
Pairings for beginners

by

Craig Costello

Contents

Front Matter i

Table of Contents . i

Symbols and abbreviations . iii

1 Introduction 1

2 Elliptic curves as cryptographic groups 5

2.1 The group law: the chord-and-tangent rule 8

2.1.1 The point at infinity in projective space 10

2.1.2 Deriving explicit formulas for group law computations . . . 13

2.1.3 The group axioms . 18

2.1.4 Speeding up elliptic curve computations 18

2.2 Torsion, endomorphisms and point counting 22

2.3 Chapter summary . 31

3 Divisors 33

3.1 The divisor class group . 36

3.2 A consequence of the Riemann-Roch Theorem 39

3.3 Weil reciprocity . 44

3.4 Chapter summary . 45

4 Elliptic curves as pairing groups 47

4.1 The r-torsion . 50

4.2 Pairing types . 58

4.3 Twisted curves . 61

4.4 Chapter summary . 64

i

5 Miller’s algorithm for the Weil and Tate pairings 67

5.1 The Weil pairing . 69

5.2 The Tate pairing . 70

5.3 Miller’s algorithm . 75

5.4 Chapter summary . 80

6 Pairing-friendly curves 81

6.1 A balancing act . 81

6.2 Supersingular curves . 85

6.3 Constructing ordinary pairing-friendly curves 87

6.4 Chapter summary . 93

7 The state-of-the-art 95

7.1 Irrelevant factors (a.k.a. denominator elimination) 95

7.2 Projective coordinates . 98

7.3 Towered extension fields . 100

7.4 Low Hamming weight loops . 111

7.5 The final exponentiation . 113

7.6 Other optimisations . 115

8 Summary 119

Bibliography 121

ii

Symbols and abbreviations

(f) divisor of the function f

[n]P scalar multiplication (exponentiation) of P by n ∈ Z

#E number of points on E

An(K) affine n-space over the field K

ǫ(D) effective part of the divisor D

ηT eta (T) pairing

Fq finite field with q elements

Fqk full extension field

G1 base field subgroup: E[r] ∩ ker(π − [1]) (in Type 3 pairing)

G2 trace-zero subgroup: E[r] ∩ ker(π − [q]) (in Type 3 pairing)

GT order r subgroup of F∗qk (commonly the r-th roots of unity µr)

O point at infinity on an elliptic curve E

K algebraic closure of the field K

Pn(K) projective n-space over the field K

φ occurs as the distortion map on supersingular curves and as

the GLV endomorphism

Φi i-th cyclotomic polynomial

π q-power Frobenius endomorphism: (x, y) 7→ (xq, yq)

iii

Ψ the (un)twisting isomorphism

ψ occurs as both the isomorphism from G2 to G1 and as the GLS

isomorphism

ψℓ(x) ℓ-th division polynomial on E (for odd ℓ)

ρ ratio between base field size and subgroup size for a pairing-

friendly curve

aT ate pairing

C an arbitrary curve

Cg (imaginary quadratic) hyperelliptic curve of genus g

D occurs as both a divisor on E and the CM discriminant of E

d degree of twist

DP divisor (P)− (O)

DQ divisor (Q)− (O)

E an elliptic curve

e a general pairing

E ′ twisted curve (defined over Fqk/d)

E(K) set of K-rational points on E

e(P,Q) pairing of P and Q (the paired value)

E/K elliptic curve defined over K

E[r] the (entire) r-torsion

fm,P function with divisor (fm,P) = m(P)− ([m]P)− (m− 1)(O)

g genus of a curve

K arbitrary field

k embedding degree of E (with respect to q and r)

iv

nP multiplicity of point P in associated divisor

P generator of G1

Q generator of G2

r order of the large prime subgroup in E(Fq)

T ate pairing loop parameter (T = t− 1)

t trace of Frobenius

Tr(P,Q) order r reduced Tate pairing

tr(P,Q) order r Tate pairing

wr(P,Q) order r Weil pairing

aTr anti-trace map

BKLS−GHS Barreto-Kim-Lynn-Scott/Galbraith-Harrison-Soldera algorithm

BLS Barreto-Lynn-Scott families

BN Barreto-Naehrig family with k = 12

CM complex multiplication

Deg(D) degree of the divisor D

Div0(E) group of degree zero divisors on E

Div
Fq

(E) group of divisors on E/Fq

DLP discrete logarithm problem

ECC elliptic curve cryptography

ECDLP elliptic curve discrete logarithm problem

End(E) endomorphism ring of E

Gal(L/K) Galois group of L over K

GLS Galbraith-Lin-Scott method

v

GLV Gallant-Lambert-Vanstone method

HECC hyperelliptic curve cryptography

KSS Kachisa-Schaefer-Scott families

MNT Miyaji-Nakabayashi-Takano (construction/criteria)

NIST National Institute of Standards and Technology

NSS not supersingular curves

ordP (f) the multiplicity of f at P on E

PBC pairing-based cryptography

Pic0(E) Picard group of E

Prin(E) group of principal divisors on E

QR(q) set of quadratic residues modulo q

supp(D) support of the divisor D

Tr trace map

vi

Chapter 1

Introduction

Aficionados of cryptographic pairing computation are often asked by interested

newcomers to point towards literature that is a good starting point. My answer

usually differs depending on the mathematical background volunteered from the

“pairing beginner”, but almost always involves accordingly picking a subset of

the following excellent references.

• Galbraith’s chapter [Gal05] is a stand-out survey of the field (up until

2005). It provides several theorems and proofs fundamental to pairing-

based cryptography and gives some useful toy examples that illustrate key

concepts.

• Lynn’s thesis [Lyn07] is also a great survey of the entire arena of pairing

computation (up until 2007), and gives all the details surrounding the pio-

neering papers he co-authored [BKLS02,BLS02,BLS03,BLS04], which are

themselves good starting points.

• The first chapter of Naehrig’s thesis [Nae09, Ch. 1] conveniently presents

the necessary algebro-geometric results required to be able to read most of

the literature concerning pairing computation.

• Scott’s webpage [Sco04] gives a short and very friendly introduction to

the basics of the groups involved in pairing computations by means of an

illustrative toy example.

1

2 Chapter 1. Introduction

• In his new chapter entitled Algorithmic Aspects of Elliptic Curves, Silver-

man’s second edition [Sil09, Ch. XI.7] includes a concise introduction to

pairing-based cryptography that also points to foundational results found

elsewhere in his book.

In addition, digging up talks from some of the big players in the field is usually

(but not always!) a good way to avoid getting bogged down by minor technical

details that slow one’s progress in grasping the main ideas. In particular, we refer

to the nice talks by Scott [Sco07a,Sco07b] and Vercauteren [Ver06b,Ver06a].

In any case, correctly prescribing the best reading route for a beginner nat-

urally requires individual diagnosis that depends on their prior knowledge and

technical preparation. A student who is interested in learning pairings, but who

has never seen or played with an elliptic curve, may quickly become overwhelmed

if directed to dive straight into the chapters of Silverman’s book or Naehrig’s the-

sis. This is not due to lack of clarity, or to lack of illuminating examples (both

chapters are ample in both), but perhaps more because of the vast amount of

technical jargon that is necessary for one to write a complete and self-contained

description of cryptographic pairings. On the other hand, an informal, example-

driven approach to learning the broad field of pairing computation may ease the

beginner’s digestion in the initial stages. For instance, a novice would be likely

to find it more beneficial to first see the simple toy example of the quadratic

twisting isomorphism in action on Scott’s webpage [Sco04], before heading to

Silverman’s book [Sil09, Ch. X.5.4] to see all possible twisting isomorphisms

formally defined, and then later returning to his earlier chapters (specifically Ch.

II.2) to read about maps between curves in full generality.

In this light we discuss the major aim of this text. We intend to let illus-

trative examples drive the discussion and present the key concepts of pairing

computation with as little machinery as possible. For those that are fresh to

pairing-based cryptography, it is our hope that this chapter might be particu-

larly useful as a first read and prelude to more complete or advanced expositions

(e.g. the related chapters in [Gal12]).

On the other hand, we also hope our beginner-friendly intentions do not leave

any sophisticated readers dissatisfied by a lack of formality or generality, so in

cases where our discussion does sacrifice completeness, we will at least endeavour

to point to where a more thorough exposition can be found.

3

One advantage of writing a survey on pairing computation in 2012 is that,

after more than a decade of intense and fast-paced research by mathematicians

and cryptographers around the globe, the field is now racing towards full matu-

rity. Therefore, an understanding of this text will equip the reader with most

of what they need to know in order to tackle any of the vast literature in this

remarkable field, at least for a while yet. Anyone who understands our exam-

ples will also comfortably absorb the basic language of algebraic geometry in

the context of curve-based cryptography. Since we are aiming the discussion at

active readers, we have matched every example with a corresponding snippet of

(hyperlinked) Magma [BCP97] code1, where we take inspiration from the helpful

Magma pairing tutorial by Dominguez Perez et al. [DKS09]. In the later chap-

ters we build towards a full working pairing code that encompasses most of the

high-level optimisations; this culminates to finish the chapter in Example 7.5.1.

The text is organised as follows. We start in Chapter 2 by giving an overview

of elliptic curve cryptography (ECC). Indeed, elliptic curves are the main object

on which cryptographic pairings take place, so this first chapter forms a basis for

the entire text. In Chapter 3 we introduce the important concept of divisors, as

well as other essential theory from algebraic geometry that is needed to properly

understand cryptographic pairings. In Chapter 4 we detail the specific elliptic

curve groups that are employed in a cryptographic pairing, before presenting

Miller’s algorithm to compute the Weil and Tate pairings in Chapter 5. In

Chapter 6 we introduce the notion of pairing-friendly curves and give a brief

survey of the most successful methods of constructing them. In Chapter 7 we

bring the reader up to speed with the landmark achievements and improvements

that have boosted pairing computation to the point it is today.

1If one does not have access to Magma, the scripts we provide can be run at the online
Magma calculator: http://magma.maths.usyd.edu.au/calc/

http://magma.maths.usyd.edu.au/calc/

4 Chapter 1. Introduction

Chapter 2

Elliptic curves as cryptographic

groups

The purpose of this chapter is to introduce elliptic curves as they are used in

cryptography. Put simply, an elliptic curve is an abstract type of group.

Perhaps a newcomer will find this abstractness apparent immediately when we

insist that to understand elliptic curve groups in cryptography, the reader should

be familiar with the basics of finite fields Fq. This is because, more generally,

elliptic curves are groups which are defined on top of (over) fields. Even though

elliptic curve groups permit only one binary operation (the so called group law),

the operation itself is computed within the underlying field, which by definition

permits two operations (and their inverses). For a general field K, the group

elements of an elliptic curve E are points whose (x, y) coordinates come from K

(the algebraic closure of K), and which satisfy the (affine) curve equation for E,

given as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where a1, ..., a6 ∈ K. Equation (2.1) is called the general Weierstrass equation

for elliptic curves. Aside from all the (x, y) ∈ K solutions to the equation above,

there is one extra point which can not be defined using the affine equation, but

which must be included to complete the group definition. This point is called

the point at infinity, which we denote by O, and we will define it properly in a

5

6 Chapter 2. Elliptic curves as cryptographic groups

moment.

If a1, ..., a6 ∈ K, then we say E is defined over K, and write this as E/K

(the same goes for any extension field L of K). Before we go any further, we

make a convenient simplification of the general Weierstrass equation. If the

field characteristic is not 2 or 3, then divisions by 2 and 3 in K permit the

substitutions y 7→ (y − a1x − a3)/2 to give E : y2 = 4x3 + b2x
2 + 2b4x + b6,

and then (x, y) 7→
(

x−3b2
36

, y
108

)
, which (upon appropriate rescaling) yields the

following simplified equation.

E : y2 = x3 + ax+ b. (2.2)

Equation (2.2) is called the short Weierstrass equation for elliptic curves, and

will be used all the way through this text. Namely, we will always be working

over large prime fields, where the short Weierstrass equation covers all possible

isomorphism classes of elliptic curves, so the curves we use will always be an

instance of (2.2).

Example 2.0.1 (Magma script). E/Q : y2 = x3−2 is an elliptic curve. Along with

the point at infinity O (which we are still yet to define), the set of points over Q is

written as E(Q), and is defined as E(Q) = {(x, y) ∈ A2(Q) : y2 = x3−2}∪{O}.
The point P = (xP , yP) = (3, 5) lies in E(Q), as do Q = (xQ, yQ) =

(
129
100
, −383

1000

)

and R = (xR, yR) =
(

164323
29241

, −66234835
5000211

)
, so we can write P,Q,R ∈ E(Q). We

usually write E to represent the group of points over the full algebraic closure,

so for example, the point S = (xS, yS) =
(
0,
√
−2
)
∈ E = E(Q), but S 6∈ E(Q).

Soon we will be defining the binary group operation ⊕ on E using rational

formulas in the underlying field, so an active reader can return to this example

with these formulas to verify that R = P ⊕ Q, where xR, yR are computed

from xP , yP , xQ, yQ using additions and multiplications (also subtractions and

inversions) in Q. Furthermore, it can also be verified that Q = P ⊕ P , so that

R = P ⊕ P ⊕ P ; we usually write these as Q = [2]P and R = [3]P , where

P ⊕ P · · · ⊕ P
︸ ︷︷ ︸

n

= [n]P in general. To finish this example, we remark that if

(x′, y′) ∈ E, then (x′,−y′) ∈ E (but is not distinct if y′ = 0), which is true for

any elliptic curve in short Weierstrass form.

Example 2.0.2 (Magma script). E/F11 : y2 = x3 + 4x + 3 is an elliptic curve.

E(F11) has 14 points: (0, 5), (0, 6), (3, 3), (3, 8), (5, 4),(5, 7), (6, 1), (6, 10), (7, 0),

(9, 3), (9, 8), (10, 3), (10, 8), not forgetting the point at infinity O. Notice that all

http://www.craigcostello.com.au/pairings/beginners/2-0-1-EoverQ.txt
http://www.craigcostello.com.au/pairings/beginners/2-0-2-E:F11.txt

7

but two points come in pairs (x′, y′) and (x′,−y′), the exceptions being (x′, y′) =

(7, 0) (since y′ = −y′ = 0) and O. If we form the quadratic extension Fq2 = Fq(i)

with i2 +1 = 0, then considering E over Fq2 will allow many more solutions, and

give many more points: namely, #E(Fq2) = 140. In addition to the points in

E(Fq), E(Fq2) will also contain those points with x-coordinates in Fq that did not

give x3+4x+3 as a quadratic residue in Fq (but necessarily do in Fq2), and many

more with both coordinates in Fq2 \Fq. Examples of both such points are (2, 5i)

and (2i+10, 7i+2) respectively. It is not a coincidence that #E(Fq) | #E(Fq2),

since E(Fq) is a subgroup of E(Fq2).

Not every tuple (a, b) ∈ K × K gives rise to the curve given by f(x, y) =

y2 − (x3 + ax+ b) = 0 being an elliptic curve. If there exists P = (xP , yP) on f

such that both partial derivatives ∂f
∂x

and ∂f
∂y

vanish simultaneously at P , then P

is called a singular point and f is also deemed singular. Conversely, if no such

point exists, f is called non-singular, or smooth, and is then an elliptic curve. It

is easy enough to show that a singularity occurs if and only if 4a3 + 27b2 = 0

(see [Sil09, Ch. III.1, Prop. 1.4]), so as long as 4a3 + 27b2 6= 0 in K, then

E/K : y2 = x3 + ax+ b is an elliptic curve.

In cryptography we only ever instantiate elliptic curves defined over finite

fields, but it is often conceptually helpful to view graphs of elliptic curves over R.

We illustrate the difference between singular and non-singular (smooth) elliptic

curves in Figures 2.1-2.4.

•

Figure 2.1:
Singular curve
y2 = x3−3x+2
over R.

•

Figure 2.2:
Singular curve
y2 = x3

over R.

Figure 2.3:
Smooth curve
y2 = x3 + x + 1
over R.

Figure 2.4:
Smooth curve
y2 = x3 − x
over R.

8 Chapter 2. Elliptic curves as cryptographic groups

2.1 The group law: the chord-and-tangent rule

We now turn to describing the elliptic curve group law, and it is here that viewing

pictures of elliptic curves over R is especially instructive. We start with a less

formal description until we define the role of the point at infinity O. The group

law exploits the fact that, over any field, a line (a degree one equation in x and

y) intersects a cubic curve (a degree three equation in x and y) in three places

(this is a special case of a more general theorem due to Bezout [Har77, I.7.8]).

Namely, if we run a line ℓ : y = λx + ν between two points P = (xP , yP) and

Q = (xQ, yQ) on E, then substituting this line into E : y2 = x3 + ax + b will

give a cubic polynomial in x, the roots of which are the x-coordinates of the

three points of intersection between ℓ and E. Knowing the two roots (xP and

xQ) allows us to determine a unique third root that corresponds to the third and

only other point in the affine intersection ℓ ∩ E, which we denote by ⊖R (the

reason will become clear in a moment). The point ⊖R is then “flipped” over the

x-axis to the point R. In general, the elliptic curve composition law ⊕ is defined

by this process, namely R = P ⊕ Q. When computing R = P ⊕ P , the line ℓ

is computed as the tangent to E at P . That is, the derivatives of ℓ and E are

matched at P , so (counting multiplicities) ℓ intersects E “twice” at P . Figures

2.5 and 2.6 illustrate why this process is aptly named the chord-and-tangent rule.

ℓ

•Q

•P

•⊖R

•
R = P ⊕Q

Figure 2.5: Elliptic curve addition.

ℓ

•P

•⊖R

•
R = P ⊕ P

Figure 2.6: Elliptic curve doubling.

Having loosely defined the general group operation, we can now (also loosely)

2.1. The group law: the chord-and-tangent rule 9

define the role of the point at infinity O. To try and place it somewhere in the

above diagrams, one can think of O as being a point that simultaneously sits

infinitely high and infinitely low in the y direction. This allows us to informally

conceptualise two properties of elliptic curve groups: firstly, that the point at

infinity O plays the role of the identity of the group; and secondly, that the

unique inverse of a point is its reflected image over the x-axis (e.g. the ⊖R’s in

Figures 2.5 and 2.6 are the respective inverses of the R’s, and vice versa). If we

apply the process in the previous paragraph to compute R⊕ (⊖R), we start by

finding the vertical line that connects them (the dashed lines in Figures 2.5 and

2.6). This line also intersects E (twice) at the point at infinity O, which is then

reflected back onto itself, giving R ⊕ (⊖R) = O. Thus, if we define the identity

of the group to be O, then the inverse of any element R = (xR, yR) is taken as

⊖R = (xR,−yR).

Example 2.1.1 (Magma script). E/R : y2 = x3 − 2x is an elliptic curve. The

points (−1,−1), (0, 0) and (2, 2) are all on E, and are also on the line ℓ : y = x.

Applying the technique described above to compute some example group law

operations via the line ℓ, we have (−1,−1) ⊕ (0, 0) = (2,−2), (2, 2) ⊕ (0, 0) =

(−1, 1), and (−1,−1)⊕(2, 2) = (0, 0). All but four points come in pairs with their

inverse (i.e. (x′, y′) and (x′,−y′)); the exceptions being (0, 0), (
√

2, 0), (−
√

2, 0)

(notice the vertical tangents when y = 0 in these cases), and O, which are all

their own inverse, e.g. (0, 0) = ⊖(0, 0), so (0, 0)⊕ (0, 0) = O on E. The tangent

line ℓ′ to E at (−1,−1) is ℓ′ : y = −1
2
x − 3

2
, and it intersects E once more at

(9
4
,−21

8
), which gives (−1,−1)⊕ (−1,−1) = [2](−1,−1) = (9

4
, 21

8
).

Example 2.1.2 (Magma script). In this example we consider the same curve

equation as the last example, but this time over a small finite field, namely

E/F11 : y2 = x3 − 2x. Rational points are injected naturally across to the finite

field case (as long as there is no conflict with the characteristic), so we can imme-

diately find the points (0, 0), (2, 2) and (−1,−1) = (10, 10) (and their inverses)

in Figure 2.9. In this case, consider performing the group law operation between

the (blue) points (5, 7) and (8, 10). The line ℓ that joins them is y = x+2, which

intersects E once more at (10, 1). Negating the y-coordinate finds the other point

on the dashed line, and gives (5, 7)⊕ (8, 10) = (10, 10).

Example 2.1.2 is also intended to justify why, although (in cryptography) we

only ever use elliptic curves over finite fields, we often opt to illustrate the group

law by drawing the continuous pictures of curves over R.

http://www.craigcostello.com.au/pairings/beginners/2-1-1-E:R.txt
http://www.craigcostello.com.au/pairings/beginners/2-1-2-E:F11+.txt

10 Chapter 2. Elliptic curves as cryptographic groups

ℓ : y = x

•(0, 0)

•

(−1, 1)

•(2, 2)

•

(−1,−1)

•(2,−2)

Figure 2.7: Addition in R.

ℓ′ : y = −x
2
− 3

2

•
(−1,−1)

•
(9

4
, 21

8
)

•
(9

4
,−21

8
)

Figure 2.8: Doubling in R.

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10
•

•

•
•

•

•

•

•

•

•

•

Figure 2.9: The points (excluding O) on E(F11).

2.1.1 The point at infinity in projective space

We now focus our attention on giving a more formal definition for the point at

infinity. So far we have been describing elliptic curves in affine space as a set

of affine points together with the point at infinity: E = {(x, y) ∈ A2(K) : y2 =

x3 +ax+ b}∪{O}. In general, a more precise way to unify (or include) points at

infinity with the affine points is to work in projective space: essentially, instead of

working with points in n-space, we work with lines that pass through the origin

in (n+1)-space. For our purposes, this means our affine points in 2-space become

lines in 3-space, namely that (x, y) ∈ A2(K) corresponds to the line defined by

all points of the form (λx, λy, λ) ∈ P2(K), where λ ∈ K∗. That is, P2 is A3 \

2.1. The group law: the chord-and-tangent rule 11

{(0, 0, 0)} modulo the following congruence condition: (x1, y1, z1) ∼ (x2, y2, z2) if

there exists λ ∈ K∗ such that (x1, y1, z1) = (λx2, λy2, λz2). Figure 2.10 illustrates

the relationship between points in A2 with their congruence classes (lines) in P2;

the lines in 3-space should also extend “downwards” into the region where Z < 0

but we omitted this to give more simple pictures. We reiterate that these lines

do not include the point (0, 0, 0).

x

y

b

b

b

b

Three points in A2(K).

X

Y

Z

b

b

b

b

b

Z = 1

Three lines in P2(K).

X

Y

Z

b

b b
b

bZ = 1

Three lines in P2(K).

Y

Z

b b

O = (0 : 1 : 0)

b b bbZ = 1

Three lines in P2(K).

Figure 2.10: Identifying points in A2 with lines in P2

We usually use capital letters and colons to denote a (representative of a) con-

gruence class in projective coordinates, so that in general (X : Y : Z) represents

the set of all points on the “line” in P2 that correspond to (x, y) ∈ A2. There are

many copies of A2 in P2, but we traditionally map the affine point (x, y) ∈ A2

to projective space via the trivial inclusion (x, y) 7→ (x : y : 1), and for any

(X : Y : Z) 6= O ∈ P2, we map back to A2 via (X : Y : Z) 7→ (X/Z, Y/Z). The

point at infinity O is represented by (0 : 1 : 0) in projective space (see the last

diagram in Figure 2.10), for which we immediately note that the map back to

A2 is ill-defined.

Example 2.1.3 (Magma script). E/R : y2 = x3 + 3x is an elliptic curve. P =

http://www.craigcostello.com.au/pairings/beginners/2-1-3-E:R-Proj.txt

12 Chapter 2. Elliptic curves as cryptographic groups

(3, 6) ∈ A2(R) is a point on E. In projective space, P becomes P = (3 : 6 :

1) ∈ P2(R), which represents all points in (3λ, 6λ, λ) for λ ∈ R \ {0}. For

example, the points (12, 24, 4), (−3
√
−1,−6

√
−1,−1

√
−1), (3

√
2, 6
√

2,
√

2) in

A3(R) are all equivalent (modulo the congruence condition) in P2(R), where

they are represented by P . As usual, the point at infinity on E is O = (0 : 1 : 0).

The way we define the collection of points in projective space is to homogenise

E : y2 = x3 + ax + b by making the substitution x = X/Z and y = Y/Z, and

multiplying by Z3 to clear the denominators, which gives

EP : Y 2Z = X3 + aXZ2 + bZ3. (2.3)

The set of points (X, Y, Z) with coordinates in K that satisfies (2.3) is called

the projective closure of E. Notice that (0, λ, 0) is in the projective closure for

all λ ∈ K∗, and that all such points cannot be mapped into A2, justifying the

representative of point at infinity being O = (0 : 1 : 0).

Example 2.1.4 (Magma script). Consider E/F13 : y2 = x3 + 5. There are 15

affine points (x, y) ∈ A2(F13) on E, which (with the point at infinity O) gives

#E(F13) = 16. On the other hand, if we homogenise (or projectify) E to give

EP/F13 : Y 2Z = X3 + 5Z3, then there are 16 classes (X : Y : Z) ∈ P2(F13):

(0 : 1 : 0), (2 : 0 : 1), (4 : 2 : 1), (4 : 11 : 1), (5 : 0 : 1), (6 : 0 : 1), (7 : 6 : 1),

(7 : 7 : 1), (8 : 6 : 1), (8 : 7 : 1), (10 : 2 : 1), (10 : 11 : 1), (11 : 6 : 1),

(11 : 7 : 1), (12 : 2 : 1), (12 : 11 : 1). Each of these classes represents several

points (X, Y, Z) ∈ A3(F13) whose coordinates satisfy Y 2Z = X3 +5Z3 (there are

actually 195 such points, but this is not important). In fact, each class represents

infinitely many points on EP(F13). Any reader that is familiar with Magma, or

has been working through our examples with the accompanying Magma scripts,

will recognise the representation of points as representatives in P2.

The projective coordinates (X, Y, Z) used to replace the affine coordinates

(x, y) above are called homogenous projective coordinates, because the projective

version of the curve equation in (2.3) is homogeneous. These substitutions (x =

X/Z, y = Y/Z) are the most simple (and standard) way to obtain projective

coordinates, but we are not restricted to this choice of substitution. For example,

many papers in ECC have explored more general substitutions of the form x =

X/Zi and y = Y/Zj on various elliptic curves [BL07a].

Example 2.1.5 (Magma script). Consider E/F41 : y2 = x3 + 4x − 1. Using

http://www.craigcostello.com.au/pairings/beginners/2-1-4-E:F13-Proj.txt
http://www.craigcostello.com.au/pairings/beginners/2-1-5-E:F41-Proj.txt

2.1. The group law: the chord-and-tangent rule 13

homogeneous coordinates gives rise to the projective equation Y 2Z = X3 +

4XZ2 − Z3, with the point at infinity being O = (0 : 1 : 0). An alternative

projection we can use is x = X/Z and y = Y/Z2, which in this instance give the

projective equation Y 2 = X3Z + 4XZ3 − Z4, from which the point at infinity

is seen (from putting Z = 0) to be O = (1 : 0 : 0). Another commonly used

coordinate system is Jacobian coordinates, which use the substitutions x = X/Z2

and y = Y/Z3 to give the projective equation Y 2 = X3 + 4XZ4 − Z6. In this

case, we substitute Z = 0 to see that the point at infinity is defined by the line

O = (λ2 : λ3 : 0) ∈ P2(F41).

2.1.2 Deriving explicit formulas for group law computa-

tions

We are now in a position to give explicit formulas for computing the elliptic

curve group law. The chord-and-tangent process that is summarised in Figures

2.5 and 2.6 allows a simple derivation of these formulas. We derive the formulas

in affine space, but will soon transfer them into projective space as well. The

derivation of the formulas for point additions R = P ⊕Q and for point doublings

R = P ⊕ P follow the same recipe, the main difference being in the calculation

of the gradient λ of the line ℓ : y = λx+ ν that is used. We will first derive the

formulas for the addition R = P ⊕ Q in the general case, and will then make

appropriate changes for the general doubling formulas. By “general case”, we

mean group law operations between points where neither point is O, and the

points that are being added are not each inverses of one another; we will handle

these special cases immediately after the general cases. Referring back to Figure

2.5, the line ℓ : y = λx + ν that intersects P = (xP , yP) and Q = (xQ, yQ) has

gradient λ = (yQ − yP)/(xQ − xP). From here, ν can simply be calculated as

either ν = yP − λxP or ν = yQ − λxQ, but in the literature we will often see an

unbiased average of the two as ν = (yQxP − yPxQ)/(xP − xQ). From here we

substitute ℓ : y = λx+ ν into E : y2 = x3 + ax+ b to find the third affine point

of intersection, ⊖R, in ℓ∩E. Finding the coordinates of ⊖R trivially reveals the

coordinates of R = (xR, yR), since ⊖R = (xR,−yR); the roots of the cubic that

14 Chapter 2. Elliptic curves as cryptographic groups

result will be xP , xQ and xR. Namely,

(x− xP)(x− xQ)(x− xR) = (x3 + ax+ b)− (λx+ ν)2

= x3 − λ2x2 + (a− 2λν)x+ b− ν2.

We only need to look at the coefficient of x2 to determine xR, since the coefficient

on the left hand side is −(xP +xQ +xR). From here, recovering the y-coordinate

is simple, since −yR lies on ℓ, so

xR = λ2 − xP − xQ; yR = −(λxR + ν).

This finishes the description of addition in the general case. When adding P to

itself (i.e. doubling P – refer back to Figure 2.6), the line ℓ : y = λx + ν is the

tangent to E at P . Thus, its gradient λ is the derivative function dy/dx of E,

evaluated at P . To obtain dy/dx, we differentiate the curve equation implicitly,

as

d

dx
(y2) =

d

dx
(x3 + ax+ b)

d

dy
(y2)

dy

dx
= 3x2 + a

dy

dx
=

3x2 + a

2y
.

Thus, λ = dy
dx

(P) = (3x2
P + a)/(2yP), and ν = yP − λxP . Again, we substitute ℓ

into E, but this time two of the roots of the resulting cubic are xP , so we obtain

xR and yR as

xR = λ2 − 2xP ; yR = −(λxR + ν).

This finishes the derivation of doubling formulas in the general case. We now

complete the group law description by looking at the special cases. The point

at infinity O is the identity, or neutral element, so any operation involving it

is trivial. Otherwise, any operation between elements P and Q with different

x-coordinates employs the general addition. This leaves the remaining cases of

xP = xQ: (i) if yP = −yQ, then P andQ are inverses of each other and P⊕Q = O
(note that this includes yP = yQ = 0), and (ii) if yP = yQ 6= 0, then P = Q and

we use the point doubling formulas.

2.1. The group law: the chord-and-tangent rule 15

Much of the literature concerning the elliptic curve group law tends to present

the complete description in the previous paragraph using an “if-then-else” style

algorithm, where the “if” statements distinguish which of the above scenarios

we are in. In optimised cryptographic implementations however, this is not the

way that the group law operation is coded. This is because the groups we use

are so large that the chances of running into a special case (that is not general

doubling or general addition) randomly is negligible. Moreover, the parameters

are usually chosen so that we are guaranteed not to run into these cases. In this

light then, it will soon become clear that the major operations we are concerned

with are point additions R = P⊕Q and point doublings R = P⊕P , the formulas

for which are summarised in (2.4) and (2.5) respectively.

(Affine addition) λ =
yQ − yP

xQ − xP

; ν = yP − λxP ;

(xP , yP)⊕ (xQ, yQ) = (xR, yR) =
(
λ2 − xP − xQ,−(λxR + ν)

)
. (2.4)

(Affine doubling) λ =
3x2

P + a

2yP
; ν = yP − λxP ;

[2](xP , yP) = (xP , yP)⊕ (xP , yP) = (xR, yR) =
(
λ2 − 2xP ,−(λxR + ν)

)
. (2.5)

Example 2.1.6 (Magma script). We revisit the curve E/Q : y2 = x3 − 2 from

Example 2.0.1 to verify the group law calculations that were stated. We start

with the point doubling of P = (xP , yP) = (3, 5), to compute Q = [2]P =

P ⊕ P using (2.5). Here, λ =
3x2

P +a

2yP
= 3·32+0

2·5
= 27

10
, from which ν follows as

ν = yP − λxP = 5 − 27
10
· 3 = −31

10
. Thus, xQ = λ2 − 2xP = (27

10
)2 − 2 · 3 = 129

100
,

and yQ = −(λxQ + ν) = −(27
10
· 129

100
− 31

10
) = − 383

1000
, giving (xQ, yQ) = [2](xP , yP) =

(129
100
,− 383

1000
). For the addition R = P ⊕ Q, we use the formulas in (2.4), so

λ =
yQ−yP

xQ−xP
= (− 383

1000
− 5)/(129

100
− 3) = 5383

1710
, and ν = yP − λxP = 5 − 5383

1710
· 3 =

−2533
570

. Thus, xR = λ2 − xP − xQ = (5383
1710

)2 − 3 − 129
100

= 164323
29241

, and yR =

λxR + ν = 5383
1710
· 164323

29241
− 2533

570
= −66234835

5000211
, so (xR, yR) = (164323

29241
,−66234835

5000211
). Since

Q = [2]P = P ⊕ P , then R = P ⊕ Q = [3]P . We finish this example with a

remark that further justifies the use of finite fields as the underlying fields in

cryptography. It is not too painful to show that P = (3, 5) and ⊖P = (3,−5)

are the only integral points on E [Sil09, Ch. IX, Prop. 7.1(b)], or that E(Q)

is actually infinite cyclic [Sil09, Ch. IX, Remark 7.1.1], meaning that among

http://www.craigcostello.com.au/pairings/beginners/2-1-6-EoverQpart2.txt

16 Chapter 2. Elliptic curves as cryptographic groups

infinitely many rational points, only two have integer coordinates. Besides the

infinite nature of E(Q) (the lack of any finite subgroups is not useful in the

context of discrete logarithm based cryptographic groups), observing the growing

size of the numerators and denominators in [n]P , even for very small values of n,

shows why using E(Q) would be impractical. Using Magma, we can see that the

denominator of the y-coordinate of [10]P is 290 bits, whilst the denominator in

[100]P is 29201 bits, which agrees with the group law formulas in (2.4) and (2.5)

that suggest that denominators of successive scalar multiples of P would grow

quadratically; even Magma takes its time computing [1000]P , whose denominator

is 2920540 bits, and Magma could not handle the computation of [10000]P . In

Figure 2.11 we plot multiples of P = (3, 5) that fall within the domain x < 6.

b

b

b

b

b

b

b

Of the first 10 multiples of P = (3, 5) in
E(Q), 7 had x < 6.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Of the first 100 multiples of P = (3, 5) in
E(Q), 64 had x < 6.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Of the first 1000 multiples of P = (3, 5)
in E(Q), 635 had x < 6.

E : y2 = x3 − 2 over R.

Figure 2.11: More and more points (with x < 6) in the infinite group E(Q)

From now on we will only be working with elliptic curves over finite fields.

We start with a simple example of basic group law computations on E(Fq) to

2.1. The group law: the chord-and-tangent rule 17

summarise the discussion up until this point.

Example 2.1.7 (Magma script). E/F23 : y2 = x3 +5x+7 is an elliptic curve, and

both P = (xP , yP) = (2, 5) and Q = (xQ, yQ) = (12, 1) are on E. Using the affine

point addition formulas in (2.4), we find R = P ⊕ Q by first computing λ =
yQ−yP

xQ−xP
= 1−5

12−2
= −4 · 10−1 = −28 = 18, from which ν follows as ν = yP − λxP =

5−18·2 = −31 = 15, so ℓ : y = 18x+15 is the line running through P and Q. We

then compute (xR, yR) = (λ2− xP − xQ,−(λxR + ν)), so xR = 182− 2− 12 = 11

and yR = −(18 ·11+15) = 17, meaning R = (11, 17). Applying (2.5) to compute

S = [2]P gives λ′ =
3x2

P +a

2yP
= 3·22+5

2·5
= 17 ·10−1 = 17 ·7 = 4, and ν ′ follows as ν ′ =

yP −λ′xP = 5−4 ·2 = 20, so ℓ′ : y = 4x+20 is the tangent line that intersects E

with multiplicity two at P . We then compute (xS, yS) = (λ′2−2xP ,−(λ′xS +ν ′)),

so xS = 42− 2 · 2 = 12 and yS = −(4 · 12 + 20) = −68 = 1, meaning S = (12, 1).

We now give an example of the multiplication-by-m map on E, defined as

[m] : E → E, P 7→ [m]P,

and illustrate the straightforward way to compute it in practice. This operation

is analogous to exponentiation g 7→ gm in Z∗q, and is the central operation in

ECC, as it is the one-way operation that buries discrete logarithm problems

in E(Fq). To efficiently compute the exponentiation gm in Z∗q, we square-and-

multiply, whilst to compute the scalar multiplication [m]P in E(Fq), we (because

of the additive notation) double-and-add.

Example 2.1.8 (Magma script). Let E/F1021 : y2 = x3 − 3x − 3 so that r =

#E(Fq) = 1039 is prime. Let P = (379, 1011) ∈ E and m = 655, and suppose

we are to compute [m]P = [655](379, 1011). To double-and-add, we write the (10-

bit) binary representation of m as m = (m9, ..., m0)2 = (1, 0, 1, 0, 0, 0, 1, 1, 1, 1).

Initialising T ← P , and starting from the second most significant bit m8, we

successively compute T ← [2]T for each bit down to m0, and whenever mi = 1 we

compute T ← T+P . So, in our case it takes 9 doublings T ← [2]T and 5 additions

T ← T + P to compute [m]P , which ends up being [655](379, 1011) = (388, 60).

