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Preface

This textbook evolved from a formal set of notes developed over nearly ten years
of teaching an introductory course in orbital mechanics for aerospace engineering
students. These undergraduate students had no prior formal experience in the subject,
but had completed courses in physics, dynamics and mathematics through differential
equations and applied linear algebra. That is the background I have presumed for
readers of this book.

This is by no means a grand, descriptive survey of the entire subject of astronautics.
It is a foundations text, a springboard to advanced study of the subject. I focus on the
physical phenomena and analytical procedures required to understand and predict, to
first order, the behavior of orbiting spacecraft. I have tried to make the book readable
for undergraduates, and in so doing I do not shy away from rigor where it is needed
for understanding. Spacecraft operations that take place in earth orbit are considered
as are interplanetary missions. The important topic of spacecraft control systems is
omitted. However, the material in this book and a course in control theory provide
the basis for the study of spacecraft attitude control.

A brief perusal of the Contents shows that there are more than enough topics
to cover in a single semester or term. Chapter 1 is a review of vector kinematics in
three dimensions and of Newton’s laws of motion and gravitation. It also focuses on
the issue of relative motion, crucial to the topics of rendezvous and satellite attitude
dynamics. Chapter 2 presents the vector-based solution of the classical two-body
problem, coming up with a host of practical formulas for orbit and trajectory analy-
sis. The restricted three-body problem is covered in order to introduce the notion of
Lagrange points. Chapter 3 derives Kepler’s equations, which relate position to time
for the different kinds of orbits. The concept of ‘universal variables’ is introduced.
Chapter 4 is devoted to describing orbits in three dimensions and accounting for the
major effects of the earth’s oblate, non-spherical shape. Chapter 5 is an introduction
to preliminary orbit determination, including Gibbs’ and Gauss’s methods and the
solution of Lambert’s problem. Auxiliary topics include topocentric coordinate sys-
tems, Julian day numbering and sidereal time. Chapter 6 presents the common means
of transferring from one orbit to another by impulsive delta-v maneuvers, including
Hohmann transfers, phasing orbits and plane changes. Chapter 7 derives and employs
the equations of relative motion required to understand and design two-impulse ren-
dezvous maneuvers. Chapter 8 explores the basics of interplanetary mission analysis.
Chapter 9 presents those elements of rigid-body dynamics required to characterize
the attitude of an orbiting satellite. Chapter 10 describes the methods of controlling,
changing and stabilizing the attitude of spacecraft by means of thrusters, gyros and
other devices. Finally, Chapter 11 is a brief introduction to the characteristics and
design of multi-stage launch vehicles.

Chapters 1 through 4 form the core of a first orbital mechanics course. The time
devoted to Chapter 1 depends on the background of the student. It might be surveyed

xi



xii Preface

briefly and used thereafter simply as a reference. What follows Chapter 4 depends on
the objectives of the course.

Chapters 5 through 8 carry on with the subject of orbital mechanics. Chapter 6
on orbital maneuvers should be included in any case. Coverage of Chapters 5, 7 and
8 is optional. However, if all of Chapter 8 on interplanetary missions is to form a part
of the course, then the solution of Lambert’s problem (Section 5.3) must be studied
beforehand.

Chapters 9 and 10 must be covered if the course objectives include an introduction
to satellite dynamics. In that case Chapters 5, 7 and 8 would probably not be studied
in depth.

Chapter 11 is optional if the engineering curriculum requires a separate course in
propulsion, including rocket dynamics.

To understand the material and to solve problems requires using a lot of under-
graduate mathematics. Mathematics, of course, is the language of engineering.
Students must not forget that Sir Isaac Newton had to invent calculus so he could solve
orbital mechanics problems precisely. Newton (1642–1727) was an English physi-
cist and mathematician, whose 1687 publication Mathematical Principles of Natural
Philosophy (‘the Principia’) is one of the most influential scientific works of all time. It
must be noted that the German mathematician Gottfried Wilhelm von Leibniz (1646–
1716) is credited with inventing infinitesimal calculus independently of Newton in
the 1670s.

In addition to honing their math skills, students are urged to take advantage
of computers (which, incidentally, use the binary numeral system developed by
Leibniz). There are many commercially available mathematics software packages for
personal computers. Wherever possible they should be used to relieve the burden of
repetitive and tedious calculations. Computer programming skills can and should be
put to good use in the study of orbital mechanics. Elementary MATLAB® programs
(M-files) appear at the end of this book to illustrate how some of the procedures devel-
oped in the text can be implemented in software. All of the scripts were developed
using MATLAB version 5.0 and were successfully tested using version 6.5 (release 13).
Information about MATLAB, which is a registered trademark of The MathWorks,
Inc., may be obtained from:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

The text contains many detailed explanations and worked-out examples. Their
purpose is not to overwhelm but to elucidate. It is always assumed that the material is
being seen for the first time and, wherever possible, solution details are provided so as
to leave little to the reader’s imagination. There are some exceptions to this objective,
deemed necessary to maintain the focus and control the size of the book. For example,
in Chapter 6, the notion of specific impulse is laid on the table as a means of rating
rocket motor performance and to show precisely how delta-v is related to propellant
expenditure. In Chapter 10 Routh–Hurwitz stability criteria are used without proof to
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show quantitatively that a particular satellite configuration is, indeed, stable. Specific
impulse is covered in more detail in Chapter 11, and the stability of linear systems is
treated in depth in books on control theory. See, for example, Nise (2003) and Ogata
(2001).

Supplementary material appears in the appendices at the end of the book.
Appendix A lists physical data for use throughout the text. Appendix B is a ‘road
map’ to guide the reader through Chapters 1, 2 and 3. Appendix C shows how to set
up the n-body equations of motion and program them in MATLAB. Appendix D lists
the MATLAB implementations of algorithms presented in several of the chapters.
Appendix E shows that the gravitational field of a spherically symmetric body is the
same as if the mass were concentrated at its center.

The field of astronautics is rich and vast. References cited throughout this text are
listed at the end of the book. Also listed are other books on the subject that might be
of interest to those seeking additional insights.

I wish to thank colleagues who provided helpful criticism and advice during the
development of this book. Yechiel Crispin and Charles Eastlake were sources for
ideas about what should appear in the summary chapter on rocket dynamics. Habib
Eslami, Lakshmanan Narayanaswami, Mahmut Reyhanoglu and Axel Rohde all used
the evolving manuscript as either a text or a reference in their space mechanics courses.
Based on their classroom experiences, they gave me valuable feedback in the form
of corrections, recommendations and much-needed encouragement. Tony Hagar
voluntarily and thoroughly reviewed the entire manuscript and made a number of
suggestions, nearly all of which were incorporated into the final version of the text.

I am indebted to those who reviewed the manuscript for the publisher for their
many suggestions on how the book could be improved and what additional topics
might be included.

Finally, let me acknowledge how especially grateful I am to the students who,
throughout the evolution of the book, reported they found it to be a helpful and
understandable introduction to space mechanics.

Howard D. Curtis
Embry-Riddle Aeronautical University

Daytona Beach, Florida
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Supplements
to the text

For the student:

• Copies of the MATLAB programs (M-files) that appear in Appendix D can
be downloaded from the companion website accompanying this book. To
access these please visit http://books.elsevier.com/companions and follow the
instructions on screen.

For the instructor:

• A full Instructor’s Solutions Manual is available for adopting tutors, which pro-
vides complete worked-out solutions to the problems set at the end of each
chapter. To access these please visit http://books.elsevier.com/manuals and follow
the instructions on screen.

xv
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1C h a p t e r

Dynamics of
point masses

Chapter outline

1.1 Introduction 1
1.2 Kinematics 2
1.3 Mass, force and Newton’s law of gravitation 7
1.4 Newton’s law of motion 10
1.5 Time derivatives of moving vectors 15
1.6 Relative motion 20
Problems 29

1.1 Introduction

This chapter serves as a self-contained reference on the kinematics and dynamics
of point masses as well as some basic vector operations. The notation and

concepts summarized here will be used in the following chapters. Those familiar with
the vector-based dynamics of particles can simply page through the chapter and then
refer back to it later as necessary. Those who need a bit more in the way of review
will find the chapter contains all of the material they need in order to follow the
development of orbital mechanics topics in the upcoming chapters.

We begin with the problem of describing the curvilinear motion of particles
in three dimensions. The concepts of force and mass are considered next, along
with Newton’s inverse-square law of gravitation. This is followed by a presentation

1



2 Chapter 1 Dynamics of point masses

of Newton’s second law of motion (‘force equals mass times acceleration’) and the
important concept of angular momentum.

As a prelude to describing motion relative to moving frames of reference, we
develop formulas for calculating the time derivatives of moving vectors. These are
applied to the computation of relative velocity and acceleration. Example problems
illustrate the use of these results as does a detailed consideration of how the earth’s
rotation and curvature influence our measurements of velocity and acceleration. This
brings in the curious concept of Coriolis force. Embedded in exercises at the end of
the chapter is practice in verifying several fundamental vector identities that will be
employed frequently throughout the book.

1.2 Kinematics

To track the motion of a particle P through Euclidean space we need a frame of
reference, consisting of a clock and a cartesian coordinate system. The clock keeps
track of time t and the xyz axes of the cartesian coordinate system are used to locate
the spatial position of the particle. In non-relativistic mechanics, a single ‘universal’
clock serves for all possible cartesian coordinate systems. So when we refer to a frame
of reference we need think only of the mutually orthogonal axes themselves.

The unit of time used throughout this book is the second (s). The unit of length
is the meter (m), but the kilometer (km) will be the length unit of choice when large
distances and velocities are involved. Conversion factors between kilometers, miles
and nautical miles are listed in Table A.3.

Given a frame of reference, the position of the particle P at a time t is defined
by the position vector r(t) extending from the origin O of the frame out to P itself,
as illustrated in Figure 1.1. (Vectors will always be indicated by boldface type.) The

x

y

z

O

�

v

a
P

s

o

Path

Figure 1.1 Position, velocity and acceleration vectors.



1.2 Kinematics 3

components of r(t) are just the x, y and z coordinates,

r(t) = x(t)î + y(t)ĵ + z(t)k̂

î, ĵ and k̂ are the unit vectors which point in the positive direction of the x, y and z
axes, respectively. Any vector written with the overhead hat (e.g., â) is to be considered
a vector of unit dimensionless magnitude.

The distance of P from the origin is the magnitude or length of r, denoted ‖r‖ or
just r,

‖r‖ = r =
√

x2 + y2 + z2

The magnitude of r, or any vector A for that matter, can also be computed by means
of the dot product operation,

r = √
r · r ‖A‖ = √

A · A

The velocity v and acceleration a of the particle are the first and second time derivatives
of the position vector,

v(t) = dx(t)

dt
î + dy(t)

dt
ĵ + dz(t)

dt
k̂ = vx(t)î + vy(t)ĵ + vz(t)k̂

a(t) = dvx(t)

dt
î + dvy(t)

dt
ĵ + dvz(t)

dt
k̂ = ax(t)î + ay(t)ĵ + az(t)k̂

It is convenient to represent the time derivative by means of an overhead dot. In this
shorthand notation, if ( ) is any quantity, then

(
·
) ≡ d()

dt
(
··
) ≡ d2()

dt2
(
···
) ≡ d3()

dt3
, etc.

Thus, for example,

v = ṙ
a = v̇ = r̈

vx = ẋ vy = ẏ vz = ż
ax = v̇x = ẍ ay = v̇y = ÿ az = v̇z = z̈

The locus of points that a particle occupies as it moves through space is called its path
or trajectory. If the path is a straight line, then the motion is rectilinear. Otherwise, the
path is curved, and the motion is called curvilinear. The velocity vector v is tangent
to the path. If ût is the unit vector tangent to the trajectory, then

v = vût

where v, the speed, is the magnitude of the velocity v. The distance ds that P travels
along its path in the time interval dt is obtained from the speed by

ds = v dt

louiscoo
下划线



4 Chapter 1 Dynamics of point masses

In other words,

v = ṡ

The distance s, measured along the path from some starting point, is what the odome-
ters in our automobiles record. Of course, ṡ, our speed along the road, is indicated by
the dial of the speedometer.

Note carefully that v �= ṙ, i.e., the magnitude of the derivative of r does not equal
the derivative of the magnitude of r.

Example
1.1

The position vector in meters is given as a function of time in seconds as

r = (8t2 + 7t + 6)î + (5t3 + 4)ĵ + (0.3t4 + 2t2 + 1)k̂ (m) (a)

At t = 10 seconds, calculate v (the magnitude of the derivative of r) and ṙ (the
derivative of the magnitude of r).

The velocity v is found by differentiating the given position vector with respect to
time,

v = dr

dt
= (16t + 7)î + 15t2 ĵ + (1.2t3 + 4t)k̂

The magnitude of this vector is the square root of the sum of the squares of its
components,

‖v‖ = (1.44t6 + 234.6t4 + 272t2 + 224t + 49)
1
2

Evaluating this at t = 10 s, we get

v = 1953.3 m/s

Calculating the magnitude of r in (a), leads to

‖r‖ = (0.09t8 + 26.2t6 + 68.6t4 + 152t3 + 149t2 + 84t + 53)
1
2

Differentiating this expression with respect to time,

ṙ = dr

dt
= 0.36t7 + 78.6t5 + 137.2t3 + 228t2 + 149t + 42

(0.09t8 + 26.2t6 + 68.6t4 + 152t3 + 149t2 + 84t + 53)
1
2

Substituting t = 10 s, yields

ṙ = 1935.5 m/s

If v is given, then we can find the components of the unit tangent ût in the cartesian
coordinate frame of reference

ût = v

‖v‖ = vx

v
î + vy

v
ĵ + vz

v
k̂

(
v =

√
v2

x + v2
y + v2

z

)



1.2 Kinematics 5

The acceleration may be written,

a = at ût + anûn

where at and an are the tangential and normal components of acceleration, given by

at = v̇ (= s̈) an = v2

�
(1.1)

� is the radius of curvature, which is the distance from the particle P to the center of
curvature of the path at that point. The unit principal normal ûn is perpendicular to
ût and points towards the center of curvature C, as shown in Figure 1.2. Therefore,
the position of C relative to P, denoted rC/P , is

rC/P = �ûn

The orthogonal unit vectors ût and ûn form a plane called the osculating plane. The
unit normal to the osculating plane is ûb, the binormal, and it is obtained from ût

and ûn by taking their cross product,

ûb = ût × ûn

The center of curvature lies in the osculating plane. When the particle P moves an
incremental distance ds the radial from the center of curvature to the path sweeps
out a small angle dφ, measured in the osculating plane. The relationship between this
angle and ds is

ds = � dφ

so that ṡ = �φ̇, or

φ̇ = v

�
(1.2)

x

y

z

O

P

C df

ds

ut

un

ub

r

Osculating plane

ˆ ˆ

ˆ

Figure 1.2 Orthogonal triad of unit vectors associated with the moving point P.



6 Chapter 1 Dynamics of point masses

Example
1.2

Relative to a cartesian coordinate system, the position, velocity and acceleration of a
particle relative at a given instant are

r = 250î + 630ĵ + 430k̂ (m)

v = 90î + 125ĵ + 170k̂ (m/s)

a = 16î + 125ĵ + 30k̂ (m/s2)

Find the coordinates of the center of curvature at that instant.

First, we calculate the speed v,

v = ‖v‖ =
√

902 + 1252 + 1702 = 229.4 m/s

The unit tangent is, therefore,

ût = v

v
= 90î + 125ĵ + 170k̂

797.4
= 0.3923î + 0.5449ĵ + 0.7411k̂

We project the acceleration vector onto the direction of the tangent to get its tangential
component at ,

at = a · ût = (16î + 125ĵ + 30k̂) · (0.3923î + 0.5449ĵ + 0.7411k̂) = 96.62 m/s2

The magnitude of a is

a =
√

162 + 1252 + 302 = 129.5 m/s2

Since a = at ût + anûn and ût and ûn are perpendicular to each other, it follows that
a2 = a2

t + a2
n, which means

an =
√

a2 − a2
t =

√
129.52 − 96.622 = 86.29 m/s2

Hence,

ûn = 1

an
(a − at ût )

= 1

86.29
[(16î + 125ĵ + 30k̂) − 96.62(0.3923î + 0.5449ĵ + 0.7411k̂)]

= −0.2539î + 0.8385ĵ − 0.4821k̂

The equation an = v2/� can now be solved for � to yield

� = v2

an
= 229.42

86.29
= 609.9 m



1.3 Mass, force and Newton’s law of gravitation 7

Let rC be the position vector of the center of curvature C. Then

rC = r + rC/P

= r + �ûn = 250î + 630ĵ + 430k̂ + 609.9(−0.2539î + 0.8385ĵ − 0.4821k̂)

= 95.16î + 1141ĵ + 136.0k̂ (m)

That is, the coordinates of C are

x = 95.16 m y = 1141 m z = 136.0 m

1.3 Mass, force and Newton’s law of
gravitation

Mass, like length and time, is a primitive physical concept: it cannot be defined in
terms of any other physical concept. Mass is simply the quantity of matter. More
practically, mass is a measure of the inertia of a body. Inertia is an object’s resistance
to changing its state of motion. The larger its inertia (the greater its mass), the more
difficult it is to set a body into motion or bring it to rest. The unit of mass is the
kilogram (kg).

Force is the action of one physical body on another, either through direct contact
or through a distance. Gravity is an example of force acting through a distance, as are
magnetism and the force between charged particles. The gravitational force between
two masses m1 and m2 having a distance r between their centers is

Fg = G
m1m2

r2
(1.3)

This is Newton’s law of gravity, in which G, the universal gravitational constant, has
the value 6.6742 × 1011 m3/kg · s2. Due to the inverse-square dependence on distance,
the force of gravity rapidly diminishes with the amount of separation between the
two masses. In any case, the force of gravity is minuscule unless at least one of the
masses is extremely big.

The force of a large mass (such as the earth) on a mass many orders of magnitude
smaller (such as a person) is called weight, W . If the mass of the large object is M and
that of the relatively tiny one is m, then the weight of the small body is

W = G
Mm

r2
= m

(
GM

r2

)
or

W = mg (1.4)

where

g = GM

r2
(1.5)



8 Chapter 1 Dynamics of point masses

g has units of acceleration (m/s2) and is called the acceleration of gravity. If planetary
gravity is the only force acting on a body, then the body is said to be in free fall. The
force of gravity draws a freely falling object towards the center of attraction (e.g.,
center of the earth) with an acceleration g . Under ordinary conditions, we sense our
own weight by feeling contact forces acting on us in opposition to the force of gravity.
In free fall there are, by definition, no contact forces, so there can be no sense of weight.
Even though the weight is not zero, a person in free fall experiences weightlessness,
or the absence of gravity.

Let us evaluate Equation 1.5 at the surface of the earth, whose radius according
to Table A.1 is 6378 km. Letting g0 represent the standard sea-level value of g , we get

g0 = GM

R2
E

(1.6)

In SI units,

g0 = 9.807 m/s (1.7)

Substituting Equation 1.6 into Equation 1.5 and letting z represent the distance above
the earth’s surface, so that r = RE + z, we obtain

g = g0
R2

E

(RE + z)2
= g0

(1 + z/RE)2
(1.8)

Commercial airliners cruise at altitudes on the order of 10 kilometers (six miles). At
that height, Equation 1.8 reveals that g (and hence weight) is only three-tenths of a
percent less than its sea-level value. Thus, under ordinary conditions, we ignore the
variation of g with altitude. A plot of Equation 1.8 out to a height of 1000 km (the
upper limit of low-earth orbit operations) is shown in Figure 1.3. The variation of
g over that range is significant. Even so, at space station altitude (300 km), weight is
only about 10 percent less that it is on the earth’s surface. The astronauts experience
weightlessness, but they clearly are not weightless.

200 400 600 800

0.7

0.8

0.9

1.0

1000
z, km

g /
g 0

0
0

Figure 1.3 Variation of the acceleration of gravity with altitude.
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Example
1.3

Show that in the absence of an atmosphere, the shape of a low altitude ballistic
trajectory is a parabola. Assume the acceleration of gravity g is constant and neglect
the earth’s curvature.

x

y

(x0, y0)

υ0

P

g

g0

Figure 1.4 Flight of a low altitude projectile in free fall (no atmosphere).

Figure 1.4 shows a projectile launched at t = 0 with a speed v0 at a flight path angle
γ0 from the point with coordinates (x0, y0). Since the projectile is in free fall after
launch, its only acceleration is that of gravity in the negative y-direction:

ẍ = 0

ÿ = −g

Integrating with respect to time and applying the initial conditions leads to

x = x0 + (v0 cos γ0)t (a)

y = y0 + (v0 sin γ0)t − 1

2
gt2 (b)

Solving (a) for t and substituting the result into (b) yields

y = y0 + (x − x0) tan γ0 − 1

2

g

v0 cos γ0
(x − x0)2 (c)

This is the equation of a second-degree curve, a parabola, as sketched in Figure 1.4.

Example
1.4

An airplane flies a parabolic trajectory like that in Figure 1.4 so that the passengers
will experience free fall (weightlessness). What is the required variation of the flight
path angle γ with speed v? Ignore the curvature of the earth.

Figure 1.5 reveals that for a ‘flat’ earth, dγ = −dφ, i.e.,

γ̇ = −φ̇
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(Example 1.4
continued)

It follows from Equation 1.2 that

�γ̇ = −v (1.9)

The normal acceleration an is just the component of the gravitational acceleration g
in the direction of the unit principal normal to the curve (from P towards C). From
Figure 1.5, then,

an = g cos γ (a)

Substituting Equation 1.1 into (a) and solving for the radius of curvature yields

� = v2

g cos γ
(b)

Combining Equations 1.9 and (b), we find the time rate of change of the flight path
angle,

γ̇ = −g cos γ

v

df

g

dg

C

r

y

x

g

P

g

Figure 1.5 Relationship between dγ and dφ for a ‘flat’ earth.

1.4 Newton’s law of motion

Force is not a primitive concept like mass because it is intimately connected with the
concepts of motion and inertia. In fact, the only way to alter the motion of a body is
to exert a force on it. The degree to which the motion is altered is a measure of the
force. This is quantified by Newton’s second law of motion. If the resultant or net
force on a body of mass m is Fnet, then

Fnet = ma (1.10)
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x

y

z

r

Inertial frame

i

j

k

O

m

Fnet

a
v

ˆ

ˆ

ˆ

Figure 1.6 The absolute acceleration of a particle is in the direction of the net force.

In this equation, a is the absolute acceleration of the center of mass. The absolute
acceleration is measured in a frame of reference which itself has neither translational
nor rotational acceleration relative to the fixed stars. Such a reference is called an
absolute or inertial frame of reference.

Force, then, is related to the primitive concepts of mass, length and time by
Newton’s second law. The unit of force, appropriately, is the Newton, which is the
force required to impart an acceleration of 1 m/s2 to a mass of 1 kg. A mass of one
kilogram therefore weighs 9.81 Newtons at the earth’s surface. The kilogram is not a
unit of force.

Confusion can arise when mass is expressed in units of force, as frequently occurs
in US engineering practice. In common parlance either the pound or the ton (2000
pounds) is more likely to be used to express the mass. The pound of mass is officially
defined precisely in terms of the kilogram as shown in Table A.3. Since one pound of
mass weighs one pound of force where the standard sea-level acceleration of gravity
(g0 = 9.80665 m/s2) exists, we can use Newton’s second law to relate the pound of
force to the Newton:

1 lb (force) = 0.4536 kg × 9.807 m/s2

= 4.448 N

The slug is the quantity of matter accelerated at one foot per second2 by a force of
one pound. We can again use Newton’s second law to relate the slug to the kilogram.
Noting the relationship between feet and meters in Table A.3, we find

1 slug = 1 lb

1 ft/s2
= 4.448 N

0.3048 m/s2 = 14.59
kg · m/s2

m/s2

= 14.59 kg

louiscoo
下划线
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Example
1.5

On a NASA mission the space shuttle Atlantis orbiter was reported to weigh 239 255 lb
just prior to lift-off. On orbit 18 at an altitude of about 350 km, the orbiter’s weight
was reported to be 236 900 lb. (a) What was the mass, in kilograms, of Atlantis on the
launch pad and in orbit? (b) If no mass were lost between launch and orbit 18, what
would have been the weight of Atlantis in pounds?

(a) The given data illustrates the common use of weight in pounds as a measure of
mass. The ‘weights’ given are actually the mass in pounds of mass. Therefore,
prior to launch

mlaunch pad = 239 255 lb (mass) × 0.4536 kg

1 lb (mass)
= 108 500 kg

In orbit,

morbit 18 = 236 900 lb (mass) × 0.4536 kg

1 lb (mass)
= 107 500 kg

The decrease in mass is the propellant expended by the orbital maneuvering and
reaction control rockets on the orbiter.

(b) Since the space shuttle launch pad at Kennedy Space Center is essentially at sea
level, the launch-pad weight of Atlantis in lb (force) is numerically equal to its
mass in lb (mass). With no change in mass, the force of gravity at 350 km would
be, according to Equation 1.8,

W = 239 255 lb (force) ×
(

1

1 + 350
6378

)2

= 215 000 lb (force)

The integral of a force F over a time interval is called the impulse I of the force,

I =
∫ t2

t1

F dt (1.11)

From Equation 1.10 it is apparent that if the mass is constant, then

Inet =
∫ t2

t1

m
dv

dt
dt = mv2 − mv1 (1.12)

That is, the net impulse on a body yields a change m�v in its linear momentum,
so that

�v = Inet

m
(1.13)

If Fnet is constant, then Inet = Fnet�t , in which case Equation 1.13 becomes

�v = Fnet

m
�t (if Fnet is constant) (1.14)
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Let us conclude this section by introducing the concept of angular momentum. The
moment of the net force about O in Figure 1.6 is

MOnet = r × Fnet

Substituting Equation 1.10 yields

MOnet = r × ma = r × m
dv

dt
(1.15)

But, keeping in mind that the mass is constant,

r × m
dv

dt
= d

dt
(r × mv) −

(
dr

dt
× mv

)
= d

dt
(r × mv) − (v × mv)

Since v × mv = m(v × v) = 0, it follows that Equation 1.15 can be written

MOnet = dHO

dt
(1.16)

where HO is the angular momentum about O,

HO = r × mv (1.17)

Thus, just as the net force on a particle changes its linear momentum mv, the moment
of that force about a fixed point changes the moment of its linear momentum about
that point. Integrating Equation 1.16 with respect to time yields∫ t2

t1

MOnet dt = HO2 − HO1 (1.18)

The integral on the left is the net angular impulse. This angular impulse–momentum
equation is the rotational analog of the linear impulse–momentum relation given
above in Equation 1.12.

Example
1.6

A particle of mass m is attached to point O by an inextensible string of length l.
Initially the string is slack when m is moving to the left with a speed vo in the position
shown. Calculate the speed of m just after the string becomes taut. Also, compute the

x

y

d

υ0

υ

l

m

O

c

Figure 1.7 Particle attached to O by an inextensible string.
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(Example 1.6
continued)

average force in the string over the small time interval �t required to change the
direction of the particle’s motion.

Initially, the position and velocity of the particle are

r1 = c î + dĵ v1 = −v0 î

The angular momentum is

H1 = r1 × mv1 =
∣∣∣∣∣∣

î ĵ k̂
c d 0

−mv0 0 0

∣∣∣∣∣∣ = mv0k̂ (a)

Just after the string becomes taut

r2 = −
√

l2 − d2 î + dĵ v2 = vx î + vy ĵ (b)

and the angular momentum is

H2 = r2 × mv2 =
∣∣∣∣∣∣

î ĵ k̂
−√

l2 − d2 d 0
vx vy 0

∣∣∣∣∣∣ =
(
−mvxd − mvy

√
l2 − d2

)
k̂ (c)

Initially the force exerted on m by the slack string is zero. When the string becomes
taut, the force exerted on m passes through O. Therefore, the moment of the net force
on m about O remains zero. According to Equation 1.18,

H2 = H1

Substituting (a) and (c) yields

vxd +
√

l2 − d2vy = −v0d (d)

The string is inextensible, so the component of the velocity of m along the string must
be zero:

v2 · r2 = 0

Substituting v2 and r2 from (b) and solving for vy we get

vy = vx

√
l2

d2
− 1 (e)

Solving (d) and (e) for vx and vy leads to

vx = −d2

l2
v0 vy = −

√
1 − d2

l2

d

l
v0 (f)

Thus, the speed, v =
√

v2
x + v2

y , after the string becomes taut is

v = d

l
v0
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From Equation 1.12, the impulse on m during the time it takes the string to become
taut is

I = m(v2 − v1) = m

[(
−d2

l2
v0 î −

√
1 − d2

l2

d

l
v0 ĵ

)
− (−v0 î)

]

=
(

1 − d2

l2

)
mv0 î −

√
1 − d2

l2

d

l
mv0 ĵ

The magnitude of this impulse, which is directed along the string, is

I =
√

1 − d2

l2
mv0

Hence, the average force in the string during the small time interval �t required to
change the direction of the velocity vector turns out to be

Favg = I

�t
=

√
1 − d2

l2

mv0

�t

1.5 Time derivatives of moving vectors

Figure 1.8(a) shows a vector A inscribed in a rigid body B that is in motion relative
to an inertial frame of reference (a rigid, cartesian coordinate system which is fixed
relative to the fixed stars). The magnitude of A is fixed. The body B is shown at two
times, separated by the differential time interval dt . At time t + dt the orientation of

ω

f

dθ

A

dA

A � dA

(a) (b)

A(t � dt)

X

Y

Z

t t � dt

A(t)

Rigid body B 

Inertial frame

Instantaneous axis of rotation

Figure 1.8 Displacement of a rigid body.
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vector A differs slightly from that at time t , but its magnitude is the same. According
to one of the many theorems of the prolific eighteenth century Swiss mathematician
Leonhard Euler (1707–1783), there is a unique axis of rotation about which B and,
therefore, A rotates during the differential time interval. If we shift the two vectors
A(t) and A(t + dt) to the same point on the axis of rotation, so that they are tail-to-tail
as shown in Figure 1.8(b), we can assess the difference dA between them caused by
the infinitesimal rotation. Remember that shifting a vector to a parallel line does not
change the vector. The rotation of the body B is measured in the plane perpendicular
to the instantaneous axis of rotation. The amount of rotation is the angle dθ through
which a line element normal to the rotation axis turns in the time interval dt . In
Figure 1.8(b) that line element is the component of A normal to the axis of rotation.
We can express the difference dA between A(t) and A(t + dt) as

dA =
magnitude of dA︷ ︸︸ ︷

[(‖A‖ · sin φ)dθ] n̂ (1.19)

where n̂ is the unit normal to the plane defined by A and the axis of rotation, and
it points in the direction of the rotation. The angle φ is the inclination of A to the
rotation axis. By definition,

dθ = ‖ω‖dt (1.20)

where ω is the angular velocity vector, which points along the instantaneous axis of
rotation and its direction is given by the right-hand rule. That is, wrapping the right
hand around the axis of rotation, with the fingers pointing in the direction of dθ ,
results in the thumb’s defining the direction of ω. This is evident in Figure 1.8(b). It
should be pointed out that the time derivative of ω is the angular acceleration, usually
given the symbol α. Thus,

α = dω

dt
(1.21)

Substituting Equation 1.20 into Equation 1.19, we get

dA = ‖A‖ · sin φ‖ω‖dt · n̂ = (‖ω‖ · ‖A‖ · sin φ) n̂ dt (1.22)

By definition of the cross product, ω × A is the product of the magnitude of ω, the
magnitude of A, the sine of the angle between ω and A and the unit vector normal to
the plane of ω and A, in the rotation direction. That is,

ω × A = ‖ω‖ · ‖A‖ · sin φ · n̂ (1.23)

Substituting Equation 1.23 into Equation 1.22 yields

dA = ω × Adt

Dividing through by dt , we finally obtain

dA

dt
= ω × A (1.24)

Equation 1.24 is a formula we can use to compute the time derivative of any vector
of constant magnitude.
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Example
1.7

Calculate the second time derivative of a vector A of constant magnitude, expressing
the result in terms of ω and its derivatives and A.

Differentiating Equation 1.24 with respect to time, we get

d2A

dt2
= d

dt

dA

dt
= d

dt
(ω × A) = dω

dt
× A + ω × dA

dt

Using Equations 1.21 and 1.24, this can be written

d2A

dt2
= α × A + ω × (ω × A) (1.25)

Example
1.8

Calculate the third derivative of a vector A of constant magnitude, expressing the
result in terms of ω and its derivatives and A.

d3A

dt3
= d

dt

d2A

dt2
= d

dt
[α × A + ω × (ω × A)]

= d

dt
(α × A) + d

dt
[ω × (ω × A)]

=
(

dα

dt
× A + α × dA

dt

)
+

[
dω

dt
× (ω × A) + ω × d

dt
(ω × A)

]

=
[

dα

dt
× A + α × (ω × A)

]
+

[
α × (ω × A) + ω ×

(
dω

dt
× A + ω × dA

dt

)]

=
[

dα

dt
× A + α × (ω × A)

]
+ {α × (ω × A) + ω × [α × A + ω × (ω × A)]}

= dα

dt
× A + α × (ω × A) + α × (ω × A) + ω × (α × A) + ω × [ω × (ω × A)]

= dα

dt
× A + 2α × (ω × A) + ω × (α × A) + ω × [ω × (ω × A)]

d3A

dt3
= dα

dt
× A + 2α × (ω × A) + ω × [α × A + ω × (ω × A)]

Let XYZ be a rigid inertial frame of reference and xyz a rigid moving frame of
reference, as shown in Figure 1.9. The moving frame can be moving (translating and
rotating) freely of its own accord, or it can be imagined to be attached to a physical
object, such as a car, an airplane or a spacecraft. Kinematic quantities measured
relative to the fixed inertial frame will be called absolute (e.g., absolute acceleration),
and those measured relative to the moving system will be called relative (e.g., relative
acceleration). The unit vectors along the inertial XYZ system are Î, Ĵ and K̂, whereas

those of the moving xyz system are î, ĵ and k̂. The motion of the moving frame is
arbitrary, and its absolute angular velocity is �. If, however, the moving frame is
rigidly attached to an object, so that it not only translates but rotates with it, then the
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X

Y

Z

x

y

z

Inertial frame

Moving frame

O

Q

Qy

Qx

Qz

J

I

K

i

j 

k 

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 1.9 Fixed (inertial) and moving rigid frames of reference.

frame is called a body frame and the axes are referred to as body axes. A body frame
clearly has the same angular velocity as the body to which it is bound.

Let Q be any time-dependent vector. Resolved into components along the inertial
frame of reference, it is expressed analytically as

Q = QX Î + QY Ĵ + QZ K̂

where QX , QY and QZ are functions of time. Since Î, Ĵ and K̂ are fixed, the time
derivative of Q is simply given by

dQ

dt
= dQX

dt
Î + dQY

dt
Ĵ + dQZ

dt
K̂

dQX/dt , dQY /dt and dQZ/dt are the components of the absolute time derivative of Q.
Q may also be resolved into components along the moving xyz frame, so that, at

any instant,

Q = Qx î + Qy ĵ + Qz k̂ (1.26)

Using this expression to calculate the time derivative of Q yields

dQ

dt
= dQx

dt
î + dQy

dt
ĵ + dQz

dt
k̂ + Qx

dî

dt
+ Qy

dĵ

dt
+ Qz

dk̂

dt
(1.27)

The unit vectors î, ĵ and k̂ are not fixed in space, but are continuously changing
direction; therefore, their time derivatives are not zero. They obviously have a constant
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magnitude (unity) and, being attached to the xyz frame, they all have the angular
velocity �. It follows from Equation 1.24 that

dî

dt
= � × î

dĵ

dt
= � × ĵ

dk̂

dt
= � × k̂

Substituting these on the right-hand side of Equation 1.27 yields

dQ

dt
= dQx

dt
î + dQy

dt
ĵ + dQz

dt
k̂ + Qx(� × î) + Qy(� × ĵ) + Qz(� × k̂)

= dQx

dt
î + dQy

dt
ĵ + dQz

dt
k̂ + (� × Qx î) + (� × Qy ĵ) + (� × Qz k̂)

= dQx

dt
î + dQy

dt
ĵ + dQz

dt
k̂ + � × (Qx î + Qy ĵ + Qz k̂)

In view of Equation 1.26, this can be written

dQ

dt
= dQ

dt

)
rel

+ � × Q (1.28)

where

dQ

dt

)
rel

= dQx

dt
î + dQy

dt
ĵ + dQz

dt
k̂ (1.29)

dQ/dt)rel is the time derivative of Q relative to the moving frame. Equation 1.28 shows
how the absolute time derivative is obtained from the relative time derivative. Clearly,
dQ/dt = dQ/dt)rel only when the moving frame is in pure translation (� = 0).

Equation 1.28 can be used recursively to compute higher order time derivatives.
Thus, differentiating Equation 1.28 with respect to t , we get

d2Q

dt2
= d

dt

dQ

dt

)
rel

+ d�

dt
× Q + � × dQ

dt

Using Equation 1.28 in the last term yields

d2Q

dt2
= d

dt

dQ

dt

)
rel

+ d�

dt
× Q + � ×

[
dQ

dt

)
rel

+ � × Q

]
(1.30)

Equation 1.28 also implies that

d

dt

dQ

dt

)
rel

= d2Q

dt2

)
rel

+ � × dQ

dt

)
rel

(1.31)

where

d2Q

dt2

)
rel

= d2Qx

dt2
î + d2Qy

dt2
ĵ + d2Qz

dt2
k̂

Substituting Equation 1.31 into Equation 1.30 yields

d2Q

dt2
=

[
d2Q

dt2

)
rel

+ � × dQ

dt

)
rel

]
+ d�

dt
× Q + � ×

[
dQ

dt

)
rel

+ � × Q

]
(1.32)
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Collecting terms, this becomes

d2Q

dt2
= d2Q

dt2

)
rel

+ �̇ × Q + � × (� × Q) + 2� × dQ

dt

)
rel

where �̇ ≡ d�/dt is the absolute angular acceleration of the xyz frame.
Formulas for higher order time derivatives are found in a similar fashion.

1.6 Relative motion

Let P be a particle in arbitrary motion. The absolute position vector of P is r and the
position of P relative to the moving frame is rrel. If rO is the absolute position of the
origin of the moving frame, then it is clear from Figure 1.10 that

r = rO + rrel (1.33)

Since rrel is measured in the moving frame,

rrel = xî + y ĵ + zk̂ (1.34)

where x, y and z are the coordinates of P relative to the moving reference.
The absolute velocity v of P is dr/dt , so that from Equation 1.33 we have

v = vO + drrel

dt
(1.35)

where vO = drO/dt is the (absolute) velocity of the origin of the xyz frame. From
Equation 1.28, we can write

drrel

dt
= vrel + � × rrel (1.36)

X

Y

Z

x

y

z

r

Inertial frame
(non-rotating, non-accelerating)

Moving frame
O

P

r0

rrel

J

I

K
j 

k 

i

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 1.10 Absolute and relative position vectors.
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where vrel is the velocity of P relative to the xyz frame:

vrel = drrel

dt

)
rel

= dx

dt
î + dy

dt
ĵ + dz

dt
k̂ (1.37)

Substituting Equation 1.36 into Equation 1.35 yields

v = vO + � × rrel + vrel (1.38)

The absolute acceleration a of P is dv/dt , so that from Equation 1.35 we have

a = aO + d2rrel

dt2
(1.39)

where aO = dvO/dt is the absolute acceleration of the origin of the xyz frame. We
evaluate the second term on the right using Equation 1.32:

d2rrel

dt2
= d2rrel

dt2

)
rel

+ �̇ × rrel + � × (� × rrel) + 2� × drrel

dt

)
rel

(1.40)

Since vrel = drrel/dt)rel and arel = d2rrel/dt2)rel, this can be written

d2rrel

dt2
= arel + �̇ × rrel + � × (� × rrel) + 2� × vrel (1.41)

Upon substituting this result into Equation 1.39, we find

a = aO + �̇ × rrel + � × (� × rrel) + 2� × vrel + arel (1.42)

The cross product 2�×vrel is called the Coriolis acceleration after Gustave Gaspard de
Coriolis (1792–1843), the French mathematician who introduced this term (Coriolis,
1835). For obvious reasons, Equation 1.42 is sometimes referred to as the five-term
acceleration formula.

Example
1.9

At a given instant, the absolute position, velocity and acceleration of the origin O of
a moving frame are

rO = 100Î + 200Ĵ + 300K̂ (m)

vO = −50Î + 30Ĵ − 10K̂ (m/s) (given) (a)

aO = −15Î + 40Ĵ + 25K̂ (m/s2)

The angular velocity and acceleration of the moving frame are

� = 1.0Î − 0.4Ĵ + 0.6K̂ (rad/s)
(given) (b)

�̇ = −1.0Î + 0.3Ĵ − 0.4K̂ (rad/s2)

The unit vectors of the moving frame are

î = 0.5571Î + 0.7428Ĵ + 0.3714K̂

ĵ = −0.06331Î + 0.4839Ĵ − 0.8728K̂ (given) (c)

k̂ = −0.8280Î + 0.4627Ĵ + 0.3166K̂



22 Chapter 1 Dynamics of point masses

(Example 1.9
continued)

The absolute position, velocity and acceleration of P are

r = 300Î − 100Ĵ + 150K̂ (m)

v = 70Î + 25Ĵ − 20K̂ (m/s) (given) (d)

a = 7.5Î − 8.5Ĵ + 6.0K̂ (m/s2)

Find the velocity vrel and acceleration arel of P relative to the moving frame.

First use Equations (c) to solve for Î, Ĵ and K̂ in terms of î, ĵ and k̂ (three equations
in three unknowns):

Î = 0.5571î − 0.06331ĵ − 0.8280k̂

Ĵ = 0.7428î + 0.4839ĵ + 0.4627k̂ (e)

K̂ = 0.3714î − 0.8728ĵ + 0.3166k̂

The relative position vector is

rrel = r − rO = (300Î − 100Ĵ + 150K̂) − (100Î + 200Ĵ + 300K̂)

= 200Î − 300Ĵ − 150K̂ (m) (f)

From Equation 1.38, the relative velocity vector is

vrel = v − vO − � × rrel

= (70Î + 25Ĵ − 20K̂) − (−50Î + 30Ĵ − 10K̂) −
∣∣∣∣∣∣

Î Ĵ K̂
1.0 −0.4 0.6
200 −300 −150

∣∣∣∣∣∣
= (70Î + 25Ĵ − 20K̂) − (−50Î + 30Ĵ − 10K̂) − (240Î + 270Ĵ − 220K̂)

or

vrel = −120Î − 275Ĵ + 210K̂ (m/s) (g)

To obtain the components of the relative velocity along the axes of the moving frame,
substitute Equations (e) into Equation (g).

vrel = −120(0.5571i − 0.06331j − 0.8280k)

−275(0.7428i + 0.4839j + 0.4627k) + 210(0.3714i − 0.8728j + 0.3166k)

so that

vrel = −193.1î − 308.8ĵ + 38.60k̂ (m/s) (h)

Alternatively,

vrel = 366.2ûv (m/s), where ûv = −0.5272î − 0.8432ĵ + 0.1005k̂ (i)
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To find the relative acceleration, we use the five-term acceleration formula,
Equation 1.42:

arel = a − aO − �̇ × rrel − � × (� × rrel) − 2(� × vrel)

= a − aO −
∣∣∣∣∣∣

Î Ĵ K̂
−1.0 0.3 −0.4

200 −300 −150

∣∣∣∣∣∣ − �

×
∣∣∣∣∣∣

Î Ĵ K̂
1.0 −0.4 0.6
200 −300 −150

∣∣∣∣∣∣ − 2

∣∣∣∣∣∣
Î Ĵ K̂
1.0 −0.4 0.6

−120 −275 210

∣∣∣∣∣∣
= a − aO − (−165Î − 230Ĵ + 240K̂) −

∣∣∣∣∣∣
Î Ĵ K̂
1.0 −0.4 0.6
240 270 −220

∣∣∣∣∣∣
− (162Î − 564Ĵ − 646K̂)

= (7.5Î − 8.5Ĵ + 6K̂) − (−15Î + 40Ĵ + 25K̂)

− (−165Î − 230Ĵ + 240K̂) − (−74Î + 364Ĵ + 366K̂)

− (162Î − 564Ĵ − 646K̂)

arel = 99.5Î + 381.5Ĵ + 21.0K̂ (m/s2) (j)

The components of the relative acceleration along the axes of the moving frame are
found by substituting Equations (e) into Equation (j):

arel = 99.5(0.5571î − 0.06331ĵ − 0.8280k̂)

+ 381.5(0.7428î + 0.4839ĵ + 0.4627k̂) + 21.0(0.3714î − 0.8728ĵ + 0.3166k̂)

arel = 346.6î + 160.0ĵ + 100.8k̂ (m/s2) (k)

or

arel = 394.8ûa (m/s2), where ûa = 0.8778î + 0.4052ĵ + 0.2553k̂ (l)

Figure 1.11 shows the non-rotating inertial frame of reference XYZ with its origin
at the center C of the earth, which we shall assume to be a sphere. That assumption
will be relaxed in Chapter 5. Embedded in the earth and rotating with it is the
orthogonal x′y′z′ frame, also centered at C, with the z′ axis parallel to Z , the earth’s
axis of rotation. The x′ axis intersects the equator at the prime meridian (zero degrees
longitude), which passes through Greenwich in London, England. The angle between
X and x′ is θg , and the rate of increase of θg is just the angular velocity � of the earth.
P is a particle (e.g., an airplane, spacecraft, etc.), which is moving in an arbitrary
fashion above the surface of the earth. rrel is the position vector of P relative to C in
the rotating x′y′z′ system. At a given instant, P is directly over point O, which lies on
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Figure 1.11 Earth-centered inertial frame (XYZ); earth-centered non-inertial x′y′z′ frame embedded in
and rotating with the earth; and a non-inertial, topocentric-horizon frame xyz attached to a
point O on the earth’s surface.

the earth’s surface at longitude � and latitude φ. Point O coincides instantaneously
with the origin of what is known as a topocentric-horizon coordinate system xyz.
For our purposes x and y are measured positive eastward and northward along the
local latitude and meridian, respectively, through O. The tangent plane to the earth’s
surface at O is the local horizon. The z axis is the local vertical (straight up) and
it is directed radially outward from the center of the earth. The unit vectors of the

xyz frame are îĵk̂, as indicated in Figure 1.11. Keep in mind that O remains directly

below P, so that as P moves, so do the xyz axes. Thus, the îĵk̂ triad, which are the
unit vectors of a spherical coordinate system, vary in direction as P changes location,
thereby accounting for the curvature of the earth.

Let us find the absolute velocity and acceleration of P. It is convenient first to
obtain the velocity and acceleration of P relative to the non-rotating earth, and then
use Equations 1.38 and 1.42 to calculate their inertial values.

The relative position vector can be written

rrel = (RE + z)k̂ (1.43)
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where RE is the radius of the earth and z is the height of P above the earth (i.e., its
altitude). The time derivative of rrel is the velocity vrel relative to the non-rotating
earth,

vrel = drrel

dt
= żk̂ + (RE + z)

dk̂

dt
(1.44)

To calculate dk̂/dt , we must use Equation 1.24. The angular velocity ω of the xyz
frame relative to the non-rotating earth is found in terms of the rates of change of
latitude φ and longitude �,

ω = −φ̇ î + �̇ cos φ ĵ + �̇ sin φk̂ (1.45)

Thus,

dk̂

dt
= ω × k̂ = �̇ cos φ î + φ̇ ĵ (1.46)

Let us also record the following for future use:

dĵ

dt
= ω × ĵ = −�̇ sin φ ĵ − φ̇k̂ (1.47)

dî

dt
= ω × î = �̇ sin φ ĵ − �̇ cos φk̂ (1.48)

Substituting Equation 1.46 into Equation 1.44 yields

vrel = ẋî + ẏ ĵ + żk̂ (1.49a)

where

ẋ = (RE + z)�̇ cos φ ẏ = (RE + z)φ̇ (1.49b)

It is convenient to use these results to express the rates of change of latitude and
longitude in terms of the components of relative velocity over the earth’s surface,

φ̇ = ẏ

RE + z
�̇ = ẋ

(RE + z) cos φ
(1.50)

The time derivatives of these two expressions are

φ̈ = (RE + z)ÿ − ẏż

(RE + z)2
�̈ = (RE + z)ẍ cos φ − (ż cos φ − ẏ sin φ)ẋ

(RE + z)2 cos2 φ
(1.51)

The acceleration of P relative to the non-rotating earth is found by taking the time
derivative of vrel. From Equation 1.49 we thereby obtain

arel = ẍî + ÿ ĵ + z̈k̂ + ẋ
dî

dt
+ ẏ

dĵ

dt
+ ż

dk̂

dt

= [ż�̇ cos φ + (RE + z)�̈ cos φ − (RE + z)φ̇�̇ sin φ]î

+ [żφ̇ + (RE + z)φ̈]ĵ + z̈k̂ + (RE + z)�̇ cos φ(ω × î)

+ (RE + z)φ̇(ω × ĵ) + ż(ω × k̂)
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Substituting Equations 1.46 through 1.48 together with 1.50 and 1.51 into this
expression yields, upon simplification,

arel =
[̈
x + ẋ(ż − ẏ tan φ)

RE + z

]
î +

(
ÿ + ẏż + ẋ2 tan φ

RE + z

)
ĵ +

(̈
z − ẋ2 + ẏ2

RE + z

)
k̂ (1.52)

Observe that the curvature of the earth’s surface is neglected by letting RE + z become
infinitely large, in which case

arel)neglecting earth′s curvature = ẍî + ÿ ĵ + z̈k̂

That is, for a ‘flat earth’, the components of the relative acceleration vector are just the
derivatives of the components of the relative velocity vector.

For the absolute velocity we have, according to Equation 1.38,

v = vC + � × rrel + vrel (1.53)

From Figure 1.11 it can be seen that K̂ = cos φ ĵ + sin φk̂, which means the angular
velocity of the earth is

� = �K̂ = � cos φ ĵ + � sin φk̂ (1.54)

Substituting this, together with Equations 1.43 and 1.49a and the fact that vC = 0,
into Equation 1.53 yields

v = [ẋ + �(RE + z) cos φ]î + ẏ ĵ + żk̂ (1.55)

From Equation 1.42 the absolute acceleration of P is

a = aC + �̇ × rrel + � × (� × rrel) + 2� × vrel + arel

Since aC = �̇ = 0, we find, upon substituting Equations 1.43, 1.49a, 1.52 and 1.54, that

a =
[

ẍ + ẋ(ż − ẏ tan φ)

RE + z
+ 2�(ż cos φ − ẏ sin φ)

]
î

+
{

ÿ + ẏż + ẋ2 tan φ

RE + z
+ � sin φ[�(RE + z) cos φ + 2ẋ]

}
ĵ

+
{

z̈ − ẋ2 + ẏ2

RE + z
− � cos φ[�(RE + z) cos φ + 2ẋ]

}
k̂ (1.56)

Some special cases of Equations 1.55 and 1.56 follow.
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Straight and level, unaccelerated flight: ż = z̈ = ẍ = ÿ = 0

v = [ẋ + �(RE + z) cos φ]î + ẏ ĵ (1.57a)

a = −
[

ẋẏ tan φ

RE + z
+ 2�ẏ sin φ

]
î

+
{

ẋ2 tan φ

RE + z
+ � sin φ[�(RE + z) cos φ + 2ẋ]

}
ĵ

−
{

ẋ2 + ẏ2

RE + z
+ � cos φ[�(RE + z) cos φ + 2ẋ]

}
k̂ (1.57b)

Flight due north (y) at constant speed and altitude: ż = z̈ = ẋ = ẍ = ÿ = 0

v = �(RE + z) cos φ î + ẏ ĵ (1.58a)

a = −2�ẏ sin φ î + �2(RE + z) sin φ cos φ ĵ

−
[

ẏ2

RE + z
+ �2(RE + z) cos2 φ

]
k̂ (1.58b)

Flight due east (x) at constant speed and altitude: ż = z̈ = ẍ = ẏ = ÿ = 0

v = [ẋ + �(RE + z) cos φ]î (1.59a)

a =
{

ẋ2 tan φ

RE + z
+ � sin φ [�(RE + z) cos φ + 2ẋ]

}
ĵ

−
{

ẋ2

RE + z
+ � cos φ [�(RE + z) cos φ + 2ẋ]

}
k̂ (1.59b)

Flight straight up (z): ẋ = ẍ = ẏ = ÿ = 0

v = �(RE + z) cos φ î + żk̂ (1.60a)

a = 2�(ż cos φ)î + �2(RE + z) sin φ cos φ ĵ

+ [
z̈ − �2(RE + z) cos2 φ

]
k̂ (1.60b)

Stationary: ẋ = ẍ = ẏ = ÿ = ż = z̈ = 0

v = �(RE + z) cos φ î (1.61a)

a = �2(RE + z) sin φ cos φ ĵ − �2(RE + z) cos2 φk̂ (1.61b)

Example
1.10

An airplane of mass 70 000 kg is traveling due north at latitude 30◦ north, at an altitude
of 10 km (32 800 ft) with a speed of 300 m/s (671 mph). Calculate (a) the components
of the absolute velocity and acceleration along the axes of the topocentric-horizon
reference frame, and (b) the net force on the airplane.
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(Example 1.10
continued)

(a) First, using the sidereal rotation period of the earth in Table A.1, we note that the
earth’s angular velocity is

� = 2πrad

sidereal day
= 2πrad

23.93 hr
= 2πrad

86 160 s
= 7.292 × 10−5rad/s (a)

From Equation 1.58a, the absolute velocity is

v = �(RE + z) cos φ î + ẏ ĵ = [
(7.292 × 10−5) · (6378 + 10) · 103 cos 30◦] î + 300ĵ

or

v = 403.4î + 300ĵ (m/s)

The 403.4 m/s (901 mph) component of velocity to the east (x direction) is due
entirely to the earth’s rotation.

From Equation 1.58b2, the absolute acceleration is

a = −2�ẏ sin φ î + �2(RE + z) sin φ cos φ ĵ −
[

ẏ2

RE + z
+ �2(RE + z) cos2 φ

]
k̂

= −2(7.292 × 10−5) · 300 · sin 30◦ î

+ (7.292 × 10−5)2 · (6378 + 10) · 103 · sin 30◦ · cos 30◦ ĵ

−
[

3002

(6378 + 10) · 103
+ (7.292 × 10−5)2 · (6378 + 10) · 103 · cos2 30◦

]
k̂

or

a = −0.02187î + 0.01471ĵ − 0.03956k̂ (m/s2) (a)

The westward acceleration of 0.02187 m/s2 is the Coriolis acceleration.

(b) Since the acceleration in part (a) is the absolute acceleration, we can use it in
Newton’s law to calculate the net force on the airplane,

Fnet = ma = 70 000(−0.02187î + 0.01471ĵ − 0.03956k̂)

= −1531î + 1029ĵ − 2769k̂ (N)

Figure 1.12 shows the components of this relatively small force. The forward and
downward forces are in the directions of the airplane’s centripetal acceleration,
caused by the earth’s rotation and, in the case of the downward force, by the
earth’s curvature as well. The westward force is in the direction of the Coriolis
acceleration, which is due to the combined effects of the earth’s rotation and the
motion of the airplane. These net external forces must exist if the airplane is to
fly the prescribed path.

In the vertical direction, the net force is that of the upward lift L of the wings
plus the downward weight W of the aircraft, so that

Fnet)z = L − W = −2769 ⇒ L = W−2769 (N)
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Figure 1.12 Components of the net force on the airplane.

Thus, the effect of the earth’s rotation and curvature is to apparently produce an
outward centrifugal force, reducing the weight of the airplane a bit, in this case
by about 0.4 percent. The fictitious centrifugal force also increases the apparent
drag in the flight direction by 1029 N. That is, in the flight direction

Fnet)y = T − D = −2769 N

where T is the thrust and D is the drag. Hence

T = D + 1029 (N)

The 1531 N force to the left, produced by crabbing the airplane very slightly in
that direction, is required to balance the fictitious Coriolis force which would
otherwise cause the airplane to deviate to the right of its flight path.

Problems

1.1 Given the three vectors A = Ax î+Ay ĵ+Az k̂ B = Bx î+By ĵ+Bz k̂ C = Cx î+Cy ĵ+Cz k̂
show, analytically, that

(a) A · A = A2

(b) A · (B × C) = (A × B) · C (interchangeability of the ‘dot’ and ‘cross’)

(c) A × (B × C) = B(A · C) − C(A · B) (the bac – cab rule)
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(Simply compute the expressions on each side of the = signs and demonstrate conclusively
that they are the same. Do not substitute numbers to‘prove’your point. Use the fact that the

cartesian coordinate unit vectors î, ĵ and k̂ form a right-handed orthogonal triad, so that

î · ĵ = î · k̂ = ĵ · k̂ = 0 î · î = ĵ · ĵ = k̂ · k̂ = 1

î × ĵ = k̂ ĵ × k̂ = î k̂ × î = ĵ (î × k̂ = −ĵ ĵ × î = −k̂ k̂ × ĵ = −î)

Also,

î × î = ĵ × ĵ = k̂ × k̂ = 0

1.2 Use just the vector identities in parts (a) and (b) of Exercise 1.1 to show that

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

1.3 The absolute position, velocity and acceleration of O are

rO = 300Î + 200Ĵ + 100K̂ (m)

vO = −10Î + 30Ĵ − 50K̂ (m/s)

aO = 25Î + 40Ĵ − 15K̂ (m/s2)

The angular velocity and acceleration of the moving frame are

� = 0.6Î − 0.4Ĵ + 1.0K̂ (rad/s)

�̇ = −0.4Î + 0.3Ĵ − 1.0K̂ (rad/s2)

The unit vectors of the moving frame are

î = 0.57735Î + 0.57735Ĵ + 0.57735K̂

ĵ = −0.74296Î + 0.66475Ĵ + 0.078206K̂

k̂ = −0.33864Î − 0.47410Ĵ + 0.81274K̂

The absolute position of P is

r = 150Î − 200Ĵ + 300K̂ (m)

The velocity and acceleration of P relative to the moving frame are

vrel = −20î + 25ĵ + 70k̂ (m/s) arel = 7.5î − 8.5ĵ + 6.0k̂ (m/s2)

Calculate the absolute velocity vP and acceleration aP of P.
{Ans.: vP = 478.7ûv (m/s), ûv = 0.5352Î − 0.5601Ĵ − 0.6324K̂;
aP = 616.3ûa (m/s2), ûa = 0.1655Î + 0.9759Ĵ + 0.1424K̂}

1.4 F is a force vector of fixed magnitude embedded on a rigid body in plane motion (in the

xy plane). At a given instant, ω= 3k̂ rad/s, ω̇= −2k̂ rad/s2, ω̈= 0 and F = 10î N. At that
instant, calculate

...
F .

{Ans.:
...
F = 180î − 270ĵ N/s3}
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1.5 An airplane in level flight at an altitude h and a uniform speed v passes directly over
a radar tracking station A. Calculate the angular velocity θ̇ and angular acceleration of
the radar antenna θ̈ as well as the rate ṙ at which the airplane is moving away from the
antenna. Use the equations of this chapter (rather than polar coordinates, which you can
use to check your work). Attach the inertial frame of reference to the ground and assume
a non-rotating earth. Attach the moving frame to the antenna, with the x axis pointing
always from the antenna towards the airplane.
{Ans.: (a) θ̇ = v cos2 θ /h; (b) θ̈ = −2v2 cos3 θ sin θ /h2; (c) vrel = v sin θ}
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1.6 At 30◦ north latitude, a 1000 kg (2205 lb) car travels due north at a constant speed of
100 km/hr (62 mph) on a level road at sea level. Taking into account the earth’s rotation,
calculate the lateral (sideways) force of the road on the car, and the normal force of the
road on the car.
{Ans.: Flateral = 2.026 N, to the left (west); N = 9784 N}

1.7 At 29◦ north latitude, what is the deviation d from the vertical of a plumb bob at the end
of a 30 m string, due to the earth’s rotation?
{Ans.: 44.1 mm to the south}

θ

g

y

z
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L � 30 m

Figure P.1.7
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2.1 Introduction

This chapter presents the vector-based approach to the classical problem of deter-
mining the motion of two bodies due solely to their own mutual gravitational

attraction. We show that the path of one of the masses relative to the other is a
conic section (circle, ellipse, parabola or hyperbola) whose shape is determined by
the eccentricity. Several fundamental properties of the different types of orbits are

33
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developed with the aid of the laws of conservation of angular momentum and energy.
These properties include the period of elliptical orbits, the escape velocity associated
with parabolic paths and the characteristic energy of hyperbolic trajectories. Follow-
ing the presentation of the four types of orbits, the perifocal frame is introduced. This
frame of reference is used to describe orbits in three dimensions, which is the subject
of Chapter 4.

In this chapter the perifocal frame provides the backdrop for developing the
Lagrange f and g coefficients. By means of the Lagrange f and g coefficients, the posi-
tion and velocity on a trajectory can be found in terms of the position and velocity at
an initial time. These functions are needed in the orbit determination algorithms of
Lambert and Gauss presented in Chapter 5.

The chapter concludes with a discussion of the restricted three-body problem in
order to provide a basis for understanding of the concepts of Lagrange points as well
as the Jacobi constant. This material is optional.

In studying this chapter it would be well from time to time to review the road
map provided in Appendix B.

2.2 Equations of motion in an inertial frame

Figure 2.1 shows two point masses acted upon only by the mutual force of gravity
between them. The positions of their centers of mass are shown relative to an inertial
frame of reference XYZ . The origin O of the frame may move with constant velocity
(relative to the fixed stars), but the axes do not rotate. Each of the two bodies is acted
upon by the gravitational attraction of the other. F12 is the force exerted on m1 by m2,
and F21 is the force exerted on m2 by m1.

The position vector RG of the center of mass G of the system in Figure 2.1(a) is,
defined by the formula

RG = m1R1 + m2R2

m1 + m2
(2.1)

X

Y

Z
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r

Inertial frame of reference
(fixed with respect to the fixed stars)
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RG m2

m1

     
r
r

X

Y

Z

O
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m2
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F12

F21

(a) (b)

ur �ˆ

Figure 2.1 (a) Two masses located in an inertial frame. (b) Free-body diagrams.
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Therefore, the absolute velocity and the absolute acceleration of G are

vG = ṘG = m1Ṙ1 + m2Ṙ2

m1 + m2
(2.2)

aG = R̈G = m1R̈1 + m2R̈2

m1 + m2
(2.3)

The adjective ‘absolute’ means that the quantities are measured relative to an inertial
frame of reference.

Let r be the position vector of m2 relative to m1. Then

r = R2 − R1 (2.4)

Furthermore, let ûr be the unit vector pointing from m1 towards m2, so that

ûr = r

r
(2.5)

where r = ‖r‖, the magnitude of r. The body m1 is acted upon only by the force of
gravitational attraction towards m2. The force of gravitational attraction, Fg , which
acts along the line joining the centers of mass of m1 and m2, is given by Equation 1.3.
The force exerted on m2 by m1 is

F21 = Gm1m2

r2
(−ûr) = −Gm1m2

r2
ûr (2.6)

where −ûr accounts for the fact that the force vector F21 is directed from m2 towards
m1. (Do not confuse the symbol G, used in this context to represent the universal
gravitational constant, with its use elsewhere in the book to denote the center of
mass.) Newton’s second law of motion as applied to body m2 is F21 = m2R̈2, where
R̈2 is the absolute acceleration of m2. Thus

−Gm1m2

r2
ûr = m2R̈2 (2.7)

By Newton’s third law (the action–reaction principle), F12 = −F21, so that for m1 we
have

Gm1m2

r2
ûr = m1R̈1 (2.8)

Equations 2.7 and 2.8 are the equations of motion of the two bodies in inertial space.
By adding each side of these equations together, we find m1R̈1 + m2R̈2 = 0. According
to Equation 2.3, that means the acceleration of the center of mass G of the system of
two bodies m1 and m2 is zero. G moves with a constant velocity vG in a straight line,
so that its position vector relative to XYZ given by

RG = RG0 + vGt (2.9)

where RG0 is the position of G at time t = 0. The center of mass of a two-body system
may therefore serve as the origin of an inertial frame.

louiscoo
线条

louiscoo
线条



36 Chapter 2 The two-body problem

Example
2.1

Use the equations of motion to show why orbiting astronauts experience
weightlessness.

We sense weight by feeling the contact forces that develop wherever our body is
supported. Consider an astronaut of mass mA strapped into the space shuttle of mass
mS, in orbit about the earth. The distance between the center of the earth and the
spacecraft is r, and the mass of the earth is ME . Since the only external force on the
space shuttle is that of gravity, FS)g , the equation of motion of the shuttle is

FS)g = mSaS (a)

According to Equation 2.6,

FS)g = −GMEmS

r2
ûr (b)

where ûr is the unit vector pointing outward from the earth to the orbiting space
shuttle. Thus, (a) and (b) imply

aS = −GME

r2
ûr (c)

The equation of motion of the astronaut is

FA)g + CA = mAaA (d)

where FA)g is the force of gravity on (i.e., the weight of) the astronaut, CA is the
net contact force on the astronaut from restraints (e.g., seat, seat belt), and aA is the
astronaut’s acceleration. According to Equation 2.6,

FA)g = −GMEmA

r2
ûr (e)

Since the astronaut is moving with the shuttle we have, noting (c),

aA = aS = −GME

r2
ûr (f)

Substituting (e) and (f) into (d) yields

−GMEmA

r2
ûr + CA = mA

(
−GME

r2
ûr

)

from which it is clear that CA = 0. The net contact force on the astronaut is zero. With
no reaction to the force of gravity exerted on the body, there is no sensation of weight.

The potential energy V of the gravitational force in Equation 2.6 is given by

V = −Gm1m2

r
(2.10)

A force can be obtained from its potential energy function by means of the gradient
operator,

F = −∇V (2.11)
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where, in cartesian coordinates,

∇ = ∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂ (2.12)

In Appendix E it is shown that the gravitational potential, and hence the gravitational
force, outside of a sphere with a spherically symmetric mass distribution M is the
same as that of a point mass M located at the center of the sphere. Therefore, the two-
body problem applies not just to point masses but also to spherical bodies (as long,
of course, as they do not come into contact!).

2.3 Equations of relative motion

Let us now multiply Equation 2.7 by m1 and Equation 2.8 by m2 to obtain

−Gm2
1m2

r2
ûr = m1m2R̈2

Gm1m2
2

r2
ûr = m1m2R̈1

Subtracting the second of these two equations from the first yields

m1m2
(

R̈2 − R̈1
) = −Gm1m2

r2

(
m1 + m2

)
ûr

Canceling the common factor m1m2 and using Equation 2.4 yields

r̈ = −G(m1 + m2)

r2
ûr (2.13)

Let the gravitational µ parameter be defined as

µ = G(m1 + m2) (2.14)

The units of µ are km3s−2. Using Equation 2.14 together with Equation 2.5, we can
write Equation 2.13 as

r̈ = − µ

r3
r (2.15)

This is the second order differential equation that governs the motion of m2 relative to
m1. It has two vector constants of integration, each having three scalar components.
Therefore, Equation 2.15 has six constants of integration. Note that interchanging
the roles of m1 and m2 in all of the above amounts to simply multiplying Equation
2.15 through by −1, which, of course, changes nothing. Thus, the motion of m2 as
seen from m1 is precisely the same as the motion of m1 as seen from m2.

The relative position vector r in Equation 2.15 was defined in the inertial frame
(Equation 2.4). It is convenient, however, to measure the components of r in a frame
of reference attached to and moving with m1. In a co-moving reference frame, such
as the xyz system illustrated in Figure 2.2, r has the expression

r = xî + y ĵ + zk̂
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Figure 2.2 Moving reference frame xyz attached to the center of mass of m1.

The relative velocity ṙrel and acceleration r̈rel in the co-moving frame are found by
simply taking the derivatives of the coefficients of the unit vectors, which themselves
are fixed in the xyz system. Thus

ṙrel = ẋî + ẏ ĵ + żk̂ r̈rel = ẍî + ÿ ĵ + z̈k̂

From Equation 1.40 we know that the relationship between absolute acceleration r̈
and relative acceleration r̈rel is

r̈ = r̈rel + �̇ × r + � × (� × r) + 2� × ṙrel

where � and �̇ are the angular velocity and angular acceleration of the moving frame
of reference. Thus r̈ = r̈rel only if � = �̇ = 0. That is to say, the relative acceleration
may be used on the left of Equation 2.15 as long as the co-moving frame in which it
is measured is not rotating.

As an example of two-body motion, consider two identical, isolated bodies m1

and m2 positioned in an inertial frame of reference, as shown in Figure 2.3. At time
t = 0, m1 is at rest at the origin of the frame, whereas m2, to the right of m1, has
a velocity vo directed upward to the right, making a 45◦ angle with the X axis. The
subsequent motion of the two bodies, which is due solely to their mutual gravitational
attraction, is determined relative to the inertial frame by means of Equations 2.7 and
2.8. Figure 2.3 is a computer-generated solution of those equations. The motion is
rather complex. Nevertheless, at any time t , m1 and m2 lie in the XY plane, equidistant
and in opposite directions from their center of mass G, whose straight-line path is
also shown in Figure 2.3. The very same motion appears rather less complex when
viewed from m1, as the computer simulation reveals in Figure 2.4(a). Figure 2.4(a)
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Gm1
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m2

Path of G
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Path of m2

X

Y

Inertial
frame

Figure 2.3 The motion of two identical bodies acted on only by their mutual gravitational attraction, as
viewed from the inertial frame of reference.

represents the solution to Equation 2.15, and we see that, relative to m1, m2 follows
what appears to be an elliptical path. (So does the center of mass.) Figure 2.4(b)
reveals that both m1 and m2 follow elliptical paths around the center of mass.

Since the center of mass has zero acceleration, we can use it as an inertial reference
frame. Let r1 and r2 be the position vectors of m1 and m2, respectively, relative to the
center of mass G in Figure 2.1. The equation of motion of m2 relative to the center of
mass is

−G
m1m2

r2
ûr = m2r̈2 (2.16)

where, as before, r is the position vector of m2 relative to m1. In terms of r1 and r2,

r = r2 − r1

Since the position vector of the center of mass relative to itself is zero, it follows from
Equation 2.1 that

m1r1 + m2r2 = 0

Therefore,

r1 = −m2

m1
r2

so that

r = m1 + m2

m1
r2

Substituting this back into Equation 2.16 and using the fact that ûr = r2/r2, we get

−G
m3

1m2

(m1 + m2)2r3
2

r2 = m2r̈2
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Figure 2.4 The motion in Figure 2.3, (a) as viewed relative to m1 (or m2); (b) as viewed from the center
of mass.

which, upon simplification, becomes

−
(

m1

m1 + m2

)
µ

r3
2

r2 = r̈2 (2.17)

where µ is given by Equation 2.14. If we let

µ′ =
(

m1

m1 + m2

)3

µ
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Figure 2.5 The motion of three identical masses as seen from the inertial frame in which m1 and m3 are
initially at rest, while m2 has an initial velocity v0 directed upwards and to the right, as shown.

then Equation 2.17 reduces to

r̈2 = −µ′

r3
2

r2

which is identical in form to Equation 2.15.
In a similar fashion, the equation of motion of m1 relative to the center of mass is

found to be

r̈1 = −µ′′

r3
1

r1

in which

µ′′ =
(

m2

m1 + m2

)3

µ

Since the equations of motion of either particle relative to the center of mass have the
same form as the equations of motion relative to either one of the bodies, m1 or m2,
it follows that the relative motion as viewed from these different perspectives must be
similar, as illustrated in Figure 2.4.

One may wonder what the motion looks like if there are more than two bodies
moving under the influence only of their mutual gravitational attraction. The n-body
problem with n > 2 has no closed form solution, which is complex and chaotic in
nature. We can use a computer simulation (see Appendix C.1) to get an idea of the
motion for some special cases. Figure 2.5 shows the motion of three equal masses,
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Figure 2.6 The same motion as Figure 2.5, as viewed from the inertial frame attached to the center of
mass G.

equally spaced initially along the X axis of an inertial frame. The center mass has an
initial velocity, while the other two are at rest. As time progresses, we see no periodic
behavior as was evident in the two-body motion in Figure 2.3. The chaos is more
obvious if the motion is viewed from the center of mass of the three-body system, as
shown in Figure 2.6. The computer simulation from which these figures were taken
shows that the masses eventually collide.

2.4 Angular momentum and the orbit formulas

The angular momentum of body m2 relative to m1 is the moment of m2’s relative
linear momentum m2ṙ (cf. Equation 1.17),

H2/1 = r × m2ṙ

where ṙ = v is the velocity of m2 relative to m1. Let us divide this equation through
by m2 and let h = H2/1/m2, so that

h = r × ṙ (2.18)

h is the relative angular momentum of m2 per unit mass, that is, the specific relative
angular momentum. The units of h are km2 s−1.

Taking the time derivative of h yields

dh

dt
= ṙ × ṙ + r × r̈

But ṙ × ṙ = 0. Furthermore, r̈ = −(µ/r3)r, according to Equation 2.15, so that

r × r̈ = r ×
(
− µ

r3
r
)

= − µ

r3
(r × r) = 0
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Figure 2.7 The path of m2 around m1 lies in a plane whose normal is defined by h.
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Figure 2.8 Components of the velocity of m2, viewed above the plane of the orbit.

Therefore,

dh

dt
= 0 (or r × ṙ = constant) (2.19)

At any given time, the position vector r and the velocity vector ṙ lie in the same plane,
as illustrated in Figure 2.7. Their cross product r × ṙ is perpendicular to that plane.
Since r × ṙ = h, the unit vector normal to the plane is

ĥ = h

h
(2.20)

But, according to Equation 2.19, this unit vector is constant. Thus, the path of m2

around m1 lies in a single plane.
Since the orbit of m2 around m1 forms a plane, it is convenient to orient oneself

above that plane and look down upon the path, as shown in Figure 2.8. Let us resolve
the relative velocity vector ṙ into components vr = vr ûr and v⊥ = v⊥û⊥ along the
outward radial from m1 and perpendicular to it, respectively, where ûr and û⊥ are the
radial and perpendicular (azimuthal) unit vectors. Then we can write Equation 2.18



44 Chapter 2 The two-body problem

dA
r(t � dt)

r(t)

m1
m2

f

f

v dt

Path

r sin f

υ
dt

Figure 2.9 Differential area dA swept out by the relative position vector r during time interval dt .

as

h = rûr × (vr ûr + v⊥û⊥) = rv⊥ĥ

That is,

h = rv⊥ (2.21)

Clearly, the angular momentum depends only on the azimuth component of the
relative velocity.

During the differential time interval dt the position vector r sweeps out an area
dA, as shown in Figure 2.9. From the figure it is clear that the triangular area dA is
given by

dA = 1

2
× base × altitude = 1

2
× v dt × r sin φ = 1

2
r(v sin φ)dt = 1

2
rv⊥dt

Therefore, using Equation 2.21 we have

dA

dt
= h

2
(2.22)

dA/dt is called the areal velocity, and according to Equation 2.22 it is constant. Named
after the German astronomer Johannes Kepler (1571–1630), this result is known as
Kepler’s second law: equal areas are swept out in equal times.

Before proceeding with an effort to integrate Equation 2.15, recall the vector
identity known as the bac − cab rule:

A × (B × C) = B(A · C) − C(A · B) (2.23)

Recall as well that

r · r = r2 (2.24)
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so that

d

dt
(r · r) = 2r

dr

dt

But

d

dt
(r · r) = r · dr

dt
+ dr

dt
· r = 2r · dr

dt

Thus, we obtain the important identity

r · ṙ = rṙ (2.25a)

Since ṙ = v and r = ‖r‖, this can be written alternatively as

r · v = ‖r‖d‖r‖
dt

(2.25b)

Now let us take the cross product of both sides of Equation 2.15 [r̈ = −(µ/r3)r] with
the specific angular momentum h:

r̈ × h = − µ

r3
r × h (2.26)

Since d
dt (ṙ × h) = r̈ × h + ṙ × ḣ, the left-hand side can be written

r̈ × h = d

dt
(ṙ × h) − ṙ × ḣ

But according to Equation 2.19, the angular momentum is constant (ḣ = 0), so this
reduces to

r̈ × h = d

dt
(ṙ × h) (2.27)

The right-hand side of Equation 2.26 can be transformed by the following sequence
of substitutions:

1

r3
r × h = 1

r3
[r × (r × ṙ)] (Equation 2.18 [h = r × ṙ])

= 1

r3
[r(r · ṙ) − ṙ(r · r)] (Equation 2.23 [bac − cab rule])

= 1

r3
[r(rṙ) − ṙr2] (Equations 2.24 and 2.25)

= rṙ − ṙr

r2

But

d

dt

( r

r

)
= rṙ − rṙ

r2
= − rṙ − rṙ

r2

Therefore

1

r3
r × h = − d

dt

( r

r

)
(2.28)

louiscoo
铅笔
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Substituting Equations 2.27 and 2.28 into Equation 2.26, we get

d

dt
(ṙ × h) = d

dt

(
µ

r

r

)
or

d

dt

(
ṙ × h − µ

r

r

)
= 0

That is,

ṙ × h − µ
r

r
= C (2.29)

where the vector C is an arbitrary constant of integration having the dimensions of
µ. Equation 2.29 is the first integral of the equation of motion, r̈ = −(µ/r3)r. Taking
the dot product of both sides of Equation 2.29 with the vector h yields

(ṙ × h) · h − µ
r · h

r
= C · h

Since ṙ × h is perpendicular to both ṙ and h, it follows that (ṙ × h) · h = 0. Likewise,
since h = r × ṙ is perpendicular to both r and ṙ, it is true that r · h = 0. Therefore, we
have C · h = 0, i.e., C is perpendicular to h, which is normal to the orbital plane. That
of course means C must lie in the orbital plane.

Let us rearrange Equation 2.29 and write it as

r

r
+ e = ṙ × h

µ
(2.30)

where e = C/µ. The dimensionless vector e is called the eccentricity vector. The line
defined by the vector e is commonly called the apse line. In order to obtain a scalar
equation, let us take the dot product of both sides of Equation 2.30 with r:

r · r

r
+ r · e = r · (ṙ × h)

µ
(2.31)

In order to simplify the right-hand side, we can employ the useful vector identity,
known as the interchange of the dot and the cross,

A · (B × C) = (A × B) · C (2.32)

to obtain

r · (ṙ × h) = (r × ṙ) · h = h · h = h2 (2.33)

Substituting this expression into the right-hand side of Equation 2.31, and
substituting r · r = r2 on the left yields

r + r · e = h2

µ
(2.34)

Observe that by following the steps leading from Equation 2.30 to 2.34 we have lost
track of the variable time. This occurred at Equation 2.33, because h is constant.
Finally, from the definition of the dot product we have

r · e = re cos θ
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Figure 2.10 The true anomaly θ is the angle between the eccentricity vector e and the position vector r.

in which e is the eccentricity (the magnitude of the eccentricity vector e) and θ is the
true anomaly. θ is the angle between the fixed vector e and the variable position vector
r, as illustrated in Figure 2.10. (Other symbols used to represent true anomaly include
ν, f , v and φ.) In terms of the eccentricity and the true anomaly, we may therefore
write Equation 2.34 as

r + re cos θ = h2

µ

or

r = h2

µ

1

1 + e cos θ
(2.35)

This is the orbit equation, and it defines the path of the body m2 around m1, relative
to m1. Remember that µ, h, and e are constants. Observe as well that there is no
significance to negative values of eccentricity; i.e., e ≥ 0. Since the orbit equation
describes conic sections, including ellipses, it is a mathematical statement of Kepler’s
first law, namely, that the planets follow elliptical paths around the sun. Two-body
orbits are often referred to as Keplerian orbits.

In Section 2.3 it was pointed out that integration of the equation of relative
motion, Equation 2.15, leads to six constants of integration. In this section it would
seem that we have arrived at those constants, namely the three components of the
angular momentum h and the three components of the eccentricity vector e. However,
we showed that h is perpendicular to e. This places a condition, namely h · e = 0, on
the components of h and e, so that we really have just five independent constants of
integration. The sixth constant of the motion will arise when we work time back into
the picture in the next chapter.

The angular velocity of the position vector r is θ̇, the rate of change of the true
anomaly. The component of velocity normal to the position vector is found in terms
of the angular velocity by the formula

v⊥ = rθ̇ (2.36)

Substituting this into Equation 2.21 (h = rv⊥) yields the specific angular momentum
in terms of the angular velocity,

h = r2θ̇ (2.37)



48 Chapter 2 The two-body problem

It is convenient to have formulas for computing the radial and azimuth components
of velocity shown in Figure 2.11. From h = rv⊥ we of course obtain

v⊥ = h

r

Substituting r from Equation 2.35 readily yields

v⊥ = µ

h
(1 + e cos θ) (2.38)

Since vr = ṙ, we take the derivative of Equation 2.35 to get

ṙ = dr

dt
= h2

µ

[
− e(−θ̇ sin θ)

(1 + e cos θ)2

]
= h2

µ

e sin θ

(1 + e cos θ)2

h

r2

where we made use of the fact that θ̇ = h/r2, from Equation 2.37. Substituting
Equation 2.35 once again and simplifying finally yields

vr = µ

h
e sin θ (2.39)

Apse line

e

γ

Periapsis

rp

θ

r

m1

vr

m2

   r ·

v⊥

Figure 2.11 Position and velocity of m2 in polar coordinates centered at m1, with the eccentricity vector
being the reference for true anomaly (polar angle) θ. γ is the flight path angle.
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We see from Equation 2.35 that m2 comes closest to m1 (r is smallest) when θ = 0
(unless e = 0, in which case the distance between m1 and m2 is constant). The point
of closest approach lies on the apse line and is called periapsis. The distance rp to
periapsis, as shown in Figure 2.11, is obtained by setting the true anomaly equal to
zero,

rp = h2

µ

1

1 + e
(2.40)

Clearly, vr = 0 at periapsis.
The flight path angle γ is also illustrated in Figure 2.11. It is the angle that the

velocity vector v = ṙ makes with the normal to the position vector. The normal to the
position vector points in the direction of v⊥, and it is called the local horizon. From
Figure 2.11 it is clear that

tan γ = vr

v⊥
(2.41)

Substituting Equations 2.38 and 2.39 leads at once to the expression

tan γ = e sin θ

1 + e cos θ
(2.42)

Since cos(−θ) = cos θ, the trajectory described by the orbit equation is symmetric
about the apse line, as illustrated in Figure 2.12, which also shows a chord, the straight
line connecting any two points on the orbit. The latus rectum is the chord through
the center of attraction perpendicular to the apse line. By symmetry, the center of
attraction divides the latus rectum into two equal parts, each of length p, known
historically as the semi-latus rectum. In modern parlance, p is called the parameter
of the orbit. From Equation 2.35 it is apparent that

p = h2

µ
(2.43)

Chord

90°
p

Latus rectum

m1

PeriapsisApse line

A

A'

P1P2

Figure 2.12 Illustration of latus rectum, semi-latus rectum p, and the chord between any two points on an
orbit.
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Since the path of m2 around m1 lies in a plane, for the time being we will for simplicity
continue to view the trajectory from above the plane. Unless there is reason to do
otherwise, we will assume that the eccentricity vector points to the right and that m2

moves counterclockwise around m1, which means that the true anomaly is measured
positive counterclockwise, consistent with the usual polar coordinate sign convention.

2.5 The energy law

By taking the cross product of Equation 2.15, r̈ = −(µ/r3)r (Newton’s second law of
motion), with the specific relative angular momentum per unit mass h, we were led
to the vector Equation 2.29, and from that we obtained the orbit formula, Equation
2.35. Now let us see what results from taking the dot product of Equation 2.15 with
the relative linear momentum per unit mass. The relative linear momentum per unit
mass is just the relative velocity,

m2ṙ

m2
= ṙ

Thus, carrying out the dot product in Equation 2.15 yields

r̈ · ṙ = −µ
r · ṙ

r3
(2.44)

For the left-hand side we observe that

r̈ · ṙ = 1

2

d

dt
(ṙ · ṙ) = 1

2

d

dt
(v · v) = 1

2

d

dt
(v2) = d

dt

(
v2

2

)
(2.45)

For the right-hand side of Equation 2.44 we have, recalling that r · r = r2 and

d(1/r)/dt = (−1/r2)(dr/dt),

µ
r · ṙ

r3
= µ

rṙ

r3
= µ

ṙ

r2
= − d

dt

(µ

r

)
(2.46)

Substituting Equations 2.45 and 2.46 into Equation 2.44 yields

d

dt

(
v2

2
− µ

r

)
= 0

or

v2

2
− µ

r
= ε (constant) (2.47)

where ε is a constant. v2/2 is the relative kinetic energy per unit mass. (−µ/r) is the
potential energy per unit mass of the body m2 in the gravitational field of m1. The total
mechanical energy per unit mass ε is the sum of the kinetic and potential energies per
unit mass. Equation 2.47 is a statement of conservation of energy, namely, that the
specific mechanical energy is the same at all points of the trajectory. Equation 2.47 is
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also known as the vis-viva (‘living force’) equation. Since ε is constant, let us evaluate
it at periapsis (θ = 0),

ε = εp = v2
p

2
− µ

rp
(2.48)

where rp and vp are the position and speed at periapsis. Since vr = 0 at periapsis, we
have vp = v⊥ = h/rp. Thus,

ε = 1

2

h2

r2
p

− µ

rp
(2.49)

Substituting Equation 2.40 into 2.49 yields a formula for the orbital specific energy
in terms of the orbital constants h and e,

ε = −1

2

µ2

h2
(1 − e2) (2.50)

Clearly, the orbital energy is not an independent orbital parameter.
Note that the mechanical energy E of a satellite of mass m1 is obtained from the

specific energy ε by the formula

E = m1ε (2.51)

2.6 Circular orbits (e = 0)

Setting e = 0 in the orbital equation r = (h2/µ)/(1 + e cos θ) yields

r = h2

µ
(2.52)

That is, r = constant, which means the orbit of m2 around m1 is a circle. Since ṙ = 0, it
follows that v = v⊥ so that the angular momentum formula h = rv⊥ becomes simply
h = rv for a circular orbit. Substituting this expression for h into Equation 2.52 and
solving for v yields the velocity of a circular orbit,

vcircular =
√

µ

r
(2.53)

The time T required for one orbit is known as the period. Because the speed is
constant, the period of a circular orbit is easy to compute:

T = circumference

speed
= 2πr√

µ

r

so that

Tcircular = 2π√
µ

r
3
2 (2.54)
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The specific energy of a circular orbit is found by setting e = 0 in Equation 2.50,

ε = −1

2

µ2

h2

Employing Equation 2.52 yields

εcircular = − µ

2r
(2.55)

Obviously, the energy of a circular orbit is negative. As the radius goes up, the energy
becomes less negative, i.e., it increases. In other words, the higher the orbit, the greater
its energy.

To launch a satellite from the surface of the earth into a circular orbit requires
increasing its specific mechanical energy ε. This energy comes from the rocket motors
of the launch vehicle. Since the mechanical energy of a satellite of mass m is E = mε, a
propulsion system that can place a large mass in a low earth orbit can place a smaller
mass in a higher earth orbit.

The space shuttle orbiters are the largest man-made satellites so far placed in orbit
with a single launch vehicle. For example, on NASA mission STS-82 in February
1997, the orbiter Discovery rendezvoused with the Hubble space telescope to repair
and refurbish it. The altitude of the nearly circular orbit was 580 km (360 miles).
Discovery’s orbital mass early in the mission was 106 000 kg (117 tons). That was only
6 percent of the total mass of the shuttle prior to launch (comprising the orbiter’s
dry mass, plus that of its payload and fuel, plus the two solid rocket boosters, plus
the external fuel tank filled with liquid hydrogen and oxygen). This mass of about
2 million kilograms (2200 tons) was lifted off the launch pad by a total thrust in
the vicinity of 35 000 kN (7.8 million pounds). Eighty-five percent of the thrust was
furnished by the solid rocket boosters (SRBs), which were depleted and jettisoned
about two minutes into the flight. The remaining thrust came from the three liquid
rockets (space shuttle main engines, or SSMEs) on the orbiter. These were fueled by
the external tank which was jettisoned just after the SSMEs were shut down at MECO
(main engine cut off), about eight and a half minutes after lift-off.

Manned orbital spacecraft and a host of unmanned remote sensing, imaging
and navigation satellites occupy nominally circular, low-earth orbits. A low-earth
orbit (LEO) is one whose altitude lies between about 150 km (100 miles) and about
1000 km (600 miles). An LEO is well above the nominal outer limits of the drag-
producing atmosphere (about 80 km or 50 miles), and well below the hazardous Van
Allen radiation belts, the innermost of which begins at about 2400 km (1500 miles).

Nearly all of our applications of the orbital equations will be to the analysis of
man-made spacecraft, all of which have a mass that is insignificant compared to
the sun and planets. For example, since the earth is nearly 20 orders of magnitude
more massive than the largest conceivable artificial satellite, the center of mass of the
two-body system lies at the center of the earth and µ in Equation 3.14 becomes

m � G (mearth � msatellite) � Gmearth

The value of the earth’s gravitational parameter to be used throughout this book is
found in Table A.2,

µearth = 398 600 km3/s2 (2.56)
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Example
2.2

Plot the speed v and period T of a satellite in circular LEO as a function of altitude z.

Equations 2.53 and 2.54 give the speed and period, respectively, of the satellite:

v =
√

µ

r
=

√
µ

RE + z
=

√
398 600

6378 + z
T = 2π√

µ
r

3
2 = 2π√

398 600
(6378 + z)

3
2

These relations are graphed in Figure 2.13.
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Figure 2.13 Circular orbital speed (a) and period (b) as a function of altitude.

If a satellite remains always above the same point on the earth’s equator, then it is in a
circular, geostationary equatorial orbit or GEO. For GEO, the radial from the center of
the earth to the satellite must have the same angular velocity as the earth itself, namely,
2π radians per sidereal day. The sidereal day is the time it takes the earth to complete
one rotation relative to inertial space (the fixed stars). The ordinary 24-hour day, or
synodic day, is the time it takes the sun to apparently rotate once around the earth,
from high noon one day to high noon the next. The synodic and sidereal days would be
identical if the earth stood still in space. However, while the earth makes one absolute
rotation around its axis, it advances 2π/365.26 radians along its solar orbit. Therefore,
its inertial angular velocity ωE is [(2π + 2π/365.26)radians]/(24 hours); i.e.,

ωE = 72.9217 × 10−6 rad/s (2.57)

Communications satellites and global weather satellites are placed in geostationary
orbit because of the large portion of the earth’s surface visible from that altitude
and the fact that ground stations do not have to track the satellite, which appears
motionless in the sky.

Example
2.3

Calculate the altitude zGEO and speed vGEO of a geostationary earth satellite.

The speed of the satellite in its circular GEO of radius rGEO is

vGEO =
√

µ

rGEO
(a)
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On the other hand, the speed vGEO along its circular path is related to the absolute
angular velocity ωE of the earth by the kinematics formula

vGEO = ωErGEO

Equating these two expressions and solving for rGEO yields

rGEO = 3

√
µ

ω2
E

Substituting Equation 2.56, we get

rGEO = 3

√
398 600

(72.9217 × 10−6)2
= 42 164 km (2.58)

Therefore, the distance of the satellite above the earth’s surface is

zGEO = rGEO − RE = 42 164 − 6378 = 35 786 km (22 241 mi)

Substituting Equation 2.58 into (a) yields the speed,

vGEO =
√

398 600

42 164
= 3.075 km/s (2.59)

(Example 2.3
continued)

Example
2.4

Calculate the maximum latitude and the percentage of the earth’s surface visible from
GEO.

To find the maximum viewable latitude φ, use Figure 2.14, from which it is
apparent that

φ = cos−1 RE

r
(a)

RE

r 

N

S

Equator
φ

Figure 2.14 Satellite in GEO.
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where RE = 6378 km and, according to Equation 2.57, r = 42 164 km. Therefore

φ = cos−1 6378

42 164
= 81.30◦ Maximum visible north or south latitude. (b)

The surface area S visible from GEO is the shaded region illustrated in Figure 2.15. It
can be shown that the area S is given by

S = 2πR2
E(1 − cos φ)

Therefore, the percentage of the hemisphere visible from GEO is

S

2πR2
E

× 100 = (1 − cos 81.30◦) × 100 = 84.9%

which of course means that 42.4 percent of the total surface of the earth can be seen
from GEO.

N

Equator

RE

S

φ

Figure 2.15 Surface area S visible from GEO.

Figure 2.16 is a photograph taken from geosynchronous equatorial orbit by one of
the National Oceanic and Atmospheric Administation’s Geostationary Operational
Environmental Satellites (GOES).

2.7 Elliptical orbits (0 < e < 1)

If 0 < e < 1, then the denominator of Equation 2.35 varies with the true anomaly
θ, but it remains positive, never becoming zero. Therefore, the relative position
vector remains bounded, having its smallest magnitude at periapsis rp, given by
Equation 2.40. The maximum value of r is reached when the denominator of
r = (h2/µ)/(1 + e cos θ) obtains its minimum value, which occurs at θ = 180◦. That
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Figure 2.16 The view from GEO. NASA-Goddard Space Flight Center, data from NOAA GOES.
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Figure 2.17 Elliptical orbit. m1 is at the focus F. F ′ is the unoccupied empty focus.

point is called the apoapsis, and its radial coordinate, denoted ra, is

ra = h2

µ

1

1 − e
(2.60)

The curve defined by Equation 2.35 in this case is an ellipse.
Let 2a be the distance measured along the apse line from periapsis P to apoapsis

A, as illustrated in Figure 2.17. Then

2a = rp + ra
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Substituting Equations 2.40 and 2.61 into this expression we get

a = h2

µ

1

1 − e2
(2.61)

a is the semimajor axis of the ellipse. Solving Equation 2.61 for h2/µ and putting the
result into Equation 2.35 yields an alternative form of the orbit equation,

r = a
1 − e2

1 + e cos θ
(2.62)

In Figure 2.17, let F denote the location of the body m1, which is the origin of the
r, θ polar coordinate system. The center C of the ellipse is the point lying midway
between the apoapsis and periapsis. The distance CF from C to F is

CF = a − FP = a − rp

But from Equation 2.62,

rp = a(1 − e) (2.63)

Therefore, CF = ae, as indicated in Figure 2.17.
Let B be the point on the orbit which lies directly above C, on the perpendicular

bisector of AP. The distance b from C to B is the semiminor axis. If the true anomaly
of point B is β, then according to Equation 2.62, the radial coordinate of B is

rB = a
1 − e2

1 + e cos β
(2.64)

The projection of rB onto the apse line is ae; i.e.,

ae = rB cos(180 − β) = −rB cos β = −
(

a
1 − e2

1 + e cos β

)
cos β

Solving this expression for e, we obtain

e = −cos β (2.65)

Substituting this result into Equation 2.64 reveals the interesting fact that

rB = a

According to the Pythagorean theorem,

b2 = r2
B − (ae)2 = a2 − a2e2

which means the semiminor axis is found in terms of the semimajor axis and the
eccentricity of the ellipse as

b = a
√

1 − e2 (2.66)

Let an xy cartesian coordinate system be centered at C, as shown in Figure 2.18.
In terms of r and θ, we see from the figure that the x coordinate of a point on
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x

y

ae

r
(x, y)

P

b

C

a

θ

Figure 2.18 Cartesian coordinate description of the orbit.

the orbit is

x = ae + r cos θ = ae +
(

a
1 − e2

1 + e cos θ

)
cos θ = a

e + cos θ

1 + e cos θ

From this we have
x

a
= e + cos θ

1 + e cos θ
(2.67)

For the y coordinate we have, making use of Equation 2.66,

y = r sin θ =
(

a
1 − e2

1 + e cos θ

)
sin θ = b

√
1 − e2

1 + e cos θ
sin θ

Therefore,

y

b
=

√
1 − e2

1 + e cos θ
sin θ (2.68)

Using Equations 2.67 and 2.68, we find

x2

a2
+ y2

b2
= 1

(1 + e cos θ)2

[
(e + cos θ)2 + (1 − e2) sin2 θ

]
= 1

(1 + e cos θ)2

[
e2 + 2e cos θ + cos2 θ + sin2 θ − e2 sin2 θ

]
= 1

(1 + e cos θ)2

[
e2 + 2e cos θ + 1 − e2 sin2 θ

]
= 1

(1 + e cos θ)2

[
e2(1 − sin2 θ) + 2e cos θ + 1

]
= 1

(1 + e cos θ)2

[
e2 cos2 θ + 2e cos θ + 1

]
= 1

(1 + e cos θ)2
(1 + e cos θ)2

That is,

x2

a2
+ y2

b2
= 1 (2.69)
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This is the familiar cartesian coordinate formula for an ellipse centered at the origin,
with x intercepts at ±a and y intercepts at ±b. If a = b, Equation 2.69 describes a
circle, which is really an ellipse whose eccentricity is zero.

The specific energy of an elliptical orbit is negative, and it is found by substituting
the specific angular momentum and eccentricity into Equation 2.50,

ε = −1

2

µ2

h2
(1 − e2)

However, according to Equation 2.61, h2 = µa(1 − e2), so that

ε = − µ

2a
(2.70)

This shows that the specific energy is independent of the eccentricity and depends
only on the semimajor axis of the ellipse. For an elliptical orbit, the conservation of
energy (Equation 2.47) may therefore be written

v2

2
− µ

r
= − µ

2a
(2.71)

The area of an ellipse is found in terms of its semimajor and semiminor axes by the
formula A = πab (which reduces to the formula for the area of a circle if a = b). To
find the period T of the elliptical orbit, we employ Kepler’s second law, dA/dt = h/2,
to obtain

�A = h

2
�t

For one complete revolution, �A = πab and �t = T . Thus, πab = (h/2)T , or

T = 2πab

h

Substituting Equations 2.61 and 2.66, we get

T = 2π

h
a2
√

1 − e2 = 2π

h

(
h2

µ

1

1 − e2

)2√
1 − e2

so that the formula for the period of an elliptical orbit, in terms of the orbital
parameters h and e, becomes

T = 2π

µ2

(
h√

1 − e2

)3

(2.72)

We can once again appeal to Equation 2.61 to substitute h =√
µa(1 − e2) into this

equation, thereby obtaining an alternative expression for the period,

T = 2π√
µ

a
3
2 (2.73)

This expression, which is identical to that of a circular orbit of radius a (Equa-
tion 2.54), reveals that, like the energy, the period of an elliptical orbit is independent
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Figure 2.19 Since all five ellipses have the same major axis, their periods and energies are identical.

of the eccentricity (see Figure 2.19). Equation 2.73 embodies Kepler’s third law: the
period of a planet is proportional to the three-halves power of its semimajor axis.

Finally, observe that dividing Equation 2.40 by Equation 2.60 yields

rp

ra
= 1 − e

1 + e

Solving this for e results in a useful formula for calculating the eccentricity of an
elliptical orbit, namely,

e = ra − rp

ra + rp
(2.74)

From Figure 2.17 it is apparent that ra − rp = F ′F, the distance between the
foci. As previously noted, ra + rp = 2a. Thus, Equation 2.74 has the geometrical
interpretation,

eccentricity = distance between the foci

length of the major axis

What is the average distance of m2 from m1 in the course of one complete orbit?
To answer this question, we divide the range of the true anomaly (2π) into n equal
segments �θ, so that

n = 2π

�θ

We then use r = (h2/µ)/(1 + e cos θ) to evaluate r(θ) at the n equally spaced values
of true anomaly, starting at periapsis:

θ1 = 0, θ2 = �θ, θ3 = 2�θ, . . . , θn = (n − 1)�θ
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The average of this set of n values of r is given by

r̄θ = 1

n

n∑
i=1

r(θi) = �θ

2π

n∑
i=1

r(θi) = 1

2π

n∑
i=1

r(θi)�θ (2.75)

Now let n become very large, so that �θ becomes very small. In the limit as n → ∞,
Equation 2.75 becomes

r̄θ = 1

2π

∫ 2π

0
r(θ)dθ (2.76)

Substituting Equation 2.62 into the integrand yields

r̄θ = 1

2π
a(1 − e2)

∫ 2π

0

dθ

1 + e cos θ

The integral in this expression can be found in integral tables (e.g., Beyer, 1991), from
which we obtain

r̄θ = 1

2π
a(1 − e2)

(
2π√

1 − e2

)
= a

√
1 − e2 (2.77)

Comparing this result with Equation 2.66, we see that the true-anomaly-averaged
orbital radius equals the length of the semiminor axis b of the ellipse. Thus, the
semimajor axis, which is the average of the maximum and minimum distances from
the focus, is not the mean distance. Since, from Equation 2.62, rp = a(1 − e) and
ra = a(1 + e), Equation 2.77 also implies that

r̄θ = √
rpra (2.78)

The mean distance is the one-half power of the product of the maximum and mini-
mum distances from the focus and not one-half their sum.

Example
2.5

An earth satellite is in an orbit with perigee altitude zp = 400 km and an eccentricity
e = 0.6. Find (a) the perigee velocity, vp; (b) the apogee radius, ra; (c) the semimajor
axis, a; (d) the true-anomaly-averaged radius r̄θ ; (e) the apogee velocity; (f) the period
of the orbit; (g) the true anomaly when r = r̄θ ; (h) the satellite speed when r = r̄θ ;
(i) the flight path angle γ when r = r̄θ ; (j) the maximum flight path angle γmax and
the true anomaly at which it occurs.

The strategy is always to go after the primary orbital parameters, eccentricity and
angular momentum, first. In this problem we are given the eccentricity, so we
will first seek h. Recall from Equation 2.56 that µ = 398 600 km3/s2 and also that
RE = 6378 km.

(a) The perigee radius is

rp = RE + zp = 6378 + 400 = 6778 km

Evaluating the orbit formula, Equation 2.35, at θ = 0 (perigee), we get

rp = h2

µ

1

1 + e
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(Example 2.5
continued)

We use this to evaluate the angular momentum

6778 = h2

398 600

1

1 + 0.6

h = 65 750 km2/s

Now we can find the perigee velocity using the angular momentum formula,
Equation 2.21:

vp = v⊥)perigee = h

rp
= 65 750

6778
= 9.700 km/s

(b) The apogee radius is found by evaluating the orbit equation at θ = 180◦ (apogee):

ra = h2

µ

1

1 − e
= 65 7502

398 600

1

1 − 0.6
= 27 110 km

(c) The semimajor axis is the average of the perigee and apogee radii:

a = rp + ra

2
= 6778 + 27 110

2
= 16 940 km

(d) The azimuth-averaged radius is given by Equation 2.78:

r̄θ = √
rpra = √

6778 · 27 110 = 13 560 km

(e) The apogee velocity, like that at perigee, is obtained from the angular momentum
formula,

va = v⊥)apogee = h

ra
= 65 750

27 110
= 2.425 km/s

(f) To find the orbit period, use Equation 2.73

T = 2π

µ2

(
h√

1 − e2

)3

= 2π

398 6002

(
65 750√
1 − 0.62

)3

= 21 950 s = 6.098 hr

(g) To find the true anomaly when r = r̄θ , we again use the orbit formula

r̄θ = h2

µ

1

1 + e cos θ

13 560 = 65 7502

398 600

1

1 + 0.6 cos θ

cos θ = −0.3333

This means

θ = 109.5◦, where the satellite passes through r̄θ on its way from perigee

and

θ = 250.5◦, where the satellite passes through r̄θ on its way towards perigee
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(h) To find the speed of the satellite when r = r̄θ , we first calculate the radial and
transverse components of velocity:

v⊥ = h

r̄θ
= 65 750

13 560
= 4.850 km/s

For the radial velocity component, use Equation 2.38,

vr = µ

h
e sin θ = 398 600

65 750
· 0.6 · sin(109.5◦) = 3.430 km/s

or

vr = µ

h
e sin θ = 398 600

65 750
· 0.6 · sin(250.5◦) = −3.430 km/s

The magnitude of the velocity can now be found as

v =
√

v2
r + v2⊥ =

√
3.4302 + 4.8502 = 5.940 km/s

We could have obtained the speed v more directly by using conservation of
energy (Equation 2.71), since the semimajor axis is available from part (c) above.
However, we would still need to compute vr and v⊥ in order to solve the next
part of this problem.

(i) Use Equation 2.39 to calculate the flight path angle at r = r̄θ ,

γ = tan−1 vr

v⊥
= tan−1 3.430

4.850
= 35.26◦ at θ = 109.5◦

γ is positive, meaning the velocity vector is above the local horizon, indicating the
spacecraft is flying away from the attracting force. At θ = 250.5◦, where the space-
craft is flying towards perigee, γ = −35.26◦. Since the satellite is approaching the
attracting body, the velocity vector lies below the local horizon, as indicated by
the minus sign.

(j) Equation 2.42 gives the flight path angle in terms of the true anomaly,

γ = tan−1 e sin θ

1 + e cos θ
(a)

To find where γ is a maximum, we must take the derivative of this expression
with respect to θ and set the result equal to zero. Using the rules of calculus,

dγ

dθ
= 1

1 +
(

e sin θ

1 + e cos θ

)2

d

dθ

(
e sin θ

1 + e cos θ

)
= e(e + cos θ)

(1 + e cos θ)2 + e2 sin2 θ

For e < 1, the denominator is positive for all values of θ. Therefore, dγ/dθ = 0
only if the numerator vanishes, that is, if cos θ = −e. Recall from Equation 2.65
that this true anomaly locates the end-point of the minor axis of the ellipse. The
maximum positive flight path angle therefore occurs at the true anomaly,

θ = cos−1(−0.6) = 126.9◦
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Substituting this into (a), we find the value of the flight path angle to be

γmax = tan−1 0.6 sin 126.9◦

1 + 0.6 cos 126.9◦ = 36.87◦

After attaining this greatest magnitude, the flight path angle starts to decrease
steadily towards its value at apogee (zero).

(Example 2.5
continued)

Example
2.6

At two points on a geocentric orbit the altitude and true anomaly are z1 =
1545 km, θ1 = 126◦ and z2 = 852 km, θ2 = 58◦, respectively. Find (a) the eccentricity;
(b) the altitude of perigee; (c) the semimajor axis; and (d) the period.

(a) The radii of the two points are

r1 = RE + z1 = 6378 + 1545 = 7923 km

r2 = RE + z2 = 6378 + 852 = 7230 km

Applying the orbit formula, Equation 2.35, to both of these points yields two
equations for the two primary orbital parameters, angular momentum h and
eccentricity e:

r1 = h2

µ

1

1 + e cos θ1

7923 = h2

398 600

1

1 + e cos 126◦

h2 = 3.158 × 109 − 1.856 × 109e (a)

r2 = h2

µ

1

1 + e cos θ2

7230 = h2

398 600

1

1 + e cos 58◦

h2 = 2.882 × 109 + 1.527 × 109e (b)

Equating (a) and (b), the two expressions for h2, yields a single equation for the
eccentricity e,

3.158 × 109 − 1.856 × 109e = 2.882 × 109 + 1.527 × 109e ⇒ 3.384 × 109e

= 276.2 × 106

Therefore,

e = 0.08164 (an ellipse) (c)

(b) By substituting the eccentricity back into (a) [or (b)] we find the angular
momentum,

h2 = 3.158 × 109 − 1.856 × 109 · 0.08164 ⇒ h = 54 830 km2/s (d)
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Now we can use the orbit equation to obtain the perigee radius

rp = h2

µ

1

1 + e cos(0)
= 54 8302

398 600

1

1 + 0.08164
= 6974 km

and perigee altitude

zp = rp − RE = 6974 − 6378 = 595.5 km

(c) The semimajor axis can be found after we calculate the apogee radius by means
of the orbit equation, just as we did for perigee radius:

ra = h2

µ

1

1 + e cos(180◦)
= 54 8302

398 600

1

1 − 0.08164
= 8213 km

Hence

a = rp + ra

2
= 8213 + 6974

2
= 7593 km

(d) Since the semimajor axis is available, it is convenient to use Equation 2.74 to find
the period:

T = 2π√
µ

a
3
2 = 2π√

398 600
7593

3
2 = 6585 s = 1.829 hr

2.8 Parabolic trajectories (e = 1)

If the eccentricity equals 1, then the orbit equation (Equation 2.35) becomes

r = h2

µ

1

1 + cos θ
(2.79)

As the true anomaly θ approaches 180◦, the denominator approaches zero, so that
r tends towards infinity. According to Equation 2.50, the energy of a trajectory for
which e = 1 is zero, so that for a parabolic trajectory the conservation of energy,
Equation 2.47, is

v2

2
− µ

r
= 0

In other words, the speed anywhere on a parabolic path is

v =
√

2µ

r
(2.80)

If the body m2 is launched on a parabolic trajectory, it will coast to infinity, arriving
there with zero velocity relative to m1. It will not return. Parabolic paths are therefore
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called escape trajectories. At a given distance r from m1, the escape velocity is given
by Equation 2.80,

vesc =
√

2µ

r
(2.81)

Let vo be the speed of a satellite in a circular orbit of radius r. Then from Equations
2.53 and 2.81 we have

vesc = √
2vo (2.82)

That is, to escape from a circular orbit requires a velocity boost of 41.4 percent.
However, remember our assumption is that m1 and m2 are the only objects in the
universe. A spacecraft launched from earth with velocity vesc (relative to the earth) will
not coast to infinity (i.e., leave the solar system) because it will eventually succumb to
the gravitational influence of the sun and, in fact, end up in the same orbit as earth.
This will be discussed in more detail in Chapter 8.

For the parabola, Equation 2.42 for the flight path angle takes the form

tan γ = sin θ

1 + cos θ

Using the trigonometric identities

sin θ = 2 sin
θ

2
cos

θ

2

cos θ = cos2 θ

2
− sin2 θ

2
= 2 cos2 θ

2
− 1

we can write

tan γ =
2 sin

θ

2
cos

θ

2

2 cos2
θ

2

=
sin

θ

2

cos
θ

2

= tan
θ

2

It follows that

γ = θ

2
(2.83)

That is, on parabolic trajectories the flight path angle is one-half the true anomaly.
Recall that the parameter p of an orbit is given by Equation 2.43. Let us substitute

that expression into Equation 2.79 and then plot r = 2a/(1 + cos θ) in a cartesian
coordinate system centered at the focus, as illustrated in Figure 2.21. From the figure
it is clear that

x = r cos θ = p
cos θ

1 + cos θ
(2.84a)

y = r sin θ = p
sin θ

1 + cos θ
(2.84b)
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Figure 2.21 Parabola with focus at the origin of the cartesian coordinate system.
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Therefore

x

p/2
+

(
y

p

)2

= 2
cos θ

1 + cos θ
+ sin2 θ

(1 + cos θ)2

Working to simplify the right-hand side, we get

x

p/2
+

(
y

p

)2

= 2 cos θ(1 + cos θ) + sin2 θ

(1 + cos θ)2
= 2 cos θ + 2 cos2 θ + (1 − cos2 θ)

(1 + cos θ)2

= 1 + 2 cos θ + cos2 θ

(1 + cos θ)2
= (1 + cos θ)2

(1 + cos θ)2
= 1

It follows that

x = p

2
− y2

2p
(2.85)

This is the equation of a parabola in a cartesian coordinate system whose origin serves
as the focus.

Example
2.7

The perigee of a satellite in a parabolic geocentric trajectory is 7000 km. Find the
distance d between points P1 and P2 on the orbit which are 8000 km and 16 000 km,
respectively, from the center of the earth.

