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13.1 Introduction

Effective and efficient use of ion or electron accelerators requires a knowledge
of how to control and manipulate beams of charged particles using electric
and magnetic fields. Because this discipline shares many concepts acquired
historically through the study of light, the names “electron optics” and “ion
optics” came into early usage. Subsequently, the generic expression “beam
transport” was coined, in part because transporting particle beams (of any
kind) over long distances both inside and outside of accelerators has come
to dominate the field. In this chapter, and depending on context, sometimes
reference will be made to “optics” (especially if there is close analogy to con-
ventional light optics), and at other times to “transport”. No special distinc-
tion is intended. The word “ion” generally will mean any electrically charged
particle moving (mostly) in vacuum, while “beam” will refer to collections of
ions moving on average in the same direction.

At first blush, predicting particle trajectories within an electrostatic accel-
erator seems almost devoid of interest. In the uniform electric field of a basic
accelerator tube, charged particles moving at low speeds (v � c) follow par-
abolic trajectories analogous to masses falling in a uniform gravitational field.
The velocity component directed parallel to the tube axis undergoes con-
stant acceleration, while transverse velocity components remain unchanged.
Unfortunately, this much of the story is almost irrelevant. At each end of a
tube, where the electric field strength changes, fringing fields create strong
lenses [1] that dominate the overall optics. The difficulty of passing beams
through the stronger of these lenses at the tube entrance without incurring
substantial loss converts this to a problem of continuing interest. For the
simplest accelerators it is enough to understand this much. But devices get
added and machines grow in complexity. The largest electrostatic accelera-
tors house elaborate beam transport systems that require careful study both
for design and for efficient use. Outside the accelerator, the beam may have
come from somewhere else (in the case of a tandem) and certainly has to
go somewhere else. Both tasks require efficient coupling of the accelerator to
external devices.
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13.2 Methods

Throughout this discussion, the x axis points away from the reader into the
page, the y axis lies within the page pointing toward the top and the z axis
lies within the page pointing toward the right (longitudinal beam axis). It is
common practice to select x, z to define the midplane of a dipole and, since
dipoles often bend in the horizontal, x, z frequently is chosen to represent
the horizontal plane. In axially symmetric systems, where the distinction
between x and y disappears, an r, z frame may be substituted. The location
of a particle moving from left to right along the z axis is described by (usually)
small deviations from a reference particle representing the idealized center of
the beam:

x displacement from beam axis in x direction
y displacement from beam axis in y direction
x′ trajectory slope dx/dz in x, z plane
y′ trajectory slope dy/dz in y, z plane
δp fractional deviation from central momentum
δE fractional deviation from central energy
δv fractional deviation from central velocity
δm fractional deviation from central mass
δz deviation from reference position along z
δt deviation from reference transit time
δϕ deviation from reference r.f. phase angle

Obviously δp, δE and δv are not independent; ordinarily, one is selected
as a working coordinate (typically δp for all-magnetic systems and δE for
all-electric systems) and the others calculated from it as needed. Likewise,
for modulated beams, only one of δz, δt or δϕ is chosen to describe the longi-
tudinal position of a particle relative to the center of a beam pulse or bunch.
The differential mass variation, δm, is useful primarily for spectrometry and
will not be pursued here. Mass selection (e.g. for AMS) is easily calculated
for each discrete mass without introducing δm.

Six deviations (e.g. x, x′, y, y′, δp and δz) are commonly used to describe
the location of a particle in a six-dimensional (6D) phase space volume cen-
tered on a reference particle. For dc beams, the longitudinal deviation δz is
discarded but δp is retained to describe dispersion in magnetic dipoles (al-
ternately, δE is retained to describe dispersion in electric dipoles, or δv in
velocity filters). Acceleration changes x′, y′ and δp in a coherent way and
once acceleration is accounted for, Liouville’s theorem dictates that the total
volume is conserved during beam transport even in the presence of aberra-
tion. Coherent aberrations such as sextupole (2nd order) or octupole (3rd
order) in principle are reversible. In practice, although some corrections can
be made, it usually proves impossible to force all of the misshapen genie back
into the bottle because of the way aberrations warp the envelope of the phase
space volume, making it effectively larger. Incoherent aberrations (caused, for
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example, by strippers) occur at the microscopic level and are equivalent to
heating the beam; these are not reversible using corrective lenses but can be
overcome in cyclic machines by procedures that cool the beam.

Typically, in two dimensions (e.g. x, x′), contours of equal intensity in a
beam occupy areas that are roughly elliptical to start with [2,3]. The reasons
for this are varied but, in simplest form, any beam that scrapes against
multiple apertures tends to lose projecting corners and smooth toward an
elliptical shape in phase space. For mathematical convenience, an ellipse (or
ellipsoid) is usually substituted for less tractable polygons. An ellipse remains
an ellipse under linear transformations and, because most common devices
operate almost linearly for small deviations and do not cause mixing of x and
y coordinates (an important exception being solenoid lenses that rotate the
beam around the z axis), the 2D area is usually conserved. Suppose that such
an ellipse is upright with semiaxes x and x′ aligned to the coordinate frame.
For area to be conserved, the product xx′ must remain constant. This means
that reductions in spot size at this location (called a beam waist) can only
come at the expense of increased angles of incidence. The largest possible
angle (x′

max) will be limited by the distance upstream to the nearest lens and
the aperture at that lens. If the focused spot is to be made any smaller, then
the upstream lens must be brought closer or given a larger working aperture;
lens adjustments alone cannot overcome placement. Thus, the combination
of physical layout and phase space content governs the smallest spot sizes
available at a given location. Collimators (e.g. successive apertures, a tube or
a channel) restrict both size and angle, thus defining the maximum area of
an ellipse (or other figure) that can pass through [4]. Matching phase space
content to a collimator is a much more stringent requirement than simply
minimizing beam size [5].

