Blockchain
for Enterprise

Build scalable blockchain applications with privacy, interoperability,
and permissioned features

Narayan Prusty

Blockchain for Enterprise

Build scalable blockchain applications with privacy,
interoperability, and permissioned features

Narayan Prusty

BIRMINGHAM - MUMBAI

Blockchain for Enterprise

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Namrata Patil

Content Development Editor: Chris D'cruz
Technical Editor: Suwarna Patil

Copy Editor: Safis Editing

Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Tom Scaria

Production Coordinator: Nilesh Mohite

First published: September 2018
Production reference: 1250918

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-974-5

www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Narayan Prusty is the founder and CTO of BlockCluster, world's first blockchain
management system. He has five years of experience in blockchain. He specializes in
Blockchain, DevOps, Serverless, and JavaScript. His commitment has led him to build
scalable products for start-ups, governments, and enterprises across India, Singapore, USA,
and UAE. He is enthusiastic about solving real-world problems. His ability to build scalable
applications from top to bottom is what makes him special. Currently, he is on a mission to
make things easier, faster, and cheaper using blockchain. Also, he is looking at ways to
prevent corruption, fraud, and to bring transparency to the world using blockchain.

About the reviewers

Nikhil Bhaskar is the founder and CEO of Ulixir Inc—a newly founded tech company that
builds decentralized and traditional software. He completed B9lab's Ethereum Developer
Course, and he is now a certified Ethereum developer. Aside from running Ulixir, he
spends his time traveling and eating. He is a bit of a digital nomad; this year, he's lived in
five countries and plans to live in six more before the year ends.

Ivan Turkovic is a geek, visionary, start-up enthusiast, writer, blogger, mentor, and
advisor. He wrote the book PhoneGap Essentials. Since 2011 he has had a strong interest in
Bitcoin and blockchain. In 2013 he co-founded a social start-up, Babberly, which was
among the first to use gamification with the help of blockchain.

He is focused on bringing value to the internet users. He employs the latest technologies to
build empowering web products and intuitive user experiences. He's interested in
technology, entrepreneurship, education, behavior psychology, product management, and
marketing. He runs Blaeg, a company that helps start-ups get off the ground with their
blockchain technology.

Anand V. is a technology architect who has more than 20 years of experience in IT. He has
worked with Verizon Communications, Cognizant, HP, HCL, and Oracle. Currently, he is
the managing partner of Anasup Consulting and works with clients on emerging
technologies such as blockchain, IoT, cybersecurity, and Al He is also a specialist in the
DevSecOps area and acts as a mentor to many start-up companies. He is a public speaker
and regularly writes articles in journals as well as online channels.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1
Chapter 1: What are Decentralized Applications? 6
What is a DApp? 6
What is a blockchain? 7
Understanding Byzantine Fault Tolerance 9
Representation of user accounts 10
What are UTXOs? 10
Popular permissioned blockchain platforms 11
Ethereum 1
Quorum 11
Parity 12
MultiChain 12
Hyperledger Fabric 1.0 13
BigchainDB 14
InterPlanetary File System 14
Corda 15
Transaction validity 17
Hyperledger Sawtooth 18
Popular blockchain use cases 19
Everledger 20
Walmart's food tracking 20
Ghana's land registry 21
Dubai's housing rental 22
Project Ubin 23
Summary 23
Chapter 2: Building Blockchain Using Quorum 24
Overview of Quorum 24
Ethereum accounts 25
What are Ethereum transactions? 26
What is a Merkle tree? 27
What is forking in blockchain? 30
Raft consensus 30
Istanbul Byzantine Fault Tolerence 32
Private contracts and constellation 33
Installing Quorum and constellation 35
Build your first Raft network 36
Setting up a constellation network 37

Generating enodes 39

Table of Contents

Creating an account

Creating the genesis block

Starting nodes

Adding or removing nodes dynamically
Building your first IBFT network

Installing IBFT tools

Creating a genesis block

Starting nodes

Adding or removing a validator dynamically
Summary

Chapter 3: Writing Smart Contracts
Solidity source files
The structure of a smart contract
Data locations in Solidity
The different types of data
Arrays
Strings
Structs
Enums
Mappings
The delete operator
Conversion between elementary types
Using var
Control structures

Creating contracts using the new operator

Exceptions
External function calls
Features of contracts
Visibility
Function modifiers
The fallback function
Inheritance
The super keyword
Abstract contracts
Libraries
using for
Returning multiple values
Importing other Solidity source files
Globally-available variables
Block and transaction properties
Address-type-related variables
Contract-related variables
Ether units

Proof of existence, integrity, and ownership contract

40
40
41
43
44
45
45
49
51
52

53
53
54
55
56
57
58
58
59
59
60
61
62
62
63
64
64
66
66
68
70
70
72
73
73
75
76
76
77
77
78
78
78
79

[ii]

Table of Contents

Compiling and deploying contracts
Summary

Chapter 4: Getting Started with web3.js
Introduction to web3.js
Importing web3.js
Connecting to nodes
The API structure
BigNumber.js
Unit conversion
Retrieving gas price, balance, and transaction details
Sending ether
Working with contracts
Retrieving and listening to contract events
Building a client for the ownership contract
The project structure
Building the backend
Building the frontend
Testing the client
Summary

Chapter 5: Building Interoperable Blockchains
Understanding blockchain interoperability
What can interoperable blockchains achieve?
Strategies for implementing blockchain interoperability

Single custodian
Multisignature federation
Sidechains or relays
Hash locking
Building a FedCoin
Smart contracts to digitalize fiat currency
Atomic swap smart contracts
Testing
Summary

Chapter 6: Building Quorum as a Service Platform

Introduction to cloud computing

Private versus public versus hybrid cloud

laaS versus PaaS and SaaS
What are containers?

