) present
on the leaf node of the tree. Higher values prevent overfitting and tree
complexity.
max_depth: The number of interactions in the trees.
subsample: The fraction of examples from the training data to be used at each
iteration.
colsample_bytree: The fraction of features to be used at each iteration.
colsample_bylevel: The fraction of features to be used at each branch splitting
(as in Random Forests).

In our example of how to apply XGBoost, we first recall how to upload the Covertype
dataset and divide it into train, validation, and test sets by partially slicing the initial
NumPy array containing the complete dataset:

In: from sklearn.datasets import fetch_covtype
 from sklearn.model_selection import cross_val_score, StratifiedKFold
 covertype_dataset = fetch_covtype(random_state=101, shuffle=True)
 covertype_dataset.target = covertype_dataset.target.astype(int)
 covertype_X = covertype_dataset.data[:15000,:]
 covertype_y = covertype_dataset.target[:15000] -1
 covertype_val_X = covertype_dataset.data[15000:20000,:]
 covertype_val_y = covertype_dataset.target[15000:20000] -1
 covertype_test_X = covertype_dataset.data[20000:25000,:]
 covertype_test_y = covertype_dataset.target[20000:25000] -1

After loading the data, we define the hyperparameters by first setting the objective (as
multi:softprob, but XGBoost offers other alternatives for regression, classification,
multiclass, and ranking) and then set some of the preceding parameters.

Machine Learning Chapter 4

[242]

When fitting the data, further indications can be given to the algorithm. In our case, we set
eval_metric to accuracy for multiclass problems ('merror') and provided an eval_set
that is a validation set that XGBoost has to monitor during training by calculating the
evaluation metric on it. If the training does not improve the evaluation metric for 25 rounds
(as defined by early_stopping_rounds), then the training will stop before reaching the
number of estimators (n_estimators) previously defined. This approach, called early-stop
and derived from neural networks train, effectively helps avoid overfitting during the
training phase:

For a complete list of both parameters and evaluation metrics, please see
github.com/dmlc/xgboost/blob/master/doc/parameter.md. Here we start importing the
package, setting its parameters and fitting it to our problem:

In: import xgboost as xgb
 hypothesis = xgb.XGBClassifier(objective= "multi:softprob",
 max_depth = 24,
 gamma=0.1,
 subsample = 0.90,
 learning_rate=0.01,
 n_estimators = 500,
 nthread=-1)
 hypothesis.fit(covertype_X, covertype_y,
 eval_set=[(covertype_val_X, covertype_val_y)],
 eval_metric='merror', early_stopping_rounds=25,
 verbose=False)

To obtain the predictions, we just use the same methods as Scikit-learn API: predict and
predict_proba. Printing the accuracy reveals how the long fitting of the XGBoost
algorithm actually brought about the best test result so far. Examination of the confusion
matrix reveals that only the aspen tree type is difficult to predict:

In: from sklearn.metrics import accuracy_score, confusion_matrix
 print ('test accuracy:', accuracy_score(covertype_test_y,
 hypothesis.predict(covertype_test_X)))
 print (confusion_matrix(covertype_test_y,
 hypothesis.predict(covertype_test_X)))

Out: test accuracy: 0.848
 [[1512 288 0 0 0 2 18]
 [215 2197 18 0 7 11 0]
 [0 17 261 4 0 19 0]
 [0 0 4 20 0 3 0]
 [1 54 3 0 19 0 0]
 [0 16 42 0 0 86 0]
 [37 1 0 0 0 0 145]]

http://github.com/dmlc/xgboost/blob/master/doc/parameter.md

Machine Learning Chapter 4

[243]

LightGBM
When your dataset contains a large number of cases or variables, even if XGBoost is
compiled from C++, it really takes a long time to train. Therefore, in spite of the success of
XGBoost, there was space in January 2017 for another algorithm to appear (XGBoost's first
appearance is dated March 2015). It was the high-performance LightGBM, capable of being
distributed and fast-handling large amounts of data, and developed by a team at Microsoft
as an open source project.

Here is its GitHub page: https:/ ​/​github. ​com/​Microsoft/ ​LightGBM. And,
here is the academic paper illustrating the idea behind the algorithm:
https:/ ​/​papers. ​nips. ​cc/ ​paper/ ​6907- ​lightgbm- ​a-​highly- ​efficient-
gradient- ​boosting- ​decision- ​tree.

LightGBM is based on decision trees, as well as XGBoost, yet it follows a different strategy.
Whereas XGBoost uses decision trees to split on a variable and exploring different cuts at
that variable (the level-wise tree growth strategy), LightGBM concentrates on a split and
goes on splitting from there in order to achieve a better fitting (this is the leaf-wise tree
growth strategy). This allows LightGBM to reach first and fast a good fit of the data, and to
generate alternative solutions compared to XGBoost (which is good, if you expect to blend,
i.e. average, the two solutions together in order to reduce the variance of the estimated).

Algorithmically talking, figuring out as a graph the structures of cuts operated by a
decision tree, XGBoost peruses a breadth-first search (BFS), whereas LightGBM a depth-
first search (DFS).

Here are other highlights of the algorithm:

It has more complex trees due to the leaf-wise strategy leading to a higher1.
accuracy in prediction but also to a higher risk of overfitting; therefore, it is
particularly ineffective with small datasets (uses datasets with more than 10,000
examples).
It is faster on larger datasets.2.
It can leverage parallelization and GPU usage; therefore, it can be scaled on even3.
larger problems (actually it is still a GBM, a sequential algorithm; what is
parallelized is the Find Best Split part of the decision tree).
It is memory parsimonious because it doesn’t store and handles continuous4.
variables as they are, but it turns them into discrete bins of values (histogram-
based algorithms).

https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree

Machine Learning Chapter 4

[244]

Tuning LightGBM may appear daunting with more than a hundred parameters to fix (you
can find them all here: https:/ ​/​github. ​com/​Microsoft/ ​LightGBM/ ​blob/ ​master/ ​docs/
Parameters.​rst), but, actually, you can just tune a few ones and get away with excellent
results. Parameters in LightGBM are distinct in terms of the following:

Core parameters, specifying the task to be done on data
Control parameters, dictating how the decision trees behave
Metric parameters, defying your error measures (and there is really a large list to
choose from apart from the classical errors for classification and regression)
IO parameters, mostly ruling about how inputs are dealt with

Here is a quick overview of the principal parameters for each category.

As for as core parameters, you can operate your key choices by the following:

task: The task you want to achieve with your model; it could be train,
predict, convert_model (to get it as a series of if-then statements), refit (for
updating a model with new data).
application: By default, the expected model is a regression, but it could be
regression, binary, multiclass and many others (it is also available as
lambdarank for ranking tasks such as in search engine optimization).
boosting: LightGBM can use different algorithms for its learning iterations. The
default is gbdt, the single decision tree, but it could be rf (random forest),
darts (Dropouts meet Multiple Additive Regression Trees) or goss (Gradient-
based One-Side Sampling).
device: It is cpu by default, but you use gpu if you have one available on your
system.

IO parameters define how data is loaded (and even stored by your model):

max_bin: The maximum number of bins to be used for feature values to be
bucketed in (the more, the less approximation when dealing with numeric
variables but the more memory and computation time)
categorical_feature: The index of categorical features
ignore_column: The index of features to be ignored
save_binary: If to save the data on disk in binary format to speed up loading
and saving memory

https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

Machine Learning Chapter 4

[245]

Finally, by setting control parameters, you instead decide more specifically how the model
has to learn from data:

num_boost_round: The number of boosting iterations to be done.
learning_rate: The rate each boosting iteration weights on the construction of
the resulting model.
num_leaves: The maximum number of leaves in a tree, which is 31 by default.
max_depth: The maximum depth that a tree can reach.
min_data_in_leaf: The minimum number of the examples for a leaf to be
created.
bagging_fraction: The fraction of data to be randomly used at each iteration.
feature_fraction: When your boosting is rf, this parameter dictates the
fraction of total features to be randomly considered for a split.
early_stopping_round: Fixing this parameter, if your model doesn’t improve
for a certain number of rounds, it will stop training. It helps reducing overfitting
and training time.
lambda_l1 or lambda_l2: Regularization parameters ranging from 0 to 1 (the
maximum).
min_gain_to_split: This parameter dictates the minimum gain to create a split
on the tree. It limits the complexity of the tree by not developing splits are not
contributing much to the model.
max_cat_group: When dealing with categorical variables with high cardinality
(a large number of categories), this parameter puts a limit on the number of
categories that a variable can have by aggregating the less important. The default
value of this parameter is 64.
is_unbalance: For unbalanced datasets in binary classification, is set to True let
the algorithm adjust for unbalanced classes.
scale_pos_weight: Also for unbalanced datasets in binary classification, it sets
a weight for the positive class.

We actually quoted just a small part of all the possible parameters of a LightGBM model,
yet the most essential and important ones. Browsing the documentation, you can find many
more parameters that can fit even more specific situations and projects of yours.

How do we tune all these parameters? Actually, you can effectively operate on a few ones.
If you want to achieve faster computations, just use save_binary and set a small max_bin.
You can also use bagging_fraction and feature_fraction with a low number to
reduce the size of the training set and speed up the learning process (at the price of
increasing the variance of your solution, because it will learn from less data).

Machine Learning Chapter 4

[246]

If you want to achieve higher accuracy with your error measure, you should instead use a
larger max_bin (implying more accuracy when working with numeric variables), use a
smaller learning_rate and more num_iterations (necessary because the algorithm will
converge in a slower way), and use a larger num_leaves (it may lead to overfitting
though).

In the case of overfitting, you can try to set lambda_l1, lambda_l2, and
min_gain_to_split and achieve some more regularization. You can also try max_depth
to avoid growing too deep trees.

In our example, we take on the same task as before, to classify the Forest Covertype dataset.
We start by importing the necessary packages.

Out next steps are then to set the parameters for this boosting algorithm to properly work.
We define the objective (‘multiclass’), set a low learning rate (0.01), and allow its
branches to spread almost completely like a random forest would do: its trees’ maximum
depth is set to 128 and the number of resulting leaves is 256. In doing so, we also set a
random sampling of both cases and features (bagging 90% of them every time):

In: import lightgbm as lgb
 import numpy as np
 params = {'task': 'train',
 'boosting_type': 'gbdt',
 'objective': 'multiclass',
 'num_class':len(np.unique(covertype_y)),
 'metric': 'multi_logloss',
 'learning_rate': 0.01,
 'max_depth': 128,
 'num_leaves': 256,
 'feature_fraction': 0.9,
 'bagging_fraction': 0.9,
 'bagging_freq': 10}

Then, we set the dataset for train, validation, and test using the Dataset command from the
LightGBM package:

In: train_data = lgb.Dataset(data=covertype_X, label=covertype_y)
 val_data = lgb.Dataset(data=covertype_val_X, label=covertype_val_y)

Machine Learning Chapter 4

[247]

Finally, we set the training instance, by feeding the previously set parameters, deciding on
a maximum number of iterations of 2,500, setting a validation set, and requiring early
stopping if the error measure doesn’t improve on the validation for over 25 iterations (this
will allow us to avoid any overfitting due to too many iterations, that is, boosting trees
added):

In: bst = lgb.train(params,
 train_data,
 num_boost_round=2500,
 valid_sets=val_data,
 verbose_eval=500,
 early_stopping_rounds=25)

After a while, the training stops pointing out a log-loss on validation of 0.40 and 851
iterations as the best number to pick. Training until validation scores don't improve for 25
rounds:

Out: Early stopping, best iteration is:[851]
 valid_0's multi_logloss: 0.400478

Instead of using a validation set, we could also test for the best number of iterations by
cross-validation, that is, on the same train set:

In: lgb_cv = lgb.cv(params,
 train_data,
 num_boost_round=2500,
 nfold=3,
 shuffle=True,
 stratified=True,
 verbose_eval=500,
 early_stopping_rounds=25)
 nround = lgb_cv['multi_logloss-mean'].index(np.min(lgb_cv[
 'multi_logloss-mean']))
 print("Best number of rounds: %i" % nround)

Out: cv_agg's multi_logloss: 0.468806 + 0.0124661
 Best number of rounds: 782

The result is not as brilliant as with the validation set, but the number of rounds is not all
that far from what we found before. We will use the initial train by early stop, anyway.
First, we get the probability for each class using the predict method, and the best iteration,
then we will pick as our prediction the class with the highest probability.

Machine Learning Chapter 4

[248]

After doing so, we will check for accuracy and plot a confusion matrix. The obtained score
is analogous to XGBoost but obtained in a shorter training time:

In: y_probs = bst.predict(covertype_test_X,
 num_iteration=bst.best_iteration)
 y_preds = np.argmax(y_probs, axis=1)
 from sklearn.metrics import accuracy_score, confusion_matrix
 print('test accuracy:', accuracy_score(covertype_test_y, y_preds))
 print(confusion_matrix(covertype_test_y, y_preds))

Out: test accuracy: 0.8444
 [[1495 309 0 0 0 2 14]
 [221 2196 17 0 5 9 0]
 [0 20 258 5 0 18 0]
 [0 0 3 19 0 5 0]
 [1 51 4 0 21 0 0]
 [0 14 43 0 0 87 0]
 [36 1 0 0 0 0 146]]

CatBoost
In July 2017, another interesting GBM algorithm was made public by Yandex, the Russian
search engine: it is CatBoost (https:/ ​/ ​catboost. ​yandex/ ​), whose name comes from
putting together the two words Category and Boosting. In fact, its strongest point is the
capability of handling categorical variables, which actually make the most of information in
most relational databases, by adopting a mixed strategy of one-hot-encoding and mean
encoding (a way to express categorical levels by assigning them an appropriate numeric
value for the problem at hand; more on that later).

As explained in the paper DOROGUSH, Anna Veronika; ERSHOV, Vasily; GULIN, Andrey.
CatBoost: gradient boosting with categorical features support (https:/ ​/​pdfs. ​semanticscholar.
org/​9a85/​26132d3e05814dca7661b96b3f3208d676cc. ​pdf), as other GBM solution handle
categorical variables by both one-hot-encoding the variables (quite expensive in terms of
memory in-print of the data matrix) or by assigning arbitrary numeric codes to categorical
levels (an imprecise, at most, approach, requiring large branching in order to turn
effective), CatBoost approached the problem differently.

https://catboost.yandex/
https://catboost.yandex/
https://catboost.yandex/
https://catboost.yandex/
https://catboost.yandex/
https://catboost.yandex/
https://catboost.yandex/
https://catboost.yandex/
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf
https://pdfs.semanticscholar.org/9a85/26132d3e05814dca7661b96b3f3208d676cc.pdf

Machine Learning Chapter 4

[249]

You provide indices of categorical variables to the algorithm, and you set a
one_hot_max_size parameter, telling CatBoost to handle categorical variables using one-
hot-encoding if the variable has less or equal levels. If the variable has more categorical
levels, thus exceeding the one_hot_max_size parameter, then the algorithm will encode
them in a fashion not too different than mean-encoding, as follows:

Permuting the order of examples.1.
Turning levels into integer numbers based on the loss function to be minimized.2.
Converting the level number to a float numerical values based on counting level3.
labels based on the shuffle order in respect of your target (more details are given
at https:/ ​/​tech. ​yandex. ​com/ ​catboost/ ​doc/​dg/ ​concepts/ ​algorithm- ​main-
stages_​cat- ​to- ​numberic- ​docpage/ ​ with a simple example).

The idea used by CatBoost to encode the categorical variables is not new, but it has been a
kind of feature engineering used various times, mostly in data science competitions like at
Kaggle’s. Mean encoding, also known as likelihood encoding, impact coding, or target
coding, is simply a way to transform your labels into a number based on their association
with the target variable. If you have a regression, you could transform labels based on the
mean target value typical of that level; if it is a classification, it is simply the probability of
classification of your target given that label (probability of your target, conditional on each
category value). It may appear as a simple and smart feature engineering trick, but actually,
it has side effects, mostly in terms of overfitting because you are taking information from
the target into your predictors.

There are a few empirical approaches to limit the overfitting and take advantage of dealing
with categorical variables as numeric ones. The best source to know more about is actually
a video from Coursera, because there are no formal papers on that: https:/ ​/​www. ​coursera.
org/​lecture/​competitive- ​data- ​science/ ​concept- ​of- ​mean- ​encoding- ​b5Gxv. Our
recommendation is to use this trick with care.

CatBoost, apart from having both R and Python APIs and performing in
the GBM field at the same degree of the competing XGBoost and
LightGBM, also thanks to GPU and multi-GPU support (you can have a
look at a performance comparison at https:/ ​/​s3- ​ap-​south- ​1.​amazonaws.
com/​av- ​blog- ​media/ ​wp- ​content/ ​uploads/ ​2017/ ​08/​13153401/ ​Screen-
Shot- ​2017- ​08- ​13- ​at- ​3. ​33. ​33- ​PM.​png) is also a completely open source
project, and you can read all the code from its GitHub repository here:
https:/ ​/​github. ​com/ ​catboost/ ​catboost.

https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/08/13153401/Screen-Shot-2017-08-13-at-3.33.33-PM.png
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/catboost/catboost

Machine Learning Chapter 4

[250]

Even in the case of CatBoost, the list of parameters is incredibly large, though well-detailed,
at https:/​/​tech.​yandex. ​com/ ​catboost/ ​doc/​dg/ ​concepts/ ​python- ​reference_ ​catboost-
docpage/​. For simple applications, you just have to tune the following key parameters:

one_hot_max_size : The threshold over which to target encode any categorical
variable
iterations : The number of iterations
od_wait: The number of iterations to wait if the evaluation metric doesn’t
improve
learning_rate: The learning rate
depth: The depth of trees
l2_leaf_reg: The regularization coefficient
random_strength and bagging_temperature to control the randomized
bagging

We start by importing all the necessary packages and functions:

Since CatBoost excels when dealing with categorical variables, we have to1.
rebuild the Forest Covertype dataset, because all its categorical variables have
already been one-hot-encoded. We therefore simply rebuild them and recreate
the dataset:

In: import numpy as np
 from sklearn.datasets import fetch_covtype
 from catboost import CatBoostClassifier, Pool
 covertype_dataset = fetch_covtype(random_state=101,
 shuffle=True)
 label = covertype_dataset.target.astype(int) - 1
 wilderness_area =
 np.argmax(covertype_dataset.data[:,10:(10+4)],
 axis=1)
 soil_type = np.argmax(
 covertype_dataset.data[:,(10+4):(10+4+40)],
 axis=1)
 data = (covertype_dataset.data[:,:10],
 wilderness_area.reshape(-1,1),
 soil_type.reshape(-1,1))
 data = np.hstack(data)

https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboost-docpage/

Machine Learning Chapter 4

[251]

After creating it, we select the train, validation, and test portions as we did2.
before:

In: covertype_train = Pool(data[:15000,:],
 label[:15000], [10, 11])
 covertype_val = Pool(data[15000:20000,:],
 label[15000:20000], [10, 11])
 covertype_test = Pool(data[20000:25000,:],
 None, [10, 11])
 covertype_test_y = label[20000:25000]

It is time now to set the CatBoostClassifier. We decide on a low learning rate3.
(0.05) and a high number of iterations, a maximum tree depth of 8 (the actual
maximum for CatBoost is 16), optimize for MultiClass (log-loss) but monitor
accuracy both on the training and validation set:

In: model = CatBoostClassifier(iterations=4000,
 learning_rate=0.05,
 depth=8,
 custom_loss = 'Accuracy',
 eval_metric = 'Accuracy',
 use_best_model=True,
 loss_function='MultiClass')

We then start training, setting verbosity off but allowing a visual representation4.
of the training and its results, both in-sample and, more importantly, out-of-
sample:

In: model.fit(covertype_train, eval_set=covertype_val,
 verbose=False, plot=True)

Here is an example of what visualization you can get for the model trained on the
CoverType dataset:

Machine Learning Chapter 4

[252]

After training, we simply predict the class and its associated probability:5.

In: preds_class = model.predict(covertype_test)
 preds_proba = model.predict_proba(covertype_test)

An accuracy evaluation points out that the results are equivalent to XGBoost6.
(0.847 against 848) and the confusion matrix looks much cleaner, pointing out a
better classification job done by this algorithm:

In: from sklearn.metrics import accuracy_score, confusion_matrix
 print('test accuracy:', accuracy_score(covertype_test_y,
 preds_class))
 print(confusion_matrix(covertype_test_y, preds_class))

Out: test accuracy: 0.847
 [[1482 320 0 0 0 0 18]
 [213 2199 12 0 10 12 2]
 [0 13 260 5 0 23 0]
 [0 0 6 18 0 3 0]
 [2 40 5 0 30 0 0]
 [0 16 33 1 0 94 0]
 [31 0 0 0 0 0 152]]

Machine Learning Chapter 4

[253]

Dealing with big data
Big data puts data science projects under four points of view: volume (data quantity),
velocity, variety, and veracity (is your data really representing what it should be or is it
affected by some bias, distortion, or error?). The Scikit-learn package offers a range of
classes and functions that will help you effectively work with data so large that it cannot
entirely fit in the memory of a standard computer.

Before providing you with an overview of big data solutions, we have to create or import
some datasets in order to give you a better idea of the scalability and performances of
different algorithms. This will require about 1.5 gigabytes of your hard disk, which will be
let free after the experiment.
(Not big data in itself—nowadays, it is hard to find computers with less than 4 GB of
memory—yet, not even a toy dataset, it should provide you some idea).

Creating some big datasets as examples
As a typical example of big data analysis, we will use some textual data from the internet,
and we will take advantage of the available fetch_20newsgroups, which contains data of
11,314 posts, each one averaging about 206 words, which appeared in 20 different
newsgroups:

In: import numpy as np
 from sklearn.datasets import fetch_20newsgroups
 newsgroups_dataset = fetch_20newsgroups(shuffle=True,
 remove=('headers', 'footers', 'quotes'),
 random_state=6)
 print ('Posts inside the data: %s' % np.shape(newsgroups_dataset.data))
 print ('Average number of words for post: %0.0f' %
 np.mean([len(text.split(' ')) for text in
 newsgroups_dataset.data]))

Out: Posts inside the data: 11314
 Average number of words for post: 206

Machine Learning Chapter 4

[254]

Instead, to work out a generic classification example, we will create three synthetic datasets
that contain from 100,000 to 10 million cases. You can create and use any of them according
to your computer's resources. We will always refer to the largest one for our experiments:

In: from sklearn.datasets import make_classification
 X,y = make_classification(n_samples=10**5, n_features=5,
 n_informative=3, random_state=101)
 D = np.c_[y,X]
 np.savetxt('large_dataset_10__5.csv', D, delimiter=",")
 # the saved file should be around 14,6 MB
 del(D, X, y)
 X,y = make_classification(n_samples=10**6, n_features=5,
 n_informative=3, random_state=101)
 D = np.c_[y,X]
 np.savetxt('large_dataset_10__6.csv', D, delimiter=",")
 # the saved file should be around 146 MB
 del(D, X, y)
 X,y = make_classification(n_samples=10**7, n_features=5,
 n_informative=3, random_state=101)
 D = np.c_[y,X]
 np.savetxt('large_dataset_10__7.csv', D, delimiter=",")
 #the saved file should be around 1,46 GB
 del(D, X, y)

After creating and using any of the datasets, you can remove them from disk by the
following command:

In: import os
 os.remove('large_dataset_10__5.csv')
 os.remove('large_dataset_10__6.csv')
 os.remove('large_dataset_10__7.csv')

Scalability with volume
The trick to managing high volumes of data without loading too many megabytes (or
gigabytes) of data into your memory is to incrementally update the parameters of your
algorithm using only part of the examples at a time, repeating the update on the following
data chunks until all the observations have been elaborated at least once by the machine
learner.

This is possible in Scikit-learn thanks to the .partial_fit() method, which has been
made available to a certain number of supervised and unsupervised algorithms. By using
the .partial_fit() method and providing some basic information (for example, for
classification, you should know beforehand the number of classes to be predicted), you can
immediately start fitting your model even if you have a single case or a few observations.

Machine Learning Chapter 4

[255]

This method is called incremental learning. The chunks of data that you incrementally
fed into the learning algorithm are called batches. The critical points of incremental
learning are as follows:

Batch size
Data preprocessing
Number of passes with the same examples
Validation and parameters fine-tuning

Batch size generally depends on your available memory. The principle is that the larger the
data chunks the better, since the data sample will get more representatives of the data
distributions as its size grows. In addition, data preprocessing is challenging. Incremental
learning algorithms work well with data in the range of [-1,+1] or [0,+1] (for instance,
Multinomial Bayes won't accept negative values). However, to scale into such a precise
range, you need to know beforehand the range of each variable. Alternatively, you have to
do one of these: pass all the data once, record the minimum and maximum values, or
derive them from the first batch, trimming the following observations that exceed the initial
maximum and minimum values.

A more robust way to cope with this problem is to use a sigmoid
normalization that bounds all of the range of possible values between 0
and 1.

The number of passes can become a problem. In fact, as you pass the same examples
multiple times, you help the predictive coefficients converge to an optimum solution. If you
pass too many of the same observations, the algorithm will tend to overfit; that is, it will
adapt too much to the data repeated too many times. Some algorithms, such as the SGD
family, are also very sensitive to the order that you propose to the examples to be learned.
Therefore, you have to either set their shuffle option (shuffle=True) or shuffle the file rows
before the learning starts, keeping in mind that, for efficacy, the order of the rows proposed
for the learning should be casual.

Validation is a stream of batches, which can be achieved in two ways:

Validate in a progressive way; that is, test first how the model predicts newly
arrived data chunks before passing them to training.
Hold out some observations from every chunk. The latter is also the best way to
reserve a sample for grid search or some other optimization.

Machine Learning Chapter 4

[256]

In our example, we entrust the SGDClassifier with a log loss (analogous to a logistic
regression) to learn how to predict a binary outcome given 10**7 observations:

In: from sklearn.linear_model import SGDClassifier
 from sklearn.preprocessing import MinMaxScaler
 import pandas as pd
 streaming = pd.read_csv('large_dataset_10__7.csv',
 header=None, chunksize=10000)
 learner = SGDClassifier(loss='log', max_iter=100)
 minmax_scaler = MinMaxScaler(feature_range=(0, 1))
 cumulative_accuracy = list()
 for n,chunk in enumerate(streaming):
 if n == 0:
 minmax_scaler.fit(chunk.iloc[:,1:].values)
 X = minmax_scaler.transform(chunk.iloc[:,1:].values)
 X[X>1] = 1
 X[X<0] = 0
 y = chunk.iloc[:,0]
 if n > 8:
 cumulative_accuracy.append(learner.score(X,y))
 learner.partial_fit(X,y,classes=np.unique(y))
 print ('Progressive validation mean accuracy %0.3f' %
 np.mean(cumulative_accuracy))

Out: Progressive validation mean accuracy 0.660

First, pandas read_csv allows us to iterate over the file by reading batches of 10,000
observations (the number can be increased or decreased according to your computing
resources).

We use the MinMaxScaler in order to record the range of each variable on the first batch.
For the following batches, we will use the rule that if it exceeds one of the limits of [0,+1],
they are trimmed to the nearest limit. Otherwise, we can use the partial_fit method of
the MinMaxScaler and learn the boundaries of the features as we learn with our model. The
only caveat to be considered when using the MinMaxScaler though is attention to outliers
because they can compress the numeric transformation to a portion of the [0, +1] interval.

Eventually, starting from the tenth batch, we will record the accuracy of the learning
algorithm on each newly received batch before using it to update the training. In the end,
the accumulated accuracy scores are averaged, offering a global performance estimation.

Machine Learning Chapter 4

[257]

Keeping up with velocity
Various algorithms work using incremental learning. For classification, we will recall the
following:

sklearn.naive_bayes.MultinomialNB

sklearn.naive_bayes.BernoulliNB

sklearn.linear_model.Perceptron

sklearn.linear_model.SGDClassifier

sklearn.linear_model.PassiveAggressiveClassifier

For regression, we will recall the following:

sklearn.linear_model.SGDRegressor

sklearn.linear_model.PassiveAggressiveRegressor

As for velocity, they are all comparable in speed. You can try for yourself with the
following script:

In: from sklearn.naive_bayes import MultinomialNB
 from sklearn.naive_bayes import BernoulliNB
 from sklearn.linear_model import Perceptron
 from sklearn.linear_model import SGDClassifier
 from sklearn.linear_model import PassiveAggressiveClassifier
 import pandas as pd
 from datetime import datetime
 classifiers = {'SGDClassifier hinge loss' : SGDClassifier(loss='hinge',
 random_state=101, max_iter=10),
 'SGDClassifier log loss' : SGDClassifier(loss='log',
 random_state=101, max_iter=10),
 'Perceptron' : Perceptron(random_state=101,max_iter=10),
 'BernoulliNB' : BernoulliNB(),
 'PassiveAggressiveClassifier' : PassiveAggressiveClassifier(
 random_state=101, max_iter=10)
 }
 large_dataset = 'large_dataset_10__6.csv'
 for algorithm in classifiers:
 start = datetime.now()
 minmax_scaler = MinMaxScaler(feature_range=(0, 1))
 streaming = pd.read_csv(large_dataset, header=None, chunksize=100)
 learner = classifiers[algorithm]
 cumulative_accuracy = list()
 for n,chunk in enumerate(streaming):
 y = chunk.iloc[:,0]
 X = chunk.iloc[:,1:]

Machine Learning Chapter 4

[258]

 if n > 50 :
 cumulative_accuracy.append(learner.score(X,y))
 learner.partial_fit(X,y,classes=np.unique(y))
 elapsed_time = datetime.now() - start
 print (algorithm + ' : mean accuracy %0.3f in %s secs'
 % (np.mean(cumulative_accuracy),elapsed_time.total_seconds()))

Out: BernoulliNB : mean accuracy 0.734 in 41.101 secs
 Perceptron : mean accuracy 0.616 in 37.479 secs
 SGDClassifier hinge loss : mean accuracy 0.712 in 38.43 secs
 SGDClassifier log loss : mean accuracy 0.716 in 39.618 secs
 PassiveAggressiveClassifier : mean accuracy 0.625 in 40.622 secs

As a general note, remember that smaller batches are slower, since that
implies more disk access from a database or a file, which is always a
bottleneck.

Dealing with variety
Variety is another typical characteristic of big data. This is especially true when we are
dealing with textual data or very large categorical variables (for example, variables storing
website names in programmatic advertising). As you learn from batches of examples and as
you unfold categories or words, you will see that each one is an appropriate and exclusive
variable. You may find it difficult to handle the challenge of variety and the
unpredictability of large streams of data. Scikit-learn provides you with a simple and fast
way to implement the hashing trick and completely forget the problem of defining in
advance of a rigid variable structure.

The hashing trick uses hash functions and sparse matrices in order to save your time,
resources, and hassle. The hash functions are functions that map in a deterministic way any
input they receive. It doesn't matter if you feed them with numbers or strings, they will
always provide you with an integer number in a certain range. Sparse matrices are, instead,
arrays that record only values that are not zero, since their default value is zero for any
combination of their row and column. Therefore, the hashing trick bounds every possible
input; it doesn't matter if it was previously unseen to a certain range or position on a
corresponding input sparse matrix, which is loaded with a value that is not 0.

Machine Learning Chapter 4

[259]

Apart from the in-built hash function in Python, there are quite a few hashing algorithms
available in packages such as hashlib (https:/ ​/​docs. ​python. ​org/ ​2/ ​library/ ​hashlib.
html). Interestingly, the hash function is also heavily used by Scikit-learn in many functions
and methods, and the MurmurHash 32 (https:/ ​/ ​github. ​com/ ​aappleby/ ​smhasher) is
available for you to use. It can be found among the utilities for developers (http:/ ​/​Scikit-
learn.​org/​stable/ ​developers/ ​utilities. ​html); just import it and use it straight out of
the box:

In: from sklearn.utils import murmurhash3_32
 print (murmurhash3_32("something", seed=0, positive=True))

For instance, if your input is Python, a hashing command such as abs(hash('Python'))
can transform that into the integer number 539294296 and then assign the value of 1 to the
cell at the 539294296 column index. The hash function is a very fast and convenient way to
invariably locate the same column index given the same input. The use of only absolute
values ensures that each index corresponds only to a column in our array (negative indexes
just start from the last column, and hence in Python, each column of an array can be
expressed by both a positive and negative number).

The example that follows uses the HashingVectorizer class, a convenient class that
automatically takes documents, separates the words, and transforms them, thanks to the
hashing trick, into an input matrix. The script aims at learning why posts are published in
20 distinct newsgroups based on the words used on the existing posts in the newsgroups:

In: import pandas as pd
 from sklearn.linear_model import SGDClassifier
 from sklearn.feature_extraction.text import HashingVectorizer
 def streaming():
 for response, item in zip(newsgroups_dataset.target,
 newsgroups_dataset.data):
 yield response, item
 hashing_trick = HashingVectorizer(stop_words='english', norm = 'l2')
 learner = SGDClassifier(random_state=101, max_iter=10)
 texts = list()
 targets = list()
 for n, (target, text) in enumerate(streaming()):
 texts.append(text)
 targets.append(target)
 if n % 1000 == 0 and n >0:
 learning_chunk = hashing_trick.transform(texts)
 if n > 1000:
 last_validation_score = learner.score(learning_chunk, targets),
 learner.partial_fit(learning_chunk, targets,
 classes=[k for k in range(20)])
 texts, targets = list(), list()

https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html

Machine Learning Chapter 4

[260]

 print ('Last validation score: %0.3f' % last_validation_score)

Out: Last validation score: 0.710

At this point, no matter what text you may input, the predictive algorithm will always
answer by pointing out a class. In our case, it points out a newsgroup suitable for the post
to appear on it. Let's try out this algorithm with a text taken from a classified ad:

In: New_text = ["A 2014 red Toyota Prius v Five with fewer than 14K" +
 "miles. Powered by a reliable 1.8L four cylinder " +
 "hybrid engine that averages 44mpg in the city and " +
 "40mpg on the highway."]
 text_vector = hashing_trick.transform(New_text)
 print (np.shape(text_vector), type(text_vector))
 print ('Predicted newsgroup: %s' %
 newsgroups_dataset.target_names[learner.predict(text_vector)])

Out: (1, 1048576) <class 'scipy.sparse.csr.csr_matrix'>
 Predicted newsgroup: rec.autos

Naturally, you may change the New_text variable and discover where your text most
likely will be displayed in a newsgroup. Note that the HashingVectorizer class has
transformed the text into a csr_matrix (which is quite an efficient sparse matrix) to save
memory, having a dataset of about one million columns.

An overview of Stochastic Gradient Descent
(SGD)
We will complete this part of the chapter devoted to learning from big data with a quick
overview of the SGD family, comprising SGDClassifier (for classification) and
SGDRegressor (for regression).

Like other classifiers, they can be fit by using the .fit() method (passing row by row the
in-memory dataset to the learning algorithm) or the previously seen .partial_fit()
method based on batches. In the latter case, if you are classifying, you have to declare the
predicted classes with the class parameter. It can accept a list containing all the class code
that it should expect to meet during the training phase.

SGDClassifier can behave as a logistic regression when the loss parameter is set to loss. It
transforms into a linear SVC if the loss is set to hinge. It can also take the form of other loss
functions, or even the loss functions working for regression.

Machine Learning Chapter 4

[261]

SGDRegressor mimics a linear regression using the squared_loss loss parameter. Instead,
the Huber loss transforms the squared loss into a linear loss over a certain distance epsilon
(another parameter to be fixed). It can also act as a linear SVR using the
epsilon_insensitive loss function or the slightly different
squared_epsilon_insensitive (which penalizes outliers more).

As in other situations with machine learning, the performance of the different loss functions
on your data science problem cannot be estimated a priori. Anyway, please take into
account that if you are doing classification and you need an estimation of class
probabilities, you will be limited in your choice to log or modified_huber only.

The key parameters that require tuning for this algorithm to work best with your data are
as follows:

n_iter: The number of iterations over the data. As a rule of thumb, the more the
passes, the better the optimization of the algorithm. However, there is a higher
risk of overfitting if the passes are too many. Empirically, SGD tends to converge
to a stable solution after having seen 10**6 examples. Given your examples, set
your number of iterations accordingly.
penalty: You have to choose l1, l2, or elasticnet, which are all different
regularization strategies, to avoid overfitting because of overparameterization
(using too many unnecessary parameters leads to the memorization of
observations more than the learning of patterns). Briefly, l1 tends to reduce
unhelpful coefficients to zero, l2 just attenuates them, and elasticnet is a mix of l1
and l2 strategies.
alpha: This is a multiplier of the regularization term; the higher the alpha, the
more the regularization. We advise you to find the best alpha value by
performing a grid search ranging from 10**-7 to 10**-1.
l1_ratio: The l1 ratio is used for elasticnet penalty. The suggested value or 0.15
will usually prove quite effective.
learning_rate: This sets how much the coefficients are affected by every single
example. Usually, it is optimal for classifiers and invscaling for regression. If
you want to use invscaling for classification, you'll have to set eta0 and
power_t (invscaling = eta0 / (t**power_t)). With invscaling, you
can start with a lower learning rate, which is less than the optimal rate, though it
will decrease slower.
epsilon: This should be used if your loss is huber, epsilon_insensitive, or
squared_epsilon_insensitive.
shuffle: If this is True, the algorithm will shuffle the order of the training data
in order to improve the generalization of the learning.

Machine Learning Chapter 4

[262]

A peek into natural language processing
(NLP)
This section is not strictly related to machine learning, but it contains some machine
learning results in the area of natural language processing. Python has many packages to
process text data, and one of most powerful and complete toolkit for text processing is
NLTK, the Natural Language Tool Kit.

Other NLP toolkits available for the Python community are gensim
(https:/ ​/​radimrehurek. ​com/​gensim/ ​) and spaCy (https:/ ​/​spacy. ​io/ ​)

In the following sections, we'll explore NLTK core functionalities. We will work on the
English language; for other languages, you will first need to download the language
corpora (note that sometimes languages have no free open source corpora for NLTK).

Please refer to the official website of NLTK data, http:/ ​/​www. ​nltk. ​org/ ​nltk_ ​data/ ​, to
have access to corpora and lexical resources in many languages, ready to work with NLTK.

