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Preface

This Manual contains the solutions to selected exercises in the book Fun-

damentals of Analysis by Steven G. Krantz, hereinafter referred to as “the
text.”

The problems solved here have been chosen with the intent of covering the
most significant ones, the ones that might require techniques not explicitly
presented in the text, or the ones that are not easily found elsewhere.

The solutions are usually presented in detail, following the pattern in
the text. Where appropriate, only a sketch of a solution may be presented.
Our goal is to illustrate the underlying ideas in order to help the student to
develop his or her own mathematical intuition.

Notation and references as well as the results used to solve the problems
are taken directly from the text.





Chapter 1

Number Systems

1.1 The Real Numbers

1. Since α is an upper bound for A, −α is a lower bound bound for B. If
there were a number α′ > −α that is a lower bound for B, then −α′

would be an upper bound for A that is less than α. That would be a
contradiction. Hence −α is the infimum (or greatest lower bound) for
B.

Now assume that A is bounded below and let β be the greatest lower
bound. Define B as before to be B = {−a : a ∈ A}. Then −β is an
upper bound for B. If there were a number β ′ < β that is an upper
bound for B, then −β ′ would be a lower bound for A that exceeds β.
That would be a contradiction. Hence −β is the supremum (or least
upper bound) for B.

3. The least upper bound is
√

2. As we know from Theorem 1.7, this
statement makes sense in the context of the real numbers (in fact, in
the proof of that theorem, we essentially define

√
2 to be supremeum

of S). But we know from Pythagoras’s result that
√

2 does not exist
in the rational numbers.

5. The set S is certainly bounded above by the number that is the cir-
cumference of C . The least upper bound p is the irrational number
that we call π. All irrational numbers exists and are well defined in the
real number system. But not in the rational number system.
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7. The set S = {0, 1, 2, 3, . . . } is not bounded above and does not have a
least upper bound. The set T = {0,−1,−2,−3, . . .} is not bounded
below and does not have a greatest lower bound.

10. Any real number x is vacuously an upper bound for ∅. Thus no par-
ticular real number x can be the least upper bound (since x− 1 would
also be an upper bound). Thus −∞ is the least upper bound (i.e., it
is less than or equal to all other upper bounds).

Any real number is vacuously a lower bound for ∅. Thus no particular
real number can be the greatest lower bound (since x + 1 would also
be a lower bound). Thus +∞ is the greatest lower bound (i.e., it is
greater than or equal to all other lower bounds).

13. Let α be a point in the image, with α = f(a). Then a is a local
minimum for f , so there is an interval containing a on which f is a
minumum. We may assume that that interval has rational endpoints.
Thus we assign to each point in the image a pair of rational numbers.
We conclude that the image is countable.

1.2 The Complex Numbers

1. If z = x + iy and w = u + iv are complex numbers then

z + w = (x + iy) + (u + iv) = (x + u) + i(y + v)

= (u + x) + i(v + y) = w + z .

Here we used commutativity of real addition in the third equality.

If z = x + iy, w = u + iv, r = m + in are complex numbers then

z + [w + r] = (x + iy) + [(u + iv) + (m + in)]

= (x + iy) + [(u + m) + i(v + n)] = [x + (u + m)] + i[y + (v + n)]

= [(x + u) + m] + i[(y + v) + n] = [((x + u) + i(y + v)] + (m + in)

= [(x + iy) + (u + iv)] + (m + in) = [z + w] + r .

Here we used associativity of the reals in the fourth equality.

The proof of the distributive law is similar.
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3. Let z = x + iy and w = u + iv. We see that

z/w = (x + iy)/(u + iv) = (x + iy) · (u − iv)/[(u + iv)(u− iv)]

= [(xu + yv) + i(−xv + yu)]/(u2 + v2) = [(xu+yv)−i(−xv+yu)]/(u2+v2)

= (x − iy)(u + iv)/(u2 + v2) = (x − iy)/(u− iv) = z/w .

5. Let S be the set of all complex numbers with rational real part. The
mapping

R → S

y 7→ 0 + iy

is one-to-one. Hence card(R) ≤ card(S). Thus S is uncountable.

7. Let
S = {z ∈ C : |z| = 1} .

Consider the function
ϕ : [0, 2π) → S

given by
ϕ(t) = eit .

Then ϕ is one-to-one and onto. So S has the same cardinality as the
interval [0, 2π). We conclude that S is uncountable.

9. Write 1 + i =
√

2eiπ/4. Then the equation

r3e3iθ =
√

2eiπ/4

leads to
reiθ = 21/6eiπ/12 .

Next, the equation
r3e3iθ =

√
2ei9π/4

leads to
reiθ = 21/6ei9π/12 .

Finally, the equation
r3e3iθ =

√
2e17iπ/4
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leads to
reiθ = 21/6ei17π/12 .

Those are all the cube roots.

11. Let p(z) = a0+a1z+a2z
2+· · · akz

k be a polynomial with all coefficients
aj real. Let α be a complex root of p. Then

p(α) = a0+a1α+a2α
2+· · · akα

k = a0 + a1α + a2α2 + · · · + akαk = 0 = 0 .

Hence α is a root of p.

13. Squaring both sides, we see that the curve is equivalent to

|z2| + |z2 − 1| = 1 .

So z2 lies on an ellipse with major axis stretching from 0 to 1. The
picture then is as in the figure.

15. Refer to the solution of Exercise 10. The kth roots of a complex number
α are the roots of the polynomial equation zk − α = 0. There are k
such roots.



Chapter 2

Sequences

2.1 Convergence of Sequences

3. Let ε > 0. Choose N1 > 0 such that, if j > N1, then |aj − α| < ε.
Likewise, choose N2 > 0 such that, if j > N2, then |cj − α| < ε. Let
N = max{N1, N2}. If j > N , then

bj − α ≤ cj − α ≤ |cj − α| < ε .

Likewise,

bj − α > −ε .

Thus

|bj − α| < ε .

That proves the result.

5. The answer is no. We can even construct a sequence with arbitrarily
long repetitive strings and with subsequences that converges to any

real number α. Indeed, order Q into a sequence {qn}. Consider the
following sequence

{q1, q2, q2, q1, q1, q1, q2, q2, q2, q2, q3, q3, q3, q3, q3, q1, q1, q1, q1, q1, q1, · · · }.

In this way we have repeated each rational number infinitely many
times, and with arbitrarily long strings. From the above sequence we
can find subsequences that converge to any real number.

9
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7. Notice that ∫ 1

0

dt

1 + t2
= Tan−1(t)

∣∣∣∣
1

0

=
π

4
.

Now approximate the integral by its Riemann sums.

9. The sequence is majorized by ej/e2j = e−j → 0. So the sequence
converges to 0.

11. The sequence

3 , 3.1 , 3.14 , 3.141 , 3.1415 , 3.14.159 . . .

consists of rational numbers that converge to π.

The sequence

aj = 2 +
√

2/j

consists of irrational numbers that converge to 2.

13. Let β > α be irrational numbers. Let ε = β−α. Let q > 0 be a rational
number that is smaller than ε. Consider the sequence {jq}∞j=−∞. Then
some element jq must lie between α and β.

15. Consider the sequence

1 , 3 , 2 , 4 , 6 , 5 , 7 , 9 , 8 , . . . .

Then it is clear that the sequence tends to infinity, but it does not do
so monotonically.

2.2 Subsequences

1. Clearly any increasing sequence {aj} that is bounded above is bounded.
By Bolzano-Weierstrass it has a convergent subsequence {ajk

}. But
the same argument shows that any subsequence has a convergent sub-
sequence with the same limit α. By Exercise 3 of the last section, the
full sequence converges to α. In fact α is simply the least upper bound
of the sequence.



2.3. LIMSUP AND LIMINF 11

5. The sequence {1, 2, 3, . . . } is bounded below but does not have a con-
vergent subsequence.

The sequence {−1,−2,−3, . . .} is bounded above but does not have a
convergent subsequence.

8. Certainly Proposition 2.13 shows that the bj converge to some limit β
(see also Exercise 1 above). But the limit of the bj is also the lim inf of
the original sequence aj. It follows then that there is a subsequence of
the aj that converges to β.