Introduction to Docker

Building a Hello World Docker container
Understanding the microservices architecture
Diving into K8s

Getting into resource objects

Deployments and pods

80
83

84
84
85
85
86
87
88
88
90
91
93
96
96
97
99
104
107

108
108
109
110
110
111
111
112
113
114
116
119
124

125
126
126
127
129
130
130
132
133
134
135

[iii]

Table of Contents

Services
Ingress controllers and resources
ConfigMaps and secrets
Bind mounts and volumes
Labels and selectors
Getting started with minikube
Installing minikube on macOS
Installing minikube on Ubuntu
Installing minikube on Windows
Starting minikube
Stopping and deleting minikube
Minikube status
Accessing the K8s dashboard
Deploying the Hello World app on k8s
Pushing images to Docker Hub
Creating deployments and services
Building QaaS
How does QNM work?
Containerizing QNM
Creating QNM deployment and service mainfest files
Creating nodes using the K8s APls

Summary

Chapter 7: Building a DApp for Digitizing Medical Records
Introduction to EMRs data management and sharing systems
Problems with paper-based medical records
Limitations of EMR data management and sharing systems
Centralized versus decentralized EMR management systems
Ensuring data privacy in a blockchain using PRE
The NuCypher PRE library
Installing the library
Using the library
Architecting DApp for EMRs
Smart contracts for identity and access control
Writing Python and JS scripts for testing
Summary

Chapter 8: Building a Payment Solution for Banks
Overview of the payment system
Settlement and clearance of InterBank transfers
Digitalizing fiat currency
Using a cell phone number as identity
Building the network
Network permissioning in Quorum
Building the DApp
Summary

136
136
137
138
138
138
139
139
140
140
140
140
141
142
142
145
147
148
149
150
153

156

157
158
158
159
160
162
163
163
164
165
168
173
183

184
184
185
187
187
188
188
189
193

[iv]

Table of Contents

Other Books You May Enjoy 194

Index 197

[v]

Preface

Blockchain is growing massively, and is changing the way that business is done. Leading
organizations are already exploring the possibilities of blockchain. With this book, you will
learn how to build end-to-end, enterprise-level decentralized applications (DApps) and
scale them across your organization to meet your company's needs.

This book will help you understand what DApps are and the workings of the blockchain
ecosystem with some real-world examples. This is an extensive end-to-end book covering
every aspect of blockchain, such as its applications for businesses and developers. It will
help you be aware of the process flows so you can incorporate them into your own
enterprise. You will learn how to use J.P. Morgan's Quorum to build blockchain-based
applications. You will also be introduced to how to write applications that can help
communicate in enterprise blockchain solutions. You will learn how to write smart
contracts that run without censorship and third-party interference.

Once you have a good grip on what blockchain is and have learned all about Quorum, you
will jump into building real-world practical blockchain applications for sectors such as
payment and money transfer, healthcare, cloud computing, supply chain management, and
much more.

Who this book is for

This book is for innovators, digital transformers, and blockchain developers who want to
build end-to-end DApps using blockchain technology. If you want to scale your existing
blockchain system across the enterprise, you will find this book useful too. It gives you the
practical approach needed for solving real problems in an enterprise using a blend of
theory- and practice-based approaches.

What this book covers

Chapter 1, What are Decentralized Applications?, will explain what DApps are and provide
an overview of blockchain-based DApps.

Chapter 2, Building Blockchain Using Quorum, introduces the basics of Ethereum blockchain
and the features of Quorum. This chapter also teaches you how to set up a Raft network
using Quorum and various third-party tools and libraries.

Preface

Chapter 3, Writing Smart Contracts, shows how to write smart contracts and use geth's
interactive console to deploy and broadcast transactions using web3js.

Chapter 4, Getting Started with web3.js, introduces web3.js and how to import and connect
to geth, and explains how to use it in Node.js or client-side JavaScript.

Chapter 5, Building Interoperable Blockchains, explores what interoperable blockchains can
achieve, the various technologies and patterns for achieving blockchain interoperability,
and building interoperable blockchain networks to represent FedCoins.

Chapter 6, Building Quorum as a Service Platform , will teach you the basics of cloud
computing and containerization by examples. You'll learn how to install minikube, deploy
containers on Kubernetes, and develop a Quorum-as-a-service using QNM.

Chapter 7, Building a DApps for Digitizing Medical Records , gets into how to use proxy re-
encryption to enable encrypted data sharing in blockchain. Besides proxy re-encryption,
you'll also learn about a lot of JavaScript and Python libraries, such as etherumjs-wallet,
ethereumjs-tx, ethereumjs-util, and npre. Also, you'll learn about signing
transactions using keys stored outside a geth node.

Chapter 8, Building a Payment Solution for Banks, looks at how to implement network
permissioning in Quorum and how to build a solution to transfer money using a mobile
number.

To get the most out of this book

You must have experience with the JavaScript and Python programming languages.
You must have developed distributed web applications before.

You must understand the basic cryptography concepts, such as signing, encryption, and
hashing.

Download the example code files

You can download the example code files for this book from your account at

www . packt . com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

[2]

Preface

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
athttps://github.com/PacktPublishing/Blockchain-for-Enterprise. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This Raft ID will appear while adding a node using raft .addPeer."

A block of code is set as follows:

url = "http://127.0.0.1:9002/"
port = 9002

storage = "dir:./cnode_data/cnode2/"

socket = "./cnode_data/cnodel/constellation_node2.ipc"
othernodes = ["http://127.0.0.1:9001/"]

publickeys = ["./cnode2.pub"]

privatekeys = ["./cnode2.key"]

tls = "off"

[3]

Preface

Any command-line input or output is written as follows:
git clone https://github.com/jpmorganchase/quorum.git

cd quorum
make all

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now select a file, enter the owner's name, and click on Submit. ."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[4]

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]

What are Decentralized
Applications?

