
Keras

 i

Keras

 ii

About the Tutorial

Keras is an open source deep learning framework for python. It has been developed by an

artificial intelligence researcher at Google named Francois Chollet. Leading organizations

like Google, Square, Netflix, Huawei and Uber are currently using Keras. This tutorial walks

through the installation of Keras, basics of deep learning, Keras models, Keras layers,

Keras modules and finally conclude with some real-time applications.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in the field of

deep learning and neural network framework. This tutorial is intended to make you

comfortable in getting started with the Keras framework concepts.

Prerequisites

Before proceeding with the various types of concepts given in this tutorial, we assume that
the readers have basic understanding of deep learning framework. In addition to this, it will
be very helpful, if the readers have a sound knowledge of Python and Machine Learning.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Keras

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Keras ― Introduction .. 1

Overview of Keras.. 1

Features ... 1

Benefits .. 1

2. Keras ― Installation .. 3

Prerequisites .. 3

Keras Installation Steps ... 3

Keras Installation Using Python ... 6

Anaconda Cloud .. 7

3. Keras ― Backend Configuration .. 9

TensorFlow .. 9

Theano ... 10

4. Keras ― Overview of Deep learning .. 11

Artificial Neural Networks ... 11

Multi-Layer Perceptron ... 12

Convolutional Neural Network (CNN) ... 13

Recurrent Neural Network (RNN) .. 14

Workflow of ANN .. 14

5. Keras ― Deep learning with Keras .. 17

Architecture of Keras ... 17

Model .. 17

Keras

 iv

Layer .. 18

Core Modules .. 19

6. Keras ― Modules .. 20

Available modules ... 20

backend module .. 21

utils module ... 24

7. Keras ― Layers .. 26

Introduction ... 26

Basic Concept of Layers ... 27

Initializers .. 28

Constraints .. 33

Regularizers ... 34

Activations ... 35

Dense Layer ... 38

Dropout Layers .. 42

Flatten Layers .. 42

Reshape Layers .. 43

Permute Layers .. 44

RepeatVector Layers.. 44

Lambda Layers ... 45

Convolution Layers .. 45

Pooling Layer ... 47

Locally connected layer ... 47

Merge Layer ... 49

Embedding Layer ... 51

8. Keras ― Customized Layer .. 52

9. Keras ― Models .. 55

Sequential .. 55

Keras

 v

Functional API .. 58

10. Keras ― Model Compilation ... 60

Loss .. 60

Optimizer ... 61

Metrics ... 61

Compile the model .. 62

Model Training .. 63

Create a Multi-Layer Perceptron ANN ... 64

Final thoughts .. 68

11. Keras ― Model Evaluation and Model Prediction ... 71

Model Evaluation... 71

Model Prediction ... 71

12. Keras ― Convolution Neural Network .. 73

13. Keras ― Regression Prediction using MPL... 77

14. Keras ― Time Series Prediction using LSTM RNN .. 83

15. Keras ― Applications .. 88

Loading a model .. 88

16. Keras ― Real Time Prediction using ResNet Model ... 89

17. Keras ― Pre-Trained Models ... 92

VGG16.. 92

MobileNetV2 ... 92

InceptionResNetV2 .. 92

InceptionV3 ... 93

Conclusion ... 93

Keras

 1

Deep learning is one of the major subfield of machine learning framework. Machine

learning is the study of design of algorithms, inspired from the model of human brain.

Deep learning is becoming more popular in data science fields like robotics, artificial

intelligence(AI), audio & video recognition and image recognition. Artificial neural network

is the core of deep learning methodologies. Deep learning is supported by various libraries

such as Theano, TensorFlow, Caffe, Mxnet etc., Keras is one of the most powerful and

easy to use python library, which is built on top of popular deep learning libraries like

TensorFlow, Theano, etc., for creating deep learning models.

Overview of Keras

Keras runs on top of open source machine libraries like TensorFlow, Theano or Cognitive

Toolkit (CNTK). Theano is a python library used for fast numerical computation tasks.

TensorFlow is the most famous symbolic math library used for creating neural networks

and deep learning models. TensorFlow is very flexible and the primary benefit is distributed

computing. CNTK is deep learning framework developed by Microsoft. It uses libraries such

as Python, C#, C++ or standalone machine learning toolkits. Theano and TensorFlow are

very powerful libraries but difficult to understand for creating neural networks.

Keras is based on minimal structure that provides a clean and easy way to create deep

learning models based on TensorFlow or Theano. Keras is designed to quickly define deep

learning models. Well, Keras is an optimal choice for deep learning applications.

Features

Keras leverages various optimization techniques to make high level neural network API

easier and more performant. It supports the following features:

 Consistent, simple and extensible API.

 Minimal structure - easy to achieve the result without any frills.

 It supports multiple platforms and backends.

 It is user friendly framework which runs on both CPU and GPU.

 Highly scalability of computation.

Benefits

Keras is highly powerful and dynamic framework and comes up with the following

advantages:

 Larger community support.

 Easy to test.

 Keras neural networks are written in Python which makes things simpler.

 Keras supports both convolution and recurrent networks.

1. Keras ― Introduction

Keras

 2

 Deep learning models are discrete components, so that, you can combine into many

ways.

Keras

 3

This chapter explains about how to install Keras on your machine. Before moving to

installation, let us go through the basic requirements of Keras.

Prerequisites

You must satisfy the following requirements:

 Any kind of OS (Windows, Linux or Mac)

 Python version 3.5 or higher.

Python

Keras is python based neural network library so python must be installed on your machine.

If python is properly installed on your machine, then open your terminal and type python,

you could see the response similar as specified below,

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

As of now the latest version is ‘3.7.2’. If Python is not installed, then visit the official

python link - https://www.python.org/ and download the latest version based on your OS

and install it immediately on your system.

Keras Installation Steps

Keras installation is quite easy. Follow below steps to properly install Keras on your

system.

Step 1: Create virtual environment

Virtualenv is used to manage Python packages for different projects. This will be helpful

to avoid breaking the packages installed in the other environments. So, it is always

recommended to use a virtual environment while developing Python applications.

Linux/Mac OS

Linux or mac OS users, go to your project root directory and type the below command to

create virtual environment,

python3 -m venv kerasenv

After executing the above command, “kerasenv” directory is created with bin,lib and

include folders in your installation location.

Windows

2. Keras ― Installation

Keras

 4

Windows user can use the below command,

py -m venv keras

Step 2: Activate the environment

This step will configure python and pip executables in your shell path.

Linux/Mac OS

Now we have created a virtual environment named “kerasvenv”. Move to the folder and

type the below command,

$ cd kerasvenv

kerasvenv $ source bin/activate

Windows

Windows users move inside the “kerasenv” folder and type the below command,

.\env\Scripts\activate

Step 3: Python libraries

Keras depends on the following python libraries.

 Numpy

 Pandas

 Scikit-learn

 Matplotlib

 Scipy

 Seaborn

Hopefully, you have installed all the above libraries on your system. If these libraries are

not installed, then use the below command to install one by one.

numpy

pip install numpy

you could see the following response,

Collecting numpy

 Downloading

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8/

 numpy-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.

 macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB)

 |████████████████████████████████| 14.4MB 2.8MB/s

Keras

 5

pandas

pip install pandas

We could see the following response:

Collecting pandas

 Downloading

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8/

 pandas-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.

 macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB)

 |████████████████████████████████| 14.4MB 2.8MB/s

matplotlib

pip install matplotlib

We could see the following response:

Collecting matplotlib

 Downloading

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8/

 matplotlib-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.

 macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB)

 |████████████████████████████████| 14.4MB 2.8MB/s

scipy

pip install scipy

We could see the following response:

Collecting scipy

 Downloading

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8

 /scipy-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.

 macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB)

 |████████████████████████████████| 14.4MB 2.8MB/s

scikit-learn

It is an open source machine learning library. It is used for classification, regression and

clustering algorithms. Before moving to the installation, it requires the following:

 Python version 3.5 or higher

 NumPy version 1.11.0 or higher

 SciPy version 0.17.0 or higher

Keras

 6

 joblib 0.11 or higher.

Now, we install scikit-learn using the below command:

pip install -U scikit-learn

Seaborn

Seaborn is an amazing library that allows you to easily visualize your data. Use the below

command to install:

pip install seaborn

You could see the message similar as specified below:

Collecting seaborn

 Downloading

https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf5

6c25b3d3d2de62056efe482dadc

 /seaborn-0.9.0-py3-none-any.whl (208kB)

 100% |████████████████████████████████| 215kB 4.0MB/s

Requirement already satisfied: numpy>=1.9.3 in ./lib/python3.7/site-packages

(from seaborn) (1.17.0)

Collecting pandas>=0.15.2 (from seaborn)

 Downloading

https://files.pythonhosted.org/packages/39/b7/441375a152f3f9929ff8bc2915218ff1a

063a59d7137ae0546db616749f9/

 pandas-0.25.0-cp37-cp37m-macosx_10_9_x86_64.macosx_10_10_x86_64.whl (10.1MB)

 100% |████████████████████████████████| 10.1MB 1.8MB/s

Requirement already satisfied: scipy>=0.14.0 in ./lib/python3.7/site-packages

(from seaborn) (1.3.0)

Collecting matplotlib>=1.4.3 (from seaborn)

 Downloading

https://files.pythonhosted.org/packages/c3/8b/af9e0984f5c0df06d3fab0bf396eb09cb

f05f8452de4e9502b182f59c33b/

 matplotlib-3.1.1-cp37-cp37m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64

 .macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB)

 100% |████████████████████████████████| 14.4MB 1.4MB/s

......................................

......................................

Successfully installed cycler-0.10.0 kiwisolver-1.1.0 matplotlib-3.1.1 pandas-

0.25.0

pyparsing-2.4.2 python-dateutil-2.8.0 pytz-2019.2 seaborn-0.9.0

Keras Installation Using Python

As of now, we have completed basic requirements for the installtion of Kera. Now, install

the Keras using same procedure as specified below:

pip install keras

Keras

 7

Quit virtual environment

After finishing all your changes in your project, then simply run the below command to

quit the environment:

deactivate

Anaconda Cloud

We believe that you have installed anaconda cloud on your machine. If anaconda is not

installed, then visit the official link, https://www.anaconda.com/distribution/ and choose

download based on your OS.

Create a new conda environment

Launch anaconda prompt, this will open base Anaconda environment. Let us create a new

conda environment. This process is similar to virtualenv. Type the below command in your

conda terminal:

conda create --name PythonCPU

If you want, you can create and install modules using GPU also. In this tutorial, we follow

CPU instructions.

Activate conda environment

To activate the environment, use the below command:

activate PythonCPU

Install spyder

Spyder is an IDE for executing python applications. Let us install this IDE in our conda

environment using the below command:

conda install spyder

Install python libraries

We have already known the python libraries numpy, pandas, etc., needed for keras. You

can install all the modules by using the below syntax:

Syntax

conda install -c anaconda <module-name>

For example, you want to install pandas:

conda install -c anaconda pandas

Like the same method, try it yourself to install the remaining modules.

Keras

 8

Install Keras

Now, everything looks good so you can start keras installation using the below command:

conda install -c anaconda keras

Launch spyder

Finally, launch spyder in your conda terminal using the below command:

spyder

To ensure everything was installed correctly, import all the modules, it will add everything

and if anything went wrong, you will get module not found error message.

Keras

 9

This chapter explains Keras backend implementations TensorFlow and Theano in detail.

Let us go through each implementation one by one.

TensorFlow

TensorFlow is an open source machine learning library used for numerical computational

tasks developed by Google. Keras is a high level API built on top of TensorFlow or Theano.

We know already how to install TensorFlow using pip.

If it is not installed, you can install using the below command:

pip install TensorFlow

Once we execute keras, we could see the configuration file is located at your home

directory inside and go to .keras/keras.json.

keras.json

{

 "image_data_format": "channels_last",

 "epsilon": 1e-07,

 "floatx": "float32",

 "backend": "tensorflow"

}

Here,

 image_data_format represent the data format.

 epsilon represents numeric constant. It is used to avoid DivideByZero error.

 floatx represent the default data type float32. You can also change it to float16

or float64 using set_floatx() method.

 backend denotes the current backend.

Suppose, if the file is not created then move to the location and create using the below

steps:

> cd home

> mkdir .keras

> vi keras.json

Remember, you should specify .keras as its folder name and add the above configuration

inside keras.json file. We can perform some pre-defined operations to know backend

functions.

3. Keras ― Backend Configuration

Keras

 10

Theano

Theano is an open source deep learning library that allows you to evaluate multi-

dimensional arrays effectively. We can easily install using the below command:

pip install theano

By default, keras uses TensorFlow backend. If you want to change backend configuration

from TensorFlow to Theano, just change the backend = theano in keras.json file. It is

described below:

keras.json

{

 "image_data_format": "channels_last",

 "epsilon": 1e-07,

 "floatx": "float32",

 "backend": "theano"

}

Now save your file, restart your terminal and start keras, your backend will be changed.

>>> import keras as k

using theano backend.

Keras

 11

Deep learning is an evolving subfield of machine learning. Deep learning involves analyzing

the input in layer by layer manner, where each layer progressively extracts higher level

information about the input.

Let us take a simple scenario of analyzing an image. Let us assume that your input image

is divided up into a rectangular grid of pixels. Now, the first layer abstracts the pixels. The

second layer understands the edges in the image. The Next layer constructs nodes from

the edges. Then, the next would find branches from the nodes. Finally, the output layer

will detect the full object. Here, the feature extraction process goes from the output of one

layer into the input of the next subsequent layer.

