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9.1.15 Consider a force F(¢) acting on
a cart over a 3 second span. In case (a),
the force acts in two impulses of one sec-
ond duration each as shown in fig. 9.1.15.
In case (b), the force acts continuously for
two seconds and then goes to zero. Given
that the mass of the cart is 10 kg, v(0s) =
0, and F; = 10N, for each force profile,
a) Find the speed of the cart at the end
of 3 seconds, and

b) Find the distance travelled by the
cart in 3 seconds.

Comment on your answers for the two
cases.
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4 Chapter 9.1. Force and motion in 1D

Problem 9.1.16

9.1.16 A car of mass m is accelerated by
applying a triangular force profile shown
in fig. 9.1.16(a). Find the speed of the car
at ¢t = T seconds. If the same speed is
to be achieved at t = T seconds w1th a
sinusoidal force profile, F(t) = F sin T s
find the required force magmtude F. Is
the peak higher or lower? Why?
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Chapter 9.1. Force and motion in 1D Problem 9.1.22 5

9.1.22 A grain of sugar falling through
honey has a negative acceleration propor-
tional to the difference between its veloc-
ity and its ‘terminal’ velocity, which is a
known constant v,. Write this sentence as
a differential equation, defining any con-
stants you need. Solve the equation assum-
ing some given initial velocity v.
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Chapter 9.1. Force and motion in 1D

Problem 9.1.26

9.1.26 A bullet penetrating flesh slows
approximately as it would if penetrating
water. The drag on the bullet is about
Fp = cpyv2A/2 where p,, is the den-
sity of water, v is the instantaneous speed
of the bullet, A is the cross sectional area
of the bullet, and ¢ is a drag coefficient
which is about ¢ ~ 1. Assume that the
bullet has mass m = p;AL where p; is
the density of lead, A is the cross sec-
tional area of the bullet and L is the length
of the bullet (approximated as cylindrical).
Assume m = 2 grams, entering velocity
vg = 400m/s, p;/p,, = 11.3, and bullet
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diameter d = 5.7 mm.
a) Plot the bullet position vs time.

b) Assume the bullet has effectively
stopped when its speed has dropped
to 5m/s, what is its total penetra-
tion distance?

¢) According to the equations implied
above, what is the penetration dis-

tance in the limit 1 — 00?

d) How would you change the model
to make it more reasonable in its

predictions for long time?
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Chapter 9.1. Force and motion in 1D Problem 9.1.26 (continued)
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Chapter 9.1. Force and motion in 1D

Problem 9.1.26 (continued)
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Chapter 9.1. Force and motion in 1D Problem 9.1.26 (continued) 9
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10 Chapter 9.2. Energy methods in 1D

Problem 9.2.3

9.2.3 A force F = Fysin(ct) acts on a
particle with mass m = 3kg which has
position x = 3m, velocity v = 5m/s at
t =2s. Fp = 4Nandc = 2/s. At
t = 2 s evaluate (give numbers and units):
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e) the rate at which the force is doing
work.
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Chapter 9.2. Energy methods in 1D Problem 9.2.3 (continued) 11
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12 Chapter 9.2. Energy methods in 1D

Problem 9.2.10

9.2.10 A kid (m = 901bm) stands on a
h = 10ft wall and jumps down, acceler-
ating with ¢ = 32ft/s2. Upon hitting the
ground with straight legs, she bends them
so her body slows to a stop over a distance
d = 1ft. Neglect the mass of her legs. As-
sume constant deceleration as she brakes
the fall.

a) What is the total distance her body
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falls?
b) What is the potential energy lost?

¢) How much work must be absorbed
by her legs?

d) What is the force of her legs on her
body? Answer in symbols, numbers
and numbers of body weight (i.e.,
find F/mg).
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Chapter 9.2. Energy methods in 1D

Problem 9.2.11

13

9.2.11 In traditional archery, when pulling
an arrow back the force increases approxi-
mately linearly up to the peak ‘draw force’
Fjrqy that varies from about Fy,,,, =
25 1bf for a bow made for a small person to
about Fj,.,,, = 75Ibf for a bow made for
a big strong person. The distance the ar-
row is pulled back, the draw length £ ;,. ., ,
varies from about £ ;,,,, = 2 ft for a small
adult to about 30inch for a big adult. An

9~’;Q

Gi ron

arrow has mass of about 300 grain (1 grain
A 64.8milli gm, so an arrow has mass of
about 19.44 =~ 20 gm ~ 3/4 ounce). Give
all answers in symbols and numbers.

a) What is the range of speeds you can
expect an arrow to fly?

b) What is the range of heights an ar-
row might go if shot straight up (it’s
a bad approximation, but for this
problem neglect air friction)?
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14 Chapter 9.2. Energy methods in 1D

Problem 9.2.11 (continued)
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Chapter 9.2. Energy methods in 1D

Problem 9.2.16

15

9.2.16 The power available to a very
strong accelerating cyclist over short peri-
ods of time (up to, say, about 1 minute) is
about 1 horsepower. Assume a rider starts
from rest and uses this constant power. As-
sume a mass (bike + rider) of 1501bm, a
realistic drag force of .006 Ibf/( ft/ s)2v2.
Neglect other drag forces.

a) What is the peak (steady state)
speed of the cyclist?

b) Using analytic or numerical meth-
ods make an accurate plot of speed
vs. time.

¢) What is the acceleration as ¢t — o0
in this solution?

d) What is the acceleration as ¢t — 0
in your solution?

e) How would you improve the model
to fix the problem with the answer
above?
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16 Chapter 9.2. Energy methods in 1D Problem 9.2.16 (continued)

Page 5/6

9.43)

function homework943()
% Problem 9.43 Solution
% Feb 5, 2008

% CONSTANTS

P=550 ; % power in Ibf*ft/s
m= 150; % lbm

g=32.2; % fi/s"2

% INTIAL CONDITIONS
v0=0.001; % initial velocity, zero makes the solution explode

tspan =[0 1000]; %time interval of integration

error = |¢-4;
% Set error tolerance and use 'event detection’
options = odeset(‘abstol', error, 'reltol’, error) ;

Yo% %676 % %% %Y %% Y %0 % %% %6 % % % % Ve % %% %Yo % % %Y % %Y Y %% Y% % YoY%

% Ask Matlab to SOLVE odes in function 'ths'
[t v] = ode45(@rhs,tspan, v0, options, P, m, g)

%UNPACK the zarray (the solution) into sensible variables
plot (t,v)

title('Problem 9.43")

xlabel('Time, t (s)'); ylabel('Speed, v (ft/s))

axis([0 inf -inf inf]) %inf self scales plot

end % end of main function

Y09%0%% %% % %% %% Yo% Yo% Yo% Yo % % Y6 % %% %o Y% % Yo% % Yo Yo YoV YooYV Y% Y %Yo Y%

Y% %% % %% %% %% %0 % % %6 %0 % % %% YoY% Y% Y% %Yo % Y e Yo Vel 0%%% %% % %% %% Y%
%% %% %% % %%

% THE DIFFERENTIAL EQUATION "The Right Hand Side'

function vdot = rhs(t,v,P,m,g)

vdot = P/(m*v)-0.006*v"2/m; % F=ma

end % end of rhs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Chapter 9.2. Energy methods in 1D Problem 9.2.16 (continued) 17

Page 6/6

Results from Matlab Code

Speed, ¢ (ftie}

i 1 1 1. i 1 1. i 1,
R T 0 e e 800 70 5 .
. ‘ ‘ o Timect(s) ~ i i

3) Acceleration is the slope of the velocity on the plot above. As time goes to infinity, the
acceleration goes to zero.

4) As time goes to zero, the acceleration goes to infinity. This is why the initial velocity had to
be inputted as a very small number (i.e. 0.001 fi/s) instead of zero.
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18 Chapter 9.3. Elementary vibration analysis

Problem 9.3.6

9.3.6 A spring k with rest length £ is at-
tached to a mass m which slides friction-
lessly on a horizontal ground as shown.
At time ¢ = O the mass is released from
rest with the spring stretched a distance d.
Measure the mass position x relative to the
wall.

a) What is the acceleration of the mass
just after release?

b) Find a differential equation which
describes the horizontal motion x of
the mass.

—
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¢) What is the position of the mass at
an arbitrary time ¢ ?

d) What is the speed of the mass when
it passes through x = £ (the posi-
tion where the spring is relaxed)?
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Chapter 9.3. Elementary vibration analysis Problem 9.3.6 (continued) 19

¢

T3 continued |

) Fiod _ position of wace  al «rbfl‘mr/
L/'r/?l@ -3

|—we  will sa}g 'Ff?/ X(f) ﬁ'ﬁn ‘('/]t’ é’?u

Wd,f[zl_LL—ﬂ (6) o, e -

._______.;«t_/t.._):_('__: il T

g
i i |
| | |

: I PR
&‘”’szxj fo P“j(.’ ¢'§f b{c §g/4{7{¢n 2o 7”/?
obove  egn s

“FP/_ AR NG Eae (z\f) P ( 2 Sn t//\l o
m,’(Lm/ —)‘ﬂf =07 Aod T letin x =0 df e ition ‘Q/)""J
b ek frﬂns ; e J7 iz
B N xdo = e cec fa )+ o sl 0)
- \! e d,: C; AR S e P o A

- =, el £S5 L BREEET =

Vo ')«C é!n{)\‘{')-l’)\C Cos_c__)\"f)
)= =N, K 0) + Ao £05(A0)
0= A C

o

il MR RS = LA =R

Introduction to Statics and Dynamics, (¢) Andy Ruina and Rudra Pratap 1992-2009.



20

Chapter 9.3. Elementary vibration analysis

Problem 9.3.6 (continued)
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Chapter 9.3. Elementary vibration analysis Problem 9.3.6 (continued)
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22 Chapter 9.3. Elementary vibration analysis Problem 9.3.10

9.3.10 Mass m hangs from a spring g) Assume that the mass is released
with constant k& and which has the length from an an initial position of x =
Iy when it is relaxed (i.e., when no mass is D. What is the motion of the mass?
attached). It only moves vertically. h) What is the period of oscillation of

a) Draw a Free Body Diagram of the this oscillating mass?
mass. i) Why might this solution not make

physical sense for a long, soft

spring if the initial stretch is large.

In other words, what is wrong with

¢) Reduce this equation to a standard this solution if D > £q +2mg/k?
differential equation in x, the posi-
tion x of the mass.

b) Write the equation of linear mo-
mentum balance.

d) Verify that one solution is that x(¢)
is constant at x = [ + mg/k. Iy

e) What is the meaning of that solu- k
tion? (That is, describe in words
what is going on.)

X
f) Define a new variable ¥ = x—(/y+
mg/k). Substitute x = X + ([g +
mg/ k) into your differential equa- m
tion and note that the equation is
simpler in terms of the variable X. Problem 9.10
453 |
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Chapter 9.3. Elementary vibration analysis Problem 9.3.12

23

9.3.12 A person jumps on a trampoline.
The trampoline is modeled as having an
effective vertical undamped linear spring
with stiffness & = 2001bf/ ft. The person
is modeled as a rigid mass m = 150 lbm.
g = 32.21t/s2.

a) What is the period of motion if the
person’s motion is so small that her
feet never leave the trampoline?

b) What is the maximum amplitude of
motion (amplitude of the sine wave)
for which her feet never leave the
trampoline?

c¢) (harder) If she repeatedly jumps so
that her feet clear the trampoline by
a height ~ = 5ft, what is the pe-

riod of this motion (note, the con-
tact time is not exactly half of a vi-
bration period)? [Hint, a neat graph
of height vs time will help.]
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24 Chapter 9.3. Elementary vibration analysis Problem 9.3.12 (continued)

XY A
s~ —
; 1
2Br-NC - - Al - -
k2 }Z L {
i |
Vv & 5

PRRABOLIC

[

1
EER

) DINUSo DAL i

i

f

i

!

RO,

0 analyze, ASSUNL e begin atr ponr A, a height
of 5 feod albore e Srzcapoline. (;(:5) % = O\)

Ff’t)m /A\"; 63 K(t> = %‘”s‘{:gu}»ho E= Swé'%ta
3’((?{5\) =0 (,,Q\”\Qf\ 5”?&%’{:%*0 , o 't‘: ’%%‘%%
t* 05573 zeconds

S TToR A e Rom O o B s t = LIS second s
@B, X= 0 ond k= -gt/tosmy = -17.A45 Mok,

e use Ynig a8 an ialNal condilon o defire o ca

Sine wave , serhag pont B e €20,

X(£Y = /’(sm(\f—%&) + dﬁaﬁo%(\}-gk>- 3%‘-

Introduction to Statics and Dynamics, (¢) Andy Ruina and Rudra Pratap 1992-2009.