9. The sequence

3 , 3 , 3.1 , 3 , 3.1 , 3.14 , 3 , 3.1 , 3.14 , 3.141 , 3 , 3.1 , 3.14 , 3.141 , 3.1315 , . . .

has infinitely many different subsequences that converge to π.

11. If it is not true that every subsequence has a convergent subsequence,
then some subsequence lacks a convergent subsequence. But then the
full sequence cannot converge.

The converse direction is similar.

2.3 Limsup and Liminf

1. Consider the sequence

0, 1, 2, 3,
1

2
,
1

3
,
1

4
, . . . .

Then the supremum of this set of numbers is 3, while the limsup is 0.
A similar example applies to the inf and liminf.

3. Let α ≡ lim sup aj and β ≡ lim inf aj. Let Aj = sup{aj, aj+1, aj+2, . . . }
and Bj = inf{aj, aj+1, aj+2, . . .}. Then

sup{1/aj , 1/aj+1, 1/aj+2, · · · } = 1/ inf{aj, aj+1, aj+2, · · · }
= 1/Bj .

Thus lim sup 1/aj = 1/β.

Analogously one shows that lim infj→∞ 1/aj = 1/α.
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5. Let α = lim inf aj = lim sup aj. Seeking a contradiction suppose that
{aj} does not converge. Then there exist ε > 0 and a subsequence
{ajk

} such that for all k
|ajk

− α| > ε.

Let β = lim sup ajk
( 6= α) and ajk`

be a subsequence such that lim`→∞ ajk`
=

β. But {ajk`
} is a subsequence of the original sequence. By Corollary

2.33,
lim inf aj ≤ lim

`→∞
ajk`

≤ lim sup aj

and by the Pinching Principle

lim
`→∞

ajkl
= α.

This contradiction shows that {aj} converges to α.

9. When dealing with lim sup(aj · bj) we have to be careful of the signs.
If aj and bj are all non-negative numbers, then

lim sup(aj · bj) = lim
k→∞

(ajk
· bjk

)

= lim
k→∞

ajk
· lim

k→∞
bjk

≤ α · β.

Notice that in the inequality we have used that fact that all the quan-
tities involved are non-negative (x1 < y1 and x2 < y2 implies x1 · x2 ≤
y1 · y2 only if x1, x2, y1, y2 are non-negative). Using this comment, it
is easy to construct sequences {aj} and {bj} of negative numbers for
which

lim sup(aj · bj) > lim sup aj · lim sup bj.

11. Since the values cos j are dense in the interval [−1, 1], it follows that
the limsup of cos j is +1 and the liminf of the sequence is −1. A similar
assertion holds for the limsup and liminf of sin j.

2.4 Some Special Sequences

1. Let r = p/q = m/n be two representations of the rational number r.
Recall that for any real α, the number αr is defined as the real number
β for which

αm = βn.
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Let β ′ satisfy

αp = β ′q .

We want to show that β = β ′. we have

βn·q = αm·q

= αp·n

= β ′q·n.

By the uniqueness of the (n · q)th root of a real number it follows that

β = β ′,

proving the desired equality. The second equality follows in the same
way. Let

α = γn.

Then

αm = γn·m.

Therefore, if we take the nth root on both sides of the above inequality,
we obtain

γm = (αm)1/n.

Recall that γ is the nth root of α. Then we find that

(α1/n)m = (αm)1/n.

Using similar arguments, one can show that for all real numbers α and
β and q ∈ Q

(α · β)q = αq · βq.

Finally, let α, β, and γ be positive real numbers. Then

(α · β)γ = sup{(α · β)q : q ∈ Q, q ≤ γ}
= sup{αqβq : q ∈ Q, q ≤ γ}
= sup{αq : q ∈ Q, q ≤ γ} · sup{βq : q ∈ Q, q ≤ γ}
= αγ · βγ.
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3. It suffices to notice that, for any fixed x,

lim
j→∞

(
1 +

x

j

)j

= lim
j→∞

{(
1 +

x

j

)j/x
}x

=

{
lim

j/x→∞

{
1 +

x

j

}j/x
}x

= ex.

5. Write

jj

(2j)!
=

j · · · j
1 · · · j · j + 1 · · · 2j

≤ 1

1 · · · j
=

1

j!
.

Then

lim
j→∞

jj

(2j)!
≤ lim

j→∞

1

j!
= 0.

7. We write F (x) = a0 + a1x + a2x
2 + · · · . Here the aj’s are the terms of

the Fibonacci sequence and the letter x denotes an unspecified variable.
What is curious here is that we do not care about what x is. We intend
to manipulate the function F in such a fashion that we will be able to
solve for the coefficients aj. Just think of F (x) as a polynomial with a
lot of coefficients.

Notice that

xF (x) = a0x + a1x
2 + a2x

3 + a3x
4 + · · ·

and
x2F (x) = a0x

2 + a1x
3 + a2x

4 + a3x
5 + · · · .

Thus, grouping like powers of x, we see that

F (x)− xF (x)− x2F (x)

= a0 + (a1 − a0)x + (a2 − a1 − a0)x
2

+(a3 − a2 − a1)x
3 + (a4 − a3 − a2)x

4 + · · · .
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But the basic property that defines the Fibonacci sequence is that
a2 − a1 − a0 = 0, a3 − a2 − a1 = 0, etc. Thus our equation simplifies
drastically to

F (x)− xF (x)− x2F (x) = a0 + (a1 − a0)x.

We also know that a0 = a1 = 1. Thus the equation becomes

(1 − x− x2)F (x) = 1

or

F (x) =
1

1 − x− x2
. (∗)

It is convenient to factor the denominator as follows:

F (x) =
1[

1 − −2
1−

√
5
x
]
·
[
1 − −2

1+
√

5
x
]

(just simplify the right hand side to see that it equals (∗).
A little more algebraic manipulation yields that

F (x) =
5 +

√
5

10

[
1

1 + 2
1−

√
5
x

]

+
5 −

√
5

10

[
1

1 + 2
1+

√
5
x

]

.

Now we want to apply the formula for the sum of a geometric series to
each of the fractions in brackets ([ ]). For the first fraction, we think
of − 2

1−
√

5
x as λ. Thus the first expression in brackets equals

∞∑

j=0

(
− 2

1 −
√

5
x

)j

.

Likewise the second sum equals

∞∑

j=0

(
− 2

1 +
√

5
x

)j

.

All told, we find that

F (x) =
5 +

√
5

10

∞∑

j=0

(
− 2

1 −
√

5
x

)j

+
5 −

√
5

10

∞∑

j=0

(
− 2

1 +
√

5
x

)j

.
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Grouping terms with like powers of x, we finally conclude that

F (x) =
∞∑

j=0

[
5 +

√
5

10

(
− 2

1 −
√

5
x

)j

+
5 −

√
5

10

(
− 2

1 +
√

5
x

)j
]

xj.

But we began our solution of this problem with the formula

F (x) = a0 + a1x + a2x
2 + · · · .

The two different formulas for F (x) must agree. In particular, the
coefficients of the different powers of x must match up. We conclude
that

aj =
5 +

√
5

10

(
− 2

1 −
√

5

)j

+
5 −

√
5

10

(
− 2

1 +
√

5

)j

.

We rewrite

5 +
√

5

10
=

1√
5
· 1 +

√
5

2

5 −
√

5

10
= − 1√

5
· 1 −

√
5

2

and

− 2

1 −
√

5
=

1 +
√

5

2
− 2

1 +
√

5
=

1 −
√

5

2
.

Making these four substitutions into our formula for aj, and doing a
few algebraic simplifications, yields

aj =

(
1+

√
5

2

)j

−
(

1−
√

5
2

)j

√
5

as desired.

9. We can write this sequence as

[(
1 +

1

j2

)j2
]1/j

.

Of course the expression inside the brackets tends to e. So the entire
sequence tends to the same limit as e1/j, which is 1.
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Chapter 3

Series of Numbers

3.1 Convergence of Series

1. (a) Notice that
22j+2/(j + 1)!

22j/j!
=

4

j
.

Then, by the Ratio Test for Convergence, the series converges.

(b) We use the Ratio Test again:

(
2(j + 1)!

)
/
(
3(j + 1)

)
!

(2j)!/(3j)!
=

(2j + 2)!

(3j + 3)!
· (3j)!