Since the beginning of internet, all internet-based applications that have been developed
have been based on client-server architecture, where there is a centralized server that forms
the backend of the application and controls the complete application. These applications
often end up with issues such as having a single point of failure, failure to prevent net
censorship, lack of transparency, users not trusting their data, activity and identity privacy,
and so on. This centralized architecture even made it impossible to build certain kinds of
applications. For example, you cannot build a digital currency using this architecture. Due
to these issues, a new kind of architecture emerged called Decentralized Applications
(DApps). In this chapter, we will learn about DApps.

In this chapter, we'll cover the following topics:

e What are DApps?

What is the difference between decentralized, centralized, and distributed
applications?

What is a blockchain?

What is the difference between public and permissioned DApps?

Examples of some of the popular consortium DApps, and how they work

What are the various popular platforms on which to build enterprise DApps?

What is a DApp?

A DApp is a kind of application whose backend runs on a decentralized peer-to-peer
network, and its source code is open source. No single node in the network has complete
control of the DApp. Remember that, when we say that an application is decentralized we
mean technically it's decentralized but the governance can be distributed, decentralized, or
centralized.

What are Decentralized Applications? Chapter 1

The major advantages of DApps are that they don't have a single point of failure, and
prevent censorship. DApps do have some disadvantages: it's difficult to fix bugs or add
features once deployed as everyone in the network has to update their node software, and
it's very complicated to couple different DApps together as they are very difficult to build
compared to centralized applications and involve very complex protocols.

To be able to use a DApp, you first need the DApp's node server running so that you can
connect to the peer-to-peer network. Then, you need a client respective to the DApp that
connects to the node server and exposes a Ul or command line interface to use the DApp.

Currently, DApps are not yet as mature as centralized applications in terms of performance
and scalability. There is still a lot of research and development on these topics such as
performance, scalability, users identity, privacy, communication between DApps,

data redundancy, and so on. A use case may fit into a DApp, but whether the use case can
be made production-ready with the currently available technology can be a

challenge. Popular examples of decentralized applications are Torrent, Bitcoin, Ethereum,
Quorum, and so on.

A DApp can be public or permissioned. Public DApps are those which anyone can be part
of, in other words, they are permissionless, whereas permissioned DApps are those which
are not open for everyone to join, so you will need permission to join. A permissioned
DApp is called a consortium DApp when the participants of the DApp are enterprises
and/or government entities. Similarly, when the participants of a permissioned DApp are
only enterprises, then we can call it an enterprise DApp. In this book we will learn
everything about permissioned DApps.

As you just got a basic introduction to what decentralized applications
are, you must be wondering what the difference between decentralized
and distributed applications is. Well, an application is said to be
distributed when it's spread across multiple servers. Decentralized
applications are by default distributed, whereas centralized applications
may or may not be distributed. Centralized applications are usually
distributed across multiple servers to prevent downtime, and also to
handle huge data and traffic.

What is a blockchain?

Before we get into what a is, we need to understand what a ledger is. A ledger in computer
science is software that stores transactions. A database is different from a ledger such that
in a database we can add, remove, and modify records, whereas in a ledger we can only
append but not delete or modify.

[7]

What are Decentralized Applications? Chapter 1

A blockchain is basically a data structure to implement a decentralized ledger. A blockchain
is a chain of blocks connected to each other. Every block contains a list of transactions and
certain other metadata, such as when it was created, which is it's previous block, the block
number, who is the creator of the block, and so on. Every block maintains a hash of the
previous block, therefore creating a chain of blocks linked with each other. Every node in
the network should hold the complete copy of the blockchain and, when a new node comes
in, it will request and download the blockchain from other nodes.

Technologies such as blockchains are called Distributed Ledger
Technology (DLT). A DLT is the process of replicating, sharing, and
synchronizing digital transactions geographically stretched across
numerous sites, countries, and/or institutions. You can think of a
blockchain as a type of DLT. Also, not every DLT system has to be
decentralized. In this book, we only learn to build decentralized
blockchain-based applications.

The major advantages of using a blockchain is that it enables the facilitation of transactions
without a central trusted party; data is secured using cryptography, and data is immutable,
as blockchain removes friction and reduces risk so settlements happen in real time, and so
on. Basically, it automates auditing, makes the application transparent, and provides a
single source of truth.

In the real world, private blockchains are used in trade finance, cross-border payments,
digital identity, the clearing and settlement of tokenized and digital assets, provenance of
ownership of a product, record keeping for critical data, signing contracts, multi-party
aggregation (namely, they can be used as a shared master repository for common industry
information, allowing members to query for data), payment-versus-payment or payment-
versus-delivery, and so on.

Every blockchain node maintains a database that contains the blockchain's state. The state
contains the final result of running all the transactions in the blockchain. For example, in a
blockchain, the state represents the final balances of all addresses. So when you query the
blockchain node for an addresses balance, it doesn't have to go through all transactions and
calculate the final balance of the address; instead, it directly fetches the balance from the
state of the blockchain. Bitcoin uses LevelDB to maintain the state of the blockchain. Even if
the database gets corrupted, the database can be restored by simply running all the
transactions in the blockchain.

[8]

What are Decentralized Applications? Chapter 1

Understanding Byzantine Fault Tolerance

Byzantine Fault Tolerance (BFT) is a characteristic of a decentralized system that indicates
that it can tolerate Byzantine failures. A crash failure is when nodes just stopping to do
anything (no messages at all) and Byzantine failure is when nodes just don't do anything
or exhibit arbitrary behavior. Basically, Byzantine failures include crash failures.