Chapter 9.3. Elementary vibration analysis Problem 9.3.12 (continued)
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oo o (BE)

- don (a%.;amii*

~17.9u5 Y |

‘dr\‘ﬁm

) [ [PEER L 0040 s
)

';?30 m“wv‘ w?’

D) shence Bora @ 4o %N‘ = 0.04D79 5

(e Faow distmie Ronn B 4y B = L. 04595

2 O.H98 geconds
Frm B 4 O 15 dhe Sorme o5 B 4o B2 0.0M074 ¢

s TTote) pedd TE LS54 8(00408<) + 0.47AS s

= LG seconds
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26 Chapter 9.4. Coupled motion in 1D Problem 9.4.14

The primary emphasis of this section
is setting up correct differential equations
(without sign errors) and solving these
equations on the computer.

9.4.14 x{(¢) and x,(¢) are measured po- Xl(t>1
sitions on two points of a vibrating struc- I
ture. x;(¢) is shown. Some candidates o X
for x,(¢) are shown. Which of the x,(¢) 7
could possibly be associated with a normal X
mode vibration of the structure? Answer ?
“could” or “could not” next to each choice o X0
and briefly explain your answer (If a curve 7]
looks like it is meant to be a sine/cosine o XA
o, . ?
curve, it is.) A
o )ng
r‘A\. | figure-blue-144-1
Problem 9.14
I~ (oofF a a0 P06 o+ texd
N ‘ ~
x)  Coulp ; " //,fy have J 7 y
).) )\ C L/a
c ) C ou ld not Iz 4 ( /
Y
(")) /0 '/1 n ]r/(ff// n ) ( 7 7 ) >
N
) ~ / }
.ﬂ [ 1 % Y ¢ )
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Problem 9.4.17
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9.4.17 Two masses are connected to fixed
supports and each other with the three
springs and dashpot shown. The force F
acts on mass 2. The displacements x; and
X, are defined so that x; = x, = 0 when
the springs are unstretched. The ground is
frictionless. The governing equations for
the system shown can be written in first
order form if we define v; = Xx; and
Uy = ).Cz.

a) Write the governing equations in a
neat first order form. Your equa-
tions should be in terms of any or all
of the constants m, m,, ki, ky.k3,
C, the constant force F, and ¢. Get-
ting the signs right is important.

b) Write computer commands to find
and plot vy (¢) for 10 units of time.
Make up appropriate initial condi-
tions.

¢) For constants and initial conditions
of your choosing, plot x; vs ¢ for
enough time so that decaying erratic
oscillations can be observed.

X2

Probiem 9.17

- Ve
{ l"’ ay e gav, e 7 \Z," + loo fou
b). Seo attackad )[;{,u
N " - ) , )
<) /Vioa(,;ié, the (g9da ’ o) o /4"/1 ér"b T PU“” A
time t  Sen  thy do Cowp;ng  octillations,
oo

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.
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28 Chapter 9.4. Coupled motion in 1D Problem 9.4.17 (continued)

% problem 9.76

function question976

Ytime span

tspan = [0,10]; Y%integrate for 10 sec

z0 =0, 0, 0, 0] %initial position and velocity
%[x0, vx0, y0, vy0]

%solves the ODEs

[t z] = ode45(@rhs,tspan,z0);

%Unpack the variables

x1 =1z(;,1);
vl =2(:,2);
x2 =2z(:,3);
v2 =1z7(:,4);

Yoplot the results

plot(t,v1)

title('Ka Ming Lam"s plot of v1 vs t)
xlabel('t(s)")

ylabel('v1(m/s)')

Yeset grid, xmin, xmax, ymin, ymax

end
% \

function zdot = rhs(t,z)
x1=z(1); vl=2zQ2); x2=2z3); v2=2z(4),

%put in vlaues for mass, C and g below
ml =2;

m2 =20; % masses in kg

C=04; %inkg/s

F =120,
kl=1;
k2=1;

k3=1; %k inN/m

% the linear momentum balance eqns:

x1ldot =vl;
vldot = (-k2-k1)/m1*x1+k2/m1*x2;
x2dot = v2;

v2dot = F/m2-C/m2*v2-(k3+k2)/m2*x2+k2/m2*x1;

zdot = [x1dot;v1dot ; x2dot;v2dot];  %this is what the function returns (column vector)

end

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.
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Problem 9.4.17 (continued)
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b). Here is the plot

v1(m/s)

14

12

Ka Ming Lam"s plot of ¥1 vs t

T T T T T T T

1 2 3 4 5 6 7 8
t(s)

¢). In order to have a decaying erratic oscillation we need to increase tspan to [0 100] for
this case

x1(m)

90

80

70

60

&0

40

30

20

10

Ka Ming Lam"s plot of x1 vs t

T T T T T T T T T
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30 Chapter 9.4. Coupled motion in 1D Problem 9.4.23
9.4.23 For the three-mass system shown, b) Make a neat plot of x, versus xj
assume x; = X, = x3 = 0 when all for one cycle of vibration with this
the springs are fully relaxed. One of the mode.
normal modes is described with the initial — L [ b [ —obe [ —
S — \ \
condition (xq ¢, X5, x3) = (1,0, —1).
a) What is the angular frequency w
for this mode? Answer in terms of
L,m,k, and g. (Hint: Note that e
in this mode of vibration the middle Problem 9.23
mass does not move.)
®
> L L
7‘ 84 M!ﬁp&es ‘(_,. ,‘4 S e ;*, ) 54
J kR Hﬂah %
;‘v‘\{‘;v ANA~— k 1
VAR A /7‘,?—, ,7«»-—_—33:__.,_?/“/
3 - Mass SYstem , connected ’D&} Sprinf?s
with stiffness k. AU the mas 75 m .
Assume X =X2=Xs  where all springs  are at rest.
A normal mode of this system can be described as eigenvector
,o., =1, -

Q. . What’s the. frecluenu; wrra/)oa,dlm?

b ths hormad_ mode ?

2). Plot Az versus X, Jor one ey of Vibmation in this pods.
Solution. 1), First . we wart B derye the equatins 07[ motim. for
this system, starting From FED.
N/
FBD. — 7 Eg, . of motiong
ass 1 (X,
e ] o p
<—.———- hO—X Im¥%3 = Rexe-dx0-RA5Y
137 > m;:}
mass 2 (XI)
~R0OeA03 . N
@——-‘ m 1—-> h()’;;‘)(k); Tmiz1 = k(xb‘h)'/{\‘h(xl‘xoi }
N
{y-1 > \mxz—kx.~2kx +loo<’1
masgs 3 (A3> -
~ROsXIT e U mdst = kA3 T - ROt-%2>2
é——-—] m !<—~— 2 ]
iy-1 \m@—hm—zkx”
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Chapter 9.4. Coupled motion in 1D Problem 9.4.23 (continued) 31

(‘Mm cont'd ) @

Secord, by definition of hormal mode, for  this  rormal moda
with (1, 0.-1) . We can rite

X) !
Xa| = [ o |Awscwt + §) . :
X3 . By = o(cwtlxj_ n Or oyt Of 7D)uue,
Same frequenty | e want o sole it
Mphtuiﬂ L simple. hatmanic Function
= 4 ’ 47 wswt +9)
Xa | = o |A ——F— _ '
R e K T
Third, . substitute  [X1 . [X] for this  pomal mode e etua«ﬂ'cws af
Motions -
m oo o[ ] 2k ~h o Ay 0
omv] 'xLl* "k 2k -R | | x| o
oo mil¥; o -k 2k X3 0
= m o 0 2k ~k O l
§ A® cas(wt + i
- o m o | [0} ¢) + _h )h ..k OACU’S(W‘H*P): 0
o p ™ j - o -k 2k} LU o
m 2k,
= B N w: + o =
~m -2k
> ~hmw' '+ 2k =0 =
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32 Chapter 9.4. Coupled motion in 1D Problem 9.4.23 (continued)

(982 , cact’d O,

(23 Fram (>. we ,élww in this moda
A= Acos (bt +6
2 = O

Duri/x.} one cyde . )h)(. vibrates <n [-A. A]  and N2 remaas O.

N
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9.5.6 Before a collision two particles,
my = Tkg and mg = 9kg, have veloc-
ities of v, = 6m/s and v = 2m/s. The
coefficient of restitution is ¢ = .5. Find
the impulse of mass A on mass B and the
velocities of the two masses after the colli-
sion. B | ;

B (777 B T e

| . _;_ /-._c”‘ ff?!c?/ LAl [6’// "Slon Live }_-1_4"»__’ _.f_:c_f_)fs
| e : ’
Je=s = j SR 2,&’5

BEe - | Uﬁ /ﬂﬂ‘l/g =2 T [/.!g_-_: _5_4;‘71/5 _”_.
. | Afty he . J-s://j’__s.;'an - I

| | . Lo ]//;-:':_R;VT/S_ 5. R oo . = . |

EN_ "1) ﬂfﬂiﬁr?n?"”““‘_ ‘?f /{’ bé‘f"/{’ /'7//‘5)‘&9/1 & _ '|

|_ 1§ ! L7, "{C’nﬂ

- uigs ! ﬂrm;mf'hz‘_ '*I F”I i Vi | - |

B lr) r.:'.;ffgff""" /ﬁwreaﬁ{m before {-?/A:sf_‘m ]

== ?}L‘J'fém _ Mimeén ({m

omenlim = MaVy + o v i

L lbefere Uil oo — gt |

Vi
i By _._V_";__ __vﬁ___yﬁ_ —

=y Mg} B ZQ . T
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34 Chapter 9.5. 1D Collisions Problem 9.5.6 (continued)

r’.f/ g{j{_ (0’1?/’#“{!& - —

fj) ":E’."..‘H.‘Fff!f_.[ln{ﬁfl 6"7£ /4— q_fI(/gy fﬁ’/} Sson _-'- o
| monenlum = My VH B s
’5) : _;.t.ﬁ.ﬁ’f’? M #Mf?iff"f_"" a ft’ff’ £ //,“5,'@,,, £ ‘f

,‘:‘y;;fm-; mi "'*f’_&zdf*? 'ﬁ_fiﬁ’y = Syslem _ Mpmeunfum .21.”7%»2? -

7[) ﬂ‘[iw;(?n{'umr J E d,'('frfr /.r:-‘//f a’.-:?h =

Syclem  yyomenlvm _after = romenfom 4 + momey F’-%L{a% i
_ memenlion, = [|2 Jegrals | ¢

i S - — =

j) Hﬂrbk/ & /‘q__ C"’J_-’)E_/ &< fﬂ }'E .\ __. e b
B Mal i - ) . Lo

| v = (£-10) kom/e Lol —
BN l’j ’?1/51,] : . 3

k) f.r_flfz_»r_/c.-.f S ﬁ?/l/jf’__ i _— — .:'
_.).‘i:ul. = 'r'wf?_(_uh’ = f/‘éﬁ) =

(] 7~18) }’j{“/r
__Lr__.r;_—u}-— A !’{_"m/; L. =
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@ ?4 <F¢ ._/onffmcga, - = J

) B be fore .éjé;}n—?_____ !
e v et

- 1

B 5

?7 £.r‘ GUZ‘?/FV Jﬂ//fs.r’ﬂ}’l? i - ;
J ; 1
—~—i- —_— - _1'-'- :'_E_ JHA [Vﬁ_) S ? !E'( V;}) rE

|
— e —
|

. 0 = J?LC j)/a@,ﬂ_) 'L(Z%)(é/}“”/sl

qa_’ JE = dpll S |
_:-”C)_(”fﬂﬁ’“fﬂ'{ el teslilalien ?__ i

SIS T R
e (-l —tefre-s)mfs - | |
= . e —

R 547_' TS
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36 Chapter 9.5. 1D Collisions Problem 9.5.6 (continued)

Problem 9.84
If you assumed vj = 6 m/s, than the following answers will change
d) 6 kg m/s
f) 14 kg m/s
g) —4 kg m/s. You get this by solving v} = 7 m/s

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.
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Problem 9.5.10
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9.5.10 A basketball with mass my is
dropped from height % onto the hard solid
ground on which it has coefficient of resti-
tution ep. Just on top of the basketball,
falling with it and then bouncing against
it after the basketball hits the ground, is a
small rubber ball with mass m,. that has a
coefficient of restitution e, with the bas-
ketball.