First, let us calculate the angular momentum of the satellite by evaluating the orbit
equation at perigee,

rp = h2

µ

1

1 + cos(0)
= h2

2µ

P1
P2

7000 km

Earth

16 000 km

8000
km

d

∆θ

Figure 2.22 Parabolic geocentric trajectory.
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from which

h = √
2µrp = √

2 · 398 600 · 7000 = 74 700 km2/s (a)

To find the length of the chord P1P2, we must use the law of cosines from trigonometry,

d2 = 80002 + 16 0002 − 2 · 8000 · 16 000 cos �θ (b)

The true anomalies of points P1 and P2 are found using the orbit equation:

8000 = 74 7002

398 600

1

1 + cos θ1
⇒ cos θ1 = 0.75 ⇒ θ1 = 41.41◦

16 000 = 74 7002

398 600

1

1 + cos θ2
⇒ cos θ2 = −0.125 ⇒ θ2 = 97.18◦

Therefore, �θ = 97.18◦ − 41.41◦ = 55.78◦, so that (b) yields

d = 13 270 km (c)

2.9 Hyperbolic trajectories (e > 1)

If e > 1, the orbit formula,

r = h2

µ

1

1 + e cos θ
(2.86)

describes the geometry of the hyperbola shown in Figure 2.23. The system consists of
two symmetric curves. One of them is occupied by the orbiting body, the other one
is its empty, mathematical image. Clearly, the denominator of Equation 2.86 goes to
zero when cos θ = −1/e. We denote this value of true anomaly

θ∞ = cos−1(−1/e) (2.87)

since the radial distance approaches infinity as the true anomaly approaches θ∞. θ∞
is known as the true anomaly of the asymptote. Observe that θ∞ lies between 90◦ and
180◦. From trigonometry it follows that

sin θ∞ =
√

e2 − 1

e
(2.88)

For −θ∞ < θ < θ∞, the physical trajectory is the occupied hyperbola I shown on the
left in Figure 2.23. For θ∞ < θ < (360◦ − θ∞), hyperbola II – the vacant orbit around
the empty focus F′ – is traced out. (The vacant orbit is physically impossible, because
it would require a repulsive gravitational force.) Periapsis P lies on the apse line on the
physical hyperbola I , whereas apoapsis A lies on the apse line on the vacant orbit.
The point halfway between periapsis and apoapsis is the center C of the hyperbola.
The asymptotes of the hyperbola are the straight lines towards which the curves tend
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Figure 2.23 Hyperbolic trajectory.

as they approach infinity. The asymptotes intersect at C, making an acute angle β

with the apse line, where β = 180◦ − θ∞. Therefore, cos β = −cos θ∞, which means

β = cos−1(1/e) (2.89)

The angle δ between the asymptotes is called the turn angle. This is the angle through
which the velocity vector of the orbiting body is rotated as it rounds the attracting
body at F and heads back towards infinity. From the figure we see that δ = 180◦ − 2β,
so that

sin
δ

2
= sin

(
180◦ − 2β

2

)
= sin(90◦ − β) = cos β

Eq. 2.89︷︸︸︷=
1

e
or

δ = 2 sin−1(1/e) (2.90)

The distance rp from the focus F to the periapsis is given by Equation 2.40,

ra = h2

µ

1

1 + e
(2.91)

Just as for an ellipse, the radial coordinate ra of apoapsis is found by setting θ = 180◦
in Equation 2.35,

ra = h2

µ

1

1 − e
(2.92)

Observe that ra is negative, since e > 1 for the hyperbola. That means the apoapse lies
to the right of the focus F. From Figure 2.23 we see that the distance 2a from periapse
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P to apoapse A is

2a = |ra| − rp = −ra − rp

Substituting Equations 2.91 and 2.92 yields

2a = −h2

µ

(
1

1 − e
+ 1

1 + e

)
From this it follows that a, the semimajor axis of the hyperbola, is given by an
expression which is nearly identical to that for an ellipse (Equation 2.62),

a = h2

µ

1

e2 − 1
(2.93)

Therefore, Equation 2.86 may be written for the hyperbola

r = a
e2 − 1

1 + e cos θ
(2.94)

This formula is analogous to Equation 2.63 for the elliptical orbit. Furthermore, from
Equation 2.94 it follows that

rp = a(e − 1) (2.95a)

ra = −a(e + 1) (2.95b)

The distance b from periapsis to an asymptote, measured perpendicular to the apse
line, is the semiminor axis of the hyperbola. From Figure 2.23, we see that the length
b of the semiminor axis PM is

b = a tan β = a
sin β

cos β
= a

sin (180 − θ∞)

cos (180 − θ∞)
= a

sin θ∞
− cos θ∞

= a

√
e2 − 1

e

−
(

−1

e

)
so that for the hyperbola,

b = a
√

e2 − 1 (2.96)

This relation is analogous to Equation 2.67 for the semiminor axis of an ellipse.
The distance � between the asymptote and a parallel line through the focus is

called the aiming radius, which is illustrated in Figure 2.23. From that figure we see
that

� = (rp + a) sin β

= ae sin β (Equation 2.95a)

= ae

√
e2 − 1

e
(Equation 2.89)

= ae sin θ∞ (Equation 2.88)

= ae
√

1 − cos2 θ∞ (trig identity)

= ae

√
1 − 1

e2
(Equation 2.87)
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Figure 2.24 Plot of Equation 2.93 in a cartesian coordinate system with origin O midway between the
two foci.

or

� = a
√

e2 − 1 (2.97)

Comparing this result with Equation 2.96, it is clear that the aiming radius equals the
length of the semiminor axis of the hyperbola.

As with the ellipse and the parabola, we can express the polar form of the equation
of the hyperbola in a cartesian coordinate system whose origin is in this case midway
between the two foci, as illustrated in Figure 2.24. From the figure it is apparent that

x = −a − rp + r cos θ (2.98a)

y = r sin θ (2.98b)

Using Equations 2.94 and 2.95a in 2.98a, we obtain

x = −a − a(e − 1) + a
e2 − 1

1 + e cos θ
cos θ = −a

e + cos θ

1 + e cos θ

Substituting Equations 2.94 and 2.96 into 2.98b yields

y = b√
e2 − 1

e2 − 1

1 + e cos θ
sin θ = b

√
e2 − 1 sin θ

1 + e cos θ

It follows that

x2

a2
− y2

b2
=

(
e + cos θ

1 + e cos θ

)2

−
(√

e2 − 1 sin θ

1 + e cos θ

)2

= e2 + 2e cos θ + cos2 θ − (e2 − 1)(1 − cos2 θ)

(1 + e cos θ)2

= 1 + 2e cos θ + e2 cos2 θ

(1 + e cos θ)2
= (1 + e cos θ)2

(1 + e cos θ)2



2.9 Hyperbolic trajectories (e > 1) 73

That is,

x2

a2
− y2

b2
= 1 (2.99)

This is the familiar equation of a hyperbola which is symmetric about the x and y
axes, with intercepts on the x axis.

The specific energy of the hyperbolic trajectory is given by Equation 2.50.
Substituting Equation 2.93 into that expression yields

ε = µ

2a
(2.100)

The specific energy of a hyperbolic orbit is clearly positive and independent of the
eccentricity. The conservation of energy for a hyperbolic trajectory is

v2

2
− µ

r
= µ

2a
(2.101)

Let v∞ denote the speed at which a body on a hyperbolic path arrives at infinity.
According to Equation 2.101

v∞ =
√

µ

a
(2.102)

v∞ is called the hyperbolic excess speed. In terms of v∞ we may write Equa-
tion 2.101 as

v2

2
− µ

r
= v2∞

2

Substituting the expression for escape speed, vesc = √
2µ/r (Equation 2.81), we obtain

for a hyperbolic trajectory

v2 = v2
esc + v2∞ (2.103)

This equation clearly shows that the hyperbolic excess speed v∞ represents the
excess kinetic energy over that which is required to simply escape from the center
of attraction. The square of v∞ is denoted C3, and is known as the characteristic
energy,

C3 = v2∞ (2.104)

C3 is a measure of the energy required for an interplanetary mission and C3 is also
a measure of the maximum energy a launch vehicle can impart to a spacecraft of a
given mass. Obviously, to match a launch vehicle with a mission, C3)launchvehicle >

C3)mission.
Note that the hyperbolic excess speed can also be obtained from Equations 2.39

and 2.88,

v∞ = µ

h
e sin θ∞ = µ

h

√
e2 − 1 (2.105)

Finally, for purposes of comparison, Figure 2.25 shows a range of trajectories, from
a circle through hyperbolas, all having a common focus and periapsis. The parabola
is the demarcation between the closed, negative energy orbits (ellipses) and open,
positive energy orbits (hyperbolas).
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0.50.70.80.850.9
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Figure 2.25 Orbits of various eccentricities, having a common focus F and periapsis P.

Example
2.8

At a given point of a spacecraft’s geocentric trajectory, the radius is 14 600 km, the
speed is 8.6 km/s, and the flight path angle is 50◦. Show that the path is a hyper-
bola and calculate the following: (a) C3, (b) angular momentum, (c) true anomaly,
(d) eccentricity, (e) radius of perigee, (f) turn angle, (g) semimajor axis, and (h)
aiming radius.

To determine the type of the trajectory, calculate the escape speed at the given
radius:

vesc =
√

2µ

r
=

√
2 · 398 600

14 600
= 7.389 km/s

Since the escape speed is less than the spacecraft’s speed of 8.6 km/s, the path is a
hyperbola.

(a) The hyperbolic excess velocity v∞ is found from Equation 2.103,

v2∞ = v2 − v2
esc = 8.62 − 7.3892 = 19.36 km2/s2

From Equation 2.104 it follows that

C3 = 19.36 km2/s2

(b) Knowing the speed and the flight path angle, we can obtain both vr and v⊥:

vr = v sin γ = 8.6 sin 50◦ = 6.588 km/s (a)
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v⊥ = v cos γ = 8.6 · cos 50◦ = 5.528 km/s (b)

Then Equation 2.21 provides us with the angular momentum,

h = rv⊥ = 14 600 · 5.528 = 80 710 km2/s (c)

(c) Evaluating the orbit equation at the given location on the trajectory, we get

14 600 = 80 7102

398 600

1

1 + e cos θ

from which

e cos θ = 0.1193 (d)

The radial component of velocity is given by Equation 2.39, vr = µe sin θ/h, so
that with (a) and (c), we obtain

6.588 = 398 600

80 170
e sin θ

or

e sin θ = 1.334 (e)

Computing the ratio of (e) to (d) yields

tan θ = 1.334

0.1193
= 11.18 ⇒ θ = 84.89◦

(d) We substitute the true anomaly back into either (d) or (e) to find the eccentricity,

e = 1.339

(e) The radius of perigee can now be found from the orbit equation,

rp = h2

µ

1

1 + e cos(0)
= 80 7102

398 600

1

1 + 1.339
= 6986 km

(f) The formula for turn angle is Equation 2.90, from which

δ = 2 sin−1
(

1

e

)
= 2 sin−1

(
1

1.339

)
= 96.60◦

(g) The semimajor axis of the hyperbola is found in Equation 2.93,

a = h2

µ

1

e2 − 1
= 80 7102

398 600

1

1.3392 − 1
= 20 590 km

(h) According to Equations 2.96 and 2.97, the aiming radius is

� = a
√

e2 − 1 = 20 590
√

1.3392 − 1 = 18 340 km
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2.10 Perifocal frame

The perifocal frame is the ‘natural frame’ for an orbit. It is centered at the focus of the
orbit. Its x y plane is the plane of the orbit, and its x axis is directed from the focus
through periapse, as illustrated in Figure 2.26. The unit vector along the x axis (the
apse line) is denoted p̂. The y axis, with unit vector q̂, lies at 90◦ true anomaly to the
x axis. The z axis is normal to the plane of the orbit in the direction of the angular
momentum vector h. The z̄ unit vector is ŵ,

ŵ = h

h
(2.106)

In the perifocal frame, the position vector r is written (see Figure 2.27)

r = xp̂ + yq̂ (2.107)

where

x = r cos θ y = r sin θ (2.108)

and r, the magnitude of r, is given by the orbit equation, r = (h2/µ)[1/(1 + e cos θ)].
Thus, we may write Equation 2.107 as

r = h2

µ

1

1 + e cos θ
( cos θp̂ + sin θq̂) (2.109)

The velocity is found by taking the time derivative of r,

v = ṙ = ẋp̂ + ẏq̂ (2.110)

ˆ p

    ̂  q

ˆ w 

Focus
Periapse

Semilatus
rectum

z y

x

Figure 2.26 Perifocal frame p̂q̂ŵ.
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From Equations 2.108 we obtain

ẋ = ṙ cos θ − rθ̇ sin θ

ẏ = ṙ sin θ + rθ̇ cos θ (2.111)

ṙ is the radial component of velocity, vr . Therefore, according to Equation 2.39,

ṙ = µ

h
e sin θ (2.112)

From Equations 2.36 and 2.38 we have

rθ̇ = v⊥ = µ

h
(1 + e cos θ) (2.113)

Substituting Equations 2.112 and 2.113 into 2.111 and simplifying the results yields

ẋ = −µ

h
sin θ

ẏ = µ

h
(e + cos θ) (2.114)

Hence, Equation 2.110 becomes

v = µ

h
[−sin θp̂ + (e + cos θ)q̂] (2.115)

Formulating the kinematics of orbital motion in the perifocal frame, as we have done
here, is a prelude to the study of orbits in three dimensions (Chapter 4). We also need
Equations 2.107 and 2.110 in the next section.

q̂

θ

r

v

p̂
ŵ Periapse

y 

x 

Figure 2.27 Position and velocity relative to the perifocal frame.



78 Chapter 2 The two-body problem

2.11 The Lagrange coefficients

In this section we will establish what may seem intuitively obvious: if the position
and velocity of an orbiting body are known at a given instant, then the position and
velocity at any later time are found in terms of the initial values. Let us start with
Equations 2.107 and 2.110,

r = xp̂ + yq̂ (2.116)

v = ṙ = ẋp̂ + ẏq̂ (2.117)

Attach a subscript ‘zero’ to quantities evaluated at time t = t0. Then the expressions
for r and v evaluated at t = t0 are

r0 = x0p̂ + y0q̂ (2.118)

v0 = ẋ0p̂ + ẏ0q̂ (2.119)

The angular momentum h is constant, so let us calculate it using the initial conditions.
Substituting Equations 2.118 and 2.119 into Equation 2.18 yields

h = r0 × v0 =
∣∣∣∣∣∣

p̂ q̂ ŵ
x0 y0 0
ẋ0 ẏ0 0

∣∣∣∣∣∣ = ŵ(x0ẏ0 − y0ẋ0) (2.120)

Recall that ŵ is the unit vector in the direction of h (Equation 2.106). Therefore, the
coefficient of ŵ on the right of Equation 2.120 must be the magnitude of the angular
momentum. That is,

h = x0ẏ0 − y0ẋ0 (2.121)

Now let us solve the two vector equations (2.118) and (2.119) for the unit vectors p̂
and q̂ in terms of r0 and v0. From (2.118) we get

q̂ = 1

y0
r0 − x0

y0
p̂ (2.122)

Substituting this into Equation (2.119), combining terms and using Equation 2.121
yields

v0 = ẋ0p̂ + ẏ0

(
1

y0
r0 − x0

y0
p̂

)
= y0ẋ0 − x0ẏ0

y0
p̂ + ẏ0

y0
r0 = − h

y0
p̂ + ẏ0

y0
r0

Solve this for p̂ to obtain

p̂ = ẏ0

h
r0 − y0

h
v0 (2.123)

Putting this result back into Equation 2.122 gives

q̂ = 1

y0
r0 − x0

y0

(
ẏ0

h
r0 − y0

h
v0

)
= h − x0ẏ0

y0
r0 + x0

h
v0
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Upon replacing h by the right-hand side of Equation 2.121 we get

q̂ = − ẋ0

h
r0 + x0

h
v0 (2.124)

Equations 2.123 and 2.124 give p̂ and q̂ in terms of the initial position and veloc-
ity. Substituting those two expressions back into Equations 2.116 and 2.117 yields,
respectively

r = x

(
ẏ0

h
r0 − y0

h
v0

)
+ y

(
− ẋ0

h
r0 + x0

h
v0

)
= x ẏ0 − y ẋ0

h
r0 + −x y0 + y x0

h
v0

v = ẋ

(
ẏ0

h
r0 − y0

h
v0

)
+ ẏ

(
− ẋ0

h
r0 + x0

h
v0

)
= ẋ ẏ0 − ẏ ẋ0

h
r0 + −ẋ y0 + ẏ x0

h
v0

Therefore,

r = f r0 + gv0 (2.125)

v = ḟ r0 + ġv0 (2.126)

where f and g are given by

f = x ẏ0 − y ẋ0

h
(2.127a)

g = −x y0 + y x0

h
(2.127b)

together with their time derivatives

ḟ = ẋ ẏ0 − ẏ ẋ0

h
(2.128a)

ġ = −ẋ y0 + ẏ x0

h
(2.128b)

The f and g functions are referred to as the Lagrange coefficients after Joseph-
Louis Lagrange (1736–1813), a French mathematical physicist whose numerous
contributions include calculations of planetary motion.

From Equations 2.125 and 2.126 we see that the position and velocity vectors r
and v are indeed linear combinations of the initial position and velocity vectors. The
Lagrange coefficients and their time derivatives in these expressions are themselves
functions of time and the initial conditions.

Before proceeding, let us show that the conservation of angular momentum h
imposes a condition on f and g and their time derivatives ḟ and ġ . Calculate h using
Equations 2.125 and 2.126,

h = r × v = ( f r0 + gv0) × ( ḟ r0 + ġv0)

Expanding the right-hand side yields

h = ( f r0 × ḟ r0) + ( f r0 × ġv0) + (gv0 × ḟ r0) + (gv0 × ġv0)
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Factoring out the scalars f, g , ḟ and ġ , we get

h = f ḟ (r0 × r0) + f ġ(r0 × v0) + ḟ g(v0 × r0) + gġ(v0 × v0)

But r0 × r0 = v0 × v0 = 0, so

h = f ġ(r0 × v0) + ḟ g(v0 × r0)

Since

v0 × r0 = −(r0 × v0)

this reduces to

h = ( f ġ − ḟ g)(r0 × v0)

or

h = ( f ġ − ḟ g)h0

where h0 = r0 × v0, which is the angular momentum at t = t0. But the angular
momentum is constant (recall Equation 2.19), which means h = h0, so that

h = ( f ġ − ḟ g)h

Since h cannot be zero (unless the body is traveling in a straight line towards the
center of attraction), it follows that

f ġ − ḟ g = 1 (conservation of angular momentum) (2.129)

Thus, if any three of the functions f, g , ḟ and ġ are known, the fourth may be found
from Equation 2.129.

Let us use Equations 2.127 and 2.128 to evaluate the Lagrange coefficients and
their time derivatives in terms of the true anomaly. First of all, note that evaluating
Equations 2.108 at time t = t0 yields

x0 = r0 cos θ0
(2.130)

y0 = r0 sin θ0

Likewise, from Equations 2.114 we get

ẋ0 = −µ

h
sin θ0

(2.131)
ẏ0 = µ

h
(e + cos θ0)

To evaluate the function f, we substitute Equations 2.108 and 2.131 into Equation
2.127a,

f = x ẏ0 − y ẋ0

h

= 1

h

{
[r cos θ]

[µ

h
(e + cos θ0)

]
− [r sin θ]

[
−µ

h
sin θ0

]}
= µr

h2
[e cos θ + ( cos θ cos θ0 + sin θ sin θ0)] (2.132)
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If we invoke the trig identity

cos(θ − θ0) = cos θ cos θ0 + sin θ sin θ0 (2.133)

and let �θ represent the difference between the current and initial true anomalies,

�θ = θ − θ0 (2.134)

then Equation 2.132 reduces to

f = µr

h2
(e cos θ + cos �θ) (2.135)

Finally, from Equation 2.35, we have

e cos θ = h2

µr
− 1 (2.136)

Substituting this into Equation 2.135 leads to

f = 1 − µr

h2
(1 − cos �θ) (2.137)

We obtain r from the orbit formula, Equation 2.35, in which the true anomaly θ

appears, whereas the difference in the true anomalies occurs on the right-hand side of
Equation 2.137. However, we can express the orbit equation in terms of the difference
in true anomalies as follows. From Equation 2.134 we have θ = θ0 + �θ, which means
we can write the orbit equation as

r = h2

µ

1

1 + e cos(θ0 + �θ)
(2.138)

By replacing θ0 by −�θ in Equation 2.133, Equation 2.138 becomes

r = h2

µ

1

1 + e cos θ0 cos �θ − e sin θ0 sin �θ
(2.139)

To remove θ0 from this expression, observe first of all that Equation 2.136 implies
that, at t = t0,

e cos θ0 = h2

µr0
− 1 (2.140)

Furthermore, from Equation 2.39 for the radial velocity we obtain

e sin θ0 = hvr0

µ
(2.141)

Substituting Equations 2.140 and 2.141 into 2.139 yields

r = h2

µ

1

1 +
(

h2

µr0
− 1

)
cos �θ − hvr0

µ
sin �θ

(2.142)
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Using this form of the orbit equation, we can find r in terms of the initial conditions
and the change in the true anomaly. Thus f in Equation 2.137 depends only on �θ.

The Lagrange coefficient g is found by substituting Equations 2.108 and 2.130
into Equation 2.127b,

g = −x y0 + y x0

h

= 1

h
[(−r cos θ)(r0 sin θ0) + (r sin θ)(r cos θ0)]

= rr0

h
( sin θ cos θ0 − cos θ sin θ0) (2.143)

Making use of the trig identity

sin(θ − θ0) = sin θ cos θ0 − cos θ sin θ0

together with Equation 2.134, we find

g = rr0

h
sin(�θ) (2.144)

To obtain ġ , substitute Equations 2.114 and 2.130 into Equation 2.128b,

ġ = −ẋ y0 + ẏ x0

h

= 1

h

{
−
[
−µ

h
sin θ

]
[r0 sin θ0] +

[µ

h
(e + cos θ)

]
(r0 cos θ0)

}
= µr0

h2
[e cos θ0 + ( cos θ cos θ0 + sin θ sin θ0)]

With the aid of Equations 2.133 and 2.140, this reduces to

ġ = 1 − µr0

h2
(1 − cos �θ) (2.145)

ḟ can be found using Equation 2.129. Thus

ḟ = 1

g
( f ġ − 1) (2.146)

Substituting Equations 2.137, 2.143 and 2.145 results in

ḟ = 1
rr0

h
sin �θ

{[
1 − µr

h2
(1 − cos �θ)

] [
1 − µr0

h2
(1 − cos �θ)

]
− 1

}

= 1
rr0

h
sin �θ

h2µrr0

h4

[
(1 − cos �θ)2 µ

h2
− (1 − cos �θ)

(
1

r0
+ 1

r

)]

or

ḟ = µ

h

1 − cos �θ

sin �θ

[
µ

h2
(1 − cos �θ) − 1

r0
− 1

r

]
(2.147)
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To summarize, the Lagrange coefficients in terms of the change in true anomaly are

f = 1 − µr

h2
(1 − cos �θ) (2.148a)

g = rr0

h
sin �θ (2.148b)

ḟ = µ

h

1 − cos �θ

sin �θ

[
µ

h2
(1 − cos �θ) − 1

r0
− 1

r

]
(2.148c)

ġ = 1 − µr0

h2
(1 − cos �θ) (2.148d)

where r is given by Equation 2.142.
Observe that using the Lagrange coefficients to determine the position and veloc-

ity from the initial conditions does not require knowing the type of orbit we are
dealing with (ellipse, parabola, hyperbola), since the eccentricity does not appear in
Equations 2.142 and 2.148. However, the initial position and velocity give us that
information. From r0 and v0 we obtain the angular momentum h = |r0 × v0|. The
initial radius r0 is just the magnitude of the vector r0. The initial radial velocity vr0 is
the projection of v0 onto the direction of r0,

vr0 = v0 · r0

r0

From Equations 2.35 and 2.39 we have

r0 = h2

µ

1

1 + e cos θ0
vr0 = µ

h
e sin θ0 (2.149)

These two equations can be solved for the eccentricity e and the true anomaly of the
initial point θ0.

Example
2.9

An earth satellite moves in the xy plane of an inertial frame with origin at the earth’s
center. Relative to that frame, the position and velocity of the satellite at time t0 are

r0 = 8182.4î − 6865.9ĵ (km)
(a)

v0 = 0.47572î + 8.8116ĵ (km/s)

Compute the position and velocity vectors after the satellite has traveled through a
true anomaly of 120◦.

First, use r0 and v0 to calculate the angular momentum of the satellite:

h = r0 × v0 =
∣∣∣∣∣∣

î ĵ k̂
8182.4 −6865.9 0

0.47572 8.8116 0

∣∣∣∣∣∣ = 75 366k̂ (km2/s)

so that

h = 75 366 km2/s (b)
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(Example 2.9
continued)

x

y

120°

r0

v0

r

v

î

ˆ j 

C

Figure 2.28 The initial and final position and velocity vectors.

The magnitude of the position vector r0 is

r0 = √
r0 · r0 = 10 861 km (c)

The initial radial velocity vr0 is found by projecting the velocity v0 onto the unit vector
in the radial direction r0,

vr0 = v0 · r0

r0
= (0.47572î + 8.8116ĵ) · (8182.4î − 6865.9ĵ)

10 681
= −5.2996 km/s (d)

The final distance r is obtained from Equation 2.142,

r = h2

µ

1

1 +
(

h2

µr0
− 1

)
cos �θ − hvr0

µ
sin �θ

= 75 3662

398 600

1

1 +
(

75 3662

398 600 · 10 681
− 1

)
cos 120◦ − 75 366 · (−5.2995)

398 600
sin 120◦

so that

r = 8378.8 km (e)
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Now we can evaluate the Lagrange coefficients in Equations 2.148:

f = 1 − µr

h2
(1 − cos �θ)

= 1 − 398 600 · 8378.9

75 3662
(1 − cos 120◦) = 0.11802 (dimensionless) (f)

g = rr0

h
sin(�θ)

= 8378.9 · 10 681

75 366
sin(120◦) = 1028.4 s (g)

ḟ = µ

h

1 − cos �θ

sin �θ

[
µ

h2
(1 − cos �θ) − 1

r0
− 1

r

]

= 398 600

75 366

1 − cos 120◦

sin 120◦

[
398 600

75 3662
(1 − cos 120◦) − 1

10 681
− 1

8378.9

]
(h)

= −9.8665 × 10−4 (dimensionless)

ġ = 1 − µr0

h2
(1 − cos �θ)

= 1 − 398 600 · 10 681

75 3662
(1 − cos 120◦) = −0.12432 (dimensionless) (i)

At this point we have all that is required to find the final position and velocity vectors.
From Equation 2.125 we have

r = f r0 + gv0

Substituting Equations (a), (f) and (g), we get

r = 0.11802(8182.4î − 6865.9ĵ) + 1028.4(0.47572î + 8.8116ĵ)

= 1454.9î + 8251.6ĵ (km)

Likewise, according to Equation 2.126,

v = ḟ r0 + ġv0

Substituting Equations (a), (h) and (i) yields

v = (−9.8665 × 10−4)(8182.4î − 6865.9ĵ) + (−0.12435)(0.47572î + 8.8116ĵ)

or

v = −8.1323î + 5.6785ĵ (km/s)

In order to use the Lagrange coefficients to find the position and velocity as a function
of time, we need to come up with a relation between �θ and time. We will deal with
that complex problem in the next chapter. Meanwhile, for times t which are close to
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the initial time t0, we can obtain polynomial expressions for f and g in which the
variable �θ is replaced by the time interval �t = t − t0.

To do so, we expand the position vector r(t), considered to be a function of time,
in a Taylor series about t = t0. By definition, the Taylor series is given by

r(t) =
∞∑

n=0

1

n! r(n)(t0)(t − t0)n (2.150)

where r(n)(t0) is the nth time derivative of r(t), evaluated at t0,

r(n)(t0) =
(

dnr

dtn

)
t=t0

(2.151)

Let us truncate this infinite series at five terms. Then, to that degree of approximation,

r(t) = r(t0) +
(

dr

dt

)
t=t0

�t + 1

2

(
d2r

dt2

)
t=t0

�t2 + 1

6

(
d3r

dt3

)
t=t0

�t3

+ 1

24

(
d4r

dt4

)
t=t0

�t4 (2.152)

where �t = t − t0. To evaluate the four derivatives, we note first that (dr/dt)t=t0 is
just the velocity v0 at t = t0, (

dr

dt

)
t=t0

= v0 (2.153)

(d2r/dt2)t=t0 is evaluated using Equation 2.15,

r̈ = − µ

r3
r (2.154)

Thus, (
d2r

dt2

)
t=t0

= − µ

r3
0

r0 (2.155)

(d3r/dt3)t=t0 is evaluated by differentiating Equation 2.154,

d3r

dt3
= −µ

d

dt

( r

r3

)
= −µ

(
r3v − 3rr2ṙ

r6

)
= −µ

v

r3
+ 3µ

ṙr

r4
(2.156)

From Equation 2.25a we have

ṙ = r · v

r
(2.157)

Hence, Equation 2.156, evaluated at t = t0, is(
d3r

dt3

)
t=t0

= −µ
v0

r3
0

+ 3µ
r0 · v0

r5
0

r0 (2.158)
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Finally, (d4r/dt4)t=t0 is found by first differentiating Equation 2.156,

d4r

dt4
= d

dt

(
−µ

ṙ

r3
+ 3µ

ṙr

r4

)
= −µ

(
r3r̈ − 3r2ṙṙ

r6

)
+ 3µ

[
r4(r̈r + ṙṙ) − 4r3ṙ2r

r8

]
(2.159)

r̈ is found in terms of r and v by differentiating Equation 2.157 and making use of
Equation 2.154. This leads to the expression

r̈ = d

dt

(
r · ṙ

r

)
= v2

r
− µ

r2
− (r · v)2

r3
(2.160)

Substituting Equations 2.154, 2.157 and 2.160 into Equation 2.159, combining terms
and evaluating the result at t = t0 yields(

d4r

dt4

)
t=t0

=
[
−2

µ2

r6
0

+ 3µ
v2

0

r5
0

− 15µ
(r0 · v0)2

r7
0

]
r0 + 6µ

(r0 · v0)

r5
0

v0 (2.161)

After substituting Equations 2.153, 2.155, 2.158 and 2.161 into Equation 2.152 and
rearranging terms, we obtain

r(t) =
{

1 − µ

2r3
0

�t2 + µ

2

r0 · v0

r5
0

�t3 + µ

24

[
−2

µ

r6
0

+ 3
v2

0

r5
0

− 15
(r0 · v0)2

r7
0

]
�t4

}
r0

+
[
�t − 1

6

µ

r3
0

�t3 + µ

4

(r0 · v0)

r5
0

�t4
]

v0 (2.162)

Comparing this expression with Equation 2.125, we see that, to the fourth order
in �t ,

f = 1 − µ

2r3
0

�t2 + µ

2

r0 · v0

r5
0

�t3 + µ

24

[
−2

µ

r6
0

+ 3
v2

0

r5
0

− 15
(r0 · v0)2

r7
0

]
�t4

(2.163)

g = �t − 1

6

µ

r3
0

�t3 + µ

4

(r0 · v0)

r5
0

�t4

For small values of elapsed time �t these f and g series may be used to calculate the
position of an orbiting body from the initial conditions.

Example
2.10

The orbit of an earth satellite has an eccentricity e = 0.2 and a perigee radius of
7000 km. Starting at perigee, plot the radial distance as a function of time using the f
and g series and compare the curve with the exact solution.

Since the satellite starts at perigee, t0 = 0 and we have, using the perifocal frame,

r0 = 7000p̂ (km) (a)

The orbit equation evaluated at perigee is Equation 2.40, which in the present case
becomes

7000 = h2

398 600

1

1 + 0.2
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(Example 2.10
continued)

Solving for the angular momentum, we get h = 57 864 km2/s. Then, using the
angular momentum formula, Equation 2.21, we find that the speed at perigee is
v0 = 8.2663 km/s, so that

v0 = 8.2663q̂ (km/s) (b)

Clearly, r0 · v0 = 0. Hence, with µ = 398 600 km3/s2, the Lagrange series in Equation
2.163 become

f = 1 − 5.8105(10−7)t2 + 9.0032(10−14)t4

g = t − 1.9368(10−7)t3

where the units of t are seconds. Substituting f and g into Equation 2.125 yields

r = [1−5.8105(10−7)t2+9.0032(10−14)t4](7000p̂)+[t−1.9368(10−7)t3](8.2663q̂)

From this we obtain

r = ‖r‖
=

√
49(106) + 11.389t2 − 1.103(10−6)t4 − 2.5633(10−12)t6 + 3.9718(10−19)t8

(c)

For the exact solution of r versus time we must appeal to the methods presented in
the next chapter. The exact solution and the series solution [Equation (c)] are plotted
in Figure 2.29. As can be seen, the series solution begins to seriously diverge from the
exact solution after about ten minutes.

180 360 540 720

7200

7400

7600

7000
900

10 min

r 
(k

m
)

t (sec)

f and g series

Exact

Figure 2.29 Exact and series solutions for the radial position of the satellite.

If we include terms of fifth and higher order in the f and g series, Equations 2.163,
then the approximate solution in the above example will agree with the exact solution
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for a longer time interval than that indicated in Figure 2.29. However, there is a time
interval beyond which the series solution will diverge from the exact one no matter
how many terms we include. This time interval is called the radius of convergence.
According to Bond and Allman (1996), for the elliptical orbit of Example 2.10, the
radius of convergence is 1700 seconds (not quite half an hour), which is one-fifth of the
period of that orbit. This further illustrates the fact that the series form of the Lagrange
coefficients is applicable only over small time intervals. For arbitrary time intervals
the closed form of these functions, presented in Chapter 3, must be employed.

2.12 Restricted three-body problem

Consider two bodies m1 and m2 moving under the action of just their mutual grav-
itation, and let their orbit around each other be a circle of radius r12. Consider a
non-inertial, co-moving frame of reference xyz whose origin lies at the center of
mass G of the two-body system, with the x axis directed towards m2, as shown in
Figure 2.30. The y axis lies in the orbital plane, to which the z axis is perpendicular.
In this frame of reference, m1 and m2 appear to be at rest.

The constant, inertial angular velocity � is given by

� = �k̂ (2.164)

where

� = 2π

T
and T is the period of the orbit (Equation 2.54),

T = 2π
r12

3
2√
µ

m1

x

r

r2
G

z

(x, y, z) y
m

Plane of motion of m1 and m2
(x1, 0, 0)

(x2, 0, 0)Co-moving xyz frame
m2

r12

(0, 0, 0)

r1

Figure 2.30 Primary bodies m1 and m2 in circular orbit around each other, plus a secondary mass m.
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Thus

� =
√

µ

r3
12

(2.165)

Recall that if M is the total mass of the system,

M = m1 + m2 (2.166)

then

µ = GM (2.167)

m1 and m2 lie in the orbital plane, so their y and z coordinates are zero. To determine
their locations on the x axis, we use the definition of the center of mass (Equation
2.1) to write

m1x1 + m2x2 = 0

Since m2 is at a distance r12 from m1 in the positive x direction, it is also true that

x2 = x1 + r12

From these two equations we obtain

x1 = −π2r12 (2.168a)

x2 = π1r12 (2.168b)

where the dimensionless mass ratios π1 and π2 are given by

π1 = m1

m1 + m2

π2 = m2

m1 + m2
(2.169)

We now introduce a third body of mass m, which is vanishingly small compared to
the primary masses m1 and m2 – like the mass of a spacecraft compared to that of a
planet or moon of the solar system. This is called the restricted three-body problem,
because the mass m is assumed to be so small that it has no effect on the motion of
the primary bodies. We are interested in the motion of m due to the gravitational
fields of m1 and m2. Unlike the two-body problem, there is no general, closed form
solution for this motion. However, we can set up the equations of motion and draw
some general conclusions from them.

In the co-moving coordinate system, the position vector of the secondary mass m
relative to m1 is given by

r1 = (x − x1)î + y ĵ + zk̂ = (x + π2r12)î + y ĵ + zk̂ (2.170)

Relative to m2 the position of m is

r2 = (x − π1r12)î + y ĵ + zk̂ (2.171)
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Finally, the position vector of the secondary body relative to the center of mass is

r = xî + y ĵ + zk̂ (2.172)

The inertial velocity of m is found by taking the time derivative of Equation 2.172.
However, relative to inertial space, the xyz coordinate system is rotating with the

angular velocity �, so that the time derivatives of the unit vectors î and ĵ are not zero.
To account for the rotating frame, we use Equation 1.38 to obtain

ṙ = vG + � × r + vrel (2.173)

vG is the inertial velocity of the center of mass (the origin of the xyz frame), and vrel

is the velocity of m as measured in the moving xyz frame, namely,

vrel = ẋî + ẏ ĵ + żk̂ (2.174)

The absolute acceleration of m is found using the ‘five-term’ relative acceleration
formula, Equation 1.42,

r̈ = aG + �̇ × r + � × (� × r) + 2� × vrel + arel (2.175)

Recall from Section 2.2 that the velocity vG of the center of mass is constant, so that
aG = 0. Furthermore, �̇ = 0 since the angular velocity of the circular orbit is constant.
Therefore, Equation 2.175 reduces to

r̈ = � × (� × r) + 2� × vrel + arel (2.176)

where

arel = ẍî + ÿ ĵ + z̈k̂ (2.177)

Substituting Equations 2.164, 2.172, 2.174 and 2.177 into Equation 2.176 yields

r̈ = (�k) ×
[

(�k̂) × (xî + y ĵ + zk̂)
]

+ 2(�k̂) × (ẋî + ẏ ĵ + żk̂) + ẍî + ÿ ĵ + z̈k̂

=
[
−�2(xî + y ĵ)

]
+ (2�ẋ ĵ − 2�ẏ î) + ẍî + ÿ ĵ + z̈k̂

Collecting terms, we find

r̈ = (ẍ − 2�ẏ − �2x)î + (ÿ + 2�ẋ − �2y)ĵ + z̈k̂ (2.178)

Now that we have an expression for the inertial acceleration in terms of quantities
measured in the rotating frame, let us observe that Newton’s second law for the
secondary body is

mr̈ = F1 + F2 (2.179)

F1 and F2 are the gravitational forces exerted on m by m1 and m2, respectively.
Recalling Equation 2.6, we have

F1 = −Gm1m

r2
1

ur1 = −µ1m

r3
1

r1

F2 = −Gm2m

r2
2

ur2 = −µ2m

r3
2

r2

(2.180)
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where

µ1 = Gm1 µ2 = Gm2 (2.181)

Substituting Equations 2.180 into 2.179 and canceling out m yields

r̈ = −µ1

r3
1

r1 − µ2

r3
2

r2 (2.182)

Finally, we substitute Equation 2.178 on the left and Equations 2.170 and 2.171 on
the right to obtain

(ẍ − 2�ẏ − �2x)î + (ÿ + 2�ẋ − �2y)ĵ + z̈k̂ = − µ1

r3
1

[
(x + π2r12)î + y ĵ + zk̂

]
− µ2

r3
2

[
(x − π1r12)î + y ĵ + zk̂

]

Equating the coefficients of î, ĵ and k̂ on each side of this equation yields the three
scalar equations of motion for the restricted three-body problem:

ẍ − 2�ẏ − �2x = −µ1

r3
1

(x + π2r12) − µ2

r3
2

(x − π1r12) (2.183a)

ÿ + 2�ẋ − �2y = −µ1

r3
1

y − µ2

r3
2

y (2.183b)

z̈ = −µ1

r3
1

z − µ2

r3
2

z (2.183c)

2.12.1 Lagrange points

Although Equations 2.183 have no closed form analytical solution, we can use them
to determine the location of the equilibrium points. These are the locations in space
where the secondary mass m would have zero velocity and zero acceleration, i.e., where
m would appear permanently at rest relative to m1 and m2 (and therefore appear to
an inertial observer to move in circular orbits around m1 and m2). Once placed
at an equilibrium point (also called libration point or Lagrange point), a body will
presumably stay there. The equilibrium points are therefore defined by the conditions

ẋ = ẏ = ż = 0 and ẍ = ÿ = z̈ = 0

Substituting these conditions into Equations 2.183 yields

−�2x = −µ1

r3
1

(x + π2r12) − µ2

r3
2

(x − π1r12) (2.184a)

−�2y = −µ1

r3
1

y − µ2

r3
2

y (2.184b)

0 = −µ1

r3
1

z − µ2

r3
2

z (2.184c)
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From Equation 2.184c we have (
µ1

r3
1

+ µ2

r3
2

)
z = 0 (2.185)

Since µ1/r3
1 > 0 and µ2/r3

2 > 0, it must therefore be true that z = 0. That is, the
equilibrium points lie in the orbital plane.

From Equations 2.169 it is clear that

π1 = 1 − π2 (2.186)

Using this, along with Equation 2.165, and assuming y �= 0, we can write Equations
2.184a and 2.184b as

(1 − π2)(x + π2r12)
1

r3
1

+ π2(x + π2r12 − r12)
1

r3
2

= x

r3
12

(2.187)

(1 − π2)
1

r3
1

+ π2
1

r3
2

= 1

r3
12

where we made use of the fact that

π1 = µ1/µ π2 = µ2/µ (2.188)

Treating Equations 2.187 as two linear equations in 1/r3
1 and 1/r3

2 , we solve them
simultaneously to find that

1

r3
1

= 1

r3
2

= 1

r3
12

or

r1 = r2 = r12 (2.189)

Using this result, together with z = 0 and Equation 2.186, we obtain from
Equations 2.170 and 2.171, respectively,

r2
12 = (x + π2r12)2 + y2 (2.190)

r2
12 = (x + π2r12 − r12)2 + y2 (2.191)

Equating the right-hand sides of these two equations leads at once to the conclusion
that

x = r12

2
− π2r12 (2.192)

Substituting this result into Equation 2.190 or 2.191 and solving for y yields

y = ±
√

3

2
r12

We have thus found two of the equilibrium points, the Lagrange points L4 and L5.
As Equation 2.189 shows, these points are the same distance r12 from the primary
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bodies m1 and m2 that the primary bodies are from each other, and in the co-moving
coordinate system their coordinates are

L4, L5: x = r12

2
− π2r12, y = ±

√
3

2
r12, z = 0 (2.193)

Therefore, the two primary bodies and these two Lagrange points lie at the vertices
of equilateral triangles, as illustrated in Figure 2.32.

The remaining equilibrium points are found by setting y = 0 as well as z = 0,
which satisfy both Equations 2.184b and 2.184c. For these values, Equations 2.170
and 2.171 become

r1 = (x + π2r12)î

r2 = (x − π1r12)î = (x + π2r12 − r12)î

Therefore

r1 = |x + π2r12|
r2 = |x + π2r12 − r12|

Substituting these together with Equations 2.165, 2.186 and 2.188 into Equation
2.184a yields

1 − π2

|x + π2r12|3 (x + π2r12)+ π2

|x + π2r12 − r12|3 (x + π2r12 − r12)− 1

r3
12

x = 0 (2.194)

Further simplification is obtained by non-dimensionalizing x,

ξ = x

r12

In terms of ξ, Equation 2.194 becomes f (ξ) = 0, where

f (ξ) = 1 − π2

|ξ + π2|3 (ξ + π2) + π2

|ξ + π2 − 1|3 (ξ + π2 − 1) − ξ (2.195)

The roots of f (ξ) = 0 yields the other equilibrium points besides L4 and L5. To
find them first requires specifying a value for the mass ratio π2, and then using a
numerical technique to obtain the roots for that particular value. For example, let the
two primary bodies m1 and m2 be the earth and the moon, respectively. Then

m1 = 5.974 × 1024 kg

m2 = 7.348 × 1022 kg

r12 = 3.844 × 105 km

(2.196)

(from Table A.1) using this data, we find

π2 = m2

m1 + m2
= 0.01215

Substituting this value of π2 into Equation 2.195 and plotting the function yields the
curves shown in Figure 2.31. By carefully determining where various branches of the
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Figure 2.31 Graph of Equation 2.195 for earth–moon data (π2 = 0.01215), showing the three real roots.
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Figure 2.32 Location of the five Lagrange points of the earth–moon system. These points orbit the earth
with the same period as the moon.

curve cross the ξ axis, we find the real roots, which are the three additional Lagrange
points for the earth–moon system, all lying on the apse line:

L1: x = 0.8369r12 = 3.217 × 105 km

L2: x = 1.156r12 = 4.444 × 105 km (2.197)

L3: x = −1.005r12 = −3.863 × 105 km

The locations of the five Lagrange points for the earth–moon system are shown
in Figure 2.32. For convenience, all of their positions are shown relative to the center
of the earth, instead of the center of mass. As can be seen from Equation 2.168a, the
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center of mass of the earth–moon system is only 4670 km from the center of the earth.
That is, it lies within the earth at 73 percent of its radius. Since the Lagrange points
are fixed relative to the earth and moon, they follow circular orbits around the earth
with the same period as the moon.

If an equilibrium point is stable, then a small mass occupying that point will tend
to return to that point if nudged out of position. The perturbation results in a small
oscillation (orbit) about the equilibrium point. Thus, objects can be placed in small
orbits (called halo orbits) around stable equilibrium points without requiring much
in the way of station keeping. On the other hand, if a body located at an unstable
equilibrium point is only slightly perturbed, it will oscillate in a divergent fashion,
drifting eventually completely away from that point. It turns out that the Lagrange
points L1, L2 and L3 on the apse line are unstable, whereas L4 and L5 – 60◦ ahead of
and behind the moon in its orbit – are stable. However, L4 and L5 are destabilized
by the influence of the sun’s gravity, so that in actuality station keeping would be
required to maintain position in the neighborhood of those points.

Solar observation spacecraft have been placed in halo orbits around the L1 point
of the sun–earth system. L1 lies about 1.5 million kilometers from the earth (1/100 the
distance to the sun) and well outside the earth’s magnetosphere. Three such missions
were the International Sun–Earth Explorer 3 (ISSE-3) launched in August 1978; the
Solar and Heliocentric Observatory (SOHO) launched in December 1995; and the
Advanced Composition Explorer (ACE) launched in August 1997.

2.12.2 Jacobi constant

Multiply Equation 2.183a by ẋ, Equation 2.183b by ẏ and Equation 2.183c by ż to
obtain

ẍẋ − 2�ẋẏ − �2xẋ = −µ1

r3
1

(xẋ + π2r12ẋ) − µ2

r3
2

(xẋ − π1r12ẋ)

ÿẏ + 2�ẋẏ − �2yẏ = −µ1

r3
1

yẏ − µ2

r3
2

yẏ

z̈ż = −µ1

r3
1

zż − µ2

r3
2

zż

Sum the left and right sides of these equations to get

ẍẋ+ÿẏ+z̈ż−�2(xẋ + yẏ) = −
(
µ1

r3
1

+ µ2

r3
2

) (
xẋ + yẏ + zż

)+r12

(
π1µ2

r3
2

− π2µ1

r3
1

)
ẋ

or, rearranging terms,

ẍẋ + ÿẏ + z̈ż − �2(xẋ + yẏ) = −µ1

r3
1

(xẋ + yẏ + zż + π2r12ẋ)

− µ2

r3
2

(xẋ + yẏ + zż − π1r12ẋ) (2.198)

Note that

ẍẋ + ÿẏ + z̈ż = 1

2

d

dt
(ẋ2 + ẏ2 + ż2) = 1

2

dv2

dt
(2.199)
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where v is the speed of the secondary mass relative to the rotating frame. Similarly,

xẋ + yẏ = 1

2

d

dt
(x2 + y2) (2.200)

From Equation 2.170 we obtain

r2
1 = (x + π2r12)2 + y2 + z2

Therefore

2r1
dr1

dt
= 2(x + π2r12)ẋ + 2yẏ + 2zż

or
dr1

dt
= 1

r1
(π2r12ẋ + xẋ + yẏ + zż)

It follows that

d

dt

1

r1
= − 1

r2
1

dr1

dt
= − 1

r3
1

(xẋ + yẏ + zż + π2r12ẋ) (2.201)

In a similar fashion, starting with Equation 2.171, we find

d

dt

1

r2
= − 1

r3
2

(xẋ + yẏ + zż − π1r12ẋ) (2.202)

Substituting Equations 2.199, 2.200, 2.201 and 2.202 into Equation 2.198 yields

1

2

dv2

dt
− 1

2
�2 d

dt
(x2 + y2) = µ1

d

dt

1

r1
+ µ2

d

dt

1

r2

Alternatively, upon rearranging terms

d

dt

[
1

2
v2 − 1

2
�2(x2 + y2) − µ1

r1
− µ2

r2

]
= 0

which means the bracketed expression is a constant

1

2
v2 − 1

2
�2(x2 + y2) − µ1

r1
− µ2

r2
= C (2.203)

v2/2 is the kinetic energy per unit mass relative to the rotating frame. −µ1/r1

and −µ2/r2 are the gravitational potential energies of the two primary masses.
−�2(x2 + y2)/2 may be interpreted as the potential energy of the centrifugal force
per unit mass �2(xî + y ĵ) induced by the rotation of the reference frame. The con-
stant C is known as the Jacobi constant, after the German mathematician Carl Jacobi
(1804–1851), who discovered it in 1836. Jacobi’s constant may be interpreted as the
total energy of the secondary particle relative to the rotating frame. C is a constant
of the motion of the secondary mass just like the energy and angular momentum are
constants of the relative motion in the two-body problem.

Solving Equation 2.203 for v2 yields

v2 = �2(x2 + y2) + 2µ1

r1
+ 2µ2

r2
+ 2C (2.204)
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If we restrict the motion of the secondary mass to lie in the plane of motion of the
primary masses, then

r1 =
√

(x + π2r12)2 + y2 r2 =
√

(x − π1r12)2 + y2 (2.205)

For a given value of the Jacobi constant, v2 is a function only of position in the rotating
frame. Since v2 cannot be negative, it must be true that

�2(x2 + y2) + 2µ1

r1
+ 2µ2

r2
+ 2C ≥ 0 (2.206)

Trajectories of the secondary body in regions where this inequality is violated are not
allowed. The boundaries between forbidden and allowed regions of motion are found
by setting v2 = 0, i.e.,

�2(x2 + y2) + 2µ1

r1
+ 2µ2

r2
+ 2C = 0 (2.207)

For a given value of the Jacobi constant the curves of zero velocity are determined by
this equation. These boundaries cannot be crossed by a secondary mass (spacecraft)
moving within an allowed region.

Since the first three terms on the left of Equation 2.207 are all positive, it follows
that the zero velocity curves correspond to negative values of the Jacobi constant.
Large negative values of C mean that the secondary body is far from the system center
of mass (x2 + y2 is large) or that the body is close to one of the primary bodies (r1 is
small or r2 is small).

Let us consider again the earth–moon system. From Equations 2.165, 2.166, 2.167,
2.181 and 2.196, together with Table A.2, we have

µ1 = µearth = 398 600 km3/s2

µ2 = µmoon = 4903.02 km3/s2

(2.208)

� =
√

µ1 + µ2

r3
12

=
√

398 600 + 4903

384 4003

= 2.66538 × 10−6 rad/s

Substituting these values into Equation 2.207, we can plot the zero velocity curves for
different values of Jacobi’s constant. The curves bound regions in which the motion
of a spacecraft is not allowed.

For C = −1.8 km2/s2, the allowable regions are circles surrounding the earth and
the moon, as shown in Figure 2.33(a). A spacecraft launched from the earth with this
value of C cannot reach the moon, to say nothing of escaping the earth–moon system.

Substituting the coordinates of the Lagrange points L1, L2 and L3 into Equation
2.207, we obtain the successively larger values of the Jacobi constants C1, C2 and C3

which are required to arrive at those points with zero velocity. These are shown along
with the allowable regions in Figure 2.33. From part (c) of that figure we see that C2

represents the minimum energy for a spacecraft to escape the earth–moon system
via a narrow corridor around the moon. Increasing C widens that corridor and at C3

escape becomes possible in the opposite direction from the moon. The last vestiges of
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Figure 2.33 Forbidden regions (shaded) within the earth–moon system for increasing values of Jacobi’s
constant (km2/s2).
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the forbidden regions surround L4 and L5. Further increase in Jacobi’s constant makes
the entire earth–moon system and beyond accessible to an earth-launched spacecraft.

For a given value of the Jacobi constant, the relative speed at any point within an
allowable region can be found using Equation 2.204.

Example
2.11

A spacecraft has a burnout velocity vbo at a point on the earth–moon line with
an altitude of 200 km. Find the value of vbo for each of the scenarios depicted in
Figure 2.33.

From Equations 2.168 and 2.196 we have

π1 = m1

m1 + m2
= 5.974 × 1024

6.047 × 1024
= 0.9878 π2 = 1 − π1 = 0.1215

x1 = −π1r12 = −0.9878 · 384 400 = −4670.6 km

Therefore, the coordinates of the burnout point are

x = 6578 − 4670.6 = 1907.3 km y = 0

4671 km

6578 km

C
O

γ

Moon (m2)

υbo

y

x

S

Earth (m1)

Figure 2.34 Spacecraft S burnout position and velocity relative to the rotating earth–moon frame.

Substituting these values along with the Jacobi constant into Equations 2.204 and
2.205 yields the burnout velocity vbo. For the six Jacobi constants in Figure 2.33 we
obtain

C0: vbo = 10.845 km/s

C1: vbo = 10.857 km/s

C2: vbo = 10.858 km/s

C3: vbo = 10.866 km/s

C4: vbo = 10.867 km/s

C5: vbo = 10.868 km/s
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These velocities are not substantially different from the escape velocity (Equation
2.81) at 200 km altitude,

vesc =
√

2µ

r
=

√
2 · 398 600

6578
= 11.01 km/s

It is remarkable that a change in vbo on the order of only 10 m/s or less can have a
significant influence on the regions of earth–moon space accessible to the spacecraft.

Problems

For man-made earth satellites use µ = 398 600 km2/s2. RE = 6378 km (Tables A.1
and A.2).

2.1 If r, in meters, is given by r = 3t4 Î + 2t3 Ĵ + 9t2K̂, where t is time in seconds, calculate
ṙ (where r = ‖r‖) and ‖ṙ‖ at t = 2 s.
{Ans.: ṙ = 101.3 m/s, ‖ṙ‖ = 105.3 m/s}

2.2 Show that, in general, if ûr = r/r, then ûr · dûr/dt = 0.

2.3 Two particles of identical mass m are acted on only by the gravitational force of one
upon the other. If the distance d between the particles is constant, what is the angular
velocity of the line joining them?
{Ans.: ω =√

2 Gm/d3}

2.4 Three particles of identical mass m are acted on only by their mutual gravitational
attraction. They are located at the vertices of an equilateral triangle with sides of length
d. Consider the motion of any one of the particles about the system center of mass and
use Newton’s second law to determine the angular velocity ω required for d to remain
constant.
{Ans.: ω =√

3 Gm/d3}

2.5 A satellite is in a circular, 350 km orbit (i.e., it is 350 km above the earth’s surface).
Calculate
(a) the speed in km/s;
(b) the period.
{Ans.: (a) 7.697 km/s; (b) 91 min 32 s}

2.6 A spacecraft is in a circular orbit of the moon at an altitude of 80 km. Calculate its speed
and its period.
{Ans.: 1.642 km/s; 1 hr 56 min}

2.7 It is desired to place a satellite in earth polar orbit such that successive ground tracks at
the equator are spaced 3000 km apart. Determine the required altitude of the circular
orbit.
{Ans.: 1440 km}

2.8 Find the minimum additional speed required to escape from GEO.
{Ans.: 1.274 km/s}

2.9 What velocity, relative to the earth, is required to escape the solar system on a parabolic
path from the earth’s orbit?
{12.34 km/s}

2.10 Calculate the area A swept out during the time t = T/3 since periapsis, where T is the
period of the elliptical orbit.
{Ans.: 1.047ab}
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b

a F P

A

Figure P.2.10

2.11 Show that v = µ
h

√
1 + 2e cos θ + e2 for any orbit.

2.12 Determine the true anomaly θ of the point(s) on an elliptical orbit at which the speed
equals the speed of a circular orbit with the same radius, i.e., vellipse = vcircle.
{Ans.: θ = cos−1(−e), where e is the eccentricity of the ellipse}

θ

F' F

υcircle

υellipse

r

Figure P.2.12

2.13 Calculate the flight path angle at the locations found in Exercise 2.12.{
Ans. : γ = tan−1

(
e/

√
1 − e2

)}
2.14 An unmanned satellite orbits the earth with a perigee radius of 7000 km and an apogee

radius of 70 000 km. Calculate
(a) the eccentricity of the orbit;
(b) the semimajor axis of the orbit (km);
(c) the period of the orbit (hours);
(d) the specific energy of the orbit (km2/s2);
(e) the true anomaly at which the altitude is 1000 km (degrees);
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(f) vr and v⊥ at the points found in part (e) (km/s);
(g) the speed at perigee and apogee (km/s).
{Partial ans.: (c) 20.88 hr; (e) 27.61◦; (g) 10.18 km/s, 1.018 km/s}

2.15 A spacecraft is in a 250 km by 300 km low earth orbit. How long (in minutes) does it
take to fly from perigee to apogee?
{Ans.: 45.00 min}

2.16 The altitude of a satellite in an elliptical orbit around the earth is 1600 km at apogee and
600 km at perigee. Determine
(a) the eccentricity of the orbit;
(b) the orbital speeds at perigee and apogee;
(c) the period of the orbit.
{Ans.: (a) 0.06686; (b) vP = 7.81 km/s; (c) vA = 6.83 km/s; (d) T = 107.2 min}

2.17 A satellite is placed into an earth orbit at perigee at an altitude of 1270 km with a speed
of 9 km/s. Calculate the flight path angle γ and the altitude of the satellite at a true
anomaly of 100◦.
{Ans.: γ = 31.1◦; z = 6774 km}

2.18 A satellite is launched into earth orbit at an altitude of 640 km with a speed of 9.2 km/s
and a flight path angle of 10◦. Calculate the true anomaly of the launch point and the
period of the orbit.
{Ans.: θ = 29.8◦; T = 4.46 hr}

2.19 A satellite has perigee and apogee altitudes of 250 km and 42 000 km. Calculate the orbit
period, eccentricity, and the maximum speed.
{Ans.: 12 hr 36 min, 0.759, 10.3 km/s}

2.20 A satellite is launched parallel to the earth’s surface with a speed of 8 km/s at an altitude
of 640 km. Calculate the apogee altitude and the period.
{Ans.: 2679 km, 1 hr 59 min 30 s}

2.21 A satellite in orbit around the earth has a perigee velocity of 8 km/s. Its period is 2 hours.
Calculate its altitude at perigee.
{Ans.: 648 km}

2.22 A satellite in polar orbit around the earth comes within 150 km of the North Pole at its
point of closest approach. If the satellite passes over the pole once every 90 minutes,
calculate the eccentricity of its orbit.
{Ans.: 0.0187}

2.23 A hyperbolic earth departure trajectory has a perigee altitude of 300 km and a perigee
speed of 15 km/s.
(a) Calculate the hyperbolic excess speed (km/s);
(b) Find the radius (km) when the true anomaly is 100◦; {Ans.: 48 497 km}
(c) Find vr and v⊥ (km/s) when the true anomaly is 100◦.

2.24 A meteoroid is first observed approaching the earth when it is 402 000 km from the
center of the earth with a true anomaly of 150◦. If the speed of the meteoroid at that
time is 2.23 km/s, calculate
(a) the eccentricity of the trajectory;
(b) the altitude at closest approach;
(c) the speed at closest approach.
{Ans.: (a) 1.086; (b) 5088 km; (c) 8.516 km/s}

2.25 Calculate the radius r at which the speed on a hyperbolic trajectory is 1.1 times the
hyperbolic excess speed. Express your result in terms of the periapse radius rp and the
eccentricity e.
{Ans.: r = 9.524rp/(e − 1)}
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2.26 A hyperbolic trajectory has an eccentricity e = 3.0 and an angular momentum
h = 105 000 km2/s. Without using the energy equation, calculate the hyperbolic excess
speed.
{Ans.: 10.7 km/s}

2.27 The following position data for an earth orbiter is given:

Altitude = 1700 km at a true anomaly of 130◦.
Altitude = 500 km at a true anomaly of 50◦.

Calculate
(a) the eccentricity;
(b) the perigee altitude (km);
(c) the semimajor axis (km).
{Ans.: (c) 7547 km}

2.28 An earth satellite has a speed of 7 km/s and a flight path angle of 15◦ when its radius is
9000 km. Calculate
(a) the true anomaly (degrees);
(b) the eccentricity of the orbit.
{Ans.: (a) 83.35◦; (b) 0.2785}

2.29 If, for an earth satellite, the specific angular momentum is 60 000 km2/s and the specific
energy is −20 km2/s2, calculate the apogee and perigee altitudes.
{Ans.: 6637 km and 537.2 km}

2.30 A rocket launched from the surface of the earth has a speed of 8.85 km/s when powered
flight ends at an altitude of 550 km. The flight path angle at this time is 6◦. Determine
(a) the eccentricity of the trajectory;
(b) the period of the orbit.
{Ans.: (a) e = 0.3742; (b) T = 187.4 min}

2.31 A space vehicle has a velocity of 10 km/s in the direction shown when it is 10 000 km
from the center of the earth. Calculate its true anomaly.
{Ans.: 51◦}
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2.32 A space vehicle has a velocity of 10 km/s and a flight path angle of 20◦ when it is 15 000
km from the center of the earth. Calculate its true anomaly.
{Ans.: 27.5◦}

2.33 For a spacecraft trajectory around the earth, r = 10 000 km when θ = 30◦, and
r = 30 000 km when θ = 105◦. Calculate the eccentricity.
{Ans.: 1.22}

2.34 A spacecraft in a 500 km altitude circular orbit is given a delta-v equal to one-half its
orbital speed. Use the energy equation to calculate the hyperbolic excess velocity.
{Ans.: 3.806 km/s}

2.35 A satellite is in a circular orbit at an altitude of 320 km above the earth’s surface. If an
onboard rocket provides a delta-v of 500 m/s in the direction of the satellite’s motion,
calculate the altitude of the new orbit’s apogee.
{Ans.: 2390 km}

2.36 A spacecraft is in a circular orbit of radius r and speed v around an unspecified planet.
A rocket on the spacecraft is fired, instantaneously increasing the speed in the direction
of motion by the amount �v = α , where α > 0. Calculate the eccentricity of the new
orbit.
{Ans.: e = α(α + 2)}

2.37 A satellite is in a circular earth orbit of altitude 400 km. Determine the new perigee and
apogee altitudes if the satellite on-board engine
(a) increases the speed of the satellite in the flight direction by 240 m/s;
(b) gives the satellite a radial (outward) component of velocity of 240 m/s.
{Ans.: (a) zA = 1230 km, zP = 400 km; (b) zA = 621 km, zP = 196 km}

2.38 For the sun–earth system, find the distance of the L1, L2 and L3 Lagrange points from
the center of mass of the sun–earth system.
{Ans.: x1 = 151.101 × 106 km, x2 = 148.108 × 106 km, x3 = −149.600 × 106 km (oppo-
site side of the sun)}
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3.1 Introduction

In Chapter 2 we found the relationship between position and true anomaly for the
two-body problem. The only place time appeared explicitly was in the expression

for the period of an ellipse. Obtaining position as a function of time is a simple
matter for circular orbits. For elliptical, parabolic and hyperbolic paths we are led to
the various forms of Kepler’s equation relating position to time. These transcendental
equations must be solved iteratively using a procedure like Newton’s method, which
is presented and illustrated in the chapter.

The different forms of Kepler’s equation are combined into a single universal
Kepler’s equation by introducing universal variables. Implementation of this appeal-
ing notion is accompanied by the introduction of an unfamiliar class of functions
known as Stumpff functions. The universal variable formulation is required for the
Lambert and Gauss orbit determination algorithms in Chapter 5.

107
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The road map of Appendix B may aid in grasping how the material presented here
depends on that of Chapter 2.

3.2 Time since periapsis

The orbit formula, r = (h2/µ)/(1 + e cos θ), gives the position of body m2 in its orbit
around m1 as a function of the true anomaly. For many practical reasons we need to
be able to determine the position of m2 as a function of time. For elliptical orbits,
we have a formula for the period T (Equation 2.72), but we cannot yet calculate the
time required to fly between any two true anomalies. The purpose of this section is
to come up with the formulas that allow us to do that calculation.

The one equation we have which relates true anomaly directly to time is Equation
2.37, h = r2θ̇ , which can be written

dθ

dt
= h

r2

Substituting r = (h2/µ)/(1 + e cos θ), we find, after separating variables,

µ2

h3
dt = dθ

(1 + e cos θ)2

Integrating both sides of this equation yields

µ2

h3
(t − tp) =

∫ θ

0

dϑ

(1 + e cos ϑ)2
(3.1)

in which the constant of integration tp is the time at periapse passage, where by
definition θ = 0. tp is the sixth constant of the motion that was missing in Chapter 2.
The origin of time is arbitrary. It is convenient to measure time from periapse passage,
so we will usually set tp = 0. In that case we have

µ2

h3
t =

∫ θ

0

dϑ

(1 + e cos ϑ)2
(3.2)

The integral on the right may be found in any standard mathematical handbook.
See, for example, Beyer (1991), integrals 341, 366 and 372. The specific form of the
integral depends on whether the value of the eccentricity e corresponds to a circle,
ellipse, parabola or hyperbola.

3.3 Circular orbits

For a circle, e = 0, so the integral in Equation 3.2 is simply
∫ θ

0 dϑ . Thus we have

t = h3

µ2
θ
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Figure 3.1 Time since periapsis is directly proportional to true anomaly in a circular orbit.

Recall that for a circle (Equation 2.52), r = h2/µ. Therefore h3 = r
3
2 µ

3
2 , so that

t = r
3
2√
µ

θ

Finally, substituting the formula (Equation 2.54) for the period T of a circular orbit,

T = 2πr
3
2 /

√
µ, yields

t = θ

2π
T

or

θ = 2π

T
t

The reason that t is directly proportional to θ in a circular orbit is simply that the
angular velocity 2π/T is constant. Therefore the time �t to fly through a true anomaly
of �θ is (�θ/2π)T .

Because the circle is symmetric about any diameter, the apse line – and therefore
the periapsis – can be chosen arbitrarily.

3.4 Elliptical orbits

For 0 < e < 1, we find in integral tables that

∫ θ

0

dϑ

(1 + e cos ϑ)2
= 1

(1 − e2)
3
2

[
2 tan−1

(√
1 − e

1 + e
tan

θ

2

)
− e

√
1 − e2 sin θ

1 + e cos θ

]

Therefore, Equation 3.2 in this case becomes

µ2

h3
t = 1

(1 − e2)
3
2

[
2 tan−1

(√
1 − e

1 + e
tan

θ

2

)
− e

√
1 − e2 sin θ

1 + e cos θ

]
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Figure 3.2 Mean anomaly versus true anomaly for ellipses of various eccentricities.

or

Me = 2 tan−1

(√
1 − e

1 + e
tan

θ

2

)
− e

√
1 − e2 sin θ

1 + e cos θ
(3.3)

where

Me = µ2

h3
(1 − e2)

3
2 t (3.4)

Me is called the mean anomaly. Equation 3.3 is plotted in Figure 3.2. Observe that for
all values of the eccentricity e, Me is a monotonically increasing function of the true
anomaly θ .

From Equation 2.72, the formula for the period T of an elliptical orbit, we

have µ2(1 − e2)
3
2 /h3 = 2π/T , so that the mean anomaly can be written much more

simply as

Me = 2π

T
t (3.5)

The angular velocity of the position vector of an elliptical orbit is not constant, but
since 2π radians are swept out per period T , the ratio 2π/T is the average angular
velocity, which is given the symbol n and called the mean motion,

n = 2π

T
(3.6)

In terms of the mean motion, Equation 3.5 can be written simpler still,

Me = nt
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Figure 3.3 Ellipse and the circumscribed auxiliary circle.

The mean anomaly is the azimuth position (in radians) of a fictitious body moving
around the ellipse at the constant angular speed n. For a circular orbit, the mean
anomaly Me and the true anomaly θ are identical.

It is convenient to simplify Equation 3.3 by introducing an auxiliary angle E called
the eccentric anomaly, which is shown in Figure 3.3. This is done by circumscribing
the ellipse with a concentric auxiliary circle having a radius equal to the semimajor
axis a of the ellipse. Let S be that point on the ellipse whose true anomaly is θ .
Through point S we pass a perpendicular to the apse line, intersecting the auxiliary
circle at point Q and the apse line at point V . The angle between the apse line and the
radius drawn from the center of the circle to Q on its circumference is the eccentric
anomaly E. Observe that E lags θ from P to A, whereas it leads θ from A to P.

To find E as a function of θ , we first observe from Figure 3.3 that, in terms
of the eccentric anomaly, OV = a cos E whereas in terms of the true anomaly,
OV = ae + r cos θ . Thus

a cos E = ae + r cos θ

Using Equation 2.62, r = a(1 − e2)/(1 + e cos θ), we can write this as

a cos E = ae + a(1 − e2) cos θ

1 + e cos θ

Simplifying the right-hand side, we get

cos E = e + cos θ

1 + e cos θ
(3.7a)
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Figure 3.4 For 0 < cos E < 1, E can lie in the first or fourth quadrant. For −1 < cos E < 0, E can lie in the
second or third quadrant.

Solving this for cos θ we obtain the inverse relation,

cos θ = e − cos E

e cos E − 1
(3.7b)

Substituting Equation 3.7a into the trigonometric identity sin2 E + cos2 E = 1 and
solving for sin E yields

sin E =
√

1 − e2 sin θ

1 + e cos θ
(3.8)

Equation 3.7a would be fine for obtaining E from θ , except that, given a value of
cos E between −1 and 1, there are two values of E between 0◦ and 360◦, as illustrated
in Figure 3.4. The same comments hold for Equation 3.8. To resolve this quadrant
ambiguity, we use the following trigonometric identity

tan2 E

2
= 1 − cos E

1 + cos E
(3.9)

From Equation 3.7a

1 − cos E = 1 − cos θ

1 + e cos θ
(1 − e) and 1 + cos E = 1 + cos θ

1 + e cos θ
(1 + e)

Therefore,

tan2 E

2
= 1 − e

1 + e

1 − cos θ

1 + cos θ
= 1 − e

1 + e
tan2 θ

2

where the last step required applying the trig identity in Equation 3.9 to the term
(1 − cos θ)/(1 + cos θ). Finally, therefore, we obtain

tan
E

2
=

√
1 − e

1 + e
tan

θ

2
(3.10a)

or

E = 2 tan−1

(√
1 − e

1 + e
tan

θ

2

)
(3.10b)
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Figure 3.6 Plot of Kepler’s equation for an elliptical orbit.

Observe from Figure 3.5 that for any value of tan(E/2), there is only one value of E
between 0◦ and 360◦. There is no quadrant ambiguity.

Substituting Equations 3.8 and 3.10b into Equation 3.3 yields Kepler’s equation,

Me = E − e sin E (3.11)

This monotonically increasing relationship between mean anomaly and eccentric
anomaly is plotted for several values of eccentricity in Figure 3.6.
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Figure 3.7 Newton’s method for finding a root of f (x) = 0.

Given the true anomaly θ , we calculate the eccentric anomaly E using Equations
3.10. Substituting E into Kepler’s formula, Equation 3.11, yields the mean anomaly
directly. From the mean anomaly and the period T we find the time (since periapsis)
from Equation 3.5,

t = Me

2π
T (3.12)

On the other hand, if we are given the time, then Equation 3.12 yields the mean
anomaly Me . Substituting Me into Kepler’s equation we get the following expression
for the eccentric anomaly,

E − e sin E = Me

We cannot solve this transcendental equation directly for E. A rough value of E might
be read off Figure 3.6. However, an accurate solution requires an iterative, ‘trial and
error’ procedure.

Newton’s method, or one of its variants, is one of the more common and efficient
ways of finding the root of a well-behaved function. To find a root of the equation
f (x) = 0 in Figure 3.7, we estimate it to be xi, and evaluate the function f (x) and its
first derivative f ′(x) at that point. We then extend the tangent to the curve at f (xi)
until it intersects the x axis at xi+1, which becomes our updated estimate of the root.
The intercept xi+1 is found by setting the slope of the tangent line equal to the slope
of the curve at xi, that is,

f ′(xi) = 0 − f (xi)

xi+1 − xi

from which we obtain

xi+1 = xi − f (xi)

f ′(xi)
(3.13)

The process is repeated, using xi+1 to estimate xi+2, and so on, until the root has been
found to the desired level of precision.
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To apply Newton’s method to the solution of Kepler’s equation, we form the
function

f (E) = E − e sin E − Me

and seek the value of eccentric anomaly that makes f (E) = 0. Since

f ′(E) = 1 − e cos E

for this problem Equation 3.13 becomes

Ei+1 = Ei − Ei − e sin Ei − Me

1 − e cos Ei
(3.14)

Algorithm
3.1

Solve Kepler’s equation for the eccentric anomaly E given the eccentricity e and the
mean anomaly Me . See Appendix D.2 for the implementation of this algorithm in
MATLAB®.

1. Choose an initial estimate of the root E as follows (Prussing and Conway, 1993).
If Me < π , then E = Me + e/2. If Me > π , then E = Me − e/2. Remember that
the angles E and Me are in radians. (When using a hand-held calculator, be sure
it is in radian mode.)

2. At any given step, having obtained Ei from the previous step, calculate
f (Ei) = Ei − e sin Ei − Me and f ′(Ei) = 1 − e cos Ei.

3. Calculate ratioi = f (Ei)/f ′(Ei).

4. If |ratioi| exceeds the chosen tolerance (e.g., 10−8), then calculate an updated
value of E

Ei+1 = Ei − ratioi

Return to step 2.

5. If |ratioi| is less than the tolerance, then accept Ei as the solution to within the
chosen accuracy.

Example
3.1

A geocentric elliptical orbit has a perigee radius of 9600 km and an apogee radius of
21 000 km. Calculate the time to fly from perigee P to a true anomaly of 120◦.

The eccentricity is readily obtained from the perigee and apogee radii by means of
Equation 2.74,

e = ra − rp

ra + rp
= 21 000 − 9600

21 000 + 9600
= 0.37255 (a)

We find the angular momentum using the orbit equation,

9600 = h2

398 600

1

1 + 0.37255 cos(0)
⇒ h = 72 472 km2/s

With h and e, the period of the orbit is obtained from Equation 2.72,

T = 2π

µ2

(
h√

1 − e2

)3

= 2π

398 6002

(
72 472√

1 − 0.372552

)3

= 18 834 s (b)
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Figure 3.8 Geocentric elliptical orbit.

Equation 3.10a yields the eccentric anomaly from the true anomaly,

tan
E

2
=

√
1 − e

1 + e
tan

θ

2
=

√
1 − 0.37255

1 + 0.37255
tan

120◦

2
= 1.1711 ⇒ E = 1.7281 rad

Then Kepler’s equation, Equation 3.11, is used to find the mean anomaly,

Me = 1.7281 − 0.37255 sin 1.7281 = 1.3601 rad

Finally, the time follows from Equation 3.12,

t = Me

2π
T = 1.3601

2π
18 834 = 4077 s (1.132 hr)

(Example 3.1
continued)

Example
3.2

In the previous example, find the true anomaly at three hours after perigee passage.

Since the time (10 800 seconds) is greater than one-half the period, the true anomaly
must be greater than 180◦.

First, we use Equation 3.12 to calculate the mean anomaly for t = 10 800 s:

Me = 2π
t

T
= 2π

10 800

18 830
= 3.6029 rad (a)

Kepler’s equation, E − e sin(E) = Me (with all angles in radians), is then employed
to find the eccentric anomaly. This transcendental equation will be solved using
Algorithm 3.1 with an error tolerance of 10−6. Since Me > π , a good starting value
for the iteration is E0 = Me − e/2 = 3.4166. Executing the algorithm yields the
following steps:

Step 1:

E0 = 3.4166

f (E0) = −0.085124
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f ′(E0) = 1.3585

ratio = −0.062658

|ratio| > 10−6, so repeat.

Step 2:

E1 = 3.4166 − (−0.062658) = 3.4793

f (E1) = −0.0002134

f ′(E1) = 1.3515

ratio = −1.5778 × 10−4

|ratio| > 10−6, so repeat.

Step 3:

E2 = 3.4793 − (−1.5778 × 10−4) = 3.4794

f (E2) = −1.5366 × 10−9

f ′(E2) = 1.3515

ratio = −1.137 × 10−9

|f (E2)| < 10−6, so accept E = 3.4794 as the solution.

Convergence to even more than the desired accuracy occurred after just two iter-
ations. With this value of the eccentric anomaly, the true anomaly is found from
Equation 3.10a

tan
θ

2
=

√
1 + e

1 − e
tan

E

2
=

√
1 + 0.37255

1 − 0.37255
tan

3.4794

2
= −8.6721 ⇒ θ = 193.2◦

Example
3.3

Let a satellite be in a 500 km by 5000 km orbit with its apse line parallel to the line
from the earth to the sun, as shown below. Find the time that the satellite is in the
earth’s shadow if: (a) the apogee is towards the sun; (b) the perigee is towards the sun.

(a) If the apogee is towards the sun, as in Figure 3.9, then the satellite is in earth’s
shadow between points a and b on its orbit. These are two of the four points
of intersection of the orbit with lines parallel to the earth–sun line which are a
distance RE from the center of the earth. The true anomaly of b is therefore given
by sin θ = RE/r, where r is the radial position of the satellite. It follows that the
radius of b is

r = RE

sin θ
(a)

From Equation 2.62 we also have

r = a(1 − e2)

1 + e cos θ
(b)



118 Chapter 3 Orbital position as a function of time

(Example 3.3
continued)
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Figure 3.9 Satellite passing in and out of the earth’s shadow.

Equating (a) and (b), collecting terms and simplifying yields an equation in θ ,

e cos θ − (1 − e2)
a

RE
sin θ + 1 = 0 (c)

From the data given in the problem statement, we obtain

e = ra − rp

ra + rp
= (6378 + 5000) − (6378 + 500)

(6378 + 5000) + (6378 + 500)
= 0.24649 (d)

a = rp + ra

2
= (6378 + 500) + (6378 + 5000)

2
= 9128 km (e)

T = 2π√
µ

a
3
2 = 2π√

398 600
(9128)

3
2 = 8679.1 s (2.4109 hr) (f)

Substituting (d) and (e) together with RE = 6378 km into (c) yields

0.24649 cos θ − 1.3442 sin θ = −1 (g)

This equation is of the form

a cos θ + b sin θ = c (h)

It has two roots, which are given by (see Problem 3.9)

θ = tan−1 b

a
± cos−1

[
c

a
cos

(
tan−1 b

a

)]
(i)

For the case at hand,

θ = tan−1 −1.3442

0.24649
± cos−1

[ −1

0.24649
cos

(
tan−1 −1.3442

0.24649

)]
= −79.607◦ ± 137.03◦

That is

θb = 57.423◦
θc = −216.64◦ (+143.36◦)

(j)
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For apogee towards the sun, the flight from perigee to point b will be in shadow.
To find the time of flight from perigee to point b, we first compute the eccentric
anomaly of b using Equation 3.10b:

Eb = 2 tan−1

(√
1 − e

1 + e
tan

θb

2

)
= 2 tan−1

(√
1 − 0.24649

1 + 0.24649
tan

1.0022

2

)

= 0.80521 rad (k)

From this we find the mean anomaly using Kepler’s equation,

Me = E − e sin E = 0.80521 − 0.24649 sin 0.80521 = 0.62749 rad (l)

Finally, Equation (3.5) yields the time at b,

tb = Me

2π
T = 0.62749

2π
8679.1 = 866.77 s (m)

The total time in shadow, from a to b, during which the satellite passes through
perigee, is

t = 2tb = 1734 s (28.98 min) (n)

(b) If the perigee is towards the sun, then the satellite is in shadow near apogee, from
point c (θc = 143.36◦) to d on the orbit. Following the same procedure as above
we obtain (see Problem 3.12),

Ec = 2.3364 rad

Mc = 2.1587 rad (o)

tc = 2981.8 s

The total time in shadow, from c to d, is

t = T − 2tc = 8679.1 − 2 · 2891.8 = 2716 s (45.26 min) (p)

The time is longer than that given by (n) since the satellite travels slower near
apogee.

We have observed that there is no closed form solution for the eccentric anomaly E
in Kepler’s equation, E − e sin E = Me . However, there exist infinite series solutions.
One of these, due to Lagrange (Battin, 1999), is a power series in the eccentricity e,

E = Me +
∞∑

n=1

anen (3.15)

where the coefficients an are given by the somewhat intimidating expression

an = 1

2n−1

floor(n/2)∑
k=0

(−1)k 1

(n − k)!k! (n − 2k)n−1 sin[(n − 2k)M] (3.16)
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Figure 3.10 Comparison of the exact solution of Kepler’s equation with the truncated Lagrange series
solution (N = 3 and N = 10) for an eccentricity of 0.65.

Here, floor(x) means rounded to the next lowest integer [e.g., floor(0.5) = 0,
floor(π) = 3]. If e is sufficiently small, then the Lagrange series converges. That means
by including enough terms in the summation, we can obtain E to any desired degree
of precision. Unfortunately, if e exceeds 0.662743419, the series diverges, which means
taking more and more terms yields worse and worse results for some values of M .

The limiting value for the eccentricity was discovered by the French mathemati-
cian Pierre-Simon Laplace (1749–1827) and is called the Laplace limit.

In practice, we must truncate the Lagrange series to a finite number of terms N ,
so that

E = Me +
N∑

n=1

anen (3.17)

For example, setting N = 3 and calculating each an by means of Equation 3.16 leads to

E = Me + e sin Me + e2

2
sin 2Me + e3

8
(3 sin 3Me − sin Me) (3.18)

For small values of the eccentricity e this yields good agreement with the exact solu-
tion of Kepler’s equation (plotted in Figure 3.6). However, as we approach the Laplace
limit, the accuracy degrades unless more terms of the series are included. Figure 3.10
shows that for an eccentricity of 0.65, just below the Laplace limit, Equation 3.18
(N = 3) yields a solution which oscillates around the exact solution, but is fairly close
to it everywhere. Setting N = 10 in Equation 3.17 produces a curve which, at the
given scale, is indistinguishable from the exact solution. On the other hand, for an
eccentricity of 0.90, far above the Laplace limit, Figure 3.11 reveals that Equation 3.18
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Figure 3.11 Comparison of the exact solution of Kepler’s equation with the truncated Lagrange series
solution (N = 3 and N = 10) for an eccentricity of 0.90.

is a poor approximation to the exact solution, and using N = 10 makes matters
even worse.

Another infinite series for E (Battin, 1999) is given by

E = Me +
∞∑

n=1

2

n
Jn(ne) sin nMe (3.19)

where the coefficients Jn are functions due to the German astronomer and math-
ematician Friedrich Bessel (1784–1846). These Bessel functions of the first kind are
defined by the infinite series

Jn(x) =
∞∑

k=0

(−1)k

k!(n + k)!
(x

2

)n+2k
(3.20)

J1 through J5 are plotted in Figure 3.12. Clearly, they are oscillatory in appearance
and tend towards zero with increasing x.

It turns out that, unlike the Lagrange series, the Bessel function series solution
converges for all values of the eccentricity less than 1. Figure 3.13 shows how the
truncated Bessel series solution

E = Me +
N∑

n=1

2

n
Jn(ne) sin nMe (3.21)

for N = 3 and N = 10 compares to the exact solution of Kepler’s equation for the very
large elliptical eccentricity of e = 0.99. It can be seen that the case N = 3 yields a poor
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Figure 3.13 Comparison of the exact solution of Kepler’s equation with the truncated Bessel series solution
(N = 3 and N = 10) for an eccentricity of 0.99.

approximation for all but a few values of Me . Increasing the number of terms in the
series to N = 10 obviously improves the approximation, and adding even more terms
will make the truncated series solution indistinguishable from the exact solution at
the given scale.
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Observe that we can combine Equations 3.7 and 2.62 as follows to obtain the orbit
equation for the ellipse in terms of the eccentric anomaly:

r = a(1 − e2)

1 + e cos θ
= a(1 − e2)

1 + e

(
e − cos E

e cos E − 1

)

From this it is easy to see that

r = a(1 − e cos E) (3.22)

In Equation 2.76 we defined the true-anomaly-averaged radius r̄θ of an elliptical
orbit. Alternatively, the time-averaged radius r̄t of an elliptical orbit is defined as

r̄t = 1

T

∫ T

0
r dt (3.23)

According to Equations 3.11 and 3.12,

t = T

2π
(E − e sin E)

Therefore,

dt = T

2π
(1 − e cos E)dE

Upon using this relationship to change the variable of integration from t to E and
substituting Equation 3.22, Equation 3.23 becomes

r̄t = 1

T

∫ 2π

0
[a(1 − e cos E)]

[
T

2π
(1 − e cos E)

]
dE

= a

2π

∫ 2π

0
(1 − e cos E)2 dE

= a

2π

∫ 2π

0
(1 − 2e cos E + e2 cos2 E)dE

= a

2π
(2π − 0 + e2π)

so that

r̄t = a

(
1 + e2

2

)
Time-averaged radius of an elliptical orbit. (3.24)

Comparing this result with Equation 2.77 reveals, as we should have expected (Why?),
that r̄t > r̄θ . In fact, combining Equations 2.77 and 3.24 yields

r̄θ = a

√
3 − 2

r̄t

a
(3.25)
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3.5 Parabolic trajectories

For the parabola (e = 1), Equation 3.2 becomes

µ2

h3
t =

∫ θ

0

dϑ

(1 + cos ϑ)2
(3.26)

In integral tables we find that∫ θ

0

dϑ

(1 + cos ϑ)2
= 1

2
tan

θ

2
+ 1

6
tan3 θ

2

Therefore, Equation 3.26 may be written as

Mp = 1

2
tan

θ

2
+ 1

6
tan3 θ

2
(3.27)

where

Mp = µ2t

h3
(3.28)

Mp is dimensionless, and it may be thought of as the ‘mean anomaly’ for the parabola.
Equation 3.27 is plotted in Figure 3.14. Equation 3.27 is also known as Barker’s
equation.

Given the true anomaly θ , we find the time directly from Equations 3.27 and 3.28.
If time is the given variable, then we must solve the cubic equation

1

6

(
tan

θ

2

)3

+ 1

2
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θ

2
− Mp = 0
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Figure 3.14 Graph of Equation 3.27.
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which has but one real root, namely,

tan
θ

2
=

[
3Mp +

√
(3Mp)2 + 1

] 1
3 −

[
(3Mp +

√
(3Mp)2 + 1)

]− 1
3

(3.29)

Example
3.4

A geocentric parabola has a perigee velocity of 10 km/s. How far is the satellite from
the center of the earth six hours after perigee passage?

Using Equation 2.80, we find the perigee radius,

rp = 2µ

v2
p

= 2 · 398 600

102
= 7972 km

so that the angular momentum is

h = rpvp = 7972 · 10 = 79 720 km2/s

Now we can calculate the parabolic mean anomaly using Equation 3.28,

Mp = µ2t

h3
= 398 6002 · (6 · 3600)

79 7203
= 6.7737 rad

so that 3Mp = 20.321 rad. Equation 3.29 yields the true anomaly,

tan
θ

2
=

[
20.321 +

√
20.3212 + 1

] 1
3 −

[
(20.321 +

√
20.3212 + 1)

]− 1
3

= 3.1481 ⇒ θ = 144.75◦

Finally, we substitute the true anomaly into the orbit equation to find the radius,

r = 79 7202

398 600

1

1 + cos(144.75◦)
= 86 899 km

3.6 Hyperbolic trajectories

For the hyperbola (e > 1), integral tables reveal∫ θ

0

dϑ

(1 + e cos ϑ)2

= 1

e2 − 1

[
e sin θ

1 + e cos θ
− 1√

e2 − 1
ln

(√
e + 1 + √

e − 1 tan(θ/2)√
e + 1 − √

e − 1 tan(θ/2)

)]
so that Equation 3.1 becomes

µ2

h3
t = 1

e2 − 1

e sin θ

1 + e cos θ
− 1

(e2 − 1)
3
2

ln

(√
e + 1 + √

e − 1 tan(θ/2)√
e + 1 − √

e − 1 tan(θ/2)

)

Multiplying both sides by (e2 − 1)
3
2 , we get

Mh = e
√

e2 − 1 sin θ

1 + e cos θ
− ln

(√
e + 1 + √

e − 1 tan(θ/2)√
e + 1 − √

e − 1 tan(θ/2)

)
(3.30)
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Figure 3.15 Plots of Equation 3.30 for several different eccentricities.

where

Mh = µ2

h3
(e2 − 1)

3
2 t (3.31)

Mh is the hyperbolic mean anomaly. Equation 3.30 is plotted in Figure 3.15. Recall
that |θ | < cos−1 (−1/e).

We can simplify Equation 3.30 by introducing an auxiliary angle analogous to
the eccentric anomaly E for the ellipse. Consider a point on a hyperbola whose polar
coordinates are r and θ . Referring to Figure 3.16, let x be the distance of the point
from the center C of the hyperbola, and let y be its distance above the apse line. The
ratio y/b defines the hyperbolic sine of the dimensionless variable F that we will use
as the hyperbolic eccentric anomaly. That is, we define F to be such that

sinh F = y

b
(3.32)

In view of the equation of a hyperbola

x2

a2
− y2

b2
= 1

it is consistent with the definition of sinh F to define the hyperbolic cosine as

cosh F = x

a
(3.33)

(It should be recalled that sinh x = (ex − e−x)/2 and cosh x = (ex + e−x)/2 and,
therefore, that cosh2 x − sinh2 x = 1.)
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Figure 3.16 Hyperbola parameters.

From Figure 3.16 we see that y = r sin θ . Substituting this into Equation 3.32,
along with r = a(e2 − 1)/(1 + e cos θ) (Equation 2.94) and b = a

√
e2 − 1 (Equation

2.96), we get

sinh F = 1

b
r sin θ = 1

a
√

e2 − 1

a(e2 − 1)

1 + e cos θ
sin θ

so that

sinh F =
√

e2 − 1 sin θ

1 + e cos θ
(3.34)

This can be used to solve for F in terms of the true anomaly,

F = sinh−1

(√
e2 − 1 sin θ

1 + e cos θ

)
(3.35)

Using the formula sinh−1 x = ln
(
x + √

x2 + 1
)
, we can, after simplifying the algebra,

write Equation 3.35 as

F = ln

(
sin θ

√
e2 − 1 + cos θ + e

1 + e cos θ

)

Substituting the trigonometric identities

sin θ = 2 tan(θ/2)

1 + tan2(θ/2)
cos θ = 1 − tan2(θ/2)

1 + tan2(θ/2)
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Figure 3.17 Plot of Kepler’s equation for the hyperbola.

and doing some more algebra yields

F = ln

[
1 + e + (e − 1) tan2(θ/2) + 2 tan(θ/2)

√
e2 − 1

1 + e + (1 − e) tan2(θ/2)

]

Fortunately, but not too obviously, the numerator and the denominator in the brack-
ets have a common factor, so that this expression for the hyperbolic eccentric anomaly
reduces to

F = ln

[√
e + 1 + √

e − 1 tan(θ/2)√
e + 1 − √

e − 1 tan(θ/2)

]
(3.36)

Substituting Equations 3.34 and 3.36 into Equation 3.30 yields Kepler’s equation for
the hyperbola,

Mh = e sinh F − F (3.37)

This equation is plotted for several different eccentricities in Figure 3.17.
If we substitute the expression for sinh F, Equation 3.34, into the hyperbolic trig

identity cosh2 F − sinh2 F = 1, we get

cosh2 F = 1 +
(√

e2 − 1 sin θ

1 + e cos θ

)2

A few steps of algebra lead to

cosh2 F =
(

cos θ + e

1 + e cos θ

)2

so that

cosh F = cos θ + e

1 + e cos θ
(3.38a)
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Solving this for cos θ , we obtain the inverse relation,

cos θ = cosh F − e

1 − e cosh F
(3.38b)

The hyperbolic tangent is found in terms of the hyperbolic sine and cosine by the
formula

tanh F = sinh F

cosh F

In mathematical handbooks we can find the hyperbolic trig identity,

tanh
F

2
= sinh F

1 + cosh F
(3.39)

Substituting Equations 3.34 and 3.38a into this formula and simplifying yields

tanh
F

2
=

√
e − 1

e + 1

sin θ

1 + cos θ
(3.40)

Interestingly enough, Equation 3.39 holds for ordinary trig functions, too; that is,

tan
θ

2
= sin θ

1 + cos θ

Therefore, Equation 3.40 can be written

tanh
F

2
=

√
e − 1

e + 1
tan

θ

2
(3.41a)

This is a somewhat simpler alternative to Equation 3.36 for computing eccentric
anomaly from true anomaly, and it is a whole lot simpler to invert:

tan
θ

2
=

√
e + 1

e − 1
tanh

F

2
(3.41b)

If time is the given quantity, then Equation 3.37 – a transcendental equation – must
be solved for F by an iterative procedure, as was the case for the ellipse. To apply
Newton’s procedure to the solution of Kepler’s equation for the hyperbola, we form
the function

f (F) = e sinh F − F − Mh

and seek the value of F that makes f (F) = 0. Since

f ′(F) = e cosh F − 1

Equation 3.13 becomes

Fi+1 = Fi − e sinh Fi − Fi − Mh

e cosh Fi − 1
(3.42)

All quantities in this formula are dimensionless (radians, not degrees).
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Algorithm
3.2

Solve Kepler’s equation for the hyperbola for the hyperbolic eccentric anomaly F
given the eccentricity e and the hyperbolic mean anomaly Mh. See Appendix D.3 for
the implementation of this algorithm in MATLAB.

1. Choose an initial estimate of the root F.

(a) For hand computations read a rough value of F0 (no more than two significant
figures) from Figure 3.17 in order to keep the number of iterations to a
minimum.

(b) In computer software let F0 = Mh, an inelegant choice which may result in
many iterations but will nevertheless rapidly converge on today’s high speed
desktop and laptop computers.

2. At any given step, having obtained Fi from the previous step, calculate
f (Fi) = e sinh Fi − Fi − Mh and f ′(Fi) = e cosh Fi − 1.

3. Calculate ratioi = f (Fi)/f ′(Fi).

4. If |ratioi| exceeds the chosen tolerance (e.g., 10−8), then calculate an updated
value of F,

Fi+1 = Fi − ratioi

Return to step 2.

5. If |ratioi| is less than the tolerance, then accept Fi as the solution to within the
desired accuracy.

Example
3.5

A geocentric trajectory has a perigee velocity of 15 km/s and a perigee altitude of
300 km. Find (a) the radius when the true anomaly is 100◦ and (b) the position and
speed three hours later.

(a) The angular momentum is calculated from the given perigee data:

h = rpvp = (6378 + 300) · 15 = 100 170 km2/s

The eccentricity is found by evaluating the orbit equation, r = (h2/µ)
[1/(1 + e cos θ)], at perigee:

6378 + 300 = 100 1702

398 600

1

1 + e
⇒ e = 2.7696 (a)

Since e > 1 the trajectory is a hyperbola. Note that the true anomaly of the
asymptote of the hyperbola is, from Equation 2.87,

θ∞ = cos−1
(

− 1

2.7696

)
= 111.17◦

Solving the orbit equation at θ = 100◦ yields

r = 100 1702

398 600

1

1 + 2.7696 cos 100◦ = 48 497 km
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(b) The time since perigee passage at θ = 100◦ must be found next so that we can add
the three hour time increment needed to find the final position of the satellite.
Using Equation 3.41a to calculate the hyperbolic eccentric anomaly, we find

tanh
F

2
=

√
2.7696 − 1

2.7696 + 1
tan

100◦

2
= 0.81653 ⇒ F = 2.2927 rad

Kepler’s equation for the hyperbola then yields the mean anomaly,

Mh = e sinh F − F = 2.7696 sinh 2.2927 − 2.2927 = 11.279 rad

Now we can obtain the time since perigee passage by means of Equation 3.31,

t = h3

µ2

1

(e2 − 1)
3
2

Mh = 100 1703

398 6002

1

(2.76962 − 1)
3
2

11.279 = 4141 s

Three hours later the time since perigee passage is

t = 4141.4 + 3 · 3600 = 14 941 s (4.15 hr)

The corresponding mean anomaly, from Equation 3.31, is

Mh = 398 6002

100 1703
(2.76962 − 1)

3
2 14 941 = 40.690 rad (b)

We will use Algorithm 3.2 with an error tolerance of 10−6 to find the hyperbolic eccen-
tric anomaly F. Referring to Figure 3.17, we see that for Mh = 40.69 and e = 2.7696,
F lies between 3 and 4. Let us arbitrarily choose F0 = 3 as our initial estimate of F.
Executing the algorithm yields the following steps:

F0 = 3

Step 1:

f (F0) = −15.944494

f ′(F0) = 26.883397

ratio = −0.59309818

F1 = 3 − (−0.59309818) = 3.5930982

|ratio| > 10−6, so repeat.

Step 2:

f (F1) = 6.0114484

f ′(F1) = 49.370747

ratio = −0.12176134

F2 = 3.5930982 − (−0.12176134) = 3.4713368

|ratio| > 10−6, so repeat.
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(Example 3.5
continued)

Step 3: f (F2) = 0.35812370

f ′(F2) = 43.605527

ratio = 8.2128052 × 10−3

F3 = 3.4713368 − (8.2128052 × 10−3) = 3.4631240

|ratio| > 10−6, so repeat.

Step 4:

f (F3) = 1.4973128 × 10−3

f ′(F3) = 43.241398

ratio = 3.4626836 × 10−5

F4 = 3.4631240 − (3.4626836 × 10−5) = 3.4630894

|ratio| > 10−6, so repeat.

Step 5:

f (F4) = 2.6470781 × 10−3

f ′(F4) = 43.239869

ratio = 6.1218459 × 10−10

F5 = 3.4630894 − (6.1218459 × 10−10) = 3.4630894

|ratio| < 10−6, so accept F = 3.4631 as the solution.

We substitute this value of F into Equation 3.41b to find the true anomaly,

tan
θ

2
=

√
e + 1

e − 1
tanh

F

2
=

√
2.7696 + 1

2.7696 − 1
tanh

3.4631

2
= 1.3708 ⇒ θ = 107.78◦

With the true anomaly, the orbital equation yields the radial coordinate at the
final time

r = h2

µ

1

1 + e cos θ
= 100 1702

398 600

1

1 + 2.7696 cos 107.78
= 163 180 km

The velocity components are obtained from Equation 2.21,

v⊥ = h

r
= 100 170

163 180
= 0.61386 km/s

and Equation 2.39,

vr = µ

h
e sin θ = 398 600

100 170
2.7696 sin 107.78◦ = 10.494 km/s
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Figure 3.18 Given and computed data for Example 3.5.

Therefore, the speed of the spacecraft is

v =
√

v2
r + v2⊥ =

√
10.4942 + 0.613862 = 10.51 km/s

Note that the hyperbolic excess speed for this orbit is

v∞ = µ

h
e sin θ∞ = 398 600

100 170
· 2.7696 · sin 111.7◦ = 10.277 km/s

The results of this analysis are shown in Figure 3.18.

When determining orbital position as a function of time with the aid of Kepler’s
equation, it is convenient to have position r as a function of eccentric anomaly F.
This is obtained by substituting Equation 3.38b into Equation 2.94,

r = a(e2 − 1)

1 + e cos θ
= a(e2 − 1)

1 + e

(
cosh F − e

1 − e cos F

)

This reduces to

r = a(e cosh F − 1) (3.43)



134 Chapter 3 Orbital position as a function of time

3.7 Universal variables

The equations for elliptical and hyperbolic trajectories are very similar, as can be seen
from Table 3.1. Observe, for example, that the hyperbolic mean anomaly is obtained
from that of the ellipse as follows:

Mh = µ2

h3
(e2 − 1)

3
2 t

= µ2

h3

[
(−1)(1 − e2)

] 3
2 t

= µ2

h3
(−1)

3
2 (1 − e2)

3
2 t

= µ2

h3
(−i)(1 − e2)

3
2 t

= −i

[
µ2

h3
(1 − e2)

3
2 t

]
= −iMe

In fact, the formulas for the hyperbola can all be obtained from those of the ellipse
by replacing the variables in the ellipse equations according to the following scheme,
wherein ‘←’ means ‘replace by’:

a ← −a
b ← ib

Me ← −iMh

E ← iF

(i = √−1)

Note in this regard that sin(iF) = i sinh F and cos(iF) = cosh F. Relations among the
circular and hyperbolic trig functions are found in mathematics handbooks, such as
Beyer (1991).

In the universal variable approach, the semimajor axis of the hyperbola is con-
sidered to have a negative value, so that the energy equation (row 5 of Table 3.1) has
the same form for any type of orbit, including the parabola, for which a = ∞. In this
formulation, the semimajor axis of any orbit is found using (row 3),

a = h2

µ

1

1 − e2
(3.44)

If the position r and velocity v are known at a given point on the path, then the energy
equation (row 5) is convenient for finding the semimajor axis of any orbit,

a = 1

2

r
− v2

µ

(3.45)

Kepler’s equation may also be written in terms of a universal variable, or universal
‘anomaly’ χ , that is valid for all orbits. See, for example, Battin (1999), Bond and
Allman (1993) and Prussing and Conway (1993). If t0 is the time when the universal
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Table 3.1 Comparison of some of the orbital formulas for the ellipse and hyperbola

Equation Ellipse (e < 1) Hyperbola (e > 1)

1. Orbit equation (2.35) r = h2

µ

1

1 + e cos θ
same

2. Conic equation in cartesian
x2

a2
+ y2

b2
= 1

x2

a2
− y2

b2
= 1

coordinates (2.69), (2.99)

3. Semimajor axis (2.61), (2.93) a = h2

µ

1

1 − e2
a = h2

µ

1

e2 − 1

4. Semiminor axis (2.66), (2.96) b = a
√

1 − e2 b = a
√

e2 − 1

5. Energy equation (2.71), (2.101)
v2

2
− µ

r
= − µ

2a

v2

2
− µ

r
= µ

2a

6. Mean anomaly (3.4), (3.31) Me = µ2

h3
(1 − e2)

3
2 t Mh = µ2

h3
(e2 − 1)

3
2 t

7. Kepler’s equation (3.11), (3.37) Me = E − e sin E Mh = e sinh F − F

8. Orbit equation in terms of eccentric r = a(1 − e cos E) r = a(e cosh F − 1)
anomaly (3.22), (3.43)

variable is zero, then the value of χ at time t0 + �t is found by iterative solution of
the universal Kepler’s equation

√
µ�t = r0vr0√

µ
χ2C(αχ2) + (1 − αr0)χ3S(αχ2) + r0χ (3.46)

in which r0 and vr0 are the radius and radial velocity at t = t0, and α is the reciprocal
of the semimajor axis

α = 1

a
(3.47)

α < 0, α = 0 and α > 0 for hyperbolas, parabolas and ellipses, respectively. The units

of χ are km
1
2 (so αχ2 is dimensionless). The functions C(z) and S(z) belong to the

class known as Stumpff functions, and they are defined by the infinite series,

S(z) =
∞∑

k=0

(−1)k zk

(2k + 3)! = 1

6
− z

120
+ z2

5040
− z3

362 880
+ z4

39 916 800

− z5

6 227 020 800
+ · · · (3.48a)

C(z) =
∞∑

k=0

( − 1)k zk

(2k + 2)! = 1

2
− z

24
+ z2

720
− z3

40 320
+ z4

3 628 800

− z5

479 001 600
+ · · · (3.48b)
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Figure 3.19 A plot of the Stumpff functions C(z) and S(z).

C(z) and S(z) are related to the circular and hyperbolic trig functions as follows:

S(z) =




√
z − sin

√
z

(
√

z)3
(z > 0)

sinh
√−z − √−z

(
√−z)3

(z < 0)

1

6
(z = 0)

(z = αχ2) (3.49)

C(z) =




1 − cos
√

z

z
(z > 0)

cosh
√−z − 1

−z
(z < 0)

1

2
(z = 0)

(z = αχ2) (3.50)

Clearly, z < 0, z = 0 and z > 0 for hyperbolas, parabolas and ellipses, respectively. It
should be pointed out that if C(z) and S(z) are computed by the series expansions,
Equations 3.48a and 3.48b, then the forms of C(z) and S(z), depending on the
sign of z, are selected, so to speak, automatically. C(z) and S(z) behave as shown
in Figure 3.19. Both C(z) and S(z) are non-negative functions of z. They increase
without bound as z approaches −∞ and tend towards zero for large positive values
of z. As can be seen from Equation 3.501, for z > 0 C(z) = 0 when cos

√
z = 1, that is,

when z = (2π)2, (4π)2, (6π)2, ….
The price we pay for using the universal variable formulation is having to deal

with the relatively unknown Stumpff functions. However, Equations 3.49 and 3.50
are easy to implement in both computer programs and programmable calculators.
See Appendix D.4 for the implementation of these expressions in MATLAB.

To gain some insight into how Equation 3.46 represents the Kepler equations for
all of the conic sections, let t0 be the time at periapse passage and let us set t0 = 0,
as we have assumed previously. Then �t = t , vr0 = 0 and r0 equals rp, the periapse
radius. In that case Equation 3.46 reduces to

√
µt = (1 − αrp)χ3S(αχ2) + rpχ (t = 0 at periapse passage) (3.51)
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Consider first the parabola. In that case α = 0 and S = S(0) = 1/6, so that Equation
3.51 becomes a cubic polynomial in χ ,

√
µt = 1

6
χ3 + rpχ

Multiply this equation through by (
√

µ/h)3 to obtain

µ2

h3
t = 1

6

(
χ

√
µ

h

)3

+ rpχ

(√
µ

h

)3

Since rp = h2/2µ for a parabola, we can write this as

µ2

h3
t = 1

6

(√
µ

h
χ

)3

+ 1

2

(√
µ

h
χ

)
(3.52)

Upon setting χ = h tan(θ/2)/
√

µ, Equation 3.52 becomes identical to Equation 3.27,
the time versus true anomaly relation for the parabola.

Kepler’s equation for the ellipse can be obtained by multiplying Equation 3.51

through by
(√

µ(1 − e2)/h
)3

:

µ2

h3

(
1 − e2) 3

2 t =
(

χ

√
µ

h

√
1 − e2

)3

(1 − αrp)S(z)

+ rpχ

(√
µ

h

√
1 − e2

)3

(z = αχ2) (3.53)

Recall that for the ellipse, rp = h2/[µ(1 + e)] and α = 1/a = µ(1 − e2)/h2. Using these

two expressions in Equation 3.53, along with S(z) = [√
αχ − sin (

√
αχ)

] /
α

3
2 χ3

(from Equation 3.491), and working through the algebra ultimately leads to

Me = χ√
a

− e sin

(
χ√

a

)
Comparing this with Kepler’s equation for an ellipse (Equation 3.11) reveals that the
relationship between the universal variable χ and the eccentric anomaly E is χ = √

aE.
Similarly, it can be shown for hyperbolic orbits that χ = √−aF. In summary, the
universal anomaly χ is related to the previously encountered anomalies as follows:

χ =




h√
µ

tan
θ

2
parabola

√
aE ellipse (t0 = 0, at periapsis)

√−aF hyperbola

(3.54)

When t0 is the time at a point other than periapsis, so that Equation 3.46 applies, then
Equations 3.54 become

χ =




h√
µ

(
tan

θ

2
− tan

θ0

2

)
parabola

√
a(E − E0) ellipse

√−a(F − F0) hyperbola

(3.55)



138 Chapter 3 Orbital position as a function of time

As before, we can use Newton’s method to solve Equation 3.46 for the universal
anomaly χ , given the time interval �t . To do so, we form the function

f (χ) = r0vr0√
µ

χ2C(z) + (1 − αr0)χ3S(z) + r0χ − √
µ�t (3.56)

and its derivative

df (χ)

dχ
= 2

r0vr0√
µ

χC(z) + r0vr0√
µ

χ2 dC(z)

dz

dz

dχ

+ 3(1 − αr0)χ2S(z) + (1 − r0α)χ3 dS(z)

dz

dz

dχ
+ r0 (3.57)

where it is to be recalled that

z = αχ2 (3.58)

which means of course that
dz

dχ
= 2αχ (3.59)

It turns out that

dS(z)

dz
= 1

2z
[C(z) − 3S(z)]

(3.60)
dC(z)

dz
= 1

2z
[1 − zS(z) − 2C(z)]

Substituting Equations 3.58, 3.59 and 3.60 into Equation 3.57 and simplifying the
result yields

df (χ)

dχ
= r0vr0√

µ
χ[1 − αχ2S(z)] + (1 − αr0)χ2C(z) + r0 (3.61)

With Equations 3.56 and 3.61, Newton’s algorithm (Equation 3.13) for the universal
Kepler equation becomes

χi+1 = χi −
r0vr0√

µ
χ2

i C(zi) + (1 − αr0)χ3
i S(zi) + r0χi − √

µ�t

r0vr0√
µ

χi[1 − αχ2
i S(zi)] + (1 − αr0)χ2

i C(zi) + r0

(zi = αχ2
i )

(3.62)
According to Chobotov (2002), a reasonable estimate for the starting value χ0 is

χ0 = √
µ|α|�t (3.63)

Algorithm
3.3

Solve the universal Kepler’s equation for the universal anomaly χ given �t , r0, vr0

and α. See Appendix D.5 for an implementation of this procedure in MATLAB.

1. Use Equation 3.63 for an initial estimate of χ0.

2. At any given step, having obtained χi from the previous step, calculate

f (χi) = r0vr0√
µ

χ2
i C(zi) + (1 − αr0)χ3

i S(zi) + r0χi − √
µ�t
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and

f ′(χi) = r0vr0√
µ

χi[1 − αχ2
i S(zi)] + (1 − αr0)χ2

i C(zi) + r0

where zi = αχ2
i .

3. Calculate ratioi = f (χi)/f ′(χi).

4. If |ratioi| exceeds the chosen tolerance (e.g., 10−8), then calculate an updated
value of χ ,

χi+1 = χi − ratioi

Return to step 2.

5. If |ratioi| is less than the tolerance, then accept χi as the solution to within the
desired accuracy.

Example
3.6

An earth satellite has an initial true anomaly of θ0 = 30◦, a radius of r0 = 10 000 km,
and a speed of v0 = 10 km/s. Use the universal Kepler’s equation to find the change in
universal anomaly χ after one hour and use that information to determine the true
anomaly θ at that time.

Using the initial conditions, let us first determine the angular momentum and the
eccentricity of the trajectory. From the orbit formula, Equation 2.35, we have

h = √
µr0(1 + e cos θ0) =

√
398 600 · 10 000 · (1 + e cos 30◦)

= 63 135
√

1 + 0.86602e (a)

This, together with the angular momentum formula, Equation 2.21, yields

v⊥0 = h

r0
= 63 135

√
1 + 0.86602e

10 000
= 6.3135

√
1 + 0.86602e

Using the radial velocity relation, Equation 2.39, we find

vr0 = µ

h
e sin θ0 = 398 600

63 135
√

1 + 0.86602e
e sin 30◦ = 3.1567

e√
1 + 0.86602e

Since v2
r0 + v2⊥0 = v2

0, it follows that

(
3.1567

e√
1 + 0.86602e

)2

+
(

6.3135
√

1 + 0.86602e
)2 = 102

which simplifies to become 39.86e2 − 17.563e − 60.14 = 0. The only positive root of
this quadratic equation is

e = 1.4682

Substituting this value of the eccentricity back into (a) yields the angular momentum

h = 95 154 km2/s
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(Example 3.6
continued)

The hyperbolic eccentric anomaly F0 for the initial conditions may now be found
from Equation 3.41a,

tanh
F0

2
=

√
e − 1

e + 1
tan

θ0

2
=

√
1.4682 − 1

1.4682 + 1
tan

30◦

2
= 0.16670

Solving for F0 yields

F0 = 0.23448 rad (b)

The initial radial speed (required in Equation 3.46) is obtained from Equation 2.39,

vr0 = µ

h
e sin θ0 = 398 600

95 154
· 1.4682 · sin 30◦ = 3.0752 km/s (c)

We calculate the semimajor axis of the orbit by means of Equation 3.44,

a = h2

µ

1

1 − e2
= 95 1542

398 600

1

1 − 1.46822
= −19 655 km

The fact that the semimajor axis is negative means the orbit is a hyperbola. Equation
3.47 implies that

α = 1

a
= 1

−19 655
= −5.0878 × 10−5 km−1 (d)

We will use Algorithm 3.3 with an error tolerance of 10−6 to find the universal
anomaly. From Equation 3.63, our initial estimate is

χ0 = √
398 600 · |−5.0878 × 10−6| · 3600 = 115.6

Executing the algorithm yields the following steps:

χ0 = 115.6

Step 1:

f (χ0) = −370 650.01

f ′(χ0) = 26 956.300

ratio = −13.750033

χ1 = 115.6 − (−13.750033) = 129.35003

|ratio| > 10−6, so repeat.

