Strategies for Learning to Solve Physics Problems

leeds, medical physics
"I understand the concepts, I just can't solve the problems."

Ken Heller
School of Physics and Astronomy
University of Minnesota

20 year continuing project to improve undergraduate education with contributions by: Many faculty and graduate students of \mathbf{U} of M Physics Department
In collaboration with \mathbf{U} of M Physics Education Group
Details at http://groups.physics.umn.edu/physed/
Supported in part by Department of Education (FIPSE), NSF, and the University of Minnesota

TASK

Discuss why you assign problems in your courses.

List the common goals of the problems.

Report the single most important goal

TIME ALLOTTED

5 minutes

PROCEDURES

Form a group of 3 people Choose one person as a recorder

Formulate a response individually.
Discuss your response with your partners.
Listen to your partners' responses.
Create a new group response through discussion.

Learning Problem Solving

Using Cooperative Group Problem Solving A Guide for Discussion

1. What is Problem Solving?

2. What is Learning?
3. Why Learn Problem Solving?
4. Strategies for Teaching Problem Solving
5. Goals
6. Guidance from learning theory
7. Logical framework
8. Useful problems
9. Cooperative groups
10. Grading and assessment

Some Goals of Problem Solving

- Students can make both qualitative and quantitative predictions about the real world from basic, well-understood principles.
- Students will know the difference between fundamental principles, special cases, and specific applications.
- Students can make decisions, know the assumptions that underlie them, and be able to evaluate them.
- Students can construct and communicate a long chain of logic (including mathematics) to themselves and others.

What Is Problem Solving?

"Process of Moving Toward a Goal When Path is Uncertain"

- If you know how to do it, its not a problem.

Problems are solved using general purpose tools
 Heuristics

Not specific algorithms
"Problem Solving Involves Error and Uncertainty"

A problem for your student is not a problem for you Exercise vs Problem

M. Martinez, Phi Delta Kappan, April, 1998

Metacognition - Reflecting on Your Own Thought Process

- Managing time and direction
- Determining next step
- Monitoring understanding
- Asking skeptical questions

Some General Tools (Heuristics)

- Means - Ends Analysis (identifying goals and subgoals)
- Working Backwards (step by step planning from desired result)
- Successive Approximations (idealization, approximation, evaluation)
- External Representations (pictures, diagrams, mathematics)
- General Principles of Physics
M. Martinez, Phi Delta Kappan, April, 1998

Problem Solving Is an Organized Framework for Making Decisions

- Visualize situation
- Determine goal
- Choose applicable principles
- Choose relevant information
- Make necessary simplifications
- Construct a plan
- Arrive at an answer
- Evaluate the solution

This is a process not a linear sequence. It requires students to reflect on their work

Not natural for most students - must be explicitly taught in every new academic environment
Problems that facilitate learning should
Explicitly connect important concepts
Explicitly connect to reality

Learning is a Biological Process

Neural Science Gives the Constraints

Simplification of Hebbian theory: Hebb, D (1949). The organization of behavior. New York: Wiley.

Brain MRI from Yale Medical School
Neuron image from Ecole Polytechnique Lausanne

Knowing is an individual's neural interconnections

Knowing something means a student can use it in novel (for them) situations and communicate that usage.

Learning is expanding the network of neural connections by linking and changing existing ones and establishing new ones

Teaching is putting the student in a situation that stimulates neural activity that renovates the relevant network of neural connections.
Teaching requires Interactive Engagement (Active Learning, Activities) Cognitive Apprenticeship

Strategies for Learning Problem Solving (or anything else)

$>$ Watch experts solve problems - Ask yourself (and them) what are they doing and why. Don' t be surprised if they don't know.
$>$ Develop expert problem solving skills by repeated practice. - Always use an organized framework for your problem solving. "Practice does not make perfect, only perfect practice makes perfect" - Vince Lombardy.
$>$ Practice problem solving in different contexts that are meaningful to you Solving the same problem over and over until it becomes automatic will not help in learning how to solve problems.
$>$ Practice isolated skills by doing exercises - However you can't learn to solve problems by doing exercises.
$>$ Get a coach that will make sure you engage in perfect practice. - A good practitioner is not necessarily a good coach.
$>$ Work with others solving problems. - Learn from their successes and struggles as you solve problems together.
$>$ Work on your own to solve problems. - Get coaching only after you have tried your best and failed. The help should never be directed at how to solve that specific problem.
$>$ Don't get discouraged. - Applying newly learned skills will lead to slower and more error prone practice. Get through that in your practice.

Problem-solving Framework

Used by experts in all fields
G. Polya, 1945

STEP 1

Recognize the Problem

 What's going on and what do I want?Describe the problem in terms of the field What does this have to do with?

Plan a solution
How do I get what I want?
Execute the plan
Let's get it.

STEP 5
Evaluate the solution
Can this be true?

Learning is Too Complex to Predetermine

Phenomenological Learning Theory

Apprenticeship Works
 Cognitive Apprenticeship

Learning in the environment of expert practice

- Why it is important
- How it is used
- How is it related to a student's existing knowledge model
Brain MRI from Yale Medical School Neuron image from Ecole Polytechnique Lausanne

Collins, Brown, \& Newman (1990)

coach

Learning Requires Scaffolding

Additional structure used to support the construction of a complex structure.

Removed as the structure is built

Examples of Scaffolding in teaching Introductory Physics using problem solving

- Problems that discourage novice problem solving
- An explicit problem solving framework
- Cooperative group structure that facilitates peer coaching by encouraging productive group interactions

Grouping rules
Group roles

- A worksheet that structures the framework
- Limit use of formulas by giving an equation sheet (only allowed equations)
- Explicit grading rubric to encourage expert-like behavior

Cooperative Group Problem Solving is an Implementation of Cognitive Apprenticeship

Essential Elements

1. Organized Framework for Problem Solving
2. Problems that Require Using an Organized Framework
3. Cooperative Groups to provide coaching to students while solving problems

Appropriate Problems for Practicing Problem Solving

The problems must be challenging enough so there is a real advantage to using a problem solving framework.

1. The problem must be complex enough so the best student in the class is not certain how to solve it.

The problem must be simple enough so that the solution, once arrived at, can be understood and appreciated by everyone.

2. The problems must be designed so that

- the major problem solving heuristics are required (e.g. physics understood, a situation requiring an external representation);
- there are decisions to make in order to do the problem (e.g. several different quantities that could be calculated to answer the question; several ways to approach the problem);
- the problem cannot be resolved in one or two steps by copying a pattern.

3. The task problem must connect to each student's mental processes

- the situation is real to the student so other information is connected;
- there is a reasonable goal on which to base decision making.

This is not what is called Problem Based Learning (PBL).
These are closed ended problems with a definite answer (or a few possible answers) appropriate for novice problem solvers and directed toward a specific learning goal.

Context Rich Problem

You are investigating using MRI to identify cancer cells. To do this, you have constructed a 3.0 cm diameter solenoid into which you can place a tissue sample. You will then change the magnetic field at your sample by changing the current through the solenoid. You need to monitor the magnetic field inside the solenoid but its size makes inserting your Hall probe impractical. Instead you put the solenoid through the center of a 5 cm diameter, 10 turn coil of wire and measure the voltage across that coil. To decide if this gives enough precision, you calculate the change in the coil voltage as a function of time as you change the solenoid current. The solenoid is 20 cm long and consists of 2000 turns of wire. Your signal generator varies the current through the solenoid as a sine function at a frequency of 500 Hz with a maximum of 15 A .

Gives a motivation - allows some students to access their mental connections.
Gives a realistic situation - allows some students to visualize the situation.
Does not give a picture - students must practice visualization.
Uses the character "you"-more easily connects to student's mental framework.
Decisions must be made

Context Rich Problem

You are investigating using MRI to identify cancer cells. To do this, you have constructed a 3.0 cm diameter solenoid into which you can place a tissue sample. You will then change the magnetic field at your sample by changing the current through the solenoid. You need to monitor the magnetic field inside the solenoid but its size makes inserting your Hall probe impractical. Instead you put the solenoid through the center of a 5 cm diameter, 10 turn coil of wire and measure the voltage across that coil. To decide if this gives enough precision, you calculate the change in the coil voltage as a function of time as you change the solenoid current. The solenoid is 20 cm long and consists of 2000 turns of wire. Your signal generator varies the current through the solenoid as a sine function at a frequency of 500 Hz with a maximum of 15 A .

What is happening? - you need a picture.
What is the question? - it is not in the last line.
What quantities are important and what should I name them? - choose symbols.
What physics is important and what is not? - Faraday's Law, definition of flux What assumptions are necessary? - Can you ignore the field outside the solenoid?
Is all the information necessary? - There is a lot of information.

The Dilemma

Start with complex problems so novice framework fails

Difficulty using strange new framework with challenging problems.

Why change?

Start with simple problems to learn expert-like framework.

Success using novice framework.
Why change?

Coaching is the necessary ingredient that allows students to work complex problems that require an expert-like framework.

Cooperative Groups

Provide peer coaching and facilitates expert coaching.
Allow success solving complex problems with an organized framework from the beginning.

- Positive Interdependence
- Face-to-Face Interaction
- Individual Accountability
- Explicit Collaborative Skills
- Group Functioning Assessment Johnson \& Johnson, 1978

Scaffolding

Structure and Management of Groups

1. What is the "optimal" group size?

- three (or occasionally four) for novices

2. What should be the gender and
 performance composition of cooperative groups?

- heterogeneous groups:
- one from top third

- one from middle third
- one from bottom third
based on past test performance.

- two women with one man, or same-gender groups

Structure and Management of Groups

3. How often should the groups be changed?

For most groups:

- stay together long enough to be successful
- enough change so students know that success is due to them, not to a "magic"
 group.
- about four times per semester

Structure and Management of Groups

4. How can problems of dominance by one student and conflict avoidance within a group be addressed?

- Group problems are part of each test. One common solution for all members.
- Assign and rotate roles:
- Manager
- Skeptic
- Checker/Recorder
- Summarizer

- Most of grade is based on individual problem solving.
- Students discuss how they worked together
 and how they could be more effective.

