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I. MOTION OF A POINT PARTICLE; LORENTZ FORCE

We will discuss relativistic mechanics from an unusual point of view using the principle of minimal action. It will serve as
a warm up for doing the same thing with the electromagnetic field. I will assume familiarity with lagrangian mechanics in
classical physics but this knowledge is not strictly necessary. Imagine a point particle moving in spacetime. Its trajectory
describes a world-line and can be described by a function xµ(s); for every value of s we have the position of the particle and
the time when it passed through that point. Notice that different parametrizations of the world-line correspond to the same
physical trajectory, all it matters is the graph of xµ(s) in spacetime, not the value of s corresponding to the different points
of the curve. The principle of minimal action says that the trajectory actually followed by the particle will be the one which
minimizes (extremizes, actually) a functional of xµ(s) called the action S[xµ(s)]. But that doesn’t say much because we don’t
know what S[xµ(s)] is. Let us then try to guess what S[xµ(s)] could be. First, as mentioned above, the physical trajectory,
that is, ~x as a function of t = x0/c can be parametrized in different ways. But since they describe the same physical situation,
S should be the same, regardless of the parametrization chosen. Second, S should be a Lorentz scalar. Otherwise the path
that minimizes S in one reference frame would be different from the path that minimizes the action in another reference
frame. The resulting theory wouldn’t be Lorentz invariant. One obvious quantity satisfying these properties is the length of
the spacetime path:

S[xµ(s)] = mc

∫
ds

√
dxµ

ds

dxµ
ds

. (1.1)

The mc constant is just conventional and is included to provide the correct dimensions, it won’t alter the trajectory that
minimizes S. The square root term is just the length of the “velocity” dxµ

ds . Notice that the “velocity” dxµ

ds depends on the
parametrization but S doesn’t. If we use a different parametrization xµ(s′)∫

ds′
√
dxµ

ds′
dxµ
ds′

=

∫
ds

∣∣∣∣ds′ds
∣∣∣∣
√
dxµ

ds

ds

ds′
dxµ
ds

ds

ds′
=

∫
ds

√
dxµ

ds

dxµ
ds

. (1.2)

Now, given an initial and final spacetime points for the trajectory, which path will minimize S, that is, which path will
minimize the length? The straight line, of course! A straight line in space time corresponds to a particle moving at constant
velocity in space, which is, of course, the correct result. But for more complicated actions it is not so easy to guess the
minimizing path. Minimization problems of this kind are the object of the “Calculus of Variations”. We will now take a little
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mathematical detour and explain how this works. If you know about Euler-Lagrange equation you can skip most of it.

Variational Calculus and functional derivatives in one page
How do you minimize (or maximize or extremize) a function f(x) of one variable x? You find the point(s) x0 where its
derivative vanishes

df(x)

dx
|x0

= 0. (1.3)

How do you minimize (or maximize or extremize) a function f(xi) of several variables xi, i = 1, · · · , N? (f(xi) is a short
hand for f(x1, x2, · · · , xN ). We find a point with coordinates xi0 where all the partial derivatives vanish

∂f(xi)

∂xj
|xi0 = 0. (1.4)

The partial derivative above is

∂f

∂xj
= lim

∆→0

f(xi + ∆δij)− f(xi)

∆
. (1.5)

We can think of the functional S[x(s)] as a function of an infinite number of variables x(s), one for every value of s. The
analogy is

i→ s,

xi → x(s),

f(xi)→ S[x(s)]. (1.6)

The role of the partial derivative is taken by the “functional derivative”

δF [x(s)]

δx(s′)
= lim

∆→0

F [x(s) + ∆δ(s− s′)]− F [x(s)]

∆
, (1.7)

in other words, you increase the value of the function x(s) at s = s′ and see how the functional S[x(s)] changes. All you
really need to know about functional derivatives are the properties (easily derived from the definition

δF [x(s)]

δx(s′)
=
dF

dx

δx(s)

δx(s′)
,

δx(s)

δx(s′)
= δ(s− s′),

δ

δx(s′)

dx(s)

ds
=
dδ(s− s′)

ds
. (1.8)

How do we minimize the functional

F [x(s)] =

∫
ds F

(
x(s),

dx(s)

ds

)
? (1.9)

