
Chapter 2

Probability

2.1 Introduction

Probability is a number between 0 and 1 which measures an unpredictable future event.
We will spend this chapter looking at the concept of probability and its properties.

2.2 Probability and Inference

Understanding probability is very useful in statistical inference analyzes.

Exercise 2.2 (Probability and Inference: age distribution)
Is age distribution of a random sample of 463 people living in Uppsala, a city in
Sweden, the same or different from the age distribution of all of Sweden?

age Uppsala (out of n = 463) Sweden (pi)
under 5 47 0.067
5 to 16 75 0.141
16 to 65 296 0.695
over 65 45 0.097

1. Comparing age distributions. To make the two age distributions comparable, it
makes sense to multiply the probabilities of the various age categories in Sweden
by 463, the number of people in Uppsala.

age Uppsala (comparable) Sweden, n× pi
under 5 47 463× 0.067 ≈ 31
5 to 16 75 463× 0.141 ≈ 65
16 to 65 296 463× 0.695 ≈ 322
over 65 45 463× 0.097 ≈ 45

(i) True (ii) False
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14 Chapter 2. Probability (ATTENDANCE 2)

2. Same if ”close”; different if not.

Since the Uppsala age distribution appears to “close”1 to the (comparable)
Sweden age distribution, we could infer the age distribution in Uppsala
(circle one) is the same as / is different from
the age distribution for all of Sweden.

3. Probability was used in at least two places when performing statistical inference
in this question. A random sample was chosen from Uppsala which requires
knowledge about probability. Also, the age categories for all of Sweden were
specified by probabilities.
(i) True (ii) False

2.3 A Review of Set Notation

A capital letter A, for example, denotes a set of elements (points). The n elements in
set A are denoted A = {a1, a2, ..., an}. The set that contains no elements is called null

or empty set and denoted by ∅. The set that contains all elements under consideration
is the universal set, S. Set A is a subset of B, B ⊂ A, if every element in A is also in
B. Sets can be manipulated in three basic ways:

• intersection, described using “and” or mathematical symbol, ∩,

• union, described using “or” or mathematical symbol, ∪, and

• complementation, using mathematical symbol, Ā.

Exercise 6.3 (A Review of Set Notation)

1. Venn diagrams. Consider the Venn diagrams in Figure 2.1.
In diagram (a), the gray shaded area is (circle one)
(i) Ḡ (ii) E ∪ G (iii) E ∩G

In diagram (b), the gray shaded area is (circle one)
(i) Ḡ (ii) E ∪ G (iii) E ∩G

In diagram (c), the gray shaded area is (circle one)
(i) Ḡ (ii) E ∪ G (iii) E ∩G

1”Close” is usually measured by a chi-square test statistic. This is not discussed in detail in this
probability course, but would be discussed in a statistics course. Just accept that the two columns
of numbers do, indeed, appear to be “close” to one another.



Section 3. A Review of Set Notation (ATTENDANCE 2) 15

S S S
E E

F F F

G
G

(a) (b) (c)

E

G

Figure 2.1: Venn diagrams

2. More Venn diagrams. Consider the Venn diagrams in Figure 2.2.
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Figure 2.2: More Venn diagrams

In diagram (a), the gray shaded area is (circle one)
(i) (E∩ Ḡ)∪ (F ∩ Ḡ)∪ (E∩F ) (ii) (E∩F )∪ (E∩G) (iii) (E ∪ F )
In diagram (b), the gray shaded area is (circle one)
(i) (E∩ Ḡ)∪ (F ∩ Ḡ)∪ (E∩F ) (ii) (E∩F )∪ (E∩G) (iii) (E ∪ F )
In diagram (c), the gray shaded area is (circle one)
(i) (E∩ Ḡ)∪ (F ∩ Ḡ)∪ (E∩F ) (ii) (E∩F )∪ (E∩G) (iii) (E ∪ F )
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3. Set Operations. Let
E = {a, b, c, d, e, f},
F = {e, f, g, h},
G = {i}
and the universal set is S = {a, b, c, d, e, f, g, h, i, j}.

(a) Since, for example, Ē = {g, h, i, j},
F̄ = (circle one) (i) {g, h, i, j} (ii) {a, b, c, d} (iii) {a, b, c, d, i, j}

(b) Since, for example, E ∪ F = {a, b, c, d, e, f, g, h}
and F ∪ E = (circle one)
(i) {g, h, i, j} (ii) {a, b, c, d} (iii) {a, b, c, d, e, f, g, h}
then E ∪ F = F ∪ E (commutative law)

(c) Since, for example, E ∩ F = {e, f}
and F ∩ E = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {a, b, c, d, e, f, g, h}
E ∩ F = F ∩ E (commutative law)

(d) The intersection of the set E and the complement of this set, Ē, is the
empty set, E ∩ Ē = ∅. (Can anything be both in a set and not in a set at
the same time?)
(i) True (ii) False
The sets E and Ē are said to be mutually exclusive2.

(e) Since E ∩ F = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {a, b, c, d, i, j}
then (E ∩ F ) ∩G = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) ∅
On the other hand, since
F ∩G = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) ∅
then E ∩ (F ∩G) = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) ∅
So (E ∩ F ) ∩G = E ∩ (F ∩G) (associative law)

(f) E ∪ (F ∪G) = (E ∪ F ) ∪G (associative law)
(i) True (ii) False

(g) Since E ∪ F = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {a, b, c, d, e, f, g, h}
then (E ∪ F ) ∩G = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) ∅
on the other hand, since
E ∩G = (circle one)

2Any two sets A and B where A ∩ B̄ = ∅ are said to be mutually exclusive (or disjoint).
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(i) {e, f} (ii) {a, b, c, d} (iii) ∅
and F ∩G = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) ∅
then (E ∩G) ∪ (F ∩G) = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) ∅
and so (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G) (distributive law)

(h) Another Example of the Distribution Law

(E ∪G) ∩ (F ∪G) = (E ∩ F ) ∪ (E ∩G) ∪ (G ∩ F ) ∪ (G ∩G)
(i) True (ii) False

(i) Since E ∪ F = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {a, b, c, d, e, f, g, h}
then (E ∪ F ) = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {i, j}
on the other hand, since
Ē = (circle one)
(i) {g, h, i, j} (ii) {a, b, c, d} (iii) ∅
and F̄ = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {a, b, c, d, i, j}
then Ē ∩ F̄ = (circle one)
(i) {e, f} (ii) {a, b, c, d} (iii) {i, j}
and so (E ∪ F ) = Ē ∩ F̄ (simple case of DeMorgan’s Laws).

(j) (E ∩ F ) = Ē ∪ F̄ (another simple case of DeMorgan’s Laws)
(i) True (ii) False

4. Two Dice. Two dice are tossed. Let A be the event that the first die is odd
and let B be the event the sum of the die is seven. Consider the Venn diagram
corresponding to this experiment in Figure 2.3.
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Figure 2.3: Venn diagram for tossing two dice
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(a) A ∩B = (circle one)
(i) {(1, 6), (3, 4), (5, 2)}
(ii) {(1, 6), (3, 4), (5, 2), (6, 1), (4, 3), (2, 5)}
(iii) {(1, 6), (3, 4), (5, 2), (6, 1), (4, 3), (2, 5)}

(b) number of elements in A ∩B is (circle one)
(i) 3 (ii) 4 (iii) 5

(c) number of elements in A is (circle one)
(i) 18 (ii) 19 (iii) 20

(d) number of elements in B is (circle one)
(i) 5 (ii) 6 (iii) 7

(e) number of elements in A ∪B is (circle one)
(i) 19 (ii) 20 (iii) 21
The number of elements in A ∪ B is calculated here by drawing a Venn
diagram and counting the number of elements in A ∪B3.