Matrix analysis begins with equations that relate the coordinates of a
particle as it leaves some part of a beam transport system to the coordinates
at entry. To lowest order,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (13.1)

The coefficients ai/1 accommodate contributions that do not depend on in-
cident coordinates.

Over a distance of length l in empty space, the particle position in the
x, z plane drifts as x = x0 + lx′

0 (and similarly for y, z), while the divergence
“angle” does not change, keeping x′ = x′

0. A thin lens reverses this; the diver-
gence changes as x′ = ±x0/fx + x′

0, where fx is the focal length (which need
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not be the same as fy ), while the instantaneous position remains unchanged
at x = x0. In matrix form, these two basic operations become the workhorses
of beam transport analysis:

2D partition drift thin lens(
ax/x ax/x′

ax′/x ax′/x′

)
,

(
1 l
0 1

)
,

(
1 0

±1/fx 1

)
. (13.2)

The thin-lens matrix may be extended to describe thick lenses (asymptoti-
cally) as a single impulse or as a product of simpler components [5, 6]:(

F2/f2 ±(F1F2 − f1f2)/f2

±1/f2 F1/f2

)

=
(

1 ±δ2

0 1

)(
1 0

±1/f2 1

)(
1 0
0 f1/f2

) (
1 ±δ1

0 1

)
. (13.3)

The ± signs select for divergent lenses (+) or convergent lenses (−). The
subscripts 1 and 2 refer to the object and image sides, respectively. The fo-
cal lengths fi and focal points (focal planes) Fi are normally positive. The
differences δi = (Fi − fi) are displacements of the principal planes from ref-
erence planes at points of entry and exit. The sum ±(δ1 + δ2) represents
an effective (not necessarily actual) overall length. The signs in (13.3) have
been altered from those of DiChio et al. [6] in order to preserve the beam
transport convention that a convergent lens preceded by a drift matrix of
length Fi produces a point-to-parallel focus, and followed by drift F2 pro-
duces a parallel-to-point focus. If the determinant f1/f2 < 1, the 2D phase
space area decreases (owing to acceleration); if f1/f2 > 1, the area increases
(deceleration).

Continuous lensing action distributed over the length L of a component,
such as occurs in quadrupole fields, may be represented for convergent (C)
and divergent (D) lenses as follows [5]:(

cos θ (L/θ) sin θ
−(θ/L) sin θ cos θ

)
C

=
(

1 −δC

0 1

)(
1 0

−1/fC 1

)(
1 −δC

0 1

)
, (13.4)

(
cosh θ (L/θ) sinh θ

(θ/L) sinh θ cosh θ

)
D

=
(

1 δD

0 1

) (
1 0

1/fD 1

)(
1 δD

0 1

)
. (13.5)

For a particle of energy qU moving parallel to the axis in an electric quadru-
pole having a pole potential Va at radius a, or in a magnetic quadrupole
having a gradient ∂Bx/∂y = −∂By/∂x,

θE = (L/a)(2Va/Eρ)1/2, Eρ = β2γmc2/q
v�c−→ 2U , (13.6)

θB = L[(∂Bx/∂y)/Bρ]1/2, Bρ = βγmc/q
v�c−→ (2mU/q)1/2 , (13.7)

1/fC = (θ/L) sin θ, FC = fC cos θ, δC = fC(cos θ − 1) , (13.8)
1/fD = (θ/L) sinh θ, FD = fD cosh θ, δD = fD(cosh θ − 1) . (13.9)
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Note that (13.4) and (13.5) reflect (13.3) in mirror-symmetric form with
f1 = f2 = f , F1 = F2 = F and unit determinant. A quadrupole singlet
lens is maximally astigmatic: convergent in one plane while divergent in
the other. Combinations of alternating-gradient quadrupole lenses (doublets,
triplets and higher multiplet combinations) provide double-focusing capabil-
ity [5,7,8]. Uniform-field (flat-pole) magnetic dipoles focus continuously like a
quadrupole lens in the bending plane. In the perpendicular plane, the motion
is that of a pure drift of length ρθ:⎛
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, (13.10)
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If the pole ends are rotated away from perpendicular to the beam axis by an-
gles β1 and β2 then, to first order, equal and opposite thin lenses are created
in the two planes. Positive rotation angles shorten the path within the dipole
for particles having displacement +x. The third column in each matrix ac-
counts for changes that occur when the particle momentum differs from the
value that sets the bending radius ρ. Electric dipoles [9] and nonuniform mag-
netic dipoles [8] are only slightly more complicated. For other perspectives
on dipoles and quadrupoles see [10–12].

13.2.1 Focal Constraints

Focusing requirements are satisfied by reducing one or more elements of a
beam transport matrix to zero; for example, in the x,z plane,

ax/x′ = 0, focus point-to-point (final x independent of initial x′)
ax′/x = 0, focus parallel-to-parallel (final x′ independent of initial x)
ax/x = 0, focus parallel-to-point (final x independent of initial x)
ax′/x′ = 0, focus point-to-parallel (final x′ independent of initial x′)
ax/δp = 0, dispersionless in space (final x independent of initial δp)
ax′/δp = 0, dispersionless in angle (final x′ independent of initial δp).
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Note that unless axial symmetry is present, setting ax/x′ = 0 assures only a
line focus in the x, y plane. A second constraint, ay/y′ = 0 in the y, z plane, is
required to produce a double focus in both x and y (e.g. when using quadru-
pole lenses). Often two constraints are desired in one plane; for example,
achieving ax/δp = ax′/δp = 0 eliminates (to first order) all dispersion intro-
duced by upstream components [10]. Obviously, devices capable of effecting
these goals must be represented in the beam transport matrix. Skills required
for successful beam transport analysis include the selection, placement and
adjustment of such controlling devices.

