


Chapter 5

Sequences and Series of
Functions

In this chapter, we define and study the convergence of sequences and series of
functions. There are many different ways to define the convergence of a sequence
of functions, and different definitions lead to inequivalent types of convergence. We
consider here two basic types: pointwise and uniform convergence.

5.1. Pointwise convergence

Pointwise convergence defines the convergence of functions in terms of the conver-
gence of their values at each point of their domain.

Definition 5.1. Suppose that (fn) is a sequence of functions fn : A → R and
f : A → R. Then fn → f pointwise on A if fn(x) → f(x) as n → ∞ for every
x ∈ A.

We say that the sequence (fn) converges pointwise if it converges pointwise to
some function f , in which case

f(x) = lim
n→∞

fn(x).

Pointwise convergence is, perhaps, the most natural way to define the convergence
of functions, and it is one of the most important. Nevertheless, as the following
examples illustrate, it is not as well-behaved as one might initially expect.

Example 5.2. Suppose that fn : (0, 1) → R is defined by

fn(x) =
n

nx+ 1
.

Then, since x ̸= 0,

lim
n→∞

fn(x) = lim
n→∞

1

x+ 1/n
=

1

x
,
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58 5. Sequences and Series of Functions

so fn → f pointwise where f : (0, 1) → R is given by

f(x) =
1

x
.

We have |fn(x)| < n for all x ∈ (0, 1), so each fn is bounded on (0, 1), but their
pointwise limit f is not. Thus, pointwise convergence does not, in general, preserve
boundedness.

Example 5.3. Suppose that fn : [0, 1] → R is defined by fn(x) = xn. If 0 ≤ x < 1,
then xn → 0 as n → ∞, while if x = 1, then xn → 1 as n → ∞. So fn → f
pointwise where

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

Although each fn is continuous on [0, 1], their pointwise limit f is not (it is discon-
tinuous at 1). Thus, pointwise convergence does not, in general, preserve continuity.

Example 5.4. Define fn : [0, 1] → R by

fn(x) =


2n2x if 0 ≤ x ≤ 1/(2n)

2n2(1/n− x) if 1/(2n) < x < 1/n,

0 1/n ≤ x ≤ 1.

If 0 < x ≤ 1, then fn(x) = 0 for all n ≥ 1/x, so fn(x) → 0 as n → ∞; and if x = 0,
then fn(x) = 0 for all n, so fn(x) → 0 also. It follows that fn → 0 pointwise on
[0, 1]. This is the case even though max fn = n → ∞ as n → ∞. Thus, a pointwise
convergent sequence of functions need not be bounded, even if it converges to zero.

Example 5.5. Define fn : R → R by

fn(x) =
sinnx

n
.

Then fn → 0 pointwise on R. The sequence (f ′
n) of derivatives f

′
n(x) = cosnx does

not converge pointwise on R; for example,

f ′
n(π) = (−1)n

does not converge as n → ∞. Thus, in general, one cannot differentiate a pointwise
convergent sequence. This is because the derivative of a small, rapidly oscillating
function may be large.

Example 5.6. Define fn : R → R by

fn(x) =
x2√

x2 + 1/n
.

If x ̸= 0, then

lim
n→∞

x2√
x2 + 1/n

=
x2

|x|
= |x|

while fn(0) = 0 for all n ∈ N, so fn → |x| pointwise on R. The limit |x| not
differentiable at 0 even though all of the fn are differentiable on R. (The fn “round
off” the corner in the absolute value function.)
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Example 5.7. Define fn : R → R by

fn(x) =
(
1 +

x

n

)n

.

Then by the limit formula for the exponential, which we do not prove here, fn → ex

pointwise on R.

5.2. Uniform convergence

In this section, we introduce a stronger notion of convergence of functions than
pointwise convergence, called uniform convergence. The difference between point-
wise convergence and uniform convergence is analogous to the difference between
continuity and uniform continuity.

Definition 5.8. Suppose that (fn) is a sequence of functions fn : A → R and
f : A → R. Then fn → f uniformly on A if, for every ϵ > 0, there exists N ∈ N
such that

n > N implies that |fn(x)− f(x)| < ϵ for all x ∈ A.

When the domain A of the functions is understood, we will often say fn → f
uniformly instead of uniformly on A.