Step 2:

f (χ1) = 25 729.002

f ′(χ1) = 30 776.401

ratio = 0.83599669

χ2 = 129.35003 − 0.83599669 = 128.51404

|ratio| > 10−6, so repeat.
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Step 3:

f (χ2) = 102.83891

f ′(χ2) = 30 530.672

ratio = 3.3683800 × 10−3

χ3 = 128.51404 − 3.3683800 × 10−3 = 128.51067

|ratio| > 10−6, so repeat.

Step 4:

f (χ3) = 1.6614116 × 10−3

f ′(χ3) = 30 529.686

ratio = 5.4419545 × 10−8

χ4 = 128.51067 − 5.4419545 × 10−8 = 128.51067

|ratio| < 10−6

So we accept

χ = 128.51 km
1
2

as the solution after four iterations. Substituting this value of χ together with the
semimajor axis [Equation (d)] into Equation 3.553 yields

F − F0 = χ√−a
= 128.51√−(−19 655)

= 0.91664

It follows from (b) that the hyperbolic eccentric anomaly after one hour is

F = 0.23448 + 0.91664 = 1.1511

Finally, we calculate the corresponding true anomaly using Equation 3.41b,

tan
θ

2
=

√
e + 1

e − 1
tanh

F

2
=

√
1.4682 + 1

1.4682 − 1
tanh

1.1511

2
= 1.1926

which means that after one hour

θ = 100.04◦

Recall from Section 2.11 that the position r and velocity v on a trajectory at any time
t can be found in terms of the position r0 and velocity v0 at time t0 by means of the
Lagrange f and g coefficients and their first derivatives,

r = f r0 + gv0 (3.64)

v = ḟ r0 + ġv0 (3.65)
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Equations 2.148 give f , g , ḟ and ġ explicitly in terms of the change in true
anomaly �θ over the time interval �t = t − t0. The Lagrange coefficients can also
be derived in terms of changes in the eccentric anomaly �E for elliptical orbits,
�F for hyperbolas or � tan(θ/2) for parabolas. However, if we take advantage
of the universal variable formulation, we can cover all of these cases with the
same set of Lagrange coefficients. In terms of the universal anomaly χ and the
Stumpff functions C(z) and S(z), the Lagrange coefficients are (Bond and Allman,
1996)

f = 1 − χ2

r0
C(αχ2) (3.66a)

g = �t − 1√
µ

χ3S(αχ2) (3.66b)

ḟ =
√

µ

rr0

[
αχ3S(αχ2) − χ

]
(3.66c)

ġ = 1 − χ2

r
C(αχ2) (3.66d)

The implementation of these four functions in MATLAB is found in Appendix D.6.

Algorithm
3.4

Given r0 and v0, find r and v at a time �t later. See Appendix D.7 for an
implementation of this procedure in MATLAB.

1. Use the initial conditions to find:

(a) The magnitude of r0 and v0,

r0 = √
r0 · r0 v0 = √

v0 · v0

(b) The radial component velocity of vr0 by projecting v0 onto the direction
of r0,

vr0 = r0 · v0

r0

(c) The reciprocal α of the semimajor axis, using Equation 3.45

α = 2

r0
− v2

0

µ

The sign of α determines whether the trajectory is an ellipse (α > 0), parabola
(α = 0) or hyperbola (α < 0).

2. With r0, vr0, α and �t , use Algorithm 3.3 to find the universal anomaly χ .

3. Substitute α, r0, �t and χ into Equations 3.66a and 3.66b to obtain f , g .

4. Use Equation 3.64 to compute r and, from that, its magnitude r.

5. Substitute α, r0, r and χ into Equations 3.66c and 3.66d to obtain ḟ and ġ .

6. Use Equation 3.65 to compute v.
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Example
3.7

An earth satellite moves in the xy plane of an inertial frame with origin at the
earth’s center. Relative to that frame, the position and velocity of the satellite at time
t0 are

r0 = 7000.0î − 12 124ĵ (km) v0 = 2.6679î + 4.6210ĵ (km/s) (a)

Compute the position and velocity vectors of the satellite 60 minutes later using
Algorithm 3.4.

Step 1:

r0 =
√

7000.02 + (−12 124)2 = 14 000 km

v0 =
√

2.66792 + 4.62102 = 5.3359 km/s

vr0 = 7000.0 · 2.6679 + (−12 124) · 4.6210

14 000
= −2.6679 km/s

α = 2

14 000
− 5.33592

398 600
= 7.1429 × 10−5 km−1

The trajectory is an ellipse, because α is positive.

Step 2:

Using the results of Step 1, Algorithm 3.3 yields

χ = 253.53 km
1
2

which means

z = αχ2 = 7.1429 × 10−5 · 253.532 = 4.5911

Step 3:

Substituting the above values of χ and z into Equations 3.66a and 3.66b we
find

f = 1 − χ2

r0
C(αχ2) = 1 − 253.532

14 000

0.3357︷ ︸︸ ︷
C(4.5911) = −0.54123

g = �t − 1√
µ

χ3S(αχ2) = 3600 − 253.532

√
398 600

0.13233︷ ︸︸ ︷
S(4.5911) = 184.35 s−1

Step 4:

r = f r0 + gv0

= (−0.54123)(7000.0î − 12.124ĵ) + 184.35(2.6679î + 4.6210ĵ)

= −3296.8î + 7413.9ĵ (km)



144 Chapter 3 Orbital position as a function of time

(Example 3.7
continued)

Therefore, the magnitude of r is

r =
√

(−3296.8)2 + 7413.92 = 8113.9 km

Step 5:

ḟ =
√

µ

rr0

[
αχ3S(αχ2) − χ

]

=
√

398 600

8113.9 · 14 000


(7.1429 × 105) · 253.532 ·

0.13233︷ ︸︸ ︷
S(4.5911) − 253.53




= −0.00055298 s−1

ġ = 1 − χ2

r
C(αχ2) = 1 − 253.532

8113.9

0.3357︷ ︸︸ ︷
C(4.5911) = −1.6593

Step 6:

v = ḟ r0 + ġv0

= (−0.00055298)(7000.0î − 12.124ĵ) + (−1.6593)v0(2.6679î + 4.6210ĵ)

= −8.2977î − 0.96309ĵ (km/s)

The initial and final position and velocity vectors, as well as the trajectory, are
accurately illustrated in Figure 3.20.

Perigee

    ̂
ix

ĵ

y

r

t � t0 � 3600 s

t � t0
r0

O

v

v0

Figure 3.20 Initial and final points on a geocentric trajectory.
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Problems

3.1 Use Newton’s method to find, to eight significant figures, the positive roots of the
equation 10esin x = x2 − 5x + 4. In each case, starting with your initial guess, list each
successive approximation until subsequent iterations produce changes only beyond eight
significant figures. Recall that successive estimates of a root of the equation f (x) = 0 are
obtained from the formula xi+1 = xi − f (xi)/f ′(xi).

3.2 Use Newton’s method to find, to eight significant figures, the first four non-negative
roots of the equation tan (x) = tanh (x). Starting with your initial guess, list each suc-
cessive approximation until subsequent iterations produce changes only beyond eight
significant figures.

3.3 A satellite is in earth orbit for which perigee altitude is 200 km and apogee altitude is
600 km. Find the time interval during which the satellite remains above an altitude of
400 km.
{Ans.: 47.15 min}

3.4 An earth-orbiting satellite has a perigee radius of 7000 km and an apogee radius of
10 000 km.
(a) What true anomaly �θ is swept out between t = 0.5 hr and t = 1.5 hr after perigee

passage?
(b) What area is swept out by the position vector during that time interval?
{Ans.: (a) 128.7◦; (b) 1.03 × 108 km2}

3.5 An earth-orbiting satellite has a period of 15.743 hours and a perigee radius of 12 756 km.
At time t = 10 hours after perigee passage, determine
(a) the radius;
(b) the speed;
(c) the radial component of the velocity.
{Ans.: (a) 48 290 km; (b) 2.00 km/s; (c) −0.7210 km/s}

3.6 In terms of the eccentricity e and the period T , calculate
(a) the time required to fly from D to B through perigee;
(b) the time required to fly from B to D through apogee.
{Ans.: (a) tDPB = (1/2 − e/π)T ; (b) tBAD = (1/2 + e/π)T}

PA

B

D

F

Figure P.3.6

3.7 If the eccentricity of the elliptical orbit is 0.3, calculate, in terms of the period T , the
time required to fly from P to B.
{Ans.: 0.157T}
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PA

B

90�

F

Figure P.3.7

3.8 A satellite in earth orbit has perigee and apogee radii of rp = 7000 km and ra = 14 000 km,
respectively. Find its true anomaly 30 minutes after passing true anomaly of 60◦.
{Ans.: 127◦}

3.9 Show that the solution to a cos θ + b sin θ = c, where a, b and c are given, is

θ = φ ± cos−1
( c

a
cos φ

)
where tan φ = b/a.

3.10 Calculate the time required to fly from P to B, in terms of the eccentricity e and the
period T . B lies on the minor axis.
{Ans.: (0.25 − 0.1592e)T}

PA

B

D

F 

Figure P.3.10

3.11 If the eccentricity of the elliptical orbit is 0.5, calculate, in terms of the period T , the
time required to fly from P to B.
{Ans.: 0.170T}

PA

B

rp

2rp

F

Figure P.3.11
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3.12 Verify the results of part (b) of Example 3.3.

3.13 Calculate the time required for a spacecraft launched into a parabolic trajectory at a
perigee altitude of 500 km to leave the earth’s sphere of influence (see Table A.2).
{Ans.: 7 d 18 hr 34 min}

3.14 A spacecraft on a parabolic trajectory around the earth has a perigee radius of 7500 km.
(a) How long does it take to fly from θ = −90◦ to θ = +90◦?
(b) How far is the spacecraft from the center of the earth 24 hours after passing through

perigee?
{Ans.: (a) 1.078 hr; (b) 230 200 km}

3.15 A spacecraft on a hyperbolic trajectory around the earth has a perigee radius of 7500 km
and a perigee speed of 1.1vesc.
(a) How long does it take to fly from θ = −90◦ to θ = +90◦?
(b) How far is the spacecraft from the center of the earth 24 hours after passing through

perigee?
{Ans.: (a) 1.14 hr; (b) 456 000 km}

3.16 A trajectory has a perigee velocity of 11.5 km/s and a perigee altitude of 300 km. If at
6 AM the satellite is traveling towards the earth with a speed of 10 km/s, how far will it
be from the earth’s surface at 11 AM the same day?
{Ans.: 88 390 km}

3.17 An incoming object is sighted at an altitude of 37 000 km with a speed of 8 km/s and a
flight path angle of −65◦.
(a) Will it impact the earth or fly by?
(b) What is the time to impact or closest passage?
{Ans.: (b) 1 hr 24 min}

3.18 At a given instant the radial position of an earth-orbiting satellite is 7200 km, its radial
speed is 1 km/s. If the semimajor axis is 10 000 km, use Algorithm 3.3 to find the universal
anomaly 60 minutes later. Check your result using Equation 3.55.

3.19 At a given instant a space object has the following position and velocity vectors relative
to an earth-centered inertial frame of reference:

r0 = 20 000î − 105 000ĵ − 19 000k̂ (km)

v0 = 0.9000î − 3.4000ĵ − 1.5000k̂ (km/s)

Find r and v two hours later.
{Ans.: r = 26 338î − 128 750ĵ − 29 656k̂ (km);

v = 0.862800î − 3.2116ĵ − 1.4613k̂ (km/s)}
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4.1 Introduction

The discussion of orbital mechanics up to now has been confined to two dimen-
sions, i.e., to the plane of the orbits themselves. This chapter explores the means

of describing orbits in three-dimensional space, which, of course, is the setting for real
missions and orbital maneuvers. Our focus will be on the orbits of earth satellites, but
the applications are to any two-body trajectories, including interplanetary missions
to be discussed in Chapter 8.

We begin with a discussion of the ancient concept of the celestial sphere and the
use of right ascension and declination to define the location of stars, planets and other
celestial objects on the sphere. This leads to the establishment of the inertial geocentric
equatorial frame of reference and the concept of state vector. The six components of
this vector give the instantaneous position and velocity of an object relative to the

149
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inertial frame and define the characteristics of the orbit. Following that discussion
is a presentation of the six classical orbital elements, which also uniquely define the
shape and orientation of an orbit and the location of a body on it. We then show how
to transform the state vector into orbital elements and vice versa, taking advantage of
the perifocal frame introduced in Chapter 2.

The chapter concludes with a summary of two major perturbations of earth
orbits due to the earth’s non-spherical shape. These perturbations are exploited to
place satellites in sun-synchronous and molniya orbits.

4.2 Geocentric right ascension–declination
frame

The coordinate system used to describe earth orbits in three dimensions is defined in
terms of earth’s equatorial plane, the ecliptic plane, and the earth’s axis of rotation.
The ecliptic is the plane of the earth’s orbit around the sun, as illustrated in Figure 4.1.
The earth’s axis of rotation, which passes through the North and South Poles, is not
perpendicular to the ecliptic. It is tilted away by an angle known as the obliquity of
the ecliptic, ε. For the earth ε is approximately 23.4◦. Therefore, the earth’s equatorial
plane and the ecliptic intersect along a line, which is known as the vernal equinox line.
On the calendar, ‘vernal equinox’ is the first day of spring in the northern hemisphere,
when the noontime sun crosses the equator from south to north. The position of the
sun at that instant defines the location of a point in the sky called the vernal equinox,
for which the symbol γ is used. On the day of the vernal equinox, the number of hours
of daylight and darkness is equal; hence, the word equinox. The other equinox occurs

N

First day of summer
≈ 21 June

First day of winter
≈ 21 December

Winter solstice
N

Summer solstice

γ

First day of spring
≈ 21 March

First day of autumn
≈ 21 September

Sun

Vernal equinox
N

Autumnal equinox
N

Vernal equinox
line

Figure 4.1 The earth’s orbit around the sun, viewed from above the ecliptic plane, showing the change of
seasons in the northern hemisphere.
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precisely one-half year later, when the sun crosses back over the equator from north
to south, thereby defining the first day of autumn. The vernal equinox lies today in
the constellation Pisces, which is visible in the night sky during the fall. The direction
of the vernal equinox line is from the earth towards γ , as shown in Figure 4.1.

For many practical purposes, the vernal equinox line may be considered fixed in
space. However, it actually rotates slowly because the earth’s tilted spin axis precesses
westward around the normal to the ecliptic at the rate of about 1.4◦ per century.
This slow precession is due primarily to the action of the sun and the moon on the
non-spherical distribution of mass within the earth. Due to the centrifugal force of
rotation about its own axis, the earth bulges very slightly outward at its equator. This
effect is shown highly exaggerated in Figure 4.2. One of the bulging sides is closer
to the sun than the other, so the force of the sun’s gravity f1 on its mass is slightly
larger than the force f2 on the opposite side, farthest from the sun. The forces f1 and
f2, along with the dominant force F on the spherical mass, comprise the total force
of the sun on the earth, holding in its solar orbit. Taken together, f1 and f2 produce
a net clockwise moment (a vector into the page) about the center of the earth. That
moment would rotate the earth’s equator into alignment with the ecliptic if it were
not for the fact that the earth has an angular momentum directed along its south-
to-north polar axis due to its spin around that axis at an angular velocity ωE of 360◦
per day. The effect of the moment is to rotate the angular momentum vector in the
direction of the moment (into the page). The result is that the spin axis is forced to
precess in a counterclockwise direction around the normal to the ecliptic, sweeping
out a cone as illustrated in the figure. The moon exerts a torque on the earth for the
same reason, and the combined effect of the sun and the moon is a precession of the
spin axis, and hence γ , with a period of about 26 000 years. The moon’s action also
superimposes a small nutation on the precession. This causes the obliquity ε to vary
with a maximum amplitude of 0.0025◦ over a period of 18.6 years.

Four thousand years ago, when the first recorded astronomical observations were
being made, γ was located in the constellation Aries, the ram. The Greek letter γ is a
descendent of the ancient Babylonian symbol resembling the head of a ram.

N

ε

ωE

S

To the sun

Ecliptic

F

C
    
f1

    f2

ε

Figure 4.2 Secondary (perturbing) gravitational forces on the earth.
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Figure 4.3 The celestial sphere, with grid lines of right ascension and declination.

To the human eye, objects in the night sky appear as points on a celestial sphere
surrounding the earth, as illustrated in Figure 4.3. The north and south poles of
this fixed sphere correspond to those of the earth rotating within it. Coordinates of
latitude and longitude are used to locate points on the celestial sphere in much the
same way as on the surface of the earth. The projection of the earth’s equatorial plane
outward onto the celestial sphere defines the celestial equator. The vernal equinox
γ , which lies on the celestial equator, is the origin for measurement of longitude,
which in astronomical parlance is called right ascension. Right ascension (RA or
α) is measured along the celestial equator in degrees east from the vernal equinox.
(Astronomers measure right ascension in hours instead of degrees, where 24 hours
equals 360◦.) Latitude on the celestial sphere is called declination. Declination (Dec
or δ) is measured along a meridian in degrees, positive to the north of the equator and
negative to the south. Figure 4.4 is a sky chart showing how the heavenly grid appears
from a given point on the earth. Notice that the sun is located at the intersection of
the equatorial and ecliptic planes, so this must be the first day of spring.

Stars are so far away from the earth that their positions relative to each other
appear stationary on the celestial sphere. Planets, comets, satellites, etc., move upon
the fixed backdrop of the stars. The coordinates of celestial bodies as a function
of time is called an ephemeris, for example, the Astronomical Almanac (US Naval
Observatory, 2004). Table 4.1 is an abbreviated ephemeris for the moon and for
Venus. An ephemeris depends on the location of the vernal equinox at a given time
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Figure 4.4 A view of the sky above the eastern horizon from 0◦ longitude on the equator at 9 am local
time, 20 March, 2004. (Precession epoch  2000.)

Table 4.1 Venus and moon ephemeris for 0 hours universal time (Precession epoch:  2000)

Venus Moon

Date RA Dec RA Dec

1 Jan 2004 21 hr 05.0 min −18◦36′ 1 hr 44.9 min +8◦47′
1 Feb 2004 23 hr 28.0 min −04◦30′ 4 hr 37.0 min +24◦11′
1 Mar 2004 01 hr 30.0 min +10◦26′ 6 hr 04.0 min +08◦32′
1 Apr 2004 03 hr 37.6 min +22◦51′ 9 hr 18.7 min +21◦08′
1 May 2004 05 hr 20.3 min +27◦44′ 11 hr 28.8 min +07◦53′
1 Jun 2004 05 hr 25.9 min +24◦43′ 14 hr 31.3 min −14◦48′
1 Jul 2004 04 hr 34.5 min +17◦48′ 17 hr 09.0 min −26◦08′
1 Aug 2004 05 hr 37.4 min +19◦04′ 21 hr 05.9 min −21◦49′
1 Sep 2004 07 hr 40.9 min +19◦16′ 00 hr 17.0 min −00◦56′
1 Oct 2004 09 hr 56.5 min +12◦42′ 02 hr 20.9 min +14◦35′
1 Nov 2004 12 hr 15.8 min +00◦01′ 05 hr 26.7 min +27◦18′
1 Dec 2004 14 hr 34.3 min −13◦21′ 07 hr 50.3 min +26◦14′
1 Jan 2005 17 hr 12.9 min −22◦15′ 10 hr 49.4 min +11◦39′

or epoch, for we know that even the positions of the stars relative to the equinox
change slowly with time. For example, Table 4.2 shows the celestial coordinates of
the star Regulus at five epochs since  1700. Currently, the position of the vernal
equinox in the year 2000 is used to define the standard grid of the celestial sphere.
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Table 4.2 Variation of the coordinates of the star Regulus due to precession of the equinox

Precession epoch RA Dec

 1700 9 hr 52.2 min (148.05◦) +13◦25′
 1800 9 hr 57.6 min (149.40◦) +12◦56′
 1900 10 hr 3.0 min (150.75◦) +12◦27′
 1950 10 hr 5.7 min (151.42◦) +12◦13′
 2000 10 hr 8.4 min (152.10◦) +11◦58′

In 2025, the position will be updated to that of the year 2050; in 2075 to that of
the year 2100; and so on at 50 year intervals. Since observations are made relative
to the actual orientation of the earth, these measurements must be transformed into
the standardized celestial frame of reference. As Table 4.2 suggests, the adjustments
will be small if the current epoch is within 25 years of the standard precession epoch.

4.3 State vector and the geocentric
equatorial frame

At any given time, the state vector of a satellite comprises its velocity v and acceleration
a. Orbital mechanics is concerned with specifying or predicting state vectors over
intervals of time. From Chapter 2, we know that the equation governing the state
vector of a satellite traveling around the earth is, under the familiar assumptions,

r̈ = − µ

r3
r (4.1)

r is the position vector of the satellite relative to the center of the earth. The com-
ponents of r and, especially, those of its time derivatives ṙ = v and r̈ = a, must be
measured in a non-rotating frame attached to the earth. A commonly used non-
rotating right-handed cartesian coordinate system is the geocentric equatorial frame
shown in Figure 4.5. The X axis points in the vernal equinox direction. The XY plane
is the earth’s equatorial plane, and the Z axis coincides with the earth’s axis of rotation
and points northward. The unit vectors Î, Ĵ and K̂ form a right-handed triad. The
non-rotating geocentric equatorial frame serves as an inertial frame for the two-body
earth satellite problem, as embodied in Equation 4.1. It is not truly an inertial frame,
however, since the center of the earth is always accelerating towards a third body, the
sun (to say nothing of the moon), a fact which we ignore in the two-body formulation.

In the geocentric equatorial frame the state vector is given in component form by

r = X Î + Y Ĵ + ZK̂ (4.2)

v = vX Î + vY Ĵ + vZ K̂ (4.3)

If r is the magnitude of the position vector, then

r = rûr (4.4)
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Figure 4.5 Geocentric equatorial frame.

From Figure 4.5 we see that the components of ûr (the direction cosines of r) are
found in terms of the right ascension α and declination δ as follows,

ûr = cos δ cos αÎ + cos δ sin αĴ + sin δK̂ (4.5)

Therefore, given the state vector, we can then compute the right ascension and decli-
nation. However, the right ascension and declination alone do not furnish r. For that
we need the distance r to obtain r from Equation 4.4.

Example
4.1

If the position vector of the International Space Station is

r = −5368Î − 1784Ĵ + 3691K̂ (km)

what are its right ascension and declination?

The magnitude of r is

r =
√

(−5368)2 + (−1784)2 + 36912 = 6754 km

Hence,

ûr = r

r
= −0.7947Î − 0.2642Ĵ + 0.5464K̂ (a)

From this and Equation 4.5 we see that sin δ = 0.5464 which means

δ = sin−1 0.5464 = 33.12◦

There is no quadrant ambiguity since, by definition, the declination lies between −90◦
and +90◦, which is precisely the range of the principal values of the arcsin function.
It also follows that cos δ cannot be negative.
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(Example 4.1
continued)

From Equation 4.5 and Equation (a) just above we have

cos δ cos α = −0.7947 (b)

cos δ sin α = −0.2642 (c)

Therefore

cos α = −0.7947

cos 33.12◦ = −0.9489

which implies

α = cos−1 (−0.9489) = 161.6◦ (second quadrant) or 198.4◦ (third quadrant)

From (c) we observe that sin α is negative, which means α lies in the third quadrant,

α = 198.4◦

If we are provided with the state vector r0, v0 at a given instant, then we can determine
the state vector at any other time in terms of the initial vector by means of the
expressions

r = f r0 + gv0

v = ḟ r0 + ġv0

(4.6)

where the Lagrange coefficients f and g and their time derivatives are given in Equa-
tion 3.66. Specifying the total of six components of r0 and v0 therefore completely
determines the size, shape and orientation of the orbit.

Example
4.2

At time t0 the state vector of an earth satellite is

r0 = 1600Î + 5310Ĵ + 3800K̂ (km) (a)

v0 = −7.350Î + 0.4600Ĵ + 2.470K̂ (km/s) (b)

Determine the position and velocity 3200 seconds later and plot the orbit in three
dimensions.

We will use the universal variable formulation and Algorithm 3.4, which was illus-
trated in detail in Example 3.7. Therefore, only the results of each step are presented
here.

Step 1:

α = 1.4613 × 10−4 km−1. Since this is positive, the orbit is an ellipse.

Step 2:

χ = 294.42 km
1
2 .

Step 3:

f = −0.94843 and g = −354.89 s−1.
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Step 4:

r = 1090.9Î − 5199.4Ĵ − 4480.6K̂(km), r = 6949.8 km.

Step 5:

ḟ = 0.00045324 s−1, ġ = −0.88479.

Step 6:

v = 7.2284Î + 1.9997Ĵ − 0.46311K̂ (km/s)

To plot the orbit, we observe that one complete revolution means a change in the
eccentric anomaly E of 2π radians. According to Equation 3.542, the corresponding
change in the universal anomaly is

χ = √
aE =

√
1

α
E =

√
1

0.00014613
· 2π = 519.77 km

1
2

Letting χ vary from 0 to 519.77 in small increments, we employ the Lagrange
coefficient formulation (Equation 3.64 plus 3.66a and 3.66b) to compute

r =
[

1 − χ2

r0
C(αχ2)

]
r0 +

[
�t − 1√

µ
χ3S(αχ2)

]
v0

where �t for a given value of χ is given by Equation 3.45. Using a computer to plot
the points obtained in this fashion yields Figure 4.6, which also shows the state vectors
at t0 and t0 + 3200 s.

X

Y

Z

r0

v0

Equatorial plane

v

t � t0

t � t0�3200 s

Descending
node

Ascending
node

r

Figure 4.6 The orbit corresponding to the initial conditions given in Equations (a) and (b) of Example 4.2.
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The previous example illustrates the fact that the six quantities or orbital elements
comprising the state vector r and v completely determine the orbit. Other elements
may be chosen. The classical orbital elements are introduced and related to the state
vector in the next section.

4.4 Orbital elements and the state vector

To define an orbit in the plane requires two parameters: eccentricity and angular
momentum. Other parameters, such as the semimajor axis, the specific energy, and
(for an ellipse) the period, are obtained from these two. To locate a point on the orbit
requires a third parameter, the true anomaly, which leads us to the time since perigee.
Describing the orientation of an orbit in three dimensions requires three additional
parameters, called the Euler angles, which are illustrated in Figure 4.7.

First, we locate the intersection of the orbital plane with the equatorial (XY )
plane. That line is called the node line. The point on the node line where the orbit
passes above the equatorial plane from below it is called the ascending node. The
node line vector N extends outward from the origin through the ascending node. At
the other end of the node line, where the orbit dives below the equatorial plane, is the
descending node. The angle between the positive X axis and the node line is the first
Euler angle �, the right ascension of the ascending node. Recall from Section 4.2 that
right ascension is a positive number lying between 0◦ and 360◦.

The dihedral angle between the orbital plane and the equatorial plane is the
inclination i, measured according to the right-hand rule, that is, counterclockwise
around the node line vector from the equator to the orbit. The inclination is also the
angle between the positive Z axis and the normal to the plane of the orbit. The two

Y

X

i

i

�

�
Perigee

Z
Earth�s north polar axis

Satellite

v

N

h

e

Ascending node

ˆ

ˆ

I

K̂

r

�

Earth�s equatorial plane

J

Node line

Ω

Figure 4.7 Geocentric equatorial frame and the orbital elements.
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equivalent means of measuring i are indicated in Figure 4.7. Recall from Chapter 2
that the angular momentum vector h is normal to the plane of the orbit. Therefore,
the inclination i is the angle between the positive Z axis and h. The inclination is a
positive number between 0◦ and 180◦.

It remains to locate the perigee of the orbit. Recall that perigee lies at the inter-
section of the eccentricity vector e with the orbital path. The third Euler angle ω, the
argument of perigee, is the angle between the node line vector N and the eccentricity
vector e, measured in the plane of the orbit. The argument of perigee is a positive
number between 0◦ and 360◦.

In summary, the six orbital elements are

h specific angular momentum

i inclination

� right ascension (RA) of the ascending node

e eccentricity

ω argument of perigee

θ true anomaly

The angular momentum h and true anomaly θ are frequently replaced by the
semimajor axis a and the mean anomaly M , respectively.

Given the position r and velocity v of a satellite in the geocentric equatorial frame,
how do we obtain the orbital elements? The step-by-step procedure is outlined in
Algorithm 4.1. Note that each step incorporates results obtained in the previous steps.

Algorithm
4.1

Obtain orbital elements from the state vector. A MATLAB version of this procedure
appears in Appendix D.8. Applying this algorithm to orbits around other planets or
the sun amounts to defining the frame of reference and substituting the appropriate
gravitational parameter µ.

1. Calculate the distance,

r = √
r · r =

√
X2 + Y 2 + Z2

2. Calculate the speed,

v = √
v · v =

√
v2

X + v2
Y + v2

Z

3. Calculate the radial velocity,

vr = r · v/r = (XvX + YvY + ZvZ )/r

Note that if vr > 0, the satellite is flying away from perigee. If vr < 0, it is flying
towards perigee.

4. Calculate the specific angular momentum,

h = r × v =
∣∣∣∣∣∣

Î Ĵ K̂
X Y Z
vX vY vZ

∣∣∣∣∣∣
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(Algorithm 4.1
continued)

5. Calculate the magnitude of the specific angular momentum,

h = √
h · h

the first orbital element.

6. Calculate the inclination,

i = cos−1
(

hZ

h

)
(4.7)

This is the second orbital element. Recall that i must lie between 0◦ and 180◦, so
there is no quadrant ambiguity. If 90◦ < i ≤ 180◦, the orbit is retrograde.

7. Calculate

N = K̂ × h =
∣∣∣∣∣∣

Î Ĵ K̂
0 0 1

hX hY hZ

∣∣∣∣∣∣ (4.8)

This vector defines the node line.

8. Calculate the magnitude of N,

N = √
N · N

9. Calculate the RA of the ascending node,

� = cos−1 (NX/N)

the third orbital element. If (NX/N) > 0, then � lies in either the first or fourth
quadrant. If (NX/N) < 0, then � lies in either the second or third quadrant.
To place � in the proper quadrant, observe that the ascending node lies on the
positive side of the vertical XZ plane (0 ≤ � < 180◦) if NY > 0. On the other hand,
the ascending node lies on the negative side of the XZ plane (180◦ ≤ � < 360◦)
if NY < 0. Therefore, NY > 0 implies that 0 < � < 180◦, whereas NY < 0 implies
that 180◦ < � < 360◦. In summary,

� =




cos−1

(
NX

N

)
(NY ≥ 0)

360◦ − cos−1

(
NX

N

)
(NY < 0)

(4.9)

10. Calculate the eccentricity vector. Starting with Equation 2.30,

e = 1

µ

[
v × h − µ

r

r

]
= 1

µ

[
v × (r × v) − µ

r

r

]
= 1

µ




bac − cab rule︷ ︸︸ ︷
rv2 − v(r · v) −µ

r

r




so that

e = 1

µ

[(
v2 − µ

r

)
r − rvrv

]
(4.10)

11. Calculate the eccentricity,

e = √
e · e



4.4 Orbital elements and the state vector 161

the fourth orbital element. Substituting Equation 4.10 leads to a form depending
only on the scalars obtained thus far,

e = 1

µ

√
(2µ − rv2)rv2

r + (µ − rv2)2 (4.11)

12. Calculate the argument of perigee,

ω = cos−1 (N · e/Ne)

the fifth orbital element. If N · e > 0, then ω lies in either the first or fourth
quadrant. If N · e < 0, then ω lies in either the second or third quadrant. To
place ω in the proper quadrant, observe that perigee lies above the equatorial
plane (0 ≤ ω < 180◦) if e points up (in the positive Z direction), and perigee lies
below the plane (180◦ ≤ ω < 360◦) if e points down. Therefore, eZ ≥ 0 implies
that 0 < ω < 180◦, whereas eZ < 0 implies that 180◦ < ω < 360◦. To summarize,

ω =




cos−1

(
N · e

Ne

)
(eZ ≥ 0)

360◦ − cos−1

(
N · e

Ne

)
(eZ < 0)

(4.12)

13. Calculate the true anomaly,

θ = cos−1
(e · r

er

)
the sixth and final orbital element. If e · r > 0, then θ lies in the first or fourth
quadrant. If e · r < 0, then θ lies in the second or third quadrant. To place θ in the
proper quadrant, note that if the satellite is flying away from perigee (r · v ≥ 0),
then 0 ≤ θ < 180◦, whereas if the satellite is flying towards perigee (r · v < 0),
then 180◦ ≤ θ < 360◦. Therefore, using the results of step 3 above

θ =

 cos−1

(e · r

er

)
(vr ≥ 0)

360◦ − cos−1
(e · r

er

)
(vr < 0)

(4.13a)

Substituting Equation 4.10 yields an alternative form of this expression,

θ =




cos−1

[
1

e

(
h2

µr
− 1

)]
(vr ≥ 0)

360◦ − cos−1

[
1

e

(
h2

µr
− 1

)]
(vr < 0)

(4.13b)

The procedure described above for calculating the orbital elements is not unique.

Example
4.3

Given the state vector,

r = −6045Î − 3490Ĵ + 2500K̂ (km)

v = −3.457Î + 6.618Ĵ + 2.533K̂ (km/s)

find the orbital elements h, i, �, e, ω and θ using Algorithm 4.1.
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(Example 4.3
continued)

Step 1:

r = √
r · r =

√
(−6045)2 + (−3490)2 + 25002 = 7414 km (a)

Step 2:

v = √
v · v =

√
(−3.457)2 + 6.6182 + 2.5332 = 7.884 km/s (b)

Step 3:

vr = v · r

r
= (−3.457) · (−6045) + 6.618 · (−3490) + 2.533 · 2500

7414

= 0.5575 km/s (c)

Since vr > 0, the satellite is flying away from perigee.

Step 4:

h = r × v =
∣∣∣∣∣∣

Î Ĵ K̂
−6045 −3490 2500
−3.457 6.618 2.533

∣∣∣∣∣∣ = −25 380Î + 6670Ĵ − 52 070K̂ (km2/s)

(d)
Step 5:

h = √
h · h =

√
(−25 380)2 + 66702 + (−52 070)2 = 58 310 km2/s (e)

Step 6:

i = cos−1 hZ

h
= cos−1

(−52 070

58 310

)
= 153.2◦ (f)

Since i is greater than 90◦, this is a retrograde orbit.

Step 7:

N = K̂ × h =
∣∣∣∣∣∣

Î Ĵ K̂
0 0 1

−25 380 6670 −52 070

∣∣∣∣∣∣ = −6670Î − 25 380Ĵ (g)

Step 8:

N = √
N · N =

√
(−6670)2 + (−25 380)2 = 26 250 (h)

Using (g) and (h), we compute the right ascension of the node.

Step 9:

� = cos−1 NX

N
= cos−1

(−6670

26 250

)
= 104.7◦ or 255.3◦

From (g) we know that NY < 0; therefore, � must lie in the third quadrant,

� = 255.3◦ (i)
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Step 10:

e = 1

µ

[(
v2 − µ

r

)
r − (r · v)v

]
= 1

398 600

[(
7.8842 − 398 600

7414

)
(−6045Î − 3490Ĵ + 2500K̂)

−4133(−3.457Î + 6.618Ĵ + 2.533K̂)

]
= −0.09160Î − 0.1422Ĵ + 0.02644K̂ (j)

Step 11:

e = √
e · e =

√
(−0.09160)2 + (−0.1422)2 + (0.02644)2 = 0.1712 (k)

Clearly, the orbit is an ellipse.

Step 12:

ω = cos−1 N · e

Ne

= cos−1
[

(−6670)(−0.09160) + (−25 380)(−0.1422) + (0)(0.02644)

(26 250)(0.1712)

]
= 20.07◦ or 339.9◦

ω lies in the first quadrant if eZ > 0, which is true in this case, as we see from (j).
Therefore,

ω = 20.07◦ (l)

Step 13:

θ = cos−1
(e · r

er

)
= cos−1

[
(−0.09160)(−6045) + (−0.1422) · (−3490) + (0.02644)(2500)

(0.1712)(7414)

]
= 28.45◦ or 331.6◦

From (c) we know that vr > 0, which means 0 ≤ θ < 180◦. Therefore,

θ = 28.45◦

Having found the orbital elements, we can go on to compute other parameters. The
perigee and apogee radii are

rp = h2

µ

1

1 + e cos(0)
= 58 3102

398 600

1

1 + 0.1712
= 7284 km

ra = h2

µ

1

1 + e cos(180◦)
= 58 3102

398 600

1

1 − 0.1712
= 10 290 km
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(Example 4.3
continued)

From these it follows that the semimajor axis of the ellipse is

a = 1

2
(rp + ra) = 8788 km

This leads to the period,

T = 2π√
µ

a
3
2 = 2.278 hr

The orbit is illustrated in Figure 4.8.

X

Y

Z

Perigee

Apogee

r

v

Ascending
node

Descending
node

Node
line

Ω � 255°
Equatorial

plane

u � 28.45°

(Retrograde orbit)

Initial
state

Apse
line

v � 20.07°

Figure 4.8 A plot of the orbit identified in Example 4.3.

We have seen how to obtain the orbital elements from the state vector. To
arrive at the state vector, given the orbital elements, requires performing coordinate
transformations, which are discussed in the next section.

4.5 Coordinate transformation

Figure 4.9 shows two cartesian coordinate systems: the unprimed system with axes
xyz, and the primed system with axes x′y′z′. The orthogonal unit basis vectors for the

unprimed system are î, ĵ and k̂. The fact they are unit vectors means

î · î = ĵ · ĵ = k̂ · k̂ = 1 (4.14)

Since they are orthogonal,

î · ĵ = î · k̂ = ĵ · k̂ = 0 (4.15)
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Figure 4.9 Two sets of cartesian reference axes, xyz and x′y′z′.

The orthonormal basis vectors î′, ĵ′ and k̂′ of the primed system share these same
properties. That is,

î′ · î′ = ĵ′ · ĵ′ = k̂′ · k̂′ = 1 (4.16)

and

î′ · ĵ′ = î′ · k̂′ = ĵ′ · k̂′ = 0 (4.17)

We can express the unit vectors of the primed system in terms of their components
in the unprimed system as follows

î′ = Q11 î + Q12 ĵ + Q13k̂

ĵ′ = Q21 î + Q22 ĵ + Q23k̂ (4.18)

k̂′ = Q31 î + Q32 ĵ + Q33k̂

The Qs in these expressions are just the direction cosines of î′, ĵ′ and k̂′. Figure 4.9

illustrates the components of k̂′, which are, of course, the projections of k̂′ onto the
x, y and z axes. The unprimed unit vectors may be resolved into components along
the primed system to obtain a set of equations similar to Equations 4.18:

î = Q′
11 î′ + Q′

12 ĵ′ + Q′
13k̂′

ĵ = Q′
21 î′ + Q′

22 ĵ′ + Q′
23k̂′ (4.19)

k̂ = Q′
31 î′ + Q′

32 ĵ′ + Q′
33k̂′
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However, î′ · î = î · î′, so that, from Equations 4.181 and 4.191, we find Q11 = Q′
11.

Likewise, î′ · ĵ = ĵ· î′, which, according to Equations 4.181 and 4.192, means Q12 = Q′
21.

Proceeding in this fashion, it is clear that the direction cosines in Equations 4.18 may
be expressed in terms of those in Equations 4.19. That is, Equations 4.19 may be
written

î = Q11 î′ + Q21 ĵ′ + Q31k̂′

ĵ = Q12 î′ + Q22 ĵ′ + Q32k̂′ (4.20)

k̂ = Q13 î′ + Q23 ĵ′ + Q33k̂′

Substituting Equations 4.20 into Equations 4.14 and making use of Equations 4.16
and 4.17, we get the three relations

î · î = 1 ⇒ Q2
11 + Q2

21 + Q2
31 = 1

ĵ · ĵ = 1 ⇒ Q2
12 + Q2

22 + Q2
32 = 1 (4.21)

k̂ · k̂ = 1 ⇒ Q2
13 + Q2

23 + Q2
33 = 1

Substituting Equations 4.20 into Equations 4.15 and, again, making use of Equations
4.16 and 4.17, we obtain the three equations

î · ĵ = 0 ⇒ Q11Q12 + Q21Q22 + Q31Q32 = 0

î · k̂ = 0 ⇒ Q11Q13 + Q21Q23 + Q31Q33 = 0 (4.22)

ĵ · k̂ = 0 ⇒ Q12Q13 + Q22Q23 + Q32Q33 = 0

Let [Q] represent the matrix of direction cosines of î′, ĵ′ and k̂′ relative to î, ĵ and k̂,
as given by Equations 4.19. Then

[Q] =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 =


 î′ · î î′ · ĵ î′ · k̂

ĵ′ · î ĵ′ · ĵ ĵ′ · k̂

k̂′ · î k̂′ · ĵ k̂′ · k̂


 (4.23)

The transpose of the matrix [Q], denoted [Q]T , is obtained by interchanging the rows
and columns of [Q]. Thus,

[Q]T =

 Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33


 =


 î · î′ î · ĵ′ î · k̂′

ĵ · î′ ĵ · ĵ′ ĵ · k̂′
k̂ · î′ k̂ · ĵ′ k̂ · k̂′


 (4.24)

Forming the product [Q]T [Q] we get

[Q]T [Q] =

 Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33




 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33




=

 Q2

11 + Q2
21 + Q2

31 Q11Q12 + Q21Q22 + Q31Q32 Q11Q13 + Q21Q23 + Q31Q33

Q12Q11 + Q22Q21 + Q32Q31 Q2
12 + Q2

22 + Q2
32 Q12Q13 + Q22Q23 + Q32Q33

Q13Q11 + Q23Q21 + Q33Q31 Q13Q12 + Q23Q22 + Q33Q32 Q2
13 + Q2

23 + Q2
33



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From this we obtain, with the aid of Equations 4.21 and 4.22,

[Q]T [Q] = [1] (4.25)

where

[1] =

 1 0 0

0 1 0
0 0 1




[1] stands for the identity matrix or unit matrix.
In a similar fashion, we can substitute Equations 4.18 into Equations 4.16 and

4.17 and make use of Equations 4.14 and 4.15 to finally obtain

[Q][Q]T = [1] (4.26)

Since [Q] satisfies Equations 4.25 and 4.26, it is called an orthogonal matrix.
Let v be a vector. It can be expressed in terms of its components along the

unprimed system,

v = vx î + vy ĵ + vz k̂

or along the primed system,

v = v′
x î′ + v′

y ĵ′ + v′
z k̂′

These two expressions for v are equivalent (v = v) since a vector is independent of
the coordinate system used to describe it. Thus,

v′
x î′ + v′

y ĵ′ + v′
z k̂′ = vx î + vy ĵ + vz k̂ (4.27)

Substituting Equations 4.20 into the right-hand side of Equation 4.27 yields

v′
x î′ + v′

y ĵ′ + v′
z k̂′ = vx(Q11 î′ + Q21 ĵ′ + Q31k̂′) + vy(Q12 î′ + Q22 ĵ′ + Q32k̂′)

+ vz(Q13 î′ + Q23 ĵ′ + Q33k̂′)

Upon collecting terms on the right, we get

v′
x î′ + v′

y ĵ′ + v′
z k̂′ = (Q11vx + Q12vy + Q13vz)î′ + (Q21vx + Q22vy + Q23vz)ĵ′

+ (Q31vx + Q32vy + Q33vz)k̂′

Equating the components of like unit vectors on each side of the equals sign yields

v′
x = Q11vx + Q12vy + Q13vz

v′
y = Q21vx + Q22vy + Q23vz (4.28)

v′
z = Q31vx + Q32vy + Q33vz

In matrix notation, this may be written

{v′} = [Q]{v} (4.29)
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where

{v′} =



v′
x

v′
y

v′
z


 {v} =




vx

vy

vz


 (4.30)

and [Q] is given by Equation 4.23. Equation 4.28 (or Equation 4.29) shows how to
transform the components of the vector v in the unprimed system into its components
in the primed system. The inverse transformation, from primed to unprimed, is found
by multiplying Equation 4.29 through by [Q]T :

[Q]T {v′} = [Q]T [Q]{v}
But, according to Equation 4.25, [Q][Q]T = [1], so that

[Q]T {v′} = [1]{v}
Since [1]{v} = {v}, we obtain

{v} = [Q]T {v′} (4.31)

Therefore, to go from the primed system to the unprimed system use [Q], and in the
reverse direction – from primed to unprimed – use [Q]T .

Example
4.4

In Figure 4.10, the x′ axis is defined by the line segment O′P. The x′y′ plane is defined
by the intersecting line segments O′P and O′Q. The z′ axis is normal to the plane of
O′P and O′Q and obtained by rotating O′P towards O′Q and using the right-hand
rule. (a) Find the transformation matrix [Q]. (b) If {v} = �2 4 6�T , find {v′}. (c)
If {v′} = �2 4 0�T , find {v}.
(a) Resolve the directed line segments

→
O′P and

→
O′Q into components along the

unprimed system:

→
O′P = (−5 − 3)î + (5 − 1)ĵ + (4 − 2)k̂ = −8î + 4ĵ + 2k̂

→
O′Q = (−6 − 3)î + (3 − 1)ĵ + (5 − 2)k̂ = −9î + 2ĵ + 3k̂

O ′
(3, 1, 2)

P (�5, 5, 4)

Q (�6, 3, 5)

x

y

z

O

ĵ ′
ˆ i ′

k̂ ′

Figure 4.10 Defining a unit triad from the coordinates of three non-collinear points, O′, P and Q.
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Taking the cross product of
→

O′P into
→

O′Q yields a vector Z′ which lies in the
direction of the desired positive z′ axis:

Z′ =
→

O′P ×
→

O′Q = 8î + 6ĵ + 20k̂

Taking the cross product of Z′ into
→

O′P then yields a vector Y′ which points in
the positive y′ direction:

Y′ = Z ×
→

O′P = −68î − 176ĵ + 80k̂

Normalizing the vectors
→

O′P, Y′ and Z′ produces the î′, ĵ′ and k̂′ unit vectors,
respectively. Thus

î′ =
→

O′P

‖ →
O′P‖

= −0.8729î + 0.4364ĵ + 0.2182k̂

ĵ′ = Y′

‖Y′‖ = −0.3318î − 0.8588ĵ + 0.3904k̂

and

k̂′ = Z′

‖Z′‖ = 0.3578î + 0.2683ĵ + 0.8944k̂

The components of î′, ĵ′ and k̂′ are the rows of the orthogonal transformation
matrix [Q]. Thus,

[Q] =

 −0.8729 0.4364 0.2182

−0.3318 −0.8588 0.3904
0.3578 0.2683 0.8944




(b)

{v′} = [Q]{v} =

 −0.8729 0.4364 0.2182

−0.3318 −0.8588 0.3904
0.3578 0.2683 0.8944






2
4
6


 =




1.309
−1.756

7.155




(c)

{v} = [Q]T {v′} =

 −0.8729 −0.3318 0.3578

0.4364 −0.8588 0.2683
0.2182 0.3904 0.8944






2
4
0


 =




−3.073
−2.562

1.998




Let us consider the special case in which the coordinate transformation involves
a rotation about only one of the coordinate axes, as shown in Figure 4.11. If the
rotation is about the x axis, then according to Equations 4.18 and 4.23,

î′ = î

ĵ′ = (ĵ′ · î)î + (ĵ′ · ĵ)ĵ + (ĵ′ · k̂)k̂ = cos φĵ + cos (90 − φ)k̂ = cos φĵ + sin (φ)k̂

k̂′ = (k̂′ · ĵ)ĵ + (k̂′ · k̂)k̂ = cos (90◦ + φ)ĵ + cos φk̂ = −sin φĵ + cos φk̂
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φ

φ

i, i ′

j

k

j ′
k ′

ˆ ˆ 

ˆ 

ˆ 

ˆ 

ˆ 

Figure 4.11 Rotation about the x axis.

or 


î′
ĵ′
k̂′


 =


 1 0 0

0 cos φ sin φ

0 −sin φ cos φ






î
ĵ

k̂




The transformation from the xyz coordinate system to the xy′z′ system having a
common x axis is given by the matrix coefficient of the unit vectors on the right.
Since this is a rotation through the angle φ about the x axis, we denote this matrix by
[R1(φ)], in which the subscript 1 stands for axis 1 (the x axis). Thus,

[R1(φ)] =

 1 0 0

0 cos φ sin φ

0 −sin φ cos φ


 (4.32)

If the rotation is about the y axis, as shown in Figure 4.12, then Equation 4.18 yields

î′ = (î′ · î)î + (î′ · k̂)k̂ = cos φî + cos (φ + 90◦)k̂ = cos φî − sin φk̂

ĵ′ = ĵ

k̂′ = (k̂′ · î)î + (k̂′ · k̂)k̂ = cos (90◦ − φ)î + cos φk̂ = sin φî + cos φk̂

or, more compactly,




î′
ĵ′
k̂′


 =


 cos φ 0 −sin φ

0 1 0
sin φ 0 cos φ






î
ĵ

k̂



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i

k

k ′ 

j, j′

φ

φ

i ′

ˆ 

ˆ 

ˆ 

ˆ 

ˆ ˆ 

Figure 4.12 Rotation about the y axis.

φ

φ
i

j

k, k′

j ′

i′ˆ ˆ 

ˆ 

ˆ 

ˆˆ 

Figure 4.13 Rotation about the z axis.

We represent this transformation between two cartesian coordinate systems having a
common y axis (axis 2) as [R2(φ)]. Therefore,

[R2(φ)] =

 cos φ 0 −sin φ

0 1 0
sin φ 0 cos φ


 (4.33)

Finally, if the rotation is about the z axis, as shown in Figure 4.13, then we have from
Equation 4.18 that

î′ = (î′ · î)î + (î′ · ĵ)ĵ = cos φî + cos (90◦ − φ)ĵ = cos φî + sin φĵ

ĵ′ = (ĵ′ · î)î + (ĵ′ · ĵ)ĵ = cos (90◦ + φ)î + cos φĵ = −sin φî + cos φĵ

k̂′ = k̂
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or 


î′
ĵ′
k̂′


 =


 cos φ sin φ 0

−sin φ cos φ 0
0 0 1






î
ĵ

k̂




In this case the rotation is around axis 3, the z axis, so

[R3(φ)] =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1


 (4.34)

A transformation between two cartesian coordinate systems can be broken down into
a sequence of two-dimensional rotations using the matrices [Ri(φ)], i = 1, 2, 3. We
will use this to great advantage in the following sections.

4.6 Transformation between geocentric
equatorial and perifocal frames

The perifocal frame of reference for a given orbit was introduced in Section 2.10.
Figure 4.14 illustrates the relationship between the perifocal and geocentric equatorial
frames. Since the orbit lies in the x̄ ȳ plane, the components of the state vector of a
body relative to its perifocal reference are, according to Equations 2.109 and 2.115,

r = x̄p̂ + ȳq̂ = h2

µ

1

1 + e cos θ
(cos θp̂ + sin θq̂) (4.35)

v = ˙̄xp̂ + ˙̄yq̂ = µ

h
[−sin θp̂ + (e + cos θ)q̂] (4.36)

p̂

Î

Ĵ

q̂

K̂

ŵ

Focus Periapse

Semilatus
rectum

z

X

Y

Z

g

Axes of the geocentric
equatorial frame

y

x

Figure 4.14 Perifocal (x̄ȳz̄) and geocentric equatorial (XYZ) frames.
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In matrix notation these may be written

{r}x̄ = h2

µ

1

1 + e cos θ




cos θ

sin θ

0


 (4.37)

{v}x̄ = µ

h




−sin θ

e + cos θ

0


 (4.38)

The subscript x̄ is shorthand for ‘the x̄ ȳ z̄ coordinate system’ and is used to indicate
that the components of these vectors are given in the perifocal frame, as opposed to,
say, the geocentric equatorial frame (Equations 4.2 and 4.3).

The transformation from the geocentric equatorial frame into the perifocal frame
may be accomplished by the sequence of three rotations illustrated in Figure 4.15. The
first rotation, ①, is around the K̂ axis, through the right ascension �. It rotates the

i2

1
3

3

�

2

1

2

3

2

i

i

�

i

�

�

ŵ

ŵ

ŵ

K̂

p̂

p̂

Ĵ

Ĵ

K̂

K̂
1

1

3

q̂
q̂

Î′

Î′

Î

Î

Ĵ′

Ĵ′

Ĵ′
Î′

Î′

Ĵ′′

Ĵ′′
Ĵ′′

Ω

Ω

Ω

Ω

Figure 4.15 Sequence of three rotations transforming ÎĴK̂ into p̂q̂ŵ. The ‘eye’ viewing down an axis sees
the illustrated rotation about that axis.
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Î, Ĵ directions into the Î′, Ĵ′ directions. Viewed down the Z axis, this rotation appears
as shown in the insert at the top of the figure. The orthogonal transformation matrix
associated with this rotation is

[R3(�)] =

 cos � sin � 0

−sin � cos � 0
0 0 1


 (4.39)

Recall that the subscript on R means that the rotation is around the ‘3’ direction, in
this case the K̂ axis.

The second rotation, ②, is around the node line (Î′), through the angle i required
to bring the XY plane parallel to the orbital plane. In other words, it rotates K̂ into
alignment with ŵ, and Ĵ′ simultaneously rotates into Ĵ′′. The insert in the lower right
of Figure 4.15 shows how this rotation appears when viewed from the Î′ direction.
The orthogonal transformation matrix for this rotation is

[R1(i)] =

1 0 0

0 cos i sin i
0 −sin i cos i


 (4.40)

The third and final rotation, ③, is in the orbital plane and rotates the unit vectors Î′
and Ĵ′′ through the angle ω around the ŵ axis so that they become aligned with p̂ and
q̂, respectively. This rotation appears from the ŵ direction as shown in the insert on
the left of Figure 4.15. The orthogonal transformation matrix is seen to be

[R3(ω)] =

 cos ω sin ω 0

−sin ω cos ω 0
0 0 1


 (4.41)

Finally, let us note that the transformation matrix [Q]Xx̄ from the geocentric equa-
torial frame into the perifocal frame is just the product of the three rotation matrices
given by Equations 4.39, 4.40 and 4.41; i.e.,

[Q]Xx̄ = [R3(ω)][R1(i)][R3(�)] (4.42)

Substituting the three matrices on the right and carrying out the matrix multiplica-
tions yields

[Q]Xx̄

=

 cos � cos ω − sin � sin ω cos i sin � cos ω + cos � cos i sin ω sin i sin ω

−cos � sin ω − sin � cos i cos ω −sin � sin ω + cos � cos i cos ω sin i cos ω

sin � sin i −cos � sin i cos i




(4.43)

Remember, this is an orthogonal matrix, so that for the inverse transformation, from
x̄ ȳ z̄ to XYZ we have [Q]x̄X = ([Q]Xx̄)T , or

[Q]x̄X

=

cos � cos ω − sin � sin ω cos i −cos � sin ω − sin � cos i cos ω sin � sin i

sin � cos ω + cos � cos i sin ω −sin � sin ω + cos � cos i cos ω −cos � sin i
sin i sin ω sin i cos ω cos i




(4.44)
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If the components of the state vector are given in the geocentric equatorial frame

r = {r}X =



X
Y
Z


 v = {v}X =




vX

vY

vZ




the components in the perifocal frame are found by carrying out the matrix
multiplications

{r}x̄ =



x̄
ȳ
0


 = [Q]Xx̄ {r}X {v}x̄ =




˙̄x
˙̄y
0


 = [Q]Xx̄ {v}X (4.45)

Likewise, the transformation from perifocal to geocentric equatorial components is

{r}X = [Q]x̄X{r}x̄ {v}X = [Q]x̄X{v}x̄ (4.46)

Algorithm
4.2

Given the orbital elements h, e, i, �, ω and θ, compute the position vectors r and v
in the geocentric equatorial frame of reference. A MATLAB implementation of this
procedure is listed in Appendix D.9. This algorithm can be applied to orbits around
other planets or the sun.

1. Calculate position vector {r}x̄ in perifocal coordinates using Equation 4.37.

2. Calculate velocity vector {v}x̄ in perifocal coordinates using Equation 4.38.

3. Calculate the matrix [Q]x̄X of the transformation from perifocal to geocentric
equatorial coordinates using Equation 4.44.

4. Transform {r}x̄ and {v}x̄ into the geocentric frame by means of Equations 4.46.

Example
4.5

For a given earth orbit, the elements are h = 80 000 km2/s, e = 1.4, i = 30◦,
� = 40◦, ω = 60◦ and θ = 30◦. Using Algorithm 4.2 find the state vectors r and v
in the geocentric equatorial frame.

Step 1:

{r}x̄ = h2

µ

1

1 + e cos θ




cos θ

sin θ

0


= 80 0002

398 600

1

1 + 1.4 cos 30◦




cos 30◦
sin 30◦

0


=




6285.0
3628.6

0


 km

Step 2:

{v}x̄ = µ

h




−sin θ

e + cos θ

0


 = 398 600

80 000




−sin 30◦
1.4 + cos 30◦

0


 =




−2.4913
11.290

0


 km/s

Step 3:

[Q]Xx̄ =

 cos ω sin ω 0

−sin ω cos ω 0
0 0 1




1 0 0

0 cos i sin i
0 −sin i cos i




 cos � sin � 0

−sin � cos � 0
0 0 1



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(Example 4.5
continued) =


 cos 60◦ sin 60◦ 0

−sin 60◦ cos 60◦ 0
0 0 1




1 0 0

0 cos 30◦ sin 30◦
0 −sin 30◦ cos 30◦




 cos 40◦ sin 40◦ 0

−sin 40◦ cos 40◦ 0
0 0 1




=

−0.099068 0.89593 0.43301

−0.94175 −0.22496 0.25
0.32139 −0.38302 0.86603




This is the transformation matrix for XYZ → x̄ ȳ z̄. The transformation matrix for
x̄ ȳ z̄ → XYZ is the transpose,

[Q]x̄X =

−0.099068 −0.94175 0.32139

0.89593 −0.22496 −0.38302
0.43301 0.25 0.86603




Step 4:

The geocentric equatorial position vector is

{r}X = [Q]x̄X{r}x̄

=

−0.099068 −0.94175 0.32139

0.89593 −0.22496 −0.38302
0.43301 0.25 0.86603






6285.0
3628.6

0


 =




−4040
4815
3629


 (km) (a)

whereas the geocentric equatorial velocity vector is

{v}X = [Q]x̄X{v}x̄

=

−0.099068 −0.94175 0.32139

0.89593 −0.22496 −0.38302
0.43301 0.25 0.86603






−2.4913
11.290

0


 =




−10.39
−4.772

1.744


 (km/s)

The state vectors r and v are shown in Figure 4.16. By holding all of the orbital
parameters except the true anomaly fixed and allowing θ to take on a range of values,
we generate a sequence of position vectors rx̄ from Equations 4.37. Each of these is
projected into the geocentric equatorial frame as in (a), using repeatedly the same
transformation matrix [Q]x̄X . By connecting the end points of all of the position
vectors rX , we trace out the trajectory illustrated in Figure 4.16.

X

Z

v

Descending node

Ω � 40°

u � 30°

i � 30°

Ascending node

Perigee

Y

v � 60°r

Figure 4.16 A portion of the hyperbolic trajectory of Example 4.5.
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4.7 Effects of the earth’s oblateness

The earth, like all of the planets with comparable or higher rotational rates, bulges
out at the equator because of centrifugal force. The earth’s equatorial radius is 21 km
(13 miles) larger than the polar radius. This flattening at the poles is called oblateness,
which is defined as follows

oblateness = equatorial radius − polar radius

equatorial radius

The earth is an oblate spheroid, lacking the perfect symmetry of a sphere. (A basketball
can be made an oblate spheroid by sitting on it.) This lack of symmetry means that
the force of gravity on an orbiting body is not directed towards the center of the
earth. Whereas the gravitational field of a perfectly spherical planet depends only on
the distance from its center, oblateness causes a variation also with latitude, that is,
the angular distance from the equator (or pole). This is called a zonal variation. The
dimensionless parameter which quantifies the major effects of oblateness on orbits is
J2, the second zonal harmonic. J2 is not a universal constant. Each planet has its own
value, as illustrated in Table 4.3, which lists variations of J2 as well as oblateness.

The gravitational acceleration (force per unit mass) arising from an oblate planet
is given by

r̈ = − µ

r2
ûr + p

The first term on the right is the familiar one (Equation 2.15) due to a spherical
planet. The second term, p, which is several orders of magnitude smaller than µ/r2,
is a perturbing acceleration due to the oblateness. This perturbing acceleration can
be resolved into components,

p = pr ûr + p⊥û⊥ + phĥ

where ûr , û⊥ and ĥ are the radial, transverse and normal unit vectors attached to the
satellite, as illustrated in Figure 4.17. ûr points in the direction of the radial position

Table 4.3 Oblateness and second zonal harmonics

Planet Oblateness J2

Mercury 0.000 60 × 10−6

Venus 0.000 4.458 × 10−6

Earth 0.003353 1.08263 × 10−3

Mars 0.00648 1.96045 × 10−3

Jupiter 0.06487 14.736 × 10−3

Saturn 0.09796 16.298 × 10−3

Uranus 0.02293 3.34343 × 10−3

Neptune 0.01708 3.411 × 10−3

Pluto 0.000 –
(Moon) 0.0012 202.7 × 10−6
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    ̂h

  r

X

Y

Z
ˆ u⊥

urˆ

Figure 4.17 Unit vectors attached to an orbiting body.

vector r, ĥ is the unit vector normal to the plane of the orbit and û⊥ is perpendicular
to r, lying in the orbital plane and pointing in the direction of the motion.

The perturbation components pr , p⊥ and ph are all directly proportional to J2 and
are functions of otherwise familiar orbital parameters as well as the planet radius R,

pr = − µ

r2

3

2
J2

(
R

r

)2 [
1 − 3 sin2 i sin2 (ω + θ)

]
p⊥ = − µ

r2

3

2
J2

(
R

r

)2

sin2 i sin [2 (ω + θ)]

ph = − µ

r2

3

2
J2

(
R

r

)2

sin 2i sin (ω + θ)

These relations are derived by Prussing and Conway (1993), who also show how pr ,
p⊥ and ph induce time rates of change in all of the orbital parameters. For example,

�̇ = h

µ

sin (ω + θ)

sin i (1 + e cos θ)
ph

ω̇ = − r cos θ

e h
pr + (2 + e cos θ) sin θ

eh
p⊥ − r sin (ω + θ)

h tan i
ph

Clearly, the time variation of the right ascension � depends only on the component of
the perturbing force normal to the (instantaneous) orbital plane, whereas the rate of
change of the argument of perigee is influenced by all three perturbation components.

Integrating �̇ over one complete orbit yields the average rate of change,

�̇avg = 1

T

∫ T

0
�̇dt
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Figure 4.18 Regression of the node and advance of perigee for nearly circular orbits of altitudes 300 to
1100 km.

where T is the period. Carrying out the mathematical details leads to an expression
for the average rate of precession of the node line, and hence, the orbital plane,

�̇ = −
[

3

2

√
µJ2R2(

1 − e2
)2

a
7
2

]
cos i (4.47)

where we have dropped the subscript avg . R and µ are the radius and gravitational
parameter of the planet, a and e are the semimajor axis and eccentricity of the
orbit, and i is the orbit’s inclination. Observe that if 0 ≤ i < 90◦, then �̇ < 0. That
is, for posigrade orbits, the node line drifts westward. Since the right ascension of
the node continuously decreases, this phenomenon is called regression of the nodes.
If 90◦ < i ≤ 180◦, we see that �̇ > 0. The node line of retrograde orbits therefore
advances eastward. For polar orbits (i = 90◦), the node line is stationary.

In a similar fashion the time rate of change of the argument of perigee is found
to be

ω̇ = −
[

3

2

√
µJ2R2(

1 − e2
)2

a
7
2

](
5

2
sin2 i − 2

)
(4.48)

This expression shows that if 0◦ ≤ i < 63.4◦ or 116.6◦ < i ≤ 180◦ then ω̇ is positive,
which means the perigee advances in the direction of the motion of the satellite (hence,
the name advance of perigee for this phenomenon). If 63.4◦ < i ≤ 116.6◦, the perigee
regresses, moving opposite to the direction of motion. i = 63.4◦ and i = 116.6◦ are
the critical inclinations at which the apse line does not move.

Observe that the coefficient of the trigonometric terms in Equations 4.47 and 4.48
are identical.

Figure 4.18 is a plot of Equations 4.47 and 4.48 for several low-earth orbits. The
effect of oblateness on both �̇ and ω̇ is greatest at low inclinations, for which the
orbit is near the equatorial bulge for longer portions of each revolution. The effect
decreases with increasing semimajor axis because the satellite becomes further from
the bulge and its gravitational influence. Obviously, �̇ = ω̇ = 0 if J2 = 0 (no equatorial
bulge).
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The time averaged rates of change for the inclination, eccentricity and semimajor
axis are zero.

Example
4.6

The space shuttle is in a 280 km by 400 km orbit with an inclination of 51.43◦. Find
the rates of node regression and perigee advance.

The perigee and apogee radii are

rp = 6378 + 280 = 6658 km ra = 6378 + 400 = 6778 km

Therefore the eccentricity and semimajor axis are

e = ra − rp

ra + rp
= 0.008931

a = 1

2
(ra + rp) = 6718 km

From Equation 4.47 we obtain the rate of node line regression:

�̇ = −
[

3

2

√
398 600 · 0.0010826 · 63782(
1 − 0.00893122

)2 · 6718
7
2

]
cos 51.43◦

= −1.6786 × 10−6 · cos 51.43◦

= −1.0465 × 10−6rad/s

or

�̇ = 5.181◦ per day to the west

From Equation 4.48,

ω̇ =
same as in �̇︷ ︸︸ ︷

−1.6786 × 10−6 ·
(

5

2
sin2 51.43◦ − 2

)
= +7.9193 × 10−7rad/s

or

ω̇ = 3.920◦ per day in the flight direction

The effect of orbit inclination on node regression and advance of perigee is taken
advantage of for two very important types of orbits. Sun-synchronous orbits are
those whose orbital plane makes a constant angle α with the radial from the sun, as
illustrated in Figure 4.19. For that to occur, the orbital plane must rotate in inertial
space with the angular velocity of the earth in its orbit around the sun, which is 360◦
per 365.26 days, or 0.9856◦ per day. With the orbital plane precessing eastward at
this rate, the ascending node will lie at a fixed local time. In the illustration it hap-
pens to be 3 pm. During every orbit, the satellite sees any given swath of the planet
under nearly the same conditions of daylight or darkness day after day. The satel-
lite also has a constant perspective on the sun. Sun-synchronous satellites, like the
NOAA Polar-orbiting Operational Environmental Satellites (NOAA/POES) and those
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Figure 4.19 Sun-synchronous orbit.

of the Defense Meteorological Satellite Program (DMSP) are used for global weather
coverage, while Landsat and the French SPOT series are intended for high-resolution
earth observation.

Example
4.7

A satellite is to be launched into a sun-synchronous circular orbit with period of 100
minutes. Determine the required altitude and inclination of its orbit.

We find the altitude z from the period relation for a circular orbit, Equation 2.54:

T = 2π√
µ

(RE + z)
3
2 ⇒ 100 · 60 = 2π√

398 600
(6378 + z)

3
2 ⇒ z = 758.63 km

For a sun-synchronous orbit, the ascending node must advance at the rate

�̇ = 2πrad

365.26 · 24 · 3600 s
= 1.991 × 10−7 rad/s

Substituting this and the altitude into Equation 4.47, we obtain,

1.991 × 10−7 = −
[

3

2

√
398 600 · 0.00108263 · 63782

(1 − 02)2 (6378 + 758.63)
7
2

]
cos i ⇒ cos i = −0.14658

Thus, the inclination of the orbit is

i = cos−1(−0.14658) = 98.43◦

This illustrates the fact that sun-synchronous orbits are very nearly polar orbits
(i = 90◦).
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Figure 4.21 Ground track of a Molniya satellite. Tick marks are one hour apart.
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If a satellite is launched into an orbit with an inclination of 63.4◦ (prograde)
or 116.6◦ (retrograde), then Equation 4.48 shows that the apse line will remain
stationary. The Russian space program made this a key element in the design of the
system of Molniya (‘lightning’) communications satellites. All of the Russian launch
sites are above 45◦ latitude, the northernmost, Plesetsk, being located at 62.8◦N.
As we shall see in Chapter 6, launching a satellite into a geostationary orbit would
involve a costly plane change maneuver. Furthermore, recall from Example 2.4 that
a geostationary satellite cannot view effectively the far northern latitudes into which
Russian territory extends.

The Molniya telecommunications satellites are launched from Plesetsk into 63◦
inclination orbits having a period of 12 hours. From Equation 2.73 we conclude that
the apse line of these orbits is 53 000 km long. Perigee (typically 500 km altitude) lies
in the southern hemisphere, while apogee is at an altitude of 40 000 km (25 000 miles)
above the northern latitudes, farther out than the geostationary satellites. Figure 4.20
illustrates a typical Molniya orbit, and Figure 4.21 shows a ground track. A Molniya
‘constellation’ consists of eight satellites in planes separated by 45◦. Each satellite is
above 30◦ north latitude for over eight hours, coasting towards and away from apogee.

Example
4.8

Determine the perigee and apogee for an earth satellite whose orbit satisfies all of the
following conditions: it is sun-synchronous, its argument of perigee is constant, and
its period is three hours.

The period determines the semimajor axis,

T = 2π√
µ

a
3
2 ⇒ 3 · 3600 = 2π√

398 600
a

3
2 ⇒ a = 10 560 km

For the apse line to be stationary we know from Equation 4.48 that i = 64.435◦
or i = 116.57◦. But an inclination of less than 90◦ causes a westward regression
of the node, whereas a sun-synchonous orbit requires an eastward advance, which
i = 116.57◦ provides. Substituting this, the semimajor axis and the �̇ in radians per
second for a sun-synchronous orbit (cf. Example 4.7) into Equation 4.47, we get

1.991 × 10−7 = −3

2

√
398 600 · 0.0010826 · 63782(

1 − e2
)2 · 10 560

7
2

cos 116.57◦ ⇒ e = 0.3466

Now we can find the angular momentum from the period expression (Equation 2.72)

T = 2π

µ2

(
h√

1 − e2

)3

⇒ 3 · 3600 = 2π

398 6002

(
h√

1 − 0.346552

)3

⇒ h = 60 850 km2/s

Finally, to obtain the perigee and apogee radii, we use the orbit formula:

zp + 6378 = h2

µ

1

1 + e
= 60 8602

398 600

1

1 + 0.34655
⇒ zp = 522.6 km

za + 6378 = h2

µ

1

1 − e
⇒ za = 7842 km
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Example
4.9

Given the following state vector of a satellite in geocentric equatorial coordinates,

r = −3670Î − 3870Ĵ + 4400K̂ km

v = 4.7Î − 7.4Ĵ + 1K̂ km/s

find the state vector four days (96 hours) later, assuming that there are no
perturbations other than the influence of the earth’s oblateness on � and ω.

Four days is a long enough time interval that we need to take into consideration not
only the change in true anomaly but also the regression of the ascending node and the
advance of perigee. First we must determine the orbital elements at the initial time
using Algorithm 4.1, which yields

h = 58 930 km2/s

i = 39.687◦

e = 0.42607 (the orbit is an ellipse)

�0 = 130.32◦

ω0 = 42.373◦

θ0 = 52.404◦

We use Equation 2.61 to determine the semimajor axis,

a = h2

µ

1

1 − e2
= 58 9302

398 600

1

1 − 0.42612
= 10 640 km

so that, according to Equation 2.73, the period is

T = 2π√
µ

a
3
2 = 10 928 s

From this we obtain the mean motion

n = 2π

T
= 0.00057495 rad/s

The initial value E0 of eccentric anomaly is found from the true anomaly θ0 using
Equation 3.10a,

tan
E0

2
=

√
1 − e

1 + e
tan

θ0

2
=

√
1 − 0.42607

1 + 0.42607
tan

52.404◦

2
⇒ E0 = 0.60520 rad

With E0, we use Kepler’s equation to calculate the time t0 since perigee at the initial
epoch,

nt0 = E0−e sin E0 ⇒ 0.00057495t0 = 0.60520 − 0.42607 sin 0.60520 ⇒ t1 = 631.00 s

Now we advance the time to tf , that of the final epoch, given as 96 hours later.
That is, �t = 345 600 s, so that

tf = t1 + �t = 631.00 + 345 600 = 346 230 s
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The number of periods nP since passing perigee in the first orbit is

nP = tf

T
= 346 230

10 928
= 31.682

From this we see that the final epoch occurs in the 32nd orbit, whereas t0 was in
orbit 1. Time since passing perigee in the 32nd orbit, which we will denote t32, is

t32 = (31.682 − 31) T ⇒ t32 = 7455.7 s

The mean anomaly corresponding to that time in the 32nd orbit is

M32 = nt32 = 0.00057495 · 7455.7 = 4.2866 rad

Kepler’s equation yields the eccentric anomaly

E32 − e sin E32 = M32 ⇒ E32 − 0.42607 sin E32 = 4.2866 ⇒ E32 = 3.9721 rad
(Algorithm 3.1)

The true anomaly follows in the usual way,

tan
θ32

2
=

√
1 + e

1 − e
tan

E32

2
⇒ θ32 = 211.25◦

At this point, we use the newly found true anomaly to calculate the state vector of the
satellite in perifocal coordinates. Thus, from Equation 4.35

rx̄ = r cos θ32p̂ + r sin θ32q̂ = −11 714p̂ − 7108.8q̂ (km)

or, in matrix notation,

{r}x̄ =



−11 714
−7108.8

0


 (km)

Likewise, from Equation 4.36,

vx̄ = −µ

h
sin θ32p̂ + µ

h
(e + cos θ32) q̂ = 3.5093p̂ − 2.9007q̂(km/s)

or

{v}x̄ =



3.5093
−2.9007

0


 (km/s)

Before we can project rx̄ and vx̄ into the geocentric equatorial frame, we must update
the right ascension of the node and the argument of perigee. The regression rate of
the ascending node is

�̇ = −
[

3

2

√
µJ2R2(

1 − e2
)2

a
7
2

]
cos i = −3

2

√
398 600 · 00108263 · 63782(
1 − 0.426072

)2 · 10 644
7
2

cos 39.69◦

= −3.8514 × 10−7(rad/s) = −2.2067 × 10−5 ◦/s

Therefore, right ascension at epoch in the 32nd orbit is

�32 = �0 + �̇�t = 130.32 + (−2.2067 × 10−5) · 345 600 = 122.70◦
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(Example 4.9
continued)

Likewise, the perigee advance rate is

ω̇ = −

3

2

√
µJ2R2(

1 − e2
)2

a
7
2


(

5

2
sin2 i − 2

)
= 4.9072×10−7rad/s = 2.8116×10−5 ◦/s

which means the argument of perigee at epoch in the 32nd orbit is

ω32 = ω0 + ω̇�t = 42.373 + 2.8116 × 10−5 · 345 600 = 52.090◦

Substituting the updated values of � and ω, together with the inclination i, into
Equation 4.43 yields the updated transformation matrix from geocentric equatorial
to the perifocal frame,

[Q]Xx̄ =

 cos ω32 sin ω32 0

−sin ω32 cos ω32 0
0 0 1




1 0 0

0 cos i sin i
0 −sin i cos i




 cos �32 sin �32 0

−sin �32 cos �32 0
0 0 1




=

 cos 52.09◦ sin 52.09◦ 0

−sin 52.09◦ cos 52.09◦ 0
0 0 1




1 0 0

0 cos 39.687◦ sin 39.687◦
0 −sin 39.687◦ cos 39.687◦




×

 cos 122.70◦ sin 122.70◦ 0

−sin 122.70◦ cos 122.70◦ 0
0 0 1




or

[Q]Xx̄ =

−0.84285 0.18910 0.50383

0.028276 −0.91937 0.39237
0.53741 0.34495 0.76955




For the inverse transformation, from perifocal to geocentric equatorial, we need the
transpose of this matrix,

[Q]x̄X =

−0.84285 0.18910 0.50383

0.028276 −0.91937 0.39237
0.53741 0.34495 0.76955


T

=

−0.84285 0.028276 0.53741

0.18910 −0.91937 0.34495
0.50383 0.39237 0.76955




Thus, according to Equations 4.46, the final state vector in the geocentric equatorial
frame is

{r}X = [Q]x̄X {r}x̄

=

−0.84285 0.028276 0.53741

0.18910 −0.91937 0.34495
0.50383 0.39237 0.76955






−11 714
−7108.8

0


 =




9672
4320

−8691


 (km)

{v}X = [Q]x̄X {v}x̄

=

−0.84285 0.028276 0.53741

0.18910 −0.91937 0.34495
0.50383 0.39237 0.76955






3.5093
−2.9007

0


 =




−3.040
3.330
0.6299


 (km/s)
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or, in vector notation,

rX= 9672Î + 4320Ĵ − 8691K̂ (km)

vX= −3.040Î + 3.330Ĵ + 0.6299K̂(km/s)

The two orbits are plotted in Figure 4.22.
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Figure 4.22 The initial and final position vectors.

Problems

4.1 Find the orbital elements of a geocentric satellite whose inertial position and velocity
vectors in a geocentric equatorial frame are

r = 2615Î + 15 881Ĵ + 3980K̂ (km)

v = −2.767Î − 0.7905Ĵ + 4.980K̂ (km/s)

{Ans.: e = 0.3760, h = 95 360 km2/s, i = 63.95◦, � = 73.71◦, ω = 15.43◦, θ = 0.06764◦}

4.2 At a given instant the position r and velocity v of a satellite in the geocentric equatorial
frame are r = 12 670K̂ (km) and v = −3.874Ĵ − 0.7905K̂ (km/s). Find the orbital
elements.
{Ans.: h = 49 080 km2/s, e = 0.5319, � = 90◦, ω = 259.5◦, θ = 190.5◦, i = 90◦}

4.3 At time to the position r and velocity v of a satellite in the geocentric equatorial frame are
r = 6472.7Î − 7470.8Ĵ − 2469.8K̂ (km) and v = 3.9914Î + 2.7916Ĵ − 3.2948K̂ (km/s).
Find the orbital elements.
{Ans.: h = 58 461 km2/s, e = 0.2465, � = 110◦, ω = 75◦, θ = 130◦, i = 35◦}

4.4 Given that, with respect to the geocentric equatorial frame,

r = −6634.2Î − 1261.8Ĵ − 5230.9K̂ (km), v = 5.7644Î − 7.2005Ĵ − 1.8106K̂ (km/s)
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and the eccentricity vector is

e = −0.40907Î − 0.48751Ĵ − 0.63640K̂ (dimensionless)

calculate the true anomaly θ of the earth-orbiting satellite.
{Ans.: 330◦}

4.5 Given that, relative to the geocentric equatorial frame,

r = −6634.2Î − 1261.8Ĵ − 5230.9K̂ (km)

the eccentricity vector is

e = −0.40907Î − 0.48751Ĵ − 0.63640K̂ (dimensionless)

and the satellite is flying towards perigee, calculate the inclination of the orbit.
{Ans.: 69.3◦}

4.6 The right-handed, primed xyz system is defined by the three points A, B and C. The x′y′
plane is defined by the plane ABC. The x′ axis runs from A through B. The z′ axis is

defined by the cross product of
→
AB into

→
AC, so that the +y′ axis lies on the same side of

the x′ axis as point C.
(a) Find the orthogonal transformation matrix [Q] relating the two coordinate bases.

(b) If the components of a vector v in the primed system are �2 −1 3�T , find the
components of v in the unprimed system.

{Ans.: �−1.307 2.390 2.565�T }

x

y

z

x'

y'z'

C (3, 9, �2)

B (4, 6, 5)

A (1, 2, 3)

Figure P.4.6

4.7 The unit vectors in a uvw cartesian coordinate frame have the following components in
the xyz frame

û = 0.26726î + 0.53452ĵ + 0.80178k̂

v̂ = −0.44376î + 0.80684ĵ − 0.38997k̂

ŵ = −0.85536î − 0.25158ĵ + 0.45284k̂

If, in the xyz frame, V = −50î + 100ĵ + 75k̂, find the components of the vector V in the
uvw frame.
{Ans.: V = 100.2û + 73.62v̂ + 51.57ŵ}
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4.8 Calculate the transformation matrix [Q] for the sequence of two rotations: α = 40◦
about the positive X axis, followed by β = 25◦ about the positive y′ axis. The result is
that the XYZ axes are rotated into the x′′y′z′′ axes.
{Partial ans.: Q11 = 0.9063 Q12 = 0.2716 Q13 = −0.3237}
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Figure P.4.8

4.9 At time to the position r and velocity v of a satellite in the geocentric equatorial frame are

r = −5102Î − 8228Ĵ − 2105K̂ (km)

v = −4.348Î + 3.478Ĵ − 2.846K̂ (km/s)

Find r and v at time to + 50 minutes. (to �= 0!)
{Ans.: r = −4198Î + 7856Ĵ − 3199K̂ (km); v = 4.952Î + 3.482Ĵ + 2.495K̂ (km/s)}

4.10 For a spacecraft, the following orbital parameters are given: e = 1.5; perigee
altitude = 300 km; i = 35◦; � = 130◦; ω = 115◦. Calculate r and v at perigee relative to
(a) the perifocal reference frame, and
(b) the geocentric equatorial frame.

{Ans.: (a) r = 6678p̂ (km), v = 12.22q̂ (km/s)
(b) r = −1984Î − 5348Ĵ + 3471K̂ (km), v = 10.36Î − 5.763Ĵ − 2.961K̂ (km/s)}

4.11 For the spacecraft of Problem 4.10 calculate r and v at two hours past perigee relative to
(a) the perifocal reference frame, and
(b) the geocentric equatorial frame.

{Ans.: (a) r = −25 010p̂ + 48 090q̂ (km), v = −4.335p̂ + 5.075q̂ (km/s)
(b) r = 48 200Î − 2658Ĵ − 24 660K̂ (km), v = 5.590Î + 1.078Ĵ − 3.484K̂ (km/s)}

4.12 Calculate r and v for the satellite in Problem 4.3 at time t0 + 50 minutes. (to �= 0!)
{Ans.: r = 6864Î + 5916Ĵ − 5933K̂ (km), v = −3.564Î + 3.905Ĵ + 1.410K̂ (km/s)}

4.13 For a spacecraft, the following orbital parameters are given: e = 1.2; perigee
altitude = 200 km; i = 50◦; � = 75◦; ω = 80◦. Calculate r and v at perigee relative to
(a) the perifocal reference frame, and
(b) the geocentric equatorial frame.

{Ans.: (a) r = 6578p̂ (km); v = 11.55q̂ (km/s)
(b) r = − 3726Î + 2181Ĵ + 4962K̂ (km), v = −4.188Î − 10.65Ĵ + 1.536K̂ (km/s)}



190 Chapter 4 Orbits in three dimensions

4.14 For the spacecraft of Exercise 4.13 calculate r and v at two hours past perigee relative to
(a) the perifocal reference frame, and
(b) the geocentric equatorial frame.

{Ans.: (a) r = −26 340p̂ + 37 810q̂ (km), v = −4.306p̂ + 3.298q̂ (km/s)
(b) r = 1207Î − 43 600Ĵ − 14 840K̂ (km), v = 1.243Î − 4.4700Ĵ − 2.810K̂ (km/s)}

4.15 Given that e = 0.7, h = 75 000 km2/s, and θ = 25◦, calculate the components of velocity

in the geocentric equatorial frame if [Q]Xx̄ =

−0.83204 −0.13114 0.53899

0.02741 −0.98019 −0.19617
0.55403 −0.14845 0.81915


.

{Ans.: v = 2.103Î − 8.073Ĵ − 2.885K̂ (km/s)}

4.16 The apse line of the elliptical orbit lies in the XY plane of the geocentric equatorial
frame, whose Z axis lies in the plane of the orbit. At B (for which θ = 140◦) the perifo-
cal velocity vector is {v}x̄ = �−3.208 −0.8288 0�T (km/s). Calculate the geocentric
equatorial components of the velocity at B.
{Ans.: {v}X = �−1.604 −2.778 −0.8288�T (km/s)}
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Apogee

Figure P.4.16

4.17 A satellite in earth orbit has the following orbital parameters: a = 7016 km, e = 0.05,
i = 45◦, � = 0◦, ω = 20◦ and θ = 10◦. Find the position vector in the geocentric-
equatorial frame.
{Ans.: r = 5776.4Î + 2358.2Ĵ + 2358.2K̂ (km)}

4.18 Calculate the orbital inclination required to place an earth satellite in a 500 km by
1000 km sun-synchronous orbit.
{Ans.: 98.37◦}

4.19 The space shuttle is in a circular orbit of 180 km altitude and inclination 30◦. What is
the spacing, in kilometers, between successive ground tracks at the equator, including
the effect of earth’s oblateness?
{Ans.: 2511 km}
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4.20 A satellite in a circular, sun-synchronous low earth orbit passes over the same point on
the equator once each day, at 12 o’clock noon. Calculate the inclination, altitude and
period of the orbit.
{This problem has more than one solution.}

4.21 The orbit of a satellite around an unspecified planet has an inclination of 40◦, and its
perigee advances at the rate of 7◦ per day. At what rate does the node line regress?
{Ans.: �̇ = 5.545◦/day}

4.22 At a given time, the position and velocity of an earth satellite in the geocentric
equatorial frame are r = −2429.1Î + 4555.1Ĵ + 4577.0K̂ (km) and v = −4.7689Î −
5.6113Ĵ + 3.0535K̂ (km/s). Find r and v precisely 72 hours later, taking into
consideration the node line regression and the advance of perigee.
{Ans.: r = 4596Î + 5759Ĵ − 1266K̂ km, v = −3.601Î + 3.179Ĵ + 5.617K̂ km/s}
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5.1 Introduction

In this chapter we will consider some (by no means all) of the classical ways in
which the orbit of a satellite can be determined from earth-bound observations.

All of the methods presented here are based on the two-body equations of motion. As
such, they must be considered preliminary orbit determination techniques because
the actual orbit is influenced over time by other phenomena (perturbations), such as
the gravitational force of the moon and sun, atmospheric drag, solar wind and the
non-spherical shape and non-uniform mass distribution of the earth. We took a brief
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look at the dominant effects of the earth’s oblateness in Section 4.7. To accurately
propagate an orbit into the future from a set of initial observations requires taking
the various perturbations, as well as instrumentation errors themselves, into account.
More detailed considerations, including the means of updating the orbit on the basis
of additional observations, are beyond our scope. Introductory discussions may be
found elsewhere – see Bate, Mueller and White (1971), Boulet (1991), Prussing and
Conway (1993) and Wiesel (1997), to name but a few.

We begin with the Gibbs method of predicting an orbit using three geocentric
position vectors. This is followed by a presentation of Lambert’s problem, in which
an orbit is determined from two position vectors and the time between them. Both
the Gibbs and Lambert procedures are based on the fact that two-body orbits lie in
a plane. The Lambert problem is more complex and requires using the Lagrange f
and g functions introduced in Chapter 2 as well as the universal variable formulation
introduced in Chapter 3. The Lambert algorithm is employed in Chapter 8 to analyze
interplanetary missions.

In preparation for explaining how satellites are tracked, the Julian day numbering
scheme is introduced along with the notion of sidereal time. This is followed by
a description of the topocentric coordinate systems and the relationships among
topocentric right ascension/declension angles and azimuth/elevation angles. We then
describe how orbits are determined from measuring the range and angular orientation
of the line of sight together with their rates. The chapter concludes with a presentation
of the Gauss method of angles-only orbit determination.

5.2 Gibbs’ method of orbit determination
from three position vectors

Suppose that from observations of a space object at the three successive times t1, t2

and t3 (t1 < t2 < t3) we have obtained the geocentric position vectors r1, r2 and r3.
The problem is to determine the velocities v1, v2 and v3 at t1, t2 and t3 assuming that
the object is in a two-body orbit. The solution using purely vector analysis is due
to J. W. Gibbs (1839–1903), an American scholar who is known primarily for his
contributions to thermodynamics. Our explanation is based on that in Bate, Mueller
and White (1971).

We know that the conservation of angular momentum requires that the position
vectors of an orbiting body must lie in the same plane. In other words, the unit
vector normal to the plane of r2 and r3 must be perpendicular to the unit vector in
the direction of r1. Thus, if ûr1 = r1/r1 and Ĉ23 = (r2 × r3)/‖r2 × r3‖, then the dot
product of these two unit vectors must vanish,

ûr1 · Ĉ23 = 0

Furthermore, as illustrated in Figure 5.1, the fact that r1, r2 and r3 lie in the same
plane means we can apply scalar factors c1 and c3 to r1 and r3 so that r2 is the vector
sum of c1r1 and c3r3

r2 = c1r1 + c3r3 (5.1)

The coefficients c1 and c3 are readily obtained from r1, r2 and r3 as we shall see in
Section 5.10 (Equations 5.89 and 5.90).
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r1

r3
r2

c3r3

c1r1

Figure 5.1 Any one of a set of three coplanar vectors (r1, r2, r3) can be expressed as the vector sum of the
other two.

To find the velocity v corresponding to any of the three given position vectors r,
we start with Equation 2.30, which may be written

v × h = µ
( r

r
+ e

)
where h is the angular momentum and e is the eccentricity vector. To isolate the
velocity, take the cross product of this equation with the angular momentum,

h × (v × h) = µ

(
h × r

r
+ h × e

)
(5.2)

By means of the bac − cab rule (Equation 2.23), the left side becomes

h × (v × h) = v(h · h) − h(h · v)

But h · h = h2 and v × h = 0, since v is perpendicular to h. Therefore

h × (v × h) = h2v

which means Equation 5.2 may be written

v = µ

h2

(
h × r

r
+ h × e

)
(5.3)

In Section 2.10 we introduced the perifocal coordinate system, in which the unit
vector p̂ lies in the direction of the eccentricity vector e and ŵ is the unit vector
normal to the orbital plane, in the direction of the angular momentum vector h.
Thus, we can write

e = ep̂ (5.4a)

h = hŵ (5.4b)
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so that Equation 5.3 becomes

v = µ

h2

(
hŵ × r

r
+ hŵ × ep̂

)
= µ

h

[
ŵ × r

r
+ e(ŵ × p̂)

]
(5.5)

Since p̂, q̂ and ŵ form a right-handed triad of unit vectors, it follows that p̂ × q̂ = ŵ,
q̂ × ŵ = p̂ and

ŵ × p̂ = q̂ (5.6)

Therefore, Equation 5.5 reduces to

v = µ

h

(
ŵ × r

r
+ eq̂

)
(5.7)

This is an important result, because if we can somehow use the position vectors
r1, r2 and r3 to calculate q̂, ŵ, h and e, then the velocities v1, v2 and v3 will each be
determined by this formula.

So far the only condition we have imposed on the three position vectors is that
they are coplanar (Equation 5.1). To bring in the fact that they describe an orbit, let
us take the dot product of Equation 5.1 with the eccentricity vector e to obtain the
scalar equation

r2 · e = c1r1 · e + c3r3 · e (5.8)

According to Equation 2.34 – the orbit equation – we have the following relation
among h, e and each of the position vectors,

r1 · e = h2

µ
− r1 r2 · e = h2

µ
− r2 r3 · e = h2

µ
− r3 (5.9)

Substituting these relations into Equation 5.8 yields

h2

µ
− r2 = c1

(
h2

µ
− r1

)
+ c3

(
h2

µ
− r3

)
(5.10)

To eliminate the unknown coefficients c1 and c2 from this expression, let us take the
cross product of Equation 5.1 first with r1 and then r3. This results in two equations,
both having r3 × r1 on the right,

r2 × r1 = c3(r3 × r1) r2 × r3 = −c1(r3 × r1) (5.11)

Now multiply Equation 5.10 through by the vector r3 × r1 to obtain

h2

µ
(r3 × r1) − r2(r3 × r1) = c1(r3 × r1)

(
h2

µ
− r1

)
+ c3(r3 × r1)

(
h2

µ
− r3

)

Using Equations 5.11, this becomes

h2

µ
(r3 × r1) − r2(r3 × r1) = −(r2 × r3)

(
h2

µ
− r1

)
+ (r2 × r1)

(
h2

µ
− r3

)
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Observe that c1 and c2 have been eliminated. Rearranging terms we get

h2

µ
(r1 × r2 + r2 × r3 + r3 × r1) = r1(r2 × r3) + r2(r3 × r1) + r3(r1 × r2) (5.12)

This is an equation involving the given position vectors and the unknown angular
momentum h. Let us introduce the following notation for the vectors on each side of
Equation 5.12,

N = r1(r2 × r3) + r2(r3 × r1) + r3(r1 × r2) (5.13)

and

D = r1 × r2 + r2 × r3 + r3 × r1 (5.14)

Then Equation 5.12 may be written more simply as

N = h2

µ
D

from which we obtain

N = h2

µ
D (5.15)

where N = ‖N‖ and D = ‖D‖. It follows from Equation 5.15 that the angular
momentum h is determined from r1, r2 and r3 by the formula

h =
√

µ
N

D
(5.16)

Since r1, r2 and r3 are coplanar, all of the cross products r1 × r2, r2 × r3 and r3 × r1

lie in the same direction, namely, normal to the orbital plane. Therefore, it is clear
from Equation 5.14 that D must be normal to the orbital plane. In the context of the
perifocal frame, we use ŵ to denote the orbit unit normal. Therefore,

ŵ = D

D
(5.17)

So far we have found h and ŵ in terms of r1, r2 and r3. We need likewise to find
an expression for q̂ to use in Equation 5.7. From Equations 5.4a, 5.6, and 5.17 it
follows that

q̂ = ŵ × p̂ = 1

De
(D × e) (5.18)

Substituting Equation 5.14 we get

q̂ = 1

De
[(r1 × r2) × e + (r2 × r3) × e + (r3 × r1) × e] (5.19)

We can apply the bac − cab rule to the right side by noting

(A × B) × C = −C × (A × B) = B(A · C) − A(B · C)
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Using this vector identity we obtain

(r2 × r3) × e = r3(r2 · e) − r2(r3 · e)

(r3 × r1) × e = r1(r3 · e) − r3(r1 · e)

(r1 × r2) × e = r2(r1 · e) − r1(r2 · e)

Once again employing Equations 5.9, these become

(r2 × r3) × e = r3

(
h2

µ
− r2

)
− r2

(
h2

µ
− r3

)
= h2

µ
(r3 − r2) + r3r2 − r2r3

(r3 × r1) × e = r1

(
h2

µ
− r3

)
− r3

(
h2

µ
− r1

)
= h2

µ
(r1 − r3) + r1r3 − r3r1

(r1 × r2) × e = r2

(
h2

µ
− r1

)
− r1

(
h2

µ
− r2

)
= h2

µ
(r2 − r1) + r2r1 − r1r2

Summing these three equations, collecting terms and substituting the result into
Equation 5.19 yields

q̂ = 1

De
S (5.20)

where

S = r1(r2 − r3) + r2(r3 − r1) + r3(r1 − r2) (5.21)

Finally, we substitute Equations 5.16, 5.17 and 5.20 into Equation 5.7 to obtain

v = µ

h

(
ŵ × r

r
+ eq̂

)
= µ√

µN
D

[
D
D × r

r
+ e

(
1

De
S

)]

Simplifying this expression for the velocity yields

v =
√

µ

ND

(
D × r

r
+ S

)
(5.22)

All of the terms on the right depend only on the given position vectors r1, r2 and r3.
The Gibbs procedure may be summarized in the following algorithm.

Algorithm
5.1

Gibbs’ method of preliminary orbit determination. A MATLAB implementation of
this procedure is found in Appendix D.10.

Given r1, r2 and r3, the steps are as follows.

1. Calculate r1, r2 and r3.

2. Calculate C12 = r1 × r2, C23 = r2 × r3 and C31 = r3 × r1.

3. Verify that ûr1 · Ĉ23 = 0.

4. Calculate N, D and S using Equations 5.13, 5.14 and 5.21, respectively.

5. Calculate v2 using Equation 5.22.

6. Use r2 and v2 to compute the orbital elements by means of Algorithm 4.1.
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Example
5.1

The geocentric position vectors of a space object at three successive times are

r1 = −294.32Î + 4265.1Ĵ + 5986.7K̂ (km)

r2 = −1365.5Î + 3637.6Ĵ + 6346.8K̂ (km)

r3 = −2940.3Î + 2473.7Ĵ + 6555.8K̂ (km)

Determine the classical orbital elements using Gibbs’ procedure.

Step 1:

r1 =
√

(−294.32)2 + 4265.12 + 5986.72 = 7356.5 km

r2 =
√

(−1365.5)2 + 3637.62 + 6346.82 = 7441.7 km

r3 =
√

(−2940.3)2 + 2473.72 + 6555.82 = 7598.9 km

Step 2:

C12 =
∣∣∣∣∣∣

Î Ĵ K̂
−294.32 4265.1 5986.7
−1365.5 3637.6 6346.8

∣∣∣∣∣∣
= (5.292Î − 6.3066Ĵ + 4.7531K̂) × 106 (km2)

C23 =
∣∣∣∣∣∣

Î Ĵ K̂
−1365.5 3637.6 6346.8
−2940.3 2473.7 6555.8

∣∣∣∣∣∣
= (8.1473Î − 9.7095Ĵ + 7.3179K̂) × 106 (km2)

C31 =
∣∣∣∣∣∣

Î Ĵ K̂
−2940.3 2473.7 6555.8
−294.32 4265.1 5986.7

∣∣∣∣∣∣
= (−1.3151Î + 1.5673Ĵ − 1.1812K̂) × 106 (km2)

Step 3:

Ĉ23 = C23

‖C23‖ = 8.1473Î − 9.7095Ĵ + 7.3179K̂√
8.14732 + (−9.7095)2 + 7.31792

= 0.55667Î − 0.66341Ĵ + 0.5000K̂

Therefore

ûr1 · Ĉ23 = −294.32Î + 4265.1Ĵ + 5986.7K̂

7356.5
· (0.55667Î − 0.66341Ĵ + 0.5000K̂)

= 6.9200 × 10−20

This certainly is close enough to zero for our purposes. The three vectors r1, r2 and
r3 are coplanar.
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(Example 5.1
continued)

Step 4:

N = r1C23 + r2C31 + r3C12

= 7356.5[(8.1473Î − 9.7095Ĵ + 7.3179K̂) × 106]

+ 7441.7[(−1.3151Î + 1.5673Ĵ − 1.1812K̂) × 106]

+ 7598.9[(5.292Î − 6.3066Ĵ + 4.7531K̂) × 106]

or

N = (2.2807Î − 2.7181Ĵ + 2.0486K̂) × 109 (km3)

so that

N =
√

[2.28072 + (−2.7181)2 + 2.04862] × 1018

= 4.0971 × 109 (km3)

D = C12 + C23 + C31

= [(5.292Î − 6.3066Ĵ + 4.7531K̂) × 106] + [(8.1473Î − 9.7095Ĵ

+ 7.3179K̂) × 106] + [(−1.3151Î + 1.5673Ĵ − 1.1812K̂) × 106]

or

D = (2.8797Î − 3.4319Ĵ + 2.5866K̂) × 106 (km2)

so that

D =
√

[2.87972 + (−3.4319)2 + 2.58662] × 1012

= 5.1731 × 105 (km2)

Lastly,

S = r1(r2 − r3) + r2(r3 − r1) + r3(r1 − r2)

= (−294.32Î + 4265.1Ĵ + 5986.7K̂)(7441.7 − 7598.9)

+ (−1365.5Î + 3637.6Ĵ + 6346.8K̂)(7598.9 − 7356.5)

+ (−2940.3Î + 2473.7Ĵ + 6555.8K̂)(7356.5 − 7441.7)

or

S = −34 213Î + 533.51Ĵ + 38 798K̂ (km2)

Step 5:

v2 =
√

µ

ND

(
D × r2

r2
+ S

)
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=
√

398 600

(4.0971 × 109)(5.1731 × 103)

×




∣∣∣∣∣∣
Î Ĵ K̂

2.8797 × 106 −3.4319 × 106 2.5866 × 106

−1365.5 3637.6 6346.8

∣∣∣∣∣∣
7441.7

+
( −34 213Î + 533.51Ĵ

+ 38 798K̂

)



or

v2 = −6.2171Î − 4.0117Ĵ + 1.5989K̂ (km/s)

Step 6:

Using r2 and v2, Algorithm 4.1 yields the orbital elements:

a = 8000 km

e = 0.1

i = 60◦

� = 40◦

ω = 30◦

θ = 50◦ (for position vector r2)

The orbit is sketched in Figure 5.2.

X

Y

Z
r1

r2
r3

Ascending
node

Perigee
50°

Figure 5.2 Sketch of the orbit of Example 5.1.
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5.3 Lambert’s problem

Suppose we know the position vectors r1 and r2 of two points P1 and P2 on the path
of mass m around mass M , as illustrated in Figure 5.3. r1 and r2 determine the change
in the true anomaly �θ, since

cos �θ = r1 · r2

r1r2
(5.23)

where

r1 = √
r1 · r1 r2 = √

r2 · r2 (5.24)

However, if cos �θ > 0, then �θ lies in either the first or fourth quadrant, whereas if
cos �θ < 0, then �θ lies in the second or third quadrant. (Recall Figure 3.4.) The first
step in resolving this quadrant ambiguity is to calculate the Z component of r1 × r2,

(r1 × r2)Z = K̂ · (r1 × r2) = K̂ · (r1r2 sin �θŵ) = r1r2 sin �θ(K̂ · ŵ)

where ŵ is the unit normal to the orbital plane. Therefore, K̂ · ŵ = cos i, where i is
the inclination of the orbit, so that

(r1 × r2)Z = r1r2 sin �θ cos i (5.25)

We use the sign of the scalar (r1 × r2)Z to determine the correct quadrant for �θ.

Y

X

Z

Trajectory

Ascending node

I

K

w

J

r1
Fundamental

plane

r2
��

i

iM

P1
P2

m

c

ˆ

ˆ

ˆ̂

ˆ

Figure 5.3 Lambert’s problem.
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There are two cases to consider: prograde trajectories (0 < i < 90◦), and retrograde
trajectories (90◦ < i < 180◦).

For prograde trajectories (like the one illustrated in Figure 5.3), cos i > 0, so
that if (r1 × r2)Z > 0, then Equation 5.25 implies that sin �θ > 0, which means
0◦ < �θ < 180◦. Since �θ therefore lies in the first or second quadrant, it follows
that �θ is given by cos−1(r1 · r2/r1r2). On the other hand, if (r1 × r2)Z < 0, Equa-
tion 5.25 implies that sin �θ < 0, which means 180◦ < �θ < 360◦. In this case �θ

lies in the third or fourth quadrant and is given by 360◦ − cos−1(r1 · r2/r1r2). For
retrograde trajectories, cos i < 0. Thus, if (r1 × r2)Z > 0 then sin �θ < 0, which places
�θ in the third or fourth quadrant. Similarly, if (r1 × r2)Z > 0, �θ must lie in the
first or second quadrant.

This logic can be expressed more concisely as follows:

�θ =




cos−1

(
r1 · r2

r1r2

)
if (r1 × r2)Z ≥ 0

360◦ − cos−1

(
r1 · r2

r1r2

)
if (r1 × r2)Z < 0

prograde trajectory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cos−1

(
r1 · r2

r1r2

)
if (r1 × r2)Z < 0

360◦ − cos−1

(
r1 · r2

r1r2

)
if (r1 × r2)Z ≥ 0

retrograde trajectory

(5.26)

J. H. Lambert (1728–1777) was a French-born German astronomer, physicist and
mathematician. According to a theorem of Lambert, the transfer time �t from P1

to P2 is independent of the orbit’s eccentricity and depends only on the sum r1 + r2

of the magnitudes of the position vectors, the semimajor axis a and the length c of
the chord joining P1 and P2. It is noteworthy that the period (of an ellipse) and the
specific mechanical energy are also independent of the eccentricity (Equations 2.73,
2.70 and 2.100).

If we know the time of flight �t from P1 to P2, then Lambert’s problem is to
find the trajectory joining P1 and P2. The trajectory is determined once we find v1,
because, according to Equations 2.125 and 2.126, the position and velocity of any
point on the path are determined by r1 and v1. That is, in terms of the notation in
Figure 5.3,

r2 = f r1 + gv1 (5.27a)

v2 = ḟ r1 + ġv1 (5.27b)

Solving the first of these for v1 yields

v1 = 1

g
(r2 − f r1) (5.28)

Substitute this result into Equation 5.27b to get

v2 = ḟ r1 + ġ

g
(r2 − f r1) = ġ

g
r2 − f ġ − ḟ g

g
r1

louiscoo
铅笔

louiscoo
铅笔

louiscoo
铅笔

louiscoo
铅笔
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But, according to Equation 2.129, f ġ − ḟ g = 1. Hence,

v2 = 1

g
(ġr2 − r1) (5.29)

By means of Algorithm 4.1 we can find the orbital elements from either r1 and v1 or
r2 and v2.

Clearly, Lambert’s problem is solved once we determine the Lagrange coefficients
f , g and ġ . We will follow the procedure presented by Bate, Mueller and White (1971)
and Bond and Allman (1996).

The Lagrange f and g coefficients and their time derivatives are listed as functions
of the change in true anomaly �θ in Equations 2.148,

f = 1 − µr2

h2
(1 − cos �θ) g = r1r2

h
sin �θ (5.30a)

ḟ = µ

h

1 − cos �θ

sin �θ

[
µ

h2
(1 − cos �θ) − 1

r1
− 1

r2

]
ġ = 1 − µr1

h2
(1 − cos �θ)

(5.30b)

Equations 3.66 express these quantities in terms of the universal anomaly χ,

f = 1 − χ2

r1
C(z) g = �t − 1√

µ
χ3S(z) (5.31a)

ḟ =
√

µ

r1r2
χ[zS(z) − 1] ġ = 1 − χ2

r2
C(z) (5.31b)

where z = αχ2. The f and g functions do not depend on the eccentricity, which
would seem to make them an obvious choice for the solution of Lambert’s problem.
Ignoring for the time being that z = αχ2, the unknowns on the right of the above sets
of equations are h, χ and z, whereas �θ, �t , r and r0 are given.

While �θ appears throughout Equations 5.30, the time interval �t does not.
However, �t does appear in Equation 5.31a. A relationship between �θ and �t can
therefore be found by equating the two expressions for g ,

r1r2

h
sin �θ = �t − 1√

µ
χ3S(z) (5.32)

To eliminate the unknown angular momentum h, equate the expressions for f in
Equations 5.30a and 5.31a,

1 − µr2

h2
(1 − cos �θ) = 1 − χ2

r1
C(z)

Upon solving this for h we obtain

h =
√

µr1r2(1 − cos �θ)

χ2C(z)
(5.33)

(Equating the two expressions for ġ leads to the same result.) Substituting Equation
5.33 into 5.32, simplifying and rearranging terms yields

√
µ�t = χ3S(z) + χ

√
C(z)

(
sin �θ

√
r1r2

1 − cos �θ

)
(5.34)
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The term in parentheses on the right is a constant comprised solely of the given data.
Let us assign it the symbol A,

A = sin �θ

√
r1r2

1 − cos �θ
(5.35)

Then Equation 5.34 assumes the simpler form

√
µ�t = χ3S(z) + Aχ

√
C(z) (5.36)

The right side of this equation contains both of the unknown variables χ and z.
We cannot use the fact that z = αχ2 to reduce the unknowns to one since α is the
reciprocal of the semimajor axis of the unknown orbit.

In order to find a relationship between z and χ which does not involve orbital
parameters, we equate the expressions for ḟ (Equations 5.30b and 5.31b) to obtain

µ

h

1 − cos �θ

sin �θ

[
µ

h2
(1 − cos �θ) − 1

r1
− 1

r2

]
=

√
µ

r1r2
χ[zS(z) − 1]

Multiplying through by r1r2 and substituting for the angular momentum using
Equation 5.33 yields

µ√
µr1r2(1 − cos �θ)

χ2C(z)

1 − cos �θ

sin �θ


 µ

µr1r2(1 − cos �θ)

χ2C(z)

(1 − cos �θ) − r1 − r2




= √
µχ[zS(z) − 1]

Simplifying and dividing out common factors leads to
√

1 − cos �θ√
r1r2 sin �θ

√
C(z)[χ2C(z) − r1 − r2] = zS(z) − 1

We recognize the reciprocal of A on the left, so we can rearrange this expression to
read as follows,

χ2C(z) = r1 + r2 + A
zS(z) − 1√

C(z)

The right-hand side depends exclusively on z. Let us call that function y(z), so that

χ =
√

y(z)

C(z)
(5.37)

where

y(z) = r1 + r2 + A
zS(z) − 1√

C(z)
(5.38)

Equation 5.37 is the relation between χ and z that we were seeking. Substituting it
back into Equation 5.36 yields

√
µ�t =

[
y(z)

C(z)

] 3
2

S(z) + A
√

y(z) (5.39)
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We can use this equation to solve for z, given the time interval �t . It must be done
iteratively. Using Newton’s method, we form the function

F(z) =
[

y(z)

C(z)

] 3
2

S(z) + A
√

y(z) − √
µ�t (5.40)

and its derivative

F ′(z) = 1

2
√

y(z)C(z)5

{
[2C(z)S′(z) − 3C′(z)S(z)]y2(z)

+
[

AC(z)
5
2 + 3C(z)S(z)y(z)

]
y′(z)

}
(5.41)

in which C′(z) and S′(z) are the derivatives of the Stumpff functions, which are given
by Equations 3.60. y′(z) is obtained by differentiating y(z) in Equation 5.38,

y′(z) = A

2C(z)
3
2

{[1 − zS(z)]C′(z) + 2[S(z) + zS′(z)]C(z)}

If we substitute Equations 3.60 into this expression a much simpler form is obtained,
namely

y′(z) = A

4

√
C(z) (5.42)

This result can be worked out by using Equations 3.49 and 3.50 to express C(z) and
S(z) in terms of the more familiar trig functions. Substituting Equation 5.42 along
with Equations 3.60 into Equation 5.41 yields

F ′(z) =




[
y(z)

C(z)

] 3
2
{

1

2z

[
C(z) − 3

2

S(z)

C(z)

]
+ 3

4

S(z)2

C(z)

}

+ A

8

[
3

S(z)

C(z)

√
y(z) + A

√
C(z)

y(z)

]
(z �= 0)

√
2

40
y(0)

3
2 + A

8

[√
y(0) + A

√
1

2y(0)

]
(z = 0)

(5.43)

Evaluating F ′(z) at z = 0 must be done carefully (and is therefore shown as a special
case), because of the z in the denominator within the curly brackets. To handle z = 0,
we assume that z is very small (almost, but not quite zero) so that we can retain
just the first two terms in the series expansions of C(z) and S(z) (Equations 3.47
and 3.48),

C(z) = 1

2
− z

24
+ . . . S(z) = 1

6
− z

120
+ . . .
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Then we evaluate the term within the curly brackets as follows:

1

2z

[
C(z) − 3

2

S(z)

C(z)

]
≈ 1

2z



(

1

2
− z

24

)
− 3

2

(
1

6
− z

120

)
(

1

2
− z

24

)



= 1

2z

[(
1

2
− z

24

)
− 3

(
1

6
− z

120

)(
1 − z

12

)−1
]

≈ 1

2z

[(
1

2
− z

24

)
− 3

(
1

6
− z

120

)(
1 + z

12

)]

= 1

2z

(
− 7z

120
+ z2

480

)

= − 7

240
+ z

960

In the third step we used the familiar binomial expansion theorem,

(a + b)n = an+nan−1b+ n(n − 1)

2! an−2b2+ n(n − 1)(n − 2)

3! an−3b3+. . . (5.44)

to set (1 − z/12)−1 ≈ 1 + z/12, which is true if z is close to zero. Thus, when z is
actually zero,

1

2z

[
C(z) − 3

2

S(z)

C(z)

]
= − 7

240

Evaluating the other terms in F ′(z) presents no difficulties.
F(z) in Equation 5.40 and F ′(z) in Equation 5.43 are used in Newton’s formula,

Equation 3.13, for the iterative procedure,

zi+1 = zi − F(zi)

F ′(zi)
(5.45)

For choice of a starting value for z, recall that z = (1/a)χ2. According to Equation 3.54,
z = E2 for an ellipse and z = −F2 for a hyperbola. Since we do not know what the
orbit is, setting z0 = 0 seems a reasonable, simple choice. Alternatively, one can plot
or tabulate F(z) and choose z0 to be a point near where F(z) changes sign.