(2j)!

=
(2j + 2)(2j + 1)

(3j + 3)(3j + 2)(3j + 1)

≤ (2j + 2)2

(3j)3

≤ 1

27

for j large enough. Thus the series converges.

(c) Write jj = ej ln j. Then
(j+1)!

(j+1)(j+1)

j!
jj

.

Then limj→∞
aj+1

aj
= 1/e and the series converges.

19
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(d) We use Abel’s criterion. Let aj = (−1)j and bj = 1
3j2−5j+6

for all
j. Then bj ≥ bj+1 and limj→∞ bj = 0. Also the partial sums of
the aj’s remain bounded by 1. Thus the series converges.

(e) Notice that
2j − 1

3j2 − 2
≥ 2j − 1

3j2
≥ j

3j2
=

1

3j
.

Since the series
∑∞

j=1
1
3j

diverges, so also does
∑∞

j=1
2j−1
3j2−2

.

(f) We use the Comparison Test again. Now

2j − 1

3j3 − 2
≤ 2j

3j3 − 2
≤ 2j

j3
=

2

j2
.

Since
∑∞

j=1
2
j2 converges, so also does

∑∞
j=1

2j−1
3j3−2

.

(g) This is comparable to
∑

1/|1 + log j|j−1. That in turn converges
by the root test.

(h) This converges by the integral test.

3. If
∑

bj converges then bj → 0. Therefore 1/[1+bj ] → 1. Thus
∑

1/[1+
bj] cannot converge.

5. FALSE. Let aj = j2.

7. Let bj = 2j . Then
∑

j bj diverges and also
∑

j 2−jbj diverges.

9. Refer to Exercise 2. It follows that
∑

j a4
j will converge. For a similar

reason,
∑

j a3
j will converge.

11. Let aj = (−1)j/j and bj = (−1)j/j. Then
∑

j aj converges and
∑

j bj

converges, but
∑

j ajbj diverges.

3.2 Elementary Convergence Tests

1. If j is large then bj is very small. So p(bj) is comparable to ambm
j , where

the mth term is the lowest order term of the polynomial. But clearly∑
bm
j converges by the Comparison Test.

3. With the Root Test both series give limit 1. With the Ratio Test both
series give limit 1.
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9. For aj positive this is true just because aj/j ≤ aj so the Comparison
Test applies.

11. The Integral Test, together with integration by parts, can often handle
such series. Also you can use the Comparison Test.

3.3 Advanced Convergence Tests

1. We see that bj/(1 − bj) ≤ 2bj . So the convergence follows from the
Comparison Test.

3. By the Cauchy-Schwarz inequality,

N∑

j=1

(bj)
1/2 · 1

jα
≤

N∑

j=1

bj ·
N∑

j=1

1

j2α
.

Both series on the right converge.

When α = 1/2, consider the example given by bj = 1/(j · [log(j +1)]3/2.
The product series will then diverge.

5. Clearly (−1)3j = [(−1)3]j = (−1)j. Hence the partial sums of (−1)3j

are bounded, and the aj → 0. So Abel’s test applies and the series
converges.

7. Clearly sj converges to some positive number σ. Thus sj · bj is compa-
rable to σ · bj. So

∑
sj · bj converges. Also 1+ sj converges to 1+σ. So

bj/(1 + sj) is comparable to bj/(1 + σ). Thus
∑

bj/(1 + sj) converges.

9. It must be that the positive summands from among the bj form a
divergent series and the negative summands from among the bj form
a divergent series. Fix a real number α. Add up enough (but finitely
many) of the positive bj so that the sum just exceeds α. Then add
on enough of the negative terms (but finitely many) so that the sum
is just less than α. Keep alternating in this fashion. The resulting
rearrangement will converge to α.

11. We use the Mean Value Theorem to estimate the numerator by

3 · 1

2
· (2j + 3)−1/2 · 2 .
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So the fraction being summed has size

C · 1

(j3/4 · √2j + 3
.

this converges by the Comparison Test.

3.4 Some Special Series

1. Consider the formula

(j + 1)3 − j3 = 3j2 + 3j + 1 .

Sum both sides from j = 1 to N . The lefthand side telescopes and we
get

(N + 1)3 − 1 = 3
N∑

j=1

j2 + 3
N∑

j=1

j +
N∑

j=1

1 .

Using Gauss’s formula for the second sum on the right, and evaluating
the third sum explicitly, we get

(N + 1)3 − 1 = 3

N∑

j=1

j2 =
3N(N + 1)

2
+ N .

Now we may solve for the sum that we seek and we find that

N∑

j=1

j2 =
2N3 + 3N2 + N

6
.

The formulas for the sum of the first N cubes or the first N quartics
are derived similarly.

3. This series majorizes
∑

j 1/j. So it diverges.

5. If the polynomial is constant then of course the series diverges. If
the polynomial has degree at least 1, then |p(j)| is comparable to the
absolute value of its lead term for j large. Thus, if the degree is 1,
then the series diverges. If the degree is greater than 1, then the series
converges. term
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9. Of course the integers are a countable set. It is easy to see then that,
for any k, the polynomials of degree k with integer coefficients form a
countable set. Therefore the set of all polynomials with integer coeffi-
cients forms a countable set. Each such polynomial has finitely many
roots. So the set of all roots of all polynomials with integer coeffi-
cients (that is, the algebraic numbers) forms a countable set. Since the
reals are uncountable, we conclude that there are uncountably many
transcendental numbers.

11. The Cauchy-Schwarz inequality shows that, if
∑

j b2
j converges then

the given series converges. Alternatively, by the Comparison Test, if
bj < j−α for some α > 0 then the series converges.

3.5 Operations on Series

1. Since bj → 0, it follows that |ajbj| ≤ |aj for j large. So
∑

ajbj will
converge absolutely.

3. We see that

cn =
n∑

j=0

ajbn−j =
n∑

j=0

1

2j
· 1

4n−j
.

It would be difficult to calculate this sum explicitly.

5. If p(x) = p0+p1x+p2x
2+· · ·+pkx

k and q(x) = q0+q1x+q2x
2+· · ·+qkx

k,
then

p(x) · q(x) = p0q0 + (p0q1 + p1q0)x + (p0q2 + p1q1 + p2q0)x
2 + · · · etc.

We see that the coefficients of the product polynomial are the same as
those in the Cauchy product.

7. Since
∑

j 1/jα diverges for all 0 < α < 1, we see that there are uncount-

ably many different divergent series. Since
∑

j 1/jβ converges for all
0 < β < 1, we see that there are uncountably many different convergent
series.

9. If
∑

j aj converges then aj → 0. Hence eaj → 1. So the series
∑

j eaj

cannot converge.
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11. If α =
∑

ajx
j, then we may think of

exp(α)

as either
e

P

ajxj

or as
∞∏

j=0

exp(ajx
j) .

Infinite products of this type are studied in a complex analysis course.



Chapter 4

Basic Topology

4.1 Open and Closed Sets

1. Let t ∈ T . Choose s as in the definition of T . Let ε′ = ε−|s−t|. Then it
follows from the triangle inequality that the interval (t− ε′, t + ε′) ⊆ T .
So T is open.

3. Let Xj = [1/j, 1 − 1/j]. Then ∪jXj = (0, 1).

5. Let
I = {I = (a, b) : a, b ∈ Q}.

We first prove that each interval can be written as the union of elements
in I. Let (α, β) be a bounded interval, {an} and {bn} sequences of
rational numbers such that

an ≥ α, and bn ≤ β for all n

and
an → α, and bn → β as n −→ ∞.

Then

(α, β) =
∞⋃

n=1

(an, bn).

Notice that the same proof applies to the cases β = −∞ and α = ∞.
Then any open interval can be writen as countable union of elements
of I.

25
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Finally, let E be any open set in R. By Proposition 3 in the text we
know that

E =
∞⋃

n=1

Jn,

where the Jn’s are intervals. By the above argument, for each n we
have

Jn =
∞⋃

j=1

In
j , where In

j ∈ I.

This concludes the proof.

7. The set [0, 1) is not open, but it is also not closed. The set is not closed,
but it is also not open.

9. Let E = [0, 1] ∪ [2, 3] ∪ [4, 5] ∪ · · · and F = [1.1, 1.9] ∪ [3.01, 3.99] ∪
[5.001, 5.999] ∪ · · · . Then each of E and F is closed, but the distance
between the two sets is 0.