The crucial point in this definition is that N depends only on ϵ and not on
x ∈ A, whereas for a pointwise convergent sequence N may depend on both ϵ
and x. A uniformly convergent sequence is always pointwise convergent (to the
same limit), but the converse is not true. If for some ϵ > 0 one needs to choose
arbitrarily large N for different x ∈ A, meaning that there are sequences of values
which converge arbitrarily slowly on A, then a pointwise convergent sequence of
functions is not uniformly convergent.

Example 5.9. The sequence fn(x) = xn in Example 5.3 converges pointwise on
[0, 1] but not uniformly on [0, 1]. For 0 ≤ x < 1 and 0 < ϵ < 1, we have

|fn(x)− f(x)| = |xn| < ϵ

if and only if 0 ≤ x < ϵ1/n. Since ϵ1/n < 1 for all n ∈ N, no N works for all x
sufficiently close to 1 (although there is no difficulty at x = 1). The sequence does,
however, converge uniformly on [0, b] for every 0 ≤ b < 1; for 0 < ϵ < 1, we can
take N = log ϵ/log b.

Example 5.10. The pointwise convergent sequence in Example 5.4 does not con-
verge uniformly. If it did, it would have to converge to the pointwise limit 0, but∣∣∣∣fn ( 1

2n

)∣∣∣∣ = n,

so for no ϵ > 0 does there exist an N ∈ N such that |fn(x) − 0| < ϵ for all x ∈ A
and n > N , since this inequality fails for n ≥ ϵ if x = 1/(2n).

Example 5.11. The functions in Example 5.5 converge uniformly to 0 on R, since

|fn(x)| =
| sinnx|

n
≤ 1

n
,

so |fn(x)− 0| < ϵ for all x ∈ R if n > 1/ϵ.
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5.3. Cauchy condition for uniform convergence

The Cauchy condition in Definition 1.9 provides a necessary and sufficient condi-
tion for a sequence of real numbers to converge. There is an analogous uniform
Cauchy condition that provides a necessary and sufficient condition for a sequence
of functions to converge uniformly.

Definition 5.12. A sequence (fn) of functions fn : A → R is uniformly Cauchy
on A if for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that |fm(x)− fn(x)| < ϵ for all x ∈ A.

The key part of the following proof is the argument to show that a pointwise
convergent, uniformly Cauchy sequence converges uniformly.

Theorem 5.13. A sequence (fn) of functions fn : A → R converges uniformly on
A if and only if it is uniformly Cauchy on A.

Proof. Suppose that (fn) converges uniformly to f on A. Then, given ϵ > 0, there
exists N ∈ N such that

|fn(x)− f(x)| < ϵ

2
for all x ∈ A if n > N.

It follows that if m,n > N then

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |f(x)− fn(x)| < ϵ for all x ∈ A,

which shows that (fn) is uniformly Cauchy.

Conversely, suppose that (fn) is uniformly Cauchy. Then for each x ∈ A, the
real sequence (fn(x)) is Cauchy, so it converges by the completeness of R. We
define f : A → R by

f(x) = lim
n→∞

fn(x),

and then fn → f pointwise.

To prove that fn → f uniformly, let ϵ > 0. Since (fn) is uniformly Cauchy, we
can choose N ∈ N (depending only on ϵ) such that

|fm(x)− fn(x)| <
ϵ

2
for all x ∈ A if m,n > N.

Let n > N and x ∈ A. Then for every m > N we have

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ϵ

2
+ |fm(x)− f(x)|.

Since fm(x) → f(x) as m → ∞, we can choose m > N (depending on x, but it
doesn’t matter since m doesn’t appear in the final result) such that

|fm(x)− f(x)| < ϵ

2
.

It follows that if n > N , then

|fn(x)− f(x)| < ϵ for all x ∈ A,

which proves that fn → f uniformly.



5.4. Properties of uniform convergence 61

Alternatively, we can take the limit as m → ∞ in the Cauchy condition to get
for all x ∈ A and n > N that

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| ≤
ϵ

2
< ϵ.

�

5.4. Properties of uniform convergence

In this section we prove that, unlike pointwise convergence, uniform convergence
preserves boundedness and continuity. Uniform convergence does not preserve dif-
ferentiability any better than pointwise convergence. Nevertheless, we give a result
that allows us to differentiate a convergent sequence; the key assumption is that
the derivatives converge uniformly.