In any decentralized computing environment where a blockchain data structure is used,
there is a risk that one or more rogue or unreliable actors could be a reason for the
environment to disband. A server cluster will not work well if a few servers within it lose
out on passing data to other servers in a consistent manner. In order to be reliable, the
decentralized computing environment has to be designed in a way that it has solutions to
these kinds of Byzantine failures.

On blockchain-based decentralised applications, there is, by definition, no central authority,
so a special kind of protocol called the consensus protocol is used to achieve BFT.

In simple terms, you must be wondering how to ensure that everyone has the same copy of
the blockchain, and how to know which blockchain is correct when two nodes publish
different blockchains? Also, how do you decide who creates the blocks, as there is nothing
such as a master node in decentralized architecture? Well, consensus protocols provide an
answer to these questions. A few examples of consensus protocols are Proof-of-Work
(PoW), Proof-of-Stake (PoS), Proof-of-Authority (PoA), PBFT, and so on.

A consensus protocol is designed specially for permissioned or public blockchains. A
consensus protocol made for a public blockchain is likely to create security and
performance issues when implemented in a permissioned blockchain. Every consensus
protocol has different performance and scalability vectors. You have to be alert while
selecting a consensus protocol for your blockchain-based DApp.

Consensus protocols such as Raft and Paxos are not BFT; rather, they
make the system only crash-tolerant. So, you should also consider this
when choosing a consensus protocol.

You might have come across the term PoA. PoA is a categorisation of consensus protocols
in which there is a set of authorities—nodes that are explicitly allowed to create new blocks
and secure the blockchain. Ripple's iterative process, PBFT, Clique, Aura, and so on, are
examples of PoA-based consensus protocols.

[9]

What are Decentralized Applications? Chapter 1

Representation of user accounts

In blockchain-based applications, user accounts are identified and authenticated using
asymmetric key pairs. The private key is used to sign transactions on behalf of the user.
Username and password-based accounts systems will not work in blockchain as it cannot
be used to prove which user has sent a transaction. The demerits in using private-public
key pair include that they are not user-friendly and if you lose the private key then there is
no way to recover it. So, it adds a new responsibility for the users to secure their private
key. The address of a user account acts as the account identifier on blockchain. The address
of a user account is derived from the public key.

What are UTXOs?

Some blockchain applications use the UTXO model for transactions. Blockchain
applications such as Bitcoin and MultiChain use this model. Even DLTs such as R3 Corda
also use this model. Let's understand this model by understanding how Bitcoin transactions
work.

In Bitcoin, a transactions is a collection of zero or more and outputs. These input and
output objects are called Unspent Transaction Outputs (UTXO). Outputs of transactions
are used as inputs of future transactions. A UTXO can be used as input only once. Each
UTXO in Bitcoin contains a denomination and an owner (a Bitcoin address). In this model,
the balances of addresses in the unconsumed UTXOs are stored. For a transaction to be
valid, these requirements should be met:

1. The transaction must contain a valid signature for the owner of each UTXO that
it consumes

2. The total denomination of the UTXOs consumed must be equal to or greater than
the total denomination of the UTXOs that it produces

A user's balance is computed as the total sum of the denominations of UTXOs that they
own. A transaction can consume zero or more UTXOs and produce zero or more
UTXOs. For a miner to pay reward to itself, it includes a transaction in the block that
consumes zero UTXOs but produces one UTXO with the denomination assigned the
amount of Bitcoin it is supposed to award itself.

A UTXO transaction model is suitable when blockchain transactions involve the transfer of
asset, but for non-assets transfer transactions such as recording facts, invoking smart
contracts, and so on, this model it not suitable.

[10]

What are Decentralized Applications? Chapter 1

Popular permissioned blockchain platforms

Now we have a basic idea about what a DApp, blockchain, and DLT is, let's have an
overview of what platforms are available to build a permissioned blockchain applications
and DApps. We will only go through the ones that are popular on the market, and for
which there is a demand.

Ethereum

Ethereum is the most popular DApp after Bitcoin. Ethereum is a decentralized platform
that allows us to build other blockchain-based DApps on top of it. In Ethereum, we build
DApps using Ethereum smart contracts. Smart contracts are applications that run exactly as
programmed without any possibility of downtime, censorship, fraud, or third-party
interference. Ethereum can be thought of as a platform to deploy and run smart contracts.
Ethereum supports two consensus protocols, PoW and PoA (Clique).

The main public Ethereum network uses PoW for consensus. If you want to deploy your
own private Ethereum network, then you have to use PoA. PoW requires a lot of
computation power to keep the blockchain secure, therefore it's good for public blockchain
use, whereas PoA doesn't have any such computation power requirement; instead it
requires a few authority nodes in the network to achieve consensus.

Why cannot we simply put formatted messages on blockchain in the form
of transactions and interpret them on client? Well, using smart contracts

0 You must be wondering why we need smart contracts to build DApps.
gives you both technical and business benefits.

Quorum

Quorum is a decentralized platform that allows us to build permissioned blockchain-based
DApps on top of it. Actually, Quorum is a fork of Ethereum (actually Quorum is a fork of
Go Ethereum, which is an implementation of Ethereum using Golang), therefore if you
have ever worked on Ethereum then you will find it easy to learn and build permissioned
blockchains using Quorum. Many enterprises select Quorum for building blockchains
because of Ethereum's large community, which makes it easy to find Ethereum developers.
What makes Quorum different from Ethereum is that it supports privacy (it lets parties do
transactions privately); peer whitelisting, so you can mention a list of other nodes that are
allowed to connect to your node (in Ethereum this needs to be done at network level);
many different flavors of consensus protocols suitable for permissioned blockchain, and
provides very high performance.