4.2 Further Properties of Open and Closed

Sets

1. By definition, S is the intersection of all closed sets that contain S. So
certainly S contains S. Since the intersection of closed sets is closed,

so certainly is S closed. Now let x ∈ S \
◦
S . Let U be any neighborhood

of x. If U were disjoint from the interior then x could not be in the
boundary. So U intersects the interior. If U were disjoint from the
complement of S, then U would lie in S. But then x would be an
interior point of S. That is impossible. So U intersects the complement.
Thus x is in the boundary.

3. If x is in the boundary of S then any neighborhood U of x contains
points of S and points of cS. Thus any neighborhood U of x contains
points of c(cS) and points of cS. So x is in the boundary of cS. The
argument in the other direction is the same.
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5. Let Uj = (−1/j, 1 + 1/j). Then each Uj is open, but their intersection
is [0, 1], which is closed. Let Vj = (0, 1) for each j. Then each Vj is
open but their intersection is (0, 1), which is also open.

7. If x is a non-isolated boundary point of S, then every neighborhood of x
must contain points of S other than x itself. Thus x is an accumulation
point off S.

9. Let S = {(x, y) ∈ R2 : y = 1/x, x > 0}. Then this set is closed. But
the projection of S to the x axis is {x ∈ R : 0 < x < ∞}, which is
open.

11. The distance is 1/6.

4.3 Compact Sets

1. The point here is that ε is the same for all x ∈ K. For each x, let εx

be such that Ix = (x − εx, x + εx) ⊆ U . The collection {Ix}x∈K is a
covering of K. Select a finite subcovering Ix1, . . . , Ixn. Let

ε = min{εx1, . . . , εxn}.

Then, for all x ∈ K,

(x− ε, x + ε) ⊆ (x − εxj
, x + εxj

) (for some j)

⊆ Ixj

⊆ U.

3. Let K be compact and E be closed. Then K ∩E is closed. Also K ∩E
is a subset of K so it is bounded. Therefore K ∩ E is compact.

5. If K ⊆ R is compact then it is closed. So R \ K is open. Also K is
bounded. So R\K is unbounded. Thus R\K is definitely not compact.

7. Fix an open set U . Let

Kj = {x ∈ U : dist(x, cU) ≥ 1/j} ∩ {x ∈ R : |x| ≤ j} .

Then Kj is closed because it is is defined by non-strict inequalities.
And it is bounded because it is contained in an interval of radius 2j.
So it is compact. Also plainly ∪Kj = U .
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9. The union of finitely many closed sets is closed. The union of finitely
many bounded sets is bounded. That does the job.

11. For each x ∈ K, let Bx be the open interval with center x and radius
δ. Then {Bx}x∈K is an open covering of K. Since K is compact, there
is a finite subcovering.

4.4 The Cantor Set

1. If x is a point of the Cantor set and U any neighborhood of x then U
will intersect the complement. So the Cantor set has no interior.

3. The lengths of the intervals removed in this fashion are

1

5
+

2

25
+

4

125
+ · · · =

1

5

∞∑

j=0

2j

5j
=

1

5

∞∑

j=0

(
2

5

)j

=
1

5
· 1

1 − 2/5
=

1

3
.

So the total length of the intervals removed is 1/3. So this is clearly
a different set from the classical Cantor ternary set. This new set has
length 2/3. The same proof shows that it is uncountable. The same
proof shows that it is perfect.

5. Start out with the closed unit square U = [0, 1] × [0, 1]. At the first
step, remove an open square, centered at (1/2, 1/2), of side 1/3. At the
next step, remove four squares of side 1/9. And so forth.

7. Just by counting, the set of points with finite ternary expansions is
countable. The set of points with infinite ternary expansions is un-
countable.

9. The sequence should be lacunary. That is, aj+1 = λaj for some 0 <
λ < 1.

4.5 Connected and Disconnected Sets

3. Let S be the rational numbers in [0, 1]. Note that if x, y are distinct
points of S then there is an irrational number β between them. Let
U = {x ∈ S : x < β} and let V = {x ∈ S : x > β}. Then U and V
disconnect S. But clearly the closure of S is [0, 1].
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5. If A and B are disjoint then the answer is clearly “no.” If A and B are
not disjoint then we are taking the union of two intervals with nontrivial
intersection. This union will be another interval, hence connected.

7. The sets B(qj, rj), where qj are points with rational coordinates and rj

are rational numbers (and B stands for the ball with center the first
entry and radius the second entry), then each B(qj, rj) is connected.
But the topology for which this is a basis is the usual topology on Rn.
That includes both connected and disconnected open sets.

9. Refer to Exercise 5.

11. Write R = {rational numbers} ∪ {irrational numbers}. Then, just as
in Exercise 3, each of these sets is totally disconnected.

4.6 Perfect Sets

1. Let Sj = R \ [0, 1/j]. Then each Sj is open. Also S1 ⊆ S2 ⊆ S3 ⊆ · · · .
But ∪jSj = R\{0}. In fact the same argument shows that this assertion
is never true.

3. Yes, and this is a direct verification.

5. Let S be the set of rational numbers in [0.1] and let T be the set of
irrational numbers in [0, 1]. Then S ∪ T is perfect. But neither S nor
T is perfect.

7. That this new set is topologically like the Cantor set is obvious. A
simple calculation with geometric series shows that this new set has
length 6/7.

9. Let A be the set of condensation points for S. Let x ∈ A. Let U be
any neighbourhood of x. Let a ∈ A ∪ U . Then U is a neighbourhood
of a. Thus U contains uncountably many points of S. We have proved
that in any neighbourhood of x there are uncountably many points of
A, i.e. x ∈ A. We conclude that A is closed. The set A can be empty,
for instance, when A is only countable. Actually, A is non-empty if
and only if S is uncountable. In order to prove that S uncountable
implies A non-empty, just repeat the proof of the Bolzano-Weierstrass



30 CHAPTER 4. BASIC TOPOLOGY

theorem. In this way we obtain a point in any neighborhood of which
there are uncountably many points of S.

Now we want to show that for S uncountable, the set A of its condensa-
tion points is perfect. Indeed, we know that A is closed and non-empty,
so we need only show that every point of A is an acculation point for
A. We make the following claim: An uncountable subset of R has more
than one accumulation points (indeed it has infinitely many). Assume
the claim for moment. Let x ∈ A. Let U be a neighbourhood of x.
Then there are uncountably many points of S in U ∩ S. Let y be an
accumulation point of U ∩ S that is different from x. Then y ∈ A.
Since in each neighborhood of x we can find an element of A, it follows
that x is an accumulation point for A. Then A is perfect, if we prove
the claim.

To prove the claim, argue by contradiction. Suppose that {sλ} is an
uncountable set contained in [0, 1] and that the only accumulation point
is 1 (the general case can be easily reduced to this one). Then, for each
n, the set [0, 1 − 1

n
] contains at most finitely many points sλ. But

[0, 1) = ∪∞
n=1[0, 1 − 1

n
], so there cannot be uncountably many points of

{sλ} in [0, 1].
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Chapter 5

Limits and Continuity of
Functions

5.1 Basic Properties of the Limit of a Func-

tion

1. Let ` = limx→c f(x) and let m = limx→c g(x). Let ε > 0. Choose δ1 > 0
so that 0 < |x− c| < δ1 implies that |f(x)− `| < ε. Also choose δ2 > 0
so that 0 < |x−c| < δ2 implies that |g(x)−m| < ε. Let δ = min(δ1, δ2).
If |x − c| < δ then

` ≤ f(x) + ε ≤ g(x) + ε ≤ m + ε + ε .

So
` ≤ m + 2ε .

Since this is true for any ε > 0, we conclude that

` ≤ m .

There is no improvement of we assume that f(x) < g(x) for x ∈ A. To
see this, let A = (−1, 0) ∪ (0, 1), c = 0, f(x) = −x2, g(x) = x2. Then
f(x) < g(x) for all x ∈ A yet limx→c f(x) = 0 = limx→c g(x).