The extremum x0(s) will be the one where the functional derivative vanishes

0 =
δF [x(s)]

δx(s′)

∣∣∣∣
x(s)=x0(s)

=

∫
ds

[
∂F
∂x

δx(s)

δx(s′)
+
∂F
∂ dxds

δ dx(s)
ds

δx(s′)

]∣∣∣∣∣
x(s)=x0(s)

=

∫
ds

[
∂F
∂x

δ(s− s′) +
∂F
∂ dxds

d

ds
δ(s− s′)

]∣∣∣∣∣
x(s)=x0(s)

=

∫
ds

[
∂F
∂x

δ(s− s′)− d

ds

∂F
∂ dxds

δ(s− s′)

]∣∣∣∣∣
x(s)=x0(s)

=
∂F
∂x
− d

ds

∂F
∂ dxds

∣∣∣∣∣
x(s)=x0(s)

. (1.10)

The equation above is known as the Euler-Lagrange equation, the central result of the calculus of variation.
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We can now apply the Euler-Lagrange equations to the problem of minimizing the action for a free particle. The only
adaptation is that the action depends on four functions xµ(s), one for each value of µ. We take one particular frame of
reference and use the time, as measured in that frame, as the parameter s: xµ(t) = (ct, ~x(t):

S = mc

∫ √
dxµ

dt

dxµ
dt

= mc

∫
dt

√
c2 −

(
d~x

dt

)2

= mc2
∫
dt

√
1−~̇x

2

c2
, (1.11)

where the dot represents a time derivative. The Euler-Lagrange equation leads to

~̈x√
1− ~̇x2

c2

+~̇x.̈~x
~̇x

(1− ~̇x2

c2 )3/2
= 0 (1.12)

Multiplying this equation by ~̇x gives ~̇x.̈~x = 0 so the component of the acceleration tangential to the velocity vanishes.
Multiplying the same equation by any vector ~n normal to the velocity gives ~n.̈~x = 0 so the component of the acceleration
normal to the velocity also vanishes. Since the acceleration vanishes the trajectories minimizing the action are straight lines
with constant speed, as expected.

Things are more interesting when there’s an external force acting on the particle. How can we include them? We can
change the action by the inclusion of “external fields” while keeping S i) a Lorentz scalar and ii) independent of how xµ(s)
is parametrized. One could, for instance, imagine that there is a scalar field Φ(x) permeating the spacetime ad modify the
action as

S =

∫
ds(mc− Φ(x(s)))

√
dxµ

ds

dxµ
ds

. (1.13)

Or one could have a 4-vector field permeating spacetime changing the action to

S =

∫
ds

[
mc

√
dxµ

ds

dxµ
ds

+
q

c
Aµ(x(s))

dxµ

ds

]
. (1.14)

Finally, one could have a rank-two symmetric tensor gµν and the action

S = mc

∫
ds

√
gµν(x(s))

dxµ

ds

dxν

ds
. (1.15)

I can’t think of any other possibility. It turns out that the field gµν exists inNature and describes gravity, Aµ(x) also exists
in Nature and describes electromagnetic forces. Apparently Nature decided not to use the scalar field Φ(x).

In this class we are interested in the coupling with the vector field Aµ(x). But does the coupling with Aµ(x) really describes
electromagnetic forces? Suppose we change aµ(x) (from now on we’ll call it the “vector potential”) by

Aµ → Aµ + ∂µχ, (1.16)

where χ is some scalar function. What happens to the action under this transformation?

S → S +
q

c

∫ sf

si

ds∂µχ
dxµ

ds
= S +

q

c

∫ xµ(sf )

xµ(si)

dxµ∂µχ = S +
q

c

∣∣∣χ(xµ(si))
χ(xµ(sf )) . (1.17)

The change in the action is determined by the value of χ at the initial and final points and it doesn’t depend on the trajectory
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in between them. Thus the action with Aµ or Aµ + ∂µχ is minimized by the same trajectory. The invariance of the physical
results under the change Aµ → Aµ + ∂µχ is called “gauge invariance”. We can now find the equations of motion of a article
moving under the influence of the vector potential as described by the action in eq. (1.14). Choosing the time in an specific
frame as the parameter s we have