By using this approach, we can process huge amount of features, which makes deep

learning a very powerful tool. Deep learning algorithms are also useful for the analysis of

unstructured data. Let us go through the basics of deep learning in this chapter.

Artificial Neural Networks

The most popular and primary approach of deep learning is using “Artificial neural network”

(ANN). They are inspired from the model of human brain, which is the most complex organ

of our body. The human brain is made up of more than 90 billion tiny cells called “Neurons”.

Neurons are inter-connected through nerve fiber called “axons” and “Dendrites”. The main

role of axon is to transmit information from one neuron to another to which it is connected.

Similarly, the main role of dendrites is to receive the information being transmitted by the

axons of another neuron to which it is connected. Each neuron processes a small

information and then passes the result to another neuron and this process continues. This

is the basic method used by our human brain to process huge about of information like

speech, visual, etc., and extract useful information from it.

Based on this model, the first Artificial Neural Network (ANN) was invented by psychologist

Frank Rosenblatt, in the year of 1958. ANNs are made up of multiple nodes which is

similar to neurons. Nodes are tightly interconnected and organized into different hidden

layers. The input layer receives the input data and the data goes through one or more

hidden layers sequentially and finally the output layer predict something useful about the

input data. For example, the input may be an image and the output may be the thing

identified in the image, say a “Cat”.

A single neuron (called as perceptron in ANN) can be represented as below:

4. Keras ― Overview of Deep learning

Keras

 12

Here,

 Multiple input along with weight represents dendrites.

 Sum of input along with activation function represents neurons. Sum actually

means computed value of all inputs and activation function represent a function,

which modify the Sum value into 0, 1 or 0 to 1.

 Actual output represent axon and the output will be received by neuron in next

layer.

Let us understand different types of artificial neural networks in this section.

Multi-Layer Perceptron

Multi-Layer perceptron is the simplest form of ANN. It consists of a single input layer, one

or more hidden layer and finally an output layer. A layer consists of a collection of

perceptron. Input layer is basically one or more features of the input data. Every hidden

layer consists of one or more neurons and process certain aspect of the feature and send

the processed information into the next hidden layer. The output layer process receives

the data from last hidden layer and finally output the result.

Keras

 13

Convolutional Neural Network (CNN)

Convolutional neural network is one of the most popular ANN. It is widely used in the fields

of image and video recognition. It is based on the concept of convolution, a mathematical

concept. It is almost similar to multi-layer perceptron except it contains series of

convolution layer and pooling layer before the fully connected hidden neuron layer. It has

three important layers:

 Convolution layer: It is the primary building block and perform computational

tasks based on convolution function.

 Pooling layer: It is arranged next to convolution layer and is used to reduce the

size of inputs by removing unnecessary information so computation can be

performed faster.

 Fully connected layer: It is arranged to next to series of convolution and pooling

layer and classify input into various categories.

A simple CNN can be represented as below:

Keras

 14

Here,

 2 series of Convolution and pooling layer is used and it receives and process the

input (e.g. image).

 A single fully connected layer is used and it is used to output the data

(e.g. classification of image)

Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN) are useful to address the flaw in other ANN models.

Well, Most of the ANN doesn’t remember the steps from previous situations and learned

to make decisions based on context in training. Meanwhile, RNN stores the past

information and all its decisions are taken from what it has learnt from the past.

This approach is mainly useful in image classification. Sometimes, we may need to look

into the future to fix the past. In this case bidirectional RNN is helpful to learn from the

past and predict the future. For example, we have handwritten samples in multiple inputs.

Suppose, we have confusion in one input then we need to check again other inputs to

recognize the correct context which takes the decision from the past.

Workflow of ANN

Let us first understand the different phases of deep learning and then, learn how Keras

helps in the process of deep learning.

Collect required data

Deep learning requires lot of input data to successfully learn and predict the result. So,

first collect as much data as possible.

Analyze data

Analyze the data and acquire a good understanding of the data. The better understanding

of the data is required to select the correct ANN algorithm.

Choose an algorithm (model)

Keras

 15

Choose an algorithm, which will best fit for the type of learning process (e.g image

classification, text processing, etc.,) and the available input data. Algorithm is represented

by Model in Keras. Algorithm includes one or more layers. Each layers in ANN can be

represented by Keras Layer in Keras.

 Prepare data: Process, filter and select only the required information from the data.

 Split data: Split the data into training and test data set. Test data will be used to

evaluate the prediction of the algorithm / Model (once the machine learn) and to cross

check the efficiency of the learning process.

 Compile the model: Compile the algorithm / model, so that, it can be used further

to learn by training and finally do to prediction. This step requires us to choose loss

function and Optimizer. loss function and Optimizer are used in learning phase

to find the error (deviation from actual output) and do optimization so that the error

will be minimized.

 Fit the model: The actual learning process will be done in this phase using the

training data set.

 Predict result for unknown value: Predict the output for the unknown input data

(other than existing training and test data)

 Evaluate model: Evaluate the model by predicting the output for test data and cross-

comparing the prediction with actual result of the test data.

 Freeze, Modify or choose new algorithm: Check whether the evaluation of the

model is successful. If yes, save the algorithm for future prediction purpose. If not,

then modify or choose new algorithm / model and finally, again train, predict and

evaluate the model. Repeat the process until the best algorithm (model) is found.

The above steps can be represented using below flow chart:

Keras

 16

Keras

 17

Keras provides a complete framework to create any type of neural networks. Keras is

innovative as well as very easy to learn. It supports simple neural network to very large

and complex neural network model. Let us understand the architecture of Keras framework

and how Keras helps in deep learning in this chapter.

Architecture of Keras

Keras API can be divided into three main categories:

 Model

 Layer

 Core Modules

In Keras, every ANN is represented by Keras Models. In turn, every Keras Model is

composition of Keras Layers and represents ANN layers like input, hidden layer, output

layers, convolution layer, pooling layer, etc., Keras model and layer access Keras

modules for activation function, loss function, regularization function, etc., Using Keras

model, Keras Layer, and Keras modules, any ANN algorithm (CNN, RNN, etc.,) can be

represented in a simple and efficient manner.

The following diagram depicts the relationship between model, layer and core modules:

Let us see the overview of Keras models, Keras layers and Keras modules.

Model

Keras Models are of two types as mentioned below:

5. Keras ― Deep learning with Keras

Keras

 18

Sequential Model - Sequential model is basically a linear composition of Keras Layers.

Sequential model is easy, minimal as well as has the ability to represent nearly all available

neural networks.

A simple sequential model is as follows:

from keras.models import Sequential

from keras.layers import Dense, Activation

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,)))

Where,

 Line 1 imports Sequential model from Keras models

 Line 2 imports Dense layer and Activation module

 Line 4 create a new sequential model using Sequential API

 Line 5 adds a dense layer (Dense API) with relu activation (using Activation

module) function.

Sequential model exposes Model class to create customized models as well. We can use

sub-classing concept to create our own complex model.

Functional API: Functional API is basically used to create complex models.

Layer

Each Keras layer in the Keras model represent the corresponding layer (input layer, hidden

layer and output layer) in the actual proposed neural network model. Keras provides a lot

of pre-build layers so that any complex neural network can be easily created. Some of the

important Keras layers are specified below,

 Core Layers

 Convolution Layers

 Pooling Layers

 Recurrent Layers

A simple python code to represent a neural network model using sequential model is as

follows:

from keras.models import Sequential

from keras.layers import Dense, Activation, Dropout

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,)))

model.add(Dropout(0.2))

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(num_classes, activation='softmax'))

Where,

Keras

 19

 Line 1 imports Sequential model from Keras models

 Line 2 imports Dense layer, Dropout layer and Activation module

 Line 4 create a new sequential model using Sequential API

 Line 5 adds a dense layer (Dense API) with relu activation (using Activation

module) function.

 Line 6 adds a dropout layer (Dropout API) to handle over-fitting.

 Line 7 adds another dense layer (Dense API) with relu activation (using Activation

module) function.

 Line 8 adds another dropout layer (Dropout API) to handle over-fitting.

 Line 9 adds final dense layer (Dense API) with softmax activation (using

Activation module) function.

Keras also provides options to create our own customized layers. Customized layer can be

created by sub-classing the Keras.Layer class and it is similar to sub-classing Keras

models.

Core Modules

Keras also provides a lot of built-in neural network related functions to properly create the

Keras model and Keras layers. Some of the function are as follows:

 Activations module - Activation function is an important concept in ANN and

activation modules provides many activation function like softmax, relu, etc.,

 Loss module - Loss module provides loss functions like mean_squared_error,

mean_absolute_error, poisson, etc.,

 Optimizer module - Optimizer module provides optimizer function like adam, sgd,

etc.,

 Regularizers - Regularizer module provides functions like L1 regularizer, L2

regularizer, etc.,

Let us learn Keras modules in detail in the upcoming chapter.

Keras

 20

As we learned earlier, Keras modules contains pre-defined classes, functions and variables

which are useful for deep learning algorithm. Let us learn the modules provided by Keras

in this chapter.

Available modules

Let us first see the list of modules available in the Keras.

 Initializers: Provides a list of initializers function. We can learn it in details in Keras

layer chapter. during model creation phase of machine learning.

 Regularizers: Provides a list of regularizers function. We can learn it in details in

Keras Layers chapter.

 Constraints: Provides a list of constraints function. We can learn it in details in Keras

Layers chapter.

 Activations: Provides a list of activator function. We can learn it in details in Keras

Layers chapter.

 Losses: Provides a list of loss function. We can learn it in details in Model Training

chapter.

 Metrics: Provides a list of metrics function. We can learn it in details in Model Training

chapter.

 Optimizers: Provides a list of optimizer function. We can learn it in details in Model

Training chapter.

 Callback: Provides a list of callback function. We can use it during the training

process to print the intermediate data as well as to stop the training itself

(EarlyStopping method) based on some condition.

 Text processing: Provides functions to convert text into NumPy array suitable for

machine learning. We can use it in data preparation phase of machine learning.

 Image processing: Provides functions to convert images into NumPy array suitable

for machine learning. We can use it in data preparation phase of machine learning.

 Sequence processing: Provides functions to generate time based data from the

given input data. We can use it in data preparation phase of machine learning.

 Backend: Provides function of the backend library like TensorFlow and Theano.

 Utilities: Provides lot of utility function useful in deep learning.

Let us see backend module and utils model in this chapter.

6. Keras ― Modules

Keras

 21

backend module

backend module is used for keras backend operations. By default, keras runs on top of

TensorFlow backend. If you want, you can switch to other backends like Theano or CNTK.

Defualt backend configuration is defined inside your root directory under .keras/keras.json

file.

Keras backend module can be imported using below code:

>>> from keras import backend as k

If we are using default backend TensorFlow, then the below function returns TensorFlow

based information as specified below:

>>> k.backend()

'tensorflow'

>>> k.epsilon()

1e-07

>>> k.image_data_format()

'channels_last'

>>> k.floatx()

'float32'

Let us understand some of the significant backend functions used for data analysis in brief:

get_uid()

It is the identifier for the default graph. It is defined below:

>>> k.get_uid(prefix='')

1

>>> k.get_uid(prefix='')

2

reset_uids

It is used resets the uid value.

>>> k.reset_uids()

 Now, again execute the get_uid(). This will be reset and change again to 1.

>>> k.get_uid(prefix='')

1

placeholder

It is used instantiates a placeholder tensor. Simple placeholder to hold 3-D shape is

shown below:

Keras

 22

>>> data = k.placeholder(shape=(1,3,3))

>>> data

<tf.Tensor 'Placeholder_9:0' shape=(1, 3, 3) dtype=float32>

If you use int_shape(), it will show the shape.

>>> k.int_shape(data)

(1, 3, 3)

dot

It is used to multiply two tensors. Consider a and b are two tensors and c will be the

outcome of multiply of ab. Assume a shape is (4,2) and b shape is (2,3). It is defined

below,

>>> a = k.placeholder(shape=(4,2))

>>> b = k.placeholder(shape=(2,3))

>>> c = k.dot(a,b)

>>> c

<tf.Tensor 'MatMul_3:0' shape=(4, 3) dtype=float32>

>>>

ones

It is used to initialize all as one value.

>>> res = k.ones(shape=(2,2))

#print the value

>>> k.eval(res)

array([[1., 1.],

 [1., 1.]], dtype=float32)

batch_dot

It is used to perform the product of two data in batches. Input dimension must be 2 or

higher. It is shown below:

>>> a_batch = k.ones(shape=(2,3))

>>> b_batch = k.ones(shape=(3,2))

>>> c_batch = k.batch_dot(a_batch,b_batch)

>>> c_batch

<tf.Tensor 'ExpandDims:0' shape=(2, 1) dtype=float32>

variable

It is used to initializes a variable. Let us perform simple transpose operation in this

variable.

Keras

 23

>>> data = k.variable([[10,20,30,40],[50,60,70,80]]) #variable initialized

here

>>> result = k.transpose(data)

>>> print(result)

Tensor("transpose_6:0", shape=(4, 2), dtype=float32)

>>> print(k.eval(result))

[[10. 50.]

 [20. 60.]

 [30. 70.]

 [40. 80.]]

If you want to access from numpy:

>>> data = np.array([[10,20,30,40],[50,60,70,80]])

>>> print(np.transpose(data))

[[10 50]

 [20 60]

 [30 70]

 [40 80]]

>>> res = k.variable(value=data)

>>> print(res)

<tf.Variable 'Variable_7:0' shape=(2, 4) dtype=float32_ref>

is_sparse(tensor)

It is used to check whether the tensor is sparse or not.