Thus far, matrices have been assumed to operate on a single ray vector
representing a single particle. For most purposes a beam of particles may
be described using one ray for each dimension in phase space [12–14]. In
two dimensions, the perimeter of a phase space ellipse may be traced as the
parameter ϕ ranges from 0 to 2π using the following equation:(

x(ϕ)
x′(ϕ)

)
=

(
e11 e12

e21 e22

)(
cos ϕ
sin ϕ

)
= E

(
cos ϕ
sin ϕ

)
. (13.12)

Columns in the beam ellipse matrix E comprise individual ray vectors, which
must be selected for orthogonality; the most convenient starting choice is an
upright ellipse (or ellipsoid) having all diagonal elements nonzero (eii �= 0)
and all off-diagonal elements zero. Desired conditions which apply to the
beam as a whole (e.g. waist, minimum or size) may be achieved by applying
constraints to the E matrix after it has been acted upon by a beam transport
matrix. The parameter ϕ serves as an analytic tool for locating extrema
and as a graphical tool for outlining ellipses; it is not required during beam
transport calculations.

13.2.2 Focus, Waist or Minimum?

Confusion often arises from casual statements to the effect that lenses are used
to bring the beam to a focus. A true focus is applicable for some purposes
(notably microscopy and spectrometry), but far more commonly a beam is
“focused” to a spot of minimum size or (less often) to a waist.

Focus: a location where rays that initially shared the same object posi-
tion (point) or angle (parallel) arrive similarly correlated at an image; thus
we have point-to-point, parallel-to-point, point-to-parallel and parallel-to-
parallel foci, which are convenient for beam transport calculations because
they are geometrically determined and independent of the beam (ignoring
space charge). The familiar point-to-point focus ordinarily coincides with
neither waist nor minimum; however, a combined point-to-point and paral-
lel-to-parallel focus guarantees waist-to-waist transmission.

Waist : a place where the beam envelope momentarily is parallel as it
passes through a local minimum in size; an upright beam ellipse. A waist
is not the smallest size that can be obtained at this location; increasing the
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strength of the nearest upstream lens to draw the waist upstream will pro-
duce a smaller spot (a minimum) where the waist had been. A waist is of
interest because of its reflection symmetry (upstream and downstream beam
envelopes are mirror images) and because small displacements (as might be
caused by fluctuating lens strength) produce only second-order changes in
beam size. Very small waists are always near to a point focus and to a mini-
mum; very large waists are near to a parallel focus (an angular minimum).

Minimum: the smallest size the beam can be made (in x, y or both) at
a specific location using available controls. It is always possible to reduce
the beam size to a minimum even if a waist or a focus is unattainable. A
calculated minimum simulates the best “focus” that operators observe on
beam viewers and scanners. Minimum size or minimum angle is accessible
using (from among various possibilities) the ellipse–matrix formalism (i.e. an
ellipse, not necessarily upright, projecting either the smallest spatial extent
or the smallest angular extent at this location).

13.3 Single-Stage Accelerators

The heart of a single-stage electrostatic accelerator is the accelerator tube,
whose nonrelativistic matrix description may be approximated as follows (see
Sect. 13.6 for derivation, relativistic forms and other refinements):

lens field lens simple tube model

A =
(

1 0
1
f2

1

) (
1 2L

R+1

0 1
R

) (
1 0
−1
f1

1

)
=

(
−R−3

2
2L

R+1

− 3(R+1)(R−1)2

8LR2
3R−1
2R2

)
. (13.13)

L is the length of the accelerator tube; R = v/v0 = (U/U0)1/2 is the ratio of
exit to entrance velocities (a velocity increase being assumed here for purposes
of illustration); f1 = 4U0L/(U −U0) = 4L/(R2 − 1) is the focal length of the
(assumed circular and convergent) entrance lens; and f2 = 4UL/(U −U0) =
4LR2/(R2 − 1) is the focal length of the corresponding exit lens.

Suppose that, starting from an object located a distance p upstream from
this tube, a focus is desired at a distance q beyond the exit of the tube. The
model for this is

B =
(

bx/x bx/x′

bx′/x bx′/x′

)
=

(
1 q
0 1

)
A

(
1 p
0 1

)

=
(

ax/x + qax′/x ax/x′ + pax/x + q(ax′/x′ + pax′/x)
ax′/x ax′/x′ + pax′/x

)
. (13.14)

For a point-to-point focus, the final position of any point in the focal plane
is independent of initial angle; therefore bx/x′ = 0, which leads to

p = −ax/x′ + qax′/x′

ax/x + qax′/x
=

4L/(R + 1) + q(3R − 1)/R2

(R − 3) + (3/4)(q/L)(R + 1)(R − 1)2/R2
. (13.15)
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While this ignores many details, it illustrates clearly the problem of picking
an object distance p. If q ≥ 0 (i.e. a focus downstream from the tube exit),
then for R = 1, p < 0, but for R > 3, p > 0; therefore, between R = 1
and R = 3 the denominator passes through zero and p makes a transition
from a virtual object infinitely far downstream to a real object infinitely far
upstream. Lenses alone cannot easily correct for this. The ideal solution would
be a lens coincident with the tube entrance whose strength can be varied to
compensate for the changing focal length of the entrance aperture lens. The
so-called “gridded lens” used in some tandem accelerators does just this by
nullifying the natural aperture lens with a wire mesh grid while substituting a
long-focal-length gap lens in its place [15]. Most single-stage accelerators keep
R approximately constant by varying the injection energy. An acceleration
gap (often the ion source extractor or a downstream gap lens) located where
the beam is small permits the beam energy to be changed without significant
movement of the object point as seen by the tube. A less common variant
is to change L by shorting out portions of the accelerator tube as a coarse
form of adjustment, narrowing the dynamic range of R and f1, and thereby
permitting the injection energy to be kept high and more nearly constant [16].

