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About the Tutorial 

Keras is an open source deep learning framework for python. It has been developed by an 

artificial intelligence researcher at Google named Francois Chollet. Leading organizations 

like Google, Square, Netflix, Huawei and Uber are currently using Keras. This tutorial walks 

through the installation of Keras, basics of deep learning, Keras models, Keras layers, 

Keras modules and finally conclude with some real-time applications. 

   

Audience 

This tutorial is prepared for professionals who are aspiring to make a career in the field of 

deep learning and neural network framework. This tutorial is intended to make you 

comfortable in getting started with the Keras framework concepts. 

 

Prerequisites 

Before proceeding with the various types of concepts given in this tutorial, we assume that 
the readers have basic understanding of deep learning framework. In addition to this, it will 
be very helpful, if the readers have a sound knowledge of Python and Machine Learning. 

 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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Deep learning is one of the major subfield of machine learning framework. Machine 

learning is the study of design of algorithms, inspired from the model of human brain. 

Deep learning is becoming more popular in data science fields like robotics, artificial 

intelligence(AI), audio & video recognition and image recognition. Artificial neural network 

is the core of deep learning methodologies. Deep learning is supported by various libraries 

such as Theano, TensorFlow, Caffe, Mxnet etc., Keras is one of the most powerful and 

easy to use python library, which is built on top of popular deep learning libraries like 

TensorFlow, Theano, etc., for creating deep learning models. 

Overview of Keras 

Keras runs on top of open source machine libraries like TensorFlow, Theano or Cognitive 

Toolkit (CNTK). Theano is a python library used for fast numerical computation tasks. 

TensorFlow is the most famous symbolic math library used for creating neural networks 

and deep learning models. TensorFlow is very flexible and the primary benefit is distributed 

computing. CNTK is deep learning framework developed by Microsoft. It uses libraries such 

as Python, C#, C++ or standalone machine learning toolkits. Theano and TensorFlow are 

very powerful libraries but difficult to understand for creating neural networks. 

Keras is based on minimal structure that provides a clean and easy way to create deep 

learning models based on TensorFlow or Theano. Keras is designed to quickly define deep 

learning models. Well, Keras is an optimal choice for deep learning applications. 

Features 

Keras leverages various optimization techniques to make high level neural network API 

easier and more performant. It supports the following features:  

 Consistent, simple and extensible API. 

 Minimal structure - easy to achieve the result without any frills. 

 It supports multiple platforms and backends. 

 It is user friendly framework which runs on both CPU and GPU. 

 Highly scalability of computation. 

Benefits 

Keras is highly powerful and dynamic framework and comes up with the following 

advantages:  

 Larger community support. 

 Easy to test. 

 Keras neural networks are written in Python which makes things simpler. 

 Keras supports both convolution and recurrent networks. 

1. Keras ― Introduction 
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 Deep learning models are discrete components, so that, you can combine into many 

ways. 
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This chapter explains about how to install Keras on your machine. Before moving to 

installation, let us go through the basic requirements of Keras. 

Prerequisites 

You must satisfy the following requirements:  

 Any kind of OS (Windows, Linux or Mac) 

 Python version 3.5 or higher. 

Python 

Keras is python based neural network library so python must be installed on your machine. 

If python is properly installed on your machine, then open your terminal and type python, 

you could see the response similar as specified below, 

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit 

(AMD64)] on win32 

Type "help", "copyright", "credits" or "license" for more information. 

>>> 

As of now the latest version is ‘3.7.2’. If Python is not installed, then visit the official 

python link - https://www.python.org/ and download the latest version based on your OS 

and install it immediately on your system. 

Keras Installation Steps 

Keras installation is quite easy. Follow below steps to properly install Keras on your 

system. 

Step 1: Create virtual environment 

Virtualenv is used to manage Python packages for different projects. This will be helpful 

to avoid breaking the packages installed in the other environments. So, it is always 

recommended to use a virtual environment while developing Python applications. 

Linux/Mac OS 

Linux or mac OS users, go to your project root directory and type the below command to 

create virtual environment, 

python3 -m venv kerasenv 

After executing the above command, “kerasenv” directory is created with bin,lib and 

include folders in your installation location. 

Windows 

2. Keras ― Installation 
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Windows user can use the below command, 

py -m venv keras 

Step 2: Activate the environment 

This step will configure python and pip executables in your shell path. 

Linux/Mac OS 

Now we have created a virtual environment named “kerasvenv”. Move to the folder and 

type the below command, 

$ cd kerasvenv 

 

kerasvenv $ source bin/activate 

Windows 

Windows users move inside the “kerasenv” folder and type the below command, 

.\env\Scripts\activate 

Step 3: Python libraries 

Keras depends on the following python libraries. 

 Numpy 

 Pandas 

 Scikit-learn 

 Matplotlib 

 Scipy 

 Seaborn 

Hopefully, you have installed all the above libraries on your system. If these libraries are 

not installed, then use the below command to install one by one. 

numpy 

pip install numpy 

you could see the following response, 

Collecting numpy 

  Downloading 

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8/ 

  numpy-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64. 

  macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB) 

     |████████████████████████████████| 14.4MB 2.8MB/s 
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pandas 

pip install pandas 

We could see the following response: 

Collecting pandas 

  Downloading 

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8/ 

  pandas-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64. 

  macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB) 

     |████████████████████████████████| 14.4MB 2.8MB/s 

matplotlib 

pip install matplotlib 

We could see the following response: 

Collecting matplotlib 

  Downloading 

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8/ 

  matplotlib-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64. 

  macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB) 

     |████████████████████████████████| 14.4MB 2.8MB/s 

scipy 

pip install scipy 

We could see the following response: 

Collecting scipy 

  Downloading 

https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353

c330e59be8cf2d47c0b11d3cde8 

  /scipy-3.1.1-cp36-cp36m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64. 

  macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB) 

     |████████████████████████████████| 14.4MB 2.8MB/s 

scikit-learn 

It is an open source machine learning library. It is used for classification, regression and 

clustering algorithms. Before moving to the installation, it requires the following: 

 Python version 3.5 or higher 

 NumPy version 1.11.0 or higher 

 SciPy version 0.17.0 or higher 
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 joblib 0.11 or higher. 

Now, we install scikit-learn using the below command: 

pip install -U scikit-learn 

Seaborn 

Seaborn is an amazing library that allows you to easily visualize your data. Use the below 

command to install: 

pip install seaborn 

You could see the message similar as specified below: 

Collecting seaborn 

  Downloading 

https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf5

6c25b3d3d2de62056efe482dadc 

  /seaborn-0.9.0-py3-none-any.whl (208kB) 

    100% |████████████████████████████████| 215kB 4.0MB/s 

Requirement already satisfied: numpy>=1.9.3 in ./lib/python3.7/site-packages  

(from seaborn) (1.17.0) 

Collecting pandas>=0.15.2 (from seaborn) 

  Downloading 

https://files.pythonhosted.org/packages/39/b7/441375a152f3f9929ff8bc2915218ff1a

063a59d7137ae0546db616749f9/ 

  pandas-0.25.0-cp37-cp37m-macosx_10_9_x86_64.macosx_10_10_x86_64.whl (10.1MB) 

    100% |████████████████████████████████| 10.1MB 1.8MB/s 

Requirement already satisfied: scipy>=0.14.0 in ./lib/python3.7/site-packages  

(from seaborn) (1.3.0) 

Collecting matplotlib>=1.4.3 (from seaborn) 

  Downloading 

https://files.pythonhosted.org/packages/c3/8b/af9e0984f5c0df06d3fab0bf396eb09cb

f05f8452de4e9502b182f59c33b/ 

  matplotlib-3.1.1-cp37-cp37m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64 

  .macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB) 

    100% |████████████████████████████████| 14.4MB 1.4MB/s 

...................................... 

...................................... 

 

Successfully installed cycler-0.10.0 kiwisolver-1.1.0 matplotlib-3.1.1 pandas-

0.25.0 

pyparsing-2.4.2 python-dateutil-2.8.0 pytz-2019.2 seaborn-0.9.0 

Keras Installation Using Python 

As of now, we have completed basic requirements for the installtion of Kera. Now, install 

the Keras using same procedure as specified below: 

pip install keras 
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Quit virtual environment 

After finishing all your changes in your project, then simply run the below command to 

quit the environment: 

deactivate 

Anaconda Cloud 

We believe that you have installed anaconda cloud on your machine. If anaconda is not 

installed, then visit the official link, https://www.anaconda.com/distribution/ and choose 

download based on your OS. 

Create a new conda environment 

Launch anaconda prompt, this will open base Anaconda environment. Let us create a new 

conda environment. This process is similar to virtualenv. Type the below command in your 

conda terminal: 

conda create --name PythonCPU 

If you want, you can create and install modules using GPU also. In this tutorial, we follow 

CPU instructions. 

Activate conda environment 

To activate the environment, use the below command: 

activate PythonCPU 

Install spyder 

Spyder is an IDE for executing python applications. Let us install this IDE in our conda 

environment using the below command: 

conda install spyder 

Install python libraries 

We have already known the python libraries numpy, pandas, etc., needed for keras. You 

can install all the modules by using the below syntax: 

Syntax 

conda install -c anaconda <module-name> 

For example, you want to install pandas: 

conda install -c anaconda pandas 

Like the same method, try it yourself to install the remaining modules. 
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Install Keras 

Now, everything looks good so you can start keras installation using the below command: 

conda install -c anaconda keras 

Launch spyder 

Finally, launch spyder in your conda terminal using the below command: 

spyder 

To ensure everything was installed correctly, import all the modules, it will add everything 

and if anything went wrong, you will get module not found error message. 
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This chapter explains Keras backend implementations TensorFlow and Theano in detail. 

Let us go through each implementation one by one. 

TensorFlow 

TensorFlow is an open source machine learning library used for numerical computational 

tasks developed by Google. Keras is a high level API built on top of TensorFlow or Theano. 

We know already how to install TensorFlow using pip.  

If it is not installed, you can install using the below command: 

pip install TensorFlow 

Once we execute keras, we could see the configuration file is located at your home 

directory inside and go to .keras/keras.json. 

keras.json 

{ 

    "image_data_format": "channels_last", 

    "epsilon": 1e-07, 

    "floatx": "float32", 

    "backend": "tensorflow" 

} 

Here, 

 image_data_format represent the data format. 

 epsilon represents numeric constant. It is used to avoid DivideByZero error. 

 floatx represent the default data type float32. You can also change it to float16 

or float64 using set_floatx() method. 

 backend denotes the current backend. 

Suppose, if the file is not created then move to the location and create using the below 

steps: 

> cd home 

> mkdir .keras 

> vi keras.json 

Remember, you should specify .keras as its folder name and add the above configuration 

inside keras.json file. We can perform some pre-defined operations to know backend 

functions. 

3. Keras ― Backend Configuration 
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Theano 

Theano is an open source deep learning library that allows you to evaluate multi-

dimensional arrays effectively. We can easily install using the below command: 

pip install theano 

By default, keras uses TensorFlow backend. If you want to change backend configuration 

from TensorFlow to Theano, just change the backend = theano in keras.json file. It is 

described below: 

keras.json 

{ 

    "image_data_format": "channels_last", 

    "epsilon": 1e-07, 

    "floatx": "float32", 

    "backend": "theano" 

} 

Now save your file, restart your terminal and start keras, your backend will be changed. 

>>> import keras as k 

 

using theano backend. 
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Deep learning is an evolving subfield of machine learning. Deep learning involves analyzing 

the input in layer by layer manner, where each layer progressively extracts higher level 

information about the input. 

Let us take a simple scenario of analyzing an image. Let us assume that your input image 

is divided up into a rectangular grid of pixels. Now, the first layer abstracts the pixels. The 

second layer understands the edges in the image. The Next layer constructs nodes from 

the edges. Then, the next would find branches from the nodes. Finally, the output layer 

will detect the full object. Here, the feature extraction process goes from the output of one 

layer into the input of the next subsequent layer. 

By using this approach, we can process huge amount of features, which makes deep 

learning a very powerful tool. Deep learning algorithms are also useful for the analysis of 

unstructured data. Let us go through the basics of deep learning in this chapter. 

Artificial Neural Networks 

The most popular and primary approach of deep learning is using “Artificial neural network” 

(ANN). They are inspired from the model of human brain, which is the most complex organ 

of our body. The human brain is made up of more than 90 billion tiny cells called “Neurons”. 

Neurons are inter-connected through nerve fiber called “axons” and “Dendrites”. The main 

role of axon is to transmit information from one neuron to another to which it is connected.  

Similarly, the main role of dendrites is to receive the information being transmitted by the 

axons of another neuron to which it is connected. Each neuron processes a small 

information and then passes the result to another neuron and this process continues. This 

is the basic method used by our human brain to process huge about of information like 

speech, visual, etc., and extract useful information from it. 

Based on this model, the first Artificial Neural Network (ANN) was invented by psychologist 

Frank Rosenblatt, in the year of 1958. ANNs are made up of multiple nodes which is 

similar to neurons. Nodes are tightly interconnected and organized into different hidden 

layers. The input layer receives the input data and the data goes through one or more 

hidden layers sequentially and finally the output layer predict something useful about the 

input data. For example, the input may be an image and the output may be the thing 

identified in the image, say a “Cat”.  

A single neuron (called as perceptron in ANN) can be represented as below: 

4. Keras ― Overview of Deep learning 
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Here, 

 Multiple input along with weight represents dendrites. 

 Sum of input along with activation function represents neurons. Sum actually 

means computed value of all inputs and activation function represent a function, 

which modify the Sum value into 0, 1 or 0 to 1. 

 Actual output represent axon and the output will be received by neuron in next 

layer. 

Let us understand different types of artificial neural networks in this section. 

Multi-Layer Perceptron 

Multi-Layer perceptron is the simplest form of ANN. It consists of a single input layer, one 

or more hidden layer and finally an output layer. A layer consists of a collection of 

perceptron. Input layer is basically one or more features of the input data. Every hidden 

layer consists of one or more neurons and process certain aspect of the feature and send 

the processed information into the next hidden layer. The output layer process receives 

the data from last hidden layer and finally output the result. 
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Convolutional Neural Network (CNN) 

Convolutional neural network is one of the most popular ANN. It is widely used in the fields 

of image and video recognition. It is based on the concept of convolution, a mathematical 

concept. It is almost similar to multi-layer perceptron except it contains series of 

convolution layer and pooling layer before the fully connected hidden neuron layer. It has 

three important layers:  

 Convolution layer: It is the primary building block and perform computational 

tasks based on convolution function. 