>>> a = k.placeholder((2, 2), sparse=True)

>>> print(a)

SparseTensor(indices=Tensor("Placeholder_8:0", shape=(?, 2), dtype=int64),

 values=Tensor("Placeholder_7:0", shape=(?,), dtype=float32),

 dense_shape=Tensor("Const:0", shape=(2,), dtype=int64))

>>> print(k.is_sparse(a))

True

to_dense()

It is used to converts sparse into dense.

>>> b = k.to_dense(a)

>>> print(b)

Tensor("SparseToDense:0", shape=(2, 2), dtype=float32)

>>> print(k.is_sparse(b))

False

random_uniform_variable

It is used to initialize using uniform distribution concept.

Keras

 24

k.random_uniform_variable(shape, mean, scale)

Here,

 shape - denotes the rows and columns in the format of tuples.

 mean - mean of uniform distribution.

 scale - standard deviation of uniform distribution.

Let us have a look at the below example usage:

>>> a = k.random_uniform_variable(shape=(2, 3), low=0, high=1)

>>> b = k. random_uniform_variable(shape=(3,2), low=0, high=1)

>>> c = k.dot(a, b)

>>> k.int_shape(c)

(2, 2)

utils module

utils provides useful utilities function for deep learning. Some of the methods provided by

the utils module is as follows:

HDF5Matrix

It is used to represent the input data in HDF5 format.

from keras.utils import HDF5Matrix

data = HDF5Matrix('data.hdf5', 'data')

to_categorical

It is used to convert class vector into binary class matrix.

>>> from keras.utils import to_categorical

>>> labels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> to_categorical(labels)

array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

 [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],

 [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],

 [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],

 [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],

 [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],

 [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],

 [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]], dtype=float32)

normalize

It is used to normalize the NumPy array.

Keras

 25

>>> from keras.utils import normalize

>>> normalize([1, 2, 3, 4, 5])

array([[0.13483997, 0.26967994, 0.40451992, 0.53935989, 0.67419986]])

print_summary

It is used to print the summary of the model.

from keras.utils import print_summary

print_summary(model)

plot_model

It is used to create the model representation in dot format and save it to file.

from keras.utils import plot_model

plot_model(model,to_file='image.png')

This plot_model will generate an image to understand the performance of model.

Keras

 26

As learned earlier, Keras layers are the primary building block of Keras models. Each layer

receives input information, do some computation and finally output the transformed

information. The output of one layer will flow into the next layer as its input. Let us learn

complete details about layers in this chapter.

Introduction

A Keras layer requires shape of the input (input_shape) to understand the structure

of the input data, initializer to set the weight for each input and finally activators to

transform the output to make it non-linear. In between, constraints restricts and specify

the range in which the weight of input data to be generated and regularizer will try to

optimize the layer (and the model) by dynamically applying the penalties on the weights

during optimization process.

To summarise, Keras layer requires below minimum details to create a complete layer.

 Shape of the input data

 Number of neurons / units in the layer

 Initializers

 Regularizers

 Constraints

 Activations

Let us understand the basic concept in the next chapter. Before understanding the basic

concept, let us create a simple Keras layer using Sequential model API to get the idea of

how Keras model and layer works.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

from keras import regularizers

from keras import constraints

model = Sequential()

model.add(Dense(32, input_shape=(16,), kernel_initializer='he_uniform',

kernel_regularizer=None, kernel_constraint='MaxNorm', activation='relu'))

model.add(Dense(16, activation='relu'))

model.add(Dense(8))

where,

 Line 1-5 imports the necessary modules.

 Line 7 creates a new model using Sequential API.

7. Keras ― Layers

Keras

 27

 Line 9 creates a new Dense layer and add it into the model. Dense is an entry level

layer provided by Keras, which accepts the number of neurons or units (32) as its

required parameter. If the layer is first layer, then we need to provide Input Shape,

(16,) as well. Otherwise, the output of the previous layer will be used as input of the

next layer. All other parameters are optional.

 First parameter represents the number of units (neurons).

 input_shape represent the shape of input data.

 kernel_initializer represent initializer to be used. he_uniform function is

set as value.

 kernel_regularizer represent regularizer to be used. None is set as value.

 kernel_constraint represent constraint to be used. MaxNorm function is

set as value.

 activation represent activation to be used. relu function is set as value.

 Line 10 creates second Dense layer with 16 units and set relu as the activation

function.

 Line 11 creates final Dense layer with 8 units.

Basic Concept of Layers

Let us understand the basic concept of layer as well as how Keras supports each concept.

Input shape

In machine learning, all type of input data like text, images or videos will be first converted

into array of numbers and then feed into the algorithm. Input numbers may be single

dimensional array, two dimensional array (matrix) or multi-dimensional array. We can

specify the dimensional information using shape, a tuple of integers. For example, (4,2)

represent matrix with four rows and two columns.

>>> import numpy as np

>>> shape = (4, 2)

>>> input = np.zeros(shape)

>>> print(input)

[[0. 0.]

 [0. 0.]

 [0. 0.]

 [0. 0.]]

>>>

Similarly, (3,4,2) three dimensional matrix having three collections of 4x2 matrix (two

rows and four columns).

>>> import numpy as np

>>> shape = (3, 4, 2)

>>> input = np.zeros(shape)

>>> print(input)

[[[0. 0.]

 [0. 0.]

Keras

 28

 [0. 0.]

 [0. 0.]]

 [[0. 0.]

 [0. 0.]

 [0. 0.]

 [0. 0.]]

 [[0. 0.]

 [0. 0.]

 [0. 0.]

 [0. 0.]]]

>>>

To create the first layer of the model (or input layer of the model), shape of the input data

should be specified.

Initializers

In Machine Learning, weight will be assigned to all input data. Initializers module

provides different functions to set these initial weight. Some of the Keras Initializer

function are as follows:

Zeros

Generates 0 for all input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.Zeros()

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

Where, kernel_initializer represent the initializer for kernel of the model.

Ones

Generates 1 for all input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.Ones()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

Constant

Generates a constant value (say, 5) specified by the user for all input data.

Keras

 29

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.Constant(value=0)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

where, value represent the constant value

RandomNormal

Generates value using normal distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

where,

 mean represent the mean of the random values to generate

 stddev represent the standard deviation of the random values to generate

 seed represent the values to generate random number

RandomUniform

Generates value using uniform distribution of input data.

from keras import initializers

my_init = initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

where,

 minval represent the lower bound of the random values to generate

 maxval represent the upper bound of the random values to generate

TruncatedNormal

Generates value using truncated normal distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)

Keras

 30

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

VarianceScaling

Generates value based on the input shape and output shape of the layer along with the

specified scale.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.VarianceScaling(scale=1.0, mode='fan_in',

distribution='normal', seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

where,

 scale represent the scaling factor

 mode represent any one of fan_in, fan_out and fan_avg values

 distribution represent either of normal or uniform

VarianceScaling

It finds the stddev value for normal distribution using below formula and then find the

weights using normal distribution,

stddev = sqrt(scale / n)

where n represent,

 number of input units for mode = fan_in

 number of out units for mode = fan_out

 average number of input and output units for mode = fan_avg

Similarly, it finds the limit for uniform distribution using below formula and then find the

weights using uniform distribution,

limit = sqrt(3 * scale / n)

lecun_normal

Generates value using lecun normal distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)

Keras

 31

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

It finds the stddev using the below formula and then apply normal distribution

stddev = sqrt(1 / fan_in)

where, fan_in represent the number of input units.

lecun_uniform

Generates value using lecun uniform distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.lecun_uniform(seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

It finds the limit using the below formula and then apply uniform distribution

limit = sqrt(3 / fan_in)

where,

 fan_in represents the number of input units

 fan_out represents the number of output units

glorot_normal

Generates value using glorot normal distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.glorot_normal(seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

It finds the stddev using the below formula and then apply normal distribution

stddev = sqrt(2 / (fan_in + fan_out))

where,

 fan_in represents the number of input units

 fan_out represents the number of output units

glorot_uniform

Keras

 32

Generates value using glorot uniform distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.glorot_uniform(seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

It finds the limit using the below formula and then apply uniform distribution

limit = sqrt(6 / (fan_in + fan_out))

where,

 fan_in represent the number of input units.

 fan_out represent the number of output units.

he_normal

Generates value using he normal distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

It finds the stddev using the below formula and then apply normal distribution.

stddev = sqrt(2 / fan_in)

where, fan_in represent the number of input units.

he_uniform

Generates value using he uniform distribution of input data.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.he_normal(seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

It finds the limit using the below formula and then apply uniform distribution.

limit = sqrt(6 / fan_in)

Keras

 33

where, fan_in represent the number of input units

Orthogonal

Generates a random orthogonal matrix.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.Orthogonal(gain=1.0, seed=None)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

where, gain represent the multiplication factor of the matrix.

Identity

Generates identity matrix.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import initializers

my_init = initializers.Identity(gain=1.0)

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_initializer=my_init))

Constraints

In machine learning, a constraint will be set on the parameter (weight) during optimization

phase. Constraints module provides different functions to set the constraint on the layer.

Some of the constraint functions are as follows:

NonNeg

Constrains weights to be non-negative.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import constraints

my_constrain = constraints.NonNeg()

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_constraint=my_constrain))

where, kernel_constraint represent the constraint to be used in the layer.

UnitNorm

Constrains weights to be unit norm.

Keras

 34

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import constraints

my_constrain = constraints.UnitNorm(axis=0)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_constraint=my_constrain))

MaxNorm

Constrains weight to norm less than or equals to the given value.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import constraints

my_constrain = constraints.MaxNorm(max_value=2, axis=0)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_constraint=my_constrain))

where,

 max_value represent the upper bound

 axis represent the dimension in which the constraint to be applied. e.g. in Shape

(2,3,4) axis 0 denotes first dimension, 1 denotes second dimension and 2 denotes

third dimension

MinMaxNorm

Constrains weights to be norm between specified minimum and maximum values.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import constraints

my_constrain = constraints.MinMaxNorm(min_value=0.0, max_value=1.0, rate=1.0,

axis=0)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_constraint=my_constrain))

where, rate represent the rate at which the weight constrain is applied.

Regularizers

In machine learning, regularizers are used in the optimization phase. It applies some

penalties on the layer parameter during optimization. Keras regularization module

provides below functions to set penalties on the layer. Regularization applies per-layer

basis only.

Keras

 35

L1 Regularizer

It provides L1 based regularization.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import regularizers

my_regularizer = regularizers.l1(0.)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_regularizer=my_regularizer))

where, kernel_regularizer represent the regularizer to be used in the layer.

L2 Regularizer

It provides L2 based regularization.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import regularizers

my_regularizer = regularizers.l2(0.)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_regularizer=my_regularizer))

L1 and L2 Regularizer

It provides both L1 and L2 based regularization.

from keras.models import Sequential

from keras.layers import Activation, Dense

from keras import regularizers

my_regularizer = regularizers.l1_l2(0.)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,),

kernel_regularizer=my_regularizer))

Activations

In machine learning, activation function is a special function used to find whether a specific

neuron is activated or not. Basically, the activation function does a nonlinear

transformation of the input data and thus enable the neurons to learn better. Output of a

neuron depends on the activation function.

As you recall the concept of single perception, the output of a perceptron (neuron) is

simply the result of the activation function, which accepts the summation of all input

multiplied with its corresponding weight plus overall bias, if any available.

Keras

 36

result = Activation(SUMOF(input * weight) + bias)

So, activation function plays an important role in the successful learning of the model.

Keras provides a lot of activation function in the activations module. Let us learn all the

activations available in the module.

linear

Applies Linear function. Does nothing.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='linear', input_shape=(784,)))

where, activation refers the activation function of the layer. It can be specified simply

by the name of the function and the layer will use corresponding activators.

elu

Applies Exponential linear unit.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='elu', input_shape=(784,)))

selu

Applies Scaled exponential linear unit.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='selu', input_shape=(784,)))

relu

Applies Rectified Linear Unit.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,)))

softmax

Applies Softmax function.

Keras

 37

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='softmax', input_shape=(784,)))

softplus

Applies Softplus function.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='softplus', input_shape=(784,)))

softsign

Applies Softsign function.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='softsign', input_shape=(784,)))

tanh

Applies Hyperbolic tangent function.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='tanh', input_shape=(784,)))

sigmoid

Applies Sigmoid function.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='sigmoid', input_shape=(784,)))

hard_sigmoid

Applies Hard Sigmoid function.

Keras

 38

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='hard_sigmoid', input_shape=(784,)))

exponential

Applies exponential function.

from keras.models import Sequential

from keras.layers import Activation, Dense

model = Sequential()

model.add(Dense(512, activation='exponential', input_shape=(784,)))

Dense Layer

Dense layer is the regular deeply connected neural network layer. It is most common

and frequently used layer. Dense layer does the below operation on the input and return

the output.

output = activation(dot(input, kernel) + bias)

where,

 input represent the input data

 kernel represent the weight data

 dot represent numpy dot product of all input and its corresponding weights

 bias represent a biased value used in machine learning to optimize the model

 activation represent the activation function.

Let us consider sample input and weights as below and try to find the result:

 input as 2 x 2 matrix [[1, 2], [3, 4]]

 kernel as 2 x 2 matrix [[0.5, 0.75], [0.25, 0.5]]

 bias value as 0

 activation as linear. As we learned earlier, linear activation does nothing.