[11]

What are Decentralized Applications? Chapter 1

Quorum currently supports three consensus protocols, QuorumChain, IBFT, and Raft. We
will skip QuorumChain in this book, as Raft and IBFT fulfil all our requirements.

Microsoft Azure provides Baa$ to easily build your own Quorum network on the Cloud.
But, in this book, we will learn how to install it manually, and we won't be using BaaS.

Parity

Popular node software for Ethereum include Go Ethereum, Ethereum C++, and Parity.
Parity also supports two other consensus protocols, other than Ethereum's PoW, which are
specifically designed for permissioned blockchains. These consensus protocols are Aura
and Tendermint. Many Ethereum developers use parity compared to Quorum when they
don't need the extra features provided by Quorum.

As parity doesn't provide any unique features compared to Quorum, we will be skipping
parity in this book. But, once you finish this book, you will find it really easy to grasp
parity's concepts and will be able to build something using it too.

MultiChain

MultiChain is a platform to build permissioned blockchain-based DApps. Unique features
of MultiChain include permissions management, data streams, and assets. It doesn't
support smart contracts. This is an example of a non-smart contract-based platform for
building blockchain-based DApps. MultiChain uses round robin validation consensus.

Initially MultiChain was based on the idea of managing ownership and transfer of assets on
blockchain. Operations on assets includes issuance, reissuance, transfer, atomic exchange,
escrow, and destruction of assets. Later on, data streams were introduced to provide a
different flavor of representing data in MultiChain. Any number of streams can be created
in a MultiChain, and each stream acts as an independent append-only collection of items.
Operations on streams include creating streams, writing, subscribing, indexing, and
retrieving. So, basically, a blockchain use case on MultiChain can be built on a foundation
of assets or streams. Finally, permission management is used to control who can connect,
transact, create assets/streams, mine/validate, and administrate.

MultiChain provides maximal compatibility with the Bitcoin ecosystem, including the peer-
to-peer protocol, transaction/block formats, the UTXO model, and Bitcoin Core
APIs/runtime parameters. So, before you start learning MultiChain, it's better to learn how
Bitcoin works at a high level at least.

[12]

What are Decentralized Applications? Chapter 1

Hyperledger Fabric 1.0

Before we get into what Hyperledger Fabric 1.0 is, we need to understand what
Hyperledger is specifically. Hyperledger is an umbrella project of open source blockchains
and related tools, started in December 2015 by the Linux Foundation. At the time of writing
this book, there are four projects under Hyperledger:Fabric, Sawtooth, Iroha, and Burrow.

Hyperledger Fabric is the most popular project under Hyperledger. IBM is the main
contributer to the project. IBM's Bluemix also provides Baa$S to build your own Fabric
network on the Cloud easily.

Hyperledger Fabric 1.0 is a platform to build your own permissioned blockchain-based
applications. Currently, at the time of writing this book, Hyperledger Fabric 1.0 supports
only distributed architecture, and for the creation of blocks it depends on a central trusted
node called the orderer. It supports smart contracts, network permissioning, privacy, and
other features. In HLF 1.0, there is a special kind of node called as OSN, which is hosted by
a trusted party. This OSN creates blocks and distributes to peers in networks. As you trust
this node, there is no need for consensus. HLD 1.0 currently supports CouchDB and
LevelDB to store the state of the blockchain. Peers in the network store the state of the
blockchain in the LevelDB database, by default.

HLF 1.0 has a concept of channels to achieve privacy. A channel is a sub-blockchain in the
network and allows certain parties to be part of a channel depending on configuration.
Actually, every transaction has to belong to a channel and when the HLF 1.0 network is
deployed, a default channel is created. OSN can see all the data in all the channels,
therefore it should a trusted party. Technically, it's possible to configure the network to
have multiple OSNs hosting different channels if you cannot trust a single party for all
channels. Even if the traffic is going to be huge or OSN availability is critical, then you can
plug Kafka into OSN for better performance and increased stability. We can even have
multiple OSNs per channel connected via Kafka if high availability is required.

Fabric 1.0 has a feature called transaction endorsement, which provides a mechanism of
taking approvals from certain parties before sending a transaction. When we say that a
transaction has been endorsed by a member in the network, we mean that the member has
verified the transaction. Every chaincode (smart contracts in HLF) has an endorsement
policy defined to it at the time of deployment. The policy states which members has to
endorse the transactions associated with this chaincode. The default policy states that any
one member of the channel has to sign the transaction. But, we can define custom policies
containing AND and OR operators.

[13]

What are Decentralized Applications? Chapter 1

Also, peers of the same channel broadcast blocks to each other regardless of the presence or
absence of OSN, but in the absence of OSN new blocks cannot be created for the channel.
Peers broadcast blocks using a special protocol called as gossip data dissemination
protocol.

HLF 1.0 has very advanced membership features to control network membership, and that
are also internal to a specific organization. In HLF 1.0, you can write chaincodes in Java or
Go programming languages. In the future, Fabric 1.0 will come with the Simple Byzantine
Fault Tolerance (SBFT) consensus protocol and some other features that will enable us to
build DApps. Similarly, there are various new features that are under development and
will be released in future as a sub-version of the product.

The best way to get started with building your first HLF 1.0 application is
the check out examples at https://github.com/hyperledger/fabric-
samples and modify them according to your application needs. You can
find HLF 1.0 detailed docs at http://hyperledger—fabric.readthedocs.
io/en/latest/.

BigchainDB

BigchainDB is a decentralized database that uses blockchain. BigchainDB is highly scalable
and customizable. It uses the Blockchain data structure. It supports features such as rich
permissioning, petabytes capacity, advanced querying, linear scaling, and so on. At the
time of writing this book, BigchainDB is not production-ready but can be used for building
Proof of Concepts (PoCs). We will learn how it works, and will create a basic PoC using it,
in later chapters.

