Unit 6 - Quadrilaterals

Day	Classwork	Day	Homework
$\begin{gathered} \text { Friday } \\ 11 / 9 \end{gathered}$	Unit 5 Test		
Monday $11 / 12$	No School		
Tuesday $11 / 13$	Properties of a Parallelogram	1	HW 6.1
Wednesday 11/14	Proving a Parallelogram	2	HW 6.2
Thursday $11 / 15$	Rectangle	3	HW 6.3
Friday $11 / 16$	Rhombus \& Square Unit 6 Quiz 1	4	HW 6.4
Monday $11 / 19$	Trapezoid \& Isosceles Trapezoid	5	HW 6.5
Tuesday $11 / 20$	Kites Unit 6 Quiz 2	6	HW 6.6
$\begin{gathered} 11 / 21 \\ 11 / 23 \end{gathered}$	Thanksgiving Break		
Monday $11 / 26$	Coordinate Proof Formulas	7	HW 6.7
Tuesday $11 / 27$	Symmetry in Quadrilaterals Unit 6 Quiz 3	9	HW 6.9
$\begin{gathered} \hline \text { Wednesday } \\ 11 / 28 \end{gathered}$	Coordinate Proofs	8	HW 6.8
Thursday $11 / 29$	Review	10	Review Sheet
$\begin{aligned} & \hline \text { Friday } \\ & 11 / 30 \end{aligned}$	Review	11	Review Sheet
Monday $12 / 3$	Review	12	Review Sheet
Tuesday $12 / 4$	Unit 6 Test	13	

PARALLELOGRAMS

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. In parallelogram $A B C D, \overline{B C} \| \overline{A D}$ and $\overline{A B} \| \overline{D C}$ by definition.

Theorems	Example	Figure
Opposite sides of a parallelogram are congruent.		

Given: $J K L M$ is a parallelogram
Prove: $\overline{J K} \cong \overline{L M}, \overline{J M} \cong \overline{L K}$

| Consecutive Angles in a
 parallelogram are
 supplementary. | ${ }^{\mathrm{J}} \mathrm{M}_{\mathrm{M}}^{\mathrm{K}} \mathrm{L}_{\mathrm{L}}$ |
| :---: | :--- | :--- |

Examples

1. In parallelogram $A B C D, m \angle A=(2 x-60)^{\circ}$ and $m \angle B=(x+30)^{\circ}$. Find $m \angle A$.
2. In parallelogram $A B C D, m \angle A=(x+20)^{a}$ and $m \angle C=(6 x-50)^{a}$. Find x.
3. In parallelogram $A B C D, A B=7 x-3$ and $C D=2 x+22$. Find the value of x.

Examples

1. If $Q R S T$ is a parallelogram, find the value of x, y, and z.

2. In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=x+4$ and $A C=5 x-10$, find the value of x.

PROVING PARALLELOGRAMS

If a quadrilateral has each pair of opposite sides parallel, it is a parallelogram by definition.
This is not the only test, however, that can be used to determine if a quadrilateral is a parallelogram.

Conditions for Parallelograms		
Theorem		
If both pairs of opposite sides are congruent, then the quadrilateral is a parallelogram.		
Given: $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$		
Prove: $A B C D$ is a parallelogram		

Examples

Determine whether each quadrilateral is a parallelogram. Justify your answer.
1.

2.

3.

Find x and y so that each of the following quadrilaterals are parallelograms.
4. $F K=3 x-1, K G=4 y+3, J K=6 y-2$, and $K H=2 x+3$

5.

6.

RECTANGLES

By definition, a rectangle is a parallelogram with four right angles.

1. All four angles are right angles
2. Opposite sides are \| and \cong
3. Consecutive angles are supplementary
4. Diagonals bisect each other
5. Diagonals of a rectangle are \cong
6. Opposite angles are \cong

Diagonals of a Rectangle				
Theorem	Example			
A rectangle is a parallelogram with congruent diagonals		Figure		Given: $\overline{A B C D}$ is a rectangle
:---				
Prove: $\overline{A C} \cong \overline{B D}$				

Examples

1. In rectangle $J K L M, J L=2 x+15$ and $K M=4 x-5$. Find MP.

2. Quadrilateral JKLM is a rectangle. If $m \angle K J L=2 x+4$ and $m \angle J L K=7 x+5$, find x.
3. Given: $A B C D$ is a rectangle. $\overline{D F} \cong \overline{E C}$
Prove: $\angle 1 \cong \angle 2$
$\overline{A G} \cong \overline{G B}$

Proving Parallelograms are Rectangles		
Abbreviation	Example	Figure
If a parallelogram has one right angle, then it has four right angles.		
If diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.		