Substituting Equations 5.37 and 5.39 into Equations 5.31 yields the Lagrange
coefficients as functions of z alone:

f = 1 −

[√
y(z)

C(z)

]2

r1
C(z) = 1 − y(z)

r1
(5.46a)

g = 1√
µ

{[
y(z)

C(z)

] 3
2

S(z) + A
√

y(z)

}
− 1√

µ

[
y(z)

C(z)

] 3
2

S(z) = A

√
y(z)

µ
(5.46b)
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ḟ =
√

µ

r1r2

√
y(z)

C(z)
[zS(z) − 1] (5.46c)

ġ = 1 −

[√
y(z)

C(z)

]2

r2
C(z) = 1 − y(z)

r2
(5.46d)

We are now in a position to present the solution of Lambert’s problem in universal
variables, following Bond and Allman (1996).

Algorithm
5.2

Solve Lambert’s problem. A MATLAB implementation appears in Appendix D.12.

Given r1, r2 and �t , the steps are as follows.

1. Calculate r1 and r2 using Equation 5.24.

2. Choose either a prograde or retrograde trajectory and calculate �θ using
Equation 5.26.

3. Calculate A in Equation 5.35.

4. By iteration, using Equations 5.40, 5.43 and 5.45, solve Equation 5.39 for z. The
sign of z tells us whether the orbit is a hyperbola (z < 0), parabola (z = 0) or
ellipse (z > 0).

5. Calculate y using Equation 5.38.

6. Calculate the Lagrange f , g and ġ functions using Equations 5.46.

7. Calculate v1 and v2 from Equations 5.28 and 5.29.

8. Use r1 and v1 (or r2 and v2) in Algorithm 4.1 to obtain the orbital elements.

Example
5.2

The position of an earth satellite is first determined to be r1 = 5000Î + 10 000Ĵ +
2100K̂ (km). After one hour the position vector is r2 = −14 600Î + 2500Ĵ +
7000K̂ (km). Determine the orbital elements and find the perigee altitude and the
time since perigee passage of the first sighting.

We first must execute the steps of Algorithm 5.2 in order to find v1 and v2.

Step 1:

r1 =
√

50002 + 10 0002 + 21002 = 11 375 km

r2 =
√

(−14 600)2 + 25002 + 70002 = 16 383 km

Step 2: assume a prograde trajectory:

r1 × r2 = (64.75Î − 65.66Ĵ + 158.5K̂) × 106

cos−1 r1 · r2

r1r2
= 100.29◦

Since the trajectory is prograde and the z component of r1 × r2 is positive, it follows
from Equation 5.26 that

�θ = 100.29◦
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Step 3:

A = sin �θ

√
r1r2

1 − cos �θ
= sin 100.29◦

√
11 375 · 16 383

1 − cos 100.29◦ = 12 372 km

Step 4:

Using this value of A and �t = 3600 s, we can evaluate the functions F(z) and F ′(z)
given by Equations 5.40 and 5.43, respectively. Let us first plot F(z) to get at least a
rough idea of where it crosses the z axis. As can be seen from Figure 5.4, F(z) = 0
near z = 1.5. With z0 = 1.5 as our initial estimate, we execute Newton’s procedure,
Equation 5.45,

zi+1 = zi − F(zi)

F ′(zi)

z1 = 1.5 − −14 476.4

362 642
= 1.53991

z2 = 1.53991 − 23.6274

363 828
= 1.53985

z3 = 1.53985 − 6.29457 × 10−5

363 826
= 1.53985

Thus, to five significant figures z = 1.5398. The fact that z is positive means the orbit
is an ellipse.

Step 5:

y = r1 + r2 + A
zS(z) − 1√

C(z)
= 11 375 + 16 383 + 12 372

1.5398S(1.5398)√
C(1.5398)

= 13 523 km

Step 6:

Equations 5.46 yield the Lagrange functions

f = 1 − y

r1
= 1 − 13 523

11 375
= −0.18877

1 2
0

F(z)

z

�5 � 105

5 � 105

Figure 5.4 Graph of F(z).
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(Example 5.2
continued) g = A

√
y

µ
= 12 372

√
13 523

398 600
= 2278.9 s

ġ = 1 − y

r2
= 1 − 13 523

16 383
= 0.17457

Step 7:

v1 = 1

g
(r2 − f r1) = 1

2278.9
[(−14 600Î + 2500Ĵ + 7000K̂)

− (−0.18877)(5000Î + 10 000Ĵ + 2100K̂)]

v1 = −5.9925Î + 1.9254Ĵ + 3.2456K̂ (km)

v2 = 1

g
(ġr2 − r1) = 1

2278.9
[(0.17457)(−14 600Î + 2500Ĵ + 7000K̂)

− (5000Î + 10 000Ĵ + 2100K̂)]

v2 = −3.3125Î − 4.1966Ĵ − 0.38529K̂ (km)

Step 8:

Using r1 and v1, Algorithm 4.1 yields the orbital elements:

h = 80 470 km2/s

a = 20 000 km

e = 0.4335

� = 44.60◦

i = 30.19◦

ω = 30.71◦

θ1 = 350.8◦

This elliptical orbit is plotted in Figure 5.5. The perigee of the orbit is

rp = h2

µ

1

1 + e cos (0)
= 80 4702

398 600

1

1 + 0.4335
= 11 330 km

Therefore the perigee altitude is 11 330 − 6378 = 4952 km.
To find the time of the first sighting, we first calculate the eccentric anomaly by

means of Equation 3.10b,

E1 = 2 tan−1

(√
1 − e

1 + e
tan

θ

2

)
= 2 tan−1

(√
1 − 0.4335

1 + 0.4335
tan

350.8◦

2

)

= 2 tan−1(−0.05041) = −0.1007 rad

Then using Kepler’s equation for the ellipse (Equation 3.11), the mean anomaly is
found to be

Me1 = E1 − e sin E1 = −0.1007 − 0.4335 sin(−0.1007) = −0.05715 rad
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so that from Equation 3.4, the time since perigee passage is

t1 = h3

µ2

1(
1 − e2

) 3
2

Me1 = 80 4703

398 6002

1(
1 − 0.43352

) 3
2

(−0.05715) = −256.1 s

The minus sign means there are 256.1 seconds until perigee encounter after the initial
sighting.

X

Y

Z

�

r1

r2

Perigee

Apogee

Ascending
node

Descending
node

Equatorial plane

44.6°Earth

P1

P2

Figure 5.5 The solution of Lambert’s problem.

Example
5.3

A meteoroid is sighted at an altitude of 267 000 km. 13.5 hours later, after a change in
true anomaly of 5◦, the altitude is observed to be 140 000 km. Calculate the perigee
altitude and the time to perigee after the second sighting.

We have

P1: r1 = 6378 + 267 000 = 273 378 km

P2: r2 = 6378 + 140 000 = 146 378 km

�t = 13.5 · 3600 = 48 600 s

�θ = 5◦

Since r1, r2 and �θ are given, we can skip to step 3 of Algorithm 5.2 and compute

A = 2.8263 × 105 km
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(Example 5.3
continued)

Then, solving for z as in the previous example, we obtain

z = −0.17344

Since z is negative, the path of the meteoroid is a hyperbola.
With z available, we evaluate the Lagrange functions,

f = 0.95846

g = 47 708 s (a)

ġ = 0.92241

Step 7 requires the initial and final position vectors. Therefore, for the purposes of
this problem let us define a geocentric coordinate system with the x axis aligned with
r1 and the y axis at 90◦ thereto in the direction of the motion (see Figure 5.6). The
z axis is therefore normal to the plane of the orbit. Then

r1 = r1 î = 273 378î (km)

r2 = r2 cos �θî + r2 sin �θĵ = 145 820î + 12 758ĵ (km) (b)

With (a) and (b) we obtain the velocity at P1,

v1 = 1

g
(r2 − f r1)

= 1

47 708
[(145 820î + 12 758ĵ) − 0.95846(273 378î)]

= −2.4356î − 0.26741ĵ (km/s)

Using r1 and v1, Algorithm 4.1 yields

h = 73 105 km2/s

e = 1.0506

θ1 = 205.16◦

The orbit is now determined except for its orientation in space, for which no
information was provided. In the plane of the orbit, the trajectory is as shown in
Figure 5.6.

The perigee radius is

rp = h2

µ

1

1 + e cos(0)
= 6538.2 km

which means the perigee altitude is dangerously low for a large meteoroid,

zp = 6538.2 − 6378 = 160.2 km (100 miles)

To find the time of flight from P2 to perigee, we note that the true anomaly of P2 is

θ2 = θ1 + 5◦ = 210.16◦
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The hyperbolic eccentric anomaly F2 follows from Equation 3.42,

F2 = 2 tanh−1

(√
e − 1

e + 1
tan

θ2

2

)
= −1.3347 rad

From this we appeal to Kepler’s equation (Equation 3.37) for the mean anomaly Mh,

Mh2 = e sinh (F2) − F2 = −0.52265 rad

Finally, Equation 3.31 yields the time

t2 = Mh2 h3

µ2
(
e2 − 1

) 3
2

= −38 396 s

The minus sign means that 38 396 seconds (a scant 10.6 hours) remain until the
meteoroid passes through perigee.

P1

P2

210.16°

205.16°

273 378 km

146 378 km

r1

r2

x

y

Figure 5.6 Solution of Lambert’s problem for the incoming meteoroid.

5.4 Sidereal time

To deduce the orbit of a satellite or celestial body from observations requires, among
other things, recording the time of each observation. The time we use in every day
life, the time we set our clocks by, is solar time. It is reckoned by the motion of the
sun across the sky. A solar day is the time required for the sun to return to the same
position overhead, that is, to lie on the same meridian. A solar day – from high noon
to high noon – comprises 24 hours. Universal time (UT) is determined by the sun’s
passage across the Greenwich meridian, which is zero degrees terrestrial longitude.
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See Figure 1.9. At noon UT the sun lies on the Greenwich meridian. Local standard
time, or civil time, is obtained from universal time by adding one hour for each time
zone between Greenwich and the site, measured westward.

Sidereal time is measured by the rotation of the earth relative to the fixed stars
(i.e., the celestial sphere, Figure 4.3). The time it takes for a distant star to return to
its same position overhead, i.e., to lie on the same meridian, is one sidereal day (24
sidereal hours). As illustrated in Figure 4.19, the earth’s orbit around the sun results
in the sidereal day being slightly shorter than the solar day. One sidereal day is 23
hours and 56 minutes. To put it another way, the earth rotates 360◦ in one sidereal
day whereas it rotates 360.986◦ in a solar day.

Local sidereal time θ of a site is the time elapsed since the local meridian of the
site passed through the vernal equinox. The number of degrees (measured eastward)
between the vernal equinox and the local meridian is the sidereal time multiplied
by 15. To know the location of a point on the earth at any given instant relative to
the geocentric equatorial frame requires knowing its local sidereal time. The local
sidereal time of a site is found by first determining the Greenwich sidereal time θG

(the sidereal time of the Greenwich meridian), and then adding the east longitude (or
subtracting the west longitude) of the site. Algorithms for determining sidereal time
rely on the notion of the Julian day (JD).

The Julian day number is the number of days since noon UT on 1 January
4713 BC. The origin of this time scale is placed in antiquity so that, except for pre-
historic events, we do not have to deal with positive and negative dates. The Julian
day count is uniform and continuous and does not involve leap years or differ-
ent numbers of days in different months. The number of days between two events
is found by simply subtracting the Julian day of one from that of the other. The
Julian day begins at noon rather than at midnight so that astronomers observing
the heavens at night would not have to deal with a change of date during their
watch.

The Julian day numbering system is not to be confused with the Julian calendar
which the Roman emperor Julius Caesar introduced in 46 BC. The Gregorian calendar,
introduced in 1583, has largely supplanted the Julian calender and is in common civil
use today throughout much of the world.

J0 is the symbol for the Julian day number at 0 hr UT (which is half way into the
Julian day). At any other UT, the Julian day is given by

JD = J0 + UT

24
(5.47)

Algorithms and tables for obtaining J0 from the ordinary year (y), month (m) and day
(d) exist in the literature and on the World Wide Web. One of the simplest formulas
is found in Boulet (1991),

J0 = 367y − INT




7

[
y + INT

(
m + 9

12

)]
4


 + INT

(
275m

9

)
+ d + 1 721 013.5

(5.48)
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where y, m and d are integers lying in the following ranges

1901 ≤ y ≤ 2099

1 ≤ m ≤ 12

1 ≤ d ≤ 31

INT(x) means to retain only the integer portion of x, without rounding (or, in
other words, round towards zero); that is, INT(−3.9) = −3 and INT(3.9) = 3.
Appendix D.12 lists a MATLAB implementation of Equation 5.48.

Example
5.4

What is the Julian day number for 12 May 2004 at 14:45:30 UT?

In this case y = 2004, m = 5 and d = 12. Therefore, Equation 5.48 yields the Julian
day number at 0 hr UT,

J0 = 367 · 2004 − INT




7

[
2004 + INT

(
5 + 9

12

)]
4


 + INT

(
275 · 5

9

)

+ 12 + 1 721 013.5

= 735 468 − INT

{
7 [2004 + 1]

4

}
+ 152 + 12 + 1 721 013.5

= 735 468 − 3508 + 152 + 12 + 1 721 013.5

or

J0 = 2 453 137.5 days

The universal time, in hours, is

UT = 14 + 45

60
+ 30

3600
= 14.758 hr

Therefore, from Equation 5.47 we obtain the Julian day number at the desired UT,

JD = 2 453 137.5 + 14.758

24
= 2 453 138.115 days

Example
5.5

Find the elapsed time between 4 October 1957 UT 19:26:24 and the date of the
previous example.

Proceeding as in Example 5.4 we find that the Julian day number of the given event
(the launch of the first man-made satellite, Sputnik I) is

JD1 = 2 436 116.3100 days

The Julian day of the previous example is

JD2 = 2 453 138.1149 days

Hence, the elapsed time is

�JD = 2 453 138.1149 − 2 436 116.3100 = 17 021.805 days (46 years, 220 days)
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The current Julian epoch is defined to have been noon on 1 January 2000. This epoch
is denoted J2000 and has the exact Julian day number 2 451 545.0. Since there are
365.25 days in a Julian year, a Julian century has 36 525 days. It follows that the time
T0 in Julian centuries between the Julian day J0 and J2000 is

T0 = J0 − 2 451 545

36 525
(5.49)

The Greenwich sidereal time θG0 at 0 hr UT may be found in terms of this dimen-
sionless time (Seidelmann, 1992, Section 2.24). θG0 in degrees is given by the series

θG0 = 100.4606184 + 36 000.77004T0 + 0.000387933T2
0 − 2.583(10−8)T3

0 (degrees)
(5.50)

This formula can yield a value outside of the range 0 ≤ θG0 ≤ 360◦. If so, then the
appropriate integer multiple of 360◦ must be added or subtracted to bring θG0 into
that range.

Once θG0 has been determined, the Greenwich sidereal time θG at any other
universal time are found using the relation

θG = θG0 + 360.98564724
UT

24
(5.51)

where UT is in hours. The coefficient of the second term on the right is the number
of degrees the earth rotates in 24 hours (solar time).

Finally, the local sidereal time θ of a site is obtained by adding its east longitude
� to the Greenwich sidereal time,

θ = θG + � (5.52)

�
North
pole

Site

Greenwich

�G

�

Greenwich
at 0 hr UT

Λ

θG0

Figure 5.7 Schematic of the relationship among θG0 , θG , � and θ.
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Here again it is possible for the computed value of θ to exceed 360◦. If so, it must be
reduced to within that limit by subtracting the appropriate integer multiple of 360◦.
Figure 5.7 illustrates the relationship among θG0 , θG, � and θ.

Algorithm
5.3

Calculate the local sidereal time, given the date, the local time and the east longitude
of the site. This is implemented in MATLAB in Appendix D.13.

1. Using the year, month and day, calculate J0 using Equation 5.48.

2. Calculate T0 by means of Equation 5.49.

3. Compute θG0 from Equation 5.50. If θG0 lies outside the range 0◦ ≤ θG0 ≤ 360◦,
then subtract the multiple of 360◦ required to place θG0 in that range.

4. Calculate θG using Equation 5.51.

5. Calculate the local sidereal time θ by means of Equation 5.52, adjusting the final
value so it lies between 0 and 360◦.

Example
5.6

Use Algorithm 5.3 to find the local sidereal time (in degrees) of Tokyo, Japan,
on 3 March 2004 at 4:30:00 UT. The east longitude of Tokyo is 139.80◦. (This
places Tokyo nine time zones ahead of Greenwich, so the local time is 1:30 in the
afternoon.)

Step 1:

J0 = 367 · 2004 − INT




7

[
2004 + INT

(
3 + 9

12

)]
4


 + INT

(
275 · 3

9

)

+ 3 + 1 721 013.5

= 2 453 067.5 days

Recall that the .5 means that we are half way into the Julian day, which began at noon
UT of the previous day.

Step 2:

T0 = 2 453 067.5 − 2 451 545

36 525
= 0.041683778

Step 3:

θG0 = 100.4606184 + 36 000.77004(0.041683778)

+ 0.000387933(0.041683778)2 − 2.583(10−8)(0.041683778)3

= 1601.1087◦

The right-hand side is too large. We must reduce θG0 to an angle which does not
exceed 360◦. To that end observe that

INT(1601.1087/360) = 4
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(Example 5.6
continued)

Hence,

θG0 = 1601.1087 − 4 · 360 = 161.10873◦ (a)

Step 4:

The universal time of interest in this problem is

UT = 4 + 30

60
+ 0

3600
= 4.5 hr

Substitute this and (a) into Equation 5.51 to get the Greenwich sidereal time:

θG = 161.10873 + 360.98564724
4.5

24
= 228.79354◦

Step 5:

Add the east longitude of Tokyo to this value to obtain the local sidereal time,

θ = 228.79354 + 139.80 = 368.59◦

To reduce this result into the range 0 ≤ θ ≤ 360◦ we must subtract 360◦ to get

θ = 368.59 − 360 = 8.59◦ (0.573 hr)

Observe that the right ascension of a celestial body lying on Tokyo’s meridian is 8.59◦.

5.5 Topocentric coordinate system

A topocentric coordinate system is one which is centered at the observer’s location
on the surface of the earth. Consider an object B – a satellite or celestial body – and
an observer O on the earth’s surface, as illustrated in Figure 5.8. r is the position
of the body B relative to the center of attraction C; R is the position vector of the
observer relative to C; and � is the position of the body B relative to the observer. r, R
and � comprise the fundamental vector triangle. The relationship among these three
vectors is

r = R + � (5.53)

As we know, the earth is not a sphere, but a slightly oblate spheroid. This ellipsoidal
shape is exaggerated in Figure 5.8. The location of the observation site O is determined
by specifying its east longitude � and latitude φ. East longitude � is measured positive
eastward from the Greenwich meridian to the meridian through O. The angle between
the vernal equinox direction (XZ plane) and the meridian of O is the local sidereal
time θ. Likewise, θG is the Greenwich sidereal time. Once we know θG, then the local
sidereal time is given by Equation 5.52.

Latitude φ is the angle between the equator and the normal n̂ to the earth’s surface
at O. Since the earth is not a perfect sphere, the position vector R, directed from the
center C of the earth to O, does not point in the direction of the normal except at the
equator and the poles.
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Figure 5.8 Oblate spheroidal earth (exaggerated).

The oblateness, or flattening f , was defined in Section 4.7,

f = Re − Rp

Re

where Re is the equatorial radius and Rp is the polar radius. (Review from Table 4.3
that f = 0.00335 for the earth.) Figure 5.9 shows the ellipse of the meridian through
O. Obviously, Re and Rp are, respectively, the semimajor and semiminor axes of the
ellipse. According to Equation 2.66,

Rp = Ra
(
1 − e2)

It is easy to show from the above two relations that flattening and eccentricity are
related as follows

e =
√

2f − f 2 f = 1 −
√

1 − e2

As illustrated in Figure 5.8 and again in Figure 5.9, the normal to the earth’s surface at
O intersects the polar axis at a point C′ which lies below the center C of the earth (if
O is in the northern hemisphere). The angle φ between the normal and the equator
is called the geodetic latitude, as opposed to geocentric latitude φ′, which is the angle
between the equatorial plane and line joining O to the center of the earth. The distance
from C to C′ is Rφe2 sin2 φ, where Rφ, the distance from C′ to O, is a function of
latitude (Seidelmann, 1991, Section 4.22)

Rφ = Re√
1 − e2 sin2 φ

= Re√
1 − (

2f − f 2
)

sin2 φ

(5.54)
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Thus, the meridional coordinates of O are

x′
O = Rφ cos φ

z′
O = (

1 − e2)Rφ sin φ = (1 − f )2Rφ sin φ

If the observation point O is at an elevation H above the ellipsoidal surface, then we
must add H cos φ to x′

O and H sin φ to z′
O to obtain

x′
O = Rc cos φ z′

O = Rs sin φ (5.55a)

where

Rc = Rφ + H Rs = (1 − f )2Rφ + H (5.55b)

Observe that whereas Rc is the distance of O from point C′ on the earth’s axis, Rs is
the distance from O to the intersection of the line OC′ with the equatorial plane.

The geocentric equatorial coordinates of O are

X = x′
O cos θ Y = x′

O sin θ Z = z′
O

where θ is the local sidereal time given in Equation 5.52. Hence, the position vector
R shown in Figure 5.8 is

R = Rc cos φ cos θÎ + Rc cos φ sin θĴ + Rs sin φK̂

C

Equator

Re

O

North
pole

Rp

Tangent

Rfe2 sin f

x'

z'

k'

R

C'

f'

f

R f
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x'O
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ˆ

ˆ

Figure 5.9 The relationship between geocentric latitude (φ′) and geodetic latitude (φ).
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Substituting Equation 5.54 and Equations 5.55b yields

R =

 Re√

1 − (
2f − f 2

)
sin2 φ

+ H


 cos φ(cos θÎ + sin θĴ)

+

 Re

(
1 − f

)2√
1 − (

2f − f 2
)

sin2 φ

+ H


 sin φK̂ (5.56)

In terms of the geocentric latitude φ′

R = Re cos φ′ cos θÎ + Re cos φ′ sin θĴ + Re sin φ′K̂

By equating these two expressions for R and setting H = 0 it is easy to show that at
sea level geodetic latitude is related to geocentric latitude φ′ as follows,

tan φ′ = (1 − f )2 tan φ

5.6 Topocentric equatorial coordinate system

The topocentric equatorial coordinate system with origin at point O on the surface
of the earth uses a non-rotating set of xyz axes through O which coincide with the
XYZ axes of the geocentric equatorial frame, as illustrated in Figure 5.10. As can be

X
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Ĵ

K̂

Y

θ

C

O

R

Re

r

Z

�

x

y

z

	




B

��Equator
i

ĵ
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Figure 5.10 Topocentric equatorial coordinate system.
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inferred from the figure, the relative position vector � in terms of the topocentric
right ascension and declination is

� = � cos δ cos αÎ + � cos δ sin αĴ + � sin δK̂

since at all times, î = Î, ĵ = Ĵ and k̂ = K̂ for this frame of reference. We can write � as

� = ��̂

where � is the slant range and �̂ is the unit vector in the direction of �,

�̂ = cos δ cos αÎ + cos δ sin αĴ + sin δK̂ (5.57)

Since the origins of the geocentric and topocentric systems do not coincide, the
direction cosines of the position vectors r and � will in general differ. In particular
the topocentric right ascension and declination of an earth-orbiting body B will not
be the same as the geocentric right ascension and declination. This is an example of
parallax. On the other hand, if ‖r‖�‖R‖ then the difference between the geocentric
and topocentric position vectors, and hence the right ascension and declination, is
negligible. This is true for the distant planets and stars.

Example
5.7

At the instant when the Greenwich sidereal time is θG = 126.7◦, the geocentric
equatorial position vector of the International Space Station is

r = −5368Î − 1784Ĵ + 3691K̂ (km)

Find the topocentric right ascension and declination at sea level (H = 0), latitude
φ = 20◦ and east longitude � = 60◦.

According to Equation 5.52, the local sidereal time at the observation site is

θ = θG + � = 126.7 + 60 = 186.7◦

Substituting Re = 6378 km, f = 0.003353 (Table 4.3), θ = 189.7◦ and φ = 20◦ into
Equation 5.56 yields the geocentric position vector of the site:

R = −5955Î − 699.5Ĵ + 2168K̂ (km)

Having found R, we obtain the position vector of the space station relative to the site
from Equation 5.53:

� = r − R

= (−5368Î − 1784Ĵ + 3691K̂) − (−5955Î − 699.5Ĵ + 2168K̂)

= 586.8Î − 1084Ĵ + 1523K̂ (km)

The magnitude of this vector is � = 1960 km, so that

�̂ = �

�
= 0.2994Î − 0.5533Ĵ + 0.7773K̂
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Comparing this equation with Equation 5.57 we see that

cos δ cos α = 0.2997

cos δ sin α = −0.5524

sin δ = 0.7778

From these we obtain the topocentric declension,

δ = sin−1 0.7773 = 51.01◦ (a)

as well as

sin α = −0.5533

cos δ
= −0.8795

cos α = 0.2994

cos δ
= 0.4759

Thus

α = cos−1(0.4759) = 61.58◦ (first quadrant) or 298.4◦(fourth quadrant)

Since sin α is negative, α must lie in the fourth quadrant, so that the right ascension is

α = 298.4◦ (b)

Compare (a) and (b) with the geocentric right ascension α0 and declination δ0,
which were computed in Example 4.2,

α0 = 198.4◦ δ0 = 33.12◦

5.7 Topocentric horizon coordinate system

The topocentric horizon system was introduced in Section 1.6 and is illustrated again
in Figure 5.11. It is centered at the observation point O whose position vector is R.
The xy plane is the local horizon, which is the plane tangent to the ellipsoid at point
O. The z axis is normal to this plane directed outward towards the zenith. The x
axis is directed eastward and the y axis points north. Because the x axis points east,
this may be referred to as an ENZ (East-North-Zenith) frame. In the SEZ topocentric
reference frame the x axis points towards the south and the y axis towards the east.
The SEZ frame is obtained from ENZ by a 90◦ clockwise rotation around the zenith.
Therefore, the matrix of the transformation from NEZ to SEZ is [R3(−90◦)], where
[R3(φ)] is found in Equation 4.33.

The position vector � of a body B relative to the topocentric horizon system in
Figure 5.11 is

� = � cos a sin Aî + � cos a cos Aĵ + � sin ak̂
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Figure 5.11 Topocentric horizon (xyz) coordinate system on the surface of the oblate earth.

in which � is the range; A is the azimuth measured positive clockwise from due north
(0 ≤ A ≤ 360◦); and a is the elevation angle or altitude measured from the horizontal
to the line of sight of the body B (−90◦ ≤ a ≤ 90). The unit vector �̂ in the line of
sight direction is

�̂ = cos a sin Aî + cos a cos Aĵ + sin ak̂ (5.58)

The transformation between geocentric equatorial and topocentric horizon systems

is found by first determining the projections of the topocentric base vectors îĵk̂ onto
those of the geocentric equatorial frame. From Figure 5.11 it is apparent that

k̂ = cos φî′ + sin φK̂

and

î′ = cos θÎ + sin θĴ

where î′ lies in the local meridional plane and is normal to the Z axis. Hence

k̂ = cos φ cos θÎ + cos φ sin θĴ + sin φK̂ (5.59)

The eastward-directed unit vector î may be found by taking the cross product of K̂
into the unit normal k̂,

î = K̂ × k̂∥∥∥K̂ × k̂
∥∥∥ = −cos φ sin θÎ + cos φ cos θĴ√

cos2 φ
(
sin2 θ + cos2 θ

) = −sin θÎ + cos θĴ (5.60)
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Finally, crossing k̂ into î yields ĵ,

ĵ = k̂ × î =
∣∣∣∣∣∣

Î Ĵ K̂
cos φ cos θ cos φ sin θ sin φ

−sin θ cos θ 0

∣∣∣∣∣∣ = −sin φ cos θÎ − sin φ sin θĴ + cos φK̂

(5.61)

Let us denote the matrix of the transformation from geocentric equatorial to topocen-
tric horizon as [Q]Xx . Recall from Section 4.5 that the rows of this matrix comprise

the direction cosines of î, ĵ and k̂, respectively. It follows from Equations 5.59 through
5.61 that

[Q]Xx =

 −sin θ cos θ 0

−sin φ cos θ −sin φ sin θ cos φ

cos φ cos θ cos φ sin θ sin φ


 (5.62a)

The reverse transformation, from topocentric horizon to geocentric equatorial, is
represented by the transpose of this matrix,

[Q]xX =

−sin θ −sin φ cos θ cos φ cos θ

cos θ −sin φ sin θ cos φ sin θ

0 cos φ sin φ


 (5.62b)

Observe that these matrices also represent the transformation between topocentric
horizontal and topocentric equatorial frames because the unit basis vectors of the
latter coincide with those of the geocentric equatorial coordinate system.

Example
5.8

The east longitude and latitude of an observer near San Francisco are � = 238◦ and
φ = 38◦, respectively. The local sidereal time, in degrees, is θ = 215.1◦ (12 hr 42 min).
At that time the planet Jupiter is observed by means of a telescope to be located at
azimuth A = 214.3◦ and angular elevation a = 43◦. What are Jupiter’s right ascension
and declination in the topocentric equatorial system?

The given information allows us to formulate the matrix of the transformation from
topocentric horizon to topocentric equatorial using Equation 5.62b,

[Q]xX =

−sin 215.1◦ −sin 38◦ cos 215.1◦ cos 38◦ cos 215.1◦

cos 215.1◦ −sin 38◦ sin 215.1◦ cos 38◦ sin 215.1◦
0 cos 38◦ sin 38◦




=

 0.5750 0.5037 −0.6447

−0.8182 0.3540 −0.4531
0 0.7880 0.6157




From Equation 5.58 we have

�̂ = cos a sin Aî + cos a cos Aĵ + sin ak̂

= cos 43◦ sin 214.3◦ î + cos 43◦ cos 214.3◦ ĵ + sin 43◦k̂

= −0.4121î − 0.6042ĵ + 0.6820k̂
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(Example 5.8
continued)

Therefore, in matrix notation the topocentric horizon components of �̂ are

{�̂}x =



−0.4121
−0.6042
0.6820




We obtain the topocentric equatorial components {�̂}X by the matrix operation

{�̂}X = [Q]xX{�̂}x =

 0.5750 0.5037 −0.6447

−0.8182 0.3540 −0.4531
0 0.7880 0.6157






−0.4121
−0.6042
0.6820




=



−0.9810
−0.1857
−0.05621




so that

�̂ = −0.9810Î − 0.1857Ĵ − 0.05621K̂

Recall Equation 5.57,

�̂ = cos δ cos αÎ + cos δ sin αĴ + sin δK̂

Comparing the Z components of these two expressions, we see that

sin δ = −0.0562

which means the topocentric equatorial declension is

δ = sin−1(−0.0562) = −3.222◦

Equating the X and Y components yields

sin α = −0.1857

cos δ
= −0.1860

cos α = −0.9810

cos δ
= −0.9825

Therefore,

α = cos−1(−0.9825) = 169.3◦(second quadrant) or 190.7◦(fourth quadrant)

Since sin α is negative, α is in the fourth quadrant, which means the topocentric
equatorial right ascension is

α = 190.7◦

Jupiter is sufficiently far away that we can ignore the radius of the earth in Equa-
tion 5.53. That is, to our level of precision, there is no distinction between the
topocentric equatorial and geocentric equatorial systems:

r ≈ �

Therefore the topocentric right ascension and declination computed above are the
same as the geocentric equatorial values.
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Example
5.9

At a given time, the geocentric equatorial position vector of the International Space
Station is

r = −2032.4Î + 4591.2Ĵ − 4544.8K̂ (km)

Determine the azimuth and elevation angle relative to a sea-level (H = 0) observer
whose latitude is φ = −40◦ and local sidereal time is θ = 110◦.

Using Equation 5.56 we find the position vector of the observer to be

R = −1673Î + 4598Ĵ − 4078K̂ (km)

For the position vector of the space station relative to the observer we have
(Equation 5.53)

� = r − R

= (−2032Î + 4591Ĵ − 4545K̂) − (−1673Î + 4598Ĵ − 4078K̂)

= −359.0Î − 6.342Ĵ − 466.9K̂ (km)

or, in matrix notation,

{�}X =



−359.0
−6.342
−466.9


 (km)

To transform these geocentric equatorial components into the topocentric horizon
system we need the transformation matrix [Q]Xx , which is given by Equation 5.62a,

[Q]Xx =

 − sin θ cos θ 0

− sin φ cos θ − sin φ sin θ cos φ

cos φ cos θ cos φ sin θ sin φ




=

 − sin 110◦ cos 110◦ 0

− sin(−40◦) cos 110◦ − sin(−40◦) sin 110◦ cos(−40◦)
cos(−40◦) cos 110◦ cos(−40◦) sin 110◦ sin(−40◦)




Thus,

{�}x = [Q]Xx{�}X =

−0.9397 −0.3420 0

−0.2198 0.6040 0.7660
−0.2620 0.7198 −0.6428






−359.0
−6.342
−466.9




=



339.5
−282.6
389.6


 (km)

or, reverting to vector notation,

� = 339.5î − 282.6ĵ + 389.6k̂ (km)

The magnitude of this vector is � = 589.0 km. Hence, the unit vector in the direction
of � is

�̂ = �

�
= 0.5765î − 0.4787ĵ + 0.6615k̂
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(Example 5.9
continued)

Comparing this with Equation 5.58 we see that sin a = 0.6615, so that the angular
elevation is

a = sin−1 0.6615 = 41.41◦

Furthermore

sin A = 0.5765

cos a
= 0.7687

cos A = −0.4787

cos a
= −0.6397

It follows that

A = cos−1(−0.6397) = 129.8◦(second quadrant) or 230.2◦(third quadrant)

A must lie in the second quadrant because sin A > 0. Thus the azimuth is

A = 129.8◦

5.8 Orbit determination from angle and
range measurements

We know that an orbit around the earth is determined once the state vectors r and
v in the inertial geocentric equatorial frame are provided at a given instant of time
(epoch). Satellites are of course observed from the earth’s surface and not from its
center. Let us briefly consider how the state vector is determined from measurements
by an earth-based tracking station.

The fundamental vector triangle formed by the topocentric position vector � of
a satellite relative to a tracking station, the position vector R of the station relative
to the center of attraction C and the geocentric position vector r was illustrated in
Figure 5.8 and is shown again schematically in Figure 5.12. The relationship among
these three vectors is given by Equation 5.53, which can be written

r = R + ��̂ (5.63)

where the range � is the distance of the body B from the tracking site and �̂ is
the unit vector containing the directional information about B. By differentiating
Equation 5.63 with respect to time we obtain the velocity v and acceleration a,

v = ṙ = Ṙ + �̇�̂ + � ˙̂� (5.64)

a = r̈ = R̈ + �̈�̂ + 2�̇ ˙̂� + � ¨̂� (5.65)

The vectors in these equations must all be expressed in the common basis (ÎĴK̂) of
the inertial (non-rotating) geocentric equatorial frame.

Since R is a vector fixed in the earth, whose constant angular velocity is � = ωEK̂
(see Equation 2.57), it follows from Equations 1.24 and 1.25 that

Ṙ = � × R (5.66)



5.8 Orbit determination from angle and range measurements 229

r

R

O

C

B

�

�

Figure 5.12 Earth-orbiting body B tracked by an observer O.

R̈ = � × (� × R) (5.67)

If LX , LY and LZ are the topocentric equatorial direction cosines, then the direction
cosine vector �̂ is

�̂ = LX Î + LY Ĵ + LZ K̂ (5.68)

and its first and second derivatives are

˙̂� = L̇X Î + L̇Y Ĵ + L̇Z K̂ (5.69)

and

¨̂� = L̈X Î + L̈Y Ĵ + L̈Z K̂ (5.70)

Comparing Equations 5.57 and 5.68 reveals that the topocentric equatorial direction
cosines in terms of the topocentric right ascension α and declension δ are


LX

LY

LZ


 =




cos α cos δ

sin α cos δ

sin δ


 (5.71)

Differentiating this equation twice yields


L̇X

L̇Y

L̇Z


 =




−α̇ sin α cos δ − δ̇ cos α sin δ

α̇ cos α cos δ − δ̇ sin α sin δ

δ̇ cos δ


 (5.72)

and


L̈X

L̈Y

L̈Z


 =




−α̈ sin α cos δ − δ̈ cos α sin δ − (
α̇2 + δ̇2

)
cos α cos δ + 2α̇δ̇ sin α sin δ

α̈ cos α cos δ − δ̈ sin α sin δ − (
α̇2 + δ̇2

)
sin α cos δ − 2α̇δ̇ cos α sin δ

δ̈ cos δ − δ̇2 sin δ




(5.73)
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Equations 5.71 through 5.73 show how the direction cosines and their rates are
obtained from the right ascension and declination and their rates.

In the topocentric horizon system, the relative position vector is written

�̂ = lx î + ly ĵ + lz k̂ (5.74)

where, according to Equation 5.58, the direction cosines lx , ly and lz are found in
terms of the azimuth A and elevation a as


lx
ly
lz


 =




sin A cos a
cos A cos a

sin a


 (5.75)

LX , LY and LZ are obtained from lx , ly and lz by the coordinate transformation


LX

LY

LZ


 = [Q]xX




lx
ly
lz


 (5.76)

where [Q]xX is given by Equation 5.62b. Thus


LX

LY

LZ


 =


−sin θ −cos θ sin φ cos θ cos φ

cos θ −sin θ sin φ sin θ cos φ

0 cos φ sin φ






sin A cos a
cos A cos a

sin a


 (5.77)

Substituting Equation 5.71 we see that topocentric right ascension/declination and
azimuth/elevation are related by


cos α cos δ

sin α cos δ

sin δ


 =


−sin θ −cos θ sin φ cos θ cos φ

cos θ −sin θ sin φ sin θ cos φ

0 cos φ sin φ






sin A cos a
cos A cos a

sin a




Expanding the right-hand side and solving for sin δ, sin α and cos α we get

sin δ = cos φ cos A cos a + sin φ sin a (5.78a)

sin α = (cos φ sin a − cos A cos a sin φ) sin θ + cos θ sin A cos a

cos δ
(5.78b)

cos α = (cos φ sin a − cos A cos a sin φ) cos θ − sin θ sin A cos a

cos δ
(5.78c)

We can simplify Equations 5.78b and 5.78c by introducing the hour angle h,

h = θ − α (5.79)

h is the angular distance between the object and the local meridian. If h is positive,
the object is west of the meridian; if h is negative, the object is east of the meridian.

Using well-known trig identities we have

sin(θ − α) = sin θ cos α − cos θ sin α (5.80a)

cos(θ − α) = cos θ cos α + sin θ sin α (5.80b)

Substituting Equations 5.78b and 5.78c on the right of 5.80a and simplifying yields

sin(h) = − sin A cos a

cos δ
(5.81)
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Likewise, Equation 5.80b leads to

cos(h) = cos φ sin a − sin φ cos A cos a

cos δ
(5.82)

We calculate h from this equation, resolving quadrant ambiguity by checking the sign
of sin(h). That is,

h = cos−1
(

cos φ sin a − sin φ cos A cos a

cos δ

)

if sin(h) is positive. Otherwise, we must subtract h from 360◦. Since both the elevation
angle a and the declension δ lie between −90◦ and +90◦, neither cos a nor cos δ can
be negative. It follows from Equation 5.81 that the sign of sin(h) depends only on
that of sin A.

To summarize, given the topocentric azimuth A and altitude a of the target
together with the sidereal time θ and latitude φ of the tracking station, we compute
the topocentric declension δ and right ascension α as follows,

δ = sin−1(cos φ cos A cos a + sin φ sin a) (5.83a)

h =




2π − cos−1

(
cos φ sin a − sin φ cos A cos a

cos δ

)
0◦ < A < 180◦

cos−1

(
cos φ sin a − sin φ cos A cos a

cos δ

)
180◦ ≤ A ≤ 360◦

(5.83b)

α = θ − h (5.83c)

If A and a are provided as functions of time, then α and δ are found as functions
of time by means of Equations 5.83. The rates α̇, α̈, δ̇ and δ̈ are determined by
differentiating α(t) and δ(t) and substituting the results into Equations 5.68 through
5.73 to calculate the direction cosine vector �̂ and its rates ˙̂� and ¨̂�.

It is a relatively simple matter to find α̇ and δ̇ in terms of Ȧ and ȧ. Differentiating
Equation 5.78a with respect to time yields

δ̇ = 1

cos δ
[−Ȧ cos φ sin A cos a + ȧ(sin φ cos a − cos φ cos A sin a)] (5.84)

Differentiating Equation 5.81, we get

ḣ cos(h) = − 1

cos2 δ
[(Ȧ cos A cos a − ȧ sin A sin a) cos δ + δ̇ sin A cos a sin δ]

Substituting Equation 5.82 and simplifying leads to

ḣ = − Ȧ cos A cos a − ȧ sin A sin a + δ̇ sin A cos a tan δ

cos φ sin a − sin φ cos A cos a

But ḣ = θ̇ − α̇ = ωE − α̇, so that, finally,

α̇ = ωE + Ȧ cos A cos a − ȧ sin A sin a + δ̇ sin A cos a tan δ

cos φ sin a − sin φ cos A cos a
(5.85)
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Algorithm
5.4.

Given the range �, azimuth A, angular elevation a together with the rates �̇, Ȧ and
ȧ relative to an earth-based tracking station, calculate the state vectors r and v in
the geocentric equatorial frame. A MATLAB script of this procedure appears in
Appendix D.14.

1. Using the altitude H , latitude φ and local sidereal time θ of the site, calculate its
geocentric position vector R from Equation 5.56:

R =

 Re√

1 − (2f − f 2) sin2 φ

+ H


 cos φ

(
cos θÎ + sin θĴ

)

+

 Re(1 − f )2√

1 − (2f − f 2) sin2 φ

+ H


 sin φK̂

where f is the earth’s flattening factor.

2. Calculate the topocentric declination δ using Equation 5.83a.

3. Calculate the topocentric right ascension α from Equations 5.83b and 5.83c.

4. Calculate the direction cosine unit vector �̂ from Equations 5.68 and 5.71,

�̂ = cos δ(cos αÎ + sin αĴ) + sin δK̂

5. Calculate the geocentric position vector r from Equation 5.63,

r = R + ��̂

6. Calculate the inertial velocity Ṙ of the site from Equation 5.66.

7. Calculate the declination rate δ̇ using Equation 5.84.

8. Calculate the right ascension rate α̇ by means of Equation 5.85.

9. Calculate the direction cosine rate vector ˙̂� from Equations 5.69 and 5.72:

˙̂� = (−α̇ sin α cos δ − δ̇ cos α sin δ)Î + (α̇ cos α cos δ − δ̇ sin α sin δ)Ĵ + δ̇ cos δK̂

10. Calculate the geocentric velocity vector v from Equation 5.64:

v = Ṙ + �̇�̂ + � ˙̂�

Example
5.10

At θ = 300◦ local sidereal time a sea-level (H = 0) tracking station at latitude φ = 60◦
detects a space object and obtains the following data:

Slant range : � = 2551 km
Azimuth : A = 90◦
Elevation : a = 30◦



5.8 Orbit determination from angle and range measurements 233

Range rate : �̇ = 0
Azimuth rate : Ȧ = 1.973 × 10−3 rad/s (0.1130◦/s)
Elevation rate : ȧ = 9.864 × 10−4 rad/s (0.05651◦/s)

What are the orbital elements of the object?

We must first employ Algorithm 5.4 to obtain the state vectors r and v in order to
compute the orbital elements by means of Algorithm 4.1.

Step 1:

The equatorial radius of the earth is Re = 6378 km and the flattening factor is
f = 0.003353. It follows from Equation 5.56 that the position vector of the observer is

R = 1598Î − 2769Ĵ + 5500K̂ (km)

Step 2:

δ = sin−1 (cos φ cos A cos a + sin φ sin a)

= sin−1 (cos 60◦ cos 90◦ cos 30◦ + sin 60◦ sin 30◦)
= 25.66◦

Step 3:

Since the given azimuth lies between 0◦ and 180◦, Equation 5.83b yields

h = 360◦ − cos−1
(

cos φ sin a − sin φ cos A cos a

cos δ

)

= 360◦ − cos−1
(

cos 60◦ sin 30◦ − sin 60◦ cos 90◦ cos 30◦

cos 25.66◦

)
= 360◦ − 73.90◦ = 286.1◦

Therefore, the right ascension is

α = θ − h = 300◦ − 286.1◦ = 13.90◦

Step 4:

�̂ = cos 25.66(cos 13.90◦Î + sin 13.90◦Ĵ) + sin δK̂ = 0.8750Î + 0.2165Ĵ + 0.4330K̂

Step 5:

r = R + ��̂ = (1598Î − 2769Ĵ + 5500K̂) + 2551(0.8750Î + 0.2165Ĵ + 0.4330K̂)

r = 3831Î − 2216Ĵ + 6605K̂ (km)

Step 6:

Recalling from Equation 2.57 that the angular velocity ωE of the earth is 72.92 ×
10−6 rad/s,

Ṙ = � × R = (72.92 × 10−6K̂) × (1598Î − 2769Ĵ + 5500K̂)

= 0.2019Î + 0.1166Ĵ (km/s)
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(Example 5.10
continued)

Step 7:

δ̇ = 1

cos δ

[−Ȧ cos φ sin A cos a + ȧ (sin φ cos a − cos φ cos A sin a)
]

= 1

cos 25.66◦ [−1.973 × 10−3 · cos 60◦ sin 90◦ cos 30◦ + 9.864

× 10−4(sin 60◦ cos 30◦ − cos 60◦ cos 90◦ sin 30◦)]

δ̇ = −1.2696 × 10−4 (rad/s)

Step 8:

α̇ − ωE = Ȧ cos A cos a − ȧ sin A sin a + δ̇ sin A cos a tan δ

cos φ sin a − sin φ cos A cos a

=
1.973 × 10−3 cos 90◦ cos 30◦ − 9.864 × 10−4 sin 90◦ sin 30◦

+ (−1.2696 × 10−4) sin 90◦ cos 30◦ tan 25.66◦

cos 60◦ sin 30◦ − sin 60◦ cos 90◦ cos 30◦

= −0.002184

α̇ = 72.92 × 10−6 − 0.002184 = −0.002111 (rad/s)

Step 9:

˙̂� = (−α̇ sin α cos δ − δ̇ cos α sin δ
)

Î + (
α̇ cos α cos δ − δ̇ sin α sin δ

)
Ĵ + δ̇ cos δK̂

= [− (−0.002111) sin 13.90◦ cos 25.66◦ − (−0.1270) cos 13.90◦ sin 25.66◦] Î

+ [
(−0.002111) cos 13.90◦ cos 25.66◦ − (−0.1270) sin 13.90◦ sin 25.66◦] Ĵ

+ [−0.1270 cos 25.66◦] K̂

˙̂� = (0.5104Î − 1.834Ĵ − 0.1144K̂)(10−3) (rad/s)

Step 10:

v = Ṙ + �̇�̂ + � ˙̂�
= (0.2019Î + 0.1166Ĵ) + 0 · (0.8750Î + 0.2165Ĵ + 0.4330K̂)

+ 2551(0.5104 × 10−3Î − 1.834 × 10−3Ĵ − 0.1144 × 10−3K̂)

v = 1.504Î − 4.562Ĵ − 0.2920K̂ (km/s)

Using the position and velocity vectors from steps 5 and 10, the reader can verify that
Algorithm 4.1 yields the following orbital elements of the tracked object

a = 5170 km
i = 113.4◦

� = 109.8◦
e = 0.6195
ω = 309.8◦
θ = 165.3◦

This is a highly elliptical orbit with a semimajor axis less than the earth’s radius, so
the object will impact the earth (at a true anomaly of 216◦).
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Figure 5.13 An object B orbiting the sun and tracked from earth.

For objects orbiting the sun (planets, asteroids, comets and man-made inter-
planetary probes), the fundamental vector triangle is as illustrated in Figure 5.13.
The tracking station is on the earth but, of course, the sun rather than the earth
is the center of attraction. The procedure for finding the heliocentric state vector r
and v is similar to that outlined above. Because of the vast distances involved, the
observer can usually be imagined to reside at the center of the earth. Dealing with
R is different in this case. The daily position of the sun relative to the earth (−R in
Figure 5.13) may be found in ephemerides, such as Astronomical Almanac (US Naval
Observatory, 2004). A discussion of interplanetary trajectories appears in Chapter 8 of
this text.

5.9 Angles-only preliminary orbit
determination

To determine an orbit requires specifying six independent quantities. These can be the
six classical orbital elements or the total of six components the state vector, r and v, at
a given instant. To determine an orbit solely from observations therefore requires six
independent measurements. In the previous section we assumed the tracking station
was able to measure simultaneously the six quantities: range and range rate; azimuth
and azimuth rate; plus elevation and elevation rate. This data leads directly to the
state vector and, hence, to a complete determination of the orbit. In the absence
of range and range rate measuring capability, as with a telescope, we must rely on
measurements of just the two angles, azimuth and elevation, to determine the orbit.
A minimum of three observations of azimuth and elevation is therefore required to
accumulate the six quantities we need to predict the orbit. We shall henceforth assume
that the angular measurements are converted to topocentric right ascension α and
declination δ, as described in the previous section.

We shall consider the classical method of angles-only orbit determination due
to Carl Friedrich Gauss (1777–1855), a German mathematician who many consider
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was one of the greatest mathematicians ever. This method requires gathering angu-
lar information over closely spaced intervals of time and yields a preliminary orbit
determination based on those initial observations. We follow Boulet (1991).

5.10 Gauss’s method of preliminary orbit
determination

Suppose we have three observations of an orbiting body at times t1, t2 and t3, as shown
in Figure 5.14. At each time the geocentric position vector r is related to the observer’s
position vector R, the slant range � and the topocentric direction cosine vector �̂ by
Equation 5.63,

r1 = R1 + �1�̂1 (5.86a)

r2 = R2 + �2�̂2 (5.86b)

r3 = R3 + �3�̂3 (5.86c)

The positions R1, R2 and R3 of the observer O are known from the location of the
tracking station and the time of the observations. �̂1, �̂2 and �̂3 are obtained by
measuring the right ascension α and declination δ of the body at each of the three
times (recall Equation 5.57). Equations 5.86 are three vector equations, and therefore
nine scalar equations, in 12 unknowns: the three components of each of the three
vectors r1, r2 and r3, plus the three slant ranges �1, �2 and �3.

An additional three equations are obtained by recalling from Chapter 2 that the
conservation of angular momentum requires the vectors r1, r2 and r3 to lie in the

r1

R1

O

C

t1

t2

t3

R2
R3

r2r3

B

�

�3

�2

�1

Figure 5.14 Center of attraction C, observer O and tracked body B.
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same plane. As in our discussion of the Gibbs method in Section 5.2, that means r2 is
a linear combination r1 and r3:

r2 = c1r1 + c3r3 (5.87)

Adding this equation to those in 5.86 introduces two new unknowns c1 and c3. At this
point we therefore have 12 scalar equations in 14 unknowns.

Another consequence of the two-body equation of motion (Equation 2.15) is that
the state vectors r and v of the orbiting body can be expressed in terms of the state
vector at any given time by means of the Lagrange coefficients, Equations 2.125 and
2.126. For the case at hand that means we can express the position vectors r1 and r3

in terms of the position r2 and velocity v2 at the intermediate time t2 as follows,

r1 = f1r2 + g1v2 (5.88a)

r3 = f3r2 + g3v2 (5.88b)

where f1 and g1 are the Lagrange coefficients evaluated at t1 while f3 and g3 are
those same functions evaluated at time t3. If the time intervals between the three
observations are sufficiently small then Equations 2.163 reveal that f and g depend
approximately only on the distance from the center of attraction at the initial time.
For the case at hand that means the coefficients in Equations 5.88 depend only on r2.
Hence, Equations 5.88 add six scalar equations to our previous list of 12 while adding
to the list of 14 unknowns only four: the three components of v2 and the radius r2.
We have arrived at 18 equations in 18 unknowns, so the problem is well posed and we
can proceed with the solution. The ultimate objective is to determine the state vectors
r2, v2 at the intermediate time t2.

Let us start out by solving for c1 and c3 in Equation 5.87. First take the cross
product of each term in that equation with r3,

r2 × r3 = c1(r1 × r3) + c3(r3 × r3)

Since r3 × r3 = 0, this reduces to

r2 × r3 = c1(r1 × r3)

Taking the dot product of this result with r1 × r3 and solving for c1 yields

c1 = (r2 × r3) · (r1 × r3)

‖r1 × r3‖2 (5.89)

In a similar fashion, by forming the dot product of Equation 5.87 with r1, we are led to

c3 = (r2 × r1) · (r3 × r1)

‖r1 × r3‖2 (5.90)

Let us next use Equations 5.88 to eliminate r1 and r3 from the expressions for c1 and
c3. First of all,

r1 × r3 = (f1r2 + g1v2) × (f3r2 + g3v2) = f1g3(r2 × v2) + f3g1(v2 × r2)

But r2 × v2 = h, where h is the constant angular momentum of the orbit (Equation
2.18). It follows that

r1 × r3 = (f1g3 − f3g1)h (5.91)
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and, of course,

r3 × r1 = −(f1g3 − f3g1)h (5.92)

Therefore

‖r1 × r3‖2 = (f1g3 − f3g1)2h2 (5.93)

Similarly

r2 × r3 = r2 × (f3r2 + g3v2) = g3h (5.94)

and

r2 × r1 = r2 × (f1r2 + g1v2) = g1h (5.95)

Substituting Equations 5.91, 5.93 and 5.94 into Equation 5.89 yields

c1 = g3h · (f1g3 − f3g1)h

(f1g3 − f3g1)2h2
= g3(f1g3 − f3g1)h2

(f1g3 − f3g1)2h2

or

c1 = g3

f1g3 − f3g1
(5.96)

Likewise, substituting Equations 5.92, 5.93 and 5.95 into Equation 5.90 leads to

c3 = − g1

f1g3 − f3g1
(5.97)

The coefficients in Equation 5.87 are now expressed solely in terms of the Lagrange
functions, and so far no approximations have been made. However, we will have to
make some approximations in order to proceed.

We must approximate c1 and c3 under the assumption that the times between
observations of the orbiting body are small. To that end, let us introduce the notation

τ1 = t1 − t2

τ3 = t3 − t2
(5.98)

τ1 and τ3 are the time intervals between the successive measurements of �̂1, �̂2 and �̂3.
If the time intervals τ1 and τ3 are small enough, we can retain just the first two terms
of the series expressions for the Lagrange coefficients f and g in Equations 2.163,
thereby obtaining the approximations

f1 ≈ 1 − 1

2

µ

r3
2

τ2
1 (5.99a)

f3 ≈ 1 − 1

2

µ

r3
2

τ2
3 (5.99b)

and

g1 ≈ τ1 − 1

6

µ

r3
2

τ3
1 (5.100a)

g3 ≈ τ3 − 1

6

µ

r3
2

τ3
3 (5.100b)
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We want to exclude all terms in f and g beyond the first two so that only the unknown
r2 appears in Equations 5.99 and 5.100. One can see from Equations 2.163 that the
higher order terms include the unknown v2 as well.

Using Equations 5.99 and 5.100 we can calculate the denominator in Equations
5.96 and 5.97,

f1g3 − f3g1 =
(

1 − 1

2

µ

r3
2

τ2
1

)(
τ3 − 1

6

µ

r3
2

τ3
3

)
−

(
1 − 1

2

µ

r3
2

τ2
3

)(
τ1 − 1

6

µ

r3
2

τ3
1

)
Expanding the right side and collecting terms yields

f1g3 − f3g1 = (τ3 − τ1) − 1

6

µ

r3
2

(τ3 − τ1)3 + 1

12

µ2

r6
2

(τ2
1τ3

3 − τ3
1τ2

3 )

Retaining terms of at most third order in the time intervals τ1 and τ3, and setting

τ = τ3 − τ1 (5.101)

reduces this expression to

f1g3 − f3g1 ≈ τ − 1

6

µ

r3
2

τ3 (5.102)

From Equation 5.98 observe that τ is just the time interval between the first and last
observations. Substituting Equations 5.100b and 5.102 into Equation 5.96, we get

c1 ≈
τ3 − 1

6

µ

r3
2

τ3
3

τ − 1

6

µ

r3
2

τ3
= τ3

τ

(
1 − 1

6

µ

r3
2

τ2
3

)
·
(

1 − 1

6

µ

r3
2

τ2
)−1

(5.103)

We can use the binomial theorem to simplify (linearize) the last term on the right.
Setting a = 1, b = − 1

6
µ

r3
2
τ2 and n = −1 in Equation 5.44, and neglecting terms of

higher order than 2 in τ, yields(
1 − 1

6

µ

r3
2

τ2
)−1

≈ 1 + 1

6

µ

r3
2

τ2

Hence Equation 5.103 becomes

c1 ≈ τ3

τ

[
1 + 1

6

µ

r3
2

(τ2 − τ2
3 )

]
(5.104)

where only second order terms in the time have been retained. In precisely the same
way it can be shown that

c3 ≈ −τ1

τ

[
1 + 1

6

µ

r3
2

(τ2 − τ2
1 )

]
(5.105)

Finally, we have managed to obtain approximate formulas for the coefficients in
Equation 5.87 in terms of just the time intervals between observations and the as yet
unknown distance r2 from the center of attraction at the central time t2 .

The next stage of the solution is to seek formulas for the slant ranges �1, �2 and �3

in terms of c1 and c3. To that end, substitute Equations 5.86 into Equation 5.87 to get

R2 + �2�̂2 = c1(R1 + �1�̂1) + c3(R3 + �3�̂3)
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which we rearrange into the form

c1�1�̂1 − �2�̂2 + c3�3�̂3 = −c1R1 + R2 − c3R3 (5.106)

Let us isolate the slant ranges �1, �2 and �3 in turn by taking the dot product of this
equation with appropriate vectors. To isolate �1 take the dot product of each term in
this equation with �̂2 × �̂3 , which gives

c1�1�̂1 · (�̂2 × �̂3) − �2�̂2 · (�̂2 × �̂3) + c3�3�̂3 · (�̂2 × �̂3)

= −c1R1 · (�̂2 × �̂3) + R2 · (�̂2 × �̂3) − c3R3 · (�̂2 × �̂3)

Since �̂2 · (�̂2 × �̂3) = �̂3 · (�̂2 × �̂3) = 0, this reduces to

c1�1�̂1 · (�̂2 × �̂3) = (−c1R1 + R2 − c3R3) · (�̂2 × �̂3) (5.107)

Let D0 represent the scalar triple product of �̂1, �̂2 and �̂3,

D0 = �̂1 · (�̂2 × �̂3) (5.108)

We will assume that D0 is not zero, which means that �̂1, �̂2 and �̂3 do not lie in the
same plane. Then we can solve Equation 5.107 for �1 to get

�1 = 1

D0

(
−D11 + 1

c1
D21 − c3

c1
D31

)
(5.109a)

where the Ds stand for the scalar triple products

D11 = R1 · (�̂2 × �̂3) D21 = R2 · (�̂2 × �̂3) D31 = R3 · (�̂2 × �̂3) (5.109b)

In a similar fashion, by taking the dot product of Equation 5.106 with �̂1 × �̂3 and
then �̂1 × �̂2 we obtain �2 and �3,

�2 = 1

D0
(−c1D12 + D22 − c3D32) (5.110a)

where

D12 = R1 · (�̂1 × �̂3) D22 = R2 · (�̂1 × �̂3) D32 = R3 · (�̂1 × �̂3) (5.110b)

and

�3 = 1

D0

(
− c1

c3
D13 + 1

c3
D23 − D33

)
(5.111a)

where

D13 = R1 · (�̂1 × �̂2) D23 = R2 · (�̂1 × �̂2) D33 = R3 · (�̂1 × �̂2) (5.111b)

To obtain these results we used the fact that �̂2 · (�̂1 × �̂3) = −D0 and �̂3 · (�̂1 × �̂2) =
D0 (Equation 2.32).

Substituting Equations 5.104 and 5.105 into Equation 5.110a yields the approxi-
mate slant range �2,

�2 = A + µB

r3
2

(5.112a)



5.10 Gauss’s method of preliminary orbit determination 241

where

A = 1

D0

(
−D12

τ3

τ
+ D22 + D32

τ1

τ

)
(5.112b)

B = 1

6D0

[
D12(τ2

3 − τ2)
τ3

τ
+ D32(τ2 − τ2

1 )
τ1

τ

]
(5.112c)

On the other hand, making the same substitutions into Equations 5.109 and 5.111
leads to the following approximate expressions for the slant ranges �1 and �3,

�1 = 1

D0




6

(
D31

τ1

τ3
+ D21

τ

τ3

)
r3

2 + µD31(τ2 − τ2
1 )

τ1

τ3

6r3
2 + µ(τ2 − τ2

3 )
− D11


 (5.113)

�3 = 1

D0




6

(
D13

τ3

τ1
− D23

τ

τ1

)
r3

2 + µD13(τ2 − τ2
3 )

τ3

τ1

6r3
2 + µ(τ2 − τ2

3 )
− D33


 (5.114)

Equation 5.112a is a relation between the slant range �2 and the geocentric radius r2.
Another expression relating these two variables is obtained from Equation 5.86b,

r2 · r2 = (R2 + �2�̂2) · (R2 + �2�̂2)

or

r2
2 = �2

2 + 2E�2 + R2
2 (5.115a)

where

E = R2 · �̂2 (5.115b)

Substituting Equation 5.112a into 5.115a gives

r2
2 =

(
A + µB

r3
2

)2

+ 2C

(
A + µB

r3
2

)
+ R2

2

Expanding and rearranging terms leads to an eighth order polynomial,

x8 + ax6 + bx3 + c = 0 (5.116)

where x = r2 and the coefficients are

a = −(A2 + 2AE + R2
2) b = −2µB(A + E) c = −µ2B2 (5.117)

We solve Equation 5.116 for r2 and substitute the result into Equations 5.112 through
5.114 to obtain the slant ranges �1, �2 and �3. Then Equations 5.86 yield the position
vectors r1, r2 and r3. Recall that finding r2 was one of our objectives.

To attain the other objective, the velocity v2, we first solve Equation 5.88a for r2

r2 = 1

f1
r1 − g1

f1
v2
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Substitute this result into Equation 5.88b to get

r3 = f3
f1

r1 +
(

f1g3 − f3g1

f1

)
v2

Solving this for v2 yields

v2 = 1

f1g3 − f3g1
(−f3r1 + f1r3) (5.118)

in which the approximate Lagrange functions appearing in Equations 5.99 and 5.100
are used.

The approximate values we have found for r2 and v2 are used as the starting point
for iteratively improving the accuracy of the computed r2 and v2 until convergence
is achieved. The entire step-by-step procedure is summarized in Algorithms 5.5 and
5.6 presented below. See also Appendix D.15.

Algorithm
5.5

Gauss’s method of preliminary orbit determination. Given the direction cosine vec-
tors �̂1, �̂2 and �̂3 and the observer’s position vectors R1, R2 and R3 at the times t1, t2

and t3, proceed as follows.

1. Calculate the time intervals τ1, τ3 and τ using Equations 5.98 and 5.101.

2. Calculate the cross products p1 = �̂2 × �̂3, p2 = �̂1 × �̂3 and p3 = �̂1 × �̂2.

3. Calculate D0 = �̂1 · p1 (Equation 5.108).

4. From Equations 5.109b, 5.110b and 5.111b compute the six scalar quantities

D11 = R1 · p1 D12 = R1 · p2 D13 = R1 · p3

D21 = R2 · p1 D22 = R2 · p2 D23 = R2 · p3

D31 = R3 · p1 D32 = R3 · p2 D33 = R3 · p3

5. Calculate A and B using Equations 5.112b and 5.112c.

6. Calculate E, using Equation 5.115b, and R2
2 = R2 · R2.

7. Calculate a, b and c from Equation 5.117.

8. Find the roots of Equation 5.116 and select the most reasonable one as r2.
Newton’s method can be used, in which case Equation 3.13 becomes

xi+1 = xi − x8
i + ax6

i + bx3
i + c

8x7
i + 6ax5

i + 3bx2
i

(5.119)

One must first print or graph the function F = x8 + ax6 + bx3 + c for x > 0 and
choose as an initial estimate a value of x near the point where F changes sign. If
there is more than one physically reasonable root, then each one must be used
and the resulting orbit checked against knowledge that may already be available
about the general nature of the orbit. Alternatively, the analysis can be repeated
using additional sets of observations.

9. Calculate �1, �2 and �3 using Equations 5.113, 5.112a and 5.114.

10. Use Equations 5.86 to calculate r1, r2 and r3.
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11. Calculate the Lagrange coefficients f1, g1, f3 and g3 from Equations 5.99 and
5.100.

12. Calculate v2 using Equation 5.118.

13. (a) Use r2 and v2 from steps 10 and 12 to obtain the orbital elements from Algo-
rithm 4.1. (b) Alternatively, proceed to Algorithm 5.6 to improve the preliminary
estimate of the orbit.

Algorithm
5.6

Iterative improvement of the orbit determined by Algorithm 5.5.
Use the values of r2 and v2 obtained from Algorithm 5.5 to compute the ‘exact’

values of the f and g functions from their universal formulation, as follows:

1. Calculate the magnitude of r2 (r2 = √
r2 · r2) and v2 (v2 = √

v2 · v2).

2. Calculate α, the reciprocal of the semimajor axis: α = 2/r2 − v2
2/µ.

3. Calculate the radial component of v2, vr2 = v2 · r2/r2.

4. Use Algorithm 3.3 to solve the universal Kepler’s equation (Equation 3.46) for
the universal variables χ1 and χ3 at times t1 and t3, respectively:

√
µτ1 = r2vr2√

µ
χ2

1C(αχ2
1) + (1 − αr2)χ3

1S(αχ2
1) + r2χ1

√
µτ3 = r2vr2√

µ
χ2

3C(αχ2
3) + (1 − αr2)χ3

3S(αχ2
3) + r2χ3

5. Use χ1 and χ3 to calculate f1, g1, f3 and g3 from Equations 3.66:

f1 = 1 − χ2
1

r2
C(αχ2

1) g1 = τ1 − 1√
µ

χ3
1S(αχ2

1)

f3 = 1 − χ2
3

r2
C(αχ2

3) g3 = τ3 − 1√
µ

χ3
3S(αχ2

3)

6. Use these values of f1, g1, f3 and g3 to calculate c1 and c3 from Equations 5.96
and 5.97.

7. Use c1 and c3 to calculate updated values of �1, �2 and �3 from Equations 5.109
through 5.111.

8. Calculate updated r1, r2 and r3 from Equations 5.86.

9. Calculate updated v2 using Equation 5.118 and the f and g values computed in
step 5.

10. Go back to step 1 and repeat until, to the desired degree of precision, there is no
further change in �1, �2 and �3.

11. Use r2 and v2 to compute the orbital elements by means of Algorithm 4.1.

Example
5.11

A tracking station is located at φ = 40◦ north latitude at an altitude of H = 1 km. Three
observations of an earth satellite yield the values for the topocentric right ascension
and declination listed in the following table, which also shows the local sidereal time
θ of the observation site.
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(Example 5.11
continued)

Use the Gauss Algorithm 5.5 to estimate the state vector at the second observation
time. Recall that µ = 398 600 km3/s2.

Table 5.1 Data for Example 5.11

Observation Time Right ascension, α Declination, δ Local sidereal time, θ
(seconds) (degrees) (degrees) (degrees)

1 0 43.537 −8.7833 44.506
2 118.10 54.420 −12.074 45.000
3 237.58 64.318 −15.105 45.499

Recalling that the equatorial radius of the earth is Re = 6378 km and the flattening
factor is f = 0.003353, we substitute φ = 40◦, H = 1 km and the given values of θ into
Equation 5.56 to obtain the inertial position vector of the tracking station at each of
the three observation times:

R1 = 3489.8Î + 3430.2Ĵ + 4078.5K̂ (km)

R2 = 3460.1Î + 3460.1Ĵ + 4078.5K̂ (km)

R3 = 3429.9Î + 3490.1Ĵ + 4078.5K̂ (km)

Using Equation 5.57 we compute the direction cosine vectors at each of the three
observation times from the right ascension and declination data:

�̂1 = cos(−8.7833◦) cos 43.537◦Î + cos(−8.7833◦) sin 43.537◦Ĵ + sin(−8.7833◦)K̂

= 0.71643Î + 0.68074Ĵ − 0.15270K̂

�̂2 = cos(−12.074◦) cos 54.420◦Î + cos(−12.074◦) sin 54.420◦Ĵ + sin(−12.074◦)K̂

= 0.56897Î + 0.79531Ĵ − 0.20917K̂

�̂3 = cos(−15.105◦) cos 64.318◦Î + cos(−15.105◦) sin 64.318◦Ĵ + sin(−15.105◦)K̂

= 0.41841Î + 0.87007Ĵ − 0.26059K̂

We can now proceed with Algorithm 5.5.

Step 1:

τ1 = 0 − 118.10 = −118.10 s

τ3 = 237.58 − 118.10 = 119.47 s

τ = 119.47 − (−118.1) = 237.58 s

Step 2:

p1 = �̂2 × �̂3 = −0.025258Î + 0.060753Ĵ + 0.16229K̂

p2 = �̂1 × �̂3 = −0.044538Î + 0.12281Ĵ + 0.33853K̂

p3 = �̂1 × �̂2 = −0.020950Î + 0.062977Ĵ + 0.18246K̂
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Step 3:

D0 = �̂1 · p1 = −0.0015198

Step 4:

D11= R1 · p1 = 782.15 km D12 = R1 · p2 = 1646.5 km D13 = R1 · p3 = 887.10 km

D21= R2 · p1 = 784.72 km D22 = R2 · p2 = 1651.5 km D23 = R2 · p3 = 889.60 km

D31= R3 · p1 = 787.31 km D32 = R3 · p2 = 1656.6 km D33 = R3 · p3 = 892.13 km

Step 5:

A = 1

−0.0015198

[
−1646.5

119.47

237.58
+ 1651.5 + 1656.6

(−118.10)

237.58

]
= −6.6858 km

B = 1

6(−0.0015198)

{
1646.5(119.472 − 237.582)

119.47

237.58

+ 1656.6[237.582 − (−118.10)2]
(−118.10)

237.58

}
= 7.6667 × 109 km · s2

Step 6:

E = R2 · �̂2 = 3875.8 km

R2
2 = R2 · R2 = 4.058 × 107 km2

Step 7:

a = −[(−6.6858)2 + 2(−6.6858)(3875.8) + 4.058 × 107] = −4.0528 × 107 km2

b = −2(389 600)(7.6667 × 109)(−6.6858 + 3875.8) = −2.3597 × 1019 km5

c = −(398 600)2(7.6667 × 109)2 = −9.3387 × 1030 km8

Step 8:

F(x) = x8 − 4.0528 × 107x6 − 2.3597 × 1019x3 − 9.3387 × 1030 = 0

The graph of F(x) in Figure 5.15 shows that it changes sign near x = 9000 km. Let us
use that as the starting value in Newton’s method for finding the roots of F(x). For
the case at hand, Equation 5.119 is

xi+1 = xi − x8
i − 4.0528 × 107x6

i − 2.3622 × 1019x3
i − 9.3186 × 1030

8x7
i − 2.4317 × 108x5

i − 7.0866 × 1019x2
i

Stepping through Newton’s iterative procedure yields

x0 = 9000

x1 = 9000 − (−276.93) = 9276.9

x2 = 9276.9 − 34.526 = 9242.4
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(Example 5.11
continued)
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x

Figure 5.15 Graph of the polynomial in Equation (f).

x3 = 9242.4 − 0.63428 = 9241.8

x4 = 9241.8 − 0.00021048 = 9241.8

Thus, after four steps we converge to

r2 = 9241.8 km

The other roots are either negative or complex and are therefore physically
unacceptable.

Step 9:

�1 = 1

−0.0015198

×




6

[
787.31

(−118.10)

119.47
+ 784.72

237.58

119.47

]
9241.83

+ 398 600 · 787.31[237.582 − (−118.10)2]
−118.10

119.47
6 · 9241.83 + 398 600(237.582 − 119.472)

− 782.15




= 3639.1 km

�2 = −6.6858 + 398 600 · 7.6667 × 109

9241.83
= 3864.8 km

�3 = 1

−0.0015198
×




6

(
887.10

119.47

−118.10
− 889.60

237.58

−118.10

)
9241.83

+ 398 600 · 887.10(237.582 − 119.472)
119.47

−118.10
6 · 9241.83 + 398 600(237.582 − 119.472)

− 892.13




= 4156.9 km
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Step 10:

r1 = (3489.8Î + 3430.2Ĵ + 4078.5K̂) + 3639.1(0.71643Î + 0.68074Ĵ − 0.15270K̂)

= 6096.9Î + 5907.5Ĵ + 3522.9K̂ (km)

r2 = (3460.1Î + 3460.1Ĵ + 4078.5K̂) + 3864.8(0.56897Î + 0.79531Ĵ − 0.20917K̂)

= 5659.1Î + 6533.8Ĵ + 3270.1K̂ (km)

r3 = (3429.9Î + 3490.1Ĵ + 4078.5K̂) + 4156.9(0.41841Î + 0.87007Ĵ − 0.26059K̂)

= 5169.1Î + 7107.0Ĵ + 2995.3K̂ (km)

Step 11:

f1 ≈ 1 − 1

2

398 600

9241.83
(−118.10)2 = 0.99648

f3 ≈ 1 − 1

2

398 600

9241.83
(119.47)2 = 0.99640

g1 ≈ −118.10 − 1

6

398 600

9241.83
(−118.10)3 = −117.97

g3 ≈ 119.47 − 1

6

398 600

9241.83
(119.47)3 = 119.33

Step 12:

v2 =
−0.99640(6096.9Î + 5907.5Ĵ + 3522.9K̂) + 0.99648(5169.1Î + 7107.0Ĵ

+ 2995.3K̂)

0.99648 · 119.33 − 0.99640(−117.97)

= −3.9080Î + 5.0573Ĵ − 2.2222K̂ (km/s)

In summary, the state vector at time t2 is, approximately,

r2 = 5659.1Î + 6533.8Ĵ + 3270.1K̂ (km)

v2 = −3.9080Î + 5.0573Ĵ − 2.2222K̂ (km/s)

Example
5.12

Starting with the state vector determined in Example 5.11, use Algorithm 5.6 to
improve the vector to five significant figures.

Step 1:

r2 = ‖r2‖ =
√

5659.12 + 6533.82 + 3270.12 = 9241.8 km

v2 = ‖v2‖ =
√

(−3.9080)2 + 5.0573 + (−2.2222)2 = 6.7666 km/s

Step 2:

α = 2

r2
− v2

2

µ
= 2

9241.8
− 6.76662

398 600
= 1.0154 × 10−4 km−1
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(Example 5.12
continued)

Step 3:

vr2 = v2 · r2

r2
= (−3.9080) · 5659.1 + 5.0573 · 6533.8 + (−2.2222) · 3270.1

9241.8

= 0.39611 km/s

Step 4:

The universal Kepler’s equation at times t1 and t3, respectively, becomes

√
398 600τ1 = 9241.8 · 0.39611√

398 600
χ2

1C(1.0154 × 10−4χ2
1)

+ (1 − 1.0154 × 10−4 · 9241.8)χ3
1S(1.0154 × 10−4χ2

1) + 9241.8χ1

√
398 600τ3 = 9241.8 · 0.39611√

398 600
χ2

3C(1.0154 × 10−4χ2
3)

+ (1 − 1.0154 × 10−4 · 9241.8)χ3
3S(1.0154 × 10−4χ2

3) + 9241.8χ3

or

631.35τ1 = 5.7983χ2
1C(1.0154 × 10−4χ2

1) + 0.061594χ3
1S(1.0154 × 10−4χ2

1)

+ 9241.8χ1

631.35τ3 = 5.7983χ2
3C(1.0154 × 10−4χ2

3) + 0.061594χ3
1S(1.0154 × 10−4χ2

3)

+ 9241.8χ3

Applying Algorithm 3.3 to each of these equations yields

χ1 = −8.0882
√

km

χ3 = 8.1404
√

km

Step 5:

f1 = 1−χ2
1

r2
C(αχ2

1) = 1 − (−8.0882)2

9241.8
·

0.49972︷ ︸︸ ︷
C[1.0154 × 10−4(−8.0882)2] = 0.99646

g1 = τ1 − 1√
µ

χ3
1S(αχ2

1) = −118.1 − 1√
398 600

(−8.0882)3

×
0.16661︷ ︸︸ ︷

S[1.0154 × 10−4(−8.0882)2] = −117.96 s

and

f3 = 1 − χ2
3

r2
C(αχ2

3) = 1 − 8.14042

9241.8
·

0.49972︷ ︸︸ ︷
C[1.0154 × 10−4 · 8.14042] = 0.99642
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g3 = τ3 − 1√
µ

χ3
3S(αχ2

3) = −118.1 − 1√
398 600

8.14043

×
0.16661︷ ︸︸ ︷

S[1.0154 × 10−4(−8.0882)2] = 119.33

It turns out that the procedure converges more rapidly if the Lagrange coefficients are
set equal to the average of those computed for the current step and those computed
for the previous step. Thus, we set

f1 = 0.99648 + 0.99646

2
= 0.99647

g1 = −117.97 + (−117.96)

2
= −117.96 s

f3 = 0.99642 + 0.99641

2
= 0.99641

g3 = 119.3 + 119.3

2
= 119.3 s

Step 6:

c1 = 119.3

(0.99647)(119.3) − (0.99641)(−117.96 s)
= 0.50467

c3 = − −117.96

(0.99647)(119.3) − (0.99641)(−117.96)
= 0.49890

Step 7:

�1 = 1

−0.0015198

(
−782.15 + 1

0.50467
784.72 − 0.49890

0.50467
787.31

)
= 3650.7 km

�2 = 1

−0.0015198
(−0.50467 · 1646.5 + 1651.5 − 0.49890 · 1656.6) = 3877.2 km

�3 = 1

−0.0015198

(
−0.50467

0.49890
887.10 + 1

0.49890
889.60 − 892.13

)
= 4186.2 km

Step 8:

r1 = (3489.8Î + 3430.2Ĵ + 4078.5K̂) + 3650.7(0.71643Î + 0.68074Ĵ − 0.15270K̂)

= 6105.3Î + 5915.4Ĵ + 3521.1K̂ (km)

r2 = (3460.1Î + 3460.1Ĵ + 4078.5K̂) + 3877.2(0.56897Î + 0.79531Ĵ − 0.20917K̂)

= 5662.1Î + 6543.7Ĵ + 3267.5K̂ (km)

r3 = (3429.9Î + 3490.1Ĵ + 4078.5K̂) + 4186.2(0.41841Î + 0.87007Ĵ − 0.26059K̂)

= 5181.4Î + 7132.4Ĵ + 2987.6K̂ (km)
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(Example 5.12
continued)

Step 9:

v2 = 1

0.99647 · 119.3 − 0.99641(−117.96)
× [−0.99641(6105.3Î + 5915.4Ĵ

+ 3521.1K̂) + 0.99647(5181.4Î + 7132.4Ĵ + 2987.6K̂)]

= −3.8918Î + 5.1307Ĵ − 2.2472K̂ (km/s)

This completes the first iteration.
The updated position r2 and velocity v2 are used to repeat the procedure begin-

ning at step 1. The results of the first and subsequent iterations are shown in Table 5.2.
Convergence to five significant figures in the slant ranges �1, �2 and �3 occurs in four
steps, at which point the state vector is

r2 = 5662.1Î + 6538.0Ĵ + 3269.0K̂ (km)

v2 = −3.8856Î + 5.1214Ĵ − 2.2433K̂ (km/s)

Table 5.2 Key results at each step of the iterative procedure

Step χ1 χ3 f1 g1 f3 g3 �1 �2 �3

1 −8.0882 8.1404 0.99647 −117.97 0.99641 119.33 3650.7 3877.2 4186.2
2 −8.0818 8.1282 0.99647 −117.96 0.99642 119.33 3643.8 3869.9 4178.3
3 −8.0871 8.1337 0.99647 −117.96 0.99642 119.33 3644.0 3870.1 4178.6
4 −8.0869 8.1336 0.99647 −117.96 0.99642 119.33 3644.0 3870.1 4178.6

Using Algorithm 4.1 we find that the orbital elements are

a = 10 000 km (h = 62 818 km2/s)

e = 0.1000

i = 30◦

� = 270◦

ω = 90◦

θ = 45.01◦

Problems

5.1 The geocentric equatorial position vectors of a satellite at three separate times are

r1 = 5887Î − 3520Ĵ − 1204K̂ (km)

r2 = 5572Î − 3457Ĵ − 2376K̂ (km)

r3 = 5088Î − 3289Ĵ − 3480K̂ (km)

Use Gibbs’ method to find v2.
{Partial ans.: v2 = 7.59 km/s}
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5.2 Calculate the orbital elements and perigee altitude of the space object in the previous
problem.
{Partial ans.: zp = 567 km}

5.3 At a given instant the altitude of an earth satellite is 600 km. Fifteen minutes later the
altitude is 300 km and the true anomaly has increased by 60◦. Find the perigee altitude.
{Ans.: zp = 298 km}

5.4 At a given instant, the geocentric equatorial position vector of an earth satellite is

r1 = −3600Î + 3600Ĵ + 5100K̂ (km)

Thirty minutes later the position is

r2 = −5500Î − 6240Ĵ − 520K̂ (km)

Calculate v1 and v2.
{Partial ans.: v1 = 7.711 km/s, v2 = 6.670 km/s}

5.5 Compute the orbital elements and perigee altitude for the previous problem.
{Partial ans.: zp = 648 km}

5.6 At a given instant, the geocentric equatorial position vector of an earth satellite is

r1 = 5644Î − 2830Ĵ − 4170K̂ (km)

Twenty minutes later the position is

r2 = −2240Î + 7320Ĵ − 4980K̂ (km)

Calculate v1 and v2.
{Partial ans.: v1 = 10.84 km/s, v2 = 9.970 km/s}

5.7 Compute the orbital elements and perigee altitude for the previous problem.
{Partial ans.: zp = 224 km}

5.8 Calculate the Julian day number (JD) for the following epochs:
(a) 5:30 UT on August 14, 1914.
(b) 14:00 UT on April 18, 1946.
(c) 0:00 UT on September 1, 2010.
(d) 12:00 UT on October 16, 2007.
(e) Noon today, your local time.
{Ans.: (a) 2 420 358.729; (b) 2 431 929.083; (c) 2 455 440.500; (d) 2 454 390.000}

5.9 Calculate the number of days from 12:00 UT on your date of birth to 12:00 UT on
today’s date.

5.10 Calculate the local sidereal time (in degrees) at:
(a) Stockholm, Sweden (east longitude 18◦03′) at 12:00 UT on 1 January 2008.
(b) Melbourne, Australia (east longitude 144◦58′) at 10:00 UT on 21 December 2007.
(c) Los Angeles, California (west longitude 118◦15′) at 20:00 UT on 4 July 2005.
(d) Rio de Janeiro, Brazil (west longitude 43◦06′) at 3:00 UT on 15 February 2006.
(e) Vladivostok, Russia (east longitude 131◦56′) at 8:00 UT on 21 March 2006.
(f) At noon today, your local time and place.

{Ans.: (a) 298.6◦, (b) 24.6◦, (c) 104.7◦, (d) 146.9◦, (e) 70.6◦}

5.11 Relative to a tracking station whose local sidereal time is 117◦ and latitude is +51◦,
the azimuth and elevation angle of a satellite are 27.5156◦ and 67.5556◦, respectively.
Calculate the topocentric right ascension and declination of the satellite.
{Ans.: α = 145.3◦, δ = 68.24◦}
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5.12 A sea-level tracking station at whose local sidereal time is 40◦ and latitude is 35◦ makes
the following observations of a space object:

Azimuth: 36.0◦
Azimuth rate: 0.590◦/s
Elevation: 36.6◦
Elevation rate: −0.263◦/s
Range: 988 km
Range rate: 4.86 km/s

What is the state vector of the object?
{Partial ans.: r = 7003.3 km, v = 10.922 km/s}

5.13 Calculate the orbital elements of the satellite in the previous problem.
{Partial ans.: e = 1.1, i = 40◦}

5.14 A tracking station at latitude −20◦ and elevation 500 m makes the following observations
of a satellite at the given times.

Time Local sidereal time Azimuth Elevation angle Range
(min) (degrees) (degrees) (degrees) (km)

0 60.0 165.932 8.81952 1212.48
2 60.5014 145.970 44.2734 410.596
4 61.0027 2.40973 20.7594 726.464

Use the Gibbs method to calculate the state vector of the satellite at the central
observation time.
{Partial ans.: r2 = 6684 km, v2 = 7.7239 km/s}

5.15 Calculate the orbital elements of the satellite in the previous problem.
{Partial ans.: e = 0.001, i = 95◦}

5.16 A sea-level tracking station at latitude +29◦ makes the following observations of a
satellite at the given times.

Time Local sidereal time Topocentric Topocentric
(min) (degrees) right ascension declination

(degrees) (degrees)

0.0 0 0 51.5110
1.0 0.250684 65.9279 27.9911
2.0 0.501369 79.8500 14.6609

Use the Gauss method without iterative improvement to estimate the state vector of the
satellite at the middle observation time.
{Partial ans.: r = 6700.9 km, v = 8.0757 km/s}

5.17 Refine the estimate in the previous problem using iterative improvement.
{Partial ans.: r = 6701.5 km, v = 8.0881 km/s}

5.18 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial ans.: e = 0.10, i = 30◦}
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5.19 A sea-level tracking station at latitude +29◦ makes the following observations of a
satellite at the given times.

Time Local sidereal time Topocentric Topocentric
(min) (degrees) right ascension declination

(degrees) (degrees)

0.0 90 15.0394 20.7487
1.0 90.2507 25.7539 30.1410
2.0 90.5014 48.6055 43.8910

Use the Gauss method without iterative improvement to estimate the state vector of the
satellite.
{Partial ans.: r = 6999.1 km, v = 7.5541 km/s}

5.20 Refine the estimate in the previous problem using iterative improvement.
{Partial ans.: r = 7000.0 km, v = 7.5638 km/s}

5.21 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial ans.: e = 0.0048, i = 31◦}

5.22 The position vector R of a tracking station and the direction cosine vector �̂ of a satellite
relative to the tracking station at three times are as follows:

t1 = 0 min

R1 = −1825.96Î + 3583.66Ĵ + 4933.54K̂ (km)

�̂1 = −0.301687Î + 0.200673Ĵ + 0.932049K̂

t2 = 1 min

R2 = −1816.30Î + 3575.63Ĵ + 4933.54K̂ (km)

�̂2 = −0.793090Î − 0.210324Ĵ + 0.571640K̂

t3 = 2 min

R3 = −1857.25Î + 3567.54Ĵ + 4933.54K̂ (km)

�̂3 = −0.873085Î − 0.362969Ĵ + 0.325539K̂

Use the Gauss method without iterative improvement to estimate the state vector of the
satellite at the central observation time.
{Partial ans.: r = 6742.3 km, v = 7.6799 km/s}

5.23 Refine the estimate in the previous problem using iterative improvement.
{Partial ans.: r = 6743.0 km, v = 7.6922 km/s}

5.24 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial ans.: e = 0.001, i = 52◦}

5.25 A tracking station at latitude 60°N and 500 m elevation obtains the following data:

Time Local sidereal time Topocentric Topocentric
(min) (degrees) right ascension declination

(degrees) (degrees)

0.0 150 157.783 24.2403
5.0 151.253 159.221 27.2993

10.0 152.507 160.526 29.8982
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Use the Gauss method without iterative improvement to estimate the state vector of the
satellite.
{Partial ans.: r = 25 132 km, v = 6.0588 km/s}

5.26 Refine the estimate in the previous problem using iterative improvement.
{Partial ans.: r = 25 169 km, v = 6.0671 km/s}

5.27 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial ans.: e = 1.09, i = 63◦}

5.28 The position vector R of a tracking station and the direction cosine vector �̂ of a satellite
relative to the tracking station at three times are as follows:

t1 = 0 min

R1 = 5582.84Î + 3073.90K̂ (km)

�̂1 = 0.846428Î + 0.532504K̂

t2 = 5 min

R2 = 5581.50Î + 122.122Ĵ + 3073.90K̂ (km)

�̂2 = 0.749290Î + 0.463023Ĵ + 0.473470K̂

t3 = 10 min

R3 = 5577.50Î + 244.186Ĵ + 3073.90K̂ (km)

�̂3 = 0.529447Î + 0.777163Ĵ + 0.340152K̂

Use the Gauss method without iterative improvement to estimate the state vector of the
satellite.
{Partial ans.: r = 9729.6 km,v = 6.0234 km/s}

5.29 Refine the estimate in the previous problem using iterative improvement.
{Partial ans.: r = 9759.8 km, v = 6.0713 km/s}

5.30 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial ans.: e = 0.1, i = 30◦}
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6.1 Introduction

Orbital maneuvers transfer a spacecraft from one orbit to another. Orbital
changes can be dramatic, such as the transfer from a low-earth parking orbit

to an interplanetary trajectory. They can also be quite small, as in the final stages of
the rendezvous of one spacecraft with another. Changing orbits requires the firing
of onboard rocket engines. We will be concerned solely with impulsive maneuvers
in which the rockets fire in relatively short bursts to produce the required velocity
change (delta-v).

We start with the classical, energy-efficient Hohmann transfer maneuver, and
generalize it to the bi-elliptic Hohmann transfer to see if even more efficiency can be
obtained. The phasing maneuver, a form of Hohmann transfer, is considered next.

255
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This is followed by a study of non-Hohmann transfer maneuvers with and without
rotation of the apse line. We then analyze chase maneuvers, which involves solving
Lambert’s problem as explained in Chapter 5. The energy-demanding chase maneu-
vers may be impractical for low-earth orbits, but they are necessary for interplanetary
missions, as we shall see in Chapter 8.

Up to this point, all of the maneuvers are transfers between coplanar orbits. The
chapter ends with an introduction to plane change maneuvers and an explanation of
why they require such large delta-vs compared to coplanar maneuvers.

6.2 Impulsive maneuvers

Orbital maneuvers transfer a spacecraft from one orbit to another. Orbital changes
can be dramatic, such as the transfer from a low-earth parking orbit to an inter-
planetary trajectory. They can also be quite small, as in the final stages of the
rendezvous of one spacecraft with another. Impulsive maneuvers are those in which
brief firings of onboard rocket motors change the magnitude and direction of the
velocity vector instantaneously. During an impulsive maneuver, the position of
the spacecraft is considered to be fixed; only the velocity changes. The impulsive
maneuver is an idealization by means of which we can avoid having to solve the
equations of motion (Equation 2.6) with the rocket thrust included. The idealiza-
tion is satisfactory for those cases in which the position of the spacecraft changes
only slightly during the time that the maneuvering rockets fire. This is true for
high-thrust rockets with burn times short compared with the coasting time of the
vehicle.

Each impulsive maneuver results in a change �v in the velocity of the spacecraft.
�v can represent a change in the magnitude (‘pumping maneuver’) or the direction
(‘cranking maneuver’) of the velocity vector, or both. The magnitude �v of the
velocity increment is related to �m, the mass of propellant consumed, by the formula
(see Equation 11.30)

�m

m
= 1 − e

− �v
Ispgo (6.1)

where m is the mass of the spacecraft before the burn, go is the sea-level standard
acceleration of gravity, and Isp is the specific impulse of the propellants. Specific
impulse is defined as follows:

Isp = thrust

sea-level weight rate of fuel consumption

Specific impulse has units of seconds, and it is a measure of the performance of a
rocket propulsion system. Isp for some common propellant combinations are shown
in Table 6.1. Figure 6.1 is a graph of Equation 6.1 for a range of specific impulses.
Note that for �vs on the order of 1 km/s or higher, the required propellant exceeds
25 percent of the spacecraft mass prior to the burn.

There are no refueling stations in space, so a mission’s delta-v schedule must
be carefully planned to minimize the propellant mass carried aloft in favor of
payload.
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Table 6.1 Some typical specific impulses

Propellant Isp (seconds)

Cold gas 50
Monopropellant hydrazine 230
Solid propellant 290
Nitric acid/monomethylhydrazine 310
Liquid oxygen/liquid hydrogen 455

0.001

0.01

0.1

10 100 10001 10 0005 50 500 50002 20 200 2000

m
�m

�y, m/s

 Isp � 250
 Isp � 350

 Isp � 450 

Figure 6.1 Propellant mass fraction versus �v for typical specific impulses.

6.3 Hohmann transfer

The Hohmann transfer (Hohmann, 1925) is the most energy efficient two-impulse
maneuver for transferring between two coplanar circular orbits sharing a common
focus. The Hohmann transfer is an elliptical orbit tangent to both circles at its apse
line, as illustrated in Figure 6.2. The periapse and apoapse of the transfer ellipse are
the radii of the inner and outer circles, respectively. Obviously, only one-half of the
ellipse is flown during the maneuver, which can occur in either direction, from the
inner to the outer circle, or vice versa.

It may be helpful in sorting out orbit transfer strategies to use the fact that the
energy of an orbit depends only on its semimajor axis a. Recall that for an ellipse
(Equation 2.70), the specific energy is negative,

ε = − µ

2a

Increasing the energy requires reducing its magnitude, in order to make ε less negative.
Therefore, the larger the semimajor axis is, the more the energy the orbit has. In
Figure 6.2, the energies increase as we move from the inner to the outer circle.

Starting at A on the inner circle, a velocity increment �vA in the direction of
flight is required to boost the vehicle onto the higher-energy elliptical trajectory. After
coasting from A to B, another forward velocity increment �vB places the vehicle on the
still higher-energy, outer circular orbit. Without the latter delta-v burn, the spacecraft
would, of course, remain on the Hohmann transfer ellipse and return to A. The total
energy expenditure is reflected in the total delta-v requirement, �vtotal = �vA + �vB.
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1

2

r1

r2

PeriapseApoapse

Hohmann
transfer
ellipse

AB

Figure 6.2 Hohmann transfer.

The same total delta-v is required if the transfer begins at B on the outer circular
orbit. Since moving to the lower-energy inner circle requires lowering the energy of
the spacecraft, the �vs must be accomplished by retrofires. That is, the thrust of the
maneuvering rocket is directed opposite to the flight direction in order to act as a
brake on the motion. Since �v represents the same propellant expenditure regardless
of the direction the thruster is aimed, when summing up �vs, we are concerned only
with their magnitudes.

Example
6.1

A spacecraft is in a 480 km by 800 km earth orbit (orbit 1 in Figure 6.3). Find (a) the
�v required at perigee A to place the spacecraft in a 480 km by 16 000 km transfer
orbit (orbit 2); and (b) the �v (apogee kick) required at B of the transfer orbit to
establish a circular orbit of 16 000 km altitude (orbit 3).

Earth

1

3

�yA

�yB

A
B

C

Hohmann transfer
ellipse

Circular orbit of
radius 22 378 km

Perigee of orbit 1
(z � 480 km)

Apogee of orbit 1
(z � 800 km)

2

Figure 6.3 Hohmann transfer between two earth orbits.
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(a) First, let us establish the primary orbital parameters of the original orbit 1. The
perigee and apogee radii are

rA = RE + zA = 6378 + 480 = 6858 km

rC = RE + zC = 6378 + 800 = 7178 km

Therefore, the eccentricity of orbit 1 is

e1 = rC − rA

rC + rA
= 0.022799

Applying the orbit equation at perigee of orbit 1, we calculate the angular
momentum,

rA = h2
1

µ

1

1 + e1 cos(0)
⇒ h1 = 52 876 km2/s

With the angular momentum, we can calculate the speed at A on orbit 1,

vA)1 = h1

rA
= 7.7102 km/s (a)

Moving to the transfer orbit 2, we proceed in a similar fashion to get

rB = RE + zB = 6378 + 16 000 = 22 378 km

e2 = rB − rA

rB + rA
= 0.53085

rA = h2
2

µ

1

1 + e2 cos(0)
⇒ h2 = 64 690 km

Thus, the speed at A on orbit 2 is

vA)2 = h2

rA
= 64 690

6858
= 9.4327 km/s (b)

The required forward velocity increment at A is now obtained from (a) and (b) as

�vA = vA)2 − vA)1 = 1.7225 km/s

(b) We use the angular momentum formula to find the speed at B on orbit 2,

vB)2 = h2

rB
= 64 690

22 378
= 2.8908 km/s (c)

Orbit 3 is circular, so its constant orbital speed is obtained from Equation 2.53,

vB)3 =
√

398 600

22 378
= 4.2204 km/s (d)
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(Example 6.1
continued)

Thus, the delta-v requirement at B to climb from orbit 2 to orbit 3 is

�vB = vB)3 − vB)2 = 4.2204 − 2.8908 = 1.3297 km/s

Observe that the total delta-v requirement for this Hohmann transfer is

�vtotal = |�vA| + |�vB| = 1.7225 + 1.3297 = 3.0522 km/s

In the previous example the initial orbit of the Hohmann transfer sequence was an
ellipse, rather than a circle. Since no real orbit is perfectly circular, we must generalize
the notion of a Hohmann transfer to include two impulsive transfers between elliptical
orbits that are coaxial, i.e., share the same apse line, as shown in Figure 6.4. The
transfer ellipse must be tangent to both the initial and target ellipses 1 and 2. As can
be seen, there are two such transfer orbits, 3 and 3′. It is not immediately obvious
which of the two requires the lowest energy expenditure.

To find out which is the best transfer orbit in general, we must calculate the
individual total delta-v requirement for orbits 3 and 3′. This requires finding the
velocities at A, A′, B and B′ for each pair of orbits having those points in common. To
do so, recall from Equation 2.74 that for an ellipse,

e = ra − rp

ra + rp

where rp and ra are the radii to periapse and apoapse, respectively. Evaluating the
orbit equation at periapse

rp = h2

µ

1

1 + e
= h2

µ

1

1 + ra−rp

ra+rp

AB A�

2

3�

3

1

rB

rA

rB�

B�

rA�

Figure 6.4 Hohmann transfers between coaxial elliptical orbits. In this illustration, rA′/r0 = 3, rB/r0 = 8
and rB′/r0 = 4.
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yields the angular momentum in terms of the periapse and apoapse radii,

h = √
2µ

√
rarp

ra + rp
(6.2)

Equation 6.2 is used to evaluate the angular momentum of each of the four orbits in
Figure 6.4:

h1 = √
2µ

√
rArA′

rA + rA′
h3 = √

2µ

√
rArB

rA + rB

h2 = √
2µ

√
rBrB′

rB + rB′
h3′ = √

2µ

√
rA′rB′

rA′ + rB′

From these we obtain the velocities,

vA)1 = h1

rA
vA)3 = h3

rA

vB)2 = h2

rB
vB)3 = h3

rB

vA′)1 = h1

rA′
vA′)3′ = h3′

rA′

vB′)2 = h2

rB′
vB′)3′ = h3′

rB′

These lead to the delta-vs

�vA = |vA)3 − vA)1| �vB = |vB)2 − vB)3|
�vA′ = |vA′)3′ − vA′)1| �vB′ = |vB′)2 − vB′)3′ |

and, finally, to the total delta-v requirement for the two possible transfer trajectories,

�vtotal)3 = �vA + �vB �vtotal)3′ = �vA′ + �vB′

If �vtotal)3′/�vtotal)3 > 1, then orbit 3 is the most efficient. On the other hand, if
�vtotal)3′/�vtotal)3 < 1, then orbit 3′ is more efficient than orbit 3.

Three contour plots of �vtotal)3′ /�vtotal)3 are shown in Figure 6.5, for three
different shapes of the inner orbit 1 of Figure 6.4. Figure 6.5(a) is for rA′/rA = 3, which
is the situation represented in Figure 6.4, in which point A is the periapse of the initial
ellipse. In Figure 6.5(b) rA′/rA = 1, which means the starting ellipse is a circle. Finally,
in Figure 6.5(c) rA′/rA = 1/3, which corresponds to an initial orbit of the same shape
as orbit 1 in Figure 6.4, but with point A being the apoapse instead of periapse.

Figure 6.5(a), for which rA′ > rA, implies that if point A is the periapse of orbit 1,
then transfer orbit 3 is the most efficient. Figure 6.5(c), for which rA′ < rA, shows
that if point A′ is the periapse of orbit 1, then transfer orbit 3′ is the most efficient.
Together, these results lead us to conclude that it is most efficient for the transfer
orbit to begin at the periapse on the inner orbit 1, where its kinetic energy is greatest,
regardless of shape of the outer target orbit. If the starting orbit is a circle, then
Figure 6.5(b) shows that transfer orbit 3′ is most efficient if rB′ > rB. That is, from
an inner circular orbit, the transfer ellipse should terminate at apoapse of the outer
target ellipse, where the speed is slowest.
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Figure 6.5 Contour plots of �vtotal)3′/�vtotal)3 for different relative sizes of the ellipses in Figure 6.4.
Note that rB > rA′ and rB′ > rA.

If the Hohmann transfer is in the reverse direction, i.e., to a lower-energy inner
orbit, the above analysis still applies, since the same total delta-v is required whether
the Hohmann transfer runs forwards or backwards. Thus, from an outer circle or
ellipse to an inner ellipse, the most energy-efficient transfer ellipse terminates at
periapse of the inner target orbit. If the inner orbit is a circle, the transfer ellipse
should start at apoapse of the outer ellipse.

We close this section with an illustration of the careful planning required for one
spacecraft to rendezvous with another at the end of a Hohmann transfer.

Example
6.2

A spacecraft returning from a lunar mission approaches earth on a hyperbolic trajec-
tory. At its closest approach A it is at an altitude of 5000 km, traveling at 10 km/s. At
A retrorockets are fired to lower the spacecraft into a 500 km altitude circular orbit,
where it is to rendezvous with a space station. Find the location of the space station
at retrofire so that rendezvous will occur at B.

The time of flight from A to B is one-half the period T2 of the elliptical transfer orbit
2. While the spacecraft coasts from A to B, the space station coasts through the angle
φCB from C to B. Hence, this mission has to be carefully planned and executed, going
all the way back to lunar departure, so that the two vehicles meet at B.

To calculate the period T2, we must first obtain the primary orbital parameters,
eccentricity and angular momentum. The apogee and perigee of orbit 2, the transfer
ellipse, are

rA = 5000 + 6378 = 11 378 km

rB = 500 + 6378 = 6878 km

Therefore, the eccentricity is

e2 = 11 378 − 6878

11 378 + 6878
= 0.24649

Evaluating the orbit equation at perigee yields the angular momentum,

rB = h2
2

µ

1

1 + e2
⇒ 6878 = h2

2

398 600

1

1 + 0.24649
⇒ h2 = 58 458 km2/s



6.3 Hohmann transfer 263

A B

5000 km

Earth

500 km circular orbit
1

2

�yB

3
Position of space station
when spacecraft is at A

C

��A

fCB

Figure 6.6 Relative position of spacecraft and space station at beginning of the transfer ellipse.

Now we can use Equation 2.72 to find the period of the transfer ellipse,

T2 = 2π

µ2


 h2√

1 − e2
2




3

= 2π

398 6002

(
58 458√

1 − 0.246492

)3

= 8679.1 s (a)

The period of circular orbit 3 is, according to Equation 2.54,

T3 = 2π√
µ

r
3
2
B = 2π√

398 600
6878

3
2 = 5676.8 s (b)

The time of flight from C to B on orbit 3 must equal the time of flight from A to B
on orbit 2.

�tCB = 1

2
T2 = 1

2
· 8679.1 = 4339.5 s

Since orbit 3 is a circle, its angular velocity, unlike an ellipse, is constant. Therefore,
we can write

φCB

�tCB
= 360◦

T3
⇒ φCB = 4339.5

5676.8
· 360 = 275.2◦

(The student should verify that the total delta-v required to lower the spacecraft from
the hyperbola into the parking orbit is 6.415 km/s. A glance at Figure 6.1 reveals the
tremendous amount of propellant this would require.)
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Figure 6.7 Bi-elliptic transfer from inner orbit 1 to outer orbit 4.

6.4 Bi-elliptic Hohmann transfer

A Hohmann transfer from circular orbit 1 to circular orbit 4 in Figure 6.7 is the dotted
ellipse lying inside the outer circle, outside the inner circle, and tangent to both. The
bi-elliptical Hohmann transfer uses two coaxial semi-ellipses, 2 and 3, which extend
beyond the outer target orbit. Each of the two ellipses is tangent to one of the circular
orbits, and they are tangent to each other at B, which is the apoapse of both. The idea
is to place B sufficiently far from the focus that the �vB will be very small. In fact, as
rB approaches infinity, �vB approaches zero. For the bi-elliptical scheme to be more
energy efficient than the Hohmann transfer, it must be true that

�vtotal)bi-elliptical < �vtotal)Hohmann (6.3)

Delta-v analyses of the Hohmann and bi-elliptical transfers lead to the following
results,

�v)Hohmann =
[

1√
α

−
√

2(1 − α)√
α(1 + α)

− 1

]√
µ

rA

�v)bi-elliptical =
[√

2(α + β)

αβ
− 1 + √

α√
α

−
√

2

β(1 + β)
(1 − β)

]√
µ

rA
(6.4a)

where

α = rC

rA
β = rB

rA
(6.4b)
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Figure 6.8 Orbits for which the bi-elliptical transfer is either less efficient or more efficient than the
Hohmann transfer.

Plotting the difference between Hohmann and bi-elliptical �vtotal as a function of α

and β reveals the regions in which the difference is positive, negative and zero. These
are shown in Figure 6.8.

From the figure we see that if the radius rC of the outer circular target orbit is less
than about 11.9 times that of the inner one (rA), the standard Hohmann maneuver is
the more energy efficient. If the ratio exceeds about 15, then the bi-elliptical strategy
is better in that regard. Between those two ratios, large values of the apoapse radius
rB favor the bi-elliptical transfer, while smaller values favor the Hohmann transfer.

Small gains in energy efficiency may be more than offset by the much longer flight
times around the bi-elliptical trajectories as compared with the time of flight on the
single semi-ellipse of the Hohmann transfer.

Example
6.3

Find the total delta-v requirement for a bi-elliptical Hohmann transfer from a geo-
centric circular orbit of 7000 km radius to one of 105 000 km radius. Let the apogee
of the first ellipse be 210 000 km. Compare the delta-v schedule and total flight time
with that for an ordinary single Hohmann transfer ellipse.

Since

rA = 7000 km rB = 210 000 km rC = rD = 105 000 km

we have rB/rA = 30 and rC/rA = 15, so that from Figure 6.8 it is apparent right away
that the bi-elliptic transfer will be the more energy efficient.

To do the delta-v analysis requires analyzing each of the five orbits.

Orbit 1:

Since this is a circular orbit, we have, simply,

vA)1 =
√

µ

rA
=

√
398 600

7000
= 7.546 km/s (a)
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(Example 6.3
continued)
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Figure 6.9 Bi-elliptic transfer.

Orbit 2:

For this transfer ellipse, Equation 6.2 yields

h2 = √
2µ

√
rArB

rA + rB
= √

2 · 398 600

√
7000 · 210 000

7000 + 210 000
= 73 487 km2/s

Therefore,

vA)2 = h2

rA
= 73 487

7000
= 10.498 km/s (b)

vB)2 = h2

rB
= 73 487

210 000
= 0.34994 km/s (c)

Orbit 3:

For the second transfer ellipse, we have

h3 = √
2 · 398 600

√
105 000 · 210 000

105 000 + 210 000
= 236 230 km2/s

From this we obtain

vB)3 = h3

rB
= 236 230

210 000
= 1.1249 km/s (d)

vC)3 = h3

rC
= 236 230

105 000
= 2.2498 km/s (e)
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Orbit 4:

The target orbit, like orbit 1, is a circle, which means

vC)4 = vD)4 =
√

398 600

105 000
= 1.9484 km/s (f)

For the bi-elliptical maneuver, the total delta-v is, therefore,

�vtotal)bi-elliptical = �vA + �vB + �vC

= |vA)2 − vA)1| + |vB)3 − vB)2| + |vC)4 − vC)3|
= |10.498 − 7.546| + |1.1249 − 0.34994| + |1.9484 − 2.2498|
= 2.9521 + 0.77496 + 0.30142

or,

�vtotal)bi-elliptical = 4.0285 km/s (g)

The semimajor axes of transfer orbits 2 and 3 are

a2 = 1

2
(7000 + 210 000) = 108 500 km

a3 = 1

2
(105 000 + 210 000) = 157 500 km

With this information and the period formula, Equation 2.73, the time of flight for
the two semi-ellipses of the bi-elliptical transfer is found to be

tbi-elliptical = 1

2

(
2π√
µ

a
3
2
2 + 2π√

µ
a

3
2
3

)
= 488 870 s = 5.66 days (h)

For the Hohmann transfer ellipse 5,

h5 = √
2 · 398 600

√
7000 · 105 000

7000 + 105 000
= 72 330 km2/s

Hence,

vA)5 = h5

rA
= 72 330

7000
= 10.333 km/s (i)

vD)5 = h5

rD
= 72 330

105 000
= 0.68886 km/s (j)

It follows that

�vtotal)Hohmann = |vA)5 − vA)1| + |vD)5 − vD)1|
= (10.333 − 7.546) + (1.9484 − 0.68886)

= 2.7868 + 1.2595
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(Example 6.3
continued)

or
�vtotal)Hohmann = 4.0463 km/s (k)

This is only slightly (0.44 percent) larger than that of the bi-elliptical transfer.
Since the semimajor axis of the Hohmann semi-ellipse is

a5 = 1

2
(7000 + 105 000) = 56 000 km

the time of flight from A to D is

tHohmann = 1

2

(
2π√
µ

a
3
2
5

)
= 65 942 s = 0.763 days (l)

The time of flight of the bi-elliptical maneuver is over seven times longer than that of
the Hohmann transfer.

6.5 Phasing maneuvers

A phasing maneuver is a two-impulse Hohmann transfer from and back to the same
orbit, as illustrated in Figure 6.10. The Hohmann transfer ellipse is the phasing orbit
with a period selected to return the spacecraft to the main orbit within a specified
time. Phasing maneuvers are used to change the position of a spacecraft in its orbit.
If two spacecraft, destined to rendezvous, are at different locations in the same orbit,
then one of them may perform a phasing maneuver in order to catch the other
one. Communications and weather satellites in geostationary earth orbit use phasing
maneuvers to move to new locations above the equator. In that case, the rendezvous

0
1

2

T0
0.8606T0

1.146T0

P

A

Figure 6.10 Main orbit (0) and two phasing orbits, faster (1) and slower (2). T0 is the period of the main

orbit.
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is with an empty point in space rather than with a physical target. In Figure 6.10,
phasing orbit 1 might be used to return to P in less than one period of the main orbit.
This would be appropriate if the target is ahead of the chasing vehicle. Note that a
retrofire is required to enter orbit 1 at P. That is, it is necessary to slow the spacecraft
down in order to speed it up, relative to the main orbit. If the chaser is ahead of the
target, then phasing orbit 2 with its longer period might be appropriate. A forward
fire of the thruster boosts the spacecraft’s speed in order to slow it down.

Once the period T of the phasing orbit is established, then Equation 2.73 should
be used to determine the semimajor axis of the phasing ellipse,

a =
(

T
√

µ

2π

) 2
3

(6.5)

With the semimajor axis established, the radius of point A opposite to P is obtained
from the fact that 2a = rP + rA. It is then apparent whether P is periapse or apoapse,
so that Equation 2.74 can be used to calculate the eccentricity of the phasing orbit.
The orbit equation, Equation 2.35, may then be applied at either P or A to obtain the
angular momentum, whereupon the phasing orbit is characterized completely.