a) In terms of some or all of my, m,.,

h, g, ey and e, how high does the
rubber ball bounce (measure height
relative to the collision point)?

b) Assuming the coefficients of resti-
tution are less than or equal to
one, for given h, what mass and
restitution parameters maximize the
height of the bounce of the rubber
ball and what is that height?

a.qg |
R |

Introduction to Statics and Dynamics,

Posketrboll with mass My, dopped Lo heignt ' esep

Small cubber ball with mass M e= e,

A) Treok ¥nis as hoo collisioas .
L) basketoall hive geound
Vo =0, cons. of enerqy \/p;@%‘ (be foee Wit)
After collison v= ey Vp = eb\}"égg‘

(L) bosketoell ond rlober pall eollide

AT‘ @‘ \/(- =" Qsh D) \/b_.:- ebw
L] 3
Qb mb\/me,oJr” = MV s rt“:r;\/(»+ (1)
(
Vet- \/bkf g('(\/b"\/F-) (2>
From (2), Vots ViT-eeVp rerve”
= Ve - ey fBgh - erJaan
= V- @r@ (1rep)
Plug oo (1), mye, J3gn - M VB3 = eV + oy (4 ¢ B (i)
oR JQS"B (mveb* mr> SANE AR VAS Mpee Dan (1re0)
= \/r+((‘f‘:r‘ ) = mber\ygf}: (%&0\3
S VS (Nere0g) = JBgn [mbeb' M M€ (Irep) ]

N 8y () + N
or vr‘+ - \] aan { of My De_r{h Cb;]
Me+ My

Tz

nex+
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38 Chapter 9.5. 1D Collisions Problem 9.5.10 (continued)

Consecvation of erermy
Peghe = 5 meve?) o hes o (v

1 L 1 s, a
s g (o4 )]

mr‘\' mb

o s h[

mbeb" (Y‘s(w Mbe(“ (!‘Y fb} a
mb‘% M

b) To maxiize N, we con bean by recognizing Haatr

iewfﬁs Cp = €z 1 toaxlmizes Hre aurezioe oF

e pem cheted expression.

hesh ( mb»rﬁp+9mb>’a: h 00~ M\
M+ M Oy eeo,

This is maximized ©vy 1<\c;~ca:3$n3 My ond de -
CJ’C&S?(\% e

Y We want ep=€rz= 1 and the \oc-ges*'
Tafo of My, 4o M possitle.

. )
hrjmax = \F‘\ (e’:{ztoo = Cth

Theorehaal Mmax Nho= 9N
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10.1.22 An object C of mass 2 kg is pulled
by three strings as shown. The acceleration
of the object at the position shown is @ =

(—0.6i —02j + 2.01}) m/s2.

a) Draw a free body diagram of the
mass.

b) Write the equation of linear mo-
mentum balance for the mass. Use
A’s as unit vectors along the strings.

c¢) Find the three tensions 77, 7,, and
T5 at the instant shown. You may
find these tensions by using hand
algebra with the scalar equations,

using a computer with the matrix
equation, or by using a cross prod-
uct on the vector equation.

Z

T, |—— 4m ——
< T3

T \
1m
P
/ ‘5—’ C

Problem 10.22

0. 83 |
o ~06L-0.25+2.0% ["‘/53) s 2}&;3
Q) Free body diagram:
. Tg";\b:i | Tg&g, :m'“' LoC+ 155 L)
: A~ =
5 g o e b
: ] fa= A0k Tm]

-rogk 5= 40j+ 20k [e}
b> (\ma: ?\z”Fm: ]OZ“LSS*QO; {Fzmviz: - Qq
=2 -

~

-
3(’,\0@;: %{' 29
[Pos)= 25

>

A

Z F?Zmal‘ Tzs‘x*n ?\g*—%?\g Pﬁf\):

R Qlg(-060-03] +2.0k)= T, (ng)(

155+2.0%)
+ *é/@X" -85+ 200 ) +T (‘“ﬁ)(mﬁs\; g}gk) ey

I
In com@otest frm:
¢ (-12)=
3(-0y) -
k(ys1960) <

tFTMT 0T, - 02981T3)
SCossnT -055MT + 0.7us4TR)
v (5 IUDRT, A ATMOR T, + A 5H6R Ty
ComTINVED

Z on PRGE M
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40 Chapter 10.1. Dynamics of a particle in space Problem 10.1.22 (continued)

10.22 corfinued.

T madrix Kem, ue have:

=

. )
S ’>O,6“7M 037 -0881 |
|
|

o]

-0 : -0557| -0.557  0usH
A3.0a , OM2F 028 05463 J T‘g

w1

o

SOW;“% 0 Matlab vields:

J-m 428 N
I'T,;;:: 58@3\]
| Tz 453 N

B bercede 5\/> see Matlao code (nodiGed Soc

Provieen 10,177) o0 previouns paqe.
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Problem 10.1.26

41

10.1.26 Bungy Jumping. In a relatively
safe bungy jumping system, people jump
up from the ground while being pulled up
by a rope that runs over a pulley at O and
is connected to a stretched spring anchored
at B. The ideal pulley has negligible size,
mass, and friction. For the situation shown
the spring AB has rest length {5 = 2m and
a stiffness of & = 200N/ m. The inexten-
sible massless rope from A to P has length
£, = 8m, the person has a mass of 100 kg.
Take O to be the origin of an xy coordinate
system aligned with the unit vectors 7 and

J

a) Assume you are given the position
of the person ¥ = xt + yj and the
velocity of the person v = X7 +
yj. Find her acceleration in terms
of some or all of her position, her
velocity, and the other parameters
given. Then use the numbers given,
where supplied, in your final an-
Swer.

b) Given that bungy jumper’s initial
position and velocity are 7, =
1mi—5mj and vy = 0 write com-
puter commands to find her position

at ¢ =n/ﬁs.

c) Find the answer to part (b) with
pencil and paper (that is, find an
analytic solution to the differential
equations, a final numerical answer
is desired).

i 10 m ‘
A

o«

lg=10m/s2

ground, no contact

after jump off
M~ jump
|

Problem 10.26: Conceptual setup for a
bungy jumping system.

0.86 |
e L
Sy » £l 3, Given: =200 Nin
1020000020000
N ¢ foz am
\
\ s Lop = &, Le
g M= 100 kg
P m
Assorme (o aic deae,
- ~ ~ ~ ~
a) Rexl+yl, Vexl+9], Find 3
Persary @ (1) Pocrey: (@) >
. Al O xE
LN Qh*ﬁé: s \Fi‘r”’r“"x,bz
-g3 ’

5= exlosion of spring = /Q—)Zot whee L= 10-(2- <P )
87
. /) Y
R 08+ R = g [ge
O» ,é-/fo z ,(9*69

”"1,%% (ension on botn sides of
- 1] Y
= & )Py

-2 -~
< -3 o
ZF=md = TA-mal

Fom FRD Q¢

pulley must be e@,,&\\/
Froen FRO 1

0 T+ g §
- e . 09 . >
ARIXTE W -mnq N = (Na

N o~ 1 -
o/ - LByl - (Ageroa) § = A - Plug o valwes

a =.»%ao Neey L Méﬁ*“’“‘iﬁﬁi )

10okg B 100 kg

- [oxE - (g o) T3
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Chapter 10.1. Dynamics of a particle in space

Problem 10.1.26 (continued)

Problem 10.26 (b).

Probl026¢)

>OLL LGN

[1 -517;
[C 0]";
{(x0;v0};

tspan =[0 pi/sqrt{(2)]; “vive

{t zarray] = oded5(@rhs,tspan, z0);

npack Varia

r= zarray(:,1:2};

disp(r{end,:));

eni

» ;2)} {5
z(3:14);

i eguat iions

rdot= v;
vdots [=2%r (1) -2%r(2)-10]1"';

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.
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b) See Matblo code on Previous Poae

C) S et (a),
Vt%%gﬁ“ax3~(ﬁg+ia3§

(%=L =2 Xx=z=Rx (1

(4=8g-10)] -] 2= §=2g-10 (2
Solve (1) ond (8) with 2(0): £-53 5 ¥ (0)= 3

(1) X=Qx | 30 x(£)= Asin (J5+)+ Beos (B £)
x(&) = Ja Reos(J5t) -{BBsin (VB L)
x(0):0= 3R . A=0

x(0)z 4= Beoslo) ~ B:1

X ()= cos(Jat)
/8

(3 § = -8g-10, 50 ¢(®)= C5a(Jot) + Deas ($t) - &
4d=0= Jac -~ C=0
4(0)= -5= Deos(0)-5 .~ D:0
g(E)s -5

Introduction to Statics and Dynamics, (¢) Andy Ruina and Rudra Pratap 1992-2009.
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10.1.30 The equations of motion from
problem ?? are nonlinear and cannot be
solved in closed form for the position of
the baseball. Instead, solve the equations
numerically. Make a computer simulation
of the flight of the baseball, as follows.

a)

b)

Convert the equation of motion into
a system of first order differential
equations.

Pick values for the gravitational
constant g, the coefficient of resis-
tance b, and initial speed v, solve
for the x and y coordinates of the
ball and make a plots its trajectory
for various initial angles 6y,.

c)

d)

e)

Use Euler’s, Runge-Kutta, or other
suitable method to numerically in-
tegrate the system of equations.

Use your simulation to find the ini-
tial angle that maximizes the dis-
tance of travel for ball, with and
without air resistance.

If the air resistance is very high,
what is a qualitative description for
the curve described by the path of
the ball? Show this with an accurate
plot of the trajectory. (Make sure to
integrate long enough for the ball to
get back to the ground.)

G

vesis fence

A _6‘9/;&9:/ o ball

~— f«/‘t’n] P i T

Aj;  resktance

gravity

'b (X-'Z‘?'y'k) i Cé{‘?)
B

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.
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Problem 10.1.30 (continued)
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10.30 (continued)
b). See attached codes and results
%problem 10.30(a)

function solution1030a

%solution to 10.30

%September 23,2008

b=1; m=1; g=10; % give values for b,m and g here
%Initial conditions and time span
tspan=[0:0.001:5]; %integrate for 50 seconds

X0=0;
y0=0; %initial position
v0=50; %magnitude of initial velocity (m/s)

theta0=20; %angle of initial velocity (in degrees)

z0=[x0,y0,v0*cos(theta0*pi/180),v0*sin(theta0*pi/180)]’;

%solves the ODEs
[t,z] = ode45(@rhs,tspan,z0,[],b,m,g);

%Unpack the variables
x=2(:,1);

y =2(:,2);

v_x=2(:3);
v_y=2(:,4);

%plot the results

plot(x,y);

xlabel('x(m)");

ylabel(y(m)");

%set grid,xmin,xmax,ymin,ymax

axis([0,5,0,5]);

title(['Plot of Trajectory for theta=',num2str(theta0)," degrees');

end
% %
function zdot = rhs(t,z,b,m,g) %function to define ODE

x=2(1); y=2(2); v_x=2(3); v_y=2(4);

%the linear momentum balance eqns
xdot=v_x;
v_xdot=-(b/m)*v_x*(v_x"2+v_y"2)"0.5;

ydot=v_y;
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Problem 10.1.30 (continued)

v_ydot=-g-(b/m)*v_y*(v_x"2+v_y"2)"0.5;

zdot=[xdot; ydot; v_xdot; v_ydot]; %this is what the function returns (column vector)

end

%

%

Plat of Trajectory for theta= 20 degrees

4.8
348

Eos
=

4.5

515

2.5

yirm)

Plat of Trajectory for theta= 40 degrees

45
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Plat of Trajectory for theta= 70 degrees
5 T T T T T T T

1
2 25 3 35 4 45 5
x(rmj

c). Disregard this question. This question intends to ask you develop your own ode solver similar

to ode45, using Euler’s method or more sophisticated method (Ruger-Kutta method).

d). To find out x distance, we use ‘stopevent’ to terminate the integration at y=0. Then loop over
for theta from 0.1 to 89.1 degree with an increment of 1 degree.