Word tokenization
Tokenization is the act of splitting the text into words. Chunking whitespace seems very
easy, but it's not, because the text contains punctuation and contractions. Let's start with an
example:

In: my_text = "The coolest job in the next 10 years will be " +\
 "statisticians. People think I'm joking, but " +\
 "who would've guessed that computer engineers " +\
 "would've been the coolest job of the 1990s?"
 simple_tokens = my_text.split(' ')
 print (simple_tokens)

Out: ['The', 'coolest', 'job', 'in', 'the', 'next', '10', 'years', 'will',
 'be', 'statisticians.', 'People', 'think', "I'm", 'joking,', 'but',
 'who', "would've", 'guessed', 'that', 'computer', 'engineers',
 "would've", 'been', 'the', 'coolest', 'job', 'of', 'the', '1990s?']

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/

Machine Learning Chapter 4

[263]

Here, you can immediately see that something is wrong. The following tokens contain more
than a word: statisticians. (with the final period), I'm (two words), would've, and
1990s? (with the final question mark). Let's now see how NLTK performs better in this
task (of course, under the hood, the algorithm is more complex than a simple whitespace
chunker):

In: import nltk
 nltk_tokens = nltk.word_tokenize(my_text)
 print (nltk_tokens)

Out: ['The', 'coolest', 'job', 'in', 'the', 'next', '10', 'years',
 'will', 'be', 'statisticians', '.', 'People', 'think', 'I',
 "'m", 'joking', ',', 'but', 'who', 'would', "'ve", 'guessed',
 'that', 'computer', 'engineers', 'would', "'ve", 'been', 'the',
 'coolest', 'job', 'of', 'the', '1990s', '?']

While executing this or some other NLTK package calls, in case of an error
saying "Resource u'tokenizers/punkt/english.pickle' not
found.", just type nltk.download() on your console and select to either
download everything or browse for the missing resource that triggered
the warning.

Here, the quality is better, and each token is associated with a word in the text.

Note that ., ,, and ? are tokens, too.

There also exists a sentence tokenizer (see the nltk.tokenize.punkt module), but it's
seldom used in data science.

Also, beyond the general-purpose English tokenizer, NLTK contains many other tokenizers
to be used in different contexts. For example, if you're working on tweets, TweetTokenizer
can be extremely useful to parse tweet-like documents. The most useful options are to
remove handles, shorten consecutive characters, and properly tokenize hashtags. Here's an
example:

In: from nltk.tokenize import TweetTokenizer
 tt = TweetTokenizer(strip_handles=True, reduce_len=True)
 tweet = '@mate: I loooooooove this city!!!!!!! #love #foreverhere'
 tt.tokenize(tweet)

Out: [':', 'I', 'looove', 'this', 'city', '!', '!', '!', '#love',
 '#foreverhere']

Machine Learning Chapter 4

[264]

Stemming
Stemming is the action of reducing inflectional forms of words and taking the words to
their core concepts. For example, the concept behind is, be, are, and am is the same.
Similarly, the concept behind go and goes, as well as table and tables, is the same. The
operation of deriving the root concept for each word is called stemming. In NLTK, you can
choose the stemmer that you'd like to use (there are several ways to get the root part of
words). We'll show you one of them, letting the others in Jupyter Notebook associated with
this part of the book:

In: from nltk.stem import *
 stemmer = LancasterStemmer()
 print ([stemmer.stem(word) for word in nltk_tokens])

Out: ['the', 'coolest', 'job', 'in', 'the', 'next', '10', 'year',
 'wil', 'be', 'stat', '.', 'peopl', 'think', 'i', "'m", 'jok',
 ',', 'but', 'who', 'would', "'ve", 'guess', 'that', 'comput',
 'engin', 'would', "'ve", 'been', 'the', 'coolest', 'job',
 'of', 'the', '1990s', '?']

In the example, we used the Lancaster stemmer, which is one of the most powerful and
recent algorithms. Checking the result, you will immediately see that it's all lowercase and
statistician is associated with its root, stat. Good job!

Word tagging
Tagging, or POS-Tagging, is the association between a word (or a token) and its part-of-
speech tag (POS-Tag). After tagging, you know what (and where) the verbs, adjectives,
nouns, and so on, are in the sentence. Even in this case, NLTK makes this complex
operation very easy:

In: import nltk
 print (nltk.pos_tag(nltk_tokens))

Out: [('The', 'DT'), ('coolest', 'NN'), ('job', 'NN'), ('in', 'IN'),
 ('the', 'DT'), ('next', 'JJ'), ('10', 'CD'), ('years', 'NNS'),
 ('will', 'MD'), ('be', 'VB'), ('statisticians', 'NNS'), ('.', '.'),
 ('People', 'NNS'), ('think', 'VBP'), ('I', 'PRP'), ("'m", 'VBP'),
 ('joking', 'VBG'), (',', ','), ('but', 'CC'), ('who', 'WP'),
 ('would', 'MD'), ("'ve", 'VB'), ('guessed', 'VBN'), ('that', 'IN'),
 ('computer', 'NN'), ('engineers', 'NNS'), ('would', 'MD'),
 ("'ve", 'VB'), ('been', 'VBN'), ('the', 'DT'), ('coolest', 'NN'),
 ('job', 'NN'), ('of', 'IN'), ('the', 'DT'), ('1990s', 'CD'),
 ('?', '.')]

Machine Learning Chapter 4

[265]

Using the syntax of NLTK, you will realize that the The token represents a determiner (DT),
coolest and job represent nouns (NN), in represents a conjunction, and so on. The
association is really detailed; in the case of a verb, there are six possible tags, as follows:

Take: VB (verb, base form)
Took: VBD (verb, past tense)
Taking: VBG (verb, gerund)
Taken: VBN (verb, past participle)
Take: VBP (verb, singular present tense)
Takes: VBZ (verb, third-person singular present tense)

If you need a more detailed view of the sentence, you may want to use the parse tree tagger
to understand its syntactic structure. This operation is rarely used in data science, since it's
great for sentence-by-sentence analysis.

Named entity recognition (NER)
The goal of NER is to recognize tokens associated with people, organizations, and locations.
Let's use an example to explain it further:

In: import nltk
 text = "Elvis Aaron Presley was an American singer and actor. Born in \
 Tupelo, Mississippi, when Presley was 13 years old he and his \
 family relocated to Memphis, Tennessee."
 chunks = nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(text)))
 print (chunks)

Out: (S
 (PERSON Elvis/NNP)
 (PERSON Aaron/NNP Presley/NNP)
 was/VBD
 an/DT
 (GPE American/JJ)
 singer/NN
 and/CC
 actor/NN
 ./.
 Born/NNP
 in/IN
 (GPE Tupelo/NNP)
 ,/,
 (GPE Mississippi/NNP)
 ,/,

Machine Learning Chapter 4

[266]

 when/WRB
 (PERSON Presley/NNP)
 was/VBD
 13/CD
 years/NNS
 old/JJ
 he/PRP
 and/CC
 his/PRP$
 family/NN
 relocated/VBD
 to/TO
 (GPE Memphis/NNP)
 ,/,
 (GPE Tennessee/NNP)
 ./.)

An extract of the Wikipedia page on Elvis is analyzed and NER-processed. A few entities
that have been recognized by NER are listed here:

Elvis Aaron Presley: PERSON
American: GPE (Geopolitical entity)
Tupelo, Mississippi: GPE (Geopolitical entity)
Memphis, Tennessee: GPE (Geopolitical entity)

Stopwords
Stopwords are the least informative pieces (or tokens) in text, since they are the most
common words (such as the, it, is, as, and not). Stopwords are often removed. And, exactly
the way it happens in the feature selection phase if you remove them, the processing takes
less time and less memory; also, it is sometimes more accurate. Removing stopwords
decreases the overall entropy of the text, thereby making whatever signal is in there more
apparent and easier to represent in features.

A list of English stopwords is available in Scikit-learn, too. For the stopwords in other
languages, check out NLTK:

In: from sklearn.feature_extraction import text
 stop_words = text.ENGLISH_STOP_WORDS
 print (stop_words)

Out: frozenset(['all', 'six', 'less', 'being', 'indeed', 'over', 'move',
 'anyway', 'four', 'not', 'own', 'through', 'yourselves',
 'fify', 'where', 'mill', 'only', 'find', 'before', 'one',

Machine Learning Chapter 4

[267]

 'whose', 'system', 'how', ...

In: from nltk.corpus import stopwords
 print(stopwords.words('english'))

Out: ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',
 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him',
 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its',
 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what',
 'which', 'who', 'whom', 'this', 'that', 'these', '...

In: print(stopwords.words('german'))
Out: ['aber', 'alle', 'allem', 'allen', 'aller', 'alles', 'als', 'also',
 'am', 'an', 'ander', 'andere', 'anderem', 'anderen', 'anderer',
 'anderes', 'anderm', 'andern', 'anderr', 'anders', 'auch',
 'auf', 'au', ...

A complete data science example – text
classification
Now, here's a complete example that allows you to put each text in the right category. We
will use the 20newsgroup dataset, which was already introduced in Chapter 1, First Steps.
To make things more realistic and prevent the classifier from overfitting the data, we'll
remove email headers, footers (such as a signature), and quotes. In addition, in this case,
the goal is to classify between two similar categories: sci.med and sci.space. We will use
the accuracy measure to evaluate the classification:

In: import nltk
 from sklearn.datasets import fetch_20newsgroups
 from sklearn.feature_extraction.text import TfidfVectorizer
 from sklearn.linear_model import SGDClassifier
 from sklearn.metrics import accuracy_score
 from sklearn.datasets import fetch_20newsgroups
 import numpy as np
 categories = ['sci.med', 'sci.space']
 to_remove = ('headers', 'footers', 'quotes')
 twenty_sci_news_train = fetch_20newsgroups(subset='train',
 remove=to_remove, categories=categories)
 twenty_sci_news_test = fetch_20newsgroups(subset='test',
 remove=to_remove, categories=categories)

Machine Learning Chapter 4

[268]

Let's start with the easiest approach to preprocess the textual data-using TfIdf. Remember
that Tfidf is the multiplication of the frequency of the word within the document, by the
inverse of its frequency across all the documents. High scores indicate that the word is used
multiple times in the current document, but it's rare in the others (that is, it's a keyword of
the document):

In: tf_vect = TfidfVectorizer()
 X_train = tf_vect.fit_transform(twenty_sci_news_train.data)
 X_test = tf_vect.transform(twenty_sci_news_test.data)
 y_train = twenty_sci_news_train.target
 y_test = twenty_sci_news_test.target

Now let's use a linear classifier (SGDClassifier) to perform the classification task. One last
thing to do is to print out the classification accuracy:

In: clf = SGDClassifier()
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)
 print ("Accuracy=", accuracy_score(y_test, y_pred))

Out: Accuracy= 0.878481012658

An accuracy of 87.8 percent is a very good result. The entire program consists of less than
20 lines of code. Now, let's see if we can get something better. In this chapter, we've learned
stopword removal, tokenization, and stemming. Let's see whether we gain accuracy by
using them:

In: def clean_and_stem_text(text):
 tokens = nltk.word_tokenize(text.lower())
 clean_tokens = [word for word in tokens if word not in stop_words]
 stem_tokens = [stemmer.stem(token) for token in clean_tokens]
 return " ".join(stem_tokens)
 cleaned_docs_train = [clean_and_stem_text(text) for text in
 twenty_sci_news_train.data]
 cleaned_docs_test = [clean_and_stem_text(text) for text in
 twenty_sci_news_test.data]

Machine Learning Chapter 4

[269]

The clean_and_stem_text function basically lowercases, tokenizes, stems, and
reconstructs every document in the dataset. Finally, we will apply the same preprocessing
(Tfidf) and classifier (SGDClassifier) that we used in the preceding example:

In: X1_train = tf_vect.fit_transform(cleaned_docs_train)
 X1_test = tf_vect.transform(cleaned_docs_test)
 clf.fit(X1_train, y_train)
 y1_pred = clf.predict(X1_test)
 print ("Accuracy=", accuracy_score(y_test, y1_pred))

Out: Accuracy= 0.893670886076

This processing requires more time, but we gained an accuracy of about 1.5 percent. An
accurate tuning of the parameters of Tfidf and a cross-validated choice of the parameters
of the classifier will eventually boost the accuracy to over 90 percent. So far, we're happy
with this performance, but you can try to break that barrier.

An overview of unsupervised learning
In all the methods we've seen so far, every sample or observation has its own target label or
value. In some other cases, the dataset is unlabeled and, to extract the structure of the data,
you need an unsupervised approach. In this section, we're going to introduce two methods
to perform clustering, as they are among the most used methods for unsupervised learning.

It is useful to bear in mind that often the terms clustering and unsupervised
learning are considered synonymous, though, actually, unsupervised
learning has a larger meaning.

K-means
The first method that we'll introduce is named K-means, the most commonly used
clustering algorithm despite its inevitable shortcomings. In signal processing, K-means is
the equivalent of a vectorial quantization, that is, the selection of the best codeword (from a
given codebook) that better approximates the input observation (or a word).

Machine Learning Chapter 4

[270]

You must provide the algorithm with the K parameter, which is the number of clusters.
Sometimes, this might be a limitation because you have to investigate first which is the
right K for the current dataset.

K-means iterates an EM (expectation/maximization) approach. During the first phase, it
assigns each training point to the closest cluster centroid; during the second phase, it moves
the cluster centroid to the center of mass of the points assigned to it (to reduce distortion).
The initial placement of centroids is random. Consequently, you may need to run the
algorithm several times so as not to find a local minimum.

That's all for the theory behind the algorithm; now, let's see it in practice. In this section,
we're using two two-dimensional dummy datasets that will explain what's going on better.
Both datasets are composed of 2,000 samples so that you can also have an idea about the
processing time.

Now, let's create the artificial datasets, and then let's represent them by a plot:

In: %matplotlib inline
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn import datasets
 N_samples = 2000
 dataset_1 = np.array(datasets.make_circles(n_samples=N_samples,
 noise=0.05, factor=0.3)[0])
 dataset_2 = np.array(datasets.make_blobs(n_samples=N_samples,
 centers=4, cluster_std=0.4, random_state=0)
 plt.scatter(dataset_1[:,0], dataset_1[:,1], c=labels_1,
 alpha=0.8, s=64, edgecolors='white')
 plt.show()

Machine Learning Chapter 4

[271]

This is the first dataset we created, made of concentric rings of points (a quite tricky
problem because the represented clusters are non spherical):

In: plt.scatter(dataset_2[:,0], dataset_2[:,1], alpha=0.8, s=64,
 c='blue', edgecolors='white')
 plt.show()

Here is the second one, made of separated bubbles of points:

Machine Learning Chapter 4

[272]

Now it's time to apply K-means. We will set K=2 in this case. Let's see the results:

In: from sklearn.cluster import KMeans
 K_dataset_1 = 2
 km_1 = KMeans(n_clusters=K_dataset_1)
 labels_1 = km_1.fit(dataset1).labels
 plt.scatter(dataset_1[:,0], dataset_1[:,1], c=labels_1,
 alpha=0.8, s=64, edgecolors='white')
 plt.scatter(km_1.cluster_centers_[:,0], km_1.cluster_centers_[:,1],
 s=200, c=np.unique(labels_1), edgecolors='black')
 plt.show()

This is the result with obtain on this problem:

As you can see, K-means is not performing very well on this dataset, because it expects
spherical-shaped data clusters. For this dataset, a Kernel-PCA should be applied before
using K-means.

Now let's see how it performs on a spherical-clustered data. In this case, based on our
knowledge of the problem and the silhouette coefficient, we will set K=4:

In: K_dataset_2 = 4
 km_2 = KMeans(n_clusters=K_dataset_2)
 labels_2 = km_2.fit(dataset2).labels
 plt.scatter(dataset_2[:,0], dataset_2[:,1], c=labels_2,
 alpha=0.8, s=64, edgecolors='white')
 plt.scatter(km_2.cluster_centers_[:,0], km_2.cluster_centers_[:,1],
 marker='s', s=100, c=np.unique(labels_2), edgecolors='black')
 plt.show()

Machine Learning Chapter 4

[273]

The results we get on this problem are much better:

As expected, the plotted result is great. The centroids and clusters are exactly what we had
in mind while looking at the unlabeled dataset. Now we are going to check if there is any
other cluster approach that could help us solve the clustering problem when our clusters
are non-spherical.

In real-world cases, you may consider using the Silhouette Coefficient to
have an idea about how well-defined the clusters are. It is an evaluation
metric of consistency within groups, applicable to various clustering
results, and even class structures in supervised learning. You can read
more about Silhouette Coefficient at
http://Scikit-learn.org/stable/modules/clustering.html#silhouett

e-coefficient.

DBSCAN – a density-based clustering technique
Now we will introduce you to DBSCAN, a density-based clustering technique. It's a very
simple technique. It selects a random point; if the point is in a dense area (if it has more
than N neighbors do), it starts growing the cluster, including all the neighbors, and the
neighbors of the neighbors, until it reaches a point where there are no more neighbors.

http://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient
http://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient

Machine Learning Chapter 4

[274]

If the point is not in a dense area, it is classified as noise. Then, another unlabeled point is
selected randomly and the process starts over. This technique is great for non-spherical
clusters, but it works equally well with spherical ones. The input is just the neighborhood
radius (the eps parameter, that is, the maximum distance between two points that are
being considered neighbors), and the output is the cluster membership label for each point.

Note that the points labeled by the value-1 are classified as noise by
DBSCAN.

Let's see an example on the dataset we had previously introduced:

In: from sklearn.cluster import DBSCAN
 dbs_1 = DBSCAN(eps=0.25)
 labels_1 = dbs_1.fit(dataset1).labels
 plt.scatter(dataset_1[:,0], dataset_1[:,1], c=labels_1,
 alpha=0.8, s=64, edgecolors='white')
 plt.show()

Now the clusters are correctly located by the DBSCAN algorithm:

The result is perfect now. No points have been classified as noise (only the 0 and 1 labels
appear in the label set):

In: np.unique(labels_1)

Out: array([0, 1])

Machine Learning Chapter 4

[275]

Now let's move on to the other dataset:

In: dbs_2 = DBSCAN(eps=0.5)
 labels_2 = dbs_2.fit(dataset2).labels
 plt.scatter(dataset_2[:,0], dataset_2[:,1], c=labels_2,
 alpha=0.8, s=64, edgecolors='white')
 plt.show()

In: np.unique(labels_2)

Out: array([-1, 0, 1, 2, 3])

It took some time to select the best settings for DBSCAN, and in this case, four clusters have
been detected and a few points have been classified as noise (since the label set contains -1):

At the end of this section, a last important note is that in this essential
introduction of K-means and DBSCAN, we have always used the
Euclidean distance, as it is the default distance metric in these functions
(though other distance metrics can also be used if you find them
appropriate). When using this distance in real cases, remember that you
have to normalize each feature (z-normalization) so that every feature
contributes equally to the final distortion. If the dataset is not normalized,
the features that have larger support will have more decision power on
the output label, and that's something that we don't want.

Machine Learning Chapter 4

[276]

Latent Dirichlet Allocation (LDA)
For text, instead, a popular unsupervised algorithm that can be used to understand a
common set of words in a collection of documents is Latent Dirichlet Allocation or LDA.

Note that another algorithm, the Linear Discriminant Analysis, also has
the same acronym, but the two algorithms are completely unconnected.

LDA aims to extract sets of homogeneous words, or topics, out of a collection of
documents. The math behind the algorithm is very advanced; here we will see just a
practical notion of it.

Let's start with an example to explain why LDA is popular and why other unsupervised
methods aren't good enough when dealing with text. K-means and DBSCAN, for example,
provide a hard decision for each sample, putting each point in a disjoint partition.
Documents, instead, often describe covering topics together (think about Shakespeare's
books; they're a good mix of tragedy, romance, and adventure). On text documents, any
hard decision would be almost certainly wrong. LDA, instead, provides as output a mixture
of topics composing the document, along with an indication of how much the topic is
represented in the document.

Let's use an example to explain how it works. We will train the algorithm on two
categories; cars and medicine, from the 20-newsgroup dataset (we have already used the
same dataset before in the chapter, in the earlier paragraph, Preparing tools and datasets):

In: import nltk
 Import gensim
 from sklearn.datasets import fetch_20newsgroups
 def tokenize(text):
 return [token.lower() \
 for token in gensim.utils.simple_preprocess(text) \
 if token not in gensim.parsing.preprocessing.STOPWORDS]

 text_dataset=fetch_20newsgroups(categories=['rec.autos','sci.med'],
 random_state=101,
 remove=('headers', 'footers', 'quotes'))
 documents = text_dataset.data
 print("Document count:", len(documents))

Out: Document count: 1188

Machine Learning Chapter 4

[277]

Each one of the 1,188 documents composing the dataset is a string. For example, the first
document contains the following text:

In: documents[0]

Out: 'nI have a new doctor who gave me a prescription today for something
 called nSeptra DS. He said it may cause GI problems and I have a
 sensitive stomach nto begin with. Anybody ever taken this antibiotic.
 Any good? Suggestions nfor avoiding an upset stomach? Other tips?n'

This document is definitely about medicine; there is nothing really important anyway for
the algorithm. Now let's tokenize and create a dictionary of all the words included in the
dataset. Mind that the tokenization operation also removes the stopwords and puts each
word in lowercase:

In: processed_docs = [tokenize(doc) for doc in documents]
 word_dic = gensim.corpora.Dictionary(processed_docs)
 print("Num tokens:", len(word_dic))

Out: Num tokens: 16161

In the dataset, there are just over 16,000 distinct words. It's now time to filter too common
words and too rare ones. In this step, we will keep the words appearing at least 10 times
and no more than in 20% of the documents. At this point, we have the "Bag Of Words" (or
BoW) representation of each document; that is, each document is represented as a
dictionary containing how many times each word appears in the text. The absolute position
of each word in the text is lost, exactly as if you put all the words of the document in a bag.
As a result, not all of the signal in the text is captured in the features based on this
approach, but most of the time, it suffices to make an effective model:

In: word_dic.filter_extremes(no_below=10, no_above=0.2)
 bow = [word_dic.doc2bow(doc) for doc in processed_docs]

Finally, here's the core class for LDA. In this example, we instruct LDA that in the dataset
there are just two topics. We also provide other parameters to make the algorithm converge
(if not, you'll receive a warning from the Python interpreter). Note that this algorithm
works on many CPUs on your computer to speed up the process. If it doesn't work, please
use the mono-process class, gensim.models.ldamodel.LdaModel, with the same
parameters:

In: lda_model = gensim.models.LdaMulticore(bow, num_topics=2,
 id2word=word_dic, passes=10,
 iterations=500)

Machine Learning Chapter 4

[278]

Finally, after a couple of minutes, the model is trained. To see the association between
words and topics, run the following code:

In: lda_model.print_topics(-1)

Out: [(0, '0.011*edu + 0.008*com + 0.007*health + 0.007*medical +
 0.007*new + 0.007*use + 0.006*people + 0.005*time +
 0.005*years + 0.005*patients'), (1, '0.018*car + 0.008*good +
 0.008*think + 0.008*cars + 0.007*msg + 0.006*time +
 0.006*people + 0.006*water + 0.005*food + 0.005*engine')]

As you can see, the algorithm went through all the documents and learned that the main
topics are cars and medicine. Note that the algorithm doesn't provide a short name for the
topics, but their composition (the numbers are the weights of each word inside each topic,
ranked from highest to lowest). In addition, note that some words appear in both topics;
they are ambiguous words that can be used in both senses.

Finally, let's see how the algorithm works on an unseen document. To make things easier,
let's create a sentence that contains both topics, for example I've shown the doctor my new car.
He loved its big wheels! Then, after having created a Bag-of-Words representation of this new
document, LDA will produce two scores, one for each topic:

In: new_doc = "I've shown the doctor my new car. He loved its big wheels!"
 bow_doc = word_dic.doc2bow(tokenize(new_doc))
 for index, score in sorted(lda_model[bow_doc], key=lambda tup:
 -1*tup[1]):
 print("Score: {}t Topic: {}".format(score,
 lda_model.print_topic(index, 5)))

Out: Score: 0.5047402389474193 Topic: 0.011*edu + 0.008*com +
 0.007*health + 0.007*medical + 0.007*new
 Score: 0.49525976105258074 Topic: 0.018*car + 0.008*good +
 0.008*think + 0.008*cars + 0.007*msg

The scores for both the topics are around 0.5 and 0.5, meaning that the sentence contains a
good balance of the subjects car and medicine. What we've shown here is just an example
of two topics; but the same implementation, thanks to the performing library Gensim, can
also allocate process the whole English Wikipedia in a matter of few hours.

Machine Learning Chapter 4

[279]

A different approach than LDA is provided by the Word2Vec algorithm, a very recent
model for embedding words in vectors. Compared to LDA, Word2Vec keeps track of the
position of the words in a sentence, and this additional context helps to disambiguate some
words better. Word2Vec is trained using a deep-learning-like approach, but the
implementation provided by the Gensim library makes it very easy to train and use. Note
that while LDA aims to understand the topics in a document, Word2Vec works at the word
level and tries to understand what the semantic relationship between words in a low-
dimensionality space is (that is, creating an n-dimensional vector for each word). Let's see
an example, to make things clear.

We will use the movie review dataset to train the Word2Vec model. The training is done
simply by passing the sentences composing the corpora to the Word2Vec constructor, and,
eventually, the number of workers that can work in parallel on the training task:

In: from gensim.models import Word2Vec
 from nltk.corpus import movie_reviews
 w2v = Word2Vec(movie_reviews.sents(), workers=4)
 w2v.init_sims(replace=True)

The last line of code simply freezes the model, not allowing any additional updates. This
also brings an additional and very welcome benefit: reducing the memory fingerprint of the
object.

Visualizing vectors that represent the words may be complicated; therefore, let's see some
similarities (that is, similar vectors in the low-dimensional subspace). Here, we will ask the
model to provide the top five most similar words (along with the similarity score) to the
words house and countryside. This is just an example; it's possible to retrieve similar
words for all words contained in the input corpora:

In: w2v.wv.most_similar('house', topn=5)

Out: [('apartment', 0.8799251317977905),
 ('body', 0.8719735145568848),
 ('hotel', 0.8618944883346558),
 ('head', 0.848749041557312),
 ('boat', 0.8469674587249756)]

In: w2v.vw.most_similar('countryside', topn=5)

Out: [('motorcycle', 0.9531803131103516),
 ('marches', 0.9499938488006592),
 ('rural', 0.9467764496803284),
 ('shuttle', 0.9466159343719482),
 ('mining', 0.9461280107498169)]

Machine Learning Chapter 4

[280]

How is Word2Vec able to do so? Simply, with a similarity score in the low-dimensionality
vector space. In fact, to see the vector representation of each word, perform the following:

In: w2v.wv['countryside']

Out: array([-0.09412272, 0.07695948, -0.14981066, 0.04894404,
 -0.03712097, -0.17099065, -0.0379245 , -0.05336253,
 0.06084964, -0.01273731, -0.03949985, -0.06456301,
 -0.03289359, -0.06889232, 0.02217194, ...

The array is composed of 100 dimensions; you can increase or decrease it by setting the
size parameter while training the model. 100 is the default value.

In the most_similar method we've previously used, you can also specify the negative
words to use (that is, to subtract similar words). A classic example is finding a similar word
to woman and king without queen. The top result is, unsurprisingly, man:

In: w2v.wv.most_similar(positive=['woman', 'king'], negative=['queen'],
 topn=3)

Out: [('man', 0.8440324068069458),
 ('girl', 0.7671926021575928),
 ('child', 0.7635241746902466)]

The model, thanks to the vector representation, also provides the method to identify the
non-matching words in a set of similar words; that is, the word that doesn't match the
context (in this case, the context is the bedroom):

In: w2v.wv.doesnt_match(['bed', 'pillow', 'cake', 'mattress'])

Out: 'cake'

Finally, all the preceding methods are built on similarity scores. The model also provides
the raw score of similarity between words; here's an example of the similarity score of
woman and girl and woman and boy. The first similarity is higher, though the second is not
zero, since both words are connected by the fact we're talking about people:

In: w2v.wv.similarity('woman', 'girl'), w2v.similarity('woman', 'boy')

Out: (0.90198267746062233, 0.82372486297773828)

Machine Learning Chapter 4

[281]

Summary
In this chapter, we introduced the essentials of machine learning. We started with some
easy, but still quite effective, classifiers (linear and logistic regressors, Naive Bayes, and K-
Nearest Neighbors). Then, we moved on to the more advanced ones (SVM). We explained
how to compose weak classifiers together (ensembles, Random Forests, Gradient Tree
Boosting) and touched on three awesome gradient-boosted classifiers: XGboost, LightGBM,
and CatBoost. Finally, we had a peek at the algorithms used in big data, clustering, and
NLP.

In the next chapter, we are going to introduce you to the basics of visualization with
Matplotlib, how to operate EDA with pandas and achieve beautiful visualizations with
Seaborn, and how to set up a web server to provide information on demand.

5
Visualization, Insights, and

Results
After exploring machine learning, but not because the topic is less relevant than others, we
are going to illustrate how to create visualizations with Python to enrich your data science
project. Visualization plays an important role in helping you communicate the results and
insights derived from data and the learning process.

In this chapter, you will learn how to do the following:

Use the basic pyplot functions from the matplotlib package
Leverage a pandas DataFrame for Explorative Data Analysis (EDA)
Create beautiful and interactive charts with Seaborn
Visualize the machine learning and optimization processes we discussed
in Chapter 3, The Data Pipeline, and Chapter 4, Machine Learning
Understand and visually communicate variables' importance and their
relationship with the target outcome
Set up a prediction server that uses HTTP to accept and provide predictions as a
service

Introducing the basics of matplotlib
Visualization is a fundamental aspect of data science, allowing data scientists to better and
more effectively communicate their findings to the organization they operate in, to both
data experts and non-experts. Providing the nuts and bolts of the principles behind
communicating information and crafting engaging beautiful visualizations is beyond the
scope of our book, but we can recommend suitable resources if you want to improve your
skills.

Visualization, Insights, and Results Chapter 5

[283]

For basic visualization rules, you can visit https:/ ​/​lifehacker. ​com/ ​5909501/ ​how- ​to-
choose-​the-​best- ​chart- ​for- ​your- ​data. We also recommend the books of Prof. Edward
Tufte on analytic design and visualization.

We can instead provide a fast and to-the-point series of essential recipes that can get you
started on visualization using Python, and that you can refer to anytime you need to create
a specific graphics chart. Consider all the snippets of code as your visualization building
blocks; you can arrange them with different configurations and features just by using the
large choice of parameters that we are going to present to you.

matplotlib is a Python package for plotting graphics. Created by John Hunter, it has been
developed in order to address a lack of integration between Python and external software
with graphical capabilities, such as MATLAB or gnuplot. Greatly influenced by MATLAB's
way of operating and functions, matplotlib presents a quite similar syntax. In particular,
the matplotlib.pyplot module, perfectly compatible with MATLAB, will be the core of
our essential introduction to all the indispensable graphical tools to represent your data
and analysis. MATLAB is indeed a standard for visualization in the data analysis and
scientific community because of its recognized capabilities when it comes to exploratory
analysis, mainly due to its smooth and easy to use plotting functions.

Each pyplot command makes a change on an initially instantiated figure. Once you set a
figure, all additional commands will operate on it. Thus, it is easy to incrementally improve
and enrich your graphic representation. In order for you to take advantage of the code and
be able to personalize it to your needs, all the following examples are presented together
with commented building blocks so that you can later draft your basic representation, and
then look through this chapter for specific parameters among the examples in order to
improve your chart as you planned it.

With the pyplot.figure() command, you can initialize a new visualization, though it
suffices to call a plotting command to automatically start it. Instead, by using
pyplot.show(), you close the figure that you were operating on, and you can open and
operate on new figures.

Before starting with a few visualization examples, let's import the necessary packages in
order to run all the examples:

In: import numpy as np
 import matplotlib.pyplot as plt
 import matplotlib as mpl

In this way, we can always refer to pyplot, the MATLAB-like module, as plt, and access
the complete matplotlib functionality set with the help of mpl.

https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data
https://lifehacker.com/5909501/how-to-choose-the-best-chart-for-your-data

Visualization, Insights, and Results Chapter 5

[284]

If you are using a Jupyter Notebook (or Jupyter Lab), you can use this line
magic: %matplotlib inline. After writing the command in a cell of the
notebook and running it, you can have your plots drawn directly on the
notebook itself, instead of having the graphics presented in a separate
window (by default, the GUI backend of matplotlib is the TkAgg
backend). If you prefer a different backend such as Qt (www.qt.io), which
is often distributed with Python scientific distributions, you just have to
run this line magic instead: %matplotlib Qt.

Trying curve plotting
Our first problem will require you to draw a function with pyplot. Drawing a function is
quite straightforward; you just have to get a series of x coordinates and map them to the y
axis by using the function that you want to plot. Since the mapping results are stored away
into two vectors, the plot function will deal with the curve representation. The precision of
the representation will be greater if the mapped points are enough (50 points is a good
sampling number):

In: import numpy as np
 import matplotlib.pyplot as plt
 x = np.linspace(0, 5, 50)
 y_cos = np.cos(x)
 y_sin = np.sin(x)

Using the NumPy linspace() function, we will create a series of 50 equally distanced
numbers ranging from 0 to 5. We can use them to map our y to the cosine and sine
functions:

In: plt.figure() # initialize a figure
 plt.plot(x,y_cos) # plot series of coordinates as a line
 plt.plot(x,y_sin)
 plt.xlabel('x') # adds label to x axis
 plt.ylabel('y') # adds label to y axis
 plt.title('title') # adds a title
 plt.show() # close a figure

https://www.qt.io/

Visualization, Insights, and Results Chapter 5

[285]

Here is your first plot:

The pyplot.plot command can plot more curves in a sequence, with each curve taking a
different color according to an internal color schema, which can be customized by
explicating the favored color sequence. To do so, you have to manipulate the list containing
the sequence of colors that matplotlib uses:

In: list(mpl.rcParams['axes.prop_cycle'])

Out: [{'color': '#1f77b4'},
 {'color': '#ff7f0e'},
 {'color': '#2ca02c'},
 {'color': '#d62728'},
 {'color': '#9467bd'},
 {'color': '#8c564b'},
 {'color': '#e377c2'},
 {'color': '#7f7f7f'},
 {'color': '#bcbd22'},
 {'color': '#17becf'}]

#1f77b4, #ff7f0e, #2ca02c, and all the others are all colors expressed in
hexadecimal form. In order to figure out how they look, you can use the
colorhexa website, providing you with useful information on each of
them: https:/ ​/ ​www. ​colorhexa. ​com/ ​.

https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/
https://www.colorhexa.com/

Visualization, Insights, and Results Chapter 5

[286]

The hack can be done by using the cycler function and feeding it with a list of string
names referring to the colors you want to use in sequence:

In: mpl.rcParams['axes.prop_cycle'] = mpl.cycler('color',
 ['blue', 'red', 'green'])

Moreover, the plot command, if not given any other information, will assume that you are
going to plot a line. Therefore, it will link all the provided points in a curve. If you add a
new parameter such as '.' – that is, plt.plot(x,y_cos,'.') – you signal that you
instead want to plot a series of separated points (the string for a line is '-', but we will
soon show another example).

In this way, if you've customized rcParams['axes.prop_cycle'] as proposed
previously, the next graphs will first have a blue curve, then the second will be red, and the
third green. Then, the color loop will restart. We leave this decision to you. All the
examples in this chapter will just follow the standard color sequence, but you are free to
experiment with better color settings.

Please note that you can also set the title of the graph and label the axis by the title, xlabel,
and ylabel from pyplot.

Using panels for clearer representations
Our second example will demonstrate to you how to create multiple graphics panels and
plot a representation on each of them. We will also try to personalize the drawn curves by
using different colors, sizes, and styles. Here is the example:

In: import matplotlib.pyplot as plt
 # defines 1 row 2 column panel, activates figure 1
 plt.subplot(1,2,1)
 plt.plot(x,y_cos,'r--')
 # adds a title
 plt.title('cos')
 # defines 1 row 2 column panel, activates figure 2
 plt.subplot(1,2,2)
 plt.plot(x,y_sin,'b-')
 plt.title('sin')
 plt.show()

Visualization, Insights, and Results Chapter 5

[287]

The plot displays the cosine and sine curves on two distinct graphic panels:

The subplot command accepts the subplot(nrows, ncols, plot_number) parameter
form. Therefore, when instantiated, it reserves a certain amount of space for the
representation based on the nrows and ncols parameters and number of plots on the
plot_number area (starting from area 1 on the left).

You can also accompany the plot command coordinates with another string parameter,
which is useful for the definition of color and the type of the represented curve. The strings
work by combining the codes that you can find on the following links:

https:/​/ ​matplotlib. ​org/ ​api/ ​lines_ ​api. ​html#matplotlib. ​lines. ​Line2D. ​set_
linestyle: Will present the different line styles.
http://matplotlib.org/api/colors_api.html: Offers a complete overview of
the basic built-in colors. The page also points out that you can either use the
color parameter together with the HTML names or hex strings for colors, or
define the color you desire by using an RGB tuple, where each value of the tuple
lies in the range of [0,1]. For instance, a valid parameter is color =
(0.1,0.9,0.9), which will create a color made of 10% red, 90% green, and 90%
blue.
http://matplotlib.org/api/markers_api.html: Lists all the possible marker
styles you can adopt for your points.

https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle
https://matplotlib.org/api/colors_api.html
https://matplotlib.org/api/markers_api.html

Visualization, Insights, and Results Chapter 5

[288]

Plotting scatterplots for relationships in data
Scatterplots plot two variables as points on a plane, and they can help you figure out the
relationship between the two variables. They are also quite effective if you want to
represent groups and clusters. In our example, we will create three data clusters and
represent them in a scatterplot with different shapes and colors:

In: from sklearn.datasets import make_blobs
 import matplotlib.pyplot as plt
 D = make_blobs(n_samples=100, n_features=2,
 centers=3, random_state=7)
 groups = D[1]
 coordinates = D[0]

Since we have to plot three different groups, we will have to use three distinct plot
commands. Each command specifies a different color and shape (the 'ys', 'm*', 'rD'
strings, where the first letter is the color and the second is the marker). Please also note that
each plot instance is marked by a label parameter, which is used to assign a name to the
group that has to be reported later in a legend:

In: plt.plot(coordinates[groups==0,0],
 coordinates[groups==0,1],
 'ys', label='group 0') # yellow square
 plt.plot(coordinates[groups==1,0],
 coordinates[groups==1,1],
 'm*', label='group 1') # magenta stars
 plt.plot(coordinates[groups==2,0],
 coordinates[groups==2,1],
 'rD', label='group 2') # red diamonds
 plt.ylim(-2,10) # redefines the limits of y axis
 plt.yticks([10,6,2,-2]) # redefines y axis ticks
 plt.xticks([-15,-5,5,-15]) # redefines x axis ticks
 plt.grid() # adds a grid
 plt.annotate('Squares', (-12,2.5)) # prints text at coordinates
 plt.annotate('Stars', (0,6))
 plt.annotate('Diamonds', (10,3))
 plt.legend(loc='lower left', numpoints= 1)
 # places a legend of labelled items
 plt.show()

Visualization, Insights, and Results Chapter 5

[289]

The resulting plot will be a scatterplot of the three groups accompanied by their respective
labels:

We have also added a legend (pyplot.legend), fixed a limit for both the axes
(pyplot.xlim and pyplot ylim), and precisely explicated the ticks (plt.xticks and
plt.yticks) that had to be put on them by specifying a list of values. Therefore, the grid
(pyplot.grid) divides the plot exactly into nine quadrants and allows you to have a better
idea of where the groups are positioned. Finally, we printed some text pointing out the
group names (pyplot.annotate).