>>> import numpy as np

>>> input = [[1, 2], [3, 4]]

>>> kernel = [[0.5, 0.75], [0.25, 0.5]]

>>> result = np.dot(input, kernel)

>>> result

array([[1. , 1.75],

 [2.5 , 4.25]])

>>>

Keras

 39

result is the output and it will be passed into the next layer.

The output shape of the Dense layer will be affected by the number of neuron / units

specified in the Dense layer. For example, if the input shape is (8,) and number of unit is

16, then the output shape is (16,). All layer will have batch size as the first dimension

and so, input shape will be represented by (None, 8) and the output shape as (None,

16). Currently, batch size is None as it is not set. Batch size is usually set during training

phase.

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_1.input_shape

(None, 8)

>>> layer_1.output_shape

(None, 16)

>>>

where,

 layer_1.input_shape returns the input shape of the layer.

 layer_1.output_shape returns the output shape of the layer.

The argument supported by Dense layer is as follows:

 units represent the number of units and it affects the output layer.

 activation represents the activation function.

 use_bias represents whether the layer uses a bias vector.

 kernel_initializer represents the initializer to be used for kernel.

 bias_initializer represents the initializer to be used for the bias vector.

 kernel_regularizer represents the regularizer function to be applied to the kernel

weights matrix.

 bias_regularizer represents the regularizer function to be applied to the bias vector.

 activity_regularizer represents the regularizer function tp be applied to the output

of the layer.

 kernel_constraint represent constraint function to be applied to the kernel weights

matrix.

 bias_constraint represent constraint function to be applied to the bias vector.

As you have seen, there is no argument available to specify the input_shape of the input

data. input_shape is a special argument, which the layer will accept only if it is designed

as first layer in the model.

Keras

 40

Also, all Keras layer has few common methods and they are as follows:

get_weights

Fetch the full list of the weights used in the layer.

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_1.get_weights()

>>> [array([[-0.19929028, 0.4162618 , 0.20081699, -0.25589502, 0.3612864 ,

 0.25088787, -0.47544873, 0.0321095 , -0.26070702, -0.24102116,

 0.32778358, 0.4667952 , -0.43322265, -0.14500427, 0.04341269,

 -0.34929228],

 [0.41898954, 0.42256463, 0.2399621 , -0.272717 , -0.37069297,

 -0.37802136, 0.11428618, 0.12749982, 0.10182762, 0.14897704,

 0.06569374, 0.15424263, 0.42638576, 0.34037888, -0.15504825,

 -0.0740819],

 [-0.3132702 , 0.34885168, -0.3259498 , -0.47076607, 0.33696914,

 -0.49143505, -0.04318619, -0.11252558, 0.29669464, -0.28431225,

 -0.43165374, -0.49687648, 0.13632 , -0.21099591, -0.10608876,

 -0.13568914],

 [-0.27421212, -0.180812 , 0.37240648, 0.25100648, -0.07199466,

 -0.23680925, -0.21271884, -0.08706653, 0.4393121 , 0.23259485,

 0.2616762 , 0.23966897, -0.4502542 , 0.0058881 , 0.14847124,

 0.08835125],

 [-0.36905527, 0.08948278, -0.19254792, 0.26783705, 0.25979865,

 -0.46963632, 0.32761025, -0.25718856, 0.48987913, 0.3588251 ,

 -0.06586111, 0.2591269 , 0.48289275, 0.3368858 , -0.17145419,

 -0.35674667],

 [-0.32851398, 0.42289603, -0.47025883, 0.29027188, -0.0498147 ,

 0.46215963, -0.10123312, 0.23069787, 0.00844061, -0.11867595,

 -0.2602347 , -0.27917898, 0.22910392, 0.18214619, -0.40857887,

 0.2606709],

 [-0.19066167, -0.11464512, -0.06768692, -0.21878994, -0.2573272 ,

 0.13698077, 0.45221198, 0.10634196, 0.06784797, 0.07192957,

 0.2946936 , 0.04968262, -0.15899467, 0.15757453, -0.1343019 ,

 0.24561536],

 [-0.04272163, 0.48315823, -0.13382411, 0.01752126, -0.1630218 ,

 0.4629662 , -0.21412933, -0.1445911 , -0.03567278, -0.20948446,

 0.15742278, 0.11139905, 0.11066687, 0.17430818, 0.36413217,

 0.19864106]], dtype=float32), array([0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.],

 dtype=float32)]

>>>

 set_weights: Set the weights for the layer

 get_config: Get the complete configuration of the layer as an object which can be

reloaded at any time.

Keras

 41

config = layer_1.get_config()

from_config

Load the layer from the configuration object of the layer.

config = layer_1.get_config()

reload_layer = Dense.from_config(config)

input_shape

Get the input shape, if only the layer has single node.

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_1.get_weights()

>>> layer_1.input_shape

(None, 8)

input

Get the input data, if only the layer has single node.

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_1.get_weights()

>>> layer_1.input

<tf.Tensor 'dense_1_input:0' shape=(?, 8) dtype=float32>

 get_input_at: Get the input data at the specified index, if the layer has multiple

node

 get_input_shape_at: Get the input shape at the specified index, if the layer has

multiple node

 output_shape: Get the output shape, if only the layer has single node.

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_1.get_weights()

Keras

 42

>>> layer_1.output_shape

(None, 16)

output

Get the output data, if only the layer has single node.

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_1.get_weights()

>>> layer_1.output

<tf.Tensor 'dense_1/BiasAdd:0' shape=(?, 16) dtype=float32>

 get_output_at: Get the output data at the specified index, if the layer has multiple

node

 get_output_shape_ at: Get the output shape at the specified index, if the layer

has multiple node

Dropout Layers

Dropout is one of the important concept in the machine learning. It is used to fix the

over-fitting issue. Input data may have some of the unwanted data, usually called as

Noise. Dropout will try to remove the noise data and thus prevent the model from over-

fitting.

Dropout has three arguments and they are as follows:

keras.layers.Dropout(rate, noise_shape=None, seed=None)

 rate represent the fraction of the input unit to be dropped. It will be from 0 to 1.

 noise_shape represent the dimension of the shape in which the dropout to be

applied. For example, the input shape is (batch_size, timesteps, features).

Then, to apply dropout in the timesteps, (batch_size, 1, features) need to be

specified as noise_shape

 seed - random seed.

Flatten Layers

Flatten is used to flatten the input. For example, if flatten is applied to layer having input

shape as (batch_size, 2,2), then the output shape of the layer will be (batch_size, 4)

Flatten has one argument as follows:

keras.layers.Flatten(data_format=None)

Keras

 43

data_format is an optional argument and it is used to preserve weight ordering when

switching from one data format to another data format. It accepts either channels_last

or channels_first as value. channels_last is the default one and it identifies the input

shape as (batch_size, ..., channels) whereas channels_first identifies the input shape

as (batch_size, channels, ...)

A simple example to use Flatten layers is as follows:

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense, Flatten

>>>

>>>

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,8))

>>> model.add(layer_1)

>>> layer_2 = Flatten()

>>> model.add(layer_2)

>>> layer_2.input_shape

(None, 8, 16)

>>> layer_2.output_shape

(None, 128)

>>>

where, the second layer input shape is (None, 8, 16) and it gets flattened into (None,

128).

Reshape Layers

Reshape is used to change the shape of the input. For example, if reshape with argument

(2,3) is applied to layer having input shape as (batch_size, 3, 2), then the output shape

of the layer will be (batch_size, 2, 3)

Reshape has one argument as follows:

keras.layers.v(target_shape)

A simple example to use Reshape layers is as follows:

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense, Reshape

>>>

>>>

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,8))

>>> model.add(layer_1)

>>> layer_2 = Reshape((16, 8))

>>> model.add(layer_2)

>>> layer_2.input_shape

(None, 8, 16)

>>> layer_2.output_shape

(None, 16, 8)

>>>

where, (16, 8) is set as target shape.

Keras

 44

Permute Layers

Permute is also used to change the shape of the input using pattern. For example, if

Permute with argument (2, 1) is applied to layer having input shape as (batch_size, 3,

2), then the output shape of the layer will be (batch_size, 2, 3)

Permute has one argument as follows:

keras.layers.Permute(dims)

A simple example to use Permute layers is as follows:

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense, Permute

>>>

>>>

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8, 8))

>>> model.add(layer_1)

>>> layer_2 = Permute((2, 1))

>>> model.add(layer_2)

>>> layer_2.input_shape

(None, 8, 16)

>>> layer_2.output_shape

(None, 16, 8)

>>>

where, (2, 1) is set as pattern.

RepeatVector Layers

RepeatVector is used to repeat the input for set number, n of times. For example, if

RepeatVector with argument 16 is applied to layer having input shape as (batch_size,

32), then the output shape of the layer will be (batch_size, 16, 32)

RepeatVector has one arguments and it is as follows:

keras.layers.RepeatVector(n)

A simple example to use RepeatVector layers is as follows:

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense, RepeatVector

>>>

>>>

>>> model = Sequential()

>>> layer_1 = Dense(16, input_shape=(8,))

>>> model.add(layer_1)

>>> layer_2 = RepeatVector(16)

>>> model.add(layer_2)

>>> layer_2.input_shape

(None, 16)

>>> layer_2.output_shape

Keras

 45

(None, 16, 16)

>>>

where, 16 is set as repeat times.

Lambda Layers

Lambda is used to transform the input data using an expression or function. For example,

if Lambda with expression lambda x: x ** 2 is applied to a layer, then its input data will

be squared before processing.

RepeatVector has four arguments and it is as follows:

keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None)

 function represent the lambda function.

 output_shape represent the shape of the transformed input.

 mask represent the mask to be applied, if any.

 arguments represent the optional argument for the lamda function as dictionary.

Convolution Layers

Keras contains a lot of layers for creating Convolution based ANN, popularly called as

Convolution Neural Network (CNN). All convolution layer will have certain properties (as

listed below), which differentiate it from other layers (say Dense layer).

Filters: It refers the number of filters to be applied in the convolution. It affects the

dimension of the output shape.

kernel size: It refers the length of the convolution window.

Strides: It refers the stride length of the convolution.

Padding: It refers the how padding needs to be done on the output of the convolution. It

has three values which are as follows: -

 valid means no padding

 causal means causal convolution.

 same means the output should have same length as input and so, padding

should be applied accordingly

Dilation Rate: dilation rate to be applied for dilated convolution.

Another important aspect of the convolution layer is the data format. The data format may

be to two type,

channel_last: channel_last specifies that the channel data is placed as last entry. Here,

channel refers the actual data and it will be placed in the last dimension of the input space.

Keras

 46

For example, let us consider an input shape, (30, 10, 128). Here, the value in first

dimension, 30 refers the batch size, the value in second dimension, 10 refers the

timesteps in temporal convolution and the value in third dimension 128 refers the actual

values of the input. This is the default setting in Keras.

channel_first: channel_first is just opposite to channet_last. Here, the input values

are placed in the second dimension, next to batch size.

Let us see check the all the layer used for CNN provided by Keras layers in this chapter.

Conv1D

Conv1D layer is used in temporal based CNN. The input shape of the ConvID will be in

below format:

(batch_size, timesteps, features)

where,

 batch_size refers the size of the batch.

 timesteps refers the number of time steps provided in the input.

 features refer the number of features available in the input.

The output shape of the Conv1D is as follows:

(batch_size, new_steps, filters)

where, filters refer the number of filters specified as one of the arguments.

The signature of the ConvID function and its arguments with default value is as follows:

keras.layers.Conv1D(

 filters,

 kernel_size,

 strides=1,

 padding='valid',

 data_format='channels_last',

 dilation_rate=1,

 activation=None,

 use_bias=True,

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros',

 kernel_regularizer=None,

 bias_regularizer=None,

 activity_regularizer=None,

 kernel_constraint=None,

 bias_constraint=None)

Conv2D

Keras

 47

It is a convolution 2D layer. It creates a convolutional kernel with the layer input creates

a tensor of outputs. input_shape refers the tuple of integers with RGB value in

data_format=“channels_last”.

The signature of the Conv2D function and its arguments with default value is as follows:

keras.layers.Conv2D

 (filters,

 kernel_size,

 strides=(1, 1),

 padding='valid',

 data_format=None,

 dilation_rate=(1, 1),

 activation=None,

 use_bias=True,

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros',

 kernel_regularizer=None,

 bias_regularizer=None,

 activity_regularizer=None,

 kernel_constraint=None,

 bias_constraint=None)

Here,

 strides refer an integer specifying the strides of the convolution along the height

and width.

Pooling Layer

It is used to perform max pooling operations on temporal data. The signature of the

MaxPooling1D function and its arguments with default value is as follows:

keras.layers.MaxPooling1D

 (pool_size=2,

 strides=None,

 padding='valid',

 data_format='channels_last')

Here,

 pool_size refers the max pooling windows.

 strides refer the factors for downscale.

Similarly, MaxPooling2D and MaxPooling3D are used for Max pooling operations for spatial

data.

Locally connected layer

Locally connected layers are similar to Conv1D layer but the difference is Conv1D layer

weights are shared but here weights are unshared. We can use different set of filters to

apply different patch of input.