In general then, this straightforward double-and-add algorithm will take log2m

doublings and roughly half as many additions to compute [m]P (if m is randomly

chosen).

http://www.craigcostello.com.au/pairings/beginners/2-1-7-E:F23.txt
http://www.craigcostello.com.au/pairings/beginners/2-1-8-MulByM.txt

18 Chapter 2. Elliptic curves as cryptographic groups

2.1.3 The group axioms

All but one of the group axioms are now concrete. Namely, for closure, if we

start with two points in E(K), then the chord-and-tangent process gives rise

to a cubic polynomial in K for which two roots (the two x-coordinates of the

points we started with) are in K, meaning the third root must also be in K;

the explicit formulas affirm this. The identity and inverse axioms are fine, since

P ⊕O = P , and the element ⊖P such that P ⊕ (⊖P) = O is clearly unique and

well defined for all P . We also note that the group is abelian, since the process

of computing P ⊕Q is symmetric. The only non-obvious axiom is associativity,

i.e. showing (P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R). An elementary approach using

the explicit formulas above can be used to show associativity by treating all the

separate cases, but this approach is rather messy [Fri05]. Silverman gives a much

more instructive proof [Sil09, Ch. III.3.4e] using tools that we will develop in

the following chapter, but for now we offer some temporary intuition via the

illustration in Figures 2.12 and 2.13.

2.1.4 Speeding up elliptic curve computations

•

•
P ⊕Q

••
P

•Q
•

R

•
(P ⊕Q)⊕ R

Figure 2.12: (P ⊕Q)⊕ R.

•

•
Q⊕ R

••
P

•Q
•

R

•
P ⊕ (Q ⊕R)

Figure 2.13: P ⊕ (Q⊕R).

Group law computations on elliptic curves are clearly more complicated than

computations in traditional groups that facilitate discrete logarithm based pro-

tocols like F∗q; the explicit formulas in (2.4) and (2.5) use many field operations.

2.1. The group law: the chord-and-tangent rule 19

However, in the context of cryptography, the more abstract nature of elliptic

curve groups actually works in their favour. This is essentially because attackers

aiming to solve the discrete logarithm problem on elliptic curves also face this

abstractness. The subexponential algorithms that apply to finite field discrete

logarithms1 do not translate to the elliptic curve setting, where the best avail-

able attacks remain generic, exponential algorithms like Pollard rho [Pol78]. This

means that elliptic curve groups of a relatively small size achieves the same con-

jectured security as multiplicative groups in much larger finite fields, i.e. E(Fq1)

and F∗q2
achieve similar security when q2 ≫ q1. For example, an elliptic curve

defined over a 160-bit field currently offers security comparable to a finite field

of 1248 bits [Sma10, Table 7.2]. Thus, although more field operations are re-

quired to perform a group law computation, these operations take place in a

field whose operational complexity is much less, and this difference is more than

enough to tip the balance in the favour of elliptic curves. In addition, the smaller

group elements in E(Fq1) implies much smaller key sizes, greatly reducing stor-

age and bandwidth requirements. These are some of the major reasons that

elliptic curves have received so much attention in the realm of public-key cryp-

tography; the field of elliptic curve cryptography (ECC) has been thriving since

Koblitz [Kob87] and Miller [Mil85] independently suggested their potential as

alternatives to traditional groups.

One avenue of research that has given ECC a great boost is that of optimising

the group law computations. The explicit formulas in affine coordinates ((2.4)

and (2.5)) would not be used to compute the group law in practice, and in fact

the Weierstrass model E : y2 = x3 + ax+ b is often not the optimal curve model

either. A huge amount of effort has been put towards investigating other models

and coordinate systems in order to minimise the field operations required in

group law computations. One of the initial leaps forward in this line of research

was the observation that performing computations in projective space avoids field

inversions, which are extremely costly in practice. We illustrate these techniques

in the following examples.

Example 2.1.9 (Magma script). Consider a general Weierstrass curve E(Fq) :

y2 = x3 + ax+ b where q is a large prime, and let M, S and I represent the cost

of computing multiplications, squarings and inversions in Fq respectively. To

compute a general affine point doubling (xR, yR) = [2](xP , yP) using (2.5) costs

1See Diem’s notes on index calculus for a nice introduction [Die12].

http://www.craigcostello.com.au/pairings/beginners/2-1-9-ProjAdd.txt
http://ellipticnews.wordpress.com/2012/05/07/246/

20 Chapter 2. Elliptic curves as cryptographic groups

2M+2S+I, and to compute a general affine point addition (xR, yR) = (xP , yP)⊕
(xQ, yQ) using (2.4) costs 2M + S + I. On the other hand, we can transform

the formulas into homogeneous projective space according to the substitutions

x = X/Z and y = Y/Z, and we can consider computing (XR : YR : ZR) =

[2](XP : YP : ZP) and (XR : YR : ZR) = (XP : YP : ZP) ⊕ (XQ : YQ : ZQ) on

E : Y 2Z = X3 + aXZ2 + bZ3. For the addition case, substituting xi = Xi/Zi

and yi = Yi/Zi for i ∈ {P,Q,R} into the affine formulas

xR =

(
yQ − yP

xQ − xP

)2

− xP − xQ; yR =

(
yQ − yP

xQ − xP

)

(xP − xR)− yP

taken from (2.4), gives

XR

ZR
=





YQ

ZQ
− YP

ZP

XQ

ZQ
− XP

ZP





2

− XP

ZP
− XQ

ZQ
;

YR

ZR
=





YQ

ZQ
− YP

ZP

XQ

ZQ
− XP

ZP





(
XP

ZP
− XR

ZR

)

− YP

ZP
.

After a little manipulation, we can then set ZR to be the smallest value that
contains both denominators above, and update the numerators accordingly to
give

XR = (XPZQ −XQZP)
(
ZPZQ(YPZQ − YQZP)2 − (XPZQ −XQZP)2(XPZQ +XQZP)

)
;

YR = ZPZQ(XQYP −XPYQ)(XPZQ −XQZP)2

− (YPZQ − YQZP)
(
(YPZQ − YQZP)2ZPZQ − (XPZQ +XQZP)(XPZQ −XQZP)2

)
;

ZR = ZPZQ(XPZQ −XQZP)3.

The explicit formulas database (EFD) [BL07a] reports that the above formulas

can be computed in a total of 12M + 2S. The real power of adopting projective

coordinates for computations becomes apparent when we remark that most opti-

mised implementations of Fq arithmetic have I≫ 20M, and the multiplication to

inversion ratio is commonly reported to be 80 : 1 or higher. Thus, the 12M+2S

used for additions in projective space will be much faster than the 2M + S + I

for affine additions. For completeness, we remark that deriving the projective

formulas for computing (XR : YR : ZR) = [2](XP : YP : ZP) is analogous (but

substantially more compact since we only have the projective coordinates of P

to deal with), and the EFD reports that this can be done in 5M+6S, which will

again be much faster than the 2M + 2S + I in affine space.

The Weierstrass model for elliptic curves covers all isomorphism classes,

meaning that every elliptic curve can be written in Weierstrass form. Other

2.1. The group law: the chord-and-tangent rule 21

models of elliptic curves are usually available if some condition holds, and (if

this is the case) it can be advantageous to adopt such a model, as the following

example shows.

Example 2.1.10 (Magma script). If x3 + ax+ b has a root in Fq, then Billet and

Joye [BJ03, Eq. 8-10] show that instead of working with E : y2 = x3 + ax + b,

we can work with the (birationally equivalent) Jacobi-quartic curve J : v2 =

au4 + du2 + 1, for appropriately defined a, d (that depend on the root). Here we

write J using (u, v) coordinates so back-and-forth mappings are defined without

confusion. Thus, consider E/F97 : y2 = x3 + 5x+ 5, for which x3 + 5x+ 5 has 34

as a root, so we will work on the isomorphic curve J/F97 : v2 = 73u4 + 46u2 + 1.

Instead of homogeneous projective coordinates, [BJ03] projectified under the

substitution u = U/W and v = V/W 2, which gives the (non-homogeneous)

projective closure as J : V 2 = 73U4 + 46U2W 2 +W 4. Any point (x, y) 6= O on

E can be taken straight to the projective closure of J via

(x, y) 7→
(
2(x− 34) : (2x+ 34)(x− 34)2 − y2 : y

)
,

with the reverse mapping given by

(U : V : W) 7→
(

2
V +W 2

U2
− 17,W

4(V +W 2)− 5U2

U3

)

.

For example (x, y) = (77, 21) maps to (U : V : W) = (86 : 8 : 21), and vice versa.

We now look at the formulas for the point addition (U3 : V3 : W3) = (U1 : V1 :

W1) ⊕ (U2 : V2 : W2) on J : V 2 = aU4 + dU2W 2 + W 4, taken from [BJ03, Eq.

11], as

U3 = U1W1V2 + U2W2V1,

V3 =
(
(W1W2)

2 + a(U1U2)
2
)
(V1V2 + dU1U2W1W2) + 2aU1U2W1W2(U

2
1W

2
2 + U2

2W
2
1),

W3 = (W1W2)
2 − a(U1U2)

2,

where we immediately highlight the relative simplicity of the above formulas

in comparison to the homogeneous projective formulas derived in the previous

example. Unsurprisingly then, the fastest formulas for Jacobi-quartic additions

and doublings outdo those for general Weierstrass curves in homogeneous projec-

tive space. Namely, the current fastest formulas for doublings on Jacobi-quartics

cost 2M + 5S and additions cost 6M + 4S [HWCD09], whilst in the previous

http://www.craigcostello.com.au/pairings/beginners/2-1-10-JacobiQ.txt

22 Chapter 2. Elliptic curves as cryptographic groups

example we had 5M + 6S for doublings and 12M + 2S for additions.

The Jacobi-quartic curves discussed above are just one example of dozens of

models that have been successful in achieving fast group law computations, and

therefore fast cryptographic implementations. Other well known models include

Edwards curves [Edw07,BL07b], Hessian curves [JQ01,Sma01] and Montgomery

curves [Mon87]. We refer to the EFD [BL07a] for a catalogue of all the fastest

formulas for the popular curve models, and to Hisil’s thesis [His10] for a general

method of (automatically) deriving fast group law algorithms on arbitrary curve

models. For any reader wishing to delve even further into group law arithmetic

on elliptic curves, we also recommend the recent, advanced works by Castryck

and Vercauteren [CV11], and by Kohel [Koh11].

2.2 Torsion, endomorphisms and point count-

ing

We now turn our focus to the behaviour of elliptic curve groups, as they are

used in cryptography. We start by importantly discussing the possible structures

exhibited by the finite group E(Fq). It turns out that E(Fq) is either itself cyclic,

or isomorphic to a product of two cyclic groups Zn1×Zn2 with n1 | n2 [ACD+05,

Prop. 5.78]. In cryptography, we would like the group E(Fq) to be as cyclic

as possible, so we usually prefer the former case, or at the very least for n1 to

be very small. In most cases of practical interest, we can generate curves that

are cyclic with relative ease, so throughout this thesis it is to safe assume that

E(Fq) is cyclic (but to see the real depth of this question in general, we refer

to [MS07]). The following example illustrates that E(Fq) = 〈P 〉 obeys all the

usual rules that apply to cyclic groups, and introduces the important notion of

r-torsion.

Example 2.2.1 (Magma script). Consider E/F101 : y2 = x3 + x + 1. The group

order is #E(Fq) = 105 = 3 ·5 ·7, and P = (47, 12) ∈ E is a generator. Lagrange’s

theorem says that points (and subgroups) over the base field will have order

in {1, 3, 5, 7, 15, 21, 35, 105}. Indeed, to get a point of order r | 105, we simply

multiply P by the appropriate cofactor, which is h = #E/r. For example, a point

of order 3 is [35](47, 12) = (28, 8), a point of order 21 is [5](47, 12) = (55, 65),

and a point of order 1 is [105](47, 12) = O (which is the only such point). By

http://www.craigcostello.com.au/pairings/beginners/2-2-1-Torsion.txt

2.2. Torsion, endomorphisms and point counting 23

definition, a point is “killed” (sent to O) when multiplied by its order. Any point

over the full closure E(Fq) that is killed by r is said to be in the r-torsion. So,

the point (55, 65) above is in the 21-torsion, as is the point (28, 8). There are

exactly 21 points in E(Fq) in the 21-torsion, but there are many more in E(Fq).

The whereabouts and structure of r-torsion points in E(Fq) (alluded to at

the end of Example 2.2.1) plays a crucial role in pairing-based cryptography; we

will be looking at this in close detail in Chapter 4.

In ECC we would like the group order #E(Fq) to be as close to prime as pos-

sible. This is because the (asymptotic) complexity of the ECDLP that attackers

face is dependent on the size of the largest prime subgroup of E(Fq). Even if

the particular instance of the discrete logarithm problem uses a generator of the

whole group, the attacker can use the known group order to solve smaller in-

stances in subgroups whose orders are pairwise prime, and then reconstruct the

answer using the Chinese Remainder Theorem (CRT). We make this clear in

the following two examples: the first is a toy example, whilst the second shows

the difference between two curves of the same cryptographic size; one that is

currently considered secure and one that is completely breakable using modern

attacks.

Example 2.2.2 (Magma script). Consider E/F1021 : y2 = x3 + 905x + 100, with

group order #E(Fq) = 966 = 2 · 3 · 7 · 23, and generator P = (1006, 416).

Suppose we are presented with an instance of the ECDLP: namely, we are given

Q = (612, 827), and we seek to find k such that [k]P = Q. For the sake of the

example, suppose our best “attack” is trivial: trying every multiple [i]P of P

until we hit the correct one (i = k). Rather than seeking i in the full group (2 ≤
i ≤ 965), we can map the instance into each prime order subgroup by multiplying

by the appropriate cofactor, and then solve for kj ≡ k mod j, j ∈ {2, 3, 7, 23}.
For j = 2, we have Pj = P2 = [966/2]P = [483](1006, 416) = (174, 0), and Qj =

Q2 = [483](612, 827) = (174, 0), so Q2 = [k2]P2 gives k2 = 1. For j = 3, we have

P3 = [322]P = (147, 933) and Q3 = [322]P = O, so Q3 = [k3]P3 gives k3 = 3.

For j = 7, we have P7 = [138]P = (906, 201) and Q7 = [138]Q = (906, 201), so

Q7 = [k7]P7 gives k7 = 1. For j = 23, we have P23 = [42]P = (890, 665) and

Q23 = [42]Q = (68, 281). For Q23 = [k23]P23, we exhaust k23 ∈ {1, .., 22} to see

that k23 = 20. Now, we can use the Chinese Remainder Theorem to solve

k ≡ k2 = 1 mod 2; k ≡ k3 = 0 mod 3; k ≡ k7 = 1 mod 7; k ≡ k23 = 20 mod 23,

which gives k ≡ 687 mod #E, solving the ECDLP instance. Notice that the

http://www.craigcostello.com.au/pairings/beginners/2-2-2-ECDLP.txt

24 Chapter 2. Elliptic curves as cryptographic groups

hardest part was exhausting the set {1, .., 22} to find k23 = 20, so the largest

prime order subgroup becomes the bottleneck of the algorithm, giving intuition

as to why the largest prime order subgroup defines the attack complexity when

groups of a cryptographic size are used.

Example 2.2.3 (Magma script). For our real world example, we take the curve P-

256 from the NIST recommendations [NIS99], which currently achieves a similar

security level (resistance against best known attacks) to the 128-bit Advanced

Encryption Standard (AES) for symmetric encryption. The curve is defined as

E/Fq : y2 = x3 − 3x+ b, with prime order r = #E, and generator G = (xG, yG),

where

q = 115792089210356248762697446949407573530086143415290314195533631308867097853951,

r = 115792089210356248762697446949407573529996955224135760342422259061068512044369,

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291,

xG = 48439561293906451759052585252797914202762949526041747995844080717082404635286,

yG = 36134250956749795798585127919587881956611106672985015071877198253568414405109,

xH = 53987601597021778433910548064987973235945515666715026302948657055639179420355,

yH = 53690949263410447908824456005055253553237881490194075871737490561466076234637.

We give another point H = (xH , yH) to pose H = [k]G as an intractable in-

stance of the ECDLP; this 256-bit prime field (and group order) is far beyond the

reach of current attacks. For example, there is currently a campaign underway

to solve a discrete logarithm problem over a 130-bit field using a cluster of servers

that have already been running for two years (see http://ecc-challenge.info/),

so (assuming the best known attacks stay exponential) it seems the above ECDLP

should be safe for a while yet. We remark that the prime characteristic q is given

by q = 2256−2224 +2192 +296−1; such primes are preferred in ECC as they allow

for faster finite field multiplication and reduction routines, greatly enhancing the

speed of Fq arithmetic. We now give a curve over the same field Fq, for which

the ECDLP is well within reach of the best known attacks. Namely, consider the

alternative curve with b = 0, namely Ẽ/Fq : y2 = x3 − 3x, whose group order

n = #Ẽ is given as

http://www.craigcostello.com.au/pairings/beginners/2-2-3-NIST.txt
http://ecc-challenge.info/

2.2. Torsion, endomorphisms and point counting 25

n = 115792089210356248762697446949407573530086143415290314195533631308867097853952,

= 296 · 7 · 274177 · 67280421310721 · 11318308927973941931404914103.

This time, the largest prime divisor of the group order is only 94 bits long,

and the complexity of solving the ECDLP in Ẽ(Fq) is governed by the difficulty

of solving the ECDLP instance in this largest prime subgroup, which could be

done in a small amount of time on a desktop computer.

The above example provides clear motivation as to the importance of counting

points on elliptic curves. The largest prime factor of the group order determines

the difficulty that attackers face when trying to solve the ECDLP, so we would

like to be able to count points on curves quickly enough to find those whose

order is prime or almost prime (i.e. has a small cofactor), or have methods of

prescribing such a group order before searching for the curve. Fortunately, on

elliptic curves we have efficient algorithms to do both.

We start our brief discussion on elliptic curve point counting by referring

back to the two group orders in Example 2.2.3, and observing that both group

orders share the first half of their digits with those of the field characteristic q.

This suggests that the number of points on an elliptic curve is close to q, which

is indeed the case in general; the Hasse bound [Sil09, Ch. 5, Th. 1.1] says the

most that #E(Fq) can differ from q + 1 is 2
√
q, i.e. |#E(Fq)− (q + 1)| ≤ 2

√
q.

This offset between #E(Fq) and (q + 1) is called the trace of Frobenius, and is

denoted by t, so

#E(Fq) = q + 1− t, |t| ≤ 2
√
q (2.6)

We will discuss where t comes from and provide some more intuition behind

the above formula in a moment, but what the Hasse bound tells us is that

the group order lies somewhere in the interval [q + 1 − 2
√
q, q + 1 + 2

√
q]. In

fact, Deuring [Deu41] showed that when q is prime2, then every value N ∈
[q + 1− 2

√
q, q + 1 + 2

√
q] can be found as a group order #E(Fq) for some E.

Example 2.2.4 (Magma script). Let q = 23, so that the Hasse interval becomes

[q+ 1− 2
√
q, q+ 1 + 2

√
q] = [15, 33], meaning that there are exactly 19 different

2When q is a prime power, there are a very small number of explicitly described exceptions.

http://www.craigcostello.com.au/pairings/beginners/2-2-4-Deuring.txt

26 Chapter 2. Elliptic curves as cryptographic groups

group orders taken by elliptic curves over F23. For example, E/F23 : y2 =

x3 + 18x+ 3 has #E = 15, whilst Ẽ/F23 : y2 = x3 + 13x+ 7 has #Ẽ = 33. We

give 19 (a, b) pairs such that the corresponding curves E : y2 = x3 + ax+ b have

group orders in ascending order spanning the whole interval, as follows: (18, 3),

(7, 22), (19, 14), (17, 17), (12, 5), (7, 12), (8, 10), (17, 18), (20, 20), (2, 3), (20, 3),

(6, 8), (16, 8), (16, 22), (9, 16), (19, 6), (20, 8), (22, 9), (13, 7).

A rough (but elementary and instinctive) argument as to why #E ≈ q is that

approximately half of the values x ∈ [0, .., q − 1] will give a quadratic residue

x3 + ax+ b ∈ QR(q), which gives rise to two points (x,±
√
x3 + ax+ b) ∈ E(Fq),

the only exception(s) being when x3 + ax+ b = 0 which obtains one point. The

sophisticated explanation requires a deeper knowledge than our introduction

offers, but for the purposes of this introductory text we get almost all that we

need from Equation (2.6); the derivation of which makes use of the following

definition. If E is defined over Fq, then the Frobenius endomorphism π is defined

as

π : E → E, (x, y) 7→ (xq, yq). (2.7)

We note that the Frobenius endomorphism maps any point in E(Fq) to a point in

E(Fq), but the set of points fixed by π is exactly the group E(Fq). Thus, π only

acts non-trivially on points in E(Fq) \ E(Fq), and more generally, πi : (x, y) 7→
(xqi

, yqi
) only acts non-trivially on points in E(Fq) \ E(Fqi).

Example 2.2.5 (Magma script). Let q = 67, and consider E/Fq : y2 = x3+4x+3,

and let Fq2 = Fq(u) where u2 + 1 = 0, and further let Fq3 = Fq(v) where

v3 + 2 = 0. For P1 = (15, 50) ∈ E(Fq), we have πq(P1) = (15q, 50q) = (15, 50).

For P2 = (2u + 16, 30u + 39), we have πq(P2) = ((2u+ 16)q, (30u+ 39)q) =

(65u+ 16, 39 + 37u); it is easy to see in this example that computing πq(Q) for

any Q ∈ E(Fq2) involves a simple “complex conjugation” on each coordinate,

which also agrees with π2
q (Q) = Q. Let P3 = (15v2 + 4v + 8, 44v2 + 30v + 21),

πq(P3) = (33v2+14v+8, 3v2+38v+21), π2
q (P3) = (19v2+49v+8, 20v2+66v+21),

and π3
q (P3) = P3.

We can now return to sketch the derivation of Equation (2.6) by skimming

over results that are presented in full in Silverman’s book [Sil09, Ch. V, Th. 1.1].

We now know that P ∈ E(Fq) if and only if π(P) = P (i.e. ([1] − π)P = O),

and thus #E(Fq) = #ker([1] − π). It is not too hard to show that the map

http://www.craigcostello.com.au/pairings/beginners/2-2-5-Frobenius.txt

2.2. Torsion, endomorphisms and point counting 27

[1] − π is separable, which means that #E(Fq) = #ker([1] − π) = deg([1] − π).

We can then make use of (a special case of) a version of the Cauchy-Schwarz

inequality [Sil09][Ch. V, Lemma 1.2], to give |deg([1]−π)−deg([1])−deg(π)| ≤
2
√

deg([1])deg(π), from which Equation (2.6) follows from deg(π) = q.

The theory of elliptic curves makes constant use of the endomorphism ring

of E, denoted End(E), which (as the name suggests) is the ring of all maps

from E to itself; addition in the ring is natural, i.e. (ψ1 + ψ2)(P) = ψ1(P) +

ψ2(P), and multiplication in End(E) is composition (ψ1ψ2)(P) = ψ1(ψ2(P)).

The multiplication-by-m map [m] is trivially in End(E) for all m ∈ Z, and when

E is defined over a finite field, then clearly π is too, so we are usually interested

in any extra endomorphisms that shed more light on the behaviour of E.

Example 2.2.6 (Magma script). Consider E/Fq : y2 = x3 +b. The map ξ, defined

by ξ : (x, y) 7→ (ξ3x, y) with ξ3
3 = 1 and ξ3 6= 1, is a non-trivial endomorphism on

E, so ξ ∈ End(E). If ξ3 ∈ Fq, then ξ will be defined over Fq, otherwise ξ3 ∈ Fq2

in which case ξ is not defined over Fq, but over Fq2. We will observe both cases.

Firstly, cubic roots of unity will be defined in Fq if and only if q ≡ 1 mod 3, so

let us take q ≡ 19, b = 5, which gives E/F19 : y2 = x3 + 5. Let ξ3 = 7 so that

ξ3
3 = 1 (we could have also taken ξ2

3 = 11), so that ξ : (x, y) 7→ (7x, y) is an

endomorphism on E. Applying this to, say P = (−1, 2), gives ξ(P) = (−7, 2) ∈
E. Taking the same curve over F23, i.e. E/F23 : y2 = x3+5, for which P = (−1, 2)

is a again a point, we no longer have a non-trivial ξ3 ∈ F23, so we must form a

quadratic extension Fq2(u), u2 +1 = 0. Now, we can take ξ3 = 8u+11 (the other

option is ξ2
3 = 15u+11), so that ξ(P) = (−(8u+11), 2) = (15u+12, 2) ∈ E(Fq2).

Notice that P started in E(Fq), but landed in E(Fq2) under ξ. The endomorphism

ξ has an inverse ξ−1 (which is defined the same way but with ξ2
3 instead), so ξ is

actually an automorphism of E, written as ξ ∈ Aut(E).

The definition of ξ : (x, y) 7→ (ξ3x, y) in the above example gives an endomor-

phism on E : y2 = x3 + b regardless of the field that E is defined over. If there

exists a non-trivial map (like ξ) for an elliptic curve E, we say E has complex

multiplication. To be more precise, all elliptic curve endomorphism rings triv-

ially contain Z, since every m ∈ Z corresponds to the multiplication-by-m map

[m] ∈ End(E). However, if non-trivial endomorphisms exist that make End(E)

strictly larger than Z, then we say E has complex multiplication (CM). Thus,

by this definition, every elliptic curve defined over Fq has CM, because the exis-

tence of the Frobenius endomorphism π ∈ End(E) makes End(E) larger than Z.

http://www.craigcostello.com.au/pairings/beginners/2-2-6-Endo1.txt

28 Chapter 2. Elliptic curves as cryptographic groups

However, if we discuss whether E has CM without yet stipulating the underlying

finite field, then the question becomes non-trivial in general, because the answer

depends on the existence of non-trivial maps. We use Silverman’s example to

illustrate [Sil09, Ch. 3, Eg. 4.4].

Example 2.2.7 (Magma script). Consider E/K : y2 = x3 + ax. The map ζ :

(x, y) 7→ (−x, iy), where i2 = −1 in K is an endomorphism, so E has CM.

Clearly, ζ will be defined over K if and only if i ∈ K. Observe that ζ ◦ ζ(x, y) =

ζ(−x, iy) = (x,−y) = −(x, y), so ζ ◦ ζ = [−1] (i.e. ζ2 is equivalent to negation).

Thus, there is a ring homomorphism Z[i]→ End(E) defined by m+ ni 7→ [m] +

[n] ◦ ζ . If Char(K) 6= 0, then this map is an isomorphism, thus End(E) ∼= Z[i],

and Aut(E) ∼= Z[i]∗.

The trace of Frobenius t in Equation (2.6) is named so because of the role it

plays in the characteristic polynomial satisfied by π, which is given as

π2 − [t] ◦ π + [q] = 0 in End(E), (2.8)

meaning that for all (x, y) ∈ E(Fq), we have

(xq2

, yq2

)− [t](xq, yq) + [q](x, y) = O. (2.9)

Example 2.2.8 (Magma script). We use our results from Example 2.2.5 to illus-

trate, so as before E/F67 : y2 = x3 + 4x + 3, Fq2 = Fq(u) where u2 + 1 = 0,

and Fq3 = Fq(v) where v3 + 2 = 0. The trace of Frobenius is t = −11, so

#E(Fq) = q + 1 − t = 79. For P1 = (15, 50) ∈ E(Fq), we trivially had

π2(P1) = π(P1) = P1, so P1− [t]P1 +[q]P1 = ([1]− [t]+[q])P1 = [#E(Fq)]P1 = O.

For P2 = (2u+16, 30u+39), we had π2(P2) = P2 and π(P2) = (65u+16, 37u+39),

so we are computing P2−[−11]π(P2)+[67]P2 = [68](2u+16, 30u+39)+[11](65u+

16, 37u+ 39), which is indeed O. P3 ∈ E(Fq3) is the only case where both π and

π2 act non-trivially, so we compute (19v2+49v+8, 20v2+66v+21)−[−11](33v2+

14v + 8, 3v2 + 38v + 21) + [67](15v2 + 4v + 8, 44v2 + 30v + 21), which is O.

We now give a brief sketch of Schoof’s algorithm for counting points on el-

liptic curves [Sch85]. Understanding the algorithm is not a prerequisite for un-

derstanding pairings, but it certainly warrants mention in any overview text on

elliptic curves in cryptography, since it is essentially the algorithm that made

ECC practical. Before Schoof’s polynomial-time algorithm, all algorithms for

point counting on elliptic curves were exponential and therefore cryptographi-

http://www.craigcostello.com.au/pairings/beginners/2-2-7-AutoRing.txt
http://www.craigcostello.com.au/pairings/beginners/2-2-8-CharFrob.txt

2.2. Torsion, endomorphisms and point counting 29

cally impractical. Besides, to sketch his idea, we need to introduce the notion

of division polynomials, which are a useful tool in general. Put simply, division

polynomials are polynomials whose roots reveal torsion points: namely, for odd3

ℓ, the ℓ-th division polynomial ψℓ(x) on E solves to give the x-coordinates of

the points of order ℓ. They are defined recursively and depend on the curve con-

stants a and b, but rather than giving the recursions here, we point the reader

to [Sil09, Ch. III, Exer. 3.7], and opt instead for an example that illustrates

their usefulness.

Example 2.2.9 (Magma script). Recall the curve E/F101 : y2 = x3 + x + 1 from

Example 2.2.1 with group order #E(Fq) = 105 = 3 · 5 · 7. The x-coordinates of

the points of order 2 are found as the roots of ψ2(x) = 4x3 + 4x + 4, which is

irreducible in Fq[x], so there are no 2-torsion points in E(Fq). For r = 3, ψ3(x) =

3x4 +6x2 +12x+100 ∈ Fq[x] factors into ψ3(x) = (x+73)(x+84)(x2+45x+36),

so we get two solutions over Fq, namely x = 17 and x = 28. This does not

mean that the points implied by both solutions are in Fq: namely, x = 28 gives

x3 + x+ 1 ∈ QR(q), so two points in the 3-torsion follow as (28, 8) and (28, 93).

Conversely, x = 17 gives x3 +x+1 6∈ QR(q), so the two points implied by x = 17

will be defined over Fq2. For ψ5(x) = 5x12 + ... + 16, the factorisation in Fq[x]

is ψ5(x) = (x+ 15)(x+ 55)(x5 + ... + 1)(x5 + ...+ 100), which gives x = 46 and

x = 86 as solutions. This time, both x values give rise to two points, giving four

non-trivial 5-torsion points in total: (46, 25), (46, 76), (86, 34), (86, 67). ψ7(x)

is degree 24, and gives three linear factors in Fq[x], all of which result in two

7-torsion points, giving 6 non-trivial torsion points in total: (72, 5), (72, 96),

(57, 57), (57, 44), (3, 43), (3, 58). Other division polynomials have roots in Fq,

but these roots will not give rise to points defined over Fq. For example, ψ11(x)

has 5 roots over Fq (13, 18, 19, 22, 63), but none of them give points in E(Fq),

meaning we will have to extend to E(Fq2) to collect any 11-torsion points. The

only division polynomials whose roots produce points defined over Fq are the

ψd(x) with d | 105. This generalises to imply that the only division polynomials

whose roots produce points defined over Fqn are ψd(x), where d | #E(Fqn).

We are now in a position to shed light on Schoof’s algorithm. Equation

(2.6) means that computing E(Fq) immediately reduces to computing the (much

smaller) trace of Frobenius, t. At the highest level, Schoof’s idea is to compute

3When ℓ is even, the division polynomial is of the form ψℓ(x, y) = y · ψ̃ℓ(x) since y = 0 gives
points of order two, which are in the ℓ-torsion.

http://www.craigcostello.com.au/pairings/beginners/2-2-9-DivisionPoly.txt

30 Chapter 2. Elliptic curves as cryptographic groups

tℓ ≡ t mod ℓ for enough co-prime ℓ’s to be able to uniquely determine t within

the interval −2
√
q ≤ t ≤ 2

√
q via the Chinese Remainder Theorem. Namely,

when
∏

ℓ tℓ ≥ 4
√
q, then we have enough relations to determine the correct t.

To compute tℓ for various primes ℓ, Schoof looked to consider Equation (2.9)

“modulo ℓ”, restricting the points (x, y) to come from the ℓ-torsion, and trying

to solve

(xq2

, yq2

)− [tℓ](x
q, yq) + [qℓ](x, y) = O, (2.10)

for tℓ, where qℓ ≡ q mod ℓ. The problem for general ℓ is, that since we do not

know the group order, we cannot explicitly use ℓ-torsion points in (2.10), nor

do we know if they are even defined over Fq, or where they are defined, so we

have to work with (2.10) implicitly. Namely, we restrict (2.10) to the ℓ-torsion by

working modulo ψℓ(x): we do not work with Equation (2.10) on E(Fq), but rather

in the polynomial ring Rℓ = Fq[x, y]/〈ψℓ(x), y
2 − (x3 + ax + b)〉, where the size

of the polynomials f(x, y) we deal with in Rℓ are bounded by the degrees of the

division polynomials ψℓ(x). Even for very large prime fields Fq of cryptographic

size, the number of different primes used is small enough to keep this algorithm

very practical. For example, finding the group order of the curve defined over a

256-bit prime q in Example 2.2.3 would require solving (2.10) for the 27 primes up

to ℓ = 107, at which point the product of all the primes used exceeds 4
√
q. It is

not too difficult to deduce that the asymptotic complexity of Schoof’s algorithm

is O ((log q)8) (see [Sil09, Ch. XI.3] for details, and further improvements).

Example 2.2.10 (Magma script). Consider E/F13 : y2 = x3 + 2x + 1; we seek

#E(F13). Schoof’s algorithm actually begins with ℓ = 3 [Sil09, Ch. XI.3];

so since 14 < 4
√

13 < 15, we only need to solve (2.10) with ℓ = 3 and ℓ =

5. For ℓ = 3, ψ3(x) = 3x4 + 12x2 + 12x + 9, so we work in the ring R3 =

Fq[x, y]/〈3x4 + 12x2 + 12x + 9, y2 − (x3 + 2x + 1)〉 with qℓ = 1, to find that

t3 = 0. For ℓ = 5, ψ5(x) = 5x12 + ... + 6x + 7, so we work in the ring R5 =

Fq[x, y]/〈5x12 + ...+6x+7, y2− (x3 +2x+1)〉 with qℓ = 3 to find that t5 = 1. For

both cases we had to compute [qℓ](x, y) in Rℓ using the affine formulas (2.4) and

(2.5), compute (xq, yq) and (xq2
, yq2

) in Rℓ, and then test incremental values of

tℓ until [tℓ](x
q, yq) (also computed with the affine formulas) satisfies (2.10). The

CRT with t ≡ 0 mod 3 and t ≡ 1 mod 5 gives t ≡ 6 mod 15, which combined

with −7 ≤ t ≤ 7 means t = 6, giving #E = q + 1− t = 8.

We finish this chapter by briefly discussing one more improvement to ECC

http://www.craigcostello.com.au/pairings/beginners/2-2-10-SchoofSmall.txt

2.3. Chapter summary 31

that will essentially bring the reader up to speed with major milestones that

contribute to the current state-of-the-art implementations. The technique was

introduced by Gallant, Lambert and Vanstone (GLV) [GLV01], and recently

generalised by Galbraith, Lin and Scott (GLS) [GLS11]. It exploits the existence

of an efficiently computable endomorphism ψ that allows us to instantly move

P to a large multiple ψ(P) = [λ]P of itself, so that (in the simplest case) the

scalar multiplication [m]P can be split into [m]P = [m0]P + [m1]ψ(P), where if

|m| ≈ r (the large subgroup order), then |m0|, |m1| ≈
√
r. The values m0 and

m1 are found by solving a closest vector problem in a lattice [GLV01, §4]. We

apply an example from the GLV paper (which was itself taken from Cohen’s book

[Coh96, §7.2.3]) that is actually exploiting a special case of the endomorphism

we described in Example 2.2.7.

Example 2.2.11 (Magma script). Let q ≡ 1 mod 4 be prime, E/Fq : y2 = x3 +ax,

and let i2 = −1. The map defined by ψ : (x, y) 7→ (−x, iy) and ψ : O 7→
O is an endomorphism defined over Fq (ψ = ζ from 2.2.7). Let P ∈ E(Fq)

have prime order r, then ψ(Q) = [λ]Q for all Q ∈ 〈P 〉, and λ is the integer

satisfying λ2 = −1 mod r. We give a specific example: q = 1048589, E/Fq :

y2 = x3 + 2x with #E = 2r, where r = 524053; we further have i = 38993,

and λ = 304425. P = (609782, 274272) ∈ E has |〈P 〉| = r, so we can take any

element in 〈P 〉, say Q = (447259, 319154), and compute ψ(Q) = (−447259, i ·
319154) = (601330, 117670) = [304425](447259, 319154) = [λ]Q. Computing a

random multiple of Q, say [m]Q with m = 103803, can be done by decomposing

m into (in this case) (m0, m1) = (509, 262), and instead computing [m]Q =

[m0]Q+[m1]ψ(Q). Herem is 17 bits, whilst m0 andm1 are both 9 bits. Doing the

scalar multiples [m0]Q and [m1]ψ(Q) separately would therefore give no savings,

but where the GLV/GLS methods gain a substantial speed-up is in merging the

doublings required in both of the multiplications by the “mini-scalars”, which

halves the number of doublings required overall; again, see [GLV01,GLS11] for

futher details.

2.3 Chapter summary

We defined the elliptic curve group law ⊕ via the chord-and-tangent method,

and discussed that elliptic curve groups are an attractive setting for discrete-log

based cryptosystems because of the relative security obtained for the sizes of the

http://www.craigcostello.com.au/pairings/beginners/2-2-11-GLV:GLS.txt

32 Chapter 2. Elliptic curves as cryptographic groups

fields they are defined over. We also exemplified many improvements in the con-

text of cryptographic implementations, where the fundamental operation (that

creates ECDLP instances) is computing large scalar multiples [m]P of P ∈ E.

