
Fundamentals of QSAR modeling: 
basic concepts and applications

Alexander Tropsha
University of North Carolina, Chapel Hill, USA



Key points

• Basic concepts and best practices of QSAR 
modeling

• Data curation
• Case study and model interpretation: alerts about 

alerts
• Emerging approaches: Hybrid (chemical-

biological) QSAR modeling and Chemical 
Biological Read Across (CBRA)

• Summary of QSAR as (regulatory) decision 
support tool



The growing appreciation of 
molecular modeling and informatics

3

The newly-appointed President-Elect of the Royal Society 
of Chemistry today forecast the impact of advances in 
modelling and computational informatics on chemistry



The chief utility of computational models: 
Hit identification in external libraries

4



QSAR Modeling



Structure representation





Structure representation

Graphs are widely used to represent
and differentiate chemical structures,
where atoms are vertices and bonds
are expressed as edges connecting 
these vertices.

MOL File

Vertices

Edges

Molecular graphs allow
the computation of 

numerous indices to 
compare them
quantitatively.

Molecular descriptors



Datasets are represented by a 
matrix of molecular descriptors

Samples
(Compounds)

Variables (descriptors)

X1 X2 ... Xm

1 X11 X12 ... X1m

2 X21 X22 ... X2m

... ... ... ... ...

n Xn1 Xn2 ... Xnm



Compounds represented by vectors 
in a multidimensional descriptor space 



Molecules may form clusters
in chemical space

Cluster
2

Cluster
3

Cluster
4

Cluster
1

Molecules are 
considered as vectors 
in the space of 
descriptors (« 
chemical » space).

Dimensions of this 
space correspond to 
the number of 
descriptors.

Clustering methods 
are employed to 
analyze distances 
between compounds 
and identify clusters.



QSAR Modeling
Establish quantitative relationships between
descriptors and the target property capable of predicting
activities of novel compounds. 

BA = F(D) (linear, 
e.g., -LogIC50 = k1D1+k2D2+…+knDn)
or non-linear, e.g. k nearest neighbors

Chemistry

Comp.1

Bioactivity
(IC50, Kd...)

Value1
(Molecular Descriptors)
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Comp.2 Value2 " " " | "
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QSAR Modeling Workflow: the 
importance of rigorous validation



Data dependency and data quality are 
critical issues in QSAR modeling

Florian Prinz, Thomas Schlange and Khusru Asadullah. Nature Rev. Drug 
Disc. Sep 2011 
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QSAR modeling with non-curated datasets



Chemical Structure Curation
Chemical structures should be cleaned and standardized 
(duplicates removed, salts stripped, neutral form, canonical tautomer, etc)
to enable rigorous model development
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Muratov, Fourches, Tropsha. Trust but verify. JC J. 
Chem. Inf. Model. 2010, 50, 1189-1204.
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QSAR modeling of 
nitro-aromatic toxicants 
-Case Study 1: 28 compounds tested in rats,
log(LD50), mmol/kg.
-Case Study 2: 95 compounds tested against
Tetrahymena pyriformis, log(IGC50), mmol/ml.

-Case Study 2: after the normalization of nitro groups R2
ext~0

increased to R2
ext~0.5

Artemenko, Muratov et al. SAR QSAR 2011, 22 (5-6), 1-27.

Even small differences in structure representation can
lead to significant errors in prediction accuracy of
models

23

- Five different representations of nitro groups.
-Case Study 1: after the normalization of nitro groups
R2

ext~0.45 increased to R2
ext~0.9.



QSAR modeling of 
nitro-aromatic toxicants 

-Case Study 2: after the normalization of nitro groups R2
ext~0 increased to R2

ext~0.5

- Five different representations of nitro groups.
-Case Study 1: after the normalization of nitro groups
R2

ext~0.45 increased to R2
ext~0.9.Data curation affects the accuracy 

(up or down!) of QSAR models

-Case Study 1: 28 compounds tested in rats,
log(LD50), mmol/kg.
-Case Study 2: 95 compounds tested against
Tetrahymena pyriformis, log(IGC50), mmol/ml.