Example
6.4

Spacecraft at A and B are in the same orbit (1). At the instant shown, the chaser
vehicle at A executes a phasing maneuver so as to catch the target spacecraft back at A
after just one revolution of the chaser’s phasing orbit (2). What is the required total
delta-v?

13 600 km 6800 km

A

B

2

1

(Phasing orbit)

C

Earth

D

Figure 6.11 Phasing maneuver.

From the figure,

rA = 6800 km rC = 13 600 km
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(Example 6.4
continued)

Orbit 1:

The eccentricity of orbit 1 is

e1 = rC − rA

rC + rA
= 0.33333

Evaluating the orbit equation at A, we find

rA = h2
1

µ

1

1 + e1 cos(0)
⇒ 6800 = h2

1

398 600

1

1 + 0.3333
⇒ h1 = 60 116 km2/s

The period is found using Equation 2.72,

T1 = 2π

µ2


 h1√

1 − e2
1




3

= 2π

398 6002

(
60 116√

1 − 0.333332

)3

= 10 252 s

Since A is perigee, there is no radial velocity component there. The speed, directed
entirely in the transverse direction, is found from the angular momentum formula,

vA1 = h1

rA
= 60 116

6800
= 8.8406 km/s

The phasing orbit must have a period T2 equal to the time it takes the target vehi-
cle at B to coast around to point A on orbit 1. We can determine the flight time
by calculating the time �tAB from A to B and subtracting that result from the
period T1 of orbit 1. At B the true anomaly is θA = 90◦. Therefore, according to
Equation 3.10a,

tan
EB

2
=

√
1 − e1

1 + e1
tan

θB

2
=

√
1 − 0.33333

1 + 0.33333
tan

90◦

2

= 0.70711 ⇒ EB = 1.2310 rad

Then, from Kepler’s equation (Equations 3.5 and 3.11), we get

�tAB = T1

2π
(EB − e1 sin EB) = 10 252

2π
(1.231 − 0.33333 · sin 1.231) = 1495.7 s

Thus, the time of flight of the target spacecraft from B to A is

�tBA = T1 − �tAB = 10 252 − 1495.7 = 8756.3 s

Orbit 2:

The period of orbit 2 must equal �tBA so that the chaser will arrive at A when the
target does. That is,

T2 = 8756.3 s
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This, together with the period formula, Equation 2.73, yields the semimajor axis of
orbit 2,

T2 = 2π√
µ

a
3
2
2 ⇒ 8756.2 = 2π√

398 600
a

3
2
2 ⇒ a2 = 9182.1 km (a)

Since 2a2 = rA + rD, we find

rD = 2a2 − rA = 2 · 9182.1 − 6800 = 11 564 km

Therefore, point A is indeed the perigee of orbit 2, the eccentricity of which can now
be determined:

e2 = rD − rA

rD + rA
= 0.25943

Evaluating the orbit equation at point A of orbit 2 yields its angular momentum,

rA = h2
2

µ

1

1 + e2 cos(0)
⇒ 6800 = h2

2

398 600

1

1 + 0.25943
⇒ h2 = 58 426 km2/s

Finally, we can calculate the speed at perigee of orbit 2,

vA2 = h2

rA
= 58 426

6800
= 8.5921 km/s

At the beginning of the phasing maneuver,

�vA = vA2 − vA1 = 8.5921 − 8.8406 = −0.24851 km/s

At the end of the phasing maneuver,

�vA = vA1 − vA2 = 8.8406 − 8.5921 = 0.24851 km/s

The total delta-v, therefore, is

�vtotal = |−0.24851| + |0.24851| = 0.4970 km/s

Example
6.5

It is desired to shift the longitude of a GEO satellite 12◦ westward in three revolutions
of its phasing orbit. Calculate the delta-v requirement.

This problem is illustrated in Figure 6.12. It may be recalled from Equations 2.57,
2.58 and 2.59 that the angular velocity of the earth, the radius to GEO and the speed
in GEO are, respectively,

ωE = ωGEO = 72.922 × 10−6 rad/s

rGEO = 42 164 km

vGEO = 3.0747 km/s
(a)



272 Chapter 6 Orbital maneuvers

(Example 6.5
continued)

Let �� be the change in longitude in radians. Then the period T2 of the phasing
orbit can be obtained from the following formula,

ωE(3T2) = 3 · 2π + �� (b)

which states that after three circuits of the phasing orbit, the original position of the
satellite will be �� radians east of P. In other words, the satellite will end up ��

radians west of its original position in GEO, as desired. From (b) we obtain,

T2 = 1

3

�� + 6π

ωE
= 1

3
·12◦ · π

180◦ + 6π

72.922 × 10−6
= 87 121 s

North Pole

12°

Original
position

Target
position

P

West

Earth East

A

B

C

1
2

Phasing orbit
GEO

Figure 6.12 GEO repositioning.

Note that the period of GEO is

TGEO = 2π

ωGEO
= 86 163 s

The satellite in its slower phasing orbit appears to drift westward at the rate

�̇ = ��

3T2
= 8.0133 × 10−7 rad/s = 3.9669◦/day

Having the period, we can use Equation 6.5 to obtain the semimajor axis of orbit 2,

a =
(

T
√

µ

2π

) 2
3 =

(
87 121

√
398 600

2π

) 2
3

= 42 476 km

From this we find the radial coordinate of C,

2a2 = rP + rC ⇒ rC = 2 · 42 476 − 42 164 = 42 787 km
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Now we can find the eccentricity of orbit 2,

e2 = rC − rA

rC + rA
= 42 787 − 42 164

42 787 + 42 164
= 0.0073395

and the angular momentum follows from applying the orbit equation at P (or C) of
orbit 2:

rP = h2
2

µ

1

1 + e2 cos (0)
⇒ 42 164 = h2

2

398 600

1

1 + 0.0073395
⇒ h2 = 130 120 km2/s

At P the speed in orbit 2 is

vP2 = 130 120

42 164
= 3.0859 km/s

Therefore, at the beginning of the phasing orbit,

�v = vP2 − vGEO = 3.0859 − 3.0747 = 0.01126 km/s

at the end of the phasing maneuver,

�v = vGEO − vP2 = 3.0747 − 3.08597 = −0.01126 km/s

Therefore,

�vtotal = |0.01126| + |−0.01126| = 0.022525 km/s

6.6 Non-Hohmann transfers with a common
apse line

Figure 6.13 illustrates a transfer between two coaxial elliptical orbits in which the
transfer trajectory shares the apse line but is not necessarily tangent to either the initial
or target orbit. The problem is to determine whether there exists such a trajectory
joining points A and B, and, if so, to find the total delta-v requirement.

rA and rB are given, as are the true anomalies θA and θB. Because of the com-
mon apse line assumption, θA and θB are the true anomalies of points A and B
on the transfer orbit as well. Applying the orbit equation to A and B on orbit 3
yields

rA = h2
3

µ

1

1 + e3 cos θA

rB = h2
3

µ

1

1 + e3 cos θB
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A

B

rB

FCommon apse line

2

1

3

uA

uB
rA

p̂

ˆ q 

Figure 6.13 Non-Hohmann transfer (3) between two coaxial elliptical orbits.

Solving these two equations for e3 and h3, we get

e3 = rB − rA

rA cos θA − rB cos θB

h3 = √
µrArB

√
cos θA − cos θB

rA cos θA − rB cos θB
(6.6)

With these, the transfer orbit is determined and velocity may be found at any true
anomaly. For a Hohmann transfer, in which θA = 0 and θB = π, Equations 6.6 become

e3 = rB − rA

rB + rA
h3 = √

2µ

√
rArB

rA + rB
(Hohmann transfer) (6.7)

When a delta-v calculation is done at a point which is not on the apse line, care must
be taken to include the change in direction as well as the magnitude of the velocity
vector. Figure 6.14 shows a point where an impulsive maneuver changes the velocity
vector from v1 on orbit 1 to v2 on orbit 2. The difference in length of the two vectors
shows the change in the speed, and the difference in the flight path angles indicates
the change in the direction. It is important to observe that the �v we seek is the
magnitude of the change in the velocity vector, not the change in its magnitude
(speed). That is,

�v = ||v2 − v1|| (6.8)

Only if v1 and v2 are parallel, as in Hohmann transfers, is it true that �v = ||v2|| −
||v1||.

From Figure 6.14 and the law of cosines, we find that

�v =
√

v2
1 + v2

2 − 2v1v2 cos �γ (6.9)

where v1 = ‖v1‖, v2 = ‖v2‖ and �γ = γ2 − γ1.
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v1

g1

g2

v2

F

1
2

B

rB

φ

Local horizon

∆v

∆γ

Figure 6.14 Vector diagram of the change in velocity and flight path angle at the intersection of two orbits.

The direction of �v shows the required alignment of the thruster that produces
the impulse. The orientation of �v relative to the local horizon is found by replacing
vr and v⊥ in Equation 2.41 by �vr and �v⊥, so that

tan φ = �vr

�v⊥
(6.10)

where φ is the angle from the local horizon to the �v vector.
Finally, recall the formula for specific mechanical energy of an orbit,

Equation 2.47,

ε = v · v

2
− µ

r
(v2 = v · v)

An impulsive maneuver results in a change of orbit and, therefore, a change in the
specific energy ε. If the expenditure of propellant �m is negligible compared to the
initial mass m1 of the vehicle, then �ε = ε2 − ε1. For the situation illustrated in
Figure 6.14,

ε1 = v2
1

2
− µ

rB

and

ε2 = (v1 + �v)·(v1 + �v)

2
− µ

rB
= v2

1 + 2v1 · �v + �v2

2
− µ

rB
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Hence

�ε = v1 · �v + �v2

2

From Figure 6.14 it is apparent that v1 · �v = v1�v cos �γ , so that

�ε = v1�v cos �γ + �v2

2
= v1�v

(
cos �γ + 1

2

�v

v1

)

For consistency with our assumption that �m<<m1, it must be true (recall
Figure 6.1) that �v<<v1. It follows that

�ε ≈ v1�v cos �γ (6.11)

This shows that, for a given �v, the change in specific energy is larger the faster the
spacecraft is moving (unless, of course, the change in flight path angle is 90◦). The
larger the �ε associated with a given �v, the more efficient the maneuver. As we
know, a spacecraft has its greatest speed at periapsis.

Example
6.6

A geocentric satellite in orbit 1 of Figure 6.15 executes a delta-v maneuver at A which
places it on orbit 2, for re-entry at D. Calculate �v at A and its direction relative to
the local horizon.

A

1

2

Earth

150°

10 000 km20 000 km

B C

vA2

vA1

D

Local horizon

g2
g1

∆vA

∆γ

Figure 6.15 Non-Hohmann transfer with a common apse line.

From the figure we see that

rB = 20 000 km rC = 10 000 km rD = 6378 km
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Orbit 1:

The eccentricity is

e1 = rB − rC

rB + rC
= 0.33333

The angular momentum is obtained from the orbit equation, noting that point C is
perigee:

rC = h2
1

µ

1

1 + e1 cos(0)
⇒ 10 000 = h2

1

398 600

1

1 + 0.33333
⇒ h1 = 72 902 km2/s

With the angular momentum and the eccentricity, we can use the orbit equation to
find the radial coordinate of point A,

rA = 72 9022

398 600

1

1 + 0.33333 · cos 150◦ = 18 744 km

Equations 2.21 and 2.38 yield the transverse and radial components of velocity at A
on orbit 1,

v⊥A )1 = h1

rA
= 3.8893 km/s (a)

vrA )1 = µ

h1
e1 sin 150◦ = 0.91127 km/s

From these we find the speed at A

vA)1 =
√

v⊥A )2
1 + vrA )2

1 = 3.9946 km/s

and the flight path angle,

γ1 = tan−1 vrA )1

v⊥A )1
= tan−1 0.91127

3.8893
= 13.187◦

Orbit 2:

The radius and true anomaly of points A and D on orbit 2 are known. Applying the
orbit equation at A, we get

18 744 = h2
2

398 600

1

1 + e2 cos 150◦ ⇒ h2
2 = 7.4715 × 109 − 6.4705 × 109e2 (b)

Likewise, at point D, which is perigee of orbit 2,

6378 = h2
2

398 600

1

1 + e2
⇒ h2

2 = 2.5423 × 109 + 2.5423 × 109e2 (c)

Equating the expressions for h2
2 in (b) and (c), and solving for e2, yields

e2 = 0.54692



278 Chapter 6 Orbital maneuvers

(Example 6.6
continued)

whereupon either (b) or (c) may be used to find

h2 = 62 711 km2/s

Now we can calculate the radial and perpendicular components of velocity on orbit 2
at point A:

v⊥A )2 = h2

rA
= 3.3456 km/s

vrA )2 = µ

h2
e2 sin 150◦ = 1.7381 km/s (d)

Hence, the speed and flight path angle at A on orbit 2 are

vA)2 =
√

v⊥A )2
2 + vrA )2

2 = 3.7702 km/s

γ2 = tan−1 vrA )2

v⊥A )2
= tan−1 1.7381

3.3456
= 27.453◦

The change in the flight path angle as a result of the impulsive maneuver is

�γ = γ2 − γ1 = 27.453◦ − 13.187◦ = 14.266◦

With this we can use Equation 6.9 to finally obtain �vA,

�vA =
√

vA)2
1 + vA)2

2 − 2vA)1vA)2 cos �γ

=
√

3.99462 + 3.77022 − 2 · 3.9946 · 3.7702 · cos 14.266

�vA = 0.9896 km/s (e)

Note that �vA is the magnitude of the change in velocity vector �vA at A. That is not
the same as the change in the magnitude of the velocity (i.e., the change in speed),
which is vA)2 − vA)1 = 3.9946 − 3.7702 = 0.2244 km/s.

To find the orientation of �vA, we use Equation 6.10,

tan φ = �vr)A

�v⊥)A
= vrA )2 − vrA )1

v⊥A )2 − v⊥A )1
= 1.7381 − 0.9113

3.3456 − 3.8893
= −1.5207

ˆ u⊥

123.3° A

�vA

150°

rA

Lo
ca

l
ho

ri
zo

n

Figure 6.16 Orientation of �vA to the local horizon.
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so that

φ = 123.3◦

This angle is illustrated in Figure 6.16. Prior to firing, the spacecraft would have to be
rotated so that the centerline of the rocket motor coincides with the line of action of
�vA, with the nozzle aimed in the opposite direction.

6.7 Apse line rotation

Figure 6.17 shows two intersecting orbits which have a common focus, but their apse
lines are not collinear. A Hohmann transfer between them is clearly impossible. The
opportunity for transfer from one orbit to the other by a single impulsive maneuver
occurs where they intersect, at points I and J in this case. As can be seen from the
figure, the rotation η of the apse line is the difference between the true anomalies of
the point of intersection, measured from periapse of each orbit. That is,

η = θ1 − θ2 (6.12)

We will consider two cases of apse line rotation.
The first case is that in which the apse line rotation η is given as well as the orbital

parameters e and h of both orbits. The problem is then to find the true anomaly of
I and J relative to both orbits. The radius of the point of intersection I is given by
either of the following

rI)1 = h2
1

µ

1

1 + e1 cos θ1
rI)2 = h2

2

µ

1

1 + e2 cos θ2

F PA

P'

A'

J

I

1

2 η

u1

r

Apse line of
orbit 1

Apse line of
orbit 2

u2

Figure 6.17 Two intersecting orbits whose apse lines do not coincide.



280 Chapter 6 Orbital maneuvers

Since rI)1 = rI)2, we can equate these two expressions and rearrange terms to get

e1h2
2 cos θ1 − e2h2

1 cos θ2 = h2
1 − h2

2

Setting θ2 = θ1 − η and using the trig identity cos (θ1 − η) = cos θ1 cos η+ sin θ1 sin η

leads to an equation for θ1

a cos θ1 + b sin θ1 = c (6.13a)

where

a = e1h2
2 − e2h2

1 cos η b = −e2h2
1 sin η c = h2

1 − h2
2 (6.13b)

Equation 6.13a has two roots (see Problem 3.9), corresponding to the two points of
intersection I and J of the two orbits:

θ1 = φ ± cos−1
( c

a
cos φ

)
(6.14a)

where

φ = tan−1 b

a
(6.14b)

Having found θ1 we obtain θ2 from Equation 6.12. �v for the impulsive maneuver
may then be computed as illustrated in the following example.

Example
6.7

An earth satellite is in an 8000 km by 16 000 km radius orbit (orbit 1 of Figure 6.18).
Calculate the delta-v and the true anomaly θ1 required to obtain a 7000 km by
21 000 km radius orbit (orbit 2) whose apse line is rotated 25◦ counterclockwise.
Indicate the orientation φ of �v to the local horizon.

1

25°

P1A1

A2

P2

Earth

2

φ
I

J

15 175 km u1

∆v

Figure 6.18 �v produces a rotation of the apse line.
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The eccentricities of the two orbits are

e1 = rA1 − rP1

rA1 + rP1

= 16 000 − 8000

16 000 + 8000
= 0.33333

e2 = rA2 − rP2

rA2 + rP2

= 21 000 − 7000

21 000 + 7000
= 0.5 (a)

The orbit equation yields the angular momenta

rP1 = h2
1

µ

1

1 + e1 cos(0)
⇒ 8000 = h2

1

398 600

1

1 + 0.33333
⇒ h1 = 65 205 km2/s

rP2 = h2
2

µ

1

1 + e2 cos(0)
⇒ 7000 = h2

2

398 600

1

1 + 0.5
⇒ h2 = 64 694 (b)

Using these orbital parameters and the fact that η = 25◦, we calculate the terms in
Equations 6.13b,

a = e1h2
2 − e2h2

1 cos η = 0.3333 · 64 6942 − 0.5 · 65 2052 · cos 25◦

= −5.3159 × 108 km4/s2

b = −e2h2
1 sin η = −0.5 · 65 2052 sin 25◦ = −8.9843 × 108 km4/s2

c = h2
1 − h2

2 = 65 2052 − 64 6942 = 6.6433 × 107 km4/s2

Then Equations 6.14 yield

φ = tan−1 −8.9843 × 108

−5.3159 × 108
= 59.39◦

θ1 = 59.39◦ ± cos−1
(

6.6433 × 107

−5.3159 × 108
cos 59.39◦

)
= 59.39◦ ± 93.65◦

Thus, the true anomaly of point I , the point of interest, is

θ1 = 153.04◦ (c)

(For point J , θ1 = 325.74◦.)
With the true anomaly available, we can evaluate the radial coordinate of the

maneuver point,

r = h2
1

µ

1

1 + e1 cos 153.04◦ = 15 175 km

The velocity components and flight path angle for orbit 1 at point I are

v⊥1 = h1

r
= 65 205

15 175
= 4.2968 km/s

vr1 = µ

h1
e1 sin 153.04◦ = 398 600

65 205
· 0.33333 · sin 153.04◦ = 0.92393 km/s

γ1 = tan−1 vr1

v⊥1

= 12.135◦
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(Example 6.7
continued)

The speed of the satellite in orbit 1 is, therefore,

v1 =
√

v2
r1

+ v2⊥1
= 4.3950 km/s

Likewise, for orbit 2,

v⊥2 = h2

r
= 64 694

15 175
= 4.2631 km/s

vr2 = µ

h2
e2 sin(153.04◦ − 25◦) = 398 600

64 694
· 0.5 · sin 128.04◦ = 2.4264 km/s

γ2 = tan−1 vr2

v⊥2

= 29.647◦

v2 =
√

v2
r2

+ v2⊥2
= 4.9053 km/s

Equation 6.9 is used to find �v,

�v =
√

v2
1 + v2

2 − 2v1v2 cos(γ2 − γ1)

=
√

4.39502 + 4.90532 − 2 · 4.3950 · 4.9053 cos(29.647◦ − 12.135◦)

�v = 1.503 km/s

The angle φ which the vector �v makes with the local horizon is given by
Equation 6.10,

φ = tan−1 �vr

�v⊥
= tan−1 vr2 − vr1

v⊥2 − v⊥1

= tan−1 2.4264 − 0.92393

4.2631 − 4.2968
= 91.28◦

The second case of apse line rotation is that in which the impulsive maneuver takes
place at a given true anomaly θ1 on orbit 1. The problem is to determine the angle of
rotation η and the eccentricity e2 of the new orbit.

The impulsive maneuver creates a change in the radial and transverse velocity
components at point I of orbit 1. From the angular momentum formula, h = rv⊥, we
obtain the angular momentum of orbit 2,

h2 = r(v⊥ + �v⊥) = h1 + r�v⊥ (6.15)

The formula for radial velocity, vr = (µ/h)e sin θ, applied to orbit 2 at point I , where

vr2 = vr1 + �vr and θ2 = θ1 − η, yields

vr1 + �vr = µ

h2
e2 sin θ2
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Substituting Equation 6.15 into this expression and solving for sin θ2 leads to

sin θ2 = 1

e2

(h1 + r�v⊥)(µe1 sin θ1 + h1�vr)

µh1
(6.16)

From the orbit equation, we have at point I

r = h2
1

µ

1

1 + e1 cos θ1
(orbit 1)

r = h2
2

µ

1

1 + e2 cos θ2
(orbit 2)

Equating these two expressions for r, substituting Equation 6.15, and solving for
cos θ2, yields

cos θ2 = 1

e2

(h1 + r�v⊥)2e1 cos θ1 + (2h1 + r�v⊥)r�v⊥
h2

1

(6.17)

Finally, substituting Equations 6.16 and 6.17 into the trig identity tan θ2 = sin θ2/

cos θ2, we obtain

tan θ2 = h1

µ

(h1 + r�v⊥)(µe1 sin θ1 + h1�vr)

(h1 + r�v⊥)2e1 cos θ1 + (2h1 + r�v⊥)r�v⊥
(6.18a)

Equation 6.18a can be simplified a bit by replacing µe1 sin θ1 with h1vr1 and h1 with
rv⊥1 , so that

tan θ2 = (v⊥1 + �v⊥)(vr1 + �vr)

(v⊥1 + �v⊥)2e1 cos θ1 + (2v⊥1 + �v⊥)�v⊥
v2⊥1

(µ/r)
(6.18b)

Equations 6.18 show how the apse line rotation, η = θ1 − θ2, is completely determined
by the components of �v imparted at the true anomaly θ1.

After solving Equation 6.18 (a or b), we substitute θ2 into Equation 6.16 or 6.17
to calculate the eccentricity e2 of orbit 2. Therefore, with h2 from Equation 6.15, the
rotated orbit 2 is completely specified.

If the impulsive maneuver takes place at the periapse of orbit 1, so that θ1 = vr = 0,
and if it is also true that �v⊥ = 0, then Equation 6.18b yields

tan η = − rv⊥1

µe1
�vr (with radial impulse at periapse)

Thus, if the velocity vector is given an outward radial component at periapse, then
η < 0, which means the apse line of the resulting orbit is rotated clockwise relative to
the original one. That makes sense, since having acquired vr > 0 means the spacecraft
is now flying away from its new periapse. Likewise, applying an inward radial velocity
component at periapse rotates the apse line counterclockwise.
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Example
6.8

An earth satellite in orbit 1 of Figure 6.19 undergoes the indicated delta-v maneuver
at its perigee. Determine the rotation η of its apse line.

60°

7000 km
17 000 km

2

Earth
    P1

    P2

A1

A2

η

1

∆υ � 2 km/s

Figure 6.19 Apse line rotation maneuver.

From the figure

rA1 = 17 000 km rP1 = 7000 km

The eccentricity of orbit 1 is

e1 = rA1 − rP1

rA1 + rP1

= 0.41667 (a)

As usual, we use the orbit equation to find the angular momentum,

rP1 = h2
1

µ

1

1 + e1 cos(0)
⇒ 7000 = h2

1

398 600

1

1 + 0.41667
⇒ h1 = 62 871 km2/s

At the maneuver point P1, the angular momentum formula and the fact that P1 is
perigee of orbit 1(θ1 = 0) imply that

v⊥1 = h1

rP1

= 62 871

7000
= 8.9816 km/s

vr1 = 0 (b)

From Figure 6.18 it is clear that

�v⊥ = �v cos 60◦ = 1 km/s

�vr = �v sin 60◦ = 1.7321 km/s (c)
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To compute θ2, we use Equation 6.18b together with (a), (b) and (c):

tan θ2 = (v⊥1 + �v⊥)(vr1 + �vr)

(v⊥1 + �v⊥)2e1 cos θ1 + (2v⊥1 + �v⊥)�v⊥
v2⊥1

(µ/rP1 )

= (8.9816 + 1)(0 + 1.7321)

(8.9816 + 1)2 · 0.41667· cos(0) + (2 · 8.9816 + 1) · 1
· 8.98162

(398 600/7000)

= 0.4050

It follows that θ2 = 22.047◦, so that Equation 6.12 yields

η = −22.05◦

which means the rotation of the apse line is clockwise, as indicated in Figure 6.19.

From Equation 6.17 we obtain the eccentricity of orbit 2,

e2 = (h1 + rP1�v⊥)2e1 cos θ1 + (2h1 + rP1�v⊥)rP1�v⊥
h2

1 cos θ2

= (62 871 + 7000 · 1)2 · 0.41667 · cos(0) + (2 · 62 871 + 7000 · 1) · 7000·1
62 8712 · cos 22.047◦

= 0.808830

With this and the angular momentum we find using the orbit equation that the
perigee and apogee radii of orbit 2 are

rP2 = h2
2

µ

1

1 + e2
= 69 8712

398 600

1

1 + 0.808830
= 6771.1 km

rA2 = 69 8712

398 600

1

1 − 0.808830
= 64 069 km

6.8 Chase maneuvers

Whereas Hohmann transfers and phasing maneuvers are leisurely, energy-efficient
procedures that require some preconditions (e.g., coaxial elliptical, orbits) in order
to work, a chase or intercept trajectory is one which answers the question, ‘How do
I get from point A to point B in space in a given amount of time?’ The nature of
the orbit lies in the answer to the question rather than being prescribed at the outset.
Intercept trajectories near a planet are likely to require delta-vs beyond the capabilities
of today’s technology, so they are largely of theoretical rather than practical interest.
We might refer to them as ‘star wars maneuvers.’ Chase trajectories can be found as
solutions to Lambert’s problem (Section 5.3).
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Example
6.9

Spacecraft B and C are both in the geocentric elliptical orbit (1) shown in Figure 6.20,
from which it can be seen that the true anomalies are θB = 45◦ and θC = 150◦. At the
instant shown, spacecraft B executes a delta-v maneuver, embarking upon a trajectory
(2) which will intercept vehicle C in precisely one hour. Find the orbital parameters
(e and h) of the intercept trajectory and the total delta-v required for the chase
maneuver.

45°30°

8100 km18 900 km

B

C

PA
Earth

1

2

C'

ˆ p 

ˆ q 

Figure 6.20 Intercept trajectory (2) required for B to catch C in one hour.

First, we must determine the parameters of orbit 1 in the usual way. The eccentricity
is found using the orbit’s perigee and apogee, shown in Figure 6.20,

e1 = 18 900 − 8100

18 900 + 8100
= 0.4000

From the orbit equation,

rP = h2
1

µ

1

1 + e1 cos(0)
⇒ 8100 = h2

1

398 600

1

1 + 0.4
⇒ h1 = 67 232 km2/s

Using Equation 2.72 yields the period,

T1 = 2π

µ2


 h1√

1 − e2
1




3

= 2π

398 6002

(
67 232√
1 − 0.42

)3

= 15 610 s
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In perifocal coordinates (Equation 2.109) the position vector of B is

rB = h2
1

µ

1

1 + e1 cos θB
(cos θBp̂ + sin θBq̂)

= 67 2322

398 600

1

1 + 0.4 cos 45◦ (cos 45◦p̂ + sin 45◦q̂)

or

rB = 6250.6p̂ + 6250.6q̂ (km) (a)

Likewise, according to Equation 2.115, the velocity at B on orbit 1 is

vB1 = µ

h
[− sin θBp̂ + (e + cos θB)q̂] = 398 600

67 232
[− sin 45◦p̂ + (0.4 + cos 45◦)q̂]

so that

vB1 = −4.1922p̂ + 6.5637q̂ (km/s) (b)

Now we need to move spacecraft C along orbit 1 to the position C′ that it will occupy
one hour later (�t), when it will presumably be met by spacecraft B. To do that,
we must first calculate the time since perigee passage at C. Since we know the true
anomaly, the eccentric anomaly follows from Equation 3.10a,

tan
EC

2
=

√
1 − e1

1 + e1
tan

θC

2
=

√
1 − 0.4

1 + 0.4
tan

150◦

2
= 2.4432 ⇒ EC = 2.3646 rad

Substituting this value into Kepler’s equation (Equations 3.5 and 3.11) yields the time
since perigee passage,

tC = T1

2π
(EC − e1 sin EC) = 15 610

2π
(2.3646 − 0.4 · sin 2.3646) = 5178 s

One hour later (�t = 3600 s), the spacecraft will be in intercept position at C′,

tC′ = tC + �t = 5178 + 3600 = 8778 s

The corresponding mean anomaly is

Me)C′ = 2π
tC′

T1
= 2π

8778

15 610
= 3.5331 rad

With this value of the mean anomaly, Kepler’s equation becomes

EC′ − e1 sin EC′ = 3.5331

Applying Algorithm 4.1 to the solution of this equation we get

EC′ = 3.4223 rad

Substituting this result into Equation 3.10a yields the true anomaly at C′,

tan
θC′

2
=

√
1 + 0.4

1 − 0.4
tan

3.4223

2
= −10.811 ⇒ θC′ = 190.57◦
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(Example 6.9
continued)

We are now able to calculate the perifocal position and velocity vectors at C′ on
orbit 1:

rC′ = 67 2322

398 600

1

1 + 0.4 cos 190.57◦ (cos 190.57◦p̂ + sin 4190.57◦q̂)

= −18 372p̂ − 3428.1q̂ (km)

vC′
1
= 398 600

67 232
[−sin 190.57◦p̂ + (0.4 + cos 190.57◦)q̂]

= 1.0875p̂ − 3.4566q̂ (km/s) (c)

The intercept trajectory connecting points B and C′ are found by solving Lambert’s
problem. Substituting rB and rC′ along with �t = 3600 s into Algorithm 5.2 yields

vB2 = −8.1349p̂ + 4.0506q̂ (km/s) (d)

vC′
2
= −3.4745p̂ − 4.7943q̂ (km/s) (e)

These velocities are most easily obtained by running the following MATLAB
script, which executes Algorithm 5.2 by means of the function M-file lambert.m
(Appendix D.11).

clear
global mu

deg = pi/180;
mu = 398600;
e = 0.4;
h = 67232;

theta1 = 45*deg;
theta2 = 190.57*deg;

delta_t = 3600;
rB = hˆ2/mu/(1 + e*cos(theta1)). . .

*[cos(theta1),sin(theta1),0];
rC_prime = hˆ2/mu/(1 + e*cos(theta2)). . .

*[cos(theta2),sin(theta2),0];
string = 'pro';
[vB2 vC_prime_2] = lambert(rB, rC_prime,. . .

delta_t, string)

From (b) and (d) we find

�vB = vB2 − vB1 = −3.9426p̂ − 2.5132q̂ (km/s)

whereas (c) and (e) yield

�vC′ = vC′
1
− vC′

2
= 4.5620p̂ + 1.3376q̂ (km/s)
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The anticipated, extremely large, delta-v requirement for this chase maneuver is the
sum of the magnitudes of these two vectors,

�v = ||�vB|| + ||�vC′ || = 4.6755 + 4.7540 = 9.430 km/s

We know that orbit 2 is an ellipse. To pin it down a bit more, we can use rB and vB2

to obtain the orbital elements from Algorithm 4.1, which yields

h2 = 76 167 km2/s

e2 = 0.8500

a2 = 52 449 km

θB2 = 319.52◦

These may be found quickly by running the following MATLAB script, in which the
M-function coe_from_sv.m is Algorithm 4.1 (see Appendix D.8):

clear
global mu
mu = 398600;
rB = [6250.6 6250.6 0];

vB2 = [-8.1349 4.0506 0];
orbital_elements = coe_from_sv(rB, vB2)

The details of the intercept trajectory and the delta-v maneuvers are shown in Fig-
ure 6.21. A far less dramatic though more leisurely (and realistic) way for B to catch
up with C would be to use a phasing maneuver.

B

45˚

Earth

C

B', C'

Intercept trajectory
(ellipse) Perigee

94.51˚

1

4.754 km/s

3.624 km/s5.92 km/s

4.675 km/s

7.79 km/s

9.09 km/s

2

10.57˚

18 689 km

88
40

 km

A
ps

e 
lin

e

Apse line

Figure 6.21 Details of the large elliptical orbit, a portion of which serves as the intercept trajectory.
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6.9 Plane change maneuvers

Orbits having a common focus F need not, and generally do not, lie in a common
plane. Figure 6.22 shows two such orbits and their line of intersection BD. A and
P denote the apoapses and periapses. Since the common focus lies in every orbital
plane, it must lie on the line of intersection of any two orbits. For a spacecraft in
orbit 1 to change its plane to that of orbit 2 by means of a single delta-v maneuver
(cranking maneuver), it must do so when it is on the line of intersection of the orbital
planes. Those two opportunities occur only at points B and D in Figure 6.22(a).

A view down the line of intersection, from B towards D, is shown in Figure 6.22(b).
Here we can see in true view the dihedral angle δ between the two planes. The trans-
verse component of velocity v⊥ at B is evident in this perspective, whereas the radial
component vr , lying as it does on the line of intersection, is normal to the view plane
(thus appearing as a dot). It is apparent that changing the plane of orbit 1 requires
simply rotating v⊥ around the intersection line, through the dihedral angle. If the
magnitudes of v⊥ and vr remain unchanged in the process, then we have a rigid body
rotation of the orbit. That is, except for its new orientation in space, the orbit remains
unchanged. If the magnitudes of vr and v⊥ change in the process, then the rotated
orbit acquires a new size and shape.

To find the delta-v associated with a plane change, let v1 be the velocity before
and v2 the velocity after the impulsive maneuver. Then

v1 = vr1 ûr + v⊥1 û⊥1

v2 = vr2 ûr + v⊥2 û⊥2

where ûr is the radial unit vector directed along the line of intersection of the two
orbital planes. ûr does not change during the maneuver. As we know, the transverse

B

δ
⊥

1

2

P

A

P'
A'

2

1
F

B

C

D

v

(a) (b)

vr

v

Figure 6.22 (a) Two non-coplanar orbits about F. (b) A view down the line of intersection of the two

orbital planes.



6.9 Plane change maneuvers 291

unit vector û⊥ is perpendicular to ûr and lies in the orbital plane. Therefore it rotates
through the dihedral angle δ from its initial orientation û⊥1 to its final orientation û⊥2 .

The change �v in the velocity vector is

�v = v2 − v1 = (vr2 − vr1 )ûr + v⊥2 û⊥2 − v⊥1 û⊥1

�v is found by taking the dot product of �v with itself,

�v2 = �v · �v

= [
(vr2 − vr1 )ûr + v⊥2 û⊥2 − v⊥1 û⊥1

] · [(vr2 − vr1 )ûr + v⊥2 û⊥2 − v⊥1 û⊥1

]
Carrying out the dot products while noting that ûr · ûr = û⊥1 · û⊥1 = û⊥2 · û⊥2 = 1
and ûr · û⊥1 = ûr · û⊥2 = 0, yields

�v2 = (vr2 − vr1 )2 + v2⊥1
+ v2⊥2

− 2v⊥1v⊥2 (û⊥1 · û⊥2 )

But û⊥1 · û⊥2 = cos δ, so that we finally obtain a general formula for �v with plane
change,

�v =
√

(vr2 − vr1 )2 + v2⊥1
+ v2⊥2

− 2v⊥1v⊥2 cos δ (6.19)

From the definition of the flight path angle (cf. Figure 2.11),

vr1 = v1 sin γ1 v⊥1 = v1 cos γ1

vr2 = v2 sin γ2 v⊥2 = v2 cos γ2

Substituting these relations into Equation 6.19, expanding and collecting terms, and
using the trig identities

sin2 γ1 + cos2 γ1 = sin2 γ2 + cos2 γ2 = 1

cos(γ2 − γ1) = cos γ2 cos γ1 + sin γ2 sin γ1

leads to another version of the same equation,

�v =
√

v2
1 + v2

2 − 2v1v2[cos �γ − cos γ2 cos γ1(1 − cos δ)] (6.20)

where �γ = γ2 − γ1. If there is no plane change (δ = 0), then cos δ = 1 and Equation
6.20 reduces to

�v =
√

v2
1 + v2

2 − 2v1v2 cos �γ

which is the cosine law we have been using to compute �v in coplanar maneuvers.
Therefore, Equation 6.19 contains Equation 6.9 as a special case.

To keep �v at a minimum, it is clear from Equation 6.19 that the radial velocity
should remain unchanged during a plane change maneuver. For the same reason, it is
apparent that the maneuver should occur where v⊥ is smallest, which is at apoapse.
Figure 6.23 illustrates a plane change maneuver at apoapse. In this case vr1 = vr2 = 0,
so that v⊥1 = v1 and v⊥2 = v2, thereby reducing Equation 6.19 to

�v =
√

v2
1 + v2

2 − 2v1v2 cos δ Plane change at apoapse (or periapse). (6.21)
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v1

v2
∆v

1

2

F Apoapsis

Figure 6.23 Plane change at apoapse.
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Figure 6.24 Plane changes at apoapse or periapse. (a) Speed change accompanied by plane change. (b) Plane

change followed by speed change. (c) Speed change followed by plane change.

Equation 6.21 is for a speed change accompanied by a plane change, as illustrated in
Figure 6.24(a). Using the trig identity

cos δ = 1 − 2 sin2 δ

2

we can rewrite Equation 6.21 as follows for a plane change together with a speed
change at apoapse or periapse,

�vI =
√

(v2 − v1)2 + 4v1v2 sin2 δ

2
(6.22)

If there is no change in the speed, so that v2 = v1, Equation 6.22 yields

�vδ = 2v sin
δ

2
(6.23)

The subscript δ reminds us that this is the delta-v for a pure rotation of the velocity
vector through the angle δ .

Another plane-change strategy, illustrated in Figure 6.24(b), is to rotate the
velocity vector and then change its magnitude. In that case, the delta-v is

�vII = 2v1 sin
δ

2
+ |v2 − v1|
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Figure 6.25 �v required to rotate the velocity vector through an angle δ.

Yet another possibility is to change the speed first, and then rotate the velocity vector
(Figure 6.24(c)). Then

�vIII = |v2 − v1| + 2v2 sin
δ

2

It is easy to show that

�vII =
√

�v2
1 + 4v1|v2 − v1| sin

δ

2

(
1 − sin

δ

2

)
> �vI

�vIII =
√

�v2
1 + 4v2|v2 − v1| sin

δ

2

(
1 − sin

δ

2

)
> �vI

It follows that plane change accompanied by speed change is the most efficient of the
above three maneuvers.

Equation 6.23, the delta-v formula for pure rotation of the velocity vector, is plot-
ted in Figure 6.25, which shows why significant plane changes are so costly in terms
of propellant expenditure. For example, a plane change of just 24◦ requires a delta-
v equal to that needed for an escape trajectory (41.4 percent). A 60◦ plane change
requires a delta-v equal to the speed of the spacecraft itself, which in earth orbit oper-
ations is about 7.5 km/s. This would require placing in orbit, a spacecraft about the
size of that which launched the satellite into orbit. Of course, this launch-vehicle sized
satellite would itself have to be launched atop a vehicle of monstrous proportions.
The space shuttle is capable of a plane change in orbit of only about 3◦, a maneuver
which would exhaust its entire fuel capacity. Orbit plane adjustments are therefore
made during the powered ascent phase when the energy is available to do so.

For some missions, however, plane changes must occur in orbit. A common
example is the maneuvering of GEO satellites into position. These must orbit the
earth in the equatorial plane, but it is impossible to throw a satellite directly into an
equatorial orbit from a launch site which is not on the equator. That is not difficult
to understand when we realize that the plane of the orbit must contain the center of
the earth (the focus) as well as the point at which the satellite is inserted into orbit, as
illustrated in Figure 6.26. So if the insertion point is anywhere but on the equator, the
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Figure 6.26 Two views of the orbit of a satellite launched directly east at 28.6◦ north latitude. (a) Edge-on

view of the orbital plane. (b) View towards insertion point meridian.
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Figure 6.27 (a) Northeasterly launch (0◦ < A < 270) from a latitude of 28.6◦N. (b) Southeasterly launch

(90◦ < A < 270).

plane of the orbit will be tilted away from the earth’s axis. As we know from Chapter 4,
the angle between the equatorial plane and the plane of the orbiting satellite is called
the inclination i.

Launching a satellite due east takes full advantage of the earth’s rotational velocity,
which is about 0.5 km/s at the equator and diminishes towards the poles. Figure 6.26
shows a spacecraft launched due east into low earth orbit at a latitude φ of 28.6◦
north, which is the latitude of Kennedy Space Flight Center (KSC). As can be seen
from the figure, the inclination of the orbit will be 28.6◦. One-fourth of the way
around the earth the satellite will cross the equator. Halfway around the earth it
reaches its southernmost latitude, φ = 28.6◦ south. It then heads north, crossing over
the equator at the three-quarters point and returning after one complete revolution
to φ = 28.6◦ north.

Launch azimuth A is the flight direction at insertion, measured clockwise from
north on the local meridian. Thus A = 90◦ is due east. If the launch direction is
not directly eastward, then the orbit will have an inclination greater than the launch
latitude, as illustrated in Figure 6.27 for φ = 28.6◦N. Northeasterly (0 < A < 90◦) or
southeasterly (90◦ < A < 180◦) launches take only partial advantage of the earth’s
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Figure 6.28 Orbit inclination i versus launch azimuth A for several latitudes φ.
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Figure 6.29 Variation of orbit inclinations with launch azimuth at φ = 28◦. Note the retrograde orbits for

A > 180◦.
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rotational speed and both produce an inclination i greater than the launch latitude but
less than 90◦. Since these orbits have an eastward velocity component, they are called
prograde orbits. Launches to the west produce retrograde orbits with inclinations
between 90◦ and 180◦. Launches directly north or directly south result in polar orbits.

Spherical trigonometry is required to obtain the relationship between orbital
inclination i, launch platform latitude φ, and launch azimuth A. It turns out that

cos i = cos φ sin A (6.24)

From this we verify, for example, that i = φ when A = 90◦, as pointed out above.
A plot of this relation is presented in Figure 6.28, while Figure 6.29 illustrates the
orientation of orbits for a range of launch azimuths at φ = 28◦.

Example
6.10

Determine the required launch azimuth for the sun-synchronous satellite of
Example 4.7 if it is launched from Vandenburgh AFB on the California coast
(latitude = 34.5◦N).

In Example 4.7 the inclination of the sun-synchronous orbit was determined to be
98.43◦. Equation 6.24 is used to calculate the launch azimuth,

sin A = cos i

cos l
= cos 98.43◦

cos 34.5◦ = −0.1779

From this, A = 190.2◦, a launch to the south or A = 349.8◦, a launch to the north.

Figure 6.30 shows the effect that the choice of launch azimuth has on the orbit. It
does not change the fact that the orbit is retrograde; it simply determines whether the
ascending node will be in the same hemisphere as the launch site or on the opposite
side of the earth. Actually, a launch to the north from Vandenburgh is not an option
because of the safety hazard to the populated land lying below the ascent trajectory.
Launches to the south, over open water, are not a hazard. Working this problem for
Kennedy Space Center (latitude 28.6◦N) yields nearly the same values of A. Since
safety considerations on the Florida east coast limit launch azimuths to between 35◦
and 120◦, polar and sun-synchronous satellites cannot be launched from the US
eastern test range.

The projection of a satellite’s orbit onto the earth’s surface is called its ground
track. Because the satellite reaches a maximum and minimum latitude (‘amplitude’)
during each orbit while passing over the equator twice, on a Mercator projection the
ground track of a satellite in low-earth orbit resembles a sine curve. If the earth did not
rotate, there would be just one sinusoid-like track, traced over and over again as the
satellite orbits the earth. However, the earth rotates eastward beneath the satellite orbit
at 15.04◦ per hour, so the ground track advances westward at that rate. Figure 6.31
shows about two and a half orbits of a satellite, with the beginning and end of this
portion of the ground track labeled. The distance between two successive crossings of
the equator is measured to be 23.2◦, which is the amount of earth rotation in one orbit
of the spacecraft. Therefore, the ground track reveals that the period of the satellite is

T = 23.2◦

15.04◦/hr
= 1.54 hr = 92.6 min

This is a typical low earth orbital period.
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Figure 6.31 Ground track of a satellite.

Example
6.11

Find the delta-v required to transfer a satellite from a circular, 300 km altitude low-
earth orbit of 28◦ inclination to a geostationary equatorial orbit. Circularize and
change the inclination at altitude. Compare that delta-v requirement with the one in
which the plane change is done in the low-earth orbit.

Figure 6.32 shows the 28◦ inclined low-earth parking orbit (1), the coplanar
Hohmann transfer ellipse (2), and the coplanar GEO orbit (3). From the figure we
see that

rB = 6678 km rc = 42 164 km
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(Example 6.11
continued)

Orbit 1:

For this circular orbit the speed at B is

vB1 =
√

µ

rB
=

√
398 600

6678
= 7.7258 km/s

6678 km 42 164 km

Earth

1

CB

LEO

2

Orbits 1, 2 and 3 all have
28° inclination

3

Figure 6.32 Transfer from LEO to GEO in an orbit of 28◦ inclination.

Orbit 2:

The eccentricity of the transfer orbit is

e2 = rC − rB

rC + rB
= 0.72655

Let us evaluate the orbit equation at B to find the angular momentum of the Hohmann
transfer orbit 2,

rB = h2
2

µ

1

1 + e2 cos(0)
⇒ 6678 = h2

2

398 600

1

1 + 0.72655
⇒ h2 = 67 792 km/s
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The velocities at perigee and apogee of orbit 2 are, from the angular momentum
formula,

vB2 = h2

rB
= 10.152 km/s vC2 = h2

rC
= 1.6078 km/s

At this point we can calculate �vB,

�vB = vB2 − vB1 = 10.152 − 7.7258 = 2.4258 km/s (a)

Orbit 3:

For this orbit, which is circular, the speed at C is

vC3 =
√

µ

rC
= 3.0747 km/s

so that

�vC = vC3 − vC2 = 3.0747 − 1.6078 = 1.4668 km/s (b)

We can now calculate the total delta-v for the Hohmann transfer:

�vHohmann = �vB + �vC = 2.4258 + 1.4668 = 3.8926 km/s

This places the satellite in a circular orbit of the correct radius, but the wrong incli-
nation. The velocity vector at C must be rotated into the plane of the equator, as
illustrated in Figure 6.33. According to Equation 6.30, the delta-v required to rotate
that velocity through the change in inclination of 28◦ is

�viC = 2vC3 sin
�i

2
= 2 · 3.0747 · sin

28◦

2
= 1.4877 km/s

Therefore, the total delta-v requirement is

�vtotal = �vHohmann + �viC = 5.3803 km/s

28°
4 GEO

3.0747 km/s

C

N

S

Earth

Equatorial plane

3

2

Plane of

and

∆υ

Figure 6.33 Plane change maneuver required after the Hohmann transfer.
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(Example 6.11
continued)

Suppose we make the plane change at LEO instead of at GEO. To rotate the velocity
vector vB1 through 28◦ requires

�vBi = 2vB1 sin
�i

2
= 2 · 7.7258 · sin

28◦

2
= 3.7381 km/s

This, together with (a) and (b), yields the total delta-v schedule for insertion into
GEO:

�vtotal = �vBi + �vB + �vC = 3.7381 + 2.4258 + 1.4668 = 7.6307 km/s

This is a 42 percent increase over the total delta-v with plane change at GEO. Clearly,
it is best to do plane change maneuvers at the largest possible distance (apoapse) from
the primary attractor, where the velocities are smallest.

Example
6.12

Suppose in the previous example that part of the plane change, �i, takes place at B,
the perigee of the Hohmann transfer ellipse, and the remainder, 28◦ − �i, occurs at
the apogee C. What is the value of �i which results in the minimum �vtotal?

We found in Example 6.11 that if �i = 0, then �vtotal = 5.3803 km/s, whereas
�i = 28◦ made �vtotal = 7.6307 km/s. Here we are to determine if there is a value
of �i between 0◦ and 28◦ that yields a �vtotal which is smaller than either of
those two.

In this case a plane change occurs at both B and C. Recall that the most efficient
strategy is to combine the plane change with the speed change, so that the delta-vs at
those points are (Equation 6.21)

�vB =
√

v2
B1

+ v2
B2

− 2vB1vB2 cos �i

=
√

7.72582 + 10.1522 − 2 · 7.7258 · 10.152 · cos �i

= √
162.74 − 156.86 cos �i

and

�vC =
√

v2
C2

+ v2
C3

− 2vC2vC3 cos(28◦ − �i)

=
√

1.60782 + 3.07472 − 2 · 1.6078 · 3.0747 · cos(28◦ − �i)

=
√

12.039 − 9.8871 cos(28◦ − �i)

Thus,

�vtotal = �vB + �vC

= √
162.74 − 156.86 cos �i +

√
12.039 − 9.8871 cos(28◦ − �i) (a)
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To determine if there is a �i which minimizes �vtotal, we take its derivative with
respect to �i and set it equal to zero:

d�vtotal

d�i
= 78.43 sin �i√

162.74 − 156.86 cos �i
− 4.9435 sin(28◦ − �i)√

12.039 − 9.8871 cos(28◦ − �i)
= 0

This is a transcendental equation which must be solved iteratively. The solution, as
the reader may verify, is

�i = 2.1751◦ (b)

That is, an inclination change of 2.1751◦ should occur in low-earth orbit, while the
rest of the plane change, 25.825◦, is done at GEO. Substituting (b) into (a) yields

�vtotal = 4.2207 km/s

This is 21 percent less than the smallest �vtotal computed in Example 6.11.

Example
6.13

A spacecraft is in a 500 km by 10 000 km altitude geocentric orbit which intersects the
equatorial plane at a true anomaly of 120◦ (see Figure 6.34). If the inclination to the
equatorial plane is 15◦, what is the minimum velocity increment required to make
this an equatorial orbit?

The orbital parameters are

e = rA − rP

rA + rP
= (6378 + 10 000) − (6378 + 500)

(6378 + 10 000) + (6378 + 500)
= 0.4085

F

120°

16 378 km 6878 km

B

C

A
P

2.2692 km/s

2.2692 km/s

Ascending node

12 174 km

5.1043 km/s

7.7246 km/s

8044.6 km

Figure 6.34 An orbit which intersects the equatorial plane along line BC. The equatorial plane makes an

angle of 15◦ with the plane of the page.
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(Example 6.13
continued) rP = h2

µ

1

1 + e cos(0)
⇒ 6878 = h2

398 600

1

1 + 0.4085
⇒ h = 62 141 km/s

The radial coordinate and velocity components at points B and C, on the line of
intersection with the equatorial plane, are

rB = h2

µ

1

1 + e cos θB
= 62 1412

398 600

1

1 + 0.4085 · cos 120◦ = 12 174 km

v⊥B = h

rB
= 62 141

12 174
= 5.1043 km/s

vrB = µ

h
e sin θB = 398 600

62 141
· 0.4085 · sin 120◦ = 2.2692 km/s

and

rC = h2

µ

1

1 + e cos θC
= 62 1412

398 600

1

1 + 0.4085 · cos 300◦ = 8044.6 km

v⊥C = h

rC
= 62 141

8044.6
= 7.7246 km/s

vrC = µ

h
e sin θC = 398 600

62 141
· 0.4085 · sin 300◦ = −2.2692 km/s

All we wish to do here is rotate the plane of the orbit rigidly around the node line
BC. The impulsive maneuver must occur at either B or C. Equation 6.19 applies, and
since the radial and perpendicular velocity components remain fixed, it reduces to

�v = v⊥
√

2(1 − cos δ)

where δ = 15◦. For the minimum �v, the maneuver must be done where v⊥ is
smallest, which is at B, the point farthest from the center of attraction F. Thus,

�v = 5.1043
√

2(1 − cos 15◦) = 1.3325 km/s

Example
6.14

Orbit 1 has angular momentum h and eccentricity e. The direction of motion is
shown. Calculate the �v required to rotate the orbit 90◦ about its latus rectum BC
without changing h and e. The required direction of motion in orbit 2 is shown in
Figure 6.35.

By symmetry, the required maneuver may occur at either B or C, and it involves a
rigid body rotation of the ellipse, so that vr and v⊥ remain unaltered. Because of the
directions of motion shown, the true anomalies of B on the two orbits are

θB1 = −90◦ θB2 = +90◦

The radial coordinate of B is

rB = h2

µ

1

1 + e cos(±90)
= h2

µ
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B

C
1

2

F

P1

P2

Figure 6.35 Identical ellipses intersecting at 90◦ along their common latus rectum, BC.

For the velocity components at B, we have

v⊥B)1 = v⊥B )2 = h

rB
= µ

h

vrB )1 = µ

h
e sin(θB1) = −µe

h
vrB)2 = µ

h
e sin(θB2 ) = µe

h

Substituting these into Equation 6.19, yields

�vB =
√[

vrB )2 − vrB )1
]2 + v⊥B )2

1 + v⊥B )2
2 − 2v⊥B )1v⊥B )2 cos 90◦

=
√[µe

h
−

(
−µe

h

)]2 +
(µ

h

)2 +
(µ

h

)2 − 2
(µ

h

) (µ

h

)
· 0

=
√

4
µ2

h2
e2 + 2

µ2

h2

so that

�vB =
√

2µ

h

√
1 + 2e2 (a)

If the motion on ellipse 2 were opposite to that shown in Figure 6.35, then the radial
velocity components at B (and C) would be in the same rather than in the opposite
direction on both ellipses, so that instead of (a) we would find a smaller velocity
increment,

�vB =
√

2µ

h
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Problems

6.1 The shuttle orbiter has a mass of 125 000 kg. The two orbital maneuvering engines
produce a combined (non-throttleable) thrust of 53.4 kN. The orbiter is in a 300 km
circular orbit. A delta-v maneuver transfers the spacecraft to a coplanar 250 km by
300 km elliptical orbit. Neglecting propellant loss and using elementary physics (linear
impulse equals change in linear momentum, distance equals speed times time), estimate
(a) the time required for the �v burn, and
(b) the distance traveled by the orbiter during the burn.
(c) Calculate the ratio of your answer for (b) to the circumference of the initial circular

orbit.
{Ans.: (a) �t = 34 s; (b) 263 km; (c) 0.0063}

6.2 A satellite traveling at 8.2 km/s at perigee fires a retrorocket at perigee altitude of 480 km.
What delta-v is necessary to reach a minimum altitude of 100 miles during the next orbit?
{Ans.: −66.8 m/s}

6.3 A spacecraft is in a 300 km circular earth orbit. Calculate
(a) the total delta-v required for a Hohmann transfer to a 3000 km coplanar circular

earth orbit, and
(b) the transfer orbit time.
{Ans.: (a) 1.198 km/s; (b) 59 min 39 s}

3

1

2

∆υ2 ∆υ1

300 km 3000 km

Figure P.6.3

6.4 A spacecraft S is in a geocentric hyperbolic trajectory with a perigee radius of 7000 km
and a perigee speed of 1.3vesc. At perigee, the spacecraft releases a projectile B with a
speed of 7.1 km/s parallel to the spacecraft’s velocity. How far d from the earth’s surface
is S at the instant B impacts the earth? Neglect the atmosphere.
{Ans.: d = 8978 km}

6.5 Assuming the orbits of earth and Mars are circular and coplanar, calculate
(a) the time required for a Hohmann transfer from earth to Mars, and
(b) the initial position of Mars (α) in its orbit relative to earth for interception to occur.
Radius of earth orbit = 1.496 × 108 km. Radius of Mars orbit = 2.279 × 108 km.
µsun = 1.327 × 1011 km3/s2.
{Ans.: (a) 259 days; (b) α = 44·3◦}
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S

B

Earth

7000 km

Perigee of impact
ellipse

Separation

d

Impact

Figure P.6.4

Mars at launch

Mars at
encounter

Sun

Earth at launch

α

Hohmann transfer
orbit

Figure P.6.5

6.6 Two geocentric elliptical orbits have common apse lines and their perigees are on the
same side of the earth. The first orbit has a perigee radius of rp = 7000 km and e = 0.3,
whereas for the second orbit rp = 32 000 km and e = 0.5
(a) Find the minimum total delta-v and the time of flight for a transfer from the

perigee of the inner orbit to the apogee of the outer orbit.
(b) Do part (a) for a transfer from the apogee of the inner orbit to the perigee of the

outer orbit.
{Ans.: (a)�vtotal = 2.388 km/s, TOF = 16.2 hr; (b)�vtotal = 3.611km/s, TOF = 4.66 hr}

6.7 A spacecraft is in a 500 km altitude circular earth orbit. Neglecting the atmosphere, find
the delta-v required at A in order to impact the earth at
(a) point B
(b) point C.
{Ans.: (a) 192 m/s; (b) 7.61 km/s}
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C A
Earth

500 km

Figure P.6.7

6.8 A spacecraft is in a 200 km circular earth orbit. At t = 0, it fires a projectile in the
direction opposite to the spacecraft’s motion. Thirty minutes after leaving the spacecraft,
the projectile impacts the earth. What delta-v was imparted to the projectile? Neglect
the atmosphere.
{Ans.: �v = 77.2 m/s}

6.9 The space shuttle was launched on a 15-day mission. There were four orbits after
injection, all of them at 39◦ inclination.

Orbit 1: 302 by 296 km
Orbit 2 (day 11): 291 by 259 km
Orbit 3 (day 12): 259 km circular
Orbit 4 (day 13): 255 by 194 km



Problems 307

Calculate the total delta-v, which should be as small as possible, assuming Hohmann
transfers.
{Ans.: �vtotal = 43.5 m/s}

6.10 A space vehicle in a circular orbit at an altitude of 500 km above the earth executes a
Hohmann transfer to a 1000 km circular orbit. Calculate the total delta-v requirement.
{Ans.: 0.2624 km/s}

500 km

1000 km

AB

3

1

2

Figure P.6.10

6.11 Calculate the total delta-v required for a Hohmann transfer from a circular orbit of
radius r to a circular orbit of radius 12r.
{Ans.: 0.5342

√
µ/r}

AB

3

1

2

12r

r

Figure P.6.11
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6.12 A spacecraft in circular orbit 1 of radius r leaves for infinity on parabolic trajectory 2
and returns from infinity on a parabolic trajectory 3 to a circular orbit 4 of radius 12r.
Find the total delta-v required for this non-Hohmann orbit change maneuver.
{Ans.: 0.5338

√
µ/r}

BA

1

12r

r

3

4

2

Figure P.6.12

6.13 Calculate the total delta-v required for a Hohmann transfer from the smaller circular
orbit to the larger one.
{Ans.: 0.394v1, where v1 is the speed in orbit 1}

A

3r

r

1

2

3

B

Figure P.6.13
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6.14 A spacecraft is in a 300 km circular earth orbit. Calculate
(a) the total delta-v required for the bi-elliptical transfer to a 3000 km altitude coplanar

circular orbit shown, and
(b) the total transfer time.
{Ans.: (a) 2.039 km/s; (b) 2.86 hr}

300 km

e � 0.3

1

4

3000 km2

3

AB C∆υB ∆υC

∆υA

Figure P.6.14

6.15
(a) With a single delta-v maneuver, the earth orbit of a satellite is to be changed from

a circle of radius 15 000 km to a coplanar ellipse with perigee altitude of 500 km
and apogee radius of 22 000 km. Calculate the magnitude of the required delta-v
and the change in the flight path angle �γ .

(b) What is the minimum total delta-v if the orbit change is accomplished instead by
a Hohmann transfer?

{Ans.: (a) ||�v|| = 2.77 km/s, �γ = 31.51◦; (b) �vHohmann = 1.362 km/s}

6.16 An earth satellite has a perigee altitude of 1270 km and a perigee speed of 9 km/s. It
is required to change its orbital eccentricity to 0.4, without rotating the apse line, by
a delta-v maneuver at θ = 100◦. Calculate the magnitude of the required �v and the
change in flight path angle �γ .
{Ans.: ||�v|| = 0.915 km/s; �γ = −8.18◦}

6.17 At point A on its earth orbit, the radius, speed and flight path angle of a satellite are
rA = 12 756 km, vA = 6.5992 km/s and γA = 20◦. At point B, at which the true anomaly
is 150◦, an impulsive maneuver causes �v⊥ = +0.75820 km/s and �vr = 0.
(a) What is the time of flight from A to B?
(b) What is the rotation of the apse line as a result of this maneuver?
{Ans.: (a) 2.045 hr; (b) 43.39◦ counterclockwise}

6.18 A satellite is in elliptical orbit 1. Calculate the true anomaly θ (relative to the apse
line of orbit 1) of an impulsive maneuver which rotates the apse line at an angle η

counterclockwise but leaves the eccentricity and the angular momentum unchanged.
{Ans.: θ = η/2}
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Figure P.6.18

6.19 A satellite in orbit 1 undergoes a delta-v maneuver at perigee P1 such that the new orbit
2 has the same eccentricity e, but its apse line is rotated 90◦ clockwise from the original
one. Calculate the specific angular momentum of orbit 2 in terms of that of orbit 1 and
the eccentricity e.
{Ans.: h2 = h1/

√
1 + e}
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1

2

P1

P2

F

Figure P.6.19

1 2

F

A

Figure P.6.20

6.20 Calculate the delta-v required at A in orbit 1 for a single impulsive maneuver to rotate
the apse line 180◦ counterclockwise (to become orbit 2), but keep the eccentricity e and
the angular momentum h the same.
{Ans.: �v = 2µe/h}

6.21 The space station and spacecraft A and B are all in the same circular earth orbit of
350 km altitude. Spacecraft A is 600 km behind the space station and spacecraft B is
600 km ahead of the space station. At the same instant, both spacecraft apply a �v⊥ so
as to arrive at the space station in one revolution of their phasing orbits.
(a) Calculate the times required for each spacecraft to reach the space station.
(b) Calculate the total delta-v requirement for each spacecraft.
{Ans.: (a) spacecraft A: 90.2 min; spacecraft B: 92.8 min; (b) �vA = 73.9 m/s;
�vB = 71.5 m/s}

6.22 Satellites A and B are in the same circular orbit of radius r. B is 180◦ ahead of A. Calculate
the semimajor axis of a phasing orbit in which A will rendezvous with B after just one
revolution in the phasing orbit.
{Ans.: a = 0.63r}

6.23 Two spacecraft are in the same elliptical earth orbit with perigee radius 8000 km and
apogee radius 13 000 km. Spacecraft 1 is at perigee and spacecraft 2 is 30◦ ahead. Calcu-
late the total delta-v required for spacecraft 1 to intercept and rendezvous with spacecraft
2 when spacecraft 2 has traveled 60◦.
{Ans.: �vtotal = 6.24 km/s}
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6.24 An earth satellite has the following orbital elements: a = 15 000 km, e = 0.5, W = 45◦,
w = 30◦, i = 10◦. What minimum delta-v is required to reduce the inclination to zero?
{Ans.: 0.588 km/s}

6.25 With a single impulsive maneuver, an earth satellite changes from a 400 km circular orbit
inclined at 60◦ to an elliptical orbit of eccentricity e = 0.5 with an inclination of 40◦.
Calculate the minimum required delta-v.
{Ans.: 3.41 km/s}

6.26 An earth satellite is in an elliptical orbit of eccentricity 0.3 and angular momentum
60 000 km2/s. Find the delta-v required for a 90◦ change in inclination at apogee (no
change in speed).
{Ans.: 6.58 km/s}

6.27 A spacecraft is in a circular, equatorial orbit (1) of radius ro about a planet. At point B
it impulsively transfers to polar orbit (2), whose eccentricity is 0.25 and whose perigee
is directly over the North Pole. Calculate the minimum delta-v required at B for this
maneuver.
{Ans.: 1.436

√
µ/ro}
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6.28 A spacecraft is in a 300 km circular parking orbit. It is desired to increase the altitude to
600 km and change the inclination by 20◦. Find the total delta-v required if
(a) the plane change is made after insertion into the 600 km orbit (so that there are a

total of three delta-v burns);
(b) the plane change and insertion into the 600 km orbit are accomplished simultane-

ously (so that the total number of delta-v burns is two);
(c) the plane change is made upon departing the lower orbit (so that the total number

of delta-v burns is two).
{Ans.: (a) 2.793 km/s; (b) 2.696 km/s; (c) 2.783 km/s}
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6.29 At time t = 0, manned spacecraft a and unmanned spacecraft b are at the positions

shown in circular earth orbits 1 and 2, respectively. For assigned values of θ
(a)
0 and θ

(b)
0 ,

design a series of impulsive maneuvers by means of which spacecraft a transfers from
orbit 1 to orbit 2 so as to rendezvous with spacecraft b (i.e., occupy the same position
in space). The total time and total delta-v required for the transfer should be as small as
possible. Consider earth’s gravity only.

20 000 km

210 000 km

a

b

2

1

(b)
θ0

(a)
θ0

Figure P.6.29

6.30 What must the launch azimuth be if the satellite in Example 4.8 is launched from
(a) Kennedy Space Center (latitude = 28.5◦N);
(b) Vandenburgh AFB (latitude = 34.5◦N);
(c) Kourou, French Guiana (latitude 5.5◦N).
{Ans.: (a) 329.4◦; (b) 327.1◦; (c) 333.3◦}
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7.1 Introduction

Up to now we have mostly referenced the motion of orbiting objects to a non-
rotating coordinate system fixed to the center of attraction (e.g., the center of

the earth). This platform served as an inertial frame of reference, in which Newton’s
second law can be written

Fnet = maabsolute

An exception to this rule was the discussion of the restricted three-body problem at the
end of Chapter 2, in which we made use of the relative motion equations developed
in Chapter 1. In a rendezvous maneuver, two orbiting vehicles observe one another
from each of their own free-falling, rotating, clearly non-inertial frames of reference.
To base impulsive maneuvers on observations made from a moving platform requires
transforming relative velocity and acceleration measurements into an inertial frame.

315
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Otherwise, the true thrusting forces cannot be sorted out from the fictitious ‘inertial
forces’ that appear in Newton’s law when it is written incorrectly as

Fnet = marel

The purpose of this chapter is to use relative motion analysis to gain some familiarity
with the problem of maneuvering one spacecraft relative to another, especially when
they are in close proximity.

7.2 Relative motion in orbit

A rendezvous maneuver usually involves a target vehicle, which is passive and non-
maneuvering, and a chase vehicle which is active and performs the maneuvers required
to bring itself alongside the target. An obvious example is the space shuttle, the chaser,
rendezvousing with the international space station, the target. The position vector of
the target in the geocentric equatorial frame is r0. This outward radial is sometimes
called ‘r-bar’. The moving frame of reference has its origin at the target, as illustrated
in Figure 7.1. The x axis is directed along r0, the outward radial to the target. The
y axis is perpendicular to r0 and points in the direction of the target satellite’s local
horizon. The x and y axes therefore lie in the target’s orbital plane, and the z axis is
normal to that plane.

The angular velocity of the xyz axes attached to the target is just the angular
velocity of the position vector r0, and it is obtained from the fact that

h = r0 × v0 = (r0v0⊥)k̂ = (
r2

0�
)

k̂ = r2
0�

X Y

Z

�

x

y

z

î

ĵ

k̂

B

rrel

r0

A

Target orbit

Figure 7.1 Co-moving reference frame attached to A, from which body B is observed.
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which means that

� = r0 × v0

r2
0

(7.1)

To find the angular acceleration �̇, we take the derivative of � in Equation 7.1 to
obtain

�̇ = 1

r2
0

(ṙ0 × v0 + r0 × v̇0) − 2

r3
0

ṙ0(r0 × v0) (7.2)

But

ṙ0 × v0 = v0 × v0 = 0 (7.3)

According to Equation 2.15, the acceleration v̇0 of the target satellite is given by

v̇0 = − µ

r3
0

r0

Hence,

r0 × v̇0 = r0 ×
(

− µ

r3
0

r0

)
= − µ

r3
0

(r0 × r0) = 0 (7.4)

Substituting Equations 7.1, 7.3 and 7.4 into Equation 7.2 yields

�̇ = − 2

r0
ṙ0�

Finally, recalling from Equation 2.25a that ṙ0 = v0 · r0/r0, we obtain

�̇ = −2(r0 · v0)

r2
0

� (7.5)

Equations 7.1 and 7.5 are the means of determining the angular velocity and accelera-
tion of the co-moving frame for use in the relative velocity and acceleration formulas,
Equations 1.38 and 1.42.

Example
7.1

Spacecraft A is in an elliptical earth orbit having the following parameters:

h = 52 059 km2/s, e = 0.025724, i = 60◦, � = 40◦, ω = 30◦, θ = 40◦ (a)

Spacecraft B is likewise in an orbit with these parameters:

h = 52 362km2/s, e = 0.0072696, i = 50◦, � = 40◦, ω = 120◦, θ = 40◦ (b)

Calculate the velocity vrel)xyz and acceleration arel)xyz of spacecraft B relative to
spacecraft A, measured along the xyz axes of the co-moving coordinate system of
spacecraft A, as defined in Figure 7.1.
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(Example 7.1
continued)

X

Y

Z

rArBvB

vA

�

rrel

A
B

Figure 7.2 Spacecraft A and B in slightly different orbits.

From the orbital elements in (a) and (b) we can use Algorithm 4.2 to find the position
and velocity of the spacecraft relative to the geocentric equatorial reference frame.
Omitting those calculations, we find, for spacecraft A,

rA = −266.74Î + 3865.4Ĵ + 5425.7K̂ (km) (a)

vA = −6.4842Î − 3.6201Ĵ + 2.4159K̂ (km/s) (b)

and for spacecraft B,

rB = −5890.0Î − 2979.4Ĵ + 1792.0K̂ (km) (c)

vB = 0.93594Î − 5.2409Ĵ − 5.5016K̂ (km/s) (d)

According to Equation 2.15, the accelerations of the two spacecraft are

aA = −µ
rA

‖rA‖3
= 0.00035876Î − 0.0051989Ĵ − 0.0072975K̂ (km/s2) (e)

aB = −µ
rB

‖rB‖3
= 0.0073377Î + 0.0037117Ĵ − 0.0022325K̂ (km/s2) (f)

The unit vector î along the x axis of spacecraft A’s rigid, co-moving frame of
reference is

î = rA

rA
= −0.040008Î + 0.57977Ĵ + 0.81380K̂ (g)
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Since the z axis is in the direction of hA, and

hA = rA × vA =
∣∣∣∣∣∣

Î Ĵ K̂
−266.74 3865.4 5425.7
−6.4842 −3.6201 2.4159

∣∣∣∣∣∣
= 28 980Î − 34 537Ĵ + 26 030K̂ (km/s2)

we obtain

k̂ = hA

hA
= 0.55667Î − 0.66341Ĵ + 0.5000K̂ (h)

Finally, ĵ = k̂ × î, so that

ĵ = −0.82977Î − 0.47302Ĵ + 0.29620K̂ (i)

The angular velocity � of the xyz frame attached to spacecraft A is given by
Equation 7.1,

� = 28 980Î − 34 537Ĵ + 26 030K̂

6667.12
(j)

= 0.00065196Î − 0.00077698Ĵ + 0.00058559K̂ (rad/s)

We find the angular acceleration �̇ using Equation 7.5,

�̇ = −2(844.41)

6667.12
(0.00065196Î − 0.00077698Ĵ + 0.00058559K̂)

(k)
= −2.4763(10−8)Î + 2.9512(10−8)Ĵ − 2.2242(10−8)K̂ (rad/s2)

According to Equation 1.38, the relative velocity relation is

vB = vA + � × rrel + vrel (l)

where rrel and vrel are the position and velocity of B as measured relative to the moving
xyz frame attached to A. From (a) and (b), we have

rrel = rB − rA = −5623.3Î − 6844.8Ĵ − 3633.7K̂ (km) (m)

Substituting this, together with (b), (d) and (j) into (l), we get

0.93594Î − 5.2409Ĵ − 5.5016K = (−6.4842Î − 3.6201Ĵ + 2.4159K̂)

+
∣∣∣∣∣∣

Î Ĵ K̂
0.00065196 −0.00077698 0.00058559
−5623.3 −6844.8 −3633.7

∣∣∣∣∣∣+ vrel

Solving for vrel yields

vrel = 0.58865Î − 0.69692Ĵ + 0.91414K̂ (km/s) (n)

The relative acceleration formula, Equation 1.42, is

aB = aA + �̇ × rrel + � × (� × rrel) + 2� × vrel + arel (o)
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(Example 7.1
continued)

Substituting (e), (f), (j), (k), (m), and (n) into (o), we get

0.0073377Î + 0.0037117Ĵ − 0.0022325K̂

= 0.00035876Î − 0.0051989Ĵ − 0.0072975K

+
∣∣∣∣∣∣

Î Ĵ K̂
−2.4770(10−8) 2.9520(10−8) −2.2248(10−8)

−5623.3 −6844.8 −3633.7

∣∣∣∣∣∣
+ (0.00065196Î − 0.00077698Ĵ + 0.00058559K̂)

×
∣∣∣∣∣∣

Î Ĵ K̂
0.00065196 −0.00077698 0.00058559
−5623.3 −6844.8 −3633.7

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
Î Ĵ K̂

0.00065196 −0.00077698 0.00058559
0.58865 −0.69692 0.91414

∣∣∣∣∣∣ + arel

Carrying out the cross products, combining terms and solving for arel yields

arel = 0.00043984Î − 0.00038019Ĵ + 0.000017988K̂ (km/s2) (p)

From (g), (h), and (i), we see that the orthogonal transformation matrix [Q]Xx from
the inertial XYZ frame into the co-moving xyz frame is

[Q]Xx =

−0.040008 0.57977 0.81380

−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000




To get the components of rrel, vrel, and arel along the axes of the co-moving xyz frame
of spacecraft A, we multiply each of their expressions as components in the XYZ frame
[(m), (n) and (p), respectively] by [Q]Xx as follows:

rrel)xyz =

−0.040008 0.57977 0.81380

−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000






−5623.3
−6844.8
−3633.7


=




−6700.5
6827.4

−406.22


(km)

vrel)xyz =

−0.040008 0.57977 0.81380

−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000






0.58865
−0.69692
0.91414


=




0.31632
0.11199
1.2471


(km/s)

arel)xyz =

−0.040008 0.57977 0.81380

−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000






0.00043984
−0.00038019
0.000017988




=



−0.00022338
−0.00017980
0.00050607


(km/s2)
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Figure 7.3 The spacecraft B in elliptical orbit 2 appears to orbit the observer A in circular orbit 1.

The motion of one spacecraft relative to another in orbit may be hard to visualize
at first. Figure 7.3 is offered as an assist. Orbit 1 is circular and orbit 2 is an ellipse
with eccentricity 0.125. Both orbits were chosen to have the same semimajor axis
length, so they both have the same period. A co-moving frame is shown attached to
the observers A in circular orbit 1. At epoch I the spacecraft B in elliptical orbit 2 is
directly below the observers. In other words, A must draw an arrow in the negative
local x direction to determine the position vector of B in the lower orbit. The figure
shows eight different epochs (I , II , III , . . .), equally spaced around the circular orbit,
at which observers A construct the position vector pointing from them to B in the
elliptical orbit. Of course, A’s frame is rotating, because its x axis must always be
directed away from the earth. Observers A cannot sense this rotation and record
the set of observations in their (to them) fixed xy coordinate system, as shown at
the bottom of the figure. Coasting at a uniform speed along his circular orbit, A
sees the other vehicle orbiting them clockwise in a sort of bean-shaped path. The
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distance between the two spacecraft in this case never becomes so great that the earth
intervenes.

If A declared theirs to be an inertial frame of reference, they would be faced with
the task of explaining the physical origin of the force holding B in its bean-shaped
orbit. Of course, there is no such force. The apparent path is due to the actual,
combined motion of both spacecraft in their free fall towards the earth. When B
is below A (having a negative x coordinate), conservation of angular momentum
demands that B move faster than A, thereby speeding up in A’s positive y direction
until the orbits cross (x = 0). When B’s x coordinate becomes positive, i.e., B is above
A, the laws of momentum dictate that B slow down, which it does, progressing in
A’s negative y direction until the next crossing of the orbits. B then falls below and
begins to pick up speed. The process repeats over and over. From inertial space, the
process is the motion of two satellites on intersecting orbits, appearing not at all like
the orbiting motion seen by the moving observers A.

7.3 Linearization of the equations of relative
motion in orbit

Figure 7.4 shows two spacecraft in earth orbit. The inertial position vector of the
target vehicle A is r0, and that of the chase vehicle B is r. The position vector of the
chase vehicle relative to the target is δr, so that

r = r0 + δr (7.6)

The symbol δ is used to represent the fact that the relative position vector has a
magnitude which is very small compared to the magnitude of r0 (and r); i.e.,

δr

r0
� 1 (7.7)

X

Y

Z

r0

r
A

B

Inertial frame
g

dr

Figure 7.4 Position of chaser B relative to the target A.
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where δr = ‖δr‖ and r0 = ‖r0‖. This is true if the two vehicles are in close proximity
to each other, as is the case in a rendezvous maneuver. Our purpose in this section is
to seek the equations of motion of the chase vehicle relative to the target.

The equation of motion of the chase vehicle B is

r̈ = −µ
r

r3
(7.8)

where r = ‖r‖. Substituting Equation 7.6 into Equation 7.8 yields the equation of
motion of the chaser relative to the target,

δr̈ = −r̈0 − µ
r0 + δr

r3
(7.9)

We will simplify this equation by making use of the fact that ‖δr‖ is very small, as
expressed in Equation 7.7. First, note that

r2 = r · r = (r0 + δr) · (r0 + δr) = r0 · r0 + 2r0 · δr + δr · δr

Since r0 · r0 = r2
0 and δr · δr = δr2, we can factor out r2

0 on the right to obtain

r2 = r2
0

[
1 + 2r0 · δr

r2
0

+
(

δr

r0

)2
]

By virtue of Equation 7.7, we can neglect the last term in the brackets, so that

r2 = r2
0

(
1 + 2r0 · δr

r2
0

)
(7.10)

In fact, we will neglect all powers of δr/r0 greater than unity, wherever they appear.
Since r−3 = (r2)−3/2, it follows from Equation 7.10 that

r−3 = r−3
0

(
1 + 2r0 · δr

r2
0

)− 3
2

(7.11)

Using the binomial theorem (Equation 5.52) and neglecting terms of higher order
than 1 in δr/r0, we obtain

(
1 + 2r0 · δr

r2
0

)− 3
2 = 1 +

(
−3

2

)(
2r0 · δr

r2
0

)

Therefore, Equation 7.11 becomes

r−3 = r−3
0

(
1 − 3

r2
0

r0 · δr

)

which can be written

1

r3
= 1

r3
0

− 3

r5
0

r0 · δr (7.12)
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Substituting Equation 7.12 into Equation 7.9 (the equation of motion), we get

δr̈ = −r̈0 − µ

(
1

r3
0

− 3

r5
0

r0 · δr

)
(r0 + δr)

= −r̈0 − µ

[
r0 + δr

r3
0

− 3

r5
0

(r0 · δr)(r0 + δr)

]

= −r̈0 − µ


 r0

r3
0

+ δr

r3
0

− 3

r5
0

(r0 · δr)r0 +
neglect︷ ︸︸ ︷

terms of higher order than 1 in δr




That is,

δr̈ = −r̈0 − µ
r0

r3
0

− µ

r3
0

[
δr − 3

r2
0

(r0 · δr)r0

]
(7.13)

But the equation of motion of the target vehicle is

r̈0 = −µ
r0

r3
0

Substituting this into Equation 7.13 finally yields

δr̈ = − µ

r3
0

[
δr − 3

r2
0

(r0 · δr)r0

]
(7.14)

This is the linearized version of Equation 7.8, the equation which governs the motion
of the chaser with respect to the target. The expression is linear because δr appears
only in the numerator and only to the first power throughout. We achieved this by
dropping a lot of terms that are insignificant when Equation 7.7 is valid.

7.4 Clohessy–Wiltshire equations

Let us attach a moving frame of reference xyz to the target vehicle A, as shown in
Figure 7.5. This is similar to Figure 7.1, the difference being that δr is restricted by
Equation 7.7. The origin of the moving system is at A. The x axis lies along r0, so that

î = r0

r0
(7.15)

The y axis is in the direction of the local horizon, and the z axis is normal to the

orbital plane of A, such that k̂ = î × ĵ. The inertial angular velocity of the moving
frame of reference is �, and the inertial angular acceleration is �̇.

According to the relative acceleration formula (Equation 1.42), we have

r̈ = r̈0 + �̇ × δr + � × (� × δr) + 2� × δvrel + δarel (7.16)

where, in terms of their components in the moving frame, the relative position,
velocity and acceleration are given by

δr = δxî + δy ĵ + δzk̂ (7.17a)
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Figure 7.5 Co-moving Clohessy–Wiltshire frame.

δvrel = δẋî + δẏ ĵ + δżk̂ (7.17b)

δarel = δẍî + δÿ ĵ + δz̈k̂ (7.17c)

For simplicity, we assume at this point that the orbit of the target vehicle A is circular.
(Note that for a space station in low-earth orbit, this is a very good assumption.)
Then �̇ = 0. Substituting this together with Equation 7.6 into Equation 7.16 yields

δr̈ = � × (� × δr) + 2� × δvrel + δarel

Applying the bac − cab rule to the first term on the right-hand side, we get

δr̈ = �(� · δr) − �2δr + 2� × δvrel + δarel (7.18)

Since the orbit of A is circular, we may write the angular velocity as

� = nk̂ (7.19)

where n, the mean motion, is constant. Thus,

� · δr = nk̂ · (δxî + δy ĵ + δzk̂) = nδz (7.20)

and

� × δvrel = nk̂ × (δẋî + δẏ ĵ + δżk̂) = −nδẏ î + nδẋ ĵ (7.21)

Substituting Equations 7.19, 7.20 and 7.21, along with Equations 7.17, into
Equation 7.18 yields

δr̈ = nk̂(nδz) − n2(δxî + δy ĵ + δzk̂) + 2(−nδẏ î + nδẋ ĵ) + δẍî + δÿ ĵ + δz̈k̂

Finally, collecting terms leads to

δr̈ = (−n2δx − 2nδẏ + δẍ)î + (−n2δy + 2nδẋ + δÿ)ĵ + δz̈k̂ (7.22)
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This expression gives the components of the chaser’s absolute relative acceleration
vector in terms of quantities measured in the moving reference.

Since the orbit of A is circular, the mean motion is found as

n = v

r0
= 1

r0

√
µ

r0
=

√
µ

r3
0

Therefore,
µ

r3
0

= n2 (7.23)

Recalling Equations 7.15 and 7.17a, we also note that

r0 · δr = (r0 î) · (δxî + δy ĵ + δzk̂) = r0δx (7.24)

Substituting Equations 7.17a, 7.23 and 7.24 into Equation 7.14 (the equation of
motion) yields

δr̈ = −n2
[
δxî + δy ĵ + δzk̂ − 3

r2
0

(r0δx)r0 î

]
= 2n2δxî − n2δy ĵ − n2δzk̂ (7.25)

Combining Equation 7.22 (a kinematic relationship) and Equation 7.25 (the equation
of motion), we obtain

(−n2δx − 2nδẏ + δẍ)î + (−n2δy + 2nδẋ + δÿ)ĵ + δz̈k̂ = 2n2δxî − n2δy ĵ − n2δzk̂

Upon collecting terms to the left-hand side, we get

(δẍ − 3n2δx − 2nδẏ)î + (δÿ + 2nδẋ)ĵ + (δz̈ + n2δz)k̂ = 0

That is,

δẍ − 3n2δx − 2nδẏ = 0 (7.26a)

δÿ + 2nδẋ = 0 (7.26b)

δz̈ + n2δz = 0 (7.26c)

These are the Clohessy–Wiltshire (CW) equations. When using these equations
we will refer to the moving frame of reference in which they were derived as the
Clohessy–Wiltshire frame (or CW frame). Equations 7.26 are a set of coupled, second
order differential equations with constant coefficients. The initial conditions are

At t = 0 δx = δx0 δy = δy0 δz = δz0

(7.27)
δẋ = δẋ0 δẏ = δẏ0 δż = δż0

From Equation 7.26b,

d

dt
(δẏ + 2nδx) = 0

which means

δẏ + 2nδx = const
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We find the constant by evaluating the left-hand side at t = 0. Therefore,

δẏ + 2nδx = δẏ0 + 2nδx0

so that

δẏ = δẏ0 + 2n(δx0 − δx) (7.28)

Substituting this result into Equation 7.26a yields

δẍ − 3n2δx − 2n[δẏ0 + 2n(δx0 − δx)] = 0

which, upon rearrangement, becomes,

δẍ + n2δx = 2nδẏ0 + 4n2δx0 (7.29)

The solution of this differential equation is

δx =
complementary solution︷ ︸︸ ︷
A sin nt + B cos nt +

particular solution︷ ︸︸ ︷
1

n2
(2nδẏ0 + 4n2δx0)

or

δx = A sin nt + B cos nt + 2

n
δẏ0 + 4δx0 (7.30)

Differentiating this equation once with respect to time, we obtain

δẋ = nA cos nt − nB sin nt (7.31)

Evaluating Equation 7.30 at t = 0 we find

δx0 = B + 2

n
δẏ0 + 4δx0 ⇒ B = −3δx0 − 2

δẏ0

n

Evaluating Equation 7.31 at t = 0 yields

δẋ0 = nA ⇒ A = δẋ0

n

Substituting these values of A and B back into Equation 7.30 leads to

δx = δẋ0

n
sin nt +

(
−3δx0 − 2

δẏ0

n

)
cos nt + 2

n
δẏ0 + 4δx0

which, upon combining terms, becomes

δx = (4 − 3 cos nt)δx0 + sin nt

n
δẋ0 + 2

n
(1 − cos nt)δẏ0 (7.32)

Therefore,

δẋ = 3n sin ntδx0 + cos ntδẋ0 + 2 sin ntδẏ0 (7.33)
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Substituting Equation 7.32 into Equation 7.28 yields

δẏ = δẏ0 + 2n

[
δx0 − (4 − 3 cos nt)δx0 − sin nt

n
δẋ0 − 2

n
(1 − cos nt)δẏ0

]

which simplifies to become

δẏ = 6n(cos nt − 1)δx0 − 2 sin ntδẋ0 + (4 cos nt − 3)δẏ0 (7.34)

Integrating this expression with respect to time, we find

δy = 6n

(
1

n
sin nt − t

)
δx0 + 2

n
cos ntδẋ0 +

(
4

n
sin nt − 3t

)
δẏ0 + C (7.35)

Evaluating δy at t = 0 yields

δy0 = 2

n
δẋ0 + C ⇒ C = δy0 − 2

n
δẋ0

Substituting this value for C into Equation 7.35, we get

δy = 6(sin nt − nt)δx0 + δy0 + 2

n
(cos nt − 1)δẋ0 +

(
4

n
sin nt − 3t

)
δẏ0 (7.36)

Finally, the solution of Equation 7.26c is

δz = D cos nt + E sin nt (7.37)

so that

δż = −nD sin nt + nE cos nt (7.38)

We evaluate these two expressions at t = 0 to obtain the constants of integration:

δz0 = D

δż0 = nE

Putting these values of D and E back into Equations 7.36 and 7.38 yields

δz = cos ntδz0 + 1

n
sin ntδż0 (7.39)

δż = −n sin ntδz0 + cos ntδż0 (7.40)

Now that we have finished solving the Clohessy–Wiltshire equations, let us change
our notation a bit and denote the x, y and z components of relative velocity in the
moving frame as δu, δv and δw, respectively. That is,

δu = δẋ δv = δẏ δw = δż

The initial conditions on the relative velocity components are then written

δu0 = δẋ0 δv0 = δẏ0 δw0 = δż0
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Using this notation we write Equations 7.32, 7.33, 7.34, 7.36, 7.39 and 7.40 as

δx = (4 − 3 cos nt)δx0 + sin nt

n
δu0 + 2

n
(1 − cos nt)δv0

δy = 6(sin nt − nt)δx0 + δy0 + 2

n
( cos nt − 1)δu0 + 1

n
(4 sin nt − 3nt)δv0

δz = cos ntδz0 + 1

n
sin ntδw0 (7.41)

δu = 3n sin ntδx0 + cos ntδu0 + 2 sin ntδv0

δv = 6n(cos nt − 1)δx0 − 2 sin ntδu0 + (4 cos nt − 3)δv0

δw = −n sin ntδz0 + cos ntδw0

Let us introduce matrix notation to define the relative position and velocity vectors

{δr(t)} =



δx(t)
δy(t)
δz(t)


 {δv(t)} =




δu(t)
δv(t)
δw(t)




and their initial values (at t = 0)

{δr0} =



δx0

δy0

δz0


 {δv0} =




δu0

δv0

δw0




Observe that we have dropped the subscript rel introduced in Equations 7.17 because
it is superfluous in rendezvous analysis, where all kinematic quantities are relative
to the Clohessy–Wiltshire frame. In matrix notation Equations 7.41 appear more
compactly as

{δr(t)} = [�rr(t)]{δr0} + [�rv(t)]{δv0} (7.42a)

{δv(t)} = [�vr(t)]{δr0} + [�vv(t)]{δv0} (7.42b)

where the Clohessy–Wiltshire matrices are

[�rr(t)] =

 4 − 3 cos nt 0 0

6(sin nt − nt) 1 0
0 0 cos nt




[�rv(t)] =



1
n sin nt 2

n (1 − cos nt) 0
2
n (cos nt − 1) 1

n (4 sin nt − 3nt) 0

0 0 1
n sin nt




(7.43)

[�vr(t)] =

 3n sin nt 0 0

6n(cos nt − 1) 0 0
0 0 −n sin nt




[�vv(t)] =

 cos nt 2 sin nt 0

−2 sin nt 4 cos nt − 3 0
0 0 cos nt



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7.5 Two-impulse rendezvous maneuvers

Figure 7.6 illustrates the rendezvous problem. At time t = 0− (the instant preceding
t = 0), the position δr0 and velocity δv−

0 of the chase vehicle B relative to the target
A are known. At t = 0 an impulsive maneuver instantaneously changes the relative
velocity to δv+

0 at t = 0+ (the instant after t = 0). The components of δv+
0 are shown

in Figure 7.6. We must determine the values of δu+
0 , δv+

0 , δw+
0 , at the beginning of

the rendezvous trajectory, so that B will arrive at the target in a specified time tf . The
delta-v required to place B on the rendezvous trajectory is

{�v0} = {δv+
0 } − {δv−

0 } =



δu+
0

δv+
0

δw+
0


 −




δu−
0

δv−
0

δw−
0


 (7.44)

At time tf , B arrives at A, at the origin of the co-moving frame, which means
{δrf } = {δr(tf )} = {0}. Evaluating Equation 7.42a at tf , we find

{0} = [�rr(tf )]{δr0} + [�rv(tf )]{δv+
0 } (7.45)

Solving this for {δv+
0 } yields

{δv+
0 } = −[�rv(tf )]−1[�rr(tf )]{δr0} (7.46)

Earth

r0

x

z

y

A

B Rendezvous trajectory

Orbit of A

 


v�


u�
v�


u�

0

0

0


y�
f


v�
f

f

dr0

Figure 7.6 Rendezvous with a target A in the neighborhood of the chase vehicle B.
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where [�rv(tf )]−1 is the matrix inverse of [�rv(tf )]. We know the velocity δv+
0 at the

beginning of the rendezvous path substituting Equation 7.46 into Equation 7.42b we
obtain the velocity δv−

f at which B arrives at the target A, when t = t−
f :

{δv−
f } = [�vr(tf )]{δr0} + [�vv(tf )]{δv+

0 }
= [�vr(tf )]{δr0} + [�vv(tf )](−[�rv(tf )]−1[�rr(tf )]{δr0})

Simplifying, we get

{δv−
f } = ([�vr(tf )] − [�vv(tf )][�rv(tf )]−1[�rr(tf )]){δr0} (7.47)

Obviously, an impulsive delta-v maneuver is required at t = tf to bring vehicle B to
rest relative to A (δv+

f = 0):

{�vf } = {δv+
f } − {δv−

f } = {0} − {δv−
f } = −{δv−

f } (7.48)

Note that in Equations 7.44 and 7.48 we are using the difference between relative
velocities to calculate delta-v, which is the difference in absolute velocities. To show
that this is valid, use Equation 1.38, to write

v− = v−
0 + �− × r−

rel + v−
rel

(7.49)
v+ = v+

0 + �+ × r+
rel + v+

rel

Since the target is passive, the impulsive maneuver has no effect on its state of
motion, which means v+

0 = v−
0 and �+ = �−. Furthermore, by definition of an

impulsive maneuver, there is no change in the position, i.e., r+
rel = r−

rel. It follows from
Equation 7.49 that

v+ − v− = v+
rel − v−

rel or �v = �vrel

example
7.2

A space station and spacecraft are in orbits with the following parameters:

Space station Spacecraft

Perigee × apogee (altitude) 300 km circular 318.50 × 515.51 km
Period (computed using above data) 1.508 hr 1.548 hr
True anomaly, θ 60◦ 349.65◦
Inclination, i 40◦ 40.130◦
RA, � 20◦ 19.819◦
Argument of perigee, ω 0◦ (arbitrary) 70.662◦

Compute the total delta-v required for an eight-hour, two-impulse rendezvous
trajectory.

We use the given data in Algorithm 4.1 to obtain the state vectors of the two spacecraft
in the geocentric equatorial frame.

Space station:

r0 = 1622.39Î + 5305.10Ĵ + 3717.44K̂ (km)

v0 = −7.29977Î + 0.492357Ĵ + 2.48318K̂ (km/s)
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(Example 7.2
continued)

Spacecraft:

r = 1612.75Î + 5310.19Ĵ + 3750.33K̂ (km)

v = −7.35321Î + 0.463856Ĵ + 2.46920K̂ (km/s)

The space station reference frame unit vectors (at this instant) are, by definition:

î = r0

‖r0‖ = 0.242945Î + 0.794415Ĵ + 0.556670K̂

ĵ = v0

‖v0‖ = −0.944799Î + 0.063725Ĵ + 0.321394K̂

k̂ = î × ĵ = 0.219846Î − 0.604023Ĵ + 0.766044K̂

Therefore, the transformation matrix from the geocentric equatorial frame into space
station frame is (at this instant)

[Q]Xx =

 0.242945 0.794415 0.556670

−0.944799 0.063725 0.321394
0.219846 −0.604023 0.766044




The position vector of the spacecraft relative to the space station (in the geocentric
equatorial frame) is

δr = r − r0 = −9.63980Î + 5.08240Ĵ + 32.8821K̂ (km)

The relative velocity is given by the formula (Equation 1.38)

δv = v − v0 − �space station × δr

where �space station = nk̂ and n, the mean motion of the space station, is

n = v0

r0
= 7.72627

6678
= 0.00115697 rad/s (a)

Thus

δv = −7.35321Î + 0.463856Ĵ + 2.46920K̂ − (−7.29977Î + 0.492357Ĵ + 2.48318K̂)

− (0.00115697)

∣∣∣∣∣∣
Î Ĵ K̂

0.219846 −0.604023 0.766044
−9.63980 5.08240 32.8821

∣∣∣∣∣∣
so that

δv = −0.024854Î − 0.01159370Ĵ − 0.00853577K̂ (km/s)

In space station coordinates, the relative position vector δr0 at the beginning of the
rendezvous maneuver is

{δr0} = [Q]Xx{δr} =

 0.242945 0.794415 0.556670

−0.944799 0.063725 0.321394
0.219846 −0.604023 0.766044






−9.63980
5.08240
32.8821




=



20
20
20


(km) (b)
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Likewise, the relative velocity δv−
0 just before launch into the rendezvous trajectory is

{δv−
0 } = [Q]Xx{δv} =


 0.242945 0.794415 0.556670

−0.944799 0.063725 0.321394
0.219846 −0.604023 0.766044






−0.024854
−0.0115937
−0.00853578




=



−0.02000
0.02000

−0.005000


 (km/s)

The Clohessy–Wiltshire matrices, for t = tf = 8 hr = 28 800 s and n = 0.00115697
rad/s [from (a)], are

[�rr] =

 4 − 3 cos nt 0 0

6(sin nt − nt) 1 0
0 0 cos nt


 =


 4.98383 0 0

−194.257 1.000 0
0 0 −0.327942




[�rv] =



1
n sin nt 2

n (1 − cos nt) 0

2
n (cos nt − 1) 1

n (4 sin nt − 3nt) 0
0 0 1

n sin nt




=

 816.525 2295.54 0

−2295.54 −83 133.9 0
0 0 816.525




[�vr] =

 3n sin nt 0 0

6n(cos nt − 1) 0 0
0 0 −n sin nt


 =


 0.00327897 0 0

−0.00921837 0 0
0 0 −0.00109299




[�vv] =

 cos nt 2 sin nt 0

−2 sin nt 4 cos nt − 3 0
0 0 cos nt




=

−0.327942 1.88940 0

−1.88940 −4.31177 0
0 0 −0.327942




From Equation 7.46 and (b) we find δv+
0 :




δu+
0

δv+
0

δw+
0


 = −


 816.525 2295.54 0

−2295.54 −83 133.9 0
0 0 816.525


−1

×

 4.98383 0 0

−194.257 1.000 0
0 0 −0.327942






20
20
20






334 Chapter 7 Relative motion and rendezvous

(Example 7.2
continued) = −


 816.525 2295.54 0

−2295.54 −83 133.9 0
0 0 816.525


−1 


99.6765

−3865.14
−6.55884




=



0.00936084
−0.0467514
0.00803263


 (km/s) (c)

From Equation 7.42b, evaluated at t = tf , we have

{δvf } = [�vr(tf )]{δr0} + [�vv(tf )]{δv+
0 }

Substituting (b) and (c),




δu−
f

δv−
f

δw−
f


 =


 0.00327897 0 0

−0.00921837 0 0
0 0 −0.00109299






20
20
20




+

−0.327942 1.88940 0

−1.88940 −4.31177 0
0 0 −0.327942






0.00936084
−0.0467514

0.00803263







δu−
f

δv−
f

δw−
f


 =




−0.0258223
−0.000472444
−0.0222449


(km/s) (d)

Delta-v at the beginning of the rendezvous maneuver is found as

{�v0} = {δv+
0 } − {δv−

0 } =



0.00936084
−0.0467514
0.00803263


 −




−0.02
0.02

−0.005


 =




0.0293608
−0.0667514
0.0130326




Delta-v at the conclusion of the maneuver is

{�vf } = {δv+
f } − {δv−

f } =



0
0
0


 −




−0.0258223
−0.000472444
−0.0222449


 =




0.0258223
0.000472444

0.0222449


(km/s)

The total delta-v requirement is

�vtotal = ‖�v0‖ + ‖�vf ‖ = 0.0740787 + 0.03559465 = 0.109673 km/s = 109.7 m/s
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From Equation 7.42a, we have, for 0 < t < tf ,


δx(t)
δy(t)
δz(t)


 =


 4 − 3 cos nt 0 0

6(sin nt − nt) 1 0
0 0 cos nt






20
20
20




+

 1

n sin nt 2
n (1 − cos nt) 0

2
n ( cos nt − 1) 1

n (4 sin nt − 3nt) 0
0 0 1

n sin nt






0.00936084
−0.0467514
0.00803263




x

y

z

t = 8 hr

Five ‘orbits’ of the target

20 km

20 km

20 km

t = 0

Figure 7.7 Rendezvous trajectory of the chase vehicle relative to the target.

Substituting n from (a), we obtain the relative position vector as a function of time.
It is plotted in Figure 7.7.

Example
7.3

A target and a chase vehicle are in the same 300 km circular earth orbit. The chaser is
2 km behind the target when the chaser initiates a two-impulse rendezvous maneuver
so as to rendezvous with the target in 1.49 hours. Find the total delta-v requirement.

For the circular orbit

v =
√

µ

r
=

√
398 600

6378 + 300
= 7.726 km/s (a)

so that the mean motion is

n = v

r
= 7.726

6678
= 0.0011569 rad/s (b)
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(Example 7.3
continued)

For this mean motion and the rendezvous trajectory time t = 1.49 hr = 5364 s, the
Clohessy–Wiltshire matrices are

[�rr] =

 1.0090 0 0

−37.699 1 0
0 0 0.99700




[�rv] =

−66.946 5.1928 0

−5.1928 −16 360 0
0 0 −66.946




(c)

[�vr] =

−2.6881 × 10−4 0 0

−2.0851 × 10−5 0 0
0 0 8.9603 × 10−5




[�vv] =

0.99700 −0.15490 0

0.15490 0.98798 0
0 0 0.99700




The initial and final positions of the chaser in the CW frame are

{δr0} =



0
−2
0


 (km) {δrf } =




0
0
0


 (d)

Thus, solving the first CW equation, {δrf } = [�rr]{δr0} + [�rv]{δv+
0 }, for {δv+

0 },
we get

{δv+
0 } = −[�rv]−1[�rr]{δr0} = −


 −0.014937 −4.7412 × 10−6 0

4.7412 × 10−6 −6.1124 × 10−5 0
0 0 −0.014937




×

 1.0090 0 0

−37.699 1 0
0 0 0.99700






0
−2
0




{δv+
0 } =




−9.4824 × 10−6

−1.2225 × 10−4

0


(km/s) (e)

Therefore, the second CW equation, {δv−
f } = [�vr]{δr0} + [�vv]{δv+

0 }, yields

{δv−
f } =


−2.6881 × 10−4 0 0

−2.0851 × 10−5 0 0
0 0 8.9603 × 10−5






0
−2
0




+

0.99700 −0.15490 0

0.15490 0.98798 0
0 0 0.99700






−9.4824 × 10−6

−1.2225 × 10−4

0



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{δv−
f } =




9.4824 × 10−6

−1.2225 × 10−4

0


 (km/s) (f)

Since the chaser is in the same circular orbit as the target, its relative velocity is initially
zero, i.e., {δv−

0 } = {0}. (See also Equation 7.58 at the end of the next section.) Thus,

{�v0}={δv+
0 } − {δv−

0 } =



−9.4824 × 10−6

−1.2225 × 10−4

0


−




0
0
0


=




−9.4824 × 10−6

−1.2225 × 10−4

0


(km/s)

which implies

‖�v0‖ = 0.1226 m/s (g)

At the end of the rendezvous maneuver, {δv+
f } = {0}, so that

{�vf }={δv+
f } − {δv−

f } =



0
0
0


−




9.4824 × 10−6

−1.2225 × 10−4

0


=




−9.4824 × 10−6

1.2225 × 10−4

0


(km/s)

Therefore

‖�vf ‖ = 0.1226 m/s (h)

The total delta-v required is

�vtotal = ‖�v0‖ + ‖�vf ‖ = 0.2452 m/s (i)

Observe that in this case the motion takes place entirely in the plane of the target
orbit. There is no motion normal to the plane (in the z direction). The copla-
nar rendezvous trajectory relative to the CW frame is sketched in Figure 7.8.

�0.5 �1 �1.5

Chaser

�2
y

�0.4

�0.2

0

0.2

0.4

x

2 km

Perigee of chaser's transfer orbit

Clohessy–Wiltshire frame

Circular orbit of targetContinuation 
if no rendezvous

Target

Figure 7.8 Motion of the chaser relative to the target.
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7.6 Relative motion in close-proximity
circular orbits

Figure 7.9 shows two spacecraft in coplanar circular orbits. Let us calculate the velocity
δv of the chase vehicle B relative to the target A when they are in close proximity.
‘Close proximity’ means that

δr

r0
<< 1

To solve this problem, we must use the relative velocity equation,

vB = vA + � × δr + δv (7.50)

where � is the angular velocity of the CW frame attached to A,

� = nk̂

n is the mean motion of the target vehicle,

n = vA

r0
(7.51)

where, by virtue of the circular orbit,

vA =
√

µ

r0
(7.52)

Chaser, B

Target, A

r0

r

x

y

Coplanar
circular
orbits

Earth

ûr

û⊥
dr

Figure 7.9 Two spacecraft in close proximity.
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Solving Equation 7.50 for the relative velocity δv yields

δv = vB − vA − (nk̂) × δr (7.53)

Since the chase orbit is circular, we have for the first term on the right-hand side of
Equation 7.53

vB =
√

µ

r
û⊥ =

√
µ

r
(k̂ × ûr) = √

µ k̂ × (
1√

r

r

r
) (7.54)

Since, as is apparent from Figure 7.9, r = r0 + δr, we can write this expression for
vB as follows:

vB = √
µ k̂ × r− 3

2 (r0 + δr) (7.55)

Now

r− 3
2 = (r2)− 3

4 =




See Equation 7.10︷ ︸︸ ︷
r2

0

(
1 + 2r0 · δr

r2
0

)
− 3

4

= r
− 3

2
0

(
1 + 2r0 · δr

r2
0

)− 3
4

(7.56)

Using the binomial theorem (cf. Equation 5.44), and retaining terms at most linear
in δr, we get (

1 + 2r0 · δr

r2
0

)− 3
4 = 1 − 3

2

r0 · δr

r2
0

Substituting this into Equation 7.56 leads to

r− 3
2 = r

− 3
2

0 − 3

2

r0 · δr

r
7
2
0

Upon substituting this result into Equation 7.55, we get

vB = √
µ k̂ × (r0 + δr)


r

− 3
2

0 − 3

2

r0 · δr

r
7
2
0




Retaining terms at most linear in δr, we can write this as

vB = k̂ ×
{√

µ

r0

r0

r0
+

√
µ/r0

r0
δr − 3

2

√
µr0

r0

[(
r0

r0

)
· δr

]
r0

r0

}

Using Equations 7.51 and 7.52, together with the facts that δr = δxî + δy ĵ and
r0/r0 = î, this reduces to

vB = k̂ ×
{
vA î + vA

r0
(δxî + δy ĵ) − 3

2

vA

r0
[î · (δxî + δy ĵ)]î

}

= vA ĵ + (−nδy î + nδx ĵ) − 3

2
nδx ĵ
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x

y
O Neighboring

circular orbits

Earthδv

Figure 7.10 Circular orbits, with relative velocity directions, in the vicinity of the Clohessy–Wiltshire frame.

so that

vB = −nδy î + (vA − 1

2
nδx)ĵ (7.57)

This is the absolute velocity of the chaser resolved into components in the target’s
Clohessy–Wiltshire frame.

Substituting Equation 7.57 into 7.53 and using the fact that vA = vA ĵ yields

δv = [−nδy î + (vA − 1

2
nδx)ĵ] − (vA ĵ) − (nk̂) × (δxî + δy ĵ)

= −nδy î + vA ĵ − 1

2
nδx ĵ − vA ĵ − nδx ĵ + nδy î

so that

δv = −3

2
nδx ĵ (7.58)

This is the velocity of the chaser as measured in the moving reference frame of the
neighboring target. Keep in mind that circular orbits were assumed at the outset.

In the Clohessy–Wiltshire frame, neighboring coplanar circular orbits appear to
be straight lines parallel to the y axis, which is the orbit of the origin. Figure 7.10 illus-
trates this point, showing also the linear velocity variation according to Equation 7.58.

Problems

7.1 Two manned spacecraft, A and B (see figure), are in circular, polar (i = 90◦) orbits around
the earth. A’s orbital altitude is 300 km; B’s is 250 km. At the instant shown (A over the
equator, B over the North Pole), calculate
(a) the position,
(b) velocity, and
(c) the acceleration of B relative to A.
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A’s y axis points always in the flight direction, and its x axis is directed radially outward
at all times.
{Ans.: (a) rrel)xyz = −6678î + 6628ĵ km; (b) vrel)xyz = −0.08693î km/s; (c) arel)xyz =
−1.140 × 10−6 ĵ km/s2}

γ
X

Y

Z

A

B

y

z

xEarth

N

Figure P.7.1

7.2 Spacecraft A and B are in coplanar, circular geocentric orbits. The orbital radii are shown
in the figure. When B is directly below A, as shown, calculate B’s acceleration relative to A.
{Ans.: (arel)xyz = −0.268î (m/s2)}

x

y A

B

Earth

8000 km

7000 km

Figure P.7.2
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7.3 Use the order of magnitude analysis in this chapter as a guide to answer the following
questions.
(a) If r = r0 + δr, express

√
r (where r = √

r · r) to the first order in δr (i.e., to the first

order in the components of δr = δxî + δy ĵ + δzk̂). In other words, find O(δr), such
that

√
r = √

r0 + O(δr), where O(δr) is linear in δr.

(b) For the special case r0 = 3î + 4ĵ + 5k̂ and δr = 0.01î − 0.01ĵ + 0.03k̂, calculate√
r − √

r0 and compare that result with O(δr).

(c) Repeat part (b) using δr = î − ĵ + 3k̂ and compare the results.

{Ans.: (a) O(δr) = r0 · δr/

(
2r

3
2

0

)
; (b) O(δr)/

(√
r − √

r0
) = 0.998; (c) O(δr)/

(
√

r − √
r0) = 0.903}

r0

r

x

y

z

dr

Figure P.7.3

7.4 Write the expression r = a(1 − e2)

1 + e cos θ
as a linear function of e, valid for small values of

e(e << 1).

7.5 Given ẍ + 9x = 10, with the initial conditions x = 5 and ẋ = −3 at t = 0, find x and ẋ at
t = 1.2.
{Ans.: x(1.2) = −1.934, ẋ(1.2) = 7.853}

7.6 Given that

ẍ + 10x + 2ẏ = 0

ÿ + 3ẋ = 0

with initial conditions x(0) = 1, y(0) = 2, ẋ(0) = −3 and ẏ(0) = 4, find x and y at t = 5.
{Ans.: x(5) = −6.460, y(5) = 97.31}

7.7 A space station is in a 90-minute period earth orbit. At t = 0, a satellite has the following
position and velocity components relative to a Clohessy–Wiltshire frame attached to the
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space station: {δr} = � 1 0 0 �T (km), {δv} = � 0 10 0 �T (m/s). How far is the
satellite from the space station 15 minutes later?
{Ans.: 11.2 km}

7.8 A space station is in a circular earth orbit of radius 6600 km. An approaching space-
craft executes a delta-v burn when its position vector relative to the space station is
{δr0} = � 1 1 1 �T (km). Just before the burn the relative velocity of the spacecraft

was {δv−
0 } = � 0 0 5 �T (m/s). Calculate the total delta-v required for the space shuttle

to rendezvous with the station in one-third period of the space station orbit.
{Ans.: 6.21 m/s}

7.9 A space station is in circular orbit 2 of radius r0. A spacecraft is in coplanar circular orbit
1 of radius r0 + δr. At t = 0 the spacecraft executes an impulsive maneuver to rendezvous
with the space station at time tf = one-half the period T0 of the space station. For a
Hohmann transfer orbit (δu+

0 = 0), find
(a) the initial position of the spacecraft relative to the space station, and
(b) the relative velocity of the spacecraft when it arrives at the target.

Sketch the rendezvous trajectory relative to the target.
{Ans.: (a) {δr0} = �δr 3π/(4δr) 0�T , (b) {δv−

f } = �0 πδr/(2T0) 0�T }

X

Y

t � 0
1

2

f

r0

δr

Figure P.7.9

7.10 Assuming a Hohmann transfer (δu+
0 = 0), calculate the total delta-v required for ren-

dezvous if {δr0} = �0 δy0 0�T , {δv−
0 } = �0 0 0�T and tf = the period of the

circular target orbit. Sketch the rendezvous trajectory relative to the target.
{Ans.: �vtot = 2δy0/(3T)}
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7.11 Spacecraft A and B are in the same circular earth orbit with a period of 2 hours. B
is 6 km ahead of A. At t = 0, B applies an in-track delta-v (retrofire) of 3 m/s. Using
a Clohessy–Wiltshire frame attached to A, determine the distance between A and B at
t = 30 minutes and the velocity of B relative to A.
{Ans.: ‖δr‖ = 10.9 km, ‖δv‖ = 10.8 m/s}

7.12 A GEO satellite strikes some orbiting debris and is found 2 hours afterwards to have
drifted to the position {δr} = �−10 10 0�T km relative to its original location. At that
time the only slightly damaged satellite initiates a two-impulse maneuver to return to its
original location in 6 hours. Find the total delta-v for this maneuver.
{Ans.: 3.5 m/s}

7.13 A space station is in a 245 km circular earth orbit inclined at 30◦. The right ascension of its
node line is 40◦. Meanwhile, a space shuttle has been launched into a 280 km by 250 km
orbit inclined at 30.1◦, with a nodal right ascension of 40◦ and argument of perigee equal
to 60◦. When the shuttle’s true anomaly is 40◦, the space station is 99◦ beyond its node
line. At that instant, the space shuttle executes a delta-v burn to rendezvous with the space
station in (precisely) tf hours, where tf is selected by you or assigned by the instructor.
Calculate the total delta-v required and sketch the projection of the rendezvous trajectory
on the xy plane of the space station coordinates.