S =

∫
dt

√
c2 −~̇x2 +

q

c

∫
(A0c−~̇x. ~A). (1.18)

The derivatives we need to calculate are

∂L

∂ẋi
= − mc√

c2 −~̇x2
ẋi − q

c
Ai,

∂L

∂xi
= q∂iA0 −

q

c
ẋj∂iA

j . (1.19)

Combining them together we have

0 =
d

dt

[
− mc√

c2 −~̇x2
ẋi − q

c
Ai

]
− q∂iA0 +

q

c
ẋj∂iA

j

=
d

dt

[
− mc√

c2 −~̇x2
ẋi

]
− q

c
(∂jA

iẋj +
∂Ai

∂t
)− q∂iA0 +

q

c
ẋj∂iA

j

=
d

dt

− mẋi√
1− ~̇x2

c2

− q(∂iA0 +
1

c

∂Ai

∂t
) +

q

c
ẋj(∂iA

j − ∂jAi), (1.20)

or, writing in the more usual fashion

d~p

dt
= q( ~E +

~̇x

c
× ~B), (1.21)

with

~p = mγ̇~x,

( ~E)i = −∂iA0 −
1

c

dAi

dt
,

( ~B)k = εijk∂jA
k. (1.22)

Of course, the right-hand side of the equation of motion is the Lorentz force and the ~E and vecB fields are the usual electric

and magnetic fields written in terms of the (3D) scalar potential A0 and the (3D) vector potential ~A. We see then that
electromagnetism emerged from very mild assumptions (Lorentz invariance and the choice of a vector field instead of a scalar
or a tensor). Even the precise form of the Lorentz force law is determined by these general principles.

Our derivation of the equations of motion above has one flaw: it is not explicitly Lorentz invariant. We can obtain a
different form of the same equation of motion by making an invariant choice of the parameter s and repeating the derivation.
Let us choose s to be the proper time τ , defined by dτ = dt/γ. The physical interpretation of τ is that it is the time measured
by a clock moving with the particle. We have

vµ =
dxµ(τ)

dτ
= γ

dxµ(t)

dt
= γ

d

dt
(ct, ~x) = (cγ, γ~v) (1.23)
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The Euler-Lagrange equation is then

0 =
d

dτ

∂L

ddx
µ

dτ

− ∂L

dxµ

=
d

dτ

(
m
dxµ

dτ

)
+
q

c
∂νAµ

dxν

dτ
− q

c
∂µAν

dxν

dτ

(1.24)

or

dpµ
dτ

=
q

c
Fµν

dxν

dτ
, (1.25)

with

Fµν = ∂µAν − ∂νAµ (1.26)

and pµ = mdxµ/dτ . We will leave as an exercize to show that the two forms of the equation of motion for a point particle
are indeed equivalent. You might wonder why eq. (1.25) contains four euqations while eq. (1.21) constains only three. The
answer is the four equations contained in eq. (1.25) are not independent. At this point one should stop and solve eq. (1.25) for
some simple external field configurations. But this is more of a classical (relativistic but not quantum mechanical) mechanics
problem than an electrodynamics problem. We will review a few on the homework. You should know the solution for i) a
constant, homogeneous electric field, ii ) a constant, homogeneous magnetic field and, if you have any ambition iii) an almost
homogeneous magnetic field. A few others are also soluble (crossed homogeneous electric and magnetic fields, a plane wave,
...).

Eq. (1.25) is obviously relativistic invariant as it is written in terms of tensors. Notice that the electric and magnetic fields
form together a four-tensor. This has as a consequence that, under a boost, electric and magnetic fields are not invariant.
What looks like a magnetic field for one observer is an electric field for another. Let us look at the Fµν tensor in a particular
frame and write it in terms of the electric and magnetic fields. Tod o this one needs to be careful with conventions, signs, ...
. We have

F0i = ∂0Ai − ∂iA0 = −∂0A
i − ∂iA0 = −dA

i

cdt
− ∂iA0 = Ei,

F12 = ∂1A2 − ∂2A1 = −∂1A
2 + ∂2A

1 = −B3,

... (1.27)

Writing is as a matrix with the index µ indexing the rows and the index ν indexing the columns we have

Fµν =

 0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (1.28)

The contravariant tensor Fµν would be like above but with ~E → − ~E instead (only the entries with one time and one spatial
index flip sign as going from lower to upper indices).