3. Suppose that limx→c f(x) = ` and limx→c f(x) = m. Let ε > 0. Choose
δ1 such that 0 < |x − c| < δ1 implies that |f(x) − `| < ε. Also choose
δ2 such that 0 < |x− c| < δ2 implies that |f(x) − m| < ε. Then

|` − m| ≤ |` − f(x)| + |f(x)− m| < ε + ε .

33
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Since this is true for any ε > 0, we conclude that ` = m.

7. The Dirichlet function is

f(x) =

{
1 if x ∈ Q ,
0 if x 6∈ Q .

Then f is discontinuous at every real number.

9. If c is any real then limx→c− f(x) ≤ limx→c+ f(x). If in fact the left
one-sided limit is strictly less than the right one-sided limit, then there
is a rational number between the two limits. So there are at most
countably many such points. At any point c where the two one-sided
limits agree, the function is continous. So the function is continuous
at uncountably many points and discontinuous at at most countably
many points.

5.2 Continuous Functions

1. Let ε > 0. Choose δ = [ε/C ]1/α. If |s − t| < δ, then we see that

|f(s) − f(t)| ≤ C · |s − t|α < C · δα = C · ([ε/C ]1/α)α = ε .

So f is uniformly continuous.

3. Because if c is isolated and δ > 0 is small then the set of x with
0 < |x − c| < δ would be empty.

5. If f were not bounded then there would be a sequence aj in the com-
pact set so that f(aj) → ±∞. But the domain is bounded, so some
subsequence ajk

converges to a limit a0. Then f(ajk
) → f(a0), and

that is a contradiction.

7. Let the closed set be R and let the function be Tan−1x. Then the image
is the interval (−π/2, π/2).

9. The continuous image of a connected set is connected. So f((a, b))
will be an interval. It can be an open interval, a closed interval, or a
half-open interval.

11. A function f : R → R is continuous if the inverse image f−1(E) of any
closed set E is closed.
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5.3 Topological Properties and Continuity

1. No, but it follows that f is nonnegative at all x. For example, let
f(x) = |x−π|. This function is positive at all rational x. But f(π) = 0.

3. Let x, y ∈ R. Then, for any s ∈ S,

|x− s| ≤ |x − t|+ |t − s| .

This, taking the infimum over s on the left,

f(x) ≤ |x − t|+ |t − s| .

Now taking the infimum over t on the right gives

f(x) ≤ f(t) + |t− s| .

A similar argument shows that

f(t) ≤ f(x) + |t− s| .

Putting these two inequalities together yields that

|f(t) − f(x)| ≤ |t− s| .

This shows that f satisfies a Lipschitz condition, so is uniformly con-
tinuous.

7. Set g(x) = f(x)− x. If f does not have a fixed point then we see that
f(0) > 0 and f(1) < 1. As a result, g(0) > 0 and g(1) < 0. By the
Intermediate Value Property, there is a point ξ between 0 and 1 such
that g(ξ) = 0. But then f(ξ) = ξ.

11. The image f(A) can be any number of intervals between 0 and k. Just
for instance, if f(x) = sinx and A = [0, π/6]∪ [π/4, π/2]∪ [9π/4, 5π/2],
then f(A) = [0, 1/2] ∪ [

√
2/2, 1]. Small variations of this example can

vary

13. Let U = (−1, 1) and f(x) = x2.
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5.4 Classifying Discontinuities and Monotonic-

ity

1. Define

f(x) =

{
−1 if x < 0
1 if x ≥ 0 .

and

g(x) =

{
1 if x < 0
−1 if x ≥ 0 .

Then each of f and g is discontinuous at the origin but f + g ≡ 0 so is
continuous at all points.

Notice that F (x) = ef(x) and G(x) = eg(x) are both discontinuous at
the origin. But F (x) · G(x) ≡ 1 so is continuous at all points.

If you replace G in the last paragraph by 1/G, then you can replace
the product by the quotient.

7. If f has a discontinuity of the first kind at c, then the left limit and the
right limit at c disagree. So one can slip a rational number between
these two limits. This assigns a rational number to each discontinuity
of the first kind. So the set of these discontinuities is countable.

9. Let A = {a1, a2, . . . }. Define

f(x) = max{aj : aj ≤ x} .

Then f will be step function with discontinuities of the first kind at
each of the aj.

10. Define

f(x) =






x − 1 if −∞ < x < 0
x if 0 ≤ x < 1
x − 2 if 1 ≤ x < 2
x − 1 if 2 ≤ x < ∞ .

Then f is one-to-one and onto from R to R but f is not monotone
increasing. Of course this particular f is not continuous, much less
continuously differentiable.

In case f is continuously differentiable and maps R to R one-to-one
and onto, suppose there is an interval on which f is both monotone
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increasing and monotone decreasing. Then f would have to have a
local extremum in the interval, so it cannot be one-to-one. Thus f
must be monotone on every interval. By connectivity, f is globally
monotone.

11. The continuity is straightforward. It is also easy to check that f ′′(x) ≥ 0
implies convexity as defined here.
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Chapter 6

Differentiation of Functions

6.1 The Concept of Derivative

1. If

f(x) =

{
−1 if x ≤ 0
1 if 0 < x ,

then f2 ≡ 1. So f2 is differentiable at 0 but f is not. So the implication
fails when k = 2.

For k = 3, if f(x) 6= 0 and f3 is differentiable near x then f is contin-
uous near x. So f is nonvanishing near x. Thus we may write

f(x) = [f3(x)]1/3

to see that f must be differentiable at x.

Similar negative arguments hold for k even and positive arguments hold
for k odd.

3. The function f is left differentiable at c if

lim
x→c−

f(x) − f(c)

x− c

exists and is finite. Right differentiability is defined similarly.

The function is left continuous at c if

lim
x→c−

f(x) = f(c) .

39
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Right continuity is defined similarly.

If f is left differentiable at c and the left derivative is α then

lim
x→c−

f(x) − f(c)

x − c
= α

so
lim

x→c−
(f(x) − f(c)) = lim

x→c−
(x − c) · α = 0 .

Hence f is left continuous at c.

The proof for right differentiability implying right continuity is similar.

5. Let

f(x) =

{
x4/3 sin(1/x) if x 6= 0
0 if x = 0 .

Then it is easy to see that f is continuous at the origin, but its derivative
has a discontinuity of the second kind at the origin.

7. Let f be the function from Exercise 5 and define

g(x) = x + f(x) .

This g is a counterexample.

9. Since differentiable functions only have discontinuities of the second
kind, the answer is “yes.”

6.2 The Mean Value Theorem and Applica-

tions

1. Suppose that f takes a local maximum at some x > 0. We may even
suppose that this maximum is one-sided on the left. Scaling the coor-
dinates, we may assume that 0 < x < 1. Then

|f(x)| =

∣∣∣∣
∫ x

0

f ′(t) dt

∣∣∣∣

≤
∫ x

0

|f ′(t)| dt

≤
∫ x

0

|f(t)| dt

≤ x · f(x) .
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If f(x) 6= 0, then we may conclude that 1 ≤ x, and that is a contradic-
tion. So f(x) = 0 and f is the identically zero function.

3. If f is not monotone, then there are points a < b < c in I such that
f(b) does not lie between f(a) and f(b) inclusive. But then either
f(b) < f(a) (in which case f has a local minimum between a and b) or
f(b) > f(c) (in which case f has a local maximum between a and b).
Contradiction.

4. Let f(x) = lnx and g(x) = x−α. Notice that f(1) ≤ g(1) and

f ′(x) =
1

x
≤ 1

α
·
(
αxα−1

)
=

1

α
g′(x)

for x ≥ 1. Now, by the fundamental theorem of calculus, it follows that
f(x) ≤ g(x) for x ≥ 1.

We see that the constant is 1/α. If the constant were independent of
α then we could let α → 0 and conclude that lnx is bounded, which is
false.

5. Write f ′′(t) ≥ c and integrate both sides from 1 to x. We obtain

f ′(x) − f ′(1) ≥ c(x − 1) .

Now replace x by t and integrate both sides again from 2 to x. The
result follows.

7. Let f(x) =
√

x. By the Mean Value Theorem,

f(x + 1) − f(x) = 1 · f ′(ξ)

for some x < ξ < x + 1. Thus, for x large and positive,

√
x + 1 −√

x =
1√
ξ
→ 0

as x → +∞.