Keras

 48

Locally connected layer has one arguments and it is as follows:

keras.layers.LocallyConnected1D(n)

A simple example to use Locally connected 1D layer is as follows:

>>> from keras.models import Sequential

>>> from keras.layers import Activation, Dense,LocallyConnected1D

>>> model = Sequential()

apply a unshared weight convolution 1-dimension of length 3 to a sequence

with

10 timesteps, with 16 output filters

>>> model.add(LocallyConnected1D(16, 3, input_shape=(10, 8)))

add a new conv1d on top

>>> model.add(LocallyConnected1D(8, 3))

The signature of the Locally connected 1D layer function and its arguments with default

value is as follows:

keras.layers.LocallyConnected1D

 (filters,

 kernel_size,

 strides=1,

 padding='valid',

 data_format=None,

 activation=None,

 use_bias=True,

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros',

 kernel_regularizer=None,

 bias_regularizer=None,

 activity_regularizer=None,

 kernel_constraint=None,

 bias_constraint=None)

Here,

 kernel_initializer refers initializer for the kernel weights matrix

 kernel_regularizer is used to apply regularize function to the kernel weights

matrix.

 bias_regularizer is used to apply regularizer function to the bias vector.

 activity_regularizer is used to apply regularizer function to the output of the

layer.

Similarly, we can use 2D and 3D layers as well.

Recurrent Layer

It is used in Recurrent neural networks(RNN). It is defined as shown below:

Keras

 49

keras.engine.base_layer.wrapped_fn()

It supports the following parameters:

 cell refers an instance.

 return_sequences return the last output in the output sequence, or the full

sequence.

 return_state returns the last state in addition to the output.

 go_backwards returns a boolean result. If the value is true, then process the

input sequence backwards otherwise return the reversed sequence.

 stateful refers the state for each index.

 unroll specifies whether the network to be unrolled or not.

 input_dim refers the input dimension.

 input_length refers the length of input sequence.

Merge Layer

It is used to merge a list of inputs. It supports add(), subtract(), multiply(), average(),

maximum(), minimum(), concatenate() and dot() functionalities.

Adding a layer

It is used to add two layers. Syntax is defined below:

keras.layers.add(inputs)

Simple example is shown below:

>>> a = input1 = keras.layers.Input(shape=(16,))

>>> x1 = keras.layers.Dense(8, activation='relu')(a)

>>> a =keras.layers.Input(shape=(16,))

>>> x1 = keras.layers.Dense(8, activation='relu')(a)

>>> b = keras.layers.Input(shape=(32,))

>>> x2 = keras.layers.Dense(8, activation='relu')(b)

>>> summ = = keras.layers.add([x1, x2])

>>> summ = keras.layers.add([x1, x2])

>>> model = keras.models.Model(inputs=[a,b],outputs=summ)

subtract layer

It is used to subtract two layers. The syntax is defined below:

keras.layers.subtract(inputs)

In the above example, we have created two input sequence. If you want to apply

subtract(), then use the below coding:

Keras

 50

subtract_result = keras.layers.subtract([x1, x2])

result = keras.layers.Dense(4)(subtract_result)

model = keras.models.Model(inputs=[a,b], outputs=result)

multiply layer

It is used to multiply two layers. Syntax is defined below:

keras.layers.multiply(inputs)

If you want to apply multiply two inputs, then you can use the below coding:

mul_result = keras.layers.multiply([x1, x2])

result = keras.layers.Dense(4)(mul_result)

model = keras.models.Model(inputs=[a,b], outputs=result)

maximum()

It is used to find the maximum value from the two inputs. syntax is defined below:

keras.layers.maximum(inputs)

minimum()

It is used to find the minimum value from the two inputs. syntax is defined below:

keras.layers.minimum(inputs)

concatenate

It is used to concatenate two inputs. It is defined below:

keras.layers.concatenate(inputs, axis=-1)

Functional interface to the Concatenate layer.

Here, axis refers to Concatenation axis.

dot

It returns the dot product from two inputs. It is defined below:

keras.layers.dot(inputs, axes, normalize=False)

Here,

 axes refer axes to perform the dot product.

 normalize determines whether dot product is needed or not.

Keras

 51

Embedding Layer

It performs embedding operations in input layer. It is used to convert positive into dense

vectors of fixed size. Its main application is in text analysis. The signature of the

Embedding layer function and its arguments with default value is as follows,

keras.layers.Embedding

 (input_dim,

 output_dim,

 embeddings_initializer='uniform',

 embeddings_regularizer=None,

 activity_regularizer=None,

 embeddings_constraint=None,

 mask_zero=False,

 input_length=None)

Here,

 input_dim refers the input dimension.

 output_dim refers the dimension of the dense embedding.

 embeddings_initializer refers the initializer for the embeddings matrix

 embeddings_regularizer refers the regularizer function applied to the

embeddings matrix.

 activity_regularizer refers the regularizer function applied to the output of the

layer.

 embeddings_constraint refers the constraint function applied to the embeddings

matrix

 mask_zero refers the input value should be masked or not.

 input_length refers the length of input sequence.

Keras

 52

Keras allows to create our own customized layer. Once a new layer is created, it can be

used in any model without any restriction. Let us learn how to create new layer in this

chapter.

Keras provides a base layer class, Layer which can sub-classed to create our own

customized layer. Let us create a simple layer which will find weight based on normal

distribution and then do the basic computation of finding the summation of the product of

input and its weight during training.

Step 1: Import the necessary module

First, let us import the necessary modules:

from keras import backend as K

from keras.layers import Layer

Here,

 backend is used to access the dot function.

 Layer is the base class and we will be sub-classing it to create our layer

Step 2: Define a layer class

Let us create a new class, MyCustomLayer by sub-classing Layer class:

class MyCustomLayer(Layer):

 ...

Step 3: Initialize the layer class

Let us initialize our new class as specified below:

def __init__(self, output_dim, **kwargs):

 self.output_dim = output_dim

 super(MyCustomLayer, self).__init__(**kwargs)

Here,

 Line 2 sets the output dimension.

 Line 3 calls the base or super layer’s init function.

Step 4: Implement build method

build is the main method and its only purpose is to build the layer properly. It can do

anything related to the inner working of the layer. Once the custom functionality is done,

we can call the base class build function. Our custom build function is as follows:

8. Keras ― Customized Layer

Keras

 53

def build(self, input_shape):

 self.kernel = self.add_weight(name='kernel',

 shape=(input_shape[1], self.output_dim),

 initializer='normal',

 trainable=True)

 super(MyCustomLayer, self).build(input_shape)

Here,

 Line 1 defines the build method with one argument, input_shape. Shape of the

input data is referred by input_shape.

 Line 2 creates the weight corresponding to input shape and set it in the kernel. It

is our custom functionality of the layer. It creates the weight using ‘normal’

initializer.

 Line 6 calls the base class, build method.

Step 5: Implement call method

call method does the exact working of the layer during training process.

Our custom call method is as follows:

def call(self, input_data):

 return K.dot(input_data, self.kernel)

Here,

 Line 1 defines the call method with one argument, input_data. input_data is the

input data for our layer.

 Line 2 return the dot product of the input data, input_data and our layer’s kernel,

self.kernel

Step 6: Implement compute_output_shape method

def compute_output_shape(self, input_shape):

 return (input_shape[0], self.output_dim)

Here,

 Line 1 defines compute_output_shape method with one argument

input_shape

 Line 2 computes the output shape using shape of input data and output dimension

set while initializing the layer.

Implementing the build, call and compute_output_shape completes the creating a

customized layer. The final and complete code is as follows:

from keras import backend as K

from keras.layers import Layer

Keras

 54

class MyCustomLayer(Layer):

 def __init__(self, output_dim, **kwargs):

 self.output_dim = output_dim

 super(MyCustomLayer, self).__init__(**kwargs)

 def build(self, input_shape):

 self.kernel = self.add_weight(name='kernel',

 shape=(input_shape[1], self.output_dim),

 initializer='normal',

 trainable=True)

 super(MyCustomLayer, self).build(input_shape) # Be sure to call this

at the end

 def call(self, input_data):

 return K.dot(input_data, self.kernel)

 def compute_output_shape(self, input_shape):

 return (input_shape[0], self.output_dim)

Using our customized layer

Let us create a simple model using our customized layer as specified below:

from keras.models import Sequential

from keras.layers import Dense

model = Sequential()

model.add(MyCustomLayer(32, input_shape=(16,)))

model.add(Dense(8, activation='softmax'))

model.summary()

Here,

 Our MyCustomLayer is added to the model using 32 units and (16,) as input

shape

Running the application will print the model summary as below:

Model: "sequential_1"

Layer (type) Output Shape Param #

===

my_custom_layer_1 (MyCustomL (None, 32) 512

dense_1 (Dense) (None, 8) 264

===

Total params: 776

Trainable params: 776

Non-trainable params: 0

Keras

 55

As learned earlier, Keras model represents the actual neural network model. Keras

provides a two mode to create the model, simple and easy to use Sequential API as well

as more flexible and advanced Functional API. Let us learn now to create model using both

Sequential and Functional API in this chapter.

Sequential

The core idea of Sequential API is simply arranging the Keras layers in a sequential order

and so, it is called Sequential API. Most of the ANN also has layers in sequential order and

the data flows from one layer to another layer in the given order until the data finally

reaches the output layer.

A ANN model can be created by simply calling Sequential() API as specified below:

from keras.models import Sequential

model = Sequential()

Add layers

To add a layer, simply create a layer using Keras layer API and then pass the layer through
add() function as specified below:

from keras.models import Sequential

model = Sequential()

input_layer = Dense(32, input_shape=(8,))

model.add(input_layer)

hidden_layer = Dense(64, activation='relu');

model.add(hidden_layer)

output_layer = Dense(8)

model.add(output_layer)

Here, we have created one input layer, one hidden layer and one output layer.

Access the model

Keras provides few methods to get the model information like layers, input data and output

data. They are as follows:

 model.layers: Returns all the layers of the model as list.

>>> layers = model.layers

>>> layers

[<keras.layers.core.Dense object at 0x000002C8C888B8D0>,

<keras.layers.core.Dense object at 0x000002C8C888B7B8>,

9. Keras ― Models

Keras

 56

<keras.layers.core.Dense object at 0x

000002C8C888B898>]

 model.inputs: Returns all the input tensors of the model as list.

>>> inputs = model.inputs

>>> inputs

[<tf.Tensor 'dense_13_input:0' shape=(?, 8) dtype=float32>]

 model.outputs: Returns all the output tensors of the model as list.

>>> outputs = model.outputs

>>> outputs

[<tf.Tensor 'dense_15/BiasAdd:0' shape=(?, 8) dtype=float32>]

 model.get_weights - Returns all the weights as NumPy arrays.

 model.set_weights(weight_numpy_array) - Set the weights of the model.

Serialize the model

Keras provides methods to serialize the model into object as well as json and load it again

later. They are as follows:

 get_config(): Returns the model as an object.

config = model.get_config()

 from_config(): It accept the model configuration object as argument and create

the model accordingly.

new_model = Sequential.from_config(config)

 to_json(): Returns the model as an json object.

>>> json_string = model.to_json()

>>> json_string

'{"class_name": "Sequential", "config": {"name": "sequential_10", "layers":

[{"class_name": "Dense", "config": {"name": "dense_13", "trainable": true,

 "batch_input_shape": [null, 8], "dtype": "float32", "units": 32, "activation":

"linear", "use_bias": true, "kernel_initializer": {"class_name": "Vari

anceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution":

"uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "conf

ig": {}}, "kernel_regularizer": null, "bias_regularizer": null,

"activity_regularizer": null, "kernel_constraint": null, "bias_constraint":

null}}, {"

class_name": "Dense", "config": {"name": "dense_14", "trainable": true,

"dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kern

el_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0,

"mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initia

lizer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null,

"bias_regularizer": null, "activity_regularizer": null, "kernel_constraint"

: null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name":

"dense_15", "trainable": true, "dtype": "float32", "units": 8, "activati

Keras

 57

on": "linear", "use_bias": true, "kernel_initializer": {"class_name":

"VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution":

"

uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config":

{}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_r

egularizer": null, "kernel_constraint": null, "bias_constraint": null}}]},

"keras_version": "2.2.5", "backend": "tensorflow"}'

>>>

 model_from_json(): Accepts json representation of the model and create a new

model.

from keras.models import model_from_json

new_model = model_from_json(json_string)

 to_yaml(): Returns the model as a yaml string.

>>> yaml_string = model.to_yaml()

>>> yaml_string

'backend: tensorflow\nclass_name: Sequential\nconfig:\n layers:\n -

class_name: Dense\n config:\n activation: linear\n

activity_regular

izer: null\n batch_input_shape: !!python/tuple\n - null\n - 8\n

bias_constraint: null\n bias_initializer:\n class_name

: Zeros\n config: {}\n bias_regularizer: null\n dtype:

float32\n kernel_constraint: null\n kernel_initializer:\n cla

ss_name: VarianceScaling\n config:\n distribution: uniform\n

mode: fan_avg\n scale: 1.0\n seed: null\n

 kernel_regularizer: null\n name: dense_13\n trainable: true\n

units: 32\n use_bias: true\n - class_name: Dense\n config:\n

 activation: relu\n activity_regularizer: null\n bias_constraint:

null\n bias_initializer:\n class_name: Zeros\n config

: {}\n bias_regularizer: null\n dtype: float32\n

kernel_constraint: null\n kernel_initializer:\n class_name:

VarianceScalin

g\n config:\n distribution: uniform\n mode: fan_avg\n

scale: 1.0\n seed: null\n kernel_regularizer: nu

ll\n name: dense_14\n trainable: true\n units: 64\n

use_bias: true\n - class_name: Dense\n config:\n activation: linear\n

 activity_regularizer: null\n bias_constraint: null\n

bias_initializer:\n class_name: Zeros\n config: {}\n

bias_regu

larizer: null\n dtype: float32\n kernel_constraint: null\n

kernel_initializer:\n class_name: VarianceScaling\n config:\n

 distribution: uniform\n mode: fan_avg\n scale: 1.0\n

seed: null\n kernel_regularizer: null\n name: dense

_15\n trainable: true\n units: 8\n use_bias: true\n name:

sequential_10\nkeras_version: 2.2.5\n'

>>>

 model_from_yaml(): Accepts yaml representation of the model and create a new

model.