Histograms
Histograms can effectively represent the distribution of a variable. Here, we will visualize
two normal distributions, both characterized by unit standard deviation, one having a
mean of 0 and the other a mean of 3.0:

In: import numpy as np
 import matplotlib.pyplot as plt
 x = np.random.normal(loc=0.0, scale=1.0, size=500)
 z = np.random.normal(loc=3.0, scale=1.0, size=500)
 plt.hist(np.column_stack((x,z)),
 bins=20,
 histtype='bar',
 color = ['c','b'],
 stacked=True)
 plt.grid()
 plt.show()

Visualization, Insights, and Results Chapter 5

[290]

The conjoint distributions can offer a different insight on the data if there is a classification
problem:

There are a few ways to personalize this kind of plot and obtain further insights about the
analyzed distributions. First, by changing the number of bins, you will change how the
distributions are discretized (discretization is the process that transforms continuous
functions or series of values into a reduced, countable set of numbers:
en.wikipedia.org/wiki/Discretization). Generally, 10 to 20 bins offer a good
understanding of the distribution, though it really depends on the size of the dataset as well
as the distribution. For instance, the Freedman-Diaconis rule prescribes that the optimal
number of bins in a histogram in order to meaningfully visualize your data depends on the
bin's width, to be calculated using the interquartile range (IQR) and the number of
observations:

Having calculated h, which is the bin width, the number of bins is computed by dividing
the difference between the maximum and the minimum value by h:

bins=(max-min) / h

http://en.wikipedia.org/wiki/Discretization

Visualization, Insights, and Results Chapter 5

[291]

We can also change the type of visualization from bars to steps by changing the parameters
from histtype='bar' to histtype='step'. By changing the stacked Boolean
parameter to False, the curves won't stack into a unique bar in the parts that overlap, but
you will clearly see the separate bars of each one.

Bar graphs
Bar graphs are useful for comparing quantities in different categories. They can be arranged
either horizontally or vertically to present the mean estimate and error bands. They can be
used to present various statistics of your predictors and how they relate to the target
variable.

In our example, we will present the mean and standard deviation for the four variables of
the Iris dataset:

In: from sklearn.datasets import load_iris
 import numpy as np
 import matplotlib.pyplot as plt
 iris = load_iris()
 average = np.mean(iris.data, axis=0)
 std = np.std(iris.data, axis=0)
 range_ = range(np.shape(iris.data)[1])

In our representation, we will prepare two subplots: one with horizontal bars (plt.barh),
and the other with vertical bars (plt.bar). The standard error is represented by an error
bar, and according to the graph orientation, we can use the xerr parameter for horizontal
bars and yerr for vertical ones:

In: plt.subplot(1,2,1) # defines 1 row, 2 columns panel, activates figure 1
 plt.title('Horizontal bars')
 plt.barh(range_,average, color="r",
 xerr=std, alpha=0.4, align="center")
 plt.yticks(range_, iris.feature_names)
 plt.subplot(1,2,2) # defines 1 row 2 column panel, activates figure 2
 plt.title('Vertical bars')
 plt.bar(range_,average, color="b", yerr=std, alpha=0.4, align="center")
 plt.xticks(range_, range_)
 plt.show()

Visualization, Insights, and Results Chapter 5

[292]

Horizontal and verticals bars are now together in the same plot:

It is important to note the use of the plt.xticks command (and of plt.yticks for the
ordinate axis). The first parameter informs the command about the number of ticks that
have to be placed on the axis, and the second one explicates the labels that have to be put
on the ticks.

Another interesting parameter to notice is alpha, which has been used to set the
transparency level of the bar. The alpha parameter is a float number ranging from 0.0, fully
transparent, to 1.0, which causes the color to be shown in different levels of opaqueness.

Image visualization
The last possible visualization that we explore using matplotlib has to do with images.
Resorting to plt.imgshow is useful when you are working with image data. Let's take as
an example the Olivetti dataset, an open source set of images of 40 people who provided 10
images of themselves at different times (and with different expressions, a fact that makes it
more challenging for testing face recognition algorithms). The images from this dataset are
provided as feature vectors of pixel intensities. Therefore, it is important to reshape the
vectors in order to make them resemble a matrix of pixels. Setting the interpolation to
'nearest' helps to smooth the picture:

In: from sklearn.datasets import fetch_olivetti_faces
 import numpy as np

Visualization, Insights, and Results Chapter 5

[293]

 import matplotlib.pyplot as plt
 dataset = fetch_olivetti_faces(shuffle=True, random_state=5)
 photo = 1
 for k in range(6):
 plt.subplot(2, 3, k+1)
 plt.imshow(dataset.data[k].reshape(64, 64),
 cmap=plt.cm.gray,
 interpolation='nearest')
 plt.title('subject '+str(dataset.target[k]))
 plt.axis('off')
 plt.show()

A complete panel of images will be plotted:

We can also visualize handwritten digits or letters. In our example, we will plot the first
nine digits from the scikit-learn handwritten digit dataset and set the extent of both the axes
(by using the extent parameter and providing a list of minimum and maximum values) to
align the grid to the pixels:

In: from sklearn.datasets import load_digits
 digits = load_digits()
 for number in range(1,10):
 fig = plt.subplot(3, 3, number)
 fig.imshow(digits.images[number],
 cmap='binary',
 interpolation='none',
 extent=[0,8,0,8])

Visualization, Insights, and Results Chapter 5

[294]

 fig.set_xticks(np.arange(0, 9, 1))
 fig.set_yticks(np.arange(0, 9, 1))
 fig.grid()
 plt.show()

A simple close-up on a single number can be obtained by printing only one image:

In: plt.imshow(digits.images[0],
 cmap='binary',
 interpolation='none',
 extent=[0,8,0,8])
Extent defines the images max and min
of the horizontal and vertical values
plt.grid()

Visualization, Insights, and Results Chapter 5

[295]

The resulting image clearly highlights how pixels constitute the image and their gray levels:

Selected graphical examples with pandas
Using appropriately set hyper-parameters, many machine learning algorithms can
optimally learn how to map your data with respect to your target outcome. Yet, their
predictive performance can be improved further by fixing hidden and subtle problems in
data. It is not simply a matter of detecting any missing or outlying case. Sometimes, it is a
matter of whether there are any groups or unusual distributions in the data (for instance,
multimodal distributions). Clearly drafted data plots can explicate the relationship between
variables, and they can lead to the creation of new and better features in order to predict,
with increased accuracy, your target variable.

The just-described practice is called explorative data analysis (EDA), and it can bring
effective results if it is done accordingly with the following:

It should be fast, allowing you to explore and develop new ideas, and test them,
and restart with a new exploration and fresh ideas
It should be based on graphical representations in order to better describe data as
a whole, no matter how high its dimensionality is

Visualization, Insights, and Results Chapter 5

[296]

The pandas DataFrame offers many EDA tools that can help you in your explorations.
However, first you have to transform your data into a DataFrame:

In: import pandas as pd
 print ('Your pandas version is: %s' % pd.__version__)
 from sklearn.datasets import load_iris
 iris = load_iris()
 iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
 groups = list(iris.target)
 iris_df['groups'] = pd.Series([iris.target_names[k] for k in groups])

Out: Your pandas version is: 0.23.1

Please check your version of pandas. We tested the code in the book
under the version 0.23.1 of pandas, and it should also hold for the later
releases.

We will be using the iris_df DataFrame for all the examples presented in the following
paragraphs.

The pandas package actually relies on matplotlib functions for its visualizations. It simply
provides a convenient wrapper around the otherwise complex plotting instructions. This
offers advantages in terms of speed and simplicity, which are the core values of any EDA
process. Instead, if your purpose is to best communicate the findings by using beautiful
visualization, you may notice that it is not so easy to customize the pandas graphical
outputs. Therefore, when it is paramount to create specific graphics outputs, it is better to
start working directly from scratch using matplotlib instructions.

Working with boxplots and histograms
Distributions should always be the first aspect to be inspected in your data. Boxplots draft
the key figures in the distribution and help you spot outliers. Just use the boxplot method
on your DataFrame for a quick overview:

In: boxplots = iris_df.boxplot(return_type='axes')

Visualization, Insights, and Results Chapter 5

[297]

Here are the boxplots of all the numeric variables of the dataset:

If you already have groups in your data (from categorical variables, or derived from
unsupervised learning), just point out the variable you need data to be represented in the
boxplot and specify that you need to have it separated by the groups (use the by parameter
followed by the string name of the grouping variable):

In: boxplots = iris_df.boxplot(column='sepal length (cm)',
 by='groups',
 return_type='axes')

After running the code, you will get the boxplot by groups:

Visualization, Insights, and Results Chapter 5

[298]

In this way, you can quickly know whether the variable is a good discriminator of the
group differences. Anyway, boxplots cannot provide you with a complete view of
distributions as histograms and density plots. For instance, by using histograms and
density plots, you can figure out whether there are distribution peaks or valleys:

In: densityplot = iris_df.plot(kind='density')

The code prints the distributions for all the numeric variables of the dataset:

In: single_distribution = iris_df['petal width (cm)'].plot(kind='hist',
 alpha=0.5)

Here is the resulting distribution represented by a histogram:

Visualization, Insights, and Results Chapter 5

[299]

You can obtain both histograms and density plots by using the plot method. This method
allows you to represent the whole dataset, specific groups of variables (you just have to
provide a list of the string names and do some fancy indexing), or even single variables.

Plotting scatterplots
Scatterplots can be used to effectively understand whether the variables are in a nonlinear
relationship, and you can get an idea about their best possible transformations to achieve
linearization. If you are using an algorithm based on linear combinations, such as linear or
logistic regression, figuring out how to render their relationship more linearly will help you
achieve a better predictive power:

In: colors_palette = {0: 'red', 1: 'yellow', 2:'blue'}
 colors = [colors_palette[c] for c in groups]
 simple_scatterplot = iris_df.plot(kind='scatter', x=0, y=1, c=colors)

After running the code, a nicely drawn scatterplot will appear:

Scatterplots can be turned into hexagonal binning plots. In addition, they help you
effectively visualize the point densities, where the points naturally aggregate together
more, thus revealing clusters hidden in your data. For achieving such results, you may use
some of the variables originally present in the dataset, or the dimensions obtained by a
PCA or by another dimensionality reduction algorithm:

In: hexbin = iris_df.plot(kind='hexbin', x=0, y=1, gridsize=10)

Visualization, Insights, and Results Chapter 5

[300]

Here is the resulting hexbin plot:

The gridsize parameter indicates how many data points the chart will summarize in a
single grid. A larger number will create large grid cells, whereas a smaller one will create
small cells.

Scatterplots are bivariate. Consequently, you'll require a single plot for every variable
combination. If your variables are not so many in number (otherwise, the visualization will
be cluttered), a quick solution is to use the pandas command to draw a matrix of
scatterplots automatically (using the kernel density estimation, 'kde', in order to plot the
distribution of each feature on the diagonal of the chart):

In: from pandas.plotting import scatter_matrix
 colors_palette = {0: "red", 1: "green", 2: "blue"}
 colors = [colors_palette[c] for c in groups]
 matrix_of_scatterplots = scatter_matrix(iris_df,
 alpha=0.2,
 figsize=(6, 6),
 color=colors,
 diagonal='kde')

Visualization, Insights, and Results Chapter 5

[301]

After running the previous code, you will get a complete matrix of plots (densities on the
diagonal):

A few parameters can control various aspects of the scatterplot matrix. The alpha
parameter controls the amount of transparency, and figsize provides the width and
height of the matrix in inches. Finally, color accepts a list indicating the color of each point
in the plot, thus allowing the depicting of different groups in data. In addition, by selecting
'kde' or 'hist' on your diagonal parameter, you can opt to represent density curves or
histograms of each variable on the diagonal of the scatter matrix.

Visualization, Insights, and Results Chapter 5

[302]

Discovering patterns by parallel coordinates
The scatterplot matrix can inform you about the conjoint distributions of your features. It
helps you locate groups in data and verify whether they are distinguishable. Parallel
coordinates are another kind of plot that is helpful in providing you with a hint about the
most group-discriminating variables present in your data.

By plotting all the observations as parallel lines with respect to all the possible variables
(arbitrarily aligned on the abscissa), parallel coordinates will help you spot whether there
are streams of observations grouped as your classes, and understand the variables that best
separate the streams (the most useful predictor variables). Naturally, in order for the chart
to be meaningful, the features in the plot should have the same scale (otherwise, normalize
them) as in the Iris dataset:

In: from pandas.tools.plotting import parallel_coordinates
 pll = parallel_coordinates(iris_df,'groups')

The previous code will output the parallel coordinates:

parallel_coordinates is a pandas function that, in order to work properly, just needs as
parameters the data DataFrame and the string name of the variable containing the groups
whose separability you want to test. For this reason, you should have the group variable
available in your dataset. However, don't forget to remove it after you finish exploring by
using the DataFrame.drop('variable name', axis=1, inplace=True) method.

Visualization, Insights, and Results Chapter 5

[303]

Wrapping up matplotlib's commands
As we have seen in the previous paragraph, pandas can speed up exploring data visually
since it wraps up into single commands what would have required an entire code snippet
using matplotlib. The idea behind this is that unless you need to tailor and configure a
special visualization, using a wrapper can allow you to create standard graphics faster.

Apart from pandas, other packages assemble low-level instructions from matplotlib into
more user-friendly commands for specific representations and usage:

Seaborn is a package that extends your visualization capabilities by providing
you with a set of statistical plots useful for finding out trends and discriminating
groups
ggplot is a port of a popular R library, ggplot2 (ggplot2.tidyverse.org),
based on the visualization grammar proposed in Leland Wilkinson's book,
Grammar of Graphics. The R library is continuously developed and it offers
much functionality; the Python porting (ggplot.yhathq.com) features the basics
(ggplot.yhathq.com/docs/index.html) and its complete development is still
underway (github.com/yhat/ggplot).
MPLD3 (mpld3.github.io) leverages the JavaScript library for graphics
manipulation, D3.js, in order to easily transform any matplotlib output into
HTML code, which can be rendered using a browser and a tool such as a Jupyter
Notebook; or within an internet website.
Bokeh (bokeh.pydata.org/en/latest/) is an interactive visualization package
that leverages JavaScript and browser-rendered outputs. It is a great replacement
for D3.js since you just need Python in order to leverage the capabilities of
JavaScript to quickly represent your data in an interactive way.

In the following pages, we will introduce Seaborn, providing some building blocks for
leveraging their visualizations in your data science projects.

https://ggplot2.tidyverse.org/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/docs/index.html
https://github.com/yhat/ggpy
http://mpld3.github.io/
https://bokeh.pydata.org/en/latest/

Visualization, Insights, and Results Chapter 5

[304]

Introducing Seaborn
Created by Michael Waskom and hosted on the PyData website
(http://seaborn.pydata.org/), Seaborn is a library that wraps up the low-level matplotlib
with the entire pyData stack, allowing integrating charts with data structures from NumPy
and pandas, and with statistical routines from SciPy and StatModels. All that is achieved
with a particular care to aesthetics, thanks to built-in themes, and to color palettes
especially devised to reveal patterns in data.

If you don't have Seaborn presently installed on your system (the Anaconda distributions
provide it by default, for instance), you can easily get it both by pip and conda (reminding
you that the conda version may lag behind the pip version taken directly from PyPI, the
Python Package Index.

$> pip install seaborn
$> conda install seaborn

In these examples, we have used version 0.9 of the Seaborn package.

You can upload the package and set the Seaborn style as the default matplotlib style by the
following:

In: import seaborn as sns
 sns.set()

This is enough to turn all your matplotlib-based representations into more visually
appealing charts:

In: x = np.linspace(0, 5, 50)
 y_cos = np.cos(x)
 y_sin = np.sin(x)
 plt.figure()
 plt.plot(x,y_cos)
 plt.plot(x,y_sin)
 plt.xlabel('x')
 plt.ylabel('y')
 plt.title('sin/cos functions')
 plt.show()

http://seaborn.pydata.org/

Visualization, Insights, and Results Chapter 5

[305]

Here is the result:

You can obtain interesting results from any of the previously seen charts, even the ones
generated using graphical methods in pandas (after all, pandas also relies on matplotlib for
creating its explorative plots).

There are five preset themes in Seaborn:

darkgrid

whitegrid

dark

white

ticks

Visualization, Insights, and Results Chapter 5

[306]

darkgrid is the default one. You can easily try each one by using the set_style
command and the name of your preferred theme, and then running your plot commands:

In: sns.set_style('whitegrid')

All you have to do is just decide which theme helps you better convey the information on
your chart. You can limit a style to a single representation enclosing it:

In: with sns.axes_style('whitegrid'):
 # Your plot commands here
 pass

Other stylish changes may involve the spines, which are the borders of the chart. Using the
despine command, you can easily remove the top and right borders:

In: sns.despine()

Moreover, you can remove the left border using the left=True parameter, offset the axis
using the offset parameter, and trim it (using trim=True). All these operations were
otherwise not so accessible because of matplotlib commands alone.

Another useful control that Seaborn permits you regards the scale of the chart. A certain
chart scale (involving different thickness of lines, size of fonts, and so on) is called a context,
and the available contexts are self-explicative-paper, notebook, talk, and poster as possible
options. For instance, if your chart has to be displayed on an MS PowerPoint presentation,
just run the following command before creating the graphics:

In: sns.set_context("talk")

Let's see an example of some of such stylish effects on our initial sin/cos chart:

In: sns.set_context("talk")
 with sns.axes_style('whitegrid'):
 plt.figure()
 plt.plot(x,y_cos)
 plt.plot(x,y_sin)
 plt.show()
 sns.set()

Visualization, Insights, and Results Chapter 5

[307]

The code will plot the following chart:

Also, choosing the right color cycle or set may help your graphical representation shine. For
this, Seaborn offers the color_palette() command, which won't just tell the current
palette's RBG values (if run with no parameters); it will also accept the name of any palette
offered by Seaborn or any matplotlib colormap. It even accepts custom lists of colors
provided by you in any matplotlib format (RGB tuples, hex color codes, or HTML color
names) in order to create your own palette:

In: current_palette = sns.color_palette()
 print (current_palette)
 sns.palplot(current_palette)

After running the code, you will visualize the current palette both in values and colors:

Visualization, Insights, and Results Chapter 5

[308]

There are a few palettes available, as mentioned. First, all Seaborn palettes are the
following:

deep

muted

bright

pastel

dark

colorblind

You also have to add hls, husl, and all the matplotlib colormaps, which can be reversed
by appending _r to their name, or made darker by appending _d.

Both the names and examples of matplotlib colormaps can be found at
this web page: http:/ ​/ ​matplotlib. ​org/​examples/ ​color/ ​colormaps_
reference. ​html.

The hls color space is an automatic transformation in the RGB scale of values, which may
or may not work for your representations since colors have different intensities (for
instance, yellow and green colors are perceived as brighter whereas blue is perceived as
darker).

As an alternative to hsl, you can use the husl palette, which is friendlier for the human
eye, as explained by http://www.hsluv.org/.

Finally, you can just create a personalized palette using the Color Brewer tool, which can be
both found online (http:/ ​/ ​www. ​personal. ​psu.​edu/ ​cab38/ ​ColorBrewer/ ​ColorBrewer_
intro.​html) or required in an app from your Jupyter Notebook. In a notebook cell, using
the choose_colorbrewer_palette command will make an interactive tool appear. For
everything to work, it is essential that you specify as a parameter the data_type, a string
explicating the nature of your palette related to the data you intend to represent:

Sequential if you want to represent continuity
Diverging for representing contrasts
Qualitative when you just want to discriminate between different classes

Let's see how to create a custom sequential palette, and use it:

In: your_palette = sns.choose_colorbrewer_palette('sequential')

http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html
http://www.hsluv.org/
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_intro.html

Visualization, Insights, and Results Chapter 5

[309]

A complete dashboard will appear:

After setting the colors, your_palette will turn into a list of the RGB values:

In: print(your_palette)

Out:[(0.91109573770971852, 0.90574395025477683, 0.94832756940056306),
 (0.7764706015586853, 0.77908498048782349, 0.88235294818878174),
 (0.61776242186041452, 0.60213766261643054, 0.78345253116944269),
 (0.47320263584454858, 0.43267974257469177, 0.69934642314910889),
 (0.35681661753093497, 0.20525952297098493, 0.58569783322951374)]

When you are done with your choice, you can just call
sns.set_palette(your_palette) and have the colors used when drawing all your
charts.

If you need just to operate on a chart with some specific colors, using a with statement and
nesting the chart snippet under it will suffice, as we have seen for the themes before.
Instead, if you definitely need to set a certain palette, use set_palette.

The color palette is made up of six colors, helping you distinguish at least six trends or
classes. If you need to distinguish more, you simply can operate with the hls palette and
point out the number of colors you need to cycle:

In: new_palette=sns.color_palette('hls', 10)
 sns.palplot(new_palette)

Here is the resulting palette:

Visualization, Insights, and Results Chapter 5

[310]

Finally, closing our section about themes and colors, since Seaborn is another, smarter way
to use functions offered by matplotlib, we remind you that the resulting charts can be
modified further using any basic command coming from matplotlib itself. Or, they can be
further transformed by packages such as MPLD3 or Bokeh into JavaScript.

Enhancing your EDA capabilities
Seaborn doesn't just make your charts more beautiful and easily controlled in their aspect;
it also provides you with new tools for EDA that helps you discover distributions and
relationships between variables.

Before proceeding, let's reload the package and have both the Iris and Boston datasets
ready in pandas DataFrame format:

In: import seaborn as sns
 sns.set()

 from sklearn.datasets import load_iris
 iris = load_iris()
 X_iris, y_iris = iris.data, iris.target
 features_iris = [a[:-5].replace(' ','_') for a in iris.feature_names]
 target_labels = {j: flower \
 for j, flower in enumerate(iris.target_names)}
 df_iris = pd.DataFrame(X_iris, columns=features_iris)
 df_iris['target'] = [target_labels[y] for y in y_iris]

 from sklearn.datasets import load_boston
 boston = load_boston()
 X_boston, y_boston = boston.data, boston.target
 features_boston = np.array(['V'+'_'.join([str(b), a])
 for a,b in zip(boston.feature_names,
 range(len(boston.feature_names)))])
 df_boston = pd.DataFrame(X_boston, columns=features_boston)
 df_boston['target'] = y_boston
 df_boston['target_level'] = pd.qcut(y_boston,3)

As for as the Iris dataset, the target variable has been converted into a descriptive text of the
Iris species. For the Boston dataset, the continuous target variable, the median value of
owner-occupied homes, has been divided into three equal parts, representing lower,
median, and high prices (using the pandas function, qcut).

Visualization, Insights, and Results Chapter 5

[311]

Seaborn can first help your data exploration with figuring out how discretely valued or
categorical variables are related to numeric ones. This is achieved using the catplot
function:

In: with sns.axes_style('ticks'):
 sns.catplot(data=df_boston, x='V8_RAD', y='target', kind='point')

You will find it insightful exploring similar plots, since they explicit the target level and its
variance:

In our example, in the Boston dataset, the index of accessibility to radial highways, which is
discretely valued, is compared with the target in order to check both the functional form of
its relationships and the associated variance at each level.

In the case, instead, the comparison is between numeric variables; Seaborn offers an
enhanced scatterplot with a regression fitted curve trend incorporated, which can clue you
in to possible data transformations when the relationship is not linear:

In: with sns.axes_style("whitegrid"):
 sns.regplot(data=df_boston, x='V12_LSTAT', y="target", order=3)

Visualization, Insights, and Results Chapter 5

[312]

The fitting line is promptly displayed:

regplot in Seaborn can visualize regression plots of any order (we displayed a second-
degree polynomial fit). Among the available regression plots, you can use a standard linear
regression, a robust regression or even a logistic regression if one of the inspected features
is binary.

Where it is necessary to consider distributions too, jointplot will provide additional plots
on the side of the scatterplot:

In: with sns.axes_style("whitegrid"):
 sns.jointplot("V4_NOX", "V7_DIS",
 data=df_boston, kind='reg',
 order=3)

Visualization, Insights, and Results Chapter 5

[313]

jointplot produces the following chart:

Ideal for representing bivariate relationships by acting on the kind parameter, jointplot
can also represent simple scatterplots or densities (kind=scatter or kind=kde).

When the purpose is to discover what discriminates classes, FacetGrid can arrange
different plots in a comparable way and help you understand where there are differences.
For instance, we can inspect the scatterplot of Iris species in order to figure out whether
they occupy different parts of the feature state:

In: with sns.axes_style("darkgrid"):
 chart = sns.FacetGrid(df_iris, col="target_level")
 chart.map(plt.scatter, "sepal_length", "petal_length")

Visualization, Insights, and Results Chapter 5

[314]

The code will nicely print a panel representing the comparisons based on groups:

Similar comparisons can be made using distributions (sns.distplot) or regression slopes
(sns.regplot):

In: with sns.axes_style("darkgrid"):
 chart = sns.FacetGrid(df_iris, col="target")
 chart.map(sns.distplot, "sepal_length")

The first comparison is based on distributions:

Visualization, Insights, and Results Chapter 5

[315]

The subsequent comparison is based on fitting a linear regression line:

In: with sns.axes_style("darkgrid"):
 chart = sns.FacetGrid(df_boston, col="target_level")
 chart.map(sns.regplot, "V4_NOX", "V7_DIS")

Here is the regression-based comparison:

As for evaluating data distributions across classes, Seaborn offers an alternative tool, which
is the violin plot (https:/ ​/ ​medium. ​com/ ​@bioturing/ ​5-​reasons- ​you- ​should- ​use- ​a-
violin-​graph-​31a9cdf2d0c6). A violin plot is simply a boxplot whose box is shaped based
on density estimation, thus visually conveying information that is more intuitive:

In: with sns.axes_style("whitegrid"):
 ax = sns.violinplot(x="target", y="sepal_length",
 data=df_iris, palette="pastel")
 sns.despine(offset=10, trim=True)

https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6
https://medium.com/@bioturing/5-reasons-you-should-use-a-violin-graph-31a9cdf2d0c6

Visualization, Insights, and Results Chapter 5

[316]

The violin plot produced by the previous code can provide interesting insights into the
dataset:

Finally, Seaborn offers a much better way of creating a matrix of scatterplots by using the
pairplot command and allowing you to define group colors (parameter hue) and how to
populate the diagonal row. This is by using the diag_kind parameter, which can be a
histogram ('hist') or kernel density estimation ('kde'):

In: with sns.axes_style("whitegrid"):
 chart = sns.pairplot(data=df_iris, hue="target", diag_kind="hist")

Visualization, Insights, and Results Chapter 5

[317]

The previous code will output a complete matrix of scatterplots for the dataset:

Visualization, Insights, and Results Chapter 5

[318]

Advanced data learning representation
Some useful representations can be derived from the data science process. That is, the
representation is not done directly from the data, but is achieved by using machine learning
procedures, which inform us about how the algorithms operate and offer us a more precise
overview of the role of each predictor in the predictions obtained. In particular, learning
curves can provide a quick diagnosis to improve your models. This helps you figure out
whether you need more observations, or need to enrich your variables.

Learning curves
A learning curve is a useful diagnostic graphic that depicts the behavior of your machine
learning algorithm (your hypothesis) with respect to the available quantity of observations.
The idea is to compare how the training performance (the error or accuracy of the in-
sample cases) behaves with respect to the cross-validation (usually tenfold) using different
in-sample sizes.

As far as the training error is concerned, you should expect it to be high at the start and
then decrease. However, depending on the bias and variance level of the hypothesis, you
will notice different behaviors:

A high-bias hypothesis tends to start with average error performances, decreases
rapidly on being exposed to more complex data, and then remains at the same
level of performance no matter how many cases you further add.
A low-bias learners tend to generalize better in the presence of many cases, but
they are limited in their capability to approximate complex data structures, hence
their limited performance.
A high-variance hypothesis tends to start high in error performance and then
slowly decreases as you add more cases. It tends to decrease slowly because it
has a high capacity of recording the in-sample characteristics.

As for cross-validation, we can notice two behaviors:

High-bias hypothesis tends to start with low performance, but it grows very
rapidly until it reaches almost the same performance as that of the training. Then,
it stops growing.
High-variance hypothesis tends to start with very low performance. Then,
steadily but slowly, it improves as more cases help generalize. It hardly reads the
in-sample performances, and there is always a gap between them.

Visualization, Insights, and Results Chapter 5

[319]

Being able to estimate whether your machine learning solution is behaving as a high-bias or
high-variance hypothesis immediately helps you in deciding how to improve your data
science project. Scikit-learn makes it simpler to calculate all the statistics that are necessary
for the drawing of the visualization thanks to the learning_curve class, although
visualizing them properly requires a few further calculations and commands:

In: import numpy as np
 from sklearn.learning_curve import learning_curve, validation_curve
 from sklearn.datasets import load_digits
 from sklearn.linear_model import SGDClassifier

 digits = load_digits()
 X, y = digits.data, digits.target
 hypothesis = SGDClassifier(loss='log', shuffle=True,
 n_iter=5, penalty='l2',
 alpha=0.0001, random_state=3)
 train_size, train_scores, test_scores = learning_curve(hypothesis, X,
 y, train_sizes=np.linspace(0.1,1.0,5), cv=10,
 scoring='accuracy',
 exploit_incremental_learning=False,
 n_jobs=-1)
 mean_train = np.mean(train_scores,axis=1)
 upper_train = np.clip(mean_train + np.std(train_scores,axis=1),0,1)
 lower_train = np.clip(mean_train - np.std(train_scores,axis=1),0,1)
 mean_test = np.mean(test_scores,axis=1)
 upper_test = np.clip(mean_test + np.std(test_scores,axis=1),0,1)
 lower_test = np.clip(mean_test - np.std(test_scores,axis=1),0,1)
 plt.plot(train_size,mean_train,'ro-', label='Training')
 plt.fill_between(train_size, upper_train,
 lower_train, alpha=0.1, color='r')
 plt.plot(train_size,mean_test,'bo-', label='Cross-validation')
 plt.fill_between(train_size, upper_test, lower_test,
 alpha=0.1, color='b')
 plt.grid()
 plt.xlabel('sample size') # adds label to x axis
 plt.ylabel('accuracy') # adds label to y axis
 plt.legend(loc='lower right', numpoints= 1)
 plt.show()

Visualization, Insights, and Results Chapter 5

[320]

Based on different sample sizes, you soon get a learning curve plot:

The learning_curve class requires the following as an input:

A series of training sizes stored in a list
An indication of the number of folds to use, and the error measure
Your machine learning algorithm to test (parameter estimator)
The predictors (parameter X) and the target outcome (parameter y)

As a result, the class will produce three arrays; the first one containing the effective training
sizes, the second presenting the training scores obtained at each cross-validation iteration,
and the last one carrying the cross-validation scores.

By applying the mean and the standard deviation for both training and cross-validation, it
is possible to display in the graph both the curve trends and their variation. You can also
provide information about the stability of the recorded performances.

Visualization, Insights, and Results Chapter 5

[321]

Validation curves
As learning curves operate on different sample sizes, validation curves estimate the
training and cross-validation performance with respect to the values that a hyper-
parameter can take. As in learning curves, similar considerations can be applied, though
this particular visualization will grant you further insight about the optimization behavior
of your parameter, visually suggesting to you the part of the hyper-parameter space that
you should concentrate your search on:

In: from sklearn.learning_curve import validation_curve
 testing_range = np.logspace(-5,2,8)
 hypothesis = SGDClassifier(loss='log', shuffle=True,
 n_iter=5, penalty='l2',
 alpha=0.0001, random_state=3)
 train_scores, test_scores = validation_curve(hypothesis, X, y,
 param_name='alpha',
 param_range=testing_range,
 cv=10, scoring='accuracy', n_jobs=-1)
 mean_train = np.mean(train_scores,axis=1)
 upper_train = np.clip(mean_train + np.std(train_scores,axis=1),0,1)
 lower_train = np.clip(mean_train - np.std(train_scores,axis=1),0,1)
 mean_test = np.mean(test_scores,axis=1)
 upper_test = np.clip(mean_test + np.std(test_scores,axis=1),0,1)
 lower_test = np.clip(mean_test - np.std(test_scores,axis=1),0,1)
 plt.semilogx(testing_range,mean_train,'ro-', label='Training')
 plt.fill_between(testing_range, upper_train, lower_train,
 alpha=0.1, color='r')
 plt.fill_between(testing_range, upper_train, lower_train,
 alpha=0.1, color='r')
 plt.semilogx(testing_range,mean_test,'bo-', label='Cross-validation')
 plt.fill_between(testing_range, upper_test, lower_test,
 alpha=0.1, color='b')
 plt.grid()
 plt.xlabel('alpha parameter') # adds label to x axis
 plt.ylabel('accuracy') # adds label to y axis
 plt.ylim(0.8,1.0)
 plt.legend(loc='lower left', numpoints= 1)
 plt.show()

Visualization, Insights, and Results Chapter 5

[322]

After some computations, you will get a representation of the validation curve for the
parameter:

The syntax of the validation_curve class is similar to that of the previously seen
learning_curve but for the param_name and param_range parameters, which should be
provided respectively with the hyper-parameter and the range that has to be tested. As for
the results, the training and test results are returned in arrays.

Feature importance for RandomForests
As discussed in the conclusion of Chapter 3, The Data Pipeline, selecting the right variables
can improve your learning process by reducing noise, the variance of estimates, and the
burden of too many computations. Ensemble methods, such as RandomForest in particular,
can provide you with a different view of the role played by a variable when working
together with other ones in your dataset.

Visualization, Insights, and Results Chapter 5

[323]

Here, we show you how to extract the importance of RandomForest and Extra-Tree models.
Importance is calculated in the fashion originally described in the book Classification and
Regression Trees by Breiman, Friedman et al. in 1984. It was a true classic that laid solid
foundations for classification trees. In the book, importance is described in terms of gini
importance or mean decrease impurity, which is the total decrement in node impurity due to a
specific variable averaged over all trees of the ensemble. In other words, mean decrease
impurity is the total error reduction of nodes split on that variable multiplied by the
number of samples that were routed to each of the nodes. Noticeably, accordingly to this
importance calculation method, not only does error reduction depend on the error
measure-Gini or Entropy for classification, and MSE for regression, but also splits at the
head of the tree are deemed more important because they involve dealing with more
examples.

In a few steps, we'll learn how to obtain such information and project it onto a clear
visualization:

In: from sklearn.datasets import load_boston
 boston = load_boston()
 X, y = boston.data, boston.target
 feature_names = np.array([' '.join([str(b), a]) for a,b in
 zip(boston.feature_names,range(
 len(boston.feature_names)))])
 from sklearn.ensemble import RandomForestRegressor
 RF = RandomForestRegressor(n_estimators=100,
 random_state=101).fit(X, y)
 importance = np.mean([tree.feature_importances_ for tree in
 RF.estimators_],axis=0)
 std = np.std([tree.feature_importances_ for tree in
 RF.estimators_],axis=0)
 indices = np.argsort(importance)
 range_ = range(len(importance))
 plt.figure()
 plt.title("Random Forest importance")
 plt.barh(range_,importance[indices],
 color="r", xerr=std[indices], alpha=0.4, align="center")
 plt.yticks(range(len(importance)), feature_names[indices])
 plt.ylim([-1, len(importance)])
 plt.xlim([0.0, 0.65])
 plt.show()

Visualization, Insights, and Results Chapter 5

[324]

The code will produce the following chart highlighting important features of the model:

For each of the estimators (in our case, we have 100 models), the algorithm estimated a
score to rank each variable's importance. The RandomForest model is made up of decision
trees that can be made up of many branches, since the algorithm tries to obtain very small
terminal leaves. One of its variables is deemed important if, after casually permuting its
original values, the resulting predictions of the permuted model are very different in terms
of accuracy as compared to the predictions of the original model.

The importance vectors are averaged over the number of estimators, and the standard
deviation of the estimations is computed by a list comprehension (the assignment of
variables importance and std). Now, sorted according to the importance score (the vector
indices), the results are projected onto a bar graph with an error bar provided by the
standard deviation.

In our LSTAT analysis, the percentage of the lower status population in the area and RM,
which is the average number of rooms per dwelling, are pointed out as the most decisive
variables in our RandomForest model.

Visualization, Insights, and Results Chapter 5

[325]

Gradient Boosting Trees partial dependence
plotting
The estimate of the importance of a feature is a piece of information that can help you
operate on the best choices to determine the features to be used. Sometimes, you may need
to understand better why a variable is important in predicting a certain outcome. Gradient
Boosting Trees, by controlling the effect of all the other variables involved in the analysis,
provide you with a clear point of view of the relationship of a variable with respect to the
predicted results. Such information can provide you with more insights into causation
dynamics than what you may have obtained by using a very effective EDA:

In: from sklearn.ensemble.partial_dependence import
 plot_partial_dependence
 from sklearn.ensemble import GradientBoostingRegressor
 GBM = GradientBoostingRegressor(n_estimators=100,
 random_state=101).fit(X, y)
 features = [5,12,(5,12)]
 fig, axis = plot_partial_dependence(GBM, X, features,
 feature_names=feature_names)

As an output, you get three plots, which constitute the partial plots of RM and LSTAT
features:

Visualization, Insights, and Results Chapter 5

[326]

The plot_partial_dependence class will automatically provide you with the
visualization after you provide an analysis plan on your part. You need to present a list of
indexes of the features to be plotted singularly, and the tuples of the indexes of those that
you would like to plot on a heat map (the features are the axis, and the heat value
corresponds to the outcome).