Structure and Management of Groups

5. How can individual accountability be addressed?

- assign and rotate roles, group functioning;
- seat arrangement -- eye-to-eye, knee-to-knee;
- individual students randomly called on to present group results;
- a group problem counts as a test question --if group member was absent the week before, he or she cannot take group test;
- most of the test is taken individually. The final exam is all individual. All lab reports are individual

Identify Critical Failure Points

Fail Gracefully Non-optimal implementation gives some success

1. Inappropriate Tasks

Engage all group members (not just one who knows how to do it)
2. Inappropriate Grading

Don't penalize those who help others (no grading on the curve)

Reward for individual learning
3. Poor structure and management of Groups

Scaffolding

Control of Equations that are Allowed

Useful Mathematical Relationships:

Equation sheet on the final exam for $1^{\text {st }}$ semester:
Calculus Based
Physics for
Biology Majors

For a right triangle: $\quad \sin \theta=\frac{\mathrm{a}}{\mathrm{c}}, \cos \theta=\frac{\mathrm{b}}{\mathrm{c}}, \tan \theta=\frac{\mathrm{a}}{\mathrm{b}}$,
$a^{2}+b^{2}=c^{2}, \sin ^{2} \theta+\cos ^{2} \theta=1$
For a circle: $\mathrm{C}=2 \pi \mathrm{R}, \mathrm{A}=\pi \mathrm{R}^{2}$
If $A x^{2}+B x+C=0$, then $x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$
$\frac{d\left(z^{n}\right)}{d z}=n z^{n-1}, \frac{d(\cos z)}{d z}=-\sin z, \frac{d(\sin z)}{d z}=\cos z, \frac{d\left(e^{a z}\right)}{d z}=a e^{a z}, \frac{d(\ln z)}{d z}=\frac{1}{z}$,
$\frac{\mathrm{df}(\mathrm{z})}{\mathrm{dt}}=\frac{\mathrm{df}(\mathrm{z})}{\mathrm{dz}} \frac{\mathrm{dz}}{\mathrm{dt}}$,
Fundamental Concepts, Principles, and Definitions:

| $\sum \stackrel{\rightharpoonup}{\mathrm{F}}=\mathrm{ma}$ | $\rho=\frac{\mathrm{m}}{\mathrm{V}}$ | $\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {in }}-\mathrm{E}_{\text {out }}$ | $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$ | $\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}}$ | $\mathrm{e}=\frac{\mathrm{E}_{\text {desired }}}{\mathrm{E}_{\text {input }}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\tau=\mathrm{rF}_{\perp}$ | $\frac{\mathrm{dW}}{\mathrm{d} \ell}=\mathrm{F}_{\ell}$ | $\mathrm{f}=\frac{1}{\mathrm{~T}}$ | $\frac{\mathrm{dU}}{\mathrm{dx}}=-\mathrm{F}_{\text {internal }}$ | $\mathrm{S}=\mathrm{k} \ln \Omega$ | $\theta=\frac{\delta \mathrm{C}}{\mathrm{r}}$ |
| $\mathrm{F}=\mathrm{U}-\mathrm{TS}$ | $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{x}}$ | $\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{a}_{\mathrm{x}}$ | $\mathrm{s}_{\mathrm{av}}=\frac{\text { distance }}{\Delta \mathrm{t}}$ | $\mathrm{v}_{\mathrm{xav}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}$ | $\mathrm{a}_{\mathrm{xav}}=\frac{\Delta \mathrm{v}_{\mathrm{x}}}{\Delta \mathrm{t}}$ |

Under Certain Conditions:

| $\mathrm{F}=\mathrm{mg}$ | $\mathrm{F}=\mathrm{kx}$ | $\mathrm{F}=\mu_{\mathrm{k}} \mathrm{n}$ | $\mathrm{F} \leq \mu_{\mathrm{s}} \mathrm{n}$ | $\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$ | $\mathrm{~F}=\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\Sigma \tau=0$ | $\Delta \mathrm{E}_{\text {int ernal }}=\mathrm{mL}$ | $\Delta \mathrm{E}_{\text {intemal }}=\mathrm{Cm} \Delta \mathrm{T}$ | $\mathrm{PV}=\mathrm{NkT}$ | $\mathrm{PV}=\mathrm{nRT}$ | $\frac{\mathrm{dW}}{\mathrm{dV}}=\mathrm{P}$ |
| $\mathrm{U}=\mathrm{mgh}$ | $\mathrm{U}=\frac{1}{2} \mathrm{kx}^{2}$ | $\mathrm{~W}=-\mathrm{T} \Delta \mathrm{S}$ | $\Delta \mathrm{S}=\frac{\mathrm{Q}}{\mathrm{T}}$ | $\mathrm{F}=\mathrm{bv}$ | $\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}}$ |
| $\mathrm{x}=\mathrm{A} \cos (2 \pi \mathrm{ft}+\phi)$ | $\mathrm{x}=\frac{1}{2} \mathrm{at}^{2}+\mathrm{v}_{\mathrm{o}} \mathrm{t}+\mathrm{x}_{\mathrm{o}}$ | $\frac{1}{2} \rho \mathrm{v}^{2}+\rho \mathrm{gy}+\mathrm{P}=$ constant | | | |

Useful constants: $1 \mathrm{mile}=5280 \mathrm{ft}, \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}, \mathrm{k}_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$,
$N_{a v}=6 \times 10^{23}, R=8.3 \mathrm{~J} /(\mathrm{mol} \mathrm{K}), \rho_{\text {warer }}=1 \mathrm{~g} / \mathrm{cm}^{3}$

This is a closed book, closed notes quiz. Calculators are permitted. The ONLY formulas that may be used are those given below. Define all symbols and justify all mathematical expressions used. Make sure to state all of the assumptions used to solve a problem. Credit will be given only for a logical and complete solution that is clearly communicated with correct units. Partial credit will be given for a well communicated problem solving strategy based on correct physics. MAKE SURE YOUR NAME, ID \#, SECTION \#, and TAs NAME ARE ON EACH PAGE!! START EACH PROBLEM ON A NEW PAGE. Each problem is worth 25 points: In the context of a unified solution, partial credit will be awarded as follows: - a useful picture, defining the question, and giving your approach is worth 6 points;

- a complete physics diagram defining the relevant quantities, identifying the target quantity, and specifying the relevant equations with reasons is worth 6 points;
- planning the solution by constructing the mathematics leading to an algebraic answer and checking the units of that answer is worth 7 points;
- calculating a numerical value with correct units is worth 3 points; and
- evaluating the validity of the answer is worth 3 points.

The multiple choice questions are each worth 1.5 points.

Student Solution for this Question

Your task is to design an artificial joint to replace arthritic elbow joints. After healing, the patient should be able to hold at least a gallon of milk while the lower arm is horizontal. The biceps muscle is attached to the bone at the distance $\mathbf{1 / 6}$ of the bone length from the elbow joint, and makes an angle of $\mathbf{8 0}{ }^{\boldsymbol{\circ}}$ with the horizontal bone. How strong should you design the artificial joint if you can assume the weight of the bone is negligible.
$\frac{\text { Known }}{\theta=80^{\circ}}$

Target: $F_{j}=$ Force of joint
Approach: use Forces

$$
\begin{array}{ll}
& \sum F_{x}=0 \\
=\frac{m}{v} & \sum F_{y}=0 \\
& V_{m}=m
\end{array}
$$

assume density of milk
is similar to water. $=19 / \mathrm{cm}^{3}=19 / \mathrm{moc}=.001 \mathrm{~kg} / \mathrm{ml}$

$$
\varepsilon E_{x}=0
$$

Student 1

$$
F_{j x}-F_{b x}=0
$$

$$
F b \cos \theta=F b x
$$

$$
\varepsilon F_{y}: 0
$$

$$
F_{b} \sin \theta=F b y
$$

$$
F_{j y}=F_{j \sin \phi}
$$

$$
F_{b y}-m g-F_{j y}=0
$$

equation

$$
\begin{array}{ll}
F_{j}^{2}=F_{j x^{2}}+F_{j y^{2}}, & F_{j x}{ }^{1} F_{j y}{ }^{2} \\
F_{b y}-m g-F_{j y}=0 & 2
\end{array}
$$

$$
\begin{aligned}
& F_{b y}(1 / b L)-m g L=0_{4}^{4} \\
& F_{b x}=F_{b} \cos \forall 5 \quad F_{b}^{5}
\end{aligned}
$$

$$
\begin{aligned}
& F_{b y}=F_{b} \sin \theta \\
& F_{b}=\frac{F_{b y}}{\sin \theta}
\end{aligned}
$$

$$
\frac{F_{b y}}{\sin t} \cos \theta=F b x
$$

$$
\text { bring }=F b y
$$

$$
\begin{aligned}
& F_{j x}=\frac{b m g}{\sin \theta} \cos \theta \\
& F_{j y}=F_{b y}-m g=6 m g-m g \\
& F_{j}=\sqrt{\left(\frac{6 m g}{\sin \theta} \cos \theta\right)^{2}+(6 m y-m g)^{2}}
\end{aligned}
$$

No f the grove

PROBLEM \# 1 - Page 10
Question: What is the menmain force for the arificical joint?

Student 2

$$
\begin{aligned}
& L=\text { length of } \\
& \theta=80^{\circ}
\end{aligned}
$$

Let * be the pivot point (where elbow bends

Use: $\sum F_{x}$

$$
\Sigma F_{y}
$$

$$
\sum \tau
$$

$$
\left\{\Rightarrow \Sigma \tau=T_{M} \sin \theta\left(\frac{1}{6} L\right)-w L=0\right.
$$

$$
\Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{6}\right)=W \phi
$$

$$
\Leftrightarrow \quad W=\frac{i}{6} T_{M} \sin \theta
$$

$$
F_{y}=T_{r} \sin \theta-w
$$

$$
\Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta
$$

$$
=\frac{5}{6} T_{M} \sin \theta
$$

$$
F_{x}=+T_{M} \cos \theta
$$

$$
\begin{aligned}
F_{\text {ret }}=\frac{F_{y}}{F_{x}} & =\frac{\frac{5}{6} \pi_{1} \sin \theta}{F_{M} \cos \theta} \\
& =\frac{5}{6} \tan \theta
\end{aligned}
$$

Force of the hone should be $\frac{5}{6} \tan \theta$

$$
\begin{aligned}
& \frac{5}{6} \tan \theta \\
& \text { (in } \left.\operatorname{tn} \text { is case, } \frac{5}{6} \tan 80^{\circ}=4,7 \mathrm{~N}\right)
\end{aligned}
$$

It makes since that the force of a joint should depend on the angle of the muscle it's connected to for it elects not only movement, but streigth of hare.

Problem Solving Assessment - Not Grading

Almost Independent Dimensions

- Useful Description
- organize information from the problem statement symbolically, visually, and/or in writing.
- Physics Approach
- select appropriate physics concepts and principles
- Specific Application of Physics
- apply physics approach to the specific conditions in problem
- Mathematical Procedures
- follow appropriate $\&$ correct math rules/procedures
- Logical Progression
- overall the solution progresses logically; it is coherent, focused toward a goal, and consistent (not necessarily linear)

Based on previous work at Minnesota by:
J. Blue (1997); T. Foster (2000); T. Thaden-Koch (2005);
P. Heller, R. Keith, S. Anderson (1992)

Problem solving rubric at a glance

CATEGORY: (based on literature)		\square				SCORE		
	5	4	3	2	1	0	NA (P)	$\begin{aligned} & \text { NA } \\ & \text { (S) } \end{aligned}$
Useful Description								
Physics Approach								
Specific Application								
Math Procedures								
Logical Progression								

[^0]
Rubric Scores (in general)

5	4	3	2	1	0
Complete \& appro- priate	Minor omission or errors	Parts missing and/or contain errors	Most missing and/or contain errors	All inappro- priate	No evidence of category

NOT APPLICABLE (NA):

NA - Problem	NA - Solver
Not necessary for this	
problem (i.e. visualization or physics principles given)	Not necessary for this solver (i.e. able to solve without explicit statement)

Useful Description assesses a solver's skill at organizing information from the problem statement into an appropriate and useful representation that summarizes essential information symbolically and visually. The description is considered "useful" if it guides further steps in the solution process. A problem description could include restating known and unknown information, assigning appropriate symbols for quantities, stating a goal or target quantity, a visualization (sketch or picture), stating qualitative expectations, an abstracted physics diagram (force, energy, motion, momentum, ray, etc.), drawing a graph, stating a coordinate system, and choosing a system.