Artemenko, Muratov et al. SAR QSAR 2011, 22 (5-6), 1-27.

Even small differences in structure representation can
lead to significant errors in prediction accuracy of
models
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J. Chem. Inf. Model. 2011, 51, 2474–2481

Curation of Bioactivity: Case study
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Dataset Curation summary 
17143 compounds

17121 compounds

17121 compounds

17121 compounds

17121 compounds

16142 compounds

16142 compounds

26Fourches D, et al. J Chem Inf Model. 2010 50(7):1189-204.



NCGC dataset: analysis 
of duplicates

• Out of 1280 duplicate couples :
– 406 had no discrepancies-no values or no values for 

comparison
– 874 had biological profile differences

• A total of 1535 discrepancies were found in the 
874 couples of duplicates:

CYP2C19CYP2D6CYP3A4CYP1A2CYP2C9

170422426363154# of
discrepancies
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Neighborhood Analysis for Duplicates
17,000 compounds screened against five major CYP450 isozymes.
1,280 pairs of duplicates couples were found (874 had different bioprofiles)

2C192D63A41A22C9SupplierSIDTanimoto
Similarity

5 Nearest 
neighbors

5.5-4.5-Tocris111140710.986604862

5.1-Sigma Aldrich111120290.986604106

Tocris111140120.986604846

5.9-4.8-Sigma Aldrich111120540.956604136

4.5-4.7-4.4-Tocris111137640.956604137

2C192D63A41A22C9SupplierSIDTocris-0740

-4.5-6.2-4.6-4.4-4.6Tocris11113673CID_6603937

-5-5.6-8-4.4Sigma Aldrich11111504CID_6603937

28



Chemical/Biological data curation 
workflow

29Fourches, Muratov, Tropsha. Nat Chem Biol. 2015,11(8):535. 
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Published guidance on model 
development and validation: The 
OECD Principles

To facilitate the consideration of a QSAR model 
for regulatory purposes, it should be associated with the 

following information:
 a defined endpoint 

 an unambiguous algorithm;

 a defined domain of applicability
 appropriate measures of goodness-of-fit, 
robustness and predictivity
a mechanistic interpretation if possible
Should be added: data used for modeling should 
be carefully curated



21 “how not to do QSAR” principles

Dearden JC et al., 2009, SAR and QSAR in Environmental Research, Vol. 20, Nos. 3–4, April–June 2009, 241
31



Model accuracy and interpretation:
Case studies (modeling of skin sensitization 
and Ames genotoxicity)
• The Local Lymph Node Assay (LLNA) is generally regarded as the preferred

test for evaluating skin sensitization.1

• Although LLNA has a good correlation with human skin sensitization, it has
been shown that LLNA fails in several cases to predict human skin
sensitization.2

• Ca. 3.89% (39,090) of the 1,004,873 animals used for safety testing in
Europe are used in skin sensitization/irritation tests2; this creates a strong
need to evaluate skin sensitization potential for a chemical without
expensive and time-consuming animal testing.

32

4European Commission. On the animal testing and marketing ban and on the state of play in relation to alternative methods in the field of cosmetics 2013.

In silico methods are highly recommended for 
time and cost saving of skin-related 

research.4
2European Commission. Seventh teport on the statistics on the number of animals used for experimental and other scientific purposes in the member states of the 2013

1OECD. Test No. 429: Skin Sensitisation http://iccvam.niehs.nih.gov/SuppDocs/FedDocs/OECD/OECD-TG429-2010.pdf (accessed Jan 23, 2013).
2Api, A. M.; Basketter, D.; Lalko, J.; Basketter, D.; Lalko, J. Cutan. Ocul. Toxicol. 2014, 9527, 1–5.