13.4 Tandem Accelerators

A tandem electrostatic accelerator [17] consists of two acceleration stages that
share a single high-voltage terminal but are separated by a charge-changing
stripper. Negative ions injected into the low-energy (LE) stage accelerate
to the terminal, change to positive at the stripper and accelerate a second
time through the high-energy (HE) stage back to ground potential. Most
tandems have a straight-through geometry; a few have been “folded” into a
single-column structure by including a 180◦ reversing magnet in the terminal
[18–21]. Except for some large machines equipped with mid-column lenses,
the LE optics of tandems are characterized by (13.14). A focus (ultimately,
a beam minimum) is desired at the stripper, only a short distance beyond
the LE tube exit. Depending on the LE velocity gain ratio RLE , the natural
object location for this focus can range from far outside the accelerator to
distressingly near the LE tube entrance.

13.4.1 Tandem Low-Energy Stage

Although the basics of electrostatic accelerator optics were known [22],
tandems raised new challenges which had yet to be resolved. Typically, a
lens outside the pressure vessel was used to get as much beam as possible
into the first stage, but optical matching was alarmingly poor. A struggle
ensued to improve the coupling of external sources to the tandem LE stage.
The alternatives were to make efficient use of the entrance aperture lens, to
alter it or to neutralize its effects. Table 13.1 offers a sampling of options;
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Table 13.1. Types of beam coupling to a tandem LE stage

Type Object Requirements/comments

(a) Mid-column lens Zero Variable lens located in LE column
(b) Gap lens Short Used in many single-stage accelerators
(c) Constant gradient Short Parts of tube and column shorted
(d) Constant “Q” Medium Injection energy varied to match
(e) Gridded lens Medium Wire mesh grid on LE tube entrance
(f) Divergent lens Medium Requires grid in strong lens
(g) Step gradients Medium Gradient increased with energy
(h) Upstream lens(es) Variable Limited range of good matching
(i) Three-stage Long Ion source in injector terminal

some variants may utilize more than one entry. Zero object displacement is
achieved by focusing the injected beam to a crossover at the LE tube entrance
(effectively neutralizing the strong entrance aperture lens) and then using a
mid-column lens to refocus at the stripper [23–25]. A short object displace-
ment is the closest the object point approaches the LE tube entrance at the
highest attainable terminal voltages; adjustments are made to the injection
energy (b) or to the tube gradient (c) to keep this point fixed (or within
a relatively narrow range) as terminal voltage is lowered. Medium displace-
ment is achieved by injecting with energies that are kept proportional to the
terminal voltage and that range into the hundreds of keV (d); by cancelling
entrance fringing fields with a plane mesh grid that serves as one electrode
of a weaker but still convergent gridded lens (e); by preceding the aperture
lens with a strong divergent lens (for high terminal voltages), which converts
to a convergent lens by reversal of polarity (for low terminal voltages) but
which also requires the the use of a grid (f); or by progressing in stages from
lower to higher gradients (g). Variable object displacement (h) is the normal
outcome when nothing has been done to alter the LE entrance aperture lens
or stabilize it against changes in RLE . By introducing more than one lens
between the ion source and the tandem accelerator, a wider range of object
lengths can be accommodated than with a single lens. Long (possibly neg-
ative) displacements are attained by injecting with another accelerator (i)
that contributes substantially to the negative-ion energy and usually results
in RLE < 2. The relative merits of various of these possibilities have been
explored by [16,26–28].

Negative-ion injectors (NIIs) vary widely in design but tend to fall into
two broad categories: those in which negative ions reach ground potential
immediately after extraction (or after a charge-exchange process), and those
mounted on an insulated high-voltage platform that delivers ions to ground
potential through a “preacceleration” stage. In the first category, lenses built
into the NII may be adequate to provide a focus outside; otherwise, the
outgoing beam diverges. In the second category, the preacceleration stage



13 Ion Optics and Beam Transport 287

usually is operated much like a tandem HE stage since no penalty is in-
curred by crossing the beam near the preaccelerator tube entrance (often
at a mass-selection aperture) and allowing it to diverge coming out. Out-
side, divergent beams are refocused by one or more external lenses, which
may be axially symmetric electrostatic einzel lenses or electric or magnetic
quadrupole lenses. Besides offering greater focal strength, quadrupoles also
provide astigmatic correction for beams that emerge from the NII without
axial symmetry as a consequence, for example, of passing through a mass-
selection dipole. (However, from this distant upstream location, it is difficult
to correct for astigmatism generated within the tandem by, for example, slot-
shaped tube apertures in the LE stage.) Examples of studies of NII optics
are found in [28–31].

13.4.2 Tandem High-Energy Stage

If, as is usually the case, the injection energy may be ignored, then the velocity
gain ratio for the HE stage is simply

RHE = [(VT + qVT )/VT ]1/2 = (1 + q)1/2 , (13.16)

where VT is the terminal voltage and q is a positive charge state of interest
produced by stripping. The focal length for a circular aperture at the HE
tube entrance is approximately

f1HE = 4U0LHE/(U − U0) = 4LHE/(R2
HE − 1) = 4LHE/q . (13.17)

Thus, the problem of varying focal length reappears at the entrance to the
HE stage as a consequence of different charge states produced by stripping
rather than of changes in terminal voltage. The center of the charge state
distribution (the most probable charge state) does rise with energy, initially
as E1/2 and progressively more slowly at higher energies [32]. Typically, f1HE

considerably exceeds the distance from stripper to HE tube; consequently, a
convergent lens preceding the HE tube entrance offers improved transmission
and becomes essential when a controlled focus is desired at a second stripper
installed in the HE column. Additionally, if the HE tube begins with slot-
shaped apertures, the astigmatism provided by a quadrupole matching lens
can help compensate for aperture lens astigmatism.