Namely, we showed that group law computations in finite fields can be much

faster in projective coordinates, i.e. computing (X1 : Y1 : Z1) ⊕ (X2 : Y2 : Z2)

rather than (x1, y1) ⊕ (x2, y2), and that other (non-Weierstrass) curve models

also offer advantages. We gave an explicit equation for the number of points

in E(Fq), and briefly discussed Schoof’s polynomial-time algorithm that facil-

itates point counting on curves of cryptographic size. We also introduced the

notion of the endomorphism ring End(E) of E, and finished by showing that

non-trivial elements of End(E) can be used to further accelerate ECC. A reader

that is comfortable with the exposition in this chapter is equipped with many

of the tools required to tackle the vast literature in this field, and is some-

what up-to-date with the state-of-the-art ECC implementations. For example,

in the context of chasing ECC speed records, some authors have applied alter-

native projective coordinate systems to the Edwards model to give very fast

scalar multiplications [HWCD08], whilst others have investigated higher dimen-

sion GLV/GLS techniques (Example 2.2.11 above was 2-dimensional) to gain big

speed-ups [HLX12]; visit http://bench.cr.yp.to/supercop.html for compre-

hensive and up-to-date benchmarkings of a wide number of implementations that

are pushing ECC primitives to the limit.

Relaxed notation. Our last order of business before proceeding into the next

chapter is to relax some notation in order to agree with the rest of the literature.

Rather than writing “⊕” for the elliptic curve group law, from hereon we simply

use “+”. Similarly, for the inverse of the point P , we use −P instead of ⊖P .

http://bench.cr.yp.to/supercop.html

Chapter 3

Divisors

In this chapter we introduce some basic language and definitions from algebraic

geometry that are fundamental to the understanding of cryptographic pairing

computations. We continue with our example-driven approach and illustrate

each concept and definition as it arises. We will essentially just be expanding on

the more concise section found in Galbraith’s chapter [Gal05, §IX.2]. However,

we only focus on what we need to describe elliptic curve pairings, so we refer

any reader seeking a more general and thorough treatment to Galbraith’s new

book [Gal12, Ch.7-9]. Since our exposition targets the newcomer, we begin by

assuring such a reader that their persistence through the definitions and examples

will be amply rewarded. On becoming comfortable with the language of divisors,

one can immediately start to appreciate how pieces of the “pairings puzzle” fit

together very naturally, and might even enjoy feeling intuition behind important

theorems that would otherwise appear foreign.

The following statements apply to all curves C over any perfect field K and

its closure K (see [Sil09, p. 17, p. 1] for the respective definitions). However,

for now we place the discussion in our context and specialise to the case where

C is an elliptic curve E over a finite field K = Fq. Later in this chapter we

will expand to more general examples and statements in time to present the

important theorems in their full generality. A divisor D on E is a convenient

33

34 Chapter 3. Divisors

way to denote a multi-set of points on E, written as the formal sum

D =
∑

P∈E(Fq)

nP (P),

where all but finitely many nP ∈ Z are zero. The standard parentheses (·)
around the P ’s and the absence of square parentheses [·] around the nP ’s is

what differentiates the formal sum in a divisor from an actual sum of points (i.e.

using the group law) on E. The set of all divisors on E is denoted by Div
Fq

(E)

and forms a group, where addition of divisors is natural, and the identity is the

divisor with all nP = 0, the zero divisor 0 ∈ Div
Fq

(E). The degree of a divisor

D is Deg(D) =
∑

P∈E(Fq) nP , and the support of D, denoted supp(D), is the set

supp(D) = {P ∈ E(Fq) : nP 6= 0}.
Example 3.0.1 (Magma script). Let P,Q,R, S ∈ E(Fq). Let D1 = 2(P)− 3(Q),

and D2 = 3(Q) + (R) − (S), so that Deg(D1) = 2 − 3 = −1, and Deg(D2) =

3+1−1 = 3. The sum D1+D2 = 2(P)+(R)−(S), and naturally Deg(D1+D2) =

Deg(D1) + Deg(D2) = 2. The supports are supp(D1) = {P,Q}, supp(D2) =

{Q,R, S}, and supp(D1 +D2) = {P,R, S}.
Associating divisors with a function f on E is a convenient way to write down

the intersection points (and their multiplicities) of f and E. Let ordP (f) count

the multiplicity of f at P , which is positive if f has a zero at P , and negative if

f has a pole at P . We write the divisor of a function f as (f), and it is defined

as the divisor

(f) =
∑

P∈E(Fq)

ordP (f)(P).

Example 3.0.2 (Magma script). We have already seen examples of functions on

E in the previous section, namely the lines ℓ : y = λx + ν used in the chord-

and-tangent rule, and it is natural that we are really only interested in the

points of intersection of ℓ and E, which is exactly what the divisor (ℓ) tells

us. The chord ℓ in Figure 3.1 intersects E in P , Q and −(P + Q), all with

multiplicity 1, and (as we will discuss further in a moment) ℓ also intersects E

with multiplicity −3 at O, i.e. ℓ has a pole of order 3 at O. Thus, ℓ has divisor

(ℓ) = (P) + (Q) + (−(P +Q))− 3(O). The tangent ℓ in Figure 3.2 intersects E

with multiplicity 2 at P , with multiplicity 1 at −[2]P , and again with multiplicity

−3 at O, so in this case (ℓ) = 2(P) + (−[2]P)− 3(O). Notice that in both cases

http://www.craigcostello.com.au/pairings/beginners/3-0-1-DivisorSuppSum.txt
http://www.craigcostello.com.au/pairings/beginners/3-0-2-DivChordTangent.txt

35

ℓ

•Q

•P

•−(P + Q)

Figure 3.1: (ℓ) = (P) + (Q) + (−(P +
Q))− 3(O).

ℓ

•P
•−[2]P

Figure 3.2: (ℓ) = 2(P)+ (−[2]P)−3(O).

we have Deg ((ℓ)) = 0.

The balance that occurred between the zeros and poles in Example 3.0.2 that

led to Deg((ℓ)) = 0 is not a coincidence. In fact, a fundamental result that lies at

the heart of the discussion is that this always happens: namely, for any function

f on E, we always have Deg((f)) = 0. An instructive proof of this result is in

Galbraith’s book [Gal12, Th. 7.7.1], but roughly speaking this property follows

from observing that the degree of the affine equation that solves for the zeros

of f on E matches the degree of the projective equation that determines the

multiplicity of the pole of f at O, i.e. the projective version of f is g/h where g

and h both have the same degree as f . We revisit Example 3.0.2 and illustrate

in this special case.

Example 3.0.3 (Magma script). We already know that three zeros (counting mul-

tiplicities) will always arise from substituting ℓ : y = λx + ν into E/Fq : y2 =

x3 + ax + b, but we have only considered ℓ on the affine curve E ∩ A2, where ℓ

has no poles. To consider ℓ on E at O = (0 : 1 : 0) (in P2(Fq)), we need to take

x = X/Z and y = Y/Z which gives (λX+νZ
Z

)2 = (X
Z

)3 + a(X
Z

) + b, for which we

clearly have a pole of order 3 when Z = 0.

The algebra between functions naturally translates across to the algebra be-

tween their divisors, so (fg) = (f) + (g) and (f/g) = (f) − (g), (f) = 0 if and

only if f is constant, and thus if (f) = (g), then (f/g) = 0 so f is a constant

multiple of g, which means that the divisor (f) determines f up to non-zero

scalar multiples.

Example 3.0.4 (Magma script). Let ℓ : y = λ1x+ν1 be the chord (through P and

http://www.craigcostello.com.au/pairings/beginners/3-0-3-ProjDivs.txt
http://www.craigcostello.com.au/pairings/beginners/3-0-4-DivQuotient.txt

36 Chapter 3. Divisors

Q) with divisor (ℓ) = (P) + (Q) + (−(P +Q))− 3(O), and let ℓ′ : y = λ2x+ ν2

be the tangent at R with divisor (ℓ′) = 2(R) + (−[2]R) − 3(O). The divisor of

ℓ

•Q

•P

•−(P + Q)

ℓ′

•R
•
−[2]R

Figure 3.3: Two functions ℓ and ℓ′ on E.

the function ℓprod = ℓℓ′ is (ℓprod) = (ℓ) + (ℓ′) = (P) + (Q) + 2(R) + (−(P +

Q)) + (−[2]R) − 6(O). The divisor of ℓquot = ℓ/ℓ′ is (ℓquot) = (ℓ) − (ℓ′) =

(P) + (Q) + (−(P +Q))− 2(R)− (−[2]R). Notice that ℓquot does not intersect

E at O; projectifying ℓ/ℓ′ = y−λ1x+ν1

y−λ2x+ν2
gives Y−λ1X+ν1Z

Y−λ2X+ν2Z
, which does not give rise

to any zeros or poles at Z = 0. Suppose we wanted to depict the function ℓℓ′

on E, and we multiplied out (y − λ1x− ν1)(y− λ2x− ν2), substituted the y2 for

x3 + ax + b and wrote y = x3+ax+b+(λ1x+ν1)(λ2x+ν2)
(λ1+λ2)x+ν1+ν2

. It does not make sense to

try and depict this function since all the pictures we have used for illustrative

purposes also show how the functions (on E) behave at points that are not on

E, where the substitution y2 = x3 + ax+ b is not permitted.

3.1 The divisor class group

We can now start introducing important subgroups of the group of divisors

Div
Fq

(E) on E. We temporarily drop the subscript, and write Div(E) as the

group of all divisors on E. The set of degree zero divisors {D ∈ Div(E) :

Deg(D) = 0} forms a proper subgroup, which we write as Div0(E) ⊂ Div(E).

If a divisor D on E is equal to the divisor of a function, i.e. D = (f), then

D is called a principal divisor, and the set of principal divisors naturally form

a group, written as Prin(E). We already know (from Example 3.0.3 and the

preceding discussion) that principal divisors have degree zero, but there are also

degree zero divisors that are not the divisors of a function, so the degree zero

subgroup is strictly larger than the principal divisors, i.e. Prin(E) ⊂ Div0(E).

3.1. The divisor class group 37

There is, however, an extra condition on elements of Div0(E) that does allow us

to write an “if-and-only-if”: D =
∑

P nP (P) ∈ Div0(E) is principal if and only

if
∑

P [nP]P = O on E [Gal05, Th. IX.2]. We illustrate this statement, and the

relationship between the three groups

Prin(E) ⊂ Div0(E) ⊂ Div(E) (3.1)

in Example 3.1.1.

Example 3.1.1 (Magma script). Consider E/F103 : y2 = x3 + 20x + 20, with

points P = (26, 20), Q = (63, 78), R = (59, 95), S = (24, 25), T = (77, 84),

U = (30, 99) all on E. The divisor (S) + (T) − (P) ∈ Div(E) is clearly not in

the subgroup Div0(E), since it has degree 1; there are also infinitely many other

trivial examples. The divisor (P) + (Q) − (R) − (S) is in Div0(E), but is not

principal since P + Q − R − S = (18, 49) 6= O on E. Thus, a function f with

(f) = (P) + (Q) − (R) − (S) does not exist. On the other hand, the divisor

(P)+(Q)− (R)− (T) is principal, since it is degree 0 and P +Q−R−T = O on

E. Thus, there is some function f on E such that (f) = (P) + (Q)− (R)− (T);

it is f = 6y+71x2+91x+91
x2+70x+11

. The sum R+T on E is actually U , thus P +Q−U = O
on E, but this time there is no function with divisor (P) + (Q) − (U) because

the degree of this divisor is not zero; however, we can keep the sum on E as O
but manipulate the degree by instead taking the divisor (P) + (Q)− (U)− (O),

which must be in Prin(C), guaranteeing the existence of a function g with (g) =

(P)+(Q)−(U)−(O), namely g = y+4x+82
x+73

. Observe the difference between f and

g in projective space, where f = 6Y Z+71X2+91XZ+91Z2

X2+70XZ+11Z2 and g = Y +4X+82Z
X+73Z

. For f ,

the point at infinity O = (0 : 1 : 0) zeros both the numerator and denominator,

giving a zero and a pole which cancels out its contribution to (f), whilst for g,

the point at infinity only zeros the denominator, which is why O ∈ supp((g)),

whereas O 6∈ supp((f)).

Returning to the subscript notation for a moment, the three subgroups (and

other related groups) in Equation (3.1) are often accompanied by the field they

apply to, e.g. for a general field K, they are written as PrinK(E), Div0
K(E),

and DivK(E). Here DivK(E) ⊂ Div(E) is formally defined as the set of divisors

invariant under the action of Gal(K/K), where σ ∈ Gal(K/K) acts on D =
∑

P nP (P) to give Dσ =
∑

P nP (σ(P)), so that D ∈ DivK(E) if D = Dσ.

This is very natural in the contexts we consider, so we will continue on without

subscripts.

http://www.craigcostello.com.au/pairings/beginners/3-1-1-Principal.txt

38 Chapter 3. Divisors

Before we define the divisor class group of E, we look at the important notion

of divisor equivalence in Div(E). We call the divisors D1 and D2 equivalent,

written as D1 ∼ D2, if D1 = D2 + (f) for some function f .

Example 3.1.2 (Magma script). Consider P = (57, 24), Q = (25, 37), R =

(17, 32) and S = (42, 35) on E/F61 : y2 = x3 + 8x + 1. The divisors D1 =

(P) + (Q) + (R) and D2 = 4(O) − (S) are equivalent as follows. The function

f : y = 33x2 + 10x+ 24, which intersects E at P , Q, R and S with multiplicity

1, and therefore has a pole of order 4 at infinity, has divisor (f) = (P) + (Q) +

(R) + (S)− 4(O), meaning D1 = D2 + (f), so D1 ∼ D2. Alternatively, if we did

not want to find f , we could have used D1−D2 = (P)+ (Q)+ (R)+ (S)−4(O),

which has degree zero, and computed that P + Q + R + S − [4]O = O on E,

which means D1 −D2 ∈ Prin(E), so that D1 −D2 = (f) for some function f .

The divisor class group, or Picard group, of E is defined as the quotient group

Pic0(E) = Div0(E)/Prin(E), (3.2)

i.e. the divisor class group is the group of all degree zero divisors modulo the

principal divisors on E. At first read, this notion of equivalence (modulo divisors

of functions) may seem a little abstract, but once we see it in action (particularly

in more general scenarios than elliptic curves), it becomes very natural. We will

first use this notion to describe the elliptic curve group law in terms of divisors,

following along the lines of Galbraith [Gal05, §IX.2].

Example 3.1.3 (Magma script). Referring back to Figure 2.5 (or Figure 2.6 in the

case that Q = P), the line ℓ joining P and Q has divisor (ℓ) = (P)+(Q)+(−R)−
3(O), whilst the vertical line v = x − xR has divisor (v) = (−R) + (R) − 2(O).

The quotient ℓ
v

has divisor (ℓ
v
) = (P) + (Q) − (R) − (O). Thus, the equation

R = P + Q on E is the same as the divisor equality (R) − (O) = (P) − (O) +

(Q) − (O) − (ℓ
v
), and the map of points to divisor classes P 7→ (P) − (O) is a

group homomorphism. To concretely connect this back to Equation (3.2), both

(R)− (O) and (P) + (Q)− 2(O) are clearly in Div0(E), but they represent the

same class in Pic0(E), because the divisor (l
v
) = (P) + (Q)− (R)− (O) (which

is their difference) is principal, and therefore zero in Pic0(E).

http://www.craigcostello.com.au/pairings/beginners/3-1-2-ClassGroup.txt
http://www.craigcostello.com.au/pairings/beginners/3-1-3-DivLines.txt

3.2. A consequence of the Riemann-Roch Theorem 39

3.2 A consequence of the Riemann-Roch The-

orem

The notion of equivalence allows us to reduce divisors of any size D ∈ Pic0(E)

into much smaller divisors. We will make this statement precise after an example,

but we must first define what we mean by “size”. A divisor D =
∑

P nP (P) is

called effective if nP ≥ 0 for all P ∈ E. The only divisor in Div0(E) that is

effective is the zero divisor. Thus, we define the effective part of a divisor D as

ǫ(D) =
∑

P nP (P), where nP ≥ 0. For example, the divisor D = (P)+(Q)−2(O)

is not effective, but the effective part is ǫ(D) = (P) + (Q). By the size of D, we

mean the degree of the effective part, so in our example, although Deg(D) = 0,

it is size 2, since Deg(ǫ(D)) = 2.

Example 3.2.1 (Magma script). Consider the divisor D = (P1)+...+(P11)−11(O)

(with Deg(ǫ(D)) = 11) as an element of Pic0(E) on E/Fq : y2 = x3 + ax + b,

where the Pi are not necessarily distinct. To find a divisor that is equivalent

to D, we can construct function ℓ10 : y = a10x
10 + ... + a1x + a0 to interpolate

the distinct points in supp(D) with appropriate multiplicities. Substituting ℓ10

into E gives a degree 20 polynomial in x, the roots of which reveals the 20 affine

points of intersection (counting multiplicities) between ℓ10 and E. We already

know 11 of these points (the Pi’s), so let P ′1, ...P
′
9 be the other 9. An important

point to note is that these points are not necessarily defined over Fq. Since

(ℓ10) =
∑11

i=1(Pi) +
∑9

i=1(P
′
i) − 20(O) ∈ Prin(E), D′ = −(

∑9
i=1(P

′
i) − 9(O))

is a divisor equivalent to D in Pic0(E), i.e. D′ ∼ D. We can repeat this

process, interpolating the points in supp(D′) with a degree 8 polynomial ℓ8 :

y = a′8x
8 + ... + a′1x + a′0, which will intersect E (in the affine sense) 16 times,

giving 7 new intersection points, thereby finding a divisor D′′ =
∑7

i=1(P
′′
i)−7(O)

equivalent to D′, meaning D′′ ∼ D. It is easy to infer that the number of new

roots (maximum number of divisors in the consecutive supports) decreases each

time by two, so that in two more steps we will arrive at D̃ = (P̃1)+(P̃2)+(P̃3)−
3(O). We can interpolate the three points in supp(D̃) with a quadratic function

ℓ̃ : y = ã2x
2 + ã1x+ ã0 that clearly intersects E at one more affine point, say Q.

That is, (ℓ̃) = (P̃1) + (P̃2) + (P̃3) + (Q) − 4(O), and since (ℓ̃) ∈ Prin(E), then

(D̃) ∼ (O)− (Q). Lastly, the vertical line ṽ has divisor (ṽ) = (Q) + (R)− 2(O),

meaning (O)− (Q) ∼ (R)− (O), which gives (D̃) ∼ (R)− (O). To summarise,

we started with a divisor D = (P1) + ...(P11) − 11(O) which had size 11, and

http://www.craigcostello.com.au/pairings/beginners/3-2-1-Reduction.txt

40 Chapter 3. Divisors

ℓ̃

•P̃1

•
P̃2

•P̃3

•Q

•
R

ṽ

Figure 3.4: Reducing D̃ to (R)− (O) in Pic0(E).

reduced to the equivalent divisor (R)− (O) ∼ D in Pic0(E) which has size 1.

The above example illustrates a key consequence of one of the most central

theorems in our study: the Riemann-Roch theorem. To present the theorem in its

generality requires a few more definitions than we need for our exposition, so for

the full story we refer the reader to any of [Ful08, §8], [Sil09, §II.5], [Gal12, §8.7].

The important corollary we use is the following: for any curve C, there is a unique

minimal integer g, called the genus of C, such that any divisor D ∈ Pic0(C) is

equivalent to a divisor D′ with Deg(ǫ(D′)) ≤ g. Elliptic curves E are curves of

genus g = 1, meaning that every D ∈ Pic0(E) can be written as (P1) − (Q1);

this is why we were able to reduce the divisor in Example 3.2.1 to (R)− (O).

We will only be dealing with elliptic curves in this text, since they have proved

most successful in the context of pairings, but for now it aids one’s understanding

to see where elliptic curves fit in a slightly broader context. Assuming an odd

characteristic field, a general (“imaginary quadratic”) hyperelliptic curve of genus

g is a generalisation of an elliptic curve, which can be written as

Cg : y2 = x2g+1 + f2gx
2g + ... + f1x+ f0. (3.3)

Each divisor D ∈ Pic0(Cg) has a unique reduced representative of the form

(P1) + (P2) + ...+ (Pn)− n(O),

where n ≤ g, Pi 6= −Pj for all i 6= j, and no Pi satisfying Pi = −Pi appears more

than once [BBC+09, §2.3]. The following examples illustrate this in the case of

3.2. A consequence of the Riemann-Roch Theorem 41

genus 2 and genus 3 respectively.

Example 3.2.2 (Magma script). A general (odd characteristic field) hyperelliptic

curve of genus g = 2 is given (via Equation (3.3)) as C2 : y2 = x5 +f4x
4 + ...+f0;

we give a typical depiction in Figure 3.5. Suppose we have a divisor D = (P1) +

(P2) + (P3) + (P4)− 4(O) ∈ Pic0(C2), the affine support of which is depicted in

red.

•P1 •
P2

•P3

ℓ

•P4 •

•P ′

1

P̄1

•

•P
′

2

P̄2

Figure 3.5: Reducing D =
∑4

i=1((Pi)− (O)) to D′ =
∑2

i=1((P
′
i)− (O)) ∼ D.

The Riemann-Roch theorem guarantees a (unique) equivalent divisor of the

form (P ′1) + (P ′2) − 2(O). We find it by constructing the cubic function ℓ :

y = a3x
3 + ... + a0 that has 4 zeros corresponding to the effective part of D,

and therefore 4 poles at O. Substitution of ℓ into E reveals two more points of

intersection, P̄1 and P̄2, meaning (ℓ) = (P1)+(P2)+(P3)+(P4)+(P̄1)+(P̄2)−6(O).

Since (ℓ) ∈ Prin(C2), then D = D− (ℓ) in Pic0(C2) meaning D ∼ 2(O)− (P̄1)−
(P̄2). As usual, we reverse the ordering (so the effective part is affine) by making

use of the vertical lines v1 and v2 with divisors (v1) = (P̄1) + (P ′1) − 2(O) and

(v2) = (P̄2) + (P ′2)− 2(O), to write 2(O)− (P̄1)− (P̄2) = 2(O)− (P̄1)− (P̄2) +

(v1) + (v2) = (P ′1) + (P ′2) − 2(O) = D′, meaning D ∼ D′. We have reduced a

divisor D with Deg(ǫ(D)) = 4 to a divisor D′ with Deg(ǫ(D′)) = 2 ≤ g. Note

that the points in the support of D′ are not necessarily defined over Fq. Also

note that trying to reduce D′ any further, say by running a line ℓ′ : y = λx + ν

through P ′1 and P ′2, will not work in general, since this line will intersect E in 3

more places, creating an unreduced divisor D′′ with Deg(ǫ(D′′)) = 3 > g.

Example 3.2.3 (Magma script). Consider a general genus 3 hyperelliptic curve

C3 : y2 = x7 + f6x
6 + ... + f0; a typical depiction is given in Figure 3.6, with a

http://www.craigcostello.com.au/pairings/beginners/3-2-2-Genus2.txt
http://www.craigcostello.com.au/pairings/beginners/3-2-3-Genus3.txt

42 Chapter 3. Divisors

vertically magnified Figure version in 3.7. Consider the divisor D =
∑6

i=1((Pi)−
(O)) ∈ Pic0(C3), the affine support of which is the red points in Figure 3.6.

•P1

•P2•P3

•P4

•
P5

•P6

ℓ

•P̄1

•̄
P2

•P̄3

•P̄4

Figure 3.6: The first stage of reducing
D =

∑6
i=1((Pi)− (O)).

ℓ̄

•P̄1

•̄
P2

•P̄3

•P̄4

•P ′

1

•P ′

2

•P ′

3

Figure 3.7: The second (and final)
stage of divisor reduction.

We reduce D by determining the other points of intersection between the

quintic interpolator ℓ : y = a5x
5 + + a0 and C3, of which there are 4: P̄1, ..., P̄4

depicted in green on C3. (ℓ) = 0 in the divisor class group so
∑6

i=1((Pi)− (O))+
∑4

i=1((P̄i) − (O)) = 0, but the degree of the effective part of
∑4

i=1((P̄i) − (O))

is still larger than g, so obtaining the unique reduced divisor requires further

reduction. Namely, the cubic function ℓ̄ : y = ā3x
3 + ... + ā0 (depicted in

green) interpolates the four green points and (when substituted into C3) clearly

intersects C3 in another 3 affine points, depicted in blue. Thus,
∑4

i=1((P̄i) −
(O))+

∑3
i=1((P

′
i)−(O)) = 0, which means thatD ∼ D′ =

∑3
i=1((P

′
i)−(O)) in the

divisor class group, and D′ is the unique representative of D since Deg(ǫ(D′)) =

3 ≤ g.

As mentioned prior to these higher genus examples, the reason this text will

only be discussing (genus 1) elliptic curves is because in the arena of pairing-

based cryptography, the raw speed of elliptic curves is currently unrivalled by

their higher genus counterparts, and all of the state-of-the-art implementations

take place in the genus 1 setting.

The elliptic curve group law enjoys a (relatively speaking) very simple, almost

entirely elementary description, the only exception being the introduction of

3.2. A consequence of the Riemann-Roch Theorem 43

projective space for the formal definition of O. Namely, we were able to describe

the chord-and-tangent rule without the language of divisors or the definition of

the divisor class group, which is not the case for other curves or general abelian

varieties. This is because of the one-to-one correspondence between the divisor

class group Pic0(E) and the points on E we briefly mentioned in Example 3.1.3,

i.e. the group homomorphism P 7→ (P) − (O) (see [Sil09, III.3.4] [Gal12, Th.

7.9.8, Th. 7.9.9]). Thus, in the elliptic curve setting, we can simply talk about

the group elements being points, rather than divisors. In higher genera this does

not happen; group elements are no longer points, but rather divisor classes in

Pic0(E) with multiple elements in their support.

Nevertheless, as we will see in the coming chapters, the language of divi-

sors is absolutely essential in the description of elliptic curve pairings, where the

objective is to compute very large (degree) functions on E with prescribed divi-

sors, and then evaluate these functions at other divisors1. Evaluating a function

f ∈ Fq(E) at a divisor D =
∑

P∈E nP (P) has a natural definition, provided the

divisors (f) and D have disjoint supports:

f(D) =
∏

P∈E

f(P)nP . (3.4)

The stipulation of disjoint supports is clearly necessary for f(D) to be non-trivial,

since P ∈ supp((f)) implies P is a zero or pole of f on E, meaning f(P)nP would

be either zero or infinity respectively.

Example 3.2.4 (Magma script). Consider E/F163 : y2 = x3 − x − 2, with P =

(43, 154), Q = (46, 38), R = (12, 35) and S = (5, 66) all on E. Let ℓP,Q, ℓP,P

and ℓQ,Q be the lines joining P and Q, tangent to P , and tangent to Q on E

respectively, computed as ℓP,Q : y+93x+85, ℓP,P : y+127x+90, ℓQ,Q : y+13x+16.

Let D1 = 2(R) + (S), D2 = 3(R) − 3(S) and D3 = (R) + (S) − 2(O). We can

compute ℓP,Q(D1) = (yR + 93xR + 85)2(yS + 93xS + 85) = 122, or ℓP,P (D2) =

(yR + 127xR + 90)3/(yS + 127xS + 90)3 = 53, but we can not evaluate any of

these functions at D3, since O ∈ supp(D3), and O is also in the supports of

(ℓP,Q), (ℓP,P), (ℓQ,Q). Let ℓ′P,P = 17ℓP,P so that ℓ′P,P = 17y + 40x+ 63, and that

ℓ′P,P (D2) = (17yR + 40xR + 63)3/(17yS + 40xS + 63)3 = 53 = ℓP,P (D2). This is

true in general, i.e. that if g = cf for some constant c ∈ Fq, then f(D) = g(D)

1We will also see that we do not actually compute these very large functions explicitly before
evaluating them.

http://www.craigcostello.com.au/pairings/beginners/3-2-4-FunctionDivisor.txt

44 Chapter 3. Divisors

if D has degree zero; the constant c will cancel out because Deg(D) = 0 implies

the numerator and denominator of f(D) (identically g(D)) have the same total

degree.

3.3 Weil reciprocity

We conclude our chapter on divisors (as Galbraith does [Gal05, §IX.2, Th. IX.3],

where he also gives a proof) with a central theorem that lies at the heart of many

of the proofs of cryptographic pairing properties.

Theorem 3.1 (Weil reciprocity). Let f and g be non-zero functions on a curve

such that (f) and (g) have disjoint supports. Then f((g)) = g((f)).

Most of the functions on E that we have seen so far containO in their support.

In the first example (3.3.1) we will choose one of the functions such that this is

not the case, meaning that Theorem 3.1 can be applied instantly, whilst in the

second example we will show how to alleviate this problem when it arises by

modifying either of the functions.

Example 3.3.1 (Magma script). Let E/F503 : y2 = x3 +1. Consider the functions
f : 20y+9x+179

199y+187x+359
= 0 and g : y + 251x2 + 129x+ 201 = 0 on E. The divisor of f

is (f) = 2(433, 98) + (232, 113)− (432, 27)− 2(127, 258), and the divisor of g is
(g) = (413, 369) + (339, 199) + (147, 443) + (124, 42)− 4(O). The supports are
clearly disjoint, so we first compute f((g)) as

(
20·369+9·413+179

199·369+187·413+359

)

·
(

20·199+9·339+179

199·199+187·339+359

)

·
(

20·443+9·147+179

199·443+187·147+359

)

·
(

20·42+9·124+179

199·42+187·124+359

)

(
20·1+9·0+179·0

199·1+187·0+359·0

)4
= 321.

Notice that f was cast into projective space as f : 20Y +9X+179Z
199Y +187X+359Z

for the evalu-
ation at O = (0 : 1 : 0) on the denominator. Now, for g((f)) we have

(
98 + 251 · 4332 + 129 · 433 + 201

)2 ·
(
113 + 251 · 2322 + 129 · 232 + 201

)

(258 + 251 · 1272 + 129 · 127 + 201)
2 · (27 + 251 · 4322 + 129 · 432 + 201)

= 321.

Example 3.3.2 (Magma script). Let P,Q,R, S, T, U ∈ E, such that T = −(R +

S). Further let ℓ′ : y = (λ′x+ ν ′) be the tangent to E at P and ℓ : y = (λx+ ν)

be the line between R, S and T depicted in Figure 3.8, so that (ℓ′) = 2(P) +

(−[2]P)− 3(O) and (ℓ) = (R) + (S) + (T)− 3(O). Suppose we wish to compute

ℓ(ℓ′).

http://www.craigcostello.com.au/pairings/beginners/3-3-1-WeilRecip1.txt
http://www.craigcostello.com.au/pairings/beginners/3-3-2-WeilRecip2.txt

3.4. Chapter summary 45

•P
•−[2]P ℓ′

•
R

•
S

ℓ

•T

Figure 3.8: supp(ǫ((ℓ))) and supp(ǫ((ℓ′))).

At this point it does not make sense to compute ℓ(ℓ′) (or ℓ′(ℓ)) since supp((ℓ))∩
supp((ℓ′)) = {O}. We can fix this by finding a divisor equivalent to, say (ℓ),

whose support is disjoint to supp((ℓ′)). This is easily done by picking a random

point U /∈ supp(ℓ′) and defining D = (R+U)+(S+U)+(T +U)−3(U). To see

that D ∼ ℓ, observe that (R+U)− (U) = (R)− (O) by writing down the divisor

of the quotient of the sloped and vertical lines in the addition of R and U on E.

Computing ℓ(ℓ′) is therefore the same as computing D(ℓ′), but this computation

would then require finding a new function on E with divisor D, so we can invoke

Theorem 3.1 and instead compute ℓ′(D) as

ℓ′(D) =
(yR′ − (λ′xR′ + ν ′)) (yS′ − (λ′xS′ + ν ′)) (yT ′ − (λ′xT ′ + ν ′))

(yU − (λ′xU + ν ′))3 ,

where R′ = (xR′ , yR′) = R+U , S ′ = (xS′ , yS′) = S+U and T ′ = (xT ′ , yT ′) = T+U

are all such that R′, S ′, T ′ 6∈ Supp(ℓ′), so that ℓ′(D) is the same as ℓ(ℓ′) by Weil

reciprocity.

3.4 Chapter summary

We introduced the important concept of divisors on curves. We illustrated their

particular usefulness when used to describe functions on curves, since such a

function is well defined (up to constant) by its points of intersection with a

curve, and these are precisely what the divisor of the function encapsulates. We

46 Chapter 3. Divisors

defined the divisor class group of a (hyperelliptic) curve and discussed that for

the case of elliptic curves, there is a bijection between this group and the set of

points on the curve, so that we can simply talk about group elements as points

on E rather than divisors. We further illustrated several useful properties and

theorems that play a big role in the realm of algebraic geometry, most notably

the Riemann-Roch theorem and Weil reciprocity. For the most part we specified

the context to elliptic curves over finite fields, but all of the results and properties

discussed above apply to arbitrary curves over arbitrary fields.

Chapter 4

Elliptic curves as pairing groups

The purpose of this chapter is to define the elliptic groups that are used in

cryptographic pairings. We start with the most abstract definition [Sil10]: a

pairing is a bilinear map on an abelian group M taking values in some other

abelian group R

〈· , ·〉 : M ×M → R.

Suppose that the binary group operations in M and R are respectively denoted

by + and ∗. The bilinearity property of the above map (that classifies it a

pairing) means that, for x, y, z ∈M , we have

〈x+ y, z〉 = 〈x, z〉 ∗ 〈y, z〉,
〈x, y + z〉 = 〈x, y〉 ∗ 〈x, z〉.

That is, the map 〈·, ·〉 is linear in both inputs.

It is this bilinearity property that makes pairings such a powerful primitive

in cryptography. For our purposes we often find it advantageous to slightly relax

the condition that the two arguments in the map come from the same group, and

allow them to come from cyclic groups of the same order (which are therefore

isomorphic). Thus, in the abundance of literature related to cryptography, the

47

48 Chapter 4. Elliptic curves as pairing groups

notation commonly used for the bilinear map is

e : G1 ×G2 → GT .

Our primary objective in this chapter is to define the two groups G1 and G2.

The definition of GT will come with the definition of the pairings in the next

chapter.

Currently, the only known instantiations of pairings suitable for cryptography

are the Weil and Tate pairings on divisor class groups of algebraic curves, and in

the simplest and most efficient cases, on elliptic curves. Let Fqk be some finite

extension of Fq with k ≥ 1. The groups G1 and G2 are defined in E(Fqk), and

the target group GT is defined in the multiplicative group F∗qk , so we usually write

G1 and G2 additively, whilst we write GT multiplicatively. Thus, for P, P ′ ∈ G1

and Q,Q′ ∈ G2, the bilinearity of e means that

e(P + P ′, Q) = e(P,Q) · e(P ′, Q),

e(P,Q+Q′) = e(P,Q) · e(P,Q′),

from which it follows that, for scalars a, b ∈ Z, we have

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab = e([b]P, [a]Q). (4.1)

Even though we are yet to define G1, G2 or GT , and we are still a while away

from beginning the discussion of how the pairing e(P,Q) is computed, it helps

to immediately see the bilinearity property of pairings in context.

Example 4.0.1 (Magma script). Let q = 7691 and let E/Fq : y2 = x3+1. Suppose

Fq2 is constructed Fq2 = Fq(u) where u2 + 1 = 0. Let P = (2693, 4312) ∈ E(Fq)

and Q = (633u + 6145, 7372u + 109) ∈ E(Fq2). #E(Fq) = 22 · 3 · 641 and

#E(Fq2) = 24 · 32 · 6412 = #E(Fq)
2. P and Q were especially chosen (we will

see why later) to be in different subgroups of the same prime order r = |〈P 〉| =
|〈Q〉| = 641. The Weil pairing e(·, ·) of P and Q is e(P,Q) = 6744u + 5677 ∈
F∗q2 . In fact, r | #Fq2, and e(P,Q) actually lies in a subgroup of Fq2 , namely

the r-th roots of unity µr ∈ Fq2 , meaning that e(P,Q)r = 1. We are now in

a position to illustrate some examples of bilinearity. Thus, take any a ∈ Zr

and b ∈ Zr, say a = 403 and b = 135, and see that [a]P = (4903, 2231) and

[b]Q = (5806u+1403, 6091u+2370). We can compute e([a]P,Q) = 3821u+7025

http://www.craigcostello.com.au/pairings/beginners/4-0-1-WeilPairing.txt

49

and verify that e([a]P,Q) = 3821u + 7025 = (6744u + 5677)403 = e(P,Q)a; or

e(P, [b]Q) = 248u + 5 to see that e(P, [b]Q) = 248u + 5 = (6744u + 5677)135 =

e(P,Q)b; or e([a]P, [b]Q) = 2719u+ 2731 = (6744u+ 5677)561 = e(P,Q)a·b mod r.

Note that since e(P,Q) 6= 1 ∈ µr, e([a]P, [b]Q) will only be trivial if r | ab, which

implies r | a or r | b, meaning either (or both) of [a]P or [b]Q must be O. Thus,

e(P,Q) 6= 1 guarantees non-trivial pairings for non-trivial arguments; this is a

cryptographically necessary property that is called non-degeneracy.

Following Example 4.0.1 above, if a pairing e is bilinear, non-degenerate and

efficiently computable, e is called an admissible pairing.

Remark 4.0.1 (ECC vs. PBC). This informal remark is intended as a point of

clarification for PBC newcomers. Our confusion in the early days of digesting the

vast amount of literature was in part alleviated by one paragraph in Lynn’s thesis

that helped put the relationship between ECC and PBC in a wider context. The

only known admissible pairings that are suitable for cryptography are the Weil

and Tate pairings on algebraic curves. The fact that these pairings can be defined

on elliptic curves, which were already a highly attractive cryptographic setting

before pairings arrived on the scene, is, as Lynn puts it, a “happy coincidence”.

Cryptographers would have welcomed secure, admissible pairings in any suitable

form, but the fact that they were handed down from the realm of algebraic

geometry and are computed on elliptic curves makes them “even more attractive”

[Lyn07, §2.9].

In cryptography we need more properties than the three which constitute

an admissible pairing. The magic of the bilinearity property in (4.1) that gives

pairing-based primitives increased functionality over traditional primitives is use-

less unless discrete logarithm related problems within all three groups remain

intractable. Example 4.0.1 gives an admissible pairing, but because the toy sizes

of G1, G2 and GT clearly offer no resistance in regards to their respective dis-

crete logarithm problems, such a pairing instance would clearly never be used.

However, if the size r of all three groups was inflated to be much larger (say

512 bits), then the corresponding pairing could meet current security require-

ments and resist all known attacks. We present an alternative bilinear pairing

that meets the admissible requirements, but (regardless of how large the group

sizes are) is still not suitable for PBC. This example too, is taken from Lynn’s

thesis [Lyn07, §1.9].