5.4.1. Boundedness. First, we consider the uniform convergence of bounded
functions.

Theorem 5.14. Suppose that fn : A → R is bounded on A for every n ∈ N and
fn → f uniformly on A. Then f : A → R is bounded on A.

Proof. Taking ϵ = 1 in the definition of the uniform convergence, we find that
there exists N ∈ N such that

|fn(x)− f(x)| < 1 for all x ∈ A if n > N.

Choose some n > N . Then, since fn is bounded, there is a constant Mn ≥ 0 such
that

|fn(x)| ≤ Mn for all x ∈ A.

It follows that

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < 1 +Mn for all x ∈ A,

meaning that f is bounded on A (by 1 +Mn). �

We do not assume here that all the functions in the sequence are bounded by
the same constant. (If they were, the pointwise limit would also be bounded by that
constant.) In particular, it follows that if a sequence of bounded functions converges
pointwise to an unbounded function, then the convergence is not uniform.

Example 5.15. The sequence of functions fn : (0, 1) → R in Example 5.2, defined
by

fn(x) =
n

nx+ 1
,

cannot converge uniformly on (0, 1), since each fn is bounded on (0, 1), but their
pointwise limit f(x) = 1/x is not. The sequence (fn) does, however, converge
uniformly to f on every interval [a, 1) with 0 < a < 1. To prove this, we estimate
for a ≤ x < 1 that

|fn(x)− f(x)| =
∣∣∣∣ n

nx+ 1
− 1

x

∣∣∣∣ = 1

x(nx+ 1)
<

1

nx2
≤ 1

na2
.

Thus, given ϵ > 0 choose N = 1/(a2ϵ), and then

|fn(x)− f(x)| < ϵ for all x ∈ [a, 1) if n > N,



62 5. Sequences and Series of Functions

which proves that fn → f uniformly on [a, 1). Note that

|f(x)| ≤ 1

a
for all x ∈ [a, 1)

so the uniform limit f is bounded on [a, 1), as Theorem 5.14 requires.

5.4.2. Continuity. One of the most important property of uniform convergence
is that it preserves continuity. We use an “ϵ/3” argument to get the continuity of
the uniform limit f from the continuity of the fn.

Theorem 5.16. If a sequence (fn) of continuous functions fn : A → R converges
uniformly on A ⊂ R to f : A → R, then f is continuous on A.

Proof. Suppose that c ∈ A and ϵ > 0 is given. Then, for every n ∈ N,

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)| .

By the uniform convergence of (fn), we can choose n ∈ N such that

|fn(x)− f(x)| < ϵ

3
for all x ∈ A,

and for such an n it follows that

|f(x)− f(c)| < |fn(x)− fn(c)|+
2ϵ

3
.

(Here we use the fact that fn is close to f at both x and c, where x is an an arbitrary
point in a neighborhood of c; this is where we use the uniform convergence in a
crucial way.)

Since fn is continuous on A, there exists δ > 0 such that

|fn(x)− fn(c)| <
ϵ

3
if |x− c| < δ and x ∈ A,

which implies that

|f(x)− f(c)| < ϵ if |x− c| < δ and x ∈ A.

This proves that f is continuous. �

This result can be interpreted as justifying an “exchange in the order of limits”

lim
n→∞

lim
x→c

fn(x) = lim
x→c

lim
n→∞

fn(x).

Such exchanges of limits always require some sort of condition for their validity — in
this case, the uniform convergence of fn to f is sufficient, but pointwise convergence
is not.

It follows from Theorem 5.16 that if a sequence of continuous functions con-
verges pointwise to a discontinuous function, as in Example 5.3, then the conver-
gence is not uniform. The converse is not true, however, and the pointwise limit
of a sequence of continuous functions may be continuous even if the convergence is
not uniform, as in Example 5.4.
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5.4.3. Differentiability. The uniform convergence of differentiable functions
does not, in general, imply anything about the convergence of their derivatives or
the differentiability of their limit. As noted above, this is because the values of
two functions may be close together while the values of their derivatives are far
apart (if, for example, one function varies slowly while the other oscillates rapidly,
as in Example 5.5). Thus, we have to impose strong conditions on a sequence of
functions and their derivatives if we hope to prove that fn → f implies f ′

n → f ′.