Model accuracy and interpretation:
Case studies
• QSAR models of skin sensitization and their

application to identify potentially hazardous
compounds (Alves VM, Muratov E, Fourches D, Strickland J,
Kleinstreuer N, Andrade CH, Tropsha A. Toxicol Appl Pharmacol. 2015
284(2):262-72)

• QSAR models of skin permeability and the
relationships between skin permeability and skin
sensitization (Alves VM, Muratov E, Fourches D, Strickland J,
Kleinstreuer N, Andrade CH, Tropsha A. Toxicol Appl Pharmacol. 2015
284(2):273-80)

• QSAR models of human data could replace
mLLNA test for predicting human skin sensitization
potential of chemicals (Alves VM, Muratov E, Fourches D,
Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. In preparation). 33



Skin Sensitization Dataset 
(mLLNA)

34

Source
ICCVAM (Interagency Coordinating Committee on the Validation of Alternative
Methods) report 2009

Vehicle type Non-
sensitizer Sensitizer Total

ACE 14 31 45
AOO 51 178 229
dH2O 2 2 4
DMF 40 27 67

DMSO 16 15 31
PG 6 8 14

Pluronic L92 
(1%) 2 5 7

Others 4 7 11
Total 135 273 408

Abbreviations: AOO, acetone&olive oil (4:1 by volume); ACE, acetone; DMF,
dimethyl formamide; DMSO, dimethyl sulfoxide; PG, propylene glycol.

254 compounds were retained for QSAR modeling:
127 non-sensitizers + 127 sensitizers

133 remaining sensitizers were used for additional external validation



QSAR models of skin sensitization 
(mLLNA) 

Statistical characteristics of 
the models

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Consensus Consensus AD Consensus Rigor

254 compounds (127 sensitizers + 127 
non-sensitizers)

Fair comparison with QSAR 
Toolbox

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Consensus Consensus AD
Consensus Rigor QSAR Toolbox

Showing results for 153 compounds
Not present in QSAR Toolbox DB

Models were built using Random Forest approach – 5-fold External CV 
results



ALERTS vs. QSAR: ACTIVATED PYRIDINE/PYRIMIDINE



ALERTS vs. QSAR: NO PROTEIN BINDING ALERTS



Chemical Alerts (rules)  of 
Toxicity: are they truly reliable?



Chemical Alerts (rules)  of 
Toxicity: are they truly reliable?



Model interpretation: identifying statistically 
important fragments as complex alerts

Full model
(967 fragments)

Reduced model
(76 fragments)

Specificity 0.92 ±0.009 0.92 ±0.009
Sensitivity 0.78 ±0.005 0.81 ±0.005

Balanced Accuracy 0.85 ±0.005 0.87 ±0.005
AUC 0.91 ±0.004 0.94 ±0.003

Results from 5-fold external cross validation
40

Slightly 
improved



Example of fragment (alert) interaction

41

Nitro’s mutagenic effect is:
increased by furan (synergism)
decreased by primary alkanes(antagonism)

84% mutagenic (“penetrance”)
620:118

N

O

O

Synergistic interaction
Antagonistic
interaction

C(*C’-N’*O’)

C-C-C-H

O = N= O
+

100% mutagenic
79:0
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O

O

94% mutagenic
79:5

O

N

S

O
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+

69% mutagenic
100:46

N

O

O

HC – C – C – H  

29% mutagenic
785:1884

Number of 
mutagenic 

compounds
:

Number of 
non-mutagenic 
compounds



Nitro compounds are active when paired with aromatic rings 
inactive when paired with primary alkanes
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5275-69-4
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nitrofuran
Mutagenic

nitroalkanes (primary)
Nitro(prop – hex)ane

Non-mutagenic

Mechanism

Benigni 2011 Chem Rev
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Marrying SAR and QSAR in CWAS: Deriving alerts 
from validated QSAR models



Can models replace testing? Skin 
sensitization modeling of human data
human DSA05 data: induction dose per skin area (DSA) that produces a 
positive response in 5% of the tested population using human maximization test 
(HMT) and the human repeat-insult patch test (HRIPT)

44

1Fourches, D.; Muratov, E.; Tropsha, A. J. Chem. Inf. Model. 2010, 50, 1189–1204.
2Tropsha, A. Mol. Inform. 2010, 29, 476–488.
3 Braga, R. C.; Alves, V. M. et al. Curr. Top. Med. Chem. 2014, 14, 1399–1415.