Austerity prevails in small tandems, where gas strippers or a combination
of gas and foil strippers may be the only components in the terminal that
act on the beam. At the opposite extreme, the largest tandems have been
equipped with a cornucopia of components, including devices that select one
charge state from the many that emerge from a stripper. Noteworthy exam-
ples are the Daresbury vertical tandem [33], designed originally with offset
LE and HE tubes linked by paired magnetic dipoles [25] and redesigned for
axial geometry by changing to a displaced magnetic-quadrupole charge state
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selector [34]; the Oak Ridge, folded tandem [24], in which the 180◦ revers-
ing magnet performs charge selection, with electrostatic quadrupole lenses
providing focusing and matching [35]; and the VIVITRON [36], in which
a displaced quadrupole charge selector and matching lens were integrated
into one electrostatic package that could be shoehorned into a comparatively
short horizontal terminal with the charge selection aperture relocated farther
downstream at a second stripper position inside the HE column [37].

13.5 Transporting the Beam to Targets

If the beam emerging from an electrostatic accelerator is not deposited di-
rectly on a target, then it is likely that it will undergo a change in angle dur-
ing passage through one or more beam-bending, switching and/or analyzing
dipoles. The ability to change beam direction is, by itself, a valuable utility,
and multiport switching magnets facilitate directing the beam to more than
one target station. In addition, dipoles perform the useful and oftentimes in-
dispensable function of filtering out contaminant beams that originate in the
ion source or arise later because of charge-changing processes. However, the
first dipole encountered by a beam after acceleration is likely to be used to
convert variations in beam momentum (magnetic dipole) or energy (electric
dipole) into spatial displacements that are detected at slits and fed back to
a system which corrects for errors in the accelerating voltage. If the angle of
bend is small then the dipole acts as a relatively weak lens (see Sect. 13.2),
and the beam can be focused directly through the dipole onto regulating
slits. As previously mentioned, some accelerators (usually single-stage) have
the capability to do this using internal lenses. More typically, however, an ex-
ternal lens is required. In either case, the dipole should be located close to the
exit of the accelerator to minimize magnification at the slits. Conversely, if
the angle of bend is relatively large, as is the case for the widely used double-
focusing 90◦ analyzer, the beam must first be focused at the object point of
the dipole; the dipole then acts as a strong lens to refocus onto the image
slits. For this arrangement to work well with an external lens, the large-angle
dipole must be located considerably farther away from the accelerator and a
more powerful lens provided in order to achieve an intermediate object point
crossover. To obtain sufficient focal strength, the external lenses usually must
be quadrupole doublets or triplets. A quadrupole triplet will preserve more
of the axial symmetry in an initially symmetric beam than will a doublet,
but often the properties of a doublet are better matched to requirements.
Either lens can produce a double focus even if the upstream object is mildly
astigmatic, but a doublet magnifies more in one perpendicular plane than in
the other (typically by about 2:1), and smaller magnification in the bend-
ing plane usually provides a better match to aperture constraints, as well as
being highly desired to increase the resolution of the analyzing dipole.
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Well-regulated electrostatic accelerators produce very little energy spread
in the beam; consequently, small fluctuations in beam position caused by
dispersive devices usually can be ignored. But residual dispersion may be
intolerable for some applications, such as providing beam to a booster ac-
celerator. Every change in beam direction adds or subtracts some dispersion
and, when required, dispersion can be removed by balancing opposing contri-
butions. Often this is done using mirror-symmetric configurations of dipoles
and lenses such that dispersed rays converge back in mirror image onto the
axis; however, neither mirror imaging nor lenses nor identical angles of bend
are requisite, but at least two dipoles (including the one that initiated the
dispersion) and two controlled parameters (one of which may be mirror sym-
metry) will be required to cancel, to first order, both the spatial (ax/δp) and
the angular (ax′/δp) dispersion terms. Dispersion-control lenses typically pro-
duce point-to-point foci between the centers of dipoles (the pivot points from
which dispersed rays appear to fan out), whereas the conventional beam
focus may need to avoid these points (especially if a dipole is to serve as
an analyzer). Satisfying all requirements is possible but challenging; see, for
example, [10].

13.6 Accelerator Tube Matrices

13.6.1 Axial Accelerator Tube Model

At the core of any electrostatic accelerator is the accelerator tube, an evacu-
ated region containing a strong longitudinal electric field. Wherever the field
changes, focusing or defocusing occurs and this must be accounted for. Ex-
acting analyses [38] show that weak modulations of the field caused by the
finite thickness of tube electrodes and other internal details have apprecia-
ble effect, but often these are ignored because perturbations of comparable
magnitude in the field distribution during operation remain largely unknown.
Ordinarily, a variable lens system makes up for such shortcomings in the cal-
culations. Selection and placement of such lenses constitutes an important
part of optical design. Only when critical components have been positioned
for good beam control and matching does it become worthwhile to shift the
emphasis from idealized models to more detailed studies.

In order to evaluate velocities and times, let the particle kinetic energy
be qU , where U is the potential difference required to raise the energy of
a particle having charge q from zero to its present value. The total particle
energy [39] is

E = mc2 + qU = mc2(1 + qU/mc2) = γmc2 , (13.18)

where m is the (rest) mass and c the speed of light. The following conversions
are convenient to work with at low kinetic energies, where qU (typically
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measured in keV or MeV) is more likely to be known than the momentum or
velocity:

γ = (1 − β2)−1/2 = (β2γ2 + 1)1/2 = 1 + qU/mc2 , (13.19)

β = v/c = [(2qU/mc2)(1 + (1/2)qU/mc2)]1/2/(1 + qU/mc2) , (13.20)

βγ = (γ2 − 1)1/2 = [(2qU/mc2)(1 + (1/2)qU/mc2)]1/2 . (13.21)

In a region of electric field E, the applied force is

F = qE = dp/dt = d(γmv)/dt = γmdv/dt + mvγ3vc−2 dv/dt , (13.22)

Fi = qEi = γmdvi/dt + mviγ
3vc−2 dv/dt, i = x, y or z . (13.23)

For purely axial acceleration, Fx = Fy = 0; therefore, taking i = x to repre-
sent x or y, (13.23) separates into functions of vx and v, leading to

dvx/vx = −γ2vc−2 dv = −dγ/γ , (13.24)∫ vx

vx0

v−1
x dvx = −

∫ γ

γ0

γ−1 dγ , (13.25)

log(vx/vx0) = log(γ0/γ) , (13.26)

vx = vx0γ0/γ, or γmvx = γ0mvx0 . (13.27)