9. Similar to Exercises 7 and 8.
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6.3 More on the Theory of Differentiation

1. We prove the inequality with the constant C replaced by 2C . Then,
using the results in Chapter 8, we show that we can actually obtain the
constant to be exactly C . We apply the Mean Value Theorem twice,
to f and to f ′. Write
∣∣∣∣
f(x + h) + f(x − h) − 2f(x)

h2

∣∣∣∣ =

∣∣∣∣
(f(x + h) − f(x)) − (f(x) − f(x − h))

h2

∣∣∣∣

=

∣∣∣∣
h · f ′(t)− h · f ′(s)

h2

∣∣∣∣

for some t between x and x + h and some s between x and x− h. This
last equals

=

∣∣∣∣
f ′(t)− f ′(s)

h

∣∣∣∣

=

∣∣∣∣f
′′(y)

t − s

h

∣∣∣∣

≤ 2|f ′′(y)|
≤ 2C.

This gives the result with constant 2C.

Now we apply the Fundamental Theorem of Calculus (Theorem 7.19
in the text). For all x and h it is easy to see that

f(x + h) + f(x − h) − 2f(x) = f(x + h) − f(x) − (f(x) − f(x − h))

=

∫ x+h
2

x−h
2

f ′(t +
h

2
) − f ′(t − h

2
)dt

=

∫ x+h
2

x−h
2

∫ t+h
2

t−h
2

f ′′(u)dudt.

Then, let sup |f ′′(x)| ≤ C . We have

|f(x + h) + f(x + h) − 2f(x)| ≤
∫ x+h

2

x−h
2

∫ t+h
2

t−h
2

|f ′′(u)|dudt

≤ C · h2.
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Thus ∣∣∣∣
f(x + h) + f(x − h) − 2f(x)

h2

∣∣∣∣ ≤ C.

3. By differentiating directly, we can see that |x|` is in C`−1,1.

5. The usual proof of the Mean Value Theorem shows that the Mean
Value Theorem is true for left derivatives. Thus if a function has left
derivative zero at every point then it is constant.

7. Let f(x) = x · ln |x|. By the Mean Value Theorem,

|f(h) − f(ε)| = |h − ε||f ′(ξ)|

for some ε < ξ < h. Thus

|f(h) − f(ε)| ≤ |h − ε|(1 + | ln ξ|) .

Now, as in the solution of Exercise 4 in the last section, the righthand
side is ≤ Cα|h − ε|α for any 0 < α < 1. Of course the product of the
two functions is infinitely differentiable.

A similar argument shows that g(x) = x/ ln |x| is in Lipschitz 1.

9. The Weierstrass nowhere differentiable function has this property.

11. Let k > `. Define f(x) = |x|`+β , 0 < β < 1. Then f is in C`,β but not
in Ck,α.

If instead k = ` and α > β then let g(x) = |x|`+β , 0 < β < 1. The g is
in C`,β but not in Ck,α.
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Chapter 7

The Integral

7.1 Partitions and the Concept of Integral

1. First suppose that f is non-negative. Fix K > 0. Let δ > 0. If f is
unbounded then there exists an x0 ∈ [a, b] such that f(x0) > 2K/δ.
Let [α, β] be a closed interval of length δ/2 such that [α, β] ⊆ [a, b] and
x0 ∈ [α, β]. Let P = {p0, p1, . . . , pk} be a partition of [a, b] of mesh less
than δ such that two successive pj ’s, say p`−1, p`, are equal to α and β.
Let s1, . . . , sk be selected so that s` = x0. Then

R(f,P) =
∑

j

f(sj)∆j ≥ f(x0) · (β − α) > K.

We see that, no matter how fine the partition, the Riemann sums for
f are unbounded. Hence f is not Riemann integrable.

The argument when f takes both positive and negative values is similar
but technically more complicated. It parallels the proof that if a series
has terms not tending to zero then it must diverge.

3. The function g is continuous on the interval [−1, 1]. So it is certainly
Riemann integrable.

5. Since f is bounded from 0, and is continuous except on a set of measure
0, the function 1/f will also be continuous except on a set of measure
0. So it will be Riemann integrable.
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7. Let

f(x) =

{
1 if x is rational
−1 if x is irrational.

Then f2(x) ≡ 1, so f2 is integrable. But f is discontinuous at every
point, so f is not integrable.

9. Let f be bounded on [a, b] and let {t1, t2, . . .} be its points of discon-
tinuity. Let T = {t, t1, t2, . . .}. We will show that, given any ε > 0,
there exists a partition P such that

∑

j

(sup
Ij

f − inf
Ij

f)∆j < ε .

The plan is the following. We construct a partition that splits into a
small part about the set T and on the remaining big part we use the
continuity of f . For each tj ∈ T, j = 0, 1, 2, . . . , define the interval

Ej =
(
tj − ε2−j−1, tj + ε2−j−1

)
.

Finitely many Ej’s cover T . Let F1, . . . , Fn be these sets. Now we write

n⋃

j=1

Fj = I1 ∪ · · · ∪ IN ,

where the Ij are open intervals. Clearly N ≤ n. The key fact is that

N∑

j=1

∆j =
N∑

j=1

length(Ij)

≤
n∑

j=1

length(Fj)

≤
∞∑

j=1

length(Ej)

=
∞∑

j=1

ε2j

= ε.
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Next, the set A ≡ [a, b] \ ⋃∞
j=1 Ej is compact. By hypothesis, f is

continuous on A. Let δ > 0 be such that so that for x, y ∈ A, |x−y| < δ,
we have |f(x) − f(y)| < ε. Take any partition of A into intervals
of length less than δ/2. Call them I1, . . . , IM . Now the endpoints of
I1, . . . , IN and J1, . . . , JM form a partition of [a, b] : P = {p1, . . . , pL.
Let M = sup{|f(x)| : x ∈ [a, b]}. Notice that | sup f − inf f | ≤ 2M .
Then, writing I ′

j for the intervals induced by P and denoting their
lengths by |I ′

j|, we have

∣∣∣∣∣
∑

j

(sup
I′j

f − inf
I′j

f)|I ′
j|
∣∣∣∣∣ ≤

∣∣∣∣∣∣

∑

Ij

(sup
Ij

f − inf
Ij

f)|Ij|

∣∣∣∣∣∣

+

∣∣∣∣∣
∑

Jk

(sup
Jk

f − inf
Jk

f)|Jk|
∣∣∣∣∣

≤ 2Mε +
∑

Jk

|Jk|

≤ (2M + [a, b]) · ε.

Since ε > 0 was arbitrary, it follows that f is integrable.

11. Let qj be an enumeration of the rationals. Define

fj(x) =

{
1 if x = q` and ` ∈ {1, 2, . . . , j}
0 if otherwise.

Let f be the Dirichlet function. Then fj(x) → f(x) as j → ∞. And
each fj is integrable.
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7.2 Properties of the Riemann Integral

1. For t > a we have

F (t)− F (a)

t − a
− f(a) =

∫ t

a
f(s) ds −

∫ a

a
f(s) ds

t− a
− f(a)

=

∫ t

a
f(s) ds

t − a
− f(a)

=

∫ t

a
[f(s) − f(a)] ds

t− a
.

If we choose ε > 0 and then δ > 0 so small that |s−s′| < δ implies that
|f(s) − f(s′)| < ε then, for |t− a| < δ, we see that this last expression
is majorized by ∫ t

a
ε ds

t − a
= ε .

This shows that the one-sided derivative exists and equals f(a).

The result at the endpoint b is proved similarly.

3. Assume that f is bounded. Let Pε be a partition of the interval [a+ε, b].
Then the Riemann sum R(f,Pε can be augmented to a partition of [a, b]
by just adding the interval [a, a + ε]. That adds a single summand to
the Riemann sum, and the sums will still converge to

∫
f . So no new

Riemann integrable functions arise.

The function x−1/2 can now be integrated on [0, 1] by the method in
the first paragraph.

For j = 1, 2, . . . , define

g(x) = (−1)j · 2j+1 · 1

j
if x ∈ (1/2j+1 , 1/2j ] .