Given: $\overline{A C} \cong \overline{B D}, A B C D$ is a parallelogram
Prove: $A B C D$ is a rectangle

RHOMBI AND SQUARES

A rhombus is a parallelogram with all four sides congruent. A rhombus has all the properties of a parallelogram.

Diagonals of a Rhombus

Theorem
If a parallelogram is a rhombus, then its diagonals are perpendicular
Given: $A B C D$ is a rhombus
Prove: $\overline{A C} \perp \overline{B D}$

| If a parallelogram is a
 rhombus, then each
 diagonal bisects a pair of
 opposite angles. |
| :--- | :--- |
| Given: $A B C D$ is a rhombus |
| Prove: $\frac{\overline{A C}}{}$ bisects $\angle B A D$ and $\angle B C D$ |

Examples

The diagonals of rhombus FGHI intersect at K. Use the given information to find each measure or value.
a. If $m \angle F J H=82$, find $m \angle K H J$.

b. If $K H=x+5, K G=x-2$, and $F G=17$. Find $K H$.

A square is a parallelogram with four congruent sides and four right angles. Recall that a parallelogram with four right angles is a rectangle, and a parallelogram with four congruent sides is a rhombus. Therefore, a parallelogram that is both a rectangle and a rhombus is also a square.

Conditions for Rhombi and Squares		
Theorem	Example	Figure
If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.		
If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus.		

If a quadrilateral is both a rectangle and a rhombus, then it is a square.

TRAPEZOIDS
A trapezoid is a quadrilateral with at least one pair of parallel sides. The parallel sides are called bases. The nonparallel sides are called legs. The base angles are formed by the base and one of the legs. By a definition, an isosceles trapezoid is a trapezoid with at least one pair of opposite sides congruent.

Isosceles Trapezoids		
Theorem	Example	Figure
If a trapezoid is isosceles, then each pair of base angles are congruent		
If a trapezoid has one pair of congruent base angles, then it is an isosceles trapezoid.		
A trapezoid is isosceles if and only if its diagonals are congruent.		
Given: $A B C D$ is an isosceles trapezoid with $\overline{A D} \cong \overline{B C}$ Prove: $\angle A \cong \angle B, \angle C \cong \angle D$		

Given: $A B C D$ is a trapezoid and $\angle C \cong \angle D$ Prove: $A B C D$ is an isosceles trapezoid

Given: $A B C D$ is a trapezoid and $\overline{A C} \cong \overline{B D}$ Prove: $A B C D$ is an isosceles trapezoid

Examples

1. The speaker shown is an isosceles trapezoid. If $m \angle F J H=85, F K=8$ inches, and $J G=19$ inches, find each measure.
c. $m \angle F G H$
d. $K H$

2. To save space at a square table, cafeteria trays often incorcporate trapezoids into their design. If $W X Y Z$ is an isosceles trapezoid and $m \angle Y Z W=45, W V=15 \mathrm{~cm}$, and $V Y=10$ cm , find each measure below.
a. $m \angle X W Z$
b. $m \angle W X Y$
c. $X Z$
d. $X V$

The midsegment of a trapezoid is the segment that connects the midpoints of the legs of the trapezoid. The theorem below relates the midsegment and the bases of a trapezoid.

Trapezoid Midsegment Theorem		
Theorem	Example	Figure
The midsegment of a trapezoid is parallel to each base and its measure is one half the sum of the lengths of the bases.		

Examples

1. In the figure, $P Q R S$ is a trapezoid. $\overline{T U}$ is the median. If $S R=2 x-3, P Q=2 x+11$, and $T U=14$, what is the length of $\overline{S R}$?