(f) number of outcomes in A ∪ B is (circle one)
(i) number in A − number in B − number in A ∩B

(ii) number in A − number in B + number in A ∩ B

(iii) number in A + number in B − number in A ∩ B

The number of elements in A∪B is calculated here by decomposing A∪B

into smaller subsets A, B and A ∩ B, counting elements in the smaller
subsets and then using a formula (the “addition” formula) on the number
of elements in these subsets to determine A ∪ B4.

2.4 A Probabilistic Model for an Experiment: The

Discrete Case

Probability is a number assigned to any event in a sample space, S. The assignment
of probability P (A) to event A; in other words, the function P that maps event A to
probability P (A), obeys the following three axioms.

Axiom 1 0 ≤ P (A) ≤ 1

Axiom 2 P (S) = 1

3We shall shortly see the method used to calculate the number of elements in this example is
closely related to the sample–point method used in calculating the probability of an event.

4We shall shortly see the method used to calculate the number of elements in this example is
closely related to the event–decomposition method used in calculating the probability of an event.
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Axiom 3 For any sequence5 of mutually exclusive6 events A1, A2, A3, . . .

P (A1 ∪A2 ∪ A3 ∪ . . .) = P (A1) + P (A2) + P (A3) + · · ·

Exercise 2.4(A Probabilistic Model for an Experiment: The Discrete Case)

1. Terminology: Three Coins. Three coins are flipped. Consider the Venn diagram
corresponding to this situation in Figure 2.4.

S
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HHT    THT
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HTT    TTT
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Figure 2.4: Two Venn diagrams for flipping three coins

(a) A (chance) experiment is a process which results in a set of observations
where each observation has a chance of occurrence. Flipping a fair coin
three times is an example of a chance experiment.
(i) True (ii) False

(b) The sample space, S, is a list of all the possible outcomes (or sample

points) of a chance experiment. The sample space for flipping a fair coin
three times is (choose one)
(i) {HHH, HHT, HTH, HTT}
(ii) {THH, THT, TTH, TTT}
(iii) {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
Sample space really just means “set”.

(c) A discrete sample space has a finite or countable number of sample points.
The sample space for flipping a fair coin three times is an example of a
discrete sample space.
(i) True (ii) False

5If the sequence is finite, A1, A2, A3, . . . , An, then

P (A1 ∪ A2 ∪A3 ∪ . . . ∪ An) = P (A1) + P (A2) + P (A3) + · · ·+ P (An)

6Recall, mutually exclusive means: Ai ∩ Aj = ∅, i 6= j.
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(d) An event is a subset of a sample space. The event “flipping exactly three
heads” is A = {E1} = {HHH}. The event “flipping exactly one head” is
C = (choose one or more)
(i) {HTT, THT, TTH}
(ii) {E4, E6, E7}
(iii) E4 ∪ E6 ∪ E7

(iv) E4 ∩ E6 ∩ E7

(e) A simple event consists of one sample point. Choose the one correct state-
ment.
(i) Events A, B and C are all examples of simple events.
(ii) Only events A and B are examples of simple events.
(iii) Only event A is an example of a simple event.
Simple events are denoted by the letter E with a subscript.

2. Definition of Probability: Three Coins. Consider the Venn diagram in Fig-
ure 2.4. Assume the coin is fair; that is, the chance of any one of eight mutually
exclusive simple events occurring is 1

8
: P (E1) =

1
8
, P (E2) =

1
8
, . . . , P (E8) =

1
8
.

(a) Axiom 1 implies any event has a probability between (and including) zero
(0) and one (1); for example, 0 ≤ P (A) = P (E1) =

1
8
≤ 1.

(i) True (ii) False

(b) Since all simple events are mutually exclusive, axiom 3 implies
P (B) = P (E2 ∪ E3 ∪ E5 ∪ E8) = P (E2) + P (E3) + P (E5) + P (E8) =
(i) 1

8
(ii) 3

8
(iii) 4

8
(iv) 8

8
.

(c) Axiom 3 implies the chance of flipping exactly one head,
P (C) = P (E4 ∪ E6 ∪ E7) = P (E4) + P (E6) + P (E7) =
(i) 1

8
(ii) 3

8
(iii) 4

8
(iv) 8

8
.

(d) Axiom 3 implies, since events A, B and C are mutually exclusive,
P (A ∪B ∪ C) = P (A) + P (B) + P (C) = 1

8
+ 4

8
+ 3

8
.

(i) True (ii) False

(e) Axiom 2 implies P (S) = P (A ∪ B ∪ C) = 1.
(i) True (ii) False

2.5 Calculating the Probability of an Event: The

Sample–Point Method

Two possible ways of finding probability on a sample space include the sample–point

and event–decomposition methods7. The sample–point method is discussed in this

7The two methods are not mutually exclusive. They are often both used together to determine
the probability of an event in a sample space.



Section 5. Calculating the Probability of an Event: The Sample–Point Method (ATTENDANCE 2)21

section. This method is closely associated with the three axioms of probability. It
involves listing all of the simple events in an experiment, assigning probabilities to
these simple events and then determining the probability of an event which consists
of a subset of simple events.

Exercise 2.5 (Calculating the Probability of an Event: The Sample–Point
Method)

1. Choosing two candidates for one job. Seven candidates, three of which are
females, are being interviewed for a job. The three females are Kathy, Susan
and Jamie; the four males are Tom, Tim, Tyler and Toothy. Two candidates
are chosen for a job interview. Assume each candidate is chosen at random,
that candidates are equally qualified. All possible 21 choices (simple events)
are listed in Figure 2.5. Notice, for example, simple event E1, “Kathy and
Susan”, but not “Susan and Kathy”, has been listed. Also notice “Susan and
Susan” has not been listed8.

Kathy
Susan
Jamie
Tom
Tim
Tyler
Toothy

E3 E4 E5 E6

E8 E9 E10 E11

E12 E13 E14 E15

2121

E1 E2

E7

13

E1616 1717 E1818

E19 E20

E212121

1212 1313 1414

S FF

MM

Figure 2.5: Venn diagram for picking two candidates for one job

(a) Since all choices are equally probable,
P (E1) = P (E2) = · · · = P (E21) = (circle one)
(i) 1

7
(ii) 1

21
(iii) 1

49
.

(b) The probability both candidates chosen are female is
P (FF ) = P (E1 ∪ E2 ∪ E7) = P (E1) + P (E2) + P (E7) = (circle one)
(i) 3

21
(ii) 19

21
(iii) 21

21
.

(c) The probability both candidates chosen are male is
P (MM) = (circle one) (i) 3

21
(ii) 6

21
(iii) 19

21
.

(d) The probability exactly one of the two candidates is a female is
P (FM) = (circle one) (i) 4

21
(ii) 12

21
(iii) 18

21
(iv) 20

21
.