InterPlanetary File System

InterPlanetary File System (IPFS) is a decentralized filesystem. IPFS uses Distributed
Hash Table (DHT) and Merkle Direct Acyclic Graph (DAG) data structures. It uses a
protocol similar to Torrent to decide how to move the data around the network. One of the
advanced features of IPFS is that it supports file versioning. To achieve file versioning, it
uses data structures similar to Git.

[14]

What are Decentralized Applications? Chapter 1

Although it's called as a decentralized filesystem, it doesn't adhere to a major property of a
filesystem, namely, when we store something in filesystem, it should be there until deleted.
But, IPFS doesn't work this way. Each node doesn't store all files, instead it stores only
those files it needs. Therefore, if a file is not popular, then many nodes will not have the file
therefore there is a huge chance of the file disappearing in the network. Due to this, we can
call IPFS a decentralised peer-to-peer file-sharing application. We will learn about about
how it works in later chapters.

Corda

Corda is a platform on which to build your own permissioned DLT-based applications.
Corda is a product of R3. R3 is an enterprise software firm working with over 100 banks,
financial institutions, regulators, trade associations, professional services firms, and
technology companies to develop Corda. The latest version of Corda is 1.0, which aims to
replace legacy softwares used for financial transactions, and enables organisations to
digitalize various business process that were cumbersome using legacy software systems:

Valdating
Notary
Services Network Map Permissioning
!] !
A
< AMQP 107TLS >
paya e Gracia e M baiy B
: : oracle. ... :
: Party A node : : 1 :Oracle : : Party B node :
: CorDapps : I o CorDapps :
: =i : I Oracle node s PP : —
-_—— : [: : "
= R L=

[15]

What are Decentralized Applications? Chapter 1

The preceding diagram shows the high level architecture of a Corda network. Let's
understand Corda's architecture at a high level. The idea of R3's Corda is to provide a
shared trusted ledger for financial transactions. R3's Corda is not a blockchain platform,
therefore there is no concept of blocks, global broadcasts, and so on. All the transactions are
point to point. Corda applications are not decentralized. In Corda, smart contracts are
called as CorDapps and they are written in either Java or Kotlin.

Infrastructure services form the nodes in the network that should be hosted by the trusted
parties. Network Map publishes IP addresses of all the other nodes, so that nodes can reach
out to other nodes. Permissioning service gives permission to nodes to join the network ;
the node will receive a root-authority-signed TLS certificate from the network's
permissioning service if permitted to join the network. Notaries provide transaction
ordering and time stamping services (optionally, a notary also acts as the timestamping
authority, verifying that a transaction occurred during a specific time-window before
notarizing it). A notary service may be a single network node, a cluster of mutually-trusting
nodes, or a cluster of mutually-distrusting nodes.

Notaries are expected to be hosted by enterprises that the network doesn't trust, therefore
consensus is required between the notaries, due to which Corda provides various
pluggable consensus protocols, such as Raft, BFT, and so on.

Sometimes, Corda applications need to depend on external application APIs. For example,
a multi-currency bank-to-bank payment application built using Corda will need to fetch the
exchange rate. In this scenario, the node initiating the transaction can fetch the exchange
rate and put on the transaction, but how can you trust that node? Also, every node cannot
simply re-fetch the exchange rate to verify if it's correct because by the time other nodes
fetch it the rate might have changed, and also this is not a scalable solution. Therefore,
Corda provides oracles to solve this issue. There can be one or more oracles in the network.
An Oracle is a service that acts as a bridge for communication between two applications. In
Corda, the transaction initiator can fetch the information from outside the Corda network
and get the information signed from Oraclize to prove its validity. Optionally, Oraclize can
also provide the information to the transaction initiator on request. Obviously, the Oraclize
should be hosted by trusted parties with respect to what information they provide and
sign.

[16]

What are Decentralized Applications? Chapter 1

Corda supports any pluggable RDBMS (currently, it is using the H2 database) to store
smart contracts data. Data privacy is maintained as to which nodes can see the

transactions. Multisignature support is also given by the framework, which enables
multiple nodes to sign a transaction. One of the major downsides of Corda is that as there is
no global broadcasting, each node has to maintain its own backup and failover redundancy
in a traditional way as there is no redundancy built into the network. A node will store
transactions and retry sending the messages to the recipient until the recipient has
successfully received it. Once the messages are received, the sender has no more
responsibility.

Transaction validity

As all transactions are not broadcasted to all parties in the network, to prevent a double
spend (a double spend is an attack on DLTSs to spend the same money twice, transfer the
same asset twice and so on), we use notaries. Notaries contain all the unconsumed UTXOs,
and after notarization they mark them as consumed and add the new unconsumed ones to
their state. The transaction purposer gets the transaction notarized by a notary before
sending to the other parties for commit.

A notary will only be able to sign a transaction if it has earlier signed input states of the
transaction. But, this may not always be the case, therefore Corda also lets us change the
state's appointed notary. This situation can occur mostly due to the following reasons:

¢ A transaction consuming states that have different appointed notaries
¢ A node wishes to use a different notary for achieving privacy or efficiency

Before these transactions can be created, the states must first be repointed to all have the
same notary. This is achieved using a special notary-change transaction.

CorDapps are not like smart contracts of other platforms. They don't have a state. Their
purpose is to just validate if the outputs produced from the inputs are correct. Every UTXO
points to a CorDapp. CorDapps define the format of UTXOs. In a transaction, we can have
UTXOs of multiple CorDapps, and in these cases each CorDapp will run only once and
validate all the inputs and outputs belonging to it. For a transaction to be valid, it must be
contractually valid; the CorDapp should approve it.