5 The description is useful, appropriate, and complete
4 The description is useful but contains minor omissions or errors.
3 Parts of the description are not useful, missing, and/or contain errors.
2 Most of the description is not useful, missing, and/or contains errors.
1 The entire description is not useful and/or contains errors.
0 The solution does not include a description and it is necessary for this problem /solver.
NA (P) A description is not necessary for this problem. (i.e., it is given in the problem statement)
NA (S) A description is not necessary for this solver.

Physics Approach assesses a solver's skill at selecting appropriate physics concepts and principle(s) to use in solving the problem. Here the term concept is defined to be a general physics idea, such as the basic concept of "vector" or specific concepts of "momentum" and "average velocity". The term principle is defined to be a fundamental physics rule or law used to describe objects and their interactions, such as the law of conservation of energy, Newton's second law, or Ohm's law.

5 The physics approach is appropriate, and complete
4 Some concepts and principles of the physics approach are missing and/or inappropriate.

3 Most of the physics approach is missing and/or inappropriate.
2 All of the chosen concepts and principles are inappropriate.
1 The entire description is not useful and/or contains errors.
0 The solution does not indicate an approach, and it is necessary for this problem/ solver.
NA (P) A physics approach is not necessary for this problem. (i.e., it is given in the problem statement)
NA (S) An explicit physics approach is not necessary for this solver.

Specific Application of Physics assesses a solver's skill at applying the physics concepts and principles from their selected approach to the specific conditions in the problem. If necessary, the solver has set up specific equations for the problem that are consistent with the chosen approach. A specific application of physics could include a statement of definitions, relationships between the defined quantities, initial conditions, and assumptions or constraints in the problem (i.e., friction negligible, massless spring, massless pulley, inextensible string, etc.)

5 The specific application of physics is appropriate and complete.
4 The specific application of physics contains minor omissions or errors.
3 Parts of the specific application of physics are missing and/or contain errors.
2 Most of the specific application of physics is missing and/or contains errors.
1 All of the application of physics is inappropriate and/or contains errors.
0 The solution does not indicate an application of physics and it is necessary.
NA (\mathbf{P}) A specific application of physics is not necessary for this problem.
NA (S) A specific application of physics is not necessary for this solver.

Mathematical Procedures assesses a solver's skill at following appropriate and correct mathematical rules and procedures during the solution execution. The term mathematical procedures refers to techniques that are employed to solve for target quantities from specific equations of physics, such as isolate and reduce strategies from algebra, substitution, use of the quadratic formula, or matrix operations. The term mathematical rules refers to conventions from mathematics, such as appropriate use of parentheses, square roots, and trigonometric identities. If the course instructor or researcher using the rubric expects a symbolic answer prior to numerical calculations, this could be considered an appropriate mathematical procedure.
5 The mathematical procedures are appropriate and complete.
4 Appropriate mathematical procedures are used with minor omissions or errors.
3 Parts of the mathematical procedures are missing and/or contain errors.
2 Most of the mathematical procedures are missing and/or contain errors.
1 All mathematical procedures are inappropriate and/or contain errors.
0 There is no evidence of mathematical procedures, and they are necessary.
NA (P) Mathematical procedures are not necessary for this problem or are very simple.
NA (S) Mathematical procedures are not necessary for this solver.

Logical Progression assesses the solver's skills at communicating reasoning, staying focused toward a goal, and evaluating the solution for consistency (implicitly or explicitly). It checks whether the entire problem solution is clear, focused, and organized logically. The term logical means that the solution is coherent (the solution order and solver's reasoning can be understood from what is written), internally consistent (parts do not contradict), and externally consistent (agrees with physics expectations).

5 The entire problem solution is clear, focused, and logically connected.
4 The solution is clear and focused with minor inconsistencies.
3 Parts of the solution are unclear, unfocused, and/or inconsistent.
2 Most of the solution parts are unclear, unfocused, and/or inconsistent.
1 The entire solution unclear, unfocused, and/or inconsistent.
0 There is no evidence of logical progression, and it is necessary.
NA (P) Logical progression is not necessary for this problem. (i.e., one-step)
NA (S) Logical progression is not necessary for this solver.

Some References

M.E. Martinez, "What is problem solving?" Phi Delta Kappan, 79, 605-609 (1998).
J.R. Hayes, The complete problem solver (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates (1989).
A.H. Schoenfeld, Mathematical problem solving. Orlando, FL: Academic Press, Inc. (1985).
G. Pólya, How to solve it. Princeton, NJ: Princeton University Press (1945).
F. Reif \& J.I. Heller, "Knowledge structure and problem solving in physics," Educational Psychologist, 17(2), 102-127 (1982).
P. Heller, R. Keith, and S. Anderson, "Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving," Am. J. Phys., 60(7), 627-636 (1992).
J.M. Blue, Sex differences in physics learning and evaluations in an introductory course. Unpublished doctoral dissertation, University of Minnesota, Twin Cities (1997).
T. Foster, The development of students' problem-solving skills from instruction emphasizing qualitative problem-solving. Unpublished doctoral dissertation, University of Minnesota, Twin Cities (2000).
J.H. Larkin, J. McDermott, D.P. Simon, and H.A. Simon, "Expert and novice performance in solving physics problems," Science 208 (4450), 1335-1342.
C. Henderson, E. Yerushalmi, V. Kuo, P. Heller, K. Heller, "Grading student problem solutions: The challenge of sending a consistent message" Am. J. Phys. 72(2), 164-169 (2004).
P.A. Moss, "Shifting conceptions of validity in educational measurement: Implications for performance assessment," Review of Educational Research 62(3), 229-258 (1992).

The End

Please visit our website for more information:

http://groups.physics.umn.edu/physed/

The best is the enemy of the good.
"le mieux est l'ennemi du bien"
Voltaire

Assessment

- Problem Solving Skill
- Drop out rate
- Failure rate
- FCI - some mechanics concepts
- BEMA - some E\&M concepts

- CLASS - attitudes toward learning physics
- Math Skills
- What students value in the course
- Engineering student longitudinal study
- Faculty use
- Adoption by other institutions and other disciplines

Student Problem Solutions

Initial State


```
Final State
\(d=\frac{m_{a}}{m_{a}+m_{f}}, v_{0} \cos \theta \sqrt{\frac{2 a}{g}}\)
clack units!
\(m=\frac{n}{m} \frac{n}{5} \sqrt{\frac{m}{n / s^{2}}}\)
\(m=\left(\frac{n}{3}\right) 8\)
\(m=m \Rightarrow 0 k\)
is the answer compke?
yes, the distane was found in terms of the requested values
is the answer reasenatle?
```



```
is the arswer correctly slated?
yees, it is in unts of distaree, neters
Pben the solumin: vakimunid
\(d=v_{x f}+\quad v_{x f}, t\)
\(v_{x f}=\frac{m_{m}}{m_{t+7} v_{x 0}} \quad v_{x_{0}}\)
\(V_{x 0}=V_{0} \cos \theta\)
\(t=\sqrt{\frac{2 n}{9}}\)
```


khown: $h, m_{a}, m_{f}, v_{0}, \theta$
Qualiative rehtorshirs:
$v_{x_{0}}=v_{0} \cos \theta \quad p_{f}=\left(m_{a}+m_{f}\right) v_{x+}$

$P_{1}=P_{t} \Rightarrow m_{t} v_{x_{0}}=\left(m_{t}+m_{t}\right) v_{x f} \Rightarrow v_{x f}=\frac{m_{x}}{m_{t+m}} v_{x o}$
$p_{i}=m_{a} v_{x o}$

Improvement in Problem Solving

Logical Progression

Percent Students

- Top Third
- Middle Third
\triangle Bottom third

Algebra based physics 1991

General Approach - does the student understand the physics Specific Application of the Physics - starting from the physics they used, how did the student apply this knowledge?
Logical Progression - is the solution logically presented?
Appropriate Mathematics - is the math correct and useful?

Gain on FCI (Hake plot)

AVERAGE FCI PRE-TEST \& POST-TEST SCORES
CALCULUS-BASED PHYSICS FOR SCIENTISTS \& ENGINEERS, FALL TERMS 1993-2008

Each letter represents a different professor ($\mathbf{3 9}$ different ones)

- Incoming student scores are slowly rising (better high school preparation)
- Our standard course (CGPS) achieves average FCI ~70\%
- Our "best practices" course achieves average FCI $\sim \mathbf{8 0 \%}$
- Not executing any cooperative group procedures achieves average FCI $\sim 50 \%$

FCI by discussion/lab section

Same symbol (color and shape) is the same T_{46}

Retention

Drop \% Physics 1301

Dropout rate $\sim 6 \%$, F/D rate $\sim 3 \%$ in all classes

COURSE GRADES BY GENDER
CALCULUS-BASED PHYSICS FOR SCIENTISTS \& ENGINEERS, FALL TERMS 1997-2007
■ MALES ($\mathrm{N}=4375$) \square FEMALES ($\mathrm{N}=1261$)

Males and females do about as well in the course.

CLASS LEARNING ATTITUDES SURVEY BY CATEGORY (PRE-POST)

1202 PHYSICS BIOLOGY \& PRE-MEDICINE SPRING 2009

CLASS LEARNING ATtITUDES SURVEY BY CATEGORY
Experienced TAs FALL 2009

Student Opinion Data: Algebra-based Physics 1998

Rate the usefulness of the following components of the course. Use a scale from 1 to 10 with 10 being extremely useful and 1 being completely useless in helping you learn physics in this course.

	Ave. All Sections $(\mathbf{N}=393)$	Rank
108. Textbook	6.6 ± 0.13	1
106. Discussion Sessions (CGPS)	6.5 ± 0.13	2
101. Homework (not graded)	6.4 ± 0.14	3
105. Quizzes and Exams	6.1 ± 0.12	4
103. Lectures	6.1 ± 0.13	5
102. Laboratory	5.5 ± 0.12	6
109. Material on Class Web Pages	5.3 ± 0.14	7
107. TA's in tutoring room	4.6 ± 0.14	8
110. University tutors in Lind Hall	4.2 ± 0.14	9
104. Lecturer Office Hours	3.9 ± 0.12	$\mathbf{5 0}$

CGPS Propagates Through the Department

Algebra-based Course (24 different majors) 1987
Goals: Calculus-based Course (88\% engineering majors) 1993
4.5 Basic principles behind all physics
4.5 General qualitative problem solving skills
4.4 General quantitative problem solving skills
4.2 Apply physics topics covered to new situations
4.2 Use with confidence

Goals: Biology Majors Course 2003
4.9 Basic principles behind all physics

4.4 General qualitative problem solving skills
4.3 Use biological examples of physical principles
4.2 Overcome misconceptions about physical world
4.1 General quantitative problem solving skills
4.0 Real world application of mathematical concepts and techniques

Upper Division Physics Major Courses 2002
Analytic Mechanics
Electricity \& Magnetism
Quantum Mechanics

Graduate Courses 2007
Quantum Mechanics

Physics 1201 (Biology \& Pre-Meds) Calculus Based

Significant gain in force and motion concepts

Students have reasonably high math skills

Students can decrease or increase their attitude toward science

E\&M CONCEPT 2004-2009

CALCULUS SKILLS 2007-2009

CLASS ATTITUDE 2008-2009

Physics 1202 (Biology \& Pre-Meds) Calculus Based

Significant gain in E\&M concepts

Students have reasonably high math skills

Students can decrease or increase their attitude toward science

Physics 1101

Algebra Based

Significant gain in force and motion concepts

Students have reasonably high math skills

Students perhaps decrease their attitude toward science

OOOOOOOOOOOOOOOOOOOOMOOOOOOQ

CALCULUS SKILL 2007-2009

Significant gain in E\&M concepts

Calculus Based

Students have reasonably high math skills

Students decrease their attitude toward science

The Advantages of Using Cooperative Group Problem Solving

1. Using a problem solving framework seems too long and complex for most students.

The cooperative-group provides
the motivation and knowledge to
practice the parts until the
framework becomes more natural.
2. Complex problems that need organization are initially difficult.