8The order of the couples does not matter to us and each member of the couple has been sampled
without replacement from the seven candidates: combinations of couples have been listed.
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2. Choosing two candidates for two different jobs. Assume, now, two candidates
are chosen for two different jobs, where one job has a $20,000 salary and the
other job has a $40,000 salary. All possible 42 choices (simple events) are listed
in Figure 2.6. Notice, for example, both simple event E1, “Kathy ($40K) and
Susan ($20K)”, and also simple event E7 “Susan ($40K) and Kathy ($20K)”,
have both been listed. Once again, also notice “Susan and Susan” has not been
listed9.

Kathy
Susan
Jamie
Tom
Tim
Tyler
Toothy

E3 E4 E5 E6

E9 E10 E11 E12

1313 E1515 E16 E1717 E1818

E19 E20 E21

S

E25 E26 E27

E31 E32 E33

E37 E38 E39 4040

$20,000 salary

$40,000

  salary

E1 E2

E7 E8

E13 E1413 14E
E2222 E2323 E2424

E28 E29 E3030

3434 E3535 E3636

E40 E41 E4240 41 42

E E E

FF

MM

Figure 2.6: Venn diagram for picking two candidates for two jobs

(a) Since all choices are equally probable,
P (E1) = P (E2) = · · · = P (E42) = (circle one)
(i) 1

21
(ii) 2

42
(iii) 1

42
.

(b) The probability both candidates chosen are female10 is
P (FF ) = P (E1 ∪ E2 ∪ E7 ∪ E8 ∪ E13 ∪ E14) = (circle one)
(i) 3

42
(ii) 6

42
(iii) 21

42
.

(c) The probability both candidates chosen are male is
P (MM) = (circle one) (i) 12

21
(ii) 12

42
(iii) 21

42
.

(d) The probability exactly one of the two candidates is a female who receives
a $40,000 salary is (circle one)
(i) 12

21
(ii) 12

42
(iii) 24

42
(iv) 30

42
.

2.6 Tools for Counting Sample Points

Counting can be an important part of determining various probabilities. To help in
understanding the various counting rules, we find out about an important method

9The order of the couples does matter to us and, as before, each member of the couple has been
sampled without replacement from the seven candidates: permutations of couples have been listed.

10Since this question does not specify order, it is not surprising that the probability calculated
here in the permutation (order matters) case is the same as the answer determined previously in the
combination (order does not matter) case.
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of visualizing counting techniques, “marbles in boxes”, and discuss the notions of
whether order matters or not, sampling with or without replacement and whether
objects are distinguishable or not. We look at a number of counting rules, including,
most importantly, the mn rule of counting, permutations and combinations. Finally,
all of the counting rules are used to calculate various probabilities.

Exercise 2.6 (Tools for Counting Sample Points)

1. Marbles in boxes analogy: 3–digit street numbers. It is often useful to think
of the analogy of placing marbles in a number of side–by–side boxes when
counting sample points. For example, as indicated in Figure 2.7, there are a
total of 10× 10× 10 = 1000 three–digit street numbers.

1

1

2
3

4

5
9

6

7

7

8
0

0

10    x    10    x    10   
=  1000  3-digit numbers

three side-by-side jars,
representing 100s, 10s and 1s
digits

ten marbles, labelled 0,1, ...,9

Figure 2.7: Marbles In Boxes: 3–Digit Street Numbers

(a) Number of 3–digit numbers if first number cannot be zero is
(circle one or more) (i) 9 × 10 × 10 (ii) 900 (iii) 999.

(b) Number of 3–digit numbers if first number must be the number 3, is
(circle one or more) (i) 1 × 10 × 10 (ii) 100 (iii) 900.

(c) Number of 3–digit numbers if first number must be 3 and second number
cannot 9, is (circle one)
(i) 9 × 9 × 10 (ii) 9 × 10 × 10 (iii) 1 × 9 × 10.

(d) Number of 3–digit numbers with exactly two 3s, is (circle one)
(i) 1 × 1 × 9 = 9
(ii) 1 × 9 × 1 = 9
(iii) 9 × 1 × 1 = 9
(iv) 9 + 9 + 9 = 27.
(Hint: The correct answer is the fourth one, 27, and is obtained by adding
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the first three possible answers together. Each of the first three answers
represent a different way to have exactly two 3s in three digits.)

2. Things to Look For When Counting: Order Matters or Not, Sampling With

or Without Replacement and Distinguishable or Not. The marbles–in–boxes
analogy for counting could be thought of as a function with a domain (distin-
guishable or not), rule (sampling with or without replacement) and a range
(order matters or not).

(a) Order Matters or Not. Let’s say we wanted to count the total number of
ways of picking a committee of 2 people from 3 people, Jim, Sue and Ali.
The three possible committees include (Jim, Sue), (Jim, Ali) and (Sue,
Ali). Since we have the committee (Jim, Sue), we would not include the
committee (Sue, Jim), because they are the same committee. In other
words, we do not include both (Jim, Sue) and (Sue, Jim) in our count of
all possible committees because the order in which people are chosen for
the committee does not matter.

i. When counting all the possible ways of choosing numbers for a 3–digit
street number, do we assume the 3–digit numbers (9,3,4) and (3,4,9)
count as two different 3–digit numbers (order matters) or, rather, as
the same 3–digit number (order does not matter)? We assume
(i) order matters (ii) order does not matter.

ii. When counting all the possible ways of parking three of five cars in
three side–by–side parking spots, do we assume the (Jim’s car, Sue’s
car, Ali’s car) and (Sue’s car, Jim’s car, Ali’s car) parking arrange-
ments count as two different parking arrangements (order matters) or,
rather, as the same parking arrangement (order does not matter)? We
assume (circle one)
(i) order matters (ii) order does not matter.

iii. When counting all the possible ways of dealing out five cards for a
poker hand from a deck of 52 playing cards, do we assume the hands
(10c,Jd,Qh,2h,3s) and (2h,3s,Jd,Qh,10c) (where, for example, “10c”
represents the 10 of clubs and “Qh” represents the queen of hearts)
count as two different hands each of which would be played in a differ-
ent way (order matters) or, rather, as the same hand which is played
in the same way (order does not matter)? We assume (circle one)
(i) order matters (ii) order does not matter.

iv. When counting the number of ways ten marbles, numbered 0, 1, . . . ,
9, can be placed in three side–by–side boxes, do we assume the marble
arrangements (1,2,3) and (3,2,1) count as two different arrangements
(order matters) or not (order does not matter). We assume
(i) order matters (ii) order does not matter.
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v. When counting the number of ways four letters, L, I, F, E, can be
formed into three–letter words, do we assume the letter arrangements
(L,I,F) and (F,I,L) count as two different arrangements (order matters)
or not (order does not matter). We assume (circle one)
(i) order matters (ii) order does not matter.

vi. If we assume order matters, we count (circle one)
(i) more (ii) less.