Then it is easy to see that
∫ 1

1/2j g(x) dx gives rise to an alternating

sum
∑

j(−1)j/j. But
∫ 1

1/2j |g(x)| dx gives rise to the sum
∑

j 1/j. The

former converges while the latter does not.
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5. Notice that, by integration by parts,

f̂ (n) =
1

2πn

∫ 2π

0

f ′(x) cos nx dx .

Thus we see that |f̂ (n)| ≤ C/n, and the result follows.

7. This exercise is done just like Exercise 5.

9. Let f be Riemann integrable on [a, b]. Let P be a partition of [a, b]. On
each interval [xj−1, xj] in the partition construct a continuous function
that lies between the min and the max of f on that interval. This gives
a piecewise continous function g that approximates f in the integral
norm. Now use piecewise linear splines to approximate g by a contin-
uous function h. Finally, by the Weierstrass approximation theorem,
approximate h by a polynomial in the uniform norm.

11. If f is a trigonometric polynomial (i.e., a finite linear combination of
exponentials), then the assertion is obvious. For a a more general f ,
use the approximation proved in Exercise 9.
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Chapter 8

Sequences and Series of
Functions

8.1 Partial Sums and Pointwise Convergence

1. If f is bounded from 0, then it works. Say that |f(x)| ≥ c > 0 for all
x ∈ S. Let ε > 0 be less than min{c/2, c4/4}.
Choose N so large that j > N implies that |fj(x) − f(x)| < ε for all
x ∈ S. It follows that |fj(x)| > c/2 for all x ∈ S. Then, for x ∈ S,

∣∣∣∣
1

fj(x)
− 1

f(x)

∣∣∣∣ =

∣∣∣∣
f(x) − fj(x)

fj(x)f(x)

∣∣∣∣ ≤
ε

(c/2)(c)
=

2
√

ε
√

ε

c2
≤ √

ε .

That shows that 1/fj → 1/f uniformly on S.

3. Of course we know that the Taylor series

∞∑

j=0

x2j+1

(2j + 1)!

converges uniformly to sin x on any compact interval. It follows then
that

∞∑

j=0

x4j+2

(2j + 1)!

converges uniformly to sinx2 on any compact interval.
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5. Let f(x) = x2. For k = 1, 2, . . . connect the points (0/2k, (0/2k)2),
(1/2k , (1/2k)2) . . . , ((2k − 1)/2k , ((2k − 1)/2k)2, ((2k/2k, (2k/2k)2) in se-
quence with line segments. Call the resulting function whose graph is
the union of these line segments hk. Using the Mean Value Theorem
together with the uniform continuity of f ′, we see that hk approximates
f uniformly with a degree of accuracy not exceeding 1/2k . So hk → f
uniformly on [0, 1].

7. We see that
∣∣∣∣∣

N∑

j=M

fj(x)

∣∣∣∣∣ =

∣∣∣∣∣

N∑

j=M

∫ x

0

f ′
j(t) dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ x

0

N∑

j=M

f ′
j(t) dt

∣∣∣∣∣ ≤
∫ x

0

∣∣∣∣∣

N∑

j=M

f ′
j(t)

∣∣∣∣∣ dt <

∫ x

0

ε

if M and N are large enough. But that shows that the series for fj is
Cauchy, and hence it converges.

9. It is a standard result that if a power series

∑

j

aj(x − b)j

converges pointwise at a point b∗ 6= b, and if δ = |b∗ − b|, then the
series converges absolutely and uniformly on compact subintervals of
(b − δ, b + δ).

10. The series
∞∑

j=0

x2j+1

(2j + 1)!

converges uniformly on any compact interval to sinx.

11. Refer to Exercise 9. If a power series converges at a point other than
the center, then it converges on an interval.

8.2 More on Uniform Convergence

1. Clearly the partial sums SN are continuous functions that converge
uniformly as a sequence. So the limit function will be continuous.
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3. The functions fj(x) = x + 1/j converge uniformly to the function
f(x) = x uniformly on R. But the functions f2

j (x) = x2 + 2x/j + 1/j2

do not converge uniformly to x2 because of the presence of the terms
2x/j.

We can solve this problem by mandating that the functions be defined
on a compact set. Or we can assume that the functions are uniformly
bounded.

5. This is false. Let fj(x) = −xj. Then these functions satisfy the hy-
potheses, but the limit function is

f(x) =

{
0 if 0 ≤ x < 1
−1 if x = 1 .

7. This is exactly like the proof that a sequence of real numbers is Cauchy
if and only if it converges.

* 9. Call the continuous function f . We may assume that [a, b] = [0, 1]. Let
ε > 0. Choose δ > 0 such that |s − t| < δ implies that |f(s) − f(t)| <
ε. Choose an integer k so large that 1/k < δ. Consider the points
(0/k, f(0, k)), (1/k, f(1/k), . . . , ((k−1)/k, f((k−1)/k)), (k/k, f(k/k)).
Connect these points in sequence with line segments. This gives the
graph of a piecewise linear function h.

By the choice of δ, it is clear that |f(x) − h(x)| < ε for any x ∈ [0, 1].
So we have approximated f uniformly by a piecewise linear function h.

8.3 Series of Functions

1. Suppose that the series
∑

j fj(x) converges pointwise on an open inter-
val I and that

∑
j f ′

j(x) converges uniformly to a limit function g on I .
Then the sum function f is differentiable and f ′ = g. This is proved
by applying Theorem 8.13 to the partial sums of this series.

3. A polynomial p of degree at least 1 cannot be bounded because, for x
large, p(x) behaves like the lead term of the polynomial. But sinx and
cosx are both bounded by 1. So they cannot be polynomials of degree
at least 1. They also cannot be constant polynomials. So they are not
polynomials at all.
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5. A polynomial of degree k vanishes identically after taking k +1 deriva-
tives. But no derivative of tan x ever vanishes identically, and no deriva-
tive of lnx vanishes identically.

9. Let us consider the series x2 +
∑∞

j=1 2−je−x2
. It clearly converges ab-

solutely and uniformly on compact sets. But there are no convergent
Mj to bound the terms of the series.

11. Apply the theorems in the text to the partial sums of the series.

8.4 The Weierstrass Approximation Theorem

1. Let ε > 0. Choose J so large that, when j > J , then |fj(t)−f(t)| < ε/2
for all real t. Fix x ∈ R. Choose δ > 0 such that if |t − x| < δ then
|f(t) − f(x)| < ε/2. Now if j is so large that 1/j < δ and also j > J
then

|fj(x + 1/j) − f(x)| ≤ |fj(x + 1/j) − f(x + 1/j)| + |f(x + 1/j) − f(x)|
< ε/2 + ε/2

= ε .

That gives the result.

3. Consider the approximation theorem on the interval [−1, 1]. An odd
function on this interval cannot be approximated by even polynomials.

5. The functions fj(x) = 2−j sin(2jx) converge uniformly to zero, but the
derivatives do not. Now use the Weierstrass theorem to approximate
these functions by polynomials.

7. We know that any continuous function is the limit of a sequence of step
functions. This is easily converted to a statement about sums.

11. On the unit circle, a polynomial has the form a0 + a1z + a2z
2 + · · · +

akz
k = a0 + a1e

iθ + a2e
2iθ + · · · + ake

ikθ.
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Chapter 9

Elementary Transcendental
Functions

9.1 Power Series

1. Let f, g be real analytic functions such that the composition f ◦g makes
sense. In order to show that f ◦ g is real analytic we need to show that
for each x0 ∈ dom g, there exist δ > 0 and C and R > 0 such that for
all x ∈ [x0 − δ, x0 + δ],

∣∣∣∣
(f ◦ g)(k)(x)

k!

∣∣∣∣ ≤ C
1

Rk
.

(See the remark at the end of Section 10.2 in the text.) This will show
(see Exercise 8) that the power series of f ◦ g at x0 converges f ◦ g.

We have that

dk

dxk
(f ◦ g) =

∑ k!

i!j! · · ·h!

dm

dxm
f ·
(

g′

1!

)i(
g′′

2!

)j

· · ·
(

g(`)

`!

)h

,

where m = i+j+ · · ·+h and the sum is taken over all integer solutions
of the equation

i + 2j + · · · + `h = k.

This formula is the formula for the kth derivative of a composite func-
tion. Now using the estimate

|f (k)(x)| ≤ C · k!