The following example shows that the limit of the derivatives need not equal
the derivative of the limit even if a sequence of differentiable functions converges
uniformly and their derivatives converge pointwise.

Example 5.17. Consider the sequence (fn) of functions fn : R → R defined by

fn(x) =
x

1 + nx2
.

Then fn → 0 uniformly on R. To see this, we write

|fn(x)| =
1√
n

( √
n|x|

1 + nx2

)
=

1√
n

(
t

1 + t2

)
where t =

√
n|x|. We have

t

1 + t2
≤ 1

2
for all t ∈ R,

since (1− t)2 ≥ 0, which implies that 2t ≤ 1 + t2. Using this inequality, we get

|fn(x)| ≤
1

2
√
n

for all x ∈ R.

Hence, given ϵ > 0, choose N = 1/(4ϵ2). Then

|fn(x)| < ϵ for all x ∈ R if n > N,

which proves that (fn) converges uniformly to 0 on R. (Alternatively, we could get
the same result by using calculus to compute the maximum value of |fn| on R.)

Each fn is differentiable with

f ′
n(x) =

1− nx2

(1 + nx2)2
.

It follows that f ′
n → g pointwise as n → ∞ where

g(x) =

{
0 if x ̸= 0,

1 if x = 0.

The convergence is not uniform since g is discontinuous at 0. Thus, fn → 0 uni-
formly, but f ′

n(0) → 1, so the limit of the derivatives is not the derivative of the
limit.

However, we do get a useful result if we strengthen the assumptions and require
that the derivatives converge uniformly, not just pointwise. The proof involves a
slightly tricky application of the mean value theorem.

Theorem 5.18. Suppose that (fn) is a sequence of differentiable functions fn :
(a, b) → R such that fn → f pointwise and f ′

n → g uniformly for some f, g :
(a, b) → R. Then f is differentiable on (a, b) and f ′ = g.
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Proof. Let c ∈ (a, b), and let ϵ > 0 be given. To prove that f ′(c) = g(c), we
estimate the difference quotient of f in terms of the difference quotients of the fn:∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣
+

∣∣∣∣fn(x)− fn(c)

x− c
− f ′

n(c)

∣∣∣∣+ |f ′
n(c)− g(c)|

where x ∈ (a, b) and x ̸= c. We want to make each of the terms on the right-hand
side of the inequality less than ϵ/3. This is straightforward for the second term
(since fn is differentiable) and the third term (since f ′

n → g). To estimate the first
term, we approximate f by fm, use the mean value theorem, and let m → ∞.

Since fm−fn is differentiable, the mean value theorem implies that there exists
ξ between c and x such that

fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c
=

(fm − fn)(x)− (fm − fn)(c)

x− c

= f ′
m(ξ)− f ′

n(ξ).

Since (f ′
n) converges uniformly, it is uniformly Cauchy by Theorem 5.13. Therefore

there exists N1 ∈ N such that

|f ′
m(ξ)− f ′

n(ξ)| <
ϵ

3
for all ξ ∈ (a, b) if m,n > N1,

which implies that ∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ < ϵ

3
.

Taking the limit of this equation as m → ∞, and using the pointwise convergence
of (fm) to f , we get that∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ ϵ

3
for n > N1.

Next, since (f ′
n) converges to g, there exists N2 ∈ N such that

|f ′
n(c)− g(c)| < ϵ

3
for all n > N2.

Choose some n > max(N1, N2). Then the differentiability of fn implies that there
exists δ > 0 such that∣∣∣∣fn(x)− fn(c)

x− c
− f ′

n(c)

∣∣∣∣ < ϵ

3
if 0 < |x− c| < δ.

Putting these inequalities together, we get that∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ϵ if 0 < |x− c| < δ,

which proves that f is differentiable at c with f ′(c) = g(c). �

Like Theorem 5.16, Theorem 5.18 can be interpreted as giving sufficient condi-
tions for an exchange in the order of limits:

lim
n→∞

lim
x→c

[
fn(x)− fn(c)

x− c

]
= lim

x→c
lim

n→∞

[
fn(x)− fn(c)

x− c

]
.
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It is worth noting that in Theorem 5.18 the derivatives f ′
n are not assumed to

be continuous. If they are continuous, one can use Riemann integration and the
fundamental theorem of calculus (FTC) to give a simpler proof of the theorem, as
follows. Fix some x0 ∈ (a, b). The uniform convergence f ′

n → g implies that∫ x

x0

f ′
ndx →

∫ x

x0

g dx.