In the preceding example, both the average number of rooms and the percentage of
the lower status population have been represented, thus displaying an expected behavior.
Interestingly, the heat map, which explains how they together contribute to the value of the
outcome, reveals that they do not interact in any particular way (it is single hill-climbing).
However, it is also revealed that LSTAT is a strong delimiter of the resulting housing
values when it is above 5.

Creating a prediction server with machine-
learning-as-a-service
Many times, during your working career as a data scientist, you'll find yourself having
need of a predictor decoupled from the code you're currently working on; for example, as
follows:

You're developing an app for your phone, and you want to save on memory
You're coding in a non-Python programming language (Java, Scala, C, C++, and
so on) and you need to call the predictor you've developed in Python
You're operating on big data, and the model is trained in the same remote
location where the data is stored

In all these cases, it would be nice to have a service over HTTP that does predictions-as-a-
service, or generically, any machine-learning-as-a-service (ML-AAS).

Bottle, a Python web framework, is the starting point for micro apps over HTTP. It is a very
simple library for Python, providing the essential objects and functions to create a web app.
Also, it can be paired with all the other libraries available in Python. Before going into the
prediction-as-a-service, let's see how a basic Hello World program is built with Bottle.
Please note that the following listings are meant for Python REPL, as a script, and not for a
Jupyter Notebook:

File: bottle1.py

from bottle import route, run, template

port = 9099

Visualization, Insights, and Results Chapter 5

[327]

@route('/personal/<name>')
def homepage(name):
 return template('Hi {{name}}!', name=name)

print("Try going to http://localhost:{}/personal/Tom".format(port))
print("Try going to http://localhost:{}/personal/Carl".format(port))

run(host='localhost', port=port)

Let's analyze the code line by line before executing it:

We started importing the functions and the classes that we need from the Bottle1.
module.
Then, we specified the port that the HTTP server would listen to.2.
In the example, we selected port 9099; feel free to change it to another one, but3.
first check whether any other service is using it (remember that HTTP is on top of
TCP).
The next step is the definition of the API endpoint. The route decorator applies4.
the function defined after it when an HTTP call to the path specified as an
argument is performed. Note that in the path, it says name, and that is the
argument of the coming function. That means name is a parameter of the call; you
can select whatsoever string you like in the HTTP call, and your selection will be
passed to the function as the parameter name.
Then, inside the function home page, a template with an HTML code was5.
returned. In a simpler way, think of it as the template function creating the
page you'll see from your browser.

Template, is this example, is just a plain HTML page, but it can be more
complex (it can actually be a template page with some blanks to fill in). A
complete description of templates is out of the scope of this section since
we will be using the framework just for a simple, plain output. If you need
additional information, surf the Bottle help pages.

Finally, after the print functions, there's the core run function. It's a blocking6.
function and will set up the web server on the host and port provided as
arguments. When you run the code in the listing, once that function is executed,
you can open your browser and point it to
http://localhost:9099/personal/Carl, and you'll find the following text:
Hi Carl!

Of course, changing the name in the HTTP call from Carl to Tom or any other name will
result in a different page, containing the name specified in the call.

Visualization, Insights, and Results Chapter 5

[328]

Please note that in this dummy example, we just defined the
/personal/<name> route. Any other call will result in Error 404,
unless defined in the code.

To turn it off, we need to press Ctrl + C in the command line (remember that the run
function is blocking).

Let's now create a service that is more data science-oriented; we will create an HTML page
with a form asking for the sepal length and width, and the petal length and width, to
classify the iris sample. For this example, we will use the iris dataset to train our scikit-learn
classifier. Then, for each prediction, we simply call the predict function on the classifier,
sending back the prediction:

File: bottle2.py

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from bottle import run, request, get, post
import numpy as np

port = 9099

@get('/predict')
def predict():
 return '''
 <form action="/prediction" method="post">
 Sepal length [cm]: <input name="sl" type="text" />

 Sepal width [cm]: <input name="sw" type="text" />

 Petal length [cm]: <input name="pl" type="text" />

 Petal width [cm]: <input name="pw" type="text" />

 <input value="Predict" type="submit" />
 </form>
 '''

@post('/prediction')
def do_prediction():

 try:
 sample = [float(request.POST.get('sl')),
 float(request.POST.get('sw')),
 float(request.POST.get('pl')),
 float(request.POST.get('pw'))]

 pred = classifier.predict(np.matrix(sample))[0]
 return "<p>The predictor says it's a {}</p>"\
 .format(iris['target_names'][pred])

Visualization, Insights, and Results Chapter 5

[329]

 except:
 return "<p>Error, values should be all numbers</p>"

iris = load_iris()
classifier = LogisticRegression()
classifier.fit(iris.data, iris.target)

print("Try going to http://localhost:{}/predict".format(port))
run(host='localhost', port=port)

Try insert the following values:
[5.1, 3.5, 1.4, 0.2] -> setosa
[7.0 3.2, 4.7, 1.4] -> versicolor
[6.3, 3.3, 6.0, 2.5] -> virginica

After some imports, here we use the get decorator, specifying a route valid only for HTTP
GET calls. The decorator, as well as the function following, has no parameters since all the
features should be inserted into the HTML form, defined in the predict function. The
form, when submitted, is passed to the /prediction page using an HTTP POST.

Now, we need to create a route for this call, and that's what we do in the do_prediction
function. Its decorator is post (that is, opposite to get; it defines only POST routes) on the
/prediction page. Data is parsed and transformed into a double (default parameters are
strings), and then the feature vector is fed into the classifier global variable to obtain a
prediction. This is returned using a simple template. The object request contains all the
parameters passed to the service, including the entire variable we POST-ed to the route.
Finally, it seems we just need to define the global variable classifier – that is, a classifier
trained on the iris dataset – and lastly, we can call the run function.

For this dummy example, we've used a logistic regressor as a classifier and trained on the
full Iris dataset, leaving all the parameters as default. In a real case, here you would tune
your classifier as best as possible.

When this code is run, if everything works well, you can point your browser to
http://localhost:9099/predict and you'll see the form:

Visualization, Insights, and Results Chapter 5

[330]

Inserting the values (5.1, 3.5, 1.4, 0.2) after clicking on the Predict button, you should be
redirected to http://localhost:9099/prediction, where the The predictor says
it's a setosa string should be displayed. Also, note that if you insert invalid entries in
the form (for example, leaving it empty or inserting a string instead of a number), you'll get
an HTML page that says that there's an error.

We're halfway through this section, and we've already seen how easy and quick it is to
create an HTTP endpoint with Bottle. Now, let's try to create a prediction-as-a-service that
can be called in any program. We will submit the feature vector as a get call, and the
returned prediction will be in JSON format. Here's the code for this solution:

File: bottle3.py

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from bottle import run, request, get, response
import numpy as np
import json

port = 9099

@get('/prediction')
def do_prediction():

 pred = {}

 try:
 sample = [float(request.GET.get('sl')),
 float(request.GET.get('sw')),
 float(request.GET.get('pl')),
 float(request.GET.get('pw'))]

 pred['predicted_label'] =

Visualization, Insights, and Results Chapter 5

[331]

 iris['target_names']
[classifier.predict(np.matrix(sample))[0]]
 pred['status'] = "OK"
 except:
 pred['status'] = "ERROR"

 response.content_type = 'application/json'
 return json.dumps(pred)

iris = load_iris()
classifier = LogisticRegression()
classifier.fit(iris.data, iris.target)

print("Try going to http://localhost:{}/prediction\
 sl=5.1&sw=3.5&pl=1.4&pw=0.2".format(port))
print("Try going to http://localhost:{}/prediction\
 sl=A&sw=B&pl=C&pw=D".format(port))
run(host='localhost', port=port)

The solution is pretty straightforward and easy; still, let's analyze it step by step. The entry
point of the feature is defined by the get decorator on the /prediction path. In there, we
will access the GET values to extract the predictions (note that if your classifier needs many
features, it may be better to use a POST call here). Exactly as in the previous example, the
prediction is generated; finally, the value is inserted in a Python dictionary, altogether with
the OK value for the status key. If an exception is raised in this function, there will be no
prediction, but an ERROR string in the status key. Then, we set the output application
format to JSON, and we serialize the Python dictionary to a JSON string.

When it runs, we can access the URL, localhost:9099/prediction, followed by the
feature values, and we will get back the prediction as JSON. Note that we don't need a
browser to interpret the returned HTTP response since it's a JSON. Therefore, we can call
the endpoint from different applications (wget, browser, or curl) or any programming
language (including Python itself). To see it working, start it and point your browser to (or
request the URL in any way)
http://localhost:9099/prediction?sl=5.1&sw=3.5&pl=1.4&pw=0.2. You'll get
back the valid JSON: {"predicted_label": "setosa", "status": "OK"}. Also, if
something goes wrong in the parsing of the parameters, you'll get this JSON: {"status":
"ERROR"}. And that's your first ML-AAS!

Although simple and quick, Bottle has many other functions to be explored. It's not as
complete as other frameworks, however. If your application needs some extraordinary
functionality, check out Flask or Django modules.

Visualization, Insights, and Results Chapter 5

[332]

Summary
This chapter provided an overview of essential data science by providing examples of both
basic and advanced graphical representations of data, machine learning processes, and
results. We explored the pylab module from matplotlib, which gives the easiest and fastest
access to the graphical capabilities of the package. We used pandas for EDA, and tested the
graphical utilities provided by scikit-learn. All examples were like building blocks, and
they are all easily customizable in order to provide you with a fast template for
visualization.

In the next chapter, you'll be introduced to graphs, which are an interesting deviation from
the predictors/target flat matrices. They are quite a hot topic in data science now. Expect to
delve into very complex and intricate networks.

6
Social Network Analysis

Social network analysis, usually referred to as SNA, creates a model and studies the
relationships of a group of social entities that exist in the form of a network. An entity can
be a person, a computer, or a web page, and a relationship can be a like, link, or friendship
(that is, a connection between entities).

In this chapter, you'll learn about the following:

Graphs, since social networks are usually represented in this form
Important algorithms that are used to gain insights from a graph
How to load, dump, and sample large graphs

Introduction to graph theory
Basically, a graph is a data structure that's able to represent relations in a collection of
objects. Under this paradigm, the objects are the graph's nodes and the relations are the
graph's links (or edges). The graph is directed if the links have an orientation (conceptually,
they're like the one-way streets of a city); otherwise, the graph is undirected. In the
following table, examples of well-known graphs are provided:

Graph example Type Nodes Edges
World Wide Web Directed Web pages Links
Facebook Undirected People Friendship
Twitter Directed People Follower
IP network Undirected Hosts Wires/Connections
Navigation systems Directed Places/Addresses Streets
Wikipedia Directed Pages Anchor links
Scientific literature Directed Papers Citations
Markov chains Directed Statuses Emission probability

Social Network Analysis Chapter 6

[334]

All of the preceding examples can be expressed as relations between nodes, as in a
traditional relational database management system (RDBMS), such as MySQL or
Postgres. Now, we are going to discover the advantages of a graph data structure, and start
to think about how complex the following query in SQL would be for a social network such
as Facebook (think about a recommender system that helps you find people you may
know):

Examine the following query:1.

Find all people who are friends of my friends, but not my friends

Compare the preceding query to the following query on a graph:2.

Get all friends connected to me having distance=2

Now, let's see how to create a graph or a social network with Python. The library3.
that we're going to use extensively throughout this chapter is named NetworkX.
It is capable of handling small to medium-sized graphs and it is complete and
powerful:

In: %matplotlib inline
 import networkx as nx
 import matplotlib.pyplot as plt

 G = nx.Graph()
 G.add_edge(1,2)
 nx.draw_networkx(G)
 plt.show()

The following graph is a visualization of the preceding code, presenting the two nodes and
their connecting edge:

Social Network Analysis Chapter 6

[335]

The command is self-explanatory. Examining the previous code, after the package imports,
we will first define a (NetworkX) graph object (by default, it's an undirected one). Then, we
will add an edge (that is, a connection) between two nodes (since the nodes are not already
in the graph, they're automatically created). Finally, we will plot the graph. The graph
layout (the positions of the nodes) is automatically generated by the library.

With the .add_note() method, adding other nodes to the graph is pretty straightforward.
For example, if you want to add the nodes 3 and 4, you can simply use the following code:

 In: G.add_nodes_from([3, 4])
 nx.draw_networkx(G)
 plt.show()

Social Network Analysis Chapter 6

[336]

Now, our graph is getting more complex, as you can see from the plot:

The preceding code will add the two nodes. Since they're not linked to the other nodes,
they'll be unconnected. Similarly, to add more edges to the graph, you can use the
following code:

 In: G.add_edge(3,4)
 G.add_edges_from([(2, 3), (4, 1)])
 nx.draw_networkx(G)
 plt.show()

By using the previous code, we have completed connecting the nodes in our graph:

Social Network Analysis Chapter 6

[337]

To obtain a collection of nodes in the graph, just use the .nodes() method. Similarly,
.edges() gives you the list of edges as a list of connected nodes:

In: G.nodes()

Out: [1, 2, 3, 4]

In: G.edges()

Out: [(1, 2), (1, 4), (2, 3), (3, 4)]

There are several ways to represent and describe a graph. In the following section, we'll
illustrate the most popular ones. The first option is to use an adjacency list. It lists the
neighbors of every node; that is, list[0] contains the adjacency nodes expressed in the
adjacency list format:

In: list(nx.generate_adjlist(G))

Out: ['1 2 4', '2 3', '3 4', '4']

In this format, the first number is always the source and the ones that follow are the targets,
as detailed at the following URL: https:/ ​/​networkx. ​github. ​io/ ​documentation/ ​stable/
reference/​readwrite/ ​adjlist. ​html.

To make the description self-contained, you can represent the graph as a dictionary of lists.
This is the most popular (and practical) way to describe a graph, due to its succinctness.
Here, the nodes' names are the dictionary keys, and their values are the nodes' adjacency
lists:

In: nx.to_dict_of_lists(G)

Out: {1: [2, 4], 2: [1, 3], 3: [2, 4], 4: [1, 3]}

On the other hand, you can describe a graph as a collection of edges. In the output, the
third element of each tuple is the attribute of the edge. In fact, every edge can have one or
more attributes (such as its weight, its cardinality, and so on). Since we created a very
simple graph, in the following example, we have no attributes:

In: nx.to_edgelist(G)

Out: [(1, 2, {}), (1, 4, {}), (2, 3, {}), (3, 4, {})]

Finally, a graph can be described as a NumPy matrix. If the matrix contains a 1 in the (i,
j) position, it means that there is a link between the i and j nodes. Since the matrix
usually contains very few ones (compared to the number of zeros), it's usually represented
as a sparse (SciPy) matrix, a NumPy matrix, or a pandas DataFrame.

https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html

Social Network Analysis Chapter 6

[338]

Please note that the matrix description is exhaustive. Therefore,
undirected graphs are transformed into directed ones, and a link
connecting (i, j) is transformed into two links, (i, j) and (j, i).
This representation is often named an adjacency matrix or a connection
matrix.

Thus, a symmetric matrix is created, as in the following example:

In: nx.to_numpy_matrix(G)

Out: matrix([[0., 1., 0., 1.],
 [1., 0., 1., 0.],
 [0., 1., 0., 1.],
 [1., 0., 1., 0.]])

In: print(nx.to_scipy_sparse_matrix(G))

Out: (0, 1) 1
 (0, 3) 1
 (1, 0) 1
 (1, 2) 1
 (2, 1) 1
 (2, 3) 1
 (3, 0) 1
 (3, 2) 1

In: nx.convert_matrix.to_pandas_adjacency(G)

The resulting output is shown in the following table:

Of course, if you want to load a NetworkX graph, you can use the opposite functions
(changing to into from in the function name), and you'll be able to load NetworkX graphs
from a dictionary of lists, edge lists, and NumPy, SciPy, and pandas structures.

Social Network Analysis Chapter 6

[339]

An important measure of each node in a graph is their degree. In an undirected graph, the
degree of a node represents the number of links the node has. For directed graphs, there are
two types of degree: an in-degree and an out-degree. These count the inbound and
outbound links of the node, respectively.

Let's add a node (to unbalance the graph) and calculate the nodes' degrees, as follows:

In: G.add_edge(1, 3)
 nx.draw_networkx(G)
 plt.show()

The resulting plot of the graph is as follows:

The graphs in this chapter may be different to the ones obtained on your
local computer, because graphical layout initialization is made with
random parameters.

The degree of the nodes is displayed as follows:

In: G.degree()

Out: {1: 3, 2: 2, 3: 3, 4: 2}

Social Network Analysis Chapter 6

[340]

For large graphs, this measure is impractical since the output dictionary has an item for
every node. In such cases, a histogram of the nodes' degree is often used to approximate its
distribution. In the following example, a random network with 10,000 nodes and a link
probability of 1 % is built. Then, the histogram of the node degree is extracted, as follows:

In: k = nx.fast_gnp_random_graph(10000, 0.01).degree()
 plt.hist(list(dict(k).values()))

The histogram for the preceding code is as follows:

Graph algorithms
To get insights from graphs, many algorithms have been developed. In this chapter, we'll
use a well-known graph in NetworkX, that is, the Krackhardt Kite graph. It is a dummy
graph containing 10 nodes, and it is typically used to proof graph algorithms. David
Krackhardt is the creator of the structure, which has the shape of a kite. It's composed of
two different zones. In the first zone (composed of nodes 0 to 6), the nodes are interlinked;
in the other zone (nodes 7 to 9), they are connected as a chain:

In: G = nx.krackhardt_kite_graph()
 nx.draw_networkx(G)
 plt.show()

Social Network Analysis Chapter 6

[341]

In the following plot, you can examine the Krackhardt Kite's graph structure:

Let's start with connectivity. Two nodes of a graph are connected if there is at least a path
(that is, a sequence of nodes) between them.

If at least one path exists, the shortest path between the two nodes is the one with the
shortest collection of nodes you should pass (or traverse) to go from the source to the
destination node.

Note that, in a directed graph, you must follow the link's directions.

In NetworkX, checking whether a path exists between two nodes, calculating the shortest
route, and getting its length is very easy. For example, to check the connectivity and the
path between nodes 1 and 9, you can use the following code:

In: print(nx.has_path(G, source=1, target=9))
 print(nx.shortest_path(G, source=1, target=9))
 print(nx.shortest_path_length(G, source=1, target=9))

Out: True
 [1, 6, 7, 8, 9]
 4

Social Network Analysis Chapter 6

[342]

This function just gives the shortest path from one node to another. What about if we want
to see all the paths to reach node 9 from node 1? An algorithm proposed by Jin Yen
provides this answer, and it's implemented in the function shortest_simple_paths in
NetworkX. This function returns a generator of all the paths, from the shortest to the
longest, between the node sources and the target in the graph:

In: print (list(nx.shortest_simple_paths(G, source=1, target=9)))

Out: [[1, 6, 7, 8, 9], [1, 0, 5, 7, 8, 9], [1, 6, 5, 7, 8, 9],
 [1, 3, 5, 7, 8, 9], [1, 4, 6, 7, 8, 9], [1, 3, 6, 7, 8, 9],
 [1, 0, 2, 5, 7, 8, 9], [...]]

Finally, another handy function provided by NetworkX is the
all_pairs_shortest_path function, which returns a Python dictionary containing the
shortest path between all of the pairs of nodes in the network. For example, to see the
shortest path from node 5, you just need to see what's inside key 5:

In: paths = list(nx.all_pairs_shortest_path(G))
 paths[5][1]

Out: {0: [5, 0],
 1: [5, 0, 1],
 2: [5, 2],
 3: [5, 3],
 4: [5, 3, 4],
 5: [5],
 6: [5, 6],
 7: [5, 7],
 8: [5, 7, 8],
 9: [5, 7, 8, 9]}

As expected, the paths between 5 and all the other nodes start with 5 itself. Note that this
structure is also a dictionary, and therefore, to obtain the shortest path between
nodes a and b, it can just be called paths[a][b]. Use this function carefully on large
networks. In fact, under the hood, it computes all the pairwise shortest paths with a
computational complexity of O(N2).

Social Network Analysis Chapter 6

[343]

Types of node centrality
We will now start talking about node centrality, which roughly represents the importance
of the node inside the network. It also gives an idea of how well the node connects the
network. There are multiple types of centrality that we will look at here, including
betweenness centrality, degree centrality, closeness centrality, harmonic centrality, and
eigenvector centrality.

Betweenness centrality: This type of centrality gives you an idea about the
number of shortest paths in which the node is present. Nodes with high
betweenness centrality are the core components of the network, and many
shortest paths route through them. In the following example, NetworkX offers a
straightforward way to compute the betweenness centrality of all the nodes:

In: nx.betweenness_centrality(G)

Out: {0: 0.023148148148148143,
 1: 0.023148148148148143,
 2: 0.0,
 3: 0.10185185185185183,
 4: 0.0,
 5: 0.23148148148148148,
 6: 0.23148148148148148,
 7: 0.38888888888888884,
 8: 0.2222222222222222,
 9: 0.0}

As you can imagine, the highest betweenness centrality is achieved by node 7. It
seems very important since it's the only node that connects elements 8 and 9 (it's
their gateway to the network). On the contrary, nodes such as 9, 2, and 4 are on
the extreme border of the network, and they are not present in any of the shortest
paths of the network. Therefore, these nodes can be removed without affecting
the connectivity of the network.

Degree centrality: This type of centrality is simply the percentage of the vertexes
that are incident upon a node. Note that, in directed graphs, there are two degree
centralities for every node: that is in-degree and out-degree centrality. Let's take a
look at the following example:

In: nx.degree_centrality(G)

Out: {0: 0.4444444444444444,
 1: 0.4444444444444444,
 2: 0.3333333333333333,
 3: 0.6666666666666666,

Social Network Analysis Chapter 6

[344]

 4: 0.3333333333333333,
 5: 0.5555555555555556,
 6: 0.5555555555555556,
 7: 0.3333333333333333,
 8: 0.2222222222222222,
 9: 0.1111111111111111}

As expected, node 3 has the highest degree centrality since it's the node with the
maximum number of links (it's connected to six other nodes). On the contrary,
node 9 is the node with the lowest degree since it has only one edge.

Closeness centrality: To compute this for every node, calculate the shortest path
distance to all other nodes, average it, divide the average by the maximum
distance, and take the inverse of that value. This results in a score between 0 (the
greater average distance) and 1 (the lower average distance). In our example, for
node 9, the shortest path distances are [1, 2, 3, 3, 4, 4, 4, 5, 5]. The average (3.44) is
then divided by 5 (the maximum distance) and subtracted from 1, resulting in a
closeness centrality score of 0.31. You can use the following code to compute the
closeness centrality for all the nodes in the example graph:

In: nx.closeness_centrality(G)

Out: {0: 0.5294117647058824,
 1: 0.5294117647058824,
 2: 0.5,
 3: 0.6,
 4: 0.5,
 5: 0.6428571428571429,
 6: 0.6428571428571429,
 7: 0.6,
 8: 0.42857142857142855,
 9: 0.3103448275862069}

The nodes with high closeness centrality are 5, 6, and 3. In fact, they are the nodes
that are present in the middle of the network, and on average, they can reach all
the other nodes with a few hops. The lowest score belongs to node 9. In fact, its
average distance to reach all the other nodes is pretty high.

Social Network Analysis Chapter 6

[345]

Harmonic centrality: This measure is similar to closeness centrality, but instead
of having the inverse of the sum of the reciprocal of the distances, it has the sum
of reciprocal of distances. Doing so, it emphasizes the extremes of distances. Let's
see what the harmonic distances look like in our network:

In: nx.harmonic_centrality(G)

Out: {0: 6.083333333333333,
 1: 6.083333333333333,
 2: 5.583333333333333,
 3: 7.083333333333333,
 4: 5.583333333333333,
 5: 6.833333333333333,
 6: 6.833333333333333,
 7: 6.0,
 8: 4.666666666666666,
 9: 3.4166666666666665}

Node 3 is the one with the highest harmonic centrality, while 5 and 6 have a
comparable but lower value. Again, those nodes are in the center of the network,
and on average, they can reach all the other nodes with a few hops. Opposite,
node 9 has the lowest harmonic centrality; in fact, it's the farthest from all the
other nodes on average.

Eigenvector centrality: If the graph is directed, the nodes represent web pages
and the edges represent page links. A slightly modified version is named
PageRank. This metric, invented by Larry Page, is the core ranking algorithm of
Google, as well as Bing, and possibly other search engines. It gives every node a
measure of how important the node is from the point of view of a random surfer.
Its name derives from the fact that if you think of the graph as a Markov Chain,
the graph represents the eigenvector associated with the greatest eigenvalue.
Therefore, from this point of view, this probabilistic measure represents the static
distribution of the probability of visiting a node. Let's take a look at the following
example:

In: nx.eigenvector_centrality(G)

Out: {0: 0.35220918419838565,
 1: 0.35220918419838565,
 2: 0.28583482369644964,
 3: 0.481020669200118,
 4: 0.28583482369644964,
 5: 0.3976909028137205,
 6: 0.3976909028137205,
 7: 0.19586101425312444,

Social Network Analysis Chapter 6

[346]

 8: 0.04807425308073236,
 9: 0.011163556091491361}

In this example, nodes 3 and 9 have the highest and the lowest scores according
to the eigenvector centrality measure. Compared to degree centrality, eigenvalue
centrality gives an idea about the static distribution of the surfers across the
network because it considers, for each node, not only the directly connected
neighbors (as in degree centrality), but also the whole structure of the network. If
the graph represented web pages and their connections, this makes them the
most/least (probable) visited pages.

As a concluding topic, we'll introduce the clustering coefficient. In brief, it is the proportion
of the node's neighbors that are also neighbors with each other (that is, the proportion of
possible triplets or triangles that exist). Higher values indicate higher cliquishness. It's
named this way because it represents the degree to which nodes tend to cluster together.
Let's take a look at the following example:

In: nx.clustering(G)

Out: {0: 0.6666666666666666,
 1: 0.6666666666666666,
 2: 1.0,
 3: 0.5333333333333333,
 4: 1.0,
 5: 0.5,
 6: 0.5,
 7: 0.3333333333333333,
 8: 0.0,
 9: 0.0}

Higher values can be seen in the highly connected sections of the graph and lower values
can be seen in the least connected areas.

Social Network Analysis Chapter 6

[347]

Partitioning a network
Now, let's look at the way in which you can partition the network into multiple
subnetworks of nodes. One of the most used algorithms is the Louvain method, which was
specifically created to accurately detect communities in large graphs (with a million nodes).
We will first introduce the modularity measure. This is a measure of the structure of the
graph (it's not node-oriented), whose formal math definition is very long and complex and
which is beyond the scope of this book (readers can find more information at
https://sites.google.com/site/findcommunities/). It intuitively measures the quality of
the division of a graph into communities, comparing the actual community linkage with a
random one. The modularity score falls between -0.5 and +1.0; the higher the value, the
better the division (there is a dense intragroup connectivity and a sparse intergroup
connectivity).

It's a two-step iterative algorithm: first, there's a local optimization, then a global one, then
a local again, and so on:

In the first step, the algorithm locally maximizes the modularity of small1.
communities.
Then, it aggregates the nodes of the same community and hierarchically builds a2.
graph whose nodes are the communities.
The method repeats these two steps iteratively until the maximum global3.
modularity score is reached.

To take a peek at this algorithm in a practical example, we first need to create a larger
graph. Let's consider a random network with 100 nodes:

In this example, we will build a graph with the powerlaw algorithm, which tries1.
to maintain an approximate average clustering.
For every new node added to the graph, an m number of random edges will also2.
be added to it, with each of them having a probability of p to create a triangle.
The source code is not included in NetworkX, but it's in a separate module3.
named community. An implementation of this algorithm is shown in the
following example:

In: import community
 # Module for community detection and clustering

 G = nx.powerlaw_cluster_graph(100, 1, .4, seed=101)
 partition = community.best_partition(G)

 for i in set(partition.values()):
 print("Community", i)

https://sites.google.com/site/findcommunities/

Social Network Analysis Chapter 6

[348]

 members = [nodes for nodes in partition.keys()
 if partition[nodes] == i]
 print(members)

 values = [partition.get(node) for node in G.nodes()]
 nx.draw(G, pos=nx.fruchterman_reingold_layout(G),
 cmap = plt.get_cmap('jet'),
 node_color = values,
 node_size=150,
 with_labels=False)
 plt.show()
 print ("Modularity score:", community.modularity(partition, G))

Out: Community 0
 [0, 46, 50, 61, 73, 74, 75, 82, 86, 96]
 Community 1
 [1, 2, 9, 16, 20, 28, 29, 35, 57, 65, 78, 83, 89, 93]
 [...]
 Modularity score: 0.7941026425874911

The first output of the program is the list of communities detected in the graph (each
community is a collection of nodes). In this case, the algorithm detected eight groups. We
wanted to highlight that we didn't specify the number of output communities that we were
looking for, but it was automatically decided by the algorithm. That's a desirable feature
shared with not all the clustering algorithms (k-means, for example, needs the number of
clusters as a parameter).

Then, we printed the graph, assigning a different color to each community. You can see that
the colors are pretty homogeneous on the edge nodes:

Social Network Analysis Chapter 6

[349]

Lastly, the algorithm returns the modularity score of the solution: 0.79 (that's a pretty high
score).

The last algorithm that this short introduction about graphs is going to present is
coloring. It is a graphical way of assigning labels to the nodes, in a way that neighbors
(that is, nodes with a link) must have different labels (or colors). To explain why this
algorithm is important, we will use a practical example. Telecommunication networks are
composed of antennas at different frequencies spread across the Earth. Think about each
antenna as a node, and the frequency as a label of the node. If antennas are closer than a
defined distance—let's say close enough to cause interference—they're connected with an
edge. Can we find the lowest number of different frequencies to allocate (to minimize the
bill the company has to pay) and avoid interferences between close antennas (that is, by
allocating different frequencies to linked nodes)?

The solution is given by the graph-coloring algorithms. In theory, the solution of such a
class of algorithm is NP-hard, and it's almost impossible to find the optimal solution,
though there are many approximations to obtain suboptimal solutions quickly. NetworkX
implements a greedy approach to solve the coloring problem. What's returned by the
function is a dictionary containing, for each node (the key in the dictionary), the color (the
value of the key in the dictionary). As an example, let's see the allocation of colors in our
example graph, and then let's see it colored:

In: G = nx.krackhardt_kite_graph()
 d = nx.coloring.greedy_color(G)
 print(d)
 nx.draw_networkx(G,
 node_color=[d[n] for n in sorted(d.keys())])
 plt.show()

Out:{3: 0, 5: 1, 6: 2, 0: 2, 1: 1, 2: 3, 4: 3, 7: 0, 8: 1, 9: 0}

Social Network Analysis Chapter 6

[350]

Here is the plot of the graph, using different colors for the linked nodes:

As expected, linked nodes have different colors. It seems that for this configuration of the
network, four colors were needed. If this were representing a telecommunications network,
it would show us that four frequencies were needed to avoid interference.

Graph loading, dumping, and sampling
Beyond NetworkX, graphs and networks can be generated and analyzed with other
software. One of the best open source multiplatform software that can be used for their
analysis is named Gephi. It's a visual tool and it doesn't require programming skills. It's
freely available at http://gephi.github.io.

As in machine learning datasets, even graphs have standard formats for storing, loading,
and exchanging. This way, you can create a graph with NetworkX, dump it to a file, and
then load and analyze it with Gephi.

One of the most frequently used formats is Graph Modeling Language (GML). Now, let's
see how we can dump a graph into a GML file:

In: dump_file_base = "dumped_graph"

 # Be sure the dump_file file doesn't exist
 def remove_file(filename):
 import os
 if os.path.exists(filename):

http://gephi.github.io/

Social Network Analysis Chapter 6

[351]

 os.remove(filename)

 G = nx.krackhardt_kite_graph()

 # GML format write and read
 GML_file = dump_file_base + '.gml'
 remove_file(GML_file)

 to_string = lambda x: str(x)
 nx.write_gml(G, GML_file, stringizer=to_string)
 to_int = lambda x: int(x)
 G2 = nx.read_gml(GML_file, destringizer = to_int)
 assert(G.edges() == G2.edges())

In the preceding chunk of code, we did the following:

We removed the dumped file, if it did exist in the first place.1.
Then, we created a graph (the Kite), and after that, we dumped and loaded it.2.
Finally, we compared the original and the loaded structure, asserting that they're3.
equal.

Beyond GML, there are a variety of formats. Each of these formats has different features.
Note that some of them remove information pertaining to the network (like edge/node
attributes). Similar to the write_gml function and its equivalent, read_gml, are the
following ones (the names are self-explanatory):

The adjacency list (read_adjlist and write_adjlist)
The multiline adjacency list (read_multiline_adjlist and
write_multiline_adjlist)
 The edge list (read_edgelist and write_edgelist)
GEXF (read_gexf and write_gexf)
Pickle (read_gpickle and write_gpickle)
GraphML (read_graphml and write_graphml)
LEDA (read_leda and parse_leda)
YAML (read_yaml and write_yaml)
Pajek (read_pajek and write_pajek)
GIS Shapefile (read_shp and write_shp)
JSON (load/loads and dump/dumps, and provides JSON serialization)

Social Network Analysis Chapter 6

[352]

The last topic of this chapter is sampling. Why sample a graph? We sample graphs because
working with large graphs is sometimes impractical (remember that in the best case, the
processing time is proportional to the graph size). Therefore, it's better to sample it, create
an algorithm by working on a small-scale scenario, and then test it on the full-scale
problem. There are several ways to sample a graph. Here, we're going to introduce the
three most frequently used techniques.

In the first technique, which is known as node sampling, a limited subset of nodes, along
with their links, forms the sampled set. In the second technique, which is known as link
sampling, a subset of links forms the sampled set. Both of these methods are simple and
fast, but they may potentially create a different structure for the network. The third method
is named snowball sampling. The initial node, all its neighbors, and the neighbors of the
neighbors (expanding the selection this way until we reach the maximum traversal depth
parameter) form the sampled set. In other words, the selection is like a rolling snowball.

Note that you can also subsample the traversed links. In other words, each
link has a probability of p that has to be followed and selected in the
output set.

The last sampling method is not a part of NetworkX, but you can find an implementation
for the same in the snowball_sampling.py file.

In this example, we will subsample the LiveJournal network by starting with the person
with an alberto ID and then expand recursively twice (in the first example) and three
times (in the second example). In the latter instance, every link is followed by a probability
of 20%, thus decreasing the retrieval time. Here is an example that demonstrates the same:

In: import snowball_sampling
 import matplotlib.pyplot as plot
 my_social_network = nx.Graph()
 snowball_sampling.snowball_sampling(my_social_network, 2, 'alberto')
 nx.draw(my_social_network)
 ax = plot.gca()
 ax.collections[0].set_edgecolor("#000000")
 plt.show()

Out: Reching depth 0
 new nodes to investigate: ['alberto']
 Reching depth 1
 new nodes to investigate: ['mischa', 'nightraven', 'seraph76',
 'adriannevandal', 'hermes3x3', 'clymore', 'cookita', 'deifiedsoul',
 'msliebling', 'ph8th', 'melisssa', '______eric_', 'its_kerrie_duhh',
 'eldebate']

Social Network Analysis Chapter 6

[353]

Here is the result of the sampling code:

We will now proceed by using a specific sampling rate of 0.2:

In: my_sampled_social_network = nx.Graph()
 snowball_sampling.snowball_sampling(my_sampled_social_network, 3,
 'alberto', sampling_rate=0.2)
 nx.draw(my_sampled_social_network)
 ax = plot.gca()
 ax.collections[0].set_edgecolor("#000000")
 plt.show()

Out: Reching depth 0
 new nodes to investigate: ['alberto']
 Reching depth 1
 new nodes to investigate: ['mischa', 'nightraven', 'seraph76',
 'adriannevandal', 'hermes3x3', 'clymore', 'cookita', 'deifiedsoul',
 'msliebling', 'ph8th', 'melisssa', '______eric_', 'its_kerrie_duhh',
 'eldebate']
 Reching depth 2
 new nodes to investigate: ['themouse', 'brynna', 'dizzydez', 'lutin',
 'ropo', 'nuyoricanwiz', 'sophia_helix', 'lizlet', 'qowf', 'cazling',
 'copygirl', 'cofax7', 'tarysande', 'pene', 'ptpatricia', 'dapohead',
 'infinitemonkeys', 'noelleleithe', 'paulisper', 'kirasha',
'lenadances',
 'corianderstem', 'loveanddarkness', ...]

Social Network Analysis Chapter 6

[354]

The resulting graph is more detailed:

Summary
In this chapter, we learned what a social network is, including its creation and
modification, representation, and some of the important measures of the social network
and its nodes. Finally, we discussed the loading and saving of large graphs and ways to
deal with the same.

With this chapter, almost all of the essential data science algorithms have been presented.
Machine learning techniques were discussed in Chapter 4, Machine Learning, and social
network analysis methods were discussed here. We will finally discuss the most advanced
and cutting-edge techniques of deep learning and neural networks in the next chapter, Deep
Learning Beyond the Basics.

7
Deep Learning Beyond the

Basics
In this chapter, we will introduce deep models, and we will show three examples of how to
build deep models. More specifically, in this chapter, you'll learn the following:

The basics of deep learning
How to optimize a deep net
The speed/complexity/accuracy problem
How to classify images with a CNN
How to use a pre-trained network for classification and transfer learning
How to operate on sequences using a LSTM

We will be using the Keras package (https:/ ​/​keras. ​io/ ​), which is a high-level API for
deep learning that will render approaching neural networks for deep learning much easier
and more understandable because it is characterized by a Lego-like approach (here, the
bricks are a neural network's composing elements).

Approaching deep learning
Deep learning is an extension of the classical machine-learning approach using neural
networks: instead of building networks of a few layers (so-called shallow networks), we can
stack hundreds of layers to create an elaborate, but more powerful, learner. Deep learning
is one of the most popular methods of artificial intelligence (AI) nowadays since it's very
effective and helps to solve many problems in pattern recognition, such as object or
sequence identification, which seemed unbreakable using standard machine learning tools.

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Deep Learning Beyond the Basics Chapter 7

[356]

The idea of neural networks came from the human central nervous system, where multiple
nodes (or neurons) that are able to process simple information are connected together to
create a network capable of processing complex information. In fact, neural networks are
so named because they can learn the weights of the model autonomously and adaptively,
and, given enough complex network architecture, they're able to approximate any
nonlinear function. In deep learning, the nodes are usually called units or neurons.