(b) Sampling With or Without Replacement. The three possible committees
of 2 people picked from 3 people, Jim, Sue and Ali, are: (Jim, Sue), (Jim,
Ali) and (Sue, Ali). It is not possible to have a committee of (Jim, Jim)
since there is only one Jim. We cannot “sample” Jim from the available
three people and then “replace” him back into the group to be possibly
sampled again. Jim is sampled without replacement from the group of three
people.

i. When counting all the possible ways of choosing numbers for a 3–digit
street number, are we able to repeatedly sample and replace “1” from
the ten possible digits, 0, 1, . . . , 9, to form the 3–digit number (1,1,1)
(sample with replacement) or not (sample without replacement)? We
(i) sample with replacement (ii) sample without replacement.

ii. When counting all the possible ways of parking three of five cars in
three side–by–side parking spots, are we able to repeatedly sample and
replace “Sue’s car” from the five possible cars to form the parking ar-
rangement (Sue’s car, Sue’s car, Sue’s car) (sample with replacement)
or not (sample without replacement)? We (choose one)
(i) sample with replacement (ii) sample without replacement.

iii. When counting all the possible ways of dealing out five cards for a
poker hand from a deck of 52 playing cards, are we able to repeatedly
sample and replace the 10 of clubs from the deck to form the hand
(10c,10c,10c,10c,10c) (sample with replacement) or not (sample with-
out replacement)? We (choose one)
(i) sample with replacement (ii) sample without replacement.

iv. When counting the number of three–letter words that can be formed
from four letters, L, I, F, E, we might sample with replacement or not.
If we sample without replacement, then the word (F,F,F) (circle one)
(i) is possible (ii) is not possible.

v. When counting the number of ways ten marbles, numbered 0, 1, . . . ,
9, can be placed in three side–by–side boxes, we might sample with
replacement or not. If we sample with replacement, then the marble
arrangement (1,1,1) (circle one)
(i) is possible (ii) is not possible.

vi. If we sample with replacement, we count (circle one)
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(i) more (ii) less.

(c) Distinguishable or Not. Possible two–letter words that can be formed from
the three letters U, M, M, are (U, M) and (M, M). Notice that the letters
“U” and “M” are distinguishable from one another, whereas the two “M”s
are not. Indistinguishability refers to the “marbles” before they are placed
in the side–by–side boxes.

i. When counting all the possible ways of choosing numbers for a 3–digit
street number, are all of the ten possible digits, 0, 1, . . . , 9, we can
choose from distinguishable from one another or are some of them
indistinguishable from one another? We assume (circle one)
(i) all marbles are distinguishable from one another.
(ii) some marbles are indistinguishable from one another.

ii. When counting all the possible ways of parking three of five cars (Sue’s
car, Bob’s car, Mike’s car, Judy’s car, Darlene’s car) in three different
parking spots, we assume (circle one)
(i) all cars are distinguishable from one another.
(ii) some cars are indistinguishable from one another.

iii. When counting all the possible ways of parking three of five cars (two
GMs, three Chryslers) in three different parking spots, we assume
(i) all cars are distinguishable from one another.
(ii) some cars are indistinguishable from one another.

iv. When counting all the possible ways of dealing out five cards for a
poker hand from a deck of 52 playing cards, we assume (circle one)
(i) all cards are distinguishable from one another.
(ii) some cards are indistinguishable from one another.

v. When counting all the possible ways of dealing out five cards
when we are interested in the suits only (for example, the hand
(10c,Jd,Qh,2h,3s) would be considered as one club, one diamond, two
hearts and a spade) from a deck of 52 playing cards, we assume
(i) all cards are distinguishable from one another.
(ii) some cards are indistinguishable from one another.

vi. When counting the number of three–letter words that can be formed
from four letters, L, I, F, E, we must assume (circle one)
(i) all letters are distinguishable from one another.
(ii) some letters are indistinguishable from one another.

vii. When counting the number of ways ten marbles (four blue, two red
and four green), can be placed in three side–by–side boxes, we must
assume (circle one)
(i) all marbles are distinguishable from one another.
(ii) some marbles are indistinguishable from one another.
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viii. If some items are indistinguishable from one another, then the order of
these items does not matter in the sense it is not possible to count dif-
ferent arrangements of these indistinguishable items. In other words,
if we some items are indistinguishable with one another, we count
(i) more (ii) less.

ix. If all items are distinguishable from one another, then their order may
matter (think parking three cars in parking spots) or order may not
matter (think number of five card poker hands).
(i) True (ii) False

x. With distinguishable “marbles”, it is still possible to create arrange-
ments in the side–by–side boxes in which groups of indistinguishable
objects occur because a sampling with replacement procedure has been
undertaken. For example, sample three digits from the ten distinguish-
able digits, 0, 1, ..., 9, with replacement to arrive at number 300, for
example, with two (indistinguishable) zeros.
(i) True (ii) False

3. The mn rule for counting sample points. If (chance) experiment 1 results in
m possible outcomes, a1, a2, . . . , am, and for each outcome from experiment 1
there results n possible outcomes from (chance) experiment 2, b1, b2, . . . , bn,
then, together, there are mn possible paired outcomes, (a1, b1), (a1, b2), . . . ,
(am, bn), from the two experiments.

(a) If there are three eligible treasurer candidates (T1, T2 and T3) and two eligi-
ble secretary candidates (S1 and S2), there are 3×2 = 6 possible (treasurer,
secretary) pairings: {(T1, S1), (T1, S2), (T2, S1), (T2, S2), (T3, S1), (T3, S2)}.
(i) True (ii) False

(b) The number of ways of choosing a treasurer and secretary pair, when there
are four eligible treasurer candidates and eight eligible secretary candi-
dates, is (circle one)
(i) 4 + 8 = 12 (ii) 4 × 8 = 32.

(c) The number of ways of rolling a pair of dice, when there are six possible
values for die 1 and six possible values for die 2, is (circle one)
(i) 6 + 6 = 12 (ii) 6 × 6 = 36.

(d) The number of ways of choosing a treasurer, secretary and president, when
there are three eligible treasurer candidates, five eligible secretary candi-
dates and two eligible president candidates, is (circle one)
(i) 3 + 5 + 2 = 10 (ii) 3 × 5 × 2 = 30.

(e) The number of ways of flipping a coin four times, when there are two
possible values for each flip of the coin (heads or tails), is (circle one)
(i) 2 + 2 + 2 + 2 = 8 (ii) 2 × 2 × 2 × 2 = 24 = 16.
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(f) The n1 · n2 · · ·nr rule for counting sample points. If (chance) experiment
1 results in n1 possible outcomes and for each outcome from experiment 1
there results n2 possible outcomes from experiment 2, and for each outcome
from the first two experiments there results n3 possible outcomes from
experiment 3, . . . , then, together, there are n1 · n2 · · ·nr possible r–tuple
outcomes from the r experiments.
(i) True (ii) False

4. The permutation rule for counting sample points. The number of ways of or-
dering r objects (where the r objects have been taken from n, n ≥ r, distinct
objects) is

P n
r = n(n− 1)(n− 2) · · · (n− r + 1) =

n!

(n− r)!

where n! = n(n−1) · · · (2)(1) and 0! = 1! = 1. A permutation is an arrangement
of objects where the order of these objects does matter and the objects are
sampled without replacement.

(a) Parking r = 3 of n = 5 Cars. Five different cars could occupy the first
parking spot, only four could occupy the second parking spot (since one
car is in the first parking spot) and three could occupy the final parking
spot in Figure 2.8. Consequently, there are

P 5
3 = 5× 4× 3 =

5!

(5− 3)!
=

5!

2!
=

5× 4× 3

2× 1
= 60

ways of doing this.
(i) True (ii) False
(TI–84+: type five (5), then MATH PRB nPr ENTER 3 ENTER.)

5   x    4    x    3
= 60 permutations

1

2

3

4

5

5 marbles representing
5 cars

3 side-by-side boxes representing
5 parking spots

Figure 2.8: Marbles in boxes: 3 parking spots

(b) Parking r = 4 of n = 7 Cars. In this case, P 7
4 = (choose one or more)

i. n!
(n−r)!