Keras

 58

from keras.models import model_from_yaml

new_model = model_from_yaml(yaml_string)

Summarise the model

Understanding the model is very important phase to properly use it for training and

prediction purposes. Keras provides a simple method, summary to get the full information

about the model and its layers.

A summary of the model created in the previous section is as follows:

>>> model.summary()

Model: "sequential_10"

Layer (type) Output Shape Param #

===

dense_13 (Dense) (None, 32) 288

dense_14 (Dense) (None, 64) 2112

dense_15 (Dense) (None, 8) 520

===

Total params: 2,920

Trainable params: 2,920

Non-trainable params: 0

>>>

Train and Predict the model

Model provides function for training, evaluation and prediction process. They are as

follows:

 compile: Configure the learning process of the model

 fit: Train the model using the training data

 evaluate: Evaluate the model using the test data

 predict: Predict the results for new input

Functional API

Sequential API is used to create models layer-by-layer. Functional API is an alternative

approach of creating more complex models. Functional model, you can define multiple

input or output that share layers. First, we create an instance for model and connecting to

the layers to access input and output to the model. This section explains about functional

model in brief.

Create a model

Import an input layer using the below module:

Keras

 59

>>> from keras.layers import Input

Now, create an input layer specifying input dimension shape for the model using the below

code:

>>> data = Input(shape=(2,3))

Define layer for the input using the below module:

>>> from keras.layers import Dense

Add Dense layer for the input using the below line of code:

>>> layer = Dense(2)(data)

>>> print(layer)

Tensor("dense_1/add:0", shape=(?, 2, 2), dtype=float32)

Define model using the below module:

from keras.models import Model

Create a model in functional way by specifying both input and output layer:

model = Model(inputs=data, outputs=layer)

The complete code to create a simple model is shown below:

from keras.layers import Input

from keras.models import Model

from keras.layers import Dense

data = Input(shape=(2,3))

layer = Dense(2)(data)

model = Model(inputs=data,outputs=layer)

model.summary()

Layer (type) Output Shape Param #

===

input_2 (InputLayer) (None, 2, 3) 0

dense_2 (Dense) (None, 2, 2) 8

===

Total params: 8

Trainable params: 8

Non-trainable params: 0

Keras

 60

Previously, we studied the basics of how to create model using Sequential and Functional

API. This chapter explains about how to compile the model. The compilation is the final

step in creating a model. Once the compilation is done, we can move on to training phase.

Let us learn few concepts required to better understand the compilation process.

Loss

In machine learning, Loss function is used to find error or deviation in the learning

process. Keras requires loss function during model compilation process.

Keras provides quite a few loss function in the losses module and they are as follows:

 mean_squared_error

 mean_absolute_error

 mean_absolute_percentage_error

 mean_squared_logarithmic_error

 squared_hinge

 hinge

 categorical_hinge

 logcosh

 huber_loss

 categorical_crossentropy

 sparse_categorical_crossentropy

 binary_crossentropy

 kullback_leibler_divergence

 poisson

 cosine_proximity

 is_categorical_crossentropy

All above loss function accepts two arguments:

 y_true - true labels as tensors

 y_pred - prediction with same shape as y_true

Import the losses module before using loss function as specified below:

from keras import losses

10. Keras ― Model Compilation

Keras

 61

Optimizer

In machine learning, Optimization is an important process which optimize the input

weights by comparing the prediction and the loss function. Keras provides quite a few

optimizer as a module, optimizers and they are as follows:

SGD: Stochastic gradient descent optimizer.

keras.optimizers.SGD(learning_rate=0.01, momentum=0.0, nesterov=False)

RMSprop: RMSProp optimizer.

keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9)

Adagrad: Adagrad optimizer.

keras.optimizers.Adagrad(learning_rate=0.01)

Adadelta: Adadelta optimizer.

keras.optimizers.Adadelta(learning_rate=1.0, rho=0.95)

Adam: Adam optimizer.

keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999,

amsgrad=False)

Adamax: Adamax optimizer from Adam.

keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999)

Nadam: Nesterov Adam optimizer.

keras.optimizers.Nadam(learning_rate=0.002, beta_1=0.9, beta_2=0.999)

Import the optimizers module before using optimizers as specified below:

from keras import optimizers

Metrics

In machine learning, Metrics is used to evaluate the performance of your model. It is

similar to loss function, but not used in training process. Keras provides quite a few metrics

as a module, metrics and they are as follows:

 accuracy

 binary_accuracy

 categorical_accuracy

 sparse_categorical_accuracy

 top_k_categorical_accuracy

Keras

 62

 sparse_top_k_categorical_accuracy

 cosine_proximity

 clone_metric

Similar to loss function, metrics also accepts below two arguments:

 y_true - true labels as tensors

 y_pred - prediction with same shape as y_true

Import the metrics module before using metrics as specified below:

from keras import metrics

Compile the model

Keras model provides a method, compile() to compile the model. The argument and

default value of the compile() method is as follows:

compile(optimizer, loss=None,

 metrics=None,

 loss_weights=None,

 sample_weight_mode=None,

 weighted_metrics=None,

 target_tensors=None)

The important arguments are as follows:

 loss function

 Optimizer

 metrics

A sample code to compile the mode is as follows:

from keras import losses

from keras import optimizers

from keras import metrics

model.compile(loss='mean_squared_error',

 optimizer='sgd',

 metrics=[metrics.categorical_accuracy])

where,

 loss function is set as mean_squared_error

 optimizer is set as sgd

 metrics is set as metrics.categorical_accuracy

Keras

 63

Model Training

Models are trained by NumPy arrays using fit(). The main purpose of this fit function is

used to evaluate your model on training. This can be also used for graphing model

performance. It has the following syntax:

model.fit(X, y, epochs=, batch_size=)

Here,

 X, y - It is a tuple to evaluate your data.

 epochs - no of times the model is needed to be evaluated during training.

 batch_size - training instances.

Let us take a simple example of numpy random data to use this concept.

Create data

Let us create a random data using numpy for x and y with the help of below mentioned

command:

import numpy as np

x_train = np.random.random((100,4,8))

y_train = np.random.random((100,10))

Now, create random validation data,

x_val = np.random.random((100,4,8))

y_val = np.random.random((100,10))

Create model

Let us create simple sequential model:

from keras.models import Sequential

model = Sequential()

Add layers

Create layers to add model:

from keras.layers import LSTM, Dense

add a sequence of vectors of dimension 16

model.add(LSTM(16, return_sequences=True))

model.add(Dense(10, activation='softmax'))

compile model

Now model is defined. You can compile using the below command:

Keras

 64

model.compile(loss='categorical_crossentropy', optimizer='sgd',

metrics=['accuracy'])

Apply fit()

Now we apply fit() function to train our data:

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_val,

y_val))

Create a Multi-Layer Perceptron ANN

We have learned to create, compile and train the Keras models.

Let us apply our learning and create a simple MPL based ANN.

Dataset module

Before creating a model, we need to choose a problem, need to collect the required data

and convert the data to NumPy array. Once data is collected, we can prepare the model

and train it by using the collected data. Data collection is one of the most difficult phase

of machine learning. Keras provides a special module, datasets to download the online

machine learning data for training purposes. It fetches the data from online server, process

the data and return the data as training and test set. Let us check the data provided by

Keras dataset module. The data available in the module are as follows,

 CIFAR10 small image classification

 CIFAR100 small image classification

 IMDB Movie reviews sentiment classification

 Reuters newswire topics classification

 MNIST database of handwritten digits

 Fashion-MNIST database of fashion articles

 Boston housing price regression dataset

Let us use the MNIST database of handwritten digits (or minst) as our input. minst is

a collection of 60,000, 28x28 grayscale images. It contains 10 digits. It also contains

10,000 test images.

Below code can be used to load the dataset:

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

where

 Line 1 imports minst from the keras dataset module.

 Line 3 calls the load_data function, which will fetch the data from online server

and return the data as 2 tuples, First tuple, (x_train, y_train) represent the

Keras

 65

training data with shape, (number_sample, 28, 28) and its digit label with shape,

(number_samples,). Second tuple, (x_test, y_test) represent test data with

same shape.

Other dataset can also be fetched using similar API and every API returns similar data as

well except the shape of the data. The shape of the data depends on the type of data.

Create a model

Let us choose a simple multi-layer perceptron (MLP) as represented below and try to create

the model using Keras.

Keras

 66

The core features of the model are as follows:

 Input layer consists of 784 values (28 x 28 = 784).

 First hidden layer, Dense consists of 512 neurons and ‘relu’ activation function.

 Second hidden layer, Dropout has 0.2 as its value.

 Third hidden layer, again Dense consists of 512 neurons and ‘relu’ activation

function.

 Fourth hidden layer, Dropout has 0.2 as its value.

 Fifth and final layer consists of 10 neurons and ‘softmax’ activation function.

Keras

 67

 Use categorical_crossentropy as loss function.

 Use RMSprop() as Optimizer.

 Use accuracy as metrics.

 Use 128 as batch size.

 Use 20 as epochs.

Step 1: Import the modules

Let us import the necessary modules.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout

from keras.optimizers import RMSprop

import numpy as np

Step 2: Load data

Let us import the mnist dataset.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Step 3: Process the data

Let us change the dataset according to our model, so that it can be feed into our model.

x_train = x_train.reshape(60000, 784)

x_test = x_test.reshape(10000, 784)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

y_train = keras.utils.to_categorical(y_train, 10)

y_test = keras.utils.to_categorical(y_test, 10)

Where

 reshape is used to reshape the input from (28, 28) tuple to (784,)

 to_categorical is used to convert vector to binary matrix

Step 4: Create the model

Let us create tha actual model.

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,)))

model.add(Dropout(0.2))

model.add(Dense(512, activation='relu'))

Keras

 68

model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

Step 5: Compile the model

Let us compile the model using selected loss function, optimizer and metrics.

model.compile(loss='categorical_crossentropy',

 optimizer=RMSprop(),

 metrics=['accuracy'])

Step 6: Train the model

Let us train the model using fit() method.

history = model.fit(x_train, y_train,

 batch_size=128,

 epochs=20,

 verbose=1,

 validation_data=(x_test, y_test))

Final thoughts

We have created the model, loaded the data and also trained the data to the model. We

still need to evaluate the model and predict output for unknown input, which we learn in

upcoming chapter.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout

from keras.optimizers import RMSprop

import numpy as np

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)

x_test = x_test.reshape(10000, 784)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

y_train = keras.utils.to_categorical(y_train, 10)

y_test = keras.utils.to_categorical(y_test, 10)

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,)))

model.add(Dropout(0.2))

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

Keras

 69

model.compile(loss='categorical_crossentropy',

 optimizer=RMSprop(),

 metrics=['accuracy'])

history = model.fit(x_train, y_train,

 batch_size=128,

 epochs=20,

 verbose=1,

 validation_data=(x_test, y_test))

Executing the application will give the below content as output:

Train on 60000 samples, validate on 10000 samples

Epoch 1/20

60000/60000 [==============================] - 7s 118us/step - loss: 0.2453 -

acc: 0.9236 - val_loss: 0.1004 - val_acc: 0.9675

Epoch 2/20

60000/60000 [==============================] - 7s 110us/step - loss: 0.1023 -

acc: 0.9693 - val_loss: 0.0797 - val_acc: 0.9761

Epoch 3/20

60000/60000 [==============================] - 7s 110us/step - loss: 0.0744 -

acc: 0.9770 - val_loss: 0.0727 - val_acc: 0.9791

Epoch 4/20

60000/60000 [==============================] - 7s 110us/step - loss: 0.0599 -

acc: 0.9823 - val_loss: 0.0704 - val_acc: 0.9801

Epoch 5/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0504 -

acc: 0.9853 - val_loss: 0.0714 - val_acc: 0.9817

Epoch 6/20

60000/60000 [==============================] - 7s 111us/step - loss: 0.0438 -

acc: 0.9868 - val_loss: 0.0845 - val_acc: 0.9809

Epoch 7/20

60000/60000 [==============================] - 7s 114us/step - loss: 0.0391 -

acc: 0.9887 - val_loss: 0.0823 - val_acc: 0.9802

Epoch 8/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0364 -

acc: 0.9892 - val_loss: 0.0818 - val_acc: 0.9830

Epoch 9/20

60000/60000 [==============================] - 7s 113us/step - loss: 0.0308 -

acc: 0.9905 - val_loss: 0.0833 - val_acc: 0.9829

Epoch 10/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0289 -

acc: 0.9917 - val_loss: 0.0947 - val_acc: 0.9815

Epoch 11/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0279 -

acc: 0.9921 - val_loss: 0.0818 - val_acc: 0.9831

Epoch 12/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0260 -

acc: 0.9927 - val_loss: 0.0945 - val_acc: 0.9819

Epoch 13/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0257 -

acc: 0.9931 - val_loss: 0.0952 - val_acc: 0.9836

Epoch 14/20

Keras

 70

60000/60000 [==============================] - 7s 112us/step - loss: 0.0229 -

acc: 0.9937 - val_loss: 0.0924 - val_acc: 0.9832

Epoch 15/20

60000/60000 [==============================] - 7s 115us/step - loss: 0.0235 -

acc: 0.9937 - val_loss: 0.1004 - val_acc: 0.9823

Epoch 16/20

60000/60000 [==============================] - 7s 113us/step - loss: 0.0214 -

acc: 0.9941 - val_loss: 0.0991 - val_acc: 0.9847

Epoch 17/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0219 -

acc: 0.9943 - val_loss: 0.1044 - val_acc: 0.9837

Epoch 18/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0190 -

acc: 0.9952 - val_loss: 0.1129 - val_acc: 0.9836

Epoch 19/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0197 -

acc: 0.9953 - val_loss: 0.0981 - val_acc: 0.9841

Epoch 20/20

60000/60000 [==============================] - 7s 112us/step - loss: 0.0198 -

acc: 0.9950 - val_loss: 0.1215 - val_acc: 0.9828

Keras

 71

This chapter deals with the model evaluation and model prediction in Keras.