50 Chapter 4. Elliptic curves as pairing groups

Example 4.0.2 (Magma script). Let r > 1 be an integer. Suppose e : G1×G2 →
GT has G1 = GT = Z∗r and G2 = Z+

r−1, and is defined by e : (g, a) = ga. Notice

that for g, g′ ∈ G1, we have e(g · g′, a) = e(g, a) · e(g′, a), and for a, a′ ∈ G2

we have e(g, a + a′) = e(g, a) · e(g, a′). Although e is then clearly bilinear,

the discrete logarithm problem in G2 is easy, so the power of the bilinear map

becomes somewhat redundant. It is interesting to see, however, that we can still

state some of the classical problems in terms of the above pairing. For example,

if we set r to be a large prime, then the standard discrete logarithm problem

becomes: given g ∈ G1, h ∈ GT , find a ∈ G2 such that e(g, a) = h.

4.1 The r-torsion

We now turn our focus towards concretely defining the groups G1 and G2. Having

not yet seen how pairings are computed, we will need to make some statements

regarding what we need out of G1 and G2 that will really only tie together when

the definitions of the Weil and Tate pairings come in the following chapter. The

main such statement is that computing the pairing e(P,Q), in either the Weil

or Tate sense, requires that P and Q come from disjoint cyclic subgroups of the

same prime1 order r. At this point we can only hint towards why by referring

back to the stipulation of disjoint supports that was made in the statement of

Weil reciprocity (Theorem 3.1), and claiming that if P and Q are in the same

cyclic subgroup, then the pairing computation essentially fails because supports

of the associated divisors are forced to undesirably coincide.

We have already seen an example (4.0.1) of how we can find more than

one cyclic subgroup of order r, when E(Fq) itself only contains one subgroup.

Namely, we extended Fq to Fq2 and saw that E(Fq2)\E(Fq) had at least one other

subgroup of order r, where we were able to define Q and subsequently compute

e(P,Q). This is precisely the way we obtain two distinct order-r subgroups in

general: we find the smallest extension Fqk of Fq such that E(Fqk) captures more

points of order r. The integer k ≥ 1 that achieves this is called the embedding

degree, and it plays a crucial role in pairing computation. Also at the heart of

our discussion then, is the entire group of points of order r on E(Fq), called the

r-torsion, which is denoted by E[r] and defined as E[r] = {P ∈ E : [r]P = O}.
1There has been some work that exploits additional functionality if r is composite, e.g. an

RSA modulus n = pq, but we do not consider this much less common and much less efficient
setting – see [BGN05,Fre10,BRS11,Lew12] for more details.

http://www.craigcostello.com.au/pairings/beginners/4-0-2-BilinearMap.txt

4.1. The r-torsion 51

The following result (see [ACD+05, Th. 13.13] or [Sil09, Ch. III, Cor. 6.4(b)])

is quite remarkable; it tells us not only the cardinality of E[r], but its structure

too. If K is any field with characteristic zero or prime to r, we have

E[r] ∼= Zr × Zr. (4.2)

This means that in general, #E[r] = r2. Furthermore, since the point at infinity

O overlaps into all order r subgroups, Equation (4.2) implies that (for prime r)

the r-torsion consists of r+1 cyclic subgroups of order r. The following equivalent

conditions for the embedding degree k also tell us precisely where E[r] lies in its

entirety. We note that the embedding degree is actually a function k(q, r) of q

and r, but we just write k since the context is usually clear.

- k is the smallest positive integer such that r | (qk − 1);

- k is the smallest positive integer such that Fqk contains all of the r-th roots

of unity in Fq (i.e. µr ⊂ Fqk);

- k is the smallest positive integer such that E[r] ⊂ E(Fqk).

If r‖#E(Fq) (i.e. r | #E(Fq) but r2 ∤ #E(Fq)), then the r-torsion subgroup in

E(Fq) is unique. In this case, k > 1 and (4.2) implies that Fqk is the smallest

field extension of Fq which produces any more r-torsion points belonging to

E(Fqk)\E(Fq). In other words, once the extension field is big enough to find one

more point of order r (that is not defined over the base field), then we actually

find all of the points in E[r] ∼= Zr×Zr. Scott [Sco04] describes this phenomenon

more poetically:

“... something rather magical happens when a curve with the same

equation is considered over the field Fqk for a certain value of k. The

group structure undergoes a strange blossoming, and takes on a new,

more exotic character.”

We also find Scott’s depiction of the torsion subgroup E[r] especially instructive

[Sco04, Sco07a], so we use it in the following examples and throughout the rest

of this chapter.

Example 4.1.1 (Magma script). Let q = 11, and consider E/Fq : y2 = x3 + 4.

E(Fq) has 12 points, so take r = 3 and note (from Equation (4.2)) that there

are 9 points in the 3-torsion. Only 3 of them are found in E(Fq), namely (0, 2),

http://www.craigcostello.com.au/pairings/beginners/4-1-1-ThreeTorsionFlower.txt

52 Chapter 4. Elliptic curves as pairing groups

(0, 9) and O, which agrees with the fact that the embedding degree k 6= 1,

since (q1 − 1) 6≡ 0 mod r. However, (q2 − 1) ≡ 0 mod r which means that the

embedding degree is k = 2, so we form Fq2 = Fq(u), with u2 + 1. Thus, we are

guaranteed to find the whole 3-torsion in E(Fq2), and it is structured as 4 cyclic

subgroups of order 3; O overlaps into all of them – see Figure 4.1. We point out

that although O is in the 3-torsion, it does not have order 3, but rather order 1

– points of order d | r are automatically included in the r-torsion. Take any two

Top left petal: (0, 2) and (0

2) and (0, 9)) and (8, 10i)

) and (2i + 7, 10i)Bottom right petal: (9i + 7, i) and (9

) and (9i + 7, 10i)Bottom left petal: (2i + 7, i) and (2

Top right petal: (8, i) and (8

Figure 4.1: The 3-torsion: E[3].

points P,Q ∈ E[3] \ {O} that are not in the same subgroup, neither of which

are O. The translation of Equation (4.2) is that any other point in E[3] can be

obtained as [i]P + [j]Q, i, j ∈ {0, 1, 2}. Fixing P 6= O and letting j run through

0, 1, 2 lands P + [j]Q in the other three subgroups of E[3] (that are not 〈Q〉 –

this corresponds to P = O).

Example 4.1.2 (Magma script). In the rare case that r2 | #E, it is possible that

the entire r-torsion can be found over E(Fq), i.e. that the embedding degree

is k = 1. Consider E/F31 : y2 = x3 + 13, which has 25 points, so take r = 5.

Since r | q − 1, k = 1 and therefore E[r] ⊆ E(Fq); Figure 4.2 show the 6 cyclic

subgroups of order 5 constituting E[5] ∼= Z5 × Z5. Of course, r2 | #E(Fq) does

not necessarily imply that E[r] ⊆ E(Fq), as points of order r2 are possible.

Before the next example, we introduce an important map that plays an in-

tricate role within the r-torsion subgroups. Since we are working over finite

extension fields of Fq, it is natural that we find a useful contribution from Galois

http://www.craigcostello.com.au/pairings/beginners/4-1-2-FiveTorsionFlower.txt

4.1. The r-torsion 53

(1, 18) (12

18) (12, 6) (12

6) (12, 25) (1

25) (1, 13) (21, 6) (25

6) (25, 18) (21

18) (21, 25) (25

25) (25, 13)

20) (13, 28)

3) (23, 20) (13

11) (13, 3) (23

(23, 11) (13

28) (17, 11)

20) (15, 28) (17

3) (17, 20) (15

(15, 3) (17(5, 13) (5

13) (5, 18) (29

18) (29, 6) (29

6) (29, 25)

(3, 28) (22

28) (22, 11) (3

11) (3, 3) (22

3) (22, 20)

Figure 4.2: The 5-torsion: E[5].

theory. Namely, the trace map of the point P = (x, y) ∈ E(Fqk) is defined as

Tr(P) =
∑

σ∈Gal(F
qk/Fq)

σ(P) =

k−1∑

i=0

πi(P) =

k−1∑

i=0

(xqi

, yqi

),

where π is the q-power Frobenius endomorphism defined in Equation (2.7). Ga-

lois theory tells us that Tr : E(Fqk) → E(Fq), so when r‖#E(Fq) (which will

always be the case from now on), then this map, which is actually a group ho-

momorphism, sends all torsion points into one subgroup of the r-torsion. We

illustrate in Example 4.1.3 before painting the general picture.

Example 4.1.3 (Magma script). We take q = 11 again, but this time with E/Fq :

y2 = x3+7x+2. E(Fq) has 7 points, so take r = 7. We already have E(Fq)[r], but

to collect E[r] in its entirety we need to extend Fq to Fqk . This time, the smallest

integer k such that (qk − 1) mod 7 ≡ 0 is k = 3, so we form Fq3 = Fq(u) with

u3 + u+ 4 = 0, and we are guaranteed that E[7] ⊂ E(Fq3). The entire 7-torsion

has cardinality 49 and splits into 8 cyclic subgroups, as shown in Figure 4.2. To fit

the points in, we use the power representation of elements in Fq3 = Fq(u). In this

case, for P ∈ E(Fq3), the trace map on E is Tr(P) = (x, y)+ (xq, yq)+ (xq2
, yq2

).

For the unique torsion subgroup E(Fq)[r], the Frobenius endomorphism is trivial

(π(P) = P) so the trace map clearly acts as multiplication by k, i.e. Tr(P) =

[k]P . However, Tr will send every other element in the torsion into E(Fq)[r].

For example, for Q = (u481, u1049) (in the subgroup pointing upwards), we have

http://www.craigcostello.com.au/pairings/beginners/4-1-3-SevenTorsionFlower.txt

54 Chapter 4. Elliptic curves as pairing groups

(10, 7)

(8, 3)
(8, 8)

(10, 4)
(7, 3)

(7, 8)

(u1052
, u

924), (
), (u1264

, u
740), (

), (u481
, u

384), (
), (u1052

, u
259), (

), (u481
, u

1049)

(u1315
, u

485), (

), (u1165
, u

680), (

), (u845
, u

165), (

), (u1165
, u

15), (

), (u845
, u

830), (

), (u1315
, u

1150)

(u1301
, u

234), (

), (u932
, u

854), (

), (u604
, u

825), (), (u604
, u

160), (

), (u932
, u

189), (

), (u1301
, u

899)

(u423
, u

840), (

), (u801
, u

1114), (

), (u801
, u

449), (
), (u423

, u
175), (

), (u619
, u

562), (

), (u619
, u

1227)

(u159
, u

862), (

), (u663
, u

1260), (

), (u663
, u

595), (

), (u831
, u

284), (
), (u159

, u
197), (

), (u831
, u

949)

(u1161
, u

464), (
), (u419

, u
172), (

), (u643
, u

1225), (

), (u419
, u

837), (

), (u643
, u

560)

(u1011
, u

579), (

), (u1324
, u

1095), (

), (u942
, u

749), (

), (u942
, u

84), (), (u1324
, uu

430), (

), (u1011
, u

1244)

), (u1264
u

75), (, u

), (u1161
uu

1129), (, u

Figure 4.3: The 7-torsion: E[7].

Tr(Q) = (8, 8); for R = (u423, u840) (the lower right subgroup), we have Tr(R) =

(10, 7); for S = (u1011, u1244), we have Tr(S) = (8, 3). There is one other peculiar

subgroup in E[7] however, for which the trace map sends each element to O. This

occurs in general, and we are about to see that this has important consequences

in PBC, but in our case this subgroup is the upper right group containing T =

(u1315, u1150), i.e. Tr(T) = O, so Tr : 〈T 〉 → {O}. One final point to note is that

the embedding degree k = 3 also implies that the (six) non-trivial 7-th roots of

unity are all found in Fq3 (but not before), i.e. µ7 \ {1} ∈ Fq3 \ Fq2 .

We now give a general depiction of the r-torsion E[r]. To do so, we need to

discuss a few assumptions that apply most commonly to the scenarios we will

be encountering. Firstly, we assume that r‖#E(Fq) is prime and the embedding

degree k (with respect to r) is k > 1. Thus, there is a unique subgroup of order

r in E[r] which is defined over Fq, called the base-field subgroup; it is denoted

by G1. Since the Frobenius endomorphism π acts trivially on G1, but nowhere

else in E[r], then it can be defined as G1 = E[r] ∩ Ker(π − [1]). That is, G1 is

the [1]-eigenspace of π restricted to E[r]. There is another subgroup of E[r] that

can be expressed using an eigenspace of π. Referring back to Equation (2.8),

we can easily deduce that the other eigenvalue of π is q, and we define another

subgroup G2 of E[r] as G2 = E[r]∩Ker(π− [q]). It turns out that this subgroup

is precisely the peculiar subgroup we alluded to in Example 4.1.3. We call G2 the

trace zero subgroup, since all P ∈ G2 have Tr(P) = O; this result is attributed

4.1. The r-torsion 55

to Dan Boneh [Gal05, Lemma IX.16]. We illustrate in Figure 4.4.

=
TrG

1 =
E
[r] ∩

K
er(π

q −
[1])

(the
base

field
subgroup)

[r] ∩
K
er(π

(the
trace-zero

subgroup)

=
Tr1 =

E
[r]
∩
K
er(π

q
−

[1])

(the
base

field
subgroup)

=
E
[r]
∩
K
er(π

q
−

[q

(the
trace-zero

subgroup)

P
2 ψ

=
T
r

(t
h
e

b
as

e
fi
el
d

su
b
gr

ou
p
)

P2

ψ = Tr

E

(th
e base

field
subgro

up)

ψ
=

T
r

G

P1

K
er
(

(t
he

ba
se

fie
ld

su
bg

ro
up

)

=
E
[r
] ∩

K
er
(π

q
−

[q
])

(t
he

tr
ac
e-
ze
ro

su
bg

ro
up

)

E
[r
] ∩

K
er
(π

q

(t
he

ba
se

fie
ld

su
bg

ro
up

)

G 2

=
E
[r
] ∩

K
er
(π

q
−

[q
])

(t
he

tr
ac
e-
ze
ro

su
bg

ro
up

)

P2

(t
he

ba
se

fie
ld

su
bg

ro
up

)

(t
he

tr
ac

e-
ze

ro
su

bg
ro

up
)

T
r
: G

2
→

{O
}

T
yp

e
2

am
m

en
d
s...

P
1

=
aT

r
(on

th
e

oth
er

arrow
)

Type 2 ammends...

P
1 =

aTr (on the other arrow)

Figure 4.4: The behaviour of the trace and anti-trace maps on E[r].

We can also map any P ∈ E[r] to the trace zero subgroup G2 via the anti-trace

map aTr : P 7→ P ′ = [k]P − Tr(P); showing that Tr(P ′) = O is a worthwhile

exercise for the reader.

To define our pairing, we need to specify the two groups G1 and G2: these

G’s are not to be confused with the G’s that stand for two specific r-torsion

subgroups, as G1 and G2 can be defined as any of the r + 1 groups in E[r].

As we will see however, there are many reasons we would like to specifically set

G1 = G1 and G2 = G2, but as we will also see there are reasons that we may

not want this to be the case. The existence of maps to and from the different

torsion subgroups affects certain functionalities that cryptographers desire in a

pairing-based protocol. These functionalities and the choices that are available

to us will be discussed in a moment, but we must first look at one last map that

56 Chapter 4. Elliptic curves as pairing groups

is available for a special class of curves.

Over prime fields, we call an elliptic curve E supersingular2 if #E(Fq) = q+1.

There are several other equivalent conditions [Sil09, Ch. V, Th. 3.1(a)], but the

most meaningful property for our purposes is that a supersingular curve comes

equipped with a distortion map φ; this is a non-(Fq-)rational map that takes

a point in E(Fq) to a point in E(Fqk) [Gal05, §IX.7.2]. A curve which is not

supersingular is called an ordinary curve, and it does not have such a map [Ver01,

Th. 11]. We give two examples of elliptic curves that are supersingular, and show

the behaviour of the distortion map φ within the torsion.

Example 4.1.4 (Magma script). Let q = 59, for which E/Fq : y2 = x3 + 1 is

supersingular, meaning #E(Fq) = q + 1 = 60, so take r = 5. The embedding

degree is k = 2, so we construct the extension as Fq2 = Fq(i), i
2 + 1 = 0.

ξ3 = 24i+ 29 is a cube root of unity, for which the associated distortion map is

φ : (x, y) 7→ (ξ3x, y). The fact that φ3 is equivalent to the identity map on E is

illustrated in Figure 4.5.

(18, 46) (18

46) (18, 13) (28

13) (28, 8) (28

8) (28, 51)

(36, 37i) (1

) (1, 36i) (36

) (36, 22i) (1

) (1, 23i)

(21i + 41, 37i) (35

) (35i + 29, 36i) (21

) (21i + 41, 22i) (35

) (35i + 29, 23i)

(38i + 41, 37i) (24

) (24i + 29, 36i) (38

) (38i + 41, 22i) (24

) (24i + 29, 23i)

(40i + 50, 46) (40

46) (40i + 50, 13) (36

13) (36i + 45, 8) (36

8) (36i + 45, 51)

(19i + 50, 46) (19

46) (19i + 50, 13) (23

13) (23i + 45, 8) (23

8) (23i + 45, 51)

φ φ

φ φ

φ φ

G1 G2

Figure 4.5: The distortion map φ : (x, y) 7→ (ξ3, y) on E[5].

2This terminology should not be confused with the singular vs. non-singular definitions
illustrated in, and discussed above, Figures 2.1-2.4.

http://www.craigcostello.com.au/pairings/beginners/4-1-4-Supersingular1.txt

4.1. The r-torsion 57

Example 4.1.5 (Magma script). We take the same fields as the last example

(q = 59, Fq2 = Fq(i), i
2 + 1 = 0), but instead use the supersingular curve

E/Fq : y2 = x3 + x, which therefore also has #E(Fq) = 60. This time, the

distortion map is φ : (x, y) 7→ (−x, iy), from which it is easy to see that φ4 is

equivalent to the identity map on E. In Figure 4.6, we see that (in this case) the

G1 G2

(25, 30) (25

30) (25, 29) (35

29) (35, 28) (35

28) (35, 31)

(34, 30i) (34

) (34, 29i) (24

) (24, 28i) (24

) (24, 31i)

(31i, 22i + 37) (55

+ 37) (55i, 18i + 41) (31

+ 41) (31i, 37i + 22) (55

+ 22) (55i, 41i + 18)

(28i, 22i + 22)

+ 22), (4i, 41i + 41) (28

+ 41) (28i, 37i + 37) (4

+ 37) (4i, 18i + 18)

(28i + 51, 34i + 10) (31

+ 10) (31i + 8, 10i + 25) (31

+ 25) (31i + 8, 49i + 34) (28

+ 34) (28i + 51, 25i + 49)

(31i + 51, 34i + 49) (28

+ 49) (28i + 8, 49i + 25) (31

+ 25) (31i + 51, 25i + 10) (28

+ 10) (28i + 8, 10i + 34)

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ
φ

φ

Figure 4.6: The distortion map φ : (x, y) 7→ (−x, iy) on E[5].

distortion map does not always move elements out of their subgroup, but rather

restricting φ to, say the torsion subgroup generated by (28i+51, 25i+49), gives

an endomorphism on 〈(28i+ 51, 25i+ 49)〉. This hints towards one of the major

optimisations in pairing computations. Namely, in Chapter 2 we saw the power of

endomorphisms applied to ECC (specifically in Example 2.2.11), and in Chapter

7 we are going to see that endomorphisms on torsion subgroups (like the one

above) can be used to great effect in PBC.

We summarise the available maps within the r-torsion. From any subgroup

http://www.craigcostello.com.au/pairings/beginners/4-1-5-Supersingular2.txt

58 Chapter 4. Elliptic curves as pairing groups

in E[r] that is not G1 or G2, we can always map into either G1 or G2 via the trace

and anti-trace maps respectively. If E is ordinary, we do not have computable

maps out of G1 or G2, otherwise if E is supersingular then the distortion map φ

is a homomorphic map out of these two subgroups.

4.2 Pairing types

As we mentioned before the previous two examples, the interplay between the

maps that are available in any given scenario gives rise to different functionalities

within a pairing-based protocol. Galbraith et al. [GPS08] were the first to identify

that all of the potentially desirable properties in a protocol cannot be achieved

simultaneously, and therefore classified pairings into certain types. There are now

four pairing types in the literature; Galbraith et al. originally presented three,

but a fourth type was added soon after by Shacham [Sha05]. The pairing types

essentially arise from observing the (practical) implications of placing G1 and

G2 in different subgroups of E[r]; in fact, it will soon become obvious that it is

always best to set G1 = G1, so the four types really are tied to the definition of

G2. The main factors affecting the classification are the ability to hash and/or

randomly sample elements of G2, the existence of an isomorphism ψ : G2 → G1

which is often required to make security proofs work (see [GPS08]), and (as

always) issues concerning storage and efficiency.

We follow the notation and descriptions of Chen et al. [CCS07], and describe

each pairing type in turn. The illustrations of each type are in Figures 4.7-4.10,

where the base-field group G1 = E[r] ∩Ker(π − [1]) with generator P1 is always

in the top left, whilst the trace-zero subgroup G2 = E[r] ∩ Ker(π − [q]) with

generator P2 is always in the top right. Let P1 be the generator of G1 and P2

be the generator of G2. It should be born in mind that the pairing e(P,Q) will

only compute non-trivially if P and Q are in different subgroups.

- Type 1 pairings. This is the scenario where E is supersingular, meaning we

can map out of G1 with φ. Thus, we set G1 = G2 = G1 (with P1 = P2 = P1).

When it comes time to compute a pairing e between say P and Q, we can

use φ to map Q to φ(Q) and define e(P,Q) = ê(P, φ(Q)), where ê is the

Weil or Tate pairing. There are no hashing problems (getting into E(Fq)[r]

requires a simple cofactor multiplication once we have hashed into E(Fq))

and we trivially have an isomorphism ψ from G2 to G1. The drawback

4.2. Pairing types 59

of Type 1 pairings comes when considering bandwidth and efficiency: as

we will see in Chapter 6, the condition that E be supersingular is highly

restrictive when it comes to optimising the speed of computing the pairing.

See Figure 4.7.

The remaining three cases are defined over ordinary elliptic curves, so (as we will

again see in Chapter 6) there are no restrictions imposed on the choice of elliptic

curve that lead to a loss of efficiency. For all these situations we have G1 = G1

and P1 = P1 (where hashing is relatively easy), so we only need to discuss the

choices for G2 and P2.

- Type 2 pairings. In this situation we take G2 to be any of the r−1 subgroups

in E[r] that is not G1 or G2. We have the map ψ : G2 → G1 as the trace

map Tr. We can also use the anti-trace map to move elements from G2

into G2 for efficiency purposes. The drawback is that there is no known

way of hashing into G2 specifically, or to generate random elements of G2.

The best we can do here is to specify a generator P2 ∈ G2 and generate

elements via scalar multiplications of P2, but this is often undesirable in

protocols since we cannot generate random elements without knowing the

discrete logarithm with respect to P2. See Figure 4.8.

- Type 3 pairings. In this scenario we take G2 = G2, the trace zero subgroup.

We can now hash into G2, at the very least by following a cofactor multi-

plication in E(Fqk) by the anti-trace map aTr : E[r]→ G2 (we will soon see

that there is a much more efficient way than this). The ironic drawback

here is that the only subgroup (besides G1) that we can hash into is also the

only subgroup we can not find a map out of. An isomorphism ψ : G2 → G1

trivially exists, we just do not have an efficient way to compute it. Thus,

security proofs that rely on the existence of such a ψ are no longer appli-

cable, unless the underlying problem(s) remains hard when the adversary

is allowed oracle access to ψ [SV07]. See Figure 4.9.

- Type 4 pairings. In this situation we take G2 to be the whole r-torsion

E[r], which is a group of order r2. Hashing into G2 is possible, but not very

efficient, however we cannot hash into the particular subgroup generated

by any specific P2 (i.e. G2 is not cyclic). Note that hashing into E[r] will

only give an element in G1 or G2 (which is undesirable in this case) with

negligibly low probability for large r. See Figure 4.10.

60 Chapter 4. Elliptic curves as pairing groups

G1 G2

G2G1

φ

= Tr

P1 = P2 = P1

P = P

φ(P1)

Figure 4.7: Type 1 pairings.

G1 G2

P
2 ψ

=
T
r

(t
h
e

b
as

e
fi
el

d
su

b
gr

ou
p
)

1

G2

G1

P1 = P1

T
ype

2
am

m
ends...

P
1

=
aT

r
(on

the
other

arrow
)

= P2

Figure 4.8: Type 2 pairings.

G1 G2

1

G2G1

P1 = P1 P2 = P2

Figure 4.9: Type 3 pairings.

G1 G2

1

G2

1

G2

G2 G2

G2

1

G2

G1

P1 = P1

Figure 4.10: Type 4 pairings.

Prior to these different situations being brought to the attention of the PBC

community [GPS08], authors publishing pairing-based protocols were often in-

correctly assuming combinations of the associated properties that could not be

achieved in practice. The message to designers of pairing-based protocols was

that individual attention is required to prescribe the pairing type which best

suits any particular pairing instantiation. Whilst some authors have since fol-

lowed this advice closely, a good example being [CCS07, Tables 1-6], it still

seems most common that designers of pairing protocols take the easy way out

and assume a Type 1 pairing. This approach is somewhat justified, as it allows

cryptographers to avoid getting bogged down in the complex details of pairings

whilst still enjoying all their functional properties, but overall it is less than sat-

4.3. Twisted curves 61

isfactory. The reason is that, at current levels of security, a Type 1 pairing is

orders of magnitude more costly than say, a Type 3 pairing. Nowadays all of

the state-of-the-art implementations of pairings take place on ordinary curves

that assume the Type 3 scenario, where the only potential3 sacrifice is the map

ψ : G2 → G1. Moreover, Chatterjee and Menezes [CM09] paid closer attention

to the role of ψ in protocol (proof) designs and essentially argue that there is

no known protocol/proof of security that cannot be translated into the Type 3

setting, claiming that Type 2 pairings (which are less efficient but have ψ) are

merely inefficient implementations of Type 3 pairings. We note that their claim

is only based on empirical evidence; they posed a counter-example as an open

problem. Nevertheless, the final message of Menezes’ related ECC2009 talk is

that “protocol designers who are interested in the performance of their protocols

should describe and analyse their protocols using Type 3 pairings” [Men09].

For the remainder of this text then, and unless otherwise stated, the reader

should assume we are in the Type 3 scenario where G1 = G1 = E[r]∩Ker(π− [1])

and G2 = G2 = E[r] ∩Ker(π − [q]).

4.3 Twisted curves

Before moving our focus to the algorithm for computing pairings, we have one

final point to discuss; namely, the most efficient way to hash to, and represent

elements in G2. This discussion brings up the crucial notion of twists of elliptic

curves, which was first applied to pairings by Barreto et al. [BLS03]. We start

with an example.

Example 4.3.1 (Magma script). Recall the curve used in Example 4.1.1: q =

11, E/Fq : y2 = x3 + 4, #E(Fq) = 12 and r = 3. Excluding O, the trace

zero subgroup G2 consists of points defined in E(Fq2), namely (8, i) and (8, 10i).

Define the curve E ′/Fq : y2 = x3 − 4 and observe that the map Ψ−1 defined by

Ψ−1 : (x, y) 7→ (−x, iy) takes points from E to E ′, i.e. Ψ−1 : E → E ′. Restricting

Ψ−1 to G2 actually gives a map that takes elements defined over Fq2 to elements

defined over Fq: Ψ−1((8, i)) = (3, 10) and Ψ−1((8, 10i)) = (3, 1). The convention

is to write Ψ for the reverse map Ψ : E ′ → E which in this case is defined by

Ψ : (x′, y′) 7→ (−x′, y′/i) = (−x′,−y′i). We call E ′ a twist of E. Every twist

3The are some protocols whose security actually relies on the inability to compute ψ effi-
ciently.

http://www.craigcostello.com.au/pairings/beginners/4-3-1-QuadraticTwist.txt

62 Chapter 4. Elliptic curves as pairing groups

has a degree d, which tells us the extension field of Fq where E and E ′ become

isomorphic. For our purposes, d is also the degree of its field of definition of E ′

as a subfield of Fqk , i.e. a degree d twist E ′ of E will be defined over Fqk/d. In

this example, k = 2 and E ′ is defined over Fq, so we are using a d = 2 twist,

called a quadratic twist. Ordinarily, computations in the group G2 = G2 would

(8, i) (8

) (8, 10i)

(9i + 7, i) (9

) (9i + 7, 10i)

) (2i + 7, i)

(2i + 7, 10i) (2

(0, 2) (0

2) (0, 9) Ψ

Ψ
−1

1) (3, 10)

(3, 1) (3 (0, 2i) (0

10) (9i + 4, 1)

(9i + 4, 10) (9 (2i + 4) (2

+ 4) (2i + 4, 10)

) (0, 9i)

Figure 4.11: E (left) and the quadratic twist E ′ (right).

require (point doubling/addition) operations in the extension field Fq2, but we

can use Ψ−1 to instead perform these operations in E ′(Fq), before mapping the

result back with Ψ. Moreover, if we restrict the maps to E[r], then Ψ−1 takes

elements of the trace zero subgroup G2 of E and moves them to the base field

subgroup G′1 of E ′. Note that computing Ψ and Ψ−1 is essentially cost free.

We give a larger example that better illustrates the power of employing

twisted curves.

Example 4.3.2 (Magma script). Let q = 103 and consider E/Fq : y2 = x3 + 72,

which has #E(Fq) = 84, so let r = 7. The embedding degree (with respect to r) is

k = 6, so form Fq6 = Fq(u) with u6 +2 = 0. The trace zero subgroup G2 = E[r]∩
Ker(π−[q]) is defined over Fq6, and is generated by (35u4, 42u3) (see Figure 4.12).

We define the degree d = 6 sextic twist E ′ of E as E ′ : y2 = x3 +72u6, where the

back-and-forth isomorphisms are defined as Ψ : E ′ → E, (x′, y′) 7→ (x′/u2, y′/u3)

and Ψ : E → E ′, (x, y) 7→ (u2x, u3y). Observe that Ψ−1 maps elements in

G2 ∈ E(Fqk)[r] = E(Fq6)[r] to elements in E ′(Fqk/d)[r] = E ′(Fq)[r]. Thus, when

performing group operations in G2 = G2, we gain the advantage of working over

http://www.craigcostello.com.au/pairings/beginners/4-3-2-Twist:unTwist.txt

4.3. Twisted curves 63

(33, 19) (76

19) (76, 84) (9784) (97, 19) (97

19) (97, 84) (7684) (76, 19) (33

19) (33, 84)

(2
2u

5
+

49
u

4
+

91
u

3
+

59
u

2
+

20
u

+
67

,
37

,
37

u
5

+
38

u
4

+
32

u
3
+

16
u

2
+

46
u

+
28

)

(101u2
, 8u3) (94

) (94u2
, 95u3) (11

) (11u2
, 8u3) (11

) (11u2
, 95u3) (94

) (94u2
, 8u3) (101

) (101u2
, 95u3)

(99u5 + 66u4 + 49u3 + 8u2 + 90u + 44,
+ 44, 66u5 + 65u4 + 71u3 + 87u2 + 57u + 75)

First
group

top
left

then
clockw

ise

u)

(94
u 2

, 95
u

u

+
66

u 4

+
49

u 3

+
8
u 2

+
90

u
+

44

(18
u 5

+
91

u 4

+
37

u 3

+
36

u 2

+
7
u
+

95
, 37

u

5

+
91

u 4

+
49

u 3

+
59

u 2

+
96

u

+
54

u 3

+
8
u 2

+
13

3

O
ther

sym
bols, the

left
hand

flower
is

u

)

(11
u 2

, 95
u 3

)

(94

+
65

u 4

+
71

u 3

+
87

u 2

+
57

u
+

75)

+
95

, 37
u 5

+
65

u 4

+
32

u 3

+
87

u 2

+
46

u
+

75)

5

+
68

u 4

+
32

u 3

+
15

u 2

+
u
+

28)

+
32

u 3

+
87

u 2

+
46

3

(22
u

5
+

91
u

4
+

49
u

3
+

59
u

2
+

96
u

+
44

,

+
44

,54
u

5
+

68
u

4
+

32
u

3
+

15
u

2
+

u
+

28)

+
49

u

+
91

u
4 +

37
u
3 +

36
u

(2
2u
5 +

91
u
4 +

49
u
3 +

59
u
2 +

96
u

(4
u
5 +

66
u
4 +

54
u
3 +

8u
2 +

13
u
+

44
, 3
7u

5 +
49

u
4 +

12
u
3 +

59
u
2 +

83
u

O
th

er
sy
m
bo

ls,
th

e
le
ft

ha
nd

flo
we

r
is

th
e
rig

ht
ha

nd
flo

we
r
is

T
he

sy
m
bo

l o
n
th

e
ar
ro
w
s
(b

ac
k
an

d
fo
rt
h)

is

+
71

u
3

+
65

u
4 +

32
u
3 +

87
u
2

54
u
5 +

68
u
4 +

32
u
3 +

15
u
2 +

u
+

28
)

+
44

, 3
7u
5 +

65
u
4 +

32
u
3 +

87
u
2 +

46
u
+

75
)

u
5 +

65
u
4 +

32
u
3 +

87
u
2 +

46
u

(81u5 + 49u4 + 12u3 + 59u2 + 83u + 67,
, 37u5 + 65u4 + 32u3 + 87u2 + 46u + 75)

(9
3u

5
+

18
u

4
+

22
u

3
+

49
u

2
+

91
u

+
59

,

,
95

u
5

+
80

u
4

+
89

u
3
+

37
u

2
+

38
u

+
32

)

(35u4
, 42u3) (65

) (65u4
, 61u3) (3

) (3u4
, 42u3) (3

) (3u4
, 61u3) (65

) (65u4
, 42u3) (35

) (35u4
, 61u3)

(58u5 + 81u4 + 99u3 + 66u2 + 49u + 8,
, 8u5 + 23u4 + 14u3 + 66u2 + 65u + 71)

First
group

top
left

then
clockw

ise

+
22

u)

(65
u 4

, 61
u

(58
u 5

+
81

u 4

+
99

u 3

+
66

u 2

+
49

u
+

8

(48
u 5

+
4
u 4

+
18

u 3

+
91

u 2

+
37

u
+

36
, 8
u

5

+
81

u 4

+
22

u 3

+
91

u 2

+
49

u
+

59

4

+
4
u 3

+
66

u 2

+
54

3

+
89

u

)

(3
u 4

, 61
u 3

)

(65

+
23

u 4

+
14

u 3

+
66

u 2

+
65

u
+

71)

+
36

, 8
u 5

+
80

u 4

+
14

u 3

+
37

u 2

+
65

u
+

32)

5

+
51

u 4

+
89

u 3

+
54

u 2

+
68

u
+

32)

+
14

u 3

+
37

u 2

+
65+

37

(55
u

5
+

81
u

4
+

22
u

3
+

91
u

2
+

49
u

+
59

,

,44
u

5
+

51
u

4
+

89
u

3
+

54
u

2
+

68
u

+
32)

u

+
18

u
3 +

91
u

u

+
81

u
4 +

22
u
3 +

91
u
2 +

49
u

(4
5u
5 +

81
u
4 +

4u
3 +

66
u
2 +

54
u
+

8,
8u

5 +
18

u
4 +

81
u
3 +

49
u
2 +

12
u+

14
u
3 +

37
u

44
u
5 +

51
u
4 +

89
u
3 +

54
u
2 +

68
u

+
8,
8u
5 +

80
u
4 +

14
u
3 +

37
u
2 +

65
u
+

32
)

5 +
80

u
4 +

14
u
3 +

37
u
2 +

65
u
+

32
)

(10u5 + 18u4 + 81u3 + 49u2 + 12u + 59, 8
+ 59, 8u5 + 80u4 + 14u3 + 37u2 + 65u + 32)

(101, 8) (94

8) (94, 95) (1195) (11, 8) (11

8) (11, 95) (9495) (94, 8) (101

8) (101, 95)
Ψ

Ψ
−1

Figure 4.12: E (left) and the (correct) sextic twist E ′ (right)

Fq instead of Fq6 , a dramatic improvement in computational complexity.

In both Example 4.3.1 and Example 4.3.2 above, we had k = d, so the twist

allowed us to work in the base field Fq, rather than Fqk . In the general case

though, the twist will pull computations back into the subfield Fqk/d of Fqk .

For example, if the embedding degree was k = 12, a quadratic twist (d = 2)

would allow computations in G2 to be performed in Fq6 rather than Fq12 , whilst

a sextic twist (d = 6) would allow us to instead work in Fq2. Thus, we would

clearly prefer the degree d of the twist to be as high as possible. As it turns

out, d = 6 is the highest degree available on elliptic curves, where the only

possibilities are d ∈ {2, 3, 4, 6} [Sil09, Prop. X.5.4]. For d > 2, we also require

special subclasses of curves that depend on d, so following [Sil09, Prop. X.5.4]

(see also [HSV06, Prop. 6, Prop. 8]) we describe all four cases individually. In

the general case according to our context, a twist of E : y2 = x3 + ax + b is

given by E ′ : y2 = x3 + aω4x+ bω6, with Ψ : E ′ → E : (x′, y′) 7→ (x′/ω2, y′/ω3),

ω ∈ Fqk . We can only achieve specific degrees d through combinations of zero

and non-zero values for a and b.

- d = 2 quadratic twists. Quadratic twists are available on any elliptic curve,

so if E/Fq : y2 = x3 + ax+ b, then a quadratic twist is given by E ′/Fqk/2 :

y2 = x3 + aω4x + bω6, with ω ∈ Fqk but ω2 ∈ Fqk/2. Since ω3 ∈ Fqk ,

the isomorphism Ψ : E ′ → E defined by Ψ : (x′, y′) 7→ (x′/ω2, y′/ω3) will

take elements in E ′(Fqk/2) to elements in E(Fqk), whilst Ψ−1 will do the

64 Chapter 4. Elliptic curves as pairing groups

opposite.