Rk
,

57
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valid for all real analytic functions with suitable constants C and R,
we have

| dk

dxk
(f ◦ g)(x)| ≤ Ck+1 ·

∑ k!

i!j! · · ·h!
· m!

Rm
· 1

Ri

1

R2j
· · · 1

R`h

≤ Ck+1 ·
∑ k!

i!j! · · ·h!
· m!

R2m

= Ck+1 k!

R2k
,

which implies that f ◦ g is real analytic.

3. By replacing f(x) by f(x − a) we can assume that a = 0. Then

f(x) =
∞∑

j=0

ajx
j

has infinitely many zeroes in (−r, r) that accumulate at 0. Hence,
f(0) = 0 and a0 = 0. Thus,

f(x) =
∞∑

j=0

ajx
j =

∞∑

j=1

ajx
j = x

∞∑

j=1

ajx
j−1

≡ x

∞∑

j=0

bjx
j (bj = aj+1)

≡ x · g(x).

Since f has infinitely many zeroes, so does g. Applying the above
argument to g we find that 0 = b0 = a1. Proceding in this fashion we
obtain that aj = 0 for all j, i.e. f identically 0.

5. We write

sinx

ex
=

x − x3/3! + x5/5! − + · · ·
1 + x + x2/2! + · · ·

= (x − x3/3! + x5/5! − + · · · ) · 1

1 − (−x − x2/2! − x3/3! − · · · )
= (x − x3/3! + x5/5! − + · · · ) · (1 + (−x − x2/2! − x3/3! − · · · ) + (−x − x2/2! −

= x + x2 +
x3

3
− 7x4

6
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7. We write

lnx

sin πx
=

(x − 1) − (x− 1)2/2! + 2(x − 1)3/3! − 3(x − 1)4/4! + · · ·
1 − π2(x − 1)2/8 + π2(x − 1)4/384 + · · ·

=
(x − 1) − (x− 1)2/2! + 2(x − 1)3/3! − 3(x − 1)4/4! + · · ·

1 − (π2(x − 1)2/8 − π2(x − 1)4/384) + · · ·
= ((x − 1) − (x− 1)2/2! + 2(x − 1)3/3! − 3(x − 1)4/4! + · · · )

×(1 + (π2(x − 1)2/8 − π4(x − 1)4/384)

+(π2(x − 1)2/8 − π4(x − 1)4/384)2)

= (x − 1) − (x− 1)2

2
+

(
1

3
+

π2

8

)
(x − 1)3 −

(
1

8
+

π2

16

)
(x − 1)4

9. Guess a solution of the form f(x) =
∑∞

j=0 ajx
j. Substituting this guess

into the differential equation gives

(
∞∑

j=0

ajx
j

)′

+

(
∞∑

j=0

ajx
j

)
= x .

We rewrite the lefthand side as

∞∑

j=1

jajx
j−1 +

∞∑

j=0

ajx
j = x .

We can shift the index in the first sum on the left and combine the two
sums. The result is

∞∑

j=0

[(j + 1)aj+1 + aj]x
j = x .

We see then that

1 · a1 + a0 = 0

2 · a2 + a1 = 1

3 · a3 + a2 = 0
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and so forth. We set a0 = c and then iteratively solve these equations
to learn that

a0 = c

a1 = −c

a2 = (1 + c)/2

a3 = −(1 + c)/6

a4 = (1 + c)/24

and so forth. In the end we find that the solution is

f(x) = c − cx + (1 + c)
∞∑

j=2

(−x)j

j!

= c − cx + (c + 1)e−x − (c + 1) − (c + 1)(−x)

= x − 1 + (c + 1)e−x .

This solution f may be checked explicitly. It is plainly real analytic,
as the power series expansion is written explicitly.

11. Use the formula for the derivative of an inverse function to estimate
the size of the coefficients.

9.2 More on Power Series: Convergence Is-

sues

1. The radius of convergence is R. Just use the Comparision Test.

3. The examples are

(a)
∑∞

j=0 xj

(b)
∑∞

j=0 xj/j

(c)
∑∞

j=0(−x)j

(d)
∑∞

j=0 xj/j2

5. Use the Root Test to compare the radii of convergence. The final state-
ment of the proposition is obtained just by calculating the derivative.
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7. The radius of convergence is still 1. The power series does not converge
at either 1 or −1. The function does not extend to either 1 or −1.

In this case we do not need to pass to complex functions (although we
could). Now it is clear that the function has a singularity at x = 1.
So the radius of convergence of the power series about 0 cannot be any
greater than 1.

9. As in Exercise 6, the function f(x) = 1/(1 + x2) gives an example.

11. Calculate the derivatives of f and evaluate them at x = c.

9.3 The Exponential and Trigonometric Func-

tions

5. Certainly
π

2
= Sin−11 =

∫ 1

0

1√
1 − x2

dx

which is approximated by

k∑

j=1

1√
1 − (j/k)2

· 1

k
.

For k, large enough we would get the approximation.

7. We sketch the proof of (d) just to give the idea.

Now

sin 2s =
∞∑

j=0

(2s)2j+1

(2j + 1)!
,

sin s =
∞∑

j=0

s2j+1

(2j + 1)!
,

and

cos s =
∞∑

j=0

s2j

(2j)!
.

We can calculate 2 sin s cos s by hand and compare the coefficients with
those of sin 2s to verify the identity/
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11. We know that

cos 2x = cos2 x − sin2 x .

Hence

cos 2x = cos2 x − (1 − cos2 x) = 2 cos2 x − 1

so

cos2 x =
1 + cos 2x

2
. (∗)

Also

cos 2x = (1 − sin2 x) − sin2 x

so

sin2 x =
1 − cos 2x

2
.

Thus

tan2 x =
sin2 x

cos2 x
=

1 − cos 2x

1 + cos 2x

so that

tan4 x =
1 − cos 2x + cos2 2x

1 + cos 2x + cos2 2x
.

Now we apply formula (∗) with the role of x played by 2x. We obtain

tan4 x =
1 − cos 2x + 1+cos 4x

2

1 + cos 2x + 1+cos 4x
2

=
3 − 2 cos 2x + cos 4x

3 + 2 cos 2x + cos 4x
.

9.4 Logarithms and Powers of Real Numbers

1. Part (a) follows from the usual formula for the derivative of an inverse.

Part (b) follows from part (a).

Part (c) is immediate by inspection.

Part (d) is immediate by inspection.

Part (e) is true because the graph of the exponential function is asymp-
totic to the negative x-axis.

Parts (f) and (g) correspond naturally to properties of the exponential
that we have already established.
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3. First,

φ(1) = φ(1 · 1) = φ(1) + φ(1)

so that

φ(1) = 0 .

Next,

φ(s + h) − φ(s)

h
=

φ(s(1 + h/s)) − φ(s)

h

=
φ(s) + φ(1 + h/s) − φ(s)

h

=
1

s
· φ(1 + h/s) − φ(1)

h/s
.

And the limit of this last expression is (1/s)φ′(1). That shows that φ
is differentiable at any point s.

5. We write
jj/2

j!
≈ jj/2

√
2πj(j/e)j

= j−j/2e−j/
√

2πj .

Here we have used Stirling’s formula. The limit of the last expression
is 0.

7. Let p be a polynomial of degree at least 1, and let p′ be its derivatve.
Then p′ is a polynomial of degree at least 0. We may as well assume
that p′(x) is positive for x large. So there is a constant C > 0 such that

1

x
≤ C · p′(x)

for x ≥ 1. Integrating, we find that

lnx ≤ C · |p(x)| .

9. For b and c rational this is obvious from the defintions. For the general
case take suprema.

11. Apply the real analytic implicit function theorem to the equation that
defines W .
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13. The differential equation
y′′ + y = 0

has as solutions
y = cosx ,

y = sinx ,

and
y = eix .

Since the solution space of this differential equation is two-dimensional,
we conclude that eix must be a linear combination of sinx and cosx:

eix = A cosx + B sinx . (?)

Since ei0 = 1, cos 0 = 1, and sin 0 = 1, we find that

1 = A .

Differentiating (?) and again substituting x = 0 gives that B = i. So
we find that

eix = cosx + i sinx .
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