Let us begin by understanding the model evaluation.

Model Evaluation

Evaluation is a process during development of the model to check whether the model is

best fit for the given problem and corresponding data. Keras model provides a function,

evaluate which does the evaluation of the model. It has three main arguments,

 Test data

 Test data label

 verbose - true or false

Let us evaluate the model, which we created in the previous chapter using test data.

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

Executing the above code will output the below information:

0

The test accuracy is 98.28%. We have created a best model to identify the handwriting

digits. On the positive side, we can still scope to improve our model.

Model Prediction

Prediction is the final step and our expected outcome of the model generation. Keras

provides a method, predict to get the prediction of the trained model. The signature of the

predict method is as follows,

predict(x,

 batch_size=None,

 verbose=0,

 steps=None,

 callbacks=None,

 max_queue_size=10, workers=1, use_multiprocessing=False)

Here, all arguments are optional except the first argument, which refers the unknown

input data. The shape should be maintained to get the proper prediction.

Let us do prediction for our MPL model created in previous chapter using below code:

11. Keras ― Model Evaluation and Model
Prediction

Keras

 72

pred = model.predict(x_test)

pred = np.argmax(pred, axis=1)[:5]

label = np.argmax(y_test,axis=1)[:5]

print(pred)

print(label)

Here,

 Line 1 call the predict function using test data.

 Line 2 gets the first five prediction

 Line 3 gets the first five labels of the test data.

 Line 5 - 6 prints the prediction and actual label.

The output of the above application is as follows:

[7 2 1 0 4]

[7 2 1 0 4]

The output of both array is identical and it indicate that our model predicts correctly the

first five images.

Keras

 73

Let us modify the model from MPL to Convolution Neural Network (CNN) for our earlier

digit identification problem.

CNN can be represented as below:

The core features of the model are as follows:

 Input layer consists of (1, 8, 28) values.

 First layer, Conv2D consists of 32 filters and ‘relu’ activation function with kernel

size, (3,3).

 Second layer, Conv2D consists of 64 filters and ‘relu’ activation function with kernel

size, (3,3).

 Thrid layer, MaxPooling has pool size of (2, 2).

 Fourth layer, Dropout has 0.25 as its value.

 Fifth layer, Flatten is used to flatten all its input into single dimension.

 Sixth layer, Dense consists of 128 neurons and ‘relu’ activation function.

 Seventh layer, Dropout has 0.5 as its value.

 Eighth and final layer consists of 10 neurons and ‘softmax’ activation function.

 Use categorical_crossentropy as loss function.

 Use Adadelta() as Optimizer.

12. Keras ― Convolution Neural Network

Keras

 74

 Use accuracy as metrics.

 Use 128 as batch size.

 Use 20 as epochs.

Step 1: Import the modules

Let us import the necessary modules.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, MaxPooling2D

from keras import backend as K

import numpy as np

Step 2: Load data

Let us import the mnist dataset.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Step 3: Process the data

Let us change the dataset according to our model, so that it can be feed into our model.

img_rows, img_cols = 28, 28

if K.image_data_format() == 'channels_first':

 x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

 x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)

 input_shape = (1, img_rows, img_cols)

else:

 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)

 x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

 input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

y_train = keras.utils.to_categorical(y_train, 10)

y_test = keras.utils.to_categorical(y_test, 10)

The data processing is similar to MPL model except the shape of the input data and image

format configuration.

Step 4: Create the model

Let us create tha actual model.

Keras

 75

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3),

 activation='relu',

 input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(10, activation='softmax'))

Step 5: Compile the model

Let us compile the model using selected loss function, optimizer and metrics.

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adadelta(),

 metrics=['accuracy'])

Step 6: Train the model

Let us train the model using fit() method.

model.fit(x_train, y_train,

 batch_size=128,

 epochs=12,

 verbose=1,

 validation_data=(x_test, y_test))

Executing the application will output the below information:

Train on 60000 samples, validate on 10000 samples

Epoch 1/12

60000/60000 [==============================] - 84s 1ms/step - loss: 0.2687 -

acc: 0.9173 - val_loss: 0.0549 - val_acc: 0.9827

Epoch 2/12

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0899 -

acc: 0.9737 - val_loss: 0.0452 - val_acc: 0.9845

Epoch 3/12

60000/60000 [==============================] - 83s 1ms/step - loss: 0.0666 -

acc: 0.9804 - val_loss: 0.0362 - val_acc: 0.9879

Epoch 4/12

60000/60000 [==============================] - 81s 1ms/step - loss: 0.0564 -

acc: 0.9830 - val_loss: 0.0336 - val_acc: 0.9890

Epoch 5/12

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0472 -

acc: 0.9861 - val_loss: 0.0312 - val_acc: 0.9901

Epoch 6/12

60000/60000 [==============================] - 83s 1ms/step - loss: 0.0414 -

acc: 0.9877 - val_loss: 0.0306 - val_acc: 0.9902

Epoch 7/12

60000/60000 [==============================] - 89s 1ms/step - loss: 0.0375 -

Keras

 76

acc: 0.9883 - val_loss: 0.0281 - val_acc: 0.9906

Epoch 8/12

60000/60000 [==============================] - 91s 2ms/step - loss: 0.0339 -

acc: 0.9893 - val_loss: 0.0280 - val_acc: 0.9912

Epoch 9/12

60000/60000 [==============================] - 89s 1ms/step - loss: 0.0325 -

acc: 0.9901 - val_loss: 0.0260 - val_acc: 0.9909

Epoch 10/12

60000/60000 [==============================] - 89s 1ms/step - loss: 0.0284 -

acc: 0.9910 - val_loss: 0.0250 - val_acc: 0.9919

Epoch 11/12

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0287 -

acc: 0.9907 - val_loss: 0.0264 - val_acc: 0.9916

Epoch 12/12

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0265 -

acc: 0.9920 - val_loss: 0.0249 - val_acc: 0.9922

Step 7: Evaluate the model

Let us evaluate the model using test data.

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

Executing the above code will output the below information:

Test loss: 0.024936060590433316

Test accuracy: 0.9922

The test accuracy is 99.22%. We have created a best model to identify the handwriting

digits.

Step 8: Predict

Finally, predict the digit from images as below:

pred = model.predict(x_test)

pred = np.argmax(pred, axis=1)[:5]

label = np.argmax(y_test,axis=1)[:5]

print(pred)

print(label)

The output of the above application is as follows:

[7 2 1 0 4]

[7 2 1 0 4]

The output of both array is identical and it indicate our model correctly predicts the first

five images.

Keras

 77

In this chapter, let us write a simple MPL based ANN to do regression prediction. Till now,

we have only done the classification based prediction. Now, we will try to predict the next

possible value by analyzing the previous (continuous) values and its influencing factors.

The Regression MPL can be represented as below:

13. Keras ― Regression Prediction using MPL

Keras

 78

The core features of the model are as follows:

 Input layer consists of (13,) values.

 First layer, Dense consists of 64 units and ‘relu’ activation function with ‘normal’

kernel initializer.

 Second layer, Dense consists of 64 units and ‘relu’ activation function.

 Output layer, Dense consists of 1 unit.

 Use mse as loss function.

 Use RMSprop as Optimizer.

Keras

 79

 Use accuracy as metrics.

 Use 128 as batch size.

 Use 500 as epochs.

Step 1: Import the modules

Let us import the necessary modules.

import keras

from keras.datasets import boston_housing

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import RMSprop

from keras.callbacks import EarlyStopping

from sklearn import preprocessing

from sklearn.preprocessing import scale

Step 2: Load data

Let us import the Boston housing dataset.

(x_train, y_train), (x_test, y_test) = boston_housing.load_data()

Here,

boston_housing is a dataset provided by Keras. It represents a collection of housing

information in Boston area, each having 13 features.

Step 3: Process the data

Let us change the dataset according to our model, so that, we can feed into our model.

The data can be changed using below code:

x_train_scaled = preprocessing.scale(x_train)

scaler = preprocessing.StandardScaler().fit(x_train)

x_test_scaled = scaler.transform(x_test)

Here, we have normalized the training data using sklearn.preprocessing.scale function.

preprocessing.StandardScaler().fit function returns a scalar with the normalized mean

and standard deviation of the training data, which we can apply to the test data using

scalar.transform function. This will normalize the test data as well with the same setting

as that of training data.

Step 4: Create the model

Let us create the actual model.

model = Sequential()

model.add(Dense(64, kernel_initializer='normal', activation='relu',

Keras

 80

input_shape=(13,)))

model.add(Dense(64, activation='relu'))

model.add(Dense(1))

Step 5: Compile the model

Let us compile the model using selected loss function, optimizer and metrics.

model.compile(loss='mse',

 optimizer=RMSprop(),

 metrics=['mean_absolute_error'])

Step 6: Train the model

Let us train the model using fit() method.

history = model.fit(x_train_scaled, y_train,

 batch_size=128,

 epochs=500,

 verbose=1,

 validation_split = 0.2,

 callbacks = [EarlyStopping(monitor = 'val_loss', patience =

20)])

Here, we have used callback function, EarlyStopping. The purpose of this callback is to

monitor the loss value during each epoch and compare it with previous epoch loss value

to find the improvement in the training. If there is no improvement for the patience times,

then the whole process will be stopped.

Executing the application will give the below information as output:

Train on 323 samples, validate on 81 samples

Epoch 1/500

2019-09-24 01:07:03.889046: I

tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports

instructions that this TensorFlow binary was not co

mpiled to use: AVX2

323/323 [==============================] - 0s 515us/step - loss: 562.3129 -

mean_absolute_error: 21.8575 - val_loss: 621.6523 - val_mean_absolute_erro

r: 23.1730

Epoch 2/500

323/323 [==============================] - 0s 11us/step - loss: 545.1666 -

mean_absolute_error: 21.4887 - val_loss: 605.1341 - val_mean_absolute_error

: 22.8293

Epoch 3/500

323/323 [==============================] - 0s 12us/step - loss: 528.9944 -

mean_absolute_error: 21.1328 - val_loss: 588.6594 - val_mean_absolute_error

: 22.4799

Epoch 4/500

323/323 [==============================] - 0s 12us/step - loss: 512.2739 -

mean_absolute_error: 20.7658 - val_loss: 570.3772 - val_mean_absolute_error

: 22.0853

Epoch 5/500

Keras

 81

323/323 [==============================] - 0s 9us/step - loss: 493.9775 -

mean_absolute_error: 20.3506 - val_loss: 550.9548 - val_mean_absolute_error:

 21.6547

..........

..........

..........

Epoch 143/500

323/323 [==============================] - 0s 15us/step - loss: 8.1004 -

mean_absolute_error: 2.0002 - val_loss: 14.6286 - val_mean_absolute_error: 2.

5904

Epoch 144/500

323/323 [==============================] - 0s 19us/step - loss: 8.0300 -

mean_absolute_error: 1.9683 - val_loss: 14.5949 - val_mean_absolute_error: 2.

5843

Epoch 145/500

323/323 [==============================] - 0s 12us/step - loss: 7.8704 -

mean_absolute_error: 1.9313 - val_loss: 14.3770 - val_mean_absolute_error: 2.

4996

Step 7: Evaluate the model

Let us evaluate the model using test data.

score = model.evaluate(x_test_scaled, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

Executing the above code will output the below information:

Test loss: 21.928471583946077

Test accuracy: 2.9599233234629914

Step 8: Predict

Finally, predict using test data as below:

prediction = model.predict(x_test_scaled)

print(prediction.flatten())

print(y_test)

The output of the above application is as follows:

[7.5612316 17.583357 21.09344 31.859276 25.055613 18.673872

 26.600405 22.403967 19.060272 22.264952 17.4191 17.00466

 15.58924 41.624374 20.220217 18.985565 26.419338 19.837091

 19.946192 36.43445 12.278508 16.330965 20.701359 14.345301

 21.741161 25.050423 31.046402 27.738455 9.959419 20.93039

 20.069063 14.518344 33.20235 24.735163 18.7274 9.148898

 15.781284 18.556862 18.692865 26.045074 27.954073 28.106823

 15.272034 40.879818 29.33896 23.714525 26.427515 16.483374

 22.518442 22.425386 33.94826 18.831465 13.2501955 15.537227

 34.639984 27.468002 13.474407 48.134598 34.39617 22.85031

Keras

 82

 24.042334 17.747198 14.7837715 18.187277 23.655672 22.364983

 13.858193 22.710032 14.371148 7.1272087 35.960033 28.247292

 25.3014 14.477208 25.306196 17.891165 20.193708 23.585173

 34.690193 12.200583 20.102983 38.45882 14.741723 14.408362

 17.67158 18.418497 21.151712 21.157492 22.693687 29.809034

 19.366991 20.072294 25.880817 40.814568 34.64087 19.43741

 36.2591 50.73806 26.968863 43.91787 32.54908 20.248306]

[7.2 18.8 19. 27. 22.2 24.5 31.2 22.9 20.5 23.2 18.6 14.5 17.8 50.