Let's see how a deep architecture is built and what its components are. We will start with a
small deep architecture for a classification problem composed of three layers, as shown in
the following figure:

This network has the following characteristics:

It has three layers. The left-hand one is called the input layer, the right-hand one
is called the output layer, and the central one is the hidden layer. Generically, in
a neural network, there is always one input and one output layer, and zero or
more hidden layers (when there are zero hidden layers, the whole neural
architecture will effectively turn into a logistic-regression system).
The input layer is composed of five units, which means that each observation
vector is composed of five numerical features (that is, the observation matrix has
five columns). Note that the features must be numeric and in a bounded range of
values (for better numeric convergence, the range is ideally 0 to +1, but -1 to +1 is
also fine). Therefore, categorical features must be preprocessed in order to
become numerical.

Deep Learning Beyond the Basics Chapter 7

[357]

The output layer is composed of three units, which means we want to
differentiate among three output classes (that is, perform a three-class
classification). In the case of a regression problem, there should be just one unit
in this layer.
The hidden layer is composed of eight units. Note that there's no rule about how
many hidden layers should appear in the deep architecture and how many units
each should have. These parameters are left to the scientist, and, usually, they
require some optimization and fine-tuning in order to work best.
Each connection has a weight associated with it. This is optimized during the
learning algorithm.

Each unit of the input layer is connected to all the units of the next layer.
There are neither connections between the units in the same layers nor
connections between units in two of the layers at a distance greater than 1
from each other.

In the example, the flow of information is passed forward, from the input to the output
(passing eventually through the hidden layers); in literature, this network is referred to as a
feed-forward neural network.

How does it create the final prediction? Let's see how it works step by step:

Starting from the top unit of the hidden layer, it performs a dot product between1.
the output vector of the first layer (that is, the input-observation vector) and the
vector of weights of the connections between the first layer and the first unit of
the hidden layer.
The value is then transformed with the activation function of the unit.2.
This operation is repeated for all the units in the hidden layer.3.
Finally, we can compute the feed-forward propagated values between the hidden4.
layer and the output layer in the same way, which produces the outputs of the
network.

The process seems very easy, and it's composed of multiple embarrassingly parallel tasks.
The last missing point of the explanation is the activation function: What is it and why is it
needed? The activation function helps to make binary decisions more separable (it makes
the decision boundary non-linear, thus helping to separate the examples better) and it's a
property (or an attribute) of each unit; ideally, each unit should have a different activation
function, although they're usually grouped by layer.

Deep Learning Beyond the Basics Chapter 7

[358]

Typical activation functions are the sigmoid, the hyperbolic tangent, and the softmax (for
classification problems) functions, although one of the most popular currently is the
rectified linear unit (or ReLU), whose output is the maximum between 0 and the input
(where the input is the dot product between the previous layer output and the weights of
the connections).

The activation function, as the number of units and the number of hidden layers, is a
parameter of a deep network and should be optimized by the scientist to obtain a better
performance.

Training a neural network characterized by many layers is a hard operation since there is a
very high number (sometimes millions) of parameters to tune: the weights. The most
common way to assign weights to connections uses a similar approach to a gradient
descent, and it's called backpropagation, because it propagates back the errors from the
output layer toward the input layer, updating each weight proportionally to the gradient of
the error at that point in the network. Initially, weights are assigned at random, but, after a
few steps, they should converge toward the optimal value.

This was a very short introduction to deep learning and neural networks; if you find the
topic interesting and you want to dig more into it, we recommend the following video
series from Packt, where you can find a better explanation and some nice tricks to master
the learning process:

Deep Learning with Python [Video] (https:/ ​/​www. ​packtpub. ​com/​big- ​data- ​and-
business- ​intelligence/ ​deep- ​learning- ​python- ​video)
Deep Learning with TensorFlow [Video] (https:/ ​/​www. ​packtpub. ​com/ ​big- ​data-
and-​business- ​intelligence/ ​deep-​learning- ​tensorflow- ​video)

Now let's see something practical: how to solve a classification problem with neural
networks. We will use Keras in this example. The first is a Python library for low-level
primitives, which is typically used in deep learning and is able to take advantage of recent
GPUs and numerical speed-up to process multi-dimensional arrays efficiently. Keras is an
advanced, fast, and modular Python library for neural networks able to run on top of
different numerical computation frameworks, such as TensorFlow, Microsoft Cognitive
Tool (previously named CNTK), or Theano.

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-python-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-video

Deep Learning Beyond the Basics Chapter 7

[359]

Classifying images with CNN
Let's now apply a deep neural network to an image-classification problem. Here, we will
try to predict a traffic sign from its image. For this task, we will use a CNN (convolutional
neural network), which is able to exploit the spatial correlation between nearby pixels in an
image, and is the state of the art in deep learning when working on this kind of problem.

The dataset is available here: http:/ ​/​benchmark. ​ini. ​rub. ​de/​? ​section=
gtsrb ​subsection= ​dataset. We would like to thank the team for having
released the dataset free of charge, and reference the publication dealing
with this dataset:
J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In Proceedings
of the IEEE International Joint Conference on Neural Networks, pages
1453–1460. 2011.

First, download the dataset and then unzip it. The filename of the dataset
is GTSRB_Final_Training_Images.zip, and, when unzipped, you'll find a new directory
named GTSRB, which contains all the images located in the same directory as the Jupyter
notebook.

The next step is to import Keras and check if the backend is configured properly. In this
chapter, we will use the TensorFlow backend, and all the code is tested on that backend.

The backend choice is reversible. If you want to switch from TensorFlow
to another backend, follow the guide here: https:/ ​/​keras. ​io/​backend.
Scripts that are written using Keras can operate successfully no matter
what backend they use (the performance in terms of computation time
and minimized errors may differ, though).

To check your backend, run the following code, and check if the operation performs
successfully and the resulting output matches that reported here.

In: import keras

Out: Using TensorFlow backend.

It's now time to start the processing, so we have to define some static parameters for the
task. There are two of these, primarily: the number of different signals we want to
recognize (that is, the number of classes) and the size of the pictures. The number of classes
is 43; that is, we have 43 different traffic signs to recognize.

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend
https://keras.io/backend

Deep Learning Beyond the Basics Chapter 7

[360]

The second parameter, the image size, is important because the input images can be of
different sizes and shapes; we need to resize them to a standard size in order to run our
deep net on them. We picked 32x32 pixels as the standard: it's small enough to recognize
the signal, and, at the same time, it doesn't require too much memory (that is, every
grayscale image uses just 1,024 bytes or 1 KB). Increasing the size means increasing the
memory needed to keep the dataset, plus the input layer of the deep net and the time
necessary for computations. In the literature, 32x32 is a pretty standard choice for images
with just one item; so, in our case, we have good reasons to decide on that size.

In: N_CLASSES = 43
 RESIZED_IMAGE = (32, 32)

At this point, we have to read the images and resize them, creating the observation matrix
and the array of labels. To do so, we perform the following steps:

Import the modules needed for the processing. The most important is Scikit-1.
learn, or sklearn, which contains loads of functions to process the images.
We read the images one after another. The label is contained in the path. For2.
example, the image
GTSRB/Final_Training/Images/00000/00003_00024.ppm has label 00000,
which is 0; and the
image GTSRB/Final_Training/Images/00025/00038_00005.ppm has label
00025, which is 25. The label is stored as a labeled-encoded array, which is an
array 43-cells long with only one that has a value of 1 (all the others are 0).
The image is stored in the PPM (Portable PixMap) format, and it's a lossless way3.
to store the pixels in an image. Scikit-image, or just skimage (https:/ ​/​scikit-
image.​org/ ​), is able to read that format by using the function imread. If you
don't have Scikit-image already installed on your system, just type the following
in a shell: conda install scikit-image or pip install -U scikit-
image. The returned object is a 3D NumPy array.
The 3D NumPy array, containing the pixel representation of the image (with4.
three channels—red, blue and green) is then converted to grayscale. Here, we
first convert to the LAB color space (see https:/ ​/​hidefcolor. ​com/ ​blog/ ​color-
management/ ​what- ​is- ​lab- ​color- ​space—this color space is more perceptually
linear than others, which implies that the same amount of change in a color value
should produce an impact of the same visual importance), and then the first
channel (containing the luminance) is kept. Again, this operation is easily done
with skimage. As a result, we have a 1D NumPy array containing the image
pixels.
The image is finally resized to the 32x32 pixel format, again using5.
a skimage function.

https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://scikit-image.org/
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space

Deep Learning Beyond the Basics Chapter 7

[361]

Finally, all the images are squeezed into a 4-dimensional matrix: the first6.
dimension is used to index the image within the dataset; the second and the third
represent the height and the width of the image, respectively; and the last
dimension is the channel. Having 39,208 images, with all 32x32 pixels in
grayscale, the observation matrix is therefore in the shape (39,208, 32, 32, 1).
Labels are compacted into a two-dimensional matrix. The first dimension is the7.
index of the image and the second dimension is the class. Due to having the same
number of images, and 43 possible classes, this matrix will be shaped (39,208,
43).

The following shows all seven steps translated into code:

In: import matplotlib.pyplot as plt
 import glob
 from skimage.color import rgb2lab
 from skimage.transform import resize
 from collections import namedtuple
 import numpy as np
 np.random.seed(101)
 %matplotlib inline

 Dataset = namedtuple('Dataset', ['X', 'y'])

 def to_tf_format(imgs):
 return np.stack([img[:, :, np.newaxis] for img in imgs],
 axis=0).astype(np.float32)

 def read_dataset_ppm(rootpath, n_labels, resize_to):
 images = []
 labels = []
 for c in range(n_labels):
 full_path = rootpath + '/' + format(c, '05d') + '/'
 for img_name in glob.glob(full_path + "*.ppm"):
 img = plt.imread(img_name).astype(np.float32)
 img = rgb2lab(img / 255.0)[:,:,0]
 if resize_to:
 img = resize(img, resize_to, mode='reflect',
 anti_aliasing=True)
 label = np.zeros((n_labels,), dtype=np.float32)
 label[c] = 1.0
 images.append(img.astype(np.float32))
 labels.append(label)
 return Dataset(X = to_tf_format(images).astype(np.float32),
 y = np.matrix(labels).astype(np.float32))

 dataset = read_dataset_ppm('GTSRB/Final_Training/Images', N_CLASSES,

Deep Learning Beyond the Basics Chapter 7

[362]

 RESIZED_IMAGE)
 print(dataset.X.shape)
 print(dataset.y.shape)

Out: (39209, 32, 32, 1)
 (39209, 43)

The dataset is composed of almost 40,000 images; let's see what the first of them looks like,
after the color change and the resize:

In: plt.imshow(dataset.X[0, :, :, :].reshape(RESIZED_IMAGE))
 print("Label:", dataset.y[0, :])

Out: Label: [[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0.
 0. 0. 0.]]

The following is the plotted sample image:

Even though the image has a very low definition, 32x32 pixels, we can immediately
recognize which sign is represented. So far, it seems that the reshaping operation is leaving
the images intelligible, even to humans. Note again that the label is a 43-dimensional
vector; since this image belongs to the first class (that is, class 00000), just the first element
of the label is not null.

Deep Learning Beyond the Basics Chapter 7

[363]

Another element, of a different class, is shown as follows. That's image number 1,000 in the
dataset, and its class is the 2nd (in fact, it's a different sign):

Let's now split the dataset into training and testing. We use Scikit-learn to randomly
separate and shuffle the images. In this cell, we select 25% of the dataset as a test set; that is,
almost 10,000 images, leaving the other 29K+ images for training the deep net:

In: from sklearn.model_selection import train_test_split
 idx_train, idx_test = train_test_split(range(dataset.X.shape[0]),
 test_size=0.25,
 random_state=101)
 X_train = dataset.X[idx_train, :, :, :]
 X_test = dataset.X[idx_test, :, :, :]
 y_train = dataset.y[idx_train, :]
 y_test = dataset.y[idx_test, :]

 print(X_train.shape)
 print(y_train.shape)
 print(X_test.shape)
 print(y_test.shape)

Out: (29406, 32, 32, 1)
 (29406, 43)
 (9803, 32, 32, 1)
 (9803, 43)

Deep Learning Beyond the Basics Chapter 7

[364]

Here's the moment of creating a convolutional deep network. We start with a simple, easy
to understand, neural network. Then we'll move to something that is more complex but
accurate.

Creating deep nets with Keras is very easy: you have to define all layers in a sequential
way, one after another. The Keras object needs to define the layers in a sequence named
Sequential. Here, we will create a deep net with three layers:

The input layer, defined as a convolutional 2D layer (which is actually a1.
convolutional operation between the image and the kernel), contains 32 filters in
the shape of 3x3 pixels and with an activation layer of type ReLU.
A layer that flattens the output of the previous; that is, square observations will2.
be unrolled to create a 1D array.
 A dense output layer, with softmax activation and which is composed of 433.
units, one for each class.

The model is then compiled and, finally, fitted to the training data. During this operation
we selected the following:

The optimizer: SGD, the simplest one
The batch size: 32 images/batch
The numbers of epochs: 10

Here is the code that will generate the model we have just described:

In: from keras.models import Sequential
 from keras.layers.core import Dense, Flatten
 from keras.layers.convolutional import Conv2D
 from keras.optimizers import SGD
 from keras import backend as K
 K.set_image_data_format('channels_last')
 def cnn_model_1():
 model = Sequential()
 model.add(Conv2D(32, (3, 3),
 padding='same',
 input_shape=(RESIZED_IMAGE[0], RESIZED_IMAGE[1], 1),
 activation='relu'))
 model.add(Flatten())
 model.add(Dense(N_CLASSES, activation='softmax'))
 return model

 cnn = cnn_model_1()

Deep Learning Beyond the Basics Chapter 7

[365]

 cnn.compile(loss='categorical_crossentropy',
 optimizer=SGD(lr=0.001, decay=1e-6),
 metrics=['accuracy'])
 cnn.fit(X_train, y_train,
 batch_size=32,
 epochs=10,
 validation_data=(X_test, y_test))

Out: Train on 29406 samples, validate on 9803 samples
 Epoch 1/10
 29406/29406 [==============================] - 11s 368us/step -
 loss: 2.7496 - acc: 0.5947 - val_loss: 0.6643 - val_acc: 0.8533
 Epoch 2/10
 29406/29406 [==============================] - 10s 343us/step -
 loss: 0.4838 - acc: 0.8937 - val_loss: 0.4456 - val_acc: 0.9001
 [...]
 Epoch 9/10
 29406/29406 [==============================] - 10s 337us/step -
 loss: 0.0739 - acc: 0.9876 - val_loss: 0.2306 - val_acc: 0.9553
 Epoch 10/10
 29406/29406 [==============================] - 10s 343us/step -
 loss: 0.0617 - acc: 0.9897 - val_loss: 0.2208 - val_acc: 0.9574

The final accuracy is close to 99% on the training set and almost 96% on the test set. We're
overfitting a bit, but let's see the confusion matrix and the classification report of this model
on the test set. We'll also print the log2 of the confusion matrix to better identify
misclassifications.

To do so, we first need to predict the labels and then apply the argmax operator to select
the most likely class:

In: from sklearn.metrics import classification_report, confusion_matrix

 def test_and_plot(model, X, y):
 y_pred = cnn.predict(X)
 y_pred_softmax = np.argmax(y_pred, axis=1).astype(np.int32)
 y_test_softmax = np.argmax(y, axis=1).astype(np.int32).A1
 print(classification_report(y_test_softmax, y_pred_softmax))
 cm = confusion_matrix(y_test_softmax, y_pred_softmax)
 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
 plt.colorbar()
 plt.tight_layout()
 plt.show()
 # And the log2 version, to emphasize the misclassifications
 plt.imshow(np.log2(cm + 1), interpolation='nearest',
 cmap=plt.get_cmap("tab20"))
 plt.colorbar()

Deep Learning Beyond the Basics Chapter 7

[366]

 plt.tight_layout()
 plt.show()

test_and_plot(cnn, X_test, y_test)

Out:
 precision recall f1-score support
 0 0.87 0.90 0.88 67
 1 0.97 0.94 0.95 539
 2 0.93 0.94 0.94 558
 [........]
 40 0.93 0.96 0.95 85
 41 0.92 0.94 0.93 47
 42 1.00 0.91 0.95 53
 avg / total 0.96 0.96 0.96 9803

The following are the diagnostic plots, which provide you with evidence on the
performance of the model:

Deep Learning Beyond the Basics Chapter 7

[367]

And here's the log2 version of the confusion matrix:

The classification already seems to be pretty good. Can we do something better and avoid
the overfitting? Yes, here is what we can use:

Dropout layers: This is the equivalent of regularization, and it prevents
overfitting. Basically, at each step during the training, a portion of units is
deactivated, so the output of the layer doesn't rely too much on just a few of
them.
BatchNormalization layer: This z-normalizes the layer, by subtracting the batch
mean and dividing it by the standard deviation. It's useful for recentering the
data, and it amplifies/attenuates the signal at each step.
 MaxPooling: This is a nonlinear transformation, which is used to downsample
the input by applying a max filter to each region under the kernel. It's used to
select the max feature, which can be in a slightly different position within the
same class.

Deep Learning Beyond the Basics Chapter 7

[368]

Beyond these, there's always space to change the deep net and training properties; that is,
the optimizer (and its parameters), the batch size, and the number of epochs. Here, in the
next cell, is an improved deep net with the following layers:

Convolutional layer, with 32 3x3 filters and ReLU activation1.
BatchNormalization layer2.
Another convolutional layer followed by a BatchNormalization layer3.
Dropout layer, with a probability of 0.4 of being dropped4.
Flattening layer5.
512-units dense layer, with ReLU activation6.
BatchNormalization layer7.
Dropout layer, with a probability of 0.5 of being dropped8.
Output layer; as in the previous example, this is a softmax dense layer with 439.
units

How will that perform on our dataset?

In: from keras.layers.core import Dropout
 from keras.layers.pooling import MaxPooling2D
 from keras.optimizers import Adam
 from keras.layers import BatchNormalization

 def cnn_model_2():
 model = Sequential()
 model.add(Conv2D(32, (3, 3), padding='same',
 input_shape=(RESIZED_IMAGE[0], RESIZED_IMAGE[1], 1),
 activation='relu'))
 model.add(BatchNormalization())
 model.add(Conv2D(32, (3, 3),
 padding='same',
 input_shape=(RESIZED_IMAGE[0], RESIZED_IMAGE[1], 1),
 activation='relu'))
 model.add(BatchNormalization())
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.4))
 model.add(Flatten())
 model.add(Dense(512, activation='relu'))
 model.add(BatchNormalization())
 model.add(Dropout(0.5))
 model.add(Dense(N_CLASSES, activation='softmax'))
 return model

 cnn = cnn_model_2()
 cnn.compile(loss='categorical_crossentropy',

Deep Learning Beyond the Basics Chapter 7

[369]

 optimizer=Adam(lr=0.001, decay=1e-6), metrics=['accuracy'])
 cnn.fit(X_train, y_train,
 batch_size=32,
 epochs=10,
 validation_data=(X_test, y_test))

Out: Train on 29406 samples, validate on 9803 samples
 Epoch 1/10
 29406/29406 [==============================] - 24s 832us/step -
 loss: 0.7069 - acc: 0.8145 - val_loss: 0.1611 - val_acc: 0.9584
 Epoch 2/10
 29406/29406 [==============================] - 23s 771us/step -
 loss: 0.1784 - acc: 0.9484 - val_loss: 0.1065 - val_acc: 0.9714
 [...]
 Epoch 10/10
 29406/29406 [==============================] - 23s 770us/step -
 loss: 0.0370 - acc: 0.9878 - val_loss: 0.0332 - val_acc: 0.9920

 <keras.callbacks.History at 0x7fd7ac0f17b8>

The training set's accuracy is similar to that for the test set, and they're both around 99%;
that is, 99 out of 100 images are classified with the correct label! This network is longer and
it requires more memory and computational power, but it's less prone to overfitting and it
performs better.

Let's now see the classification report and the confusion matrix (the full one and the log2
version):

In: test_and_plot(cnn, X_test, y_test)

Out:
 precision recall f1-score support
 0 1.00 0.97 0.98 67
 1 1.00 0.98 0.99 539
 2 0.99 1.00 0.99 558
 [..........]
 38 1.00 1.00 1.00 540
 39 1.00 1.00 1.00 60
 40 1.00 1.00 1.00 85
 41 0.98 0.96 0.97 47
 42 1.00 1.00 1.00 53
 avg / total 0.99 0.99 0.99 9803

Deep Learning Beyond the Basics Chapter 7

[370]

Here are the visual representations of the results:

It is clear that the number of misclassifications has decreased quite significantly. Now, let's
try to do something better, by changing the parameters.

Deep Learning Beyond the Basics Chapter 7

[371]

Using pre-trained models
As you saw in the previous example, increasing the complexity of the network increases the
time and the memory needed to train it. Sometimes, we have to accept that we don't have a
machine powerful enough to try all the combinations. What can we do in that situation?
Basically, we can do two things:

Simplify the network; that is, by removing parameters and variables
Use a pre-trained network, which has already been trained by someone with a
powerful enough machine

In both situations, we will work in sub-optimal conditions, since the deep network won't be
as powerful as the one we could have used. More specifically, in the first case, the network
won't be very accurate because we have fewer parameters; in the second case, well, we
have to cope with someone else's decisions and training set. Although it's not very easy to
do, pre-trained models can also be fine-tuned with your dataset; in this case, the network
won't have a random initialization of the parameters. Although this is very interesting, this
operation is out of the scope of this book.

In this section, we will quickly show how to use pre-trained models, which is a common
way to proceed. Bear in mind that pre-trained models can be used in multiple situations:

Feature augmentation, to add a feature (in this case, the predicted label), along
with observation vectors, into your model
Transfer learning, to add more features (coefficients coming from one or model
layers), along with observation vectors, into your model
Prediction; that is, to compute the label

Let's now see how to use a pre-trained network to serve our purpose.

In Keras, various pre-trained models are available from
here: https://keras.io/applications.

Let's first download some images to test. In the following example, we will use the dataset
provided by Caltech, which is available here: http:/ ​/​www. ​vision. ​caltech. ​edu/​Image_
Datasets/​Caltech101/ ​.

We would like to thank the authors of the dataset, and suggest to read
their paper: L. Fei-Fei, R. Fergus and P. Perona. One-Shot learning of object
categories. IEEE Trans. Pattern Recognition and Machine Intelligence.

https://keras.io/applications
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Deep Learning Beyond the Basics Chapter 7

[372]

It contains several images in 101 categories and comes in the tar.gz format.

Now, with a new notebook, import the modules we will use. In this example, we will use
the InceptionV3 pre-trained network, which is able to recognize objects in images very well.
It has been developed by Google, and its output is comparable to the human eye.

First, we import the functions that are needed to set up the network, to1.
preprocess the inputs, and to extract the predictions:

In: from keras.applications.inception_v3 import InceptionV3
 from keras.applications.inception_v3 import preprocess_input
 from keras.applications.inception_v3 import decode_predictions
 from keras.preprocessing import image
 import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

Out: Using TensorFlow backend.

Now, let's load the huge network and its coefficient:2.

In: model = InceptionV3(weights='imagenet')

It's simple, isn't it?

The next step (and the final one) is to create a function to make the prediction. In3.
this case, we will predict the top three labels:

In: def predict_top_3(model, img_path):
 img = image.load_img(img_path, target_size=(299, 299))
 plt.imshow(img)
 x = image.img_to_array(img)
 x = np.expand_dims(x, axis=0)
 x = preprocess_input(x)
 preds = model.predict(x)
 print('Predicted:', decode_predictions(preds, top=3)[0])

Deep Learning Beyond the Basics Chapter 7

[373]

Basically, this function loads and resizes the image to 299x299 pixels (which is the
default input size for the pre-trained network InceptionV3), and converts the image to the
correct format for the model. After that, it predicts all the labels of the image and selects
(and prints) the top three.

Let's see how it performs with an example image by using the pre-trained model and
asking for the top three predictions in terms of probability:

In: predict_top_3(model, "101_ObjectCategories/umbrella/image_0001.jpg")

The image we want to predict and the resulting output from the top three predictions are as
follows:

Out: Predicted: [('n04507155', 'umbrella', 0.88384396),
 ('n04254680', 'soccer_ball', 0.07257448),
 ('n03888257', 'parachute', 0.012849103)]

We confirm that this is a great result; the first label (with a score of 88%) is an umbrella,
followed by a soccer ball and a parachute. Let's now test a certainly more difficult image,
which is one whose label is not included in the InceptionV3 training set:

In: predict_top_3(model, "101_ObjectCategories/bonsai/image_0001.jpg")

Deep Learning Beyond the Basics Chapter 7

[374]

Here is the image and its top three results:

Out: Predicted: [('n02704792', 'amphibian', 0.20315942),
 ('n04389033', 'tank', 0.07383019),
 ('n04252077', 'snowmobile', 0.055828683)]

As expected, as it is not among its pre-defined classes, the network is not able to recognize
the bonsai in the first predicted label.

Actually, pre-trained models can be taught to recognize even completely
new classes by the so-called transfer learning technique. This technique is
out of the scope of this book, but you can read about it on this example
from Keras's blog: https:/ ​/​blog. ​keras. ​io/ ​building- ​powerful- ​image-
classification- ​models- ​using- ​very- ​little- ​data. ​html.

Finally, let's see how to extract features from the intermediate layers, as follows:

As the first step, let's verify the label names:1.

In: print([l.name for l in model.layers])

Out: ['input_1', 'conv2d_1', 'batch_normalization_1',

 'activation_94', 'mixed10', 'avg_pool', 'predictions']

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

Deep Learning Beyond the Basics Chapter 7

[375]

We can select any of these layers; we will go for the one before the softmax2.
prediction. Let's create an object Model whose output is the avg_pool layer:

In: from keras.models import Model
 feat_model = Model(inputs=model.input,
 outputs=model.get_layer('avg_pool').output)

 def extract_features(feat_model, img_path):
 img = image.load_img(img_path, target_size=(299, 299))
 x = image.img_to_array(img)
 x = np.expand_dims(x, axis=0)
 x = preprocess_input(x)
 return feat_model.predict(x)

Finally, to extract the features for a picture, let's call the previous function with3.
an image:

In: f = extract_features(feat_model,
 "101_ObjectCategories/bonsai/image_0001.jpg")
 print(f.shape)
 print(f)

Out: (1, 2048)
 [[0.12340261 0.0833823 0.7935947 ... 0.50869745 0.34015656]]

As you can check, the avg_pool layer contains 2048 units, and the output of the function is
exactly a 2,048D array. You can now concatenate this array to any other feature array of
your choice.

Working with temporal sequences
The last example in this chapter is about dealing with temporal sequences; more
specifically, we will see how to deal with text, which is a variable-length sequence of
words.

Some data-science algorithms deal with text using the bag-of-words approach; that is, they
don't care where the words are and how they're placed in the text, they just care about their
presence/absence (and maybe their frequency). Instead, a special class of deep networks is
specifically designed to operate on sequences, where the order is important.

Deep Learning Beyond the Basics Chapter 7

[376]

Some examples are as follows:

Predict a future stock price, given its historical data: In this case, the input is a
sequence of numbers, and the output is a number

Predict whether the market will go up or down: In this case, given a sequence of
numbers, we want to predict a class (up or down)

Translate an English text to French: In this case, the input sequence is converted
into another sequence

Chatbot: In this case, the input and the output are both sequences (in the same
language)

For this example, let's do something easy. We will try to detect the sentiment of a movie
review. In this specific example, the input data is a sequence of words (and the order
counts!), and the output is a binary label (which is the sentiment positive or negative).

Let's start importing the dataset. Fortunately, Keras already includes this dataset, and it's
already pre-indexed; that is, each review is not composed of words but of indexes of a
dictionary. Also, it's possible to select just the top words, and, with this code, we select a
dictionary containing the top 25000 words:

In: from keras.datasets import imdb
 ((data_train, y_train),
 (data_test, y_test)) = imdb.load_data(num_words=25000)

Let's see what's inside the data and the shape:

In: print(data_train.shape)
 print(data_train[0])
 print(len(data_train[0]))

Out: (25000,)
 [1, 14, 22, 16, 43, 530, 19, 178, 32]
 218

Firstly, there are 25000 reviews; that is, observations. Secondly, each review is composed of
a sequence of numbers between 1 and 24,999; 1 indicates the start of the sequence, while the
last number signals a word that is not in the dictionary. Note that each review has a
different size; for example, the first one is 218 words in length.

Deep Learning Beyond the Basics Chapter 7

[377]

It's now time to trim or pad all the sequences to a specific size. With Keras, this is easily
done, and, for padding, the integer 0 is added:

In: from keras.preprocessing.sequence import pad_sequences
 X_train = pad_sequences(data_train, maxlen=100)
 X_test = pad_sequences(data_test, maxlen=100)

Our training matrix now has a rectangular shape. The first element after the
trimming/padding operation becomes the following:

In: print(X_train[0])
 print(X_train[0].shape)

Out: [1415, 19, 178, 32]
 (100,)

For this observation, just the last 100 words are maintained. Overall, now, all the
observations have 100 dimensions. Let's now create a temporal deep model to predict the
review sentiment.

The model proposed here has three layers:

An embedding layer. The original dictionary is set to 25,000 words, and the1.
number of units composing the embedding (that is, the layer's output) is 256.
An LSTM layer. LSTM stands for long short-term memory, and it's one of the2.
most powerful deep models for sequences. Thanks to its deep architecture, it's
able to extract information from close and distant words in the sequence (hence
the name). In this example, the number of cells is set to 256 (as the previous layer
output dimension), with a dropout of 0.4 for regularization.
A dense layer with a sigmoid activation. That's what we need for a binary3.
classifier.

Here's the code for doing so:

In: from keras.models import Sequential
 from keras.layers import LSTM, Dense
 from keras.layers.embeddings import Embedding
 from keras.optimizers import Adam
 model = Sequential()
 model.add(Embedding(25000, 256, input_length=100))
 model.add(LSTM(256, dropout=0.4, recurrent_dropout=0.4))
 model.add(Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy',
 optimizer=Adam(),
 metrics=['accuracy'])

Deep Learning Beyond the Basics Chapter 7

[378]

 model.fit(X_train, y_train,
 batch_size=64,
 epochs=10,
 validation_data=(X_test, y_test))

Out: Train on 25000 samples, validate on 25000 samples
 Epoch 1/10
 25000/25000 [==============================] - 139s 6ms/step -
 loss:0.4923 - acc:0.7632 - val_loss:0.4246 - val_acc:0.8144
 Epoch 2/10
 25000/25000 [==============================] - 139s 6ms/step -
 loss:0.3531 - acc:0.8525 - val_loss:0.4104 - val_acc: 0.8235
 Epoch 3/10
 25000/25000 [==============================] - 138s 6ms/step -
 loss:0.2564 - acc:0.9000 - val_loss:0.3964 - val_acc: 0.8404
 ...
 Epoch 10/10
 25000/25000 [==============================] - 138s 6ms/step -
 loss:0.0377 - acc:0.9878 - val_loss:0.8090 - val_acc:0.8230

And that's the accuracy on the 25K-review test dataset. That's an acceptable result since we
achieved more than 80% of correct classifications with such a simple model. If you feel like
improving it, you could try to make the architecture more sophisticated, but always keep in
mind that, by increasing the complexity of the network, there is an increase in the time
needed to train it and to predict the outcome, as well as the memory footprint.

Summary
In this chapter, we saw the essentials and some advanced models for deep networks. We
were introduced to how neural networks work and the difference between shallow
networks and deep learning. Then, we learnt ho to build a CNN deep network capable of
classifying images of traffic signs. We also predicted the class of an image using a pre-
trained network. Detecting the sentiment of a movie review using text found in reviews
was also a part of the learning.

Deep learning models are indeed very powerful, though at the cost of having many degrees
of freedom to handle and many coefficients to train, which requires having at hand large
amounts of data.

In the next chapter, we'll see how Spark helps when the amount of data becomes too large
to be handled and processed by a single computer.

8
Spark for Big Data

The amount of data stored in the world is increasing in a quasi-exponential fashion.
Nowadays, for a data scientist, having to process a few terabytes of data a day is not an
unusual request anymore and, to make things even more complex, this implies having to
deal with data that comes from many different heterogeneous systems. In addition, in spite
of the size of the data you have to deal with, the expectation of business is constantly to
produce a model within a short time, as you were simply operating on a toy dataset.

In conclusion of our journey around the essentials of data science, we cannot elude such a
key necessity in data science. Therefore, we are going to introduce you to a new way of
processing large amounts of data, scaling through multiple computers in order to acquire
data, processing it, and building effective machine learning algorithms. Dealing with large
amounts of data and producing an effective machine learning model won't be an after our
essential introduction.

In this chapter, you will:

Understand distributed frameworks, explaining Hadoop, MapReduce, and Spark
technologies
Start with PySpark, the Python API interface for Spark
Experiment with Resilient Distributed Datasets, a new way to operate on large
data
Define and share variables in a distributed system in Spark
Process data using DataFrames in Spark
Apply machine learning algorithms in Spark

At the end of this chapter, given an appropriate cluster of machines, you will be capable of
facing any data science problem, regardless of the scale of the data at hand.

Spark for Big Data Chapter 8

[380]

From a standalone machine to a bunch of
nodes
Handling big data is not just a matter of size; it's actually a multifaceted phenomenon. In
fact, according to the 3V model (volume, velocity and variety), systems operating on big
data can be classified using three (orthogonal) criteria:

The first criterion to consider is the velocity that the system achieves to process
the data. Although a few years ago, speed was used to indicate how quickly a
system was able to process a batch, nowadays, velocity indicates whether a
system can provide real-time outputs on streaming data.
The second criterion is volume; that is, how much information is available to be
processed. It can be expressed in the number of rows or features, or just a bare
count of the bytes. In streaming data, the volume indicates the throughput of
data arriving in the system.
The last criterion is variety; that is, the types of data source. A few years ago, the
variety was limited by structured datasets, but, nowadays, data can be structured
(tables, images, and so on), semi-structured (JSON, XML, and so on), and
unstructured (web pages, social data, and so on). Usually, big-data systems try to
process as many relevant sources as possible and mix all kinds of sources.

Beyond these criteria, many other Vs have appeared in the last few years, which are trying
to explain other features of big data. Some of these are as follows:

Veracity: Providing an indication of abnormality, bias, and noise contained in the
data; ultimately, indicating its accuracy
Volatility: Indicating how long the data can be used to extract meaningful
information
Validity: The correctness of the data
Value: Indicating the return on the investment from the data

In recent years, all of the Vs have increased dramatically. Now, many companies have
found that the data they retain has a huge value that can be monetized, and they want to
extract information out of it. The technical challenge has moved to have enough storage
and processing power in order to be able to extract meaningful insights quickly, at scale,
and using different input data streams.

Spark for Big Data Chapter 8

[381]

Current computers, even the newest and most expensive ones, have a limited amount of
disk, memory, and CPU. It seems to be very hard to process terabytes (or petabytes) of
information per day, and produce a model in a timely fashion. Moreover, a standalone
server containing both data and processing software needs to be replicated; otherwise, it
could become the single point of failure of the system.

The world of big data has therefore moved to clusters: they're composed of a variable
number of not-very-expensive nodes and sit on a high-speed internet connection. Usually,
some clusters are dedicated to storing data (a big hard disk, little CPU, and a low amount of
memory), and others are devoted to processing the data (a powerful CPU, a medium-to-
large amount of memory, and a small hard disk). Moreover, if a cluster is properly set, it
can ensure reliability (having no single point of failure) and high availability.

Making sense of why we need a distributed
framework
The easiest way to build a cluster is to use some nodes as storage nodes and others as
processing ones. This configuration seems very easy to use as we don't need a complex
framework to handle this situation. In fact, many small clusters are built exactly in this way:
a couple of servers handle the data (plus their replica) and another bunch process the data.
Although this may appear as a great solution, it's not often used for many reasons:

It only works for embarrassingly parallel algorithms. If an algorithm requires a
common area of memory shared among the processing servers, this approach
cannot be used.
If one or many storage nodes die, the data is not guaranteed to be consistent.
(Think about a situation where a node and its replica die at the same time, or
where a node dies just after a write operation that has not yet been replicated.)
If a processing node dies, we are not able to keep track of the process that it was
executing, making it hard to resume the processing on another node.
If the network experiences a failure, it's very hard to predict the situation after it
goes back to normality.

Spark for Big Data Chapter 8

[382]

A crash event (or even more than one) is quite likely, which is a fact requiring that such an
occurrence must be thought of in advance and handled properly to ensure the continuity of
operations on the data. Furthermore, when using cheap hardware or a bigger cluster, it
looks almost certain that at least one node will fail. So far, the vast majority of cluster
frameworks use the approach named Divide et Impera (split and conquer):

There are specialized modules for the data nodes and some other specialized
modules for data processing nodes (also named workers).
Data is replicated across the data nodes, and one node is the master, ensuring
that both the write and read operations succeed.
The processing steps are split across the worker nodes. They don't share any state
(unless stored in the data nodes), and their master ensures that all the tasks are
performed positively and in the right order.

The Hadoop ecosystem
Apache Hadoop is a very popular software framework for distributed storage and
distributed processing on a cluster. Its strengths are in its price (it's free), flexibility (it's
open source, and although it is written in Java, it can be used by other programming
languages), scalability (it can handle clusters composed of thousands of nodes), and
robustness (it was inspired by a published paper from Google and has been around since
2011), making it the de facto standard to handle and process big data. Moreover, lots of
other projects from the Apache foundation have extended its functionalities.

Hadoop architecture
Logically, Hadoop is composed of two pieces: distributed storage (HDFS) and distributed
processing (YARN and MapReduce). Although the code is very complex, the overall
architecture is fairly easy to understand. A client can access both storage and processing
through two dedicated modules; they are then in charge of distributing the job across all
the working nodes, as shown in the following diagram:

Spark for Big Data Chapter 8

[383]

All the Hadoop modules run as services (or instances); that is, a physical or virtual node
can run many of them. Typically, for small clusters, all the nodes run both distributed
computing and processing services; for big clusters, it may be better to separate the two
functionalities and specialize the nodes.

We will see the functionalities offered by the two layers in detail.

Spark for Big Data Chapter 8

[384]

Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) is a fault-tolerant distributed filesystem,
which is designed to run on low-cost hardware, and able to handle very large datasets (in
the order of hundreds of petabytes to exabytes). Although the HDFS requires a fast
network connection to transfer data across nodes, the latency can't be as low as in classic
filesystems (it may be in the order of seconds); therefore, the HDFS has been designed for
batch processing and high throughput. Each HDFS node contains a part of the filesystem's
data; the same data is also replicated in other instances, and this ensures a high throughput
access and fault-tolerance.