(This is the main point: although we cannot differentiate a uniformly convergent
sequence, we can integrate it.) It then follows from one direction of the FTC that

fn(x)− fn(x0) →
∫ x

x0

g dx,

and the pointwise convergence fn → f implies that

f(x) = f(x0) +

∫ x

x0

g dx.

The other direction of the FTC then implies that f is differentiable and f ′ = g.

5.5. Series

The convergence of a series is defined in terms of the convergence of its sequence of
partial sums, and any result about sequences is easily translated into a correspond-
ing result about series.

Definition 5.19. Suppose that (fn) is a sequence of functions fn : A → R, and
define a sequence (Sn) of partial sums Sn : A → R by

Sn(x) =
n∑

k=1

fk(x).

Then the series

S(x) =
∞∑

n=1

fn(x)

converges pointwise to S : A → R on A if Sn → S as n → ∞ pointwise on A, and
uniformly to S on A if Sn → S uniformly on A.

We illustrate the definition with a series whose partial sums we can compute
explicitly.

Example 5.20. The geometric series
∞∑

n=0

xn = 1 + x+ x2 + x3 + . . .

has partial sums

Sn(x) =

n∑
k=0

xk =
1− xn+1

1− x
.

Thus, Sn(x) → 1/(1− x) as n → ∞ if |x| < 1 and diverges if |x| ≥ 1, meaning that
∞∑

n=0

xn =
1

1− x
pointwise on (−1, 1).
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Since 1/(1−x) is unbounded on (−1, 1), Theorem 5.14 implies that the convergence
cannot be uniform.

The series does, however, converges uniformly on [−ρ, ρ] for every 0 ≤ ρ < 1.
To prove this, we estimate for |x| ≤ ρ that∣∣∣∣Sn(x)−

1

1− x

∣∣∣∣ = |x|n+1

1− x
≤ ρn+1

1− ρ
.

Since ρn+1/(1− ρ) → 0 as n → ∞, given any ϵ > 0 there exists N ∈ N, depending
only on ϵ and ρ, such that

0 ≤ ρn+1

1− ρ
< ϵ for all n > N.

It follows that∣∣∣∣∣
n∑

k=0

xk − 1

1− x

∣∣∣∣∣ < ϵ for all x ∈ [−ρ, ρ] and all n > N,

which proves that the series converges uniformly on [−ρ, ρ].

The Cauchy condition for the uniform convergence of sequences immediately
gives a corresponding Cauchy condition for the uniform convergence of series.

Theorem 5.21. Let (fn) be a sequence of functions fn : A → R. The series

∞∑
n=1

fn

converges uniformly on A if and only if for every ϵ > 0 there exists N ∈ N such
that ∣∣∣∣∣

n∑
k=m+1

fk(x)

∣∣∣∣∣ < ϵ for all x ∈ A and all n > m > N.

Proof. Let

Sn(x) =
n∑

k=1

fk(x) = f1(x) + f2(x) + · · ·+ fn(x).

From Theorem 5.13 the sequence (Sn), and therefore the series
∑

fn, converges
uniformly if and only if for every ϵ > 0 there exists N such that

|Sn(x)− Sm(x)| < ϵ for all x ∈ A and all n,m > N.

Assuming n > m without loss of generality, we have

Sn(x)− Sm(x) = fm+1(x) + fm+2(x) + · · ·+ fn(x) =
n∑

k=m+1

fk(x),

so the result follows. �

This condition says that the sum of any number of consecutive terms in the
series gets arbitrarily small sufficiently far down the series.
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5.6. The Weierstrass M-test

The following simple criterion for the uniform convergence of a series is very useful.
The name comes from the letter traditionally used to denote the constants, or
“majorants,” that bound the functions in the series.

Theorem 5.22 (Weierstrass M -test). Let (fn) be a sequence of functions fn : A →
R, and suppose that for every n ∈ N there exists a constant Mn ≥ 0 such that

|fn(x)| ≤ Mn for all x ∈ A,

∞∑
n=1

Mn < ∞.