7.14 The space station is in a circular earth orbit of radius 6600 km. The space shuttle is also
in a circular orbit in the same plane as the space station’s. At the instant that the position
of the shuttle relative to the space station, in Clohessy–Wiltshire coordinates, is (5 km,
0, 0). What is the relative velocity δv of the space shuttle in meters/s?
{Ans.: 8.83 m/s}

x

y

z

Space station

Shuttle

CW frame

5 km

Figure P.7.14

7.15 The Clohessy–Wiltshire coordinates and velocities of a spacecraft upon entering a ren-
dezvous trajectory with the target vehicle are shown. The spacecraft orbits are coplanar.
Calculate the distance d of the spacecraft from the target when t = π/2n, where n is the
mean motion of the target’s circular orbit.
{Ans.: 0.900δr}
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(δx, δy)

d

Target

Spacecraft at t � 0�

y

x

CW frame

π
16

nδr

nδr
4

7

δr

πδr

Figure P.7.15

7.16 The target T is in a circular earth orbit with mean motion n. The chaser C is directly above
T in a slightly larger circular orbit having the same plane as T ’s. What relative initial veloc-
ity δv+

0 is required so that C arrives at the target T at time tf = one-half the target’s period?

{Ans.: δv+
0 = −0.589nδx0 î − 1.75nδx0 ĵ}

x

y 

C

T CW frame

δx0

Figure P.7.16

7.17 The space shuttle and the International Space Station are in coplanar circular orbits.
The space station has an orbital radius r and a mean motion n. The shuttle’s radius is
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r − d(d << r). If a two-impulse rendezvous maneuver with tf = π/(4n) is initiated with
zero relative velocity in the x direction (δẋ+

0 = 0), calculate the initial relative y coordinate
of the shuttle.
{Ans.: δy0 = −1.98 d}

x

y
ISS orbit

Shuttle orbit

d

Figure P.7.17
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8.1 Introduction

In this chapter we consider some basic aspects of planning interplanetary missions.
We begin by considering Hohmann transfers, which are the easiest to analyze and

the most energy efficient. The orbits of the planets involved must lie in the same
plane and the planets must be positioned just right for a Hohmann transfer to be
used. The time between such opportunities is derived. The method of patched conics
is employed to divide the mission into three parts: the hyperbolic departure trajectory
relative to the home planet; the cruise ellipse relative to the sun; and the hyperbolic
arrival trajectory, relative to the target planet.

347
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The use of patched conics is justified by calculating the radius of a planet’s sphere
of influence and showing how small it is on the scale of the solar system. Matching
the velocity of the spacecraft at the home planet’s sphere of influence to that required
to initiate the outbound cruise phase and then specifying the periapse radius of the
departure hyperbola determines the delta-v requirement at departure. The sensitivity
of the target radius to the burnout conditions is discussed. Matching the velocities
at the target planet’s sphere of influence and specifying the periapse of the arrival
hyperbola yields the delta-v at the target for a planetary rendezvous or the direction
of the outbound hyperbola for a planetary flyby. Flyby maneuvers are discussed,
including the effect of leading and trailing side flybys, and some noteworthy examples
of the use of gravity assist maneuvers are presented.

The chapter concludes with an analysis of the situation in which the planets’ orbits
are not coplanar and the transfer ellipse is tangent to neither orbit. This is akin to the
chase maneuver in Chapter 6 and requires the solution of Lambert’s problem using
Algorithm 5.2.

8.2 Interplanetary Hohmann transfers

As can be seen from Table A.1, the orbits of most of the planets in the solar system
lie very close to the earth’s orbital plane (the ecliptic plane). The innermost planet,
Mercury, and the outermost planet, Pluto, differ most in inclination (7◦ and 17◦,
respectively). The orbital planes of the other planets lie within 3.5◦ of the ecliptic. It is
also evident from Table A.1 that most of the planetary orbits have small eccentricities,
the exceptions once again being Mercury and Pluto. To simplify the beginning of our
study of interplanetary trajectories, we will assume that all of the planets’ orbits are
circular and coplanar. Later on, in Section 8.10, we will relax this assumption.

The most energy efficient way for a spacecraft to transfer from one planet’s orbit
to another is to use a Hohmann transfer ellipse (Section 6.2). Consider Figure 8.1,
which shows a Hohmann transfer from an inner planet 1 to an outer planet 2. The
departure point D is at the periapse (perihelion) of the transfer ellipse and the arrival
point is at the apoapse (aphelion). The circular orbital speed of planet 1 relative to
the sun is given by Equation 2.53,

V1 =
√

µsun

R1
(8.1)

The specific angular momentum h of the transfer ellipse relative to the sun is found
from Equation 6.2, so that the velocity of the space vehicle on the transfer ellipse at
the departure point D is

V (v)
D = h

R1
= √

2µsun

√
R2

R1(R1 + R2)
(8.2)

This is greater than the speed of the planet. Therefore the required delta-v at D is

�VD = V (v)
D − V1 =

√
µsun

R1

(√
2R2

R1 + R2
− 1

)
(8.3)
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Figure 8.1 Hohmann transfer from inner planet 1 to outer planet 2.

Likewise, the delta-v at the arrival point A is

�VA = V2 − V (v)
A =

√
µsun

R2

(
1 −

√
2R1

R1 + R2

)
(8.4)

This velocity increment, like that at point D, is positive since planet 2 is traveling
faster than the spacecraft at point A.

For a mission from an outer planet to an inner planet, as illustrated in Figure 8.2,
the delta-vs computed using Equations 8.3 and 8.4 will both be negative instead of
positive. That is because the departure point and arrival point are now at aphelion
and perihelion, respectively, of the transfer ellipse. The speed of the spacecraft must
be reduced for it to drop into the lower-energy transfer ellipse at the departure point
D, and it must be reduced again at point A in order to arrive in the lower-energy
circular orbit of planet 2.

8.3 Rendezvous opportunities

The purpose of an interplanetary mission is for the spacecraft not only to intercept a
planet’s orbit but also to rendezvous with the planet when it gets there. For rendezvous
to occur at the end of a Hohmann transfer, the location of planet 2 in its orbit at the
time of the spacecraft’s departure from planet 1 must be such that planet 2 arrives
at the apse line of the transfer ellipse at the same time the spacecraft does. Phasing



350 Chapter 8 Interplanetary trajectories

   

Sun
Planet 1

at departure

Planet 2
at arrival

Planet 2
at departure

Planet 1
at arrival

Heliocentric elliptical
transfer trajectory

R1R2

1

2

A D

VD

V1

VA

V2

Figure 8.2 Hohmann transfer from outer planet 1 to inner planet 2.

maneuvers (Section 6.7) are clearly not practical, especially for manned missions, due
to the large periods of the heliocentric orbits.

Consider planet 1 and planet 2 in circular orbits around the sun, as shown in
Figure 8.3. Since the orbits are circular, we can choose a common horizontal apse line
from which to measure the true anomaly θ. The true anomalies of planets 1 and 2,
respectively, are

θ1 = θ10 + n1t (8.5)

θ2 = θ20 + n2t (8.6)

where n1 and n2 are the mean motions (angular velocities) of the planets and θ10

and θ20 are their true anomalies at time t = 0. The phase angle between the position
vectors of the two planets is defined as

φ = θ2 − θ1 (8.7)

φ is the angular position of planet 2 relative to planet 1. Substituting Equations 8.5
and 8.6 into 8.7 we get

φ = φ0 + (n2 − n1)t (8.8)

φ0 is the phase angle at time zero. n2 − n1 is the orbital angular velocity of planet 2
relative to planet 1. If the orbit of planet 1 lies inside that of planet 2, as in Figure 8.3(a),
then n1 > n2. Therefore, the relative angular velocity n2 −n1 is negative, which means
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Figure 8.3 Planets in circular orbits around the sun. (a) Planet 2 outside the orbit of planet 1. (b) Planet 2
inside the orbit of planet 1.

planet 2 moves clockwise relative to planet 1. On the other hand, if planet 1 is outside
of planet 2 then n2 − n1 is positive, so that the relative motion is counterclockwise.

The phase angle obviously varies linearly with time according to Equation 8.8. If
the phase angle is φ0 at t = 0, how long will it take to become φ0 again? The answer:
when the position vector of planet 2 rotates through 2π radians relative to planet
1. The time required for the phase angle to return to its initial value is called the
synodic period, which is denoted Tsyn. For the case shown in Figure 8.3(a) in which
the relative motion is clockwise, Tsyn is the time required for φ to change from φ0 to
φ0 − 2π. From Equation 8.8 we have

φ0 − 2π = φ0 + (n2 − n1)Tsyn

so that

Tsyn = 2π

n1 − n2
(n1 > n2)

For the situation illustrated in Figure 8.3(b) (n2 > n1), Tsyn is the time required for
φ to go from φ0 to φ0 + 2π, in which case Equation 8.8 yields

Tsyn = 2π

n2 − n1
(n2 > n1)

Both cases are covered by writing

Tsyn = 2π

|n1 − n2| (8.9)

Recalling Equation 3.6, we can write n1 = 2π/T1 and n2 = 2π/T2. Thus, in terms of
the orbital periods of the two planets,

Tsyn = T1T2

|T1 − T2| (8.10)

Observe that Tsyn is the orbital period of planet 2 relative to planet 1.
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Example
8.1

Calculate the synodic period of Mars relative to the earth

In Table A.1 we find the orbital periods of earth and Mars:

Tearth = 365.26 days (1 year)

TMars = 1 year 321.73 days = 687.99 days

Hence,

Tsyn = TearthTMars

|Tearth − TMars| = 365.26 × 687.99

|365.26 − 687.99| = 777.9 days

These are earth days (1 day = 24 hours). Therefore it takes 2.13 years for a given
configuration of Mars relative to the earth to occur again.

Figure 8.4 depicts a mission from planet 1 to planet 2. Following a heliocentric
Hohmann transfer, the spacecraft intercepts and rendezvous with planet 2. Later it
returns to planet 1 by means of another Hohmann transfer. The major axis of the
heliocentric transfer ellipse is the sum of the radii of the two planets’ orbits, R1 + R2.
The time t12 required for the transfer is one-half the period of the ellipse. Hence,
according to Equation 2.73,

t12 = π√
µsun

(
R1 + R2

2

)3/2

(8.11)

During the time it takes the spacecraft to fly from orbit 1 to orbit 2, through an angle of
π radians, planet 2 must move around its circular orbit and end up at a point directly
opposite planet 1’s position when the spacecraft departed. Since planet 2’s angular
velocity is n2, the angular distance traveled by the planet during the spacecraft’s trip
is n2t12. Hence, as can be seen from Figure 8.4(a), the initial phase angle φ0 between
the two planets is

φ0 = π − n2t12 (8.12)

(a) (b)

Planet 1
at arrival

   
Sun

Planet 1
at departure

Planet 2
at arrival

Planet 2
at departure

2

1
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Planet 2
at departure 

2

1

n2t12

φ0

φf

φ�0

φ�f

Figure 8.4 Round-trip mission, with layover, to planet 2. (a) Departure and rendezvous with planet 2.
(b) Return and rendezvous with planet 1.
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When the spacecraft arrives at planet 2, the phase angle will be φf , which is found
using Equations 8.8 and 8.12:

φf = φ0 + (n2 − n1)t12 = (π − n2t12) + (n2 − n1)t12

φf = π − n1t12 (8.13)

For the situation illustrated in Figure 8.4, planet 2 ends up being behind planet 1 by
an amount equal to the magnitude of φf .

At the start of the return trip, illustrated in Figure 8.4(b), planet 2 must be φ′
0

radians ahead of planet 2. Since the spacecraft flies the same Hohmann transfer
trajectory back to planet 1, the time of flight is t12, the same as the outbound leg.
Therefore, the distance traveled by planet 1 during the return trip is the same as the
outbound leg, which means

φ′
0 = −φf (8.14)

In any case, the phase angle at the beginning of the return trip must be the negative
of the phase angle at arrival from planet 1. The time required for the phase angle to
reach its proper value is called the wait time, twait. Setting time equal to zero at the
instant we arrive at planet 2, Equation 8.8 becomes

φ = φf + (n2 − n1)t

φ becomes −φf after the time twait. That is

−φf = φf + (n2 − n1)twait

or

twait = −2φf

n2 − n1
(8.15)

where φf is given by Equation 8.13. Equation 8.15 may yield a negative result, which
means the desired phase relation occurred in the past. Therefore we must add or
subtract an integral multiple of 2π to the numerator in order to get a positive value
for twait. Specifically, if N = 0, 1, 2, . . ., then

twait = −2φf − 2πN

n2 − n1
(n1 > n2) (8.16)

twait = −2φf + 2πN

n2 − n1
(n1 < n2) (8.17)

where N is chosen to make twait positive. twait would probably be the smallest positive
number thus obtained.

Example
8.2

Calculate the minimum wait time for initiating a return trip from Mars to earth.

From Tables A.1 and A.2 we have

Rearth = 149.6 × 106 km

RMars = 227.9 × 106 km

µsun = 132.71 × 109 km3/s2
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(Example 8.2
continued)

According to Equation 8.11, the time of flight from earth to Mars is

t12 = π√
µsun

(
Rearth + RMars

2

)3/2

= π√
132.71 × 109

(
149.6 × 106 + 227.9 × 106

2

)3/2

= 2.2362 × 107 s

or

t12 = 258.82 days

From Equation 3.6 and the orbital periods of earth and Mars (see Example 8.1 above)
we obtain the mean motions of the earth and Mars.

nearth = 2π

365.26
= 0.017202 rad/day

nMars = 2π

687.99
= 0.0091327 rad/day

The phase angle between earth and Mars when the spacecraft reaches Mars is given
by Equation 8.13.

φf = π − neartht12 = π − 0.017202 · 258.82 = −1.3107 (rad)

Since nearth > nMars, we choose Equation 8.16 to find the wait time:

twait = −2φf − 2πN

nMars − nearth
= −2(−1.3107) − 2πN

0.0091327 − 0.017202
= 778.65N − 324.85 (days)

N = 0 yields a negative value, which we cannot accept. Setting N = 1, we get

twait = 453.8 days

This is the minimum wait time. Obviously, we could set N = 2, 3, . . . to obtain longer
wait times.

In order for a spacecraft to depart on a mission to Mars by means of a Hohmann
(minimum energy) transfer, the phase angle between earth and Mars must be that
given by Equation 8.12. Using the results of Example 8.2, we find it to be

φ0 = π − nMarst12 = π − 0.0091327 · 258.82 = 0.7778 rad = 44.57◦

This opportunity occurs once every synodic period, which we found to be 2.13 years
in Example 8.1. In Example 8.2 we found that the time to fly to Mars is 258.8 days,
followed by a wait time of 453.8 days, followed by a return trip time of 258.8 days.
Hence, the minimum total time for a manned Mars mission is

ttotal = 258.8 + 453.8 + 253.8 = 971.4 days = 2.66 years

8.4 Sphere of influence

The sun, of course, is the dominant celestial body in the solar system. It is over 1000
times more massive than the largest planet, Jupiter, and has a mass of over 300 000
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Figure 8.5 Decrease of gravitational force with distance from a planet’s surface.

earths. The sun’s gravitational pull holds all of the planets in its grasp according to
Newton’s law of gravity, Equation 2.6. However, near a given planet the influence of its
own gravity exceeds that of the sun. For example, at its surface the earth’s gravitational
force is over 1600 times greater than the sun’s. The inverse-square nature of the law
of gravity means that the force of gravity Fg drops off rapidly with distance r from
the center of attraction. If Fg0 is the gravitational force at the surface of a planet with
radius r0, then Figure 8.5 shows how rapidly the force diminishes with distance. At
ten body radii, the force is 1 percent of its value at the surface. Eventually, the force
of the sun’s gravitational field overwhelms that of the planet.

In order to estimate the radius of a planet’s gravitational sphere of influence,
consider the three-body system comprising a planet p of mass mp, the sun s of mass
ms and a space vehicle v of mass mv illustrated in Figure 8.6. The position vectors of
the planet and spacecraft relative to an inertial frame centered at the sun are R and
Rv, respectively. The position vector of the space vehicle relative to the planet is r.
(Throughout this chapter we will use upper case letters to represent position, velocity
and acceleration measured relative to the sun and lower case letters when they are
measured relative to a planet.) The gravitational force exerted on the vehicle by the

planet is denoted F(v)
p , and that exerted by the sun is F(v)

s . Likewise, the forces on

the planet are F
(p)
s and F

(p)
v , whereas on the sun we have F(s)

v and F(s)
p . According to

Newton’s law of gravitation (Equation 2.6), these forces are

F(v)
p = −Gmvmp

r3
r (8.18a)

F(v)
s = −Gmvms

R3
v

Rv (8.18b)

F
(p)
s = −Gmpms

R3
R (8.18c)
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Figure 8.6 Relative position and gravitational force vectors among the three bodies.

Observe that

Rv = R + r (8.19)

From Figure 8.6 and the law of cosines we see that the magnitude of Rv is

Rv = (R2 + r2 − 2Rr cos θ)
1
2 = R

[
1 − 2

r

R
cos θ +

( r

R

)2
] 1

2

(8.20)

We expect that within the planet’s sphere of influence, r/R � 1. In that case, the terms
involving r/R in Equation 8.20 can be neglected, so that, approximately,

Rv = R (8.21)

The equation of motion of the spacecraft relative to the sun-centered inertial
frame is

mvR̈v = F(v)
s + F(v)

p

Solving for R̈v and substituting the gravitational forces given by Equations 8.18a and
8.18b, we get

R̈v = 1

mv

(
−Gmvms

R3
v

Rv

)
+ 1

mv

(
−Gmvmp

r3
r

)
= −Gms

R3
v

Rv − Gmp

r3
r (8.22)

Let us write this as

R̈v = As + Pp (8.23)

where

As = −Gms

R3
v

Rv Pp = −Gmp

r3
r (8.24)
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As is the primary gravitational acceleration of the vehicle due to the sun, whereas
Pp is the secondary or perturbing acceleration due to the planet. The magnitudes of
As and Pp are

As = Gms

R2
Pp = Gmp

r2
(8.25)

where we made use of the approximation given by Equation 8.21. The ratio of the
perturbing acceleration to the primary acceleration is, therefore,

Pp

As
=

Gmp

r2

Gms

R2

= mp

ms

(
R

r

)2

(8.26)

The equation of motion of the planet relative to the inertial frame is

mpR̈ = F
(p)
v + F

(p)
s

Solving for R̈, noting that F
(p)
v = −F(v)

p , and using Equations 8.18b and 8.18c, yields

R̈ = 1

mp

(
Gmvmp

r3
r

)
+ 1

mp

(
−Gmpms

R3
R

)
= Gmv

r3
r − Gms

R3
R (8.27)

Subtracting Equation 8.27 from 8.22 and collecting terms, we find

R̈v − R̈ = −Gmp

r3
r

(
1 + mv

mp

)
− Gms

R3
v

[
Rv −

(
Rv

R

)3

R

]

Recalling Equation 8.19, we can write this as

r̈ = −Gmp

r3
r

(
1 + mv

mp

)
− Gms

R3
v

{
r +

[
1 −

(
Rv

R

)3
]

R

}
(8.28)

This is the equation of motion of the vehicle relative to the planet. By using Equation
8.21 and the fact that mv � mp, we can write this in approximate form as

r̈ = ap + ps (8.29)

where

ap = −Gmp

r3
r ps = −Gms

R3
r (8.30)

In this case ap is the primary gravitational acceleration of the vehicle due to the planet,
and ps is the perturbation caused by the sun. The magnitudes of these vectors are

ap = Gmp

r2
ps = Gms

R3
r (8.31)

The ratio of the perturbing acceleration to the primary acceleration is

ps

ap
=

Gms
r

R3

Gmp

r2

= ms

mp

( r

R

)3
(8.32)
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For motion relative to the planet, the ratio ps/ap is a measure of the deviation of
the vehicle’s orbit from the Keplerian orbit arising from the planet acting by itself
(ps/ap = 0). Likewise, Pp/As is a measure of the planet’s influence on the orbit of the
vehicle relative to the sun. If

ps

ap
<

Pp

As
(8.33)

then the perturbing effect of the sun on the vehicle’s orbit around the planet is less
than the perturbing effect of the planet on the vehicle’s orbit around the sun. We
say that the vehicle is therefore within the planet’s sphere of influence. Substituting
Equations 8.26 and 8.32 into 8.33 yields

ms

mp

( r

R

)3
<

mp

ms

(
R

r

)2

which means ( r

R

)5
<

(
mp

ms

)2

or

r

R
<

(
mp

ms

)2
5

Let rSOI be the radius of the sphere of influence. Within the planet’s sphere of influence,
defined by

rSOI

R
=

(
mp

ms

)2
5

(8.34)

the motion of the spacecraft is determined by its equations of motion relative to the
planet (Equation 8.28). Outside of the sphere of influence, the path of the spacecraft
is computed relative to the sun (Equation 8.22).

The sphere of influence radius presented in Equation 8.34 is not an exact quantity.
It is simply a reasonable estimate of the distance beyond which the sun’s gravitational
attraction dominates that of a planet. The spheres of influence of all of the planets
and the earth’s moon are listed in Table A.2.

Example
8.3

Calculate the radius of the earth’s sphere of influence.

In Table A.1 we find

mearth = 5.974 × 1024 kg

msun = 1.989 × 1030 kg

Rearth = 149.6 × 106 km

Substituting this data into Equation 8.34 yields

rSOI = 149.6 × 106
(

5.974 × 1024

1.989 × 1024

) 2
5

= 925 × 106 km
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Since the radius of the earth is 6378 km,

rSOI = 145 earth radii

Relative to the earth, its sphere of influence is very large. However, relative to the sun
it is tiny, as illustrated in Figure 8.7.

Sun
Radius = 109 earth radii

Earth's SOI
Radius = 145 earth radii

23 460 earth radii

Figure 8.7 The earth’s sphere of influence and the sun, drawn to scale.

8.5 Method of patched conics

‘Conics’ refers to the fact that two-body or Keplerian orbits are conic sections with
the focus at the attracting body. To study an interplanetary trajectory we assume
that when the spacecraft is outside the sphere of influence of a planet it follows an
unperturbed Keplerian orbit around the sun. Because interplanetary distances are so
vast, for heliocentric orbits we may neglect the size of the spheres of influence and
consider them, like the planets they surround, to be just points in space coinciding
with the planetary centers. Within each planetary sphere of influence, the spacecraft
travels an unperturbed Keplerian path about the planet. While the sphere of influence
appears as a mere speck on the scale of the solar system, from the point of view of the
planet it is very large indeed and may be considered to lie at infinity.

To analyze a mission from planet 1 to planet 2 using the method of patched conics,
we first determine the heliocentric trajectory – such as the Hohmann transfer ellipse
discussed in Section 8.2 – that will intersect the desired positions of the two planets in
their orbits. This trajectory takes the spacecraft from the sphere of influence of planet
1 to that of planet 2. At the spheres of influence, the heliocentric velocities of the
transfer orbit are computed relative to the planet to establish the velocities ‘at infinity’
which are then used to determine planetocentric departure trajectory at planet 1 and
arrival trajectory at planet 2. In this way we ‘patch’ together the three conics, one
centered at the sun and the other two centered at the planets in question.

Whereas the method of patched conics is remarkably accurate for interplanetary
trajectories, such is not the case for lunar rendezvous and return trajectories. The orbit
of the moon is determined primarily by the earth, whose sphere of influence extends
well beyond the moon’s 384 400 km orbital radius. To apply patched conics to lunar
trajectories we ignore the sun and consider the motion of a spacecraft as influenced by
just the earth and moon, as in the restricted three-body problem discussed in Section
2.12. The size of the moon’s sphere of influence is found using Equation 8.34, with
the earth playing the role of the sun:

rSOI = R

(
mmoon

mearth

)2
5
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where R is the radius of the moon’s orbit. Thus, using Table A.1,

rSOI = 384 400

(
73.48 × 1021

5974 × 1021

) 2
5

= 66 200 km

as recorded in Table A.2. The moon’s sphere of influence extends out to over one-sixth
of the distance to the earth. We can hardly consider it to be a mere speck relative to
the earth. Another complication is the fact that the earth and the moon are somewhat
comparable in mass, so that their center of mass lies almost three-quarters of an earth
radius from the center of the earth. The motion of the moon cannot be accurately
described as rotating around the center of the earth.

Complications such as these place the analysis of cislunar trajectories beyond our
scope. Extensions of the patched conic technique to such orbits may be found in Bate,
Mueller and White (1971), Kaplan (1976) and Battin (1999).

8.6 Planetary departure

In order to escape the gravitational pull of a planet, the spacecraft must travel a
hyperbolic trajectory relative to the planet, arriving at its sphere of influence with
a relative velocity v∞ (hyperbolic excess velocity) greater than zero. On a parabolic
trajectory, according to Equation 2.80, the spacecraft will arrive at the sphere of
influence (r = ∞) with a relative speed of zero. In that case the spacecraft remains in
the same orbit as the planet and does not embark upon a heliocentric elliptical path.

Figure 8.8 shows a spacecraft departing on a Hohmann trajectory from planet 1
towards a target planet 2 which is farther away from the sun (as in Figure 8.1). At the

sphere of influence crossing, the heliocentric velocity V(v)
D of the spacecraft is parallel

to the asymptote of the departure hyperbola as well as to the planet’s heliocentric

velocity vector V1. V(v)
D and V1 must be parallel and in the same direction for a

Hohmann transfer such that �VD in Equation 8.3 is positive. Clearly, �VD is the
hyperbolic excess speed of the departure hyperbola,

v∞ =
√

µsun

R1

(√
2R2

R1 + R2
− 1

)
(8.35)

It would be well at this point for the reader to review Section 2.9 on hyperbolic
trajectories and compare Figures 8.8 and 2.23. Recall that point C is the center of the
hyperbola.

A space vehicle is ordinarily launched into an interplanetary trajectory from a
circular parking orbit. The radius of this parking orbit equals the periapse radius
rp of the departure hyperbola. According to Equation 2.40, the periapse radius is
given by

rp = h2

µ1

1

1 + e
(8.36)

where h is the angular momentum of the departure hyperbola (relative to the planet),
e is the eccentricity of the hyperbola and µ1 is the planet’s gravitational parameter.
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Figure 8.8 Departure of a spacecraft on a mission from an inner planet to an outer planet.

The hyperbolic excess speed is found in Equation 2.105, from which we obtain

h = µ1

√
e2 − 1

v∞
(8.37)

Substituting this expression for the angular momentum into Equation 8.36 and
solving for the eccentricity yields

e = 1 + rpv
2∞

µ1
(8.38)

We place this result back into Equation 8.37 to obtain the following expression for
the angular momentum:

h = rp

√
v2∞ + 2µ1

rp
(8.39)

Since the hyperbolic excess speed is specified by the mission requirements (Equa-
tion 8.35), choosing a departure periapse rp yields the parameters e and h of the
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Figure 8.9 Locus of possible departure trajectories for a given v∞ and rp.

departure hyperbola. From the angular momentum we get the periapse speed,

vp = h

rp
=

√
v2∞ + 2µ1

rp
(8.40)

which can also be found from an energy approach using Equation 2.103. With
Equation 8.40 and the speed of the circular parking orbit (Equation 2.53),

vc =
√

µ1

rp
(8.41)

we can calculate the delta-v required to put the vehicle onto the hyperbolic departure
trajectory,

�v = vp − vc = vc



√

2 +
(

v∞
vc

)2

− 1


 (8.42)

The location of periapse, where the delta-v maneuver must occur, is found using
Equations 2.89 and 8.38,

β = cos−1
(

1

e

)
= cos−1


 1

1 + rpv
2∞

µ1


 (8.43)

β gives the orientation of the apse line of the hyperbola to the planet’s heliocentric
velocity vector.

It should be pointed out that the only requirement on the orientation of the plane
of the departure hyperbola is that it contains the center of mass of the planet as well
as the relative velocity vector v∞. Therefore, as shown in Figure 8.11, the hyperbola
can be rotated about a line A–A which passes through the planet’s center of mass and
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Figure 8.10 Parking orbits and departure trajectories for a launch site at a given latitude.

is parallel to v∞ (or V1, which of course is parallel to v∞ for Hohmann transfers).
Rotating the hyperbola in this way sweeps out a surface of revolution on which lie all
possible departure hyperbolas. The periapse of the hyperbola traces out a circle which,
for the specified periapse radius rp, is the locus of all possible points of injection into
a departure trajectory towards the target planet. This circle is the base of a cone with
vertex at the center of the planet. From Figure 3.23 we can determine that its radius
is rp sin β, where β is given just above in Equation 8.43.

The plane of the parking orbit, or direct ascent trajectory, must contain the
line A–A and the launch site at the time of launch. The possible inclinations of a
prograde orbit range from a minimum of imin, where imin is the latitude of the launch
site, to imax, which cannot exceed 90◦. Launch site safety considerations may place
additional limits on that range. For example, orbits originating from the Kennedy
Space Center in Florida, USA, (latitude 28.5◦) are limited to inclinations between
28.5◦ and 52.5◦. For the scenario illustrated in Figure 8.12 the location of the launch
site limits access to just the departure trajectories having periapses lying between a
and b. The figure shows that there are two times per day – when the planet rotates
the launch site through positions 1 and 1′ – that a spacecraft can be launched into
a parking orbit. These times are closer together (the launch window is smaller) the
lower the inclination of the parking orbit.

Once a spacecraft is established in its parking orbit, then an opportunity for
launch into the departure trajectory occurs each orbital circuit.

If the mission is to send a spacecraft from an outer planet to an inner planet, as

in Figure 8.2, then the spacecraft’s heliocentric speed V (v)
D at departure must be less

than that of the planet. That means the spacecraft must emerge from the back side of
the sphere of influence with its relative velocity vector v∞ directed opposite to V1, as
shown in Figure 8.11. Figures 8.9 and 8.10 apply to this situation as well.
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Figure 8.11 Departure of a spacecraft on a trajectory from an outer planet to an inner planet.

Example
8.4

A spacecraft is launched on a mission to Mars starting from a 300 km circular parking
orbit. Calculate (a) the delta-v required; (b) the location of perigee of the departure
hyperbola; (c) the amount of propellant required as a percentage of the spacecraft
mass before the delta-v burn, assuming a specific impulse of 300 seconds.

From Tables A.1 and A.2 we obtain the gravitational parameters for the sun and the
earth,

µsun = 1.327 × 1011 km3/s2

µearth = 398 600 km3/s2

and the orbital radii of the earth and Mars,

Rearth = 149.6 × 106 km

RMars = 227.9 × 106 km
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(a) According to Equation 8.35, the hyperbolic excess speed is

v∞ =
√

µsun

Rearth

(√
2RMars

Rearth + RMars
− 1

)

=
√

1.327 × 1011

149.6 × 106



√

2(227.9 × 106)

149.6 × 106 + 227.9 × 106
− 1




from which

v∞ = 2.943 km/s

The speed of the spacecraft in its 300 km circular parking orbit is given by
Equation 8.41,

vc =
√

µearth

rearth + 300
=

√
398 600

6678
= 7.726 km/s

Finally, we use Equation 8.42 to calculate the delta-v required to step up to the
departure hyperbola:

�v = vp − vc = vc



√

2 +
(

v∞
vc

)2

− 1


 = 7.726



√

2 +
(

2.943

7.726

)2

− 1




�v = 3.590 km/s

(b) Perigee of the departure hyperbola, relative to the earth’s orbital velocity vector,
is found using Equation 8.43,

β = cos−1


 1

1 + rpv
2∞

µearth


 = cos−1


 1

1 + 6678 · 2.9432

368 600




β = 29.16◦

Figure 8.12 shows that the perigee can be located on either the sunlit or dark side
of the earth. It is likely that the parking orbit would be a prograde orbit (west to
east), which would place the burnout point on the dark side.

(c) From Equation 6.1 we have

�m

m
= 1 − e

− �v
Ispgo

Substituting �v = 3.590 km/s, Isp = 300 s and go = 9.81×10−3 km/s2, this yields

�m

m
= 0.705

That is, prior to the delta-v maneuver, over 70 percent of the spacecraft mass
must be propellant.
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(Example 8.4
continued)
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Figure 8.12 Departure trajectory to Mars initiated from (a) the dark side and (b) the sunlit side of the earth.

8.7 Sensitivity analysis

The initial maneuvers required to place a spacecraft on an interplanetary trajectory
occur well within the sphere of influence of the departure planet. Since the sphere
of influence is just a point on the scale of the solar system, one may ask what effects
small errors in position and velocity at the maneuver point have on the trajectory.
Assuming the mission is from an inner to an outer planet, let us consider the effect
which small changes in the burnout velocity vp and radius rp have on the target radius
R2 of the heliocentric Hohmann transfer ellipse (see Figures 8.1 and 8.8).

R2 is the radius of aphelion, so we use Equation 2.60 to obtain

R2 = h2

µsun

1

1 − e

Substituting h = R1V (v)
D and e = (R2 − R1)/(R2 + R1), and solving for R2, yields

R2 = R2
1[V (v)

D ]2

2µsun − R1[V (v)
D ]2

(8.44)

(This expression holds as well for a mission from an outer to inner planet.) The

change δR2 in R2 due to a small variation δV (v)
D of V (v)

D is

δR2 = dR2

dV (v)
D

δV (v)
D = 4R2

1µsun{
2µsun − R1[V (v)

D ]2
}2 V (v)

D δV (v)
D

Dividing this equation by Equation 8.44 leads to

δR2

R2
= 2

1 − R1[V (v)
D ]2

2µsun

δV (v)
D

V (v)
D

(8.45)
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The departure speed V (v)
D of the space vehicle is the sum of the planet’s speed V1 and

excess speed v∞:

V (v)
D = V1 + v∞

We can solve Equation 8.40 for v∞,

v∞ =
√

v2
p − 2µ1

rp

Hence

V (v)
D = V1 +

√
v2

p − 2µ1

rp
(8.46)

The change in V (v)
D due to variations δrp and δvp of the burnout position (periapse)

rp and speed vp is given by

δV (v)
D = ∂V (v)

D

∂rp
δrp + ∂V (v)

D

∂vp
δvp (8.47)

From Equation 8.46 we obtain

∂V (v)
D

∂rp
= µ1

v∞r2
p

∂V (v)
D

∂vp
= vp

v∞
Therefore

δV (v)
D = µ1

v∞r2
p
δrp + vp

v∞
δvp

Once again making use of Equation 8.40, this can be written as follows

δV (v)
D

V (v)
D

= µ1

V (v)
D v∞rp

δrp

rp
+

v∞ + 2µ1

rp

V (v)
D

δvp

vp
(8.48)

Substituting this into Equation 8.45 finally yields the desired result, an expression for
the variation of R2 due to variations in rp and vp:

δR2

R2
= 2

1 − R1[V (v)
D ]2

2µsun


 µ1

V (v)
D v∞rp

δrp

rp
+

v∞ + 2µ1

rp

V (v)
D

δvp

vp


 (8.49)

Consider a mission from earth to Mars, starting from a 300 km parking orbit.
We have

µsun = 1.327 × 1011 km3/s2

µpl1 = µearth = 398 600 km3/s2

R1 = 149.6 × 106 km

R2 = 227.9 × 106 km

rp = 6678 km
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In addition, from Equations 8.1 and 8.2,

V1 = Vearth =
√

µsun

R1
=

√
1.327 × 1011

149.6 × 106
= 29.78 km/s

V (v)
D = √

2µsun

√
R2

R1(R1 + R2)

=
√

2 · 1.327 × 1011

√
227.9 × 106

149.6 × 106(149.6 × 106 + 227.9 × 106)
= 32.73 km/s

Therefore

v∞ = V (v)
D − Vearth = 2.943 km/s

and, from Equation 8.40,

vp =
√

v2∞ + 2µearth

rp
=

√
2.9432 + 2 · 398 600

6678
= 11.32 km/s

Substituting these values into Equation 8.49 yields

δR2

R2
= 3.127

δrp

rp
+ 6.708

δvp

vp

This expression shows that a 0.01 percent variation (1.1 m/s) in the burnout speed
vp changes the target radius R2 by 0.067 percent or 153 000 km! Likewise, an error
of 0.01 percent (0.67 km) in burnout radius rp produces an error of over 70 000 km.
Thus small errors which are likely to occur in the launch phase of the mission must
be corrected by midcourse maneuvers during the coasting flight along the elliptical
transfer trajectory.

8.8 Planetary rendezvous

A spacecraft arrives at the sphere of influence of the target planet with a hyperbolic
excess velocity v∞ relative to the planet. In the case illustrated in Figure 8.1, a mission
from an inner planet 1 to an outer planet 2 (e.g., earth to Mars), the spacecraft’s

heliocentric approach velocity V(v)
A is smaller in magnitude than that of the planet,

V2. Therefore, it crosses the forward portion of the sphere of influence, as shown in

Figure 8.13. For a Hohmann transfer, V(v)
A and V2 are parallel, so the magnitude of

the hyperbolic excess velocity is, simply,

v∞ = V2 − V (v)
A (8.50)

If the mission is as illustrated in Figure 8.2, from an outer planet to an inner one (e.g.,

earth to Venus), then V (v)
A is greater than V2, and the spacecraft must cross the rear

portion of the sphere of influence, as shown in Figure 8.14. In that case

v∞ = V (v)
A − V2 (8.51)
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Figure 8.13 Spacecraft approach trajectory for a Hohmann transfer to an outer planet from an inner one.
P is the periapse of the approach hyperbola.

What happens after crossing the sphere of influence depends on the nature of the
mission. If the goal is to impact the planet (or its atmosphere), the aiming radius � of
the approach hyperbola must be such that hyperbola’s periapse rp equals essentially
the radius of the planet. If the intent is to go into orbit around the planet, then �

must be chosen so that the delta-v burn at periapse will occur at the correct altitude
above the planet. If there is no impact with the planet and no drop into a capture orbit
around the planet, then the spacecraft will simply continue past periapse on a flyby
trajectory, exiting the sphere of influence with the same relative speed v∞ it entered,
but with the velocity vector rotated through the turn angle δ, given by Equation 2.90,

δ = 2 sin−1
(

1

e

)
(8.52)

With the hyperbolic excess speed v∞ and the periapse radius rp specified, the
eccentricity of the approach hyperbola is found from Equation 8.38,

e = 1 + rpv
2∞

µ2
(8.53)

where µ2 is the gravitational parameter of planet 2. Hence, the turn angle is

δ = 2 sin−1


 1

1 + rpv
2∞

µ2


 (8.54)
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Figure 8.14 Spacecraft approach trajectory for a Hohmann transfer to an inner planet from an outer one.
P is the periapse of the approach hyperbola.

We can combine Equations 2.93 and 2.97 to obtain the following expression for the
aiming radius,

� = h2

µ2

1√
e2 − 1

(8.55)

The angular momentum of the approach hyperbola relative to the planet is found
using Equation 8.39,

h = rp

√
v2∞ + 2µ2

rp
(8.56)

Substituting Equations 8.53 and 8.56 into 8.55 yields the aiming radius in terms of
the periapse radius and the hyperbolic excess speed,

� = rp

√
1 + 2µ2

rpv2∞
(8.57)

Just as we observed when discussing departure trajectories, the approach hyperbola
does not lie in a unique plane. We can rotate the hyperbolas illustrated in Figures 8.11
and 8.12 about a line A–A parallel to v∞ and passing through the target planet’s center
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Figure 8.15 Locus of approach hyperbolas to the target planet.
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Figure 8.16 Family of approach hyperbolas having the same v∞ but different �.

of mass, as shown in Figure 8.15. The approach hyperbolas in that figure terminate at
the circle of periapses. Figure 8.16 is a plane through the solid of revolution revealing
the shape of hyperbolas having a common v∞ but varying �.

Let us suppose that the purpose of the mission is to enter an elliptical orbit of
eccentricity e around the planet. This will require a delta-v maneuver at periapse
P (Figures 8.13 and 8.14), which is also periapse of the ellipse. The speed in the
hyperbolic trajectory at periapse is given by Equation 8.40

vp)hyp =
√

v2∞ + 2µ2

rp
(8.58)
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The velocity at periapse of the capture orbit is found by setting h = rpvp in Equation
2.40 and solving for vp:

vp)capture =
√

µ2(1 + e)

rp
(8.59)

Hence, the required delta-v is

�v = vp)hyp − vp)capture =
√

v2∞ + 2µ2

rp
−

√
µ2(1 + e)

rp
(8.60)

For a given v∞, �v clearly depends upon the choice of periapse radius rp and capture
orbit eccentricity e. Requiring the maneuver point to remain the periapse of the
capture orbit means that �v is maximum for a circular capture orbit and decreases
with increasing eccentricity until �v = 0, which, of course, means no capture (flyby).

In order to determine optimal capture radius, let us write Equation 8.60 in non-
dimensional form as

�v

v∞
=

√
1 + 2

ξ
−

√
1 + e

ξ
(8.61)

where

ξ = rpv
2∞

µ2
(8.62)

The first and second derivatives of �v/v∞ with respect to ξ are

d

dξ

�v

v∞
=

(
− 1√

ξ + 2
+

√
1 + e

2

)
1

ξ
3
2

(8.63)

d2

dξ2

�v

v∞
=

[
2ξ + 3

(ξ + 2)
3
2

− 3

4

√
1 + e

]
1

ξ
5
2

(8.64)

Setting the first derivative equal to zero and solving for ξ yields

ξ = 2
1 − e

1 + e
(8.65)

Substituting this value of ξ into Equation 8.64, we get

d2

dξ2

�v

v∞
=

√
2

64

(1 + e)3

(1 − e)
3
2

(8.66)

This expression is positive for elliptical orbits (0 ≤ e < 1), which means that when
ξ is given by Equation 8.65 �v is a minimum. Therefore, from Equation 8.62, the
optimal periapse radius as far as fuel expenditure is concerned is

rp = 2µ2

v2∞
1 − e

1 + e
(8.67)



8.8 Planetary rendezvous 373

We can combine Equations 2.40 and 2.60 to get

1 − e

1 + e
= rp

ra
(8.68)

where ra is the apoapse radius. Thus, Equation 8.67 implies

ra = 2µ2

v2∞
(8.69)

That is, the apoapse of this capture ellipse is independent of the eccentricity and
equals the radius of the optimal circular orbit.

Substituting Equation 8.65 back into Equation 8.61 yields the minimum �v

�v = v∞
√

1 − e

2
(8.70)

Finally, placing the optimal rp into Equation 8.57 leads to an expression for the aiming
radius required for minimum �v,

� = 2
√

2

√
1 − e

1 + e

µ2

v2∞
=

√
2

1 − e
rp (8.71)

Clearly, the optimal �v (and periapse height) are reduced for highly eccentric elliptical
capture orbits (e → 1). However, it should be pointed out that the use of optimal �v

may have to be sacrificed in favor of a variety of other mission requirements.

Example
8.5

After a Hohmann transfer from earth, calculate the minimum delta-v required to
place a spacecraft in Mars orbit with a period of seven hours. Also calculate the
periapse radius, the aiming radius and the angle between periapse and Mars’ velocity
vector.

The following data is required from Tables A.1 and A.2:

µsun = 1.327 × 1011 km3/s2

µMars = 42 830 km3/s2

Rearth = 149.6 × 106 km

RMars = 227.9 × 106 km

rMars = 3396 km

The hyperbolic excess speed is found using Equation 8.4,

v∞ = �VA =
√

µsun

RMars

(
1 −

√
2Rearth

Rearth + RMars

)

=
√

1.327 × 1011

227.9 × 106


1 −

√
2 · 149.6 × 106

149.6 × 106 + 227.9 × 106




v∞ = 2.648 km/s
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(Example 8.5
continued)

We can use Equation 2.73 to express the semimajor axis a of the capture orbit in terms
of its period T ,

a =
(

T
√

µMars

2π

) 2
3

Substituting T = 7 · 3600 s yields

a =
(

25 200
√

42 830

2π

) 2
3

= 8832 km

From Equation 2.63 we obtain

a = rp

1 − e

Upon substituting the optimal periapse radius, Equation 8.67, this becomes

a = 2µMars

v2∞
1

1 + e

from which

e = 2µMars

av2∞
− 1 = 2 · 42 830

8832 · 2.6482
− 1 = 0.3833

Thus, using Equation 8.70, we find

�v = v∞
√

1 − e

2
= 2.648

√
1 − 0.3833

2
= 1.470 km/s

From Equations 8.66 and 8.71 we obtain the periapse radius

rp = 2µMars

v2∞
1 − e

1 + e
= 2 · 42 830

2.6482

1 − 0.3833

1 + 0.3833
= 5447 km

and the aiming radius

� = rp

√
2

1 − e
= 5447

√
2

1 − 0.3833
= 9809 km

Finally, using Equation 8.43, we get the angle to periapse

β = cos−1


 1

1 + rpv
2∞

µMars


 = cos−1


 1

1 + 5447 · 2.6482

42 830


 = 58.09◦
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Mars, the approach hyperbola, and the capture orbit are shown to scale in Figure 8.17.
The approach could also be made from the dark side of the planet instead of the sunlit
side. The approach hyperbola and capture ellipse would be the mirror image of that
shown, as is the case in Figure 8.12.

P

C58.1�

To the sun

9809 km

VMars = 24.13 km/s

�∞ = 2.648 km/s

12 217 km

5447 km

Figure 8.17 An optimal approach to a Mars capture orbit with a seven hour period. rMars = 3396 km.

8.9 Planetary flyby

A spacecraft which enters a planet’s sphere of influence and does not impact the planet
or go into orbit around it will continue in its hyperbolic trajectory through periapse
P and exit the sphere of influence. Figure 8.18 shows a hyperbolic flyby trajectory
along with the asymptotes and apse line of the hyperbola. It is a leading-side flyby
because the periapse is on the side of the planet facing into the direction of motion.
Likewise, Figure 8.19 illustrates a trailing-side flyby. At the inbound crossing point,

the heliocentric velocity V(v)
1 of the spacecraft equals the planet’s heliocentric velocity

V plus the hyperbolic excess velocity v∞)1 of the spacecraft (relative to the planet),

V(v)
1 = V + v∞1 (8.72)

Similarly, at the outbound crossing we have

V(v)
2 = V + v∞2 (8.73)

The change �V(v) in the spacecraft’s heliocentric velocity is

�V(v) = V(v)
2 − V(v)

1 = (V + v∞2 ) − (V + v∞1 )
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Figure 8.18 Leading-side planetary flyby.

which means

�V(v) = v∞2 − v∞1 = �v∞ (8.74)

The excess velocities v∞1 and v∞2 lie along the asymptotes of the hyperbola and are
therefore inclined at the same angle β to the apse line (see Figure 2.23), with v∞1

pointing towards and v∞2 pointing away from the center C. They both have the same
magnitude v∞, with v∞2 having rotated relative to v∞1 by the turn angle δ. Hence,
�v∞ – and therefore �V(v) – is a vector which lies along the apse line and always
points away from periapse, as illustrated in Figures 8.18 and 8.19. From those figures
it can be seen that, in a leading-side flyby, the component of �V(v) in the direction of
the planet’s velocity is negative, whereas for the trailing-side flyby it is positive. This
means that a leading-side flyby results in a decrease in the spacecraft’s heliocentric
speed. On the other hand, a trailing-side flyby increases that speed.

In order to analyze a flyby problem, we proceed as follows. First, let ûV be the unit
vector in the direction of the planet’s heliocentric velocity V and let ûS be the unit
vector pointing from the planet to the sun. At the inbound crossing of the sphere of

influence, the heliocentric velocity V(v)
1 of the spacecraft is

V(v)
1 = [V (v)

1 ]V ûV + [V (v)
1 ]SûS (8.75)
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Figure 8.19 Trailing-side planetary flyby.

where the scalar components of V(v)
1 are

[V (v)
1 ]V = V (v)

1 cos α1 [V (v)
1 ]S = V (v)

1 sin α1 (8.76)

α1 is the angle between V(v)
1 and V. All angles are measured positive counterclockwise.

Referring to Figure 2.11, we see that the magnitude of α1 is the flight path angle γ

of the spacecraft’s heliocentric trajectory when it encounters the planet’s sphere of
influence (a mere speck) at the planet’s distance R from the sun. Furthermore,

[V (v)
1 ]V = V⊥1 [V (v)

1 ]S = −Vr1 (8.77)

V⊥1 and Vr1 are furnished by Equations 2.38 and 2.39

V⊥1 = µsun

h1

1

1 + e1 cos θ1
Vr1 = µsun

h1
e1 sin θ1 (8.78)

in which e1, h1 and θ1 are the eccentricity, angular momentum and true anomaly of
the heliocentric approach trajectory.

The velocity of the planet relative to the sun is

V = V ûV (8.79)
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where V = √
µsun/R. At the inbound crossing of the planet’s sphere of influence, the

hyperbolic excess velocity of the spacecraft is obtained from Equation 8.72

v∞1 = V(v)
1 − V

Using this we find

v∞1 = (v∞1 )V ûV + (v∞1 )SûS (8.80)

where the scalar components of v∞1 are

(v∞1 )V = V (v)
1 cos α1 − V (v∞1 )S = V (v)

1 sin α1 (8.81)

v∞ is the magnitude of v∞1 ,

v∞ = √
v∞1 · v∞1 =

√[
V (v)

1

]2 + V 2 − 2V (v)
1 V cos α1 (8.82)

At this point v∞ is known, so that upon specifying the periapse radius rp we can
compute the angular momentum and eccentricity of the flyby hyperbola (relative to
the planet), using Equations 8.38 and 8.39:

h = rp

√
v2∞ + 2µ

rp
e = 1 + rpv

2∞
µ

(8.83)

where µ is the gravitational parameter of the planet.
The angle between v∞1 and the planet’s heliocentric velocity is φ1. It is found

using the components of v∞1 in Equation 8.81,

φ1 = tan−1 (v∞1 )S

(v∞1 )V
= tan−1 V (v)

1 sin α1

V (v)
1 cos α1 − V

(8.84)

At the outbound crossing the angle between v∞2 and V is φ2, where

φ2 = φ1 + δ (8.85)

For the leading-side flyby in Figure 8.18, the turn angle is δ positive (counterclockwise)
whereas in Figure 8.19 it is negative. Since the magnitude of v∞2 is v∞, we can express
v∞2 in components as

v∞2 = v∞ cos φ2ûV + v∞ sin φ2ûS (8.86)

Therefore, the heliocentric velocity of the spacecraft at the outbound crossing is

V(v)
2 = V + v∞2 = [V (v)

2 ]V ûV + [V (v)
2 ]SûS (8.87)

where the components of V(v)
2 are

[V (v)
2 ]V = V + v∞ cos φ2 [V (v)

2 ]S = v∞ sin φ2 (8.88)

From this we obtain the radial and transverse heliocentric velocity components,

V⊥2 = [V (v)
2 ]V Vr2 = −[V (v)

2 ]S (8.89)
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Finally, we obtain the three elements e2, h2 and θ2 of the new heliocentric departure
trajectory by means of Equation 2.21,

h2 = RV⊥2 (8.90)

Equation 2.35,

R = h2
2

µsun

1

1 + e2 cos θ2
(8.91)

and Equation 2.39,

Vr2 = µsun

h2
e2 sin θ2 (8.92)

Notice that the flyby is considered to be an impulsive maneuver during which the
heliocentric radius of the spacecraft, which is confined within the planet’s sphere
of influence, remains fixed at R. The heliocentric velocity analysis is similar to that
described in Section 6.7.

Example
8.6

A spacecraft departs earth with a velocity perpendicular to the sun line on a flyby
mission to Venus. Encounter occurs at a true anomaly in the approach trajectory
of −30◦. Periapse altitude is to be 300 km. (a) For an approach from the dark side
of the planet, show that the post-flyby orbit is as illustrated in Figure 8.20. (b) For
an approach from the sunlit side of the planet, show that the post-flyby orbit is as
illustrated in Figure 8.21.

Earth at
departure

Earth at
arrival

Venus at
departure

Venus at
arrival

Sun

Pre-flyby ellipse

Post-flyby
ellipse

Aphelion

Perihelion

30° 44.32°

1

2

Figure 8.20 Spacecraft orbits before and after a flyby of Venus, approaching from the dark side.
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(Example 8.6
continued)

Earth at
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Earth at
arrival
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departure

Venus at
arrival

Sun

Pre-flyby ellipse

Post-flyby
ellipse

Aphelion

Perihelion

30°

66.76°

1

2

Figure 8.21 Spacecraft orbits before and after a flyby of Venus, approaching from the sunlit side.

The following data is found in Tables A.1 and A.2:

µsun = 1.3271 × 1011 km3/s2

µVenus = 324 900 km3/s2

Rearth = 149.6 × 106 km

RVenus = 108.2 × 106 km

rVenus = 6052 km

Pre-flyby ellipse (orbit 1)

Evaluating the orbit formula, Equation 2.35, at perihelion of orbit 1 yields

Rearth = h2
1

µsun

1

1 − e1

Thus

h2
1 = µsunRearth(1 − e1) (a)

At intercept

RVenus = h2
1

µsun

1

1 + e1 cos(θ1)
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Substituting Equation (a) and θ1 = −30◦ and solving the resulting expression for e1

leads to

e1 = Rearth − RVenus

Rearth + RVenus cos(θ1)
= 149.6 × 106 − 108.2 × 106

149.6 × 106 + 108.2 × 106 cos(−30◦)
= 0.1702

With this result, Equation (a) yields

h1 =
√

1.327 × 1011 · 149.6 × 106(1 − 0.1702) = 4.059 × 109 km2/s

Now we can use Equations 8.78 to calculate the radial and transverse components
of the spacecraft’s heliocentric velocity at the inbound crossing of Venus’s sphere of
influence:

V⊥1 = h1

RVenus
= 4.059 × 109

108.2 × 106
= 37.51 km/s

Vr1 = µsun

h1
e1 sin(θ1) = 1.327 × 1011

4.059 × 109
· 0.1702 · sin(−30◦) = −2.782 km/s

The flight path angle, from Equation 2.41, is

γ1 = tan−1 Vr1

V⊥1

= tan−1
(−2.782

37.51

)
= −4.241◦

The negative sign is consistent with the fact that the spacecraft is flying towards
perihelion of the pre-flyby elliptical trajectory (orbit 1).

The speed of the space vehicle at the inbound crossing is

V (v)
1 =

√
V 2

r1
+ V 2⊥1

=
√

(−2.782)2 + 37.512 = 37.62 km/s (b)

Flyby hyperbola

From Equations 8.75 and 8.77 we obtain

V(v)
1 = 37.51ûV + 2.782ûS (km/s)

The velocity of Venus in its presumed circular orbit around the sun is

V =
√

µsun

RVenus
ûV =

√
1.327 × 1011

108.2 × 106
ûV = 35.02ûV (km/s) (c)

Hence

v∞1 = V(v)
1 − V = (37.51ûV + 2.782ûS) − 35.02ûV = 2.490ûV + 2.782ûS (km/s)

(d)
It follows that

v∞ = √
v∞1 · v∞1 = 3.733 km/s

The periapse radius is

rp = rVenus + 300 = 6352 km
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(Example 8.6
continued)

Equations 8.38 and 8.39 are used to compute the angular momentum and eccentricity
of the planetocentric hyperbola:

h = 6352

√
v2∞ + 2µVenus

6352
= 6352

√
3.7332 + 2 · 324 900

6352
= 68 480 km2/s

e = 1 + rpv
2∞

µVenus
= 1 + 6352 · 3.7332

324 900
= 1.272

The turn angle and true anomaly of the asymptote are

δ = 2 sin−1
(

1

e

)
= 2 sin−1

(
1

1.272

)
= 103.6◦

θ∞ = cos−1
(

−1

e

)
= cos−1

(
− 1

1.272

)
= 141.8◦

From Equations 2.40, 2.93 and 2.97, the aiming radius is

� = rp

√
e + 1

e − 1
= 6352

√
1.272 + 1

1.272 − 1
= 18 340 km (e)

Finally, from Equation (d) we obtain the angle between v∞1 and V,

φ1 = tan−1 2.782

2.490
= 48.17◦ (f)

There are two flyby approaches, as shown in Figure 8.22. In the dark side approach,
the turn angle is counterclockwise (+102.9◦) whereas for the sunlit side approach it
is clockwise (−102.9◦).

48.2°

48.2°

Venus’ orbital track

To the sun

Dark side approach

Sunlit side approach

SOI

3.73 km/s

3.73 km/s

∆ = 18 340 km

Figure 8.22 Initiation of a sunlit side approach and dark side approach at the inbound crossing.
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Dark side approach
According to Equation 8.85, the angle between v∞ and VVenus at the outbound
crossing is

φ2 = φ1 + δ = 48.17◦ + 103.6◦ = 151.8◦

Hence, by Equation 8.86,

v∞2 = 3.733(cos 151.8◦ûV + sin 151.8◦ûS) = −3.289ûV + 1.766ûS (km/s)

Using this and Equation (c) above, we compute the spacecraft’s heliocentric velocity
at the outbound crossing:

V(v)
2 = V + v∞2 = 31.73ûV + 1.766ûS (km/s)

It follows from Equation 8.89 that

V⊥2 = 31.73 km/s Vr2 = −1.766 km/s (g)

The speed of the spacecraft at the outbound crossing is

V (v)
2 =

√
V 2

r2
+ V 2⊥2

=
√

(−1.766)2 + 31.732 = 31.78 km/s

This is 5.83 km/s less than the inbound speed.

Post-flyby ellipse (orbit 2) for the dark side approach
For the heliocentric post flyby trajectory, labeled orbit 2 in Figure 8.20, the angular
momentum is found using Equation 8.90

h2 = RVenusV⊥2 = (108.2 × 106) · 31.73 = 3.434 × 109 (km2/s) (h)

From Equation 8.91,

e cos θ2 = h2
2

µsunRVenus
− 1 = (3.434 × 106)2

1.327 × 1011 · 108.2 × 106
− 1 = −0.1790 (i)

and from Equation 8.92

e sin θ2 = Vr2 h2

µsun
= −1.766 · 3.434 × 109

1.327 × 1011
= −0.04569 (j)

Thus

tan θ2 = e sin θ2

e cos θ2
= −0.04569

−0.1790
= 0.2553 (k)

which means

θ2 = 14.32◦ or 194.32◦ (l)

But θ2 must lie in the third quadrant since, according to Equations (i) and (j), both
the sine and cosine are negative. Hence,

θ2 = 194.32◦ (m)
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With this value of θ2, we can use either Equation (i) or (j) to calculate the eccentricity,

e2 = 0.1847 (n)

Perihelion of the departure orbit lies 194.32◦ clockwise from the encounter point (so
that aphelion is 14.32◦ therefrom), as illustrated in Figure 8.20. The perihelion radius
is given by Equation 2.40,

Rperihelion = h2
2

µsun

1

1 + e2
= (3.434 × 109)2

1.327 × 1011

1

1 + 0.1847
= 74.98 × 106 km

which is well within the orbit of Venus.

Sunlit side approach
In this case the angle between v∞ and VVenus at the outbound crossing is

φ2 = φ1 − δ = 48.17◦ − 103.6◦ = −55.44◦

Therefore,

v∞2 = 3.733[cos(−55.44◦)ûV + sin(−55.44◦)ûS] = 2.118ûV − 3.074ûS (km/s)

The spacecraft’s heliocentric velocity at the outbound crossing is

V(v)
2 = VVenus + v∞2 = 37.14ûV − 3.074ûS (km/s)

which means

V⊥2 = 37.14 km/s Vr2 = 3.074 km/s

The speed of the spacecraft at the outbound crossing is

V (v)
2 =

√
3.0742 + V 2⊥2

=
√

3.0502 + 37.142 = 37.27 km/s

This speed is just 0.348 km/s less than the inbound crossing speed. The relatively
small speed change is due to the fact that the apse line of this hyperbola is nearly
perpendicular to Venus’s orbital track, as shown in Figure 8.23. Nevertheless, the
periapses of both hyperbolas are on the leading side of the planet.

Post-flyby ellipse (orbit 2) for the sunlit side approach
To determine the heliocentric post-flyby trajectory, labeled orbit 2 in Figure 8.21, we
repeat steps (h) through (n) above:

h2 = RVenusV⊥2 = (108.2 × 106) · 37.14 = 4.019 × 109 (km2/s)

e cos θ2 = h2
2

µsunRVenus
− 1 = (4.019 × 109)2

1.327 × 1011 · 108.2 × 106
− 1 = 0.1246 (o)

e sin θ2 = Vr2 h2

µsun
= 3.074 · 4.019 × 109

1.327 × 1011
= 0.09309 (p)
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Figure 8.23 Hyperbolic flyby trajectories for (i) the dark side approach and (ii) the sunlit side approach.

tan θ2 = e sin θ2

e cos θ2
= 0.09309

0.1246
= 0.7469

θ2 = 36.08◦ or 216.08◦

θ2 must lie in the first quadrant since both the sine and cosine are positive. Hence,

θ2 = 36.76◦ (q)

With this value of θ2, we can use either Equation (o) or (p) to calculate the eccentricity,

e2 = 0.1556

Perihelion of the departure orbit lies 36.76◦ clockwise from the encounter point as
illustrated in Figure 8.21. The perihelion radius is

Rperihelion = h2
2

µsun

1

1 + e2
= (4.019 × 109)2

1.327 × 1011

1

1 + 0.1556
= 105.3 × 106 km

which is just within the orbit of Venus. Aphelion lies between the orbits of earth and
Venus.

Gravity assist maneuvers are used to add momentum to a spacecraft over and
above that available from a spacecraft’s on-board propulsion system. A sequence of
flybys of planets can impart the delta-v needed to reach regions of the solar system
that would be inaccessible using only existing propulsion technology. The technique
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can also reduce the flight time. Interplanetary missions using gravity assist flybys must
be carefully designed in order to take advantage of the relative positions of planets.

The 260 kg spacecraft Pioneer 11, launched in April 1973, used a December 1974
flyby of Jupiter to gain the momentum required to carry it to the first ever flyby
encounter with Saturn on 1 September 1979.

Following its September 1977 launch, Voyager 1 likewise used a flyby of Jupiter
(March 1979) to reach Saturn in November 1980. In August 1977 Voyager 2 was
launched on its ‘grand tour’ of the outer planets and beyond. This involved gravity
assist flybys of Jupiter (July 1979), Saturn (August 1981), Uranus (January 1986) and
Neptune (August 1989), after which the spacecraft departed at an angle of 30◦ to the
ecliptic.

With a mass nine times that of Pioneer 11, the dual-spin Galileo spacecraft
departed on 18 October 1989 for an extensive international exploration of Jupiter
and its satellites lasting until September 2003. Galileo used gravity assist flybys of
Venus (February 1990), earth (December 1990) and earth again (December 1992)
before arriving at Jupiter in December 1995.

The international Cassini mission to Saturn also made extensive use of gravity
assist flyby maneuvers. The Cassini spacecraft was launched on 15 October 1997
from Cape Canaveral, Florida, and arrived at Saturn nearly seven years later, on 1 July
2004. The mission involved four flybys, as illustrated in Figure 8.24. A little over eight
months after launch, on 26 April 1998, Cassini flew by Venus at a periapse altitude
of 284 km and received a speed boost of about 7 km/s. This placed the spacecraft in
an orbit which sent it just outside the orbit of Mars (but well away from the planet)
and returned it to Venus on 24 June 1999 for a second flyby, this time at an altitude
of 600 km. The result was a trajectory that vectored Cassini toward the earth for an
18 August 1999 flyby at an altitude of 1171 km. The 5.5 km/s speed boost at earth
sent the spacecraft toward Jupiter for its next flyby maneuver. This occurred on 30
December 2000 at a distance of 9.7 million km from Jupiter, boosting Cassini’s speed
by about 2 km/s and adjusting its trajectory so as to rendezvous with Saturn about
three and a half years later.

Jupiter gravity
assist flyby

30 Dec 2000Earth gravity
assist flyby

18 Aug 1999

Earth at launch
15 Oct 1997

First
Venus gravity

assist flyby
26 Apr 1998

Second
Venus gravity

assist flyby
24 Jun 1999

Mars orbit

�

Sun

Arrival at Saturn
1 Jul 2004

Figure 8.24 Cassini seven-year mission to Saturn.
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8.10 Planetary ephemeris

The state vector R, V of a planet is defined relative to the heliocentric ecliptic frame
of reference illustrated in Figure 8.25. This is very similar to the geocentric equatorial
frame of Figure 4.5. The sun replaces the earth as the center of attraction, and the plane
of the ecliptic replaces the earth’s equatorial plane. The vernal equinox continues to
define the inertial X axis.

In order to design realistic interplanetary missions we must be able to determine
the state vector of a planet at any given time. Table 8.1 provides the orbital elements
of the planets and their rates of change per century with respect to the J2000 epoch
(1 January 2000, 12 hr UT). The table, covering the years 1800 to 2050, is sufficiently
accurate for our needs. From the orbital elements we can infer the state vector using
Algorithm 4.2.

In order to interpret Table 8.1, observe the following:

1 astronomical unit (1 AU) is 1.49597871 × 108 km, the average distance between
the earth and the sun.

1 arcsecond (1′′) is 1/3600 of a degree.

a is the semimajor axis.

e is the eccentricity.

i is the inclination to the ecliptic plane.
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Perihelion

Z North ecliptic pole

Ascending node

ˆ I 

ˆ K 

R

�

Ecliptic plane ˆ J 

Node line

Sun

ˆ w 

ˆ n 

i

i

�

�

V
Planetary

orbit

Ω

Figure 8.25 Planetary orbit in the heliocentric ecliptic frame.
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Table 8.1 Planetary orbital elements and their centennial rates. From Standish et al. (1992).
Used with permission

a, AU e i, deg �, deg ω̃, deg L, deg
ȧ, AU/Cy ė,1/Cy i̇,′′/Cy �̇,′′/Cy ˙̃ω,′′/Cy L̇,′′/Cy

Mercury 0.38709893 0.20563069 7.00487 48.33167 77.45645 252.25084
0.00000066 0.00002527 −23.51 −446.30 573.57 538 101 628.29

Venus 0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973
0.00000092 −0.00004938 −2.86 −996.89 −108.80 210 664 136.06

Earth 1.00000011 0.01671022 0.00005 −11.26064 102.94719 100.46435
−0.00000005 −0.00003804 −46.94 −18228.25 1198.28 129 597 740.63

Mars 1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332
−0.00007221 0.00011902 −25.47 −1020.19 1560.78 68 905 103.78

Jupiter 5.20336301 0.04839266 1.30530 100.55615 14.75385 34.40438
0.00060737 −0.00012880 −4.15 1217.17 839.93 10 925 078.35

Saturn 9.53707032 0.05415060 2.48446 113.71504 92.43194 49.94432
−0.00301530 −0.00036762 6.11 −1591.05 −1948.89 4 401 052.95

Uranus 19.19126393 0.04716771 0.76986 74.22988 170.96424 313.23218
0.00152025 −0.00019150 −2.09 −1681.4 1312.56 1 542 547.79

Neptune 30.06896348 0.00858587 1.76917 131.72169 44.97135 304.88003
−0.00125196 0.00002514 −3.64 −151.25 −844.43 786 449.21

Pluto 39.48168677 0.24880766 17.14175 110.30347 224.06676 238.92881
−0.00076912 0.00006465 11.07 −37.33 −132.25 522 747.90

� is the right ascension of the ascending node (relative to the J2000 vernal
equinox).

ω̃, the longitude of perihelion, is defined as ω̃ = ω + �, where ω is the argument
of perihelion.

L, the mean longitude, is defined as L = ω̃ + M , where M is the mean anomaly.

ȧ, ė, �̇, etc., are the rates of change of the above orbital elements per Julian century.
1 century (Cy) equals 36 525 days.

Algorithm
8.1

Determine the state vector of a planet at a given date and time. All angular calculations
must be adjusted so that they lie in the range 0◦ to 360◦. Recall that the gravitational
parameter of the sun is µ = 1.327 × 1011 km3/s2. This procedure is implemented in
MATLAB in Appendix D.17.

1. Use Equations 5.47 and 5.48 to calculate the Julian day number JD.

2. Calculate T0, the number of Julian centuries between J2000 and the date in
question

T0 = JD − 2 451 545

36 525
(8.104a)

3. If Q is any one of the six planetary orbital elements listed in Table 8.1, then
calculate its value at JD by means of the formula

Q = Q0 + Q̇T0 (8.104b)
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where Q0 is the value listed for J2000 and Q̇ is the tabulated rate. All angular
quantities must be adjusted to lie in the range 0◦ to 360◦.

4. Use the semimajor axis a and the eccentricity e to calculate the angular
momentum h at JD from Equation 2.61

h =
√

µa(1 − e2)

5. Obtain the argument of perihelion ω and mean anomaly M at JD from the results
of step 3 by means of the definitions

ω = ω̃ − �

M = L − ω̃

6. Substitute the eccentricity e and the mean anomaly M at JD into Kepler’s equation
(Equation 3.11) and calculate the eccentric anomaly E.

7. Calculate the true anomaly θ using Equation 3.10.

8. Use h, e, �, i, ω and θ to obtain the heliocentric position vector R and velocity
V by means of Algorithm 4.2, with the heliocentric ecliptic frame replacing the
geocentric equatorial frame.

Example
8.7

Find the distance between the earth and Mars at 12 hr UT on 27 August 2003. Use
Algorithm 8.1.

Step 1:

According to Equation 5.56, the Julian day number J0 for midnight (0 hr UT) of this
date is

J0 = 367 · 2003 − INT




7

[
2003 + INT

(
8 + 9

12

)]
4




+ INT

(
275 · 8

9

)
+ 27 + 1 721 013.5

= 735 101 − 3507 + 244 + 27 + 1 721 013.5

= 2 452 878.5

At UT = 12, the Julian day number is

JD = 2 452 878.5 + 12

24
= 2 452 879.0

Step 2:

The number of Julian centuries between J2000 and this date is

T0 = JD − 2 451 545

36 525
= 2 452 879 − 2 451 545

36 525
= 0.036523 Cy
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(Example 8.7
continued)

Step 3:

Table 8.1 and Equation 8.104 yield the orbital elements of earth and Mars at 12 hr UT
on 27 August 2003.

a, km e i, deg �, deg ω̃, deg L, deg

Earth 1.4960 × 108 0.016709 0.00042622 348.55 102.96 335.27
Mars 2.2794 × 108 0.093417 1.8504 49.568 336.06 334.51

Step 4:

hearth = 4.4451 × 109 km2/s

hMars = 5.4760 × 109 km2/s

Step 5:

ωearth = (ω̃ − �)earth = 102.96 − 348.55 = −245.59◦(114.1◦)

ωMars = (ω̃ − �)Mars = 336.06 − 49.568 = 286.49◦

Mearth = (L − ω̃)earth = 335.27 − 102.96 = 232.31◦

MMars = (L − ω̃)Mars = 334.51 − 336.06 = −1.55◦(358.45◦)

Step 6:

Eearth − 0.016709 sin Eearth = 232.31◦(π/180) ⇒ Eearth = 231.56◦

EMars − 0.093417 sin EMars = 358.45◦(π/180) ⇒ EMars = 358.30◦

Step 7:

θearth = 2 tan−1

(√
1 − 0.016709

1 + 0.016709
tan

231.56◦

2

)
= −129.19◦ ⇒ θearth = 230.81◦

θMars = 2 tan−1

(√
1 − 0.093417

1 + 0.093417
tan

358.30◦

2

)
= −1.8669◦ ⇒ θMars = 358.13◦

Step 8:

From Algorithm 4.2,

Rearth = (135.59Î − 66.803Ĵ − 0.00028691K̂) × 106(km)

Vearth = 12.680Î + 26.61Ĵ − 0.00021273K̂ (km/s)

RMars = (185.95Î − 89.916Ĵ − 6.4566K̂) × 106 (km)

VMars = 11.474Î + 23.884Ĵ + 0.21826K̂ (km/s)

The distance d between the two planets is therefore

d = ‖RMars − Rearth‖

=
√

(185.95 − 135.59)2 + [−89.916 − (−66.803)]2 + (−6.4566 − 0.00028691)2 × 106
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or

d = 55.79 × 106 km

The positions of earth and Mars are illustrated in Figure 8.26. It is a rare event for
Mars to be in opposition (lined up with earth on the same side of the sun) when Mars
is at or near perihelion. The two planets had not been this close in recorded history.

103°
49.6°

24°

26°Earth
Mars

Earth perihelion

Mars
perihelion

Mars ascending node

�

Mars descending node

Sun

Figure 8.26 Earth and Mars on 27 August 2003. Angles shown are heliocentric latitude, measured in the

plane of the ecliptic counterclockwise from the vernal equinox of J2000.

8.11 Non-Hohmann interplanetary
trajectories

To implement a systematic patched conic procedure for three-dimensional trajecto-
ries, we will use vector notation and the procedures described in Sections 4.4 and 4.6
(Algorithms 4.1 and 4.2), together with the solution of Lambert’s problem presented
in Section 5.3 (Algorithm 5.2). The mission is to send a spacecraft from planet 1 to
planet 2 in a specified time t12. As previously in this chapter, we break the mission
down into three parts: the departure phase, the cruise phase and the arrival phase.
We start with the cruise phase.

The frame of reference that we use is the heliocentric ecliptic frame shown in
Figure 8.27. The first step is to obtain the state vector of planet 1 at departure (time t)
and the state vector of planet 2 at arrival (time t + t12). That is accomplished by
means of Algorithm 8.1.

The next step is to determine the spacecraft’s transfer trajectory from planet 1
to planet 2. We first observe that, according to the patched conic procedure, the
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Figure 8.27 Heliocentric orbital elements of a three-dimensional transfer trajectory from planet 1 to
planet 2.

heliocentric position vector of the spacecraft at time t is that of planet 1 (R1) and
at time t + t12 its position vector is that of planet 2 (R2). With R1, R2 and the time
of flight t12 we can use Algorithm 5.2 (Lambert’s problem) to obtain the spacecraft’s

departure and arrival velocities V(v)
D and V(v)

A relative to the sun. Either of the state

vectors R1, V(v)
D or R2, V(v)

A can be used to obtain the transfer trajectory’s six orbital
elements by means of Algorithm 4.1.

The spacecraft’s hyperbolic excess velocity upon exiting the sphere of influence of
planet 1 is

v∞)Departure = V(v)
D − V1 (8.102a)

and its excess speed is

v∞)Departure =
∥∥∥V(v)

D − V1

∥∥∥ (8.102b)

Likewise, at the sphere of influence crossing at planet 2,

v∞)Arrival = V(v)
A − V2 (8.103a)

v∞)Arrival =
∥∥∥V(v)

A − V2

∥∥∥ (8.103b)
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Algorithm
8.2

Given the departure and arrival dates (and, therefore, the time of flight), determine
the trajectory for a mission from planet 1 to planet 2. This procedure is implemented
in MATLAB in Appendix D.19.

1. Use Algorithm 8.1 to determine the state vector R1, V1 of planet 1 at departure
and the state vector R2, V2 of planet 2 at arrival.

2. Use R1, R2 and the time of flight in Algorithm 5.2 to find the spacecraft velocity

V(v)
D at departure from planet 1’s sphere of influence and its velocity V(v)

A upon
arrival at planet 2’s sphere of influence.

3. Calculate the hyperbolic excess velocities at departure and arrival using Equations
8.102 and 8.103.

Example
8.8

A spacecraft departs earth’s sphere of influence on 7 November 1996 (0 hr UT) on a
prograde coasting flight to Mars, arriving at Mars’sphere of influence on 12 September
1997 (0 hr UT). Use Algorithm 8.2 to determine the trajectory and then compute the
hyperbolic excess velocities at departure and arrival.

Step 1:

Algorithm 8.1 yields the state vectors for earth and Mars:

Rearth = 1.0500 × 108Î + 1.0466 × 108Ĵ

+ 988.33K̂ (km) (Rearth = 1.482 × 108 km)

Vearth = −21.516Î + 20.987Ĵ + 0.00013228K̂ (km/s) (Vearth = 30.06 km/s)

RMars = −2.0833 × 107Î − 2.1840 × 108Ĵ

− 4.0629 × 106K̂ (km) (RMars = 2.194 × 108 km)

VMars = 25.047Î − 0.22029Ĵ − 0.62062K̂ (km/s) (VMars = 25.05 km/s)

Step 2:

The position vector R1 of the spacecraft at crossing the earth’s sphere of influence is
just that of the earth,

R1 = Rearth = 1.0500 × 108Î + 1.0466 × 108Ĵ + 988.33K̂ (km)

Upon arrival at Mars’ sphere of influence the spacecraft’s position vector is

R2 = RMars = −2.0833 × 107Î − 2.1840 × 108Ĵ − 4.0629 × 106K̂ (km)

According to Equations 5.47 and 5.48

JDDeparture = 2 450 394.5

JDArrival = 2 450 703.5

Hence, the time of flight is

t12 = 2 450 703.5 − 2 450 394.5 = 309 days
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(Example 8.8
continued)

Entering R1, R2 and t12 into Algorithm 5.2 yields

V(v)
D = −24.427Î + 21.781Ĵ + 0.94803K̂ (km/s)

[
V (v)

D = 32.741 km/s
]

V(v)
A = 22.158Î − 0.19668Ĵ − 0.45785 K̂(km/s)

[
V (v)

A = 22.164 km/s
]

Using the state vector R1, V(v)
D we employ Algorithm 4.1 to find the orbital elements

of the transfer trajectory.

h = 4.8456 × 106 km2/s

e = 0.20579

� = 44.895◦

i = 1.6621◦

ω = 19.969◦

θ1 = 340.04◦

a = 1.8474 × 108 km

Step 3:

At departure the hyperbolic excess velocity is

v∞)Departure = V(v)
D − Vearth = −2.913Î + 0.7958Ĵ + 0.9480K̂ (km/s)

Therefore, the hyperbolic excess speed is

v∞)Departure = ∥∥v∞)Departure

∥∥ = 3.1651 km/s (a)

Likewise, at arrival

v∞)Arrival = V(v)
A − VMars = −2.8804Î + 0.023976Ĵ + 0.16277K̂ (km/s)

so that

v∞)Arrival = ∥∥v∞)Arrival

∥∥ = 2.8851 km/s (b)

For the previous example, Figure 8.28 shows the orbits of earth, Mars and the space-
craft from directly above the ecliptic plane. Dotted lines indicate the portions of an
orbit which are below the plane. λ is the heliocentric longitude measured counter-
clockwise from the vernal equinox of J2000. Also shown are the position of Mars at
departure and the position of earth at arrival.

The transfer orbit resembles that of the Mars Global Surveyor, which departed
earth on 7 November 1996 and arrived at Mars 309 days later, on 12 September 1997.

Example
8.9

In Example 8.8, calculate the delta-v required to launch the spacecraft onto its cruise
trajectory from a 180 km circular parking orbit. Sketch the departure trajectory.

Recall that

rearth = 6378 km

µearth = 398 600 km3/s2
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Mars ascending node (λ � 49.58°)

Mars descending node
(λ � 229.6°) Mars at arrival
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Figure 8.28 The transfer trajectory, together with the orbits of earth and Mars, as viewed from directly
above the plane of the ecliptic.

The radius to periapse of the departure hyperbola is the radius of the earth plus the
altitude of the parking orbit,

rp = 6378 + 180 = 6558 km

Substituting this and Equation (a) from Example 8.8 into Equation 8.40 we get the
speed of the spacecraft at periapse of the departure hyperbola,

vp =
√

[v∞)Departure ]2 + 2µearth

rp
=

√
3.16512 + 2 · 398 600

6558
= 11.47 km/s

The speed of the spacecraft in its circular parking orbit is

vo =
√

µearth

rp
=

√
398 600

6558
= 7.796 km/s

Hence, the delta-v requirement is

�v = vp − v0 = 3.674 km/s

The eccentricity of the hyperbola is given by Equation 8.38,

e = 1 + rpv
2∞

µearth
= 1 + 6558 · 3.16512

398 600
= 1.165

If we assume that the spacecraft is launched from a parking orbit of 28◦ inclination,
then the departure appears as shown in the three-dimensional sketch in Figure 8.29.



396 Chapter 8 Interplanetary trajectories

(Example 8.9
continued)

Vearth

Z

X

To the sun

�

v�

Parking orbit

�

Earth's equatorial  plane

Perigee

Figure 8.29 The departure hyperbola, assumed to be at 28◦ inclination to earth’s equator.

Example
8.10

In Example 8.8, calculate the delta-v required to place the spacecraft in an elliptical
capture orbit around Mars with a periapse altitude of 300 km and a period of 48
hours. Sketch the approach hyperbola.

From Tables A.1 and A.2 we know that

rMars = 3380 km

µMars = 42 830 km3/s2

The radius to periapse of the arrival hyperbola is the radius of Mars plus the periapse
of the elliptical capture orbit,

rp = 3380 + 300 = 3680 km

According to Equation 8.40 and Equation (b) of Example 8.8, the speed of the
spacecraft at periapse of the arrival hyperbola is

vp)hyp =
√

[v∞)Arrival ]
2 + 2µMars

rp
=

√
2.88512 + 2 · 42 830

3680
= 5.621 km/s

To find the speed vp)ell at periapse of the capture ellipse, we use the required period
(48 hours) to determine the ellipse’s semimajor axis, using Equation 2.73

aell =
(

T
√

µMars

2π

) 3
2 =

(
48 · 3600 · √

42 830

2π

) 3
2

= 31 880 km
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From Equation 2.63 we obtain

eell = 1 − rp

aell
= 1 − 3680

31 880
= 0.8846

Then Equation 8.59 yields

vp)ell =
√

µMars

rp
(1 + eell) =

√
42 830

3680
(1 + 0.8846) = 4.683 km/s

Hence, the delta-v requirement is

�v = vp)hyp − vp)ell = 0.9382 km/s

The eccentricity of the approach hyperbola is given by Equation 8.38,

e = 1 + rpv
2∞

µMars
= 1 + 3680 · 2.88512

42 830
= 1.715

Assuming that the capture ellipse is a polar orbit of Mars, then the approach hyperbola
is as illustrated in Figure 8.30. Note that Mars’ equatorial plane is inclined 25◦ to the
plane of its orbit around the sun. Furthermore, the vernal equinox of Mars lies at an
angle of 85◦ from that of the earth.

�

VMars

To the
sun

X
  v�

Z

3680 by 60 070 km
polar capture orbit
(48 hour period)

Periapse

Apoapse

gMars

Mars equatorial
plane

Figure 8.30 The approach hyperbola and capture ellipse.
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Problems

8.1 On 6 February 2006, when the earth is 147.4×106 km from the sun, a spacecraft parked
in a 200 km altitude circular earth orbit is to be launched directly into an elliptical
orbit around the sun with perihelion of 120 × 106 km and aphelion equal to the earth’s
distance from the sun on the launch date. Calculate the delta-v required and v∞ of the
departure hyperbola.
{Ans.: v∞ = 30 km/s, �v = 3.34 km/s}

8.2 Estimate the total delta-v requirement for a Hohmann transfer from earth to Mercury,
assuming a 150 km circular parking orbit at earth and a 150 km circular capture orbit at
Mercury. Furthermore, assume that the planets have coplanar circular orbits with radii
equal to the semimajor axes listed in Table A.1.
{Ans.: 15 km/s}

8.3 Calculate the radius of the spheres of influence of Mercury, Venus, Mars and Jupiter.
{Ans.: See Table A.2}

8.4 Calculate the radius of the spheres of influence of Saturn, Uranus, Neptune and Pluto.
{Ans.: See Table A.2}

8.5 Suppose a spacecraft approaches Jupiter on a Hohmann transfer ellipse from earth. If
the spacecraft flies by Jupiter at an altitude of 200 000 km on the sunlit side of the planet,
determine the orbital elements of the post-flyby trajectory and the delta-v imparted to
the spacecraft by Jupiter’s gravity. Assume that all of the orbits lie in the same (ecliptic)
plane.
{Ans.: �V = 10.6 km/s, a = 4.79 × 106 km, e = 0.8453}

8.6 Use Table 8.1 to verify that the orbital elements for earth and Mars presented in
Example 8.7.

8.7 Use Table 8.1 to determine the day of the year 2005 when the earth is farthest from the
sun.
{Ans.: 4 July}

8.8 On 1 December 2005 a spacecraft leaves a 180 km altitude circular orbit around the earth
on a mission to Venus. It arrives at Venus 121 days later on 1 April 2006, entering a 300 km
by 9000 km capture ellipse around the planet. Calculate the total delta-v requirement
for this mission.
{Ans.: 6.75 km/s}

8.9 On 15 August 2005 a spacecraft in a 190 km, 52◦ inclination circular parking orbit
around the earth departs on a mission to Mars, arriving at the red planet on 15 March
2006, whereupon retro rockets place it into a highly elliptic orbit with a periapse of
300 km and a period of 35 hours. Determine the total delta-v required for this mission.
{Ans.: 4.86 km/s}

8.10 Calculate the propellant mass required to launch a 2000 kg spacecraft from a 180 km
circular earth orbit on a Hohmann transfer trajectory to Saturn. Calculate the time
required for the mission and compare it to that of Cassini. Assume the propulsion
system has a specific impulse of 300 s.
{Ans.: 6.03 y; 21 810 kg}
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9.1 Introduction

Just as Chapter 1 provides a foundation for the development of the equations
of orbital mechanics, this chapter serves as a basis for developing the equations

of satellite attitude dynamics. Chapter 1 deals with particles, whereas here we are
concerned with rigid bodies. Those familiar with rigid body dynamics can move on
to the next chapter, perhaps returning from time to time to review concepts.

The kinematics of rigid bodies is presented first. The subject depends on a theorem
of the French mathematician Michel Chasles (1793–1880). Chasles’ theorem states

399



400 Chapter 9 Rigid-body dynamics

that the motion of a rigid body can be described by the displacement of any point of
the body (the base point) plus a rotation about a unique axis through that point. The
magnitude of the rotation does not depend on the base point. Thus, at any instant a
rigid body in a general state of motion has an angular velocity vector whose direction
is that of the instantaneous axis of rotation. Describing the rotational component
of the motion a rigid body in three dimensions requires taking advantage of the
vector nature of angular velocity and knowing how to take the time derivative of
moving vectors, which is explained in Chapter 1. Several examples illustrate how this
is done.

We then move on to study the interaction between the motion of a rigid body and
the forces acting on it. Describing the translational component of the motion requires
simply concentrating all of the mass at a point, the center of mass, and applying the
methods of particle mechanics to determine its motion. Indeed, our study of the two-
body problem up to this point has focused on the motion of their centers of mass
without regard to the rotational aspect. Analyzing the rotational dynamics requires
computing the body’s angular momentum, and that in turn requires accounting for
how the mass is distributed throughout the body. The mass distribution is described
by the six components of the moment of inertia tensor.

Writing the equations of rotational motion relative to coordinate axes embedded
in the rigid body and aligned with the principal axes of inertia yields the non-linear
Euler equations of motion, which are applied to a study of the dynamics of a spinning
top (or one-axis gyro).

The expression for the kinetic energy of a rigid body is derived because it will be
needed in the following chapter.

The chapter concludes with a description of two sets of three angles commonly
employed to specify the orientation of a body in three-dimensional space. One of
these are the Euler angles, which are the same as the right ascension of the node (�),
argument of periapse (ω) and inclination (i) introduced in Chapter 4 to orient orbits
in space. The other set comprises the yaw, pitch and roll angles, which are suitable for
describing the orientation of an airplane. Both the Euler angles and yaw–pitch–roll
angles will be employed in Chapter 10.

9.2 Kinematics

Figure 9.1 shows a moving rigid body and its instantaneous axis of rotation, which
defines the direction of the absolute angular velocity vector ω. The XYZ axes are a
fixed, inertial frame of reference. The position vectors RA and RB of two points on
the rigid body are measured in the inertial frame. The vector RB/A drawn from point
A to point B is the position vector of B relative to A. Since the body is rigid, RB/A has
a constant magnitude even though its direction is continuously changing. Clearly,

RB = RA + RB/A

Differentiating this equation through with respect to time, we get

ṘB = ṘA + dRB/A

dt
(9.1)
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X

Y

Z

A

RB

RA

B

RB/A

�

Figure 9.1 Rigid body and its instantaneous axis of rotation.

ṘA and ṘB are the absolute velocities vA and vB of points A and B. Because the
magnitude of RB/A does not change, its time derivative is given by Equation 1.24,

dRB/A

dt
= ω × RB/A

Thus, Equation 9.1 becomes

vB = vA + ω × RB/A (9.2)

Taking the time derivative of Equation 9.1 yields

R̈B = R̈A + d2RB/A

dt2
(9.3)

R̈A and R̈B are the absolute accelerations aA and aB of the two points of the rigid body,
while from Equation 1.25 we have

d2RB/A

dt2
= α × RB/A + ω × (ω × RB/A)

in which α is the angular acceleration, α = dω/dt . Therefore, Equation 9.3 can be
written

aB = aA + α × RB/A + ω × (ω × RB/A) (9.4)

Equations 9.2 and 9.4 are the relative velocity and acceleration formulas. Note that all
quantities in these expressions are measured in the same inertial frame of reference.
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When the rigid body under consideration is connected to and moving relative
to another rigid body, computation of its inertial angular velocity ω and angular
acceleration α must be done with care. The key is to remember that angular velocity
is a vector. It may be found as the vector sum of a sequence of angular velocities, each
measured relative to another, starting with one measured relative to an absolute frame,
as illustrated in Figure 9.2. In that case, the absolute angular velocity ω of body 4 is

ω = ω1 + ω2/1 + ω3/2 + ω4/3 (9.5)

Each of these angular velocities is resolved into components along the axes of the
moving frame of reference xyz shown in Figure 9.2, so that

ω = ωx î + ωy ĵ + ωz k̂ (9.6)

The moving frame is chosen for convenience of the analysis, and its inertial angu-
lar velocity is denoted �, as discussed in Section 1.5. According to Equation 1.30,
the absolute angular acceleration α is obtained from Equation 9.6 by means of the
following calculation,

α = dω

dt

)
rel

+ � × ω (9.7)

where

dω

dt

)
rel

= dωx

dt
î + dωy

dt
ĵ + dωz

dt
k̂ (9.8)

X
Y

Z
1

2

3

4

�1 �2/1

�3/2

�4/3
x

y

z

Î

Ĵ

K̂

î

ĵ

k̂�

Figure 9.2 Angular velocity is the vector sum of the relative angular velocities starting with ω1, measured
relative to the inertial frame.
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Example
9.1

An airplane flies at constant speed v while simultaneously undergoing a constant yaw
rate ωyaw about a vertical axis and describing a circular loop in the vertical plane with
a radius �. The constant propeller spin rate is ωspin relative to the airframe. Find the
velocity and acceleration of the tip P of the propeller relative to the hub H , when P is
directly above H . The propeller radius is l.

x

y

z

P

H

vyaw

vspin υ

l

�

Figure 9.3 Airplane with attached xyz body frame.

The xyz axes are rigidly attached to the airplane. The x axis is aligned with the
propeller’s spin axis. The y axis is vertical, and the z axis is in the spanwise direction,
so that xyz forms a right-handed triad. Although the xyz frame is not inertial, we can
imagine it to instantaneously coincide with an inertial frame.

The absolute angular velocity of the airplane has two components, the yaw and
the counterclockwise pitch angular velocity v/� of its rotation in the circular loop,

ωairplane = ωyaw ĵ + ωpitchk̂ = ωyaw ĵ + v

�
k̂

The angular velocity of the body-fixed moving frame is that of the airplane, � =
ωairplane, so that

� = ωyaw ĵ + v

�
k̂

The absolute angular velocity of the propeller is that of the airplane plus the angular
velocity propeller relative to the airplane,

ωprop = ωairplane + ωspin î

which means

ωprop = ωspin î + ωyaw ĵ + v

�
k̂ (a)

From Equation 9.2, the velocity of point P on the propeller relative to H on the hub,
vP/H , is given by

vP/H = vP − vH = ωprop × rP/H

where rP/H is the position vector of P relative to H . Thus, using (a),

vP/H =
(

ωspin î + ωyaw ĵ + v

�
k̂

)
× (lĵ)
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(Example 9.1
continued)

from which

vP/H = −v

�
lî + ωspinlk̂

The absolute angular acceleration of the propeller is found from Equation 9.7,

αprop = dωprop

dt

)
rel

+ � × ωprop =
(

dωspin

dt
î + dωyaw

dt
ĵ + d(v/�)

dt
k̂

)

+
(

ωyaw ĵ + v

�
k̂

)
×

(
ωspin î + ωyaw ĵ + v

�
k̂

)
Since ωspin, ωyaw, v and � are all constant, this reduces to

αprop =
(

ωyaw ĵ + v

�
k̂

)
×

(
ωspin î + ωyaw ĵ + v

�
k̂

)
(b)

Carrying out the cross product yields

αprop = v

�
ωspin ĵ − ωyawωspink̂ (c)

From Equation 9.4, the acceleration of P relative to H , aP/H , is given by

aP/H = aP − aH = αprop × rP/H + ωprop × (
ωprop × rP/H

)
Substituting (a) and (c) into this expression yields

aP/H =
(

v

�
ωspin ĵ − ωyawωspink̂

)
× (lĵ) +

(
ωspin î + ωyaw ĵ + v

�
k̂

)

×
[(

ωspin î + ωyaw ĵ + v

�
k̂

)
× rP/H

]

From this we find

aP/H =
(
ωyawωspinlî

)
+

(
ωspin î + ωyaw ĵ + v

�
k̂

)
×

(
−v

�
lî + ωspinlk̂

)

=
(
ωyawωspinlî

)
+

[
ωyawωspinlî −

(
v2

�2
+ ω2

spin

)
lĵ + ωyaw

v

�
lk̂

]

so that finally,

aP/H = 2ωyawωspinlî −
(

v2

�2
+ ω2

spin

)
lĵ + ωyaw

v

�
lk̂

Example
9.2

The satellite is rotating about the z axis at a constant rate N . The xyz axes are attached
to the spacecraft, and the z axis has a fixed orientation in inertial space. The solar
panels rotate at a constant rate θ̇ in the direction shown. Calculate the absolute
velocity and acceleration of point A on the panel relative to point O which lies at the
center of the spacecraft and on the centerline of the panels.
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Figure 9.4 Rotating solar panel on a rotating satellite.

The position vector of A relative to O is

rA/O = −w

2
sin θ î + dĵ + w

2
cos θ k̂ (a)

The absolute angular velocity of the panel is the absolute angular velocity of the
spacecraft plus the angular velocity of the panel relative to the spacecraft,

ωpanel = −θ̇ ĵ + N k̂ (b)

According to Equation 9.2, the velocity of A relative to O is

vA/O = vA − vO = ωpanel × rA/O =

∣∣∣∣∣∣∣
î ĵ k̂
0 −θ̇ N

−w

2
sin θ d

w

2
cos θ

∣∣∣∣∣∣∣
from which

vA/O = −
(w

2
θ̇ cos θ + Nd

)
î − w

2
N sin θ ĵ − w

2
θ̇ sin θ k̂

Since the moving xyz frame is attached to the body of the spacecraft, its angular
velocity is

� = N k̂

The absolute angular acceleration of the panel is obtained from Equation 9.7,

αpanel = dωpanel

dt

)
rel

+ � × ωpanel

=
(

d(−θ̇)

dt
ĵ + dN

dt
k̂

)
+ (N k̂) ×

(
−θ̇ ĵ + N k̂

)
Since N and θ̇ are constants, this reduces to

αpanel = θ̇N î (c)
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(Example 9.2
continued)

The acceleration of A relative to O is found using Equation 9.4,

aA/O = aA − aO = αpanel × rA/O + ωpanel × (
ωpanel × rA/O

)

=

∣∣∣∣∣∣∣
î ĵ k̂

θ̇N 0 0

−w

2
sin θ d

w

2
cos θ

∣∣∣∣∣∣∣ + (−θ̇ ĵ + N k̂) ×

∣∣∣∣∣∣∣
î ĵ k̂
0 −θ̇ N

−w

2
sin θ d

w

2
cos θ

∣∣∣∣∣∣∣
=

(
−w

2
N θ̇ cos θ ĵ + N θ̇dk̂

)
+

∣∣∣∣∣∣∣
î ĵ k̂
0 −θ̇ N

−w

2
θ̇ cos θ − Nd −N

w

2
sin θ −w

2
θ̇ sin θ

∣∣∣∣∣∣∣
which leads to

aA/O = w

2
(N2 + θ̇2)sin θ î − N(Nd + wθ̇ cos θ)ĵ − w

2
θ̇2 cos θ k̂

Example
9.3

The gyro rotor shown has a constant spin rate ωspin around axis b–a in the direction
shown. The XYZ axes are fixed. The xyz axes are attached to the gimbal ring, whose
angle θ with the vertical is increasing at the constant rate θ̇ in the direction shown.
The assembly is forced to precess at the constant rate N around the vertical, as shown.
Calculate the absolute angular velocity and acceleration of the rotor in the position
shown, expressing the results in both the XYZ and the xyz frames of reference.

X

Y

Z

z

x

y

Gimbal ring

Rotor

ωspin

a

bd

N

c

G

θ

Figure 9.5 Rotating, precessing, nutating gyro.
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We will need the instantaneous relationship between the unit vectors of the inertial
XYZ axes and the co-moving xyz frame, which by inspection are

Î = −cos θ ĵ + sin θ k̂

Ĵ = î (a)

K̂ = sin θ ĵ + cos θ k̂

so that the matrix of the transformation from xyz to XYZ is

[Q]xX =

0 − cos θ sin θ

1 0 0
0 sin θ cos θ


 (b)

The absolute angular velocity of the gimbal ring is that of the base plus the angular
velocity of the gimbal relative to the base,

ωgimbal = NK̂ + θ̇ î = N(sin θ ĵ + cos θ k̂) + θ̇ î = θ̇ î + N sin θ ĵ + N cos θ k̂ (c)

where we made use of (a)3. Since the moving xyz frame is attached to the gimbal,

� = ωgimbal, so that

� = θ̇ î + N sin θ ĵ + N cos θ k̂ (d)

The absolute angular velocity of the rotor is its spin relative to the gimbal, plus the
angular velocity of the gimbal,

ωrotor = ωgimbal + ωspink̂ (e)

From (c) it follows that

ωrotor = θ̇ î + N sin θ ĵ + (N cos θ + ωspin)k̂ (f)

Because î, ĵ and k̂ move with the gimbal, this expression is valid for any time, not just
the instant shown in Figure 9.5. Alternatively, applying the vector transformation

{ωrotor}XYZ = [Q]xX{ωrotor}xyz (g)

we obtain the angular velocity of the rotor in the inertial frame, but only at the instant
shown in the figure, i.e., when the x axis aligns with the Y axis


ωX

ωY

ωZ


 =


0 − cos θ sin θ

1 0 0
0 sin θ cos θ






θ̇

N sin θ

N cos θ + ωspin




=



−N sin θ cos θ + N sin θ cos θ + ωspin sin θ

θ̇

N sin2 θ + N cos2 θ + ωspin cos θ




or

ωrotor = ωspin sin θ Î + θ̇ Ĵ + (N + ωspin cos θ)K̂ (h)
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(Example 9.3
continued)

The angular acceleration of the rotor is obtained from Equation 9.7, recalling that N ,
θ̇ , and ωspin are independent of time:

αrotor = dωrotor

dt

)
rel

+ � × ωrotor =
[

d(θ̇)

dt
î + d(N sin θ)

dt
ĵ + d(N cos θ + ωspin)

dt
k̂

]

+
∣∣∣∣∣∣

î ĵ k̂
θ̇ N sin θ N cos θ

θ̇ N sin θ N cos θ + ωspin

∣∣∣∣∣∣
= (N θ̇ cos θ ĵ − N θ̇ sin θ k̂) + [î(Nωspin sin θ) − ĵ(ωspinθ̇) + k̂(0)]

Upon simplification, this becomes

αrotor = Nωspin sin θ î + θ̇(N cos θ − ωspin)ĵ − N θ̇ sin θ k̂ (i)

This expression, like (f), is valid at any time.
The components of αrotor along the XYZ axes are found in the same way as for

ωrotor,

{αrotor}XYZ = [Q]xX{αrotor}xyz

which means


αX

αY

αZ


 =


0 − cos θ sin θ

1 0 0
0 sin θ cos θ






Nωspin sin θ

θ̇(N cos θ − ωspin)
−N θ̇ sin θ




=



−N θ̇ cos2 θ + θ̇ωspin cos θ − N θ̇ sin2 θ

Nωspin sin θ

N θ̇ sin θ cos θ − θ̇ωspin sin θ − N θ̇ sin θ cos θ




or

αrotor = θ̇(ωspin cos θ − N)Î + Nωspin sin θ Ĵ − θ̇ωspin sin θK̂ (j)

Note carefully that (j) is not simply the time derivative of (h). Equations (h) and (j)
are valid only at the instant that the xyz and XYZ axes have the alignments shown in
Figure 9.4.

9.3 Equations of translational motion

Figure 9.6 again shows an arbitrary, continuous, three-dimensional body of mass m.
‘Continuous’ means that as we zoom in on a point it remains surrounded by a con-
tinuous distribution of matter having the infinitesimal mass dm in the limit. The
point never ends up in a void. In particular, we ignore the actual atomic and molec-
ular microstructure in favor of this continuum hypothesis, as it is called. Molecular
microstructure does not bear upon the overall dynamics of a finite body. We will use
G to denote the center of mass. Position vectors of points relative to the origin of the
inertial frame will be designated by capital letters. Thus, the position of the center of



9.3 Equations of translational motion 409
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Figure 9.6 Forces on the mass element dm of a continuous medium.

mass is RG, defined as

mRG =
∫
m

Rdm (9.9)

R is the position of a mass element dm within the continuum. Each element of mass
is acted upon by a net external force dFnet and a net internal force dfnet. The external
force comes from direct contact with other objects and from action at a distance, such
as gravitational attraction. The internal forces are those exerted from within the body
by neighboring particles. These are the forces which hold the body together. For each
mass element, Newton’s second law, Equation 1.10, is written

dFnet + dfnet = dmR̈ (9.10)

Writing this equation for the infinite number of mass elements of which the body is
composed and then summing them all together leads to the integral,∫

dFnet +
∫

dfnet =
∫
m

R̈dm

Because the internal forces occur in action–reaction pairs,
∫

dfnet = 0. (External forces
on the body are those without an internal reactant; the reactant lies outside the body
and, hence, outside our purview.) Thus

Fnet =
∫
m

R̈dm (9.11)

where Fnet is the resultant external force on the body, Fnet = ∫
dFnet. From

Equation 9.9 ∫
m

R̈dm = mR̈G
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where R̈G = aG, the absolute acceleration of the center of mass. Therefore, Equation
9.11 can be written

Fnet = mR̈G (9.12)

We are therefore reminded that the motion of the center of mass of a body is deter-
mined solely by the resultant of the external forces acting on it. So far our study of
orbiting bodies has focused exclusively on the motion of their centers of mass. In this
chapter we will turn our attention to rotational motion around the center of mass. To
simplify things, we will ultimately assume that the body is not only continuous, but
that it is also rigid. That means all points of the body remain a fixed distance from
each other and there is no flexing, bending or twisting deformation.

9.4 Equations of rotational motion

Our development of the rotational dynamics equations does not require at the outset
that the body under consideration be rigid. It may be a solid, liquid or gas.

Point P in the Figure 9.7 is arbitrary; it need not be fixed in space nor attached
to a point on the body. Then the moment about P of the forces on mass element dm
(cf. Figure 9.6) is

dMP = r × dFnet + r × dfnet

where r is the position vector of the mass element dm relative to the point P. Writing
the right-hand side as r × (dFnet + dfnet), substituting Equation 9.10, and integrating

X

Y

Z

G

P

dm

R r

RG

RP

rG/P

�

Figure 9.7 Position vectors of a mass element in a continuum from several key reference points.
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over all of the mass elements of the body yields

MPnet =
∫

m
r × R̈dm (9.13)

where R̈ is the absolute acceleration of dm relative to the inertial frame and

MPnet =
∫

r × dFnet +
∫

r × dfnet

But
∫

r × dfnet = 0 because the internal forces occur in action–reaction pairs. Thus,

MPnet =
∫

r × dFnet

which means the net moment includes only the moment of all of the external forces
on the body.

Observe that

r × R̈ = d

dt
(r × Ṙ) − ṙ × Ṙ (9.14)

Since r = R − RP , where RP is the absolute position vector of P, it is true that

ṙ × Ṙ = (Ṙ − ṘP) × Ṙ = −ṘP × Ṙ (9.15)

Substituting Equation 9.15 into Equation 9.14, then moving that result into Equation
9.13 yields

MPnet = d

dt

∫
m

r × Ṙdm + ṘP ×
∫

m
Ṙdm (9.16)

Now, r × Ṙdm is the absolute angular momentum of mass element dm about P.
The angular momentum of the entire body is the integral of this cross product over
all of its mass elements. That is, the absolute angular momentum of the body relative
to point P is

HP =
∫

m
r × Ṙdm (9.17)

Observing from Figure 9.7 that r = rG/P + � , we can write Equation 9.17 as

HP =
∫

m
(rG/P + �) × Ṙdm = rG/P ×

∫
m

Ṙdm +
∫

m
� × Ṙdm (9.18)

The last term is the absolute angular momentum relative to the center of mass G,

HG =
∫

� × Ṙdm (9.19)

Furthermore, by the definition of center of mass, Equation 9.9,∫
m

Ṙdm = mṘG (9.20)

Equations 9.19 and 9.20 allow us to write Equation 9.18 as

HP = HG + rG/P × mvG (9.21)
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This useful relationship shows how to obtain the absolute angular momentum about
any point P once HG is known.

For calculating the angular momentum about the center of mass, Equation 9.19
can be cast in a much more useful form by making the substitution (cf. Figure 9.7)
R = RG + �, so that

HG =
∫

m
� × (ṘG + �̇)dm =

∫
m
� × ṘGdm +

∫
m
� × �̇dm

In the two integrals on the right, the variable is �. ṘG is fixed and can therefore be
factored out of the first integral to obtain

HG =
(∫

m
�dm

)
× ṘG +

∫
m
� × �̇dm

By definition of the center of mass,
∫

m �dm = 0 (the position vector of the center of
mass relative to itself is zero), which means

HG =
∫

m
� × �̇dm (9.22)

Since � and �̇ are the position and velocity relative to the center of mass G,
∫

m �× �̇dm
is the total moment about the center of mass of the linear momentum relative to the
center of mass, HGrel . In other words,

HG = HGrel (9.23)

This is a rather surprising fact, hidden in Equation 9.19 and true in general for no
other point of the body.

Another useful angular momentum formula, similar to Equation 9.21, may be
found by substituting R = RP + r into Equation 9.17,

HP =
∫

m
r × (ṘP + ṙ)dm =

(∫
m

rdm

)
× ṘP +

∫
m

r × ṙdm (9.24)

The term on the far right is the net moment of relative linear momentum about P,

HPrel =
∫

m
r × ṙdm (9.25)

Also,
∫

mrdm = mrG/P , where rG/P is the position of the center of mass relative to P.
Thus, Equation 9.24 can be written

HP = HPrel + rG/P × mvP (9.26)

Finally, substituting this into Equation 9.21, solving for HPrel , and noting that
vG − vP = vG/P yields

HPrel = HG + rG/P × mvG/P (9.27)

This expression is useful when the absolute velocity vG of the center of mass, which
is required in Equation 9.21, is not available.
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So far we have written down some formulas for calculating the angular momen-
tum about an arbitrary point in space and about the center of mass of the body
itself. Let us now return to the problem of relating angular momentum to the applied
torque. Substituting Equation 9.17 into 9.16 and noting that by definition of the
center of mass, ∫

m
Ṙdm = mṘG

we obtain

MPnet = ḢP + ṘP × mṘG

Thus, for an arbitrary point P,

MPnet = ḢP + vP × mvG (9.28)

where vP and vG are the absolute velocities of points P and G, respectively. This
expression is applicable to two important special cases.

If the point P is at rest in inertial space (vP = 0), then Equation 9.28 reduces to

MPnet = ḢP (9.29)

This equation holds as well if vP and vG are parallel, e.g., if P is the point of contact
of a wheel rolling while slipping in the plane. Note that the validity of Equation 9.29
depends neither on the body’s being rigid nor on its being in pure rotation about P.
If point P is chosen to be the center of mass, then, since vG × vG = 0, Equation 9.28
becomes

MGnet = ḢG (9.30)

This equation is valid for any state of motion.
If Equation 9.30 is integrated over a time interval, then we obtain the angular

impulse–momentum principle,∫ t2

t1

MGnet dt = HG2 − HG1 (9.31)

A similar expression follows from Equation 9.29.
∫

Mdt is the angular impulse. If the
net angular impulse is zero, then �H = 0, which is a statement of the conservation of
angular momentum. Keep in mind that the angular impulse–momentum principle
is not valid for just any reference point.

Additional versions of Equations 9.29 and 9.30 can be obtained which may prove
useful in special circumstances. For example, substituting the expression for HP

(Equation 9.21) into Equation 9.28 yields

MPnet =
[

ḢG + d

dt
(rG/P × mvG)

]
+ vP × mvG

= ḢG + d

dt
[(rG − rP) × mvG] + vP × mvG

= ḢG + (vG − vP) × mvG + rG/P × maG + vP × mvG



414 Chapter 9 Rigid-body dynamics

or, finally,

MPnet = ḢG + rG/P × maG (9.32)

This expression is useful when it is convenient to compute the net moment about a
point other than the center of mass. Alternatively, by simply differentiating Equation
9.27 we get

ḢPrel = ḢG +
=0︷ ︸︸ ︷

vG/P × mvG/P + rG/P × maG/P

Solving for ḢG, invoking Equation 9.30, and using the fact that aP/G = −aG/P

leads to

MGnet = ḢPrel + rG/P × maP/G (9.33)

Finally, if the body is rigid, the magnitude of the position vector � of any point relative
to the center of mass does not change with time. Therefore, Equation 1.24 requires
that �̇ = ω × �, leading us to conclude

HG =
∫

m
� × (ω × �)dm (9.34)

Again, the absolute angular momentum about the center of mass depends only on the
absolute angular velocity and not on the absolute translational velocity of any point
of the body.

No such simplification of Equation 9.17 exists for an arbitrary reference point P.
However, if the point P is fixed in inertial space and the rigid body is rotating about
P, then the magnitude of the position vector r from P to any point of the body is
constant. It follows from Equation 1.24 that ṙ = ω × r. According to Figure 9.7,

R = Rp + r

Differentiating with respect to time gives

Ṙ = Ṙp + ṙ = 0 + ω × r = ω × r

Substituting this into Equation 9.17 yields the formula for angular momentum in this
special case,

HP =
∫

m
r × (ω × r)dm (9.35)

Although Equations 9.34 and 9.35 are mathematically identical, one must keep in
mind the notation of Figure 9.7. Equation 9.35 applies only if the rigid body is in
pure rotation about a stationary point in inertial space, whereas Equation 9.34 applies
unconditionally to any situation.