The HDFS's architecture is master-slave. If the master (called NameNode) fails, there is a
secondary/backup node ready to take control. All the other instances are slaves
(DataNodes); if one of them fails, it's not a problem as the HDFS has been designed with
this in mind, so no data is lost (it is redundantly replicated) and operations are quickly
redistributed to surviving nodes. DataNodes contain blocks of data: each file saved in the
HDFS is broken up into chunks (or blocks), typically 64 MB each, and then distributed and
replicated in a set of DataNodes. The NameNode stores only the metadata of the files in the
distributed file system; it doesn't store any actual data, rather it just stores the right
indications on how to access the files in the multiple DataNodes that it manages.

A client asking to read a file must first contact the NameNode, which will give back a table
containing an ordered list of blocks and their locations (as in DataNodes). At this point, the
client should contact the DataNodes separately, downloading all the blocks and
reconstructing the file (by appending the blocks together).

To write a file, a client should instead first contact the NameNode, which will first decide
how to handle the request, then update its records and reply to the client with an ordered
list of DataNodes of where to write each block of the file. The client will now contact and
upload the blocks to the DataNodes, as reported in the NameNode reply. Namespace
queries (for example, listing a directory content, creating a folder, and so on) are instead
completely handled by the NameNode by accessing its metadata information.

Moreover, the NameNode is also responsible for properly handling a DataNode failure (it's
marked as dead if no heartbeat packets are received) and its data re-replication to other
nodes.

Although these operations are long and hard to implement with robustness, they're
completely transparent to the user, thanks to many libraries and the HDFS shell. The way
you operate on the HDFS is pretty similar to what you're currently doing on your
filesystem, and this is a great benefit of Hadoop: hiding the complexity and letting the user
use it simply.

Spark for Big Data Chapter 8

[385]

MapReduce
MapReduce is the programming model that was implemented in the earliest versions of
Hadoop. It's a very simple model and is designed to process large datasets on a distributed
cluster in parallel batches. The core of MapReduce is composed of two programmable
functions—a mapper that performs filtering, and a reducer that performs aggregation—and
a shuffler that moves the objects from the mappers to the right reducers. Google published
a paper in 2004 on MapReduce (https:/ ​/ ​ai.​google/ ​research/ ​pubs/ ​pub62), a few months
after having been granted a patent on it.

Specifically, here are the steps of MapReduce for the Hadoop implementation:

Data chunker: Data is read from the filesystem and split into chunks. A chunk is
a piece of the input dataset, which is typically either a fixed-size block (for
example, an HDFS block read from a DataNode) or another more appropriate
split. For instance, if we want to count the number of characters, words, and lines
in a text file, a nice split can be a line of text.
Mapper: From each chunk, a series of key-value pairs is generated. Each mapper
instance applies the same mapping function onto different chunks of data.
Continuing the preceding example, for each line, three key-value pairs are
generated in this step—one containing the number of characters in the line (the
key can simply be a chars string), one containing the number of words (in this
case, the key must be different, so let's say words), and one containing the number
of lines, which is always one (in this case, the key can be lines).
Shuffler: From the key and number of available reducers, the shuffler distributes
all the key-value pairs with the same key to the same reducers. Typically, this
operation is calculating the hash of the key, dividing it by the number of reducers
and using the remainder in order to point out a specific reducer. This should
ensure a fair amount of keys for each reducer. This function is not user-
programmable, but is provided by the MapReduce framework.
Reducer: Each reducer receives all the key-value pairs for a specific set of keys
and can produce zero or more aggregate results. In the example, all the values
connected to the words key arrive at a reducer; its job is just summing up all the
values. The same happens for the other keys, which results in three final values:
the number of characters, the number of words, and the number of lines. Note
that these results may be on different reducers.
Output writer: The outputs of the reducers are written on the filesystem (or
HDFS). In the default Hadoop configuration, each reducer writes a file (part-
r-00000 is the output of the first reducer, part-r-00001 is the output of the
second, and so on). To have a full list of results on a file, you should concatenate
all of them.

https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62
https://ai.google/research/pubs/pub62

Spark for Big Data Chapter 8

[386]

Visually, this operation can be simply communicated and understood as follows:

There's also an optional step that can be run by each mapper instance after the mapping
step—the combiner. It basically anticipates, if possible, the reducing step on the mapper
and is often used to decrease the amount of information to shuffle, which speeds up the
process. In the preceding example, if a mapper processes more than one line of the input
file, during the (optional) combiner step, it can pre-aggregate the results, and output a
smaller number of key-value pairs. For example, if the mapper processes 100 lines of text in
each chunk, why output 300 key-value pairs (100 for the number of chars, 100 for words,
and 100 for lines) when the information can be aggregated in three? That's actually the goal
of the combiner.

In the MapReduce implementation provided by Hadoop, the shuffle operation is
distributed, which optimizes the communication cost, and it's possible to run more than
one mapper and reducer per node, which makes full use of the hardware resources
available on the nodes. Also, the Hadoop infrastructure provides redundancy and fault-
tolerance, as the same task can be assigned to multiple workers.

Spark for Big Data Chapter 8

[387]

Introducing Apache Spark
Apache Spark is an evolution of Hadoop and has become very popular in the last few
years. In contrast to Hadoop, and its Java and batch-focused design, Spark is able to
produce iterative algorithms in a fast and easy way. Furthermore, it has a very rich suite of
APIs for multiple programming languages, and natively supports many different types of
data processing (machine learning, streaming, graph analysis, SQL, and so on).

Apache Spark is a cluster framework designed for the quick and general-purpose
processing of big data. One of the improvements in speed results from the fact that the
data, after every job, is kept in-memory and not stored on the filesystem (unless you want
to do so) as would have happened with Hadoop, MapReduce, and the HDFS. This thing
makes iterative jobs (such as the clustering K-means algorithm) faster and faster, as the
latency and bandwidth provided by the memory are more performant than the physical
disk. Clusters running Spark, therefore, need a high amount of RAM memory for each
node.

Although Spark has been developed in Scala (which runs on the JVM, like Java), it has APIs
for multiple programming languages, including Java, Scala, Python, and R. In this book, we
will focus on Python.

Spark can operate in two different ways:

Standalone mode: It runs on your local machine. In this case, the maximum
parallelization is the number of cores of the local machine, and the amount of
memory available is exactly the same as the local one.
Cluster mode: It runs on a cluster of multiple nodes, using a cluster manager
such as YARN. In this case, the maximum parallelization is the number of cores
across all the nodes composing the cluster, and the amount of memory is the sum
of the amount of memory of each node.

PySpark
In order to use the Spark functionalities (or PySpark, which contains the Python APIs of
Spark), we need to instantiate a special object named SparkContext. It tells Spark how to
access the cluster, and contains some application-specific parameters. In the Jupyter
notebook provided in the virtual machine, this variable is already available and is called sc
(it's the default option when an IPython Notebook is started); let's see what it contains in
the next section.

Spark for Big Data Chapter 8

[388]

Starting with PySpark
The data model used by Spark is named Resilient Distributed Dataset (RDD), which is a
distributed collection of elements that can be processed in parallel. An RDD can be created
from an existing collection (a Python list, for example) or from an external dataset, which is
stored as a file on the local machine, HDFS, or other sources.

Setting up your local Spark instance
Making a full installation of Apache Spark is not an easy task to do from scratch. This is
usually accomplished on a cluster of computers, often accessible on the cloud, and it is
delegated to experts of the technology (namely, data engineers). This could be a limitation,
because you may then not have access to an environment in which to test what you will be
learning in this chapter.

However, in order to test the contents of this chapter, you actually do not need to make too-
complex installations. By using Docker (https:/ ​/​www. ​docker. ​com/ ​), you can have access to
an installation of Spark, together with a Jupyter notebook and PySpark, on a Linux server
on your own computer (it does not matter if it is a Linux, macOS, or Windows-based
machine).

Actually, that is mainly possible because of Docker. Docker allows operating-system-level
virtualization, also known as containerization. Containerization means that a computer is
allowed to run multiple, isolated filesystem instances, where each instance is simply
separated from the other (though sharing the same hardware resources) as if they were
single computers themselves. Basically, any piece of software running in Docker is
wrapped in a complete, stable, and previously defined filesystem that is totally
independent of the filesystem you are running Docker from. Using a Docker container
implies that your code will run as perfectly as expected (and as presented in this chapter).
Consistency in the execution of commands is the main reason why Docker is the best way
to put your solutions into production: you just need to move the container you used into a
server and make an API to access your solution (a topic we previously discussed in Chapter
5, Visualization, Insights, and Results, where we presented the Bottle package).

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/

Spark for Big Data Chapter 8

[389]

Here are the steps you need to take:

First, you start by installing the Docker software suitable for your system. You1.
can find all you need here, depending on the operating system you operate on:

Windows https:/ ​/ ​docs.​docker. ​com/ ​docker- ​for- ​windows/ ​
Linux https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​getstarted/ ​

macOS https:/ ​/​docs. ​docker. ​com/ ​docker- ​for- ​mac/ ​

The installation is straightforward, yet you can find any further information you
may need on the very same pages you are downloading the software from.

After having completed the installation, we can use the Docker image that can be2.
found at https:/ ​/​github. ​com/ ​jupyter/ ​docker- ​stacks/ ​tree/ ​master/ ​pyspark-
notebook. It contains a complete installation of Spark, accessible by a Jupyter
notebook, plus a Miniconda installation with the most recent versions of Python
2 and 3. You can find out more about the image's contents here: http:/ ​/ ​jupyter-
docker-​stacks. ​readthedocs. ​io/​en/ ​latest/ ​using/ ​selecting. ​html#jupyter-
pyspark- ​notebook.
At this point, just open the Docker interface; there, a shell will appear with the3.
ASCII-art of a whale and an IP address. Just take note of the IP address (in our
case it was 192.168.99.100). Now, run the following command in the shell:

$> docker run -d -p 8888:8888 --name spark jupyter/pyspark-notebook
start-notebook.sh –NotebookApp.token=''

If you prefer security over ease of use, just type this:4.

$> docker run -d -p 8888:8888 --name spark jupyter/pyspark-notebook
start-notebook.sh –NotebookApp.token='mypassword'

Replace the mypassword placeholder with your chosen password. Please note
that the Jupyter notebook will then ask for that password when starting it.

After running the preceding command, Docker will then start downloading the5.
pyspark-notebook image (it could take a while); assign it the name spark,
copy the 8888 port on the Docker image to the 8888 port on your machine, then
execute the start-notebook.sh script, and set the notebook password to
empty (that will allow you to immediately access Jupyter just by using the
previously noted IP address and the 8888 port).

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
https://github.com/jupyter/docker-stacks/tree/master/pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook
http://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-pyspark-notebook

Spark for Big Data Chapter 8

[390]

At this very point, the only other thing you need to do is just type this into your
browser:

http://192.168.99.100:8888/

That is, put into your browser the IP address Docker gave you when you started,
a colon, and then 8888, which is the port number. Jupyter should immediately
appear.

As a simple test, you could immediately open a new notebook and test this:6.

In: import pyspark
 sc = pyspark.SparkContext('local[*]')

 # do something to prove it works
 rdd = sc.parallelize(range(1000))
 rdd.takeSample(False, 5)

It is also important to notice that you have commands to stop the Docker7.
machine and commands that will even destroy it. This shell command will stop
it:

$> docker stop spark

In order to destroy the container after it has been stopped, use the following
command (you will lose all your work in the container, by the way):

$> docker rm spark

If your container has not been destroyed, in order to have the container run again
after it has been stopped, just use this shell command:

$> docker start spark

Additionally, you need to know that, on the Docker machine, you operate on the
/home/jovyan directory, and you can get a list of its contents directly from the
Docker shell:

$> docker exec -t -i spark ls /home/jovyan

You can also execute any other Linux bash command.

Spark for Big Data Chapter 8

[391]

Notably, you can also copy data to and from the container (since, otherwise, your work will
be just kept inside the machine's operating system). Let's pretend that you have to copy a
file (file.txt) from a directory on your Windows desktop to the Docker machine:

$> docker cp c:/Users/Luca/Desktop/spark_stuff/file.txt
spark:/home/jovyan/file.txt

Also, the opposite is possible:

$> docker cp spark:/home/jovyan/test.ipynb
c:/Users/Luca/Desktop/spark_stuff/test.ipynb

That's really all there is; in just a few steps, you should have a locally operating Spark
environment to run all your experiments on (clearly, it will use only one node and it will be
limited to the power of a single CPU).

Experimenting with Resilient Distributed Datasets
Now let's create a Resilient Distributed Dataset containing integers from 0 to 9. To do so,
we can use the parallelize method provided by the SparkContext object:

In: numbers = range(10)
 numbers_rdd = sc.parallelize(numbers)
 numbers_rdd

Out: PythonRDD[2672] at RDD at PythonRDD.scala:49

As you can see, you can't simply print the RDD content, as it is split into multiple partitions
(and distributed in the cluster). The default number of partitions is twice the number of
CPUs (so, it's four in the provided VM), but it can be set manually using the second
argument of the parallelize method.

To print out the data contained in the RDD, you should call the collect method. Note that
this operation, while running on a cluster, collects all the data on the node; therefore, the
node needs to have enough memory to contain it all:

In: numbers_rdd.collect()

Out: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Spark for Big Data Chapter 8

[392]

To obtain just a partial peek, use the take method, indicating how many elements you'd
want to see. Note that, as it's a distributed dataset, it's not guaranteed that elements are in
the same order as when we inserted it:

In: numbers_rdd.take(3)

Out: [0, 1, 2]

To read a text file, we can use the textFile method provided by the SparkContext.
It allows for the reading of both the HDFS files and local files, and it splits the text on the
newline characters; therefore, the first element of the RDD is the first line of the text file
(using the first method). Note that, if you're using a local path, all the nodes composing the
cluster should access the same file through the same path. To do that, we first download the
complete plays by William Shakespeare:

In: import urllib.request
 url = "http://www.gutenberg.org/files/100/100-0.txt"
 urllib.request.urlretrieve(url, "shakespeare_all.txt")

In: sc.textFile("file:////home//jovyan//shakespeare_all.txt").take(6)

Out: ['',
'Project Gutenberg’s The Complete Works of William Shakespeare, by William',
'Shakespeare', '',
'This eBook is for the use of anyone anywhere in the United States and',
'most other parts of the world at no cost and with almost no restrictions']

To save the content of an RDD onto the disk, you can use the saveAsTextFile method
provided by the RDD:

In: numbers_rdd.saveAsTextFile("file:////home//jovyan//numbers_1_10.txt")

An RDD supports just two types of operation:

Transformations, which transform the dataset into a different one. The inputs
and outputs of transformations are both RDDs; therefore, it's possible to chain
together multiple transformations, approaching a functional style of
programming. Moreover, transformations are lazy; that is, they don't compute
their results straight away.
Actions return values from RDDs, such as the sum of the elements and the count,
or just collect all the elements. Actions are the triggers to execute the chain of
(lazy) transformations as an output is required.

Spark for Big Data Chapter 8

[393]

Typical Spark programs are a chain of transformations with an action at the end. By default,
all the transformations on the RDD are executed each time you run an action (that is, the
intermediate state after each transformer is not saved). However, you can override this
behavior using the persist method (on the RDD) whenever you want to cache the value
of the transformed elements. The persist method allows both memory and disk
persistence.

In the following example, we will square all the values contained in an RDD and then sum
them up; this algorithm can be executed through a mapper (square elements), followed by a
reducer (summing up the array). According to Spark, the map method is a transformer, as it
just transforms the data element by element; reduce is an action, as it creates a value out of
all the elements together.

Let's approach this problem step by step to see the multiple ways in which we can operate.
First, we start with the function that we will be used to transform (map) all the data: we
first define a function that returns the square of the input argument, then we pass this
function to the map method in the RDD, and, finally, we collect the elements in the RDD:

In: def sq(x):
 return x**2
 numbers_rdd.map(sq).collect()

Out: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Although the output is correct, the sq function takes a lot of space; we can rewrite the
transformation more concisely, thanks to Python's lambda expression, in this way:

In: numbers_rdd.map(lambda x: x**2).collect()

Out: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Do you remember why we needed to call collect to print the values in the transformed
RDD? This is because the map method will not spring to action, but will be just lazily
evaluated. The reduce method, on the other hand, is an action; therefore, adding the
reduce step to the previous RDD should output a value. As for map, reduce takes as an
argument a function that should have two arguments (a left value and a right value), and
should return a value. In this case, it can be a verbose function defined with def or a
lambda function:

In: numbers_rdd.map(lambda x: x**2).reduce(lambda a,b: a+b)

Out: 285

Spark for Big Data Chapter 8

[394]

To make it even simpler, we can use the sum action instead of the reducer:

In: numbers_rdd.map(lambda x: x**2).sum()

Out: 285

Let's now advance one step and introduce the key-value pairs. Although RDDs can contain
any kind of object (we've seen integers and lines of text so far), a few operations can be
made when the elements are tuples composed by two elements: key and value.

To give an example, let's group the numbers in the RDD into odds and evens, and then
compute the sum of the two groups separately. As for the MapReduce model, it would be
nice to map each number with a key (odd or even) and then, for each key, reduce using a
sum operation.

We can start with the map operation: let's first create a function that tags the numbers,
outputting even if the argument number is even, and odd otherwise. Then, we will create a
key-value mapping that creates a key-value pair for each number, where the key is the tag
and the value is the number itself:

In: def tag(x):
 return "even" if x%2==0 else "odd"

 numbers_rdd.map(lambda x: (tag(x), x)).collect()

Out: [('even', 0),
 ('odd', 1),
 ('even', 2),
 ('odd', 3),
 ('even', 4),
 ('odd', 5),
 ('even', 6),
 ('odd', 7),
 ('even', 8),
 ('odd', 9)]

To reduce each key separately, we can now use the reduceByKey method (which is not a
Spark action). As an argument, we should pass the function that we need to apply to all the
values of each key; in this case, we will sum up all of them. Finally, we should call the
collect method to print the results:

In: numbers_rdd.map(lambda x: (tag(x), x)) \
 .reduceByKey(lambda a,b: a+b).collect()

Out: [('even', 20), ('odd', 25)]

Spark for Big Data Chapter 8

[395]

Now, let's list some of the most important methods available in Spark; it's not an exhaustive
guide, but just includes the most used ones.

We start with transformations; they can be applied to an RDD, and they produce an RDD:

map(function): This returns an RDD formed by passing each element
through the function.
flatMap(function): This returns an RDD formed by flattening the output of
the function for each element of the input RDD. It's used when each value at
the input can be mapped to 0 or more output elements.
For example, to count the number of times that each word appears in a text,
we should map each word to a key-value pair (the word would be the key, and 1
the value), producing more than one key-value element for each input line of
text in this way.
filter(function): This returns a dataset composed of all the values where
the function returns true.
sample(withReplacement, fraction, seed): This bootstraps the RDD,
allowing you to create a sampled RDD (with or without replacement) whose
length is a fraction of the input one.
distinct(): This returns an RDD containing the distinct elements of the input
RDD.
coalesce(numPartitions): This decreases the number of partitions in the
RDD.
repartition(numPartitions): This changes the number of partitions in the
RDD. This method always shuffles all the data over the network.
groupByKey(): This creates an RDD in which, for each key, the value is a
sequence of values that have that key in the input dataset.
reduceByKey(function): This aggregates the input RDD by key, and then
applies the reduce function to the values of each group.
sortByKey(ascending): This sorts the elements in the RDD by key in
ascending or descending order.
union(otherRDD): This merges two RDDs together.
intersection(otherRDD): This returns an RDD composed by just the
values appearing both in the input and argument RDD.
join(otherRDD): This returns a dataset where the key-value inputs are
joined (on the key) to the argument RDD.

Similar to the join function in SQL, these methods are available as well: cartesian,
leftOuterJoin, rightOuterJoin, and fullOuterJoin.

Spark for Big Data Chapter 8

[396]

Now, let's overview what the most popular actions available in PySpark are. Note that
actions trigger the processing of the RDD through all the transformers in the chain:

reduce(function): This aggregates the elements of the RDD and produces an
output value
count(): This returns the count of the elements in the RDD
countByKey(): This returns a Python dictionary, where each key is
associated with the number of elements in the RDD with that key
collect(): This returns all the elements in the transformed RDD locally
first(): This returns the first value of the RDD
take(N): This returns the first N values in the RDD
takeSample(withReplacement, N, seed): This returns a bootstrap of N
elements in the RDD with or without replacement, eventually using the random
seed provided as an argument
takeOrdered(N, ordering): This returns the top N elements in the RDD
after having sorted it by value (ascending or descending)
saveAsTextFile(path): This saves the RDD as a set of text files in the
specified directory

There are also a few methods that are neither transformers nor actions:

cache(): This caches the elements of the RDD; therefore, future
computations based on the same RDD can reuse this as a starting point
persist(storage): This is the same as cache, but you can specify where to
store the elements of RDD (memory, disk, or both)
unpersist(): This undoes the persist or cache operation

Let's now try to work through an example using RDDs in order to compute some text
statistics and extract the most popular word from a large text (Shakespeare's plays). With
Spark, the algorithm for computing text statistics should be as follows:

The input file is read and parallelized on an RDD. This operation can be done1.
with the textFile method provided by the SparkContext.
For each line of the input file, three key-value pairs are returned: one containing2.
the number of chars, one the number of words, and the last the number of lines.
In Spark, this is a flatMap operation, as three outputs are generated for each
input line.

Spark for Big Data Chapter 8

[397]

For each key, we sum up all the values. This can be done with the reduceByKey3.
method.
Finally, the results are collected. In this case, we can use the collectAsMap4.
method, which collects the key-value pairs in the RDD and returns a Python
dictionary. Note that this is an action; therefore, the RDD chain is executed and a
result is returned:

In: def emit_feats(line):
 return [("chars", len(line)), \
 ("words", len(line.split())), \
 ("lines", 1)]

print((sc.textFile("file:////home//jovyan//shakespeare_all.txt")
 .flatMap(emit_feats)
 .reduceByKey(lambda a,b: a+b)
 .collectAsMap()))

Out: {'chars': 5535014, 'words': 959893, 'lines': 149689}

To determine the most popular word in a text, follow these steps:

The input file is read and parallelized on an RDD with the textFile method.1.
For each line, all the words are extracted. For this operation, we can use the2.
flatMap method and a regular expression.
Each word in the text (that is, each element of the RDD) is now mapped to a key-3.
value pair: the key is the lower-case word and the value is always 1. This is a
map operation.
With a reduceByKey call, we count how many times each word (key) appears in4.
the text (RDD). The outputs are key-value pairs, where the key is a word and the
value is the number of times the word appears in the text.
We flip keys and values and create a new RDD. This is a map operation.5.
We sort the RDD into descending order and extract (take) the first element. This6.
is an action and can be done in one operation with the takeOrdered method.

We can actually further improve the solution, collapsing the second and third steps
together (flatMap-ing a key-value pair for each word, where the key is the lower-case
word and value is the number of occurrences), and the fifth and sixth steps together (taking
the first element and ordering the elements in the RDD by their value; that is, the second
element of the pair):

In: import re
 WORD_RE = re.compile(r"[\w']+")
 print((sc.textFile("file:////home//jovyan//shakespeare_all.txt")

Spark for Big Data Chapter 8

[398]

 .flatMap(lambda line: [(word.lower(), 1) for word in
 WORD_RE.findall(line)])
 .reduceByKey(lambda a,b: a+b)
 .takeOrdered(1, key = lambda x: -x[1])))

Out: [('the', 29998)]

Sharing variables across cluster nodes
When we're working on a distributed environment, sometimes it is required to share
information across nodes so that all the nodes can operate using consistent variables. Spark
handles this case by providing two kinds of variables: read-only and write-only variables.
By no longer ensuring that a shared variable is both readable and writable, it also drops the
consistency requirement, letting the hard work of managing this situation fall on the
developer's shoulders. Usually, a solution is quickly reached, as Spark is really flexible and
adaptive.

Read-only broadcast variables
Broadcast variables are variables shared by the driver node; that is, the node running the
IPython notebook in our configuration, with all the nodes in the cluster. It's a read-only
variable, as the variable is broadcast by one node and never read back if another node
changes it.

Let's now see how it works in a simple example: we want to one-hot encode a dataset
containing just gender information as a string. The dummy dataset contains just a feature
that can be male M, female F, or unknown U (if the information is missing). Specifically, we
want all the nodes to use the defined one-hot encoding, as listed in the following
dictionary:

In: one_hot_encoding = {"M": (1, 0, 0), "F": (0, 1, 0),
 "U": (0, 0, 1)}

In our solution, we first broadcast the Python dictionary (calling the broadcast method
provided by the SparkContext, sc) inside the mapped function; using its value property,
we can now access it. After doing this, we have a generic map function that can work on any
one-hot map dictionary:

In: bcast_map = sc.broadcast(one_hot_encoding)
 def bcast_map_ohe(x, shared_ohe):
 return shared_ohe[x]

Spark for Big Data Chapter 8

[399]

 (sc.parallelize(["M", "F", "U", "F", "M", "U"])
 .map(lambda x: bcast_map_ohe(x, bcast_map.value))
 .collect())

Broadcast variables are saved in-memory in all the nodes composing a cluster; therefore,
they never share a large amount of data, which can fill them up and make the following
processing impossible.

To remove a broadcast variable, use the unpersist method on the broadcast variable. This
operation will free up the memory of that variable on all the nodes:

In: bcast_map.unpersist()

Write-only accumulator variables
The other variables that can be shared in a Spark cluster are accumulators. Accumulators
are write-only variables that can be added together and are typically used to implement
sums or counters. Only the driver node, which is the one that is running the IPython
Notebook, can read its value; all the other nodes can't read this. Let's see how it works
using an example: we want to process a text file and understand how many lines are empty
while processing it. Of course, we can do this by scanning the dataset twice (using two
Spark jobs), with the first one counting the empty lines and the second one doing the real
processing, but this solution is not very effective. Following this, you will take all the steps
necessary for processing a text file and counting its lines.

The steps needed are as follows:

First, we download a text file to be processed from the Web, The Adventures of1.
Sherlock Holmes by Sir Arthur Conan Doyle, as offered by Project Gutenberg:

In: import urllib.request
 url = "http://gutenberg.pglaf.org/1/6/6/1661/1661.txt"
 urllib.request.urlretrieve(url, "sherlock.tx")

We then instantiate an accumulator variable (with the initial value of 0) and we2.
add 1 for each empty line that we find while processing each line of the input file
(with a map). At the same time, we can do some processing on each line; in the
following piece of code, for example, we simply return 1 for each line, counting
all the lines in the file in this way.

Spark for Big Data Chapter 8

[400]

At the end of the processing, we will have two pieces of information: the first is3.
the number of lines, from the result of the count() action on the transformed
RDD, and the second is the number of empty lines contained in the value
property of the accumulator. Remember, both of these are available after having
scanned the dataset once:

In: accum = sc.accumulator(0)
 def split_line(line):
 if len(line) == 0:
 accum.add(1)
 return 1

 filename = 'file:////home//jovyan//sherlock.txt'
 tot_lines = (
 sc.textFile(filename)
 .map(split_line)
 .count())

 empty_lines = accum.value
 print("In the file there are %d lines" % tot_lines)
 print("And %d lines are empty" % empty_lines)

Out: In the file there are 13053 lines
 And 2666 lines are empty

Broadcast and accumulator variables
together—an example
Although broadcast and accumulator variables are simple and very limited variables (one
is read-only, and the other one is write only), they can be actively used to create very
complex operations. For example, let's try to apply different machine learning algorithms
on the iris dataset in a distributed environment. We will build a Spark job in the
following way:

The dataset is read and broadcast to all the nodes (as it's small enough to fit in-
memory).
Each node will use a different classifier on the dataset and return the classifier
name and its accuracy score on the full dataset. Note that, to keep things easy in
this simple example, we won't do any preprocessing, train/test splitting, or
hyperparameter optimization.
If the classifiers raise an exception, the string representation of the error, along
with the classifier name, should be stored in an accumulator.

Spark for Big Data Chapter 8

[401]

The final output should contain a list of the classifiers that performed the
classification task without errors and their accuracy score.

As the first step, we load the iris dataset and broadcast it to all the nodes in the cluster:

In: from sklearn.datasets import load_iris
 bcast_dataset = sc.broadcast(load_iris())

Now, let's continue coding by creating a custom accumulator. It will contain a list of tuples
to store the classifier name and the exception it experienced as a string. The custom
accumulator is derived using the AccumulatorParam class and should contain at least two
methods: zero (which is called when it's initialized) and addInPlace (which is called
when the add method is called on the accumulator).

The easiest way to do this is shown in the following code, followed by its initialization as an
empty list. Bear in mind that the additive operation is a bit tricky: we need to combine two
elements—a tuple and a list—but we don't know which element is the list and which is the
tuple; therefore, we first ensure that both elements are lists, and then we can proceed to
concatenate them in an easy way (by using the plus operator):

In: from pyspark import AccumulatorParam
 class ErrorAccumulator(AccumulatorParam):
 def zero(self, initialList):
 return initialList
 def addInPlace(self, v1, v2):
 if not isinstance(v1, list):
 v1 = [v1]
 if not isinstance(v2, list):
 v2 = [v2]
 return v1 + v2

 errAccum = sc.accumulator([], ErrorAccumulator())

Now, let's define the mapping function: each node should train, test, and evaluate a
classifier on the broadcast iris dataset. As an argument, the function will receive the
classifier object and should return a tuple containing the classifier name and its accuracy
score contained in a list.

If an exception is raised by doing so, the classifier name and the exception, quoted as a
string, are added to the accumulator, and an empty list is returned:

In: def apply_classifier(clf, dataset):
 clf_name = clf.__class__.name
 X = dataset.value.data
 y = dataset.value.target
 try:

Spark for Big Data Chapter 8

[402]

 from sklearn.metrics import accuracy_score
 clf.fit(X, y)
 y_pred = clf.predict(X)
 acc = accuracy_score(y, y_pred)
 return [(clf_name, acc)]
 except Exception as e:
 errAccum.add((clf_name, str(e)))
 return []

Finally, we have arrived at the core of the job. We're now instantiating a few objects from
scikit-learn (some of them are not classifiers, in order to test the accumulator). We will
transform them into an RDD, and apply the map function that we created in the previous
cell. As the returned value is a list, we can use flatMap to collect only the outputs of the
mappers that didn't get caught in an exception:

In: from sklearn.linear_model import SGDClassifier
 from sklearn.dummy import DummyClassifier
 from sklearn.decomposition import PCA
 from sklearn.manifold import MDS

 classifiers = [DummyClassifier('most_frequent'),
 SGDClassifier(),
 PCA(),
 MDS()]

 (sc.parallelize(classifiers)
 .flatMap(lambda x: apply_classifier(x, bcast_dataset))
 .collect())

Out: [('DummyClassifier', 0.33333333333333331),
 ('SGDClassifier', 0.85333333333333339)]

As expected, only the real classifiers are contained in the output. Let's see which classifiers
generated an error. Unsurprisingly, here we spot the two missing ones from the preceding
output:

In: print("The errors are:", errAccum.value)

Out: The errors are: [('PCA', "'PCA' object has no attribute 'predict'"),
 ('MDS', "'MDS' object has no attribute 'predict'")]

As a final step, let's clean up the broadcast dataset:

In: bcast_dataset.unpersist()

Spark for Big Data Chapter 8

[403]

Remember that, in this example, we've used a small dataset that could be broadcast. In real-
world big-data problems, you'll need to load the dataset from the HDFS and broadcast the
HDFS path.

Data preprocessing in Spark
So far, we've seen how to load text data from the local filesystem and the HDFS. Text files
can contain either unstructured data (like a text document) or structured data (like a CSV
file). As for semi-structured data, just like files containing JSON objects, Spark has special
routines that are able to transform a file into a DataFrame, similar to the DataFrame in R
and the Python package pandas. DataFrames are very similar to RDBMS tables, where a
schema is set.

CSV files and Spark DataFrames
We start by showing you how to read CSV files and transform them into Spark
DataFrames. Just follow the steps in the following example:

In order to import CSV-compliant files, we need to first create a SQL context, by1.
creating an SQLContext object from the local SparkContext:

In: from pyspark.sql import SQLContext
 sqlContext = SQLContext(sc)

For our example, we created a simple CSV file, which is a table with six rows and2.
three columns, where some attributes are missing (such as the gender attribute
for the user with user_id=0):

In: data = """balance,gender,user_id
 10.0,,0
 1.0,M,1
 -0.5,F,2
 0.0,F,3
 5.0,,4
 3.0,M,5
 """
 with open("users.csv", "w") as output:
 output.write(data)

Spark for Big Data Chapter 8

[404]

Using the read.format method provided by sqlContext, we already have the3.
table well-formatted and with all the right column names in a variable. The
output variable type is a Spark DataFrame. To show the variable in a nice,
formatted table, use its show method:

In: df = sqlContext.read.format('com.databricks.spark.csv')\
 .options(header='true', inferschema='true').load('users.csv')
 df.show()

Out: +-------+------+-------+
 |balance|gender|user_id|
 +-------+------+-------+
 | 10.0| null| 0|
 | 1.0| M| 1|
 | -0.5| F| 2|
 | 0.0| F| 3|
 | 5.0| null| 4|
 | 3.0| M| 5|
 +-------+------+-------+

Additionally, we can investigate the schema of the DataFrame using the4.
printSchema method. We realize that, while reading the CSV file, each column
type is inferred by the data (in the preceding example, the user_id column
contains long integers, the gender column is composed of strings, and the
balance is a double floating point):

In: df.printSchema()

Out: root
 |-- balance: double (nullable = true)
 |-- gender: string (nullable = true)
 |-- user_id: long (nullable = true)

Exactly like a table in an RDBMS, we can slice and dice the data in the5.
DataFrame, making selections of columns, and filtering the data by attributes. In
this example, we want to print the balance, gender, and user_id of the users
whose gender is not missing, and who have a balance that is strictly greater than
0. For this, we can use the filter and select methods:

In: (df.filter(df['gender'] != 'null')
 .filter(df['balance'] > 0)
 .select(['balance', 'gender', 'user_id'])
 .show())

Out: +-------+------+-------+
 |balance|gender|user_id|

Spark for Big Data Chapter 8

[405]

 +-------+------+-------+
 | 1.0| M| 1|
 | 3.0| M| 5|
 +-------+------+-------+

We can also rewrite each piece of the preceding job in a SQL-like language. In6.
fact, the filter and select methods can accept SQL-formatted strings:

In: (df.filter('gender is not null')
 .filter('balance > 0').select("*").show())

We can also use just one call to the filter method:7.

In: df.filter('gender is not null and balance > 0').show()

Dealing with missing data
A common problem of data preprocessing is how to handle missing data. Spark
DataFrames, which are similar to pandas DataFrames, offer a wide range of operations that
you can do on them. For example, the easiest option to achieve a dataset composed of
complete rows only is to discard rows containing missing information. For this, in a Spark
DataFrame, we first have to access the na attribute of the DataFrame and then call the drop
method. The resulting table will contain only the complete rows:

In: df.na.drop().show()

Out: +-------+------+-------+
 |balance|gender|user_id|
 +-------+------+-------+
 | 1.0| M| 1|
 | -0.5| F| 2|
 | 0.0| F| 3|
 | 3.0| M| 5|
 +-------+------+-------+

If such an operation removes too many rows, we can always decide what columns should
account for the removal of the row (as the augmented subset of the drop method):

In: df.na.drop(subset=["gender"]).show()

Also, if you want to set default values for each column instead of removing the line data,
you can use the fill method, passing a dictionary composed by the column name (as the
dictionary key) and the default value to substitute missing data in that column (as the value
of the key in the dictionary).