[17]

What are Decentralized Applications? Chapter 1

Apart from inputs and outputs, transactions might consist of commands too, small data
packets that the platform doesn't decipher itself but which help CorDapps to process the
inputs and outputs. A command is a piece of data associated with some public keys.
Commands are used to provide additional information to the CorDapps that it cannot get
via the UTXOs. The platform assures that the transaction is signed by every key listed in the
commands before the contracts start to execute. Thus, the CorDapp can trust that all listed
keys have signed the transaction, but is responsible for verifying that the intended parties
have signed it. Public keys may be random or identityless for privacy, or linked to a well-
known legal identity.

Oracles provide signed information to the transaction purposer in the form of commands
that encapsulate a specific fact, and list the oracle as a required signer.

Also, transactions can contain a hash of attachments. Attachments are ZIP/JAR files.
Attachments are useful when there's a large fragment of data that can be reused across
several different transactions.

It is possible that while verifying a proposed transaction, the node may not have all the
transactions of the transaction chain that it needs to verify. Therefore, Corda lets the node
request the missing transactions from the proposer(s). It's always true that the transaction
proposer will have all the transactions of the required transaction chain, as they would
have requested it when verifying the transaction and created the purposed transaction's
input states.

Finally, once the transaction is committed, you can query the Vault (which keeps track of
both unconsumed and consumed states).

To learn more about Corda and build your first Corda app, visit https://
docs.corda.net/, which contains detailed documentation. There are
several example apps that you can download and experiment with.

Hyperledger Sawtooth

Sawtooth is a decentralized platform to build your own permissioned DApps. The main
contributer to Sawtooth is Intel. What makes Sawtooth special is that it uses a Trusted
Execution Environment (TEE) (it currently supports Intel's SGX only) for consensus, which
makes the network very safe and trustworthy and increases trust in the final result of the
consensus.

[18]

What are Decentralized Applications? Chapter 1

The TEE is a secure area of the main processor. It guarantees that the code
and data loaded inside is protected with respect to confidentiality and
integrity. The TEE as an isolated execution environment that provides
security features such as isolated execution, integrity of Trusted
Applications, along with confidentiality of their assets.

Proof of Elapsed Time (PoET) is the name of the consensus protocol that Sawtooth uses. In
PoET, there are special types of nodes called as validators. Validators must run their node
on an SGX-supported CPU. This is how PoET works.

Every validator requests a wait time from an enclave (a trusted function). The validator
with the shortest wait time for a particular transaction block is elected the leader. One
function, say CreateTimer, creates a timer for a transaction block that is guaranteed to
have been created by the enclave. Another function, say CheckTimer, verifies that the
timer was created by the enclave and, if it has expired, creates an attestation that can be
used to verify that the validator did, in fact, wait the allotted time before claiming the
leadership role. POET randomly distributes leadership election across the entire population
of validators. The probability of election is proportional to the resources contributed (in this
case, resources are general-purpose processors with a TEE). An attestation of execution
provides information for verifying that the certificate was created within the enclave (and
that the validator waited the allotted time). Further, the low cost of participation increases
the likelihood that the population of validators will be large, increasing the robustness of
the consensus algorithm.

Sawtooth also supports smart contracts (specifically, Ethereum smart contracts can be
executed on Sawtooth). Performance-wise, Sawtooth scales well in terms of large numbers
of transactions and nodes.

Popular blockchain use cases

Let's see some of the popular use cases for permissioned blockchains. It will help us to
understand what enterprises can use permissioned blockchains for and what use cases are
valid for permissioned blockchains.

[19]

What are Decentralized Applications? Chapter 1

Everledger

Everledger is a digital registry for diamonds powered by blockchain. It's an example of
supply chain management on blockchain. Blockchain was used because, in blockchain,
records are immutable. Everledger uses more than 40 features, including color and clarity,
to create a diamond's ID. When this information is placed on blockchain, this information
becomes a certificate chronicling the jewel's ownership, from mine to ring. Everledger has
digitized more than a million diamonds and partnered with firms including

Barclays. Participants in the blockchain network, such as merchants, banks, and insurers,
can verify if a diamond is legitimate. Everledger is built on the Hyperledger Fabric
platform. In the future, they are also planning to add other precious goods to their
blockchain.

Let's take an example scenerio and see how blockchain helps in this use case. Alice
purchases a diamond, insures it, and registers it on the Everledger blockchain. Next, she
loses the diamond and reports it as stolen. The insurance company then compensates her
for the loss. Finally, Bob the thief attempts to sell the stolen diamond to Eve the jeweller.
She requests verification from Everledger and finds out that it's a stolen diamond. The
insurance company is notified about the stolen diamond and they take possession of it.

Walmart's food tracking

Walmart's food tracking use case is a combination of blockchain and IoT to make a food
product's history transparent and traceable to it's origin. It's an example of supply chain
management on blockchain. Walmart's food tracking supply chain management is built on
top of the Hyperledger Fabric platform.

A lot of people die every year due to food poisoning. As soon as someone falls sick or dies
due to food poisoning the authorities try to track the source of the food and make sure that
all the food items from the source that are distributed is suspended from selling and is
called back. This saves lives of a lot of people. But the issue is that as every participation in
the supply chain have their own ways and processes storing and retrieving information
therefore it takes weeks for the authorities to track the source prevent everyone in the chain
from selling the food items. Blockchain in combination with the IoT might just be able to
solve this problem.

[20]

What are Decentralized Applications? Chapter 1

With every party in the supply chain storing and retrieving information, blockchain can
fasten the process of finding the source of a food item. The following list shows additional
benefits blockchain can add:

¢ Consumers can see exactly where a food product was harvested.