 Pooling layer: It is arranged next to convolution layer and is used to reduce the 

size of inputs by removing unnecessary information so computation can be 

performed faster. 

 Fully connected layer: It is arranged to next to series of convolution and pooling 

layer and classify input into various categories. 

A simple CNN can be represented as below: 
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Here, 

 2 series of Convolution and pooling layer is used and it receives and process the 

input (e.g. image). 

 A single fully connected layer is used and it is used to output the data 

(e.g. classification of image) 

Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNN) are useful to address the flaw in other ANN models. 

Well, Most of the ANN doesn’t remember the steps from previous situations and learned 

to make decisions based on context in training. Meanwhile, RNN stores the past 

information and all its decisions are taken from what it has learnt from the past.  

This approach is mainly useful in image classification. Sometimes, we may need to look 

into the future to fix the past. In this case bidirectional RNN is helpful to learn from the 

past and predict the future. For example, we have handwritten samples in multiple inputs. 

Suppose, we have confusion in one input then we need to check again other inputs to 

recognize the correct context which takes the decision from the past. 

Workflow of ANN 

Let us first understand the different phases of deep learning and then, learn how Keras 

helps in the process of deep learning. 

Collect required data 

Deep learning requires lot of input data to successfully learn and predict the result. So, 

first collect as much data as possible. 

Analyze data 

Analyze the data and acquire a good understanding of the data. The better understanding 

of the data is required to select the correct ANN algorithm. 

Choose an algorithm (model) 
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Choose an algorithm, which will best fit for the type of learning process (e.g image 

classification, text processing, etc.,) and the available input data. Algorithm is represented 

by Model in Keras. Algorithm includes one or more layers. Each layers in ANN can be 

represented by Keras Layer in Keras. 

 Prepare data: Process, filter and select only the required information from the data. 

 

 Split data: Split the data into training and test data set. Test data will be used to 

evaluate the prediction of the algorithm / Model (once the machine learn) and to cross 

check the efficiency of the learning process. 

 

 Compile the model: Compile the algorithm / model, so that, it can be used further 

to learn by training and finally do to prediction. This step requires us to choose loss 

function and Optimizer. loss function and Optimizer are used in learning phase 

to find the error (deviation from actual output) and do optimization so that the error 

will be minimized. 

 

 Fit the model: The actual learning process will be done in this phase using the 

training data set. 

 

 Predict result for unknown value: Predict the output for the unknown input data 

(other than existing training and test data) 

 

 Evaluate model: Evaluate the model by predicting the output for test data and cross-

comparing the prediction with actual result of the test data. 

 

 Freeze, Modify or choose new algorithm: Check whether the evaluation of the 

model is successful. If yes, save the algorithm for future prediction purpose. If not, 

then modify or choose new algorithm / model and finally, again train, predict and 

evaluate the model. Repeat the process until the best algorithm (model) is found. 

The above steps can be represented using below flow chart: 
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Keras provides a complete framework to create any type of neural networks. Keras is 

innovative as well as very easy to learn. It supports simple neural network to very large 

and complex neural network model. Let us understand the architecture of Keras framework 

and how Keras helps in deep learning in this chapter. 

Architecture of Keras 

Keras API can be divided into three main categories: 

 Model 

 Layer 

 Core Modules 

In Keras, every ANN is represented by Keras Models. In turn, every Keras Model is 

composition of Keras Layers and represents ANN layers like input, hidden layer, output 

layers, convolution layer, pooling layer, etc., Keras model and layer access Keras 

modules for activation function, loss function, regularization function, etc., Using Keras 

model, Keras Layer, and Keras modules, any ANN algorithm (CNN, RNN, etc.,) can be 

represented in a simple and efficient manner. 

The following diagram depicts the relationship between model, layer and core modules: 

 

Let us see the overview of Keras models, Keras layers and Keras modules. 

Model 

Keras Models are of two types as mentioned below:  

5. Keras ― Deep learning with Keras 
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Sequential Model - Sequential model is basically a linear composition of Keras Layers. 

Sequential model is easy, minimal as well as has the ability to represent nearly all available 

neural networks. 

A simple sequential model is as follows: 

from keras.models import Sequential 

from keras.layers import Dense, Activation 

 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,))) 

Where, 

 Line 1 imports Sequential model from Keras models 

 Line 2 imports Dense layer and Activation module 

 Line 4 create a new sequential model using Sequential API 

 Line 5 adds a dense layer (Dense API) with relu activation (using Activation 

module) function. 

Sequential model exposes Model class to create customized models as well. We can use 

sub-classing concept to create our own complex model. 

Functional API: Functional API is basically used to create complex models. 

Layer 

Each Keras layer in the Keras model represent the corresponding layer (input layer, hidden 

layer and output layer) in the actual proposed neural network model. Keras provides a lot 

of pre-build layers so that any complex neural network can be easily created. Some of the 

important Keras layers are specified below, 

 Core Layers 

 Convolution Layers 

 Pooling Layers 

 Recurrent Layers 

A simple python code to represent a neural network model using sequential model is as 

follows: 

from keras.models import Sequential 

from keras.layers import Dense, Activation, Dropout 

 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,))) 

model.add(Dropout(0.2)) 

model.add(Dense(512, activation='relu')) 

model.add(Dropout(0.2)) 

model.add(Dense(num_classes, activation='softmax')) 

Where, 
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 Line 1 imports Sequential model from Keras models 

 Line 2 imports Dense layer, Dropout layer and Activation module 

 Line 4 create a new sequential model using Sequential API 

 Line 5 adds a dense layer (Dense API) with relu activation (using Activation 

module) function. 

 Line 6 adds a dropout layer (Dropout API) to handle over-fitting. 

 Line 7 adds another dense layer (Dense API) with relu activation (using Activation 

module) function. 

 Line 8 adds another dropout layer (Dropout API) to handle over-fitting. 

 Line 9 adds final dense layer (Dense API) with softmax activation (using 

Activation module) function. 

Keras also provides options to create our own customized layers. Customized layer can be 

created by sub-classing the Keras.Layer class and it is similar to sub-classing Keras 

models. 

Core Modules 

Keras also provides a lot of built-in neural network related functions to properly create the 

Keras model and Keras layers. Some of the function are as follows: 

 Activations module - Activation function is an important concept in ANN and 

activation modules provides many activation function like softmax, relu, etc., 

 Loss module - Loss module provides loss functions like mean_squared_error, 

mean_absolute_error, poisson, etc., 

 Optimizer module - Optimizer module provides optimizer function like adam, sgd, 

etc., 

 Regularizers - Regularizer module provides functions like L1 regularizer, L2 

regularizer, etc., 

Let us learn Keras modules in detail in the upcoming chapter. 
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As we learned earlier, Keras modules contains pre-defined classes, functions and variables 

which are useful for deep learning algorithm. Let us learn the modules provided by Keras 

in this chapter. 

Available modules 

Let us first see the list of modules available in the Keras. 

 Initializers: Provides a list of initializers function. We can learn it in details in Keras 

layer chapter. during model creation phase of machine learning. 

 

 Regularizers: Provides a list of regularizers function. We can learn it in details in 

Keras Layers chapter. 

 

 Constraints: Provides a list of constraints function. We can learn it in details in Keras 

Layers chapter. 

 

 Activations: Provides a list of activator function. We can learn it in details in Keras 

Layers chapter. 

 

 Losses: Provides a list of loss function. We can learn it in details in Model Training 

chapter. 

 

 Metrics: Provides a list of metrics function. We can learn it in details in Model Training 

chapter. 

 

 Optimizers: Provides a list of optimizer function. We can learn it in details in Model 

Training chapter. 

 

 Callback: Provides a list of callback function. We can use it during the training 

process to print the intermediate data as well as to stop the training itself 

(EarlyStopping method) based on some condition. 

 

 Text processing: Provides functions to convert text into NumPy array suitable for 

machine learning. We can use it in data preparation phase of machine learning. 

 

 Image processing: Provides functions to convert images into NumPy array suitable 

for machine learning. We can use it in data preparation phase of machine learning. 

 

 Sequence processing: Provides functions to generate time based data from the 

given input data. We can use it in data preparation phase of machine learning. 

 

 Backend: Provides function of the backend library like TensorFlow and Theano. 

 

 Utilities: Provides lot of utility function useful in deep learning. 

Let us see backend module and utils model in this chapter. 

6. Keras ― Modules 
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backend module 

backend module is used for keras backend operations. By default, keras runs on top of 

TensorFlow backend. If you want, you can switch to other backends like Theano or CNTK. 

Defualt backend configuration is defined inside your root directory under .keras/keras.json 

file. 

Keras backend module can be imported using below code: 

>>> from keras import backend as k 

If we are using default backend TensorFlow, then the below function returns TensorFlow 

based information as specified below: 

>>> k.backend() 

'tensorflow' 

>>> k.epsilon() 

1e-07 

>>> k.image_data_format() 

'channels_last' 

>>> k.floatx() 

'float32' 

Let us understand some of the significant backend functions used for data analysis in brief: 

get_uid()  

It is the identifier for the default graph. It is defined below: 

>>> k.get_uid(prefix='') 

1 

 

>>> k.get_uid(prefix='') 

2 

reset_uids  

It is used resets the uid value. 

>>> k.reset_uids() 

  Now, again execute the get_uid(). This will be reset and change again to 1. 

>>> k.get_uid(prefix='') 

1 

placeholder  

It is used instantiates a placeholder tensor. Simple placeholder to hold 3-D shape is 

shown below: 
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>>> data = k.placeholder(shape=(1,3,3)) 

>>> data 

<tf.Tensor 'Placeholder_9:0' shape=(1, 3, 3) dtype=float32> 

 

If you use int_shape(), it will show the shape. 

 

>>> k.int_shape(data) 

(1, 3, 3) 

dot  

It is used to multiply two tensors. Consider a and b are two tensors and c will be the 

outcome of multiply of ab. Assume a shape is (4,2) and b shape is (2,3). It is defined 

below, 

>>> a = k.placeholder(shape=(4,2)) 

>>> b = k.placeholder(shape=(2,3)) 

>>> c = k.dot(a,b) 

>>> c 

<tf.Tensor 'MatMul_3:0' shape=(4, 3) dtype=float32> 

>>> 

ones  

It is used to initialize all as one value. 

>>> res = k.ones(shape=(2,2)) 

 

#print the value 

 

>>> k.eval(res) 

array([[1., 1.], 

       [1., 1.]], dtype=float32) 

batch_dot  

It is used to perform the product of two data in batches. Input dimension must be 2 or 

higher. It is shown below: 

>>> a_batch = k.ones(shape=(2,3)) 

>>> b_batch = k.ones(shape=(3,2)) 

>>> c_batch = k.batch_dot(a_batch,b_batch) 

>>> c_batch 

<tf.Tensor 'ExpandDims:0' shape=(2, 1) dtype=float32> 

variable  

It is used to initializes a variable. Let us perform simple transpose operation in this 

variable. 
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>>> data = k.variable([[10,20,30,40],[50,60,70,80]])  #variable initialized 

here 

>>> result = k.transpose(data) 

>>> print(result) 

Tensor("transpose_6:0", shape=(4, 2), dtype=float32) 

>>> print(k.eval(result)) 

[[10. 50.] 

 [20. 60.] 

 [30. 70.] 

 [40. 80.]] 

If you want to access from numpy: 

>>> data = np.array([[10,20,30,40],[50,60,70,80]]) 

 

>>> print(np.transpose(data)) 

[[10 50] 

 [20 60] 

 [30 70] 

 [40 80]] 

 

>>> res = k.variable(value=data) 

>>> print(res) 

<tf.Variable 'Variable_7:0' shape=(2, 4) dtype=float32_ref> 

is_sparse(tensor)  

It is used to check whether the tensor is sparse or not. 

>>> a = k.placeholder((2, 2), sparse=True) 

 

>>> print(a) 

SparseTensor(indices=Tensor("Placeholder_8:0", shape=(?, 2), dtype=int64), 

 values=Tensor("Placeholder_7:0", shape=(?,), dtype=float32),  

 dense_shape=Tensor("Const:0", shape=(2,), dtype=int64)) 

 

>>> print(k.is_sparse(a)) 

True 

to_dense()  

It is used to converts sparse into dense. 

>>> b = k.to_dense(a) 

>>> print(b) 

Tensor("SparseToDense:0", shape=(2, 2), dtype=float32) 

>>> print(k.is_sparse(b)) 

False 

random_uniform_variable  

It is used to initialize using uniform distribution concept. 
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k.random_uniform_variable(shape, mean, scale) 

Here, 

 shape - denotes the rows and columns in the format of tuples. 

 mean - mean of uniform distribution. 

 scale - standard deviation of uniform distribution. 

Let us have a look at the below example usage: 

>>> a = k.random_uniform_variable(shape=(2, 3), low=0, high=1) 

>>> b = k. random_uniform_variable(shape=(3,2), low=0, high=1) 

>>> c = k.dot(a, b) 

>>> k.int_shape(c) 

(2, 2) 

utils module 

utils provides useful utilities function for deep learning. Some of the methods provided by 

the utils module is as follows: 

HDF5Matrix  

It is used to represent the input data in HDF5 format. 

from keras.utils import HDF5Matrix 

 

data = HDF5Matrix('data.hdf5', 'data') 

to_categorical  

It is used to convert class vector into binary class matrix. 

>>> from keras.utils import to_categorical 

 

>>> labels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

>>> to_categorical(labels) 

array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], 

       [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], 

       [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.], 

       [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.], 

       [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], 

       [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], 

       [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.], 

       [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], 

       [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.], 

       [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]], dtype=float32) 

normalize  

It is used to normalize the NumPy array. 
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>>> from keras.utils import normalize 

 

>>> normalize([1, 2, 3, 4, 5]) 

array([[0.13483997, 0.26967994, 0.40451992, 0.53935989, 0.67419986]]) 

print_summary  

It is used to print the summary of the model. 

from keras.utils import print_summary 

 

print_summary(model) 

plot_model  

It is used to create the model representation in dot format and save it to file. 

from keras.utils import plot_model 

 

plot_model(model,to_file='image.png') 

This plot_model will generate an image to understand the performance of model. 
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As learned earlier, Keras layers are the primary building block of Keras models. Each layer 

receives input information, do some computation and finally output the transformed 

information. The output of one layer will flow into the next layer as its input. Let us learn 

complete details about layers in this chapter. 