9.5 Moments of inertia

To use Equation 9.29 or 9.30 to solve problems, the vectors within them have to be
resolved into components. To find the components of angular momentum, we must
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X
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G

dm
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y

z

�

î

ĵ

k̂

�

Figure 9.8 Co-moving xyz frame used to compute the moments of inertia.

appeal to its definition. We will focus on the formula for angular momentum of a rigid
body about its center of mass, Equation 9.34, because the expression for fixed-point
rotation (Equation 9.35) is mathematically the same. The integrand of Equation 9.34
can be rewritten using the bac − cab vector identity presented in Equation 2.23,

� × (ω × �) = ω�2 − �(ω · �) (9.36)

Let the origin of a co-moving xyz coordinate system be attached to G, as shown

in Figure 9.8. The unit vectors of this frame are î, ĵ and k̂. The vectors � and ω

can be resolved into components in the xyz directions to get � = xî + y ĵ + zk̂ and

ω = ωx î + ωy ĵ + ωz k̂. Substituting these vector expressions into the right side of
Equation 9.36 yields

� × (ω × �) = (ωx î + ωy ĵ + ωz k̂)(x2 + y2 + z2) − (xî + y ĵ + zk̂)(ωxx + ωyy + ωzz)

Expanding the right side and collecting terms having the unit vectors î, ĵ and k̂ in
common, we get

� × (ω × �) = [(y2 + z2)ωx − xyωy − xzωz]î

+ [−yxωx + (x2 + z2)ωy − yzωz]ĵ

+ [−zxωx − zyωy + (x2 + y2)ωz]k̂ (9.37)

We put this result into the integrand of Equation 9.34 to obtain

HG = Hx î + Hy ĵ + Hz k̂ (9.38)

where 


Hx

Hy

Hz


 =


 Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz






ωx

ωy

ωz


 (9.39a)
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or, in matrix notation,

{H} = [I]{ω} (9.39b)

The components of the moment of inertia matrix [I] about the center of mass are

Ix = ∫
(y2 + z2)dm Ixy = − ∫

xydm Ixz = − ∫
xzdm

Iyx = Ixy Iy = ∫
(x2 + z2)dm Iyz = − ∫

yzdm
Izx = Ixz Izy = Iyz Iz = ∫

(x2 + y2)dm
(9.40)

[I] is clearly a symmetric matrix: [I]T = [I]. Observe that, whereas the products of
inertia Ixy , Ixz and Iyz can be positive, negative or zero, the moments of inertia Ix ,
Iy and Iz are always positive (never zero or negative) for bodies of finite dimensions.
For this reason, [I] is a positive-definite matrix. Keep in mind that Equations 9.38
and 9.39 are valid as well for axes attached to a fixed point P about which the body is
rotating.

The moments of inertia reflect how the mass of a rigid body is distributed. They
manifest a body’s rotational inertia, its resistance to being set into rotary motion or
stopped once rotation is under way. It is not an object’s mass alone but how that mass
is distributed which determines how the body will respond to applied torques.

It is easy to show that the following statements are true:

If the xy plane is a plane of symmetry of the body, then Ixz = Iyz = 0.

If the xz plane is a plane of symmetry of the body, then Ixy = Iyz = 0.

If the yz plane is a plane of symmetry of the body, then Ixy = Ixz = 0.

Obviously, if the body has just two planes of symmetry relative to the xyz frame of
reference, then all three products of inertia vanish, and [I] becomes a diagonal matrix,

[I] =

A 0 0

0 B 0
0 0 C


 (9.41)

where A, B and C are the principal moments of inertia (all positive), and the xyz axes
are the principal axes of inertia. In this case, relative to either the center of mass or a
fixed point of rotation, we have

Hx = Aωx Hy = Bωy Hz = Cωz (9.42)

In general, the angular velocity ω and the angular momentum H are not parallel.
However, if (for example) ω = ωî, then according to Equations 9.42, {H} = A{ω}. In
other words, if the angular velocity points in a principal direction, so does the angular
momentum. In that case the two vectors are indeed parallel.

Each of the three principal moments of inertia can be expressed as follows:

A = mk2
x B = mk2

y C = mk2
z (9.43)

where m is the mass of the body and kx , ky and kz are the three radii of gyration.
One may imagine the mass of a body to be concentrated around a principal axis at a
distance equal to the radius of gyration.

The moments of inertia for several common shapes are listed in Figure 9.9. By
symmetry, their products of inertia vanish for the coordinate axes used. Formulas
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mr2 �

1

12
ml2 Ix � m(a2 � l2)
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Iy � m(b2 � l2)
1
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Iz � m(a2 � b2)
1

12

Iz �
1

2
mr2 Iz � mr2

Figure 9.9 Moments of inertia for three common homogeneous solids of mass m. (a) Solid circular
cylinder. (b) Circular cylindrical shell. (c) Rectangular parallelepiped.

for other solid geometries can be found in engineering handbooks and in dynamics
textbooks.

For a mass concentrated at a point, the moments of inertia in Equation 9.40 are
just the mass times the integrand evaluated at the point. That is, the moment of
inertia matrix [Im] of a point mass m is given by

[Im] =

m(y2 + z2) −mxy −mxz

−mxy m(x2 + z2) −myz
−mxz −myz m(x2 + y2)


 (9.44)

Example
9.4

The following table lists mass and coordinates of seven point masses. Find the center
of mass of the system and the moments of inertia about the origin.

Point, i Mass, mi (kg) xi (m) yi (m) zi (m)

1 3 −0.5 0.2 0.3
2 7 0.2 0.75 −0.4
3 5 1 −0.8 0.9
4 6 1.2 −1.3 1.25
5 2 −1.3 1.4 −0.8
6 4 −0.3 1.35 0.75
7 1 1.5 −1.7 0.85

The total mass of this system is

m =
7∑

i=1

mi = 28 kg
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(Example 9.4
continued)

For concentrated masses the integral in Equation 9.9 is replaced by the mass times its
position vector. Therefore, in this case the three components of the position vector
of the center of mass are

xG =
7∑

i=1
mixi

m = 0.35 m yG =
7∑

i=1
miyi

m = 0.01964 m zG =
7∑

i=1
mizi

m = 0.4411 m

The total moment of inertia is the sum over all of the particles of Equation 9.44
evaluated at each point. Thus,

[I] =

(1)︷ ︸︸ ︷
0.39 0.3 0.45

0.3 1.02 −0.18
0.45 −0.18 0.87


+

(2)︷ ︸︸ ︷
5.0575 −1.05 0.56

−1.05 1.4 2.1
0.56 2.1 4.2175


+

(3)︷ ︸︸ ︷
 7.25 4 −4.5

4 9.05 3.6
−4.5 3.6 8.2




+

(4)︷ ︸︸ ︷
19.515 9.36 −9

9.36 18.015 9.75
−9 9.75 18.78


+

(5)︷ ︸︸ ︷
 5.2 3.64 −2.08

3.64 4.66 2.24
−2.08 2.24 7.3




+

(6)︷ ︸︸ ︷
9.54 1.62 0.9

1.62 2.61 −4.05
0.9 −4.05 7.65


+

(7)︷ ︸︸ ︷
 3.6125 2.55 −1.275

2.55 2.9725 1.445
−1.275 1.445 5.14




or

[I] =

 50.56 20.42 −14.94

20.42 39.73 14.90
−14.94 14.90 52.16


 (kg · m2)

Example
9.5

Calculate the moments of inertia of a slender, homogeneous straight rod of length l
and mass m. One end of the rod is at the origin and the other has coordinates (a, b, c).

l

(0, 0, 0)

x

y

z

A

B  (a, b, c)

Figure 9.10 Uniform slender bar of mass m and length l.



9.5 Moments of inertia 419

A slender rod is one whose cross-sectional dimensions are negligible compared with
its length. The mass is concentrated along its centerline. Since the rod is homogeneous,
the mass per unit length � is uniform and given by

� = m

l
(a)

The length of the rod is

l =
√

a2 + b2 + c2

Starting with Ix , we have from Equations 9.40,

Ix =
∫ l

0
(y2 + z2)�ds

in which we replaced the element of mass dm by �ds , where ds is the element of length
along the rod. s is measured from end A of the rod, so that the x, y and z coordinates
of any point along it are found in terms of s by the following relations,

x = s

l
a y = s

l
b z = s

l
c

Thus

Ix =
∫ l

0

(
s2

l2
b2 + s2

l2
c2
)

�ds = �
b2 + c2

l2

∫ l

0
s2ds = 1

3
�(b2 + c2)l

Substituting (a) yields

Ix = 1

3
m(b2 + c2)

In precisely the same way we find

Iy = 1

3
m(a2 + c2) Iz = 1

3
m(a2 + b2)

For Ixy we have

Ixy = −
∫ l

0
xy�ds = −

∫ l

0

s

l
a · s

l
b�ds = −�

ab

l2

∫ l

0
s2ds = −1

3
�abl

Once again using (a),

Ixy = −1

3
mab

Likewise,

Ixz = −1

3
mac Iyz = −1

3
mbc
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Example
9.6

The gyro rotor in Example 9.3 has a mass m of 5 kg, radius r of 0.08 m, and thickness
t of 0.025 m. If N = 2.1 rad/s, θ̇ = 4 rad/s, ω = 10.5 rad/s , and θ = 60◦, calculate the
angular momentum of the rotor about its center of mass G in the xyz frame. What
is the angle between the rotor’s angular velocity vector and its angular momentum
vector?

X

Y

Z

z

x

y

G

Rotorr

t

N

ωspin

θ

Figure 9.11 Rotor of the gyroscope in Figure 9.4.

In Example 9.3, Equation (f) gives the components of the absolute angular velocity
of the rotor in the moving xyz frame,

ωx = θ̇ = 4 rad/s

ωy = N sin θ = 2.1 · sin 60◦ = 1.819 rad/s (a)

ωz = ωspin + N cos θ = 10.5 + 2.1 · cos 60◦ = 11.55 rad/s

or

ω = 4î + 1.819ĵ + 11.55k̂ (rad/s) (b)

All three coordinate planes of the xyz frame contain the center of mass G and all are
planes of symmetry of the circular cylindrical rotor. Therefore,

Ixy = Izx = Iyz = 0

From Figure 9.9(a), we see that the non-zero diagonal entries in the moment of inertia
tensor are

A = B = 1
12 mt2 + 1

4 mr2 = 1
12 5 · 0.0252 + 1

4 5 · 0.082 = 0.008260 kg · m2

C = 1
2 mr2 = 1

2 5 · 0.082 = 0.0160 kg · m2 (c)
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We can use Equation 9.42 to calculate the angular momentum, because the origin of
the xyz frame is the rotor’s center of mass (which in this case also happens to be a fixed
point of rotation, which is another reason we can use Equation 9.42). Substituting
(a) and (c) into Equation 9.42 yields

Hx = Aωx = 0.008260 · 4 = 0.03304 kg · m2/s

Hy = Bωy = 0.008260 · 1.819 = 0.0150 kg · m2/s (d)

Hz = Cωz = 0.0160 · 11.55 = 0.1848 kg · m2/s

or

H = 0.03304î + 0.0150ĵ + 0.1848k̂ (kg · m2/s) (e)

The angle φ between H and ω is found by using the dot product operation,

φ = cos−1
(

H · ω

Hω

)
= cos−1

(
2.294

0.1883 · 12.36

)
= 9.717◦ (f)

As this illustrates, the angular momentum and the angular velocity are in general not
collinear.

Consider a coordinate system x′y′z′ with the same origin as xyz, but different
orientation. Let [Q] be the orthogonal matrix ([Q]−1 = [Q]T ) which transforms the
components of a vector from the xyz system to the x′y′z′ frame. Recall from Section
4.5 that the rows of [Q] are the direction cosines of the x′y′z′ axes relative to xyz. The
components of the angular momentum vector transform as follows

{H′} = [Q]{H}
From Equation 9.39 we can write this as

{H′} = [Q][I]{ω} (9.45)

Like the angular momentum vector, the components of the angular velocity vector in
the xyz system are related to those in the primed system by the expression

{ω′} = [Q]{ω}
The inverse relation is simply

{ω} = [Q]−1{ω′} = [Q]T {ω′} (9.46)

Substituting this into Equation 9.45, we get

{H′} = [Q][I][Q]T {ω′} (9.47)

But the components of angular momentum and angular velocity in the x′y′z′ frame
are related by an equation of the same form as Equation 9.39, so that

{H′} = [I′]{ω′} (9.48)

where [I′] comprises the components of the inertia matrix in the primed system.
Comparing the right-hand sides of Equations 9.47 and 9.48, we conclude that

[I′] = [Q][I][Q]T (9.49a)
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that is,
 Ix′ Ix′y′ Ix′z′

Iy′x′ Iy′ Iy′z′
Iz′x′ Iz′y′ Iz′


 =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33




 Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz




Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q32 Q33




(9.49b)

This shows how to transform the components of the inertia matrix from the xyz
coordinate system to any other orthogonal system with a common origin. Thus, for
example,

Ix′ =
�Row 1�︷ ︸︸ ︷⌊

Q11 Q12 Q13
⌋ Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz




�Row 1�T︷ ︸︸ ︷


Q11

Q12

Q13




(9.50)

Iy′z′ =
�Row 2�︷ ︸︸ ︷⌊

Q21 Q22 Q23
⌋ Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Izz




�Row 3�T︷ ︸︸ ︷


Q31

Q32

Q33




etc.
Any object represented by a square matrix whose components transform according
to Equation 9.49 is called a second order tensor.

Example
9.7

Find the mass moment of inertia of the system in Example 9.4 about an axis from the
origin through the point with coordinates (2 m, −3 m, 4 m).

From Example 9.4 the moment of inertia tensor for the system of point masses is

[I] =

 50.56 20.42 −14.94

20.42 39.73 14.90
−14.94 14.90 52.16


 (kg · m2)

The vector connecting the origin with (2 m, −3 m, 4 m) is

V = 2î − 3ĵ + 4k̂

The unit vector in the direction of V is

ûV = V

‖V‖ = 0.3714î − 0.5571ĵ + 0.7428k̂

We may consider ûV as the unit vector along the x′ axis of a rotated cartesian
coordinate system. Then, from Equation 9.50,

IV ′ = ⌊
0.3714 −0.5571 0.7428

⌋ 50.56 20.42 −14.94
20.42 39.73 14.90

−14.94 14.90 52.16






0.3714
−0.5571
0.7428




= ⌊
0.3714 −0.5571 0.7428

⌋
−3.695
−3.482
24.90


 = 19.06 kg · m2
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Example
9.8

For the satellite of Example 9.2, reproduced in Figure 9.12, the data is as follows.
N = 0.1 rad/s and θ̇ = 0.01 rad/s, in the directions shown. θ = 40◦. d0 = 1.5 m. The
length, width and thickness of the panel are l = 6 m, w = 2 m and t = 0.025 m. The
uniformly distributed mass of the panel is 50 kg. Find the angular momentum of
the panel relative to the center of mass O of the satellite.

z

x

y

l

θ

d0

G
x' y'

z'

N

O

w/2
w/2

Figure 9.12 Satellite and solar panel.

We can treat the panel as a thin parallelepiped. The panel’s xyz axes have their origin
at the center of mass G of the panel and are parallel to its three edge directions.
According to Figure 9.9(c), the moments of inertia relative to the xyz coordinate
system are

IGx = 1
12 m(l2 + t2) = 1

12 · 50 · (62 + 0.0252) = 150.0 kg · m2

IGy = 1
12 m(w2 + t2) = 1

12 · 50 · (22 + 0.0252) = 16.67 kg · m2 (a)

IGz = 1
12 m(w2 + l2) = 1

12 · 50 · (22 + 62) = 166.7 kg · m2

IGxy = IGxz = IGyz = 0

In matrix notation,

[IG] =

150.0 0 0

0 16.67 0
0 0 166.7


 (kg · m2) (b)

The unit vectors of the satellite’s x′y′z′ system are related to those of panel’s xyz frame
by inspection,

î′ = −sin θ î + cos θ k̂ = −0.6428î + 0.7660k̂

ĵ′ = − ĵ (c)

k̂′ = cos θ î + sin θ k̂ = 0.7660î + 0.6428k̂
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(Example 9.8
continued)

The matrix [Q] of the transformation from xyz to x′y′z′ comprises the direction

cosines of î′, ĵ′ and k̂′:

[Q] =

−0.6428 0 0.7660

0 −1 0
0.7660 0 0.6428


 (d)

In Example 9.2 we found that the absolute angular velocity of the panel, in the
satellite’s x′y′z′ frame of reference, is

ω = −θ̇ ĵ′ + N k̂′ = −0.01ĵ′ + 0.1k̂′(rad/s)

That is,

{ω′} =



0
−0.01

0.1


 (rad/s) (e)

To find the absolute angular momentum {H′
G} in the satellite system requires using

Equation 9.39,

{H′
G} = [I′G]{ω′} (f)

Before doing so, we must transform the components of the moments of inertia tensor
in (b) from the unprimed system to the primed system, by means of Equation 9.49,

[I′G] = [Q][IG][Q]T

=

−0.6428 0 0.7660

0 −1 0
0.7660 0 0.6428




150.0 0 0

0 16.67 0
0 0 166.7




−0.6428 0 0.7660

0 −1 0
0.7660 0 0.6428




so that

[I′G] =

159.8 0 8.205

0 16.67 0
8.205 0 156.9


 (kg · m2) (g)

Then (f) yields

{H′
G} =


159.8 0 8.205

0 16.67 0
8.205 0 156.9






0
−0.01

0.1


 =




0.8205
−0.1667
15.69


 (kg · m2/s)

or, in vector notation,

HG = 0.8205î′ − 0.1667ĵ′ + 15.69k̂′ (kg · m2/s) (h)

This is the absolute angular momentum of the panel about its own center of mass,
and it is used in Equation 9.27 to calculate the angular momentum HOrel relative to
the satellite’s center of mass O,

HOrel = HG + rG/O × mvG/O (i)
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rG/O is the position vector from O to G,

rG/O =
(

d0 + l

2

)
ĵ′ =

(
1.5 + 6

2

)
ĵ′ = 4.5ĵ′ (m) (j)

The velocity of G relative to O, vG/O, is found from Equation 9.2,

vG/O = ωsatellite × rG/O = N k̂′ × rG/O = 0.1k̂′ × 4.5ĵ′ = −0.45î′(m/s) (k)

Substituting (h), (j) and (k) into (i) finally yields

HOrel = (0.8205î′ − 0.1667ĵ′ + 15.69k̂′) + 4.5ĵ′ × [50(−0.45î′)]

= 0.8205î′ − 0.1667ĵ′ + 116.9k̂′ (kg · m2/s) (l)

Note that we were unable to use Equation 9.21 to find the absolute angular momentum
HO because that requires knowing the absolute velocity vG, which in turn depends
on the absolute velocity of O, which was not provided.

How can we find that transformation matrix [Q] such that Equation 9.49 will yield a
moment of inertia matrix [I′] which is diagonal, i.e., of the form given by Equation
9.41? In other words, how do we find the principal directions of the moment of inertia
tensor? Let the angular velocity vector {ω} be parallel to the principal direction defined
by the vector {v}, so that {ω} = β{v}, where β is a scalar. Since {ω} points in a principal
direction of the inertia tensor, so must {H}, which means {H} is also parallel to {v}.
Therefore, {H} = α{v}, where α is a scalar. From Equation 9.39 it follows that

α{v} = [I](β{v})
or

[I]{v} = λ{v}
where λ = α/β (a scalar). That is,

 Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz






vx

vy

vz


 = λ




vx

vy

vz




This can be written 
Ix − λ Ixy Ixz

Ixy Iy − λ Iyz

Ixz Iyz Iz − λ






vx

vy

vz


 =




0
0
0


 (9.51)

The trivial solution of Equation 9.51 is {v} = {0}, which is of no interest. The only
way that Equation 9.51 will not yield the trivial solution is if the coefficient matrix on
the left is singular. That will occur if its determinant vanishes, that is, if∣∣∣∣∣∣

Ix − λ Ixy Ixz

Ixy Iy − λ Iyz

Ixz Iyz Iz − λ

∣∣∣∣∣∣ = 0 (9.52)
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Expanding the determinant, we find∣∣∣∣∣∣
Ix − λ Ixy Ixz

Ixy Iy − λ Iyz

Ixz Iyz Iz − λ

∣∣∣∣∣∣ = −λ3 + I1λ
2 − I2λ + I3 (9.53)

where

I1 = Ix + Iy + Iz

I2 =
∣∣∣∣ Ix Ixy

Ixy Iy

∣∣∣∣ +
∣∣∣∣ Ix Ixz

Ixz Iz

∣∣∣∣ +
∣∣∣∣ Iy Iyz

Iyz Iz

∣∣∣∣ (9.54)

I3 =
∣∣∣∣∣∣

Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz

∣∣∣∣∣∣
Equations 9.52 and 9.53 yield the characteristic equation of the tensor [I]

λ3 − I1λ
2 + I2λ − I3 = 0 (9.55)

The three roots λp (p = 1, 2, 3) of this cubic equation are real, since [I] is symmetric;
furthermore they are all positive, since [I] is a positive-definite matrix. Each root, or
eigenvalue, λp is substituted back into Equation 9.51 to obtain




Ix − λp Ixy Ixz

Ixy Iy − λp Iyz

Ixz Iyz Iz − λp






v
(p)
x

v
(p)
y

v
(p)
z


 =




0
0
0


 , p = 1, 2, 3 (9.56)

Solving this system yields the three eigenvectors {v(p)} corresponding to each of
the three eigenvalues λp. The three eigenvectors are orthogonal, also due to the
symmetry of the matrix [I]. Each eigenvalue is a principal moment of inertia, and its
corresponding eigenvector is a principal direction.

Example
9.9

Find the principal moments of inertia and the principal axes of inertia of the inertia
tensor

[I] =

 100 −20 −100

−20 300 −50
−100 −50 500


 kg · m2

We seek the non-trivial solutions of the system


100 − λ −20 −100

−20 300 − λ −50
−100 −50 500 − λ






vx

vy

vz


 =




0
0
0


 (a)
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From Equation 9.54,

I1 = 100 + 300 + 500 = 900

I2 =
∣∣∣∣ 100 −20
−20 300

∣∣∣∣ +
∣∣∣∣ 100 −100
−100 500

∣∣∣∣ +
∣∣∣∣ 300 −50
−50 500

∣∣∣∣ = 217 100 (b)

I3 =
∣∣∣∣∣∣

100 −20 −100
−20 300 −50

−100 −50 500

∣∣∣∣∣∣ = 11 350 000

Thus, the characteristic equation is

λ3 − 900λ2 + 217 100λ − 11 350 000 = 0 (c)

The three roots are the principal moments of inertia, which are found to be

λ1 = 532.052 λ2 = 295.840 λ3 = 72.1083 (d)

Each of these is substituted, in turn, back into (a) to find its corresponding principal
direction.

Substituting λ1 = 532.052 kg · m2 into (a) we obtain
 −432.052 −20.0000 −100.0000

−20.0000 −232.052 −50.0000
−100.0000 −50.0000 −32.0519






v
(1)
x

v
(1)
y

v
(1)
z


 =




0
0
0


 (e)

Since the determinant of the coefficient matrix is zero, at most two of the three
equations in (e) are independent. Thus, at most two of the three components of the

vector v(1) can be found in terms of the third. We can therefore arbitrarily set v
(1)
x = 1

and solve for v
(1)
y and v

(1)
z using any two of the independent equations in (e). With

v
(1)
x = 1, the first two of Equations (e) become

−20.0000v(1)
y − 100.000v(1)

z = 432.052

−232.052v(1)
y − 50.000v(1)

z = 20.0000 (f)

Solving these two equations for v
(1)
y and v

(1)
z yields, together with the assumption

on v
(1)
x ,

v(1)
x = 1.00000 v(1)

y = 0.882793 v(1)
z = −4.49708 (g)

To obtain the unit vector in the direction of v(1)

î1 = v(1)

‖v(1)‖ = 1.00000î + 0.882793ĵ − 4.49708k̂√
1.000002 + 0.8827932 + (−4.49708)2

= 0.213186î + 0.188199ĵ − 0.958714k̂ (h)

Substituting λ2 = 295.840 into (a) and proceeding as above we find

î2 = 0.176732î − 0.972512ĵ − 0.151609k̂ (i)
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(Example 9.9
continued)

The two unit vectors î1 and î2 define two of the principal directions of the inertia
tensor. Observe that î1 · î2 = 0, as must be the case for symmetric matrices.

To obtain the third principal direction î3, we can substitute λ3 = 72.1083 into
(a) and proceed as above. However, since the inertia tensor is symmetric, we know
that the three principal directions are mutually orthogonal. That means î3 = î1 × î2.
Substituting Equations (h) and (i) into the cross product, we find that

î3 = −0.960894î − 0.137114ĵ − 0.240587k̂ (j)

We can check our work by substituting λ3 and î3 into (a) and verify that it is indeed
satisfied:
100 − 72.1083 −20 −100

−20 300 − 72.1083 −50
−100 −50 500 − 72.1083






−0.960894
−0.137114
−0.240587


 =




0
0
0


 (k)

The components of î1, î2 and î3 define the rows of the orthogonal transformation [Q]
from the xyz system into the x′y′z′ system aligned along the three principal directions:

[Q] =

 0.213186 0.188199 −0.958714

0.176732 −0.972512 −0.151609
−0.960894 −0.137114 −0.240587


 (l)

If we apply the transformation in Equation 9.49, [I′] = [Q][I][Q]T , we find

[I′] =

 0.213186 0.188199 −0.958714

0.176732 −0.972512 −0.151609
−0.960894 −0.137114 −0.240587




 100 −20 −100

−20 300 −50
−100 −50 500




×

 0.213186 0.176732 −0.960894

0.188199 −0.972512 −0.137114
−0.958714 −0.151609 −0.240587




=

532.052 0 0

0 295.840 0
0 0 72.1083


 (kg · m2)

9.5.1 Parallel axis theorem

Suppose the rigid body in Figure 9.13 is in pure rotation about point P. Then,
according to Equation 9.39,

{HPrel} = [IP]{ω} (9.57)

where [IP] is the moment of inertia about P, given by Equations 9.40 with

x = xG/P + ξ y = yG/P + η z = zG/P + ζ
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G

P

x

y

z

yP

O

xP

zP

dm

η
ζ

xG/P
yG/P

zG/P

ξ

Figure 9.13 The moments of inertia are to be computed at P, given their values at G.

On the other hand, we have from Equation 9.27 that

HPrel = HG + rG/P × mvG/P (9.58)

The vector rG/P × mvG/P is the angular momentum about P of the concentrated mass
m located at G. Using matrix notation, it is computed as follows,

{rG/P × mvG/P} ≡ {HmPrel
} = [ImP ]{ω} (9.59)

where [ImP], the moment of inertia of m about P, is obtained from Equation 9.43,
with x = xG/P , y = yG/P and z = zG/P . That is,

[ImP ] =

m(y2

G/P + z2
G/P) −mxG/PyG/P −mxG/PzG/P

−mxG/PyG/P m(x2
G/P + z2

G/P) −myG/PzG/P

−mxG/PzG/P −myG/PzG/P m(x2
G/P + y2

G/P)


 (9.60)

Of course, Equation 9.39 requires

{HG} = [IG]{ω}

Substituting this together with Equations 9.57 and 9.59 into Equation 9.58 yields

[IP]{ω} = [IG]{ω} + [ImP ]{ω} = ([IG] + [ImP ]){ω}

From this we may infer the parallel axis theorem,

[IP] = [IG] + [ImP ] (9.61)
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The moment of inertia about P is the moment of inertia about parallel axes
through the center of mass plus the moment of inertia of the center of mass about P.
That is,

IPx = IGx + m(y2
G/P + z2

G/P) IPy = IGy + m(x2
G/P + z2

G/P) IPz = IGz + m(x2
G/P + y2

G/P)

IPxz = IGxz − mxG/PzG/P IPxy = IGxy − mxG/PyG/P IPyz = IGyz − myG/PzG/P (9.62)

Example
9.10

Find the moments of inertia of the rod in Example 9.5 (Figure 9.14) about its center
of mass G.

l/2

x

y

z

A(0, 0, 0)

B (a, b, c)

G (a/2, b/2, c/2)l/2

Figure 9.14 Uniform slender rod.

From Example 9.5,

[IA] =

 1

3 m(b2 + c2) − 1
3 mab − 1

3 mac

− 1
3 mab 1

3 m(a2 + c2) − 1
3 mbc

− 1
3 mac − 1

3 mbc 1
3 m(a2 + b2)




Using Equation 9.621, and noting the coordinates of the center of mass in Figure 9.14,

IGx = IAx − m[(yG − 0)2 + (zG − 0)2]

= 1

3
m(b2 + c2) − m

[(
b

2

)2

+
( c

2

)2
]

= 1

12
m(b2 + c2)

Equation 9.624 yields

IGxy = IAxy + m(xG − 0)(yG − 0) = −1

3
mab + m · a

2
· b

2
= − 1

12
mab

The remaining four moments of inertia are found in a similar fashion, so that

[IG] =



1
12 m(b2 + c2) − 1

12 mab − 1
12 mac

− 1
12 mab 1

12 m(a2 + c2) − 1
12 mbc

− 1
12 mac − 1

12 mbc 1
12 m(a2 + b2)


 (9.63)
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Example
9.11

Calculate the principal moments of inertia about the center of mass and the corre-
sponding principal directions for the bent rod in Figure 9.15. Its mass is uniformly
distributed at 2 kg/m.

x

y

z

4

3
2

1

0.4 m 

0.5 m 

0.3 m 

0.2 m 

O

Figure 9.15 Bent rod for which the principal moments of inertia are to be determined.

The mass of each of the rod segments is

m(1) = 2 · 0.4 = 0.8 kg m(2) = 2 · 0.5 = 1 kg

m(3) = 2 · 0.3 = 0.6 kg m(4) = 2 · 0.2 = 0.4 kg (a)

The total mass of the system is

m =
4∑

i=1

m(i) = 2.8 kg (b)

The coordinates of each segment’s center of mass are

xG1 = 0 yG1 = 0 zG1 = 0.2 m
xG2 = 0 yG2 = 0.25 m zG2 = 0.2 m
xG3 = 0.15 m yG3 = 0.5 m zG3 = 0
xG4 = 0.3 m yG4 = 0.4m zG4 = 0

(c)

If the slender rod of Figure 9.14 is aligned with, say, the x axis, then a = l and b = c = 0,
so that according to Equation 9.63,

[IG] =

0 0 0

0 1
12 ml2 0

0 0 1
12 ml2




That is, the moment of inertia of a slender rod about axes normal to the rod at its
center of mass is 1

12 ml2, where m and l are the mass and length of the rod, respectively.
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(Example 9.11
continued)

Since the mass of a slender bar is assumed to be concentrated along the axis of the
bar (its cross-sectional dimensions are infinitesimal), the moment of inertia about
the centerline is zero. By symmetry, the products of inertia about axes through the
center of mass are all zero. Using this information and the parallel axis theorem, we
find the moments and products of inertia of each rod segment about the origin O of
the xyz system as follows.

Rod 1:

I(1)
x = I(1)

G1

)
x
+ m(1)(y2

G1
+ z2

G1
) = 1

12
· 0.8 · 0.42 + 0.8(0 + 0.22) = 0.04267 kg · m2

I(1)
y = I(1)

G1

)
y
+ m(1)(x2

G1
+ z2

G1
) = 1

12
· 0.8 · 0.42 + 0.8(0 + 0.22) = 0.04267 kg · m2

I(1)
z = I(1)

G1

)
z
+ m(1)(x2

G1
+ y2

G1
) = 0 + 0.8(0 + 0) = 0

I(1)
xy = I(1)

G1

)
xy

− m(1)xG1 yG1 = 0 − 0.8(0)(0) = 0

I(1)
xz = I(1)

G1

)
xz

− m(1)xG1 zG1 = 0 − 0.8(0)(0.2) = 0

I(1)
yz = I(1)

G1

)
yz

− m(1)yG1 zG1 = 0 − 0.8(0)(0) = 0

Rod 2:

I(2)
x = I(2)

G2

)
x
+ m(2)(y2

G2
+ z2

G2
) = 1

12
· 1.0 · 0.52 + 1.0(0 + 0.252) = 0.08333 kg · m2

I(2)
y = I(2)

G2

)
y
+ m(2)(x2

G2
+ z2

G2
) = 0 + 1.0(0 + 0) = 0

I(2)
z = I(2)

G2

)
z
+ m(2)(x2

G2
+ y2

G2
) = 1

12
· 1.0 · 0.52 + 1.0(0 + 0.52) = 0.08333 kg · m2

I(2)
xy = I(2)

G2

)
xy

− m(2)xG2 yG2 = 0 − 1.0(0)(0.5) = 0

I(2)
xz = I(2)

G2

)
xz

− m(2)xG2 zG2 = 0 − 1.0(0)(0) = 0

I(2)
yz = I(2)

G2

)
yz

− m(2)yG2 zG2 = 0 − 1.0(0.5)(0) = 0

Rod 3:

I(3)
x = I(3)

G3

)
x
+ m(3)(y2

G3
+ z2

G3
) = 0 + 0.6(0.52 + 0) = 0.15 kg · m2

I(3)
y = I(3)

G3

)
y
+ m(3)(x2

G3
+ z2

G3
) = 1

12
· 0.6 · 0.32 + 0.6(0.152 + 0) = 0.018 kg · m2

I(3)
z = I(3)

G3

)
z
+ m(3)(x2

G3
+ y2

G3
) = 1

12
· 0.6 · 0.32 + 0.6(0.152 + 0.52) = 0.1680 kg · m2

I(3)
xy = I(3)

G3

)
xy

− m(3)xG3 yG3 = 0 − 0.6(0.15)(0.5) = −0.045 kg · m2

I(3)
xz = I(3)

G3

)
xz

− m(3)xG3 zG3 = 0 − 0.6(0.15)(0) = 0

I(3)
yz = I(3)

G3

)
yz

− m(3)yG3 zG3 = 0 − 0.6(0.5)(0) = 0



9.5 Moments of inertia 433

Rod 4:

I(4)
x = I(4)

G4

)
x
+ m(4)(y2

G4
+ z2

G4
) = 1

12
· 0.4 · 0.22 + 0.4(0.42 + 0) = 0.06533 kg · m2

I(4)
y = I(4)

G4

)
y
+ m(4)(x2

G4
+ z2

G4
) = 0 + 0.4(0.32 + 0) = 0.0360 kg · m2

I(4)
z = I(4)

G4

)
z
+ m(4)(x2

G4
+ y2

G4
) = 1

12
· 0.4 · 0.22 + 0.4(0.32 + 0.42) = 0.1013 kg · m2

I(4)
xy = I(4)

G4

)
xy

− m(4)xG4 yG4 = 0 − 0.4(0.3)(0.4) = −0.0480 kg · m2

I(4)
xy = I(4)

G4

)
xy

− m(4)xG4 yG4 = 0 − 0.4(0.3)(0.4) = −0.0480 kg · m2

I(4)
xz = I(4)

G4

)
xz

− m(4)xG4 zG4 = 0 − 0.4(0.3)(0) = 0

I(4)
yz = I(4)

G4

)
yz

− m(4)yG4 zG4 = 0 − 0.4(0.4)(0) = 0

The total moments of inertia for all four rods are

Ix =
4∑

i=1

I(i)
x = 0.3413 kg · m2 Iy =

4∑
i=1

I(i)
y = 0.09667 kg · m2

Iz =
4∑

i=1

I(i)
z = 0.3527 kg · m2 Ixy =

4∑
i=1

I(i)
xy = −0.0930 kg · m2 (d)

Ixz =
4∑

i=1

I(i)
xz = 0 Iyz =

4∑
i=1

I(i)
yz = 0

The coordinates of the center of mass of the system of four rods are, from (a), (b)
and (c),

xG = 1

m

4∑
i=1

m(i)xGi = 1

2.8
· 0.21 = 0.075 m

yG = 1

m

4∑
i=1

m(i)yGi = 1

2.8
· 0.71 = 0.2536 m (e)

zG = 1

m

4∑
i=1

m(i)zGi = 1

2.8
· 0.16 = 0.05714 m

We use the parallel axis theorems to shift the moments of inertia in (d) to the center
of mass G of the system:

IGx = Ix − m(y2
G + z2

G) = 0.3413 − 0.1892 = 0.1522 kg · m2

IGy = Iy − m(x2
G + z2

G) = 0.09667 − 0.02489 = 0.07177 kg · m2

IGz = Iz − m(x2
G + y2

G) = 0.3527 − 0.1958 = 0.1569 kg · m2

IGxy = Ixy + mxGyG = −0.093 + 0.05325 = −0.03975 kg · m2

IGxz = Ixz + mxGzG = 0 + 0.012 = 0.012 kg · m2

IGyz = Iyz + myGzG = 0 + 0.04057 = 0.04057 kg · m2
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(Example 9.11
continued)

Therefore the inertia tensor, relative to the center of mass, is

[I] =

IGx IGxy IGxz

IGxy IGy IGyz

IGxz IGyz IGz


 =


 0.1522 −0.03975 0.012

−0.03975 0.07177 0.04057
0.012 0.04057 0.1569


 (kg · m2) (f)

To find the three principal moments of inertia, we set
0.1522 − λ −0.03975 0.012

−0.03975 0.07177 − λ 0.04057
0.012 0.04057 0.1569 − λ


 = 0

from which we obtain the characteristic equation

−λ3 + 0.3808λ2 − 0.04268λ + 0.001166 = 0

The three roots are the principal moments of inertia,

λ1 = 0.04023 kg · m2 λ2 = 0.1658 kg · m2 λ3 = 0.1747 kg · m2 (g)

We substitute each of these principal values, in turn, into the equation,


0.1522 − λp −0.03975 0.012

−0.03975 0.07177 − λp 0.04057
0.012 0.04057 0.1569 − λp






v
(p)
x

v
(p)
y

v
(p)
z


 =




0
0
0


 (h)

in order to determine the components of the three principal vectors v(p), p = 1, 2, 3.

λ1 = 0.04023:

Equation (h) becomes
 0.1119 −0.03975 0.012

−0.03975 0.03154 0.04057
0.012 0.04057 0.1166






v
(1)
x

v
(1)
y

v
(1)
z


 =




0
0
0




We can arbitrarily set v
(1)
x = 1, so that the first two equations become

−0.03975v(1)
y + 0.012v(1)

z = −0.1119

0.03154v(1)
y + 0.04057v(1)

z = 0.03975

Solving for v
(1)
y and v

(1)
z yields v

(1)
y = 2.520 and v

(1)
z = −0.9794, so that

v(1) = î + 2.520ĵ − 0.9794k̂ ‖v(1)‖ = 2.883

Normalizing this vector and calling it î1, we get

î1 = v(1)

‖v(1)‖ = 0.3470î + 0.8742ĵ − 0.3397k̂ (i)
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λ2 = 0.1658:

Equation (h) becomes


−0.0137 −0.03975 0.012

−0.03975 −0.09408 0.04057
0.012 0.04057 −0.008968






v
(2)
x

v
(2)
y

v
(2)
z


 =




0
0
0




Repeating the above procedure, we obtain v(2) = î − 0.1625ĵ + 0.6030k̂, so that

î2 = v(2)

‖v(2)‖ = 0.8482î − 0.1378ĵ + 0.5115k̂

λ3 = 0.1747:

The third principal vector î3 is the cross product of the first two:

î3 = î1 × î2 = 0.4003î − 0.4656ĵ − 0.7893k̂

Check this result to see that it satisfies Equation (h):
0.1522 − 0.1747 −0.03975 0.012

−0.03975 0.07177 − 0.1747 0.04057
0.012 0.04057 0.1569 − 0.1747






0.4003
−0.4656
−0.7893




√
=




0
0
0




9.6 Euler’s equations

For either the center of mass G or a fixed point P about which the body is in pure
rotation, we know from Equations 9.29 and 9.30 that

Mnet = Ḣ (9.64)

Using a co-moving coordinate system, with angular velocity � and its origin located
at the point (G or P), the angular momentum has the analytical expression

H = Hx î + Hy ĵ + Hz k̂ (9.65)

We shall henceforth assume, for simplicity, that

(a) The moving xyz axes are the principal axes of inertia, and (9.66a)

(b) The moments of inertia relative to xyz are constant in time. (9.66b)

Equations 9.42 and 9.66a imply that

H = Aωx î + Bωy ĵ + Cωz k̂ (9.67)

where A, B and C are the principal moments of inertia.
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According to Equation 1.28, the time derivative of H is Ḣ = Ḣ)rel + � × H, so
that Equation 9.64 can be written

Mnet = Ḣ
)

rel + � × H (9.68)

Keep in mind that, whereas � (the angular velocity of the moving xyz coordinate sys-
tem) and ω (the angular velocity of the rigid body itself) are both absolute kinematic
quantities, Equation 9.68 contains their components as projected onto the axes of the
non-inertial xyz frame,

ω = ωx î + ωy ĵ + ωz k̂

� = �x î + �y ĵ + �z k̂

The absolute angular acceleration α is obtained using Equation 1.28,

α = ω̇ =

αrel︷ ︸︸ ︷
dωx

dt
î + dωy

dt
ĵ + dωz

dt
k̂ + � × ω

that is,

α = (ω̇x + �yωz − �zωy)î + (ω̇y + �zωx − �xωz)ĵ + (ω̇z + �xωy − �yωx)k̂ (9.69)

Clearly, it is generally true that

αx �= ω̇x αy �= ω̇y αz �= ω̇z

From Equations 1.29 and 9.67

Ḣ
)

rel = d(Aωx)

dt
î + d(Bωy)

dt
ĵ + d(Cωz)

dt
k̂

Since A, B and C are constant, this becomes

Ḣ
)

rel = Aω̇x î + Bω̇y ĵ + Cω̇z k̂ (9.70)

Substituting Equations 9.67 and 9.70 into Equation 9.68 yields

Mnet = Aω̇x î + Bω̇y ĵ + Cω̇z k̂ +
∣∣∣∣∣∣

î ĵ k̂
�x �y �z

Aωx Bωy Cωz

∣∣∣∣∣∣
Expanding the cross product and collecting terms leads to

Mxnet = Aω̇x + C�yωz − B�zωy

Mynet = Bω̇y + A�zωx − C�xωz (9.71)

Mznet = Cω̇z + B�xωy − A�yωx

If the co-moving frame is a rigidly attached body frame, then its angular velocity is
the same as that of the body, i.e., � = ω. In that case, Equations 9.68 reduce to Euler’s
equations of motion,

Mnet = Ḣ
)

rel + ω × H (9.72a)



9.6 Euler’s equations 437

the three components of which are obtained from Equation 9.71,

Mxnet = Aω̇x + (C − B)ωyωz

Mynet = Bω̇y + (A − C)ωzωx (9.72b)

Mznet = Cω̇z + (B − A)ωxωy

Equation 9.68 is sometimes referred to as the modified Euler equation.
When � = ω, it follows from Equation 9.69 that

ω̇x = αx ω̇y = αy ω̇z = αz (9.73)

That is, the relative angular acceleration equals the absolute angular acceleration when
� = ω. Rather than calculating the time derivatives ω̇x , ω̇y and ω̇z for use in Equation
9.72, we may in this case first compute α in the absolute XYZ frame

α = dω

dt
= dωX

dt
Î + dωY

dt
Ĵ + dωZ

dt
K̂,

and then project these components onto the xyz body frame, so that


ω̇x

ω̇y

ω̇z


 = [Q]Xx




dωX/dt
dωY /dt
dωZ/dt


 (9.74)

where [Q]Xx is the time-dependent orthogonal transformation from the inertial XYZ
frame to the non-inertial xyz frame.

Example
9.12

Calculate the net moment on the solar panel of Examples 9.2 and 9.8.

z

x

y

l

θ

O

d0

G
x' y'

z'

N

MGnet

Fnet

w/2
w/2

Figure 9.16 Free-body diagram of the solar panel in Examples 9.2 and 9.8.

Since the co-moving frame is rigidly attached to the panel, Euler’s equation (Equation
9.72) applies to this problem,

MGnet = ḢG
)

rel + ω × HG (a)

where

HG = Aωx î + Bωy ĵ + Cωz k̂ (b)
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(Example 9.12
continued)

and

ḢG
)

rel = Aω̇x î + Bω̇y ĵ + Cω̇z k̂ (c)

In Example 9.2, the angular velocity of the panel in the satellite’s x′y′z′ frame was
found to be

ω = −θ̇ ĵ′ + N k̂′ (d)

In Example 9.8, the transformation from the panel’s xyz frame to that of the satellite
was shown to be represented by the matrix

[Q] =

−sin θ 0 cos θ

0 −1 0
cos θ 0 sin θ


 (e)

We use the transpose of [Q] to transform the components of ω into the panel frame
of reference,

{ω}xyz = [Q]T {ω}x′y′z′ =

−sin θ 0 cos θ

0 −1 0
cos θ 0 sin θ






0
−θ̇

N


 =




N cos θ

θ̇

N sin θ




or

ωx = N cos θ ωy = θ̇ ωz = N sin θ (f)

In Example 9.2, N and θ̇ were said to be constant. Therefore, the time derivatives of
(f) are

ω̇x = d(N cos θ)

dt
= −N θ̇ sin θ

ω̇y = dθ̇

dt
= 0 (g)

ω̇z = d(N sin θ)

dt
= N θ̇ cos θ

In Example 9.8 the moments of inertia in the panel frame of reference were listed as

A = 1

12
m(l2 + t2) B = 1

12
m(w2 + t2) C = 1

12
m(w2 + l2)

(IGxy = IGxz = IGyz = 0) (h)

Substituting (b), (c), (f), (g) and (h) into (a) yields,

MGnet = 1
12 m(l2 + t2)(−N θ̇ sin θ)î + 1

12 m(w2 + t2) · 0 · ĵ

+ 1
12 m(w2 + l2)(N θ̇ cos θ)k̂

+
∣∣∣∣∣∣

î ĵ k̂
N cos θ θ̇ N sin θ

1
12 m(l2 + t2)(N cos θ) 1

12 m(w2 + t2)θ̇ 1
12 m(w2 + l2)(N sin θ)

∣∣∣∣∣∣
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Upon expanding the cross product and collecting terms, this reduces to

MGnet = − 1
6 mt2N θ̇ sin θ î + 1

24 m(t2 − w2)N2 sin 2θ ĵ + 1
6 mw2N θ̇ cos θ k̂

Using the numerical data of Example 9.8 (m = 50 kg, N = 0.1 rad/s, θ = 40◦,
θ̇ = 0.01 rad/s, l = 6 m, w = 2 m and t = 0.025 m), we get

MGnet = −3.348 × 10−6 î − 0.08205ĵ + 0.02554k̂ (N · m)

Example
9.13

Calculate the net moment on the gyro rotor of Examples 9.3 and 9.6.
Figure 9.17 is a free-body diagram of the rotor. Since in this case the co-moving frame
is not rigidly attached to the rotor, we must use Equation 9.68 to find the net moment
about G,

MGnet = ḢG
)

rel + � × HG (a)

where

HG = Aωx î + Bωy ĵ + Cωz k̂ (b)

and

ḢG
)

rel = Aω̇x î + Bω̇y ĵ + Cω̇z k̂ (c)

Z

z

x

y

G

θ

r

N

MGnet

Fnet
t

ωspin

Figure 9.17 Free-body diagram of the gyro rotor of Examples 9.3 and 9.6.

From Equation (h) of Example 9.3 we know that the components of the angular
velocity of the rotor in the moving reference frame are

ωx = θ̇

ωy = N sin θ (d)

ωz = ωspin + N cos θ
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(Example 9.13
continued)

Since, as specified in Example 9.3, θ̇ , N and ωspin are all constant, it follows that

ω̇x = dθ̇

dt
= 0

ω̇y = d(N sin θ)

dt
= N θ̇ cos θ (e)

ω̇z = d(ωspin + N cos θ)

dt
= −N θ̇ sin θ

The angular velocity � of the co-moving xyz frame is that of the gimbal ring, which
equals the angular velocity of the rotor minus its spin. Therefore,

�x = θ̇

�y = N sin θ (f)

�z = N cos θ

In Example 9.6 we found that

A = B = 1

12
mt2 + 1

4
mr2

(g)

C = 1

2
mr2

Substituting (b) through (g) into (a), we get

MGnet = (
1

12 mt2 + 1
4 mr2) · 0î + (

1
12 mt2 + 1

4 mr2)(N θ̇ cos θ)ĵ

+ 1
2 mr2(−N θ̇ sin θ)k̂

+

∣∣∣∣∣∣∣
î ĵ k̂

θ̇ N sin θ N cos θ(
1

12 mt2 + 1
4 mr2

)
θ̇

(
1

12 mt2 + 1
4 mr2

)
N sin θ 1

2 mr2(ωspin + N cos θ)

∣∣∣∣∣∣∣
Expanding the cross product, collecting terms, and simplifying leads to

MGnet =
[

1

2
ωspin + 1

12

(
3 − t2

r2

)
N cos θ

]
mr2N sin θ î

+
(

1

6

t2

r2
N cos θ − 1

2
ωspin

)
mr2θ̇ ĵ − 1

2
N θ̇ sin θmr2k̂ (h)

In Example 9.3 the following numerical data was provided: m = 5 kg, r = 0.08 m,
t = 0.025 m, N = 2.1 rad/s, θ = 60◦, θ̇ = 4 rad/s and ωspin = 105 rad/s. For this set of
numbers, (h) becomes

MGnet = 0.3203î − 0.6698ĵ − 0.1164k̂ (N · m)
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9.7 Kinetic energy

The kinetic energy T of a rigid body is the integral of the kinetic energy 1
2v2dm of its

individual mass elements,

T =
∫

m

1

2
v2dm =

∫
m

1

2
v · vdm (9.75)

where v is the absolute velocity Ṙ of the element of mass dm. From Figure 9.7 we
infer that Ṙ = ṘG + �̇. Furthermore, Equation 1.24 requires that �̇ = ω × �. Thus,
v = vG + ω × �, which means

v · v = [vG + ω × �] · [vG + ω × �] = v2
G + 2vG · (ω × �) + (ω × �) · (ω × �)

We can apply the vector identity introduced in Equation 2.32,

A · (B × C) = B · (C × A) (9.76)

to the last term to get

v · v = v2
G + 2vG · (ω × �) + ω · [� × (ω × �)]

Therefore, Equation 9.75 becomes

T =
∫

m

1

2
v2

Gdm + vG ·
(

ω ×
∫

m
�dm

)
+ 1

2
ω ·

∫
m
� × (ω × �)dm

Since � is measured from the center of mass,
∫

m �dm = 0. Recall that, according to
Equation 9.34, ∫

m
� × (ω × �)dm = HG

It follows that the kinetic energy may be written

T = 1

2
mv2

G + 1

2
ω · HG (9.77)

The second term is the rotational kinetic energy TR,

TR = 1

2
ω · HG (9.78)

If the body is rotating about a point P which is at rest in inertial space, we have from
Equation 9.2 and Figure 9.7 that

vG = vP + ω × rG/P = 0 + ω × rG/P = ω × rG/P

It follows that

v2
G = vG · vG = (ω × rG/P) · (ω × rG/P)
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Making use once again of the vector identity in Equation 9.76, we find

v2
G = ω · [rG/P × (ω × rG/P)] = ω · (rG/P × vG)

Substituting this into Equation 9.77 yields

T = 1

2
ω · [HG + rG/P × mvG]

Equation 9.21 shows that this can be written

T = 1

2
ω · HP (9.79)

In this case, of course, all of the kinetic energy is rotational.
In terms of the components of ω and H, whether it is HP or HG, the rotational

kinetic energy expression becomes, with the aid of Equation 9.39,

TR = 1

2
(ωxHx + ωyHy + ωzHz)

= 1

2
�ωx ωy ωz�


 Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz






ωx

ωy

ωz




Expanding, we obtain

TR = 1

2
Ixω

2
x + 1

2
Iyω

2
y + 1

2
Izω

2
z + Ixyωxωy + Ixzωxωz + Iyzωyωz (9.80)

Obviously, if the xyz axes are principal axes of inertia, then Equation 9.80 simplifies
considerably,

TR = 1

2
Aω2

x + 1

2
Bω2

y + 1

2
Cω2

z (9.81)

Example
9.14

A satellite in circular geocentric orbit of 300 km altitude has a mass of 1500 kg,
and the moments of inertia relative to a body frame with origin at the center of
mass G are

[I] =

 2000 −1000 2500

−1500 3000 −1500
2500 −1500 4000


 (kg · m2)

If at a given instant the components of angular velocity in this frame of reference are

ω = 1î − 0.9ĵ + 1.5k̂ (rad/s)

calculate the total kinetic energy of the satellite.

The speed of the satellite in its circular orbit is

v =
√

µ

r
=

√
398 600

6378 + 300
= 7.7258 km/s
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The angular momentum of the satellite is

{HG} = [IG]{ω} =

 2000 −1000 2500

−1500 3000 −1500
2500 −1500 4000






1
−0.9
1.5


 =




6650
−5950

9850


 (kg · m2/s)

Therefore, the total kinetic energy is

T = 1

2
mv2

G + 1

2
ω · HG = 1

2
· 1500 · 7725.82 + 1

2
[1 −0.9 1.5]




6650
−5950

9850




= 44.766 × 106 + 13 390

T = 44.766 MJ

Obviously, the kinetic energy is dominated by that due to the orbital motion.

9.8 The spinning top

Let us analyze the motion of the simple axisymmetric top in Figure 9.18. It is
constrained to rotate about point O.

The moving coordinate system is chosen to have its origin at O. The z axis is
aligned with the spin axis of the top (the axis of rotational symmetry). The x axis
is the node line, which passes through O and is perpendicular to the plane defined

ˆ j 

Z

Ymg

d

G

φ

O

x

y

z

X
î

ˆ k 

ˆ I 

Ĵ

ˆ K 

θ
ωp � φ

ωs ⋅

ωn � θ
⋅

Figure 9.18 Simple top rotating about the fixed point O.
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by the inertial Z axis and the spin axis of the top. The y axis is then perpendicular

to x and z, such that ĵ = k̂ × î. By symmetry, the moment of inertia matrix of the
top relative to the xyz frame is diagonal, with Ix = Iy = A and Iz = C . It is likely that
A > C. From Equations 9.68 and 9.70, we have

M0net = Aω̇x î + Aω̇y ĵ + Cω̇z k̂ +
∣∣∣∣∣∣

î ĵ k̂
�x �y �z

Aωx Aωy Cωz

∣∣∣∣∣∣ (9.82)

The angular velocity ω of the top is the vector sum of the spin rate ωs and the rates
of precession ωp and nutation ωn, where

ωp = φ̇ ωn = θ̇ (9.83)

Thus

ω = ωn î + ωpK̂ + ωsk̂

From the geometry it follows that

K̂ = sin θ ĵ + cos θ k̂ (9.84)

Therefore, relative to the co-moving system,

ω = ωn î + ωp sin θ ĵ + (ωs + ωp cos θ)k̂ (9.85)

From Equation 9.85 we see that

ωx = ωn ωy = ωp sin θ ωz = ωs + ωp cos θ (9.86)

Computing the time rates of these three expressions yields the components of angular
acceleration relative to the xyz frame,

ω̇x = ω̇n ω̇y = ω̇p sin θ + ωpωn cos θ ω̇z = ω̇s + ω̇p cos θ − ωpωn sin θ (9.87)

The angular velocity � of the xyz system is � = ωpK̂ + ωn î, so that, using Equation
9.84,

� = ωn î + ωp sin θ ĵ + ωp cos θ k̂ (9.88)

From Equation 9.88 we obtain

�x = ωn �y = ωp sin θ �z = ωp cos θ (9.89)

The moment about O in Figure 9.18 is that of the weight vector acting through the
center of mass G:

M0net = (dk̂) × (−mgK̂) = −mgdk̂ × (sin θ ĵ + cos θ k̂)

or

M0net = mgd sin θ î (9.90)
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Substituting Equations 9.86, 9.87, 9.89 and 9.90 into Equation 9.82, we get

mgd sin θ î = Aω̇n î + A(ω̇p sin θ + ωpωn cos θ)ĵ + C(ω̇s + ω̇p cos θ − ωpωn sin θ)k̂

+
∣∣∣∣∣∣

î ĵ k̂
ωn ωp sin θ ωp cos θ

Aωn Aωp sin θ C(ωs + ωp cos θ)

∣∣∣∣∣∣ (9.91)

Let us consider the special case in which θ = constant, i.e., there is no nutation, so
that ωn = ω̇n = 0. Then Equation 9.91 reduces to

mgd sin θ î = Aω̇p sin θ ĵ + C(ω̇s + ω̇p cos θ)k̂

+
∣∣∣∣∣∣

î ĵ k̂
0 ωp sin θ ωp cos θ

0 Aωp sin θ C(ωs + ωp cos θ)

∣∣∣∣∣∣ (9.92)

Expanding the determinant yields

mgd sin θ î = Aω̇p sin θ ĵ + C(ω̇s + ω̇p cos θ)k̂

+ [Cωpωs sin θ + (C − A)ω2
p cos θ sin θ]î

Equating the coefficients of î, ĵ and k̂ on each side of the equation leads to

mgd sin θ = Cωpωs sin θ + (C − A) ω2
p cos θ sin θ (9.93a)

0 = Aω̇p sin θ (9.93b)

0 = C(ω̇s + ω̇p cos θ) (9.93c)

Equation 9.93b implies ω̇p = 0, and from Equation 9.93c it follows that ω̇s = 0. There-
fore, the rates of spin and precession are both constant. From Equation 9.93a we find

(A − C) cos θω2
p − Cωsωp + mgd = 0 (0 < θ < 180◦) (9.94)

If the spin rate is zero, Equation 9.94 yields

ωp
)
ωs=0 = ±

√
mgd

(C − A) cos θ
if (A − C) cos θ < 0 (9.95)

In this case, the top rotates about O at this rate, without spinning. If A > C (prolate),
its symmetry axis must make an angle between 90◦ and 180◦ to the vertical; otherwise
ωp is imaginary. On the other hand, if A < C (oblate), the angle lies between 0◦ and
90◦. Thus, in steady rotation without spin, the top’s axis sweeps out a cone which lies
either below the horizontal plane (A > C) or above the plane (A < C).

In the special case (A − C) cos θ = 0, Equation 9.94 yields a steady precession rate
which is inversely proportional to the spin rate,

ωp = mgd

Cωs
if (A − C) cos θ = 0 (9.96)
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If A = C, this precession apparently occurs irrespective of tilt angle θ . If A �= C,
this rate of precession occurs at θ = 90◦, i.e., the spin axis is perpendicular to the
precession axis.

In general, Equation 9.94 is a quadratic equation in ωp, so we can use the quadratic
formula to find

ωp = C

2(A − C) cos θ

(
ωs ±

√
ω2

s − 4mgd(A − C) cos θ

C2

)
(9.97)

Thus, for a given spin rate and tilt angle θ (θ �= 90◦), there are two rates of
precession φ̇.

Observe that if (A − C) cos θ > 0, then ωp is imaginary when ω2
s < 4mgd(A − C)

cos θ/C2. Therefore, the minimum spin rate required for steady precession at a
constant inclination θ is

ωs)min = 2

C

√
mgd(A − C) cos θ if (A − C) cos θ > 0 (9.98)

If (A − C) cos θ < 0, the radical in Equation 9.97 is real for all ωs. In this case, as
ωs → 0, ωp approaches the value given above in Equation 9.95.

Example
9.15

For the top of Figure 9.18, let m = 0.5 kg, A(= Ix = Iy) = 12 × 10−4 kg · m2,
C(= Iz) = 4.5 × 10−4 kg · m2 and d = 0.05 m. For an inclination of, say, 60◦,
(A − C) cos θ > 0 so that Equation 9.98 requires ωs)min = 407.01 rpm. Let us choose
the spin rate to be ωs = 1000 rpm = 104.7 rad/s. Then, from Equation 9.97, the pre-
cession rate as a function of the inclination θ is given by either one of the following
formulas

ωp = 31.42
1 + √

1 − 0.3312 cos θ

cos θ
and ωp = 31.42

1 − √
1 − 0.3312 cos θ

cos θ
(a)

These are plotted in Figure 9.19.
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Figure 9.19 (a) High-energy precession rate (unlikely to be observed). (b) Low energy precession rate (the

one most always seen).
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Figure 9.20 A spinning rotor on a rotating platform.

Figure 9.20 shows an axisymmetric rotor mounted so that its spin axis (z) remains
perpendicular to the precession axis (y). In that case Equation 9.85 with θ = 90◦
yields

ω = ωp ĵ + ωsk̂ (9.99)

Likewise, from Equation 9.88, the angular velocity of the co-moving xyz sys-
tem is � = ωp ĵ. If we assume that the spin rate and precession rate are constant
(dωp/dt = dωs/dt = 0), then Equation 9.68, written for the center of mass G,
becomes

MGnet = � × H = (ωp ĵ) × (Aωp ĵ + Cωsk̂) (9.100)

where A and C are the moments of inertia of the rotor about the x and z axes,
respectively. Setting Cωsk̂ = Hs, the spin angular momentum, and ωp ĵ = ωp, we
obtain

MGnet = ωp × Hs (Hs = Cωsk̂) (9.101)

This is the gyroscope equation, which is similar to Equation 9.96. Since the center
of mass is the reference point, there is no restriction on the motion G for which
Equation 9.101 is valid. Observe that the net gyroscopic moment MGnet exerted on the
rotor by its supports is perpendicular to the plane of the spin and precession vectors.
If a spinning rotor is forced to precess, the gyroscopic moment MGnet develops. Or, if
a moment is applied normal to the spin axis of a rotor, it will precess so as to cause
the spin axis to turn towards the moment axis.

Example
9.16

A uniform cylinder of radius r, length L and mass m spins at a constant angular
velocity ωp. It rests on simple supports, mounted on a platform which rotates at an
angular velocity of ωp. Find the reactions at A and B. Neglect the weight (i.e., calculate
the reactions due just to gyroscopic effects).
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(Example 9.16
continued)
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Figure 9.21 Illustration of the gyroscopic effect.

The net vertical force on the cylinder is zero, so the reactions at each end are equal
and opposite in direction, as shown on the free-body diagram insert in Figure 9.21.
Noting that the moment of inertia of a uniform cylinder about its axis of rotational
symmetry is 1

2 mr2, Equation 9.101 yields

RLî = (ωp ĵ) ×
(

1

2
mr2ωsk̂

)
= 1

2
mr2ωpωs î

so that,

R = mr2ωpωs

2L

9.9 Euler angles

Three angles are required to specify the orientation of a rigid body relative to an
inertial frame. The choice is not unique, but there are two sets in common use: the
Euler angles and the yaw, pitch and roll angles. We will discuss each of them in turn.

The three Euler angles give the orientation of a rigid, orthogonal xyz frame of
reference relative to the XYZ inertial frame of reference. The orthogonal triad of unit
vectors parallel to the inertial axes XYZ are Î, Ĵ and K̂, respectively. The orthogonal

triad of unit vectors lying along the axes of the xyz frame are î, ĵ and k̂, respectively.

Figure 9.22 shows the ÎĴK̂ triad and the îĵk̂ triad, along with the three successive
rotations required to bring unit vectors initially aligned with ÎĴK̂ into alignment with

îĵk̂. Since we are interested only in the relative orientation of the two frames, we can,
for simplicity and without loss of generality, show the two frames sharing a common
origin.

The xy plane intersects the XY plane along a line (the node line) defined by
the unit vector î′ in the figure. The first rotation, ①, is around the K̂ axis, through
the Euler angle φ. It rotates the Î, Ĵ directions into the î′, ĵ′ directions. Viewed down the
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Figure 9.22 The Euler angles.

Z axis, this rotation appears as shown in the insert at the top of Figure 9.22, from
which we see that

î′ = cos φÎ + sin φĴ

ĵ′ = −sin φÎ + cos φĴ

k̂′ = K̂

or 


î′
ĵ′
k̂′


 =


 cos φ sin φ 0

−sin φ cos φ 0
0 0 1






Î
Ĵ
K̂




Therefore, the orthogonal transformation matrix associated with this rotation is

[R3(φ)] =

 cos φ sin φ 0

−sin φ cos φ 0
0 0 1


 (9.102)
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Recall from Section 4.5 that the subscript on R denotes that the rotation is around
the ‘3’ direction, in this case the K̂ axis.

The second Euler rotation, ②, is around the node line (î′), through the angle θ

required to bring the XY plane parallel to the xy plane. In other words, it rotates the
Z axis into alignment with the z axis, and ĵ′ simultaneously rotates into ĵ′′. The insert
in the lower right of Figure 9.22 shows how this rotation appears when viewed from
the î′ direction. From that illustration we can deduce that

î′′ = î′

ĵ′′ = cos θ ĵ′ + sin φK̂

k̂ = −sin φ ĵ′ + cos φK̂

or 


î′′
ĵ′′
k̂


 =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ






î′
ĵ′
K̂


 (9.103)

Clearly, the orthogonal transformation matrix for this rotation is

[R1(θ)] =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 (9.104)

Since the inverse of an orthogonal matrix is just its transpose, the inverse of Equation
9.103 is 


î′
ĵ′
K̂


 =


1 0 0

0 cos θ −sin θ

0 sin θ cos θ






î′′
ĵ′′
k̂




from which we get the particular result needed below, namely,

K̂ = sin θ ĵ′′ + cos θ k̂ (9.105)

The third and final Euler rotation, ③, is in the xy plane and rotates the unit vectors î′
and ĵ′′ through the angle ψ around the z axis so that they become aligned with î and
ĵ, respectively. This rotation appears from the z direction as shown in the insert on
the left of Figure 9.22. From that picture, we observe that

î = cos ψ î′ + sin ψ ĵ′′

ĵ = −sin ψ î′ + cos ψ ĵ′′

k̂ = k̂

or 


î
ĵ

k̂


 =


 cos ψ sin ψ 0

−sin ψ cos ψ 0
0 0 1






î′
ĵ′′
k̂


 (9.106)
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From this, the orthogonal transformation matrix is seen to be

[R3(ψ)] =

 cos ψ sin ψ 0

−sin ψ cos ψ 0
0 0 1


 (9.107)

The inverse of Equations 9.106 is


î′
ĵ′′
k̂


 =


cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1






î
ĵ

k̂




from which we obtain

î′ = cos ψ î − sin ψ ĵ (9.108a)

ĵ′′ = sin ψ î + cos ψ ĵ (9.108b)

Substituting Equation 9.108b into Equation 9.105 yields another result we will need
below,

K̂ = sin θ sin ψ î + sin θ cos ψ ĵ + cos θ k̂ (9.109)

The time rates of change of the Euler angles φ, θ and ψ are, respectively, the precession
ωp, the nutation ωn and the spin ωs. That is,

ωp = φ̇ ωn = θ̇ ωs = ψ̇ (9.110)

If the absolute angular velocity ω of the rigid xyz frame is resolved into components
ωx , ωy and ωz along the xyz axes, we can express it analytically as

ω = ωx î + ωy ĵ + ωz k̂ (9.111)

On the other hand, in terms of the precession, nutation and spin, the absolute angular
velocity can be written in terms of the non-orthogonal Euler angle rates

ω = ωpK̂ + ωn î′ + ωsk̂ (9.112)

Substituting Equations 9.108a and 9.109 yields

ω = (ωp sin θ sin ψ + ωn cos ψ)î + (ωp sin θ cos ψ − ωn sin ψ)ĵ

+ (ωs + ωp cos θ)k̂ (9.113)

Comparing Equations 9.111 and 9.113, we see that

ωx = ωp sin θ sin ψ + ωn cos ψ

ωy = ωp sin θ cos ψ − ωn sin ψ (9.114)

ωz = ωs + ωp cos θ
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We can solve these three equations to obtain the Euler rates in terms of ωx , ωy and ωz :

ωp = φ̇ = 1

sin θ
(ωx sin ψ + ωy cos ψ)

ωn = θ̇ = ωx cos ψ − ωy sin ψ (9.115)

ωs = ψ̇ = − 1

tan θ
(ωx sin ψ + ωy cos ψ) + ωz

Observe that if ωx , ωy and ωz are given functions of time, found by solving Euler’s
equations of motion (Equations 9.72), then Equations 9.115 are three coupled differ-
ential equations which may be solved to obtain the three time-dependent Euler angles

φ = φ(t) θ = θ(t) ψ = ψ(t)

With this solution, the orientation of the xyz frame, and hence the body to which it
is attached, is known for any given time t . Note, however, that Equations 9.115 ‘blow
up’ when θ = 0, i.e., when the xy plane is parallel to the XY plane.

Finally, let us note that the transformation matrix [Q]Xx from the inertial XYZ
frame into the moving xyz frame is just the product of the three rotation matrices
given by Equations 9.102, 9.104 and 9.107, i.e.,

[Q]Xx = [R3(ψ)][R1(θ)][R3(φ)] (9.116)

Substituting the three matrices on the right and carrying out the matrix multiplica-
tions yields

[Q]Xx =

 cos φ cos ψ − sin φ sin ψ cos θ sin φ cos ψ + cos φ cos θ sin ψ sin θ sin ψ

−cos φ sin ψ − sin φ cos θ cos ψ −sin φ sin ψ + cos φ cos θ cos ψ sin θ cos ψ

sin φ sin θ −cos φ sin θ cos θ




(9.117)

Remember, this is an orthogonal matrix, so that for the inverse transformation from
xyz to XYZ we have [Q]xX = ([Q]Xx)T , or

[Q]xX =

cos φ cos ψ − sin φ sin ψ cos θ −cos φ sin ψ − sin φ cos θ cos ψ sin φ sin θ

sin φ cos ψ + cos φ cos θ sin ψ −sin φ sin ψ + cos φ cos θ cos ψ −cos φ sin θ

sin θ sin ψ sin θ cos ψ cos θ




(9.118)

Example
9.17

At a given instant, the unit vectors of a body-fixed frame are

î = 0.40825Î − 0.40825Ĵ + 0.8165K̂

ĵ = −0.10102Î − 0.90914Ĵ − 0.40406K̂ (a)

k̂ = 0.90726Î + 0.082479Ĵ − 0.41239K̂

and the angular velocity is

ω = −3.1Î + 2.5Ĵ + 1.7K̂ (rad/s) (b)

Calculate ωp, ωn and ωs (the precession, nutation and spin rates) at this instant.
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We will ultimately use Equations 9.115 to find ωp, ωn and ωs. To do so we must
first obtain the Euler angles φ, θ and ψ as well as the components of the angular
velocity in the body frame.

The procedure for determining φ, θ and ψ is practically identical to that used
to obtain the orbital elements i, �, and ω of a satellite orbit from its state vector
(Algorithm 4.1). Referring to Figure 9.22, we first note that the angle between k̂ and
K̂ is the inclination angle θ , so that

θ = cos−1 kZ = cos−1(−0.41239) = 114.36◦ (c)

θ lies between 0◦ and 180◦.
The ‘node’ vector N points in the direction of î′ in Figure 9.22, and it is found by

taking the cross product of K̂ into k̂,

N = K̂ × k̂ =
∣∣∣∣∣∣

Î Ĵ K̂
0 0 1

0.90726 0.082479 −0.41239

∣∣∣∣∣∣
= −0.082479Î + 0.90726Ĵ (‖N‖ = 0.911) (d)

The precession angle φ (analogous to RA of the ascending node �) is measured from
the X axis positive towards N. Therefore, taking care to place φ in the proper quadrant,

φ =




cos−1 NX

‖N‖ if NY ≥ 0

360◦ − cos−1 NX

‖N‖ if NY < 0
(e)

Substituting (d), noting that in this case NY = 0.90276 > 0, we get

φ = cos−1 −0.082479

0.9110
= 95.194◦ (f)

The spin angle ψ is measured positive from N to î in Figure 9.22. It plays the same role
here as argument of perigee does for satellites. We can find the angle between N and î
by using the dot product operation, again being careful to put ψ in the right quadrant,

ψ =




cos−1 N · î

‖N‖ if iZ ≥ 0

360◦ − cos−1 N · î

‖N‖ if iZ < 0

(g)

From (a) we note that iZ = 0.8165 > 0, so

ψ = cos−1 (−0.082479Î + 0.90726Ĵ)·(0.40825Î − 0.40825Ĵ + 0.8165K̂)

0.9110

= cos−1
(−0.40406

0.9110

)
= 116.33◦ (h)

To transform the components of the given angular velocity vector into components
along the body frame, we need the matrix [Q]Xx of the transformation from XYZ

to xyz. The rows of [Q]Xx are the direction cosines of î, ĵ and k̂, which are given in (a).
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(Example 9.17
continued)

Thus

{ω}x = [Q]Xx{ω}X

=

 0.40825 −0.40825 0.8165

−0.10102 −0.90914 −0.40406
0.90726 0.082479 −0.41239






−3.1
2.5
1.7


 =




−0.89815
−2.6466
−3.3074


 (rad/s)

That is,

ωx = −0.89815 rad/s ωy = −2.6466 rad/s ωz = −3.3074 rad/s (i)

Finally, substituting (c), (f), (h) and (i) into Equations 9.115 yields

ωp = 1

sin 114.36◦ [−0.89815 · sin 116.33◦ + (−2.6466) · cos 116.33◦]

= 0.40492 rad/s

ωn = −0.89815 · cos 116.33◦ − (−2.6466) · sin 116.33◦ = 2.7704 rad/s

ωs = − 1

tan 114.36◦ [−0.89815 · sin 116.33◦ + (−2.6466) · cos 116.33◦]

+ (−3.3074) = −3.1404 rad/s

Example
9.18

The mass moments of inertia of a body about the principal body frame axes with
origin at the center of mass G are

A = 1000 kg · m2 B = 2000 kg · m2 C = 3000 kg · m2 (a)

The Euler angles in radians are given as functions of time in seconds as follows:

φ = 2te−0.05t

θ = 0.02 + 0.3 sin 0.25t (b)

ψ = 0.6t

At t = 0, find (a) the net moment about G and (b) the components αX , αY and αZ

of the absolute angular acceleration in the inertial frame.

(a) We must use Euler’s equations (Equations 9.72) to calculate the net moment,
which means we must first obtain ωx , ωy , ωz , ω̇x , ω̇y and ω̇z . Since we are given
the Euler angles as a function of time, we can compute their time derivatives and
then use Equation 9.114 to find the body frame angular velocity components
and their derivatives.

Starting with (b)1, we get

ωp = dφ

dt
= d

dt
(2te−0.05t ) = 2e−0.05t − 0.1te−0.05t

ω̇p = dωp

dt
= d

dt
(2e−0.05t − 0.1e−0.05t ) = −0.2e−0.05t + 0.005te−0.05t
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Proceeding to the remaining two Euler angles leads to

ωn = dθ

dt
= d

dt
(0.02 + 0.3 sin 0.25t) = 0.075 cos 0.25t

ω̇n = dωn

dt
= d

dt
(0.075 cos 0.25t) = −0.01875 sin 0.25t

ωs = dψ

dt
= d

dt
(0.6t) = 0.6

ω̇s = dωs

dt
= 0

Evaluating all of these quantities, including those in (b), at t = 0 yields

φ = 335.03◦ ωp = 0.60653 rad/s ω̇p = −0.09098 rad/s2

θ = 11.433◦ ωn = −0.06009 rad/s ω̇n = −0.011221 rad/s2 (c)

ψ = 343.77 ωs = 0.6 rad/s ω̇s = 0

Equation 9.114 relates the Euler angle rates to the angular velocity components,

ωx = ωp sin θ sin ψ + ωn cos ψ

ωy = ωp sin θ cos ψ − ωn sin ψ (d)

ωz = ωs + ωp cos θ

Taking the time derivative of each of these equations in turn leads to the following
three equations,

ω̇x = ωpωn cos θ sin ψ + ωpωs sin θ cos ψ − ωnωs sin ψ

+ ω̇p sin θ sin ψ + ω̇n cos ψ

ω̇y = ωpωn cos θ cos ψ − ωpωs sin θ sin ψ − ωnωs cos ψ (e)

+ ω̇p sin θ cos ψ − ω̇n sin ψ

ω̇z = −ωpωn sin θ + ω̇p cos θ + ω̇s

Substituting the data in (c) into (d) and (e) yields

ωx = −0.091286 rad/s ωy = 0.098649 rad/s ωz = 1.1945 rad/s

ω̇x = 0.063435 rad/s2 ω̇y = 2.2346 × 10−5 rad/s2 ω̇z = −0.08195 rad/s2

(f)

With (a) and (f) we have everything we need for Euler’s equations,

Mxnet = Aω̇x + (C − B)ωyωz

Mynet = Bω̇y + (A − C)ωzωx

Mznet = Cω̇z + (B − A)ωxωy
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(Example 9.18
continued)

from which we find

Mxnet = 181.27 N · m

Mynet = 218.12 N · m

Mznet = −254.86 N · m

(b) Since the co-moving xyz frame is a body frame, rigidly attached to the solid, we
know from Equation 9.73 that


αX

αY

αZ


 = [Q]xX




ω̇x

ω̇y

ω̇z


 (g)

In other words, the absolute angular acceleration and the relative angular accel-
eration of the body are the same. All we have to do is project the components
of relative acceleration in (f) onto the axes of the inertial frame. The required
orthogonal transformation matrix is given in Equation 9.118,

[Q]xX

=

cos φ cos ψ − sin φ sin ψ cos θ − cos φ sin ψ − sin φ cos θ cos ψ sin φ sin θ

sin φ cos ψ + cos φ cos θ sin ψ − sin φ sin ψ + cos φ cos θ cos ψ −cos φ sin θ

sin θ sin ψ sin θ cos ψ cos θ




Upon substituting the numerical values of the Euler angles from (c), this becomes

[Q]xX =

−0.90855 0.20144 0.3660

−0.29194 −0.93280 −0.21131
0.29884 −0.29884 0.90631




Substituting this and the relative angular velocity rates from (c) into (g) yields


αX

αY

αZ


 =


−0.90855 0.20144 0.3660

−0.29194 −0.93280 −0.21131
0.29884 −0.29884 0.90631






−0.027359
−0.32619

1.4532




=



0.4910
0.0051972
1.4063


 (rad/s2)

Example
9.19

Figure 9.23 shows a rotating platform on which is mounted a rectangular paral-
lelepiped shaft (with dimensions b, h and l) spinning about the inclined axis DE. If
the mass of the shaft is m, and the angular velocities ωp and ωs are constant, calculate
the bearing forces at D and E as a function of φ and ψ . Neglect gravity, since we
are interested only in the gyroscopic forces. (The small extensions shown at each end
of the parallelepiped are just for clarity; the distance between the bearings at D and
E is l.)
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Figure 9.23 Spinning block mounted on rotating platform.

The inertial XYZ frame is centered at O on the platform, and it is right-handed
(Î × Ĵ = K̂). The origin of the right-handed co-moving body frame xyz is at the shaft’s
center of mass G, and it is aligned with the symmetry axes of the parallelepiped. The
three Euler angles φ, θ and ψ are shown in Figure 9.23. Since θ is constant, the
nutation rate is zero (ωn = 0). Thus, Equations 9.114 reduce to

ωx = ωp sin θ sin ψ ωy = ωp sin θ cos ψ ωz = ωp cos θ + ωs (a)

Since ωp, ωs and θ are constant, it follows (recalling Equations 9.110) that

ω̇x = ωpωs sin θ cos ψ ω̇y = −ωpωs sin θ sin ψ ω̇z = 0 (b)

The principal moments of inertia of the parallelepiped are [see Figure 9.9(c)]

A = Ix = 1

12
m(h2 + l2)

B = Iy = 1

12
m(b2 + l2) (c)

C = Iz = 1

12
m(b2 + h2)

Figure 9.24 is a free-body diagram of the shaft. Let us assume that the bearings at D
and E are such as to exert just the six body frame components of force shown. Thus,
D is a thrust bearing to which the axial torque TD is applied from, say, a motor of
some kind. At E there is a simple journal bearing.
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(Example 9.19
continued)

G

x

y

z

b

h

TD

Dx

Dz

Dy

Ey

Ex

l /2

l /2

Figure 9.24 Free-body diagram of the block in Figure 9.23.

From Newton’s laws of motion we have Fnet = maG. But G is fixed in inertial space,
so aG = 0. Thus,

(Dx î + Dy ĵ + Dz k̂) + (Ex î + Ey ĵ) = 0

It follows that

Ex = −Dx Ey = −Dy Dz = 0 (d)

Summing moments about G we get

MGnet = l

2
k̂ × (Ex î + Ey ĵ) +

(
− l

2
k̂

)
× (Dx î + Dy ĵ) + TDk̂

=
(

Dy
l

2
− Ey

l

2

)
î +

(
−Dx

l

2
+ Ex

l

2

)
ĵ + TDk̂

= Dylî − Dxlĵ + TDk̂

where we made use of Equation (d)2. Thus,

Mxnet = Dyl Mynet = −Dxl Mznet = TD (e)

We substitute (a), (b), (c), and (e) into Euler’s equations (Equations 9.72):

Mxnet = Aω̇x + (C − B)ωyωz

Mynet = Bω̇y + (A − C)ωxωz (f)

Mznet = Cω̇z + (B − A)ωxωy

After making the substitutions and simplifying, the first Euler equation, Equation
(f)1, becomes

Dx =
{

1

12

m

l
[(l2 − h2)ωp cos θ − 2h2ωs]ωp sin θ

}
cos ψ (g)
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Likewise, from Equation (f)2 we obtain

Dy =
{

1

12

m

l
[(l2 − b2)ωp cos θ − 2b2ωs]ωp sin θ

}
sin ψ (h)

Finally, Equation (f)3 yields

TD =
[

1

24
m(b2 − h2)ω2

p sin2 θ

]
sin 2ψ (i)

This completes the solution, since Ey = −Dy and Ez = −Dz . Note that the resultant
transverse bearing load V at D (and E) is

V =
√

D2
x + D2

y (j)

As a numerical example, let

l = 1 m h = 0.1 m b = 0.025 m θ = 30◦ m = 10 kg

and

ωp = 100 rpm = 10.47 rad/s ωs = 2000 rpm = 209.4 rad/s

For these numbers, the variation of V and TD with ψ are as shown in Figure 9.25.

90 180 270
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40

0
0

V
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ψ, degrees

90 180 270

�0.2
0

0.2

3600

0.4

�0.4T
D

, N
�m

ψ, degrees

(a) (b)

Figure 9.25 (a) Transverse bearing load. (b) Axial torque at D.

9.10 Yaw, pitch and roll angles

The problem of the Euler angle relations, Equations 9.114, becoming singular when
the nutation angle θ is zero can be alleviated by using the yaw, pitch and roll angles
illustrated in Figure 9.26. As in the Euler angles, the inertial ÎĴK̂ triad is rotated into

the body îĵk̂ triad by a sequence of three rotations, detailed in Figure 9.26. The first
step is to rotate the Î and Ĵ directions through a yaw angle φ around the K̂ axis until
they line up with the orthogonal unit vectors î′, ĵ′. The î′ direction is the projection
of the body x axis on the XY plane. This rotation appears as shown in insert ① at the
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φ

φ

1

θ
φ

θ

1
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1

1
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θ
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ψ
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φ(yaw)

(pitch)

(roll)

ψ(roll)

2

3

Ĵ

Î

Ĵ

Î

� � ωyawK � ωpitchj′ � ωrolli

ωyaw � φ

j′′ � cos ψj � sin ψk

k ′′ � sin ψ j � cos ψk

k′��sin θi′′ � cos θk′′
ĵ′′

ĵ

k̂′′
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ˆ ˆ ˆ

î′

î′′

ĵ

î′

k′′

k̂

î′

ĵ′
ˆ ˆ ˆ

ˆ

ˆˆˆ

ˆˆ

k′′ˆ

i′′ � îˆ

j′ � j′′ˆˆ

k′ˆ

K � k′ˆ
ˆ

ˆ

(pitch)

ωpitch � θ ωroll � ψ

ψ

Figure 9.26 Yaw, pitch and roll angles.

top of Figure 9.26, from which it can be seen that

î′ = cos φÎ + sin φĴ (9.119a)

ĵ′ = −sin φÎ + cos φĴ (9.119b)

k̂′ = K̂ (9.119c)

or 


î′
ĵ′
k̂′


 =


 cos φ sin φ 0

−sin φ cos φ 0
0 0 1






Î
Ĵ
K̂




Clearly, the yaw rotation matrix is [R3(φ)], where

[R3(φ)] =

 cos φ sin φ 0

− sin φ cos φ 0
0 0 1




The second rotation is a pitch around ĵ′ through the pitch angle θ . This carries î′
and k̂′(=K̂) into î′′(=î) and k̂′′, while, of course, leaving ĵ′ unchanged. We see this in
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auxiliary view ② of Figure 9.26, from which we obtain

î′′ = cos θ î′ − sin θ k̂′

ĵ′′ = ĵ′

k̂′′ = sin θ î′ + cos θ k̂′

or 


î′′
ĵ′′
k̂′′


 =


cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ






î′
ĵ′
k̂′




This rotation about the intermediate y′ axis is therefore represented by [R2(θ)], where

[R2(θ)] =

cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ




The inverse of this orthogonal matrix is its transpose,

[R2(θ)]−1 =

 cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ




so that 


î′
ĵ′
k̂′


 =


 cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ






î′′
ĵ′′
k̂′′




From this we see that

ĵ′ = ĵ′′

k̂′ = −sin θ î′′ + cos θ k̂′′ (9.120)

Finally, we roll around the body x axis through the angle ψ , which brings ĵ′′ and k̂′′
into alignment with body unit vectors ĵ and k̂, respectively. Auxiliary view ③ shows
that

î = î′′
ĵ = cos ψ ĵ′′ + sin ψ k̂′′
k̂ = −sin ψ ĵ′′ + cos ψ k̂′′

or 


î
ĵ

k̂


 =


1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ






î′′
ĵ′′
k̂′′


 (9.121)
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Thus, the third and last rotation matrix is

[R1(ψ)] =

1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ




Taking the transpose of this array, we find the inverse of Equations 9.121


î′′
ĵ′′
k̂′′


 =


1 0 0

0 cos ψ − sin ψ

0 sin ψ cos ψ






î
ĵ

k̂




which means

î′′ = î

ĵ′′ = cos ψ ĵ − sin ψ k̂ (9.122)

k̂′′ = sin ψ ĵ + cos ψ k̂

The matrix [Q]Xx of the transformation from ÎĴK̂ into îĵk̂ is the product of the three
rotation matrices obtained above,

[Q]Xx = [R1(ψ)][R2(θ)][R3(φ)]

Carrying out the matrix multiplications yields

[Q]Xx =

 cos φ cos θ sin φ cos θ −sin θ

−sin φ cos ψ + cos φ sin θ sin ψ cos φ cos ψ + sin φ sin θ sin ψ cos θ sin ψ

sin φ sin ψ + cos φ sin θ cos ψ −cos φ sin ψ + sin φ sin θ cos ψ cos θ cos ψ




(9.123)

The inverse matrix which transforms xyz into XYZ is just the transpose,

[Q]xX =

cos φ cos θ − sin φ cos ψ + cos φ sin θ sin ψ sin φ sin ψ + cos φ sin θ cos ψ

sin φ cos θ cos φ cos ψ + sin φ sin θ sin ψ − cos φ sin ψ + sin φ sin θ cos ψ

− sin θ cos θ sin ψ cos θ cos ψ




(9.124)

The angular velocity ω, expressed in terms of the rates of yaw, pitch and roll, is

ω = ωyawK̂ + ωpitch ĵ′ + ωroll î

in which

ωyaw = φ̇ ωpitch = θ̇ ωroll = ψ̇

Using Equation 9.119c, we can write ω as

ω = ωyaw k̂′ + ωpitch ĵ′ + ωroll î

Substituting Equation 9.120 into this expression yields

ω = ωyaw(−sin θ î′′ + cos θ k̂′′) + ωpitch ĵ′′ + ωroll î

Finally, with Equations 9.122, we obtain from this

ω = ωyaw[−sin θ î + cos θ( sin ψ ĵ + cos ψ k̂)] + ωpitch(cos ψ ĵ − sin ψ k̂) + ωroll î
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After collecting terms, we see that

ωx = ωroll − ωyaw sin θpitch

ωy = ωyaw cos θpitch sin ψroll + ωpitch cos ψroll (9.125)

ωz = ωyaw cos θpitch cos ψroll − ωpitch sin ψroll

wherein the subscript on each symbol helps us remember the rotation it describes.
The inverse of these equations is

ωyaw = ωy
sin ψroll

cos θpitch
+ ωz

cos ψroll

cos θpitch

ωpitch = ωy cos ψroll − ωz sin ψroll (9.126)

ωroll = ωx + ωy tan θpitch sin ψroll + ωz tan θpitch cos ψroll

Notice that this system becomes singular (cos θpitch = 0) when the pitch angle is ±90◦.

Problems

9.1 Rigid, bent shaft 1 (ABC) rotates at a constant angular velocity of 2K̂ rad/s around
the positive Z axis of the inertial frame. Bent shaft 2 (CDE) rotates around BC with a
constant angular velocity of 3ĵ rad/s, relative to BC. Spinner 3 at E rotates around DE
with a constant angular velocity of 4î rad/s relative to DE. Calculate the magnitude of
the absolute angular acceleration α3 of the spinner at the instant shown.

{Ans.: ||α3|| =
√

180 + 64 sin2 θ − 144 cos θ (rad/s2)}

X

Y

Z

A

B C
D

E

1

3

3 rad/s

4 rad/s

2 rad/s

Always points in the
direction BCD

Always points in
the direction DE 

2

î

ĵ

k̂

Always perpendicular to

î and j (k � i � j)ˆ ˆ ˆ ˆ

θ

φ

 

Figure P.9.1
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9.2 The body-fixed xyz frame is attached to the cylinder as shown. The cylinder rotates
around the inertial Z axis, which is collinear with the z axis, with a constant absolute
angular velocity θ̇ k̂. Rod AB is attached to the cylinder and aligned with the y axis. Rod
BC is perpendicular to AB and rotates around AB with the constant angular velocity φ̇ ĵ
relative to the cylinder. Rod CD is perpendicular to BC and rotates around BC with the
constant angular velocity ν̇m̂ relative to BC, where m̂ is the unit vector in the direction
of BC. The plate abcd rotates around CD with a constant angular velocity ψ̇ n̂ relative
to CD, where the unit vector n̂ points in the direction of CD. Thus the absolute angular

velocity of the plate is ωplate = θ̇ k̂ + φ̇ ĵ + ν̇m̂ + ψ̇ n̂. Show that

(a) ωplate = (ν̇ sin φ − ψ̇ cos φ sin ν)î + (φ̇ + ψ̇ cos ν)ĵ + (θ̇ + ν̇ cos φ + ψ̇ sin φ sin ν)k̂

αplate = dωplate

dt
= [ν̇(φ̇ cos φ − ψ̇ cos φ cos ν) + ψ̇φ̇ sin φ sin ν − ψ̇ θ̇ cos ν − φ̇θ̇]î

(b) + [ν̇(θ̇ sin φ − ψ̇ sin ν) − ψ̇ θ̇ cos φ sin ν]ĵ

+ [ψ̇ ν̇ cos ν sin φ + ψ̇φ̇ cos φ sin ν − φ̇ν̇ sin φ]k̂

(c) aC = −l(φ̇2 + θ̇2) sin φ î + (2lφ̇θ̇ cos φ − 5
4 lθ̇2)ĵ − lφ̇2 cos φk̂

x y

Z, z

X

Y

θ

φ

ψ

ν

B

C

a b

cd

î ĵ

Î

Ĵ

m̂

n̂

p̂

K̂, k̂

l
l

l

l

l/4

l/4

r � l/4

O A

D

ˆθk
.

ˆψn
.

ˆφj
.

ˆνm
.

Figure P.9.2

9.3 The mass center G of a rigid body has a velocity v = t3 î + 4ĵ m/s and an angular velocity

ω= 2t2k̂ rad/s, where t is time in seconds. The î, ĵ, k̂ unit vectors are attached to and
rotate with the rigid body. Calculate the magnitude of the acceleration aG of the center
of mass at t = 2 seconds.
{Ans.: aG = −20î + 64ĵ (m/s2)}

9.4 The inertial angular velocity of a rigid body is ω= ωx î + ωy ĵ + ωz k̂, where î, ĵ, k̂ are

the unit vectors of a co-moving frame whose inertial angular velocity is � = ωx î + ωy ĵ.
Calculate the components of angular acceleration of the rigid body in the moving frame,
assuming that ωx , ωy and ωz are all constant.

{Ans.: α= ωyωz î − ωxωz ĵ}
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G

X

Y

Z

O

v

î

ĵk̂

Figure P.9.3

9.5 Find the moments of inertia about the center of mass of the system of six point masses
listed in the table.

Table P.9.5

Point, i Mass mi (kg) xi (m) yi (m) zi (m)

1 10 1 1 1
2 10 −1 −1 −1
3 8 4 −4 4
4 8 −2 2 −2
5 12 3 −3 −3
6 12 −3 3 3

{Ans.: [IG] =

783.5 351.7 40.27

351.7 783.5 −80.27
40.27 −80.27 783.5


 (kg · m2)}

9.6 Find the mass moment of inertia of the configuration of Problem 9.5 about an axis
through the origin and the point with coordinates (1 m, 2 m, 2 m).
{Ans.: 621.3 kg · m2}

9.7 A uniform slender rod of mass m and length l lies in the xy plane inclined to the x axis
by the angle θ . Use the results of Example 9.10 to find the mass moments of inertia
about the xyz axes passing through the center of mass G.

{Ans.: [IG] = 1
12 ml2


 sin2 θ − 1

2 sin 2θ 0
− 1

2 sin 2θ cos2 θ 0
0 0 1


}
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x

y

θ

l/2

l/2

G

z

Figure P.9.7

9.8 The uniform rectangular box has a mass of 1000 kg. The dimensions of its edges are
shown.
(a) Find the mass moments of inertia about the xyz axes.

{Ans.: [IO] =

1666.7 −1500 −750

−1500 3333.3 −500
−750 −500 4333.3


 (kg · m2)}

(b) Find the principal moments of inertia and the principal directions about the xyz
axes through O.

{Partial ans.: I1 = 568.9 kg · m2, v̂1 = 0.8366î + 0.4960ĵ + 0.2326k̂}

(c) Find the moment of inertia about the line through O and the point with
coordinates (3 m, 2 m, 1 m).

{Ans.: 583.3 kg · m2}

x

y

z

1 m

2 m

3 m
O

Figure P.9.8
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9.9 A taxiing airplane turns about its vertical axis with an angular velocity � while its
propeller spins at an angular velocity ω = θ̇ . Determine the components of the angular
momentum of the propeller about the body-fixed xyz axes centered at P. Treat the
propeller as a uniform slender rod of mass m and length l.

{Ans.: HP = 1

12
mωl2 î − 1

24
m�l2 sin 2θ ĵ + ( 1

12
ml2 cos2 θ + md2

)
�k̂}

z

x

y

P

θ
ω

d

C

�

Figure P.9.9

9.10 Relative to an î, ĵ, k̂ frame of reference the components of angular momentum H are
given by

{H} =

 1000 0 −300

0 1000 500
−300 500 1000






ωx

ωy

ωz


 (kg · m2/s)

where ωx , ωy and ωz are the components of the angular velocity ω. Find the components
ω such that {H} = 1000{ω}, where the magnitude of ω is 20 rad/s.
{Ans.: ω= 17.15î + 10.29ĵ (rad/s)}

9.11 Relative to a body-fixed xyz frame [IG] =

10 0 0

0 20 0
0 0 30


 (kg · m2) and ω= 2t2 î +

4ĵ + 3t k̂ (rad/s), where t is the time in seconds. Calculate the magnitude of the net
moment about the center of mass G at t = 3 s.
{Ans.: 3374 N · m}

9.12 In Example 9.11, the system is at rest when a 100 N force is applied to point A as shown.
Calculate the inertial components of angular acceleration at that instant.
{Ans.: αX = 143.9 rad/s2, αY = 553.1 rad/s2, αZ = 7.61 rad/s2}
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Figure P.9.12

9.13 The body-fixed xyz axes pass through the center of mass G of the airplane and are
the principal axes of inertia. The moments of inertia about these axes are A, B and C,
respectively. The airplane is in a level turn of radius R with a speed v.
(a) Calculate the bank angle θ .
(b) Use Euler’s equations to calculate the rolling moment My which must be applied

by the aerodynamic surfaces.
{Ans.: (a) θ = tan−1 v2/Rg ; (b) My = v2 sin 2θ(C − A)/2R2}

mg

Lθ

R

x

z

y

G

Figure P.9.13
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9.14 The airplane in Problem 9.11 is spinning with an angular velocity ωZ about the vertical Z
axis. The nose is pitched down at the angle α. What external moments must accompany
this maneuver?
{Ans.: My = Mz = 0, Mx = ω2

Z sin 2α(C − B)/2}

Z
ωZ

z

y

α

G

Figure P.9.14

9.15 Two identical slender rods of mass m and length l are rigidly joined together at an
angle θ at point C, their 2/3 point. Determine the bearing reactions at A and B if the
shaft rotates at a constant angular velocity ω. Neglect gravity and assume that the only
bearing forces are normal to rod AB.
{Ans.: ||FA|| = mω2l sin θ(1 + 2 cos θ)/18, ||FB|| = mω2l sin θ(1 − cos θ)/9}

2l/3 l/3

θ

A B

y

x
C

2l/3

l/3

Figure P.9.15

9.16 The flywheel (A = B = 5 kg · m2, C = 10 kg · m2) spins at a constant angular velocity

of ωs = 100k̂ (rad/s). It is supported by a massless gimbal which is mounted on the
platform as shown. The gimbal is initially stationary relative to the platform, which
rotates with a constant angular velocity of ωp = 0.5ĵ (rad/s). What will be the gimbal’s

angular acceleration when the torquer applies a torque of 600î (N · m) to the flywheel?
{Ans.: 70î rad/s2}
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Figure P.9.16

9.17 A uniform slender rod of length L and mass m is attached by a smooth pin at O to a
vertical shaft which rotates at constant angular velocity ω. Use Euler’s equations and
the body frame shown to calculate ω at the instant shown.
{Ans.: ω =√

3g/(2L cos θ)}

ω

z

y

g

O
G

θ

L/3
2L/3

Figure P.9.17
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9.18 A uniform, thin, circular disk of mass 10 kg spins at a constant angular velocity of
630 rad/s about axis OG, which is normal to the disk, and pivots about the frictionless
ball joint at O. Neglecting the mass of the shaft OG, determine the rate of precession
if OG remains horizontal as shown. Gravity acts down, as shown. G is the center
of mass, and the y axis remains fixed in space. The moments of inertia about G are
IGz = 0.02812 kg · m2, and IGx = IGy = 0.01406 kg · m2.
{Ans.: 1.38 rad/s}

z

x

y

630 rad/s

g

G

m � 10 kg

0.25 m

90˚

O

Figure P.9.18

9.19 At the end of its take-off run, an airplane with retractable landing gear leaves the runway
with a speed of 130 km/hr. The gear rotates into the wing with an angular velocity of
0.8 rad/s with the wheels still spinning. Calculate the gyroscopic bending moment in
the wheel bearing B. The wheels have a diameter of 0.6 m, a mass of 25 kg and a radius
of gyration of 0.2 m.
{Ans.: 96.3 N · m}.

B

Figure P.9.19

9.20 The gyro rotor, including shaft AB, has a mass of 4 kg and a radius of gyration 7 cm
around AB. The rotor spins at 10 000 revolutions per minute while also being forced to
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rotate around the gimbal axis CC at 2 rad/s. What are the transverse forces exerted on
the shaft at A and B? Neglect gravity.
{Ans.: 1.03 kN}

A
B

C

C

10 000 rev/min

2 rad/s

y

2 cm 2 cm

z

x

Figure P.9.20

9.21 A jet aircraft is making a level, 2.5 km radius turn to the left at a speed of 650 km/hr.
The rotor of the turbojet engine has a mass of 200 kg, a radius of gyration of 0.25 m
and rotates at 15 000 revolutions per minute clockwise as viewed from the front of the
airplane. Calculate the gyroscopic moment that the engine exerts on the airframe and
specify whether it tends to pitch the nose up or down.
{Ans.: 1.418 kN · m; pitch down}

k

i

1570.8 rad/s

0.07222 rad/s

j

Forward
G

MG

C � 12.5 kg · m2

ˆ

ˆ

ˆ

Figure P.9.21

9.22 A cylindrical rotor of mass 10 kg, radius 0.05 m and length 0.60 m is simply-supported
at each end in a cradle that rotates at a constant 20 rad/s counterclockwise as viewed
from above. Relative to the cradle, the rotor spins at 200 rad/s counterclockwise as
viewed from the right (from B towards A). Assuming there is no gravity, calculate the
bearing reactions RA and RB. Use the co-moving xyz frame shown, which is attached to
the cradle but not to the rotor.
{Ans.: RA = −RB = 83.3 N}
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200 rad/s

20 rad/s

C

A
G

z

y

x

RA RB

G
B

Figure P.9.22

9.23 The Euler angles of a rigid body are φ = 50◦, θ = 25◦ and ψ = 70◦. Calculate the angle
(a positive number) between the body-fixed x axis and the inertial X axis.
{Ans.: 115.6◦}

9.24 Consider a rigid body experiencing rotational motion associated with angular velocity
ω. The inertia tensor (relative to body-fixed axes through the center of mass G) is

 20 −10 0
−10 30 0

0 0 40


 (kg · m2)

and ω= 10î + 20ĵ + 30k̂ (rad/s). Calculate
(a) the angular momentum HG , and
(b) the rotational kinetic energy (about G).
{Partial ans.: (b) TR = 23 000 J}
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10.1 Introduction

In this chapter we apply the equations of rigid body motion presented in Chapter 9
to the study of the attitude dynamics of satellites. We begin with spin-stabilized

spacecraft. Spinning a satellite around its axis is a very simple way to keep the vehicle
pointed in a desired direction. We investigate the stability of a spinning satellite to
show that only oblate spinners are stable over long times. Overcoming this restriction
on the shape of spin-stabilized spacecraft led to the development of dual-spin vehicles,
which consist of two interconnected segments rotating at different rates about a com-
mon axis. We consider the stability of that type of configuration as well. The nutation
damper and its effect on the stability of spin-stabilized spacecraft is covered next.

475



476 Chapter 10 Satellite attitude dynamics

The rest of the chapter is devoted to some of the common means of changing
the attitude or motion of a spacecraft by applying external or internal forces or
torques. The coning maneuver changes the attitude of a spinning spacecraft by using
thrusters to apply impulsive torque, which alters the angular momentum and hence
the orientation of the spacecraft. The much-used yo-yo despin maneuver reduces or
eliminates the spin rate by releasing small masses attached to cords initially wrapped
around the cylindrical vehicle.

An alternative to spin stabilization is three-axis stabilization by gyroscopic attitude
control. In this case, the vehicle does not continuously rotate. Instead, the desired
attitude is maintained by the spin of small wheels within the spacecraft. These are
called reaction wheels or momentum wheels. If allowed to pivot relative to the vehicle,
they are known as control moment gyros. The attitude of the vehicle can be changed
by varying the speed or orientation of these internal gyros. Small thrusters may also
be used to supplement the gyroscopic attitude control and to hold the spacecraft
orientation fixed when it is necessary to despin or reorient gyros that have become
saturated (reached their maximum spin rate or deflection) over time.

The chapter concludes with a discussion of how the earth’s gravitational field by
itself can stabilize the attitude of large satellites such as the space shuttle or space
station in low earth orbits.

10.2 Torque-free motion

Gravity is the only force acting on a satellite coasting in orbit (if we neglect secondary
drag forces and the gravitational influence of bodies other than the planet being
orbited). Unless the satellite is unusually large, the gravitational force is concentrated
at the center of mass G. Since the net moment about the center of mass is zero, the
satellite is ‘torque-free’, and according to Equation 9.30,

ḢG = 0 (10.1)

The angular momentum HG about the center of mass does not depend on time. It
is a vector fixed in inertial space. We will use HG to define the Z axis of an inertial
frame, as shown in Figure 10.1. The xyz axes in the figure comprise the principal
body frame, centered at G. The angle between the z axis and HG is (by definition of
the Euler angles) the nutation angle θ . Let us determine the conditions for which θ is
constant. From the dot product operation we know that

cos θ = HG

‖HG‖ · k̂

Differentiating this expression with respect to time, keeping in mind Equation 10.1,
we get

d cos θ

dt
= HG

‖HG‖ · dk̂

dt
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ĵ
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Î
Ĵ

K̂

Body frame

Figure 10.1 Rotationally symmetric satellite in torque-free motion.

But dk̂/dt = ω × k̂, according to Equation 1.24, so

d cos θ

dt
= HG · (ω × k̂)

‖HG‖ (10.2)

Now

ω × k̂ =
∣∣∣∣∣∣

î ĵ k̂
ωx ωy ωz

0 0 1

∣∣∣∣∣∣ = ωy î − ωx ĵ

Furthermore, we know from Equation 9.67 that the angular momentum is related to
the angular velocity in the principal body frame by the expression

HG = Aωx î + Bωy ĵ + Cωz k̂

Thus

HG · (ω × k̂) = (Aωx î + Bωy ĵ + Cωz k̂) · (ωy î − ωx ĵ) = (A − B)ωxωy

so that Equation 10.2 can be written

θ̇ = ωn = − (A − B)ωxωy

‖HG‖ sin θ
(10.3)

From this we see that the nutation rate vanishes only if A = B. If A �= B, the nutation
angle θ will not in general be constant.

Relative to the body frame, Equation 10.1 is written (cf. Equation 1.28)

ḢGrel + ω × HG = 0
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This is Euler’s equation with MGnet = 0, the components of which are given by
Equations 9.72,

Aω̇x + (C − B)ωzωy = 0

Bω̇y + (A − C)ωxωz = 0 (10.4)

Cω̇z + (B − A)ωyωx = 0

In the interest of simplicity, let us consider the special case illustrated in Figure 10.1,
namely that in which the z axis is an axis of rotational symmetry, so that A = B. Then
Equations 10.4 become

Aω̇x + (C − A)ωzωy = 0

Aω̇y + (A − C)ωxωz = 0 (10.5)

Cω̇z = 0

From Equation 10.53 we see that

ωz = ω0 (constant) (10.6)

The assumption of rotational symmetry therefore reduces the three differential equa-
tions 10.4 to just two. Substituting Equation 10.6 into Equations 10.51 and 10.52 and
introducing the notation

λ = A − C

A
ω0 (10.7)

they can be written

ω̇x − λωy = 0

ω̇y + λωx = 0 (10.8)

To reduce these two equations in ωx and ωy down to just one equation in ωx , we first
differentiate Equation 10.81 with respect to time to get

ω̈x − λω̇y = 0 (10.9)

We then solve Equation 10.82 for ω̇y and substitute the result into Equation 10.9,
which leads to

ω̈x + λ2ωx = 0 (10.10)

The solution of this well-known differential equation is

ωx = � sin λt (10.11)

where the constant amplitude � (� �= 0) has yet to be determined. (Without loss
of generality, we have set the phase angle, the other constant of integration, equal to
zero.) Substituting Equation 10.11 back into Equation 10.81 yields the solution for ωy ,

ωy = 1

λ

dωx

dt
= 1

λ

d

dt
(� sin λt)
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or

ωy = � cos λt (10.12)

Equations 10.6, 10.11 and 10.12 give the components of the absolute angular velocity
ω along the three principal body axes,

ω = � sin λt î + � cos λt ĵ + ω0k̂

or

ω = ω⊥ + ω0k̂ (10.13)

where

ω⊥ = �(sin λt î + cos λt ĵ) (10.14)

ω⊥ (‘omega-perp’) is the component of ω normal to the z axis. It sweeps out a circle
of radius � in the xy plane at an angular velocity λ. Thus, ω sweeps out a cone, as
illustrated in Figure 10.2.

From Equations 9.115, the three Euler orientation angles (and their rates) are
related to the angular velocity components ωx , ωy and ωz by

ωp = φ̇ = 1

sin θ
(ωx sin ψ + ωy cos ψ)

ωn = θ̇ = ωx cos ψ − ωy sin ψ

ωs =ψ̇ = − 1

tan θ
(ωx sin ψ + ωy cos ψ) + ωz

x

y

z

λt �⊥

Cone swept out by �
in the body frame

�

Ω

ω0k

γ

ˆ

Figure 10.2 Components of the angular velocity * in the body frame.
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Substituting Equations 10.6, 10.11 and 10.12 into these three equations yields

ωp = �

sin θ
cos(λt − ψ)

ωn = � sin(λt − ψ) (10.15)

ωs = ω0 − �

tan θ
cos(λt − ψ)

Since A = B, we know from Equation 10.3 that ωn = 0. It follows from Equation
10.152 that

ψ = λt (10.16)

(Actually, λt − ψ = nπ , n = 0, 1, 2, . . . . We can set n = 0 without loss of generality.)
Substituting Equation 10.16 into Equations 10.151 and 10.153 yields

ωp = �

sin θ
(10.17)

and

ωs = ω0 − �

tan θ
(10.18)

We have thus obtained the Euler angle rates ωp and ωs in terms of the components of
the angular velocity ω.

Differentiating Equation 10.16 with respect to time shows that

λ =ψ̇ = ωs (10.19)

That is, the rate λ at which ω rotates around the body z axis equals the spin rate.
Substituting the spin rate for λ in Equation 10.7 shows that ωs is related to ω0 alone,

ωs = A − C

A
ω0 (10.20)

Eliminating ωs from Equations 10.18 and 10.20 yields the relationship between the
magnitudes of the orthogonal components of the angular velocity in Equation 10.13,

� = C

A
ω0 tan θ (10.21)

A similar relationship exists between ωp and ωs, which generally are not orthogonal.
Substitute Equation 10.21 into Equation 10.17 to obtain

ω0 = A

C
ωp cos θ (10.22)

Placing this in Equation 10.20 leaves an expression involving only ωp and ωs, from
which we get a useful formula relating the precession of a torque-free body to its spin,

ωp = C

A − C

ωs

cos θ
(10.23)
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Figure 10.3 Angular velocity and angular momentum vectors in the body frame.

Observe that if A > C (i.e., the body is prolate, like a soup can or an American football),
then ωp has the same sign as ωs, which means the precession is prograde. For an oblate
body (like a tuna fish can or a frisbee), A < C and the precession is retrograde.

The components of angular momentum along the body frame axes are obtained
from the body frame components of ω,

HG = Aωx î + Aωy ĵ + Cωz k̂

or

HG = H⊥ + Cω0k̂ (10.24)

where

H⊥ = A�(sin ωst î + cos ωst ĵ) = Aω⊥ (10.25)

Since ω0k̂ and Cω0k̂ are colinear, as are ω⊥ and Aω⊥, it follows that k̂, ω and HG

all lie in the same plane. HG and ω both rotate around the z axis at the same rate ωs.
These details are illustrated in Figure 10.3. See how the precession and spin angular
velocities, ωp and ωs, add up vectorially to give ω. Note also that from the point of view

of inertial space, where HG is fixed, ω and k̂ rotate around HG with angular velocity ωp.
Let γ be the angle between ω and the spin axis z, as shown in Figures 10.2 and

10.3. γ is sometimes referred to as the wobble angle. Then

cos γ = ωz

‖ω‖ = ω0√
�2 + ω2

0

= ω0√(
ω0

C

A
tan θ

)2

+ ω2
0

= A√
A2 + C2 tan2 θ

γ is constant, since A, C and θ are fixed. Using trig identities, this expression can be
recast as

cos γ = cos θ√
C2

A2
+

(
1 − C2

A2

)
cos2 θ

(10.26)
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z

HG

�

�p

HG

�
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Body cone

Space cone

z

γ

�s

(a) Prograde precession (b) Retrograde precession

A � C A � C

γ

�s

�p

Figure 10.4 Space and body cones for a rotationally symmetric body in torque-free motion. (a) Prolate
body. (b) Oblate body.

From this we conclude that if A > C, then γ < θ , whereas C > A means γ > θ . That
is, the angular velocity vector ω lies between the z axis and the angular momentum
vector HG when A > C (prolate body). On the other hand, when C > A (oblate body),
HG lies between the z axis and ω. These two situations are illustrated in Figure 10.4,
which also shows the body cone and space cone. The space cone is swept out in inertial
space by the angular velocity vector as it rotates with angular velocity ωp around HG,
whereas the body cone is the trace of ω in the body frame as it rotates with angular
velocity ωs about the z axis. From inertial space, the motion may be visualized as the
body cone rolling on the space cone, with the line of contact being the angular velocity
vector. From the body frame it appears as though the space cone rolls on the body
cone. Figure 10.4 graphically confirms our deduction from Equation 10.23, namely,
that precession and spin are in the same direction for prolate bodies and opposite in
direction for oblate shapes.