, where n = 7 and r = 4
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ii. 7!
(7−4)!

iii. 7!
3!

iv. 7× 6× 5× 4 = 840

(TI–84+: 7 MATH PRB nPr ENTER 4 ENTER.)

(c) Parking r = 12 of n = 12 Cars. In this case, P 12
12 = (choose one or more)

i. n!
(n−r)!

, where n = 12 and r = 12

ii. 12!
(12−12)!

iii. 12!
0!

iv. 12! = 479, 001, 600

(TI–84+: 12 MATH PRB nPr ENTER 12 ENTER or 12 MATH PRB ! ENTER.)

(d) Permutations. When counting permutations of parking cars in the exam-
ples given here, assume (choose one)
(i) all cars are distinguishable from one another
(ii) some cars are indistinguishable from one another
and (choose one)
(i) sample with replacement
(a car can appear in different spots at the same time, simultaneously)
(ii) sample without replacement
(a car cannot appear in different parking spots simultaneously)
and also (choose one)
(i) order matters
(different arrangements in each group of cars counted)
(ii) order does not matter
(only groups of different cars, not arrangements in groups, counted)

5. Permutations, n1 · n2 · · ·nr rule for counting and indistinguishable objects.

(a) Permutations and the mn rule for counting. Consider Figure 2.9. Nine
different cars are to be driven into nine side–by–side parking spots. Three
of the cars are driven by statistics students and there are three parking
spots reserved for statistics students only. Six of the cars are driven by
mathematics students and there are 6 parking spots reserved for these
students only. Using the mn rule for counting, the number of ways the
cars can be parked is (choose one or more)
(i) P 3

3
× P 6

6
(ii) 3!6! = (6)(720) = 4320 (iii) 9!.

(b) Permutations. Nine different cars are to be driven into nine side–by–side
parking spots. Three of the cars are driven by statistics students and six
of the cars are driven by mathematics students. The number of ways the
cars can be parked is (choose one)
(i) 3! + 6! = 6+ 720 = 726 (ii) 3!6! = (6)(720) = 4320 (iii) 9!.
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3   x    2    x    1
= 6 permutations

statistics mathematicsmathematicsmathematics

6   x    5    x   4    x    3   x    2   x   1
= 720 permutations

91

2

3

4

5

6

7

8

Figure 2.9: Marbles in boxes: statistics and mathematics parking spots

(c) Permutations. How many different ways can a line of 5 females and 4
males waiting to buy books at the bookstore be arranged? Choose one.
(i) 5!4! = (5)(4) = 20 (ii) 5!4! = (120)(24) = 2880 (iii) 9!.

(d) Permutations and the mn rule for counting. How many different ways can
a line of 5 females and 4 males waiting to buy books at the bookstore be
arranged where the females are grouped together at the head of the line
and the males are grouped together at the back of the line?
(i) P 5

4
= 5 (ii) 5!4! = (120)(24) = 2880 (iii) 9!.

(e) Permutations and the mn rule for counting. How many different ways can
a line of 5 females and 4 males waiting to buy books at the bookstore
be arranged where the females are grouped together and the males are
grouped together? Choose one.
(i) 5!4! = (120)(24) = 2880 (ii) 2! × 5!4! = 2(120)(24) = 5760.

(f) Permutations and the n1 · n2 · · ·nr rule for counting. How many different
ways can a line of 5 statistics students, 4 business students and 3 technology
students, waiting to buy books at the bookstore, be arranged where the
statistics students are grouped together at the head of the line, the business
students are grouped together in the middle of the line and the technology
students are grouped together at the end of the line? Choose one or more.
(i) 5!4!3! (ii) 17280 (iii) P 5

5
P 4

4
P 3

3
.

(g) Permutations and the n1 · n2 · · ·nr rule for counting. How many different
ways can a line of 5 statistics students, 4 business students and 3 technology
students, waiting to buy books at the bookstore, be arranged where the
students in each subject are grouped together in the line? Since each of
the three groups can be arranged in 3! = 6 ways, the number of ways is
(i) 5!4!3! (ii) 3! × 5!4!3! (iii) 12!.

(h) Permutations and indistinguishable objects. How many different letter per-
mutations can be formed from C, O, U, N, T, E, R, S? Since all eight letters
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are distinguishable from one another, the number of letter permutations is
(i) 8! (ii) 8!

3!2!
(iii) 8!

5!
.

(i) Permutations and indistinguishable objects. How many different letter per-
mutations can be formed from A, A, R, D, V, A, R, K? Since there are
eight letters in total and there are three indistinguishable A’s and two in-
distinguishable R’s, the number of letter permutations is (circle one)
(i) 8! (ii) 8!

3!2!
(iii) 8!

5!
.

6. Partitioning n distinct objects into k distinct groups. If n = n1 + n2 + · · ·+ nk,
the number of possible divisions of n distinct objects into k distinct nonover-
lapping groups of sizes n1, n2, . . . , nk (where order does not matter in each
nonoverlapping group) is given by

(

n

n1 n2 · · · nk

)

=

(

n

n1

)(

n− n1

n2

)

· · ·

(

n− n1 − · · · − nk−1

nk

)

=
n!

n1!n2! · · ·nk!

(a) There are 15 different marbles. If 4 marbles are placed in jar 1, 6 are
placed in jar 2 and 5 are placed in jar 3, how many different ways can the
15 marbles be divided up into the three jars? Circle one or more.

(i)

(

15
4 6 5

)

(ii) 15!

4!6!5!
(iii) 630, 630.

(b) There are 9 faculty members in the Mathematical Sciences department
who can teach either mathematics, statistics or physics. If, as shown in
Figure 2.10, 4 of the faculty teach mathematics, 3 teach statistics and 2
teach physics, how many different ways can the nine faculty members be
divided up to teach the three subjects? Circle one or more.

(i)

(

9
4 3 2

)

(ii)

(

9
4

)(

5
3

)(

2
2

)

(iii) 9!

4!3!2!
(iv) 1260.

1

4

5

7

8

9 marbles representing
9 faculty members

3 boxes representing
3 subjects

62
9

3

 math   stats   physics

     4
marbles

     3
marbles

     2
marbles

Figure 2.10: Marbles in boxes: faculty teaching three subjects
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(c) Multinomial theorem

(x1 + x2 + · · ·+ xk)
n =

∑

(n1,...,nk): n1+···+nk=n

(

n

n1 n2 · · · nk

)

xn1
1 xn2

2 · · ·xnk

k

where

(

n

n1 n2 · · · nk

)

are called multinomial coefficients. For example,

expand (x1 + x2 + x3)
2. Circle one or more.

i.
∑

(n1,...,nr): n1+n2+n3=2

(

2
n1 n2 n3

)

xn1
1 xn2

2 xn3
3

ii.