- d = 3 cubic twists. Degree d = 3 twists can only occur when a = 0, so if

E/Fq : y2 = x3 + b, then E ′/Fqk/3 : y2 = x3 + bω6, with ω3, ω6 ∈ Fqk/3, but

ω2 ∈ Fqk \ Fqk/3 . Thus, the isomorphism Ψ : E ′ → E (defined as usual)

will take elements in E ′(Fqk/3) to elements in E(Fqk), whilst Ψ−1 does the

opposite.

- d = 4 quartic twists. Degree d = 4 twists are available when b = 0, so if

E/Fq : y2 = x3 + ax, then E ′/Fqk/4 : y2 = x3 + aω4x, with ω4 ∈ Fqk/4,

ω2 ∈ Fqk/2 and ω3 ∈ Fqk \Fqk/2. Thus, Ψ will move elements in E ′(Fqk/4) up

to elements in E(Fqk), whilst Ψ−1 will move elements from E(Fqk) down to

E ′(Fqk/4).

- d = 6 sextic twists. Sextic twists are only available when a = 0, so if

E/Fq : y2 = x3+b, then E ′/Fqk/6 : y2 = x3+bω6, with ω6 ∈ Fqk/6, ω3 ∈ Fqk/3

and ω2 ∈ Fqk/2. Thus, Ψ pushes elements in E ′(Fqk/6) up to E(Fqk), whilst

Ψ−1 pulls elements from E(Fqk) all the way down to E ′(Fqk/6).

We make the remark that, for our purposes, a specific twist can only be ap-

plied if the curve is of the corresponding form above and the embedding degree

k has d as a factor. Thus, attractive embedding degrees are those which have

any of d = {2, 3, 4, 6} as factors, but preferably d = 4 or d = 6 for increased

performance. This will be discussed in detail in Chapter 6. Very fortunately,

we will also see in that chapter that almost all of the popular techniques for

constructing curves suitable for pairing computation give rise to curves of the

form y2 = x3 + b or y2 = x3 + ax, which facilitate the high-degree twists above.

4.4 Chapter summary

We started by discussing that cryptographic pairings are bilinear maps from two

elliptic curve groups to a third (finite field) group e : G1 × G2 → GT . We then

claimed that, in general, to define a useful pairing on G1 and G2, we must be

able to define more than one subgroup in the r-torsion of E, where the most

cryptographically useful case is that r is a large prime. We then defined the

embedding degree k of E (with respect to r), and showed that we must extend

4.4. Chapter summary 65

the field Fq to Fqk in order to find more than one such subgroup. In fact, we

showed that E(Fqk) actually contains the entire r-torsion, which has cardinality

r2 and consists of r+1 cyclic subgroups of order r. These r+1 subgroups (and the

existence of maps between them) facilitate several choices for the definitions of G1

and G2, which gives rise to four pairing types. We argued that the most popular

pairing type is a Type 3 pairing, which sets G1 and G2 as the two eigenspaces of

the Frobenius endomorphism, namely G1 = G1 = E[r] ∩Ker(π − [1]) is the base

field subgroup, and G2 = G2 = E[r] ∩Ker(π − [q]) is the trace zero subgroup.

The definitions of the Weil and Tate pairings in the next chapter inherently

justify the claim we made in this chapter that, in general, the arguments P and

Q in the pairing e(P,Q) must come from distinct torsion subgroups.

66 Chapter 4. Elliptic curves as pairing groups

Chapter 5

Miller’s algorithm for the Weil

and Tate pairings

This chapter defines the Weil and Tate pairings and presents Miller’s algorithm

for computing them. As usual, we state the definitions in our context (on elliptic

curves over finite fields), but the more general definitions are analogous (see

[Sil09,Gal05]).

Notation. In this chapter we will use the notation wr(P,Q) for the (order r)

Weil pairing of P and Q and tr(P,Q) for their (order r) Tate pairing, as this

will help when discussing differences and relationships between them. After this

chapter though, it will always be clear which pairing we mean and what the value

of r is (the largest prime factor of #E(Fq)), so we will return to the notation

most commonly seen in the literature and simply write e(P,Q).

Both pairings make use of a special case of the following fact we recall from

Chapter 3: a divisor D =
∑

P nP (P) is principal (i.e. the divisor of a function)

if and only if
∑

P nP = 0 and
∑

P [nP]P = O on E. For any m ∈ Z and P ∈ E,

it follows that there exists a function fm,P with divisor

(fm,P) = m(P)− ([m]P)− (m− 1)(O), (5.1)

where we note that for m = 0, one can take f0,P = 1 with (f0,P) the zero divisor.

67

68 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

Thus, if P ∈ E[r], then fr,P has divisor

(fr,P) = r(P)− r(O). (5.2)

Observe that (fm+1,P) − (fm,P) = (P) + ([m]P) − ([m + 1]P) − (O), which is

exactly the divisor of the function ℓ[m]P,P/v[m+1]P , where ℓ[m]P,P and v[m+1]P are

the sloped and vertical lines used in the chord-and-tangent addition of the point

[m]P and P (see Figure 5.1). This means we can build fm+1,P from fm,P via

fm+1,P = fm,P · ℓ[m]P,P

v[m+1]P
.

ℓ[m]P,P

•[m]P

•
P

•−[m + 1]P

•[m + 1]P

v[m+1]P

Figure 5.1:
(

ℓ[m]P,P

v[m+1]P

)

= (ℓ[m]P,P)− (v[m+1]P) = (P) + ([m]P)− ([m+ 1]P)− (O).

Example 5.0.1 (Magma script). Let q = 23, and consider E/Fq : y2 = x3 +

17x + 6 which has #E(Fq) = 30, and which has P = (10, 7) as a point of

order 5. Thus, we are guaranteed the existence of a function f5,P on E with

divisor (f5,P) = 5(P)− 5(O). Starting with m = 2, we will build f5,P by using

fm+1,P = fm,P · ℓ[m]P,P

v[m+1]P
(note that (f1,P) is the zero divisor). The function f2,P

with divisor (f2,P) = 2(P) − ([2]P) − (O) is the tangent line lP,P at P divided

by the vertical line v[2]P through [2]P , which is f2,P = y+2x+19
x+16

. We compute the

function f3,P as f3,P = f2,P · lP,[2]P

v[3]P
, where lP,[2]P is the chord through P and [2]P

and v[3]P is the vertical line at [3]P . Thus, f3,P = y+2x+19
x+16

· y+x+6
x+16

= 3y+x2+9x+19
x+16

.

Similarly, multiplication by the chord lP,[3]P through P and [3]P and division by

the vertical line v[4]P through [4]P will advance us from f3,P to f4,P , as f4,P =

f3,P · lP,[3]P

v[4]P
= 3y+x2+9x+19

x+16
· y+2x+19

x+13
= (x+22)y+5x2+3x+5

x+13
; this function has divisor

(f4,P) = 4(P) − (4P) − 3(O). The last update we require is the function with

divisor (P) + (4P)− (5P)− (O), which would ordinarily be the quotient of lines

in the addition of P and 4P , but since P has order 5, we know that P = −4P ,

so this function actually has divisor (P) + (−P)− 2(O). Thus, our last update

http://www.craigcostello.com.au/pairings/beginners/5-0-1-f5P.txt

5.1. The Weil pairing 69

to the function is simply the vertical line at P , i.e. (x−10), which gives the final

function as f5,P = (x − 10) · (x+22)y+5x2+3x+5
x+13

= (x + 22)y + 5x2 + 3x + 5; this

function has a zero of order 5 on E at P , and a pole of order 5 on E at O.

5.1 The Weil pairing

For a point P ∈ E[r], the function fr,P with divisor r(P)− r(O) is at the heart

of both the Weil and Tate pairing definitions.

Definition 5.1 (The Weil pairing (over finite fields)). Let P,Q ∈ E(Fqk)[r] and

let DP and DQ be degree zero divisors with disjoint supports such that DP ∼ (P)−
(O) and DQ ∼ (Q) − (O). There exist functions f and g such that (f) = rDP

and (g) = rDQ. The Weil pairing wr is a map

wr : E(Fqk)[r]× E(Fqk)[r]→ µr,

defined as

wr(P,Q) =
f(DQ)

g(DP)
.

Among other properties, the Weil pairing is bilinear and non-degenerate. We

refer the reader to [Sil09, Ch. III, Prop. 8.1-8.2] for the proofs and full list of

properties.

An important point to note is that we can not simply define the Weil pairing

as wr(P,Q) = fr,P (DQ)/fr,Q(DP), because (fr,P) = r(P) − r(O) and (fr,Q) =

r(Q)−r(O); this corresponds to the divisorsDP = (P)−(O) andDQ = (Q)−(O),

which does not adhere to the requirement thatDP andDQ have disjoint supports.

Example 5.1.1 (Magma script). Let q = 23, and consider E/Fq : y2 = x3 − x,
which (is supersingular and therefore) has #E(Fq) = q + 1 = 24. The point

P = (2, 11) is a point of order r = 3 and the embedding degree with respect to r is

k = 2. Take Fq2 = Fq(i) with i2+1 = 0, from which we obtain a pointQ of order 3

(that is not in 〈P 〉) as Q = (21, 12i), which is actually in the trace zero subgroup,

i.e. π(Q) = [q]Q. Suppose we wish to compute the Weil pairing wr(P,Q) of P and

Q. For illustrative purposes, we will start by computing fr,P and fr,Q and then

updating according to the above paragraph. Following the same technique as the

last example, we get fr,P and fr,Q as fr,P = y+11x+13 and fr,Q = y+11ix+10i,

http://www.craigcostello.com.au/pairings/beginners/5-1-1-WeilPairing1.txt

70 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

which have divisors (fr,P) = 3(P)− 3(O) and (gr,P) = 3(Q)− 3(O) respectively.

We need to find divisors DP and DQ that have distinct supports but which are

respectively equivalent to (P) − (O) and (Q) − (O). Note that only one of

these divisors needs to be updated (so that its support does not contain O), but

we will update both in the name of symmetry. Thus, take two more (random)

points in E(Fq2) as R = (17i, 2i + 21) and S = (10i + 18, 13i + 13), and set

DP = (P + R) − (R) and DQ = (Q + S) − (S). We find f as a function

with divisor DP and g as a function with divisor DQ as f = fr,P/(ℓP,R/vP+R)3

and g = gr,Q/(ℓQ,S/vQ+S)3 respectively, where ℓP,R/vP+R is the quotient of the

chord between P and R and the vertical line through P + R (and similarly for

ℓQ,S/vQ+S). We can now compute the Weil pairing according to Definition 5.1

as

wr(P,Q) = f(DQ)/g(DP)

=
f(Q+ S) · g(R)

f(S) · g(P +R)
.

= 15i+ 11.

Observe that (15i + 11)3 = 1 so wr(P,Q) ∈ µr. Repeating the whole pro-

cess with [2]P instead gives wr([2]P,Q) = 8i + 11 = wr(P,Q)2, or with [2]Q

gives wr(P, [2]Q) = 8i + 11 = wr(P,Q)2, or with both [2]P and [2]Q gives

wr([2]P, [2]Q) = 15i+11 = wr(P,Q)4 = wr(P,Q), which is about as much of the

bilinearity of wr that we can illustrate in this toy example.

5.2 The Tate pairing

The formal definition of the Tate pairing requires that only one argument comes

from the r-torsion. For our purposes, the other argument can be any point of

E(Fqk), but we will soon see that in general it is still advantageous to choose both

points from (distinct subgroups in) the r-torsion. In order to define the Tate

pairing correctly though, we need to properly define the groups involved. We

assume the standard setting that is of most interest to us: k > 1, r‖#E(Fq) and,

since there are r2 points in the subgroup E(Fqk)[r], we usually have r2‖#E(Fqk).

Thus, let h = #E(Fqk)/r2 be the cofactor that sends points in E(Fqk) to points

5.2. The Tate pairing 71

in E(Fqk)[r]. Let rE(Fqk) be the coset of points in E(Fqk) defined by

rE(Fqk) = {[r]P : P ∈ E(Fqk)}.

The number of elements in rE(Fqk) is h and it contains O; from here we will

simply denote this coset as rE. Following [Sco04], we can obtain another distinct

coset of E(Fqk) by adding a random element R (not in E[r]) to each element

of rE. In this way we can obtain precisely r2 distinct, order h cosets. The

quotient group E/rE is the group whose elements are these cosets. We note

that elements belonging to each coset do not have the same order, nor do they

form a (sub)group. In the quotient group E/rE, points belonging to the same

coset (group element) can be used to represent the coset. Any two points in the

same coset differ from one another by an element in rE, so one can think of

E/rE as the set of equivalence classes of points in E(Fqk) under the equivalence

relation P1 ≡ P2 if and only if P1 − P2 ∈ rE [Gal05, IX.3].

Example 5.2.1 (Magma script). Let q = 5, and consider E/Fq : y2 = x3−3, which

has #E(Fq) = 6. Thus, taking r = 3 gives k = 2, so take Fq2 = Fq(i), where

i2 + 2 = 0. Further, note that #E(Fq2) = 36 = hr2, so h = 4, and thus taking

rE = {[3]P : P ∈ E(Fq2)} gives rE = {O, (3i + 4, 0), (2i + 4, 0), (2, 0)}, with

#rE = h. Each of the other 8 cosets in E/rE are shown in Figure 5.2, where we

importantly note that each coset has a unique representative element that lies

in the r-torsion (see Figure 5.3). Consider the coset containing P1 = (2i, 4i+ 3)

P2 = (4, 1), P3 = (3, 2) and P4 = (3i, i + 3)}. All of the non-trivial pairwise

differences are (defined by) P1−P2 = P3−P4 = (3i+ 4, 0), P1−P3 = P2−P4 =

(2i+ 4, 0) and P1 − P4 = P2 − P3 = (2, 0), which are all in rE.

For our purposes, E[r] and the quotient group E/rE both have r2 elements1,

but although it was the case in Example 5.2.1, it is not necessarily the case that

the elements of E[r] each represent a unique coset of E/rE (see [Gal05, IX.3] for

a counterexample). However, if r2‖#E(Fqk), then E[r] ∩ rE = O, which means

that adding a unique torsion element to all of the elements in rE will generate

a unique coset in E/rE. That is, r2‖#E(Fqk) implies that E[r] does represent

E/rE (see [Gal05, Th. IX.22] for the proof in the supersingular scenario), and

this will always be the case for us. This is particularly convenient when it comes

to defining the Tate pairing, since the “second” group in the (order r) Tate

1In fact, they always have the same number of elements, but there are cases when the
cardinality is not r2 – see [Gal05, IX.3, IX.7.3]

http://www.craigcostello.com.au/pairings/beginners/5-2-1-QuotientGroupCosets.txt

72 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

(2i, 4i + 3) (4

+ 3) (4, 1)

(3, 2)

(3i, i + 3)

(i + 2, i) (1

) (1, i)

(0, 3i)

(4i + 2, i)

(2i + 1, 2)

(i + 1, i + 3) (4

+ 3) (4i + 4, 4i + 3) (

+ 3) (i + 3, 1)

(i + 1, 4i + 2) (4

(i + 3, 4)

(2i + 1, 3)

+ 2) (4i + 4, i + 2)

(1, 4i) (4

) (4i + 2, 4i) (

) (0, 2i)

) (i + 2, 4i)

(3i, 4i + 2) (2

+ 2) (2i, i + 2)

(3, 3)

(4, 4)

(3i + 1, 3)

3) (4i + 3, 4) (4

4) (4i + 1, i + 2) (

+ 2) (i + 4, 4i + 2)

(4i + 1, 4i + 3) (4

+ 3) (4i + 3, 1)

(3i + 1, 2)

(i + 4, i + 3)

(3i + 4, 0) (2

0) (2i + 4, 0)

(O)

(2, 0)

Figure 5.2: The r2 cosets in the quo-
tient group E(Fqk)/rE(Fqk).

(2i + 1, 3) (2

3) (2i + 1, 2)

(3, 3) (3

3) (3, 2)

(3i + 1, 2) (3

2) (3i + 1, 3)

(0, 3i) (0

) (0, 2i)

Figure 5.3: The r-torsion, where each
P ∈ E[r] is in a distinct coset of E/rE.

pairing is E/rE. As we will see after the definition, E[r] representing E/rE

allows us to take both groups from the r-torsion, which matches the somewhat

simpler Weil pairing group definitions.

We note that although we refer to the following pairing as the Tate pairing

throughout, it is often aptly called the Tate-Lichtenbaum pairing [Sil09, XI.9].

This is because Lichtenbaum [Lic69] specialised Tate’s more general pairing to

the case of Jacobians of curves (over local fields) which facilitates explicit com-

putation [Gal05, IX.3].

Definition 5.2 (The Tate pairing (over finite fields)). Let P ∈ E(Fqk)[r], from

which it follows that there is a function f whose divisor is (f) = r(P)−r(O). Let

Q ∈ E(Fqk) be any representative in any equivalence class in E(Fqk)/rE(Fqk),

and let DQ be a degree zero divisor defined over Fqk that is equivalent to (Q)−(O),

but whose support is disjoint to that of (f). The Tate pairing tr is a map

tr : E(Fqk)[r]×E(Fqk)/rE(Fqk)→ F∗qk/(F
∗

qk)
r,

defined as

tr(P,Q) = f(DQ).

Again, we remark that among other properties, the Tate pairing is bilinear

5.2. The Tate pairing 73

and non-degenerate. We refer the reader to [Sil09, XI.9] and [Gal05, IX.4] for

the proofs and full list of properties.

The quotient group F∗qk/(F
∗

qk)
r is defined as we would expect. Namely, (F∗qk)

r

is a subgroup of F∗
qk defined as (F∗

qk)
r = {ur : u ∈ F∗

qk}, so F∗
qk/(F

∗

qk)
r is the set

of equivalence classes of F∗qk under the equivalence relation a1 ≡ a2 if and only if

a1/a2 ∈ (F∗qk)
r.

Example 5.2.2 (Magma script). We continue with the parameters from Example

5.2.1. Let P = (3, 2) ∈ E[r] (see Figure 5.2) and let Q = (i+1, 4i+2) ∈ E(Fqk).

The function f : y+2x+2 = 0 on E has divisor 3(P)−3(O), so to compute the

Tate pairing we need to find an appropriate DQ ∼ (Q) − (O) but with P,O 6∈
supp(DQ). Take R (randomly) as R = (2i, i+ 2), and let DQ = (Q+ R)− (R),

where Q+R = (3i+ 1, 2). The Tate pairing is computed as

tr(P,Q) = f(DQ) =
f(Q+R)

f(R)
=

2 + 2 · (3i+ 1) + 2

(i+ 2) + 2 · 2i+ 2
= 4i+ 4.

To illustrate bilinearity, computing tr(P, [2]Q) with D[2]Q = ([2]Q + R) − (R)

where [2]Q+R = (i+ 2, i) gives

tr(P, [2]Q) = f(D[2]Q) =
f([2]Q+R)

f(R)
=

i+ 2 · (i+ 2) + 2

(i+ 2) + 2 · 2i+ 2
= 2i+ 4,

or computing tr([2]P,Q), where f̃ = y + 3x+ 3 has divisor f̃ = r([2]P)− r(O),

gives

tr([2]P,Q) = f̃(DQ) =
f̃(Q+R)

f̃(R)
=

2 + 3 · (3i+ 1) + 3

(i+ 2) + 3 · 2i+ 3
= 3i+ 2.

Note that tr(P,Q) = 4i + 4, tr(P, [2]Q) = 2i + 4 = tr(P,Q)2, but tr([2]P,Q) =

3i + 2, i.e. tr(P, [2]Q), tr([2]P,Q) 6∈ (F∗qk)
r, but tr(P, [2]Q)/tr([2]P,Q) ∈ (F∗qk)

r,

so tr(P, [2]Q) ≡ tr([2]P,Q) ≡ tr(P,Q)2 in F∗
qk/(F

∗

qk)
r.

The above example illustrates an important point: in the context of cryptog-

raphy, the standard Tate pairing has an undesirable property that its output lies

in an equivalence class, rather than being a unique value. A necessary attribute

for the Tate pairing to be useful in cryptography is that different parties must

compute the exact same value under the bilinearity property, rather than values

which are the same under the above notion of equivalence. Thus, to be suitable

in practice, we must update the definition of the Tate pairing to make sure the

http://www.craigcostello.com.au/pairings/beginners/5-2-2-TatePairing.txt

74 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

mapping produces unique values.

Definition 5.3 (The reduced Tate pairing). Let P , Q, f and DQ be as in Defi-

nition 5.2. Over finite fields, the reduced Tate pairing Tr is a map

Tr : E(Fqk)[r]×E(Fqk)/rE(Fqk)→ µr,

defined as

Tr(P,Q) = tr(P,Q)#F
qk/r

= fr,P (DQ)(qk−1)/r.

Exponentiating elements in F∗qk/(F
∗

qk)
r to the power of (qk − 1)/r kills r-th

powers and sends the paired value to an exact r-th root of unity in µr.

From now on we will also take the second argument of the (reduced) Tate

pairing from the r-torsion. In fact, we will further assume a Type 3 pairing.

Therefore, in the pairing of P and Q, we will assume P ∈ G1 = E[r]∩Ker(π−[1])

and Q ∈ G2 = E[r] ∩ Ker(π − [q]). One should note that these choices are not

restrictions, as far as what values the pairing can take: fixing P and letting Q

run through 〈Q〉 (which has order r) will give each value in µr, and vice versa.

Thus, for any P̃ , Q̃ pair chosen from anywhere in the torsion, there exists a scalar

0 ≤ a ≤ r − 1 such that Tr([a]P,Q) = Tr(P, [a]Q) = Tr(P̃ , Q̃).

Example 5.2.3 (Magma script). Let q = 19, E/Fq : y2 = x3 + 14x + 3, giving

#E(Fq) = 20, so take r = 5. The embedding degree is k = 2, so let Fq2 = Fq(i)

with i2 + 1 = 0. The points P = (17, 9) and Q = (16, 16i) are in the r-torsion

subgroups G1 = E[r] ∩ Ker(π − [1]) and G2 = E[r] ∩ Ker(π − [q]) respectively.

The Tate pairing of P and Q is tr(P,Q) = 7i+3, whilst the reduced Tate pairing

is Tr(P,Q) = 15i + 2. Let exp : F∗qk/(F
∗

qk)
r → µr be the map defined by the

exponentiation exp : a 7→ a(qk−1)/r, i.e. exp : tr(P,Q) 7→ Tr(P,Q). Observe

the difference between the Tate pairing tr and reduced Tate pairing Tr for the

following computations.

tr(P,Q)4 tr([4]P,Q) tr(P, [4]Q) tr([2]P, [2]Q)

= 3i+ 7
_

exp

��

= 7i+ 16
_

exp

��

= 12i + 3
_

exp

��

= 2i+ 14
_

exp

��

Tr(P,Q)4 Tr([4]P,Q) Tr(P, [4]Q) Tr([2]P, [2]Q)

= 4i+ 2 = 4i+ 2 = 4i+ 2 = 4i+ 2

http://www.craigcostello.com.au/pairings/beginners/5-2-3-ReducedTate.txt

5.3. Miller’s algorithm 75

We note that none of the tr lie in (Fqk)5, but the quotient of any two of them

does lie there, so all the tr pairings on the top level are equivalent in F∗
qk/(F

∗

qk)
r.

On the other hand, Tr ensures that each of the above pairings (that should be

equivalent) take exactly the same value in µr ⊂ Fqk .

From now on, when we say Tate pairing, we mean the reduced Tate pairing

Tr in Definition 5.3.

5.3 Miller’s algorithm

We briefly recap the pairing definitions from the previous two sections. For the

r-torsion points P and Q, the Weil and Tate pairings are respectively computed

as
fr,P (DQ)

fr,Q(DP)
and fr,P (DQ)(qk−1)/r, where the divisors DP and DQ are chosen such

that their supports are disjoint from the supports of (fr,Q) and (fr,P) respectively.

For any points P and Q belonging to distinct subgroups in E[r], we have already

seen how to compute fr,P (DQ) in the previous sections, but this was only for

very small values of r. In practice r will be huge (i.e. at the very least 2160),

and since fr,P is a function of degree approximately r, it is not hard to see that

computing this function as we did in the previous examples is impossible. In this

section we describe Miller’s algorithm [Mil04], which makes this computation

very feasible. More precisely, the naive method of computing fr,P (DQ) that we

have been using has exponential complexity O(r), whilst the algorithm we are

about to describe for this computation has polynomial complexity O(log r). To

put it simply, Miller’s algorithm makes pairings practical; without this algorithm,

secure cryptographic pairings would only be of theoretical value2.

We start by referring back to the discussion at the beginning of this chapter.

Following Equation (5.1), we saw that the divisor (fm,P) = m(P)−([m]P)−(m−
1)(O) could be updated to the divisor (fm+1) = (m+1)(P)− ([m+1]P)−m(O)

by adding the divisor (ℓ[m]P,P/v[m+1]P) = (P) + ([m]P) − ([m + 1]P) − (O);

this corresponds to the multiplication of functions fm+1 = fm · ℓ[m]P,P/v[m+1]P .

Starting with f2,P = 2(P)−([2]P)−(O) then, we can repeat this process roughly

r − 1 times to obtain the desired function fr,P = r(P)− ([r]P)− (r − 1)(O) =

r(P) − r(O). We note that for the last step (i.e. when m = r − 1) we have

fr−1,P = (r − 1)(P) − ([r − 1]P) − (r − 2)(O), so the required divisor is (P) +

2This is no longer entirely true. In 2007 Stange derived an alternative method to Miller’s
algorithm for efficiently computing the Tate pairing [Sta07], but it is currently less efficient
than Miller’s algorithm.

76 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

([r − 1]P) − 2(O) which corresponds to (a multiplication by!) the vertical line

v[r−1]P = v−P = vP ; note that this is the same vertical line that appears on the

denominator of ℓ[r−2]P,P/v[r−1]P . Thus, the pairing evaluation function fr,P is the

product

fr,P = ℓ[r−2]P,P ·
r−3∏

i=1

ℓ[i]P,P

v[i+1]P

. (5.3)

The first four sloped lines ℓ[i]P,P and corresponding vertical lines v[i+1]P from the

numerator and denominator of the product in (5.3) are shown in Figure 5.4 and

Figure 5.5 respectively. We have seen that the product in (5.3) is (in the most

•
P

•

ℓ[2]P,P

[2]P

•

ℓ[3]P,P

[3]P

• ℓ[4]P,P

[4]P

ℓP,P

•[5]P

Figure 5.4: The first four sloped lines
in the product (5.3).

•
P

•[2]P

v[2]P

•
[3]P

v[3]P

•[4]P

v[4]P

•[5]P

v[5]P

Figure 5.5: The first four vertical lines
in the product (5.3).

naive way) built up incrementally by absorbing each of the
ℓ[m]P,P

v[m+1]P
terms into

fm,P to increment to fm+1,P , eventually arriving at fr,P . Alternatively, it can

help to see the divisor sum written out in full, to see the contributions of each

5.3. Miller’s algorithm 77

of the functions
ℓ[i]P,P

v[i+1]P
in the product all at once.

ℓP,P/v[2]P : (P) + (P)− ([2]P)− (O)

ℓ[2]P,P/v[3]P : (P) + ([2]P)− ([3]P)− (O)

ℓ[3]P,P/v[4]P : (P) + ([3]P)− ([4]P)− (O)

...
...

...
...

...

ℓ[r−4]P,P/v[r−3]P : (P) + ([r − 4]P)− ([r − 3]P)− (O)

ℓ[r−3]P,P/v[r−2]P : (P) + ([r − 3]P)− ([r − 2]P)− (O)

ℓ[r−2]P,P (P) + ([r − 2]P) + (−[r − 1]P)− 3(O)

When summing all of the above divisors, most of the inner terms cancel out with

one another to leave (r− 1)(P) + (−[r− 1]P)− r(O), and since [r− 1]P = −P ,

we get the divisor of the product being r(P)− r(O).

Roughly speaking, fr,P = g(x, y)/h(x, y), where g and h are degree r func-

tions on E. The above method computes fr,P by successively increasing the

degrees of g and h by one each time fm,P is incremented. This is why, when r

is (exponentially) large, this naive method has exponential complexity. Miller’s

algorithm naturally overcomes this through the following observation. The func-

tion fm,P has m zeros at P and (m−1) poles at O. Rather than adding one zero

and one pole via multiplying fm,P by linear functions, we can double the number

of zeros at P and the number of poles at O if we instead square fm,P . Observe

that since (fm,P) = m(P)− ([m]P)− (m− 1)(O), then

(f 2
m,P) = 2m(P)− 2([m]P)− 2(m− 1)(O),

which is almost the same as f2m,P , whose divisor is

(f2m,P) = 2m(P)− ([2m]P)− (2m− 1)(O);

the difference between the two divisors being (f2m,P) − (f 2
m,P) = 2([m]P) −

([2m]P)− (O), which corresponds to a function with two zeros at [m]P , a pole

at [2m]P and another pole at O. We have seen such a function many times

already; this is simply the quotient of the tangent line at [m]P and the vertical

line at [2m]P – the lines used to double the point [m]P . Thus, we can advance

78 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

from fm,P to f2m,P via

f2m,P = f 2
m,P ·

ℓ[m]P,[m]P

v[2m]P

.

We depict the jump from fm,P to f2m,P (as opposed to the naive method of

progressing one-by-one) below.

fm,P

·
ℓ[m]P,P
v[m+1]P

//

f2
m,P ·

ℓ[m]P,[m]P
v[2m]P

33fm+1,P

·
ℓ[m+1]P,P
v[m+2]P

//
·
ℓ[2m−2]P,P
v[2m−1]P

// f2m−1,P

·
ℓ[2m−1]P,P

v[2m]P
// f2m,P

Since, for any m, we can now advance to either fm+1,P or f2m,P quickly, Miller

observed that this gives rise to a double-and-add style algorithm to reach f2,r

in O(log(r)) steps. However, the degree of fm,P grows linearly in the size of m,

so (en route to m = r) the function fm,P becomes too large to store explicitly.

Thus, the last piece of the puzzle in Miller’s derivation of the pairing algorithm

was to, at every stage, evaluate fm,P at the given divisor, i.e. fm,P (DQ). This

means that at any intermediate stage of the algorithm we will not be storing

an element of the function field fm,P ∈ Fqk(E), but rather its evaluation at DQ

which is the value fm,P (DQ) ∈ Fqk . At each stage then, the updates that build

the function are evaluated at DQ before being absorbed into intermediate pairing

value that is carried through the routine. This is summarised in Algorithm 5.1

below, where the binary representation of r governs the double-and-add route

taken to compute fr,P (DQ), in an identical fashion to the standard double-and-

add routine for scalar multiplications on E (see Example 2.1.8).

Miller’s algorithm is essentially the straightforward double-and-add algorithm

for elliptic curve point multiplication (see Example 2.1.8) combined with evalua-

tions of the functions (the chord and tangent lines) used in the addition process.

Example 5.3.1 (Magma script). We will compute both the Weil and Tate pairings

using Miller’s algorithm. Let q = 47, E/Fq : y2 = x3 + 21x + 15, which has

#E(Fq) = 51, so we take r = 17. The embedding degree k with respect to r is

k = 4, thus take Fq4 = Fq(u) where u4−4u2 +5 = 0. The point P = (45, 23) has

order 17 in E(Fq) which (because k > 1) means P ∈ G1 = E[r]∩Ker(π−[1]). The

group order over the full extension field is #E(Fq4) = 33 ·54·172, so take h = 33·54

as the cofactor. Taking a random point from E(Fq4) and multiplying by h will

(almost always) give a point Q ∈ E[r], but it is likely to land outside of G1∪G2,

http://www.craigcostello.com.au/pairings/beginners/5-3-1-TateWeilMiller.txt

5.3. Miller’s algorithm 79

Algorithm 5.1 Miller’s algorithm.

Input: P ∈ E(Fqk)[r], DQ ∼ (Q)− (O) with support disjoint from (fr,P),
and r = (rn−1 . . . r1r0)2 with rn−1 = 1.

Output: fr,P (DQ)← f .

1: R← P , f ← 1.
2: for i = n− 2 down to 0 do

3: Compute the line functions ℓR,R and v[2]R for doubling R.
4: R← [2]R.

5: f ← f2 · ℓR,R

v[2]R
(DQ).

6: if ri = 1 then

7: Compute the line functions ℓR,P and vR+P for adding R and P .
8: R← R+ P .
9: f ← f · ℓR,P

vR+P
(DQ).

10: end if

11: end for

12: return f .

so to move into G2 = E[r] ∩ Ker(π − [q]), we can use the anti-trace map (see

Figure 4.4) and take Q← [k]Q−Tr(Q). For example, Q = (31u2+29, 35u3+11u)

is one of 17 points in G2. The Tate pairing is Tr(P,Q) = fr,P (DQ)(qk−1)/r, whilst

the Weil pairing is wr(P,Q) =
fr,P (DQ)

fr,Q(DP)
. We will illustrate Miller’s algorithm

to compute fr,P (DQ), since it appears in both. The binary representation of

r is r = (1, 0, 0, 0, 1)2. We will take DQ as DQ = ([2]Q) − (Q), which clearly

has support disjoint to (fr,P) and is equivalent to (Q) − (O). The table below

shows the stages of Miller’s algorithm for computing fr,P (DQ): it shows the

intermediate values of R, and of the function ℓ/v which corresponds to
ℓR,R

v[2]R
or

ℓR,P

vR+P
depending on whether we are in the doubling stage (steps 3-5 of Algorithm

5.1) or the addition stage (steps 6-10 of Algorithm 5.1); the table also shows

the progression of the paired value f . To complete the Tate pairing, we compute

i/ steps of point update update at [2]Q = ℓ(DQ) = ℓ/v([2]Q) paired

ri Alg. 5.1 R ℓ/v update at Q v(DQ) ℓ/v(Q) value f
1 (45, 23) 1

3/0 3-5 (12, 16) y+33x+43
x+35

20u3+21u2+9u+4
6u3+19u2+36u+33

= 41u3 + 32u2 + 2u + 21 41u3 + 32u2 + 2u + 21

2/0 3-5 (27, 14) y+2x+7
x+20

40u3+18u2+38u+9
39u3+8u2+20u+18

= 4u3 + 5u2 + 28u + 17 22u3 + 27u2 + 30u + 33

1/0 3-5 (18, 31) y+42x+27
x+29

29u3+15u2+8u+14
18u3+32u2+41u+30

= 6u3 + 13u2 + 33u + 28 36u3 + 2u2 + 21u + 37

0/1 3-5 (45, 24) y+9x+42
x+2

10u3+3u2+14u+19
21u3+26u2+25u+20

= 46u3 + 45u2 + u + 20 10u3 + 21u2 + 40u + 25

6-10 O x + 2 7u2+27
31u2+31

= 6u2 + 43 17u3 + 6u2 + 10u + 22

12 fr,P (DQ)← 17u3 + 6u2 + 10u + 22

tr(P,Q) = fr,P (DQ)(qk−1)/r = (17u3+6u2+10u+22)287040 = 33u3+43u2+45u+39.

80 Chapter 5. Miller’s algorithm for the Weil and Tate pairings

For the Weil pairing, we require another run of Miller’s algorithm, this time

reversing the roles of P and Q to compute fr,Q(DP) = 2u2 +6u+40, which gives

the Weil pairing as wr(P,Q) =
fr,P (DQ)

fr,Q(DP)
= 17u3+6u2+10u+22

2u2+6u+40
= 22u3+12u2+32u+13.

Notice that, in line with Equation 5.3 (and the preceding discussion), the vertical

line x + 2 = 0 that corresponds to the final addition in this example appears in

the denominator of the previous ℓ/v function used for the doubling, and could

therefore be cancelled out. We will see that this occurs in general, and is perhaps

the least significant of many improvements to Miller’s initial algorithm that have

accelerated pairings over the last decade. Indeed, in Chapter 7 we will be looking

at several more major optimisations to Miller’s algorithm. 5.1.

5.4 Chapter summary

We started with the more simple description of the Weil pairing, before moving

to the definition of the Tate pairing. This is because both the elliptic curve

groups in the raw definition of the Weil pairing are torsion subgroups, which

were discussed at length in the previous chapter. On the other hand, one of the

groups in the general Tate pairing definition required us to introduce the quotient

group E(Fqk)/rE(Fqk). However, we soon showed that (for cases of cryptographic

interest) it is no problem to represent this quotient group by a torsion subgroup,

thereby unifying the group definitions needed for the Weil and Tate pairing and

solidifying the choices of G1 = E[r]∩Ker(π− [1]) and G2 = E[r]∩Ker(π − [q]),

which will be standard for the remainder of this text. We saw that at the heart

of both the Weil and Tate pairings is the computation of the pairing evaluation

function fr,P (D), where P ∈ E and D is an appropriately defined divisor on

E. We finished the chapter by presenting Miller’s algorithm, which is the first

practical algorithm to compute fr,P (D) for cases of cryptographic interest, and

which remains the fastest algorithm for computing pairings to date.

Chapter 6

Pairing-friendly curves

To realise pairing-based cryptography in practice, we need two things [Sco07a]:

- efficient algorithms for computing pairings; and

- suitable elliptic curves.

The former was briefly outlined in the last chapter (and will be taken much

further in the next), whilst this chapter is dedicated to the latter.

6.1 A balancing act

Pairings are fundamentally different to traditional number-theoretic primitives,

in that they require multiple groups that are defined in different settings. Namely,

G1 and G2 are elliptic curve groups, whilst GT is a multiplicative subgroup of a

finite field. All three groups must be secure against the respective instances of

the discrete logarithm problem, which means attackers can break the system by

solving either the DLP in GT or the EDCLP in G1 or G2. As we discussed in Sec-

tion 2.1, elliptic curve groups currently obtain much greater security per bit than

finite fields; this is because the best attacks on the ECDLP remain generic at-

tacks like Pollard rho [Pol78] which have exponential complexity, whilst the best

attacks on the DLP have sub-exponential complexity. In other words, to achieve

the same security, a finite field group needs to have a much greater cardinality

than an elliptic curve group. It is standard to state the complexity of asymmetric

primitives in terms of the equivalent symmetric key size. For example, the most

81

82 Chapter 6. Pairing-friendly curves

recent ECRYPT recommendations (see http://www.keylength.com/en/3/) say

that to achieve security comparable to AES-128 (i.e. 128-bit security), we need

an elliptic curve group of approximately 256 bits1 and a finite field of approxi-

mately 3248 bits. We give an example of a curve in the context of pairings for

which G1, G2 and GT meet these particular requirements.