Introduction 

A Keras layer requires shape of the input (input_shape) to understand the structure 

of the input data, initializer to set the weight for each input and finally activators to 

transform the output to make it non-linear. In between, constraints restricts and specify 

the range in which the weight of input data to be generated and regularizer will try to 

optimize the layer (and the model) by dynamically applying the penalties on the weights 

during optimization process. 

To summarise, Keras layer requires below minimum details to create a complete layer. 

 Shape of the input data 

 Number of neurons / units in the layer 

 Initializers 

 Regularizers 

 Constraints 

 Activations 

Let us understand the basic concept in the next chapter. Before understanding the basic 

concept, let us create a simple Keras layer using Sequential model API to get the idea of 

how Keras model and layer works. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

from keras import regularizers 

from keras import constraints 

 

model = Sequential() 

 

model.add(Dense(32, input_shape=(16,), kernel_initializer='he_uniform', 

kernel_regularizer=None, kernel_constraint='MaxNorm', activation='relu')) 

model.add(Dense(16, activation='relu')) 

model.add(Dense(8)) 

where, 

 Line 1-5 imports the necessary modules. 

 Line 7 creates a new model using Sequential API. 

7. Keras ― Layers 
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 Line 9 creates a new Dense layer and add it into the model. Dense is an entry level 

layer provided by Keras, which accepts the number of neurons or units (32) as its 

required parameter. If the layer is first layer, then we need to provide Input Shape, 

(16,) as well. Otherwise, the output of the previous layer will be used as input of the 

next layer. All other parameters are optional. 

 First parameter represents the number of units (neurons). 

 input_shape represent the shape of input data. 

 kernel_initializer represent initializer to be used. he_uniform function is 

set as value. 

 kernel_regularizer represent regularizer to be used. None is set as value. 

 kernel_constraint represent constraint to be used. MaxNorm function is 

set as value. 

 activation represent activation to be used. relu function is set as value. 

 Line 10 creates second Dense layer with 16 units and set relu as the activation 

function. 

 Line 11 creates final Dense layer with 8 units. 

Basic Concept of Layers 

Let us understand the basic concept of layer as well as how Keras supports each concept. 

Input shape 

In machine learning, all type of input data like text, images or videos will be first converted 

into array of numbers and then feed into the algorithm. Input numbers may be single 

dimensional array, two dimensional array (matrix) or multi-dimensional array. We can 

specify the dimensional information using shape, a tuple of integers. For example, (4,2) 

represent matrix with four rows and two columns. 

>>> import numpy as np 

>>> shape = (4, 2) 

>>> input = np.zeros(shape) 

>>> print(input) 

[[0. 0.] 

 [0. 0.] 

 [0. 0.] 

 [0. 0.]] 

>>> 

Similarly, (3,4,2) three dimensional matrix having three collections of 4x2 matrix (two 

rows and four columns). 

>>> import numpy as np 

>>> shape = (3, 4, 2) 

>>> input = np.zeros(shape) 

>>> print(input) 

[[[0. 0.] 

  [0. 0.] 
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  [0. 0.] 

  [0. 0.]] 

 

 [[0. 0.] 

  [0. 0.] 

  [0. 0.] 

  [0. 0.]] 

 

 [[0. 0.] 

  [0. 0.] 

  [0. 0.] 

  [0. 0.]]] 

>>> 

To create the first layer of the model (or input layer of the model), shape of the input data 

should be specified. 

Initializers 

In Machine Learning, weight will be assigned to all input data. Initializers module 

provides different functions to set these initial weight. Some of the Keras Initializer 

function are as follows: 

Zeros  

Generates 0 for all input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.Zeros() 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

Where, kernel_initializer represent the initializer for kernel of the model. 

Ones 

Generates 1 for all input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.Ones() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

Constant  

Generates a constant value (say, 5) specified by the user for all input data. 
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from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.Constant(value=0) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

where, value represent the constant value 

RandomNormal  

Generates value using normal distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

where, 

 mean represent the mean of the random values to generate 

 stddev represent the standard deviation of the random values to generate 

 seed represent the values to generate random number 

RandomUniform  

Generates value using uniform distribution of input data. 

from keras import initializers 

 

my_init = initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

where, 

 minval represent the lower bound of the random values to generate 

 maxval represent the upper bound of the random values to generate 

TruncatedNormal  

Generates value using truncated normal distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None) 
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model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

VarianceScaling  

Generates value based on the input shape and output shape of the layer along with the 

specified scale. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.VarianceScaling(scale=1.0, mode='fan_in', 

distribution='normal', seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

where, 

 scale represent the scaling factor 

 mode represent any one of fan_in, fan_out and fan_avg values 

 distribution represent either of normal or uniform 

VarianceScaling  

It finds the stddev value for normal distribution using below formula and then find the 

weights using normal distribution, 

stddev = sqrt(scale / n) 

where n represent, 

 number of input units for mode = fan_in 

 number of out units for mode = fan_out 

 average number of input and output units for mode = fan_avg 

Similarly, it finds the limit for uniform distribution using below formula and then find the 

weights using uniform distribution, 

limit = sqrt(3 * scale / n) 

lecun_normal  

Generates value using lecun normal distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None) 
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model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

It finds the stddev using the below formula and then apply normal distribution 

stddev = sqrt(1 / fan_in) 

where, fan_in represent the number of input units. 

lecun_uniform  

Generates value using lecun uniform distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.lecun_uniform(seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

It finds the limit using the below formula and then apply uniform distribution 

limit = sqrt(3 / fan_in) 

where, 

 fan_in represents the number of input units 

 fan_out represents the number of output units 

glorot_normal  

Generates value using glorot normal distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.glorot_normal(seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

It finds the stddev using the below formula and then apply normal distribution 

stddev = sqrt(2 / (fan_in + fan_out)) 

where, 

 fan_in represents the number of input units 

 fan_out represents the number of output units 

glorot_uniform  
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Generates value using glorot uniform distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.glorot_uniform(seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

It finds the limit using the below formula and then apply uniform distribution 

limit = sqrt(6 / (fan_in + fan_out)) 

where, 

 fan_in represent the number of input units. 

 fan_out represent the number of output units. 

he_normal  

Generates value using he normal distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

It finds the stddev using the below formula and then apply normal distribution. 

stddev = sqrt(2 / fan_in) 

where, fan_in represent the number of input units. 

he_uniform  

Generates value using he uniform distribution of input data. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.he_normal(seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

It finds the limit using the below formula and then apply uniform distribution. 

limit = sqrt(6 / fan_in) 
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where, fan_in represent the number of input units 

Orthogonal  

Generates a random orthogonal matrix. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.Orthogonal(gain=1.0, seed=None) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

where, gain represent the multiplication factor of the matrix. 

Identity  

Generates identity matrix. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import initializers 

 

my_init = initializers.Identity(gain=1.0) 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_initializer=my_init)) 

Constraints 

In machine learning, a constraint will be set on the parameter (weight) during optimization 

phase. Constraints module provides different functions to set the constraint on the layer. 

Some of the constraint functions are as follows: 

NonNeg  

Constrains weights to be non-negative. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import constraints 

 

my_constrain = constraints.NonNeg() 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_constraint=my_constrain)) 

where, kernel_constraint represent the constraint to be used in the layer. 

UnitNorm  

Constrains weights to be unit norm. 
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from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import constraints 

 

my_constrain = constraints.UnitNorm(axis=0) 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_constraint=my_constrain)) 

MaxNorm  

Constrains weight to norm less than or equals to the given value. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import constraints 

 

my_constrain = constraints.MaxNorm(max_value=2, axis=0) 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_constraint=my_constrain)) 

where, 

 max_value represent the upper bound 

 axis represent the dimension in which the constraint to be applied. e.g. in Shape 

(2,3,4) axis 0 denotes first dimension, 1 denotes second dimension and 2 denotes 

third dimension 

MinMaxNorm 

Constrains weights to be norm between specified minimum and maximum values. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import constraints 

 

my_constrain = constraints.MinMaxNorm(min_value=0.0, max_value=1.0, rate=1.0, 

axis=0) 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_constraint=my_constrain)) 

where, rate represent the rate at which the weight constrain is applied. 

Regularizers 

In machine learning, regularizers are used in the optimization phase. It applies some 

penalties on the layer parameter during optimization. Keras regularization module 

provides below functions to set penalties on the layer. Regularization applies per-layer 

basis only. 
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L1 Regularizer 

It provides L1 based regularization. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import regularizers 

 

my_regularizer = regularizers.l1(0.) 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_regularizer=my_regularizer)) 

where, kernel_regularizer represent the regularizer to be used in the layer. 

L2 Regularizer  

It provides L2 based regularization. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import regularizers 

 

my_regularizer = regularizers.l2(0.) 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_regularizer=my_regularizer)) 

L1 and L2 Regularizer  

It provides both L1 and L2 based regularization. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

from keras import regularizers 

 

my_regularizer = regularizers.l1_l2(0.) 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,), 

kernel_regularizer=my_regularizer)) 

Activations 

In machine learning, activation function is a special function used to find whether a specific 

neuron is activated or not. Basically, the activation function does a nonlinear 

transformation of the input data and thus enable the neurons to learn better. Output of a 

neuron depends on the activation function.  

As you recall the concept of single perception, the output of a perceptron (neuron) is 

simply the result of the activation function, which accepts the summation of all input 

multiplied with its corresponding weight plus overall bias, if any available. 
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result = Activation(SUMOF(input * weight) + bias) 

So, activation function plays an important role in the successful learning of the model. 

Keras provides a lot of activation function in the activations module. Let us learn all the 

activations available in the module. 

linear  

Applies Linear function. Does nothing. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='linear', input_shape=(784,))) 

where, activation refers the activation function of the layer. It can be specified simply 

by the name of the function and the layer will use corresponding activators. 

elu  

Applies Exponential linear unit. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='elu', input_shape=(784,))) 

selu  

Applies Scaled exponential linear unit. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='selu', input_shape=(784,))) 

relu  

Applies Rectified Linear Unit. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,))) 

softmax  

Applies Softmax function. 
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from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='softmax', input_shape=(784,))) 

softplus  

Applies Softplus function. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='softplus', input_shape=(784,))) 

softsign  

Applies Softsign function. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='softsign', input_shape=(784,))) 

tanh  

Applies Hyperbolic tangent function. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='tanh', input_shape=(784,))) 

sigmoid 

Applies Sigmoid function. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='sigmoid', input_shape=(784,))) 

hard_sigmoid  

Applies Hard Sigmoid function. 
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from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='hard_sigmoid', input_shape=(784,))) 

exponential  

Applies exponential function. 

from keras.models import Sequential 

from keras.layers import Activation, Dense 

 

model = Sequential() 

model.add(Dense(512, activation='exponential', input_shape=(784,))) 

Dense Layer 

Dense layer is the regular deeply connected neural network layer. It is most common 

and frequently used layer. Dense layer does the below operation on the input and return 

the output. 

output = activation(dot(input, kernel) + bias) 

where, 

 input represent the input data 

 kernel represent the weight data 

 dot represent numpy dot product of all input and its corresponding weights 

 bias represent a biased value used in machine learning to optimize the model 

 activation represent the activation function. 

Let us consider sample input and weights as below and try to find the result: 

 input as 2 x 2 matrix [ [1, 2], [3, 4] ] 

 kernel as 2 x 2 matrix [ [0.5, 0.75], [0.25, 0.5] ] 

 bias value as 0 

 activation as linear. As we learned earlier, linear activation does nothing. 

>>> import numpy as np 

 

>>> input = [ [1, 2], [3, 4] ] 

>>> kernel = [ [0.5, 0.75], [0.25, 0.5] ] 

>>> result = np.dot(input, kernel) 

>>> result 

array([[1.  , 1.75], 

       [2.5 , 4.25]]) 

>>> 
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result is the output and it will be passed into the next layer. 

The output shape of the Dense layer will be affected by the number of neuron / units 

specified in the Dense layer. For example, if the input shape is (8,) and number of unit is 

16, then the output shape is (16,). All layer will have batch size as the first dimension 

and so, input shape will be represented by (None, 8) and the output shape as (None, 

16). Currently, batch size is None as it is not set. Batch size is usually set during training 

phase. 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense 

 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_1.input_shape 

(None, 8) 

>>> layer_1.output_shape 

(None, 16) 

>>> 

where, 

 layer_1.input_shape returns the input shape of the layer. 

 layer_1.output_shape returns the output shape of the layer. 

The argument supported by Dense layer is as follows: 

 units represent the number of units and it affects the output layer. 

 activation represents the activation function. 

 use_bias represents whether the layer uses a bias vector. 

 kernel_initializer represents the initializer to be used for kernel. 

 bias_initializer represents the initializer to be used for the bias vector. 

 kernel_regularizer represents the regularizer function to be applied to the kernel 

weights matrix. 

 bias_regularizer represents the regularizer function to be applied to the bias vector. 

 activity_regularizer represents the regularizer function tp be applied to the output 

of the layer. 

 kernel_constraint represent constraint function to be applied to the kernel weights 

matrix. 

 bias_constraint represent constraint function to be applied to the bias vector. 

As you have seen, there is no argument available to specify the input_shape of the input 

data. input_shape is a special argument, which the layer will accept only if it is designed 

as first layer in the model. 
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Also, all Keras layer has few common methods and they are as follows: 

get_weights  

Fetch the full list of the weights used in the layer. 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense 

 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_1.get_weights() 

>>> [array([[-0.19929028,  0.4162618 ,  0.20081699, -0.25589502,  0.3612864 , 

     0.25088787, -0.47544873,  0.0321095 , -0.26070702, -0.24102116, 

     0.32778358,  0.4667952 , -0.43322265, -0.14500427,  0.04341269, 

    -0.34929228], 

       [ 0.41898954,  0.42256463,  0.2399621 , -0.272717  , -0.37069297, 

    -0.37802136,  0.11428618,  0.12749982,  0.10182762,  0.14897704, 

     0.06569374,  0.15424263,  0.42638576,  0.34037888, -0.15504825, 

    -0.0740819 ], 

       [-0.3132702 ,  0.34885168, -0.3259498 , -0.47076607,  0.33696914, 

    -0.49143505, -0.04318619, -0.11252558,  0.29669464, -0.28431225, 

    -0.43165374, -0.49687648,  0.13632   , -0.21099591, -0.10608876, 

    -0.13568914], 

       [-0.27421212, -0.180812  ,  0.37240648,  0.25100648, -0.07199466, 

    -0.23680925, -0.21271884, -0.08706653,  0.4393121 ,  0.23259485, 

     0.2616762 ,  0.23966897, -0.4502542 ,  0.0058881 ,  0.14847124, 

     0.08835125], 

       [-0.36905527,  0.08948278, -0.19254792,  0.26783705,  0.25979865, 

    -0.46963632,  0.32761025, -0.25718856,  0.48987913,  0.3588251 , 

    -0.06586111,  0.2591269 ,  0.48289275,  0.3368858 , -0.17145419, 

    -0.35674667], 

       [-0.32851398,  0.42289603, -0.47025883,  0.29027188, -0.0498147 , 

     0.46215963, -0.10123312,  0.23069787,  0.00844061, -0.11867595, 

    -0.2602347 , -0.27917898,  0.22910392,  0.18214619, -0.40857887, 

     0.2606709 ], 

       [-0.19066167, -0.11464512, -0.06768692, -0.21878994, -0.2573272 , 

     0.13698077,  0.45221198,  0.10634196,  0.06784797,  0.07192957, 

     0.2946936 ,  0.04968262, -0.15899467,  0.15757453, -0.1343019 , 

     0.24561536], 

       [-0.04272163,  0.48315823, -0.13382411,  0.01752126, -0.1630218 , 

     0.4629662 , -0.21412933, -0.1445911 , -0.03567278, -0.20948446, 

     0.15742278,  0.11139905,  0.11066687,  0.17430818,  0.36413217, 

     0.19864106]], dtype=float32), array([0., 0., 0., 0., 0., 0., 0., 0., 0., 

0., 0., 0., 0., 0., 0., 0.], 

      dtype=float32)] 

>>> 

 set_weights: Set the weights for the layer 

 get_config: Get the complete configuration of the layer as an object which can be 

reloaded at any time. 
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config = layer_1.get_config() 

from_config  

Load the layer from the configuration object of the layer. 

config = layer_1.get_config() 

reload_layer = Dense.from_config(config) 

input_shape  

Get the input shape, if only the layer has single node. 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense 

 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_1.get_weights() 

>>> layer_1.input_shape 

(None, 8) 

input  

Get the input data, if only the layer has single node. 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense 

 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_1.get_weights() 

>>> layer_1.input 

<tf.Tensor 'dense_1_input:0' shape=(?, 8) dtype=float32> 

 get_input_at: Get the input data at the specified index, if the layer has multiple 

node 

 get_input_shape_at: Get the input shape at the specified index, if the layer has 

multiple node 

 output_shape: Get the output shape, if only the layer has single node. 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense 

 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_1.get_weights() 
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>>> layer_1.output_shape 

(None, 16) 

output  

Get the output data, if only the layer has single node. 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense 

 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_1.get_weights() 

>>> layer_1.output 

<tf.Tensor 'dense_1/BiasAdd:0' shape=(?, 16) dtype=float32> 

 get_output_at: Get the output data at the specified index, if the layer has multiple 

node 

 get_output_shape_ at: Get the output shape at the specified index, if the layer 

has multiple node 

Dropout Layers 

Dropout is one of the important concept in the machine learning. It is used to fix the 

over-fitting issue. Input data may have some of the unwanted data, usually called as 

Noise. Dropout will try to remove the noise data and thus prevent the model from over-

fitting. 

Dropout has three arguments and they are as follows: 

keras.layers.Dropout(rate, noise_shape=None, seed=None) 

 rate represent the fraction of the input unit to be dropped. It will be from 0 to 1. 

 noise_shape represent the dimension of the shape in which the dropout to be 

applied. For example, the input shape is (batch_size, timesteps, features). 

Then, to apply dropout in the timesteps, (batch_size, 1, features) need to be 

specified as noise_shape 

 seed - random seed. 

Flatten Layers 

Flatten is used to flatten the input. For example, if flatten is applied to layer having input 

shape as (batch_size, 2,2), then the output shape of the layer will be (batch_size, 4) 

Flatten has one argument as follows: 

keras.layers.Flatten(data_format=None) 
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data_format is an optional argument and it is used to preserve weight ordering when 

switching from one data format to another data format. It accepts either channels_last 

or channels_first as value. channels_last is the default one and it identifies the input 

shape as (batch_size, ..., channels) whereas channels_first identifies the input shape 

as (batch_size, channels, ...) 

A simple example to use Flatten layers is as follows: 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense, Flatten 

>>> 

>>> 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,8)) 

>>> model.add(layer_1) 

>>> layer_2 = Flatten() 

>>> model.add(layer_2) 

>>> layer_2.input_shape 

(None, 8, 16) 

>>> layer_2.output_shape 

(None, 128) 

>>> 

where, the second layer input shape is (None, 8, 16) and it gets flattened into (None, 

128). 

Reshape Layers 

Reshape is used to change the shape of the input. For example, if reshape with argument 

(2,3) is applied to layer having input shape as (batch_size, 3, 2), then the output shape 

of the layer will be (batch_size, 2, 3) 

Reshape has one argument as follows: 

keras.layers.v(target_shape) 

A simple example to use Reshape layers is as follows: 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense, Reshape 

>>> 

>>> 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,8)) 

>>> model.add(layer_1) 

>>> layer_2 = Reshape((16, 8)) 

>>> model.add(layer_2) 

>>> layer_2.input_shape 

(None, 8, 16) 

>>> layer_2.output_shape 

(None, 16, 8) 

>>> 

where, (16, 8) is set as target shape. 
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Permute Layers 

Permute is also used to change the shape of the input using pattern. For example, if 

Permute with argument (2, 1) is applied to layer having input shape as (batch_size, 3, 

2), then the output shape of the layer will be (batch_size, 2, 3) 

Permute has one argument as follows: 

keras.layers.Permute(dims) 

A simple example to use Permute layers is as follows: 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense, Permute 

>>> 

>>> 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8, 8)) 

>>> model.add(layer_1) 

>>> layer_2 = Permute((2, 1)) 

>>> model.add(layer_2) 

>>> layer_2.input_shape 

(None, 8, 16) 

>>> layer_2.output_shape 

(None, 16, 8) 

>>> 

where, (2, 1) is set as pattern. 

RepeatVector Layers 

RepeatVector is used to repeat the input for set number, n of times. For example, if 

RepeatVector with argument 16 is applied to layer having input shape as (batch_size, 

32), then the output shape of the layer will be (batch_size, 16, 32) 

RepeatVector has one arguments and it is as follows: 

keras.layers.RepeatVector(n) 

A simple example to use RepeatVector layers is as follows: 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense, RepeatVector 

>>> 

>>> 

>>> model = Sequential() 

>>> layer_1 = Dense(16, input_shape=(8,)) 

>>> model.add(layer_1) 

>>> layer_2 = RepeatVector(16) 

>>> model.add(layer_2) 

>>> layer_2.input_shape 

(None, 16) 

>>> layer_2.output_shape 
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(None, 16, 16) 

>>> 

where, 16 is set as repeat times. 

Lambda Layers 

Lambda is used to transform the input data using an expression or function. For example, 

if Lambda with expression lambda x: x ** 2 is applied to a layer, then its input data will 

be squared before processing. 

RepeatVector has four arguments and it is as follows: 

keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None) 

 function represent the lambda function. 

 output_shape represent the shape of the transformed input. 

 mask represent the mask to be applied, if any. 

 arguments represent the optional argument for the lamda function as dictionary. 

Convolution Layers 

Keras contains a lot of layers for creating Convolution based ANN, popularly called as 

Convolution Neural Network (CNN). All convolution layer will have certain properties (as 

listed below), which differentiate it from other layers (say Dense layer). 

Filters: It refers the number of filters to be applied in the convolution. It affects the 

dimension of the output shape. 

kernel size: It refers the length of the convolution window. 

Strides: It refers the stride length of the convolution. 

Padding: It refers the how padding needs to be done on the output of the convolution. It 

has three values which are as follows: - 

 valid means no padding 

 causal means causal convolution. 

 same means the output should have same length as input and so, padding 

should be applied accordingly 

 

Dilation Rate: dilation rate to be applied for dilated convolution. 

Another important aspect of the convolution layer is the data format. The data format may 

be to two type, 

channel_last: channel_last specifies that the channel data is placed as last entry. Here, 

channel refers the actual data and it will be placed in the last dimension of the input space. 
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For example, let us consider an input shape, (30, 10, 128). Here, the value in first 

dimension, 30 refers the batch size, the value in second dimension, 10 refers the 

timesteps in temporal convolution and the value in third dimension 128 refers the actual 

values of the input. This is the default setting in Keras. 

channel_first: channel_first is just opposite to channet_last. Here, the input values 

are placed in the second dimension, next to batch size. 

Let us see check the all the layer used for CNN provided by Keras layers in this chapter. 

Conv1D 

Conv1D layer is used in temporal based CNN. The input shape of the ConvID will be in 

below format: 

(batch_size, timesteps, features) 

where, 

 batch_size refers the size of the batch. 

 timesteps refers the number of time steps provided in the input. 

 features refer the number of features available in the input. 

The output shape of the Conv1D is as follows: 

(batch_size, new_steps, filters) 

where, filters refer the number of filters specified as one of the arguments. 

The signature of the ConvID function and its arguments with default value is as follows: 

keras.layers.Conv1D( 

    filters,  

    kernel_size,  

    strides=1,  

    padding='valid',  

    data_format='channels_last',  

    dilation_rate=1,  

    activation=None,  

    use_bias=True,  

    kernel_initializer='glorot_uniform',  

    bias_initializer='zeros',  

    kernel_regularizer=None,  

    bias_regularizer=None,  

    activity_regularizer=None,  

    kernel_constraint=None,  

    bias_constraint=None) 

Conv2D 
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It is a convolution 2D layer. It creates a convolutional kernel with the layer input creates 

a tensor of outputs. input_shape refers the tuple of integers with RGB value in 

data_format=“channels_last”. 

The signature of the Conv2D function and its arguments with default value is as follows: 

keras.layers.Conv2D 

  (filters,  

  kernel_size,  

  strides=(1, 1),  

  padding='valid',  

  data_format=None,  

  dilation_rate=(1, 1),  

  activation=None,  

  use_bias=True,  

  kernel_initializer='glorot_uniform',  

  bias_initializer='zeros',  

  kernel_regularizer=None,  

  bias_regularizer=None,  

  activity_regularizer=None,  

  kernel_constraint=None,  

  bias_constraint=None) 

Here, 

 strides refer an integer specifying the strides of the convolution along the height 

and width. 

Pooling Layer 

It is used to perform max pooling operations on temporal data. The signature of the 

MaxPooling1D function and its arguments with default value is as follows: 

keras.layers.MaxPooling1D 

  (pool_size=2, 

  strides=None,  

  padding='valid',  

  data_format='channels_last') 

Here, 

 pool_size refers the max pooling windows. 

 strides refer the factors for downscale. 

Similarly, MaxPooling2D and MaxPooling3D are used for Max pooling operations for spatial 

data. 

Locally connected layer 

Locally connected layers are similar to Conv1D layer but the difference is Conv1D layer 

weights are shared but here weights are unshared. We can use different set of filters to 

apply different patch of input. 
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Locally connected layer has one arguments and it is as follows: 

keras.layers.LocallyConnected1D(n) 

A simple example to use Locally connected 1D layer is as follows: 

>>> from keras.models import Sequential 

>>> from keras.layers import Activation, Dense,LocallyConnected1D 

>>> model = Sequential() 

 

# apply a unshared weight convolution 1-dimension of length 3 to a sequence 

with 

# 10 timesteps, with 16 output filters 

 

>>> model.add(LocallyConnected1D(16, 3, input_shape=(10, 8))) 

 

# add a new conv1d on top 

>>> model.add(LocallyConnected1D(8, 3)) 

The signature of the Locally connected 1D layer function and its arguments with default 

value is as follows: 

keras.layers.LocallyConnected1D 

  (filters,  

  kernel_size, 

  strides=1,  

  padding='valid',  

  data_format=None,  

  activation=None,  

  use_bias=True,  

  kernel_initializer='glorot_uniform',  

  bias_initializer='zeros',  

  kernel_regularizer=None,  

  bias_regularizer=None,  

  activity_regularizer=None, 

  kernel_constraint=None,  

  bias_constraint=None) 

Here, 

 kernel_initializer refers initializer for the kernel weights matrix 

 kernel_regularizer is used to apply regularize function to the kernel weights 

matrix. 

 bias_regularizer is used to apply regularizer function to the bias vector. 

 activity_regularizer is used to apply regularizer function to the output of the 

layer. 

Similarly, we can use 2D and 3D layers as well. 

Recurrent Layer 

It is used in Recurrent neural networks(RNN). It is defined as shown below: 



Keras        

   49 

 

keras.engine.base_layer.wrapped_fn() 

It supports the following parameters: 

 cell refers an instance. 

 return_sequences return the last output in the output sequence, or the full 

sequence. 

 return_state returns the last state in addition to the output. 

 go_backwards returns a boolean result. If the value is true, then process the 

input sequence backwards otherwise return the reversed sequence. 

 stateful refers the state for each index. 

 unroll specifies whether the network to be unrolled or not. 

 input_dim refers the input dimension. 

 input_length refers the length of input sequence. 

Merge Layer 

It is used to merge a list of inputs. It supports add(), subtract(), multiply(), average(), 

maximum(), minimum(), concatenate() and dot() functionalities. 

Adding a layer 

It is used to add two layers. Syntax is defined below: 

keras.layers.add(inputs) 

Simple example is shown below: 

>>> a = input1 = keras.layers.Input(shape=(16,)) 

>>> x1 = keras.layers.Dense(8, activation='relu')(a) 

>>> a =keras.layers.Input(shape=(16,)) 

>>> x1 = keras.layers.Dense(8, activation='relu')(a) 

>>> b =  keras.layers.Input(shape=(32,)) 

>>> x2 = keras.layers.Dense(8, activation='relu')(b) 

>>> summ = = keras.layers.add([x1, x2]) 

>>> summ = keras.layers.add([x1, x2]) 

>>> model = keras.models.Model(inputs=[a,b],outputs=summ) 

subtract layer 

It is used to subtract two layers. The syntax is defined below: 

keras.layers.subtract(inputs) 

In the above example, we have created two input sequence. If you want to apply 

subtract(), then use the below coding: 
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subtract_result = keras.layers.subtract([x1, x2]) 

result = keras.layers.Dense(4)(subtract_result) 

model = keras.models.Model(inputs=[a,b], outputs=result) 

multiply layer 

It is used to multiply two layers. Syntax is defined below: 

keras.layers.multiply(inputs) 

If you want to apply multiply two inputs, then you can use the below coding: 

mul_result = keras.layers.multiply([x1, x2]) 

result = keras.layers.Dense(4)(mul_result) 

model = keras.models.Model(inputs=[a,b], outputs=result) 

maximum() 

It is used to find the maximum value from the two inputs. syntax is defined below: 

keras.layers.maximum(inputs) 

minimum() 

It is used to find the minimum value from the two inputs. syntax is defined below: 

keras.layers.minimum(inputs) 

concatenate 

It is used to concatenate two inputs. It is defined below: 

keras.layers.concatenate(inputs, axis=-1) 

Functional interface to the Concatenate layer. 

Here, axis refers to Concatenation axis. 

dot 

It returns the dot product from two inputs. It is defined below: 

keras.layers.dot(inputs, axes, normalize=False) 

Here, 

 axes refer axes to perform the dot product. 

 normalize determines whether dot product is needed or not. 
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Embedding Layer 

It performs embedding operations in input layer. It is used to convert positive into dense 

vectors of fixed size. Its main application is in text analysis. The signature of the 

Embedding layer function and its arguments with default value is as follows, 

keras.layers.Embedding 

  (input_dim,  

  output_dim,  

  embeddings_initializer='uniform',  

  embeddings_regularizer=None,  

  activity_regularizer=None,  

  embeddings_constraint=None,  

  mask_zero=False,  

  input_length=None) 

Here, 

 input_dim refers the input dimension. 

 output_dim refers the dimension of the dense embedding. 

 embeddings_initializer refers the initializer for the embeddings matrix 

 embeddings_regularizer refers the regularizer function applied to the 

embeddings matrix. 

 activity_regularizer refers the regularizer function applied to the output of the 

layer. 

 embeddings_constraint refers the constraint function applied to the embeddings 

matrix 

 mask_zero refers the input value should be masked or not. 

 input_length refers the length of input sequence. 
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Keras allows to create our own customized layer. Once a new layer is created, it can be 

used in any model without any restriction. Let us learn how to create new layer in this 

chapter. 

Keras provides a base layer class, Layer which can sub-classed to create our own 

customized layer. Let us create a simple layer which will find weight based on normal 

distribution and then do the basic computation of finding the summation of the product of 

input and its weight during training. 

Step 1: Import the necessary module 

First, let us import the necessary modules: 

from keras import backend as K 

from keras.layers import Layer 

Here, 

 backend is used to access the dot function. 

 Layer is the base class and we will be sub-classing it to create our layer 

Step 2: Define a layer class 

Let us create a new class, MyCustomLayer by sub-classing Layer class: 

class MyCustomLayer(Layer): 

    ... 

Step 3: Initialize the layer class 

Let us initialize our new class as specified below: 

def __init__(self, output_dim, **kwargs): 

    self.output_dim = output_dim 

    super(MyCustomLayer, self).__init__(**kwargs) 

Here, 

 Line 2 sets the output dimension. 

 Line 3 calls the base or super layer’s init function. 

Step 4: Implement build method 

build is the main method and its only purpose is to build the layer properly. It can do 

anything related to the inner working of the layer. Once the custom functionality is done, 

we can call the base class build function. Our custom build function is as follows: 

8. Keras ― Customized Layer 
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def build(self, input_shape): 

    self.kernel = self.add_weight(name='kernel',  

                      shape=(input_shape[1], self.output_dim), 

                      initializer='normal', 

                      trainable=True) 

    super(MyCustomLayer, self).build(input_shape) 

Here, 

 Line 1 defines the build method with one argument, input_shape. Shape of the 

input data is referred by input_shape. 

 Line 2 creates the weight corresponding to input shape and set it in the kernel. It 

is our custom functionality of the layer. It creates the weight using ‘normal’ 

initializer. 

 Line 6 calls the base class, build method. 

Step 5: Implement call method 

call method does the exact working of the layer during training process.  

Our custom call method is as follows: 

def call(self, input_data): 

    return K.dot(input_data, self.kernel) 

Here, 

 Line 1 defines the call method with one argument, input_data. input_data is the 

input data for our layer. 

 Line 2 return the dot product of the input data, input_data and our layer’s kernel, 

self.kernel 

Step 6: Implement compute_output_shape method 

def compute_output_shape(self, input_shape): 

        return (input_shape[0], self.output_dim) 

Here, 

 Line 1 defines compute_output_shape method with one argument 

input_shape 

 Line 2 computes the output shape using shape of input data and output dimension 

set while initializing the layer. 

Implementing the build, call and compute_output_shape completes the creating a 

customized layer. The final and complete code is as follows: 

from keras import backend as K 

from keras.layers import Layer 
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class MyCustomLayer(Layer): 

     

    def __init__(self, output_dim, **kwargs): 

        self.output_dim = output_dim 

        super(MyCustomLayer, self).__init__(**kwargs) 

 

    def build(self, input_shape): 

        self.kernel = self.add_weight(name='kernel',  

                        shape=(input_shape[1], self.output_dim), 

                        initializer='normal', 

                        trainable=True) 

        super(MyCustomLayer, self).build(input_shape)  # Be sure to call this 

at the end 

 

    def call(self, input_data): 

        return K.dot(input_data, self.kernel) 

 

    def compute_output_shape(self, input_shape): 

        return (input_shape[0], self.output_dim) 

Using our customized layer 

Let us create a simple model using our customized layer as specified below: 

from keras.models import Sequential 

from keras.layers import Dense 

 

model = Sequential() 

model.add(MyCustomLayer(32, input_shape=(16,))) 

model.add(Dense(8, activation='softmax')) 

model.summary() 

Here, 

 Our MyCustomLayer is added to the model using 32 units and (16,) as input 

shape 

Running the application will print the model summary as below: 

Model: "sequential_1" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

my_custom_layer_1 (MyCustomL (None, 32)                512 

_________________________________________________________________ 

dense_1 (Dense)              (None, 8)                 264 

================================================================= 

Total params: 776 

Trainable params: 776 

Non-trainable params: 0 

_________________________________________________________________ 
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As learned earlier, Keras model represents the actual neural network model. Keras 

provides a two mode to create the model, simple and easy to use Sequential API as well 

as more flexible and advanced Functional API. Let us learn now to create model using both 

Sequential and Functional API in this chapter. 

Sequential 

The core idea of Sequential API is simply arranging the Keras layers in a sequential order 

and so, it is called Sequential API. Most of the ANN also has layers in sequential order and 

the data flows from one layer to another layer in the given order until the data finally 

reaches the output layer. 

A ANN model can be created by simply calling Sequential() API as specified below: 

from keras.models import Sequential 

 

model = Sequential() 

Add layers 

To add a layer, simply create a layer using Keras layer API and then pass the layer through 
add() function as specified below: 

from keras.models import Sequential 

 

model = Sequential() 

input_layer = Dense(32, input_shape=(8,)) 

model.add(input_layer) 

hidden_layer = Dense(64, activation='relu'); 

model.add(hidden_layer) 

output_layer = Dense(8) 

model.add(output_layer) 

Here, we have created one input layer, one hidden layer and one output layer. 

Access the model 

Keras provides few methods to get the model information like layers, input data and output 

data. They are as follows: 

 model.layers: Returns all the layers of the model as list. 

>>> layers = model.layers 

>>> layers 

[<keras.layers.core.Dense object at 0x000002C8C888B8D0>, 

<keras.layers.core.Dense object at 0x000002C8C888B7B8>, 

9. Keras ― Models 
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<keras.layers.core.Dense object at 0x 

000002C8C888B898>] 

 model.inputs: Returns all the input tensors of the model as list. 

>>> inputs = model.inputs 

>>> inputs 

[<tf.Tensor 'dense_13_input:0' shape=(?, 8) dtype=float32>] 

 model.outputs: Returns all the output tensors of the model as list. 

>>> outputs = model.outputs 

>>> outputs 

[<tf.Tensor 'dense_15/BiasAdd:0' shape=(?, 8) dtype=float32>] 

 model.get_weights - Returns all the weights as NumPy arrays. 

 model.set_weights(weight_numpy_array) - Set the weights of the model. 

Serialize the model 

Keras provides methods to serialize the model into object as well as json and load it again 

later. They are as follows: 

 get_config(): Returns the model as an object. 

config = model.get_config() 

 from_config(): It accept the model configuration object as argument and create 

the model accordingly. 

new_model = Sequential.from_config(config) 

 to_json(): Returns the model as an json object. 

>>> json_string = model.to_json() 

>>> json_string 

'{"class_name": "Sequential", "config": {"name": "sequential_10", "layers": 

[{"class_name": "Dense", "config": {"name": "dense_13", "trainable": true, 

 "batch_input_shape": [null, 8], "dtype": "float32", "units": 32, "activation": 

"linear", "use_bias": true, "kernel_initializer": {"class_name": "Vari 

anceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": 

"uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "conf 

ig": {}}, "kernel_regularizer": null, "bias_regularizer": null, 

"activity_regularizer": null, "kernel_constraint": null, "bias_constraint": 

null}}, {" 

class_name": "Dense", "config": {"name": "dense_14", "trainable": true, 

"dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kern 

el_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, 

"mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initia 

lizer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, 

"bias_regularizer": null, "activity_regularizer": null, "kernel_constraint" 

: null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": 

"dense_15", "trainable": true, "dtype": "float32", "units": 8, "activati 
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on": "linear", "use_bias": true, "kernel_initializer": {"class_name": 

"VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": 

" 

uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": 

{}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_r 

egularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, 

"keras_version": "2.2.5", "backend": "tensorflow"}' 

>>> 

 model_from_json(): Accepts json representation of the model and create a new 

model. 

from keras.models import model_from_json 

 

new_model = model_from_json(json_string) 

 to_yaml(): Returns the model as a yaml string. 

>>> yaml_string = model.to_yaml() 

>>> yaml_string 

'backend: tensorflow\nclass_name: Sequential\nconfig:\n  layers:\n  - 

class_name: Dense\n    config:\n      activation: linear\n      

activity_regular 

izer: null\n      batch_input_shape: !!python/tuple\n      - null\n      - 8\n      

bias_constraint: null\n      bias_initializer:\n        class_name 

: Zeros\n        config: {}\n      bias_regularizer: null\n      dtype: 

float32\n      kernel_constraint: null\n      kernel_initializer:\n        cla 

ss_name: VarianceScaling\n        config:\n          distribution: uniform\n          

mode: fan_avg\n          scale: 1.0\n          seed: null\n 

 kernel_regularizer: null\n      name: dense_13\n      trainable: true\n      

units: 32\n      use_bias: true\n  - class_name: Dense\n    config:\n 

   activation: relu\n      activity_regularizer: null\n      bias_constraint: 

null\n      bias_initializer:\n        class_name: Zeros\n        config 

: {}\n      bias_regularizer: null\n      dtype: float32\n      

kernel_constraint: null\n      kernel_initializer:\n        class_name: 

VarianceScalin 

g\n        config:\n          distribution: uniform\n          mode: fan_avg\n          

scale: 1.0\n          seed: null\n      kernel_regularizer: nu 

ll\n      name: dense_14\n      trainable: true\n      units: 64\n      

use_bias: true\n  - class_name: Dense\n    config:\n      activation: linear\n 

      activity_regularizer: null\n      bias_constraint: null\n      

bias_initializer:\n        class_name: Zeros\n        config: {}\n      

bias_regu 

larizer: null\n      dtype: float32\n      kernel_constraint: null\n      

kernel_initializer:\n        class_name: VarianceScaling\n        config:\n 

     distribution: uniform\n          mode: fan_avg\n          scale: 1.0\n          

seed: null\n      kernel_regularizer: null\n      name: dense 

_15\n      trainable: true\n      units: 8\n      use_bias: true\n  name: 

sequential_10\nkeras_version: 2.2.5\n' 

>>> 

 model_from_yaml(): Accepts yaml representation of the model and create a new 

model. 
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from keras.models import model_from_yaml 

 

new_model = model_from_yaml(yaml_string) 

Summarise the model 

Understanding the model is very important phase to properly use it for training and 

prediction purposes. Keras provides a simple method, summary to get the full information 

about the model and its layers.  

A summary of the model created in the previous section is as follows: 

>>> model.summary() 

Model: "sequential_10" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

dense_13 (Dense)             (None, 32)                288 

_________________________________________________________________ 

dense_14 (Dense)             (None, 64)                2112 

_________________________________________________________________ 

dense_15 (Dense)             (None, 8)                 520 

================================================================= 

Total params: 2,920 

Trainable params: 2,920 

Non-trainable params: 0 

_________________________________________________________________ 

>>> 

Train and Predict the model 

Model provides function for training, evaluation and prediction process. They are as 

follows: 

 compile: Configure the learning process of the model 

 fit: Train the model using the training data 

 evaluate: Evaluate the model using the test data 

 predict: Predict the results for new input 

Functional API 

Sequential API is used to create models layer-by-layer. Functional API is an alternative 

approach of creating more complex models. Functional model, you can define multiple 

input or output that share layers. First, we create an instance for model and connecting to 

the layers to access input and output to the model. This section explains about functional 

model in brief. 

Create a model 

Import an input layer using the below module: 
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>>> from keras.layers import Input  

Now, create an input layer specifying input dimension shape for the model using the below 

code: 

>>> data = Input(shape=(2,3)) 

Define layer for the input using the below module: 

>>> from keras.layers import Dense 

Add Dense layer for the input using the below line of code: 

>>> layer = Dense(2)(data) 

 

>>> print(layer) 

Tensor("dense_1/add:0", shape=(?, 2, 2), dtype=float32) 

Define model using the below module: 

from keras.models import Model 

Create a model in functional way by specifying both input and output layer: 

model = Model(inputs=data, outputs=layer) 

The complete code to create a simple model is shown below: 

from keras.layers import Input 

from keras.models import Model 

from keras.layers import Dense 

 

data = Input(shape=(2,3)) 

layer = Dense(2)(data) 

 

model = Model(inputs=data,outputs=layer) 

 

model.summary() 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

input_2 (InputLayer)         (None, 2, 3)              0 

_________________________________________________________________ 

dense_2 (Dense)              (None, 2, 2)              8 

================================================================= 

Total params: 8 

Trainable params: 8 

Non-trainable params: 0 

_________________________________________________________________ 
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Previously, we studied the basics of how to create model using Sequential and Functional 

API. This chapter explains about how to compile the model. The compilation is the final 

step in creating a model. Once the compilation is done, we can move on to training phase. 

Let us learn few concepts required to better understand the compilation process. 

Loss 

In machine learning, Loss function is used to find error or deviation in the learning 

process. Keras requires loss function during model compilation process.  

Keras provides quite a few loss function in the losses module and they are as follows: 

 mean_squared_error 

 mean_absolute_error 

 mean_absolute_percentage_error 

 mean_squared_logarithmic_error 

 squared_hinge 

 hinge 

 categorical_hinge 

 logcosh 

 huber_loss 

 categorical_crossentropy 

 sparse_categorical_crossentropy 

 binary_crossentropy 

 kullback_leibler_divergence 

 poisson 

 cosine_proximity 

 is_categorical_crossentropy 

All above loss function accepts two arguments: 

 y_true - true labels as tensors 

 y_pred - prediction with same shape as y_true 

Import the losses module before using loss function as specified below: 

from keras import losses 

10. Keras ― Model Compilation 
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Optimizer 

In machine learning, Optimization is an important process which optimize the input 

weights by comparing the prediction and the loss function. Keras provides quite a few 

optimizer as a module, optimizers and they are as follows: 

SGD: Stochastic gradient descent optimizer. 

keras.optimizers.SGD(learning_rate=0.01, momentum=0.0, nesterov=False) 

RMSprop: RMSProp optimizer. 

keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9) 

Adagrad: Adagrad optimizer. 

keras.optimizers.Adagrad(learning_rate=0.01) 

Adadelta: Adadelta optimizer. 

keras.optimizers.Adadelta(learning_rate=1.0, rho=0.95) 

Adam: Adam optimizer. 

keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, 

amsgrad=False) 

Adamax: Adamax optimizer from Adam. 

keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999) 

Nadam: Nesterov Adam optimizer. 

keras.optimizers.Nadam(learning_rate=0.002, beta_1=0.9, beta_2=0.999) 

Import the optimizers module before using optimizers as specified below: 

from keras import optimizers 

Metrics 

In machine learning, Metrics is used to evaluate the performance of your model. It is 

similar to loss function, but not used in training process. Keras provides quite a few metrics 

as a module, metrics and they are as follows: 

 accuracy 

 binary_accuracy 

 categorical_accuracy 

 sparse_categorical_accuracy 

 top_k_categorical_accuracy 
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 sparse_top_k_categorical_accuracy 

 cosine_proximity 

 clone_metric 

Similar to loss function, metrics also accepts below two arguments: 

 y_true - true labels as tensors 

 y_pred - prediction with same shape as y_true 

Import the metrics module before using metrics as specified below: 

from keras import metrics 

Compile the model 

Keras model provides a method, compile() to compile the model. The argument and 

default value of the compile() method is as follows: 

compile(optimizer, loss=None,  

        metrics=None,  

        loss_weights=None,  

        sample_weight_mode=None,  

        weighted_metrics=None,  

        target_tensors=None) 

The important arguments are as follows: 

 loss function 

 Optimizer 

 metrics 

A sample code to compile the mode is as follows: 

from keras import losses 

from keras import optimizers 

from keras import metrics 

 

model.compile(loss='mean_squared_error', 

              optimizer='sgd', 

              metrics=[metrics.categorical_accuracy]) 

where, 

 loss function is set as mean_squared_error 

 optimizer is set as sgd 

 metrics is set as metrics.categorical_accuracy 
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Model Training 

Models are trained by NumPy arrays using fit(). The main purpose of this fit function is 

used to evaluate your model on training. This can be also used for graphing model 

performance. It has the following syntax: 

model.fit(X, y, epochs=, batch_size=) 

Here, 

 X, y - It is a tuple to evaluate your data.  

 epochs - no of times the model is needed to be evaluated during training.  

 batch_size - training instances. 

Let us take a simple example of numpy random data to use this concept. 

Create data 

Let us create a random data using numpy for x and y with the help of below mentioned 

command: 

import numpy as np 

 

x_train = np.random.random((100,4,8)) 

y_train = np.random.random((100,10)) 

Now, create random validation data, 

x_val = np.random.random((100,4,8)) 

y_val = np.random.random((100,10)) 

Create model 

Let us create simple sequential model: 

from keras.models import Sequential 

 

model = Sequential() 

Add layers 

Create layers to add model: 

from keras.layers import LSTM, Dense 

 

# add a sequence of vectors of dimension 16 

model.add(LSTM(16, return_sequences=True))   

model.add(Dense(10, activation='softmax')) 

compile model 

Now model is defined. You can compile using the below command: 
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model.compile(loss='categorical_crossentropy', optimizer='sgd', 

metrics=['accuracy']) 

Apply fit() 

Now we apply fit() function to train our data: 

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_val, 

y_val)) 

Create a Multi-Layer Perceptron ANN 

We have learned to create, compile and train the Keras models.  

Let us apply our learning and create a simple MPL based ANN. 

Dataset module 

Before creating a model, we need to choose a problem, need to collect the required data 

and convert the data to NumPy array. Once data is collected, we can prepare the model 

and train it by using the collected data. Data collection is one of the most difficult phase 

of machine learning. Keras provides a special module, datasets to download the online 

machine learning data for training purposes. It fetches the data from online server, process 

the data and return the data as training and test set. Let us check the data provided by 

Keras dataset module. The data available in the module are as follows, 

 CIFAR10 small image classification 

 CIFAR100 small image classification 

 IMDB Movie reviews sentiment classification 

 Reuters newswire topics classification 

 MNIST database of handwritten digits 

 Fashion-MNIST database of fashion articles 

 Boston housing price regression dataset 

Let us use the MNIST database of handwritten digits (or minst) as our input. minst is 

a collection of 60,000, 28x28 grayscale images. It contains 10 digits. It also contains 

10,000 test images.  

Below code can be used to load the dataset: 

from keras.datasets import mnist 

 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

where 

 Line 1 imports minst from the keras dataset module. 

 Line 3 calls the load_data function, which will fetch the data from online server 

and return the data as 2 tuples, First tuple, (x_train, y_train) represent the 
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training data with shape, (number_sample, 28, 28) and its digit label with shape, 

(number_samples, ). Second tuple, (x_test, y_test) represent test data with 

same shape. 

Other dataset can also be fetched using similar API and every API returns similar data as 

well except the shape of the data. The shape of the data depends on the type of data. 

Create a model 

Let us choose a simple multi-layer perceptron (MLP) as represented below and try to create 

the model using Keras. 
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The core features of the model are as follows: 

 Input layer consists of 784 values (28 x 28 = 784). 

 First hidden layer, Dense consists of 512 neurons and ‘relu’ activation function. 

 Second hidden layer, Dropout has 0.2 as its value. 

 Third hidden layer, again Dense consists of 512 neurons and ‘relu’ activation 

function. 

 Fourth hidden layer, Dropout has 0.2 as its value. 

 Fifth and final layer consists of 10 neurons and ‘softmax’ activation function. 
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 Use categorical_crossentropy as loss function. 

 Use RMSprop() as Optimizer. 

 Use accuracy as metrics. 

 Use 128 as batch size. 

 Use 20 as epochs. 

Step 1: Import the modules 

Let us import the necessary modules. 

import keras 

from keras.datasets import mnist 

from keras.models import Sequential 

from keras.layers import Dense, Dropout 

from keras.optimizers import RMSprop 

import numpy as np 

Step 2: Load data 

Let us import the mnist dataset. 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

Step 3: Process the data 

Let us change the dataset according to our model, so that it can be feed into our model. 

x_train = x_train.reshape(60000, 784) 

x_test = x_test.reshape(10000, 784) 

x_train = x_train.astype('float32') 

x_test = x_test.astype('float32') 

x_train /= 255 

x_test /= 255 

 

y_train = keras.utils.to_categorical(y_train, 10) 

y_test = keras.utils.to_categorical(y_test, 10) 

Where 

 reshape is used to reshape the input from (28, 28) tuple to (784, ) 

 to_categorical is used to convert vector to binary matrix 

Step 4: Create the model 

Let us create tha actual model. 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,))) 

model.add(Dropout(0.2)) 

model.add(Dense(512, activation='relu')) 
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model.add(Dropout(0.2)) 

model.add(Dense(10, activation='softmax')) 

Step 5: Compile the model 

Let us compile the model using selected loss function, optimizer and metrics. 

model.compile(loss='categorical_crossentropy', 

              optimizer=RMSprop(), 

              metrics=['accuracy']) 

Step 6: Train the model 

Let us train the model using fit() method. 

history = model.fit(x_train, y_train, 

                    batch_size=128, 

                    epochs=20, 

                    verbose=1, 

                    validation_data=(x_test, y_test)) 

Final thoughts 

We have created the model, loaded the data and also trained the data to the model. We 

still need to evaluate the model and predict output for unknown input, which we learn in 

upcoming chapter. 

import keras 

from keras.datasets import mnist 

from keras.models import Sequential 

from keras.layers import Dense, Dropout 

from keras.optimizers import RMSprop 

import numpy as np 

 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

 

x_train = x_train.reshape(60000, 784) 

x_test = x_test.reshape(10000, 784) 

x_train = x_train.astype('float32') 

x_test = x_test.astype('float32') 

x_train /= 255 

x_test /= 255 

 

y_train = keras.utils.to_categorical(y_train, 10) 

y_test = keras.utils.to_categorical(y_test, 10) 

 

model = Sequential() 

model.add(Dense(512, activation='relu', input_shape=(784,))) 

model.add(Dropout(0.2)) 

model.add(Dense(512, activation='relu')) 

model.add(Dropout(0.2)) 

model.add(Dense(10, activation='softmax')) 
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model.compile(loss='categorical_crossentropy', 

              optimizer=RMSprop(), 

              metrics=['accuracy']) 

 

history = model.fit(x_train, y_train, 

                    batch_size=128, 

                    epochs=20, 

                    verbose=1, 

                    validation_data=(x_test, y_test)) 

Executing the application will give the below content as output: 

Train on 60000 samples, validate on 10000 samples 

Epoch 1/20 

60000/60000 [==============================] - 7s 118us/step - loss: 0.2453 - 

acc: 0.9236 - val_loss: 0.1004 - val_acc: 0.9675 

Epoch 2/20 

60000/60000 [==============================] - 7s 110us/step - loss: 0.1023 - 

acc: 0.9693 - val_loss: 0.0797 - val_acc: 0.9761 

Epoch 3/20 

60000/60000 [==============================] - 7s 110us/step - loss: 0.0744 - 

acc: 0.9770 - val_loss: 0.0727 - val_acc: 0.9791 

Epoch 4/20 

60000/60000 [==============================] - 7s 110us/step - loss: 0.0599 - 

acc: 0.9823 - val_loss: 0.0704 - val_acc: 0.9801 

Epoch 5/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0504 - 

acc: 0.9853 - val_loss: 0.0714 - val_acc: 0.9817 

Epoch 6/20 

60000/60000 [==============================] - 7s 111us/step - loss: 0.0438 - 

acc: 0.9868 - val_loss: 0.0845 - val_acc: 0.9809 

Epoch 7/20 

60000/60000 [==============================] - 7s 114us/step - loss: 0.0391 - 

acc: 0.9887 - val_loss: 0.0823 - val_acc: 0.9802 

Epoch 8/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0364 - 

acc: 0.9892 - val_loss: 0.0818 - val_acc: 0.9830 

Epoch 9/20 

60000/60000 [==============================] - 7s 113us/step - loss: 0.0308 - 

acc: 0.9905 - val_loss: 0.0833 - val_acc: 0.9829 

Epoch 10/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0289 - 

acc: 0.9917 - val_loss: 0.0947 - val_acc: 0.9815 

Epoch 11/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0279 - 

acc: 0.9921 - val_loss: 0.0818 - val_acc: 0.9831 

Epoch 12/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0260 - 

acc: 0.9927 - val_loss: 0.0945 - val_acc: 0.9819 

Epoch 13/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0257 - 

acc: 0.9931 - val_loss: 0.0952 - val_acc: 0.9836 

Epoch 14/20 
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60000/60000 [==============================] - 7s 112us/step - loss: 0.0229 - 

acc: 0.9937 - val_loss: 0.0924 - val_acc: 0.9832 

Epoch 15/20 

60000/60000 [==============================] - 7s 115us/step - loss: 0.0235 - 

acc: 0.9937 - val_loss: 0.1004 - val_acc: 0.9823 

Epoch 16/20 

60000/60000 [==============================] - 7s 113us/step - loss: 0.0214 - 

acc: 0.9941 - val_loss: 0.0991 - val_acc: 0.9847 

Epoch 17/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0219 - 

acc: 0.9943 - val_loss: 0.1044 - val_acc: 0.9837 

Epoch 18/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0190 - 

acc: 0.9952 - val_loss: 0.1129 - val_acc: 0.9836 

Epoch 19/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0197 - 

acc: 0.9953 - val_loss: 0.0981 - val_acc: 0.9841 

Epoch 20/20 

60000/60000 [==============================] - 7s 112us/step - loss: 0.0198 - 

acc: 0.9950 - val_loss: 0.1215 - val_acc: 0.9828 
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This chapter deals with the model evaluation and model prediction in Keras.  

Let us begin by understanding the model evaluation. 

Model Evaluation 

Evaluation is a process during development of the model to check whether the model is 

best fit for the given problem and corresponding data. Keras model provides a function, 

evaluate which does the evaluation of the model. It has three main arguments, 

 Test data 

 Test data label 

 verbose - true or false 

Let us evaluate the model, which we created in the previous chapter using test data. 

score = model.evaluate(x_test, y_test, verbose=0) 

 

print('Test loss:', score[0]) 

print('Test accuracy:', score[1]) 

Executing the above code will output the below information: 

0 

The test accuracy is 98.28%. We have created a best model to identify the handwriting 

digits. On the positive side, we can still scope to improve our model. 

Model Prediction 

Prediction is the final step and our expected outcome of the model generation. Keras 

provides a method, predict to get the prediction of the trained model. The signature of the 

predict method is as follows, 

predict(x,  

    batch_size=None,  

    verbose=0,  

    steps=None,  

    callbacks=None,  

    max_queue_size=10, workers=1, use_multiprocessing=False) 

Here, all arguments are optional except the first argument, which refers the unknown 

input data. The shape should be maintained to get the proper prediction.  

Let us do prediction for our MPL model created in previous chapter using below code: 

11. Keras ― Model Evaluation and Model 
Prediction 
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pred = model.predict(x_test) 

pred = np.argmax(pred, axis=1)[:5] 

label = np.argmax(y_test,axis=1)[:5] 

 

print(pred) 

print(label) 

Here, 

 Line 1 call the predict function using test data. 

 Line 2 gets the first five prediction 

 Line 3 gets the first five labels of the test data. 

 Line 5 - 6 prints the prediction and actual label. 

The output of the above application is as follows: 

[7 2 1 0 4] 

[7 2 1 0 4] 

The output of both array is identical and it indicate that our model predicts correctly the 

first five images. 
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Let us modify the model from MPL to Convolution Neural Network (CNN) for our earlier 

digit identification problem.  

CNN can be represented as below: 

 

The core features of the model are as follows: 

 Input layer consists of (1, 8, 28) values. 

 First layer, Conv2D consists of 32 filters and ‘relu’ activation function with kernel 

size, (3,3). 

 Second layer, Conv2D consists of 64 filters and ‘relu’ activation function with kernel 

size, (3,3). 

 Thrid layer, MaxPooling has pool size of (2, 2). 

 Fourth layer, Dropout has 0.25 as its value. 

 Fifth layer, Flatten is used to flatten all its input into single dimension. 

 Sixth layer, Dense consists of 128 neurons and ‘relu’ activation function. 

 Seventh layer, Dropout has 0.5 as its value. 

 Eighth and final layer consists of 10 neurons and ‘softmax’ activation function. 

 Use categorical_crossentropy as loss function. 

 Use Adadelta() as Optimizer. 

12. Keras ― Convolution Neural Network 
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 Use accuracy as metrics. 

 Use 128 as batch size. 

 Use 20 as epochs. 

Step 1: Import the modules 

Let us import the necessary modules. 

import keras 

from keras.datasets import mnist 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Flatten 

from keras.layers import Conv2D, MaxPooling2D 

from keras import backend as K 

import numpy as np 

Step 2: Load data 

Let us import the mnist dataset. 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

Step 3: Process the data 

Let us change the dataset according to our model, so that it can be feed into our model. 

img_rows, img_cols = 28, 28 

 

if K.image_data_format() == 'channels_first': 

    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) 

    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) 

    input_shape = (1, img_rows, img_cols) 

else: 

    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) 

    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) 

    input_shape = (img_rows, img_cols, 1) 

 

x_train = x_train.astype('float32') 

x_test = x_test.astype('float32') 

x_train /= 255 

x_test /= 255 

 

y_train = keras.utils.to_categorical(y_train, 10) 

y_test = keras.utils.to_categorical(y_test, 10) 

The data processing is similar to MPL model except the shape of the input data and image 

format configuration. 

Step 4: Create the model 

Let us create tha actual model. 
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model = Sequential() 

model.add(Conv2D(32, kernel_size=(3, 3), 

                 activation='relu', 

                 input_shape=input_shape)) 

model.add(Conv2D(64, (3, 3), activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(10, activation='softmax')) 

Step 5: Compile the model 

Let us compile the model using selected loss function, optimizer and metrics. 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adadelta(), 

              metrics=['accuracy']) 

Step 6: Train the model 

Let us train the model using fit() method. 

model.fit(x_train, y_train, 

          batch_size=128, 

          epochs=12, 

          verbose=1, 

          validation_data=(x_test, y_test)) 

Executing the application will output the below information: 

Train on 60000 samples, validate on 10000 samples 

Epoch 1/12 

60000/60000 [==============================] - 84s 1ms/step - loss: 0.2687 - 

acc: 0.9173 - val_loss: 0.0549 - val_acc: 0.9827 

Epoch 2/12 

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0899 - 

acc: 0.9737 - val_loss: 0.0452 - val_acc: 0.9845 

Epoch 3/12 

60000/60000 [==============================] - 83s 1ms/step - loss: 0.0666 - 

acc: 0.9804 - val_loss: 0.0362 - val_acc: 0.9879 

Epoch 4/12 

60000/60000 [==============================] - 81s 1ms/step - loss: 0.0564 - 

acc: 0.9830 - val_loss: 0.0336 - val_acc: 0.9890 

Epoch 5/12 

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0472 - 

acc: 0.9861 - val_loss: 0.0312 - val_acc: 0.9901 

Epoch 6/12 

60000/60000 [==============================] - 83s 1ms/step - loss: 0.0414 - 

acc: 0.9877 - val_loss: 0.0306 - val_acc: 0.9902 

Epoch 7/12 

60000/60000 [==============================] - 89s 1ms/step - loss: 0.0375 - 
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acc: 0.9883 - val_loss: 0.0281 - val_acc: 0.9906 

Epoch 8/12 

60000/60000 [==============================] - 91s 2ms/step - loss: 0.0339 - 

acc: 0.9893 - val_loss: 0.0280 - val_acc: 0.9912 

Epoch 9/12 

60000/60000 [==============================] - 89s 1ms/step - loss: 0.0325 - 

acc: 0.9901 - val_loss: 0.0260 - val_acc: 0.9909 

Epoch 10/12 

60000/60000 [==============================] - 89s 1ms/step - loss: 0.0284 - 

acc: 0.9910 - val_loss: 0.0250 - val_acc: 0.9919 

Epoch 11/12 

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0287 - 

acc: 0.9907 - val_loss: 0.0264 - val_acc: 0.9916 

Epoch 12/12 

60000/60000 [==============================] - 86s 1ms/step - loss: 0.0265 - 

acc: 0.9920 - val_loss: 0.0249 - val_acc: 0.9922 

Step 7: Evaluate the model 

Let us evaluate the model using test data. 

score = model.evaluate(x_test, y_test, verbose=0) 

 

print('Test loss:', score[0]) 

print('Test accuracy:', score[1]) 

Executing the above code will output the below information: 

Test loss: 0.024936060590433316 

Test accuracy: 0.9922 

The test accuracy is 99.22%. We have created a best model to identify the handwriting 

digits. 

Step 8: Predict 

Finally, predict the digit from images as below: 

pred = model.predict(x_test) 

pred = np.argmax(pred, axis=1)[:5] 

label = np.argmax(y_test,axis=1)[:5] 

 

print(pred) 

print(label) 

The output of the above application is as follows:  

[7 2 1 0 4] 

[7 2 1 0 4] 

The output of both array is identical and it indicate our model correctly predicts the first 

five images. 
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In this chapter, let us write a simple MPL based ANN to do regression prediction. Till now, 

we have only done the classification based prediction. Now, we will try to predict the next 

possible value by analyzing the previous (continuous) values and its influencing factors. 

The Regression MPL can be represented as below: 

 

13. Keras ― Regression Prediction using MPL 
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The core features of the model are as follows: 

 Input layer consists of (13,) values. 

 First layer, Dense consists of 64 units and ‘relu’ activation function with ‘normal’ 

kernel initializer. 

 Second layer, Dense consists of 64 units and ‘relu’ activation function. 

 Output layer, Dense consists of 1 unit. 

 Use mse as loss function. 

 Use RMSprop as Optimizer. 
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 Use accuracy as metrics. 

 Use 128 as batch size. 

 Use 500 as epochs. 

Step 1: Import the modules 

Let us import the necessary modules. 

import keras 

from keras.datasets import boston_housing 

 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.optimizers import RMSprop 

 

from keras.callbacks import EarlyStopping 

 

from sklearn import preprocessing 

from sklearn.preprocessing import scale 

Step 2: Load data 

Let us import the Boston housing dataset. 

(x_train, y_train), (x_test, y_test) = boston_housing.load_data() 

Here, 

boston_housing is a dataset provided by Keras. It represents a collection of housing 

information in Boston area, each having 13 features. 

Step 3: Process the data 

Let us change the dataset according to our model, so that, we can feed into our model. 

The data can be changed using below code: 

x_train_scaled = preprocessing.scale(x_train) 

scaler = preprocessing.StandardScaler().fit(x_train) 

x_test_scaled = scaler.transform(x_test) 

Here, we have normalized the training data using sklearn.preprocessing.scale function. 

preprocessing.StandardScaler().fit function returns a scalar with the normalized mean 

and standard deviation of the training data, which we can apply to the test data using 

scalar.transform function. This will normalize the test data as well with the same setting 

as that of training data. 

Step 4: Create the model 

Let us create the actual model. 

model = Sequential() 

model.add(Dense(64, kernel_initializer='normal', activation='relu', 
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input_shape=(13,))) 

model.add(Dense(64, activation='relu')) 

model.add(Dense(1)) 

Step 5: Compile the model 

Let us compile the model using selected loss function, optimizer and metrics. 

model.compile(loss='mse',  

        optimizer=RMSprop(),  

        metrics=['mean_absolute_error']) 

Step 6: Train the model 

Let us train the model using fit() method. 

history = model.fit(x_train_scaled, y_train, 

                    batch_size=128, 

                    epochs=500, 

                    verbose=1, 

                    validation_split = 0.2, 

                    callbacks = [EarlyStopping(monitor = 'val_loss', patience = 

20)]) 

Here, we have used callback function, EarlyStopping. The purpose of this callback is to 

monitor the loss value during each epoch and compare it with previous epoch loss value 

to find the improvement in the training. If there is no improvement for the patience times, 

then the whole process will be stopped. 

Executing the application will give the below information as output: 

Train on 323 samples, validate on 81 samples 

Epoch 1/500 

2019-09-24 01:07:03.889046: I 

tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports 

instructions that this TensorFlow binary was not co 

mpiled to use: AVX2 

323/323 [==============================] - 0s 515us/step - loss: 562.3129 - 

mean_absolute_error: 21.8575 - val_loss: 621.6523 - val_mean_absolute_erro 

r: 23.1730 

Epoch 2/500 

323/323 [==============================] - 0s 11us/step - loss: 545.1666 - 

mean_absolute_error: 21.4887 - val_loss: 605.1341 - val_mean_absolute_error 

: 22.8293 

Epoch 3/500 

323/323 [==============================] - 0s 12us/step - loss: 528.9944 - 

mean_absolute_error: 21.1328 - val_loss: 588.6594 - val_mean_absolute_error 

: 22.4799 

Epoch 4/500 

323/323 [==============================] - 0s 12us/step - loss: 512.2739 - 

mean_absolute_error: 20.7658 - val_loss: 570.3772 - val_mean_absolute_error 

: 22.0853 

Epoch 5/500 
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323/323 [==============================] - 0s 9us/step - loss: 493.9775 - 

mean_absolute_error: 20.3506 - val_loss: 550.9548 - val_mean_absolute_error: 

 21.6547 

.......... 

.......... 

.......... 

Epoch 143/500 

323/323 [==============================] - 0s 15us/step - loss: 8.1004 - 

mean_absolute_error: 2.0002 - val_loss: 14.6286 - val_mean_absolute_error: 2. 

5904 

Epoch 144/500 

323/323 [==============================] - 0s 19us/step - loss: 8.0300 - 

mean_absolute_error: 1.9683 - val_loss: 14.5949 - val_mean_absolute_error: 2. 

5843 

Epoch 145/500 

323/323 [==============================] - 0s 12us/step - loss: 7.8704 - 

mean_absolute_error: 1.9313 - val_loss: 14.3770 - val_mean_absolute_error: 2. 

4996 

Step 7: Evaluate the model 

Let us evaluate the model using test data. 

score = model.evaluate(x_test_scaled, y_test, verbose=0) 

 

print('Test loss:', score[0]) 

print('Test accuracy:', score[1]) 

Executing the above code will output the below information: 

Test loss: 21.928471583946077 

Test accuracy: 2.9599233234629914 

Step 8: Predict 

Finally, predict using test data as below: 

prediction = model.predict(x_test_scaled) 

print(prediction.flatten()) 

print(y_test) 

The output of the above application is as follows: 

[ 7.5612316 17.583357  21.09344   31.859276  25.055613  18.673872 

 26.600405  22.403967  19.060272  22.264952  17.4191    17.00466 

 15.58924   41.624374  20.220217  18.985565  26.419338  19.837091 

 19.946192  36.43445   12.278508  16.330965  20.701359  14.345301 

 21.741161  25.050423  31.046402  27.738455   9.959419  20.93039 

 20.069063  14.518344  33.20235   24.735163  18.7274     9.148898 

 15.781284  18.556862  18.692865  26.045074  27.954073  28.106823 

 15.272034  40.879818  29.33896   23.714525  26.427515  16.483374 

 22.518442  22.425386  33.94826   18.831465  13.2501955 15.537227 

 34.639984  27.468002  13.474407  48.134598  34.39617   22.85031 
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 24.042334  17.747198  14.7837715 18.187277  23.655672  22.364983 

 13.858193  22.710032  14.371148   7.1272087 35.960033  28.247292 

 25.3014    14.477208  25.306196  17.891165  20.193708  23.585173 

 34.690193  12.200583  20.102983  38.45882   14.741723  14.408362 

 17.67158   18.418497  21.151712  21.157492  22.693687  29.809034 

 19.366991  20.072294  25.880817  40.814568  34.64087   19.43741 

 36.2591    50.73806   26.968863  43.91787   32.54908   20.248306 ] 

[ 7.2 18.8 19.  27.  22.2 24.5 31.2 22.9 20.5 23.2 18.6 14.5 17.8 50. 