Y%problem 10.30(d)

function solution1030d

%solution to 10.30

%September 23,2008

b=1; m=1; g=10; % give values for b,m and g here
%lnitial conditions and time span

tspan=[0 50]; %integrate for 50 seconds

Xx0=0;

y0=0; %initial position

v0=50; %magnitude of initial velocity (m/s)

theta0=[0.1:1:89.1]; %angle of initial velocity (in degrees)
distance=zeros(size(theta0)); %arrays to record x distance at y=0 for each angle

for i=1:length(theta0)
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48 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

z0=[x0,y0,v0*cos(theta0(i)*pi/180),v0*sin(thetaO(i)*pi/180)]’;

options=odeset(‘events', @stopevent);
%solves the ODEs
[t,z] = ode45(@rhs,tspan,z0,options,b,m,q);

%Unpack the variables

x=2z(:,1);

distance(i)=x(end);% the last component of x is the distance we want
end

plot(theta0,distance,*")

xlabel(‘theta(degrees)');

ylabel('distance(m)");

%set grid,xmin,xmax,ymin,ymax

title(['plot of x distance for various theta']);

[maxd,j]=max(distance);
fprintf(1,\nThe maximum distance is %6.4f m when theta=%2.0f degrees\n’, maxd,theta0(j));
%print the results

end
% %
function zdot = rhs(t,z,b,m,g) %function to define ODE

x=z(1); y=2(2); v_x=z(3); v_y=z(4);

%the linear momentum balance eqns
xdot=v_x;
v_xdot=-(b/m)*v_x*(v_x"2+v_y"2)"0.5;
ydot=v_y;
v_ydot=-g-(b/m)*v_y*(v_x"2+v_y"2)"0.5;

zdot=[xdot; ydot; v_xdot; v_ydot]; %this is what the function returns (column vector)

end

% %
function [value, isterminal, dir]= stopevent(t,z,b,m,g,v0,theta)
% terminate the integration at y=0

x=2(1);

y=2(2);

value=y;

isterminal=1;

dir=-1;

end
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Matlab out put: The maximum distance is 3.3806 m when theta=23 degrees

10.30 (Continued)
The x distance at y=0 for various theta is plotted below

plot of x distance for various theta
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e). Use the code for (a) and change b to a very large number, 100000. The trajectory looks like

w10 Plot of Trajectory for theta= 40 degrees

g T T T T T T T

which is approximately a triangle.
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10.30 Another solution (more detailed)
The m file attached does the following.

a) uses events and x(end) to calculate range.

b) has that embedded in a loop so that there is an angle(i) and
a range(i)

c) Makes a nice plot of range vs angle

d) uses MAX to find the maximum range and corresponding angle

e) has good numerics to show that the trajectory shape converges to
a triangle as the speed -> infinity.
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Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

function baseball_trajectory

% Calculates the trajectory of a baseball.
% Calculates maximum range for given speed,
% with and without air friction.

% Shows shape of path at high speed.
disp(['Start time: ' datestr(now)])

cla

% (a) ODEs are in the function rhs far below.

% The 'event' fn that stops the integration

% when the ball hits the ground is in 'eventfn'
% even further below.

% (b) Coefficients for a real baseball taken

% from a google search, which finds a paper

% Sawicki et al, Am. J. Phys. 71(11), Nov 2003.

% Greg Sawicki, by the way, learned some dynamics
% in TAM 203 from Ruina at Cornell.

% ALl parameters in MKS.

m = 0.145; % mass of baseball, 5.1 oz

rho = 1.23; % density of air in kg/mA3

r = 0.0366; % baseball radius (1.44 in)

A = pi*rAz; % cross sectional area of ball

C_d = 0.35; % varies, this is typical

g = 9.81; % typical g on earth

b = C_d*rho*A/2; % net coeff of vA2 in drag force
70, /0,0, /0,0, /0,0,

% (b-d) Use typical homerun hit speed and look
% at various angles of hit.

tspan=linspace(0,100,1001); % give plenty of time

n = 45; % number of simulations

angle = linspace(1,89,n); % launch from 1 to 89 degrees
rg=[@ 0]'; % Launch x and y position.

% First case: No air friction.
b =0;

subplot(3,2,1)

hold off

% Try lots of launch angles, one simulation for

% each launch angle.

for i = 1:n

inspeed = 44; % typical homerun hit (m/s), 98 mph.

theta® = angle(i)*pi/180; % initial angle this simulation

v@=inspeed*[cos(theta®) sin(theta®)]'; %launch velocity
z0=[r0@; v@]; % initial position and velocity
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52 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

options=odeset('events',@eventfn);
[t zarray]=ode45(@rhs,tspan,z@,options,g,b,m); %Solve ODE

x=zarray(:,1); y=zarray(:,2); %Unpack positions
range(i)= x(end); % x value at end, when ball hits ground

plot(x,y); title('Jane Cho: Baseball trajectories, no air friction')
xlabel('x, meters'); ylabel('y, meters'); axis('equal')

axis([@ 200 0 200])

hold on % save plot for over-writing

end % end of for loop for no-friction trajectories

%Plot range vs angle, no friction case
subplot(3,2,2); hold off;

plot(angle,range);

title('Range vs hit angle, no air friction')
xlabel('Launch angle, in degrees')
ylabel('Hit distance, in meters')

% Pick out best angle and distance
[bestx besti] = max(range);
disp(['No friction case:'])
best_theta_deg = angle(besti)
bestx

% Second case: WITH air friction
% Identical to code above but now b is NOT zero.
b = C_d*rho*A/2; % net coeff of vA2 in drag force

subplot(3,2,3)
hold off % clear plot overwrites

% Try lots of launch angles
for i =1:n %
inspeed = 44; % typical homerun hit (m/s), 98 mph.

theta® = angle(i)*pi/180@; % initial angle this simulation
v@=inspeed*[cos(theta®) sin(theta®)]'; %launch velocity
z0=[r@; v@]; % initial position and velocity

options=odeset('events',@eventfn);
[t zarray]=ode45(@rhs,tspan,z@,options,g,b,m); %Solve ODE

x=zarray(:,1); y=zarray(:,2); %Unpack positions
range(i)= x(end); % x value at end, when ball hits ground

plot(x,y); title('Baseball trajectories, with air friction')

xlabel('x, meters'); ylabel('y, meters'); axis('equal')
axis([@ 120 0 120])
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Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

hold on % save plot for over-writing
end % end of for loop for with-friction trajectories

%Plot range vs angle, no friction case
subplot(3,2,4);

plot(angle,range);

title('Range vs hit angle, with air friction')
xlabel('Launch angle, in degrees')

ylabel('Hit distance, in meters')

%Find Max range and corresponding launch angle
[bestx besti] = max(range);

disp(['With Friction:'])

best_theta_deg = angle(besti)

bestx

% Now look at trajectories at a variety of speeds

% Try lots of launch angles

subplot(3,2,6)

hold off

speeds = 10.Alinspace(1,8,30); % speeds from 1 to 100 million m/s
for i = 1:30 %

inspeed = speeds(i); % typical homerun hit (m/s), 98 mph.

theta@ = pi/4; % initial angle is 45 degrees at all speeds
v@=inspeed*[cos(theta®) sin(theta®)]'; %launch velocity
z0=[r0@; v@]; % initial position and velocity

options=odeset('events',@eventfn);
[t zarray]l=ode45(@rhs,tspan,z@,options,g,b,m); %Solve ODE

x=zarray(:,1); y=zarray(:,2); %Unpack positions
range(i)= x(end); % x value at end, when ball hits ground

plot(x,y); title('Trajectories, with air friction, various speeds ')
xlabel('x, meters'); ylabel('y, meters'); axis('equal')

axis([@ 2000 @ 2000])

hold on % save plot for over-writing

end % end of for loop for range at various speeds

disp(['End time: ' datestr(now)])
end % end of Baseball_trajectory.m

% Governing Ord Diff Egs.
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function zdot=rhs(t,z,g,b,m)
% Unpack the variables
x=z(1); y=2(2);

vx=z(3); vy=z(4);

%The ODEs

xdot=vx; ydot=vy; v = sqrt(vxA2+vyA2);
vxdot=-b*vx*v/m;

vydot=-b*vy*v/m - g;

zdot= [xdot;ydot;vxdot;vydot]; % Packed up again.
end

/0,0, /0, /0,
% 'Event' that ball hits the ground
function [value isterminal dir] = eventfn(t,z,g,b,m)

y=2(2);

value = y; % When this is zero, integration stops
isterminal = 1; % 1 means stop.

dir= -1; % -1 means ball is falling when it hits
end
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Problem 10.1.30 (continued)

55

Jane Cho: Baseball trajectories, no air friction
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Chapter 10.1. Dynamics of a particle in space

Problem 10.1.30 (continued)

y, meters

y, meters

Baseball. For the first 4 plots realistic ball properties are used and the launch speed
is always 44 m/s (typical home run hit). Spin is ignored.

Jane Cho: Baseball trajectories, no air friction
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Chapter 10.2. Momentum and energy for particle motion Problem 10.2.22

10.2.22 At a time of interest, a particle b) rate of change of linear momentum
with mass m; = 5kg has position, ve- z‘

locity, and acceleration 7; = 3mi, v = o
—4m/sj, and @, = 6m /s2j, respec- c) aEgular momentum about the origin
tively. Another particle with mass m, = H,,

S.kg Eas position, AVCE) city, and acgelera- d) rate of change of angular momen-
tion 7, = —6mi, v, = 5m/sj, and R

@, = —4m/s?j, respectively. For this tum about the origin H

;}Ifls(;elrtrsl of two particles, and at this time, e) kinetic energy Ey, and

N f) rate of change of kinetic energy EK.
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. P/z.— nx(m,_ Z,) =
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Chapter 10.3. Central force motion

Problem 10.3.5

59

Experts note that these problems do
not use polar coordinates or any other
fancy coordinate systems. Such descrip-
tions come later in the text. At this point
we want to lay out the basic equations and
the qualitative features that can be found
by numerical integration of the equations
using Cartesian (xyz) coordinates.

10.3.5 An intercontinental misile, mod- Rewrite these equations as a system
elled as a particle, is launched on a ballis- of-4 first order ODE’s suitable for
tic trajectory from the surface of the earth. computer solution. Write appropri-
The force on the missile from the earth’s ate initial conditions for the ODE’s.
gravity is F' = mgR”/r” and is directed b) Using the computer (or any other

towards the center of the earth. When it is
launched from the equator it has speed v,
and in the direction shown, 45° from hor-
izontal (both measured relative to a New-
tonian reference frame). For the purposes
of this calculation ignore the earth’s rota-
tion. You can think of this problem as two-
dimensional in the plane shown. If you
need numbers, use the following values:

m = 1000 kg = missile mass

g = 10m/s* at the earth’s surface,

R = 6,400,000m = earth’s radius,

means) plot the trajectory of the
rocket after it is launched for a time
of 6670 seconds. [Hint: use a much
shorter time when debugging your
program.] On the same plot draw a
(round) circle for the earth.

and

Vg = 9000 m/s.
The distance of the missile from the center
of the earth is r(¢).

a) Draw a free body diagram of the
missile. Write the linear momen-
tum balance equation. Break this
equation into x and y components.

sure-594q12pl

Probl;:m 10.5: In intercontinental ballistic

missile launch.

TAM 2073

Homework Solubions Due 2/a7log

10. 6|

2 0
Given: F= msQ/pa\/ \/a; 45" fom hoazontal (O)

™M= 1000 ka, R= 6.4%10°m, v, =9000 s

a) Free body diagrom:

Assume )= x ()7 + K
3 2 ¥
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page 9/7

— 10.61b — Matlab code

function Probl061 ()
% Problem 10.61 Solution
March 27, 2008

oe

VARIABLES (Assume consistent units)
r = displacement vector [x,y]
v = velocity vector = dr/dt [vx,vy]

o0 o0 oe

m= 1000; % Mass of satellite (kg)

R= 6400000; % Radius of Earth (m)

g= 9.81; % Gravity acceleration (m/s”"2)
v0= 9000; % Initial velocity (m/s)
theta= 45; % Launch angle (degrees)

% INITIAL CONDITIONS

x0= R;

y0= 0;

vx0= vO*cosd(theta);
vy0= vO*sind(theta);
z0= [x0 y0 vx0 vyO]'; % pack variables

tspan= [0 6670]; % seconds
[t zarray]= oded45(@rhs, tspan,z0,[],m,R,qg);

—~ % Unpack Variables
x= zarray(:,1);
y= zarray(:,2);

plotix:y: 'T=="});
title('Plot of Earth and Satellite Orbit')
xlabel ('x [m]"'")
ylabel('y [m]")
axis (1000000*[-8 15 -8 15])
hold on;

% Draw the Earth
t= 0:pi/100:2*pi;
ex= R*cos(t):;

ey= R*sin(t);
plot (ex, ey, 'b') ;

end
% THE DIFFERENTIAL EQUATION 'The Right Hand Side'
function zdot = rhs(t,z,m,R,qg)

% Unpack variables
x= z(1);
= 2(2);
vx= z(3);
vy= z(4)

i
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61

)

- % The equations
xdot= vx;
vxdot= -g*R"2/ (x"2+y"2)"(3/2) *x;
ydot= vy;
vydot= —-g*R"2/(x"2+y"2)"(3/2)*y;
% Pack the rate of change of x,y,vx and vy
zdot= [xdot ydot vxdot wvydot]';

end

page 5/—7

10.61b — Satellite Orbit Plot

%108 Plot of Earth and Satellite Orbit
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11.1.10 Montgomery’s eight. Three
equal masses, say m = 1, are attracted by
an inverse-square gravity law with G = 1.
That is, each mass is attracted to the other
by F = Gmym,/r? where r is the dis-
tance between them. Use these unusual
and special initial positions:

(x1,y1) = (—0.97000436,0.24308753)
(X2,y2) = (_XIv_yl)
(x3,y3) = (0.0

and initial velocities

For each of the problems below show ac-
curate computer plots and explain any cu-
riosities.

a) Use computer integration to find
and plot the motions of the par-
ticles. Plot each with a different
color. Run the program for 2.1 time
units.

b) Same as above, but run for 10 time
units.