Since we know how tensor components change under a change of basis we can easily find how the electric and magnetic
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fields transform under a boost.

F ′
µν

=


0 −E′1 −E′2 −E′3

E′
1

0 −B′3 B′
2

E′
2

B′
3

0 −B′1

E′
3 −B′2 B′

1
0


= ΛµλΛνρF

λρ

=

 γ 0 0 −γv/c
0 1 0 0
0 0 1 0

−γv/c 0 0 γ


 0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 γ 0 0 −γv/c

0 1 0 0
0 0 1 0

−γv/c 0 0 γ



=

 0 γ(−E1 + v
cB

2) γ(−E2 − v
cB

1) −E3

γ(E1 − v
cB

2) 0 −B3 γ(B2 − v
cE

1)
γ(E2 + v

cB
1) B3 0 γ(−B1 + v

cE
2)

E3 γ(−B2 + v
cE

1) γ(B1 − v
cE

2) 0

 . (1.29)

A more civilized way of writing these relations is

E′|| = E||,

B′|| = B||,

E′⊥ = γ(E⊥ +
v

c
×B⊥),

B′⊥ = γ(B⊥ −
v

c
× E⊥), (1.30)

where || and ⊥ denote the components parallel and perpendicular to the boost direction. Without the formalism of tensors and
Lorentz transformations this is a relatively difficult result to find; yet, we did it in one line. You may find this demonstration
almost too slick, too short, to satisfy you. A more physical approach may make this more concrete. The homework will fill
this gap.

II. MAXWELL’S EQUATIONS

Up to now we consider the motion of a particle under the influence of a given external field. The particle itself didn’t
generate a field. This is a good approximation to some circumstances like, for instance, an electron inside a TV tube (if you
don’t know what a TV tube is, ask your parents). The few electron in the beam directed towards the screen create a field
that is negligible compared to the field generated by the electronics of the tube. In general, however, the fields have their
own dynamics. In fact, fields can exist on their own, with no charges around (think about the light of a distant star). To
describe the dynamics of the electromagnetic fields we need a term in the action describing it. We can pretty much guess
what it has to be. The same rules we used in the particle action are in effect here. In order to get a relativistically invariant
dynamics the action has to be a Lorentz scalar. Also, it has to be gauge invariant as we know that fields related by a gauge
transformation describe the same physics. Gauge invariance forbids terms like AµA

µ. Fµν though is gauge invariant and we
can use it to build the action. A few possibilities are allowed

S1 =

∫
d4xFµνF

µν ,

S2 =

∫
d4xFµνFαβε

αβµν ,

S3 =

∫
d4x(FµνF

µν)2,

... (2.1)
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The inclusion of S2 does not change the equations of motion as it can be written as a total divergence. If it did, it would
lead to disaster because S2 is a Lorentz scalar but it flips sign under a parity (~r → −~r) transformation. As a consequence,
including this term would lead to the laws of electromagnetism to break parity and this is not observed in Nature (although
weak nuclear forces are know to break parity). So we forget about S2. S3, and similar terms involving more powers of Fµν
are negligible, compared to S2 in the limit of weak fields. Thus, we will take the action for the electromagnetic field to be

S =
1

16π

∫
d4xFµνF

µν . (2.2)

The normalization is arbitrary and simply defines the units we are going to measure the electromagnetic field and charge.
We can change the 16π factor by absorbing it into Aµ. But then, in order for the Lorentz force not to change we need to
change the charge q. Thus the normalization of the action can be absorbed in to the units we measure charge.