In the absence of transverse forces, the transverse momenta γ mvx and γ mvy

are separately conserved but transverse velocities vx and vy are not (except
in the low-velocity limit). However, the divergence changes from x′

0 to

x′ = vx/vz = γ0vx0/γvz = (γ0v0/γv)(v/vz)(vz0/v0)(vx0/vz0)
= x′

0/Rβγ + O(x′2, y′2) , (13.28)

where
Rβγ = βγ/β0γ0

v�c−→ R = (U/U0)1/2 . (13.29)

Since vz/v = (1−x′2 − y′2)1/2, and both x′ and y′ are presumed to be small,
no significant error results from discarding higher-order terms and assuming
vz/v ∼= 1. Note that, from (13.28), x′ and y′ depend only on x′

0 and y′
0, and

not on the transverse displacements x0 and y0.
If separate versions of (13.23) for i = x, y and z are multiplied by vi/v

and summed, then

q[(vx/v)Ex + (vy/v)Ey + (vz/v)Ez]
= γm[(vx/v) dvx/dt + (vy/v) dvy/dt + (vz/v) dvz/dt]

+γ3mc−2(v2
x + v2

y + v2
z) dv/dt

= γmdv/dt + γ3mv2c−2 dv/dt = γ3mdv/dt . (13.30)
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For accelerator tubes, Ez is the dominant term; therefore, let the left side of
(13.30) be written as

qEz(vz/v)[1 + (vx/vz)Ex/Ez + (vy/vz)Ey/Ez]
= qEz(vz/v)(1 + x′ tan θx + y′ tan θy) = qkEz , (13.31)

where θx = arctan(Ex/Ez) and θy = arctan(Ey/Ez) are fixed angles of incli-
nation of fields with respect to the tube axis, x′ = vx/vz and y′ = vy/vz are
the usual x and y divergences, and

k = (vz/v)(1 + x′ tan θx + y′ tan θy) (13.32)

adjusts for the orientation of a uniform electric field not aligned with z.
Rearranging (13.30) leads to

dt = γ3m(qkEz)−1 dv . (13.33)

Although k is, in general, a function of velocity, the variation in k over an
interval of acceleration may be small enough to allow k to be approximated
as a constant; whereupon (13.33) can be integrated ( [39], p. 139) from an
initial state v0, t0 before acceleration to a final state v, t to yield the duration
of acceleration

t − t0 =
∫ t

t0

dt =
∫ v

v0

γ3m(qkEz)−1 dv

= m(qkEz)−1(γv − γ0v0) = mc(qkEz)−1(βγ − β0γ0) . (13.34)

For axial acceleration, θx = θy = 0; consequently, from (13.32), k = (vz/v).
But vz/v −→ 1 when O(x′2, y′2) is neglected; therefore, k = 1 will be assumed
from here on for the axial case.

Because prior history is not of concern, the choice of t0 is arbitrary (v0 is
not); therefore, let t0 = 0, and extract from (13.34)

γ(t) = (β2γ2 + 1)1/2 = [(qEzm
−1c−1t + β0γ0)2 + 1]1/2 . (13.35)

An integration over x may be performed by using (13.27) in the form dx/dt =
vx = vx0γ0/γ, assisted by dt = mcq−1E−1

z d(βγ) obtained by differentiating
(13.34) with k = 1:

x − x0 =
∫ x

x0

dx = vx0γ0

∫ t

0

γ−1(t) dt

= vx0γ0mcq−1E−1
z

∫ βγ

β0γ0

(β2γ2 + 1)−1/2 d(βγ)

= {vx0vz0v0Lγ0/[vz0v0c(γ − γ0)]}
× log[(βγ + β2γ2 + 1)1/2/(β0γ0 + β2

0γ2
0 + 1)1/2]

= [(x′
0Lβ0γ0)/(γ − γ0)] log[(βγ + γ)/(β0γ0 + γ0)]

+O(x′2, y′2) , (13.36)
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where terms of O(x′2, y′2) are to be discarded and Ez has been replaced,
using (13.19), by

Ez = (U − U0)/L = mc2q−1L−1(γ − γ0) . (13.37)

For nearly all electrostatic-accelerator applications, a low-velocity approxi-
mation will suffice. Provided βγ < 1 (or, γ − 1 = qU/mc2 < 0.4), the log
function is expandable in powers of βγ ( [40], p. 45):

log(βγ + γ) = log[βγ + (β2γ2 + 1)1/2]
= βγ − (1/2)(β3γ3/3) + [(1 × 3)/(2 × 4)] (β5γ5/5)

− [(1 × 3 × 5)/(2 × 4 × 6)] (β7γ7/7) + . . . (13.38)

log[(βγ + γ)/(β0γ0 + γ0)]
= (βγ − β0γ0)[1 − (1/6)(β2γ2 + βγβ0γ0 + β2

0γ2
0) + . . .] . (13.39)

Keeping only leading βγ terms in (13.36), discarding O(x′2, y′2), substituting
for Rβγ from (13.29) and remembering that β2γ2 = γ2 − 1 leads to the
following reduction:

x − x0
∼= x′

0Lβ0γ0(βγ − β0γ0)/(γ − γ0)

= x′
0L(γ + γ0)/(Rβγ + 1) v�c−→ 2x′

0L/(R + 1) . (13.40)

To summarize, from (13.28), (13.29), (13.36) and (13.40), axial acceleration
is described (for either x or y) by the first-order (linear) matrix(

ax/x ax/x′

ax′/x ax′/x′

)
=

(
1 [(Lβ0γ0)/(γ − γ0)] log[(βγ + γ)/(β0γ0 + γ0)]
0 β0γ0/βγ

)
v�c−→

(
1 2L/(R + 1)
0 1/R

)
. (13.41)