¢) Same as above, but change the ini-
tial conditions slightly.

d) Same as above, but change the ini-
tial conditions more and run for a
much longer time.

Page Y /C(

(vx3,vy3) = (0.93240737,0.86473146)
(vxl,vyl) = —(vx3,vy3)/2
(vx2,vy2) = —(vx3,vy3)/2.

.10

a)
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Chapter 11.1. Coupled motions of particles in space Problem 11.1.10 (continued)

63

function Probl110 ()
Problem 11.10 Solution
% April 1, 2008

% VARIABLES
G= 1;
m= 1;

o

Initial Conditions
r0l= [-0.97000436 0.24308753]'; r02= -r01l; r03= [0 0]';
v03= [0.93240737 0.86473146]'; v0l= -1/2*v03; v02= -1/2*v03;

z0= [r01l; r02; r03; v0l1l; v02; v03]; % pack variables
tspan= [0 10];

[t zarray]l= oded45(@rhs,tspan,z0,[],G,m);
% Unpack variables

rl= zarray(:,1:2);

r2= zarray(:,3:4);

r3= zarray(:,5:6);

plot(¥l(:,1), xl(:,2), ‘T");

hold on;

plot {2 (sy 1), 212525 "o==")s

plot (x3{z; 0} T305:2); 'g=s")3

end

3 THE DIFFERENTIAL EQUATIONS (RIGHT HAND SIDE)
function zdot = rhs(t,z,G,m)

% Unpack variables

rl= z(1:2);
r2= z(3:4);
r3= z(5:6);
vli= z(7:8);

v2= 2(9:10);
v3= z(11:12);

% The equations

rldot= vl; r2dot= v2; r3dot= v3;

vldot= G*m* ((r3-rl)/(sqrt(sum((r3-rl).”2)))"3+...
(r2-rl)/(sqrt(sum( (r2-rl) .”2)))"3);

v2dot= G*m* ((rl-r2)/(sqgrt(sum((rl-r2).72)))"3+...
(r3-r2) /(sqgrt(sum((r3-r2).72)))"3);

v3dot= G*m* ((rl-r3)/(sqrt(sum((rl-r3).72)))" 3+...
(r2-r3) /(sgrt(sum( (r2-r3).72)))*3);

Pack the rate of change variables
zdot= [rldot; r2dot; r3dot; vldot; v2dot; v3dot];

end
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Pa%e (o/q
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(@)

A5 -1 05 0 05 1 15
(b)
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66 Chapter 11.2. Collisions and explosions

Problem 11.2.7

11.2.7 Two frictionless equal-mass pucks
sliding on a plane collide as shown be-
low. Puck A is initially at rest. Given
that (Vg); = 1.0m/s, (V4); = 0, and
(V4)y = 0.5m/s, find the approach an-
gle ¢ and rebound angle y. The coefficient il

(VB)r

of restitution is ¢ = 0.9.

Problem 11.7
1y T
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Chapter 11.2. Collisions and explosions Problem 11.2.10
11.2.10 Solve the general two-particle on mass 2, and the velocities of the two

frictionless collision problem. For exam- masses after the collision.  Your pro-

ple, write computer code that has lines like gram should assume consistent units for all

this near the start : quantities.

1-3 2-19 S | ¢ a) You should demonstrate that your
ml_ i IO 20 Ie.t.veli uels ol rna;ses program works by solving at least
vlzero=[ ] Initia lve ocity o 4 different problems for which you

mass .
v2zero=[-5 3] Initial velocity of can chec}( your answer by Sim-

mass 2 ple pencil-and-paper calculations.
e=.5 Set coefficient of These problems should have as

) restitution much variety as possible. Sketch

theta=pi/4 Angle that the these problems clearly, show their

normal to contact analytic solution, and show that the

plane makes, computer agrees.

measured CCW from b) Solve th bl iven in th

+X axis, in radians ) Solve tl e problem given in the sam-
Your program (function, code, script) ple text given in the initial problem
should calculate the impulse of mass 1 statement.

%35 8/ 4
theta = 45; = % angle (degrees) between n and plus x ax
nx = cosd(theta);
ny = sind(theta);

n = [nx nyl'; iire
vlibef = [10 20]"';
v2bef = (-5 3]';
ml = 3; m2 = 19;
€ = 5
A= [ ml 0 m2 O 0 n
0 ml O m2 0 e
-nx -ny nx ny 0 1
0 0 m2 0 -nx
0 0 0 m2 -nyl;
b = [ml*vlbef + m2*v2bef; X
—e*sum( (v2bef-vlbef).*n);
m2*v2bef]; mpu
z= A\b;
di‘sp:(" kvl‘x;[L § vlyafr: - ‘v;_x:aft v2yaft pYy;
disp(z');
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Problem 11.2.10 (continued)

A ball m is thrown horizontally at
height /# and speed vy. It then has a
sequence of bounces on the horizontal
ground. Treating each collision as friction-
less with restitution coefficient e how far
has the ball travelled horizontally when it
just finishes bouncing? Answer in terms
of some or all of m,g,h, vy and e. A
ball m is thrown horizontally at height A
and speed vg. It then has a sequence of
bounces on the horizontal ground. Treat-
ing each collision as frictionless with resti-
tution coefficient ¢ how far has the ball
travelled horizontally when it just finishes
bouncing? Answer in terms of some or all

of m, g, h, vy and e.

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.



For all problems, unless stated other-
wise, treat all strings as inextensible, flex-
ible and massless. Treat all pulleys and
wheels as round, frictionless and mass-
less. Assume all massive objects are pre-
vented from rotating (e.g., wheels stay on
the ground, etc.). When numbers are called
for use g = 10m/s? or g = 32ft/s2.

12.1.6 For the various situations pictured,
find the acceleration of mass A and point
B. Clearly define any variables, coordi-
nates or sign conventions that you use.

@) A B

) A

———

F

(d)

ename:pulley 1

Problem 12.6: Four different ways to pull
a mass.

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.
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Chapter 12.1. 1D constrained motion and pulleys

Problem 12.1.14

73

12.1.14 For the situations pictured, find
the accelerations of mass A and of point B.
Clearly define any variables, coordinates
or sign conventions that you use.

a) A single mass and four pulleys.
b) Two masses and two pulleys.

¢) A single mass and four pulleys.

(a) A B

[ f—]

massless

Problem 12.14: Various pulley arrange-
ments.

- o A .
M xy = 'M,j@ xz} - T
a4,

f J“.’ = (,"9@6/3?0> - gf,\(;&’)

a1 P {
W'Ng}f m.m;m,’(“‘”‘ﬁz’ © ff @

e —— SUSPS——

o { MRy = =2 T =N ey,
9 oo ; &
A RS aN
" - a5y
My Xy = ”"7”'”"’3j (}J/
A A

J) o= {0&{:‘59} P wfgfh Y

s e et iy

- -2T +m, 9 sin b 9/; (2)
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Problem 12.1.14 (continued)

12104 b  continued
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Problem 12.1.14 (continued)
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76 Chapter 12.1. 1D constrained motion and pulleys Problem 12.1.26

12.1.26 Block A, with mass m 4, is pulled the mass passes through the posi-
to the right a distance d from the position tion where the spring is relaxed? .
it would have if the spring were relaxed. It
is then released from rest. Assume ideal
string, pulleys and wheels. The spring has
constant k.

a) What is the acceleration of block A
just after it is released (in terms of }—» —
k,my, and d)? X

b) What is the speed of the mass when roblem 12.26

TAM 2053
Homewotk Soluhon Due 4/&8/og

1.2

ORrRGINAL: PuLLED:

‘6%% ——Q___,W_ma

O O

a) Find +he sheetching of +he spring:
e kasw BC hos incceosed by 4, as well ag CD
and DB. Dince Hoe shooq s inextesiole,
Hhe SPnng must hove chresched by 24.

Fapring s Bkd, which musk egual Teaple

FBD: .
=2k
a 7 ——
on| ZFema,coeTimea | ax"Id |
T Wil

b) We know ;2:'3—‘;\—: , so x(t)= 0,c0s (2IE f>+C35{n(3J-,%t>
X(0)= 0= -¢,(3]E,)an(0) + ¢y (3IE, ) cos(0) ~ C3= 0

X(0)=d= ¢ cosd)- - &=d
x(t)= deos(aJE t) A0 2(t)= -24{E sin(3lE¢)
X(t)=0 - dcos(%i%t) k(%f%):-ivdﬁs‘“(%)

stik = 3
when sjbr'nr\s s rt\o\’éﬁé)
‘ 7'(= ‘%d\l k/rﬂg

oR t:%

r|2
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Chapter 12.2. 1D motion with 2D and 3D forces Problem 12.2.11 77
12.2.11 Guyed plate on a cart A uniform 34—
rectangular plate A BC D of mass m is sup- A ‘D j
ported by a rod DE and a hinge joint at T |
point B. The dimensions are as shown. 2¢ L ;
There is gravity. What must the acceler- LB C E
C D #F

ation of the cart be in order for massless - cart -

rod DE to be in tension? MHA
Problem 12.11: Uniform plate supported
by a hinge and a cable on an accelerating

cart.
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Problem 12.2.11 (continued)
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12.2.14 A uniform rectangular plate of A
mass m is supported by an inextensible ca- A 3t 3¢ D
ble AB and a hinge joint at point £ on the t
cart as shown. The hinge joint is attached C 2¢Z
to a rigid column welded to the floor of the B G t
cart. The cart has acceleration a 7. There J @ E Zf
is gravity. Find the tension in cable AB. L
(What’s ‘wrong’ with this problem? What 7
if instead point B were at the bottom left @ =a,i
hand corner of the plate?)
Problem 12.14
foge a/y
13.42 !
D
oL e L ] FeD: 5%
\ - The
2l \ ' *
| 3 & = -\ l
| ‘L—v'i _,_‘: Toe' E
i Z=a,.l V. \
ke g
E

- > n
ZMe= He = R x (macl)
f

S “(““33): r—iss"(maﬂz> 1)

The problem with +hie prodlem is that the fension acts

ian o d\rechor\ f\‘\muc\"\ Hhe suppot E. (e cannot
delereaine TMS dus‘r b\/ Summmg mnmex\"\'s ond uniaireehsaal
Moten  anly exists e a Pa"‘hcu\a‘ ay 't

- A A
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Fom eguaton (4), QAx = -1.59 fr unidiceehonal mahon.
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2 _ 347 - Uﬂ’ B &A [TRPN
,)‘98‘ *Jamzer ° St J AND rs‘s= 3'2'-
‘\9
—r,:e, £4 L>

?3‘5 X ( Tae> "Xae‘
So, Z-?IT%\ YL + |,5m31 V& 1

~ al

3

[ Tee = 3 (acr 39)

Introduction to Statics and Dynamics, (¢) Andy Ruina and Rudra Pratap 1992-2009.
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12.2.25 Car braking: front brakes ver-
sus rear brakes versus all four brakes.
What is the peak deceleration of a car when
you apply: the front brakes till they skid,
the rear brakes till they skid, and all four
brakes till they skid? Assume that the
coefficient of friction between rubber and
road is £ = 1 (about right, the coeffi-
cient of friction between rubber and road
varies between about .7 and 1.3) and that
g = 10m/ s2 (2% error). Pick the dimen-
sions and mass of the car, but assume the
center of mass height % is greater than zero
but is less than half the wheel base w, the
distance between the front and rear wheel.
Also assume that the CM is halfway be-
tween the front and back wheels (i.e., [ =
[, = w/2). The car has a stiff sus-
pension so the car does not move up or
down or tip appreciably during braking.
Neglect the mass of the rotating wheels
in the linear and angular momentum bal-
ance equations. Treat this problem as two-
dimensional problem; i.e., the car is sym-
metric left to right, does not turn left or
right, and that the left and right wheels
carry the same loads. To organize your
work, here are some steps to follow.

a) Draw a FBD of the car assuming
rear wheel is skidding. The FBD
should show the dimensions, the
gravity force, what you know a pri-
ori about the forces on the wheels
from the ground (i.e., that the fric-
tion force F, = uN,, and that there
is no friction at the front wheels),
and the coordinate directions. Label
points of interest that you will use in
your momentum balance equations.
(Hint: also draw a free body dia-
gram of the rear wheel.)

b) Write the equation of linear mo-
mentum balance.