Then
∞∑

n=1

fn(x).

converges uniformly on A.

Proof. The result follows immediately from the observation that
∑

fn is uniformly
Cauchy if

∑
Mn is Cauchy.

In detail, let ϵ > 0 be given. The Cauchy condition for the convergence of a
real series implies that there exists N ∈ N such that

n∑
k=m+1

Mk < ϵ for all n > m > N.

Then for all x ∈ A and all n > m > N , we have∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ ≤
n∑

k=m+1

|fk(x)|

≤
n∑

k=m+1

Mk

< ϵ.

Thus,
∑

fn satisfies the uniform Cauchy condition in Theorem 5.21, so it converges
uniformly. �

This proof illustrates the value of the Cauchy condition: we can prove the
convergence of the series without having to know what its sum is.

Example 5.23. Returning to Example 5.20, we consider the geometric series
∞∑

n=0

xn.

If |x| ≤ ρ where 0 ≤ ρ < 1, then

|xn| ≤ ρn,

∞∑
n=0

ρn < 1.

The M -test, with Mn = ρn, implies that the series converges uniformly on [−ρ, ρ].



68 5. Sequences and Series of Functions
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Figure 1. Graph of the Weierstrass continuous, nowhere differentiable func-
tion y =

∑∞
n=0 2

−n cos(3nx) on one period [0, 2π].

Example 5.24. The series

f(x) =

∞∑
n=1

1

2n
cos (3nx)

converges uniformly on R by the M -test since∣∣∣∣ 12n cos (3nx)

∣∣∣∣ ≤ 1

2n
,

∞∑
n=1

1

2n
= 1.

It then follows from Theorem 5.16 that f is continuous on R. (See Figure 1.)

Taking the formal term-by-term derivative of the series for f , we get a series
whose coefficients grow with n,

−
∞∑

n=1

(
3

2

)n

sin (3nx) ,

so we might expect that there are difficulties in differentiating f . As Figure 2 illus-
trates, the function does not appear to be smooth at all length-scales. Weierstrass
(1872) proved that f is not differentiable at any point of R. Bolzano (1830) had also
constructed a continuous, nowhere differentiable function, but his results weren’t
published until 1922. Subsequently, Tagaki (1903) constructed a similar function
to the Weierstrass function whose nowhere-differentiability is easier to prove. Such
functions were considered to be highly counter-intuitive and pathological at the
time Weierstrass discovered them, and they weren’t well-received by many promi-
nent mathematicians.
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Figure 2. Details of the Weierstrass function showing its self-similar, fractal
behavior under rescalings.

If the Weierstrass M -test applies to a series of functions to prove uniform
convergence, it also implies that the series converges absolutely, meaning that

∞∑
n=1

|fn(x)| < ∞ for every x ∈ A.

Thus, the M -test is not applicable to series that converge uniformly but not abso-
lutely.

Absolute convergence of a series is completely different from uniform conver-
gence, and the two concepts should not be confused. Absolute convergence on A is
a pointwise condition for each x ∈ A, while uniform convergence is a global condi-
tion that involves all points x ∈ A simultaneously. We illustrate the difference with
a rather trivial example.

Example 5.25. Let fn : R → R be the constant function

fn(x) =
(−1)n+1

n
.

Then
∑

fn converges on R to the constant function f(x) = c, where

c =

∞∑
n=1

(−1)n+1

n

is the sum of the alternating harmonic series (c = log 2). The convergence of
∑

fn is
uniform on R since the terms in the series do not depend on x, but the convergence
is not absolute at any x ∈ R since the harmonic series

∞∑
n=1

1

n

diverges to infinity.

5.7. The sup-norm

An equivalent, and often clearer, way to describe uniform convergence is in terms
of the uniform, or sup, norm.
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Definition 5.26. Suppose that f : A → R. The uniform, or sup, norm ∥f∥ of f
on A is

∥f∥ = sup
x∈A

|f(x)|.

A function is bounded on A if and only if ∥f∥ < ∞.

Example 5.27. Let A = (0, 1) and define f, g, h : (0, 1) → R by

f(x) = x2, g(x) = x2 − x, h(x) =
1

x
.

Then

∥f∥ = 1, ∥g∥ =
1

4
, ∥h∥ = ∞.