(

2
2 0 0

)

x2
1x

0
2x

0
3 +

(

2
0 2 0

)

x0
1x

2
2x

0
3 +

(

2
0 0 2

)

x0
1x

0
2x

2
3 +

(

2
1 1 0

)

x1
1x

1
2x

0
3 +

(

2
1 0 1

)

x1
1x

0
2x

1
3 +

(

2
0 1 1

)

x0
1x

1
2x

1
3

iii. 2!
2!0!0!

x2
1x

0
2x

0
3 +

2!
0!2!0!

x0
1x

2
2x

0
3 +

2!
0!0!2!

x0
1x

0
2x

2
3

+ 2!
1!1!0!

x1
1x

1
2x

0
3 +

2!
1!0!1!

x1
1x

0
2x

1
3 +

2!
2!1!1!

x0
1x

1
2x

1
3

iv. x2
1 + x2

2 + x2
3 + 2x1x2 + 2x1x3 + 2x2x3

7. The combination rule for counting sample points. The number of unordered
groups of r objects chosen without replacement from n, n ≥ r, distinct objects
is

Cn
r =

(

n

r

)

=

(

n

r n− r

)

=

(

n

n− r

)

=
n!

r!(n− r)!
=

P n
r

r!
.

A combination is an arrangement of objects where the order of these objects does
not matter and the objects are sampled without replacement. The combination
rule is a special case of the partition rule above.

(a) The number of ways of dealing three cards from five cards (10,J,Q,K,A) is
calculated by first assuming order matters (5 marbles, three side–by–side
boxes),

P 5
3 =

5!

(5− 3)!
= 5× 4× 3 = 60

and then “dividing out the order” (3! = 6 permutations of three cards), to
arrive at

C5
3 =

(

5
3

)

=

(

5
3 5− 3

)

=

(

5
5− 3

)

=
5!

3!(5− 3)!
=

P 5
3

3!
=

60

6
=

(i) 9 (ii) 10 (iii) 11.
(Use your calculator: type 5, then MATH PRB nCr ENTER 3 ENTER.)

(b) Number of ways of dealing r = 2 of n = 5 cards is (circle one or more)

i. 5×4
2
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ii. 5×4×3×2×1
(3×2×1)2

iii. 5×4×3×2×1
(3×2×1)(2×1)

iv. C5
2 =

(

5
2

)

=

(

5
3

)

=

(

5
2 3

)

= 5!
3!2!

= 10

v.

(

n

r

)

= n!
(n−r)!r!

, where n = 5 and r = 2

(c) How many different committees of 4 can be formed from a group of 40
people? Choose one or more.

(i)

(

40
4

)

(ii)

(

40
40 − 4

)

(iii)

(

40
36

)

(iv)

(

40
4 36

)

(d) Binomial theorem

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k

where

(

n

k

)

are called binomial coefficients. For example, expand (x+y)3.

Circle one or more.

i.
∑3

k=0

(

3
k

)

xky3−k

ii.

(

3
0

)

x0y3 +

(

3
1

)

x1y2 +

(

3
2

)

x2y1 +

(

3
3

)

x3y0

iii. 3!
0!3!

x0y3 + 3!
1!2!

x1y2 + 3!
2!1!

x2y1 + 3!
3!0!

x3y0

iv. y3 + 3xy2 + 3x2y + x3

(e) Combinations and the mn rule for counting. From a group of 6 women
and 9 men, how many different committees consisting of 4 women and 3
men can be formed? Choose one or more.

(i)

(

6
4

)(

9
3

)

(ii)
(

6·5

2·1

) (

9·8·7

3·2·1

)

(iii) 1260.

(f) Combinations and the mn rule for counting. From a group of 6 women
and 9 men, how many different committees consisting of (4 women and 3
men) or (3 women and 4 men) can be formed? Choose one or more.

(i)

(

6
4

)(

9
3

)

+

(

6
3

)(

9
4

)

(ii)
(

6·5

4·3·2·1

) (

9·8·7

3·2·1

)

.

(g) Combinations and the mn rule for counting. From a group of 6 women
and 9 men, how many different committees consisting of six (6) people can
be formed? Choose one or more.

(i)

(

6
0

)(

9
6

)

+

(

6
1

)(

9
5

)

+ · · · +

(

6
6

)(

9
0

)

(ii)

(

6 + 9
6

)

(iii)
(

6·5

4·3·2·1

) (

9·8·7

3·2·1

)
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(h) A formula

(

n +m

r

)

=

(

n

0

)(

m

r

)

+

(

n

1

)(

m

r − 1

)

+ · · ·+

(

n

r

)(

m

0

)

(i) True (ii) False

(i) Combinations, the mn rule for counting. From a group of 6 women and
9 men, how many different committees consisting of 4 women and 3 men
can be formed if two (2) of the women refuse to work with one another?
Circle one.

(i)

(

6
4

)

×

[(

2
0

)(

7
3

)

+

(

2
1

)(

7
2

)]

(ii)

(

9
3

)

×

[(

2
0

)(

4
4

)

+

(

2
1

)(

4
3

)]

(iii)

(

9
3 3

)

×

[(

2
2

)(

4
4

)

+

(

2
0

)(

4
3

)]

Hint: men combinations × [both feuding women missing + one feuding woman missing]

(j) Combinations and n1 ·n2 · · ·nr rule for counting. From a deck of 10 clubs,
9 spades, 11 diamonds and 12 hearts, how many different hands consisting
of 3 clubs, 3 spades, 4 diamonds and 10 hearts can be formed? Choose one
or more.

(i)

(

10
3

)(

9
3

)(

11
4

)(

12
10

)

(ii)
(

10!

3!7!

) (

9!

3!6!

) (

11!

4!7!

) (

12!

10!2!

)

(iii) 219, 542, 400

(k) Multinomial, combinations and n1 ·n2 · · ·nr rule for counting. Eleven stu-
dents are ranked 1 (first) to 11 (last) in a statistics contest. As shown in
Figure 2.11, four of the students are from the United States, three are from
Russia, three are from China and one is from the United Kingdom.

1

4

5

7

8

11 marbles representing

11 ranks

4 boxes representing

4 countries

62

9

10

11

3

 USA   Russa  China   UK

     4
marbles

     3
marbles

     3
marbles

   1
marble

Figure 2.11: Marbles in boxes: ranks in statistics contest
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i. How many different ways can the (student) ranks be divided among
the four different countries? Choose one.

(i)

(

11
2 3 3 1

)

(ii)

(

11
3 3 3 1

)

(iii)

(

11
4 3 3 1

)

ii. How many different ways can the (student) ranks be divided among
the four different countries if the United States has two students in
the top four and one in the bottom three? Choose one.

(i)

(

3
1

)(

3
2

)(

7
4 2 1

)

(ii)

(

4
2

)(

4
1

)(

3
1

)(

7
2 3 2

)

(iii)

(

3
1

)(

4
1

)(

3
2

)(

7
4 2 1

)

Hint: US US O O | US O O O | US O O

US can appear in 2 of top four, 1 of middle four, 1 of bottom three and any other student, “O”,

of the seven remaining, are then placed accordingly.

8. Counting and probability.

(a) Permutations in Probability. Since there are 5× 4× 3 = 60 permutations
for 3 of five cars, A, B, C, D and E, to park in 3 parking spots, and,
furthermore, 1 × 4 × 3 = 12 ways for car A to park in the first spot, the
chance car A parks in the first spot is 12

60
= 0.2 or 20%.