> Groups can successfully solve them so students see the advantage of a logical problem-solving framework early in the course.
3. The group interaction allows individuals to observe the planning and monitoring skills needed to solve problems. (Metacognition)

4. Students practice the language of physics -"talking physics."
5. Students must deal with and resolve their misconceptions.
6. Coaching by instructors is more effective - student groups are not sufficient, a more knowledgeable coach for the groups is required.

External clues of group difficulties
Group processing of instructor input

Competent Problem Solving

 Step
Bridge

1. Focus on the Problem

Translate the words into an image of the situation.

Know $_{\text {max }}, \boldsymbol{\theta}, \mu, \mathbf{W}$ What is $\mathbf{a}_{\text {max }}$

2. Describe the Physics

Translate the mental image into a physics representation of the problem (e.g., idealized diagram, symbols for important quantities).

Identify an approach to the problem.
Relate forces on car to acceleration using Newton's Second Law

Assemble mathematical tools (equations).

$$
\begin{aligned}
& \sum \mathbf{F}=\mathbf{m a} \\
& \mathbf{f}_{\mathbf{k}}=\mu \mathbf{N} \\
& \mathbf{W}=\mathbf{m g}
\end{aligned}
$$

Step $=1$ Bridge

3. Plan a Solution

Translate the physics description into a mathematical representation of the problem.

```
Find a:
[1] }\sum\mp@subsup{F}{X}{}=\mp@subsup{m}{\mathbf{ma}}{\mathbf{x}
Find }\sum\mp@subsup{F}{x}{}\mathrm{ :
[2] \sum F F = T 
Find T}\mp@subsup{\textrm{x}}{\textrm{x}}{
[3] T}\mp@subsup{\textrm{T}}{\textrm{x}}{=}\textrm{T}\operatorname{cos}
```

4. Execute the Plan

Translate the plan into a series of appropriate mathematical actions.

$$
\begin{gathered}
\Sigma F_{x}=T \cos \theta-\mu(W-T \sin \theta) \\
(W / g) a_{x}=T \cos \theta-\mu(W-T \sin \theta) \\
\mathbf{a}_{x}=(T \cos \theta-\mu(W-T \sin \theta)) g / W
\end{gathered}
$$

5. Evaluate the Solution

Outline the mathematical solution steps.
 $$
\begin{aligned} & \text { Solve[3] for } T_{x} \text { and put into [2]. } \\ & \text { Solve[2] for } \sum F_{X} \text { and put into [1]. } \\ & \text { Solve[1] for } \mathbf{a}_{\mathbf{x}} \text {. } \end{aligned}
$$

Check units of

 algebraic solution.$$
\frac{\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right][\mathrm{N}]}{[\mathrm{N}]}-\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right]=\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right] \text { OK }
$$

Context-rich Problems

- Each problem is a short story in which the major character is the student. The problem statement uses the personal pronoun "you."
- Some decisions are necessary to proceed.

- The problem statement includes a plausible motivation or reason for "you" to calculate something.
- The objects in the problems are real (or can be imagined) - students must practice idealization.
- No pictures or diagrams are given with the problems. Students must visualize the situation by using their own experiences.
- The problem can not be solved in one step by plugging numbers into a formula.

Context-rich Problems

In addition, more difficult context-rich problems can have one or more of the following characteristics:

- The unknown quantity is not explicitly specified in the problem statement (e.g., Will this design work?).
- More information may be given in the problem statement than is required to solve the problems, or relevant information may be missing.
- Assumptions may need to be made to solve the problem.
- The problem may require more than one fundamental principle for a solution (e.g., Newton's $2^{\text {nd }}$ Law and the Conservation of Energy).
- The context can be very unfamiliar (i.e., involve the interactions in the nucleus of atoms, quarks, quasars, etc.)

Solving This

An infinitely long cylinder of radius R carries a uniform (volume) charge density r. Use Gauss' Law to calculate the field everywhere inside the cylinder.

is NOT Problem Solving?

This is Problem Solving

You are investigating the possibility of producing power from fusion. The device being designed confines a hot gas of positively charged ions in a very long cylinder with a radius of 2.0 cm . The charge density of the ions in the cylinder is $6.0 \times 10^{-5} \mathrm{C} / \mathrm{m}^{3}$. Positively charged Tritium ions are to be injected perpendicular to the axis of the cylinder in a direction toward the center of the cylinder. Your job is to determine the speed that a Tritium ion should have when it enters the cylinder so that its velocity is zero when it reaches the axis of the cylinder. Tritium is an isotope of Hydrogen with one proton and two neutrons. You look up the charge of a proton and mass of the tritium in your Physics text and find them to be $1.6 \times 10^{-19} \mathrm{C}$ and $5.0 \times 10^{-27} \mathrm{Kg}$.

Student Evaluations

Student Evaluations

Organizational

Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion

Student C

- Evaluation

Physics

- Forces as interaction
- Newton's $2^{\text {nd }}$ Law
assume density of milk

$$
\text { is similar to water. } " 19 / \mathrm{cm}^{3}=19 / \mathrm{mac}=.001 \mathrm{~kg} / \mathrm{mb}
$$

$$
\varepsilon F_{x}=0
$$

$$
F_{j x}-F_{b x}=0
$$

$\mathrm{Fb}_{b} \cos \theta=\mathrm{Fbx}$

$$
\sum F_{y}=0
$$

$F_{b} \sin \theta=F b y$
$F_{j y}=F_{j} \sin \phi$

$$
F_{b y}-m g-F_{j y}=0
$$

$F_{j x}=F_{j} \cos \phi$

$$
\Sigma t=0 \text { (joint is pivot point) }
$$

$F_{j}^{2}=F_{j x}^{2}+F_{j y}^{2}$
$F_{L y}(1 / 6 L)-m g L=0$
$F_{j}=\sqrt{\left(\frac{6 \beta V_{g}}{\sin \theta} \cos \theta\right)^{2}+\left(5 p V_{g}\right)^{2}}$

$$
=\sqrt{\left(\frac{(6.009) 37609}{\sin 80} \cos 8 c\right)^{2}}+\left(5(1.000)(37600)^{2}=\right.
$$

$$
\text { units }\left(\frac{\mathrm{kg}}{\mathrm{~m}} \cdot \frac{\left.\mathrm{~m} \frac{\mathrm{~m}}{\left.\frac{\mathrm{~m}}{\mathrm{~m}^{2}}\right)^{2}+\left(\frac{\mathrm{kg}}{\mathrm{~m}} \cdot m\right.} \cdot \mathrm{m} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)^{2}}{}=\sqrt{\frac{\mathrm{kg}^{2} m^{2}}{\mathrm{~s}^{4}}}\right.
$$

$$
=\mathrm{kgm} / \mathrm{s}^{2}=\mathrm{N}
$$

Organizational

$$
\begin{aligned}
& \frac{\text { known }}{\theta=80^{\circ}} \\
& V_{m}=3.76 \mathrm{~L}=3760 \mathrm{~mL}
\end{aligned}
$$

Framework

- Visualization
- Question statement

$$
\text { Target: } F_{j}=\text { Fore of joint }
$$

- Appropriate physics
Approach: Use Forces approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations

$$
\varepsilon_{F_{x}}=0
$$

- Goal oriented plan

$$
F_{j x}-F_{b x}=0
$$

- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interaction
- Newton's $2^{\text {nd }}$ Law

force Diagram

$$
\text { is similar to water. }=19 / \mathrm{cm}^{3}=19 / \mathrm{mact}=.001 \mathrm{~kg} / \mathrm{ml}
$$

$$
\Sigma F_{y}=0
$$

$$
F_{b y}-m g-F_{j y}=0
$$

$$
\Sigma t=0 \text { (joint is pivot point) }
$$

$$
\begin{aligned}
& F_{b} \cos \theta=F_{b x} \\
& F_{b} \sin \theta=F_{b y} \\
& F_{j y}=F_{j} \sin \phi \\
& F_{j x}=F_{j} \cos \phi \\
& F_{j}^{2}=F_{j x}^{2}+F_{j y}^{2}
\end{aligned}
$$

$$
F_{L y}(1 / 6 L)-m g L=0
$$

$$
\begin{aligned}
& \text { 43. 3Nis the } \\
& \text { amount needed }
\end{aligned}
$$

Math

- Trig
- Algebra
- Calculus

$$
\begin{aligned}
& \text { to lift and } \approx \\
& 1.3 \mathrm{~kg} \text { object } \\
& \text { shh wight } \\
& \text { mot the quran } \\
& \text { minis reas.onubbe }
\end{aligned}
$$

Organizational

Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

Student C

- Forces as interaction
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

Target: $F_{j}=$ Fore of joint
Approach : Use Forces
$\varepsilon F_{x}=0$

Use Torque

$$
\varepsilon t=0
$$

assume density of milk
is similar to water. $=1 \% / \mathrm{cm}^{3}=1 \% /$ mat $=.001 \mathrm{~kg} / \mathrm{ml}$

$$
\text { similar to water: } " 19 / \mathrm{cm}^{3}=19 / \mathrm{m} \sim 6=
$$

$$
L_{F_{x}}=0
$$

$$
\begin{aligned}
& \varepsilon F_{x}=0 \\
& F_{j x}-F_{b x}=0
\end{aligned}
$$

$$
\sum F_{y}=0
$$

$$
F_{b y}-m g-F_{j y}=0
$$

$\Sigma t=0$ ljoint is pivot point)

$$
\begin{aligned}
& F_{b} \cos \theta=F b x \\
& F_{b} \sin \theta=F_{b y} \\
& F_{j y}=F_{j} \sin \phi \\
& F_{j x}=F_{j} \cos \phi \\
& F_{j}^{2}=F_{j x}^{2}+F_{j y}^{2}
\end{aligned}
$$

$F_{L y}(1 / 6 L)-m g L=0$

$$
\begin{aligned}
& 43.3 \text { His the } \\
& \text { amount heeded }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to lift and } \approx \\
& 1.3 \mathrm{~kg} \text { object } \\
& \text { swainht }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Swainht } \\
& \text { off the props }
\end{aligned}
$$

$$
\begin{aligned}
F_{j} & =\sqrt{\left(\frac{6 p V_{g}}{\sin \theta} \cos \theta\right)^{2}+\left(5 p V_{g}\right)^{2}} \\
& =\sqrt{\left.\frac{(6,009) 37609}{\sin 80} \cos 8 c\right)^{2}+(51.001)\left(3760_{g}\right)^{2}}=
\end{aligned}
$$

thesis reasonable

$$
=k g \mathrm{~m} / \mathrm{s}^{2}=\mathrm{N}
$$

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interaction
- Newton's $2^{\text {nd }}$ Law

assume density of milk
is similar to water. $" 19 / \mathrm{cm}^{3}=19 /$ mac $=.001 \mathrm{~kg} / \mathrm{ml}$ $\varepsilon_{F_{x}}=0$
$F_{j x}-F_{b x}=0$
$\sum F_{y}=0$
$F_{b y}-m g-F_{j y}=0$
$\Sigma t=0$ ljoint is pivot point)
$F_{b} \cos \theta=F b x$
$F_{b} \sin \theta=F b y$
$F_{j y}=F_{j} \sin \phi$
$F_{j x}=F_{j} \cos \phi$
$F_{j}^{2}=F_{j x}^{2}+F_{j y^{2}}$
$F_{L y}(1 / 6 L)-m g L=0$

- Trig
- Algebra
- Calculus

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interaction
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

$$
\varepsilon F_{x}=0
$$

$$
2 F y=0
$$

$$
p V_{m}=m
$$

use torque

$$
\varepsilon t=0
$$

assume density of milk

$$
\text { is similar to water. } " 19 / \mathrm{mm}^{3}=19 / \mathrm{moc}=.001 \mathrm{~kg} / \mathrm{ml}
$$

$$
S F_{x}=0
$$

$$
F_{j x}-F_{b x}=0
$$

$$
F_{b} \cos \theta=F b x
$$

$$
\varepsilon F_{y}=0
$$

$$
F b \sin \theta=F b y
$$

$$
F_{b y}-m g-F_{j y}=0
$$

$$
F_{y y}=F_{j} \sin \phi
$$

$$
F_{j x}=F_{j} \cos \phi
$$

st =0 (joint is pivot point)

$$
F_{j y}=F_{b y}-m g=6 m g-m g
$$

$$
F_{j}
$$

$$
F_{j}=\sqrt{\left(\frac{6 m g}{\sin \theta} \cos \theta\right)^{2}+(b m g-m q)^{2}}
$$

correct

Coaching this student
Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1-Page 101
Questori. What is the arinticasl joint?

Use: ΣF_{X}

$$
\left.\begin{array}{rl}
\Sigma F_{x} \\
\Sigma F_{y} \\
\Sigma \tau
\end{array}\right\} \Rightarrow \Sigma \tau=T_{M} \sin \theta\left(\frac{t}{6}\right)-W L=0
$$

$$
F_{y}=T_{r} \sin \theta-w
$$

$$
\Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta
$$

$$
=\frac{5}{6} T_{M} \sin \theta
$$

$$
F_{x}=+T_{M} \cos \theta
$$

$$
F_{\text {net }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi_{x} \sin \theta}{F_{M} \cos \theta}
$$

$$
=\frac{5}{6} \tan \theta
$$

Force of the hone should be $\frac{5}{6} \tan \theta$
depend on the angle of the muscle it's connected to for it selects not only movement, but stelegth of lome.

Good visualization except incomplete interaction of elbow with the upper arm.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

use: $\sum F_{x}$

$$
\left.\begin{array}{rl}
\frac{2 F_{x}}{\sum F_{y}} \\
\sum \tau
\end{array}\right\} \Rightarrow \begin{aligned}
& \sum \tau=T_{M} \sin \theta(t L)-w L=0 \\
& \Rightarrow T_{M}\left(\sin \dot{\theta} \theta\left(\frac{\Delta}{4}\right)=w x \quad \text { Student } A\right.
\end{aligned}
$$

$$
F_{y}=T_{r} \sin \theta-w
$$

$$
\Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta
$$

$$
=\frac{5}{6} T_{M} \sin ^{2} \theta
$$

$$
F_{x}=+T_{\mu} \cos \theta
$$

$$
F_{\text {et }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi_{\operatorname{s}} \sin \theta}{\bar{x}_{m} \cos \theta}
$$

$$
=\frac{5}{6} \tan \theta
$$

Force of the nome should be $\frac{5}{6} \tan \theta$
H mutes sine that the force of a joint should
depend on tr e angus \& the muscle its connected to for it sects nut moly moment, but steligth of mme.

Good question statement. Should have alerted the student to the need for forces at the joint

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1-Page 107

Let * be the pivot point (where elbow bends
Use: ΣF_{x}

$$
\begin{aligned}
& \left.\begin{array}{l}
\sum F_{x} \\
\sum F_{y} \\
\Sigma \tau
\end{array}\right\} \Rightarrow \Sigma \tau=T_{M} \sin \theta\left(\frac{1}{6} L\right)-W L=0 \\
& \\
& \\
& \\
&
\end{aligned} \quad \Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{6}\right)=w \phi \quad W=\frac{6}{6} T_{M} \sin \theta \quad \text { Student A }
$$

$$
F_{y}=T_{r} \sin \theta-w
$$

$$
\Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta
$$

$$
=\frac{5}{6} T_{M} \sin \theta
$$

$$
F_{X}=+T_{M} \cos \theta
$$

$$
\begin{aligned}
F_{\text {ret }}=\frac{F_{y}}{F_{x}} & =\frac{\frac{5}{6} \pi_{x} \sin \theta}{F_{m} \cos \theta} \\
& =\frac{5}{6} \tan \theta
\end{aligned}
$$

Force of the bone should be $\frac{5}{6} \tan \theta$

$$
\begin{aligned}
& \frac{5}{6} \tan \theta \\
& \text { (in } \operatorname{tn} \text { is sase, } \frac{5}{6} \tan 80^{\circ}=4,7 \mathrm{~N} \text {) }
\end{aligned}
$$

H makes sense that the force of a joint should depend on the angle of the muscle its connected to for it effects not only movement, but sterigth of bro.

Recognized the need to sum forces PROBLEM \#1 - Page 107 and torque. No statement about relation to acceleration (Newton's $2^{\text {nd }}$ Law) or about equilibrium.

$$
\begin{aligned}
& \begin{array}{l}
\text { PROBLEM Question. What is hat wimimion } \\
\text { force for the arificasl joint? bone } \\
\qquad \begin{array}{l}
L=12 n g t h \text { of formi } \\
\theta=80^{\circ}
\end{array} \\
\text { Let * be the pirst point } \\
\text { lwhere elbow bends }
\end{array} \\
& \text { Use: } \sum F_{x} \\
& \Leftrightarrow \quad W=\frac{\sigma}{6} T_{M} \sin \theta \\
& F_{y}=T_{r} \sin \theta-w \\
& \Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{16} T_{M} \sin \theta \\
& F_{X}=+T_{M} \cos \theta \\
& F_{\text {tet }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} T_{x} \sin \theta}{X_{m} \cos \theta} \\
& =\frac{5}{6} \tan \theta \\
& \text { Force of the hame should be } \frac{5}{6} \tan \theta
\end{aligned}
$$

it gelets nit only morement, but stergth of broe.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

Not clearly stated. From the drawing, the joint might be part of the system. Need to ask the student. Could account for the missing force.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1-Page 1011

use: εF_{x}

$$
\left.\begin{array}{rl}
\Sigma F_{x} \\
\Sigma F_{y} \\
\sum \tau
\end{array}\right\} \Rightarrow \delta \tau=T_{M} \sin \theta\left(\frac{t}{6} L\right)-W L=0
$$

$$
F_{y}=T_{r} \sin \theta-w
$$

$$
\Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta
$$

$$
=\frac{5}{6} T_{M} \sin \theta
$$

$$
F_{x}=+T_{M} \cos \theta
$$

$$
\text { Fret } \begin{aligned}
\frac{F_{y}}{F_{x}} & =\frac{\frac{5}{6} \pi_{x} \sin \theta}{F_{m} \cos \theta} \\
& =\frac{5}{6} \tan \theta
\end{aligned}
$$

Force of the nome should be $\frac{5}{6} \tan \theta$

$$
\begin{aligned}
& \frac{5}{6} \tan \theta \\
& \text { (in } \tan \text { is case, } \frac{5}{6} \tan 80^{\circ}=4,7 \mathrm{~N} \text {) }
\end{aligned}
$$

H makes since thad the force of a joint should depend on to angle \& the muscle it's connected to for it sects nut only movement, but strength 8 b lome.

Could be a free-body diagram but PROBLEM \#1 - Page 107 not used to see missing elbow interaction.

Coordinate system defined but force not put on it to make missing force observable.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

Good use of symbols. Defining L even though it is not given in the problem so it can cancel out.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

$$
F_{\text {ret }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi_{x} \sin \theta}{X_{M} \cos \theta}
$$

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \#1-Page 101
Question. What is The minimum

Student A

$$
\begin{aligned}
F_{y}= & T_{M} \sin \theta-w \\
\Rightarrow F_{y} & =T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin \theta \\
F_{x} & =+T_{M} \cos \theta
\end{aligned}
$$

$$
=\frac{5}{6} \tan \theta
$$

Force of the none should be $\frac{5}{6} \tan \theta$

H maxes since that the force of a joint should
depend on the angle of the muscle its connected to for it elects nit only moventet, but stheight of home.

Does not write equations for the sum of the forces or torques. This might have helped.
Recovers for torques but not forces.
Strange idea of sum = ratio.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

No goal oriented plan. Calculates $\mathrm{F}_{\text {net }}$, described as force of the bone (on what?) Seems to have lost track of the question. Needs an early definition of the target.
Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1-Page 107

$$
\begin{aligned}
& \begin{array}{l}
\text { Let + be the pirvor point } \\
\text { where elbow bends }
\end{array} \\
& \text { use: } \left.\begin{array}{l}
\Sigma F_{x} \\
\Sigma F_{y} \\
\Sigma \tau
\end{array}\right\} \Rightarrow \Sigma \tau=T_{M} \sin \theta\left(t_{6} L\right)-W L=0 \\
& \Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{U}\right)=W \alpha \quad \text { Student } A \\
& \Leftrightarrow \quad W=\frac{b}{\omega} T_{M} \sin \theta \\
& F_{y}=T_{r} \sin \theta-w \\
& \Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin ^{2} \theta \\
& F_{X}=+T_{M} \cos \theta \\
& \text { Fret } \frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi_{n} \sin \theta}{T_{m} \cos \theta} \\
& =\frac{5}{6} \tan \theta \\
& \text { Force of the home should be } \frac{5}{6} \tan \theta \\
& \text { (in iris name, } \frac{5}{4} \tan 80^{\circ}=4,7 \mathrm{~N} \text {) }
\end{aligned}
$$

H maxes since that the force of a joint should depend on to angle of the muscle its connuctect to for it pelts nit moly movement, but stelyth of bore.

The math is a logical progression but without a goal.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1-Page 101

Use: $\sum F_{X}$

$$
F_{X}=+T_{M} \cos \theta
$$

$$
\begin{aligned}
& F_{\text {net }}=\frac{F_{y}}{F_{x}}=\sqrt{\frac{5}{6} \pi_{M} \sin \theta} \\
& K_{M} \cos \theta \\
&=\frac{5}{6} \tan \theta
\end{aligned}
$$

Force of the bone should be $\frac{5}{6} \tan \theta$

H makes since that the force of a joint should
depend on the angle of the muscle it's connected to for it effects not only movement, but streight of lome.