We have the following characterization of uniform convergence.

Definition 5.28. A sequence (fn) of functions fn : A → R converges uniformly on
A to a function f : A → R if

lim
n→∞

∥fn − f∥ = 0.

Similarly, we can define a uniformly Cauchy sequence in terms of the sup-norm.

Definition 5.29. A sequence (fn) of functions fn : A → R is uniformly Cauchy
on A if for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that ∥fm − fn∥ < ϵ.

Thus, the uniform convergence of a sequence of functions is defined in exactly
the same way as the convergence of a sequence of real numbers with the absolute
| · | value replaced by the sup-norm ∥ · ∥.

5.8. Spaces of continuous functions

Our previous theorems about continuous functions on compact sets can be restated
in a more geometrical way using the sup-norm.

Definition 5.30. Let K ⊂ R be a compact set. The space C(K) consists of all
continuous functions f : K → R.

Thus, we think of a function f as a point in a function space C(K), just as we
think of a real number x as a point in R.

Theorem 5.31. The space C(K) is a vector space with respect to the usual point-
wise definitions of scalar multiplication and addition of functions: If f, g ∈ C(K)
and k ∈ R, then

(kf)(x) = kf(x), (f + g)(x) = f(x) + g(x).

This follows from Theorem 3.15, which states that scalar multiples and sums of
continuous functions are continuous and therefore belong to C(K). The algebraic
vector-space properties of C(K) follow immediately from those of the real numbers.
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Definition 5.32. A normed vector space (X, ∥ · ∥) is a vector space X (which we
assume to be real) together with a function ∥ ·∥ : X → R, called a norm on X, such
that for all f, g ∈ X and k ∈ R:

(1) 0 ≤ ∥f∥ < ∞ and ∥f∥ = 0 if and only if f = 0;

(2) ∥kf∥ = |k|∥f∥;
(3) ∥f + g∥ ≤ ∥f∥+ ∥g∥.

We think of ∥f∥ as defining a “length” of the vector f ∈ X and ∥f − g∥ as
the corresponding “distance” between f, g ∈ X. (There are typically many ways
to define a norm on a vector space satisfying Definition 5.32, each leading to a
different notion of the distance between vectors.)

The properties in Definition 5.32 are natural one to require of a length: The
length of f is 0 if and only if f is the 0-vector; multiplying a vector by k multiplies
its length by |k|; and the length of the “hypoteneuse” f + g is less than or equal
to the sum of the lengths of the “sides” f , g. Because of this last interpretation,
property (3) is referred to as the triangle inequality.

It is straightforward to verify that the sup-norm on C(K) has these properties.

Theorem 5.33. The space C(K) with the sup-norm ∥ · ∥ : C(K) → R given in
Definition 5.26 is a normed vector space.

Proof. From Theorem 3.33, the sup-norm of a continuous function f : K → R
on a compact set K is finite, and it is clearly nonnegative, so 0 ≤ ∥f∥ < ∞. If
∥f∥ = 0, then supx∈K |f(x)| = 0, which implies that f(x) = 0 for every x ∈ K,
meaning that f = 0 is the zero function.

We also have

∥kf∥ = sup
x∈K

|k(f(x)| = |k| sup
x∈K

|f(x)| = k∥f∥,

and

∥f + g∥ = sup
x∈K

|(f(x) + g(x)|

≤ sup
x∈K

{|f(x)|+ |g(x)|}

≤ sup
x∈K

|f(x)|+ sup
x∈K

|g(x)|

≤ ∥f∥+ ∥g∥,
which verifies the properties of a norm. �
Definition 5.34. A sequence (fn) in a normed vector space (X, ∥ · ∥) converges to
f ∈ X if ∥fn − f∥ → 0 as n → ∞. That is, if for every ϵ > 0 there exists N ∈ N
such that

n > N implies that ∥fn − f∥ < ϵ.

The sequence is a Cauchy sequence for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that ∥fm − fn∥ < ϵ.

Definition 5.35. A normed vector space is complete if every Cauchy sequence
converges. A complete normed linear space is called a Banach space.
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Theorem 5.36. The space C(K) with the sup-norm is a Banach space.

Proof. The space C(K) with the sup-norm is a normed space from Theorem 5.33.
Theorem 5.13 implies that it is complete. �


