
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

Operating System Services
User Operating System Interface
System Calls
Types of System Calls
System Programs
Operating System Design and Implementation
Operating System Structure
Operating System Debugging
Operating System Generation
System Boot

2.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

To describe the services an operating system provides to
users, processes, and other systems
To discuss the various ways of structuring an operating
system
To explain how operating systems are installed and
customized and how they boot

2.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

Operating systems provide an environment for execution of programs
and services to programs and users
One set of operating-system services provides functions that are
helpful to the user:

User interface - Almost all operating systems have a user
interface (UI).
 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)
I/O operations - A running program may require I/O, which may
involve a file or an I/O device

2.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

One set of operating-system services provides functions that are helpful to
the user (Cont.):

File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.
Communications – Processes may exchange information, on the same
computer or between computers over a network
 Communications may be via shared memory or through message

passing (packets moved by the OS)
Error detection – OS needs to be constantly aware of possible errors
 May occur in the CPU and memory hardware, in I/O devices, in user

program
 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage,

I/O devices.
Accounting - To keep track of which users use how much and what
kinds of computer resources
Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access
attempts

2.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry
Sometimes implemented in kernel, sometimes by systems
program
Sometimes multiple flavors implemented – shells
Primarily fetches a command from user and executes it
Sometimes commands built-in, sometimes just names of
programs
 If the latter, adding new features doesn’t require shell

modification

2.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - GUI

User-friendly desktop metaphor interface
Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc
Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)
Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell
Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available
Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

2.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Touchscreen Interfaces

n Touchscreen devices require new
interfaces
l Mouse not possible or not desired
l Actions and selection based on

gestures
l Virtual keyboard for text entry

l Voice commands.

2.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)
Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use
Three most common APIs are Windows API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

2.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

System call sequence to copy the contents of one file to another file

2.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Standard API

2.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

Typically, a number associated with each system call
System-call interface maintains a table indexed according to
these numbers

The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values
The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a
result call
Most details of OS interface hidden from programmer by API
 Managed by run-time support library (set of functions built

into libraries included with compiler)

2.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

2.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

Process control
create process, terminate process
load, execute
get process attributes, set process attributes
wait for time
wait event, signal event
allocate and free memory
Dump memory if error
Debugger for determining bugs, single step execution
Locks for managing access to shared data between processes

2.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

File management
create file, delete file
open, close file
read, write, reposition
get and set file attributes

Device management
request device, release device
read, write, reposition
get device attributes, set device attributes
logically attach or detach devices

2.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

Information maintenance
get time or date, set time or date
get system data, set system data
get and set process, file, or device attributes

Communications
create, delete communication connection
send, receive messages if message passing model to host
name or process name
 From client to server

Shared-memory model create and gain access to memory
regions
transfer status information
attach and detach remote devices

2.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

Protection
Control access to resources
Get and set permissions
Allow and deny user access

2.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Windows and Unix System Calls

2.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard C Library Example

C program invoking printf() library call, which calls write() system call

2.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some
approaches have proven successful

Internal structure of different Operating Systems can vary widely

Start the design by defining goals and specifications

Highest level: affected by choice of hardware, type of system

The requirements can be divided into User and System goals
User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast
System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

Important principle to separate
Policy: What will be done?
Mechanism: How to do it?
Mechanisms determine how to do something, policies decide
what will be done
The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)
Specifying and designing an OS is highly creative task of
software engineering

2.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

Much variation
Early OSes in assembly language
Then system programming languages like Algol, PL/1
Now C, C++

Actually usually a mix of languages
Lowest levels in assembly
Main body in C
Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

More high-level language easier to port to other hardware
But slower

Emulation can allow an OS to run on non-native hardware

2.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

General-purpose OS is very large program
Various ways to structure ones

Simple structure – MS-DOS
More complex -- UNIX
Layered – an abstrcation
Microkernel -Mach

2.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simple Structure -- MS-DOS

MS-DOS – written to provide the
most functionality in the least
space

Not divided into modules
Although MS-DOS has some
structure, its interfaces and
levels of functionality are not
well separated

2.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non Simple Structure -- UNIX

UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts

Systems programs
The kernel
 Consists of everything below the system-call interface

and above the physical hardware
 Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a
large number of functions for one level

2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.
With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers
Simplifies debugging and
system verification

2.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

Moves as much from the kernel into user space
Mach example of microkernel

Mac OS X kernel (Darwin) partly based on Mach
Communication takes place between user modules using
message passing
Benefits:

Easier to extend a microkernel
Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)
More secure

Detriments:
Performance overhead of user space to kernel space
communication

2.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

Many modern operating systems implement loadable kernel
modules

Uses object-oriented approach
Each core component is separate
Each talks to the others over known interfaces
Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible
Linux, Solaris, etc

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Modular Approach

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hybrid Systems

Most modern operating systems are actually not one pure model
Hybrid combines multiple approaches to address
performance, security, usability needs
Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of functionality
Windows mostly monolithic, plus microkernel for different
subsystem

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Generation

n Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

n SYSGEN program obtains information concerning the specific
configuration of the hardware system
l Used to build system-specific compiled kernel or system-

tuned
l Can general more efficient code than one general kernel

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Boot

When power initialized on system, execution starts at a fixed
memory location

Firmware ROM used to hold initial boot code
Operating system must be made available to hardware so hardware
can start it

Small piece of code – bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it
Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk

Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options
Kernel loads and system is then running

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 2