Comparison of external predictive accuracy for human 
data: QSAR gives more reliable predictions than mLLNA 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CCR Sensitivity PPV Specificity NPV Coverage

LLNA Consensus C. Rigor Acceptable model

Accessed by 5-fold external cross validation; SVM: Support Vector Machine; AD: Applicability Domain.
No. of compounds = 63 sensitizers + 46 non sensitizers



QSAR and toxicity testing in 
the 21st century

EPAs Contribution:  The ToxCast Research Program
Slide courtesy of Dr. Ann Richard, EPA (modified) 



QSAR and Chemical Toxicity 
Testing in the 21 Century

Cancer

ReproTox

DevTox

NeuroTox

PulmonaryTox

ImmunoTox

Bioinformatics/
Machine Learning

computational

HTS 
-omics

in vitro testing

$Thousands

+

Slide courtesy of Dr. Ann Richard, EPA (modified) 



Integration of Diverse Data Streams into QSAR 
Modeling to Improve Toxicity Prediction



QSAR modeling: chemical descriptors

High dimensional data, X Response, y

Machine learning

y=f(X)

x1 x2 … xp
Chemical 1
Chemical 2
Chemical 3
…
Chemical n

chemical descriptors

Toxicity

Chemical 1 1

Chemical 2 0

Chemical 3 0

… …

Chemical n 1

x1 … xz
Chemical 1
Chemical 2
Chemical 3
…
Chemical n

Bioassay data

x1 x2 … … … … xz
Chemical 1
Chemical 2
Chemical 3
…
Chemical n

Chemical descriptors Bioassay data

Zhu H et al. (2008) Environ. Health Perspect. 116, 506-513;
Low Y et al. (2011) Chem. Res. Toxicol. 24,1251-1262;
Sedykh A et al. (2011) Environ. Health Perspect. (119): 364-370



QSAR modeling: in vitro assay descriptors

High dimensional data, X Response, y

Machine learning

y=f(X)

x1 x2 … xp
Chemical 1
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Chemical 1 1
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Bioassay data

x1 x2 … … … … xz
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…
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Chemical descriptors Bioassay data

Zhu H et al. (2008) Environ. Health Perspect. 116, 506-513;
Low Y et al. (2011) Chem. Res. Toxicol. 24,1251-1262;
Sedykh A et al. (2011) Environ. Health Perspect. (119): 364-370



QSAR modeling: hybrid descriptors

High dimensional data, X Response, y

Machine learning

y=f(X)

x1 x2 … xp
Chemical 1
Chemical 2
Chemical 3
…
Chemical n

chemical descriptors

Toxicity

Chemical 1 1

Chemical 2 0

Chemical 3 0

… …

Chemical n 1

x1 … xz
Chemical 1
Chemical 2
Chemical 3
…
Chemical n

Bioassay data

x1 x2 … … … … xz
Chemical 1
Chemical 2
Chemical 3
…
Chemical n

Chemical descriptors Bioassay data

Zhu H et al. (2008) Environ. Health Perspect. 116, 506-513;
Low Y et al. (2011) Chem. Res. Toxicol. 24,1251-1262;
Sedykh A et al. (2011) Environ. Health Perspect. (119): 364-370



The Use of Biological Screening Data as Additional Biological 
Descriptors Improves the Prediction Accuracy of Conventional 
QSAR Models of Chemical Toxicity

- Zhu, H., et al. Use of cell viability assay data improves the prediction accuracy of 
conventional quantitative structure-activity relationship models of animal carcinogenicity. 
EHP, 2008, (116): 506-513

- Sedykh A, et al. Use of in vitro HTS-derived concentration-response data as biological 
descriptors improves the accuracy of QSAR models of in vivo toxicity. EHP, 2011, 
119(3):364-70.