ADDITIONAL PRACTICE PROOFS

1. Given: $\overline{A B} \| \overline{C D}, \overline{A D} \cong \overline{A B}, \overline{C D} \cong \overline{C B}$.

Prove: $A B C D$ is a rhombus

2. Given: Rectangle $R S T U, M$ is the midpoint of $\overline{R S}$. Prove: $\triangle U M T$ is isosceles.

3. Given: $A B C D$ is a parallelogram, $\overline{R D}$ bisects $\angle A D C$, $\overline{S B}$ bisects $\angle C B A$.

Prove: $D R B S$ is a parallelogram.

4. Given: $D E F G$ is a rectangle, $\overline{W E} \cong \overline{Y G}, \overline{W X} \cong \overline{Y Z}$. Prove: $W X Y Z$ is a parallelogram.

5. Given: Parallelogram $A B F E, \overline{C R} \cong \overline{D S}$. Prove: $\overline{B R} \cong \overline{S E}$.

KITES

A kite is a quadrilateral with at least two pairs of consecutive congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.

Theorem	Example	Figure
If a quadrilateral is a kite, then its diagonals are perpendicular.		
If a quadrilateral is a kite, then at least one pair of opposite angles are congruent.		

Examples

a. If $F G H J$ is a kite, find $m \angle G F J$.

b. If $W X Y Z$ is a kite, find $Z Y$.

c. If $m \angle B A D=38$ and $m \angle B C D=50$, find $m \angle A D C$.

d. If $B T=5$ and $T C=8$, find $C D$.

SLOPES OF LINES

Slope can be interpreted as rate of change, describing how a quantity y changes in relationship to quantity x. The slope of a line can also be used to identify the coordinates of any point on the line.

\left.| Parallel and Perpendicular Lines | | |
| :---: | :---: | :---: |
| | Description | Example |
| | | |
| Slopes of | | |
| Parallel Lines | | |$\right)$

$m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Examples

1. Determine whether $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, perpendicular, or neither for $A(1,1)$, $B(-1,-5), C(3,2)$, and $D(6,1)$.
2. Given $A(1,1), B(2,4), C(4,1)$, and $D(3, k)$
a) Find the slope of $\overleftrightarrow{A B}$.
b) Express the slope of $\overrightarrow{C D}$ in terms of k.
c) If $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$, find the value of k.

Distance

The distance between two points is the length of the segment with those points as its endpoints.

DISTANCE FORMULA (Coordinate Plane)		
WORDS	SYMBOLS	PICTURE
If P has coordinates $\left(x_{1}, y_{1}\right)$ and		
Q has coordinates $\left(x_{2}, y_{2}\right)$, then		

Examples

1. Find the distance between $C(1,1)$ and $D(3,-3)$. Check using the Pythagorean Theorem.
2. Given the points $A(6,7)$ and $B(14,-1)$.

Find the length of $\overline{A B}$.

3. What is the length of the diameter of a circle whose center is at $(6,0)$ and passes through $(2,-3)$?
4. A triangle has vertices $D(2,3), E(5,5)$, and $F(4,0)$. Determine if the triangle is scalene, isosceles, or equilateral.

Midpoint

The midpoint of a segment is the point halfway between the endpoints of the segment.

Midpoint Formula (Coordinate Plane)		
WORDS	SYMBOLS	PICTURE
If $\overline{P Q}$ has endpoints at $P\left(x_{1}, y_{1}\right)$ and		
$Q\left(x_{2}, y 2\right)$ in the coordinate plane, then		
the midpoint M of $\overline{P Q}$ is		

Examples

1. Find the coordinates of M, the midpoint of $\overline{S T}$, for $S(-6,3)$ and $T(2,1)$.
2. Find the midpoint when given the endpoints $(-1,-4)$ and $(3,-2)$.
3. Find the coordinates of J if $M(-1,2)$ is the midpoint of \bar{L} and L has coordinates (3,-5).

4. $\overline{R S}$ is the diameter of the circle shown in the accompanying diagram. What are the coordinates of the center of this circle?

Parallel Lines (\|) - If two lines have equal slopes, then the lines are parallel.

Perpendicular Lines (\perp) - If two non-vertical lines have slopes that are negative reciprocals of one another, then the lines are perpendicular.