Spark for Big Data Chapter 8

[406]

As an example, if you want to ensure that the variable balance, where missing, is set to 0,
and the variable gender, where missing, is set to U, you can simply do the following:

In: df.na.fill({'gender': "U", 'balance': 0.0}).show()

Out: +-------+------+-------+
 |balance|gender|user_id|
 +-------+------+-------+
 | 10.0| U| 0|
 | 1.0| M| 1|
 | -0.5| F| 2|
 | 0.0| F| 3|
 | 5.0| U| 4|
 | 3.0| M| 5|
 +-------+------+-------+

Grouping and creating tables in-memory
To have a function applied to a group of rows (exactly as in the case of SQL GROUP BY),
you can use two similar methods. In the following example, we want to compute the
average balance per gender:

In:(df.na.fill({'gender': "U", 'balance': 0.0})
 .groupBy("gender").avg('balance').show())

Out: +------+------------+
 |gender|avg(balance)|
 +------+------------+
 | F| -0.25|
 | M| 2.0|
 | U| 7.5|
 +------+------------+

So far, we've worked with DataFrames, but, as you've seen, the distance between
DataFrame methods and SQL commands is minimal. Actually, using Spark, it is possible to
register the DataFrame as a SQL table to fully enjoy the power of SQL. The table is saved in
memory and distributed in a way similar to an RDD. To register the table, we need to
provide a name, which will be used in future SQL commands. In this case, we decide to
name it users:

In: df.registerTempTable("users")

Spark for Big Data Chapter 8

[407]

By calling the SQL method provided by the Spark SQL context, we can run any SQL-
compliant table:

In: sqlContext.sql("""
 SELECT gender, AVG(balance)
 FROM users
 WHERE gender IS NOT NULL
 GROUP BY gender""").show()

Out: +------+------------+
 |gender|avg(balance)|
 +------+------------+
 | F| -0.25|
 | M| 2.0|
 +------+------------+

Not surprisingly, the table output by the command (as well as the users table itself) is of
the Spark DataFrame type:

In: type(sqlContext.table("users"))

Out: pyspark.sql.dataframe.DataFrame

DataFrames, tables, and RDDs are intimately connected, and RDD methods can be used on
a DataFrame. Remember that each row of the DataFrame is an element of the RDD. Let's
see this in detail, and first collect the whole table:

In: sqlContext.table("users").collect()

Out: [Row(balance=10.0, gender=None, user_id=0),
 Row(balance=1.0, gender='M', user_id=1),
 Row(balance=-0.5, gender='F', user_id=2),
 Row(balance=0.0, gender='F', user_id=3),
 Row(balance=5.0, gender=None, user_id=4),
 Row(balance=3.0, gender='M', user_id=5)]

In: a_row = sqlContext.sql("SELECT * FROM users").first()
 print(a_row)

Out: Row(balance=10.0, gender=None, user_id=0)

Spark for Big Data Chapter 8

[408]

The output is a list of Row objects (they look like Python's namedtuple). Let's dig deeper
into this. A Row contains multiple attributes, and it's possible to access them as a property
or dictionary key; that is, to get the balance from the first row, we can choose between the
two following ways:

In: print(a_row['balance'])
 print(a_row.balance)

Out: 10.0
 10.0

Also, Row can be collected as a Python dictionary using the asDict method for Row. The
result contains the property names as key and property values (as dictionary values):

In: a_row.asDict()

Out: {'balance': 10.0, 'gender': None, 'user_id': 0}

Writing the preprocessed DataFrame or RDD to
disk
To write a DataFrame or RDD to disk, we can use the write method. We have a selection
of formats we can use; in this case, we will save it as a CSV file on the local machine:

In: (df.na.drop().write
 .save("file:////home//jovyan//complete_users.csv", format='csv'))

Checking the output on the local filesystem, we immediately see that something is different
from what we expected: this operation creates multiple files (part-r-…). Each of them
contains some rows serialized as JSON objects, and merging them together will create the
comprehensive output. As Spark is made to process large and distributed files, the write
operation is tuned for that, and each node writes part of the full RDD:

In: !ls -als ./complete_users.json

Out: total 20
 4 drwxr-sr-x 2 jovyan users 4096 Jul 21 19:48 .
 4 drwsrwsr-x 20 jovyan users 4096 Jul 21 19:48 ..
 4 -rw-r--r-- 1 jovyan users 33 Jul 21 19:48
 part-00000-bc9077c5-67de-46b2-9ab7-c1da67ffcadd-c000.csv
 4 -rw-r--r-- 1 jovyan users 12 Jul 21 19:48
 .part-00000-bc9077c5-67de46b2-9ab7-c1da67ffcadd-c000.csv.crc
 0 -rw-r--r-- 1 jovyan users 0 Jul 21 19:48 _SUCCESS
 4 -rw-r--r-- 1 jovyan users 8 Jul 21 19:48 ._SUCCESS.crc

Spark for Big Data Chapter 8

[409]

In order to read it back, we don't have to create a standalone file—even multiple pieces are
fine in the read operation. A CSV file can also be read in the FROM clause of a SQL query.
Let's now try to print the CSV that we've just written to disk without creating an
intermediate DataFrame:

In: sqlContext.sql("""SELECT * FROM
 csv.`file:////home//jovyan//complete_users.csv`""").show()

Out: +----+---+---+
 | _c0|_c1|_c2|
 +----+---+---+
 | 1.0| M| 1|
 |-0.5| F| 2|
 | 0.0| F| 3|
 | 3.0| M| 5|
 +----+---+---+

Beyond JSON, there is another format that's very popular when dealing with structured,
big datasets: Parquet format. Parquet is a columnar storage format that's available in the
Hadoop ecosystem. It compresses and encodes the data, and can work with nested
structures; all these qualities make it very efficient. Saving and loading are very similar to
CSV, and, even in this case, this operation produces multiple files written to disk:

In: (df.na.drop().write
 .save("file:////home//jovyan//complete_users.parquet",
 format='parquet'))

Working with Spark DataFrames
So far, we've described how to load DataFrames from CSV and Parquet files, but not how
to create them from an existing RDD. In order to do so, you just need to create one Row
object for each record in the RDD and call the createDataFrame method of the SQL
context. Finally, you can register it as a temp table to use the power of the SQL syntax fully:

In: from pyspark.sql import Row
 rdd_gender = \
 sc.parallelize([Row(short_gender="M", long_gender="Male"),
 Row(short_gender="F", long_gender="Female")])
 (sqlContext.createDataFrame(rdd_gender)
 .registerTempTable("gender_maps"))

 sqlContext.table("gender_maps").show()

Out: +-----------+------------+
 |long_gender|short_gender|

Spark for Big Data Chapter 8

[410]

 +-----------+------------+
 | Male| M|
 | Female| F|
 +-----------+------------+

This is also the preferred way to operate with CSV files. First, the file is
read with sc.textFile; then, the final DataFrame is created with the
split method, the Row constructor, and the createDataFrame method.

When you have multiple DataFrames in-memory, or that can be loaded from disk, you can
join and use all the operations available in a classic RDBMS. In this example, we can join the
DataFrame we've created from the RDD with the users dataset contained in the Parquet
file that we've stored. The result is astonishing:

In: sqlContext.sql("""
 SELECT balance, long_gender, user_id
 FROM parquet.`file:////home//jovyan//complete_users.parquet`
 JOIN gender_maps ON gender=short_gender""").show()

Out: +-------+-----------+-------+
 |balance|long_gender|user_id|
 +-------+-----------+-------+
 | 3.0| Male| 5|
 | 1.0| Male| 1|
 | 0.0| Female| 3|
 | -0.5| Female| 2|
 +-------+-----------+-------+

As the tables are in-memory, so the last thing to do is to clean up by releasing the memory
used to keep them. By calling the tableNames method, provided by the sqlContext, we
get the list of all the tables that we currently have in memory. Then, to free them up, we can
use dropTempTable with the name of the table as an argument. Beyond this point, any
further reference to these tables will return an error:

In: sqlContext.tableNames()

Out: ['gender_maps', 'users']

In: for table in sqlContext.tableNames():
 sqlContext.dropTempTable(table)

Since Spark 1.3, DataFrame has been the preferred way to operate on a dataset when doing
datascience operations.

Spark for Big Data Chapter 8

[411]

Machine learning with Spark
At this point in the chapter, we arrived at the main task of your job: creating a model to
predict one or multiple attributes being missing in the dataset. For this task, we can use
some machine learning modeling, and Spark can give us a big hand in this context.

MLlib is the Spark machine learning library; although it is built in Scala and Java, its
functions are also available in Python. It contains classification, regression,
recommendation algorithms, some routines for dimensionality reduction and feature
selection, and it has lots of functionalities for text processing. All of them are able to cope
with huge datasets, and use the power of all the nodes in the cluster to achieve their goal.

As of now, it's composed of two main packages: MLlib, which operates on RDDs, and ML,
which operates on DataFrames. As the latter performs well and is the most popular way to
represent data in data science, developers have chosen to contribute and improve the ML
branch, letting the former remain, but without further developments. MLlib seems to be a
complete library at first sight, but, after having started using Spark, you will notice that
there's neither a statistic nor numerical library in the default package. Here, SciPy and
NumPy come to your help, and, once again, they're essential for data science.

In this section, we will try to explore the functionalities of the pyspark.ml package; as of
now, it's still in the early stages compared to the state-of-the-art scikit-learn library, but it
definitely has a lot of potential for the future.

Spark is a high-level, distributed, and complex piece of software that
should be used only on big data and with a cluster of multiple nodes; in
fact, if the dataset can fit in-memory, it's more convenient to use other
libraries such as scikit-learn or similar, which focus just on the data
science side of the problem. Running Spark on a single node on a small
dataset can be five times slower than the scikit-learn-equivalent algorithm.

Spark on the KDD99 dataset
Let's conduct this exploration using a real-world dataset: the KDD99 dataset. The goal of
the competition was to create a network-intrusion-detection system that is able to recognize
which network flow is malicious and which is not. Moreover, many different attacks are in
the dataset; the goal is to accurately predict them using the features of the flow of packets
contained in the dataset.

Spark for Big Data Chapter 8

[412]

As a side note on the dataset, it has been extremely useful for developing great solutions for
intrusion-detection systems (IDS) in the first few years after its release. Nowadays, as an
outcome of this, all the attacks included in the dataset are very easy to detect, and so it's not
used in IDS development anymore. The features include the protocol (tcp, icmp, and udp),
service (http, smtp, and so on), size of the packets, flags active in the protocol, number of
attempts to become root, and so on.

More information about the KDD99 challenge and datasets is available at
http:/ ​/ ​kdd. ​ics. ​uci. ​edu/ ​databases/ ​kddcup99/ ​kddcup99. ​html.

Although this is a classic multiclass classification problem, we will dig into it to show you
how to perform this task in Spark.

Reading the dataset
First of all, let's download and decompress the dataset. We will be very conservative and
use just 10% of the original training dataset (75 MB, uncompressed), as all our analysis is
run on a small virtual machine. If you want to give it a try, you can uncomment the lines in
the following snippet of code and download the full training dataset (750 MB
uncompressed). We download the training dataset, testing (47 MB), and feature names,
using bash commands:

In: !mkdir datasets
 !rm -rf ./datasets/kdd*
 # !wget -q -O datasets/kddtrain.gz \
 # http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data.gz
 !wget -q -O datasets/kddtrain.gz \
 http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz
 !wget -q -O datasets/kddtest.gz \
 http://kdd.ics.uci.edu/databases/kddcup99/corrected.gz
 !wget -q -O datasets/kddnames \
 http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names
 !gunzip datasets/kdd*gz

Now, print the first few lines to have an understanding of the format. It is clear that it's a
classic CSV without a header, containing a dot at the end of each line. Also, we can see that
some fields are numeric, but a few of them are textual, and the target variable is contained
in the last field:

In: !head -3 datasets/kddtrain

Out:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Spark for Big Data Chapter 8

[413]

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0
.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,239,486,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.
00,1.00,0.00,0.00,19,19,1.00,0.00,0.05,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,235,1337,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0
.00,1.00,0.00,0.00,29,29,1.00,0.00,0.03,0.00,0.00,0.00,0.00,0.00,normal.

To create a DataFrame with named fields, we should first read the header included in the
kddnames file. The target field will be simply named target. After having read and parsed
the file, we print the number of features of our problem (remember that the target variable
is not a feature) and their first ten names:

In: with open('datasets/kddnames', 'r') as fh:
 header = [line.split(':')[0]
 for line in fh.read().splitlines()][1:]
 header.append('target')

 print("Num features:", len(header)-1)
 print("First 10:", header[:10])

Out: Num features: 41
 First 10: ['duration', 'protocol_type', 'service', 'flag',
 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot']

Now, let's create two separate RDDs—one for the training data and the other for the testing
data:

In: train_rdd = sc.textFile('file:////home//jovyan//datasets//kddtrain')
 test_rdd = sc.textFile('file:////home//jovyan//datasets//kddtest')

Now, we need to parse each line of each file to create a DataFrame. First, we split each line
of the CSV file into separate fields, and then we cast each numerical value to a floating
point and each text value to a string. Finally, we remove the dot at the end of each line.

As the last step, by using the createDataFrame method provided by sqlContext, we can
create two Spark DataFrames with named columns for both the training and testing
datasets:

In: def line_parser(line):
 def piece_parser(piece):
 if "." in piece or piece.isdigit():
 return float(piece)
 else:
 return piece
 return [piece_parser(piece) for piece in line[:-1].split(',')]

 train_df =

Spark for Big Data Chapter 8

[414]

sqlContext.createDataFrame(train_rdd.map(line_parser),header)
 test_df = sqlContext.createDataFrame(test_rdd.map(line_parser), header)

So far, we've written just RDD transformers; let's introduce an action to see how many
observations we have in the datasets, and, at the same time, check the correctness of the
previous code:

In: print("Train observations:", train_df.count())
 print("Test observations:", test_df.count())

Out: Train observations: 494021
 Test observations: 311029

Although we're using a tenth of the full KDD99 dataset, we are still working on half a
million observations. Multiplied by the number of features, 41, we can clearly see that we'll
be training our classifier on an observation matrix containing more than 20 million values.
This is not such a big dataset for Spark (and neither is the full KDD99); developers around
the world are already using it on petabytes and billions of records. Don't be scared if the
numbers seem big: Spark is designed to cope with them.
Now, let's see how it looks on the schema of the DataFrame. Specifically, we want to
identify which fields are numeric and which contain strings (note that the result has been
truncated for brevity):

In: train_df.printSchema()

Out: root
 |-- duration: double (nullable = true)
 |-- protocol_type: string (nullable = true)
 |-- service: string (nullable = true)
 |-- flag: string (nullable = true)
 |-- src_bytes: double (nullable = true)
 |-- dst_bytes: double (nullable = true)
 ...
 |-- target: string (nullable = true

Spark for Big Data Chapter 8

[415]

Feature engineering
From a visual analysis, only four fields are strings: protocol_type, service, flag, and
target (which is the multiclass target label, as expected).
As we will use a tree-based classifier, we want to encode the text of each level to a number
for each variable. With scikit-learn, this operation can be done with a
sklearn.preprocessing.LabelEncoder object. It's equivalent in Spark is the
StringIndexer of the pyspark.ml.feature package.
We need to encode four variables with Spark, and then we have to chain four
StringIndexer objects together in a cascade: each of them will operate on a specific
column of the DataFrame, outputting a DataFrame with an additional column (similar to a
map operation). The mapping is automatic, ordered by frequency: Spark ranks the count of
each level in the selected column, mapping the most popular level to 0, the next to 1, and so
on. Note that, with this operation, you will traverse the dataset once to count the
occurrences of each level; if you already know the mapping, it will be more effective to
broadcast it and use a map operation, as shown at the beginning of this chapter.

More generically, all the classes contained in the pyspark.ml.feature
package are used to extract, transform, and select features from a
DataFrame. All of them read some columns and create some other
columns in the DataFrame.

Similarly, we could have used a one-hot encoder to generate a numerical observation
matrix. In the case of a one-hot encoder, we would have had multiple output columns in
the DataFrame, one for each level of each categorical feature. For this, Spark offers the
pyspark.ml.feature.OneHotEncoderEstimator class.

As of Spark 2.3.1, the feature operations available in Python are contained
in the following exhaustive list: https:/ ​/​spark. ​apache. ​org/ ​docs/
latest/ ​ml- ​features. ​html (all of them can be found in the
pyspark.ml.feature package). Names should be intuitive, except for a
couple of them, which will be explained inline or later in the text.

Going back to the example, we now want to encode the levels in each categorical variable
as discrete numbers. As we've explained, for this, we will use a StringIndexer object for
each variable. Moreover, we can use an ML pipeline and set them as stages of it.

https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/latest/ml-features.html

Spark for Big Data Chapter 8

[416]

Then, to fit all the indexers, you just need to call the fit method of the pipeline. Internally,
it will fit all the staged objects sequentially. When it has completed the fit operation, a new
object is created, and we can refer to it as the fitted pipeline. Calling the transform method
of this new object will sequentially call all the staged elements (which are already fitted),
each being called after the previous one is completed. In the following snippet of code,
you'll see the pipeline in action. Note that transformers compose the pipeline. Therefore, as
no actions are present, nothing is actually executed. In the output DataFrame, you'll note
four additional columns named the same as the original categorical ones, but with the _cat
suffix:

In: from pyspark.ml import Pipeline
 from pyspark.ml.feature import StringIndexer

 cols_categorical = ["protocol_type", "service", "flag","target"]
 preproc_stages = []
 for col in cols_categorical:
 out_col = col + "_cat"
 preproc_stages.append(
 StringIndexer(
 inputCol=col, outputCol=out_col, handleInvalid="skip"))

 pipeline = Pipeline(stages=preproc_stages)
 indexer = pipeline.fit(train_df)
 train_num_df = indexer.transform(train_df)
 test_num_df = indexer.transform(test_df)

Let's investigate the pipeline a bit more. Here, we will see the stages in the pipeline: unfit
pipeline and fitted pipeline. Note that there's a big difference between Spark and scikit-
learn: in scikit-learn, fit and transform are called on the same object, and, in Spark, the fit
method produces a new object (typically, its name is added with a Model suffix, just as for
Pipeline and PipelineModel), where you'll be able to call the transform method. This
difference is derived from closures—a fitted object is easy to distribute across processes and
the cluster:

In: print(pipeline.getStages(), '\n')
 print(pipeline)
 print(indexer)

Out: [StringIndexer_44f6bd05e502a8ace0aa,
 StringIndexer_414084eb873c15c387cd,
 StringIndexer_4ca38a4ad6ffeb6ddc95,
 StringIndexer_489c92cd030c80c6f677]

 Pipeline_46a68853ff9dcdece078
 PipelineModel_4f61afaf96ccc4be4b02

Spark for Big Data Chapter 8

[417]

Extracting some columns from the DataFrame is as easy as using SELECT in a SQL query.
Now, let's build a list of names for all the numerical features. Starting with the names found
in the header, we remove the categorical ones and replace them with
the numerically derived ones. Finally, as we want only the features, we remove the target
variable and its numerically derived equivalent:

In: features_header = set(header) \
 - set(cols_categorical) \
 | set([c + "_cat" for c in cols_categorical]) \
 - set(["target", "target_cat"])
 features_header = list(features_header)
 print(features_header)
 print("Total numerical features:", len(features_header))

Out: ['flag_cat', 'count', 'land', 'serror_rate', 'num_compromised',
 'num_access_files', 'dst_host_srv_serror_rate', 'src_bytes',
 'num_root', 'srv_serror_rate', 'num_shells', 'diff_srv_rate',
 'dst_host_serror_rate',
 'rerror_rate', 'num_file_creations', 'same_srv_rate',
 'service_cat',
 'num_failed_logins', 'duration', 'dst_host_diff_srv_rate', 'hot',
 'is_guest_login', 'dst_host_same_srv_rate', 'num_outbound_cmds',
 'su_attempted', 'dst_host_count', 'dst_bytes',
 'srv_diff_host_rate',
 'dst_host_srv_count', 'srv_count', 'root_shell',
 'srv_rerror_rate',
 'wrong_fragment', 'dst_host_rerror_rate', 'protocol_type_cat',
 'urgent',
 'dst_host_srv_rerror_rate', 'dst_host_srv_diff_host_rate',
 'logged_in',
 'is_host_login', 'dst_host_same_src_port_rate']
 Total numerical features: 41

Here, the VectorAssembler class comes to our help to build the feature matrix. We just
need to pass the columns to be selected as arguments and the new column to be created in
the DataFrame. We decide that the output column will be simply named features. We
apply this transformation to both training and testing datasets, and then we select just the
two columns that we're interested in—features and target_cat:

In: from pyspark.ml.feature import VectorAssembler

 assembler = VectorAssembler(
 inputCols=features_header,
 outputCol="features")
 Xy_train = (assembler
 .transform(train_num_df)
 .select("features", "target_cat"))

Spark for Big Data Chapter 8

[418]

 Xy_test = (assembler
 .transform(test_num_df)
 .select("features", "target_cat"))

Also, the default behavior of VectorAssembler is to produce either DenseVectors or
SparseVectors. In this case, as the vector of features contains many zeros, it returns a
sparse vector. To see what's inside the output, we can print the first line. Note that this is an
action. Consequently, the job is executed before getting the result printed:

In: Xy_train.first()

Out: Row(features=SparseVector(41, {1: 8.0, 7: 181.0, 15: 1.0, 16: 2.0, 22:
 1.0, 25: 9.0, 26: 5450.0, 28: 9.0, 29: 8.0, 34: 1.0, 38: 1.0,
 40: 0.11}), target_cat=2.0)

Training a learner
Finally, we arrive at the hot piece of the task: training a classifier. Classifiers are contained
in the pyspark.ml.classification package, and, for this example, we're using a
random forest. For Spark 2.3.1, you can find the extensive list of algorithms that are
available at https:/ ​/ ​spark. ​apache. ​org/ ​docs/ ​2. ​3.​1/​ml- ​classification- ​regression.
html. The list of algorithms is quite complete, comprising linear models, SVM, Naive Bayes,
and tree ensembles. Note that not all of them are capable of operating on multiclass
problems, and may have different parameters; always check the documentation related to
the version in use. Beyond classifiers, the other learners implemented in Spark 2.3.1 with a
Python interface are as follows:

Clustering (the pyspark.ml.clustering package): KMeans
Recommender (the pyspark.ml.recommendation package): ALS (a
collaborative filtering recommender, based on alternating least squares)

https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html
https://spark.apache.org/docs/2.3.1/ml-classification-regression.html

Spark for Big Data Chapter 8

[419]

Let's go back to the goal of the KDD99 challenge. Now, it's time to instantiate a random
forest classifier and set its parameters. The parameters to set are featuresCol (the column
containing the feature matrix), labelCol (the column of the DataFrame containing the
target label), seed (the random seed to make the experiment replicable), and maxBins (the
maximum number of bins to use for the splitting point in each node of the tree). The default
value for the number of trees in the forest is 20, and each tree is a maximum of five levels
deep. Moreover, by default, this classifier creates three output columns in the DataFrame:
rawPrediction (to store the prediction score for each possible label), probability (to
store the likelihood of each label), and prediction (the most probable label):

In: from pyspark.ml.classification import RandomForestClassifier
 clf = RandomForestClassifier(
 labelCol="target_cat", featuresCol="features",
 maxBins=100, seed=101)
 fit_clf = clf.fit(Xy_train)

Even in this case, the trained classifier is a different object. Exactly as before, the trained
classifier is named the same as the classifier with the Model suffix:

In: print(clf)
 print(fit_clf)
Out: RandomForestClassifier_4c47a18a99f683bec69e
 RandomForestClassificationModel
 (uid=RandomForestClassifier_4c47a18a99f683bec69e) with 20 trees

On the trained classifier object (that is, RandomForestClassificationModel), it's
possible to call the transform method. We predict the label on both the training and test
datasets and print the first line of the test dataset. As defined in the classifier, the
predictions will be found in the column named prediction:

In: Xy_pred_train = fit_clf.transform(Xy_train)
 Xy_pred_test = fit_clf.transform(Xy_test)
 print("First observation after classification stage:")
 print(Xy_pred_test.first())

Out: First observation after classification stage:
 Row(features=SparseVector(41, {1: 1.0, 7: 105.0, 15: 1.0, 16: 1.0, 19:
 0.01, 22: 1.0, 25: 255.0, 26: 146.0, 28: 254.0, 29: 1.0, 34: 2.0}),
 target_cat=2.0, rawPrediction=DenseVector([0.0152, 0.0404, 19.6276,
 0.0381, 0.0087, 0.0367, 0.034, 0.1014, 0.0641, 0.0051, 0.0105, 0.0053,
 0.002, 0.0005, 0.0026, 0.0009, 0.0018, 0.0009, 0.0009, 0.0006, 0.0013,
 0.0006, 0.0008]), probability=DenseVector([0.0008, 0.002, 0.9814,
 0.0019,
 0.0004, 0.0018, 0.0017, 0.0051, 0.0032, 0.0003, 0.0005, 0.0003,
 0.0001,

Spark for Big Data Chapter 8

[420]

 0.0, 0.0001, 0.0, 0.0001, 0.0, 0.0, 0.0, 0.0001, 0.0, 0.0]),
 prediction=2.0)

Evaluating a learner's performance
The next step in any datascience task is to check the performance of the learner on the
training and testing datasets. For this task, we will use the F1-score as it's a good metric
that merges precision and recall performances. Evaluation metrics are enclosed in the
pyspark.ml.evaluation package; among the few choices we have, we're using the one to
evaluate multiclass classifiers: MulticlassClassificationEvaluator. As parameters,
we're providing the metric (precision, recall, accuracy, F1-score, and so on) and the
name of the columns containing the true label and predicted label:

In: from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 evaluator = MulticlassClassificationEvaluator(
 labelCol="target_cat",
 predictionCol="prediction",
 metricName="f1")
 f1_train = evaluator.evaluate(Xy_pred_train)
 f1_test = evaluator.evaluate(Xy_pred_test)
 print("F1-score train set: %0.3f" % f1_train)
 print("F1-score test set: %0.3f" % f1_test)

Out: F1-score train set: 0.993
 F1-score test set: 0.968

The obtained values are pretty high, and there's a big difference between the performance
on the training dataset and the testing dataset. Beyond the evaluator for multiclass
classifiers, an evaluator object for the regressor (where the metric can be MSE, RMSE, R2, or
MAE) and binary classifiers are available in the same package.

The power of the machine learning pipeline
So far, we've built and displayed the output, piece by piece. It's also possible to put all the
operations in a cascade and set them as stages of a pipeline. In fact, we can chain together
what we've seen so far (the four label encoders, vector builder, and classifier) in a
standalone pipeline, fit it to the training dataset, and finally use it on the test dataset to
obtain the predictions.

Spark for Big Data Chapter 8

[421]

This way to operate is more effective, but you'll lose the exploratory power of the step-by-
step analysis. Readers who are data scientists are advised to use end-to-end pipelines only
when they are completely sure of what's going on inside, and only to build production
models. To show that the pipeline is equivalent to what we've seen so far, we compute the
F1-score on the test dataset and print it. Unsurprisingly, it's exactly the same value:

In: full_stages = preproc_stages + [assembler, clf]
 full_pipeline = Pipeline(stages=full_stages)
 full_model = full_pipeline.fit(train_df)
 predictions = full_model.transform(test_df)
 f1_preds = evaluator.evaluate(predictions)
 print("F1-score test set: %0.3f" % f1_preds)

Out: F1-score test set: 0.968

On the driver node, the one running the IPython notebook, we can also use the
matplotlib library to visualize the results of our analysis. For example, to show a
normalized confusion matrix of the classification results (normalized by the support of each
class), we can create the following function:

In: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

 def plot_confusion_matrix(cm):
 cm_normalized = \
 cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
 plt.imshow(
 cm_normalized, interpolation='nearest', cmap=plt.cm.Blues)
 plt.title('Normalized Confusion matrix')
 plt.colorbar()
 plt.tight_layout()
 plt.ylabel('True label')
 plt.xlabel('Predicted label')

Spark is able to build a confusion matrix, but that method is in the pyspark.mllib
package. In order to be able to use the methods in this package, we have to transform the
DataFrame into an RDD using the .rdd method:

In: from pyspark.mllib.evaluation import MulticlassMetrics

 metrics = MulticlassMetrics(
 predictions.select("prediction", "target_cat").rdd)
 conf_matrix = metrics.confusionMatrix()toArray()
 plot_confusion_matrix(conf_matrix)

Spark for Big Data Chapter 8

[422]

Here is the plotted confusion matrix, resulting from the previous code snippet:

Manual tuning
Although the F1-score was close to 0.97, the normalized confusion matrix shows that the
classes are strongly unbalanced, and that the classifier has just learned how to classify the
most popular ones properly. To improve the results, we can re-sample each class which
will, in effect, to try to balance the training dataset better.

First, let's count how many cases there are in the training dataset for each class:

In: train_composition = (train_df.groupBy("target")
 .count()
 .rdd
 .collectAsMap())
 print(train_composition)

Out: {'neptune': 107201,
 'nmap': 231,
 'portsweep': 1040,
 'back': 2203,
 'warezclient': 1020,
 'normal': 97278,
 ...

Spark for Big Data Chapter 8

[423]

 'loadmodule': 9,
 'phf': 4}

This is clear evidence of a strong imbalance. We can try to improve the performance by
oversampling rare classes and subsampling too-popular classes. In this example, we will
create a training dataset, where each class is represented at least 1,000 times, but up to
25,000 times. For this, we go through the following steps:

Let's first create the subsampling/oversampling rate and broadcast it throughout1.
the cluster, and then flatMap each line of the training dataset to resample it
properly:

In: def set_sample_rate_between_vals(cnt, the_min, the_max):
 if the_min <= cnt <= the_max:
 # no sampling
 return 1
 elif cnt < the_min:
 # Oversampling: return many times the same observation
 return the_min/float(cnt)
 else:
 # Subsampling: sometime don't return it
 return the_max/float(cnt)
 sample_rates = {k:set_sample_rate_between_vals(v, 1000, 25000)
 for k,v in train_composition.items()}
 sample_rates

Out: {'neptune': 0.23320677978750198,
 'nmap': 4.329004329004329,
 'portsweep': 1,
 'back': 1,
 'warezclient': 1,
 'normal': 0.2569954152017928,
 ...
 'loadmodule': 111.11111111111111,
 'phf': 250.0}

In: bc_sample_rates = sc.broadcast(sample_rates)

 def map_and_sample(el, rates):
 rate = rates.value[el['target']]
 if rate > 1:
 return [el]*int(rate)
 else:
 import random
 return [el] if random.random() < rate else []

 sampled_train_df = (train_df

Spark for Big Data Chapter 8

[424]

 .rdd
 .flatMap(
 lambda x: map_and_sample(x,
 bc_sample_rates))
 .toDF()
 .cache())

These sampled dataset in the sampled_train_df DataFrame variable is also2.
cached; we will use it many times during the hyperparameter optimization step.
It should easily fit in memory, as the number of lines is lower than the original
number:

In: sampled_train_df.count()

Out: 96559

To get an idea of what's inside, we can print the first line. Pretty quick to print3.
the value, isn't it? Of course, that's quite fast and nice because it has been cached:

In: sampled_train_df.first()

Out: Row(duration=0.0, protocol_type='tcp', service='http',
 flag='SF',
 src_bytes=210.0, dst_bytes=624.0, land=0.0,
 wrong_fragment=0.0,
 urgent=0.0, hot=0.0, num_failed_logins=0.0, logged_in=1.0,
 num_compromised=0.0, root_shell=0.0, su_attempted=0.0,
 num_root=0.0,
 num_file_creations=0.0, num_shells=0.0, num_access_files=0.0,
 num_outbound_cmds=0.0, is_host_login=0.0, is_guest_login=0.0,
 count=18.0,
 srv_count=18.0, serror_rate=0.0, srv_serror_rate=0.0,
 rerror_rate=0.0,
 srv_rerror_rate=0.0, same_srv_rate=1.0, diff_srv_rate=0.0,
 srv_diff_host_rate=0.0, dst_host_count=18.0,
 dst_host_srv_count=109.0,
 dst_host_same_srv_rate=1.0, dst_host_diff_srv_rate=0.0,
 dst_host_same_src_port_rate=0.06,
 dst_host_srv_diff_host_rate=0.05,
 dst_host_serror_rate=0.0, dst_host_srv_serror_rate=0.0,
 dst_host_rerror_rate=0.0, dst_host_srv_rerror_rate=0.0,
 target='normal')

Spark for Big Data Chapter 8

[425]

Let's now use the pipeline that we created to make some predictions and print4.
the F1-score of this new solution:

In: full_model = full_pipeline.fit(sampled_train_df)
 predictions = full_model.transform(test_df)
 f1_preds = evaluator.evaluate(predictions)
 print("F1-score test set: %0.3f" % f1_preds)

Out: F1-score test set: 0.967

Test it on a classifier of 50 trees. To do so, we can build another pipeline (named5.
refined_pipeline) and substitute the final stage with the new classifier.
Performances seem the same, even if the training dataset has been slashed in size:

In: clf = RandomForestClassifier(
 numTrees=50, maxBins=100, seed=101,
 labelCol="target_cat", featuresCol="features")
 stages = full_pipeline.getStages()[:-1]
 stages.append(clf)
 refined_pipeline = Pipeline(stages=stages)
 refined_model = refined_pipeline.fit(sampled_train_df)
 predictions = refined_model.transform(test_df)
 f1_preds = evaluator.evaluate(predictions)
 print ("F1-score test set: %0.3f" % f1_preds)

Out: F1-score test set: 0.968

This concludes our example about tuning models on Spark. This final test provides us with
a fair estimate about how effective our model could be in production.

Cross-validation
We can go forward with manual optimization and find the right model after having
exhaustively tried many different configurations. Doing that would lead to both an
immense waste of time (and reusability of the code) and will overfit the test dataset. Cross-
validation is instead the correct key to run the hyperparameter optimization. Let's now see
how Spark performs this crucial task.

First of all, as the training will be used many times, we can cache it. Therefore, let's cache
it after all the transformations:

In: pipeline_to_clf = Pipeline(
 stages=preproc_stages + [assembler]).fit(sampled_train_df)
 train = pipeline_to_clf.transform(sampled_train_df).cache()
 test = pipeline_to_clf.transform(test_df)

Spark for Big Data Chapter 8

[426]

The useful classes for hyperparameter optimization with cross-validation are contained in
the pyspark.ml.tuning package. Two elements are essential: a grid map of parameters
(which can be built with ParamGridBuilder) and the actual cross-validation procedure
(run by the CrossValidator class).

In this example, we want to set some parameters of our classifier that won't change
throughout the cross-validation. Exactly as with scikit-learn, they're set when the
classification object is created (in this case, column names, seed, and the maximum
number of bins).

Then, thanks to the grid builder, we decide which arguments should be changed for each
iteration of the cross-validation algorithm. In this example, we want to check the
classification performance changes the maximum depth of each tree in the forest from 3 to
12 (incrementing by 3) and the number of trees in the forest from 20 or 50. Finally, we
launch the cross-validation (with the fit method) after having set the grid map, the
classifier that we want to test, and the number of folds. The parameter evaluator is
essential: it will tell us which is the best model to keep after the cross-validation. Note that
this operation may take 15-20 minutes to run (under the hood, 4*2*3=24 models are trained
and tested):

In: from pyspark.ml.tuning import ParamGridBuilder, CrossValidator

 rf = RandomForestClassifier(
 cacheNodeIds=True, seed=101, labelCol="target_cat",
 featuresCol="features", maxBins=100)
 grid = (ParamGridBuilder()
 .addGrid(rf.maxDepth, [3, 6, 9, 12])
 .addGrid(rf.numTrees, [20, 50])
 .build())
 cv = CrossValidator(
 estimator=rf, estimatorParamMaps=grid,
 evaluator=evaluator, numFolds=3)
 cvModel = cv.fit(train)

In the end, we can predict the label using the cross-validated model, as we're using a
pipeline or classifier by itself. In this case, the performances of the classifier chosen with
cross-validation are slightly better than in the previous case, and allow us to beat the 0.97
barriers:

In: predictions = cvModel.transform(test)
 f1_preds = evaluator.evaluate(predictions)
 print("F1-score test set: %0.3f" % f1_preds)

Out: F1-score test set: 0.970

Spark for Big Data Chapter 8

[427]

Furthermore, by plotting the normalized confusion matrix, you immediately realize that
this solution is able to discover a wider variety of attacks, even the less popular ones:

In: metrics = MulticlassMetrics(
 predictions.select("prediction", "target_cat").rdd)
 conf_matrix = metrics.confusionMatrix().toArray()
 plot_confusion_matrix(conf_matrix)

This time, the output is the normalized confusion matrix, showing where misplacement in
predictions happens the most:

Final cleanup
Here, we are at the end of the classification task. Remember to remove all the variables that
you've used and the temporary table that you've created from the cache:

In: bc_sample_rates.unpersist()
 sampled_train_df.unpersist()
 train.unpersist()

After the Spark memory is cleared, we can turn off the Jupyter notebook.

Spark for Big Data Chapter 8

[428]

Summary
In this chapter, we have introduced you to the Hadoop ecosystem, including the
architecture, HDFS, and PySpark. After this introduction, we started setting up your local
Spark instance, and after sharing variables across cluster nodes, we went through data
processing in Spark using both RDDs and DataFrames.

Later on in this chapter, we learned about machine learning with Spark, which included
reading a dataset, training a learner, the power of the machine learning pipeline, cross-
validation, and even testing what we learned with an example dataset.

This concludes our journey around the essentials in data science with Python, and the next
chapter is just an appendix to refresh and strengthen your Python foundations. In
conclusion, through all the chapters of this book, we have completed our tour of a data
science project, touching on all the key steps of a project and presenting you with all the
essential tools to successfully operate your own projects using Python. As a learning tool,
the book accompanied you through all the phases of data science, from data loading to
machine learning and visualization, illustrating the best practices and ways to avoid
common pitfalls, no matter whether your data is small or big. As a reference, this book
touched upon a variety of commands and packages, providing you with simple, clear
instructions and examples that, if reused in your projects, could save you a lot of time
during your work.

From here on, Python will surely play an even larger role in your project developments,
and we were glad to have accompanied you so far in your path toward mastering Python
for data science.

Strengthen Your Python
Foundations

The code examples that are provided along with these chapters don't require you to master
Python. However, they will assume that you've previously obtained a working knowledge
of at least the basics of Python scripting. They will also assume, in particular, that you
know about data structures, such as lists and dictionaries, and that you have an idea about
how to make class objects work.

If you don't feel confident about the aforementioned subject or have minimal knowledge of
the Python language, we suggest that before you start reading this book, you should take
an online tutorial, such as the Code Academy course at
http://www.codecademy.com/en/tracks/python, Google's Python class at
https://developers.google.com/edu/python/, or the course offered by Kaggle at https:/
/​www.​kaggle.​com/ ​learn/ ​python. All the courses are free, and in a matter of a few hours of
study, they should provide you with all the building blocks that will ensure that you enjoy
this book to the fullest. If you prefer studying Python basics in a written book, you could
read the Whirlwind Tour of Python by Jake Vanderplas (https:/ ​/​github. ​com/​jakevdp/
WhirlwindTourOfPython) and gain all the basic knowledge of Python you need: from
variable assignment to importing packages. We have also prepared a few notes, which are
arranged in this brief but challenging bonus chapter, in order to highlight the importance
and strengthen your knowledge of all the aspects of the Python language that are critical
for data science usage. In this bonus chapter, you will learn the following:

What you should know about Python to be an effective data scientist
The best resources for learning Python by watching videos
The best resources for learning Python by directly writing and testing code
The best resources for learning Python by reading

http://www.codecademy.com/en/tracks/python
https://developers.google.com/edu/python/
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/python
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython

Strengthen Your Python Foundations

[430]

Your learning list
Here are the basic Python data structures that you need to learn to be as proficient as a data
scientist. Leaving aside the real basics (numbers, arithmetic, strings, Booleans, variable
assignments, and comparisons), the list is indeed short. We will briefly deal with it by
touching upon only the recurrent structures in data science projects. Remember that the
topics are quite challenging, but they are necessary to master if you want to write effective
code:

Lists
Dictionaries
Classes, objects, and object-oriented programming
Exceptions
Iterators and generators
Conditionals
Comprehensions
Functions

Take it as a refresher or a learning list depending on your actual knowledge of the Python
language. However, examine all the proposed examples because you will come across them
again during the course of this book.