Student A

Force of the hone shone (in in is case, $\frac{5}{6} \tan 80^{\circ}=4,7 \mathrm{~N}$)

$$
\begin{aligned}
& \Delta F_{y} \\
& \text { 乏て } \\
& \begin{aligned}
& \Rightarrow \Sigma \tau=T_{M} \sin \theta\left(\frac{t}{6} L\right)-W L=0 \\
& \Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{6}\right)=W \phi \\
& \Leftrightarrow W=\frac{t}{6} T_{M} \sin \theta
\end{aligned} \\
& F_{y}=T_{\mu} \sin \theta-W \\
& \Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin \theta
\end{aligned}
$$

There is a conclusion but not an answer to the question.

$$
\begin{aligned}
& \text { use: } \sum F_{x} \\
& \left.\Delta F_{Y}\right\} \tau \Delta \tau=T_{M} \sin \theta\left(\frac{1}{6} L\right)-N L=0 \\
& \Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{6}\right)=W \Delta \\
& \Leftrightarrow \quad N=\frac{i}{6} T_{\mu} \sin \theta \\
& F_{y}=T_{M} \sin \theta-w \\
& \Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin \theta \\
& F_{X}=+T_{M} \cos \theta \\
& \text { Student A } \\
& F_{\text {net }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi \sin \theta}{X_{m} \cos \theta} \\
& \begin{array}{l}
=\frac{5}{6} \tan \theta \\
\left(\text { Force of the bone shosed be } \frac{5}{6} \tan \theta>\right. \\
\left(\operatorname{tn} \text { ase, } \frac{5}{6} \tan 80^{\circ}=4,7 \mathrm{~N}\right)
\end{array}
\end{aligned}
$$

Math

- Trig
- Algebra
- Calculus

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

The evaluation is confused PROBLEM \# 1 - Page 107 representing the lack of connection of the calculation to a goal.
There is no checking of the units which would have revealed a difficulty

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan

$$
\begin{aligned}
& \text { use: } \Sigma F_{X} \\
& \left.\begin{array}{c}
\Sigma F_{y} \\
\Sigma \tau
\end{array}\right\} \Rightarrow \Sigma \tau=T_{M} \sin \theta\left(\frac{1}{6} L\right)-W L=0 \\
& \Rightarrow T_{M}\left(\sin ^{-1}\right)\left(\frac{\Delta}{6}\right)=W \alpha \\
& \Leftrightarrow \quad W=\frac{b}{b} \mu_{\mu} \sin \theta \\
& F_{y}=T_{r} \sin \theta-w \\
& \Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin \theta \\
& F_{x}=+T_{M} \cos \theta \\
& F_{\text {net }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi \sin \theta}{X_{M} \cos \theta} \\
& =\frac{5}{6} \tan \theta \\
& \text { Student A } \\
& \begin{array}{l}
=\frac{5}{6} \\
\cos \theta
\end{array}
\end{aligned}
$$

- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra

Force of the none should be $\frac{5}{6} \tan \theta$

- Calculus

Joint does not interact with upper PROBLEM \#1-Page 100 arm if it is part of the system. Bone does not interact with joint if it is not.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

$$
\begin{aligned}
F_{\text {net }}=\frac{F_{y}}{F_{x}} & =\frac{\frac{5}{6} F_{x} \sin \theta}{F_{m} \cos \theta} \\
& =\frac{5}{6} \tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Force of the home should be } \frac{5}{6} \tan \theta \\
& \text { It makes sinse that the force of a joint should } \\
& \text { dependon tre angle of the muscle its connectecl to for } \\
& \text { it sefects nis inly morement, but streigth of bore. } \\
& \begin{array}{l}
\text {. Force of the hone should be } \frac{5}{6} \tan \theta \\
\text { (inithis sase, } \frac{5}{6} \tan \\
\text { Et maxes sence that the force of a joint should } \\
\text { depend on the angle of the muscle its comected to for } \\
\text { it sects nit only moment, but streigth of lane. }
\end{array}
\end{aligned}
$$

Student A

No use of $\mathbf{2}^{\text {nd }}$ Law for forces although it is used for torques.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1 - Page 1 OT 1

Student A

$$
F_{\text {net }}=\frac{F_{y}}{F_{x}}=\frac{\frac{5}{6} \pi \sin \theta}{x_{M} \cos \theta}
$$

$$
=\frac{5}{6} \tan \theta
$$

Force of the bone should be $\frac{5}{6} \tan \theta$
\& makes sence that the force of a joint should
depend on the angle of the muscle it's connected to for it efects not only movement, but streigth of hore.

Trigonometry is fine.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \# 1-Page 101
Question. What is tar minimum

use: $\sum F_{x}$

$$
\begin{gathered}
\Sigma F_{y} \\
\Sigma \tau
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow & \left.\sum \tau=T_{M} \sin \theta\right)\left(\frac{1}{6}\right)-W L=0 \\
& \Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{6}\right)=W \phi \\
& \Rightarrow W=\frac{i}{6} T_{M} \sin \theta \\
F_{y} & =T_{M} \sin \theta-W \\
& \Rightarrow F_{y}=T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin \theta \\
F_{x} & =+T_{M} \cos \theta
\end{aligned}
$$

Student A

$$
\begin{aligned}
F_{\text {net }}^{=} \frac{F_{y}}{F_{x}} & =\frac{\frac{5}{6} \pi \sqrt{\sin \theta}}{x_{M} \cos \theta} \\
& =\frac{5}{6} \tan \theta
\end{aligned}
$$

Force of the hone should be $\frac{5}{6} \tan \theta$

> It makes sense thad the force of a joint should
> depend an the angle of the muscle its conscteat to for it sects nit only movement, but strength of lome.

Algebra is fine except when dealing with units.

Organizational Framework

- Visualization
- Question statement
- Appropriate physics approach
- System selected
- Useful diagram
- Useful symbols
- Useful equations
- Goal oriented plan
- Logical math
- A conclusion
- Evaluation

Physics

- Forces as interactions
- Newton's $2^{\text {nd }}$ Law

Math

- Trig
- Algebra
- Calculus

PROBLEM \#1-Page 10

artificial joint?
$L=$ length of bone $\theta=80^{\circ}$
Let + be the pivot point (where elbow bends
use: εF_{x}

$$
\left.\begin{array}{l}
\Sigma F_{x} \\
\Sigma F_{y} \\
\Sigma \tau
\end{array}\right\} \Rightarrow \Sigma \tau=T_{M} \sin \theta\left(\frac{t}{t} t\right)-W L=0
$$

$$
\Rightarrow T_{M}(\sin \theta)\left(\frac{\Delta}{6}\right)=w \Delta
$$

$$
F_{y}=T_{r} \sin \theta-w
$$

$$
\Rightarrow \begin{aligned}
F_{y} & =T_{M} \sin \theta-\frac{1}{6} T_{M} \sin \theta \\
& =\frac{5}{6} T_{M} \sin \theta
\end{aligned}
$$

$$
F_{x}=+T_{M} \cos \theta
$$

$$
\begin{aligned}
F_{\text {net }}=\frac{F_{y}}{F_{x}} & =\frac{\frac{5}{6} \pi_{M} \sin \theta}{K_{M} \cos \theta} \\
& =\frac{5}{6} \tan \theta
\end{aligned}
$$

Force of the nome should be $\frac{5}{6} \tan \theta$

$$
\frac{\frac{5}{6} \tan \theta}{1 \text { in } \tan / 5 \operatorname{case}, \frac{5}{6} \tan 80^{\circ}=4,7 N}
$$

If makes since that the force of a joint should depend on the angle of the muscle it's connected to for it elects nit only. movement, but strength of hoe.

Some problems given on tests that do not help most students from learn either problem solving or physics concepts.

A block of mass $m=\mathbf{3 k g}$ and a block of unknown mass M are connected by a massless rope over a frictionless pulley, as shown below. The kinetic frictional coefficient between the block m and the inclined plane is $\mu_{k}=0.17$. The plane makes an angle 30° with horizontal. The acceleration, a, of the block M is $1 \mathbf{m} / \mathbf{s}^{\mathbf{2}}$ downward.
(a) Draw free-body diagrams for both masses. [5 points]
(b) Find the tension in the rope. [5 points]
(c) If the block M drops by 0.5 m , how much work, W, is done on the block m by the tension in the rope? [15 points]

The system of three blocks shown is released from rest. The connecting strings are massless, the pulleys ideal and massless, and there is no friction between the $\mathbf{3 k g}$ block and the table.
a) At the instant M_{3} is moving at speed v, how far \boldsymbol{d} has it moved from the point where it was released from rest? (answer in terms of M_{1}, M_{2}, M_{3}, g and v.) [10 pts]
b) At the instant the $3 \mathbf{k g}$ block is moving with a speed of $0.8 \mathrm{~m} / \mathrm{s}$, how far, d, has it moved from the point where it was released from rest? [5 pts]
c) From the instant when the system was released from rest, to the instant when the $\mathbf{1} \mathbf{~ k g}$ block has risen a height h, which statement $(1,2$ or 3) is true for the three-block system? (1) The total mechanical energy of the system increases. (2) The total potential energy of the system increases. (3) The net work done on the system by the tension forces is 0 . [5pts]
d) Now suppose the table is rough and has a coefficient of kinetic friction $\mu k=0.1$. What is the speed, v , of the 3 kg block after the 2 kg block drops by 0.5 m ? (Assume again that the system is released from rest.) [5pts]

Goals: Biology Majors Course 2003

Highest Rated Goals

4.9 Basic principles behind all physics
4.4 General qualitative problem solving skills
4.3 Use biological examples of physical principles
4.2 Overcome misconceptions about physical world
4.1 General quantitative problem solving skillsఒ
4.0 Real world application of mathematical concepts and techniques

Goals: Calculus-based Course (88\% engineering majors) 1993
4.5 Basic principles behind all physics
4.5 General qualitative problem solving skills
4.4 General quantitative problem solving skills \qquad
4.2 Apply physics topics covered to new situations \qquad
4.2 Use with confidence

Goals: Algebra-based Course (24 different majors) 1987
4.7 Basic principles behind all physics
4.2 General qualitative problem solving skills
4.2 Overcome misconceptions about physical world
4.0 General quantitative problem solving skills
4.0 Apply physics topics covered to new situations

FCI PRE-TEST SCORE VS. MATH PRE-TEST SCORE
CALCULUS-BASED PHYSICS FOR SCIENTISTS \& ENGINEERS, FALL TERMS, 2005-2007

- FEMALES ($\mathrm{N}=266$) $\quad \triangle$ MALES $(\mathrm{N}=845)$

The concept test is correlated with the math skills test.

Can a Math Skills Test be used as a placement test?

COURSE GRADE VS. MATH PRE-TEST SCORE
CALCULUS-BASED PHYSICS FOR SCIENTISTS \& ENGINEERS, FALL TERMS, 2005-2007

The Math Skills Test is not a good predictor of performance.

Can the FCI be used as a placement test?

COURSE GRADE VS. FCI PRE-TEST SCORE
CALCULUS-BASED PHYSICS FOR SCIENTISTS \& ENGINEERS, FALL TERMS 1997-2007

The FCI is not a good predictor of performance.

FINAL EXAM GRADES BY GENDER

CALCULUS-BASED PHYSICS FOR SCIENTISTS \& ENGINEERS, FALL TERMS 1997-2007

Math Diagnostic Test

Powers of ten

$$
\frac{4 \times 10^{-3}}{10^{-4}}=?
$$

(a) $4 \times 10^{-7}[10-20 \%]$
(b) $4 \times 10^{-3 / 4}$
(c) $4[20-28 \%]$
(d) 40 [51-63\%]
(e) 4×10^{7}

Triangles For this right triangle, $\cos \theta=$?