Example 6.1.1 (Magma script). Let E/Fq : y2 = x3 + 14 be the curve with order

#E(Fq) having large prime factor r, where q and r are given as

q = 4219433269001672285392043949141038139415112441532591511251381287775317

505016692408034796798044263154903329667 (369 bits),

r = 2236970611075786789503882736578627885610300038964062133851391137376569

980702677867 (271 bits).

The embedding degree is k = 9, i.e. q9 − 1 ≡ 0 mod r. Thus, the two elliptic

curve groups G1 ∈ E[r] and G2 ∈ E[r] have an order of 271 bits, which meets the

current requirements for 128-bit security. Although GT is a subgroup of order

r (in F∗qk), the attack complexity is determined by the full size of the field Fq9,

which is 3248 bits, also meeting the requirements for 128-bit security.

We discuss an important point with reference to the above example. Namely,

if we were to use primes q and r of the same bit-sizes as Example 6.1.1, but which

corresponded to a curve with a larger embedding degree k, then this would not

increase the security level offered by the pairing. For example, even though

k = 18 gives a finite field of 6496 bits, which on its own corresponds to a much

harder DLP (≈ 175-bit security), the overall complexity of attacking the protocol

remains the same, because the attack complexity of the ECDLP has not changed.

Such an increase in k unnecessarily hinders the efficiency of the pairing, since

the most costly operations in Miller’s algorithm take place in Fqk . Thus, the

ideal approach is to optimise the balance between r and Fqk so that both can be

as small as possible whilst simultaneously meeting the particular security level

required. This was achieved successfully in our example, where Fqk was exactly

the recommended size, and r was only a few bits larger than what is needed to

claim 128-bit security.

1The “half-the-size” principle between elliptic curve groups and the equivalent asymmetric
key size is standard [Sma10, §6.1], since attacks against elliptic curves with order r subgroup
have running time O(

√
r). Obtaining the equivalent finite field group size is not as trivial –

see [Sma10, §6.2].

http://www.keylength.com/en/3/
http://www.craigcostello.com.au/pairings/beginners/6-1-1-k=9curve.txt

6.1. A balancing act 83

Nevertheless, we can still obtain a significant improvement on the parame-

ters used in Example 6.1.1; we can keep all three group sizes the same, whilst

decreasing the size of the base field Fq. The Hasse bound (see Eq. (2.6)) tells

us that the bit-length of #E and the bit-length of q will be the same. Thus,

it is possible that we can find curves defined over smaller fields whose largest

prime order subgroup has the same bit-size as that in Example 6.1.1, and whose

embedding degree is large enough to offset the decrease in q and therefore that

the corresponding full extension field also meets the security requirements. We

give a “prime” example.

Example 6.1.2 (Magma script). Let E/Fq : y2 = x3 + 2 be the curve with prime

order r = #E(Fq), where q and r are given as

q = 28757880164823737284021204980065523467377219983513098565427519263513769

64733335173 (271 bits).

r = 28757880164823737284021204980065523467376683719770479098963148984065605

60716472109 (271 bits).

The embedding degree is k = 12, i.e. q12−1 ≡ 0 mod r, giving Fq12 as a 3248-bit

field, which is exactly the same size as the k = 9 curve in Example 6.1.1. Thus,

G1, G2 and GT have orders of the same bit-lengths as before, but using this curve

instead means that arithmetic in Fq will be substantially faster; a 271-bit field

in this case, compared to 369-bit field in the last.

In light of the difference between Example 6.1.1 and Example 6.1.2, an im-

portant parameter associated with a curve that is suitable for pairings is the

ratio between the field size q and the large prime group order r, which we call

the ρ-value, computed as

ρ =
log q

log r
.

Referring back to the two curves above, we have ρ = log q
log r

= 369
271

= 1.36 in Example

6.1.1, whilst ρ = log q
log r

= 271
271

= 1 in Example 6.1.2. The ρ-value essentially

indicates how much (ECDLP) security a curve offers for its field size, and since we

generally prefer the largest prime divisor r of #E to be as large as possible, ρ = 1

is as good as we can get. Indeed, the curve in Example 6.1.2 with ρ = 1 belongs to

the famous Barreto-Naehrig (BN) family of curves [BN05], which all have k = 12

and for which the ratio between the sizes of r and Fqk make them perfectly suited

http://www.craigcostello.com.au/pairings/beginners/6-1-2-BNcurve.txt

84 Chapter 6. Pairing-friendly curves

to the 128-bit security level. This ratio between these group sizes is ρ · k (i.e.
log qk

log r
= k · log q

log r
), so for commonly used security levels, Figure 6.1 gives the value

of ρ · k that balances the current attack complexities of the DLP and ECDLP.

Different information security and/or intelligence organisations from around the

0

10

20

30

Security level (bits)

ρ
·k

(E
C

D
L
P

an
d

D
L
P

b
al

an
ce

d
)

b
b

b

b

b

b

b

b

b

b

|
64
|

72
|

80
|

96
|

112

|
128

|
160

|
192

|
224

|
256

Figure 6.1: The value of ρ · k that balances the complexity of the DLP and
ECDLP for commonly used security levels.

globe, such as NIST (the USA) and FNISA (France), give slightly different key

size recommendations and complexity evaluations of the algorithms involved; all

of this information is conveniently collected at http://www.keylength.com/.

We have chosen to generate Figure 6.1 according to the numbers in the (most)

recent ECRYPT II report [Sma10], which is also summarised there.

Having seen two examples above, we are now in a position to define a pairing-

friendly curve. Following [FST10], we say that a curve is pairing-friendly if the

following two conditions hold:

• there is a prime r ≥ √q dividing #E(Fq) (i.e. ρ ≤ 2), and

• the embedding degree k with respect to r is less than log2(r)/8.

Thus, in their widely cited taxonomy paper, Freeman et al. [FST10] consider

pairing-friendly curves up to k = 50, which is large enough to cover recommended

levels of security for some decades yet.

Balasubramanian and Koblitz [BK98] show that, for q of any suitable cryp-

tographic size, the chances of a randomly chosen curve over Fq being pairing-

http://www.keylength.com/

6.2. Supersingular curves 85

friendly is extremely small. Specifically, they essentially show that the embedding

degree (with respect to r) of a such a curve is proportional to (and therefore is

of the same order as) r, i.e. k ≈ r. Very roughly speaking, such an argument

is somewhat intuitive since (for a random curve) #E can fall anywhere in the

range [q + 1 − 2
√
q, q + 1 + 2

√
q], so r can be thought of as independent of q,

meaning that the order of q in Z∗r is random (but see [BK98] for the correct

statements). Therefore, imposing that k is small enough to work with elements

in Fqk is an extremely restrictive criterion, so one can not hope to succeed if

randomly searching for pairing-friendly curves amongst arbitrary elliptic curves.

Thus, in general, pairing-friendly curves require very special constructions.

In Section 6.2 we briefly discuss supersingular elliptic curves, which always

possess embedding degrees k ≤ 6 [MOV93, §4], and (so long as r ≥ √q) are

therefore always pairing-friendly. Referring back to Figure 6.1 though, we can

see that having k > 6 is highly desirable for efficient pairings at the widely

accepted security levels, and thus in Section 6.3 we focus on the ordinary (non-

supersingular) case and outline the constructions that achieve pairing-friendly

curves with k > 6.

6.2 Supersingular curves

Recall from Section 4.1 that an elliptic curve E is characterised as supersingular

if and only if a distortion map exists on E. There are essentially five types

of supersingular curves that are of interest in PBC [Gal05, Table IX.1], but

here we will only mention two. This is because we are only concerned with

prime fields in this text, and the other three are either defined over Fp2, F2m or

F3m . As Galbraith mentions, a problem in characteristic 2 and 3 is that there is

only a small number of curves and fields to choose from, so there is an element

of luck in the search for a curve whose order contains a large prime factor.

Another problem in small characteristic is that there exist enhanced algorithms

for discrete logarithms (see [Gal05, Ch. IX.13]).

All supersingular curves over large prime fields have #E(Fq) = q + 1, from

which it follows that k = 2, i.e. regardless of the prime factor r 6= 2, r | q + 1

implies r ∤ q−1 but r | q2−1. We have already seen examples of the two popular

supersingular choices in Section 4.1, whose general forms are given in Table 6.1.

We give another example of both cases below, but we choose the parameter

86 Chapter 6. Pairing-friendly curves

q E distortion map φ e.g.
2 mod 3 y2 = x3 + b (x, y) 7→ (ζ3x, y), ζ

3
3 = 1 Eg. 4.1.4 (Fig. 4.5)

3 mod 4 y2 = x3 + ax (x, y) 7→ (−x, iy), i2 = −1 Eg. 4.1.5 (Fig. 4.6)

Table 6.1: The two types of popular supersingular curves over prime fields.

sizes to serve another purpose: to show how important it is to employ ordinary

curves with higher embedding degrees.

Example 6.2.1 (Magma script). We will choose q ≡ 11 mod 12 so we can define

both examples in Table 6.1 over the same field, but also so that the security of

these curves in the context of PBC matches the security of the curve with k = 12

in Example 6.1.2. For the ECDLP security to be 128 bits, r still only needs to

be 256 bits in size. However, since k = 2, for Fqk to be around 3248 bits, q needs

to be around 1624 bits:

q =42570869316975708819601785360783511359512710385942992493053126328324440

32518729498029828600385319309658678904446582221534072043835844920246377

62799391807569669124814253270947366226515064812665901907204494611177526

59601525798400981459605716038867229835582130904679884144611172149560183

59133818358801709343198904208955213204399306664050037253095626692438477

66834546592867695533445054256132471093279787853214492986394176521193456

205570309658462204234557728373615304193316916440130004424612327.

Consider E1/Fq : y2 = x3 + 314159 and E2/Fq : y2 = x3 + 265358x. Both curves

have order #E1(Fq) = #E2(Fq) = q+1 = hr, where h is a 1369-bit cofactor and

r is the 256-bit prime given as

r =578960446186580977117854925043439539266349923328202820197287920039565

64820063.

The distortion maps are defined over Fq2 = Fq(i), where i2 + 1 = 0 – see Table

6.1 or Examples 4.1.4 and 4.1.5. The huge size of q stresses the importance

of adhering to the optimal ratio of ρ · k suggested by Figure 6.1. A rough

but conservative approximation of the complexity of field multiplications in the

1624-bit field, compared to the 271-bit field in Example 6.1.2 gives a ratio of

at least 25 : 1. Referring back to the discussion of pairing types in Section 4.2,

this gives some idea of the computational price one pays when insisting on the

http://www.craigcostello.com.au/pairings/beginners/6-2-1-BigSupersingularCurve.txt

6.3. Constructing ordinary pairing-friendly curves 87

computability of ψ (as well as the other desired properties offered by a Type 1

pairing), rather than adopting a Type 3 pairing and trusting in the heuristics of

Chatterjee and Menezes in the absence of such a ψ [CM09,Men09].

We round out this section by remarking that although supersingular elliptic

curves are limited to k ≤ 6, Rubin and Silverberg give a practical way to obtain

larger values of k using Weil descent [RS02]. Alternatively, one can employ a

higher genus supersingular curve to obtain a higher embedding degree [Gal01,

RS02]. As Galbraith remarks however, there are severe efficiency limitations

in both scenarios, and we achieve faster pairings in practice by using ordinary

pairing-friendly elliptic curves [Gal05, Ch. IX.15].

6.3 Constructing ordinary pairing-friendly curves

There are three main methods of constructing ordinary pairing-friendly elliptic

curves. The two most general methods, the Cocks-Pinch [CP01] and Dupont-

Enge-Morain [DEM05] algorithms, produce curves with ρ = 2, which is more

often than not undesirable when compared to the ρ-values obtained by the third

method. Moreover, the third method encompasses all constructions that produce

families of pairing-friendly elliptic curves, which have been the most successful

methods of producing curves that are suitable for current and foreseeable levels

of security.

All of the constructions in the literature essentially follow the same idea: fix

k and then compute integers t, r, q such that there is an elliptic curve E/Fq with

trace of Frobenius t, a subgroup of prime order r, and an embedding degree k.

The complex multiplication method (CM method) of Atkin and Morain [AM93]

can then be used to find the equation of E, provided the CM discriminant D of

E is not too large: D is the square-free part of 4q − t2, i.e.

Df 2 = 4q − t2, (6.1)

for some integer f . Equation (6.1) is often called the CM equation of E, and by

“D not too large” we mean D is less than, say 1012 [Sut12].

In 2001, Miyaji, Nakabayashi and Takano [MNT01] gave the first construc-

tions of ordinary pairing-friendly elliptic curves. Their method has since been

greatly extended and generalised, but all of the constructions of families essen-

tially followed from their idea, which is aptly named the MNT strategy or MNT

88 Chapter 6. Pairing-friendly curves

criteria [FST10,Gal05]. For some special cases, Miyaji et al. used the fact that

if k is the (desired) embedding degree, then r | qk− 1 implies r | Φk(q), since the

k-th cyclotomic polynomial Φk(x) is the factor of xk − 1 that does not appear

as a factor of any polynomial (xi − 1) with i < k [Gal05, IX.15.2]. For these

cases they were also the first to parameterise families of pairing-friendly curves,

by writing t, r and q as polynomials t(x), r(x) and q(x) in terms of a parameter

x. Miyaji et al. focussed on embedding degrees k = 3, 4, 6 and assumed that

the group order was to be prime, i.e. r(x) = q(x) + 1− t(x) (from (2.6)). They

proved that the only possibilities for t(x) and q(x) (and hence r(x)) are

k = 3 : t(x) = −1± 6x and q(x) = 12x2 − 1;

k = 4 : t(x) = −x, x + 1 and q(x) = x2 + x+ 1;

k = 6 : t(x) = 1± 2x and q(x) = 4x2 + 1.

Example 6.3.1 (Magma script). We kick-start a search for a k = 4 (toy) MNT

curve with x = 10, incrementing by 1 until q(x) = x2 + x + 1 and r(x) =

q(x)+1−t(x) (with either of t(x) = −x or t(x) = x+1) are simultaneously prime.

At x = 14, both q = q(x) = 211 and r = r(x) = 197 (with t(x) = x+1) are prime,

so we are guaranteed an elliptic curve E/Fq with r points and embedding degree

k = 4 (notice q4 − 1 ≡ 0 mod r). The CM equation yields Df 2 = 4q − t2 = 619,

which itself is prime, so f = 1 and thus we seek a curve over Fq with CM

discriminant D = 619. The CM method produces one such curve as E/Fq : y2 =

x3 + 112x+ 19. Notice that φ4(q(x)) = q(x)2 + 1 = (x2 + 1) · (x2 + 2x+ 2), both

factors being the possibilities for r(x).

Notice that the toy example above has ρ = log q
log r

= log 211
log 197

= 1.01. For x of

cryptographically large size though, we will get ρ = 1 since q(x) = x2 + x + 1

and r(x) = x2 + 2x + 2 or r(x) = x2 + 1 have the same degree. In general

parameterised families then, we use the degrees of q(x) and r(x) to state ρ as

ρ =
deg(q(x))

deg(r(x))
.

A number of works followed the MNT paper and gave useful generalisations of

their results. In particular, we mention the work by Barreto et al. [BLS02], Scott

and Barreto [SB06], and Galbraith et al. [GMV07], all three of which obtain more

parameterised families by relaxing the condition that the group order is prime

http://www.craigcostello.com.au/pairings/beginners/6-3-1-MNTCurve.txt

6.3. Constructing ordinary pairing-friendly curves 89

and allowing for small cofactors so that #E = hr. Another observation made by

Barreto et al. that somewhat simplifies the process is the following: r | Φk(q) and

q + 1− t ≡ 0 mod r combine to give that Φk(t − 1) ≡ 0 mod r [BLS02, Lemma

1]. Substituting hr = q + 1− t into the CM equation in (6.1) gives

Df 2 = 4hr − (t− 2)2. (6.2)

In Section 3.1 of [BLS02], Barreto et al. obtain many nice parameterised families

for various k by considering a special case of the above equation with t(x) = x+1,

D = 3 and (since r | Φk(x)) finding f(x) and m(x) to fit

3f(x)2 = 4m(x)Φk(x)− (x− 1)2. (6.3)

We note that curves with CM discriminant D = 3 are always of the form y2 =

x3 + b. A convenient solution to Equation (6.3) for k = 2i · 3 is m = (x− 1)2/3

and f(x) = (x− 1)(2x4 − 1)/3, for which we can take r = Φk(x). Taking i = 3,

we give a cryptographically useful example of a BLS (Barreto-Lynn-Scott) curve

with k = 24.

Example 6.3.2 (Magma script). Following the above description, the BLS family

with k = 24 is parameterised as q(x) = (x−1)2(x8−x4+1)/3+x, r(x) = Φ24(x) =

x8−x4+1, t(x) = x+1. The family has ρ = deg(q(x))
deg(r(x))

= 10/8 = 1.25 and therefore

ρ · k = 30. Referring back to Figure 6.1, we see that such a curve gives a nice

balance between the sizes of r and qk (the ECDLP and DLP) for pairings at the

256-bit security level. Indeed, at present this family remains the front-runner

for this particular security level [Sco11,CLN11]. To find a curve suitable for this

level, we need r to be about 512 bits, and since deg(r(x)) = 8, we will start the

search for q, r both prime with a 64-bit value; note that x ≡ 1 mod 3 makes

q(x) an integer, so the first such value is x = 263 + 2. After testing a number of

incremental x← x+ 3 values, x = 9223372036854782449 gives q(x) and r(x) as

629 and 505 bit primes respectively. Since D = 3 and E/Fq : y2 = x3 + b, i.e.

there is only one curve constant, we do not need to use the CM method. Instead,

it is usually quicker to try successive values of b until we find the correct curve.

In this case, b = 1 gives E/Fq : y2 = x3 + 1 as our pairing-friendly k = 24 BLS

curve.

Barreto et al. [BLS02, §3.2] actually give a more general algorithm which,

instead of insisting that t = x+ 1, takes t = xi + 1. Brezing and Weng [BW05]

http://www.craigcostello.com.au/pairings/beginners/6-3-2-BLSCurve.txt

90 Chapter 6. Pairing-friendly curves

found even more useful families by searching with more general polynomials

for t(x). Several constructions followed by looking for parameterisations that

satisfy the following conditions which define a family [FST10, Def. 2.7] (also

see [Fre06, Def. 2.5]):

(i) r(x) is nonconstant, irreducible, and integer-valued with a positive leading

coefficient.

(ii) r(x) | q(x) + 1− t(x).

(iii) r(x) | Φk(t(x)− 1).

(iv) The parameterised CM equation Df 2 = 4q(x) − t(x)2 has infinitely many

integer solutions (x, f).

Referring to condition (iv) above, we say that a family parameterised by

(t(x), r(x), q(x)) is a complete family if there exists f(x) ∈ Q[x] such that

Df(x)2 = 4q(x)−t(x)2. Otherwise, we say the family is sparse. We have already

seen a curve belonging to the popular Barreto-Naehrig (BN) family in Example

6.1.2. In the following example we look at the BN parameterisations in terms of

the above conditions.

Example 6.3.3 (Magma script). Barreto and Naehrig [BN05] discovered that, for

k = 12, setting the trace of Frobenius t to be t(x) = 6x2 +1 gives Φ12(t(x)−1) =

Φ12(6x
2) = (36x4 + 36x3 + 18x2 + 6x + 1)(36x4 − 36x3 + 18x2 − 6x + 1). This

facilitates the choice of r(x) as the first factor r(x) = 36x4 +36x3 +18x2 +6x+1,

from which taking q(x) as q(x) = 36x4+36x3+24x2+6x+1 means not only that

r(x) | q(x)+1−t(x) (condition (ii) above), but in fact that r(x) = q(x)+1−t(x).
Thus, when x is found that makes r(x) and q(x) simultaneously prime, we have

a pairing-friendly curve with k = 12 that has prime order. Not only is the ρ-

value ρ = 1 ideal, but there are many more reasons why BN curves have received

a great deal of attention [DSD07, PJNB11, AKL+11]. Notice that D = 3 and

f(x) = 6x2 + 4x+ 1 satisfies the CM equation (condition (iv) above), so the BN

family is a complete family and BN curves are always of the form y2 = x3 + b.

The last point of Example 6.3.3 is a crucial one. Referring back to Section

4.3, we know that D = 3 curves of the form y2 = x3 + b admit cubic and sextic

twists. Thus, in the case of BN curves where k = 12, we can make use of a sextic

twist to represent points in G2 ∈ E(Fq12) as points in a much smaller subfield

on the twist, i.e. in Ψ−1(G2) = G′2 ∈ E ′(Fq2). In general then, when k has

http://www.craigcostello.com.au/pairings/beginners/6-3-3-BNCurve.txt

6.3. Constructing ordinary pairing-friendly curves 91

the appropriate factor d ∈ {3, 4, 6}, we would like to make use of the highest

degree twist possible, so we would prefer our pairing-friendly curves to be of the

following two forms:

degree d curve j-invariant CM discriminant field
3, 6 | k y2 = x3 + b j(E) = 0 D = 3 q ≡ 1 mod 3
4 | k y2 = x3 + ax j(E) = 1728 D = 1 q ≡ 1 mod 4

Table 6.2: Pairing-friendly elliptic curves admitting high-degree twists.

See [Sil09][p. 45] for the definition of the j-invariant of an elliptic curve (and

the associated calculations); we simply remark that two elliptic curves E/Fq and

Ẽ/Fq are isomorphic over Fq if and only they have the same j-invariant. Due

to the preferences in Table 6.2, our discussion will really only be dealing with

curves of j-invariants (respectively CM discriminants) j ∈ {0, 1728} (respectively

D ∈ {3, 1}). In this respect, we are also very fortunate that most of the best

constructions of pairing-friendly families have either D = 1 or D = 3, depending

on the embedding degree they target. In general, a severe loss of efficiency is

suffered in pairing computations when choosing a curve that does not offer a

high-degree twist, so at any particular security level we tend to focus on the

curves whose embedding degrees are suitable, both according to Figure 6.1 and

which contain d ∈ {3, 4, 6} as a factor [FST10, §8.2]. Besides, as we will see in

the next chapter, there are further efficiency reasons that happily coincide with

having d | k for d ∈ {3, 4, 6}. The equivalence conditions on q in Table 6.2 are

to ensure E is ordinary, complementing the supersingular cases in Table 6.1.

Our last example in this chapter belongs to another complete family from the

more recent work of Kachisa, Schaefer and Scott [KSS08], who present record-

breaking (in terms of the lowest ρ-value) curves for embedding degrees k ∈
{16, 18, 36, 40}.
Example 6.3.4 (Magma script). We choose a KSS curve with k = 16, which is

parameterised by t(x) = (2x5 + 41x+ 35)/35, q(x) = (x10 + 2x9 + 5x8 + 48x6 +

152x5 +240x4 +625x2 +2398x+3125)/980 and r(x) = (x8 +48x4 +625)/61250.

This family has ρ = 5/4, so referring back to Figure 6.1 we see that ρ · k = 20 is

a nice fit for pairings at the 192-bit security level. Thus, r should be around 384

bits, so starting our search with x around 250 should do the trick (we add the

extra two bits to account for the 16-bit denominator of r(x)). The polynomials

for q(x) and t(x) can only take on integers if x ≡ ±25 mod 70, so we start

http://www.craigcostello.com.au/pairings/beginners/6-3-4-KSSk16Curve.txt

92 Chapter 6. Pairing-friendly curves

with x ≡ 250 + 21 ≡ 25 mod 70 and iterate accordingly. We soon arrive at

x = 1125899907533845, which gives a 491-bit q as

q =334019451835958707560790451450434857813058164786765421764289981004286

764353474104824122517843668231700301015528070583684259636822134128050

5964970897,

and a 385-bit prime factor r of #E(Fq) as

r =421591818901130428025080067123788159687300679385019593444855809536163

40927802229320181495643594147646077933909121633.

Again, we do not need the CM method to find the curve: we simply start with

a = 1 in y2 = x3 + ax and increment until we find a = 3 which gives the correct

curve as E/Fq : y2 = x3 + 3x. E has embedding degree 16 with respect to r, so

the full extension field Fqk is 7842 bits.

We finish this chapter with two important remarks.

Remark 6.3.1 (Curves for ECC vs. curves for PBC). At the highest level, find-

ing curves that are suitable for ECC really imposes only one condition on our

search, whilst finding curves that are suitable for PBC imposes two: in ECC we

only look for curves with large prime order subgroups, whilst in PBC we have

the added stipulation in that we also require a low embedding degree. Whilst

one can search for suitable curves for ECC by checking “random” curves until

we come across one with almost prime order, in PBC we require very special

constructions (like all those discussed in this chapter) that also adhere to the

extra criterion – as we have already discussed, we can not expect to find any

pairing-friendly curves by choosing curves at random [BK98]. A major conse-

quence is that in ECC we can specify the underlying field Fq however we like

before randomly looking for a suitable curve over that field. In this case fields

can therefore be chosen to take advantage of many low-level optimisations; for

example, Mersenne primes achieve very fast modular multiplications which blows

out the relative cost of inversions. On the other hand, in PBC we are confined

to the values taken by the polynomials q(x) and have limited control over the

prime fields we find. Thus, we are not afforded the luxury of many low-level

optimisations and this drastically affects the ratios between field operations (in-

versions/multiplications/squarings/additions). For example, whilst Fq-inversions

6.4. Chapter summary 93

in ECC are commonly reported to cost more than 80 Fq-multiplications, the ratio

in the context of PBC is nowhere near as drastic [LMN10,AKL+11]. This means

we often have to rethink trade-offs between field operations that were originally

popularised in ECC.

Remark 6.3.2 (Avoiding pairing-friendly curves in ECC). In the previous remark

we said that in ECC we only need to satisfy one requirement (the large prime

subgroup), but this is not the full story. In fact, in this context we prefer to

choose curves that are strictly not pairing-friendly. After all, in ECC there is no

need for a low embedding degree, so choosing a curve that (unnecessarily) has one

gives an adversary another potential avenue for attack. Indeed, exploiting curves

with low embedding degrees in the context of ECC was the first use of pairings

in cryptography – the famous Menezes-Okamato-Vanstone (MOV) [MOV93] and

Frey-Rück (FR) [FR94] attacks. Thus, so long as we avoid supersingular curves,

the heuristic argument [BK98] tells us that the curves we choose at random will

have enormous embedding degrees with overwhelmingly high probability, so this

is not a restriction in the sense of Remark 6.3.1.

6.4 Chapter summary

We stressed the importance of finding elliptic curves with large prime order

subgroups and small embedding degrees, i.e. pairing-friendly curves. We showed

that supersingular curves, whilst easy to find, severely limit the efficiency of

pairing computations, particularly at moderate to high levels of security, because

they are confined to k ≤ 6 (and k ≤ 2 over prime fields). Thus, we turned our

focus to the more difficult task of constructing ordinary pairing-friendly elliptic

curves, and summarised many landmark results that have enhanced this arena

over the last decade. In particular, we gave examples of some of the most notable

families of pairing-friendly elliptic curves, some of which have already become

widespread in real-world implementations of pairings.

94 Chapter 6. Pairing-friendly curves

Chapter 7

The state-of-the-art

This chapter summarises the evolution of pairing computation over the last

decade. We illustrate the landmark achievements that accelerated early im-

plementations of pairings from “a few minutes” [Men93]1 into current implemen-

tations that take less than a millisecond [AKL+11].

Initial improvements in pairing computations were spearheaded by evidence

that computing the Tate pairing fr,P (DQ)(qk−1)/r is more efficient than computing

the Weil pairing fr,P (DQ)/fr,Q(DP). At first glance it seems that comparing the

two computations amounts to comparing an exponentiation by (qk − 1)/r to a

(second) run of Miller’s algorithm fr,Q(DP), and indeed, at levels of security

up to 128 bits, this comparison does favour the Tate pairing (cf. [SCA06, Tab.

1-5], [Sco07c]). However, as we will see in Section 7.1, exponentiating by (qk −
1)/r actually facilitates many “Tate-specific” optimisations within the associated

Miller loop. It is these enhancements that gave the field of pairing computation

its first big boost.

7.1 Irrelevant factors (a.k.a. denominator elim-

ination)

In this section we will work our way to a refined version of Miller’s algorithm

for pairings over large prime fields, which is mostly due to improvements sug-

1As Scott says however, this comparison is unfair – in 1993 there was no incentive to try
and optimise the computation past what was needed to apply the MOV attack [MOV93].

95

96 Chapter 7. The state-of-the-art

gested by Barreto, Kim, Lynn and Scott [BKLS02], and also partly due to Gal-

braith, Harrison and Soldera [GHS02]. Thus, it is often referred to as the

BKLS algorithm [Sco05a, WS07], or sometimes as the BKLS-GHS algorithm

[Sco05b, BGOS07]. Our exposition will make use of twisted curves, which we

discussed in Section 4.3 and the employment of which is originally due to Bar-

reto, Lynn and Scott [BLS03]. The early works that included Barreto, Lynn and

Scott are also culminated in [BLS04].

We start with an observation that allows us to conveniently replace the divisor

DQ with the point Q in the Tate pairing definition. Namely, so long as k > 1

and P and Q are linearly independent, then fr,P (DQ)(qk−1)/r = fr,P (Q)(qk−1)/r

[BKLS02, Th. 1]. This saves the hassle of defining a divisor equivalent to DQ =

(Q) − (O) with support disjoint to (fr,P), but more importantly allows us to

simply evaluate the intermediate Miller function at the point Q (rather than two

points) in each iteration of Algorithm 5.1.

Example 7.1.1 (Magma script). We reuse the parameters from Example 5.3.1

so a comparison between intermediate values is possible. Thus, let q = 47,

E/Fq : y2 = x3 + 21x + 15, #E(Fq) = 51, r = 17, k = 4, Fq4 = Fq(u) with

u4 − 4u2 + 5 = 0, P = (45, 23) ∈ G1 and Q = (31u2 + 29, 35u3 + 11u) ∈ G2.

Thus, the Tate pairing is e(P,Q) = fr,P (Q)(qk−1)/r = (32u3 + 17u2 + 43u +

i/ steps of point update update at Q paired
ri Alg. 5.1 R ℓ/v ℓ(Q)/v(Q) value f

1 (45, 23) 1

3/0 3-5 (12, 16) y+33x+43
x+35

35u3+36u2+11u+13
31u2+17

= 6u3 + 19u2 + 36u + 33 6u3 + 19u2 + 36u + 33

2/0 3-5 (27, 14) y+2x+7
x+20

35u3+15u2+11u+18
31u2+2

= 39u3 + 8u2 + 20u + 18 11u3 + 17u2 + 24u + 4

1/0 3-5 (18, 31) y+42x+27
x+29

35u3+33u2+11u+23
31u2+11

= 18u3 + 32u2 + 41u + 30 22u3 + 34u2 + 5u + 10

0/1 3-5 (45, 24) y+9x+42
x+2

35u3+44u2+11u+21
31u2+31

= 21u3 + 26u2 + 25u + 20 8u3 + 22u2 + 5u + 27

6-10 O x + 2 = 31u2 + 31 32u3 + 17u2 + 43u + 12
12 fr,P (Q)← 32u3 + 17u2 + 43u + 12

12)287040 = 33u3 + 43u2 + 45u+ 39, which is the same value we got when instead

computing fr,P (DQ) = fr,P ([2]Q)/fr,P (Q) in Example 5.3.1. When comparing

the fifth columns of both tables, one should keep in mind that the numerator and

denominator of the fractions in Example 5.3.1 were themselves both computed

as fractions. Indeed, updates in this example are just the denominator of the

updates in Example 5.3.1, which gives an indication of how advantageous it is

to evaluate the pairing functions at one point (e.g. Q), rather than at a divisor

consisting of multiple points (e.g. ([2]Q)− (Q)). Notice that the values fr,P (DQ)

and fr,P (Q) output after the Miller loops in both examples are not the same, but

http://www.craigcostello.com.au/pairings/beginners/7-1-1-TateNotDivisor.txt

7.1. Irrelevant factors (a.k.a. denominator elimination) 97

the final exponentiation maps them to the same element in µ17. This is because

fr,P (DQ) and fr,P (Q) lie in the same coset of (F∗
qk)

r in F∗
qk , i.e. they are the same

element in the quotient group F∗qk/(F
∗

qk)
r.

We are now in a position to describe the important denominator elimination

optimisation. Barreto et al. were the first to notice that q − 1 | (qk − 1)/r

[BKLS02, Lemma 1], since if r | q−1 then the embedding degree would be k = 1.

This allows us to write the final exponent as (qk − 1)/r = (q− 1) · c, which gives

fr,P (Q)(qk−1)/r = (fr,P (Q)q−1)c, meaning that any elements of Fq contributing to

fr,P (Q) will be mapped to one under the final exponentiation. Thus, one can

freely multiply or divide fr,P (Q) by an element of Fq without affecting the pairing

value [BKLS02, Corr. 1]. When working over supersingular curves with k = 2,

the x-coordinate of Q is defined over Fq (see any of Examples 4.1.4, 4.1.5 ,4.3.1,

5.2.1). Therefore, the vertical lines appearing on the denominators of Miller’s

algorithm for the Tate pairing are entirely defined over Fq: the line is a function

x − xR that depends on P ∈ E(Fq)[r], which is evaluated at xQ ∈ Fq. Thus, in

this case the contribution of (each of) the denominators to fr,P (Q) ends up being

mapped to 1 under the final exponentiation, so these denominators (the v’s in

the ℓ/v’s – see Steps 5 and 9 in Algorithm 5.1) can be removed from the Miller

loop.

For ordinary curves with k > 2 however, the x-coordinate of Q will no longer

be in the base field Fq, but in some proper subfield Fqe of Fqk , where e = k/d and

d is the degree of the twist employed2 – see Section 4.3. Here it helps to assume

that k is even, i.e. k = 2ℓ, so that (at the very least) we can take Q = (xQ, yQ)

where xQ ∈ Fqℓ is such that yQ ∈ Fqk \ Fqℓ . Thus, when advancing beyond

k = 2 supersingular curves, Barreto et al. generalised the original statement

to facilitate the same trick. Namely, that qe − 1 | (qk − 1)/r for any proper

factor e | k [BLS03, Lemma 5, Corr. 2], so denominators can be omitted from

computations in general.

Example 7.1.2 (Magma script). Again, we will continue on from Example 7.1.1

for the sake of a convenient comparison. We simply give an updated table that

details the intermediate Miller functions and pairing values subject to denomi-

nator elimination. Therefore, e(P,Q) = fr,P (Q)(qk−1)/r = (9u3 + 10u2 + 32u +

36)(qk−1)/r = 33u3 + 43u2 + 45u + 39, which agrees with the Tate pairing value

2When d = 3 cubic twists are able to be employed for odd k, it is the y-coordinate of Q
that is in the subfield; we will treat this in Chapter 4.

http://www.craigcostello.com.au/pairings/beginners/7-1-2-TateDenomElim.txt

98 Chapter 7. The state-of-the-art

i/ steps of point update update at Q paired
ri Alg. 5.1 R ℓ ℓ(Q) value f

1 (45, 23) 1
3/0 3-5 (12, 16) y + 33x + 43 35u3 + 36u2 + 11u + 13 35u3 + 36u2 + 11u + 13
2/0 3-5 (27, 14) y + 2x + 7 35u3 + 15u2 + 11u + 18 44u3 + 34u2 + 3u + 44
1/0 3-5 (18, 31) y + 42x + 27 35u3 + 33u2 + 11u + 23 5u3 + 24u2 + 21u + 24
0/1 3-5 (45, 24) y + 9x + 42 35u3 + 44u2 + 11u + 21 21u3 + 36u2 + 9u + 25

6-10 O x + 2 31u2 + 31 9u3 + 10u2 + 32u + 36
12 fr,P (Q)← 9u3 + 10u2 + 32u + 36

in Examples 5.3.1 and 7.1.1. Notice again that the value output from the Miller

loop is not equal to either of the values output in 5.3.1 or 7.1.1, but rather that

all three are equivalent under the relation a = b if a/b ∈ (F∗
qk)

r.

We now refine Miller’s algorithm for the Tate pairing computation subject to

the BKLS-GHS improvements. Specifically, notice that the denominators that

were on lines 5 and 9 have now gone (under the assumption that k is even),

and that the second input is now the point Q, rather than a divisor equivalent

to DQ. Further notice that we have necessarily include the final exponentiation

in Algorithm 7.1 since this is what facilitates the modifications. We have also

assumed a Type 3 pairing so the coordinates of P and Q lie in fields that allow

for denominator elimination. Recall from the discussion at the end of Example

5.3.1, or from Example 7.1.2, that the vertical line joining (r − 1)P = −P
and P in the last iteration can also be omitted. Thus, an optimised Tate pairing

computation will execute the main loop from i = n−2 to i = 1 before performing

a “doubling-only” iteration to finish; we left the main loop to i = 0 for simplicity.

7.2 Projective coordinates

Although the optimisations described in the previous section removed the denom-

inators in Step 5 and Step 9 of Algorithm 7.1, Fq-inversions are still apparent

in the routine since the affine explicit formulas for the elliptic curve group op-

erations (see Eq. (2.4) and (2.5)) require them. The penalty for performing

field inversions in PBC is not as bad as it is in ECC (more on this later), but

in any case inversions are still much more costly than field multiplications. In

this section we employ the same techniques to avoid field inversions as we did in

the context of ECC in Example 2.1.9. Namely, we show how Algorithm 7.1 can

become inversion-free if we adopt projective coordinates. In the early days the

situation for projective coordinates in the context of pairings was perhaps a little

7.2. Projective coordinates 99

Algorithm 7.1 The BKLS-GHS version of Miller’s algorithm for the Tate pair-
ing.

Input: P ∈ G1, Q ∈ G2 (Type 3 pairing) and r = (rn−1 . . . r1r0)2 with rn−1 = 1.