The presence of terms in the action with more than two powers of F would lead to non-linear equations of motion for
the electromagnetic field. The superposition of two of its solutions would not be another solution. In other words, the
electromagnetic fields would interact with each other, just like the light sabers on Star Wars. How big do the fields have to
be in order for us to notice the higher powers of F? Even if we initially drop S3, quantum effects generate effects that mock
terms in the action with higher powers of F (the so-called Euler-Heisenberg lagrangian, the Euler here is not the Euler you
are thinking about). Quantum electrodynamics, in fact, predicts what the coefficient should be. It turns out that the fields
in the most powerful lasers we can make are just a little too weak for the nonlinear effects to be observed. But maybe we
will see then within our lifetimes. For the present course we will just disregard this possibility and stick to eq. (2.2). Adding
to it the action for the charged particles we have

S =
1

16π

∫
d4xFµνF

µν +
∑
a

∫
dτ m(a)c

√
dxµ(a)(τ)

ds

dx
(a)
µ (τ)

dτ
+
q(a)

c

dxµ(a)(s)

dτ
Aµ(x(a)(τ)), (2.3)

where a indexes the different charged particles and their masses/charges. The term coupling the particles to the fields can
be rewritten as ∑

a

q(a) dx
µ

dτ
=
∑
a

q(a)(c,~v)(a) =
∑
a

(cρ,~j)(a) = jµ, (2.4)

where ρ and ~j are the charge density and current. In terms of the four-current jµ the action is written as

S =
1

16π

∫
d4xFµνF

µν +
∑
a

∫
dτ m(a)c

√
dxµ(a)(τ)

ds

dx
(a)
µ (τ)

dτ
+

1

c

∫
d4x jµ(x)Aµ(x). (2.5)

What equations of motion follow from this action? The variation in relation to the particle paths just give their equations
of motion; the field action doesn’t depend on xµ(s) so it doesn’t alter the equation of motion for xµ(s) (eq.(1.25)). In order
to minimize the action we need in relation to Aµ we need a slight generalization of the Euler-Lagrange equations we derived
before. Aµ is function of the four variables xµ, not one (s) like before. But that doesn’t make much of a difference. Variation
of Aµ(x) gives then We have then

0 =
1

16π
∂µ
∂FαβF

αβ

∂∂µAν
− 1

c

∂jµ(x)Aµ(x)

∂Aν

=
1

16π
∂µ
∂ηαγηβδ(∂αAβ − ∂αAβ)(∂γAδ − ∂δAγ)

∂∂µAν
− 1

c
jν

=
1

4π
∂µ(∂µAν − ∂νAµ)− 1

c
jν , (2.6)
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that is

∂µF
µν =

4π

c
jν . (2.7)

Let us see at how this equation looks like in 3D notation. Taking ν = 0 in eq. (2.7) gives

∂0 F
00︸︷︷︸

=0

+∂1 F
10︸︷︷︸
E1

+∂2 F
20︸︷︷︸
E2

+∂3 F
30︸︷︷︸
E3

=
4π

c
j0︸︷︷︸
cρ

⇒ ∇. ~E = 4πρ. (2.8)

Taking ν = 3

d

cdt︸︷︷︸ ∂0 F
03︸︷︷︸
−E3

+∂1 F
13︸︷︷︸
B2

+∂2 F
23︸︷︷︸
−B1

+∂3 F
33︸︷︷︸
0

=
4π

c
j3 ⇒ (∇× ~B)3 − 1

c

dE3

dt
=

4π

c
j3, (2.9)

and similarly for ν = 1, 2. So eq.(2.7) contains the inhomogeneous Maxwell’s equations. What about the homogeneous ones?
Remember that, in our formalism, Fµν is just a short hand for ∂µAν − ∂νAµ. Thus,

∂µFνλ + ∂λFµν + ∂νFλµ = 0 (2.10)

vanishes identically. Eq.(2.7) is equivalent to the homogeneous Mazwell’s equations. In fact, take µ = 1, ν = 2 and λ = 3.
We have then

0 = ∂1F 23 + ∂3F 12 + ∂2F 31

= ∂1B
1 + ∂2B

2 + ∂3B
3

= ∇. ~B. (2.11)

Taking µ = 0, ν = 1 and λ = 2:

0 = ∂0︸︷︷︸
∂
c∂t

F 12 + ∂2F 01 + ∂1F 20

= −1

c

∂B3

∂t
+ ∂2E

1 − ∂1E
2

= −(∇× ~E)3 − 1

c

∂B3

∂t
, (2.12)

and similar for other components.

III. CONCLUSION

Why do we do all this?