Lists
Lists are collections of elements. Elements can be integers, floats, strings, or generically,
objects. Moreover, you can mix different types together. Besides, lists are more flexible than
arrays because arrays allow only a single datatype. To create a list, you can either use the
square brackets or the list() constructor, as follows:

a_list = [1, 2.3, 'a', True]
an_empty_list = list()

Strengthen Your Python Foundations

[431]

The following are some handy methods that you will need to remember while working
with lists:

To access the ith element, use the [] notation:

Remember that lists are indexed from 0 (zero); that is, the first element is
in position 0.

a_list[1]
prints 2.3
a_list[1] = 2.5
a_list is now [1, 2.5, 'a', True]

You can slice lists by pointing out a starting and ending point (the ending point is
not included in the resulting slice), as follows:

a_list[1:3]
prints [2.3, 'a']

You can slice with skips by using a colon-separated start:end:skip notation
so that you can get an element for every skip value, as follows:

a_list[::2]
returns only odd elements: [1, 'a']
a_list[::-1]
returns the reverse of the list: [True, 'a', 2.3, 1]

To append an element at the end of the list, you can use append():

a_list.append(5)
a_list is now [1, 2.5, 'a', True, 5]

To get the length of the list, use the len() function, as follows:

len(a_list)
prints 5

To delete an element, use the del statement followed by the element that you
wish to remove:

del a_list[0]
a_list is now [2.5, 'a', True, 5]

Strengthen Your Python Foundations

[432]

To concatenate two lists, use +, as follows:

a_list += [1, 'b']
a_list is now [2.5, 'a', True, 5, 1, 'b']

You can unpack lists by assigning lists to a list (or simply a sequence) of variables
instead of a single variable:

a, b, c, d, e, f = [2.5, 'a', True, 5, 1, 'b']
a now is 2.5, b is 'a' and so on

Remember that lists are mutable data structures; you can always append, remove, and
modify elements. Immutable lists are called tuples and are denoted by round parentheses,
(and), instead of the square brackets as in the list, [and]:

tuple(a_list)
prints (2.5, 'a', True, 5, 1, 'b')

Dictionaries
Dictionaries are tables that can find stuff very quickly because each key is associated with a
value. It is really like using the index of a book to jump immediately to the content you
need. Keys and values can belong to different data types. The only prerequisite for keys is
that they should be hashable (that's a fairly complex concept; simply keep the keys as
simple as possible and, therefore, don't try to use a dictionary or a list as a key). To create a
dictionary, you can use curly brackets, as follows:

b_dict = {1: 1, '2': '2', 3.0: 3.0}

The following are some handy methods that you can remember while working with
dictionaries:

To access the value indexed by the k key, use the [] notation, as follows:

b_dict['2']
prints '2'
b_dict['2'] = '2.0'
b_dict is now {1: 1, '2': '2.0', 3.0: 3.0}

To insert or replace a value for a key, use the [] notation again:

b_dict['a'] = 'a'
b_dict is now {3.0: 3.0, 1: 1, '2': '2.0', 'a': 'a'}

Strengthen Your Python Foundations

[433]

To get the number of elements in the dictionary, use the len() function, as
follows:

len(b_dict)
prints 4

To delete an element, use the del statement followed by the element that you
wish to remove:

del b_dict[3.0]
b_dict is now {1: 1, '2': '2.0', 'a': 'a'}

Remember that dictionaries, like lists, are mutable data structures. Also remember that if
you try to access an element whose key doesn't exist, a KeyError exception will be raised:

b_dict['a_key']

Traceback (most recent call last): File "<stdin>", line 1, in <module>
KeyError: 'a_key'

The obvious solution to this is to always check first whether an element is in the dictionary:

if 'a_key' in b_dict:
 b_dict['a_key']
else:
 print("'a_key' is not present in the dictionary")

Otherwise, you can use the .get method. If the key is in the dictionary, it returns its value;
otherwise, it returns none:

b_dict.get('a_key')

Finally, you can use a data structure from the collections module, called defaultdict, and
it will never raise KeyError because but it is instantiated by a function taking no
arguments and providing the default value for any nonexistent key it may want you to
require:

from collections import defaultdict
c_dict = defaultdict(lambda: 'empty')
c_dict['a_key']
requiring a nonexistent key will always return the string 'empty'

The default function to be used by defaultdict can be defined using a def or lambda
command, as described in the following section.

Strengthen Your Python Foundations

[434]

Defining functions
Functions are ensembles of instructions that usually receive specific inputs from you and
provide a set of specific outputs related to these inputs. You can define them as one-liners,
as follows:

def half(x):
 return x/2.0

You can also define them as a set of many instructions in the following way:

import math
def sigmoid(x):
 try:
 return 1.0 / (1 + math.exp(-x))
 except:
 if x < 0:
 return 0.0
 else:
 return 1.0

Finally, you can create an anonymous function by using a lambda function. Think of
anonymous functions as simple functions that you can define inline everywhere in the
code, without using the verbose constructor for functions (the one starting with def). Just
call lambda followed by its input parameters; then, a colon will signal the beginning of the
commands to be executed by the lambda function, which necessarily have to be on the
same line. (No return command! The commands are what will be returned from the
lambda function.) You can use a lambda function as a parameter in another function, as
seen previously for defaultdict, or you can use it in order to express a function in one
line. This is the case in our example, where we define a function by returning a lambda
function, incorporating the parameters of the first one:

def sum_a_const(c):
 return lambda x: x+c

sum_2 = sum_a_const(2)
sum_3 = sum_a_const(3)
print(sum_2(2))
print(sum_3(2))
prints 4 and 5

Strengthen Your Python Foundations

[435]

To invoke a function, write the function name, followed by its parameters within the
parentheses:

half(10)
prints 5.0
sigmoid(0)
prints 0.5

By using functions, you ensemble repetitive procedures by formalizing their inputs and
outputs without letting their calculation interfere in any way with the execution of the main
program. In fact, unless you declare that a variable is a global one, all the variables you
have used inside your function will be disposed of, and your main program will receive
only what has been returned by the return command.

By the way, please be aware that if you pass a list to a function-only a list,
which won't happen with variables-this will be modified, even if not
returned, unless you copy it. In order to make a duplicate of a list, you can
use the copy or deep copy functions (to be imported from the copy
package) or simply the operator [:] applied to your list.

Why does this happen? Because lists are, in particular, data structures that are referenced
by an address and not by the entire object. So, when you pass a list to a function, you are
just passing an address to the memory of your computer, and the function will operate on
that address by modifying your actual list:

a_list = [1,2,3,4,5]

def modifier(L):
 L[0] = 0

def unmodifier(L):
 M = L[:] # Here we are copying the list
 M[0] = 0

unmodifier(a_list)
print(a_list)
you still have the original list, [1, 2, 3, 4, 5]

modifier(a_list)
print(a_list)
your list have been modified: [0, 2, 3, 4, 5]

Strengthen Your Python Foundations

[436]

Classes, objects, and object-oriented
programming
Classes are collections of methods and attributes. Briefly, attributes are variables of the
object (for example, each instance of the Employee class has its own name, age, salary,
and benefits; all of them are attributes).

Methods are simply functions that modify attributes (for example, to set the employee
name, to set his/her age, and also to read this information from a database or from a CSV
list). To create a class, use the class keyword.

In the following example, we will create a class for an incrementer. The purpose of this
object is to keep track of the value of an integer and eventually increase it by 1:

class Incrementer(object):
 def __init__(self):
 print ("Hello world, I'm the constructor")
 self._i = 0

Everything within the def indentation is a class method. In this case, the method named
__init__ sets the i internal variable to zero (it looks exactly like a function described in
the previous chapter). Look carefully at the method's definition. Its argument is self (this
is the object itself), and every internal variable's access is made through self:

 __init__ is not just a method; it's the constructor (it's called when the object is1.
created). In fact, when we build an Increment object, this method is
automatically called, as follows:

i = Incrementer()
prints "Hello world, I'm the constructor"

Now, let's create the increment() method, which increments the i internal2.
counter and returns the status. Within the class definition, including the method:

def increment(self):
 self._i += 1
 return self._i

Then, run the following code:3.

i = Incrementer()
print (i.increment())
print (i.increment())
print (i.increment())

Strengthen Your Python Foundations

[437]

The preceding code results in the following output:4.

Hello world, I'm the constructor
1
2
3

Finally, let's see how we can create methods that accept parameters. We will now create the
set_counter method, which sets the _i internal variable:

Within the class definition, add the following code:1.

def set_counter(self, counter):
 self._i = counter

Then, run the following code:2.

i = Incrementer()
i.set_counter(10)
print (i.increment())
print (i._i)

The preceding code gives this output:3.

Hello world, I'm the constructor
11
11

Note the last line of the preceding code, where you access the internal
variable. Remember that, in Python, all the internal attributes of the
objects are public by default, and they can be read, written, and changed
externally.

Exceptions
Exceptions and errors are strongly correlated, but they are different things. An exception,
for example, can be gracefully handled. Here are some examples of exceptions:

0/0

Traceback (most recent call last): File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

len(1, 2)

Traceback (most recent call last): File "<stdin>", line 1, in <module>

Strengthen Your Python Foundations

[438]

TypeError: len() takes exactly one argument (2 given)

pi * 2

Traceback (most recent call last): File "<stdin>", line 1, in <module>
NameError: name 'pi' is not defined

In this example, three different exceptions have been raised (see the last line of each block).
To handle exceptions, you can use a try...except block in the following way:

try:
 a = 10/0
except ZeroDivisionError:
 a = 0

You can use more than one except clause to handle more than one exception. You can
eventually use a final all-the-other exception case handle. In this case, the structure is
as follows:

try:
 <code which can raise more than one exception>
except KeyError:
 print ("There is a KeyError error in the code")
except (TypeError, ZeroDivisionError):
 print ("There is a TypeError or a ZeroDivisionError error in the code")
except:
 print ("There is another error in the code")

Finally, it is important to mention that there is the final clause, finally, that will be
executed in all circumstances. It's very handy if you want to clean up the code (closing files,
de-allocating resources, and so on). These are the things that should be done
independently, regardless of whether an error has occurred or not. In this case, the code
assumes the following shape:

try:
 <code that can raise exceptions>
except:
 <eventually more handlers for different exceptions>
finally:
 <clean-up code>

Strengthen Your Python Foundations

[439]

Iterators and generators
Looping through a list or a dictionary is very simple. Note that, with dictionaries, the
iteration is key-based, which is demonstrated in the following example:

for entry in ['alpha', 'bravo', 'charlie', 'delta']:
 print (entry)

prints the content of the list, one entry for line

a_dict = {1: 'alpha', 2: 'bravo', 3: 'charlie', 4: 'delta'}
for key in a_dict:
 print (key, a_dict[key])

Prints:
1 alpha
2 bravo
3 charlie
4 delta

On the other hand, if you need to iterate through a sequence and generate objects on the fly,
you can use a generator. A great advantage of doing this is that you don't have to create
and store the complete sequence at the beginning. Instead, you build every object every
time the generator is called. As a simple example, let's create a generator for a number
sequence without storing the complete list in advance:

def incrementer():
 i = 0
 while i<5:
 yield(i)
 i +=1

for i in incrementer():
 print (i)

Prints:
0
1
2
3
4

Strengthen Your Python Foundations

[440]

Conditionals
Conditionals are often used in data science since you can branch the program. The most
frequently used one is the if statement. It works more or less the same as in other
programming languages. Here's an example of it:

def is_positive(val):
 if val< 0:
 print ("It is negative")
 elif val> 0:
 print ("It is positive")
 else:
 print ("It is exactly zero!")

is_positive(-1)
is_positive(1.5)
is_positive(0)

Prints:
It is negative
It is positive
It is exactly zero!

The first condition is checked with if. If there are any other conditions, they are defined
with elif (this stands for else...if). Finally, the default behavior is handled by else.

Note that elif and else are not essentials.

Comprehensions for lists and dictionaries
Use comprehensions, lists, and dictionaries that are built as one-liners with the use of an
iterator and a conditional when necessary:

a_list = [1,2,3,4,5]
a_power_list = [value**2 for value in a_list]
the resulting list is [1, 4, 9, 16, 25]

filter_even_numbers = [value**2 for value in a_list if value % 2 == 0]
the resulting list is [4, 16]

Strengthen Your Python Foundations

[441]

another_list = ['a','b','c','d','e']
a_dictionary = {key:value for value, key in zip(a_list, another_list)}
the resulting dictionary is {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}

zip is a function that takes, as input, multiple lists of the same length and iterates through
each element with the same index at the same time, so you can match the first elements of
every list together, and so on.

Comprehensions are a fast way to filter and transform data that is present in an iterator.

Learn by watching, reading, and doing
What if the refresher courses and our learning list are not enough and you need more
support to strengthen your knowledge of Python? We will recommend further resources
that are available free on the web. By watching tutorial videos, you can try out complex and
different examples and challenge yourself with a difficult task that requires you to interact
with other data scientists and Python experts.

Massive open online courses (MOOCs)
MOOCs have become increasingly popular in recent years, offering some of the best
courses from the best universities and experts from around the world for free on their
online platforms. You will find Python courses on Coursera (https://www.coursera.org/),
Edx (https://www.edx.org/), and Udacity (https://www.udacity.com). Another great
source is the MIT open courseware, which is easily accessible
(ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-
introduction-to-computer-science-and-programming-spring-2011).

When you consult each of these sites, you may find different active courses on Python. We
recommend a free, always available, and do-it-at-your-own pace course by Peter Norvig,
the Director of Research at Google Inc. This course aims to take your knowledge of Python
to a higher level of proficiency.

https://www.coursera.org/
https://www.edx.org/
https://www.udacity.com
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/

Strengthen Your Python Foundations

[442]

PyCon and PyData
The Python Conference (PyCon) is an annual convention organized at various locations
around the world with the purpose of promoting the usage and diffusion of the Python
language. During such conventions, tutorials, hands-on demonstrations, and training
sessions are commonly held. You can check out http://www.pycon.org/ to find out where
and when the next PyCon will be held near you. If you cannot attend it, you can still
perform a search on www.youtube.com because most of the interesting sessions are recorded
and uploaded there. Attending and watching the real demonstration is a different thing
anyway, so we warmly suggest you attend such conventions, because it really is worth it.

Similarly, PyData, a community of Python developers and users devoted to data analysis,
organize many events around the world. You can check out pydata.org/events.html for
upcoming events and check whether any past events may have been of interest to you. As
with PyCon, presentations are often available on YouTube, on dedicated channels such as
PyDataTV.

Interactive Jupyter
Sometimes, you need some written explanations and the opportunity to test some sample
code by yourself. Jupyter, an open tool like Python itself, offers you all of this via its
notebooks—interactive web pages where you will find both explanations and example code
that can be tested directly. We devote explanations about Jupyter and its kernels
throughout the is book because it is a real data science workhorse. It allows you to easily
run Python scripts and evaluate their effects on the data that you are work on.

The GitHub location of the IPython kernel (the Python kernel of Jupyter, since Jupyter can
run many different programming languages) offers a complete list of example notebooks.
You can check it out at github.com/ipython/ipython/wiki/A-gallery-of-interesting-
IPython-Notebooks. In particular, a section of the list is about General Python
Programming, whereas another one is about Statistics, Machine Learning and Data
Science, where you will find quite a lot of examples of Python scripts that you can take
inspiration from in your learning.

http://www.pycon.org/
http://www.youtube.com
http://pydata.org/events.html
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

Strengthen Your Python Foundations

[443]

Don't be shy, take a real challenge
If you want to do something that can take your Python coding ability to a different level,
we suggest you go and take a challenge on Kaggle. Kaggle (www.kaggle.com) is a platform
for predictive modeling and analytics competitions, which applies the idea of competitive
programming (participants try to program according to the provided specifications) in data
science by proposing challenging data problems to participants and asking them to provide
possible solutions that are evaluated on a test set. The results of the test set are partly
public, partly private.

The most interesting part for a Python learner is the opportunity to take part in a real
problem with no obvious solution, which requires you to code something to propose
possible solutions to the problem, even something simple or naive (which we suggest you
start with first before getting involved in complex solutions). By doing so, the learner will
come across interesting tutorials, beat-the-benchmark codes, helpful communities of data
scientists, and some very smart solutions proposed by other data scientists or Kaggle itself
in its blog, no free hunch (blog.kaggle.com).

You may wonder how to find the right challenge for yourself. Just have a look at the past
and present competitions at www.kaggle.com/competitions and look for every competition
that has knowledge as a reward. You will be surprised to find an ideal stage to learn about
how other data scientists code in Python, and you can immediately apply what you learn
from this book.

http://www.kaggle.com
http://blog.kaggle.com/
https://www.kaggle.com/competitions

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Practical Data Science Cookbook - Second Edition
Prabhanjan Tattar

ISBN: 9781787129627

Learn and understand the installation procedure and environment required for R
and Python on various platforms
Prepare data for analysis by implement various data science concepts such as
acquisition, cleaning and munging through R and Python
Build a predictive model and an exploratory model
Analyze the results of your model and create reports on the acquired data
Build various tree-based methods and Build random forest

https://www.packtpub.com/big-data-and-business-intelligence/practical-data-science-cookbook-second-edition

Other Books You May Enjoy

[445]

Python Machine Learning By Example
Yuxi (Hayden) Liu

ISBN: 9781783553112

Exploit the power of Python to handle data extraction, manipulation, and
exploration techniques
Use Python to visualize data spread across multiple dimensions and extract
useful features
Dive deep into the world of analytics to predict situations correctly
Implement machine learning classification and regression algorithms from
scratch in Python
Be amazed to see the algorithms in action
Evaluate the performance of a machine learning model and optimize it
Solve interesting real-world problems using machine learning and Python as the
journey unfolds

https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning-example

Other Books You May Enjoy

[446]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

3
3V model
 variety 380
 velocity 380
 volume 380

A
AdaBoost 237
additive white Gaussian noise (AWGN) 144
advanced data learning representation
 about 318
 feature importance, of RandomForest 322, 323
 Gradient Boosting Trees partial dependence

plotting 325, 326
 learning curves 318, 319, 320
 prediction server, creating with machine-learning-

as-a-service 326, 328, 331
 validation curves 321, 322
Anaconda
 about 15
 reference 15
Apache Hadoop 382
Apache Spark
 about 387
 cluster mode 387
 standalone mode 387
APIs, Python
 reference 65
arbitrary waveform generator (AWG) 152
area under a curve (AUC) 175
arrays
 resizing 117
artificial intelligence (AI) 355
averaging algorithms 230

B
bagging 231, 232
bar graphs
 about 291
 plotting 292
BatchNormalization layer 367
Beautiful Soup
 about 28
 reference 28
 web, scraping 104, 105, 106
big data
 dealing with 253, 254, 255, 257, 258, 259
big datasets
 creating, as examples 253, 254
binary classification 175, 176
Bokeh
 reference 303
boosting algorithms 230
bootstrapping 189
Boston dataset
 using 215
breadth-first search (BFS) 243
broadcast and accumulator variables 400

C
CatBoost
 about 33, 248, 249, 250
 reference 33, 248
categorical boosting 33
categorical data
 working with 95, 96
coefficient of determination 177
colorhexa
 reference 285
compressed sparse column (csc) 134
compressed sparse row (csr) 134

[448]

conda
 environments, managing 21
 leveraging, to install packages 16
 reference 17
containerization 388
convolutional neural network (CNN) 359
covariance matrix 145, 146
cross-validation 182, 183, 184
cross-validation iterators
 using 185, 186
curve plotting 284
custom sequential palette
 creating 308, 309
custom transformation functions
 building 209, 210

D
darkgrid theme 306
data exploration 136
data preprocessing, Spark
 about 403
 CSV files 403, 404
 in-memory tables, creating 406, 407, 408
 in-memory tables, grouping 406, 407, 408
 missing data, dealing with 405, 406
 preprocessed DataFrame, writing to disk 408,

409

 RDD, writing to disk 408, 409
 Spark DataFrames 403, 404
 Spark DataFrames, working with 409
data processing
 with NumPy 107
data science 7
data science process 64, 65
data scientist
 reference 7
data
 extracting, from pandas 121
 loading, with pandas 67, 68, 70
 preprocessing, with pandas 67
dataists blog
 reference 66
DBSCAN 273, 274, 275
deep learning
 about 355

 approaching 355, 356, 357, 358
degree 168
depth-first search (DFS) 243
dictionaries
 limitations 107
dimensionality reduction
 about 144
 covariance matrix 145, 146
 independent component analysis (ICA) 154
 kernel PCA 155, 156
 latent factor analysis (LFA) 152
 latent semantical analysis (LSA) 154
 linear discriminant analysis (LDA) 153
 Principal component analysis (PCA) 146, 147,

148, 149
 RandomizedPCA 151
 Restricted Boltzmann Machine (RBM) 158
 T-SNE 157
distributed framework
 need for 381, 382
Dropout layers 367

E
EDA capabilities
 enhancing 310, 311, 312, 313, 314, 315, 316,

317

EllipticEnvelope 163, 165, 166, 167
EM (expectation/maximization) 270
ensemble strategies
 about 230
 AdaBoost 237
 bagging 231, 232
 CatBoost 248, 249, 250, 252
 Extra-Trees 233
 eXtreme Gradient Boosting (XGBoost) 239, 240
 Gradient tree boosting (GTB) 238, 239
 LightGBM 243, 244, 245, 246, 247
 pasting 231
 random forests 233
 random patches 232
 random subspaces 232
ensemble
 probabilities, estimating from 235, 236
Enthought Canopy
 about 17

[449]

 reference 17
Explorative Data Analysis (EDA) 282
exploratory data analysis (EDA) 136
Extra-Trees 233
eXtreme Gradient Boosting (XGBoost)
 about 240, 241
 reference 239

F
fancy indexing 128
feature engineering 415
feature importance
 of RandomForest 324
feature selection
 about 198
 based on feature variance 199
 univariate selection 199, 200, 201
features
 building 141, 142, 143
 combining 206, 207

G
gamma 169
Gensim
 about 29
 reference 29
ggplot
 reference 303
Gradient Boosting Trees partial dependence

plotting 325, 326
gradient tree boosting (GTB) 238, 239
graph algorithms
 about 340, 341, 342
 network, partitioning 347, 349, 350
 node centrality, types 343
Graph Modeling Language (GML) 350
graph theory 333, 336, 337, 338, 339, 340
graph
 dumping 350, 352, 354
 loading 350, 352, 354
 sampling 350, 352, 354
graphic panels
 using, for clearer representations 286
graphical examples, with pandas
 about 295, 296

 boxplot, working with 296, 297
 histogram, working with 298
 scatterplots, plotting 299, 300, 301

H
h5py package
 reference 80
Hadoop Distributed File System (HDFS)
 about 384
 DataNodes 384
 NameNode 384
Hadoop ecosystem
 about 382
 Apache Spark 387
 Hadoop architecture 382, 383
 Hadoop Distributed File System (HDFS) 384
 MapReduce 385
 PySpark 387
hashlib
 reference 259
HDF5 data structure
 about 80
 reference 78
heat map 146
histogram 141, 289, 290
hls color space 308
hyperparameter optimization
 about 190, 191, 192
 custom scoring functions, building 193, 195
 grid search runtime, reducing 195, 196
Hypertext Markup Language (HTML) 105

I
image visualization 292, 295
images
 classifying, with CNN 359, 360, 361, 363, 364
independent component analysis (ICA) 154
INRA (French Institute for Research in Computer

Science and Automation) 25
Inria
 reference 213
interquartile range (IQR) 143, 290
intrusion-detection systems (IDS) 412
Iris dataset
 working on 137, 138, 139, 140

[450]

J
JavaScript Object Notation (JSON) 65
Julia
 reference 35
Jupyter Notebook
 functionality 45, 46, 47, 48, 49
 packages, installing from 43
Jupyter
 about 25, 35, 36
 alternatives 51
 functionalities 39
 installing 39, 40
 magic commands 41, 43
 reference 25
JupyterLab environment
 checking 44
JupyterLab
 about 26
 reference 26

K
K-means 269, 270
K-Nearest Neighbors 221
Keras
 about 34
 reference 34
kernel 168
kernel PCA 155, 156
kernels, for Jupyter
 reference 35
KNN regressor 142
Kullback-Leibler (KL) 157

L
L1-based selection 204, 205
Latent Dirichlet Allocation (LDA) 276, 277, 278,

279

latent factor analysis (LFA) 152
latent semantical analysis (LSA) 154
lazy classifiers 221
learning curve 318, 319, 320
LIBSVM Data
 reference 58
LightGBM

 about 32, 243, 244, 245, 246, 247, 248
 reference 32
linear discriminant analysis (LDA) 153
linear regression 214
lists
 limitations 107
logistic regression 214, 216, 218
long short-term memory (LSTM) 377

M
machine learning algorithm
 applying 177, 178, 179, 180, 181
machine learning, with Spark
 about 411
 cross-validation 425, 426, 427
 dataset, reading 412, 414
 feature engineering 415, 416, 417
 final cleanup 427
 learner's performance, evaluating 420
 learner, training 418, 419
 machine learning pipeline 420, 421
 manual tuning 422, 425
 Spark, on KDD99 dataset 411
machine-learning-as-a-service (ML-AAS) 326
MapReduce, for Hadoop implementation
 about 386
 data chunker 385
 mapper 385
 output writer 385
 reducer 385
 shuffler 385
MapReduce
 about 385
 reference 385
Markdown
 reference 37, 38
mask 85
Massachusetts Institute of Technology (MIT) 64
MathJax
 reference 37
matplotlib commands
 color_palette() command 307
 despine command 306
 set_style command 306
 wrapping up 303

[451]

matplotlib
 about 26
 bar graphs 291
 basics 283
 curve plotting 284, 285, 286
 histograms 289, 290
 image visualization 292
 panels, used for clearer representations 286,

287

 patterns, discovering by parallel coordinates 302
 reference 26
 scatterplots, plotting for relationships in data

288, 289
 selected graphical examples, with pandas 295
MaxPooling 367
mean absolute error (MAE) 142, 176
mean squared error (MSE) 177
Miniconda
 about 16
 reference 16
MLdata.org 57
MLlib 411
MPLD3
 reference 303
multilabel classification 172
multilabel classification, measures
 accuracy 174
 confusion matrix 173
 F1 score 174
 precision 174
 recall 174
munging 64
MurmurHash 32
 reference 259

N
Naive Bayes
 about 218
 example 219, 220
named entity recognition (NER) 265
National Center for Supercomputing Applications

(NCSA) 80
natural language processing (NLP) 131, 262
Natural Language Processing (NLP) 29
Natural Language Toolkit (NLTK) 262

 about 29
 reference 29
ndarray object class
 attributes 107, 108
ndarray objects
 drawbacks 108
NetworkX
 about 28
 reference 28
NLP toolkits
 reference 262
NLTK core functionalities
 named entity recognition (NER) 265
 stemming 264
 stopwords 266
 word tagging 264, 265
 word tokenization 262, 263
node centrality
 betweenness centrality 343
 closeness centrality 344
 degree centrality 343
 eigenvector centrality 345
 harmonic centrality 345
 types 343
nu 169
numerical data
 working with 95
NumPy arrays
 creating 111
 creating, from lists to multidimensional arrays

115, 116
 creating, from lists to unidimensional arrays 112
 heterogeneous lists 114
 indexing with 126, 127, 128
 memory size, controlling 113
 obtaining, from file 120
 slicing with 126, 127, 128
 stacking 129, 130, 131
NumPy functions
 arrays, derived from 118, 119
NumPy ndarray objects
 basics 108, 109, 110
NumPy
 about 23
 computations 122, 123, 124

[452]

 data preprocessing 106
 fast operation 122, 123, 124
 matrix operations 124, 126
 n-dimensional array 107
 reference 23

O
OneClassSVM 168, 169, 170
OSEMN (Obtain, Scrub, Explore, Model, iNterpret)

66

outliers
 detecting 159
 EllipticEnvelope 163
 OneClassSVM 168
 treatment 160
 univariate outlier detection 160, 161, 162

P
packages
 about 22
 Beautiful Soup 28
 CatBoost 33
 Gensim 29
 installing, from Jupyter Notebooks 43
 Jupyter 25
 JupyterLab 26
 Keras 34
 LightGBM 32
 matplotlib 26
 Natural Language Toolkit (NLTK) 29
 NetworkX 28
 NumPy 23
 pandas 24
 pandas-profiling 24
 PyPy 29
 Scikit-learn 25
 SciPy 23
 seaborn 27
 statsmodels 27
 TensorFlow 33
 XGBoost 30
pandas-profiling
 about 24
 reference 24
pandas

 about 24
 data formats, accessing 78, 79, 80
 data selection 92, 93, 94
 data, extracting from 121
 data, gathering 81, 82, 83, 84, 85
 data, loading 67, 68, 70
 data, preprocessing 67, 85, 86, 87, 88, 89, 90,

91

 dealing, with big datasets 74, 75, 76, 77, 78
 dealing, with problematic data 71, 72, 73
 reference 24
 references 78
part-of-speech tag (POS-Tag) 264
pasting 231
Pattern Analysis, Statistical Modelling, and

Computational Learning (PASCAL) 57
patterns
 discovering, by parallel coordinates 302
pip
 reference 12
Portable PixMap (PPM) 360
POS-Tagging 264
pre-trained models
 using 371, 373
prediction server
 creating, with machine-learning-as-a-service

326, 328, 331
Principal component analysis (PCA) 146, 147,

148, 149
probabilities
 estimating, from ensemble 235, 236
pyenv
 reference 20
PyPI
 reference 22
PyPy
 reference 29
PySpark
 about 387, 388
 local Spark instance, setting up 388, 389, 390,

391

 Resilient Distributed Datasets, experimenting
with 391, 392, 393, 394, 395, 396, 397

Python 2
 versus Python 3 9, 10

[453]

Python Enhancement Proposal (PEP) 465
 reference 126
Python-future
 reference 10
Python
 about 9
 characteristics 8
 installing 10, 11
 package upgrades 14, 15
 packages, installing 12, 13, 14
 references 9
 scientific distributions 15

R
R2 score 177
R
 reference 35
Radial Basis Function (RBF) 224
Random Forests 50
random forests 233
random patches 232
random subspaces 232
RandomizedPCA 151
read-only broadcast variables 398
receiver operating characteristics curve (ROC)

175

rectified linear unit (ReLU) 358
recursive elimination 201
regression 176
relational database management system (RDBMS)

65, 334
Resilient Distributed Dataset (RDD)
 about 388
 experimenting with 391
Restricted Boltzmann Machine (RBM) 158
Rodeo
 advantages 52
 reference 51
RStudio
 reference 51

S
sampling 188
Scala
 reference 35

scatterplots
 plotting 299
 plotting, for relationships in data 288
scientific distributions
 Anaconda 15
 Enthought Canopy 17
 WinPython 18
Scikit-learn sample generators 62
Scikit-learn toy datasets 53, 54, 55
Scikit-learn
 about 25
 features 213
SciKits 25
SciPy
 about 23
 reference 23
Seaborn
 about 303, 304
seaborn
 about 27
Seaborn
 examples 304, 305, 306
 palettes 308
seaborn
 reference 27
Seaborn
 reference 304
 themes 305
singular value decomposition (SVD) 151
social network analysis (SNA) 333
spaCy
 reference 262
Spark DataFrames
 working with 409
Spark
 data preprocessing 403
sparse arrays
 working with 131, 132, 133, 134
sparse matrices
 reference 132
SQLite
 reference 78
ss-validation iterators
 using 187
statsmodels

 about 27
 reference 27
stemming 264
Stochastic Gradient Descent (SGD) 260, 261
stopwords 266
storytelling 45
subsampling 188
Support Vector Machine (SVM)
 about 50, 223
 advantages 223
 for classification 224, 225
 for regression 226, 227
 tuning 227, 228, 229

T
T-SNE 157
tagging 264
temporal sequences
 working with 375
TensorFlow
 about 33
 reference 34
text classification 267, 268, 269
text data 98, 100, 102
textual data
 working with 95
tokenization 262
transfer learning technique 374
transformations
 chaining 206, 207, 208

U
univariate outlier detection 160, 161, 162
unsupervised learning
 about 269
 DBSCAN 274, 275
 K-means 269, 270, 271, 272
 Latent Dirichlet Allocation (LDA) 276, 277, 278,

279

V
validation curves 321, 322
validation metrics
 about 172
 binary classification 175, 176
 multilabel classification 172
 regression 176
validity 380
value 380
variables, sharing across cluster nodes
 about 398
 broadcast and accumulator variables 400, 401
 read-only broadcast variables 398
 write-only accumulator variables 399, 400
veracity 380
virtual environments 18, 19, 20
virtualenv
 reference 18
virtualenvwrapper
 reference 20
visualization
 about 282
 URL, for basic rules 283
volatility 380

W
web
 scraping, with Beautiful Soup 104, 105, 106
WinPython Package Manager (WPPM) 18
WinPython
 about 18
 reference 18
word tokenization 262, 263
write-only accumulator variables 399

X
XGBoost
 about 30
 reference 30

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: First Steps
	Introducing data science and Python
	Installing Python
	Python 2 or Python 3?
	Step-by-step installation
	Installing the necessary packages
	Package upgrades
	Scientific distributions
	Anaconda
	Leveraging conda to install packages
	Enthought Canopy
	WinPython

	Explaining virtual environments
	Conda for managing environments

	A glance at the essential packages
	NumPy
	SciPy
	pandas
	pandas-profiling
	Scikit-learn
	Jupyter
	JupyterLab
	Matplotlib
	Seaborn
	Statsmodels
	Beautiful Soup
	NetworkX
	NLTK
	Gensim
	PyPy
	XGBoost
	LightGBM
	CatBoost
	TensorFlow
	Keras

	Introducing Jupyter
	Fast installation and first test usage
	Jupyter magic commands
	Installing packages directly from Jupyter Notebooks
	Checking the new JupyterLab environment
	How Jupyter Notebooks can help data scientists
	Alternatives to Jupyter

	Datasets and code used in this book
	Scikit-learn toy datasets
	The MLdata.org and other public repositories for open source data
	LIBSVM data examples
	Loading data directly from CSV or text files
	Scikit-learn sample generators

	Summary

	Chapter 2: Data Munging
	The data science process
	Data loading and preprocessing with pandas
	Fast and easy data loading
	Dealing with problematic data
	Dealing with big datasets
	Accessing other data formats
	Putting data together
	Data preprocessing
	Data selection

	Working with categorical and textual data
	A special type of data – text
	Scraping the web with Beautiful Soup

	Data processing with NumPy
	NumPy's n-dimensional array
	The basics of NumPy ndarray objects

	Creating NumPy arrays
	From lists to unidimensional arrays
	Controlling memory size
	Heterogeneous lists
	From lists to multidimensional arrays
	Resizing arrays
	Arrays derived from NumPy functions
	Getting an array directly from a file
	Extracting data from pandas

	NumPy fast operation and computations
	Matrix operations
	Slicing and indexing with NumPy arrays
	Stacking NumPy arrays
	Working with sparse arrays

	Summary

	Chapter 3: The Data Pipeline
	Introducing EDA
	Building new features
	Dimensionality reduction
	The covariance matrix
	Principal component analysis
	PCA for big data – RandomizedPCA
	Latent factor analysis
	Linear discriminant analysis
	Latent semantical analysis
	Independent component analysis
	Kernel PCA
	T-SNE
	Restricted Boltzmann Machine

	The detection and treatment of outliers
	Univariate outlier detection
	EllipticEnvelope
	OneClassSVM

	Validation metrics
	Multilabel classification
	Binary classification
	Regression

	Testing and validating
	Cross-validation
	Using cross-validation iterators
	Sampling and bootstrapping

	Hyperparameter optimization
	Building custom scoring functions
	Reducing the grid search runtime

	Feature selection
	Selection based on feature variance
	Univariate selection
	Recursive elimination
	Stability and L1-based selection

	Wrapping everything in a pipeline
	Combining features together and chaining transformations
	Building custom transformation functions

	Summary

	Chapter 4: Machine Learning
	Preparing tools and datasets
	Linear and logistic regression
	Naive Bayes
	K-Nearest Neighbors
	Nonlinear algorithms
	SVM for classification
	SVM for regression
	Tuning SVM

	Ensemble strategies
	Pasting by random samples
	Bagging with weak classifiers
	Random Subspaces and Random Patches
	Random Forests and Extra-Trees
	Estimating probabilities from an ensemble
	Sequences of models – AdaBoost
	Gradient tree boosting (GTB)
	XGBoost
	LightGBM
	CatBoost

	Dealing with big data
	Creating some big datasets as examples
	Scalability with volume
	Keeping up with velocity
	Dealing with variety
	An overview of Stochastic Gradient Descent (SGD)

	A peek into natural language processing (NLP)
	Word tokenization
	Stemming
	Word tagging
	Named entity recognition (NER)
	Stopwords
	A complete data science example – text classification

	An overview of unsupervised learning
	K-means
	DBSCAN – a density-based clustering technique
	Latent Dirichlet Allocation (LDA)

	Summary

	Chapter 5: Visualization, Insights, and Results
	Introducing the basics of matplotlib
	Trying curve plotting
	Using panels for clearer representations
	Plotting scatterplots for relationships in data
	Histograms
	Bar graphs
	Image visualization
	Selected graphical examples with pandas
	Working with boxplots and histograms
	Plotting scatterplots

	Discovering patterns by parallel coordinates

	Wrapping up matplotlib's commands
	Introducing Seaborn
	Enhancing your EDA capabilities

	Advanced data learning representation
	Learning curves
	Validation curves
	Feature importance for RandomForests
	Gradient Boosting Trees partial dependence plotting
	Creating a prediction server with machine-learning-as-a-service

	Summary

	Chapter 6: Social Network Analysis
	Introduction to graph theory
	Graph algorithms
	Types of node centrality
	Partitioning a network

	Graph loading, dumping, and sampling
	Summary

	Chapter 7: Deep Learning Beyond the Basics
	Approaching deep learning
	Classifying images with CNN
	Using pre-trained models
	Working with temporal sequences
	Summary

	Chapter 8: Spark for Big Data
	From a standalone machine to a bunch of nodes
	Making sense of why we need a distributed framework
	The Hadoop ecosystem
	Hadoop architecture
	Hadoop Distributed File System
	MapReduce
	Introducing Apache Spark
	PySpark

	Starting with PySpark
	Setting up your local Spark instance
	Experimenting with Resilient Distributed Datasets

	Sharing variables across cluster nodes
	Read-only broadcast variables
	Write-only accumulator variables
	Broadcast and accumulator variables together—an example

	Data preprocessing in Spark
	CSV files and Spark DataFrames
	Dealing with missing data
	Grouping and creating tables in-memory
	Writing the preprocessed DataFrame or RDD to disk
	Working with Spark DataFrames

	Machine learning with Spark
	Spark on the KDD99 dataset
	Reading the dataset
	Feature engineering
	Training a learner
	Evaluating a learner's performance
	The power of the machine learning pipeline
	Manual tuning
	Cross-validation
	Final cleanup

	Summary

	Appendix: Strengthen Your Python Foundations
	Your learning list
	Lists
	Dictionaries
	Defining functions
	Classes, objects, and object-oriented programming
	Exceptions
	Iterators and generators
	Conditionals
	Comprehensions for lists and dictionaries

	Learn by watching, reading, and doing
	Massive open online courses (MOOCs)
	PyCon and PyData
	Interactive Jupyter
	Don't be shy, take a real challenge

	Other Books You May Enjoy
	Index