Examples:

1. Given the points $\mathrm{A}(6,9)$ and $\mathrm{B}(14,-1)$.
a. Find the slope of $\overline{A B}$.
b. Find the slope of the line perpendicular to $\overline{A B}$
c. Find the slope of the line parallel to $\overline{A B}$
2. Consider the line segments $\overline{A B}$ and $\overline{C D}$, with $\mathrm{A}(-3,-2), \mathrm{B}(2,1), \mathrm{C}(-7,-1)$, and $\mathrm{D}(-2,2)$.
a. Prove that $\overline{A B} \| \overline{C D}$.
b. Determine if $\overline{B C} \| \overline{A B}$.

3. If $\mathrm{X}(5,0), \mathrm{Y}(3,4)$, and $\mathrm{Z}(-1,2)$, prove $\overline{X Y} \perp \overline{Y Z}$.

4. The vertices of triangle WIN are $\mathrm{W}(2,1), \mathrm{I}(4,7)$ and $\mathrm{N}(8,3)$. Using coordinate geometry, show that Δ WIN is an isosceles triangle and state the reasons for your conclusion.

5. Triangle NAQ has coordinates $N(2,3), A(6,0)$ and $Q(12,8)$. Using coordinate geometry, show that $\triangle N A Q$ is a right triangle and state the reasons for your conclusion

CLASSIFYING QUADRILATERALS USING COORDINATE GEOMETRY

1. Determine the coordinates of the intersection of the diagonals of parallelogram FGHI with vertices $F(-2,4), G(3,5), H(2,-3)$, and $J(-3,-4)$. Prove $F G H I$ is a parallelogram.

2. Graph quadrilateral $K L M N$ with vertices $K(2,3), L(8,4), M(7,-2)$, and $N(1,-3)$. Prove the quadrilateral is a parallelogram. Justify your answer using the Slope Formula and Distance formula.

3. Quadrilateral $P Q R S$ has vertices $P(-5,3), Q(1,-1), R(-1,-4)$, and $S(-7,0)$. Prove $P Q R S$ is a rectangle.

4. Prove that parallelogram $J K L M$ with vertices $J(-7,-2), K(0,4), L(9,2)$, and $M(2,-4)$ is a rhombus. Is it a rectangle and/or square also?

5. $A(-3,4), B(2,5), C(3,3), D(-1,0)$. Prove $A B C D$ is a trapezoid. Is the trapezoid isosceles?

6. $F(-2,4), G(3,5), H(2,-3), J(-3,-4)$. Prove that quadrilateral $F G H J$ is a parallelogram.

SYMMETRY IN QUADRILATERALS

RECALL: A figure has symmetry if there exists a rigid motion - reflection, translation, rotation, or glide-reflection - that maps the figure onto itself.

A figure in the plane has line symmetry if the figure can be mapped onto itself by a reflection in a line, called a line of symmetry.
A nontrivial rotational symmetry of a figure is a rotation of the plane that maps the figure back to itself such that the rotation is greater than 0° but less than 360°.

1. Determine whether each figure has line symmetry and/or rotational symmetry. If so, draw all lines of symmetry and/or give the angle of rotational symmetry.
a. Rectangle
b. Isosceles Trapezoid
c. Parallelogram
d. Regular Hexagon
2. Suppose $A B C D$ is a quadrilateral for which there is exactly one rotation, through an angle larger than 0 degrees and less than 360 degrees, which maps it to itself. Further, no reflections map $A B C D$ to itself. What shape is $A B C D$?
3. Draw an example of a trapezoid that does not have line symmetry.
4. Jennifer draws the rectangle $A B C D$ below.
a. Find all rotations and reflections that carry rectangle $A B C D$ onto itself.

b. Lisa draws a different rectangle and she finds a larger number of symmetries (than Jennifer) for her rectangle. What can you conclude about Lisa's rectangle? Explain.
5. There is exactly one reflection and no rotation that sends the convex quadrilateral $A B C D$ onto itself. What shape(s) could quadrilateral ABCD be? Explain.
6. Draw an example of a parallelogram that has exactly two lines of symmetry. Draw the lines of symmetry and give the most specific name for the parallelogram you drew.