¢ Due to panic over food poisoning, people tend to throw away clean food, which
increases the amount of food wasted. Blockchain can pinpoint the tainted food,
therefore preventing food waste.

e Each step in the supply chain is visible to everybody. Fraudulent food entering
the market can be avoided.

e Blockchain can act as evidence that a tainted food items was shipped from a
particular producer. Due to this, producers will take care and adhere to safe
practices because, if they don't, they will be caught with the evidence.

e Finally every food item gets a story associated with it. This enables users to learn
about the food item's history.

IoT technology, such as sensors and RFID tags, enables real-time data to be written on the
blockchain as food products pass along the supply chain.

Let's see an example of what the blockchain records in this case, and who the participants
are. The participants are farms from where the food originates, factories where they are
packed and processed, cargo companies who ship the food, Walmart stores, and so on. The
data recorded on the blockchain is farm origin data, the batch number, factory and
processing data, expiration dates, storage temperatures, and shipping details.

Ghana's land registry

BenBen is a team of research and development engineers dedicated to building innovative
products to improve government technology in Ghana. They developed a digital land
registry solution using blockchain for Ghana citizens.

In Ghana, banks don't accept land as a collateral when giving loans. That's because in
Ghana, a paper registry system is unenforceable in court. This is preventing millions of
people from getting loans.

BenBen provides a top-of-stack land registry and verification platform for financial
institutions. This platform captures transactions and verifies the data. BenBen works with
financial institutions to update current registries, enable smart transactions, and distribute
private keys for clients, to allow automated and trusted property transactions between all
parties.

[21]

What are Decentralized Applications? Chapter 1

Dubai's housing rental

Dubai's housing rental use case is a blockchain application that let's individual expats lease
an apartment or renew their housing tenancy contract online within minutes. In Dubali, if
an individual wants to take an apartment for rent, then they have to provide KYC
documents, cheques as a contract-term guarantee, and create an Ejari (a government
contract to legalize the otherwise unpleasant relationship between landlords and tenants in
Dubai). In Dubai, most real estate companies rent apartments only if you want to stay for a
longer period of time (for instance, at least a year) and to make sure you obey the contract,
they ask you to provide postdated cheques as a guarantee, as in Dubai, a cheque bounce is
considered a criminal offence. As the process of renting an apartment and renewing the
tenancy contract is a cumbersome process for both tenants and real estate companies,
Dubai Smart Government (DSG) (a technology arm of Smart Dubai, a city-wide initiative
to transform Dubai technologically) launched a mission to make this whole process

easier and quicker using blockchain.

This housing rental application was built using Hyperledger Fabric 1.0, and initially seven
entities participated in the network. DSG, General Directorate of Residency and
Foreigners Affairs Dubai (DNRD), wasl, Dubai Land Department, The Dubai Electricity
and Water Authority (DEWA), Emirates National Bank of Dubai (NBD), and Emirates
Islamic (EI) bank were the entities who shared their data on blockchain to make the
tenancy contract creation and renewing easier.

Earlier, DSG and the Emirates Identity Authority (EIDA) launched DubailD, which
allowed Dubai residents a unified access to all eServices provided by government agencies
through one login, and interaction with them via the internet. In this blockchain use case,
the tenant had to log in to the real estate's portal using DubailD; in this case, wasl's tenant
must have a DubailD to login. Once logged in, SDG will write the Emirates ID number into
blockchain, and DNRD shares visa and passport information on the blockchain for that
tenant. Then, wasl's portal redirects users to submit digital cheques using an Emirates NBD
or EI bank account. Once digital cheques are submitted, a request is made to DLD via
blockchain to renew or create an Ejari. Finally, once Ejari processing is done, DEWA is
notified to activate the water and electricity supply. So basically, the first pilot was for
individuals who wanted to lease or renew a wasl apartment and had a bank account with
Emirates NBD or EI. Soon, more banks and real estate companies will be added to the
network to provide this service for more people in Dubai. In this process, it was ensured
that a piece of information can only be seen by the concerned parties.

[22]

What are Decentralized Applications? Chapter 1

This use case fits in well as a blockchain use case because a signed immutable ledger was
required to store KYC, cheques, and Ejaris and the latter can be proved if the customer or
any entity tries to commit fraud. For example, when Emirates NBD issues cheques, if they
do it without blockchain and simply make point-to-point API calls, then there is a very
good possibility of intentional and unintentional disagreement between ENBD, the tenant,
and wasl regarding the existence of a digital cheque or its current status. Therefore,
blockchain can be the final tool for reference if any dispute occurs.

Project Ubin

Project Ubin is a digital cash-on-ledger project run in partnership between Monetary
Authority of Singapore (MAS) and R3, with the participation of Bank of America (BOA)
Merrill Lynch, Credit Suisse, DBS bank, The Hongkong and Shanghai Banking
Corporation Limited,].P. Morgan, Mitsubishi UF]J Financial Groupb (MUFG), OCBC
bank, Singapore Exchange (SGX), and United Overseas Bank (UOB), as well as BCS
Information Systems as a technology provider.

The aim of Project Ubin is building a digitalized form of the SGD (Singapore's national
currency) on a distributed ledger to bring many benefits to Singapore's financial ecosystem.
The benefits would be the same as that of any other cryptocurrencies.

Currently, this application is built using Quorum, but in future it may move to Corda as R3
is one of the partners.

MAS is Singapore's central bank and financial regulatory authority. MAS acts as a
settlement agent, operator, and overseer of payment, clearing, and settlement systems in
Singapore that focus on safety and efficiency.

Summary

In this chapter, we learned what DApps are and got an overview of blockchain-based
DApps. We saw what a blockchain is, what its benefits are, and saw various platforms that
we can use to build our own blockchain-based DApps. Finally, we saw some use cases and
how blockchain can bring change to the financial and non-financial industry. In the next
chapter, we will get into Ethereum and Quorum, and build a basic example DApp.

[23]