With this in mind, the chance that car A parks in the first spot, if

i. 4 of 5 cars park in 4 parking spots, is (circle one)
(i) 1×4×3×2

5×4×3×2
(ii) 5×4×3×2

5×4×3×2
(iii) 1×3×2×1

5×4×3×2
.

ii. 4 of 7 cars park in 4 parking spots, is (circle one)
(i) 1×7×6×5

5×4×3×2
(ii) 1×6×5×4

7×6×5×4
(iii) 1×4×3×2

7×6×5×4
.

iii. 4 of 6 cars park in 4 parking spots (remember: car A parks in the first
spot) car B must appear in the second spot, is (circle one)
(i) 1×1×6×5

6×5×4×3
(ii) 1×1×4×3

6×5×4×3
(iii) 1×5×4×3

6×5×4×3
.

(b) Permutations in Probability: Sitting Around A Table. Three girls and four
boys play a game of “musical chairs” in which seven chairs are placed
around a table. What is the probability the three females sit next to one
another (and so this necessarily means the four boys must sit next to one
another)?

i. How many ways can seven children in a line can be arranged?
Choose one. (i) 5! (ii) 6! (iii) 7!

ii. Shifting six children of seven in a line to the right and moving the
last child to the head of the line does change the arrangement of these
children. In fact, there are seven shifts to the right (where the last
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child is placed at the head of the line in each case) which cause a
change in the arrangement of the children in a line.
(i) True (ii) False

iii. Seven children around a table, on the other hand, can all be shifted
a total of seven locations to the right (or left) and their order does
not change. Consequently, the total number of ways seven children be
arranged around a table is equal to the number ways children can be
arranged in a line divided by seven or (choose one)
(i) 5! (ii) 7!

7
(iii) 6!

iv. Three girls grouped together and four boys grouped together around
a table can be arranged in how many ways? Choose one.
(i) 6! (ii) 3!3! (iii) 3!4!

v. The probability the three females sit next to one another is
(choose one) (i) 6!

6!
(ii) 3!3!

6!
(iii) 3!4!

6!

(c) Cards. Four cards are dealt at random from a deck of 52 playing cards.

i. The total number of ways of dealing four cards is (circle one)

(i)

(

49
3

)

(ii)

(

52
4

)

(iii)

(

52
2

)

(iv)

(

52
1

)

ii. The total number of ways of dealing four cards with three jacks is
(circle one)

(i)

(

4
3

)

×

(

48
1

)

(ii)

(

4
2

)

×

(

48
4

)

(iii)

(

4
0

)

×

(

48
1

)

iii. The probability of dealing four cards with three jacks is (circle one)

(i)





4
3









48
1









52
2





(ii)





4
3









48
1









52
4





(iii)





4
0









48
1









52
4





(d) Two Pair in Poker Hand. What is the probability of being dealt two pair
in a 5–card poker hand?

i. The total number of ways of dealing 5 cards is (circle one)

(i)

(

52
2

)

(ii)

(

52
3

)

(iii)

(

52
4

)

(iv)

(

52
5

)

.

ii. The total number of ways of dealing a pair of twos and then a pair of
threes is (circle one)

(i)

(

4
2

)(

4
2

)(

44
1

)

(ii)

(

4
3

)(

4
3

)(

44
1

)

(iii)

(

4
4

)(

4
4

)(

44
1

)
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iii. Since there are

(

13
2

)

choices for picking any two pairs (without

regard to their order), the number of ways of dealing two pair is (circle
one)

(i)

(

13
0

)

×

(

4
2

)(

4
2

)(

44
1

)

(ii)

(

13
1

)

×

(

4
2

)(

4
2

)(

44
1

)

(iii)

(

13
2

)

×

(

4
2

)(

4
2

)(

44
1

)

iv. The probability that two pair is dealt is (circle one)

(i)





13
0



×





4
2









4
2









44
1









52
5





(ii)





13
1



×





4
2









4
2









44
1









52
5





(iii)





13
2



×





4
2









4
2









44
1









52
5





(e) Bridge Hands. All 52 cards are dealt out to four players. What is the
probability one of the players receives 10 of 13 spades?

i. The total number of ways of dealing 52 cards to four people is

(i)

(

52
13

)

(ii)

(

52
13 13

)

(iii)

(

52
13 13 13

)

(iv)

(

52
13 13 13 13

)

ii. The total number of ways of dealing one particular player 10 of 13
spades is (circle one)

(i)

(

13
10

)

×

(

39
3

)

(ii)

(

13
11

)

×

(

39
2

)

(iii)

(

13
12

)

×

(

39
1

)

.

iii. The total number of ways of dealing 39 cards to the remaining three
people, (after dealing thirteen cards to a particular player) is (circle
one)
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(i)

(

39
13

)

(ii)

(

39
13 13

)

(iii)

(

39
13 13 13

)

(iv)

(

39
13 13 13 13

)

iv. Since there are four choices for choosing a particular player, the total
number of ways 52 cards are dealt out to four players such that one of
the players receives 10 of 13 spades is (circle one)

(i) 2 ·

(

39
13 13 13

)(

13
10

)

×

(

39
3

)

(ii) 3 ·

(

39
13 13 13

)(

13
10

)

×

(

39
3

)

(iii) 4 ·

(

39
13 13 13

)(

13
10

)

×

(

39
3

)

.

v. The probability one of the players receives 10 of 13 spades is (circle
one)

(i) 2 ·





39
13 13 13









13
10



×





42
3









52
13 13 13 13





(ii) 3 ·





39
13 13 13









13
10



×





42
3









52
13 13 13 13





(iii) 4 ·





39
13 13 13









13
10



×





39
3









52
13 13 13 13





.

9. Twelve-fold Way. Some counting methods, of placing r marbles into n boxes,
can be categorized into following twelve-fold way table (order of marbles in each
box is not counted):
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marbles, r boxes, n unrestricted: at most 1 marble at least 1 marble
0, 1 or more per box, ≤ 1 per box, ≥ 1

marbles per box

D D nr P n
r n!S(r, n)

I D Cr+n−1
r Cn

r Cr−1
n−1

D I
∑n

k=1 S(r, k)
1 if r ≤ n

0 if r > n
S(r, n)

I I
∑n

k=1 pk(r)
1 if r ≤ n

0 if r > n
pn(r)

D: distinguishable (labelled), I: indistinguishable (identical, unlabelled),

combination Cn
r = n!

r!(n−r)!
=

(

n

r

)

, permutation Pn
r = n!

(n−r)!

Stirling numbers of second kind S(r, n) = 1
n!

∑

n

k=0(−1)k
(

n

k

)

(n− k)r

notice distinguishable box (D,D,≥ 1) case with count n!S(r, n) is ordered version of indistinguishable box

(D,I,≥ 1) case with count S(r, n)

(a) Count number of ways of putting r = 4 marbles and n = 6 boxes under
following assumptions.

i. (D,D) unrestricted (none, 1 or more marbles can appear in each box)
marble 1 placed in one of 6 boxes, same for marbles 2, 3, 4,
nr = 64 = (i) 1296 (ii) 1297 (iii) 1298.

ii. (D,D) at most 1 marble per box (permutation)
marble 1 has 6 choices, marble 2 had 5 choices, . . .
P n
r = n!