¢) Write the equation of angular mo-
mentum balance relative to a point
of your choosing. Some particu-
larly useful points to use are:

e the point above the front
wheel and at the height of the
center of mass;

e the point at the height of the
center of mass, behind the
rear wheel that makes a 45
degree angle line down to
the rear wheel ground contact
point; and

e the point on the ground
straight under the front wheel
that is as far below ground as
the wheel base is long.

d) Solve the momentum balance equa-
tions for the wheel contact forces
and the deceleration of the car. If
you have used any or all of the
recommendations from part (c) you
will have the pleasure of only solv-
ing one equation in one unknown at
a time.

e) Repeat steps (a) to (d) for front-
wheel skidding. Note that the ad-
vantageous points to use for angular
momentum balance are now differ-
ent. Does a car stop faster or slower

or the same by skidding the front
instead of the rear wheels? Would

your solution to (e) be different if
the center of mass of the car were at
ground level(h=0)?

f) Repeat steps (a) to (d) for all-wheel
skidding. There are some shortcuts
here. You determine the car de-
celeration without ever knowing the
wheel reactions (or using angular
momentum balance) if you look at
the linear momentum balance equa-
tions carefully.

g) Does the deceleration in (f) equal
the sum of the decelerations in (d)
and (e)? Why or why not?

h) What peculiarity occurs in the solu-
tion for front-wheel skidding if the
wheel base is twice the height of the
CM above ground and p = 1?

i) What impossibility does the solu-
tion predict if the wheel base is
shorter than twice the CM height?
What wrong assumption gives rise
to this impossibility? What would
really happen if one tried to skid a
car this way?

Problem 12.25
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d) From (2),~ [« (-mg]) + (-at+o75)
gk < 125Rek = 0

Froca (2) ) Ry = 4.0 kN
Froen C,iw}w} a. = mp\ﬁ/m’: - 2.0 mfsﬁ‘ l = [ :..é. W

N .
CF) /:\L.L. WHEEL DRIDD NG ¢

a) i U b) Eéﬁm’iw ~Rg-Ra=ma )
_ i ()w 2?5:8 —+ RarRg=mqg (a)

Plug (@) inds (4): -ma=ma -~ q-=- ;MMM;;;M;
v 3= A=-9q=|-10 /@j

@ No, the occeleradion n (£) i nok ezual +o the
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forcas ond Raeron Bras ore drgheipaded A ety y
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M aild body, oheh would ng woger hold.
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Problem 12.2.43

12.2.43 The uniform 2kg plate DBFH z
is held by six massless rods (AF, CB, CF,

GH, ED, and EH) which are hinged at their H s G
ends. The support points A, C, G, and E are
all accelerating in the x-direction with ac-

. . 1
celeration @ = 3 m/s?z. There is no grav- E F m
ity. D C

N Y
a) Whatis {>_ F}-i for the forces act- 1m
ing on the plate?
A Im B
b) What is the tension in bar CB? X o
Problem 12.43
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12.2.47 A rear-wheel drive car on level
ground. The two left wheels are on per-
fectly slippery ice. The right wheels are on
dry pavement. The negligible-mass front
right wheel at B is steered straight ahead
and rolls without slip. The right rear wheel
at C also rolls without slip and drives the
car forward with velocity ¥ = vj and ac-
celeration @ = aj. Dimensions are as
shown and the car has mass m . What is
the sideways force from the ground on the
right front wheel at B? Answer in terms of

any or allof m, g, a, b, £, w, and 1. cartoon to show|
dimensions

Prob]em1247 The left wheels of this car

are on ice.
12.76 =
4
Fep A
A Note:
7\‘ {/5//: ® SU.F}?ar{:‘/uoL foras /\/ifz on
ek 74».4— wheels , but they dont
e%u(-
& No fﬁ(;éior\ 'furu. on A 2D
Sina they wre on i
{'fx v
@ Snﬂlﬂ- (A)‘Ué‘ ‘fh‘(,t.‘m 'far@_ on
B anw c.
® Sine C is the d;r;l,,-,\_aﬂ
wheel, thare. s « o(i;y;n,} ]le
( ESMIL«?‘ "ﬁ".‘/f?’r\ frruz) fcgj\
on ¢ ,
T . 2
3( = jccx'u "‘fc"j‘ is tha
Friction fore acting on < |
k'LGMJL \7 = \,,“ _ A
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84 Chapter 12.2. 1D motion with 2D and 3D forces Problem 12.2.47 (continued)
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13.1.1 A particle goes on a circular path
with radius R making the angle § = ct
measured counter clockwise from the pos-
itive x axis. Assume R = 5cm and ¢ =

2mws
a)
b)

<)

d)

€)

-1

Plot the path.

What is the angular rate in revolu-
tions per second?

Put a dot on the path for the location
of the particle atz = t* = 1/6 s.

What are the x and y coordinates
of the particle position at t = ¢*?
Mark them on your plot.

Draw the vectors €, and ég at ¢ =
.

What are the x and y components
of éz and é, att = t*?

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.

g)

h)

)

What are the R and 6 components
offand jats = t*?

Draw an arrow representing both
the velocity and the acceleration at
r=1t*

Find the é; and &, components of
position 7, velocity v and accelera-
tion@ats = t*.

Find the x and y components of po-
sition 7, velocity v and acceleration
@ att = t*. Find the velocity and
acceleration two ways:

1. Differentiate the position
givenasr = xi + yj.

2. Differentiate the position give
asF = ré, and then convert
the results to Cartesian coor-
dinates.

85



86 Chapter 13.1. Kinematics of a particle in circular motion Problem 13.1.1 (continued)
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Problem 13.1.15 87

Chapter 13.1. Kinematics of a particle in circular motion

13.1.15 A particle moves in circles so that
its acceleration @ always makes a fixed an-
gle ¢ with the position vector —7, with
0 < ¢ < /2. For example, ¢ = 0 would

How long does it take the particle to reach
a) the speed of sound (= 300 m/s)?
b) the speed of light (~ 3 - 108 m/s)?

be constant rate circular motion. Assume c) oo?
¢ = /4, R = Imand 6y = lrad/s.
13.1&
Acce loration a a/(wﬂ;ﬂs ks s a
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88 Chapter 13.2. Dynamics of a particle in circular motion Problem 13.2.30

13.2.30 Bead on a hoop with friction. A y

bead slides on a rigid, stationary, circular

wire. The coefficient of friction between v
the bead and the wire is . The bead is \
loose on the wire (not a tight fit but not ﬂ
so loose that you have to worry about rat-

tling). Assume gravity is negligible. o \9

a) Given v, m, R, & u; whatis v?

b) If v(0 = 0) = vy, how does v de-
pend on 0, 1, vy and m? L=

Probiem 13.30
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90 Chapter 13.2. Dynamics of a particle in circular motion Problem 13.2.34

13.2.34 A block with mass m is moving
to the right at speed vy, when it reaches a
circular frictionless portion of the ramp.

a) What is the speed of the block when
it reaches point B? Solve in terms of
R, vy, mand g.

b) What is the force on the block from
the ramp just after it gets onto the
ramp at point A? Solve in terms of
R, vy, m and g. Remember, force
is a vector.

Problem 13.34
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Chapter 13.2. Dynamics of a particle in circular motion Problem 13.2.34 (continued) 91
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92 Chapter 13.3. 2D rigid-object rotation kinematics

Problem 13.3.8

13.3.8  Write a computer program to
animate the rotation of an object. Your
input should be a set of x and y co-
ordinates defining the object (such that
plot y vs x draws the object on the
screen) and the rotation angle 6. The out-
put should be the rotated coordinates of the
object.

a) From the geometric information
given in the figure, generate coordi-
nates of enough points to define the
given object.

b) Using your program, plot the object
at 6 = 20°, 60°, 100°, 160°, and
270°.

c) Assume that the object rotates

with constant angular speed @ =
2rad/s. Find and plot the position
of the objectats = 1s, 25, and3s.

£ =30cm
¢ =30°

Problem 13.8"
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Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8 (continued) 93
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94 Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8 (continued)
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Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8 (continued) 95
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96 Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8 (continued)
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Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8 (continued) 97
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98 Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8 (continued)
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Chapter 13.4. 2D rigid-object angular velocity Problem 13.4.14 99

13.4.14 A 0.4m long rod AB has many
holes along its length such that it can be
pegged at any of the various locations. It
rotates counter-clockwise at a constant an-
gular speed about a peg whose location is
not known. At some instant ¢, the velocity
of end B is g = —3m/sj. After 55,
the velocity of end B isvg = —3m/si. If
the rod has not completed one revolution
during this period,

a) find the angular velocity of the rod,

and

b) find the location of the peg along the Problem 13.14
length of the rod.

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.



100 Chapter 13.4. 2D rigid-object angular velocity Problem 13.4.22

13.4.22 2-D constant rate gear train.
The angular velocity of the input shaft
(driven by a motor not shown) is a con-
stant, wipp, = @4. What is the angular
velocity woygpye = @¢ of the output shaft
and the speed of a point on the outer edge

of disc C, in terms of R4, Rp, R, and

wA?

i"robl‘em 13.22: Gear B is welded to C and
engages with A.

Given: Ka, Zg}ﬁc/ Wy

’ﬂ/\/U/.) MU\) C UUA » @
Re
=2 \} p = W ¢ R(/
N - W fake
P Re
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Chapter 13.6. Dynamics of rigid-object planar circular motion

Problem 13.6.10

101

13.6.10 Motor turns a bent bar. Two y
uniform bars of length £ and uniform mass

m are welded at right angles. One end is R
attached to a hinge at O where a motor J L

keeps the structure rotating at a constant . m
rate w (counterclockwise). What is the net l

force and moment that the motor and hinge o
N\ m
o [

cause on the structure at the instant shown.
motor

a) neglecting gravity

\ 14

b) including gravity.
motor.

We  will vt i axuwml

Problem 13.10: A bent bar is rotated by a

-
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102 Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.10 (continued)

s
A A A ~ N
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Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.20 103
13.6.20 At the input to a gear box a 100 1bf e) If instead of applying a 100 Ibf to

force is applied to gear A. At the output, the left gear it is driven by a mo-

the machinery (not shown) applies a force tor (not shown) at constant angular

of Fp to the output gear. Gear A rotates at speed w, what is the angular speed

constant angular rate @ = 2rad/s, clock- of the right gear?

wise.

a) What is the angular speed of the
right gear?

b) What is the velocity of point P?

c) Whatis Fg?

d) If the gear bearings had friction,
would Fp have to be larger or

smaller in order to achieve the same Problem 13.20: Two gears with end loads.
constant velocity?

13.122 o s(xP

T
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104 Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.20 (continued)

L
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Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.20 (continued) 105
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106 Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.20 (continued)

ojﬂ the right  gear s [stild Wp = (,QBRAC - tounter dotkwise
pr— /\\_——
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Chapter 13.6. Dynamics of rigid-object planar circular motion

13.6.34 A pegged compound pendu-
lum. A uniform bar of mass m and length
£ hangs from a peg at point C and swings
in the vertical plane about an axis passing
through the peg. The distance d from the
center of mass of the rod to the peg can be
changed by putting the peg at some other
point along the length of the rod.

a) Find the angular momentum of the
rod about point C.

b) Find the rate of change of angular
momentum of the rod about C.