 20.8 24.3 24.2 19.8 19.1 22.7 12.  10.2 20.  18.5 20.9 23.  27.5 30.1 

  9.5 22.  21.2 14.1 33.1 23.4 20.1  7.4 15.4 23.8 20.1 24.5 33.  28.4 

 14.1 46.7 32.5 29.6 28.4 19.8 20.2 25.  35.4 20.3  9.7 14.5 34.9 26.6 

  7.2 50.  32.4 21.6 29.8 13.1 27.5 21.2 23.1 21.9 13.  23.2  8.1  5.6 

 21.7 29.6 19.6  7.  26.4 18.9 20.9 28.1 35.4 10.2 24.3 43.1 17.6 15.4 

 16.2 27.1 21.4 21.5 22.4 25.  16.6 18.6 22.  42.8 35.1 21.5 36.  21.9 

 24.1 50.  26.7 25. ] 

The output of both array have around 10-30% difference and it indicate our model predicts 

with reasonable range. 
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In this chapter, let us write a simple Long Short Term Memory (LSTM) based RNN to do 

sequence analysis. A sequence is a set of values where each value corresponds to a 

particular instance of time. Let us consider a simple example of reading a sentence. 

Reading and understanding a sentence involves reading the word in the given order and 

trying to understand each word and its meaning in the given context and finally 

understanding the sentence in a positive or negative sentiment.  

Here, the words are considered as values, and first value corresponds to first word, second 

value corresponds to second word, etc., and the order will be strictly maintained. 

Sequence Analysis is used frequently in natural language processing to find the 

sentiment analysis of the given text.  

Let us create a LSTM model to analyze the IMDB movie reviews and find its 

positive/negative sentiment. 

The model for the sequence analysis can be represented as below: 

14. Keras ― Time Series Prediction using LSTM 
RNN 
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The core features of the model are as follows: 

 Input layer using Embedding layer with 128 features. 

 First layer, Dense consists of 128 units with normal dropout and recurrent dropout 

set to 0.2. 

 Output layer, Dense consists of 1 unit and ‘sigmoid’ activation function. 

 Use binary_crossentropy as loss function. 

 Use adam as Optimizer. 

 Use accuracy as metrics. 
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 Use 32 as batch size. 

 Use 15 as epochs. 

 Use 80 as the maximum length of the word. 

 Use 2000 as the maximum number of word in a given sentence. 

Step 1: Import the modules 

Let us import the necessary modules. 

from keras.preprocessing import sequence 

from keras.models import Sequential 

from keras.layers import Dense, Embedding 

from keras.layers import LSTM 

from keras.datasets import imdb 

Step 2: Load data 

Let us import the imdb dataset. 

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=2000) 

Here, 

 imdb is a dataset provided by Keras. It represents a collection of movies and its 

reviews. 

 num_words represent the maximum number of words in the review. 

Step 3: Process the data 

Let us change the dataset according to our model, so that it can be fed into our model. 

The data can be changed using the below code: 

x_train = sequence.pad_sequences(x_train, maxlen=80) 

x_test = sequence.pad_sequences(x_test, maxlen=80) 

Here, 

sequence.pad_sequences convert the list of input data with shape, (data) into 2D 

NumPy array of shape (data, timesteps). Basically, it adds timesteps concept into the 

given data. It generates the timesteps of length, maxlen. 

Step 4: Create the model 

Let us create the actual model. 

model = Sequential() 

model.add(Embedding(2000, 128)) 

model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2)) 

model.add(Dense(1, activation='sigmoid')) 

Here, 
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We have used Embedding layer as input layer and then added the LSTM layer. Finally, a 

Dense layer is used as output layer. 

Step 5: Compile the model 

Let us compile the model using selected loss function, optimizer and metrics. 

model.compile(loss='binary_crossentropy', 

              optimizer='adam', 

              metrics=['accuracy']) 

Step 6: Train the model 

Let us train the model using fit() method. 

model.fit(x_train, y_train, 

          batch_size=32, 

          epochs=15, 

          validation_data=(x_test, y_test)) 

Executing the application will output the below information:   

Epoch 1/15 

2019-09-24 01:19:01.151247: I 

tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports 

instructions that this TensorFlow binary was not co 

mpiled to use: AVX2 

25000/25000 [==============================] - 101s 4ms/step - loss: 0.4707 - 

acc: 0.7716 - val_loss: 0.3769 - val_acc: 0.8349 

Epoch 2/15 

25000/25000 [==============================] - 95s 4ms/step - loss: 0.3058 - 

acc: 0.8756 - val_loss: 0.3763 - val_acc: 0.8350 

Epoch 3/15 

25000/25000 [==============================] - 91s 4ms/step - loss: 0.2100 - 

acc: 0.9178 - val_loss: 0.5065 - val_acc: 0.8110 

Epoch 4/15 

25000/25000 [==============================] - 90s 4ms/step - loss: 0.1394 - 

acc: 0.9495 - val_loss: 0.6046 - val_acc: 0.8146 

Epoch 5/15 

25000/25000 [==============================] - 90s 4ms/step - loss: 0.0973 - 

acc: 0.9652 - val_loss: 0.5969 - val_acc: 0.8147 

Epoch 6/15 

25000/25000 [==============================] - 98s 4ms/step - loss: 0.0759 - 

acc: 0.9730 - val_loss: 0.6368 - val_acc: 0.8208 

Epoch 7/15 

25000/25000 [==============================] - 95s 4ms/step - loss: 0.0578 - 

acc: 0.9811 - val_loss: 0.6657 - val_acc: 0.8184 

Epoch 8/15 

25000/25000 [==============================] - 97s 4ms/step - loss: 0.0448 - 

acc: 0.9850 - val_loss: 0.7452 - val_acc: 0.8136 

Epoch 9/15 

25000/25000 [==============================] - 95s 4ms/step - loss: 0.0324 - 

acc: 0.9894 - val_loss: 0.7616 - val_acc: 0.8162 
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Epoch 10/15 

25000/25000 [==============================] - 100s 4ms/step - loss: 0.0247 - 

acc: 0.9922 - val_loss: 0.9654 - val_acc: 0.8148 

Epoch 11/15 

25000/25000 [==============================] - 99s 4ms/step - loss: 0.0169 - 

acc: 0.9946 - val_loss: 1.0013 - val_acc: 0.8104 

Epoch 12/15 

25000/25000 [==============================] - 90s 4ms/step - loss: 0.0154 - 

acc: 0.9948 - val_loss: 1.0316 - val_acc: 0.8100 

Epoch 13/15 

25000/25000 [==============================] - 89s 4ms/step - loss: 0.0113 - 

acc: 0.9963 - val_loss: 1.1138 - val_acc: 0.8108 

Epoch 14/15 

25000/25000 [==============================] - 89s 4ms/step - loss: 0.0106 - 

acc: 0.9971 - val_loss: 1.0538 - val_acc: 0.8102 

Epoch 15/15 

25000/25000 [==============================] - 89s 4ms/step - loss: 0.0090 - 

acc: 0.9972 - val_loss: 1.1453 - val_acc: 0.8129 

25000/25000 [==============================] - 10s 390us/step 

Step 7: Evaluate the model 

Let us evaluate the model using test data. 

score, acc = model.evaluate(x_test, y_test, 

                            batch_size=32) 

print('Test score:', score) 

print('Test accuracy:', acc) 

Executing the above code will output the below information: 

Test score: 1.145306069601178 

Test accuracy: 0.81292 
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Keras applications module is used to provide pre-trained model for deep neural networks. 

Keras models are used for prediction, feature extraction and fine tuning. This chapter 

explains about Keras applications in detail. 

Pre-trained models 

Trained model consists of two parts model Architecture and model Weights. Model weights 

are large file so we have to download and extract the feature from ImageNet database. 

Some of the popular pre-trained models are listed below, 

 ResNet 

 VGG16 

 MobileNet 

 InceptionResNetV2 

 InceptionV3 

Loading a model 

Keras pre-trained models can be easily loaded as specified below: 

import keras 

 

import numpy as np 

 

from keras.applications import vgg16, inception_v3, resnet50, mobilenet 

  

#Load the VGG model 

vgg_model = vgg16.VGG16(weights='imagenet') 

  

#Load the Inception_V3 model 

inception_model = inception_v3.InceptionV3(weights='imagenet') 

  

#Load the ResNet50 model 

resnet_model = resnet50.ResNet50(weights='imagenet') 

  

#Load the MobileNet model 

mobilenet_model = mobilenet.MobileNet(weights='imagenet') 

Once the model is loaded, we can immediately use it for prediction purpose. Let us check 

each pre-trained model in the upcoming chapters. 

15. Keras ― Applications 
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ResNet is a pre-trained model. It is trained using ImageNet. ResNet model weights pre-

trained on ImageNet. It has the following syntax: 

keras.applications.resnet.ResNet50 

  (include_top=True,  

  weights='imagenet',  

  input_tensor=None,  

  input_shape=None,  

  pooling=None,  

  classes=1000) 

Here, 

 include_top refers the fully-connected layer at the top of the network. 

 weights refer pre-training on ImageNet. 

 input_tensor refers optional Keras tensor to use as image input for the model. 

 input_shape refers optional shape tuple. The default input size for this model is 

224x224. 

 classes refer optional number of classes to classify images. 

Let us understand the model by writing a simple example: 

Step1: import the modules 

Let us load the necessary modules as specified below: 

>>> import PIL 

>>> from keras.preprocessing.image import load_img 

>>> from keras.preprocessing.image import img_to_array 

>>> from keras.applications.imagenet_utils import decode_predictions 

>>> import matplotlib.pyplot as plt 

>>> import numpy as np 

>>> from keras.applications.resnet50 import ResNet50 

>>> from keras.applications import resnet50 

Step2: Select an input 

Let us choose an input image, Lotus as specified below: 

>>> filename = 'banana.jpg' 

 

>>> ## load an image in PIL format 

>>> original = load_img(filename, target_size=(224, 224)) 

 

>>> print('PIL image size',original.size) 
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PIL image size (224, 224) 

>>> plt.imshow(original) 

<matplotlib.image.AxesImage object at 0x1304756d8> 

>>> plt.show() 

Here, we have loaded an image (banana.jpg) and displayed it. 

Step 3: Convert images into NumPy array 

Let us convert our input, Banana into NumPy array, so that it can be passed into the 

model for the purpose of prediction. 

>>> #convert the PIL image to a numpy array 

>>> numpy_image = img_to_array(original) 

 

>>> plt.imshow(np.uint8(numpy_image)) 

<matplotlib.image.AxesImage object at 0x130475ac8> 

 

>>> print('numpy array size',numpy_image.shape) 

numpy array size (224, 224, 3) 

 

>>> # Convert the image / images into batch format 

>>> image_batch = np.expand_dims(numpy_image, axis=0) 

 

>>> print('image batch size', image_batch.shape) 

image batch size (1, 224, 224, 3) 

>>> 

Step4: Model prediction 

Let us feed our input into the model to get the predictions. 

# prepare the image for the resnet50 model 

>>>  

>>> processed_image = resnet50.preprocess_input(image_batch.copy()) 

 

>>> # create resnet model 

>>> resnet_model = resnet50.ResNet50(weights='imagenet') 

>>> Downloading data from https://github.com/fchollet/deep-learning-

models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5 

102858752/102853048 [==============================] - 33s 0us/step 

 

>>> # get the predicted probabilities for each class 

>>> predictions = resnet_model.predict(processed_image) 

 

>>> # convert the probabilities to class labels 

>>> label = decode_predictions(predictions) 

Downloading data from 

https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_inde

x.json 

40960/35363 [==================================] - 0s 0us/step 

 

>>> print(label) 
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Output 

[[('n07753592', 'banana', 0.99229723), ('n03532672', 'hook', 0.0014551596), 

('n03970156', 'plunger', 0.0010738898), ('n07753113', 'fig', 0.0009359837) 

, ('n03109150', 'corkscrew', 0.00028538404)]] 

Here, the model predicted the images as banana correctly. 
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In this chapter, we will learn about the pre-trained models in Keras. Let us begin with 

VGG16. 

VGG16 

VGG16 is another pre-trained model. It is also trained using ImageNet. The syntax to load 

the model is as follows: 

keras.applications.vgg16.VGG16(include_top=True,  

                weights='imagenet',  

                input_tensor=None,  

                input_shape=None,  

                pooling=None,  

                classes=1000) 

The default input size for this model is 224x224. 

MobileNetV2 

MobileNetV2 is another pre-trained model. It is also trained uing ImageNet.  

The syntax to load the model is as follows: 

keras.applications.mobilenet_v2.MobileNetV2 

  (input_shape=None,  

  alpha=1.0,  

  include_top=True,  

  weights='imagenet',  

  input_tensor=None,  

  pooling=None,  

  classes=1000) 

Here, 

alpha controls the width of the network. If the value is below 1, decreases the number of 

filters in each layer. If the value is above 1, increases the number of filters in each layer. 

If alpha = 1, default number of filters from the paper are used at each layer. 

The default input size for this model is 224x224. 

InceptionResNetV2 

InceptionResNetV2 is another pre-trained model. It is also trained using ImageNet. 

The syntax to load the model is as follows: 

keras.applications.inception_resnet_v2.InceptionResNetV2 

    (include_top=True, weights='imagenet',  
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        input_tensor=None, input_shape=None,  

        pooling=None, classes=1000) 

This model and can be built both with ‘channels_first’ data format (channels, height, width) 

or ‘channels_last’ data format (height, width, channels). 

The default input size for this model is 299x299. 

InceptionV3 

InceptionV3 is another pre-trained model. It is also trained uing ImageNet. The syntax 

to load the model is as follows: 

keras.applications.inception_v3.InceptionV3 

  (include_top=True,  

  weights='imagenet',  

  input_tensor=None,  

  input_shape=None,  

  pooling=None, classes=1000) 

Here, 

The default input size for this model is 299x299. 

Conclusion 

Keras is very simple, extensible and easy to implement neural network API, which can be 

used to build deep learning applications with high level abstraction. Keras is an optimal 

choice for deep leaning models. 

 