(n−r)!
= P 6

4 = 6× 5× 4× 3 = (i) 359 (ii) 360 (iii) 361.

iii. (D,D) at least 1 marble per box
only 4 marbles, so not possible to put at least 1 marble in 6 boxes,
(i) 0 (ii) 1 (iii) 2.

iv. (I,D) unrestricted
o||oo||o| means boxes 1, 2, 3, 4, 5, 6 gets 1, 0, 2, 0, 1, 0 marbles,
since arranging 4 marbles in 4 marbles + 6 boxes - 1 = 9 objects;

Cr+n−1
r =

(

4 + 6− 1
4

)

=

(

9
4

)

= (i) 126 (ii) 127 (iii) 128.

v. (I,D) at most 1 marble per box (combination)
order of 4 identical marbles in 4 of 6 distinguishable boxes does not
matter,

Cn
r = n!

r!(n−r)!
=

(

n

r

)

=

(

6
4

)

= (i) 14 (ii) 15 (iii) 16.
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1

4

2

3

1 4 5

62 3

B1       B2          B3          B4         B5         B6 B1       B2          B3          B4 

B1       B2          B3          B4         B5         B6 B1       B2          B3          B4 

1

4

2

3

1 4 5

62 3

Distinguishable marbles

Distinguishable boxes

(D, D)

Indistinguishable marbles

Distinguishable boxes

(I, D)

Distinguishable marbles

Indistinguishable boxes

(D, I)

Indistinguishable marbles

Indistinguishable boxes

(I, I)

4 marbles, 6 boxes 6 marbles, 4 boxes

Figure 2.12: Twelve-Fold Way: 4 marbles, 6 boxes or 6 marbles; 4 boxes

vi. (I,D) at least 1 marble per box
only 4 marbles, so not possible to put at least 1 marble in 6 boxes,
(i) 0 (ii) 1 (iii) 2.

vii. (D,I) unrestricted
∑n

k=1 S(r, n) =
∑6

k=1 S(4, k)
= S(4, 1) + S(4, 2) + S(4, 3) + S(4, 4) + S(4, 5) + S(4, 6)
= 1 + 7 + 6 + 1 + 0 + 0 = (i) 15 (ii) 16 (iii) 17.

viii. (D,I) at most 1 marble per box
4 marbles in 4 of 6 identical boxes same no matter which boxes
(i) 0 (ii) 1 (iii) 2.

ix. (D,I) at least 1 marble per box
only 4 marbles, so not possible to put at least 1 marble in 6 boxes,
(i) 0 (ii) 1 (iii) 2.

x. (I,I) unrestricted
4 identical marbles placed in 1, 2, 3, 4, 5 and 6 identical boxes is
(4); AND (0,4), (1,3) or (2,2);
AND (0,0,4), (0,1,3), (0,2,2) or (1,1,2);
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AND (0,0,0,4), (0,0,1,3), (0,0,2,2), (0,1,1,2), (1,1,1,1),
AND (0,0,0,0,4), (0,0,0,1,3), (0,0,0,2,2), (0,0,1,1,2), (0,1,1,1,1),
(0,0,0,0,0,4), (0,0,0,0,1,3), (0,0,0,0,2,2), (0,0,0,1,1,2), (0,0,1,1,1,1),
∑n

k=1 pk(r) =
∑6

k=1 pk(4) =
= p1(4)+ p2(4)+ p3(4)+ p4(4)+ p5(4)+ p6(4) = 1+3+4+5+5+5 =
(i) 24 (ii) 25 (iii) 26.

xi. (I,I) at most 1 marble per box
4 identical marbles in 4 of 6 identical boxes same so
only (1,1,1,1,0,0) arrangement (i) 0 (ii) 1 (iii) 2.

xii. (I,I) at least 1 marble per box
only 4 marbles, so not possible to put at least 1 marble in 6 boxes,
pn(r) = p6(4) = (i) 0 (ii) 1 (iii) 2.

(b) Count number of ways of putting r = 6 marbles and n = 4 boxes under
following assumptions.

i. (D,D) unrestricted (none, 1 or more marbles can appear in each box)
marble 1 placed in one of 4 boxes, same for marbles 2, . . . , 6,
nr = 46 = (i) 4096 (ii) 4097 (iii) 4098.

ii. (D,D) at most 1 marble per box (permutation)
Since 6 marbles, not possible to put only at most 1 marble in 4 boxes,
(i) 0 (ii) 1 (iii) 2.

iii. (D,D) at least 1 marble per box
At least 1 marble can be placed in each of 4 boxes,
for example, (3,1,1,1) and (1,3,1,1) different arrangements,

n!S(r, n) = n!× 1
n!

∑n

k=0(−1)k
(

n

k

)

(n− k)r

=
∑4

k=0(−1)k
(

4
k

)

(4− k)6 = (i) 1540 (ii) 1550 (iii) 1560.

iv. (I,D) unrestricted
since arranging 6 marbles in 6 marbles + 4 boxes - 1 = 9 objects;
for example o|o|oo|oo means boxes 1, 2, 3, 4 gets 1, 1, 2, 2 marbles,

Cr+n−1
r =

(

6 + 4− 1
4

)

=

(

9
6

)

= (i) 82 (ii) 83 (iii) 84.

v. (I,D) at most 1 marble per box (combination)
Since 6 marbles, not possible to put only at most 1 marble in 4 boxes,
(i) 0 (ii) 1 (iii) 2.

vi. (I,D) at least 1 marble per box
arranging 6 - 4 = 2 marbles in 6 - 4 marbles + 4 boxes - 1 = 5 objects;
for example o|o|oo|oo means boxes 1, 2, 3, 4 gets 1, 1, 2, 2 marbles,

Cr−n+n−1
r−n = Cr−1

r−n =

(

5
2

)

= (i) 10 (ii) 11 (iii) 12.
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vii. (D,I) unrestricted
∑n

k=1 S(r, n) =
∑4

k=1 S(6, k)
= S(6, 1) + S(6, 2) + S(6, 3) + S(6, 4)
= 1 + 31 + 90 + 65 = (i) 186 (ii) 187 (iii) 188.

viii. (D,I) at most 1 marble per box
Since 6 marbles, not possible to put only at most 1 marble in 4 boxes,
(i) 0 (ii) 1 (iii) 2.

ix. (D,I) at least 1 marble per box
at least 1 marble can be placed in each of 4 identical boxes,
for example, (3,1,1,1) and (1,3,1,1) same arrangements,

S(r, n) = 1
n!

∑n

k=0(−1)k
(

n

k

)

(n− k)r

= 1
4!

∑4
k=0(−1)k

(

4
k

)

(4− k)6 = (i) 64 (ii) 65 (iii) 66.

x. (I,I) unrestricted
6 identical marbles placed in 1, 2, 3, and 4 identical boxes is
(6); AND (0,6), (1,5), (2,4) or (3,3);
AND (0,0,6), (0,1,5), (1,1,4), (1,2,3) or (2,2,2);
AND (0,0,0,6), (0,0,1,5), (0,0,2,4), (0,0,3,3),
or (0,1,1,4), (0,1,2,3), (0,2,2,2), (1,1,1,3), (1,1,2,2), so
∑n

k=1 pk(r) =
∑4

k=1 pk(6) = p1(6)+p2(6)+p3(6)+p4(6) = 1+4+5+9 =
(i) 10 (ii) 15 (iii) 19.

xi. (I,I) at most 1 marble per box
Since 6 marbles, not possible to put only at most 1 marble in 4 boxes,
(i) 0 (ii) 1 (iii) 2.

xii. (I,I) at least 1 marble per box
arrangements of 6 identical marbles placed in 4 identical boxes is
either (3,1,1,1) or (2,2,1,1), so
pn(r) = p4(6) = (i) 0 (ii) 1 (iii) 2.