13.6.2 Inclined-Field Accelerator Tube Model

Axially symmetric accelerator tubes are more susceptible to electrical break-
down than are tubes in which a component of the field is perpendicular to
the axis. One method for generating such fields is to cant the internal elec-
trodes at an angle of order 10◦ to 15◦ to produce a substantial transverse field
component [41–43]. For convenience, assume that the transverse coordinate
system has been rotated about the beam axis until an electric-field exists only
in the x, z plane and that perpendicular to this plane vy is negligibly small.
After acceleration, any such rotation will have to be reversed to realign to
the original axes. If v‖ and v⊥ are components of initial velocity parallel and
perpendicular to the electric-field vector E, and θ is the angle between the
electric field and the tube axis then, by transformation of coordinates,
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v⊥0 = vx0 cos θ − vz0 sin θ = vz0 cos θ(x′
0 − tan θ) , (13.42)

v‖0 = vx0 sin θ + vz0 cos θ = vz0 cos θ(1 + x′
0 tan θ) . (13.43)

In a coordinate system aligned to E,

X ′
⊥0 = (v⊥/v‖)0 = (x′

0 − tan θ)/(1 + x′
0 tan θ)

= x′
0/ cos2 θ − tan θ + O(x′2, y′2) . (13.44)

In the ⊥, ‖ system, E‖ = |E| and E⊥ = Ey= 0; therefore, (13.23) transforms
into

F⊥ = qE⊥ = γmdv⊥/dt + mv⊥γ3vc−2 dv/dt , (13.45)

which, as in (13.24) through (13.27), separates into functions of v⊥ and v
that can be integrated to yield the conservation of transverse momentum,

v⊥ = v⊥0γ0/γ, or γmv⊥ = γ0mv⊥0 . (13.46)

After acceleration, the transformation back to vx and vz is

vx = v⊥ cos θ + v‖ sin θ , (13.47)

vz = −v⊥ sin θ + v‖ cos θ . (13.48)

Using (13.44) through (13.48), the ratio vx/vz may now be written as

x′ = (vx/vz)
= [(v⊥/v‖0) cos θ + (v‖/v‖0) sin θ]/[−(v⊥/v‖0) sin θ + (v‖/v‖0) cos θ]
= [X ′

⊥0 + R‖ tan θ]/[R‖ − X ′
⊥0 tan θ]

= x′
0R‖(1 + tan2 θ)2/(R‖ + tan2 θ)2

+(R‖ − 1) tan θ/(R‖ + tan2 θ) + O(x′2, y′2) , (13.49)

where, based on the central ray trajectory, for which vx0 = x′
0 = 0 in (13.42)

and (13.43), the ratio of momenta parallel to the electric vector before and
after acceleration is

R‖ = γ mv‖/γ0mv‖0
= (γ/γ0)[v2/(v2

z0 cos2 θ) − (v2
z0 sin2 θ)/(v2

z0 cos2 θ)]1/2

= Rβγ [1 + (1 − β2
0/β2) tan2 θ]1/2 + O(x′2, y′2)

v�c−→ R[1 + (1 − R−2) tan2 θ]1/2 . (13.50)

Referring to (13.32) and applying (13.46), the correction factor k in the
v⊥, v‖ plane becomes

k‖ = v‖/v = (1 − v2
⊥/v2)1/2 = (1 − γ2

0v2
⊥0/γ2v2)1/2 , (13.51)
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which is neither constant nor small, since typically v⊥/v ∼= 1/4. As a conse-
quence, k‖(v) must be included inside the velocity integral in (13.34) when
calculating the transit time, as follows:

t − t0 =
∫ t

t0

dt = mq−1E−1
‖

∫ v

v0

γ3k−1
‖ dv

= mq−1E−1
‖

∫ γv

γ0v0

(γ2v2 − γ2
0v2

⊥0)
−1/2γv d(γv)

= mcq−1E−1
‖ [(β2γ2 − γ2

0v2
⊥0/c2)1/2 − (β2

0γ2
0 − γ2

0v2
⊥0/c2)1/2]

= mcq−1E−1
‖ [ζ − ζ0] , (13.52)

where

ζ = β‖γ = (β2γ2 − γ2
0v2

⊥0/c2)1/2

= (β2γ2 − β2
⊥0γ

2
0)1/2 = (γ2 − 1 − β2

⊥0γ
2
0)1/2 , (13.53)

γ(ζ) = (ζ2 + 1 + β2
⊥0γ

2
0)1/2 , (13.54)

dt = mcq−1E−1
‖ dζ . (13.55)

Guided by (13.36), an integration over x⊥ may be performed using dx⊥/dt =
v⊥ = v⊥0γ0/γ from (13.46), assisted by (13.42) as well as ζ, γ(ζ) and dt from
above:

x⊥ − x⊥0 =
∫ x⊥

x⊥0

dx⊥ = v⊥0γ0

∫ t

0

γ−1(t) dt

= v⊥0γ0mcq−1E−1
‖

∫ ζ

ζ0

(ζ2 + 1 + β2
⊥0γ

2
0)−1/2 dζ

= [(x′
0 − tan θ)Lβ0γ0 cos2 θ/(γ − γ0)]

× log[(ζ + γ)/(ζ0 + γ0)] + O(x′2, y′2) , (13.56)

where, using (13.37), E‖ has been replaced by

E‖ = Ez/cos θ = (U − U0)/(L cos θ) = mc2(γ − γ0)/(qL cos θ) . (13.57)

Note that x′
0 is not cleanly separated out in (13.56), because ζ is a function

of β⊥0, which, in (13.42), contains x′
0.