Graphs
The slope of the curve pictured is equal to:
(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $\mathbf{1 / 3} \mathbf{m} / \mathbf{s}[85-96 \%]$ (c) $2 \mathrm{~m} / \mathrm{s}(\mathrm{d})$
(d) $3 \mathrm{~m} / \mathrm{s}$ [4-12\%]
(e) $6 \mathrm{~m} / \mathrm{s}$

Algebra \quad Solve for \mathbf{a} in the equation $\mathbf{a}^{\mathbf{2}} \mathbf{x}+\mathbf{c y}=\mathbf{t}$
(a) $\pm \sqrt{t-c y-x}$
(b) $\pm \sqrt{\frac{t-c y}{x}} \quad$ [95-99\%]
(c) $\pm \frac{1}{a} \sqrt{t-c y}$
(d) $\frac{t-c y}{2 x}$
(e) $(c y-t)(c y+t)$

Solve for y in the equation $\frac{\mathbf{a x}+\mathbf{b}}{\mathbf{c y}+\mathbf{d}}=\mathbf{f}$
(a) $\frac{\mathrm{ax}+\mathrm{b}-\mathrm{df}}{\mathrm{cf}}=\mathrm{y} \quad$ [49-72\%]
(b) $\frac{a x+b}{f+d}$
(c) $\frac{a x+b}{d}\left(\frac{1}{c f}\right)$
(d) $\frac{a x+b}{c f+d}$
(e) $\frac{1}{c}\left(\frac{\mathrm{f}}{\mathrm{ax}+\mathrm{b}}-\mathrm{d}\right)$
[15-34\%]

Simultaneous Equations If you know $\mathbf{a t}=\mathbf{b}$ and $\mathbf{c x}+\mathbf{d t}=\mathbf{f}$ and the values of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and \mathbf{f}, but you don't know the value of \mathbf{t}, solve for the value of \mathbf{x}.
(a) $\frac{\mathrm{f}+\mathrm{dt}}{\mathrm{c}}$
(b) $\frac{b+f}{c(a+d)}$
(c) $\frac{\mathrm{f}}{\mathrm{c}}-\frac{\mathrm{db}}{\mathrm{ac}}$
[65-88\%]
(d) $\frac{\mathrm{f}}{\mathrm{c}}-\frac{\mathrm{db}}{\mathrm{a}} \quad$ (e) $\frac{\mathrm{b}}{\mathrm{a}}$

If you know $\frac{\mathbf{b}}{\mathbf{2}} \mathbf{y}^{2}-\mathbf{c d}^{2}=\mathbf{0}, \mathbf{a x}+\mathbf{y}=\mathbf{d}$ and the values of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} but you don't know the value of \mathbf{y}, solve for the value of \mathbf{x}.
(a) $\frac{y-d}{a}$
(b) $\frac{\mathrm{d}}{\mathrm{a}}\left(1 \pm \sqrt{\frac{2 \mathrm{c}}{\mathrm{b}}}\right) \quad[22-40 \%]$
(c) $\frac{\mathrm{d}}{\mathrm{a}} \pm \frac{1}{\mathrm{a}} \sqrt{\frac{2 \mathrm{~cd}}{\mathrm{~b}}}$
[31-45\%]
(d) $\frac{b}{2}(d-a x)^{2}-d^{2} \quad[9-28 \%]$
(e) $\frac{\mathrm{d}}{\mathrm{a}}-\frac{2 \mathrm{~cd}^{2}}{\mathrm{ab}}$

Derivatives If $z=a x^{3}+\mathbf{b x}+\mathbf{c}$, then $\frac{\mathbf{d z}}{d x}=$?
(a) $a x^{2}+b$
(b) $\mathrm{a}+\mathrm{b}+\mathrm{c}$
(c) $3 a x^{2}+2 b$
(d) $3 a x^{2}+b+c$
(e) $3 a x^{2}+b[73-93 \%]$

If $\mathbf{z}=\mathbf{a} \mathbf{e}^{\mathbf{b} \mathbf{t}}$, where \mathbf{a} and \mathbf{b} are not functions of \mathbf{t}, then $\frac{\mathbf{d z}}{\mathbf{d t}}=$?
(a) $b z$ [4-15\%]
(b) $\mathrm{ae}^{\mathrm{b}}[7-27 \%]$
(c) az
(d) abe ${ }^{t} \quad[39-58 \%]$
(e) abe ${ }^{\mathrm{b}}$ [6-21\%]

Anti-Derivatives

$$
\text { If } \frac{\mathbf{d x}}{\mathbf{d t}}=\mathbf{5 a} \mathbf{t}^{\mathbf{3}}+\mathbf{b} \text {, where } \mathbf{a} \text { and } \mathbf{b} \text { are constants, then } \mathbf{x}=\text { ? }
$$

(a) $15 a t^{2}[7-19 \%]$
(b) $\frac{5}{4} a t^{4}+b t+c$
[60-88\%]
(c) $\frac{5}{4} \mathrm{at}^{4}+\mathrm{b}$
(d) $5 a t^{2}$
(e) $\frac{5}{4} a t^{4}$

If $\frac{\mathbf{d z}}{\mathbf{d t}}=-\mathbf{- a b}^{\mathbf{2}} \boldsymbol{\operatorname { s i n }}\left(\mathbf{b}^{\mathbf{2}} \mathbf{t}\right)$, where \mathbf{a} and \mathbf{b} are constants, then $\mathbf{z}=$?
(a) $2 a b \cos (\mathrm{t})+\mathrm{k}$
(b) $-2 a b \sin \left(b^{2} t\right)+k$
(c) $-2 a b \sin (b t)+k$

$$
\text { (d) } \boldsymbol{a} \cos \left(b^{2} t\right)+\boldsymbol{k}[33-63 \%] \quad \text { (e) }-2 \mathrm{abcos}(\mathrm{bt})+\mathrm{k}[17-30 \%]
$$

RUBRIC SCORE VS. PROBLEM GRADE

TEST 1 PROBLEM 2 (SECTION 2, N=110)

The Teaching Process - A Physicist View

 <final | T | initial>Transformation Process

The Teaching Process The Clear Explanation Misconception

Common Source of Frustration of Faculty, TAs, Students, \& Administrators

Learning is much more complicated
Leonard et. al. (1999). Concept-Based Problem Solving.

An Appropriate Problem

Your task is to design an artificial joint to replace arthritic elbow joints. After healing, the patient should be able to hold at least a gallon of milk while the lower arm is horizontal. The biceps muscle is attached to the bone at the distance $\mathbf{1 / 6}$ of the bone length from the elbow joint, and makes an angle of $\mathbf{8 0}{ }^{\circ}$ with the horizontal bone. How strong should you design the artificial joint if you can assume the weight of the bone is negligible.

Gives a motivation - allows some students to access their mental connections. Gives a realistic situation - allows some students to visualize the situation.
Does not give a picture - students must practice visualization.
Uses the character "you" - allows some students to visualize the situation.
Requires decisions - students practice decision making.

The result of students "natural" problem solving inclinations

Circled work by evaluators

Desired Student Solution

Problem $1 /$

Approach iva conservation of mamention and kimembes assume constant arceleraten due togravity neglect no manatim is lost is the collision
 and just after if hits the fro visit the bit the grand

Duran

khan.: $h, m_{2}, m_{f}, v_{0}, \theta$
untranid
Qualitative reltacshirs:

$$
\begin{aligned}
& v_{x_{0}}=v_{0} \cos \theta \quad P_{f}=\left(m_{a}+m_{f}\right) v_{x f} \\
& h=1 / g t^{2} \Rightarrow \frac{2 h}{g}=t^{2}, \sqrt{\frac{2 h}{g}}=t \\
& d=v_{x f} t \quad \\
& P_{1}=P_{f} \Rightarrow m_{a} v_{x_{0}}=\left(m_{x}+m_{x}\right) v_{x f} \Rightarrow v_{x f}=\frac{m_{a}}{m_{c t+}+m_{f}} v_{x 0} \\
& P_{i}=m_{a} v_{x 0}
\end{aligned}
$$

Tarsetid

Plan the Solution: vakinunid

$$
\begin{aligned}
& d=v_{x f}+ \\
& V_{x f}=\frac{m_{a}}{m_{k}+\frac{m}{f}} v_{x 0} \\
& V_{x 0}=V_{0} \cos \theta \\
& t=\sqrt{\frac{2 h}{g}} \\
& d=\frac{m_{a}}{m_{u}+m_{p}} v_{0} \cos \theta \sqrt{\frac{2 n}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Clack units! } \\
& \left.m=\frac{n}{m} \frac{n}{\frac{m}{m \beta^{2}}}\right)^{\sqrt{3^{2}}} \\
& m=\left(\frac{m}{8}\right) s \\
& m=m \Rightarrow o k
\end{aligned}
$$

is the answer complete?
yes, the distance was found in terms of the requested valves is the answer reasenalle?
 is the answer correctly stated?
yes, it is in vats of distance, meters

Quiz 1 - kinematics and forces (calc based for engineers \& physical science
A block of mass $m=2.5 \mathrm{~kg}$ starts from rest and slides down a frictionless ramp that makes an angle of $\boldsymbol{\theta}=\mathbf{2 5 ^ { \circ }}$ with respect to the horizontal floor. The block slides a distance \boldsymbol{d} down the ramp to reach the bottom. At the bottom of the ramp, the speed of the block is measured to be $v=12 \mathrm{~m} / \mathrm{s}$.
(a) Draw a diagram, labeling θ and d. [5 points]
(b) What is the acceleration of the block, in terms of g ? [5 points]
(c) What is the distance d, in meters? [15 points]

Better

A 2.5 kg block starts from rest and slides down a frictionless ramp at 25° to the horizontal floor. At the bottom of the ramp, the speed of the block is measured to be $12 \mathrm{~m} / \mathrm{s}$.
(a) Draw a diagram, with appropriate labeling. [5 points]
(b) What is the acceleration of the block, in terms of g ? [5 points]
(c) What is the distance the block slides, in meters? [15 points]

Allow students to practice making simple decisions.

Better

A 2.5 kg block starts from rest and slides down a frictionless ramp at 25° to the horizontal floor. At the bottom of the ramp, the speed of the block is measured to be $12 \mathrm{~m} / \mathrm{s}$. How far did the block slide? Allow students to practice making decisions about

Better

 structuring their solution and connecting physics concepts.A 2.5 kg block starts from the top and slides down a slippery ramp reaching $12 \mathrm{~m} / \mathrm{s}$ at the bottom. How long is the ramp? The ramp is at 25° to the horizontal floor .

Allow students to practice making assumptions.

Original

A block of mass $\mathbf{m}=\mathbf{2 . 5} \mathbf{~ k g}$ starts from rest and slides down a frictionless ramp that makes an angle of $\boldsymbol{\theta}=\mathbf{2 5 ^ { \circ }}$ with respect to the horizontal floor. The block slides a distance \boldsymbol{d} down the ramp to reach the bottom. At the bottom of the ramp, the speed of the block is measured to be $v=12 \mathrm{~m} / \mathrm{s}$.
(a) Draw a diagram, labeling θ and d. [5 points]
(b) What is the acceleration of the block, in terms of \mathbf{g} ? [5 points]
(c) What is the distance d, in meters? [15 points]

Better

A 2.5 kg block starts from the top and slides down a slippery ramp reaching $12 \mathrm{~m} / \mathrm{s}$ at the bottom. How long is the ramp? The ramp is at 25° to the horizontal floor .