¢) How does the period of the pendu-
lum vary with d? Show the varia-
tion by plotting the period against
%. [Hint, you must first find the
equations of motion, linearize for

small 6, and then solve.]

d) Find the total energy of the rod (us-
ing point C as a datum for potential
energy).

e) Find 6 when 0 = /6.

f) Find the reaction force on the rod at
C, as a function of m, d, £, 0, and
0.

g) For the given rod, what should be
the value of d (in terms of £) in or-
der to have the fastest pendulum?

h) Test of Schuler’s pendulum. The
pendulum with the value of d ob-

pendulum. It is not only the fastest
pendulum but also the “most accu-
rate pendulum”. The claim is that
even if d changes slightly over time
due to wear at the support point,
the period of the pendulum does not
change much. Verify this claim by
calculating the percent error in the
time period of a pendulum of length
£ = 1m under the following three
conditions: (i) initial ¢ = 0.15m

and after some wear d = 0.16m,
(ii) initial d = 0.29m and after
some wear d = 0.30m, and (iii)

initial d = 0.45m and after some
wear d = 0.46m. Which pendu-
lum shows the least error in its time
period? What is the connection be-
tween this result and the plot ob-
tained in (c)?
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tained in (g) is called the Schuler’s Problem 13. 34
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Problem 13.6.34 (continued)

Chapter 13.6. Dynamics of rigid-object planar circular motion
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Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.34 (continued) 109
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14.1.1 A disk of radius R is hinged at
point O at the edge of the disk, approxi-
mately as shown. It rotates counterclock-
wise with angular velocity § = @. A bolt
is fixed on the disk at point P at a distance r
from the center of the disk. A frame x’y’ is
fixed to the disk with its origin at the center
C of the disk. The bolt position P makes an
angle ¢ with the x’-axis. At the instant of
interest, the disk has rotated by an angle 6.

a) Write the position vector of point P
relative to C in the x’y’ coordinates
in terms of given quantities.

b) Write the position vector of point P
relative to O in the xy coordinates
in terms of given quantities.

c) Write the expressions for the rota-
tion matrix R(f) and the angular
velocity matrix S(®).

d) Find the velocity of point P relative

ook ‘“3"‘

L) 3

110

to C using R(0) and the angular ve-
locity matrix S(@).

e) Using R =30cm, r =25cm, 0 =
60°, and ¢ = 45°, find [7(3/0]”,
and [Fp/o] at the instant shown.

f) Assuming that the angular speed is
o = 10rad/s at the instant shown,
find [vc/gly, and [9psgly, taking
other quantities as specified above.

figure14-1-doormat 1

isroblem 14.1
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Chapter 14.1. Rigid object kinematics

Problem 14.1.1 (continued)

111
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112 Chapter 14.1. Rigid object kinematics Problem 14.1.1 (continued)
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Chapter 14.1. Rigid object kinematics

Problem 14.1.12

113

14.1.12 The center of mass of a javelin
travels on a more or less parabolic path
while the javelin rotates during its flight. In
a particular throw, the velocity of the cen-
ter of mass of a javelin is measured to be
Ve = 10m/si when the center of mass
is at its highest point # = 6m. As the
javelin lands on the ground, its nose hits
the ground at G such that the javelin is al-
most tangent to the path of the center of
mass at G. Neglect the air drag and lift on
the javelin.

a) Given that the javelin is at an angle
0 = 45° at the highest point, find

1412 |

W

J’D
L 4§0 &0 = 2
L Ve
N I
r”{J) - i i:vl ;’;ngqm
AAAAAAAAAA / L awlagi
S,

the angular velocity of the javelin.
Assume the angular velocity iscon-
stant during the flight and that the
javelin makes less than a full revo-
lution.

pfigure14-1-javel

Problem 14.12
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Chapter 14.2. Dynamics of a rigid object

Problem 14.2.7

14.2.7 A uniform 1kg plate that is one
meter on a side is initially at rest in the po-
sition shown. A constant force F = 1N
is applied at 1 = 0 and maintained hence-
forth. If you need to calculate any quantity
that you don’t know, but can’t do the cal-
culation to find it, assume that the value is
given.

a) Find the position of G as a func-
tion of time (the answer should have
numbers and units).

b) Find a differential equation, and ini-
tial conditions, that when solved
would give 6 as a function of time.
0 is the counterclockwise rotation
of the plate from the configuration
shown.

c) Write computer commands that
would generate a drawing of the
outline of the plate at t = 1s.
You can use hand calculations or

1018 Apn Wed seelian. 305
TH : Peanay g‘é&mm}éz&f@i

fi_!..;'z, E"I./‘i"ﬁg,mj 151

(i See

e
- v Fpand &

the computer for as many of the in-
termediate commands as you like.
Hand work and sketches should be
provided as needed to justify or ex-
plain the computer work.

d) Run your code and show clear out-
put with labeled plots. Mark output
by hand to clarify any points.
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Chapter 14.2. Dynamics of a rigid object Problem 14.2.7 (continued) 115

C:\..ktopisquare_plate.m
3/26/09 12:57 AM C:\Documents and Settings\labuser\Desktop\square plate.m 1 of 2

function square_plate
Alanh Argondizza
Solution to 14.19 part ¢ and d

o0 o

°

% Initial conditions and time span

time= 3;
tspan= linspace(0,time,101); %Integrate for time seconds
z0 = [0,0]"; % initial [angle,omega] both zero

% solve the ODE:
[t,z] = ode45(@rhs, tspan, z0);

o

% Unpack the variables

theta = z(:,1); $first column of =z
thetadot = z(:,2); %second column of z
clf

tag=0

$plot using a loop:
for i= 1:1:length(t)

%entire square:

subplot (2,1,1)

$create initial square:

square= [.5,—.5,-.5,.5,.5;¢5,.5,—.5,—‘5,.5];

$create rotation matrix:

R= [cos(theta(i)),-sin(theta(i));...
sin(theta(i)),cos(theta(i))]

%$determine displacement of G:

xdisp= .5%t(i)"2;

rotatedsquare= R*square + [xdisp,xdisp,xdisp,xdisp,xdisp;0,0,0,0,0];

;

plot(rotatedsquare(l,:),rotatedsquare(z,:));

‘%this conditional marks the square at time t= 1 second:
if floor(t(i)) == 1
if tag ~= 55
1ine(rotatedsquare(1,:),rotatedsquare(z,:),'Linewidth‘,lo,'Color','red');
end
end’
title('Trajectory of Square (Alan Argondizza)');
xlabel ('X');
ylabel ('Y'");
axis ('‘equal') ;
hold on

$verticicies of square:

subplot (2,1, 2)

line (rotatedsquare (1, :),rotatedsquare¥
(2,:),fLineStyle','none',’Color','red',’Marker','.‘);
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Chapter 14.2. Dynamics of a rigid object Problem 14.2.7 (continued)

3/26/09 12:57 AM C:\Documents and Settings\labuser\Desktop\square plate.m 2 of 2

%this conditional marks the squaré at time t= 1 second:

if floor(t(i)) == 1
if tag ~= 55
line (rotatedsquare (1, :),rotatedsquare(2,:), 'LineWidth',1, 'Color', 'red') ;
end
tag=55;
end '
title('Trajectory of Verticies of Square');
xlabel ('X'");
ylabel (1Y) ;
axis('equal') ;
hold on
end
end
function zdot = rhs(t,z)

o

theta = z (1 % unpack z into readable variables

)
thetadot = z(2);

%RHS:

omega = thetadot;

omegadot = 3*cos (theta);

% pack up the derivatives:
zldot = omega;

z2dot = omegadot;
$function return:

zdot = [zldot z2dot]';
end
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Chapter 14.2. Dynamics of a rigid object

Problem 14.2.7 (continued)
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118 Chapter 14.2. Dynamics of a rigid object Problem 14.2.9

14.2.9 A uniform slender bar AB of mass
m is suspended from two springs (each of
spring constant K') as shown. Immediately 1 2
after spring 2 breaks, determine

a) the angular acceleration of the bar, AW ‘B
|
b) the acceleration of point 4, and N L
¢) the acceleration of point B. Problem 14.9
o 2] S S S o fo2 . twe 5,717;\55 with SFn‘AJ con St
| 2 k
A = : B If sping 2 breaks, determine at
“—
L
— that ihstat ,
(a?d al\aluM aueleration O-f the bar

(b) tha aueleration of point A
) tha atceloxotion o-}» Poi»\t B.

BC)LU\’Q. “-1 breaks , tha  bor is in e.lvu‘libricun‘
Fi Fa It 's easy T get

Fo= Fa= =t frm LMB, AMB [, .

Ajffer "3 breaks ;
The distance between A bt and the Cei(ift?‘ »s at that inStankt

is the same as that hefre 2" breahs.
The stretch of SPring. | reemains “'V/{-‘Mje.o(

Forie  on Syfi’k} ‘s stU ":T}

So The teasion

But SPT;'t-a, 2 breaks , so Fa=o

ny e AMB fo >
GL_E,GFD IR = Te®
’ ma ° > -'%%—I:l?: ':’TU o
>3 < - 331

PPN
a’\jlk(“'l' aueleration D-F the b s = 'Tg: k
at that  instant -
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Chapter 14.3. Kinematics of rolling and sliding

Problem 14.3.3

The next
several problems concern Work, power and

energy

14.3.3 Rolling at constant rate. A round
disk rolls on the ground at constant rate. It
rolls 1% revolutions over the time of inter-

est.

a)

b)

Particle paths. Accurately plot the
paths of three points: the center of
the disk C, a point on the outer edge
that is initially on the ground, and
a point that is initially half way be-
tween the former two points. [Hint:
Write a parametric equation for the
position of the points. First find a
relation between @ and ve. Then
note that the position of a point is
the position of the center plus the
position of the point relative to the
center.] Draw the paths on the com-
puter, make sure x and y scales are
the same.

Velocity of points. Find the veloc-

ity of the points at a few instants in
the motion: after %, %, %, and 1
revolution. Draw the velocity vec-
tor (by hand) on your plot. Draw

potnt A

)

thrs  problem | 1

derivation

the direction accurately and draw
the lengths of the vectors in propor-
tion to their magnitude. You can
find the velocity by differentiating
the position vector or by using rela-
tive motion formulas appropriately.
Draw the disk at its position after
one quarter revolution. Note that
the velocity of the points is perpen-
dicular to the line connecting the
points to the ground contact.

Acceleration of points. Do the
same as above but for acceleration.
Note that the acceleration of the
points is parallel to the line connect-
ing the points to the center of the
disk.

P

Filename:pfigure-s94h11p2
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Chapter 14.3. Kinematics of rolling and sliding Problem 14.3.3 (continued) 121
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122 Chapter 14.3. Kinematics of rolling and sliding Problem 14.3.3 (continued)
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Chapter 14.3. Kinematics of rolling and sliding

Problem 14.3.3 (continued)
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Chapter 14.3. Kinematics of rolling and sliding

Problem 14.3.3 (continued)

3/26/09 10:01 AM

F:\TAM 2030\HW17\probl431.m

function probl4a3l

o o

Due Mar. 26, 2009
initial conditions

Radius of disk [m]

% Constants,
R = 1; %

% Angle interval
angspan = linspace(0,5*pi/2,1001);

o

% Point C coordinates (center of digk)

You Won Park's solution to problem 14.31 in HW 17

rc¢_x = R*angspan; % x coord. of C

re_ y = R; % y coord. of C

% Point A coordinates (ground contact)

ra_x = R*(angspan-sin (angspan)) ; % x coord. of A
ra_y = R*(l-cos(angspan)); % y coord. of A
% Point B coordinates (halfway)

rb_x = R*(angspan-.5*sin(angspan)) ;
rb_y = R*(1-.5*cos (angspan)) ;

% Plot positions of A,B,C
figure (1)

subplot(3,1,1)

hold on

plot(ra_x,ra vy, 'k') % Position of

title('You Won Park''s Plot of Position

xlabel ('unit length [m]')
ylabel ('unit length [m]')

subplot (3,1,2)

plot (rb_x,rb vy, 'k") % Position of

title('You Won Park''s Plot of Position

xlabel ('unit length [m]')
vlabel ('unit length [m]')

subplot(3,1,3)

plot(rc_x,rc_y, 'k") % Position of

title('You Won Park''s Plot of Position of

xlabel ('unit length [m]')
ylabel (‘unit length [m]')

end

% x coord. of B
% y coord. of B

A
of Point A')

B
of Point B')

C
Point ¢C')
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Chapter 14.3. Kinematics of rolling and sliding Problem 14.3.3 (continued) 125

You Won Park's Plot of Position of Point A
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126 Chapter 14.4. Mechanics of contact Problem 14.4.6

14.4.6 Spool Rolling without Slip and b) What is the horizontal force of the
Pulled by a Cord. The light-weight spool ground on the spool?
is nearly empty but a lead ball with mass A
m has been placed at its center. A force F J I
is applied in the horizontal direction to the n
cord wound around the wheel. Dimensions roll without @ t
are as marked. Coordinate directions are as slip F
marked. \

a) What is the acceleration of the cen- Problem 14.6

ter of the spool?
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Chapter 14.4. Mechanics of contact

Problem 14.4.9

127

14.4.9 A napkin ring lies on a thick velvet
tablecloth. The thin ring (of mass m, radius
r) rolls without slip as a mischievous child
pulls the tablecloth (mass M) out with ac-
celeration A. The ring starts at the right
end (x = d). You can make a reason-
able physical model of this situation with
an empty soda can and a piece of paper on
a flat table.
a) What is the ring’s acceleration as
the tablecloth is being withdrawn?
b) How far has the tablecloth moved
to the right from its starting point

x = 0 when the ring rolls off its
left-hand end?