 20.8 24.3 24.2 19.8 19.1 22.7 12. 10.2 20. 18.5 20.9 23. 27.5 30.1

 9.5 22. 21.2 14.1 33.1 23.4 20.1 7.4 15.4 23.8 20.1 24.5 33. 28.4

 14.1 46.7 32.5 29.6 28.4 19.8 20.2 25. 35.4 20.3 9.7 14.5 34.9 26.6

 7.2 50. 32.4 21.6 29.8 13.1 27.5 21.2 23.1 21.9 13. 23.2 8.1 5.6

 21.7 29.6 19.6 7. 26.4 18.9 20.9 28.1 35.4 10.2 24.3 43.1 17.6 15.4

 16.2 27.1 21.4 21.5 22.4 25. 16.6 18.6 22. 42.8 35.1 21.5 36. 21.9

 24.1 50. 26.7 25.]

The output of both array have around 10-30% difference and it indicate our model predicts

with reasonable range.

Keras

 83

In this chapter, let us write a simple Long Short Term Memory (LSTM) based RNN to do

sequence analysis. A sequence is a set of values where each value corresponds to a

particular instance of time. Let us consider a simple example of reading a sentence.

Reading and understanding a sentence involves reading the word in the given order and

trying to understand each word and its meaning in the given context and finally

understanding the sentence in a positive or negative sentiment.

Here, the words are considered as values, and first value corresponds to first word, second

value corresponds to second word, etc., and the order will be strictly maintained.

Sequence Analysis is used frequently in natural language processing to find the

sentiment analysis of the given text.

Let us create a LSTM model to analyze the IMDB movie reviews and find its

positive/negative sentiment.

The model for the sequence analysis can be represented as below:

14. Keras ― Time Series Prediction using LSTM
RNN

Keras

 84

The core features of the model are as follows:

 Input layer using Embedding layer with 128 features.

 First layer, Dense consists of 128 units with normal dropout and recurrent dropout

set to 0.2.

 Output layer, Dense consists of 1 unit and ‘sigmoid’ activation function.

 Use binary_crossentropy as loss function.

 Use adam as Optimizer.

 Use accuracy as metrics.

Keras

 85

 Use 32 as batch size.

 Use 15 as epochs.

 Use 80 as the maximum length of the word.

 Use 2000 as the maximum number of word in a given sentence.

Step 1: Import the modules

Let us import the necessary modules.

from keras.preprocessing import sequence

from keras.models import Sequential

from keras.layers import Dense, Embedding

from keras.layers import LSTM

from keras.datasets import imdb

Step 2: Load data

Let us import the imdb dataset.

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=2000)

Here,

 imdb is a dataset provided by Keras. It represents a collection of movies and its

reviews.

 num_words represent the maximum number of words in the review.

Step 3: Process the data

Let us change the dataset according to our model, so that it can be fed into our model.

The data can be changed using the below code:

x_train = sequence.pad_sequences(x_train, maxlen=80)

x_test = sequence.pad_sequences(x_test, maxlen=80)

Here,

sequence.pad_sequences convert the list of input data with shape, (data) into 2D

NumPy array of shape (data, timesteps). Basically, it adds timesteps concept into the

given data. It generates the timesteps of length, maxlen.

Step 4: Create the model

Let us create the actual model.

model = Sequential()

model.add(Embedding(2000, 128))

model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation='sigmoid'))

Here,

Keras

 86

We have used Embedding layer as input layer and then added the LSTM layer. Finally, a

Dense layer is used as output layer.

Step 5: Compile the model

Let us compile the model using selected loss function, optimizer and metrics.

model.compile(loss='binary_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

Step 6: Train the model

Let us train the model using fit() method.

model.fit(x_train, y_train,

 batch_size=32,

 epochs=15,

 validation_data=(x_test, y_test))

Executing the application will output the below information:

Epoch 1/15

2019-09-24 01:19:01.151247: I

tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports

instructions that this TensorFlow binary was not co

mpiled to use: AVX2

25000/25000 [==============================] - 101s 4ms/step - loss: 0.4707 -

acc: 0.7716 - val_loss: 0.3769 - val_acc: 0.8349

Epoch 2/15

25000/25000 [==============================] - 95s 4ms/step - loss: 0.3058 -

acc: 0.8756 - val_loss: 0.3763 - val_acc: 0.8350

Epoch 3/15

25000/25000 [==============================] - 91s 4ms/step - loss: 0.2100 -

acc: 0.9178 - val_loss: 0.5065 - val_acc: 0.8110

Epoch 4/15

25000/25000 [==============================] - 90s 4ms/step - loss: 0.1394 -

acc: 0.9495 - val_loss: 0.6046 - val_acc: 0.8146

Epoch 5/15

25000/25000 [==============================] - 90s 4ms/step - loss: 0.0973 -

acc: 0.9652 - val_loss: 0.5969 - val_acc: 0.8147

Epoch 6/15

25000/25000 [==============================] - 98s 4ms/step - loss: 0.0759 -

acc: 0.9730 - val_loss: 0.6368 - val_acc: 0.8208

Epoch 7/15

25000/25000 [==============================] - 95s 4ms/step - loss: 0.0578 -

acc: 0.9811 - val_loss: 0.6657 - val_acc: 0.8184

Epoch 8/15

25000/25000 [==============================] - 97s 4ms/step - loss: 0.0448 -

acc: 0.9850 - val_loss: 0.7452 - val_acc: 0.8136

Epoch 9/15

25000/25000 [==============================] - 95s 4ms/step - loss: 0.0324 -

acc: 0.9894 - val_loss: 0.7616 - val_acc: 0.8162

Keras

 87

Epoch 10/15

25000/25000 [==============================] - 100s 4ms/step - loss: 0.0247 -

acc: 0.9922 - val_loss: 0.9654 - val_acc: 0.8148

Epoch 11/15

25000/25000 [==============================] - 99s 4ms/step - loss: 0.0169 -

acc: 0.9946 - val_loss: 1.0013 - val_acc: 0.8104

Epoch 12/15

25000/25000 [==============================] - 90s 4ms/step - loss: 0.0154 -

acc: 0.9948 - val_loss: 1.0316 - val_acc: 0.8100

Epoch 13/15

25000/25000 [==============================] - 89s 4ms/step - loss: 0.0113 -

acc: 0.9963 - val_loss: 1.1138 - val_acc: 0.8108

Epoch 14/15

25000/25000 [==============================] - 89s 4ms/step - loss: 0.0106 -

acc: 0.9971 - val_loss: 1.0538 - val_acc: 0.8102

Epoch 15/15

25000/25000 [==============================] - 89s 4ms/step - loss: 0.0090 -

acc: 0.9972 - val_loss: 1.1453 - val_acc: 0.8129

25000/25000 [==============================] - 10s 390us/step

Step 7: Evaluate the model

Let us evaluate the model using test data.

score, acc = model.evaluate(x_test, y_test,

 batch_size=32)

print('Test score:', score)

print('Test accuracy:', acc)

Executing the above code will output the below information:

Test score: 1.145306069601178

Test accuracy: 0.81292

Keras

 88

Keras applications module is used to provide pre-trained model for deep neural networks.

Keras models are used for prediction, feature extraction and fine tuning. This chapter

explains about Keras applications in detail.

Pre-trained models

Trained model consists of two parts model Architecture and model Weights. Model weights

are large file so we have to download and extract the feature from ImageNet database.

Some of the popular pre-trained models are listed below,

 ResNet

 VGG16

 MobileNet

 InceptionResNetV2

 InceptionV3

Loading a model

Keras pre-trained models can be easily loaded as specified below:

import keras

import numpy as np

from keras.applications import vgg16, inception_v3, resnet50, mobilenet

#Load the VGG model

vgg_model = vgg16.VGG16(weights='imagenet')

#Load the Inception_V3 model

inception_model = inception_v3.InceptionV3(weights='imagenet')

#Load the ResNet50 model

resnet_model = resnet50.ResNet50(weights='imagenet')

#Load the MobileNet model

mobilenet_model = mobilenet.MobileNet(weights='imagenet')

Once the model is loaded, we can immediately use it for prediction purpose. Let us check

each pre-trained model in the upcoming chapters.

15. Keras ― Applications

Keras

 89

ResNet is a pre-trained model. It is trained using ImageNet. ResNet model weights pre-

trained on ImageNet. It has the following syntax:

keras.applications.resnet.ResNet50

 (include_top=True,

 weights='imagenet',

 input_tensor=None,

 input_shape=None,

 pooling=None,

 classes=1000)

Here,

 include_top refers the fully-connected layer at the top of the network.

 weights refer pre-training on ImageNet.

 input_tensor refers optional Keras tensor to use as image input for the model.

 input_shape refers optional shape tuple. The default input size for this model is

224x224.

 classes refer optional number of classes to classify images.

Let us understand the model by writing a simple example:

Step1: import the modules

Let us load the necessary modules as specified below:

>>> import PIL

>>> from keras.preprocessing.image import load_img

>>> from keras.preprocessing.image import img_to_array

>>> from keras.applications.imagenet_utils import decode_predictions

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> from keras.applications.resnet50 import ResNet50

>>> from keras.applications import resnet50

Step2: Select an input

Let us choose an input image, Lotus as specified below:

>>> filename = 'banana.jpg'

>>> ## load an image in PIL format

>>> original = load_img(filename, target_size=(224, 224))

>>> print('PIL image size',original.size)

16. Keras ― Real Time Prediction using ResNet
Model

Keras

 90

PIL image size (224, 224)

>>> plt.imshow(original)

<matplotlib.image.AxesImage object at 0x1304756d8>

>>> plt.show()

Here, we have loaded an image (banana.jpg) and displayed it.

Step 3: Convert images into NumPy array

Let us convert our input, Banana into NumPy array, so that it can be passed into the

model for the purpose of prediction.

>>> #convert the PIL image to a numpy array

>>> numpy_image = img_to_array(original)

>>> plt.imshow(np.uint8(numpy_image))

<matplotlib.image.AxesImage object at 0x130475ac8>

>>> print('numpy array size',numpy_image.shape)

numpy array size (224, 224, 3)

>>> # Convert the image / images into batch format

>>> image_batch = np.expand_dims(numpy_image, axis=0)

>>> print('image batch size', image_batch.shape)

image batch size (1, 224, 224, 3)

>>>

Step4: Model prediction

Let us feed our input into the model to get the predictions.

prepare the image for the resnet50 model

>>>

>>> processed_image = resnet50.preprocess_input(image_batch.copy())

>>> # create resnet model

>>> resnet_model = resnet50.ResNet50(weights='imagenet')

>>> Downloading data from https://github.com/fchollet/deep-learning-

models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5

102858752/102853048 [==============================] - 33s 0us/step

>>> # get the predicted probabilities for each class

>>> predictions = resnet_model.predict(processed_image)

>>> # convert the probabilities to class labels

>>> label = decode_predictions(predictions)

Downloading data from

https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_inde

x.json

40960/35363 [==================================] - 0s 0us/step

>>> print(label)

Keras

 91

Output

[[('n07753592', 'banana', 0.99229723), ('n03532672', 'hook', 0.0014551596),

('n03970156', 'plunger', 0.0010738898), ('n07753113', 'fig', 0.0009359837)

, ('n03109150', 'corkscrew', 0.00028538404)]]

Here, the model predicted the images as banana correctly.

Keras

 92

In this chapter, we will learn about the pre-trained models in Keras. Let us begin with

VGG16.

VGG16

VGG16 is another pre-trained model. It is also trained using ImageNet. The syntax to load

the model is as follows:

keras.applications.vgg16.VGG16(include_top=True,

 weights='imagenet',

 input_tensor=None,

 input_shape=None,

 pooling=None,

 classes=1000)

The default input size for this model is 224x224.

MobileNetV2

MobileNetV2 is another pre-trained model. It is also trained uing ImageNet.

The syntax to load the model is as follows:

keras.applications.mobilenet_v2.MobileNetV2

 (input_shape=None,

 alpha=1.0,

 include_top=True,

 weights='imagenet',

 input_tensor=None,

 pooling=None,

 classes=1000)

Here,

alpha controls the width of the network. If the value is below 1, decreases the number of

filters in each layer. If the value is above 1, increases the number of filters in each layer.

If alpha = 1, default number of filters from the paper are used at each layer.

The default input size for this model is 224x224.

InceptionResNetV2

InceptionResNetV2 is another pre-trained model. It is also trained using ImageNet.

The syntax to load the model is as follows:

keras.applications.inception_resnet_v2.InceptionResNetV2

 (include_top=True, weights='imagenet',

17. Keras ― Pre-Trained Models

Keras

 93

 input_tensor=None, input_shape=None,

 pooling=None, classes=1000)

This model and can be built both with ‘channels_first’ data format (channels, height, width)

or ‘channels_last’ data format (height, width, channels).

The default input size for this model is 299x299.

InceptionV3

InceptionV3 is another pre-trained model. It is also trained uing ImageNet. The syntax

to load the model is as follows:

keras.applications.inception_v3.InceptionV3

 (include_top=True,

 weights='imagenet',

 input_tensor=None,

 input_shape=None,

 pooling=None, classes=1000)

Here,

The default input size for this model is 299x299.

Conclusion

Keras is very simple, extensible and easy to implement neural network API, which can be

used to build deep learning applications with high level abstraction. Keras is an optimal

choice for deep leaning models.