Output: fr,P (Q)(q
k−1)/r ← f .

1: R← P , f ← 1.
2: for i = n− 2 down to 0 do

3: Compute the sloped line function ℓR,R for doubling R.
4: R← [2]R.
5: f ← f2 · ℓR,R(Q).
6: if ri = 1 then

7: Compute the sloped line function ℓR,P for adding R and P .
8: R← R+ P .
9: f ← f · ℓR,P (Q).

10: end if

11: end for

12: return f ← f (qk−1)/r.

unclear [Gal05, IX.14], but nowadays all of the record-breaking implementations

(at least up to the 128-bit security level) have exploited the savings offered by

working in projective space.

The potential of projective coordinates was mentioned in passing in the early

landmark papers [BKLS02, §3.2], [GHS02], but the first detailed investigation was

by Izu and Tagaki [IT02]. As Galbraith mentions [Gal05, IX.14], the analysis

in [IT02] is misleading, however projective coordinates did not wait too long

before more accurate expositions that also endorsed their usefulness surfaced

[CSB04, Sco05a]. The following example shows how projective coordinates can

be used to achieve an inversion-free version of Miller’s algorithm.

Example 7.2.1 (Magma script). In the context of standard ECC operations, we

gave the (homogeneous) projective point addition formulas in Example 2.1.9.

Thus, here we will give the homogeneous doubling formulas for computing (X[2]R :

Y[2]R : Z[2]R) = [2](XR : YR : ZR) on E/Fq : Y 2Z = X3 + aXZ2 + bZ3 in Step

4 of Algorithm 7.1, together with the formulas for computing the line function

ℓR,R(Q) in Step 3. The affine doubling formulas in Equation (2.5) are moved

into homogeneous projective space via the substitution x = X/Z and y = Y/Z,

http://www.craigcostello.com.au/pairings/beginners/7-2-1-ProjectiveLine.txt

100 Chapter 7. The state-of-the-art

which gives:

λ =
3X2

R + Z2
R

2YRZR
; ν = −3X3

R +XRZ
2
R − 2Y 2

RZR

2YRZ2
R

;

X[2]R

Z[2]R
=
−8XRY

2
RZR + 6X2

RZ
2
R + 9X4

R + Z4
R

4Y 2
RZ

2
R

;

Y[2]R

Z[2]R
= −8Y 4

RZ
2
R + Z6

R − 12XRZ
3
RY

2
R − 36X3

RZRY
2
R + 27Z2

RX
4
R + 9Z4

RX
2
R + 27X6

R

8Y 3
RZ

3
R

,

where ℓ : y − (λx + ν) is still an affine line tangent to E at the point R. It is

again the ability to multiply by factors in proper subfields of Fqk that allows us

to arrive at an inversion-free routine. Namely, we clear the denominators of λ

and ν through multiplication by 2YRZ
2
R, so the line ℓ becomes

ℓ : (2YRZ
2
R) · y − ((3X2

RZR + Z3
R) · x− (3X3

R +XRZ
2
R − 2Y 2

RZR)),

which will be evaluted at y = yQ and x = xQ. Note that since Q remains fixed

throughout the routine, there is no need to cast it into projective space. Finally,

setting Z[2]R = 8Y 3
RZ

3
R and updating the numerator of X[2]R above allows us to

compute (X[2]R : Y[2]R : Z[2]R) from (XR : YR : ZR) without any Fq-inversions.

Thus, we have an inversion-free way to proceed through the Miller doubling

stage (Steps 3-5 of Algorithm 7.1), and performing the analogous procedure for

the Miller addition stage (Steps 7-9) will give an inversion-free Miller loop.

7.3 Towered extension fields

This section discusses efficient methods of constructing the full extension field

Fqk over Fq, where the ultimate goal is to minimise the cost of the arithmetic

in Fqk . Indeed, the majority of operations within the pairing algorithm take

place in the full extension field, which is far more expensive to work in than its

proper subfields, so the complexity of Miller’s algorithm heavily depends on the

complexity of the associated Fqk-arithmetic.

So far we have been using one irreducible degree k polynomial to construct

Fqk over Fq. This has been satisfactory, since our small examples have mostly

had embedding degrees k = 2 or k = 3, where we have no other option but to

use polynomials of degree two and three to respectively construct Fqk . However,

for large values of k, which will be composite in all cases of interest to us, there

is an a natural alternative which turns out to be much faster. This idea was first

7.3. Towered extension fields 101

put forward by Koblitz and Menezes [KM05], who proposed using embedding

degrees of the form k = 2i3j and building up to Fqk using a series of quadratic

and cubic extensions that successively tower up the intermediate fields. For such

k, they show that if q ≡ 1 mod 12 and if α is neither a square or cube in Fq, then

the polynomial xk − α is irreducible in Fq[x] [KM05, Th. 1]. This means that

the tower can be constructed by a sequence of Kummer extensions: this involves

successively adjoining the square root or cube root α, then the square root or

cube root of that, and so on.

Example 7.3.1 (Magma script). Let q = 97, and consider constructing Fq12 using

α = 5 which is a non-square and non-cube in Fq, so that Fq12 can be constructed

directly as Fq12 = Fq[X]/(X12 − α). Choosing instead a tower of quadratic and

cubic extensions, we could construct Fq12 as

Fq
β2−α

// Fq2
γ3−β

// Fq6
δ2−γ

// Fq12 .

We show a random element in Fq12 :

(
(79β + 63)γ2 + (29β + 63)γ + (38β + 27)

)
δ + (63β + 22)γ2 + (93β + 10)γ + 75β + 10.

Observe what happens if, instead of performing multiplications in Fq12 over Fq,

we start by performing multiplications over Fq6 . Writing a, b ∈ Fq12 over Fq6 gives

a = a0+a1δ and b = b0+b1δ, with a0, a1, b0, b1 ∈ Fq6 . Thus, a·b = (a0b0−a1b1γ)+

(a0b1+a1b0)δ, where each of the components inside the parentheses are in Fq6. To

perform each of the multiplications in Fq6, we then work over Fq2 , so for example

we would need to compute a multiplication between a0 = a0,0 + a0,1γ + a0,2γ
2

and b0 = b0,0 + b0,1γ+ b0,2γ
2, where each component a0,i and b0,i is in Fq2 . In this

way the operations filter down the tower until we are performing multiplications

in Fq.

The computational advantage of adopting a tower of extensions may not be

immediately evident. Namely, suppose we were to analyse the complexity of the

Fq12 multiplication in Example 7.3.1. If we were to employ the naive “schoolbook”

method of multiplying two extension field elements, which operates component-

wise, then an Fq12 multiplication computed directly over Fq would cost 144 Fq

multiplications. If we instead descend down the tower employing schoolbook

multiplication, then an Fq12 multiplication would cost 4 Fq6 multiplications, each

of which would cost 9 Fq2 multiplications, with each of these costing 4 mul-

http://www.craigcostello.com.au/pairings/beginners/7-3-1-Tower12Degree.txt

102 Chapter 7. The state-of-the-art

tiplications in Fq, giving 4 · 9 · 4 = 144 base field multiplications in this case

too. However, one of the reasons that the towered approach betters a direct

extension to Fqk is because there exist much better (than schoolbook) methods

of performing arithmetic in quadratic and cubic extensions. Specifically, the

Karatsuba method [KO63] for quadratic extensions allows us to compute multi-

plications in Fq2u using 3 multiplications in Fqu, or to compute a squaring in Fq2u

using only 2 multiplications in Fqu . The same method applied to cubic exten-

sions allows us to compute multiplications in Fq3u using only 6 multiplications

in Fqu (rather than 9), and squarings in Fq3u using 6 Fqu-squarings (which are

faster than Fqu-multiplications in general). There are also other methods and

variations which are competitive for these small extensions, such as the Toom-

Cook method [Too63,CA66], which computes an Fq3u multiplication using only

5 Fqu multiplications, but this requires a substantially higher number of addi-

tions. A helpful report that compares all of these methods in the contexts of

pairings is given by Devegili et al. [DOSD06]. Referring back to the examples

above, and this time descending down the tower using Karatsuba multiplications

for the quadratic and cubic extensions gives that Fq12 multiplications now cost

3 ·6 ·3 = 54 Fq multiplications; a huge improvement over the schoolbook method.

We note that a different ordering of the quadratic and cubic towers from Fq to

Fq12 could be chosen, and that this would give the same number of Fq multipli-

cations for a multiplication in Fq12 , but that there are certainly reasons (other

than the twisted curve) that we would prefer one tower over another.

It could potentially be misleading however, to argue that the low num-

ber of Fq multiplications offered by degree 2 and 3 Karatsuba-like methods is

what makes the towered extensions preferable to a direct extension. Indeed,

the Karatsuba and Toom-Cook algorithms generalise to extensions of any de-

gree [WP06], [Ber01, §6]. In fact, generalised Toom-Cook theoretically guaran-

tees that we will be able to perform the Fq12 multiplication from the above exam-

ple (via a direct extension) using only 23 Fq multiplications, which is less than

half the number of Fq multiplications used in our towered Karatsuba approach.

However, such high-degree generalisations require an enormous number of Fq

additions, and the theoretical number of multiplications they save is nowhere

near enough to offset this deficit. Thus, technically speaking, it is in the sav-

ing of Fq-additions that the towered approach gains its advantage. Indeed, the

additions encountered when performing the highest level multiplications at the

7.3. Towered extension fields 103

top most sub-extension of the tower filter down linearly to Fq, whilst performing

Fqk-arithmetic via a direct extension blows the number of additions out (at the

very least) quadratically.

Given the simple test to determine irreducibility of the binomial xk−α when

q ≡ 1 mod 12 and k = 2i3j above, Koblitz and Menezes defined a pairing-friendly

field to be a prime field with characteristic q of this form. However, given the

number of conditions already imposed on the search for pairing-friendly curves,

Benger and Scott argue that this extra restriction is unnecessary [BS10]. They

relax this constraint and introduce the notion of towering-friendly fields: a field

Fqm is called towering-friendly if all prime divisors of m also divide q − 1. For

such fields, they invoke Euler’s conjectures to give an irreducibility theorem that

facilitates all intermediate subextensions to be constructed via a binomial.

Loop shortening has played a major role in the evolution of pairing compu-

tation. Indeed, the series of landmark works that are summarised in this section

have an impressive evolution of their own. Duursma and Lee [DL03] were the

first to show that, in special cases, a bilinear pairing can be obtained without

iterating Miller’s algorithm as far as the large prime group order r. Barreto et

al. [BGOS07] generalised this observation to introduce the ηT pairing (the eta

pairing); a pairing which achieves a much shorter loop length (than r) on any

supersingular curve. Hess, Smart and Vercauteren [HSV06] simplified and ex-

tended the ηT pairing to ordinary curves, introducing the ate pairing, whose loop

length is T = t− 1, where t is the trace of the Frobenius endomorphism (see Eq.

(2.6)), which is much smaller than r in general cases of interest. A number of

authors followed this work with observations that in many cases we can do even

better than the ate pairing. This included the introduction of the R-ate pair-

ing [LLP09], as well as other optimised variants of the ate pairing [MKHO07].

Vercauteren [Ver10] culminated all of these works and introduced the notion of

optimal pairings, conjecturing a lower bound on the loop length required to ob-

tain a bilinear pairing on any given curve, and showing how to achieve it in many

cases of interest. His conjecture was proven soon after by Hess, who drew a line

under all the loop-shortening work to date, putting forward a general framework

that encompasses all elliptic curve pairings [Hes08].

Our intention in this section is to bring the reader up to speed with optimal

pairings, by picking a few examples that illustrate key concepts. For the sake

of simplicity, we are forced to skip past some of the key works mentioned in

104 Chapter 7. The state-of-the-art

the last paragraph; in particular, we will not present the ηT pairing that targets

supersingular curves, since it is most suited to curves over fields of characteristic

2 and 3. We will also not be giving examples of the works that came between

the ate and optimal ate pairing papers (e.g. [MKHO07, LLP09]), in hope that

the reader will not have too much trouble following an immediate generalisation.

At a high level, the notion of loop shortening makes use of two observations.

Firstly, recall from Chapter 2 (in particular Example 2.2.11), that appropriate

endomorphisms on E compute some multiple [λ]P from P , which essentially allow

us to “skip ahead” in the fundamental computation of [m]P from P . Just as

they can be used to shorten the double-and-add loop for scalar multiplications in

ECC, efficient endomorphisms can be used to shorten the Miller loop in PBC. The

second observation is that, given any two bilinear pairings on E, their product

or quotient will also give a bilinear pairing. More generally, we can say that if

e1, ..., en are bilinear pairings on E, then
∏

i e
ji

i (ji ∈ Z) will also be a bilinear

pairing [ZZH08a, Corr. 1].

We start with an example of Scott’s idea [Sco05b], which came from the first

paper to look at loop shortening on any type of ordinary curve. He looked at

a special case of ordinary curves called not supersingular curves (NSS). These

should not be confused with the more general term non-supersingular, which

(by definition) means all ordinary curves. NSS curves are a special type of

ordinary curve, but they cover the cases that are most useful in the context of

pairings. In fact, we have already seen NSS curves, as they are precisely the

curves described in Table 6.2. Essentially, the modularity conditions imposed

on the curves y2 = x3 + b and y2 = x3 + ax in Table 6.1 is what makes them

supersingular, because these conditions force the maps φ described in that table

to be defined over the extension field – i.e. these congruences make φ a distortion

map. On the other hand, the alternative modularities on the same curves in Table

6.2 mean that the associated φ’s are defined over Fq. Thus, Scott starts with the

motivating question: under these circumstances, what becomes of these distortion

maps? The rest of his paper responds by showing that they are useful, not as

distortion maps, but rather as efficient endomorphisms on E. The following

example does not give the details of Scott’s algorithm; it merely hints towards it

by showing the potential of the endomorphisms φ on an NSS curve.

Example 7.3.2 (Magma script). Taking x = −1 generates the smallest BN curve

(see Example 6.3.3 for the polynomials) with q = 19, E/Fq : y2 = x3 + 2

http://www.craigcostello.com.au/pairings/beginners/7-4-1-ScottsNSS.txt

7.3. Towered extension fields 105

and r = 13 as the group order. It is clearly an NSS curve (see Table 6.2 or

[Sco05b, Eq. 4]). The non-trivial cube roots of unity are defined over Fq, and

are ζ3 = 7 and ζ2
3 = 11. They both define a different endomorphism on E (e.g.

ζ3 : (x, y) 7→ (ζ3x, y)) which corresponds to a different scalar multiplication λ,

i.e. (ζ3x, y) = [λ](x, y). The two different λ’s are the solutions of λ2 + λ + 1 =

0 mod r, which comes from λ3 ≡ 1 mod r matching ζ3
3 = [1] in End(E), so

λ1 = 9 and λ2 = 3 correspond to ζ3 and ζ2
3 respectively. Miller’s algorithm would

usually double-and-add to compute [r]P = [λ2 + λ + 1]P = [λ]([λ]P + P) + P .

However, for P = (x, y), the endomorphism allows us to easily calculate the

point [λ]P + P = (−(λ + 1)x,−y). Thus, if we store the values of the points

in the n = ⌊log2 λ⌋ doublings that build up to [λ]P , the values of the points

in the second n doublings can be found at the cost of a single multiplication.

This is already more efficient, but Scott notices that since the points are related,

the lines they contribute in the point doubling phase of Miller’s algorithm are

similarly related. Namely, the contribution to the pairing value in the first n

iterations is (yQ − yi)−mi(xQ − xi), where (xi, yi) is the point [2i]P , and mi is

the line slope resulting for the point doubling (we use m in this example because

λ is already taken). It follows (see [Sco05b, §5]) that the contribution to the

pairing value from the final n doublings will be (−yQ− yi)−mi(λxQ−xi). This

means we only need to loop as far as n = ⌊log2 λ⌋ (rather than 2n = ⌊log2 λ
2⌋) to

get all the information we need. See Scott’s paper for the algorithm description

that ties all this together, where he deals with cases where λ = 2a + 2b. Thus,

to finish our example with the algorithm write λ1 = 2a1 + 2b1 and λ2 = 2a2 + 2b2

with a1 = 3, b1 = 0, a2 = 1, b2 = 0.

The φ maps on NSS curves clearly offer an advantage, but there is another

endomorphism we have already seen that turns out to be much more powerful.

Namely, the ate pairing makes use of the Frobenius endomorphism π on E. A

key observation is that the Frobenius endomorphism acts trivially on elements

in the base field, i.e. π(P) = P in G1, so we instead look at using the trace-

zero subgroup G2 where π acts non-trivially. Here π(Q) = [q](Q), but since

[q](Q) = [t− 1](Q), we have π(Q) = [T](Q) (recall that T = t− 1). Hess, Smart

and Vercauteren [HSV06] use this endomorphism to derive the ate pairing aT ,

which is a map

aT : G2 ×G1 → GT ,

106 Chapter 7. The state-of-the-art

defined as

aT (Q,P) = fT,Q(P)(qk−1)/r.

It helps to see a brief sketch of their proof as follows. We show that aT is bilinear

by relating its value fT,Q(P)(qk−1)/r to the Tate pairing (with Q as the first

argument), which we already know is bilinear. Since q ≡ T mod r, T k ≡ 1 mod r

(because k is the embedding degree), so write mr = T k − 1 for some m. Recall

the Tate pairing (with Q as the first argument) as e(Q,P) = fr,Q(P)(qk−1)/r,

which (under simple properties of divisors) means e(Q,P)m = fmr,Q(P)(qk−1)/r =

fT k−1,Q(P)(qk−1)/r. We can then (again using simple properties of divisors) split

this into a product of fT,[T i]Q(P), each of which is raised to an appropriate

exponent. Since Q ∈ G2, each of these [T i]Q’s is the same as πi(Q), and since

π is purely inseparable of degree q, all of the values fT,[T i]Q(P) in the product

become f qi

T,Q(P), so we can clean up the exponent to get e(Q,P) = aT (Q,P)v.

The exponent v does not divide r in general, so the bilinearity of the ate pairing

follows from that of the Tate pairing (see [HSV06, Th. 1] for the full details).

Since there is a final exponentiation, the optimisations that transformed

Miller’s algorithm into the BKLS version still apply, so we only need to up-

date the input definitions in Algorithm 7.1. Namely, r becomes T , P and Q

(from G1 and G2 respectively) switch roles. For no other reason than for ease of

future reference, we write these updates in an ate-specific version below. Note

that if T = t− 1 < 0, then it is fine to take T = |T | [Ver10, §C]. There is only

one trick that was used in the Tate pairing that does not carry across to the ate

setting. Namely, we can no longer ignore the last bit in the final iteration like

we did in Section 7.1, because if an addition occurs in the final iteration it will

now be a sloped line, whilst in the Tate pairing the last addition line joined P

and [r − 1]P = −P and was therefore vertical.

Example 7.3.3 (Magma script). It helps to immediately see the difference be-

tween the ate and Tate pairing, so we will continue on from Example 7.1.2:

q = 47, E/Fq : y2 = x3 + 21x + 15, #E(Fq) = 51, r = 17, k = 4, Fq4 = Fq(u),

u4 − 4u2 + 5 = 0, P = (45, 23) ∈ G1 and Q = (31u2 + 29, 35u3 + 11u) ∈ G2.

The trace of Frobenius is t = −3, so take T = 4. Thus, we will compute the ate

pairing via Algorithm 7.2 with only two doublings. We have combined the inde-

terminate function ℓ and its evaluation ℓ(P) at P into the same column to fit the

table in. Thus, the ate pairing aT is computed as aT (Q,P) = fr,Q(P)(qk−1)/r =

http://www.craigcostello.com.au/pairings/beginners/7-4-2-ateCompare.txt

7.3. Towered extension fields 107

Algorithm 7.2 The BKLS-GHS version of Miller’s algorithm for the ate pairing.

Input: P ∈ G1, Q ∈ G2 (Type 3 pairing) and T = (Tn−1 . . . T1T0)2 with Tn−1 = 1.

Output: fT,Q(P)(q
k−1)/r ← f .

1: R← Q, f ← 1.
2: for i = n− 2 down to 0 do

3: Compute the sloped line function ℓR,R for doubling R.
4: R← [2]R.
5: f ← f2 · ℓR,R(P).
6: if ri = 1 then

7: Compute the sloped line function ℓR,Q for adding R and Q.
8: R← R+Q.
9: f ← f · ℓR,Q(P).

10: end if

11: end for

12: return f ← f (qk−1)/r.

i/ steps of point update (ℓ); paired
Ri Alg. 5.1 R update at P (ℓ(P)) value f

1 (31u2 + 29, 35u3 + 11u) 1
1/0 3-5 (7u2 + 25, 37u3 + 28u) y + (u3 + 32u)x + 42u3 + 15u;

40u3 + 45u + 23 40u3 + 45u + 23
0/0 3-5 (16u2 + 12, 6u3 + 24u) y + (28u3 + 22u)x + 17u3 + 26u;

8u3 + 29u + 23 44u3 + 24u2 + 41u + 31
12 fr,Q(P)← 44u3 + 24u2 + 41u + 31

(44u3 + 24u2 + 41u+ 31)287040 = 21u3 + 37u2 + 25u+ 25.

Notice the price we pay for the much shorter loop in the ate pairing, in that

it is now the first argument of the pairing (Q) that is defined over the larger

field, so the elliptic curve operations (doublings/additions) and line function

computations are now taking place in Fqk . For example, compare the second

and third columns of the table in Example 7.3.3 to the table in Example 7.1.2.

It is here that the power of a high-degree twist really aids our cause. Namely,

utilising the twisting isomorphism allows us to move the points in G2, which is

defined over Fqk , to points in G′2, which is defined over the smaller field Fqk/d. In

Example 7.3.3 above where k = 4, the maximum degree twist permitted by E is

d = 2, so we could have performed the point operation and line computations in

Fqk/2 = Fq2 . However, if the curve had have been of the form y2 = x3 + ax, we

could have utilised a d = 4 quartic twist (see Section 4.3) and performed these

operations all the way down in the base field Fq; i.e. in this case we would pay

no price for a much smaller loop. In general though, provided we make use of

high-degree twists in the ate pairing, then the price we pay in doing more work

108 Chapter 7. The state-of-the-art

(per iteration) in the larger field is nowhere near enough to offset the savings we

gain through having a much shorter loop, meaning that the ate pairing (or one

of its variants) is much faster than the Tate pairing. We now turn to describing

optimal pairings. Vercauteren [Ver10] begins with the observation that the ate

pairing aT corresponding to T ≡ q mod r is a special case of the pairing aλi

that is obtained by taking any power λi ≡ qi mod r; some specific consequences

of this observation were previously considered in [MKHO07, ZZH08b]. Since

λi corresponds to the loop length of the pairing aλi
, we would like it to be as

small as possible. Thus, we would like to find the smallest value of qi mod r

(i ∈ Z), and since qk ≡ 1 mod r, finding the smallest aλi
would only require

testing the possibilities up to k − 1 (i = k clearly gives the trivial degenerate

pairing). However, Vercauteren actually does much better than this by observing

that since qi mod r induces a bilinear pairing aλi
, then any linear combination

of
∑l

i=0 ciq
i ≡ 0 mod r gives rise to a bilinear pairing

(Q,P) 7→
(

l∏

i=0

f qi

ci,Q
(P) ·

l−1∏

i=0

ℓi

)(qk−1)/r

, (7.1)

where the ℓi are simple “one-off” line functions (chords) that are needed to make

the bilinearity hold – see [Ver10, Eq. 7] for details. Also, the exponentiations of

each of the (at most ℓ + 1) line functions to the power of qi should not concern

us, as these are just repeated applications of the Frobenius endomorphism in GT ,

which is essentially cost-free (more on this in Section 7.5). The main point to

note is that the loop lengths of the Miller functions fci,Q are the ci. Thus, we

would like to find a multiple mr of r with a base-q expansion mr =
∑l

i=0 ciq
i

that has the smallest ci coefficients possible. Vercauteren proceeds naturally by

posing this search as a lattice problem, i.e. that such small ci are obtained by

solving for short vectors in the following lattice

L =












r 0 0 . . . 0

−q 1 0 . . . 0

−q2 0 1 . . . 0
...

...
. . .

−qϕ(k)−1 0 . . . 0 1












, (7.2)

which is spanned by the rows, and where ϕ(k) is the Euler phi function of k.

7.3. Towered extension fields 109

He then invokes Minkowski’s theorem [Min10] to show that there exists a short

vector (v1, ..., vϕ(k)−1) in L such that maxi|vi| ≤ r1/ϕ(k). Thus, we have an upper

bound on the largest Miller loop length that will be encountered when computing

the pairing in (7.1). Vercauteren uses this bound to define an optimal pairing

[Ver10, Def. 3]: e(·, ·) is called an optimal pairing if it can be computed in

log2 r/ϕ(k) + ǫ Miller iterations, with ǫ ≤ log2 k. He subsequently conjectures

that any bilinear pairing on an elliptic curve requires at least log2 r/ϕ(k) Miller

iterations. Following [Ver10, Def. 3], Vercauteren also notes that the reason

that the dimension of L is ϕ(k) is because we really only need to consider qi

up to qϕ(k)−1. This is due to that fact that Φk(q) ≡ 0 mod r implies that qj

with j > ϕ(k) can be written as linear combinations of the qi (i ≤ ϕ(k) − 1)

with small coefficients, which means only these qi should be considered linearly

independent.

Before giving examples, we mention a caveat. Observe that maxi|ci| ≤ r1/ϕ(k)

does not imply that the lower bound is met, since the number of Miller iterations

required is given by
∑

i log2 ci. However, we will be searching for small vectors

in the lattice L, where q and r come from families and are therefore given as

polynomials q(x) and r(x). Therefore, the ci in the short vectors will themselves

be polynomial expressions ci(x), meaning that the Miller functions fci(x),Q in

(7.1) will typically follow from fx,Q.

We will illustrate with three families that were used as examples in Sec-

tion 6. Vercauteren gives more examples. Magma has a built in algorithm

ShortestVectors() that serves our purpose, but the code we use in the follow-

ing three examples was written by Paulo Barreto, and passed on to us by Luis

Dominguez Perez.

Example 7.3.4 (Magma script). Recall the parameterisations for k = 12 BN

curves from Example 6.3.3: t(x) = 6x2 + 1, q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

and r(x) = 36x4 +36x3 +18x2 +6x+1. These were actually used to generate the

curve in Example 6.1.2, with x = 94539563377761452438 being 67 bits, which

generated a 271-bit q and r. Observe that Miller’s algorithm to compute fr,P (Q)

in the Tate pairing would therefore require around 270 iterations. Alternatively,

t = t(x) is 137 bits, so computing the ate pairing aT (Q,P) = fT,Q(P)(qk−1)/r

would require around 136 iterations. However, Vercauteren’s bound suggests we

can do even better: since ϕ(12) = 4, our loop can be reduced by a factor of 4, i.e.

we should require log2 r/4 ≈ 68 iterations. Following (7.2) then, we seek short

http://www.craigcostello.com.au/pairings/beginners/7-4-3-BNShortVector.txt

110 Chapter 7. The state-of-the-art

vectors in the lattice

L =









36x4 + 36x3 + 18x2 + 6x+ 1 0 0 0

−6x2 1 0 0

36x3 + 18x2 + 6x+ 1 0 1 0

36x3 + 24x2 + 12x+ 3 0 0 1









,

where the −q(x)i down the first column were immediately reduced modulo r(x).

Some short vectors in L are V1(x) = (6x+2, 1,−1, 1), V2(x) = (6x+1, 6x+3, 1, 0),

V3(x) = (−5x − 1,−3x− 2, x, 0), V4(x) = (2x, x+ 1,−x, x). In reference to the

point we made before this example, we prefer the short vectors with the minimum

number of coefficients of size x, so choosing V1(x) and computing the optimal

ate pairing aV1(x) following (7.1) gives

aV1(x) = (f6x+2,Q(P) · f1,Q(P) · f−1,Q(P) · f1,Q(P) ·M)(qk−1)/r ,

= (f6x+2,Q(P) ·M)(qk−1)/r ,

where f1,Q = 1 and f−1,Q = 1/f1,QvQ (which disappears in the final exponenta-

tion) can be discarded, and M is a product of 3 simple line functions that are

computed easily – this example is in [Ver10, IV.A], where M is defined. The

only Miller loop we need to compute is f6x+2,Q(P), which for our x-value, is 69

bits, meaning the optimal pairing indeed requires log2 r/4 ≈ 68 iterations. No-

tice then, the difference between the ease of using V1(x) compared to any of the

other short vectors above, which all suggest more than one Miller loop.

Example 7.3.5 (Magma script). Recall the parameterisations for k = 16 KSS

curves from Example 6.3.4 as t(x) = (2x5 + 41x + 35)/35, q(x) = (x10 +

2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980 and r(x) =

(x8 + 48x4 + 625)/61250. For any x-value, the Tate pairing requires comput-

ing the function fx8+48x4+625,P (Q), whilst the ate pairing computes the function

f(2x5+41x+35)/35,Q(P). Since ϕ(k) = 8, the ate pairing is not optimal, i.e. log2 r/8

should have an optimal pairing loop length of order O(x), not O(x5). Thus, we

http://www.craigcostello.com.au/pairings/beginners/7-4-4-KSSShortVector.txt

7.4. Low Hamming weight loops 111

look for short vectors in the lattice

L =



















x8 + 48x4 + 625 0 0 0 0 0 0 0

−2x5 − 41x 35 0 0 0 0 0 0

4x6 + 117x2 0 175 0 0 0 0 0

2x7 − 29x3 0 0 875 0 0 0 0

1x4 + 24 0 0 0 7 0 0 0

−1x5 − 38x 0 0 0 0 35 0 0

−3x6 − 44x2 0 0 0 0 0 175 0

11x7 + 278x3 0 0 0 0 0 0 875



















.

A nice short vector is V (x) = (x, 1, 0, 0, 0,−2, 0, 0), so indeed an optimal pairing

is

aV (x) = (fx,Q(P) · f−2,Q(P) ·M)(qk−1)/r ,

where M is again a product of simple one-off lines, and we can compute f−2,Q(P)

as 1/f2,Q(P), since the vertical line that makes two equal evaporates in the final

exponentiation. Note that f2,Q(P) is simply the first doubling of Q at P , and

that fx,Q(P) is the only Miller loop required.

Example 7.3.6 (Magma script). Recall the parameterisations for a k = 24 BLS

curve from Example 6.3.2 as t(x) = x + 1, q(x) = (x − 1)2(x8 − x4 + 1)/3 + x

and r(x) = Φ24(x) = x8 − x4 + 1. The Tate pairing requires the computation

fx8−x4+1,P (Q) whilst the ate pairing computes fx,Q(P). Since ϕ(k) = 8, the ate

pairing is already optimal, i.e. it has a loop length of log2(r)/8. In cases when

the ate pairing is not optimal, like the previous two examples, it is common

that other variants like the R-ate pairing of [LLP09] also achieve optimality. For

example, Scott uses the R-ate pairing to achieve optimality for k = 12 and k = 18

implementations targeting the 128 and 192-bit security levels [Sco11, Table 1].

7.4 Low Hamming weight loops

This short section describes a more obvious optimisation to Miller’s algorithm.

This trick was suggested in the very early papers on pairing computation, but for

reasons that will become clear in a moment, we have delayed its introduction in

this section until after we described the ate and optimal ate pairings. Regardless

of the pairing-based protocol, the loop length of the pairing is known publicly;

http://www.craigcostello.com.au/pairings/beginners/7-4-5-BLSateIsOptimal.txt

112 Chapter 7. The state-of-the-art

therefore, unlike ECC where we try to avoid special choices of scalars that might

give attackers unnecessary advantage, in PBC there is no problem in specialising

the choice of the loop length. In this light, it is advantageous to use curves

where the loop length has a low Hamming weight, thus minimising the number

of additions incurred in Miller’s algorithm.

For supersingular curves over prime fields, where #E(Fq) = q + 1, finding

a curve whose large prime divisor r has low Hamming weight is relatively easy.

Thus, in the early days, facilitating a low Hamming weight Miller loop was not too

difficult. However, once the introduction of parameterised families were needed

for higher embedding degrees, the polynomial representation for r(x) meant that

controlling the loop length (r) of the Tate pairing was a little more difficult. The

best we could do in this scenario is search for x values of low Hamming weight, in

the hope that the polynomial r(x) wouldn’t completely destroy this. Nowadays

however, the introduction of the ate and optimal ate pairings makes this optimi-

sation very relevant. Namely, as we saw in the examples in the previous section,

the loop length associated with the optimal Miller function is often some small

function of x, if not x itself. Thus, choosing x to be of low Hamming weight

can be very advantageous for a faster Miller loop, as we show in the following

example. In fact, we will see in the next section that a faster Miller loop is only

a partial consequence.

Example 7.4.1 (Magma script). Both x = 258419657403767392 and x = 144115

188109674496 are 58-bit values that result in k = 24 BLS curves suitable for

pairings at the 224-bit security level. The former was found by kick-starting

the search at a random value between 257 and 258, and as such, has a Hamming

weight of 28, as we would expect. On the other hand, the second value is actually

257+225+218+211, which has Hamming weight 4. Thus, we would much prefer the

second value since this would result in 24 less additions through the Miller loop.

Another nice alternative that gives similar parameter sizes is x = 256 +240− 220,

which does not have a low Hamming weight, but rather a low NAF-weight (weight

in the signed binary representation), for which Miller’s algorithm can be easily

updated to take advantage of.

http://www.craigcostello.com.au/pairings/beginners/7-5-1-BLShamming.txt

7.5. The final exponentiation 113

7.5 The final exponentiation

Until now, our optimisations have all applied to the Miller loop. This was a

natural place to look for tricks and shortcuts in the early days, since at low levels

of security, the Miller loop is by far the bottle-neck of the algorithm. However,

as the security level increases, the relative cost of the final exponentiation also

increases [DS10]. It appears that, all known high-level optimisations considered,

pairings on BN curves at the 128-bit security level is roughly the “crossover

point” where the complexities of the Miller loop and the final exponentiation

are similar [AKL+11, Table 4], [BGDM+10, Table 3], [NNS10, Table 2]. Thus,

at higher levels of security, the final exponentiation is the most time-consuming

stage of the pairing computation.

For curves belonging to families, Scott et al.’s algorithm [SBC+09a] is the

fastest method to date. In this section we illustrate their technique by means of

an example, which we take directly from our joint work with Kristin Lauter and

Michael Naehrig [CLN11]. This work looked at k = 24 BLS curves in detail, since

this family is a frontrunner for high-security pairings, particularly when targeting

256-bit security. There are several other examples looked at in [SBC+09a].

We start with a brief description of the general algorithm, before applying

it to our particular case. Suppose k is even and write d = k/2. We start by

splitting the final exponent into three components

(qk − 1)/r = [(qd − 1)] · [(qd + 1)/Φk(q)]
easy part

· [Φk(q)/r]
hard part

,

where the two components on the left are the “easy part” because (the second

bracket reduces to powers of q and) raising elements in Fqk to the power of q

involves a simple application of the Frobenius operator π, which almost comes for

free. It is the Φk(q)/r term that does not reduce to such a form and which is aptly

named the “hard part” of the final exponentiation. Suppose we have already

exponentiated through the easy part, and our intermediate value is m ∈ Fqk .

The straightforward way to perform the hard part, i.e. mΦk(q)/r, is to write the

exponent in base q as Φk(q)/r =
∑n−1

i=0 λiq
i, and to further exploit repeated

applications of π in

mΦk(q)/r = (mqn−1

)λn−1 . . . (mq)λ1 ·mλ0 ,

114 Chapter 7. The state-of-the-art

so that all the mqi
terms essentially come for free, and the hard part becomes

the individual exponentiations to the power of the λi, which are performed using

generic methods. These methods, however, do not take advantage of the poly-

nomial description of q, which is where Scott et al.’s work advances beyond the

more obvious speed-ups.

Example 7.5.1 (Magma script). Recall the k = 24 BLS parameterisations from

Example 7.3.6: t(x) = x + 1, q(x) = (x − 1)2(x8 − x4 + 1)/3 + x and r(x) =

Φ24(x) = x8−x4+1. To give an idea of the task we are up against, suppose we are

targeting the 256-bit security level, as we did with these curves in Example 6.3.2

with x = 9223372036854782449. The final exponentiation in this case involves

raising a 15082-bit value f ∈ Fq24 , to the 14578-bit exponent (q24−1)/r, a number

far bigger than what we would like to write here (but see the corresponding

script). Performing this exponentiation using a naive square-and-multiply with

no optimisations would therefore involve 14578 squarings and roughly half as

many multiplications in the 15082-bit field, a computation that would blow out

the pairing complexity by several orders of magnitude. To take a much faster

route, we start by splitting the exponent as

(q24 − 1)/r = [(q12 − 1) · (q4 + 1)]
easy part

· [(q8 − q4 + 1)/r]
hard part

.

We compute f (qk−1)/r =
(

f (q12−1)·(q4+1)
)(q8−q4+1)/r

. The exponentiation inside

the parentheses is almost free, since f q12
is just 12 repeated applications of the

Frobenius operation π, and similarly for raising to the power of q4, so the easy

part essentially incurs just a couple of multiplications and maybe an inversion.

We are now left with the exponent (q8 − q4 + 1)/r, for which we can not pull

out any more “easy factors”. However, a very helpful observation which aids the

remaining computations is that, after the first exponentiation to the power q12−1,

the value m ∈ Fq24 is now such that its norm is NFq24/Fq12
(m) = 1. This allows

any inversions in Fq24 to be computed for free using a simple conjugation [SB04,

NBS08, SBC+09a], and any squarings in Fq24 to be computed more efficiently

than standard Fqk squarings [GS10,Kar10,AKL+11]. We now make use of the

non-trivial part of the algorithm in [SBC+09a], and write the hard part as

(q(x)8 − q(x)4 + 1)/r(x) =
7∑

i=0

λi(x)q(x)
i.

http://www.craigcostello.com.au/pairings/beginners/7-6-1-FinalExp.txt

7.6. Other optimisations 115

In an appendix of her thesis, Benger [Ben10] computed the λi for a range of curve

families, including BLS curves with k = 24, giving λi = νi/3, where

ν7(x) = x2 − 2x+ 1,

ν6(x) = x3 − 2x2 + x = x · ν7(x),

ν5(x) = x4 − 2x3 + x2 = x · ν6(x),

ν4(x) = x5 − 2x4 + x3 = x · ν5(x),

ν3(x) = x6 − 2x5 + x4 − x2 + 2x− 1 = x · ν4(x)− ν7(x),

ν2(x) = x7 − 2x6 + x5 − x3 + 2x2 − x = x · ν3(x),

ν1(x) = x8 − 2x7 + x6 − x4 + 2x3 − x2 = x · ν2(x),

ν0(x) = x9 − 2x8 + x7 − x5 + 2x4 − x3 + 3 = x · ν1(x) + 3.