The trajectory has now been tracked in the ⊥, ‖ plane from the equipo-
tential U0, which crosses at z = 0, to the equipotential U , which crosses at
z = L. Along the x‖ axis, the original z axis has diverged by −L sin θ. To
compensate for this, L sin θ must be added to (13.56) to obtain the net dis-
placement ∆⊥ = L sin θ+x⊥−x⊥0, along x⊥. Because equipotentials are not
orthogonal to the z axis, the endpoint will not, in general, lie in the perpendic-
ular plane z = L which bounds the accelerator tube. Since this rudimentary
model does not include details of transitions from one inclination angle to
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the next, the question of how a region of uniform inclined field should be
terminated remains open. To continue acceleration until the equipotential
plane intersecting z = L is reached would change the final energy. To simply
transform the x⊥, x‖ coordinates into x, z would leave zfinal �= L. To drift
with divergence x′, until z = L, has some physical justification but seems
unnecessarily complicated. To project parallel to E, so that x = ∆⊥/cos θ,
would be appropriate if the trajectories were essentially parallel to E, but
that is unlikely because trajectories are deliberately programmed to remain,
on average, close to the axis and thus more nearly parallel to z. Instead, the
procedure chosen here is to let

x − x0 = ∆⊥ cos θ = (L sin θ + x⊥ − x⊥0) cos θ , (13.58)

implying x⊥0 = x0/cos θ. In effect, this slides the final result parallel to z, as
necessary, in order to arrive at z = L. Virtues of this imperfect choice are that
sections having different inclination angles may be joined without passing
information from section to section and that contiguous sections having the
same angle join without perturbation.

By a change of variable from ζ to Z, and substituting γ(ζ) from (13.54),
the log function in (13.56) may be expanded in powers of Z for Z0 ≤ Z < 1,
in the same way as βγ in (13.38) and (13.39):

Z = ζ(1 + β2
⊥0γ

2
0)−1/2 , (13.59)

log[(ζ + γ)/(ζ0 + γ0)]
= (Z − Z0)[1 − (1/6)(Z2 + ZZ0 + Z2

0 ) + . . .] . (13.60)

The leading term may be decomposed using (13.43), (13.50), (13.53), and
(13.59) into

Z − Z0 = Zζ−1(ζ − ζ0) = Zζ−1(ζ2 − ζ2
0 )/(ζ + ζ0)

= Zζ−1(γ2 − γ2
0)/[β‖0γ0(R‖ + 1)]

= (1 + β2
⊥0γ

2
0)−1/2(γ2 − γ2

0)
/[β0γ0(vz/v0) cos θ(1 + x′

0 tan θ)(R‖ + 1)] . (13.61)

Substituting (13.60) reduced to (13.61) into (13.56) and then that result into
(13.58) yields the low-velocity approximation

x ∼= x0 + L sin θ cos θ + [(x′
0 − tan θ)Lβ0γ0 cos3 θ(γ − γ0)(γ + γ0)]

/{(γ − γ0)(1 + β2
⊥0γ

2
0)1/2[β0γ0 cos θ(1 + x′

0 tan θ)(R‖ + 1)]} + O(x′2, y′2)
∼= x0 + L sin θ cos θ + [(x′

0 − sin θ cos θ)L(γ + γ0)]
/[(1 + β2

⊥0γ
2
0)1/2(R‖ + 1)] + O(x′2, y′2)

v�c−→ x0 + L sin θ cos θ(R‖ − 1)/(R‖ + 1) + 2x′
0L/(R‖ + 1) (13.62)
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This result suggests a compromise that will extract x′
0 from within (13.56)

for most applications. Let

H = [(β0γ0 cos θ)/(γ − γ0)] log[(ζ + γ)/(ζ0 + γ0)]
v�c−→ 2/(R‖ + 1) , (13.63)

with the proviso that H is to be evaluated for a reference trajectory having
x′

0 = 0. To balance against this, replace x′
0 cos2 θ in (13.56) with x′

0, as
happens in (13.62) for β2

⊥0γ
2
0 �1. In matrix form,

⎛
⎝ ax/x ax/x′ ax/1

ax′/x ax′/x′ ax′/1

0 0 1

⎞
⎠ =

⎛
⎜⎝

1 LH L sin θ cos θ(1 − H)

0 R‖(1+tan2 θ)2

(R‖+tan2 θ)2
(R‖−1) tan θ)

R‖+tan2 θ

0 0 1

⎞
⎟⎠ . (13.64)

The third column, containing ax/1 and ax′/1 elements, is introduced to ac-
commodate particle displacements from a predefined geometric axis that are
independent of initial position and angle. It also may be used to describe
beam steerers [12], displaced quadrupole charge selectors [11], and steering ef-
fects caused, for example, by misalignment (deliberate or otherwise) of beam
transport components. The matrix (13.64) supersedes results presented by
the author in [44]. Reversals of the inclination angle within a tube module
are required to keep the cumulative ax/1 from growing too large. It is also
desirable to exit each module with ax/1 = ax′/1 = 0. Interesting examples of
this art may be found in [42–51].

In the orthogonal y, z plane, transverse momentum is unchanged by the
inclined field; therefore, adapting (13.28),

y′ = vy/vz = γvy/γvz = γ0vy0/γv
z

= y′
0/Rβγ + O(x′2, y′2) . (13.65)

During acceleration, γvy behaves the same as γv⊥. After adjustment for the
fact that coordinate transformations are not required, (13.56) through (13.62)
serve as guidelines for y − y0:

y − y0 =
∫ y

y0

dy

= vy0γ0

∫ t

0

γ−1(t) dt = vy0γ0mcq−1E−1
‖

∫ ζ

ζ0

(ζ2 + 1 + β2
⊥0γ

2
0)−1/2 dζ

= [(y′
0Lβ0γ0 cos θ)/(γ − γ0)] log[(ζ + γ)/(ζ0 + γ0)] + O(x′2, y′2)

v�c−→ 2y′
0L/(R‖ + 1) . (13.66)

Comparison of the above with (13.49) and (13.62) shows that, to within the
approximations used in (13.64), the matrix for y is the same as (13.64), except
that ay/1 = ay′/1 = 0.
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