Better

You have been asked to design a simple system to transport boxes from one part of a warehouse to another. The design has boxes placed on the top of the ramp so that they slide to their destination. A box slides easily because the ramp is covered with rollers. Your job is to calculate the maximum length of the ramp if the heaviest box is $\mathbf{2 5} \mathbf{~ k g}$ and the ramp is at 5.0° to the horizontal. To be safe, no box should go faster than $3.0 \mathrm{~m} / \mathrm{s}$ when it reaches the end of the ramp.

Context Rich Problem

Allows student decisions. Practice making assumptions. Connects to student reality. Has a motivation (why should I care?).

Beginning Context-Rich Problem

You are working with an insurance company to help investigate a tragic accident. At the scene, you see a road running straight down a hill at 10° to the horizontal. At the bottom of the hill, the road widens into a small, level parking lot overlooking a cliff. The cliff has a vertical drop of 400 feet to the horizontal ground below where a car is wrecked 30 feet from the base of the cliff. A witness claims that the car was parked on the hill and began coasting down the road, taking about 3 seconds to get down the hill. Your boss drops a stone from the edge of the cliff and, from the sound of it hitting the ground below, determines that it takes $\mathbf{5 . 0}$ seconds to fall to the bottom. You are told to calculate the car's average acceleration coming down the hill based on the statement of the witness and the other facts in the case. Obviously, your boss suspects foul play.

Gives a motivation - allows some students to access their mental connections. Gives a realistic situation - allows some students to visualize the situation.
Does not give a picture - students must practice visualization. Uses the character "you" -more easily connects to student's mental framework.

> Decisions must be made

Decisions

You are working with an insurance company to help investigate a tragic accident. At the scene, you see a road running straight down a hill at 10° to the horizontal. At the bottom of the hill, the road widens into a small, level parking lot overlooking a cliff. The cliff has a vertical drop of 400 feet to the horizontal ground below where a car is wrecked 30 feet from the base of the cliff. A witness claims that the car was parked on the hill and began coasting down the road, taking about 3 seconds to get down the hill. Your boss drops a stone from the edge of the cliff and, from the sound of it hitting the ground below, determines that it takes 5.0 seconds to fall to the bottom. You are told to calculate the car's average acceleration coming down the hill based on the statement of the witness and the other facts in the case. Obviously, your boss suspects foul play.

What is happening? - you need a picture.
What is the question? - it is not in the last line.
What quantities are important and what should I name them? - choose symbols.
What physics is important? - difference between average and instantaneous.
What assumptions are necessary? - should friction be ignored?
Is all the information necessary? - the angle? The vertical drop? The time?

Stop surface feature pattern matching

You are working with an insurance company to help investigate a tragic accident. At the scene, you see a road running straight down a hill at 10° to the horizontal. At the bottom of the hill, the road widens into a small, level parking lot overlooking a cliff. The cliff has a vertical drop of 400 feet to the horizontal ground below where a car is wrecked 30 feet from the base of the cliff. A witness claims that the car was parked on the hill and began coasting down the road, taking about 3 seconds to get down the hill. Your boss drops a stone from the edge of the cliff and, from the sound of it hitting the ground below, determines that it takes 5.0 seconds to fall to the bottom. You are told to calculate the car's average acceleration coming down the hill based on the statement of the witness and the other facts in the case. Obviously, your boss suspects foul play.

Not an inclined plane problem

Not a projectile motion problem

Same as this textbook question except students must engage with the content

A block starts from rest and accelerates for 3.0 seconds. It then goes 30 ft . in 5.0 seconds at a constant velocity.
a. What was the final velocity of the block?
b. What was the acceleration of thellock?

Competent Problem Solving

Step

Bridge

1. Focus on the Problem

Translate the words into a useful image of the situation. Decide on what you know and what you don't. Decide on the question.
$\operatorname{Know}_{\mathbf{T}_{\text {max }}}, \boldsymbol{\theta}, \mu, \mathbf{W}$ What is $\mathbf{a}_{\text {max }}$

2. Describe the Physics

Identify an approach to the problem.

Relate forces on car to acceleration using Newton's Second Law

Translate the image into a physics representation of the problem (e.g., idealized diagram, symbols for important quantities).

3. Plan a Solution

Assemble mathematical tools (equations).

$$
\begin{aligned}
& \sum \mathbf{F}=\mathbf{m a} \\
& \mathbf{f}_{\mathbf{k}}=\mu \mathbf{N} \\
& \mathbf{W}=\mathbf{m g}
\end{aligned}
$$

Step Bridge

3. Plan a Solution

Decide on the order of using a mathematical representation of the problem.

Find a:
[1] $\Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}}$
Find $\sum F_{x}$:
[2] $\sum F_{x}=T_{x}-f_{k}$
Find T_{x}
[3] $\mathrm{T}_{\mathrm{x}}=\mathrm{T} \cos \theta$
4. Execute the Plan

Translate the plan into a series of appropriate mathematical actions.

$$
\begin{aligned}
& \Sigma F_{x}=T \cos \theta-\mu(W-T \sin \theta) \\
& (W / g) \mathbf{a}_{\mathbf{x}}=T \cos \theta-\mu(W-T \sin \theta) \\
& \mathbf{a}_{\mathrm{x}}=(T \cos \theta-\mu(\mathbf{W}-T \sin \theta)) \mathbf{g} / \mathbf{W}
\end{aligned}
$$

5. Evaluate the Solution

Outline the mathematical solution steps.

$$
\begin{aligned}
& \text { Solve[3] for } T_{x} \text { and put into [2]. } \\
& \text { Solve[2] for } \sum F_{x} \text { and put into [1]. } \\
& \text { Solve[1] for } a_{x} \text {. }
\end{aligned}
$$

Check units of

 algebraic solution.$$
\frac{\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right][\mathrm{N}]}{[\mathrm{N}]}-\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right]=\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right] \text { OK }
$$

Problem Solutions
Problem 1

Model of a Solution $\underset{\text { Find w }}{\mathrm{W}-\mathrm{B} \sin \theta \frac{1}{6}=0}$
[3]

Find W

$\mathrm{W}=\rho \mathrm{Vg}$
Find E_{y}
$\mathrm{E}_{\mathrm{y}}+\mathrm{B} \sin \theta-\mathrm{W}=0$ [5]
5 unknown, 5 equations OK
Solve [5] for E_{y}

$$
E_{y}+B \sin \theta-W=0
$$

$\mathrm{E}_{\mathrm{y}}=\mathrm{W}-\mathrm{B} \sin \theta$ put into [1]
$E_{x}^{2}+E_{y}^{2}=E^{2}$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{x}}^{2}+(\mathrm{W}-\mathrm{B} \sin \theta)^{2}=\mathrm{E}^{2} \tag{1}
\end{equation*}
$$

Put [4] into [1] and [3]

$$
\begin{equation*}
E_{x}^{2}+(\rho V g-B \sin \theta)^{2}=E^{2} \tag{1}
\end{equation*}
$$

Solve [3] for B

$$
\begin{aligned}
\rho V g- & B \sin \theta \frac{1}{6}=0 \\
& \rho V g=B \sin \theta \frac{1}{6} \\
& \frac{6 \rho V g}{\sin \theta}=B \text { put into [1] and [2] }
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{x}}^{2}+\left(\rho \mathrm{Vg}-\frac{6 \rho \mathrm{Vg}}{\sin \theta} \sin \theta\right)^{2}=\mathrm{E}^{2} \tag{1}
\end{equation*}
$$

Solve [2] for E_{X}
$\frac{6 \rho V g}{\sin \theta} \cos \theta-E_{x}=0$

$$
\frac{6 \rho \mathrm{Vg}}{\sin \theta} \cos \theta=\mathrm{E}_{\mathrm{x}} \quad \text { put into }[1]
$$

Solve [1] for E

$$
\begin{gathered}
\left(\frac{6 \rho \mathrm{Vg}}{\sin \theta} \cos \theta\right)^{2}+\left(\rho \mathrm{Vg}-\frac{6 \rho \mathrm{Vg}}{\sin \theta} \sin \theta\right)^{2}=\mathrm{E}^{2} \\
\left(\frac{6 \rho \mathrm{Vg}}{\sin \theta} \cos \theta\right)^{2}+(\rho \mathrm{Vg}-6 \rho \mathrm{Vg})^{2}=\mathrm{E}^{2} \\
\rho \mathrm{Vg} \sqrt{\left(\frac{6}{\tan \theta}\right)^{2}+(-5)^{2}}=\mathrm{E}
\end{gathered}
$$

$$
\rho V g \sqrt{\frac{36}{\tan ^{2} \theta}+25}=\mathrm{E}
$$

Check units
$\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]\left[\mathrm{m}^{3}\left[\frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right]=[\mathrm{kg}]\left[\frac{\mathrm{m}}{\mathrm{s}^{2}}\right]=[\mathrm{N}]=[\mathrm{E}]\right.$
Units are correct since newtons is a unit of force and E is the force of the elbow joint on the arm.
Put in numbers
$\left(1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)(3.67 \mathrm{~L})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sqrt{\frac{36}{\tan ^{2} 80^{\circ}}+25}=\mathrm{E}$
$\left(1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)(3.67 \mathrm{~L})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sqrt{\frac{36}{\tan ^{2} 80^{\circ}}+25}=\mathrm{E}$
$184\left(\frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)(\mathrm{L})\left(\frac{\mathrm{m}}{\mathrm{s}^{2}}\right)=\mathrm{E}$
$184\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\mathrm{g}}{\mathrm{cm}^{3}}\right)\left(\frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}\right)(\mathrm{L})\left(\frac{\mathrm{m}}{\mathrm{s}^{2}}\right)=\mathrm{E}$
$184(\mathrm{~kg})\left(\frac{\mathrm{m}}{\mathrm{s}^{2}}\right)=\mathrm{E}$
$184 \mathrm{~N}=\mathrm{E}$
By the $3^{\text {rd }}$ law this is equal to the force of the arm on the elbow joint.
The milk has a weight of 38 N . This means the force on the elbow joint is 5 times greater than the weight of the milk. This seems large but not impossible.

Evaluating the answer equation:
The force on the elbow is greater if the volume of the milk is greater. This is reasonable since then the milk would exert a larger force on the arm.
The force on the elbow is greater if the density of the milk is greater. This is reasonable since then the milk would exert a larger force on the arm.

Student Difficulties Solving Problems

- Lack of an Organizational Framework
- Random walk (knowledge fragments + math)
- Situation specific (memorized pattern)
- Physics Misknowledge
- Incomplete (lack of a concept)
- Misunderstanding (weak misknowledge)
- Misconceptions (strong misknowledge)

- No Understanding of Range of Applicability Mathematics \& Physics
- Always true
- True under a broad range of well-defined circumstances
- True in very special cases
- Never true
- Lack of internal monitoring skills (reflection on what they did and why, asking skeptical questions about their actions)

Students must be taught a problem solving framework that addresses these explicitly

[^0]: Want
 $>$ Minimum number of categories that include relevant aspects of problem solving
 $>$ Minimum number of scores that give enough information to improve instruction