- Low et al., Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics
approaches. Chem Res Toxicol. 2011 Aug 15;24(8):1251-62 

- Rusyn et al, Predictive modeling of chemical hazard by integrating numerical 
descriptors of chemical structures and short-term toxicity assay data. Tox. Sci., 2012, 
127(1):1-9

- Low Y, et al. Integrative chemical-biological read-across approach for chemical hazard 
classification. Chem Res Toxicol. 2013, 26(8):1199-208

- Low, Y, et al. Integrative Approaches for Predicting In Vivo Effects of Chemicals from 
their Structural Descriptors and the Results of Short-Term Biological Assays. Curr. Top. 
Med. Chem., 2014, 14(11):1356-64

- Low et al, Cheminformatics-Aided Pharmacovigilance: Application to Stevens Johnson 
Syndrome. JAMIA, 2015 (in press).



Predicting Subchronic Hepatotoxicity 
from 24h Toxicogenomics Profiles

53

In vivo hepatic 
gene expression
(24h, high dose )

Rats in triplicates
6-8 weeks old
Sprague Dawley

Liver histopathology

Clinical chemistry

Doses: low, med, high

0

10

20

30

40

50

60

70

Nontoxic Toxic

42%
toxic

58%
Non-
toxic

127 compounds in 2 classes

Assigned by 
pathologist

Subchronic 28-day 
hepatotoxicity

Predict

Time points: 
3h, 6h, 9h, 24h, 
3, 7, 14 and 28 days 

Data source: Open TG-GATEs http://toxico.nibio.go.jp/

http://toxico.nibio.go.jp/




Conflicting Predictions by 
QSAR and Toxicogenomics Models

Carbamazepine
Distant biological neighbors
Close chemical neighbors
=> Chemical similarity works 
better

Caffeine
Close biological neighbors
Distant chemical neighbors
=> TGx similarity works 
better

Improved 
prediction:
Learn from both 
sets of neighbors



Chemical-biological read-across (CBRA):
learning from both sets of neighbors
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wrongly predicted 
as toxic

Bendazac
Toxic
0.790

Phenytoin 
Non-toxic

0.813

Flutamide 
Toxic
0.783
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Non-toxic
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0.776

Phenylbutazone 
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0.767
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Low et al, Chem Res Toxicol. 2013, 26(8):1199-208



Chemical-biological read-across (CBRA):
learning from both sets of neighbors

57Low et al, Chem Res Toxicol. 2013, 26(8):1199-208



CBRA outperforms other models

• Single space approaches replicated previous results: TGx > hybrid > QSAR

• Multi-space kNN read-across, using both chemical and toxicogenomic 
neighbors, had the highest predictive power

58

Model Specificity Sensitivity

Balanced 
accuracy 

(CCR)

Chemical 
read-across

0.73 ± 0.07 0.34 ± 0.05 0.53 ± 0.04

Biological 
read-across

0.85 ± 0.07 0.66 ± 0.04 0.76 ± 0.04

Hybrid 
read-across

0.85 ± 0.07 0.58 ± 0.04 0.72 ± 0.04

Multi-
space read-
across

0.89 ± 0.07 0.66 ± 0.04 0.78 ± 0.04

Results of 5-fold external cross-validation

Low et al, Chem Res Toxicol. 2013, 26(8):1199-208



Radial Plots Visualize both Chemical and Biological 
Similarity to Help Forming the Read-across Argument

59
Low et al, Chem Res Toxicol. 2013, 26(8):1199-208



Conclusions and Outlook

• Rapid accumulation of large biomolecular datasets 
(especially, in public domain):
– Strong need for both chemical and biological data curation
– Cheminformatics approaches support biological data curation

• Novel approaches towards Integration of inherent chemical 
properties with short term biological profiles (biological 
descriptors ) 
– improve the outcome of structure – in vitro – in vivo 

extrapolation
• Interpretation of significant chemical and biological 

descriptors emerging from externally validated models 
– inform the selection or design of effective and safe chemicals 

and focus the selection of assays/interpretation in terms of 
MoA

• Tool and data sharing
– Pubic web portals (e.g., Chembench, OCHEM)
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