This representation reveals another nice property exhibited by k = 24 BLS

curves: namely, a very convenient way to compute the νi with essentially just

multiplications by x. Letting µi = mνi(x), this structure allows us to write the

hard part of the final exponentiation as

m(q8−q4+1)/r = µ0 · µp
1 · µp2

2 · µp3

3 · µp4

4 · µp5

5 · µp6

6 · µp7

7 ,

where the µi can be computed using the following sequence of operations:

µ7 = (mx)x · (mx)−2 ·m, µ6 = (µ7)
x, µ5 = (µ6)

x, µ4 = (µ5)
x,

µ3 = (µ4)
x · (µ7)

−1, µ2 = (µ3)
x, µ1 = (µ2)

x, µ0 = (µ1)
x ·m2 ·m.

The computation of m(q8−q4+1)/r requires 9 exponentiations by x, 12 multiplica-

tions in Fq24, 2 special squarings, 2 conjugations to compute the inverses and 7

q-power Frobenius operations. We detail a possible scheduling for the full ex-

ponentiation routine in Table 7.1. Note that we can simply forget about the

difference between the λi and the νi; by leaving out the 3 in the denominators,

we just compute the third power of the pairing.

7.6 Other optimisations

There are hundreds of papers that have helped accelerate pairing computation

to the point it is at today. Of course, we could not delve into the details of

116 Chapter 7. The state-of-the-art

FinalExp Input: fr,Q(P) ∈ Fq24 and loop parameter x

Initialize f ← fr,Q(P),

t0 ← 1/f , m← f , m← m · t0, t0 ← π4
q(m),m← m · t0,

m1 ← mx, m2 ← mx
1 m1 ← m2

1, m1 ← m1, µ7 ← m2 ·m1, µ7 ← µ7 ·m,
µ6 ← µx

7 , µ5 ← µx
6 , µ4 ← µx

5 , µ′7 ← µ7, µ3 ← µx
4 , µ3 ← µ3 · µ′7,

µ2 ← µx
3 , µ1 ← µx

2 , µ0 ← µx
1 , m′ ← m2, µ0 ← µ0 ·m′, µ0 ← µ0 ·m,

f ← πq(µ7), f ← f · µ6, f ← πq(f), f ← f · µ5, f ← πq(f), f ← f · µ4,
f ← πq(f), f ← f · µ3, f ← πq(f), f ← f · µ2, f ← πq(f), f ← f · µ1,
f ← πq(f), f ← f · µ0,

Return fr,Q(P)(q
24−1)/r ← f .

Output: fr,Q(P)(q
24−1)/r

Table 7.1: The final exponentiation for BLS curves with k = 24.

all the optimisations and improvements that are available. For example, since

our exposition is largely concerned with computational efficiency, we have not

covered the work on compressed pairings [SB04,NBS08,Nae09] which targets low

bandwidth environments, or the work by Galbraith and Lin [GL09] which looks

at computing pairings using x-coordinates only.

In addition, a number of papers have looked at operations in a pairing-based

protocol that are not the pairing computation itself, the most important of which

are point multiplications in the pairing-specific groups G1 and G2. In Section 6.3

(and Table 6.2 in particular) we saw that the pairing-friendly curves that are most

useful in practice are those of the form E : y2 = x3+b or E : y2 = x3+ax. In both

of these cases there is a non-trivial endomorphism φ ∈ End(E) that facilitates

faster point multiplications via GLV/GLS scalar decompositions (refer to Exam-

ple 2.2.11). For point multiplications in G1 that take place over the base field,

the standard GLV decomposition can make use of φ to decompose the scalar. For

the more expensive point multiplications in G2 that take place over extension

fields, the GLS technique (which additionally exploits the non-trivial action of

the Frobenius endomorphism π) can be used for higher dimensional decomposi-

tions. We particularly make mention of the work of Scott et al. [SBC+09b] and

Fuentes-Castaeda et al. [FCKRH11], who consider fast hashing to the group G2,

the bottleneck of which is the expensive cofactor scalar multiplication in G2. For

pairings to become widespread in the industry, efficient off-the-shelf solutions to

7.6. Other optimisations 117

all the operations involved in pairing-based protocols need to be available.

Finally, we mention that some recent work has revived the potential of the

Weil pairing in practice [AKMRH11,AFCK+12]. Indeed, since the complexity of

the final exponentiation in the Tate pairing (and its ate-like variants) overtakes

that of the Miller loop at higher security levels, it is natural to reconsider the Weil

pairing for these scenarios. Although several of the Tate-specific optimisations

do not translate across, loop shortening is available in the Weil pairing. Indeed,

Hess presented a general framework for loop shortening in both the Tate and Weil

pairing methodologies [Hes08]. Aranha et al. used this idea to derive Weil pairing

variants that are particularly suited to the parallel environment [AKMRH11],

and actually showed that their new Weil pairing is substantially faster than the

optimal ate pairing when 8 cores are used in parallel.

118 Chapter 7. The state-of-the-art

Chapter 8

Summary

The fundamental computation in ECC is the scalar multiplication which, in the

most straightforward case, computes [m]P from m ∈ Z and P ∈ E via a double-

and-add routine. Computing the Miller loop in the Tate pairing e(P,Q) can

be thought of as an extension of this computation by stipulating that the line

functions used in the scalar multiplication of P are evaluated at Q and accumu-

lated as we proceed to compute [m]P . Thus, those who understand ECC related

computations should find a relatively easy transition to the basics of pairing

computation. This is why we started with a general overview of ECC in Chapter

2, which included an elementary description of the group law, as well as many

optimisations like that of adopting projective coordinates or the GLV technique

which exploits endomorphisms to accelerate the computation of [m]P . Carrying

many ECC related improvements over to the context of PBC is straightforward,

whilst translating other optimisations requires a firm knowledge of the functions

involved in the pairing computation. For example, one could not hope to thor-

oughly understand how or why the (optimal) ate pairing works without knowing

the basics of divisor theory. In Chapter 3 we presented all the divisor theory

that is necessary in preparation for the description of the Weil, Tate and ate-

like pairings. We gave a very detailed description of the r-torsion group on E

in Chapter 4, and illustrated that the availability of different (efficiently com-

putable) maps between order r subgroups give rise to different pairing types. We

adopted the widely accepted argument that Type 3 pairings are most commonly

the preferred setting, thereby defining G1 and G2 as the base field subgroup and

119

120 Chapter 8. Summary

trace-zero subgroup respectively. We finished that chapter by detailing an effi-

cient method of working in G2, namely by exploiting the isomorphism between

the trace-zero subgroup G2 on E and the trace-zero subgroup G′2 on the twisted

curve E ′, which is defined over a smaller field. In Chapter 5 we defined the

Weil and Tate pairings and described Miller’s algorithm which makes crypto-

graphic pairing computations practical. Having described an efficient algorithm

to compute pairings, Chapter 6 looked at the complementary arena of generat-

ing pairing-friendly curves. We discussed that pairing-friendly curves are very

special in general, and cannot be found by searching at random, before giving

a general overview of the many clever methods that have been developed in the

last decade to facilitate their construction. We finished in Chapter 7 by bringing

the reader up to speed with some of the major milestones in efficient pairing

computation, most notably the BKLS-GHS algorithm for the Tate pairing, and

the impressive work on loop shortened versions of the Tate pairing which was

pinnacled by the optimal ate pairing.

Bibliography

[AB10] M. Abdalla and P. S. L. M. Barreto, editors. Progress in Cryptology

- LATINCRYPT 2010, First International Conference on Cryptol-

ogy and Information Security in Latin America, Puebla, Mexico,

August 8-11, 2010, Proceedings, volume 6212 of Lecture Notes in

Computer Science. Springer, 2010.

[ACD+05] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen,

and F. Vercauteren. The Handbook of Elliptic and Hyperelliptic

Curve Cryptography. CRC, 2005.

[AFCK+12] D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. J. Menezes,

and F. Rodŕıguez-Henŕıquez. Implementing pairings at the 192-bit

security level. Cryptology ePrint Archive, Report 2012/232, 2012.

http://eprint.iacr.org/.

[AKL+11] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and

J. López. Faster explicit formulas for computing pairings over or-

dinary curves. In K. G. Paterson, editor, EUROCRYPT, volume

6632 of Lecture Notes in Computer Science, pages 48–68. Springer,

2011.

[AKMRH11] D. F. Aranha, E. Knapp, A. Menezes, and F. Rodŕıguez-Henŕıquez.

Parallelizing the Weil and Tate pairings. In Chen [Che11], pages

275–295.

[AM93] A.O.L. Atkin and F. Morain. Elliptic curves and primality proving.

Mathematics of computation, 61:29–29, 1993.

[BBC+09] J. Balakrishnan, J. Belding, S. Chisholm, K. Eisenträger, K.E.

Stange, and E. Teske. Pairings on hyperelliptic curves. WIN-

121

http://eprint.iacr.org/

122 BIBLIOGRAPHY

Women in Numbers: Research Directions in Number Theory, Fields

Institute Communications, 60:87–120, 2009.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra sys-

tem. I. The user language. J. Symbolic Comput., 24(3-4):235–265,

1997. Computational algebra and number theory (London, 1993).

[Ben10] N. Benger. Cryptographic Pairings: Efficiency and DLP Security.

PhD thesis, Dublin City University, May 2010.

[Ber01] D.J. Bernstein. Multidigit multiplication for mathematicians. Ad-

vances in Applied Mathematics, 2001.

[BGDM+10] J. Beuchat, J. E. González-Dı́az, S. Mitsunari, E. Okamoto,

F. Rodŕıguez-Henŕıquez, and T. Teruya. High-speed software

implementation of the optimal ate pairing over Barreto-Naehrig

curves. In Joye et al. [JMO10], pages 21–39.

[BGN05] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas

on ciphertexts. In J. Kilian, editor, TCC, volume 3378 of Lecture

Notes in Computer Science, pages 325–341. Springer, 2005.

[BGOS07] P. S. L. M. Barreto, S. D. Galbraith, C. O’Eigeartaigh, and

M. Scott. Efficient pairing computation on supersingular abelian

varieties. Des. Codes Cryptography, 42(3):239–271, 2007.

[BJ03] O. Billet and M. Joye. The Jacobi model of an elliptic curve

and side-channel analysis. In M. P. C. Fossorier, T. Hoholdt, and

A. Poli, editors, AAECC, volume 2643 of Lecture Notes in Com-

puter Science, pages 34–42. Springer, 2003.

[BK98] R. Balasubramanian and N. Koblitz. The improbability that an

elliptic curve has subexponential discrete log problem under the

Menezes - Okamoto - Vanstone algorithm. J. Cryptology, 11(2):141–

145, 1998.

[BKLS02] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient

algorithms for pairing-based cryptosystems. In Yung [Yun02], pages

354–368.

BIBLIOGRAPHY 123

[BL07a] D. J. Bernstein and T. Lange. Explicit-formulas database.

http://www.hyperelliptic.org/EFD, 2007.

[BL07b] D. J. Bernstein and T. Lange. Faster addition and doubling on

elliptic curves. In K. Kurosawa, editor, ASIACRYPT, volume 4833

of Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

[BLS02] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic

curves with prescribed embedding degrees. In S. Cimato, C. Galdi,

and G. Persiano, editors, SCN, volume 2576 of Lecture Notes in

Computer Science, pages 257–267. Springer, 2002.

[BLS03] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of

pairing-friendly groups. In M. Matsui and R. J. Zuccherato, editors,

Selected Areas in Cryptography, volume 3006 of Lecture Notes in

Computer Science, pages 17–25. Springer, 2003.

[BLS04] P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementa-

tion of pairing-based cryptosystems. J. Cryptology, 17(4):321–334,

2004.

[BN05] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves

of prime order. In B. Preneel and S. E. Tavares, editors, Selected

Areas in Cryptography, volume 3897 of Lecture Notes in Computer

Science, pages 319–331. Springer, 2005.

[BRS11] D. Boneh, K. Rubin, and A. Silverberg. Finding composite order

ordinary elliptic curves using the Cocks-Pinch method. Journal of

Number Theory, 131(5):832–841, 2011.

[BS10] N. Benger and M. Scott. Constructing tower extensions of finite

fields for implementation of pairing-based cryptography. In Hasan

and Helleseth [HH10], pages 180–195.

[BW05] F. Brezing and A. Weng. Elliptic curves suitable for pairing based

cryptography. Des. Codes Cryptography, 37(1):133–141, 2005.

[CA66] S.A. Cook and S.O. Aanderaa. On the minimum computation time

of functions. PhD thesis, Harvard., 1966.

http://www.hyperelliptic.org/EFD

124 BIBLIOGRAPHY

[CCS07] L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement

protocols from pairings. Int. J. Inf. Sec., 6(4):213–241, 2007.

[Che11] L. Chen, editor. Cryptography and Coding - 13th IMA Interna-

tional Conference, IMACC 2011, Oxford, UK, December 12-15,

2011. Proceedings, volume 7089 of Lecture Notes in Computer Sci-

ence. Springer, 2011.

[CLN11] C. Costello, K. Lauter, and M. Naehrig. Attractive subfamilies

of BLS curves for implementing high-security pairings. In D. J.

Bernstein and S. Chatterjee, editors, INDOCRYPT, volume 7107

of Lecture Notes in Computer Science, pages 320–342. Springer,

2011.

[CM09] S. Chatterjee and A. J. Menezes. On cryptographic protocols em-

ploying asymmetric pairings - the role of psi revisited. IACR Cryp-

tology ePrint Archive, 2009:480, 2009.

[Coh96] H. Cohen. A course in computational algebraic number theory, vol-

ume 138. Springer-Verlag, 3rd printing, 1996.

[CP01] C. Cocks and R.G.E. Pinch. Id-based cryptosystems based on the

Weil pairing. Unpublished manuscript, 2001.

[CSB04] S. Chatterjee, P. Sarkar, and R. Barua. Efficient computation of

Tate pairing in projective coordinate over general characteristic

fields. In C. Park and S. Chee, editors, ICISC, volume 3506 of

Lecture Notes in Computer Science, pages 168–181. Springer, 2004.

[CV11] W. Castryck and F. Vercauteren. Toric forms of elliptic curves and

their arithmetic. J. Symb. Comput., 46(8):943–966, 2011.

[DEM05] R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary

small MOV degree over finite prime fields. J. Cryptology, 18(2):79–

89, 2005.

[Deu41] M. Deuring. Die typen der multiplikatorenringe elliptischer funktio-

nenkörper. Abh. Math. Sem. Hansischen Univ., 14:197–242, 1941.

BIBLIOGRAPHY 125

[Die12] C. Diem. What on earth is “index calculus”? The ECC

blog: http://ellipticnews.wordpress.com/2012/05/07/246/,

May 2012.

[DKS09] L. J. Dominguez Perez, E. J. Kachisa, and M. Scott. Implement-

ing cryptographic pairings: a magma tutorial. Cryptology ePrint

Archive, Report 2009/072, 2009. http://eprint.iacr.org/.

[DL03] I. M. Duursma and H. Lee. Tate pairing implementation for hyper-

elliptic curves y2 = xp-x + d. In C. Laih, editor, ASIACRYPT,

volume 2894 of Lecture Notes in Computer Science, pages 111–123.

Springer, 2003.

[DOSD06] A. J. Devegili, C. O’Eigeartaigh, M. Scott, and R. Dahab. Multi-

plication and squaring on pairing-friendly fields. Cryptology ePrint

Archive, Report 2006/471, 2006. http://eprint.iacr.org/.

[DS10] L. J. Dominguez Perez and M. Scott. Private communication,

November 2010.

[DSD07] A. J. Devegili, M. Scott, and R. Dahab. Implementing crypto-

graphic pairings over Barreto-Naehrig curves. In Takagi et al.

[TOOO07], pages 197–207.

[Edw07] H.M. Edwards. A normal form for elliptic curves. Bulletin of the

American Mathematical Society, 44(3):393–422, 2007.

[FCKRH11] L. Fuentes-Castañeda, E. Knapp, and F. Rodŕıguez-Henŕıquez.

Faster hashing to G2. In Miri and Vaudenay [MV12], pages 412–

430.

[FR94] G. Frey and H.G. Rück. A remark concerning m-divisibility and the

discrete logarithm in the divisor class group of curves. Mathematics

of computation, 62(206):865–874, 1994.

[Fre06] D. Freeman. Constructing pairing-friendly elliptic curves with em-

bedding degree 10. In Hess et al. [HPP06], pages 452–465.

[Fre10] D. M. Freeman. Converting pairing-based cryptosystems from

composite-order groups to prime-order groups. In Gilbert [Gil10],

pages 44–61.

http://ellipticnews.wordpress.com/2012/05/07/246/
http://eprint.iacr.org/
http://eprint.iacr.org/

126 BIBLIOGRAPHY

[Fri05] S. Friedl. An elementary proof of the group

law for elliptic curves. Personal webpage:

http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF,

August 2005.

[FST10] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly

elliptic curves. J. Cryptology, 23(2):224–280, 2010.

[Ful08] W. Fulton. Algebraic curves: an intro-

duction to algebraic geometry (3rd edition).

http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf,

2008.

[Gal01] S. D. Galbraith. Supersingular curves in cryptography. In C. Boyd,

editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer

Science, pages 495–513. Springer, 2001.

[Gal05] S. D. Galbraith. Pairings, volume 317 of London Mathematical

Society Lecture Notes, chapter IX, pages 183–213. Cambridge Uni-

versity Press, 2005.

[Gal12] S. D. Galbraith. Mathematics of Public Key Cryptography. Cam-

bridge University Press, March 2012.

[GHS02] S. D. Galbraith, K. Harrison, and D. Soldera. Implementing the

Tate pairing. In C. Fieker and D. R. Kohel, editors, ANTS, vol-

ume 2369 of Lecture Notes in Computer Science, pages 324–337.

Springer, 2002.

[Gil10] H. Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010,

29th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, French Riviera, May 30 - June

3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer

Science. Springer, 2010.

[GL09] S. D. Galbraith and X. Lin. Computing pairings using x-coordinates

only. Designs, Codes and Cryptography, 50(3):305–324, 2009.

http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf

BIBLIOGRAPHY 127

[GLS11] S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster

elliptic curve cryptography on a large class of curves. J. Cryptology,

24(3):446–469, 2011.

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point

multiplication on elliptic curves with efficient endomorphisms. In

J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Com-

puter Science, pages 190–200. Springer, 2001.

[GMV07] S. D. Galbraith, J. F. McKee, and P. C. Valença. Ordinary abelian

varieties having small embedding degree. Finite Fields and Their

Applications, 13(4):800–814, 2007.

[GP08] S. D. Galbraith and K. G. Paterson, editors. Pairing-Based Cryp-

tography - Pairing 2008, Second International Conference, Egham,

UK, September 1-3, 2008. Proceedings, volume 5209 of Lecture

Notes in Computer Science. Springer, 2008.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for

cryptographers. Discrete Applied Mathematics, 156(16):3113–3121,

2008.

[GS10] R. Granger and M. Scott. Faster squaring in the cyclotomic sub-

group of sixth degree extensions. In Nguyen and Pointcheval

[NP10], pages 209–223.

[Har77] R. Hartshorne. Algebraic Geometry, volume 52 of Graduate texts

in mathematics. Springer-Verlag, 1977.

[Hes08] F. Hess. Pairing lattices. In Galbraith and Paterson [GP08], pages

18–38.

[HH10] M. A. Hasan and T. Helleseth, editors. Arithmetic of Finite Fields,

Third International Workshop, WAIFI 2010, Istanbul, Turkey,

June 27-30, 2010. Proceedings, volume 6087 of Lecture Notes in

Computer Science. Springer, 2010.

[His10] H. Hisil. Elliptic curves, group law, and efficient computation. PhD

thesis, Queensland University of Technology, 2010.

128 BIBLIOGRAPHY

[HLX12] Z. Hu, P. Longa, and M. Xu. Implementing the 4-dimensional

GLV method on GLS elliptic curves with j-invariant 0. Des. Codes

Cryptography, 63(3):331–343, 2012.

[HPP06] F. Hess, S. Pauli, and M. E. Pohst, editors. Algorithmic Num-

ber Theory, 7th International Symposium, ANTS-VII, Berlin, Ger-

many, July 23-28, 2006, Proceedings, volume 4076 of Lecture Notes

in Computer Science. Springer, 2006.

[HSV06] F. Hess, N. P. Smart, and F. Vercauteren. The eta pairing revis-

ited. IEEE Transactions on Information Theory, 52(10):4595–4602,

2006.

[HWCD08] H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Twisted

Edwards curves revisited. In J. Pieprzyk, editor, ASIACRYPT,

volume 5350 of Lecture Notes in Computer Science, pages 326–343.

Springer, 2008.

[HWCD09] H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Jacobi

quartic curves revisited. In C. Boyd and J. M. González Nieto,

editors, ACISP, volume 5594 of Lecture Notes in Computer Science,

pages 452–468. Springer, 2009.

[IT02] T. Izu and T. Takagi. Efficient computations of the Tate pairing

for the large MOV degrees. In P. J. Lee and C. H. Lim, editors,

ICISC, volume 2587 of Lecture Notes in Computer Science, pages

283–297. Springer, 2002.

[JMO10] M. Joye, A. Miyaji, and A. Otsuka, editors. Pairing-Based Cryp-

tography - Pairing 2010 - 4th International Conference, Yamanaka

Hot Spring, Japan, December 2010. Proceedings, volume 6487 of

Lecture Notes in Computer Science. Springer, 2010.

[JQ01] M. Joye and J.J. Quisquater. Hessian elliptic curves and side-

channel attacks. In Cryptographic Hardware and Embedded

Systems—CHES 2001, pages 402–410. Springer, 2001.

[Kar10] K. Karabina. Squaring in cyclotomic subgroups. IACR Cryptology

ePrint Archive, 2010:542, 2010.

BIBLIOGRAPHY 129

[KM05] N. Koblitz and A. Menezes. Pairing-based cryptography at high

security levels. In N. P. Smart, editor, IMA Int. Conf., volume

3796 of Lecture Notes in Computer Science, pages 13–36. Springer,

2005.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers

on automata. In Soviet physics doklady, volume 7, page 595, 1963.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of compu-

tation, 48(177):203–209, 1987.

[Koh11] D. Kohel. Addition law structure of elliptic curves. Journal of

Number Theory, 2011.

[KSS08] E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing Brezing-

Weng pairing-friendly elliptic curves using elements in the cyclo-

tomic field. In Galbraith and Paterson [GP08], pages 126–135.

[Lew12] A. B. Lewko. Tools for simulating features of composite order bilin-

ear groups in the prime order setting. In D. Pointcheval and T. Jo-

hansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in

Computer Science, pages 318–335. Springer, 2012.

[Lic69] S. Lichtenbaum. Duality theorems for curves over P-adic fields.

Inventiones mathematicae, 7(2):120–136, 1969.

[LLP09] E. Lee, H.-S. Lee, and C.-M. Park. Efficient and generalized pairing

computation on abelian varieties. IEEE Transactions on Informa-

tion Theory, 55(4):1793–1803, 2009.

[LMN10] K. Lauter, P. L. Montgomery, and M. Naehrig. An analysis of affine

coordinates for pairing computation. In Joye et al. [JMO10], pages

1–20.

[Lyn07] B. Lynn. On the Efficient Implementation of Pairing-Based Cryp-

tosystems. PhD thesis, Stanford University, June 2007.

[Men93] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer

Academic Publishers, 1993.

130 BIBLIOGRAPHY

[Men05] A. J. Menezes, editor. Topics in Cryptology - CT-RSA 2005, The

Cryptographers’ Track at the RSA Conference 2005, San Francisco,

CA, USA, February 14-18, 2005, Proceedings, volume 3376 of Lec-

ture Notes in Computer Science. Springer, 2005.

[Men09] A. J. Menezes. Asymmetric Pairings. Talk at ECC 2009, University

of Calgary, Canada., August 2009.

[Mil85] V. S. Miller. Use of elliptic curves in cryptography. In H. C.

Williams, editor, CRYPTO, volume 218 of Lecture Notes in Com-

puter Science, pages 417–426. Springer, 1985.

[Mil04] V. S. Miller. The Weil pairing, and its efficient calculation. J.

Cryptology, 17(4):235–261, 2004.

[Min10] H. Minkowski. Geometrie der zahlen, volume 1896. Teubner, 1910.

[MKHO07] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised

versions of the ate and twisted ate pairings. In S. D. Galbraith,

editor, IMA Int. Conf., volume 4887 of Lecture Notes in Computer

Science, pages 302–312. Springer, 2007.

[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit condi-

tions of elliptic curve traces for FR-reduction. IEICE transactions

on fundamentals of electronics, communications and computer sci-

ences, 2001.

[Mon87] P.L. Montgomery. Speeding the Pollard and elliptic curve meth-

ods of factorization. Mathematics of computation, 48(177):243–264,

1987.

[MOV93] A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic

curve logarithms to logarithms in a finite field. IEEE Transactions

on Information Theory, 39(5):1639–1646, 1993.

[MS07] R. Murty and I. Shparlinski. Group structure of elliptic curves over

finite fields and applications. Topics in Geometry, Coding Theory

and Cryptography, pages 167–194, 2007.

http://math.ucalgary.ca/sites/ecc.math.ucalgary.ca/files/u5/Menezes_ECC2009.pdf

BIBLIOGRAPHY 131

[MV12] A. Miri and S. Vaudenay, editors. Selected Areas in Cryptography

- 18th International Workshop, SAC 2011, Toronto, ON, Canada,

August 11-12, 2011, Revised Selected Papers, volume 7118 of Lec-

ture Notes in Computer Science. Springer, 2012.

[Nae09] M. Naehrig. Constructive and computational aspects of crypto-

graphic pairings. PhD thesis, Eindhoven University of Technology,

May 2009.

[NBS08] M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On com-

pressible pairings and their computation. In S. Vaudenay, editor,

AFRICACRYPT, volume 5023 of Lecture Notes in Computer Sci-

ence, pages 371–388. Springer, 2008.

[NIS99] NIST. Recommended elliptic curves for Federal Government Use.

Technical report, National Institute of Standards and Technology,

July 1999.

[NNS10] M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed

records for cryptographic pairings. In Abdalla and Barreto [AB10],

pages 109–123.

[NP10] P. Q. Nguyen and D. Pointcheval, editors. Public Key Cryptography

- PKC 2010, 13th International Conference on Practice and The-

ory in Public Key Cryptography, Paris, France, May 26-28, 2010.

Proceedings, volume 6056 of Lecture Notes in Computer Science.

Springer, 2010.

[PJNB11] G. C. C. F. Pereira, M. A. Simpĺıcio Jr., M. Naehrig, and P. S.

L. M. Barreto. A family of implementation-friendly BN elliptic

curves. Journal of Systems and Software, 84(8):1319–1326, 2011.

[Pol78] J.M. Pollard. Monte Carlo methods for index computation (mod

p). Mathematics of computation, 32(143):918–924, 1978.

[RS02] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryp-

tology. In Yung [Yun02], pages 336–353.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

132 BIBLIOGRAPHY

[SB04] M. Scott and P. S. L. M. Barreto. Compressed pairings. In M. K.

Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Com-

puter Science, pages 140–156. Springer, 2004.

[SB06] M. Scott and P. S. L. M. Barreto. Generating more MNT elliptic

curves. Des. Codes Cryptography, 38(2):209–217, 2006.

[SBC+09a] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and

Ezekiel J. Kachisa. On the final exponentiation for calculating pair-

ings on ordinary elliptic curves. In Shacham and Waters [SW09],

pages 78–88.

[SBC+09b] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and

Ezekiel J. Kachisa. Fast hashing to G2 on pairing-friendly curves.

In Shacham and Waters [SW09], pages 102–113.

[SCA06] M. Scott, N. Costigan, and W. Abdulwahab. Implementing cryp-

tographic pairings on smartcards. In L. Goubin and M. Matsui,

editors, CHES, volume 4249 of Lecture Notes in Computer Science,

pages 134–147. Springer, 2006.

[Sch85] R. Schoof. Elliptic curves over finite fields and the computation of

square roots mod p. Math. Comp, 44(170):483–494, 1985.

[Sco04] M. Scott. Understanding the Tate pairing. Personal webpage:

http://www.computing.dcu.ie/~mike/tate.html, 2004.

[Sco05a] M. Scott. Computing the Tate pairing. In Menezes [Men05], pages

293–304.

[Sco05b] M. Scott. Faster pairings using an elliptic curve with an efficient en-

domorphism. In S. Maitra, C. E. V. Madhavan, and R. Venkatesan,

editors, INDOCRYPT, volume 3797 of Lecture Notes in Computer

Science, pages 258–269. Springer, 2005.

[Sco07a] M. Scott. An introduction to pairings. Talk at ICE-EM RNSA

2007 Cryptography Workshop, Queensland University of Technol-

ogy, Australia, June 2007.

http://www.computing.dcu.ie/~mike/tate.html
http://conf.isi.qut.edu.au/ice-em2007/program/slides/aus0.ppt

BIBLIOGRAPHY 133

[Sco07b] M. Scott. Efficient implementation of cryptographic pairings. Talk

at ICE-EM RNSA 2007 Cryptography Workshop, Queensland Uni-

versity of Technology, Australia, June 2007.

[Sco07c] M. Scott. Implementing cryptographic pairings. In Tsuyoshi Tak-

agi, Tatsuaki Okamoto, and Eiji Okamoto, editors, Pairing-Based

Cryptography – Pairing 2007, volume 4575 of Lecture Notes in

Computer Science, pages 177–196. Springer, 2007.

[Sco11] M. Scott. On the efficient implementation of pairing-based proto-

cols. In Chen [Che11], pages 296–308.

[Sha05] H. Shacham. New Paradigms in Signature Schemes. PhD thesis,

Stanford University, December 2005.

[Sil09] J. H. Silverman. The Arithmetic of Elliptic Curves (2nd Edition).

Number 106 in Graduate texts in mathematics. Springer-Verlag,

2009.

[Sil10] J. H. Silverman. A survey of local and global pairings on elliptic

curves and abelian varieties. In Joye et al. [JMO10], pages 377–396.

[Sma01] N. P. Smart. The Hessian form of an elliptic curve. In Ç. K. Koç,

D. Naccache, and C. Paar, editors, CHES, volume 2162 of Lecture

Notes in Computer Science, pages 118–125. Springer, 2001.

[Sma10] N. P. Smart. ECRYPT II yearly report on algorithms

and keysizes (2009-2010). Technical report, ECRYPT II

– European Network of Excellence in Cryptology, EU FP7,

ICT-2007-216676, 2010. Published as deliverable D.SPA.13,

http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

[Sta07] K. E. Stange. The Tate pairing via elliptic nets. In Takagi et al.

[TOOO07], pages 329–348.

[Sut12] A. V. Sutherland. Accelerating the CM method. LMS Journal of

Computation and Mathematics, 15:172–204, 2012.

[SV07] N. P. Smart and F. Vercauteren. On computable isomorphisms in

efficient asymmetric pairing-based systems. Discrete Applied Math-

ematics, 155(4):538–547, 2007.

http://conf.isi.qut.edu.au/ice-em2007/program/slides/aus2.ppt
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf

134 BIBLIOGRAPHY

[SW09] H. Shacham and B. Waters, editors. Pairing-Based Cryptography

- Pairing 2009, Third International Conference, Palo Alto, CA,

USA, August 12-14, 2009, Proceedings, volume 5671 of Lecture

Notes in Computer Science. Springer, 2009.

[Too63] A.L. Toom. The complexity of a scheme of functional elements real-

izing the multiplication of integers. In Soviet Mathematics Doklady,

volume 3, pages 714–716, 1963.

[TOOO07] T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto, editors.

Pairing-Based Cryptography - Pairing 2007, First International

Conference, Tokyo, Japan, July 2-4, 2007, Proceedings, volume

4575 of Lecture Notes in Computer Science. Springer, 2007.

[Ver01] E. R. Verheul. Evidence that XTR is more secure than supersingu-

lar elliptic curve cryptosystems. In B. Pfitzmann, editor, EURO-

CRYPT, volume 2045 of Lecture Notes in Computer Science, pages

195–210. Springer, 2001.

[Ver06a] F. Vercauteren. Mathematics of Pairings: Part II. Talk at Pairing-

Based Cryptography Workshop, 2006.

[Ver06b] F. Vercauteren. Mathematics of Pairings: Part I. Talk at Pairing-

Based Cryptography Workshop, 2006.

[Ver10] F. Vercauteren. Optimal pairings. IEEE Transactions on Informa-

tion Theory, 56(1):455–461, 2010.

[WP06] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba

algorithm for efficient implementations. Cryptology ePrint Archive,

Report 2006/224, 2006. http://eprint.iacr.org/.

[WS07] C. Whelan and M. Scott. The importance of the final expo-

nentiation in pairings when considering fault attacks. In Takagi

et al. [TOOO07], pages 225–246.

[Yun02] M. Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd

Annual International Cryptology Conference, Santa Barbara, Cali-

fornia, USA, August 18-22, 2002, Proceedings, volume 2442 of Lec-

ture Notes in Computer Science. Springer, 2002.

http://homes.esat.kuleuven.be/~fvercaut/talks/math_pairingII.pdf
http://homes.esat.kuleuven.be/~fvercaut/talks/math_pairingI.pdf
http://eprint.iacr.org/

BIBLIOGRAPHY 135

[ZZH08a] C. Zhao, F. Zhang, and J. Huang. All pairings are in a

group. Cryptology ePrint Archive, Report 2008/085, 2008.

http://eprint.iacr.org/.

[ZZH08b] C. Zhao, F. Zhang, and J. Huang. A note on the ate pairing. Int.

J. Inf. Sec., 7(6):379–382, 2008.

http://eprint.iacr.org/

136 BIBLIOGRAPHY

Index

R-ate pairing, 103

admissable pairing, 49

ate pairing, 103, 105–108

bilinear, 47–49

BKLS-GHS algorithm, 98, 107

Chinese remainder theorem (CRT), 23

CM equation, 87

denominator elimination, 95–98

divisor, 32–46

definition of, 34

degree of, 34

divisor class group, 38

effective, 39

equivalence, 38

function of, 43

group of, 34

of a function, 34–35

Picard group, 38

principal, 36–37

reduced, 39

support of, 34

Edwards curves, 22

elliptic curve, 5–31, 117

r-torsion, 22–23, 50–58

complex multiplication (CM), 27–28

discrete logarithm problem, 18, 23–25, 81–

83

division polynomials, 29–30

endomorphism ring, 27–28

Frobenius endomorphism, 26, 105, 108

general Weierstrass equation, 5

group axioms, 17–18

group law, 5, 8–22

explicit formulas, 13–15

group structure, 22–23

Hasse bound, 25

non-singular, 7

point at infinity, 5, 8–13

point counting, 25–30

short Weierstrass equation, 6

singular, 7

supersingular, 56–58, 85–87

trace of Frobenius, 25

twisted curves, 61–64

embedding degree, 50–51

eta pairing, 103

final exponentiation, 113–115

Galois theory, 53–54

genus, 40–43

GLV/GLS method, 30–31, 117

Hamming weight, 111–112

homogeneous projective coordinates, 12, 19–

20

hyperelliptic curve, 40–43

Karatsuba multiplication, 102

loop shortening, 111

Magma, 3

Miller’s algorithm, 75–80, 98, 99

non-Weierstrass models, 20–22

not supersingular (NSS) curve, 104–105

optimal pairing, 103, 108–111

pairing types, 58–61

137

138 INDEX

Type 1 pairing, 58

Type 2 pairing, 59

Type 3 pairing, 59, 61

Type 4 pairing, 59

pairing-friendly curve, 81–93

ρ-value of, 83

BLS families, 89, 111, 114–115

BN family, 90, 109

definition of, 84

KSS families, 91, 110

MNT criteria, 87

MNT curve, 88

ordinary, 87–92

parameterised families, 87–92

supersingular, 85–87

with high-degree twists, 91

projective coordinates, 98–100

projective space, 11–13

Riemann-Roch Theorem, 38–43

Schoof’s algorithm, 28–30

target group, 48

Tate pairing, 70–75, 95

over finite fields, 72

reduced Tate pairing, 74

Toom-Cook multiplication, 102

towered extension fields, 100

trace map, 52–55

anti-trace map, 55

twisted curves, 61–64

cubic twists, 64

quadratic twists, 63

quartic twists, 64

sextic twists, 64

Weil pairing, 69–70, 95, 117

Weil reciprocity, 44–45

	Front Matter
	Table of Contents
	Symbols and abbreviations

	Introduction
	Elliptic curves as cryptographic groups
	The group law: the chord-and-tangent rule
	The point at infinity in projective space
	Deriving explicit formulas for group law computations
	The group axioms
	Speeding up elliptic curve computations

	Torsion, endomorphisms and point counting
	Chapter summary

	Divisors
	The divisor class group
	A consequence of the Riemann-Roch Theorem
	Weil reciprocity
	Chapter summary

	Elliptic curves as pairing groups
	The r-torsion
	Pairing types
	Twisted curves
	Chapter summary

	Miller's algorithm for the Weil and Tate pairings
	The Weil pairing
	The Tate pairing
	Miller's algorithm
	Chapter summary

	Pairing-friendly curves
	A balancing act
	Supersingular curves
	Constructing ordinary pairing-friendly curves
	Chapter summary

	The state-of-the-art
	Irrelevant factors (a.k.a. denominator elimination)
	Projective coordinates
	Towered extension fields
	Low Hamming weight loops
	The final exponentiation
	Other optimisations

	Summary
	Bibliography