% 4

H \\

=

c) Clearly describe the subsequent
motion of the ring. Which way does
it end up rolling at what speed?

d) Would your answer to the previ-
ous question be different if the ring
slipped on the cloth as the cloth was
being pulled out?

napkin ring

igure-blue-51-1

Probiem 14.9

= /@ &
(g
j é’&’##‘b -
/ 7

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.

7

it




128 Chapter 14.4. Mechanics of contact Problem 14.4.9 (continued)
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Chapter 14.4. Mechanics of contact

14.4.23 A disk rolls in a cylinder. For all
of the problems below, the disk rolls with-
out slip and rocks back and forth due to
gravity.

a) Sketch. Draw a neat sketch of
the disk in the cylinder. The sketch
should show all variables, coordi-
nates and dimension used in the
problem.

b) FBD. Draw a free body diagram of
the disk.

¢) Momentum balance.  Write the
equations of linear and angular mo-
mentum balance for the disk. Use
the point on the cylinder which
touches the disk for the angular mo-
mentum balance equation. Leave
as unknown in these equations vari-
ables which you do not know.

d) Kinematics. The disk rolling
in the cylinder is a one-degree-of-
freedom system. That is, the val-
ues of only one coordinate and its
derivatives are enough to determine
the positions, velocities and accel-
erations of all points. The angle
that the line from the center of the
cylinder to the center of the disk
makes from the vertical can be used
as such a variable. Find all of the

14
B.56

G

P

is: dp;,‘#_ & Greda i e
Ves 6R.-p &,

velocities and accelerations needed
in the momentum balance equation
in terms of this variable and it’s
derivative. [Hint: you’ll need to
think about the rolling contact in or-
der to do this part.]

e) Equation of motion. Write the an-
gular momentum balance equation
as a single second order differential
equation.

f) Simple pendulum? Does this
equation reduce to the equation for
a pendulum with a point mass and
length equal to the radius of the
cylinder, when the disk radius gets
arbitrarily small? Why, or why not?

Problem 14.23: A disk rolls without slip
inside a bigger cylinder.
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132 Chapter 14.4. Mechanics of contact Problem 14.4.23 (continued)
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i
g R A AN £ AN
v,oo- AN S
e[;} 4)( 9’\%} Zj-‘/g’// o /f,} :.7;;
4 4 /Ff,?f o
N N L

W?’ N 4 ey
A 4 ”f/ﬁ Fist f/ iy A A /5

~

\\
<
~

e
L

£,

. - _
] < g A A R o o Zi
AooM, g X ey MG K, e P K

4 7
L V iy it

Aot A .

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.




Chapter 14.5. Collisions Problem 14.5.8

135

14.5.8 An acrobat modeled as a rigid
body with uniform rigid mass m of length
/. She falls without rotation in the position o %—)' DURING
shown from height # where she was sta- T’\

tionary. She then grabs a bar with a firm 1l

but slippery grip. What is 4 so that after 5
the subsequent motion the acrobat ends up

in a stationary handstand? [ Hint: What BEFORE
quantities are preserved in what parts of the

motion?] Problem 14.8
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15.1.5 Picking apart the polar coordi-
nate formula for velocity.  This prob-
lem concerns a small mass m that sits in
a slot in a turntable. Alternatively you can
think of a small bead that slides on a rod.
The mass always stays in the slot (or on the
rod). Assume the mass is a little bug that
can walk as it pleases on the rod (or in the
slot) and you control how the turntable/rod
rotates. Name two situations in which one
of the terms is zero but the other is not in
the two term polar coordinate formula for
velocity, RéR + Rée},. You should thus
gain some insight into the meaning of each
of the two terms in that formula.
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Chapter 15.1. Polar coordinates and path coordinates

15.1.6 Picking apart the polar coordi-
nate formula for acceleration. Recon-
sider the configurations in problem 15.1.5.
This time, name four situations in which
all of the terms, but one, in the four term

polar coordinate formula for acceleration,

a = (R— R0%é, + 2RO + Ré)éﬁ, are
zero. Each situation should pick out a dif-
ferent term. You should thus gain some in-
sight into the meaning of each of the four
terms in that formula.
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138 Chapter 15.1. Polar coordinates and path coordinates Problem 15.1.6 (continued)
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Chapter 15.1. Polar coordinates and path coordinates
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Chapter 15.1. Polar coordinates and path coordinates
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15.2.5 Given that 7(¢) = ct?#’ and that

0(t) = d sin(A) , find 3(¢) N
a) in terms of Z and J,
b) in terms of #’ and j’. r(z‘)

Filename:pfig3-1-DH1

Problem 15.5

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1992-2009.



142

Chapter 15.3. General expressions for velocity and acceleration

15.3.2 Actual path of bug trying to walk
a straight line. A straight line is inscribed
on a horizontal turntable. The line goes
through the center. Let ¢ be angle of ro-

of times. Your plot should include
the instant at which the bug walks
through the origin. Make sure your
x and y- axes are drawn to the same

Problem 15.3.2

tation of the turntable which spins at con-
stant rate ¢5. A bug starts on the out-
side edge of the turntable of radius R and

scale. A computer plot would be
nice.

b) Calculate the radius of curvature of
walks towards the center, passes through the bug’s path as it goes through the
it, and continues to the opposite edge of origin.
the turntable. The bug walks at a constant
speed v 4, as measured by how far her feet ¢) Accurately draw (say, on the com-
move per step, on the line inscribed on the puter) the osculating circle when
table. Ignore gravity. the bug is at the origin on the pic-

ture you drew for (a) above.

a) Picture. Make an accurate draw- d) Force. What is the force on the
ing of the bug’s path as seen in the bugs feet from the turntable when
room (which is not rotating with the she starts her trip? Draw this force
turntable). In order to make this as an arrow on your picture of the
plot, you will r}eed to assume val- bug’s path.
ues of v, and ¢ and initial values e) Force. What is the force on the

of R and ¢. You will need to write
a parametric equation for the path
in terms of variables that you can
plot (probably x and y coordinates).
You will also need to pick a range

bugs feet when she is in the mid-
dle of the turntable? Draw this force
as an arrow on your picture of the
bug’s path.
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Chapter 15.3. General expressions for velocity and acceleration
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function path1518()

%%% draw path

R=1; % radius of the turntable

va=0.2; % velocity of the bug on the turntable
phidot=1; % angular velocity of the turntable
t=[0:0.1:10];

x=(R-va*t).*cos(phidot*t);
y=(R-va*t).*sin(phidot*t);

plot(x,y);

axis equal;

grid on;

%%%% draw osculating circle when bug goes through the center

rau=va/(2*phidot); % radius of curvature of the path at the origin

xc= va*sin(phidot*R/va)/(2*phidot);

yc= -va*cos(phidot*R/va)/(2*phidot); % position of the center
%draw the circle;

theta=[0:0.01:2*pi];

circlel=xc+rau*cos(theta);

circle2=yc+rau*sin(theta);

hold on;

plot(circlel,circle2,r");

%%%% draw force vector
m=1; %mass of the bug
scale=0.3; % scale for graphics

flx=-m*R*phidot;
fly=-m*2*va*phidot;
quiver(1,0,f1x,fly,scale,'k"); % draw force at the beginning;

f2x=2*m*va*phidot*sin(phidot*R/va);

f2y=-2*m*va*phidot*cos(phidot*R/va);
quiver(0,0,f2x,f2y,scale,'k"); %draw force at the origin
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Problem 15.3.2 (continued)
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Problem 15.3.2 (continued)
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Problem 15.3.2 (continued)
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function path1518()

%%%  draw path

R=1; 9% radius of the turntable

va=0.2; % velocity of the bug on the turntable
phidot=1; % angular velocity of the turntable
t={0:0.1:10];

x=(R-va*t).*cos(phidot*t);
y=(R-va*t).*sin(phidot*t);

plot(xy);

axis equal;

grid on;

%% %% draw osculating circle when bug goes through the center

rau=va/(2*phidot); % radius of curvature of the path at the origin

xc= va*sin(phidot*R/va)/(2*phidot);

ye= -va*cos(phidot*R/va)/(2*phidot); % position of the center
Yodraw the circle: v/

theta=[0:0.01:2*pi];

circleI=xc+rau*cos(theta); .

circle2=yc+rau*sin(theta);

hold on;

plot(circlel,circle2,r');

%%%% draw force vector
m=1; Yornass of the bug
scale=0.3; % scale for graphics

fix=-m*R*phidot;
fly=-m*2*va*phidot;
quiver(1,0,f1x,fly,scale,'k'); % draw force at the beginning:

f2x=2*m*va*phidot*sin(phidot*R/va);

f2y=-2*m*va*phidot*cos(phidot*R/va);
quiver(0,0,£2x,f2y,scale,'k’); Sadraw force at the origin
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Problem 15.3.2 (continued)

Chapter 15.3. General expressions for velocity and acceleration
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154 Chapter 15.3. General expressions for velocity and acceleration Problem 15.3.11

15.3.11 A honeybee, sensing that it can
get a cheap thrill, alights on a phonograph
turntable that is being carried by a carni- carousel
val goer who is riding on a carousel. The
situation is sketched below. The carousel
has angular velocity of 5 rpm, which is in-
creasing (accelerating) at 10rev/ min?; the
phonograph rotates at a constant 33 1/3
rpm. The honeybee is at the outer edge
of the phonograph record in the position
shown in the figure; the radius of the record
is 7 inches. Calculate the magnitude of the Filename:pligure-blue-67-2
acceleration of the honeybee. Problem 15.11
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156 Chapter 15.4. Kinematics of 2-D mechanisms Problem 15.4.1

15.4.1 Slider crank kinematics (No FBD f) For what values of 6 is the angular
required!). 2-D . Assume R, £, 0, 9', f are velocity of the connecting rod AB
given. The crank mechanism parts move equal to zero (assume 0 # 0)? (you
on the xy plane with the x direction be- need not answer part (e) correctly to
ing along the piston. Vectors should be ex- answer this question correctly.)

pressed in terms of 7, j, and k components.

crank A rod

a) What is the angular velocity of the
crank OA?

b) What is the angular acceleration of
the crank OA?

¢) What is the velocity of point A? i Diston
d) What is the acceleration of point A? motor |

e) What is the angular velocity of 7
the connecting rod AB? [Geometry

fact: F4p = V02 — R2sin20 i —  Problem 15.1

Rsin 0]

You Won Park.
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Problem 15.4.1 (continued)
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158 Chapter 15.4. Kinematics of 2-D mechanisms Problem 15.4.4

15.4.4 The two rods AB and DE, con- B
nected together through a collar C, rotate C
in the vertical plane. The collar C is pinned — 4o

to the rod AB but is free to slide on the
frictionless rod DE. At the instant shown,
rod AB is rotating clockwise with angular
speed w = 3rad/s and angular accelera-
tion @ = 2rad/s?. Find the angular veloc-
ity of rod DE.

——A(*) w,a 7;E

Filename: Summero

roblem fé 4
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159

15.4.10 The slotted link CB is driven in
an oscillatory motion by the link ED which
rotates about D with constant angular ve-
locity 8 = wp. The pin P is attached to
ED at fixed radius d and engages the slot
on CB as shown. Find the angular veloc-
ity and acceleration ¢ and ¢ of CB when C| I} ‘
0=m/2. ‘ !

Problem 15.10
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