Finally, we know from Equations 10.24 and 10.25 that the magnitude ‖HG‖ of
the angular momentum is

‖HG‖ =
√

A2�2 + C2ω2
0

Using Equation 10.21, we can write this as

‖HG‖ =
√

A2

(
ω0

C

A
tan θ

)2

+ C2ω2
0 = Cω0

√
1 + tan2 θ = Cω0

cos θ

Substituting Equation 10.22 into this expression yields a surprisingly simple formula
for the magnitude of the angular momentum,

‖HG‖ = Aωp (10.27)
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Example
10.1

A cylindrical shell is rotating in torque-free motion about its longitudinal axis. If the
axis is wobbling slightly, determine the ratios of l/r for which the precession will be
prograde or retrograde.

l
r

�

z

Figure 10.5 Cylindrical shell in torque-free motion.

Figure 9.9(b) shows the moments of inertia of a thin-walled circular cylinder,

C = mr2 A = 1

2
mr2 + 1

12
ml2

According to Equation 10.23 and Figure 10.4, direct or prograde precession exists if
A > C, that is, if

1

2
mr2 + 1

12
ml2 > mr2

or
1

12
ml2 >

1

2
mr2

Thus

l > 2.45r ⇒ Direct precession.

l < 2.45r ⇒ Retrograde precession.

Example
10.2

In the previous example, let r = 1 m, l = 3 m, m = 100 kg and the nutation angle θ is
20◦. How long does it take the cylinder to precess through 180◦ if the spin rate is 2π

radians per minute?

Since l > 2.45r, the precession is direct. Furthermore,

C = mr2 = 100 · 12 = 100 kg · m2

A = 1

2
mr2 + 1

12
ml2 = 1

2
· 100 · 12 + 1

12
100 · 32 = 125 kg · m2
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(Example 10.2
continued)

Thus, Equation 10.23 yields

ωp = C

A − C

ωs

cos θ
= 100

125 − 100

2π

cos 20◦ = 26.75 rad/min

At this rate, the time for a precession angle of 180◦ is

t = π

ωp
= 0.1175 min

Example
10.3

What is the torque-free motion of a satellite for which A = B = C?

If A = B = C, the satellite is spherically symmetric. Any orthogonal triad at G is a
principal body frame, so HG and ω are collinear,

HG = Cω

Substituting this and MGnet = 0, into Euler’s equations, Equation 10.72a, yields

C
dω

dt
+ ω × (Cω) = 0

That is,

ω = constant

The angular velocity vector of a spherically symmetric satellite is fixed in magnitude
and direction.

Example
10.4

The inertial components of the angular momentum of a torque-free rigid body are

HG = 320Î − 375Ĵ + 450K̂ (kg · m2/s) (a)

The Euler angles are

φ = 20◦ θ = 50◦ ψ = 75◦ (b)

If the inertia tensor in the body-fixed principal frame is

[IG] =

1000 0 0

0 2000 0
0 0 3000


 (kg · m2) (c)

calculate the inertial components of the (absolute) angular acceleration.

Substituting the Euler angles from (b) into Equation 9.117, we obtain the matrix of
the transformation from the inertial frame to the body frame,

[Q]Xx =

 0.03086 0.6720 0.7399

−0.9646 −0.1740 0.1983
0.2620 −0.7198 0.6428


 (d)
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We use this to obtain the components of HG in the body frame,

{HG}x = [Q]Xx{HG}X =

 0.03086 0.6720 0.7399

−0.9646 −0.1740 0.1983
0.2620 −0.7198 0.6428






320
−375
450




=



90.86
−154.2
643.0


 (kg · m2/s) (e)

In the body frame {HG}x = [IG]{ω}x , where {ω}x are the components of angular
velocity in the body frame. Thus


90.86

−154.2
643.0


 =


1000 0 0

0 2000 0
0 0 3000


 {ω}x

or, solving for {ω}x ,

{ω}x =

1000 0 0

0 2000 0
0 0 3000


−1 


90.86

−154.2
643.0


 =




0.09086
−0.07709

0.2144


 (rad/s) (f)

Euler’s equations of motion (Equation 9.72a) may be written for the case at
hand as

[IG]{α}x + {ω}x × ([IG]{ω}x) = {0} (g)

where {α}x is the absolute acceleration in body frame components. Substituting (c)
and (f) into this expression, we get

1000 0 0
0 2000 0
0 0 3000


 {α}x +




0.09086
−0.07709

0.2144




×



1000 0 0

0 2000 0
0 0 3000






0.09086
−0.07709

0.2144




 =




0
0
0





1000 0 0

0 2000 0
0 0 3000


 {α}x +




−16.52
−38.95
−7.005


 =




0
0
0




so that, finally,

{α}x = −

1000 0 0

0 2000 0
0 0 3000


−1 


−16.52
−38.95
−7.005


 =




0.01652
0.01948

0.002335


 (rad/s2) (h)
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(Example 10.4
continued)

These are the components of the angular acceleration in the body frame. To transform
them into the inertial frame we use

{α}X = [Q]xX{α}x = ([Q]Xx)T {α}x

=

0.03086 −0.9646 0.2620

0.6720 −0.1740 −0.7198
0.7399 0.1983 0.6428






0.01652
0.01948

0.002335


 =




−0.01766
0.006033
0.01759


 (rad/s2)

That is,

α = −0.01766Î + 0.006033Ĵ + 0.01759K̂ (rad/s2)

10.3 Stability of torque-free motion

Let a rigid body be in torque-free motion with its angular velocity vector directed along

the principal body z axis, so that ω = ω0k̂, where ω0 is constant. The nutation angle
is zero and there is no precession. Let us perturb the motion slightly, as illustrated in
Figure 10.6, so that

ωx = δωx ωy = δωy ωz = ω0 + δωz (10.28)

As in Chapter 7, ‘δ’ means a very small quantity. In this case, δωx � ω0 and δωy � ω0.
Thus, the angular velocity vector has become slightly inclined to the z axis. For torque-
free motion, MGx = MGy = MGz = 0, so that Euler’s equations (Equations 9.72b)

G

ω0

�δωz

δωx

δωy

x

y

z

{

Figure 10.6 Principal body axes of a rigid body rotating primarily about the body z axis.
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become

Aω̇x + (C − B)ωyωz = 0

Bω̇y + (A − C)ωxωz = 0 (10.29)

Cω̇z + (B − A)ωxωy = 0

Observe that we have not assumed A = B, as we did in the previous section. Substi-
tuting Equations 10.28 into Equations 10.29 and keeping in mind our assumption
that ω̇0 = 0, we get

Aδω̇x + (C − B)ω0δωy + (C − B)δωyδωz = 0

Bδω̇y + (A − C)ω0δωx + (C − B)δωxδωz = 0 (10.30)

Cδω̇z + (B − A)δωxδωy = 0

Neglecting all products of the δωs (because they are arbitrarily small), Equations 10.30
become

Aδω̇x + (C − B)ω0δωy = 0

Bδω̇y + (A − C)ω0δωx = 0 (10.31)

Cδω̇z = 0

Equation 10.313 implies that δωz is constant. Differentiating Equation 10.311 with
respect to time, we get

Aδω̈x + (C − B)ω0δω̇y = 0 (10.32)

Solving Equation 10.312 for δω̇y yields δω̇y = −[(A − C)/B]ω0δωx , and substituting
this into Equation 10.32 gives

δω̈x − (A − C)(C − B)

AB
ω2

0δωx = 0 (10.33)

Likewise, by differentiating Equation 10.312 and then substituting δω̇x from Equation
10.311 yields

δω̈y − (A − C)(C − B)

AB
ω2

0δωy = 0 (10.34)

If we define

k = (A − C)(B − C)

AB
ω2

0 (10.35)

then both Equations 10.33 and 10.34 may be written in the form

δω̈ + kδω = 0 (10.36)

If k > 0, then δω ∝ e±i
√

kt , which means δωx and δωy vary sinusoidally with small
amplitude. The motion is therefore bounded and neutrally stable. That means the
amplitude does not die out with time, but it does not exceed the small amplitude of
the perturbation. Observe from Equation 10.35 that k > 0 if either C > A and C > B
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or C < A and C < B. This means that the spin axis (z axis) is either the major axis
of inertia or the minor axis of inertia. That is, if the spin axis is either the major or
minor axis of inertia, the motion is stable. The stability is neutral for a rigid body,
because there is no damping.

On the other hand, if k < 0, then δω ∝ e±√
kt , which means that the initially small

perturbations δωx and δωy increase without bound. The motion is unstable. From
Equation 10.35 we see that k < 0 if either A > C and C > B or A < C and C < B. This
means that the spin axis is the intermediate axis of inertia (A > C > B or B > C > A).
If the spin axis is the intermediate axis of inertia, the motion is unstable.

If the angular velocity of a satellite lies in the direction of its major axis of inertia,
the satellite is called a major axis spinner or oblate spinner. A minor axis spinner
or prolate spinner has its minor axis of inertia aligned with the angular velocity.
‘Intermediate axis spinners’ are unstable and will presumably end up being major or
minor axis spinners, if the satellite is a rigid body. However, the flexibility inherent in
any real satellite leads to an additional instability, as we shall now see.

Consider again the rotationally symmetric satellite in torque-free motion dis-
cussed in Section 10.2. From Equations 10.24 and 10.25, we know that the angular
momentum HG is given by

HG = Aω⊥ + Cωz k̂ (10.37)

Hence,

H2
G = A2ω2⊥ + C2ω2

z (10.38)

Differentiating this equation with respect to time yields

dH2
G

dt
= A2 dω2⊥

dt
+ 2C2ωzω̇z (10.39)

But, according to Equation 10.1, HG is constant, so that dH2
G/dt = 0 and

Equation 10.39 can be written

dω2⊥
dt

= −2
C2

A2
ωzω̇z (10.40)

The rotary kinetic energy of a rotationally symmetric body (A = B) is found using
Equation 9.81,

TR = 1

2
Aω2

x + 1

2
Aω2

y + 1

2
Cω2

z = 1

2
A(ω2

x + ω2
y ) + 1

2
Cω2

z

From Equation 10.13 we know that ω2
x + ω2

y = ω2⊥, which means

TR = 1

2
Aω2⊥ + 1

2
Cω2

z (10.41)

The time derivative of TR is, therefore,

ṪR = 1

2
A

dω2⊥
dt

+ Cωzω̇z
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Solving this for ω̇z , we get

ω̇z = 1

Cωz

(
ṪR − 1

2
A

dω2⊥
dt

)
Substituting this expression for ω̇z into Equation 10.40 and solving for dω2⊥/dt yields

dω2⊥
dt

= 2
C

A

ṪR

C − A
(10.42)

Real bodies are not completely rigid, and their flexibility, however slight, gives rise to
small dissipative effects which cause the kinetic energy to decrease over time. That is,

ṪR < 0 For satellites with dissipation. (10.43)

Substituting this inequality into Equation 10.42 leads us to conclude that

dω2⊥
dt

< 0 if C > A (oblate spinner)

(10.44)dω2⊥
dt

> 0 if C < A (prolate spinner)

If dω2⊥/dt is negative, the spin is asymptotically stable. Should a non-zero value of
ω⊥ develop for some reason, it will drift back to zero over time so that once again the
angular velocity lies completely in the spin direction. On the other hand, if dω2⊥/dt is
positive, the spin is unstable. ω⊥ does not damp out, and the angular velocity vector
drifts away from the spin axis as ω⊥ increases without bound. We pointed out above
that spin about a minor axis of inertia is stable with respect to small disturbances. Now
we see that only major axis spin is stable in the long run if dissipative mechanisms exist.

For some additional insight into this phenomenon, solve Equation 10.38 for ω2⊥,

ω2⊥ = H2
G − C2ω2

z

A2

and substitute this result into the expression for kinetic energy, Equation 10.41, to
obtain

TR = 1

2

H2
G

A
+ 1

2

(A − C)C

A
ω2

z (10.45)

According to Equation 10.24,

ωz = HGz

C
= HG cos θ

C

Substituting this into Equation 10.45 yields the kinetic energy as a function of just
the inclination angle θ ,

TR = 1

2

H2
G

A

(
1 + A − C

C
cos2 θ

)
(10.46)

The extreme values of TR occur at θ = 0 or θ = π ,

TR = 1

2

H2
G

C
(major axis spinner)
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and θ = π/2,

TR = 1

2

H2
G

A
(minor axis spinner)

Clearly, the kinetic energy of a torque-free satellite is smallest when the spin is around
the major axis of inertia. We may think of a satellite with dissipation (dTR/dt < 0)
as seeking the state of minimum kinetic energy that occurs when it spins about its
major axis.

Example
10.5

A rigid spacecraft is modeled by the solid cylinder B which has a mass of 300 kg and the
slender rod R which passes through the cylinder and has a mass of 30 kg. Which of the
principal axes x, y, z can be an axis about which stable torque-free rotation can occur?

0.5 m

x

y

z

G

1.0 m

1.0 m

0.5 m

0.5 m

Figure 10.7 Built-up satellite structure.

For the cylindrical shell A, we have

rB = 0.5 m lB = 1.0 m mB = 300 kg

The principal moments of inertia about the center of mass are found in Figure 10.9(b),

IBx = 1

4
mBr2

B + 1

12
mBl2

B = 43.75 kg · m2

IBy = IBxx = 43.75 kg · m2

IBz = 1

2
mBr2

B = 37.5 kg · m2
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The properties of the transverse rod are

lR = 1.0 m mR = 30 kg

Figure 10.9(a), with r = 0, yields the moments of inertia,

IRy = 0

IRz = IRx = 1

12
mAr2

A = 10.0 kg · m2

The moments of inertia of the assembly is the sum of the moments of inertia of the
cylinder and the rod,

Ix = IBx + IRx = 53.75 kg · m2

Iy = IBy + IRy = 43.75 kg · m2

Iz = IBz + IRz = 47.50 kg · m2

Since Iz is the intermediate mass moment of inertia, rotation about the z axis is
unstable. With energy dissipation, rotation is stable in the long term only about the
major axis, which in this case is the x axis.

10.4 Dual-spin spacecraft

If a satellite is to be spin stabilized, it must be an oblate spinner. The diameter of the
spacecraft is restricted by the cross-section of the launch vehicle’s upper stage, and
its length is limited by stability requirements. Therefore, oblate spinners cannot take
full advantage of the payload volume available in a given launch vehicle, which after
all are slender, prolate shapes for aerodynamic reasons. The dual-spin design permits
spin stabilization of a prolate shape.

The axisymmetric, dual-spin configuration, or gyrostat, consists of an axisymmet-
ric rotor and a smaller axisymmetric platform joined together along a common lon-
gitudinal spin axis at a bearing, as shown in Figure 10.8. The platform and rotor have
their own components of angular velocity, ωp and ωr respectively, along the spin axis

direction k̂. The platform spins at a much slower rate than the rotor. The assembly acts
like a rigid body as far as transverse rotations are concerned; i.e., the rotor and the plat-
form have ω⊥ in common. An electric motor integrated into the axle bearing connect-
ing the two components acts to overcome frictional torque which would otherwise
eventually cause the relative angular velocity between the rotor and platform to go to
zero. If that should happen, the satellite would become a single spin unit, probably an
unstable prolate spinner, since the rotor of a dual-spin spacecraft is likely to be prolate.

The first dual-spin satellite was OSO-I (Orbiting Solar Observatory), which NASA
launched in 1962. It was a major-axis spinner. The first prolate dual-spin spacecraft
was the two-storey tall TACSAT I (Tactical Communications Satellite). It was launched
into geosynchronous orbit by the US Air Force in 1969. Typical of many of today’s
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z

G

Gr

Gp

Bearing

�p

�r

�⊥

Platform

Rotor

Figure 10.8 Axisymmetric, dual-spin satellite.

communications satellites, TACSAT’s platform rotated at one revolution per day to
keep its antennas pointing towards the earth. The rotor spun at about one revolution
per second. Of course, the axis of the spacecraft was normal to the plane of its orbit.
The first dual-spin interplanetary spacecraft was Galileo, which we discussed briefly
in Section 8.9. Galileo’s platform was completely despun to provide a fixed orientation
for cameras and other instruments. The rotor spun at three revolutions per minute.

The equations of motion of a dual-spin spacecraft will be developed later in
Section 10.8. Let us determine the stability of the motion by following the same
‘energy sink’ procedure employed in the previous section for a single-spin stabilized
spacecraft. The angular momentum of the dual-spin configuration about the space-
craft’s center of mass G is the sum of the angular momenta of the rotor (r) and the
platform (p) about G,

HG = H
(p)
G + H(r)

G (10.47)

The angular momentum of the platform about the spacecraft center of mass is

H
(p)
G = Cpωpk̂ + Apω⊥ (10.48)
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where Cp is the moment of inertia of the platform about the spacecraft spin axis, and
Ap is its transverse moment of inertia about G (not Gp). Likewise, for the rotor,

H(r)
G = Crωr k̂ + Arω⊥ (10.49)

where Cr and Ar are its longitudinal and transverse moments of inertia about axes
through G. Substituting Equations 10.48 and 10.49 into 10.47 yields

HG = (Crωr + Cpωp)k̂ + A⊥ω⊥ (10.50)

where A⊥ is the total transverse moment of inertia,

A⊥ = Ap + Ar

From this it follows that

H2
G = (Crωr + Cpωp)2 + A2⊥ω2⊥

For torque-free motion, ḢG = 0, so that dH2
G/dt = 0, or

2(Crωr + Cpωp)(Crω̇r + Cpω̇p) + A2⊥
dω2⊥

dt
= 0 (10.51)

Solving this for dω2⊥/dt yields

dω2⊥
dt

= − 2

A2⊥
(Crωr + Cpωp)(Crω̇r + Cpω̇p) (10.52)

The total rotational kinetic energy of rotation of the dual spin spacecraft is the sum
of that of the rotor and the platform,

T = 1

2
Crω

2
r + 1

2
Cpω

2
p + 1

2
A⊥ω2⊥

Differentiating this expression with respect to time and solving for dω2⊥/dt yields

dω2⊥
dt

= 2

A⊥
(Ṫ − Crωrω̇r − Cpωpω̇p) (10.53)

Ṫ is the sum of the power P(r) dissipated in the rotor and the power P(p) dissipated
in the platform,

Ṫ = P(r) + P(p) (10.54)

Substituting Equation 10.54 into 10.53 we find

dω2⊥
dt

= 2

A⊥
(P(r) − Crωrω̇r + P(p) − Cpωpω̇p) (10.55)

Equating the two expressions for dω2⊥/dt in Equations 10.52 and 10.55 yields

2

A⊥
(Ṫ − Crωrω̇r − Cpωpω̇p) = − 2

A2⊥
(Crωr + Cpωp)(Crω̇r + Cpω̇p)
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Solve this for Ṫ to obtain

Ṫ = Cr

A⊥
[(A⊥ − Cr)ωr − Cpωp]ω̇r + Cp

A⊥
[(A⊥ − Cp)ωp − Crωr]ω̇p (10.56)

Following Likins (1967), we identify the terms containing ω̇r and ω̇p as the power
dissipation in the rotor and platform, respectively. That is, comparing Equations 10.54
and 10.56,

P(r) = Cr

A⊥
[(A⊥ − Cr)ωr − Cpωp]ω̇r (10.57a)

P(p) = Cp

A⊥
[(A⊥ − Cp)ωp − Crωr]ω̇p (10.57b)

Solving these two expressions for ω̇r and ω̇p, respectively, yields

ω̇r = A⊥
Cr

P(r)

(A⊥ − Cr)ωr − Cpωp
(10.58a)

ω̇p = A⊥
Cp

P(p)

(A⊥ − Cp)ωp − Crωr
(10.58b)

Substituting these results into Equation 10.55 leads to

dω2⊥
dt

= 2

A⊥

[
P(r)

Cp
ωp

ωr
− (A⊥ − Cr)

+ P(p)

Cr − (A⊥ − Cp)
ωp

ωr

](
Cr + Cp

ωp

ωr

)
(10.59)

As pointed out above, for geosynchronous dual-spin communication satellites,

ωp

ωr
≈ 2π rad/d

2π rad/s
≈ 10−5

whereas for interplanetary dual-spin spacecraft, ωp = 0. Therefore, there is an impor-
tant class of spin stabilized spacecraft for which ωp/ωr ≈ 0. For a despun platform
wherein ωp is zero (or nearly so), Equation 10.59 yields

dω2⊥
dt

= 2

A⊥

[
P(p) + Cr

Cr − A⊥
P(r)

]
(10.60)

If the rotor is oblate (Cr > A⊥), then, since P(r) and P(p) are both negative, it follows
from Equation 10.60 that dω2⊥/dt < 0. That is, the oblate dual spin configuration
with a despun platform is unconditionally stable. In practice, however, the rotor is
likely to be prolate (Cr < A⊥), so that

Cr

Cr − A⊥
P(r) > 0

In that case, dω2⊥/dt < 0 only if the dissipation in the platform is significantly greater
than that of the rotor. Specifically, for a prolate design it must be true that

|P(p)| >

∣∣∣∣ Cr

Cr − A⊥
P(r)

∣∣∣∣
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The platform dissipation rate P(p) can be augmented by adding nutation dampers,
which are discussed in the next section.

For the despun prolate dual-spin configuration, Equations 10.58 imply

ω̇r = P(r)

(A⊥ − Cr)

A⊥
Crωr

ω̇p = −P(p)

Cp

A⊥
Crωr

Clearly, the signs of ω̇r and ω̇p are opposite. If ωr > 0, then dissipation causes the spin
rate of the rotor to decrease and that of the platform to increase. Were it not for the
action of the motor on the shaft connecting the two components of the spacecraft,
eventually ωp = ωr . That is, the relative motion between the platform and rotor would
cease and the dual-spinner would become an unstable single spin spacecraft. Setting
ωp = ωr in Equation 10.59 yields

dω2⊥
dt

= 2
Cr + Cp

A⊥
P(r) + P(p)

(Cr + Cp) − A⊥

which is the same as Equation 10.42, the energy sink conclusion for a single spinner.

10.5 Nutation damper

Nutation dampers are passive means of dissipating energy. A common type consists
essentially of a tube filled with viscous fluid and containing a mass attached to springs,
as illustrated in Figure 10.9. Dampers may contain just fluid, only partially filling the
tube so it can slosh around. In either case, the purpose is to dissipate energy through
fluid friction. The wobbling of the spacecraft due to non-alignment of the angular

z

x
y

Pm
zm

Wz

czmkzm

Nx Ny

m

Wx Wy

(b)

�

(a)

Rr G

Figure 10.9 (a) Precessing oblate spacecraft with a nutation damper aligned with the z axis. (b) Free-body
diagram of the moving mass in the nutation damper.
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velocity with the principal spin axis induces accelerations throughout the satellite,
giving rise to the sloshing of fluids, stretching and flexing of non-rigid components,
etc., all of which dissipate energy to one degree or another. Nutation dampers are
added to deliberately increase energy dissipation, which is desirable for stabilizing
oblate single spinners and dual-spin spacecraft.

Let us focus on the motion of the mass within the nutation damper of Figure 10.9
in order to gain some insight into how relative motion and deformation are induced
by the satellite’s precession. Note that point P is the center of mass of the rigid
satellite body itself. The center of mass G of the satellite-damper mass combination
lies between P and m, as shown in Figure 10.9. We suppose that the tube is lined
up with the z axis of the body-fixed xyz frame, as shown. The mass m in the tube
is therefore constrained by the tube walls to move only in the z direction. When the
springs are undeformed, the mass lies in the xy plane. In general, the position vector
of m in the body frame is

r = Rî + zmk̂ (10.61)

where zm is the z coordinate of m and R is the distance of the damper from the
centerline of the spacecraft. The velocity and acceleration of m relative to the satellite
are, therefore,

vrel = żmk̂ (10.62)

arel = z̈mk̂ (10.63)

The absolute angular velocity ω of the satellite (and, therefore, the body frame) is

ω = ωx î + ωy ĵ + ωz k̂ (10.64)

Recall Equation 9.73, which states that when ω is given in a body frame, we find
the absolute angular acceleration by taking the time derivative of ω, holding the unit
vectors fixed. Thus,

ω̇ = ω̇x î + ω̇y ĵ + ω̇z k̂ (10.65)

The absolute acceleration of m is found using Equation 1.42, which for the case at
hand becomes

a = aP + ω̇ × r + ω × (ω × r) + 2ω × vrel + arel (10.66)

in which aP is the absolute acceleration of the reference point P. Substituting Equa-
tions 10.61 through 10.65 into Equation 10.66, carrying out the vector operations,
combining terms, and simplifying leads to the following expressions for the three
components of the inertial acceleration of m,

ax = aPx − R(ω2
y + ω2

z ) + zmω̇y + zmωxωz + 2żmωy

ay = aPy + Rω̇z + Rωxωy − zmω̇x + zmωyωz − 2żmωx (10.67)

az = aPz − zm(ω2
x + ω2

y ) − Rω̇y + Rωxωz + z̈m

Figure 10.9(b) shows the free-body diagram of the damper mass m. In the x and y
directions the forces on m are the components of the force of gravity (Wx and Wy)
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and the components Nx and Ny of the force of contact with the smooth walls of the
damper tube. The directions assumed for these components are, of course, arbitrary.
In the z direction, we have the z component Wz of the weight, plus the force of
the springs and the viscous drag of the fluid. The spring force (−kzm) is directly
proportional and opposite in direction to the displacement zm. k is the net spring
constant. The viscous drag (−cżm) is directly proportional and opposite in direction
to the velocity żm of m relative to the tube. c is the damping constant. Thus, the three
components of the net force on the damper mass m are

Fnetx = Wx − Nx

Fnety = Wy − Ny (10.68)

Fnetz = Wz − kzm − cżm

Substituting Equations 10.67 and 10.68 into Newton’s second law, Fnet = ma, yields

Nx = mR(ω2
y + ω2

z ) − mzmω̇y − mzmωxωy − 2mżmωy +
=0︷ ︸︸ ︷

(Wx − maPx )

Ny = −mRω̇z − mRωxωy + mzmω̇x − mzmωyωz

+ 2mżmωx +
=0︷ ︸︸ ︷

(Wy − maPy ) (10.69)

mz̈m + cżm + [k − m(ω2
x + ω2

y )]zm = mR(ω̇y − ωxωz) +
=0︷ ︸︸ ︷

(Wz − maPz )

The last terms in parentheses in each of these expressions vanish if the acceleration
of gravity is the same at m as at the reference point P of the spacecraft. This will be
true unless the satellite is of enormous size.

If the damper mass m is vanishingly small compared to the mass M of the rigid
spacecraft body, then it will have little effect on the rotary motion. If the rotational
state is that of an axisymmetric satellite in torque-free motion, then we know from
Equations 10.13, 10.14 and 10.19 that

ωx = � sin ωst ωy = � cos ωst ωz = ω0

ω̇x = �ωs cos ωst ω̇y = −�ωs sin ωst ω̇z = 0

in which case Equations 10.69 become

Nx = mR(ω2
0 + �2 cos2 ωst) + m(ωs − ω0)�zm sin ωst − 2m�żm cos ωst

Ny = −mR�2 cos ωst sin ωst + m(ωs − ω0)�zm cos ωst + 2m�żm sin ωst (10.70)

mz̈m + cżm + (k − m�2)zm = −mR(ωs + ω0)� sin ωst

Equation 10.703 is that of a single degree of freedom, damped oscillator with a sinu-
soidal forcing function. The precession produces a force of amplitude m(ω0 + ωs)�R
and frequency ωs which causes the damper mass m to oscillate back and forth in the
tube, such that

zm = mR�(ωs + ω0)

[k − m(ω2
s + �2)]2 + (cωs)2

{cωs cos ωst − [k − m(ω2
s + �2) sin ωst]}
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Observe that the contact forces Nx and Ny depend exclusively on the amplitude and
frequency of the precession. If the angular velocity lines up with the spin axis, so that
� = 0 (precession vanishes), then

Nx = mω2
0R

Ny = 0 No precession.

zm = 0

If precession is eliminated, so there is pure spin around the principal axis, the time-
varying motions and forces vanish throughout the spacecraft, which thereafter rotates
as a rigid body with no energy dissipation.

Now, the whole purpose of a nutation damper is to interact with the rotational
motion of the satellite so as to damp out any tendencies to precess. Therefore, its mass
should not be ignored in the equations of motion of the satellite. We will derive the
equations of motion of the rigid satellite with nutation damper to show how rigid body
mechanics is brought to bear upon the problem and, simply, to discover precisely what
we are up against in even this extremely simplified system. We will continue to use P as
the origin of our body frame. Since a moving mass has been added to the rigid satellite
and since we are not using the center of mass of the system as our reference point, we
cannot use Euler’s equations. Applicable to the case at hand is Equation 9.33, accord-
ing to which the equation of rotational motion of the system of satellite plus damper is

ḢPrel + rG/P × (M + m)aP/G = MGnet (10.71)

The angular momentum of the satellite body plus that of the damper mass, relative
to point P on the spacecraft, is

HPrel =
body of the spacecraft︷ ︸︸ ︷

Aωx î + Bωy ĵ + Cωz k̂ +
damper mass︷ ︸︸ ︷

r × mṙ (10.72)

where the position vector r is given by Equation 10.61. According to Equation 1.28,

ṙ = dr

dt

)
rel

+ ω × r = żmk̂ +
∣∣∣∣∣∣

î ĵ k̂
ωx ωy ωz

R 0 z

∣∣∣∣∣∣
= ωyzm î + (ωzR − ωxzm)ĵ + (żm − ωyR)k̂

After substituting this into Equation 10.72 and collecting terms we obtain

HPrel = [(A + mz2
m)ωx − mRzmωz]î

+ [(B + mR2 + mz2
m)ωy − mRżm]ĵ

+ [(C + mR2)ωz − mRzmωx]k̂ (10.73)

To calculate ḢPrel , we again use Equation 1.28,

ḢPrel = dHPrel

dt

)
rel

+ ω × HPrel
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Carrying out the operations on the right leads eventually to

ḢPrel = [(A + mz2
m)ω̇x − mRzmω̇z + (C − B − mz2

m)ωyωz

− mRzmωxωy + 2mzmżmωx]î

+ {(B + mR2 + mz2
m)ω̇y + mRzm(ω2

x − ω2
z )

+ [A + mz2
m − (C + mR2)]ωxωz + 2mzmżmωy − mRz̈m}ĵ

+ [−mRzmω̇x + (C + mR2)ω̇z + (B + mR2 − A)ωxωy

+ mRzmωyωz − 2mRżmωx]k̂ (10.74)

To calculate the second term on the left of Equation 10.71, we keep in mind that P is
the center of mass of the body of the satellite and first determine the position vector
of the center of mass G of the vehicle plus damper relative to P,

(M + m)rG/P = M(0) + mr (10.75)

where r, the position of the damper mass m relative to P, is given by Equation 10.61.
Thus

rG/P = m

m + M
r = µr = µ(Rî + zmk̂) (10.76)

in which

µ = m

m + M
(10.77)

Thus,

rG/P × (M + m)aP/G =
(

m

M + m

)
r × (M + m) aP/G = r × maP/G (10.78)

The acceleration of P relative to G is found with the aid of Equation 1.32,

aP/G = −r̈G/P = −µ
d2r

dt2
= −µ

[
d2r

dt2

)
rel

+ ω̇ × r + ω × (ω × r) + 2ω × dr

dt

)
rel

]
(10.79)

where

dr

dt

)
rel

= dR

dt
î + dzm

dt
k̂ = żmk̂ (10.80)

and

d2r

dt2

)
rel

= d2R

dt2
î + d2zm

dt2
k̂ = z̈mk̂ (10.81)

Substituting Equations 10.61, 10.64, 10.65, 10.80 and 10.81 into Equation 10.79 yields

aP/G = [−µzmω̇y + µR(ω2
y + ω2

z ) − µzmωxωz − 2µżmωy]î

+ (µzmω̇x − µRω̇z − µRωxωy − µzmωyωz + 2µżmωx)ĵ

+ [µRω̇y + µzm(ω2
x + ω2

y ) − µRωxωz − µz̈m]k̂ (10.82)
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We move this expression into Equation 10.78 to get

rG/P × (M + m)aP/G

= [−µmz2
mω̇x − 2µmz̈mωx + µmR(ωxωy + ω̇z) + µmz2

mωyωz]î

+ [−µm(R2 + z2
m)ω̇y − 2µmzmżmωy + µmRzm(ω2

z − ω2
x)

+ µm(R2 − z2
m)ωxωz + µmR̈zm]ĵ

+ (µmRzmω̇x − µmR2ω̇z + 2µmRżmωx

− µmR2ωxωy − µmRzmωyωz)k̂

Placing this result and Equation 10.74 in Equation 10.71, and using the fact that
MGnet = 0, yields a vector equation whose three components are

Aω̇x + (C − B)ωyωz + (1 − µ)mz2
mω̇x − (1 − µ)mz2

mωyωz

+ 2(1 − µ)mzmżmωx − (1 − µ)mRzmωxωy = 0

[B + (1 − µ)mR2]ω̇y + [A − C − (1 − µ)mR2]ωxωz

+ (1 − µ)mz2
m(ωxωz + ω̇y) + 2(1 − µ)mzmżmωy (10.83)

− (1 − µ)mRz̈m + (1 − µ)mRzm(ω2
x − ω2

z ) = 0

[C + (1 − µ)mR2]ω̇z + [B − A + (1 − µ)mR2]ωxωy

+ (1 − µ)mRzmωyωz − 2(1 − µ)mRżmωx − (1 − µ)mRzmω̇x = 0

These are three equations in the four unknowns ωx , ωy , ωz and zm. The fourth
equation is that of the motion of the damper mass m in the z direction,

Wz − kzm − cżm = maz (10.84)

where az is given by Equation 10.673, in which aPz = aPz − aGz + aGz = aP/Gz + aGz ,
so that

az = aP/Gz + aGz − zm(ω2
x + ω2

y ) − Rω̇y + Rωxωz + z̈m (10.85)

Substituting the z component of Equation 10.82 into this expression and that result
into Equation 10.84 leads (with Wz = maGz ) to

(1−µ)mz̈m + cżm + [k − (1−µ)m(ω2
x +ω2

y )]zm = (1−µ)mR[ω̇y −ωxωz] (10.86)

Compare Equation 10.693 with this expression, which is the fourth equation of
motion we need.

Equations 10.83 and 10.86 are a rather complicated set of non-linear, second
order differential equations, which must be solved (numerically) to obtain a precise
description of the motion of the semirigid spacecraft. That is beyond our scope.
However, to study their stability we can linearize the equations in much the same way
as we did in Section 10.3. (Note that Equations 10.83 reduce to 10.29 when m = 0.) We
assume the satellite is in pure spin with angular velocity ω0 about the z axis and that the
damper mass is at rest (zm = 0). This motion is slightly perturbed, in such a way that

ωx = δωx ωy = δωy ωz = ω0 + δωz zm = δzm (10.87)



10.5 Nutation damper 501

It will be convenient for this analysis to introduce operator notation for the time
derivative, D = d/dt . Thus, given a function of time f (t), for any integer n,
Dnf = dnf /dtn, and D0f (t) = f (t). Then the various time derivatives throughout
the equations will, in accordance with Equation 10.87, be replaced as follows,

ω̇x = Dδωx ω̇y = Dδωy ω̇z = Dδωz żm = Dδzm z̈m = D2δzm (10.88)

Substituting Equations 10.87 and 10.88 into Equations 10.83 and 10.86 and retaining
only those terms which are at most linear in the small perturbations leads to

ADδωx + (C − B)ω0δωy = 0

[A − C − (1 − µ)mR2]ω0δωx + [B + (1 − µ)mR2]Dδωy

− (1 − µ)mR(D2 + ω2
0)δzm = 0 (10.89)

[C + (1 − µ)mR2]Dδωz = 0

(1 − µ)mRω0δωx − (1 − µ)mRDδωy + [(1 − µ)mD2 + cD + k]δzm = 0

δωz appears only in the third equation, which states that δωz = constant. The first,
second and fourth equations may be combined in matrix notation,

 AD (C − B)ω0 0

[A − C − (1 − µ)mR2]ω0 [B + (1 − µ)mR2]D −(1 − µ)mR(D2 + ω2
0)

(1 − µ)mRω0 −(1 − µ)mRD (1 − µ)mD2 + cD + k




×



δwx

δωy

δzm


 =




0
0
0


 (10.90)

This is a set of three linear differential equations in the perturbations δωx , δωy and
δzm. We won’t try to solve them, since all we are really interested in is the stability
of the satellite-damper system. It can be shown that the determinant � of the 3 by 3
matrix in Equation 10.90 is

� = a4D4 + a3D3 + a2D2 + a1D + a0 (10.91)

in which the coefficients of the characteristic equation � = 0 are

a4 = (1 − µ)mAB

a3 = cA[B + (1 − µ)mR2]

a2 = k[B + (1 − µ)mR2]A + (1 − µ)m[(A − C)(B − C)

− (1 − µ)AmR2]ω2
0 (10.92)

a1 = c{[A − C − (1 − µ)mR2](B − C)}ω2
0

a0 = k{[A − C − (1 − µ)mR2](B − C)}ω2
0 + [(B − C)(1 − µ)2]m2R2ω4

0

According to the Routh–Hurwitz stability criteria (see any text on control systems,
e.g., Palm, 1983), the motion represented by Equations 10.90 is asymptotically stable
if and only if the signs of all of the following quantities, defined in terms of the
coefficients of the characteristic equation, are the same

r1 = a4 r2 = a3 r3 = a2 − a4a1

a3
r4 = a1 − a3a0

a3a2 − a4a1
r5 = a0 (10.93)
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Example
10.6

A satellite is spinning about the z axis of its principal body frame at 2π radians per
second. The principal moments of inertia about its center of mass are

A = 300 kg · m2 B = 400 kg · m2 C = 500 kg · m2 (a)

For the nutation damper, the following properties are given

R = 1 m µ = 0.01 m = 10 kg k = 10 000 N/m c = 150 N · s/m (b)

Use the Routh–Hurwitz stability criteria to assess the stability of the satellite as a
major-axis spinner, a minor-axis spinner, and an intermediate-axis spinner.

The data in (a) are for a major-axis spinner. Substituting into Equations 10.92 and
10.93, we find

r1 = +1.188 × 106 kg3m4

r2 = +18.44 × 106 kg3m4/s

r3 = +1.228 × 109 kg3m4/s2 (c)

r4 = +92 820 kg3m4/s3

r5 = +8.271 × 109 kg3m4/s4

Since the rs are all positive, spin about the major axis is asymptotically stable. As we
know from Section 10.3, without the damper the motion is neutrally stable.

For spin about the minor axis,

A = 500 kg · m2 B = 400 kg · m2 C = 300 kg · m2 (d)

For these moment of inertia values, we obtain

r1 = +1.980 × 106 kg3m4

r2 = +30.74 × 106 kg3m4/s

r3 = +2.048 × 109 kg3m4/s2 (e)

r4 = −304 490 kg3m4/s3

r5 = +7.520 × 109 kg3m4/s4

Since the rs are not all of the same sign, spin about the minor axis is not asymptotically
stable. Recall that for the rigid satellite, such a motion was neutrally stable.

Finally, for spin about the intermediate axis,

A = 300 kg · m2 B = 500 kg · m2 C = 400 kg · m2 (f)

We know this motion is unstable, even without the nutation damper, but doing the
Routh–Hurwitz stability check anyway, we get

r1 = +1.485 × 106 kg3m4

r2 = +22.94 × 106 kg3m4/s
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r3 = +1.529 × 109 kg3m4/s2

r4 = −192 800 kg3m4/s3

r5 = −4.323 × 109 kg3m4/s4

The motion, as we expected, is not stable.

10.6 Coning maneuver

Like the use of nutation dampers, the coning maneuver is an example of the attitude
control of spinning spacecraft. In this case, the angular momentum is changed by the
use of on-board thrusters (small rockets) to apply pure torques.

Consider a satellite in pure spin with angular momentum HG0 . Suppose we wish
to maintain the magnitude of the angular momentum but change its direction by
rotating the spin axis through an angle θ , as illustrated in Figure 10.10. Recall from
Section 9.4 that to change the angular momentum of the spacecraft requires applying
an external moment,

�HG =
∫ �t

0
MG dt

HG0

HGf

T

T
T

T

θ/2

θ/2

�HG2

�HG1

Figure 10.10 Impulsive coning maneuver.
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∆HG

∆HG

HG0

HGf   

θ/2

Figure 10.11 A sequence of small coning maneuvers.

Thrusters may be used to provide the external impulsive torque required to produce
an angular momentum increment �HG1 normal to the spin axis. Since the spacecraft
is spinning, this induces coning (precession) of the satellite about an axis at an angle
θ/2 to HG0 . The precession rate is given by Equation 10.23,

ωp = C

A − C

ωs

cos ( θ
2 )

(10.94)

After precessing 180◦, an angular momentum increment �HG2 normal to the spin
axis and in the same direction relative to the spacecraft as the initial torque impulse,
with ‖�HG2‖ = ‖�HG1‖, stabilizes the spin vector in the desired direction. The time
required for an angular reorientation θ using a single coning maneuver is found by
simply dividing the precession angle, π radians, by the precession rate ωp,

t1 = π

ωp
= π

A − C

Cωs
cos

θ

2
(10.95)

Propellant expenditure is reflected in the magnitude of the individual angular
momentum increments, in obvious analogy to delta-v calculations for orbital maneu-
vers. The total delta-H required for the single coning maneuver is therefore given by

�Htotal = ∥∥�HG1

∥∥ + ∥∥�HG2

∥∥ = 2

(∥∥HG0

∥∥ tan
θ

2

)
(10.96)

Figure 10.11 illustrates the fact that �Htotal can be reduced by using a sequence
of small coning maneuvers (small θs) rather than one big θ . The large number of
small �Hs approximates a circular arc of radius ‖HG0‖, subtended by the angle θ .
Therefore, approximately,

�Htotal = 2

(
‖HG0‖

θ

2

)
= ‖HG0‖θ (10.97)

This expression becomes more precise as the number of intermediate maneuvers
increases. Figure 10.12 reveals the extent to which the multiple coning maneuver
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Figure 10.12 Ratio of delta-H for a sequence of small coning maneuvers to that for a single coning maneuver,
as a function of the angle of swing of the spin axis.
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Figure 10.13 Time for a coning maneuver versus the number of intermediate steps.

strategy reduces energy requirements. The difference is quite significant for large
reorientation angles.

One of the prices to be paid for the reduced energy of the multiple coning maneu-
ver is time. (The other is the risk involved in repeating the maneuver over and over
again.) From Equation 10.95, the time required for n small-angle coning maneuvers
through a total angle of θ is

tn = nπ
A − C

Cωs
cos

θ

2n
(10.98)

The ratio of this to the time t1 required for a single coning maneuver is

tn

t1
= n

cos
θ

2n

cos
θ

2

(10.99)

The time is directly proportional to the number of intermediate coning maneuvers,
as illustrated in Figure 10.13.
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10.7 Attitude control thrusters

As mentioned above, thrusters are small jets mounted in pairs on a spacecraft to
control its rotational motion about the center of mass. These thruster pairs may be
mounted in principal planes (planes normal to the principal axes) passing through
the center of mass. Figure 10.14 illustrates a pair of thrusters for producing a torque
about the positive y axis. These would be accompanied by another pair of reaction
motors pointing in the opposite directions to exert torque in the negative x direction.
If the position vectors of the thrusters relative to the center of mass are r and −r,
and if T is their thrust, then the impulsive moment they exert during a brief time
interval �t is

M = r × T�t + (−r) × (−T�t) = 2r × T�t (10.100)

If the angular velocity was initially zero, then after the firing, according to
Equation 10.31, the angular momentum becomes

H = 2r × T�t (10.101)

For H in the principal x direction, as in the figure, the corresponding angular velocity
acquired by the vehicle is, from Equation 10.67,

ωy = ‖H‖
B

(10.102)

r

�r
x

y

z

G

T

�T

M

Figure 10.14 Pair of attitude control thrusters mounted in the xz plane of the principal body frame.
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Example
10.7

A spacecraft of mass m and with the dimensions shown in Figure 10.15 is spinning
without precession at the rate ω0 about the z axis of the principal body frame. At
the instant shown in part (a) of the figure, the spacecraft initiates a coning maneuver
to swing its spin axis through 90◦, so that at the end of the maneuver the vehicle is
oriented as illustrated in Figure 10.15(b). Calculate the total delta-H required, and
compare it with that required for the same reorientation without coning. Motion is
to be controlled exclusively by the pairs of attitude thrusters shown, all of which have
identical thrust T .

x, X

y,Y

z, Z

z

y

T

T

T

T

x

HG2

HG1

�HG1

�HG2

w

w

w/3

w/3

(a)

45°

RCS-6RCS-5

RCS-2

RCS-4

RCS-3
RCS-1

Precession of
spin axis

RCS-1
or

RCS-2

RCS-3

RCS-2
or

RCS-1

RCS-4

w

w

RCS-5

(b)

Figure 10.15 (a) Initial orientation of spinning spacecraft. (b) Final configuration, with spin axis rotated 90◦.

According to Figure 9.9(c), the moments of inertia about the principal body axes are

A = B = 1

12
m

[
w2 +

(w

3

)2
]

= 5

54
mw2 C = 1

12
m(w2 + w2) = 1

6
mw2

The initial angular momentum HG1 points in the spin direction, along the positive z
axis of the body frame,

HG1 = Cωz k̂ = 1

6
mw2ω0k̂

We can presume that in the initial orientation, the body frame happens to coin-
cide instantaneously with inertial frame XYZ . The coning motion is initiated by
briefly firing the pair of thrusters RCS-1 and RCS-2, aligned with the body z axis
and lying in the yz plane. The impulsive torque will cause a change �HG1 in
angular momentum directed normal to the plane of the thrusters, in the positive
body x direction. The resultant angular momentum vector must lie at 45◦ to the
x and z axes, bisecting the angle between the initial and final angular momenta.
Thus,

‖�HG1‖ = ‖HG1‖ tan 45◦ = 1

6
mw2ω0
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(Example 10.7
continued)

After the coning is underway, the body axes of course move away from the XYZ frame.
Since the spacecraft is oblate (C > A), the precession of the spin axis will be opposite
to the spin direction, as indicated in Figure 10.15. When the spin axis, after 180◦ of
precession, lines up with the x axis the thrusters must fire again for the same duration
as before so as to produce the angular momentum change �HG2 , equal in magnitude
but perpendicular to �HG1 , so that

HG1 + �HG1 + �HG2 = HG2

where

HG2 = ‖HG1‖Î = 1

6
mw2ω0k̂

For this to work, the plane of thrusters RCS-1 and RCS-2 – the yz plane – must
be parallel to the XY plane when they fire, as illustrated in Figure 10.15(b). Since
the thrusters can fire fore or aft, it does not matter which of them ends up on top
or bottom. The vehicle must therefore spin through an integral number n of half
rotations while it precesses to the desired orientation. That is, the total spin angle ψ

between the initial and final configurations is

ψ = nπ = ωst (a)

where ωs is the spin rate and t is the time for the proper final configuration to be
achieved. In the meantime, the precession angle φ must be π or 3π or 5π , or, in
general,

φ = (2m − 1)π = ωpt (b)

where m is an integer and t is, of course, the same as that in (a). Eliminating t from
both (a) and (b) yields

nπ = (2m − 1)π
ωs

ωp

Substituting Equation 10.94, with θ = π/2, gives

n = (1 − 2m)
4

9

1√
2

(c)

Obviously, this equation cannot be valid if both m and n are integers. However, by
tabulating n as a function of m we find that when m = 18, n = −10.999. The minus
sign simply reminds us that spin and precession are in opposite directions. Thus,
the eighteenth time that the spin axis lines up with the x axis the thrusters may be
fired to almost perfectly align the angular momentum vector with the body z axis.
The slight misalignment due to the fact that ‖n‖ is not precisely 11 would probably
occur in reality anyway. Passive or active nutation damping can drive this deviation
to zero.

Since ‖HG1‖ = ‖HG2‖, we conclude that

�Htotal = 2

(
1

6
mw2ω0

)
= 2

3
mw2ω0 (d)
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An obvious alternative to the coning maneuver is to use thrusters RCS-3 and 4 to
despin the craft completely, thrusters RCS-5 and 6 to initiate roll around the y axis
and stop it after 90◦, and then RCS-3 and 4 to respin the spacecraft to ω0 around the
z axis. The combined delta-H for the first and last steps equals that of (d). Additional
fuel expenditure is required to start and stop the roll around the y axis. Hence, the
coning maneuver is more fuel efficient.

10.8 Yo-yo despin mechanism

A simple, inexpensive way to despin an axisymmetric satellite is to deploy small masses
attached to cords wound around the girth of the satellite near the transverse plane
through the center of mass. As the masses unwrap in the direction of the satellite’s
angular velocity, they exert centrifugal force through the cords on the periphery of the
satellite, creating a moment opposite to the spin direction, thereby slowing down the
rotational motion. The cord forces are internal to the system of satellite plus weights,
so as the strings unwind, the total angular momentum must remain constant. Since
the total moment of inertia increases as the yo-yo masses spiral further away, the
angular velocity must drop. Not only angular momentum but also rotational kinetic
energy is conserved during this process. Yo-yo despin devices were introduced early
in unmanned space flight (e.g., 1959 Transit 1-A) and continue to be used today (e.g.,
1996 Mars Pathfinder, 1998 Mars Climate Orbiter, 1999 Mars Polar Lander, 2003
Mars Exploration Rover).

We will use the conservation of energy and momentum to determine the length of
cord required to reduce the satellite’s angular velocity a specified amount. To maintain
the position of the center of mass, two identical yo-yo masses are wound around the
spacecraft in a symmetrical fashion, as illustrated in Figure 10.16. Both masses are

r

T

AG

φ

î

ĵ

x

y

m/2

RH

v

ω

H'

A'

m/2

P

cord

cord

Rφ φ

Figure 10.16 Two identical string and mass systems wrapped symmetrically around the periphery of an
axisymmetric satellite. For simplicity, only one is shown being deployed.
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released simultaneously by explosive bolts and unwrap in the manner shown (for
only one of the weights) in the figure. In so doing, the point of tangency T moves
around the circumference towards the split hinge device where the cord is attached
to the spacecraft. When T and T ′ reach the hinges H and H ′, the cords automatically
separate from the spacecraft.

Let each yo-yo weight have mass m/2. By symmetry, we need to track only one of
the masses, to which we can ascribe the total mass m. Let the xyz system be a body
frame rigidly attached to the satellite, as shown in Figure 10.16. As usual, the z axis lies
in the spin direction, pointing out of the page. The x axis is directed from the center of
mass of the system through the initial position of the yo-yo mass. The satellite and the
yo-yo masses, prior to release, are rotating as a single rigid body with angular velocity

ω0 = ω0k̂. The moment of inertia of the satellite, excluding the yo-yo mass, is C, so
that the angular momentum of the satellite by itself is Cω0. The concentrated yo-yo
masses are fastened a distance R from the spin axis, so their total moment of inertia
is mR2. Therefore, the initial angular momentum of the satellite plus yo-yo system is

HG0 = Cω0 + mR2ω0

It will be convenient to write this as

HG0 = KmR2ω0 (10.103)

where the non-dimensional factor K is defined as

K = 1 + C

mR2
(10.104)

√
KR is the initial radius of gyration of the system. The initial rotational kinetic

energy of the system, before the masses are released, is

T0 = 1

2
Cω2

0 + 1

2
mR2ω2

0 = 1

2
KmR2ω2

0 (10.105)

At any state between the release of the weights and the release of the cords at the
hinges, the velocity of the yo-yo mass must be found in order to compute the new
angular momentum and kinetic energy. Observe that when the string has unwrapped
an angle φ, the free length of string (between the point of tangency T and the yo-yo
mass P) is Rφ. From the geometry shown in Figure 10.16, the position vector of the
mass relative to the body frame is seen to be

r =
rT/G︷ ︸︸ ︷

(R cos φ î + R sin φ ĵ) +
rP/T︷ ︸︸ ︷

(Rφ sin φ î − Rφ cos φ ĵ) (10.106)

= (R cos φ + Rφ sin φ)î + (R sin φ − Rφ cos φ)ĵ

Since r is measured in the moving reference, the absolute velocity v of the yo-yo mass
is found using Equation 1.28,

v = dr

dt

)
rel

+ � × r (10.107)



10.8 Yo-yo despin mechanism 511

where � is the angular velocity of the xyz axes, which, of course, is the angular velocity
ω of the satellite at that instant,

� = ω (10.108)

To calculate dr/dt)rel, we hold î and ĵ constant in Equation 10.106, obtaining

dr

dt

)
rel

= (−Rφ̇ sin φ + Rφ̇ sin φ + Rφ̇ cos φ)î + (Rφ̇ cos φ − Rφ̇ cos φ + Rφ̇ sin φ)ĵ

= Rφ̇ cos φ î + Rφ̇ sin φ ĵ

Thus

v = Rφ̇ cos φ î + Rφ̇ sin φ ĵ +
∣∣∣∣∣∣

î ĵ k̂
0 0 ω

R cos φ + Rφ sin φ R sin φ − Rφ cos φ 0

∣∣∣∣∣∣
or

v = [Rφ(ω + φ̇) cos φ − Rω sin φ]î + [Rω cos φ + Rφ(ω + φ̇) sin φ]ĵ (10.109)

From this we find the speed of the yo-yo weights,

v = √
v · v = R

√
ω2 + (ω + φ̇)2φ2 (10.110)

The angular momentum of the satellite plus the weights at an intermediate stage of
the despin process is

HG = Cωk̂ + r × mv

= Cωk̂ + m

∣∣∣∣∣∣
î ĵ k̂

R cos φ + Rφ sin φ R sin φ − Rφ cos φ ω

Rφ(ω + φ̇) cos φ − Rω sin φ Rω cos φ + Rφ(ω + φ̇) sin φ 0

∣∣∣∣∣∣
Carrying out the cross product, combining terms and simplifying, leads to

HG = Cω + mR2[ω + (ω + φ̇)φ2]

which, using Equation 10.104, can be written

HG = mR2[Kω + (ω + φ̇)φ2] (10.111)

The kinetic energy of the satellite plus the yo-yo mass is

T = 1

2
Cω2 + 1

2
mv2

Substituting the speed from Equation 10.110 and making use again of
Equation 10.104, we find

T = 1

2
mR2[Kω2 + (ω + φ̇)2φ2] (10.112)

By the conservation of angular momentum, HG = HG0 , we obtain from Equa-
tions 10.103 and 10.111,

mR2[Kω + (ω + φ̇)φ2] = KmR2ω0
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which we can write as

K(ω0 − ω) = (ω +φ̇)φ2 (10.113)

Equations 10.105 and 10.112 and the conservation of kinetic energy, T = T0, combine
to yield

1

2
mR2[Kω2 + (ω + φ̇)2φ2] = 1

2
KmR2ω2

0

or

K
(
ω2

0 − ω2) = (ω + φ̇)2φ2 (10.114)

Since ω2
0 − ω2 = (ω0 − ω)(ω0 + ω), this can be written

K(ω0 − ω)(ω0 + ω) = (ω + φ̇)2φ2

Replacing the factor K(ω0 − ω) on the left using Equation 10.113 yields

(ω + φ̇)φ2(ω0 + ω) = (ω + φ̇)2φ2

After canceling terms, we find ω0 + ω = ω + φ̇, or, simply

φ̇ = ω0 (10.115)

In other words, the cord unwinds at a constant rate (relative to the satellite), equal to
the satellite’s initial angular velocity. Thus at any time t after the release of the weights,

φ = ω0t (10.116)

By substituting Equation 10.115 into Equation 10.113,

K(ω0 − ω) = (ω + ω0)φ2

we find that

φ =
√

K
ω0 − ω

ω0 + ω
Partial despin. (10.117)

Recall that the unwrapped length l of the cord is Rφ, which means

l = R

√
K

ω0 − ω

ω0 + ω
Partial despin. (10.118)

We use Equation 10.118 to find the length of cord required to despin the spacecraft
from ω0 to ω. To remove all of the spin (ω = 0),

φ = √
K ⇒ l = R

√
K Complete despin. (10.119)

Surprisingly, the length of cord required to reduce the angular velocity to zero is
independent of the initial angular velocity.

We can solve Equation 10.117 for ω in terms of φ,

ω =
(

2K

K + φ2
− 1

)
ω0 (10.120)
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By means of Equation 10.116, this becomes an expression for the angular velocity as
a function of time

ω =
(

2K

K + ω2
0t2

− 1

)
ω0 (10.121)

Alternatively, since φ = l/R, Equation 10.120 yields the angular velocity as a function
of cord length,

ω =
(

2KR2

KR2 + l2
− 1

)
ω0 (10.122)

Differentiating ω with respect to time in Equation 10.121 gives us an expression for
the angular acceleration of the spacecraft,

α = dω

dt
= − 4Kω3

0t

(K + ω2
0t2)2

(10.123)

whereas integrating ω with respect to time yields the angle rotated by the satellite
since release of the yo-yo mass,

θ = 2
√

K tan−1 ω0t√
K

− ω0t = 2
√

K tan−1 φ√
K

− φ (10.124)

For complete despin, this expression, together with Equation 10.119, yields

θ = √
K
(π

2
− 1

)
(10.125)

From the free-body diagram of the spacecraft shown in Figure 10.17, it is clear that
the torque exerted by the yo-yo weights is

MGz = −2RN (10.126)

T

G

φ

î

ĵ
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N R

Figure 10.17 Free-body diagram of the satellite during the despin process.
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where N is the tension in the cord. From Euler’s equations of motion, Equation 10.72,

MGz = Cα (10.127)

Combining Equations 10.123, 10.126 and 10.127 leads to a formula for the tension in
the yo-yo cables,

N = C

R

2Kω3
0t(

K + ω2
0t2

)2 = Cω2
0

R

2Kφ

(K + φ2)2
(10.128)

Radial release

Finally, we note that instead of releasing the yo-yo masses when the cables are tangent
at the split hinges (H and H ′), they can be forced to pivot about the hinge and released
when the string is directed radially outward, as illustrated in Figure 10.18. The above
analysis must be then extended to include the pivoting of the cord around the hinges.
It turns out that in this case, the length of the cord as a function of the final angular
velocity is

l = R

(√
[(ω0 − ω)K + ω]2

(ω2
0 − ω2)K + ω2

− 1

)
Partial despin, radial release. (10.129)

so that for ω = 0,

l = R(
√

K − 1) Complete despin, radial release. (10.130)

G
x

y

H

H'

Tangential release position
Radial release position

Figure 10.18 Radial versus tangential release of yo-yo masses.
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Example
10.8

A satellite is to be completely despun using a two-mass yo-yo device with tangential
release. Assume the spin axis of moment of inertia of the satellite is C = 200 kg · m2

and the initial spin rate is ω0 = 5 rad/s. The total yo-yo mass is 4 kg, and the radius of
the spacecraft is 1 meter. Find (a) the required cord length l; (b) the time t to despin;
(c) the maximum tension in the yo-yo cables; (d) the speed of the masses at release;
(e) the angle rotated by the satellite during the despin; (f) the cord length required
for radial release.

(a) From Equation 10.104,

K = 1 + C

mR2
= 1 + 200

4 · 12
= 51 (a)

From Equation 10.118 it follows that the cord length required for complete
despin is

l = R
√

K = 1 · √51 = 7.1414 m (b)

(b) The time for complete despin is obtained from Equations 10.116 and 10.118,

ω0t = √
K ⇒ t =

√
K

ω0
=

√
51

5
= 1.4283 s

(c) A graph of Equation 10.128 is shown in Figure 10.19. The maximum tension is
455 N, which occurs at 0.825 s.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

100

200

300

400

500

t (s)

N
 (

N
)

Figure 10.19 Variation of cable tension N up to point of release.

(d) From Equation 10.110, the speed of the yo-yo masses is

v = R
√

ω2 + (ω + φ̇)2φ2
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(Example 10.8
continued)

According to Equation 10.115, φ̇ = ω0 and at the time of release (ω = 0)
Equation 10.118 states that φ = √

K . Thus

v = R

√
ω2 + (ω + ω0)2

√
K

2 = 1 ·
√

02 + (0 + 5)2
√

51
2 = 35.71 m/s

(e) The angle through which the satellite rotates before coming to rotational rest is
given by Equation 10.124,

θ = √
K
(π

2
− 1

)
= √

51
(π

2
− 1

)
= 4.076 rad (233.5◦)

(f) Allowing the cord to detach radially reduces the cord length required for complete
despin from 7.141 m to

l = R
(√

K − 1
)

= 1 ·
(√

51 − 1
)

= 6.141 m

10.9 Gyroscopic attitude control

Momentum exchange systems (‘gyros’) are used to control the attitude of a spacecraft
without throwing consumable mass overboard, as occurs with the use of thruster
jets. A momentum exchange system is illustrated schematically in Figure 10.20. n
flywheels, labeled 1, 2, 3, etc., are attached to the body of the spacecraft at various
locations. The mass of flywheel i is mi. The mass of the body of the spacecraft is m0.

x

y

z

G

G1
1

G2

G3

Gi

�

�(2)

�(i)

�(1)

�(3)

2

3

i

Body-fixed frame

Figure 10.20 Several attitude control flywheels, each with their own angular velocity, attached to the body
of a spacecraft.
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The total mass of the entire system – the ‘vehicle’ – is m,

m = m0 +
n∑

i=1

mi

The vehicle’s center of mass is G, through which pass the three axes xyz of the vehicle’s
body-fixed frame. The center of mass Gi of each flywheel is connected rigidly to the
spacecraft, but the wheel, driven by electric motors, rotates more or less independently,
depending on the type of gyro. The body of the spacecraft has an angular velocity ω.
The angular velocity of the ith flywheel is ωi, and differs from that of the body of the
spacecraft unless the gyro is ‘caged’. A caged gyro has no spin relative to the spacecraft,
in which case ωi = ω.

The angular momentum of the entire system about the vehicle’s center of mass G
is the sum of the angular momenta of the individual components of the system,

HG = H(v)
G + H(w) (10.131)

H(v)
G is the total angular momentum of the rigid body comprising the spacecraft and

all of the flywheel masses concentrated at their centers of mass Gi. That system has
the common vehicle angular velocity ω, which means, according to Equation 9.39,
that {

H(v)
G

} = [
I(v)

G

]{ω} (10.132)

where [I(v)
G ] is the moment of inertia found by adding the moments of inertia of all

the concentrated flywheel masses about G to that of the body of the spacecraft. On the
other hand, H(w) is the net angular momentum of the n flywheels about each of their
individual centers of mass,

H(w) =
n∑

i=1

H(i)
Gi

(10.133)

H(i)
Gi

, the angular momentum of flywheel i about its center of mass Gi, is obtained by
once again using Equation 9.39,{

H(i)
Gi

} = [
I(i)

Gi

]{
ω(i)} (10.134)

[I(i)
Gi

] is the moment of inertia of flywheel i about Gi, relative to axes which are parallel

to the body-fixed xyz axes. The mass distribution reflected in [I(v)
G ] is fixed relative

to the body frame, which means this matrix does not vary with time. On the other
hand, since a momentum wheel might be one that pivots on gimbals relative to the

body frame, the inertia tensor [I(i)
Gi

] may be time dependent.
Substituting Equation 10.131 into Equation 9.30 yields the equations of rotational

motion of the gyro stabilized spacecraft,

MGnet = Ḣ(v)
G + Ḣ(w) (10.135)

Since the angular momenta are computed in the non-inertial body-fixed frame, we
must use Equation 1.28 to obtain the time derivatives on the right-hand side of
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Equation 10.135. Therefore,

MGnet =
[

dH(v)
G

dt

)
rel

+ ω × H(v)
G

]
+

[
dH(w)

dt

)
rel

+ ω × H(w)

]
(10.136)

For torque-free motion, MGnet = 0, in which case we have the conservation of angular
momentum about the vehicle center of mass,

H(v)
G + H(w) = constant (10.137)

Example
10.9

Use Equation 10.136 to obtain the equations of motion of a torque-free, axisymmetric,
dual-spin satellite, such as the one shown in Figure 10.21.

x

y

Gr

G

Rotor

z

Platform

ω(r)

ω(r) � ωp
Gp

z

z

Figure 10.21 Dual-spin spacecraft.

In the dual-spin satellite, we may arbitrarily choose the rotor as the body of the
vehicle, to which the body frame is attached. The coaxial platform will play the role
of the single reaction wheel. The center of mass G of the satellite lies on the axis of
rotational symmetry (the z axis), between the center of mass of the rotor (Gr) and
that of the platform (Gp). For this torque-free system, Equation 10.136 becomes

dH(v)
G

dt

)
rel

+ ω(r) × H(v)
G +

dH
(p)
Gp

dt




rel

+ ω(r) × H
(p)
Gp

= 0 (a)

in which r signifies the rotor and p the platform.
The vehicle angular momentum about G is that of the rotor plus that of the

platform center of mass,{
H(v)

G

} = [
I(r)

G

]{
ω(r)} + [

I
(p)
mG

]{
ω(r)} = ([

I(r)
G

] + [
I

(p)
mG

]){
ω(r)} (b)
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[
I

(p)
mG

]
is the moment of inertia tensor of the concentrated mass of the platform

about the system center of mass, and it is calculated by means of Equation 9.44. The

components of
[
I(r)

G

]
and

[
I

(p)
mG

]
are constants, so from (b) we obtain

d
{

H(v)
G

}
dt

)
rel

= ([
I(r)

G

] + [
I

(p)
mG

]){
ω̇(r)} (c)

The angular momentum of the platform about its own center of mass is{
H

(p)
Gp

} = [
I

(p)
Gp

]{
ω(p)} (d)

For both the platform and the rotor, the z axis is an axis of rotational symmetry. Thus,

even though the platform is not stationary in xyz, the moment of inertia matrix
[
I

(p)
Gp

]
is not time dependent. It follows that

d
{

H
(p)
Gp

}
dt




rel

= [
I

(p)
Gp

]{
ω̇(p)} (e)

Using (b) through (e), we can write the equation of motion (a) as([
I(r)

G

] + [
I

(p)
mG

]){
ω̇(r)} + {

ω(r)} × ([
I(r)

G

] + [
I

(p)
mG

]){
ω(r)}

+ [
I

(p)
Gp

]{
ω̇(p)} + {

ω(r)} × [
I

(p)
Gp

]{
ω(p)} = {

0
}

(f)

The angular velocity ω(p) of the platform is that of the rotor, ω(r), plus the angular

velocity of the platform relative to the rotor, ω
(p)
rel . Hence, we may replace

{
ω(p)

}
with

{ω(r)} + {
ω

(p)
rel

}
, so that, after a little rearrangement, (f) becomes

([
I(r)

G

] + [
I

(p)
G

]){
ω̇(r)} + {

ω(r)} × ([
I(r)

G

] + [
I

(p)
G

]){
ω(r)}

+ [
I

(p)
Gp

]{
ω̇

(p)
rel

} + {
ω(r)} × [

I
(p)
Gp

]{
ω

(p)
rel

} = {
0
}

(g)

in which [
I

(p)
G

] = [
I

(p)
mG

] + [
I

(p)
Gp

]
(Parallel axis formula.) (h)

The components of the matrices and vectors in (g) relative to the principal xyz body
frame axes are

[
I(r)

G

] =

Ar 0 0

0 Ar 0
0 0 Cr


 [

I
(p)
G

] =

Ap 0 0

0 Ap 0
0 0 Cp


 [

I
(p)
Gp

] =

Ap 0 0

0 Ap 0
0 0 Cp




(i)

and

{
ω(r)} =




ω
(r)
x

ω
(r)
y

ω
(r)
z




{
ω̇(r)} =




ω̇
(r)
x

ω̇
(r)
y

ω̇
(r)
z




{
ω̇

(p)
rel

} =



0
0
ωp


{

ω̇
(p)
rel

} =



0
0
ω̇p


 (j)
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(Example 10.9
continued)

Ar , Cr , Ap and Cp are the rotor and platform principal moments of inertia about the
vehicle center of mass G, whereas Ap is the moment of inertia of the platform about
its own center of mass. We also used the fact that Cp = Cp, which of course is due to
the fact that G and Gp both lie on the z axis. This notation is nearly identical to that
employed in our consideration of the stability of dual-spin satellites in Section 10.4

(wherein ωr = ω
(r)
z and ω⊥ = ω

(r)
x î + ω

(r)
y ĵ). Substituting (i) and (j) into each of the

four terms in (g), we get

([
I(r)

G

] + [
I

(p)
G

]){
ω̇(r)} =


Ar + Ap 0 0

0 Ar + Ap 0
0 0 Cr + Cp






ω̇
(r)
x

ω̇
(r)
y

ω̇
(r)
z




=




(Ar + Ap)ω̇(r)
x

(Ar + Ap)ω̇(r)
y

(Cr + Cp)ω̇(r)
z


 (k)

{
ω(r)} × ([

I(r)
G

] + [
I

(p)
G

]){
ω(r)} =




ω
(r)
x

ω
(r)
y

ω
(r)
z


 ×




(Ar + Ap)ω(r)
x

(Ar + Ap)ω(r)
y

(Cr + Cp)ω(r)
z




=



[(Cp − Ap) + (Cr − Ar)]ω(r)
y ω

(r)
z

[(Ap − Cp) + (Ar − Cr)]ω(r)
x ω

(r)
z

0


 (l)

[
I

(p)
Gp

]{
ω̇

(p)
rel

} =

Ap 0 0

0 Ap 0
0 0 Cp






0
0
ω̇p


 =




0
0

Cpω̇p


 (m)

{
ω(r)}×[

I
(p)
Gp

]{
ω

(p)
rel

}=



ω
(r)
x

ω
(r)
y

ω
(r)
z


×


Ap 0 0

0 Ap 0
0 0 Cp






0
0
ωp


 =




Cpω
(r)
y ωp

−Cpω
(r)
x ωp

0


 (n)

With these four expressions, (g) becomes




(Ar + Ap)ω̇(r)
x

(Ar + Ap)ω̇(r)
y

(Cr + Cp)ω̇(r)
z


 +




[(Cp − Ap) + (Cr − Ar)]ω(r)
y ω

(r)
z

[(Ap − Cp) + (Ar − Cr)]ω(r)
x ω

(r)
z

0




+



0
0

Cpω̇p


 +




Cpω
(r)
y ωp

−Cpω
(r)
x ωp

0


=




0
0
0


 (o)

Combining the four vectors on the left-hand side, and then extracting the three
components of the vector equation finally yields the three equations of motion of the
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dual-spin satellite in the body frame,

Aω̇(r)
x + (C − A)ω(r)

y ω(r)
z + Cpω

(r)
y ωp = 0

Aω̇(r)
y + (A − C)ω(r)

x ω(r)
z − Cpω

(r)
x ωp = 0 (p)

Cω̇(r)
z + Cpω̇p = 0

where A and C are the combined transverse and axial moments of inertia of the
dual-spin vehicle about its center of mass,

A = Ar + Ap C = Cr + Cp (q)

The three equations (p) involve four unknowns, ω
(r)
x , ω(r)

y , ω(r)
z and ωp. A fourth

equation is required to account for the means of providing the relative velocity ωp

between the platform and the rotor. Friction in the axle bearing between the platform
and the rotor would eventually cause ωp to go to zero, as pointed out in Section 10.4.
We may assume that the electric motor in the bearing acts to keep ωp constant at a

specified value, so that ω̇p = 0. Then Equation (p)3 implies that ω
(r)
z = constant as

well. Thus, ωp and ω
(r)
z are removed from our list of unknowns, leaving ω

(r)
x and ω

(r)
y

to be governed by the first two equations in (p).

Example
10.10

A spacecraft in torque-free motion has three identical momentum wheels with their
spin axes aligned with the vehicle’s principal body axes. The spin axes of momentum
wheels 1, 2 and 3 are aligned with the x, y and z axes, respectively. The inertia tensors
of the rotationally symmetric momentum wheels about their centers of mass are,
therefore,

[
I(1)

G1

] =

I 0 0

0 J 0
0 0 J


 [

I(2)
G2

] =

J 0 0

0 I 0
0 0 J


 [

I(3)
G3

] =

J 0 0

0 J 0
0 0 I


 (a)

The spacecraft moment of inertia tensor about the vehicle center of mass is

[
I(v)

G

] =

A 0 0

0 B 0
0 0 C


 (b)

Calculate the spin accelerations of the momentum wheels in the presence of external
torque.

The absolute angular velocity ω of the spacecraft and the angular velocities

ω
(1)
rel, ω

(2)
rel, ω

(3)
rel of the three flywheels relative to the spacecraft are

{ω} =



ωx

ωy

ωz


 {ω(1)}rel =




ω(1)

0
0


 {ω(2)}rel =




0
ω(2)

0


 {ω(3)}rel =




0
0

ω(3)




(c)
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(Example 10.10
continued)

Therefore, the angular momentum of the spacecraft and momentum wheels is{
HG

} = [
I(v)

G

]{
ω
} + [

I(1)
G1

]({
ω
} + {

ω(1)}
rel

) + [
I(2)

G2

]({
ω
} + {

ω(2)}
rel

)
+ [

I(3)
G3

]({
ω
} + {

ω(3)}
rel

)
(d)

Substituting Equations (a), (b) and (c) into this expression yields

{HG} =

I 0 0

0 I 0
0 0 I






ω(1)

ω(2)

ω(3)


 +


A + I + 2J 0 0

0 B + I + 2J 0
0 0 C + I + 2J






ωx

ωy

ωz



(e)

In this case, Euler’s equations are

{ḢG}rel + {ω} × {HG} = {MG} (f)

Substituting (e), we get
I 0 0

0 I 0
0 0 I






ω̇(1)

ω̇(2)

ω̇(3)


 +


A + I + 2J 0 0

0 B + I + 2J 0
0 0 C + I + 2J






ω̇x

ω̇y

ω̇z


 +




ωx

ωy

ωz




×



I 0 0

0 I 0
0 0 I






ω(1)

ω(2)

ω(3)


 +


A + I + 2J 0 0

0 B + I + 2J 0
0 0 C + I + 2J






ωx

ωy

ωz






=



MGx

MGy

MGz


 (g)

Expanding and collecting terms yields the time rates of change of the flywheel spins
(relative to the spacecraft) in terms of those of the spacecraft’s absolute angular
velocity components,

ω̇(1) = MGx

I
+ B − C

I
ωyωz −

(
1 + A

I
+ 2

J

I

)
ω̇x + ω(2)ωz − ω(3)ωy

ω̇(2) = MGy

I
+ C − A

I
ωxωz −

(
1 + B

I
+ 2

J

I

)
ω̇y + ω(3)ωx − ω(1)ωz (h)

ω̇(3) = MGz

I
+ A − B

I
ωxωy −

(
1 + C

I
+ 2

J

I

)
ω̇z + ω(1)ωy − ω(2)ωx

Example
10.11

The communications satellite is in a circular earth orbit of period T. The body z axis
always points towards the earth, so the angular velocity about the body y axis is 2π/T.
The angular velocities about the body x and z axes are zero. The attitude control
system consists of three momentum wheels 1, 2 and 3 aligned with the principal x, y
and z axes of the satellite. Variable torque is applied to each wheel by its own electric
motor. At time t = 0 the angular velocities of the three wheels relative to the spacecraft
are all zero. A small, constant environmental torque M0 acts on the spacecraft.
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Determine the axial torques C(1), C(2) and C(3) that the three motors must exert on
their wheels so that the angular velocity ω of the satellite will remain constant. The
moment of inertia of each reaction wheel about its spin axis is I .

x

y

z

x

z

y
1

ω(1)

ω(3)

ω(2)23

G

G

Figure 10.22 Three-axis stabilized satellite.

The absolute angular velocity of the xyz frame is given by

ω = ω0 ĵ (a)

where ω0 = 2π/T, a constant. At any instant, the absolute angular velocities of the
three reaction wheels are, accordingly,

ω(1) = ω(1) î + ω0 ĵ

ω(2) = [ω(2) + ω0]ĵ (b)

ω(3) = ω0 ĵ + ω(3)k̂

From (a) it is clear that ωx = ωz = ω̇x = ω̇y = ω̇z = 0. Therefore, Equations (h) of
Example 10.10 become, for the case at hand,

ω̇(1) = MGx

I
+ B − C

I
ω0(0) −

(
1 + A

I
+ 2

J

I

)
(0) + ω(2)(0) − ω(3)ω0

ω̇(2) = MGy

I
+ C − A

I
(0)(0) −

(
1 + B

I
+ 2

J

I

)
(0) + ω(3)(0) − ω(1)(0)

ω̇(3) = MGz

I
+ A − B

I
(0)ω0 −

(
1 + C

I
+ 2

J

I

)
(0) + ω(1)ω0 − ω(2)(0)

which reduce to the following set of three first order differential equations,

ω̇(1) + ω0ω
(3) = MGx

I

ω̇(2) = MGy

I
(c)

ω̇(3) − ω0ω
(1) = MGz

I
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(Example 10.11
continued)

Equation (c)2 implies that ω(2) = MGy t/I + constant, and since ω(2) = 0 at t = 0, this
means that for time thereafter,

ω(2) = MGy

I
t (d)

Differentiating (c)3 with respect to t and solving for ω̇(1) yields ω̇(1) = ω̈(3)/ω0.
Substituting this result into (c)1 we get

ω̈(3) + ω2
0ω

(3) = ω0MGx

I

The well-known solution of this differential equation is

ω(3) = a cos ω0t + b sin ω0t + MGx

Iω0

where a and b are constants of integration. According to the problem statement,
ω(3) = 0 when t = 0. This initial condition requires a = −MGx /ω0I , so that

ω(3) = b sin ω0t + MGx

Iω0
(1 − cos ω0t) (e)

From this we obtain ω̇(3) = bω0 cos ω0t + MGx
I sin ω0t , which, when substituted into

(c)3, yields

ω(1) = b cos ω0t + MGx

Iω0
sin ω0t − MGz

Iω0
(f)

Since ω(1) = 0 at t = 0, this implies b = MGz /ω0I . In summary, therefore, the angular
velocities of wheels 1, 2 and 3 relative to the satellite are

ω(1) = MGx

Iω0
sin ω0t + MGz

Iω0
(cos ω0t − 1) (g1)

ω(2) = MGy

I
t (g2)

ω(3) = MGz

Iω0
sin ω0t + MGx

Iω0
(1 − cos ω0t) (g3)

The angular momenta of the reaction wheels are

H(1)
G1

= I(1)
x ω(1)

x î + I(1)
y ω(1)

y ĵ + I(1)
z ω(1)

z k̂

H(2)
G2

= I(2)
x ω(2)

x î + I(2)
y ω(2)

y ĵ + I(2)
z ω(2)

z k̂ (h)

H(3)
G3

= I(3)
x ω(3)

x î + I(3)
y ω(3)

y ĵ + I(3)
z ω(3)

z k̂

According to (b), the components of the flywheels’ angular velocities are

ω(1)
x = ω(1) ω(1)

y = ω0 ω(1)
z = 0

ω(2)
x = 0 ω(2)

y = ω(2) + ω0 ω(2)
z = 0

ω(3)
x = 0 ω(3)

y = ω0 ω(3)
z = ω(3)
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Furthermore, I(1)
x = I(2)

y = I(3)
z = I , so that (h) becomes

H(1)
G1

= Iω(1) î + I(1)
y ω0 ĵ

H(2)
G2

= I(ω(2) + ω0)ĵ (i)

H(3)
G3

= I(3)
y ω0 ĵ + Iω(3)k̂

Substituting (g) into these expressions yields the angular momenta of the wheels as a
function of time,

H(1)
G1

=
[

MGx

ω0
sin ω0t + MGz

ω0
(cos ω0t − 1)

]
î + I(1)

y ω0 ĵ

H(2)
G2

= (MGy t + Iω0)ĵ (j)

H(3)
G3

= I(3)
y ω0 ĵ +

[
MGz

ω0
sin ω0t + MGx

ω0
(1 − cos ω0t)

]
k̂

The torque on the reaction wheels is found by applying Euler’s equation to each one.
Thus, for wheel 1

MG1net
= dH(1)

G1

dt

)
rel

+ ω × H(1)
G1

= (MGx cos ω0t − MGz sin ω0t)î + [MGz (1 − cos ω0t) − MGx sin ω0t]k̂

Since the axis of wheel 1 is in the x direction, the torque is the x component of this
moment (the z component being a gyroscopic bending moment),

C(1) = MGx cos ω0t − MGz sin ω0t

For wheel 2,

MG2net
= dH(2)

G2

dt

)
rel

+ ω × H(2)
G2

= MGy ĵ

Thus

C(2) = MGy

Finally, for wheel 3

MG3net
= dH(3)

G3

dt

)
rel

+ ω × H(3)
G3

= [MGx (1 − cos ω0t) + MGz sin ω0t]î + (MGx sin ω0t + MGz cos ω0t)k̂

For this wheel, the torque direction is the z axis, so

C(3) = MGx sin ω0t + MGz cos ω0t
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The external torques on the spacecraft of the previous example may be due to thruster
misalignment or they may arise from environmental effects such as gravity gradients
or solar pressure. The example assumed that these torques were constant, which is
the simplest means of introducing their effects, but they actually vary with time.
In any case, their magnitudes are extremely small, typically less than 10−3 N · m for
ordinary-sized, unmanned spacecraft. Equation (g)2 of the example reveals that a
small torque normal to the satellite’s orbital plane will cause the angular velocity of
momentum wheel 2 to slowly but constantly increase. Over a long enough period of
time, the angular velocity of the gyro might approach its design limits, whereupon
it is said to be saturated. At that point, attitude jets on the satellite would have to be
fired to produce a torque around the y axis while the wheel is ‘caged’, i.e., its angular
velocity is reduced to zero or to its non-zero bias value. Finally, note that if all of the
external torques were zero, none of the momentum wheels in the example would be
required. The constant angular velocity ω = (2π/T)ĵ of the vehicle, once initiated,
would continue unabated.

So far we have dealt with momentum wheels, which are characterized by the fact
that their axes are rigidly aligned with the principal axes of the spacecraft, as shown
in Figure 10.23. The speed of the electrically driven wheels is varied to produce the
required rotation rates of the vehicle in response to external torques. Depending on
the spacecraft, the nominal speed of a momentum wheel may be from zero to several
thousand rpm.

Momentum wheels that are free to pivot on one or more gimbals are called control
moment gyros. Figure 10.24 illustrates a double-gimbaled control moment gyro.
These gyros spin at several thousand rpm. The motor-driven speed of the flywheel is
constant, and moments are exerted on the vehicle when torquers (electric motors) tilt
the wheel about a gimbal axis. The torque direction is normal to the gimbal axis. To
simplify the analysis of high-rpm gyros, we can assume that the angular momentum
is directed totally along the spin axis. That is, in calculating the angular momentum

x

y

z

G

�s

Figure 10.23 Momentum wheel aligned with a principal body axis.
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H(w)
Gw

of a momentum wheel about its center of mass, we use the formula{
H(w)

Gw

} = [
I(w)

Gw

]{
ω(w)}

where ω(w) is the absolute angular velocity of the spinning flywheel, which may be
written

ω(w) = ω(v) + ω
(w)
p + ω(w)

n + ω(w)
s

ω(v) is the angular velocity of the vehicle to which the gyro is attached, while ω
(w)
p , ω(w)

n

and ω
(w)
s are the precession, nutation and spin rates of the gyro relative to the vehicle.

The spin rate of the gyro is three or more orders of magnitude greater than any of the
other rates. That is, under conditions in which a control moment gyro is designed to
operate, ∥∥ω(w)

s

∥∥ � ∥∥ω(v)
∥∥ ∥∥ω(w)

s

∥∥ � ∥∥ω
(w)
p

∥∥ ∥∥ω(w)
s

∥∥ � ∥∥ω(w)
n

∥∥
We may therefore accurately express the angular momentum of any high-rpm gyro as{

H(w)
Gw

} = [
I(w)

Gw

]{
ω(w)

s

}
(10.138)

Since the spin axis of a gyro is an axis of symmetry, about which the moment of
inertia is C(w), this can be written

H(w)
Gw

= C(w)ω(w)
s n̂(w)

s

Pivot
bearing

Torquer

Torquer

Mounting
fixture

Spin axis

Inner
gimbal

axis

Outer
gimbal

axis

Drive
motor

Mounting
fixture

Pivot
bearing

Flywheel

Figure 10.24 Two-gimbal control moment gyro.
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z

x

ωs

y

φ

θ
Spin axis

n̂s

Axes of vehicle
body frame

Figure 10.25 Inclination angles of the spin vector of a gyro.

where n̂(w)
s is the unit vector along the spin axis, as illustrated in Figure 10.25. Relative

to the body frame axes of the spacecraft, the components of n̂(w)
s appear as follows,

n̂(w)
s = sin θ cos φ î + sin θ sin φ ĵ + cos θ k̂ (10.139)

If we let

H(w) = C(w)ω(w)
s

then Equation 10.138 becomes, simply,

H(w)
Gw

= H(w)n̂(w)
s (10.140)

Let us consider the equation of motion of a spacecraft with a single gyro. From
Equation 10.136,

dH(v)
G

dt

)
rel

+ ω × H(v)
G + dH(w)

Gw

dt

)
rel

+ ω × H(w)
Gw

= MGnet (10.141)

Calculating each term on the left, we have, for the vehicle,

H(v)
G = Aωx î + Bωy ĵ + Cωz k̂

dH(v)
G

dt

)
rel

= Aω̇x î + Bω̇y ĵ + Cω̇z k̂ (10.142)

ω × H(v)
G =

∣∣∣∣∣∣
î ĵ k̂

ωx ωy ωz

Aωx Bωy Cωz

∣∣∣∣∣∣ = (C − B)ωyωz î + (A − C)ωxωz ĵ + (B − A)k̂

(10.143)
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For the gyro,

H(w)
Gw

= H(w)n̂(w)
s = H(w) sin θ cos φ î + H(w) sin θ sin φ ĵ + H(w) cos θ k̂

dH(w)
Gw

dt

)
rel

= (Ḣ(w) sin θ cos φ + H(w)θ̇ cos θ cos φ − H(w)φ̇ sin θ sin φ)î

+ (Ḣ(w) sin θ sin φ + H(w)θ̇ cos θ sin φ + H(w)φ̇ sin θ cos φ)ĵ

+ (Ḣ(w) cos θ − H(w)θ̇ sin θ)k̂ (10.144)

ω × H(w)
Gw

=
∣∣∣∣∣∣

î ĵ k̂
ωx ωy ωz

H(w) sin θ cos φ H(w) sin θ sin φ H(w) cos θ

∣∣∣∣∣∣
= (

H(w)ωy cos θ − H(w)ωz sin φ sin θ
)

î

+ (−H(w)ωx cos θ + H(w)ωz cos φ sin θ
)

ĵ

+ (−H(w)ωy cos φ sin θ + H(w)ωx sin φ sin θ
)

k̂ (10.145)

Substituting Equations 10.142 through 10.145 into Equation 10.141 yields a vector
equation with the following three components

Aω̇x + H(w)θ̇ cos φ cos θ − H(w)φ̇ sin φ sin θ + Ḣ(w) cos φ sin θ

+ (
H(w) cos θ + Cωz

)
ωy − (

H(w) sin φ sin θ + Bωy
)
ωz = MGnetx

(10.146a)

Bω̇y + H(w)θ̇ sin φ cos θ + H(w)φ̇ cos φ sin θ + Ḣ(w) sin φ sin θ

− (
H(w) cos θ + Cωz

)
ωx + (

H(w) cos φ sin θ + Aωx
)
ωz = MGnety

(10.146b)

Cω̇z − H(w)θ̇ sin θ + Ḣ(w) cos θ − (
H(w) cos φ sin θ + Aωx

)
ωy

+ (
H(w) sin φ sin θ + Bωy

)
ωx = MGnetz

(10.146c)

Additional gyros are accounted for by adding the components of Equations 10.144
and 10.145 for each additional unit.

Example
10.12

A satellite is in torque-free motion (MGnet = 0). A non-gimbaled gyro (momentum
wheel) is aligned with the vehicle’s x axis and is spinning at the rate ωs0. The spacecraft

angular velocity is ω = ωx î. If the spin of the gyro is increased at the rate ω̇s, find the
angular acceleration of the spacecraft.

Using Figure 10.25 as a guide, we set φ = 0 and θ = 90◦ to align the spin axis with the
x axis. Since there is no gimbaling, θ̇ = φ̇ = 0. Equations 10.146 then yield

Aω̇x + Ḣ(w) = 0

Bω̇y = 0

Cω̇z = 0
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(Example 10.12
continued)

Clearly, the angular velocities around the y and z axes remain zero, whereas,

ω̇x = − Ḣ(w)

A
= −C(w)

A
ω̇s

Thus, a change in the vehicle’s roll rate around the x axis can be initiated by accelerating
the momentum wheel in the opposite direction.

Example
10.13

A satellite is in torque-free motion. A control moment gyro, spinning at the constant
rate ωs, is gimbaled about the spacecraft y and z axes, with φ = 0 and θ = 90◦ (cf.

Figure 10.25). The spacecraft angular velocity is ω = ωz k̂. If the spin axis of the gyro,
initially along the x direction, is rotated around the y axis at the rate θ̇ , what is the
resulting angular acceleration of the spacecraft?

Substituting ωx = ωy = Ḣ(w) = φ = 0 and θ = 90◦ into Equations 10.146 gives

Aω̇x = 0

Bω̇y + H(w)(ωz + φ̇) = 0

Cω̇z − H(w)θ̇ = 0

where H(w) = C(w)ωs. Thus, the components of vehicle angular acceleration are

ω̇x = 0 ω̇y = −C(w)

B
ωs(ωz + φ̇) ω̇z = C(w)

C
ωs θ̇

We see that pitching the gyro at the rate θ̇ around the vehicle y axis alters only ωz ,
leaving ωx unchanged. However, to keep ωy = 0 clearly requires φ̇ = −ωz . In other
words, for the control moment gyro to control the angular velocity about only one
vehicle axis, it must therefore be able to precess around that axis (the z axis in this
case). That is why the control moment gyro must have two gimbals.

10.10 Gravity-gradient stabilization

Consider a satellite in circular orbit, as shown in Figure 10.26. Let r be the position
vector of a mass element dm relative to the center of attraction, r0 the position vector
of the center of mass G, and � the position of dm relative to G. The force of gravity
on dm is

dFg = −G
Mdm

r3
r = −µ

r

r3
dm (10.147)

where M is the mass of the central body, and µ = GM . The net moment of the
gravitational force around G is

MGnet =
∫

m
� × dFg dm (10.148)
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x

r0 z
r

�

y

G
dm

Circular orbit

Figure 10.26 Rigid satellite in a circular orbit is the principal body frame.

Since r = r0 + �, and

r0 = r0x î + r0y ĵ + r0z k̂

(10.149)
� = xî + y ĵ + zk̂

we have

� × dFg = −µ
dm

r3
� × (r0 + �) = −µ

dm

r3
� × r0 = −µ

dm

r3

∣∣∣∣∣∣
î ĵ k̂
x y z
r0x r0y r0z

∣∣∣∣∣∣
Thus,

� × dFg = −µ
dm

r3
(r0z y − r0y z)î − µ

dm

r3
(r0x z − r0z x)ĵ − µ

dm

r3
(r0y x − r0x y)k̂

Substituting this back into Equation 10.148 yields

MGnet =
(
−µr0z

∫
m

y

r3
dm + µr0y

∫
m

z

r3
dm

)
î +

(
−µr0x

∫
m

z

r3
dm + µr0z

∫
m

x

r3
dm

)
ĵ

+
(

−µr0y

∫
m

x

r3
dm + µr0x

∫
m

y

r3
dm

)
k̂

or

MGnetx
= −µr0z

∫
m

y

r3
dm + µr0y

∫
m

z

r3
dm

MGnety
= −µr0x

∫
m

z

r3
dm + µr0z

∫
m

x

r3
dm (10.150)

MGnetz
= −µr0y

∫
m

x

r3
dm + µr0x

∫
m

y

r3
dm
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Now, since ‖�‖�‖r0‖, it follows from Equation 7.12 that

1

r3
= 1

r3
0

− 3

r5
0

r0 · �
or

1

r3
= 1

r3
0

− 3

r5
0

(r0x x + r0y y + r0z z)

Therefore,∫
m

x

r3
dm = 1

r3
0

∫
m

x dm − 3r0x

r5
0

∫
m

x2dm − 3r0x

r5
0

∫
m

xy dm − 3r0x

r5
0

∫
m

xz dm

But the center of mass lies at the origin of the xyz axes, which are principal moment
of inertia directions. That means∫

m
x dm =

∫
m

xy dm =
∫

m
xz dm = 0

so that ∫
m

x

r3
dm = −3r0x

r5
0

∫
m

x2dm (10.151)

In a similar fashion, we can show that∫
m

y

r3
dm = −3r0y

r5
0

∫
m

y2dm (10.152)

and ∫
m

z

r3
dm = −3r0y

r5
0

∫
m

z2dm (10.153)

Substituting these last three expressions into Equations 10.150 leads to

MGnetx
= 3µr0y r0z

r5
0

(∫
m

y2dm −
∫

m
z2dm

)

MGnety
= 3µr0x r0z

r5
0

(∫
m

z2dm −
∫

m
x2dm

)
(10.154)

MGnetz
= 3µr0x r0y

r5
0

(∫
m

x2dm −
∫

m
y2dm

)
From Section 9.5 we recall that the moments of inertia are defined as

A =
∫

m
y2dm +

∫
m

z2dm B =
∫

m
x2dm +

∫
m

z2dm C =
∫

m
x2dm +

∫
m

y2dm

(10.155)

from which we may write

B − A =
∫

m
x2dm −

∫
m

y2dm A − C =
∫

m
z2dm −

∫
m

x2dm

C − B =
∫

m
y2dm −

∫
m

z2dm
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It follows that Equations 10.154 reduce to

MGnetx
= 3µr0y r0z

r5
0

(C − B)

MGnety
= 3µr0x r0z

r5
0

(A − C) (10.156)

MGnetz
= 3µr0x r0y

r5
0

(B − A)

These are the components, in the spacecraft body frame, of the gravitational torque
produced by the variation of the earth’s gravitational field over the volume of the
spacecraft. To get an idea of these torque magnitudes, note first of all that r0x /r0, r0y /r0

and r0z /r0 are the direction cosines of the position vector of the center of mass, so
that their magnitudes do not exceed 1. For a satellite in a low earth orbit of radius
6700 km, 3µ/r3

0
∼= 4 × 10−6 s−2, which is therefore the maximum order of magnitude

of the coefficients of the inertia terms in Equation 10.156. The moments of inertia of
the space shuttle are on the order of 106 kg · m2, so the gravitational torques on this
large vehicle are on the order of 1 N · m.

Substituting Equations 10.156 into Euler’s equations of motion (Equations 9.72),
we get

Aω̇x + (C − B)ωyωz = 3µr0y r0z

r5
0

(C − B)

Bω̇y + (A − C)ωzωx = 3µr0x r0z

r5
0

(A − C) (10.157)

Cω̇z + (B − A)ωxωy = 3µr0x r0y

r5
0

(B − A)

Now consider the orbital reference frame shown in Figure 10.27. It is actually the
Clohessy–Wiltshire frame of Chapter 7, with the axes relabeled. The z′ axis points
radially outward from the center of the earth, the x′ axis is in the direction of the local
horizon, and the y′ axis completes the right-handed triad by pointing in the direction
of the orbit normal. This frame rotates around the y′ axis with an angular velocity
equal to the mean motion n of the circular orbit. Suppose we align the satellite’s
principal body frame axes xyz with x′y′z′, respectively. When the body x axis is aligned
with the x′ direction, it is called the roll axis. The body y axis, when aligned with the
y′ direction, is the pitch axis. The body z axis, pointing outward from the earth in
the z′ direction, is the yaw axis. These directions are illustrated in Figure 10.28. With
the spacecraft aligned in this way, the body frame components of the inertial angular
velocity ω are ωx = ωz = 0 and ωy = n. The components of the position vector r0 are
r0x = r0y = 0 and r0z = r0. Substituting this data into Equations 10.157 yields

ω̇x = ω̇y = ω̇z = 0

That is, the spacecraft will orbit the planet with its principal axes remaining aligned
with the orbital frame. If this motion is stable under the influence of gravity
alone, without the use of thrusters, gyros or other devices, then the spacecraft is
gravity gradient stabilized. We need to assess the stability of this motion so we can
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Figure 10.27 Orbital reference frame x′y′z′ attached to the center of mass of the satellite.
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Figure 10.28 Satellite body frame slightly misaligned with the orbital frame x′y′z′.

determine how to orient a spacecraft to take advantage of this type of passive attitude
stabilization.

Let the body frame xyz be slightly misaligned with the orbital reference frame, so
that the yaw, pitch and roll angles between the xyz axes and the x′y′z′ axes, respectively,
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are very small, as suggested in Figure 10.28. The absolute angular velocity ω of the
spacecraft is the angular velocity ωrel relative to the orbital reference frame plus the
inertial angular velocity � of the x′y′z′ frame,

ω = ωrel + �

The components of ωrel in the body frame are found using the yaw, pitch and roll
relations, Equations 9.125. In so doing, it must be kept in mind that all angles and
rates are assumed to be so small that their squares and products may be neglected.
Recalling that sin α = α and cos α = 1 when α << 1, we therefore obtain

ωxrel = ωroll − ωyaw

=θpitch︷ ︸︸ ︷
sin θpitch = ψ̇ roll −

neglect product︷ ︸︸ ︷
φ̇yawθpitch = ψ̇ roll (10.158)

ωyrel = ωyaw

=1︷ ︸︸ ︷
cos θpitch

=ψroll︷ ︸︸ ︷
sin ψroll + ωpitch

=1︷ ︸︸ ︷
cos ψroll =

neglect product︷ ︸︸ ︷
φ̇yawψroll +θ̇pitch = θ̇pitch

(10.159)

ωzrel = ωyaw

=1︷ ︸︸ ︷
cos θpitch

=1︷ ︸︸ ︷
cos ψroll − ωpitch

=ψroll︷ ︸︸ ︷
sin ψroll = φ̇yaw −

neglect product︷ ︸︸ ︷
θ̇pitchψroll = φ̇yaw

(10.160)

The orbital frame’s angular velocity is the mean motion n of the circular orbit, so that

� = nĵ′

To obtain the orbital frame’s angular velocity components along the body frame, we
must use the transformation rule

{�}x = [Q]x′x{�}x′ (10.161)

where
[
Q
]

x′x is given by Equation 9.123. (Keep in mind that x′y′z′ are playing the
role of XYZ in Figure 9.26.) Using the small angle approximations in Equation 9.123
leads to

[
Q
]

x′x =

 1 φyaw −θpitch

−φyaw 1 ψroll

θpitch −ψroll 1




With this, Equation 10.161 becomes


�x

�y

�z


 =


 1 φyaw −θpitch

−φyaw 1 ψroll

θpitch −ψroll 1






0
n
0


 =




nφyaw

n
−nψroll




Now we can calculate the components of the satellite’s inertial angular velocity along
the body frame axes,

ωx = ωxrel + �x = ψ̇roll + nφyaw

ωy = ωyrel + �y = θ̇pitch + n (10.162)

ωz = ωzrel + �z = φ̇yaw − nψroll
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Differentiating these with respect to time, remembering that n is constant for a circular
orbit, gives the components of inertial angular acceleration in the body frame,

ω̇x = ψ̈ roll + nφ̇yaw

ω̇y = θ̈pitch (10.163)

ω̇z = φ̈yaw − nψ̇roll

The position vector of the satellite’s center of mass lies along the z′ axis of the
orbital frame,

r0 = r0k̂′

To obtain the components of r0 in the body frame we once again use the
transformation matrix [Q]x′x


r0x

r0y

r0z


 =


 1 φyaw −θpitch

−φyaw 1 ψroll

θpitch −ψroll 1






0
0
r0


 =




−r0θpitch

r0ψroll

r0


 (10.164)

Substituting Equations 10.162, 10.163 and 10.164, together with Equation 7.23, into
Equations 10.157, and setting

A = Iroll B = Ipitch C = Iyaw (10.165)

yields

Iroll(ψ̈roll + nφ̇yaw) + (Iyaw − Ipitch)(θ̇pitch + n)(φ̇yaw − nψroll)

= 3(Iyaw − Ipitch)n2ψroll

Ipitchθ̈pitch + (Iroll − Iyaw)(ψ̇roll + nφyaw)(φ̇yaw − nψroll)

= −3(Iroll − Iyaw)n2θpitch

Iyaw(φ̈yaw − nψ̇roll) + (Ipitch − Iroll)(θ̇pitch + n)(ψ̇roll + nφyaw)

= −3(Ipitch − Iroll)n2θpitchψroll

Expanding terms and retaining terms at most linear in all angular quantities and their
rates yields

Iyawφ̈yaw + (Ipitch − Iroll)n2φyaw + (Ipitch − Iroll − Iyaw)nψ̇roll = 0 (10.166)

Irollψ̈roll + (Iroll − Ipitch + Iyaw)nφ̇yaw + 4(Ipitch − Iyaw)n2ψroll = 0 (10.167)

Ipitchθ̈pitch + 3(Iroll − Iyaw)n2θpitch = 0 (10.168)

These are the differential equations governing the influence of gravity gradient torques
on the small angles and rates of misalignment of the body frame with the orbital frame.

Equation 10.168, governing the pitching motion around the y′ axis, is not coupled
to the other two equations. We make the classical assumption that the solution is of
the form

θpitch = Pept (10.169)
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where and P are p constants. P is the amplitude of the small disturbance that initi-
ates the pitching motion. Substituting Equation 10.169 into Equation 10.168 yields
[Ipitchp2 + 3(Iroll − Iyaw)n2]Pept = 0 for all t , which implies that the bracketed term
must vanish, and that means p must have either of the two values

p1,2 = ±i

√
3

(Iroll − Iyaw)n2

Ipitch
(i = √−1)

Thus

θpitch = P1ep1t + P2ep2t

yields the stable, small-amplitude, steady-state harmonic oscillator solution only if p1

and p2 are imaginary, that is, if

Iroll > Iyaw For stability in pitch. (10.170)

The stable pitch oscillation frequency is

ωfpitch = n

√
3

(Iroll − Iyaw)

Ipitch
(10.171)

(If Iyaw > Iroll, then p1 and p2 are both real, one positive, the other negative. The
positive root causes θpitch → ∞, which is the undesirable, unstable case.)

Let us now turn our attention to Equations 10.166 and 10.167, which govern
yaw and roll motion under gravity gradient torque. Again, we assume the solution is
exponential in form,

φyaw = Yeqt ψroll = Reqt (10.172)

Substituting these into Equations 10.166 and 10.167 yields

[(Ipitch − Iroll)n2 + Iyawq2]Y + (Ipitch − Iroll − Iyaw)nqR = 0

(Iroll − Ipitch + Iyaw)nqY + [4(Ipitch − Iyaw)n2 + Irollq
2]R = 0

In the interest of simplification, we can factor Iyaw out of the first equation and Iroll

out of the second one to get(
Ipitch − Iroll

Iyaw
n2 + q2

)
Y +

(
Ipitch − Iroll

Iyaw
− 1

)
nqR = 0

(
1 − Ipitch − Iyaw

Iroll

)
nqY +

(
4

Ipitch − Iyaw

Iroll
n2 + q2

)
R = 0 (10.173)

Let

kY = Ipitch − Iroll

Iyaw
kR = Ipitch − Iyaw

Iroll
(10.174)

It is easy to show from Equations 10.155, 10.165 and 10.174 that

kY =
(∫

m x2 dm
/∫

m y2 dm
)

− 1(∫
m x2 dm

/∫
m y2 dm

)
+ 1

kR =
(∫

m z2 dm
/∫

m y2 dm
)

− 1(∫
m z2 dm

/∫
m y2 dm

)
+ 1
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which means

|kY | < 1 |kR| < 1

Using the definitions in Equation 10.174, we can write Equations 10.173 more
compactly as

(kY n2 + q2)Y + (kY − 1)nqR = 0

(1 − kR)nqY + (4kRn2 + q2)R = 0

or, using matrix notation,[
kY n2 + q2 (kY − 1)nq
(1 − kR)nq 4kRn2 + q2

]{
Y
R

}
=

{
0
0

}
(10.175)

In order to avoid the trivial solution (Y = R = 0), the determinant of the coefficient
matrix must be zero. Expanding the determinant and collecting terms yields the
characteristic equation for q,

q4 + bn2q2 + cn4 = 0 (10.176)

where

b = 3kR + kY kR + 1 c = 4kY kR (10.177)

This quadratic equation has four roots which, when substituted back into Equation
10.172, yield

φyaw = Y1eq1t + Y2eq2t + Y3eq3t + Y4eq4t

ψroll = R1eq1t + R2eq2t + R3eq3t + R4eq4t

In order for these solutions to remain finite in time, the roots q1, . . . , q4 must be
negative (solution decays to zero) or imaginary (steady oscillation at initial small
amplitude).

To reduce Equation 10.176 to a quadratic equation, let us introduce a new variable
λ and write,

q = ±n
√

λ (10.178)

Then Equation 10.176 becomes

λ2 + bλ + c = 0 (10.179)

the familiar solution of which is

λ1 = −1

2

(
b +

√
b2 − 4c

)
λ2 = −1

2

(
b −

√
b2 − 4c

)
(10.180)

To guarantee that q in Equation 10.178 does not take a positive value, we must require
that λ be real and negative (so q will be imaginary). For λ to be real requires that
b > 2

√
c, or

3kR + kY kR + 1 > 4
√

kY kR (10.181)

For λ to be negative requires b2 > b2−4c, which will be true if c > 0; i.e.,

kY kR > 0 (10.182)
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Equations 10.181 and 10.182 are the conditions required for yaw and roll stability
under gravity gradient torques, to which we must add Equation 10.170 for pitch
stability. Observe that we can solve Equations 10.174 to obtain

Iyaw = 1 − kR

1 − kY kR
Ipitch Iroll = 1 − kY

1 − kY kR
Ipitch

By means of these relationships, the pitch stability criterion, Iroll/Iyaw > 1, becomes

1 − kY

1 − kR
> 1

In view of the fact that |kR| < 1, this means

kY < kR (10.183)

Figure 10.29 shows those regions I and II on the kY −kR plane in which all three
stability criteria (Equations 10.181, 10.182 and 10.183) are simultaneously satisfied,
along with the requirement that the three moments of inertia Ipitch, Iroll and Iyaw are
positive.

In the small sliver of region I , and kY < 0 and kR < 0; therefore, according to
Equations 10.174, Iyaw > Ipitch and Iroll > Ipitch, which together with Equation 10.170
yield Iroll > Iyaw > Ipitch. Remember that the gravity gradient spacecraft is slowly‘spin-
ning’ about the minor pitch axis (normal to the orbit plane) at an angular velocity
equal to the mean motion of the orbit. So this criterion makes the spacecraft a ‘minor
axis spinner’, the roll axis (flight direction) being the major axis of inertia. With
energy dissipation, we know this orientation is not stable in the long run. On the
other hand, in region II , kY and kR are both positive, so that Equations 10.174 imply

kR

kY

1

1

–1 0

Stable regions:

I : Iroll � Iyaw � Ipitch

II : Ipitch � Iroll � Iyaw

–1

Figure 10.29 Regions in which the values of kY and kR yield neutral stability in yaw, pitch and roll of a gravity
gradient satellite.
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Ipitch > Iyaw and Ipitch > Iroll. Thus, along with the pitch criterion (Iroll > Iyaw), we
have Ipitch > Iroll > Iyaw. In this, the preferred, configuration, the gravity gradient
spacecraft is a ‘major axis spinner’ about the pitch axis, and the minor yaw axis is the
minor axis of inertia. It turns out that all of the known gravity-gradient stabilized
moons of the solar system, like the earth’s, whose ‘captured’ rate of rotation equals
the orbital period, are major axis spinners.

In Equation 10.171 we presented the frequency of the gravity gradient pitch
oscillation. For completeness we should also point out that the coupled yaw and roll
motions have two oscillation frequencies, which are obtained from Equations 10.178
and 10.180,

ωfyaw/roll )1,2 = n

√
1

2
(b ±

√
b2 − 4c) (10.184)

Recall that b and c are found in Equation 10.177.
We have assumed throughout this discussion that the orbit of the gravity gradient

satellite is circular. Kaplan (1976) shows that the effect of a small eccentricity turns
up only in the pitching motion. In particular, the natural oscillation expressed by
Equation 10.170 is augmented by a forced oscillation term,

θpitch = P1ep1t + P2ep2t + 2e sin nt

3

(
Iroll − Iyaw

Ipitch

)
− 1

(10.185)

where e is the (small) eccentricity of the orbit. From this we see that there is a pitch
resonance. When (Iroll − Iyaw)/Ipitch approaches 1/3, the amplitude of the last term
grows without bound.

Example
10.14

The uniform, monolithic 10 000 kg slab, having the dimensions shown in Figure 10.30,
is in a circular LEO. Determine the orientation of the satellite in its orbit for gravity
gradient stabilization, and compute the periods of the pitch and yaw/roll oscillations
in terms of the orbital period T .

x

y

z

3 m

1 m 9 m

Ga

b

c

d

Figure 10.30 Parallelepiped satellite.
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According to Figure 9.9(c), the principal moments of inertia around the xyz axes
through the center of mass are

A = 10 000

12
(12 + 92) = 68 333 kg · m2

B = 10 000

12
(32 + 92) = 75 000 kg · m2

C = 10 000

12
(32 + 12) = 8333.3 kg · m2

Let us first determine whether we can stabilize this object as a minor axis spinner. In
that case,

Ipitch = C = 8333.3 kg · m2 Iyaw = A = 68 333 kg · m2 Iroll = B = 75 000 kg · m2

Since Iroll > Iyaw, the satellite would be stable in pitch. To check yaw/roll stability, we
first compute

kY = Ipitch − Iroll

Iyaw
= −0.97561 kR = Ipitch − Iyaw

Iroll
= −0.8000

We see that kY kR > 0, which is one of the two requirements. The other one is found
in Equation 10.181, but in this case

1 + 3kR + kY kR − 4
√

kY kR = −4.1533 < 0

so that condition is not met. Hence, the object cannot be gravity-gradient stabilized
as a minor axis spinner.

As a major axis spinner, we must have

Ipitch = B = 75 000 kg · m2 Iyaw = C = 8333.3 kg · m2 Iroll = A = 68 333 kg · m2

Then Iroll > Iyaw, so the pitch stability condition is satisfied. Furthermore, since

kY = Ipitch − Iroll

Iyaw
= 0.8000 kR = Ipitch − Iyaw

Iroll
= 0.97561

we have

kY kR = 0.7805 > 0

1 + 3kR + kY kR − 4
√

kY kR = 1.1735 > 0

which means the two criteria for stability in the yaw and roll modes are met. The
satellite should therefore be orbited as shown in Figure 10.31, with its minor axis
aligned with the radial from the earth’s center, the plane abcd lying in the orbital
plane, and the body x axis aligned with the local horizon.

According to Equation 10.171, the frequency of the pitch oscillation is

ωfpitch = n

√
3

Iroll − Iyaw

Ipitch
= n

√
3

68 333 − 8333.3

75 000
= 1.5492n
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(Example 10.14
continued)

where n is the mean motion. Hence, the period of this oscillation, in terms of that of
the orbit, is

Tpitch = 2π

ωfpitch

= 0.6455
2π

n
= 0.6455T

a
b

c

d

z

x

Figure 10.31 Orientation of the parallelepiped for gravity-gradient stabilization.

For the yaw/roll frequencies, we use Equation 10.184,

ωfyaw/roll

)
1

= n

√
1

2

(
b +

√
b2 − 4c

)
where

b = 1 + 3kR + kY kR = 4.7073 and c = 4kY kR = 3.122

Thus,

ωfyaw/roll

)
1

= 2.3015n

Likewise,

ωfyaw/roll

)
2

=
√

1

2

(
b −

√
b2 − 4c

)
= 1.977n

From these we obtain

Tyaw/roll1 = 0.5058T Tyaw/roll2 = 0.4345T

Finally, observe that

Iroll − Iyaw

Ipitch
= 0.8

so that we are far from the pitch resonance condition that exists if the orbit has a
small eccentricity.
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Problems

10.1 The axisymmetric satellite has axial and transverse mass moments of inertia about
axes through the mass center G of C = 1200 kg · m2 and A = 2600 kg · m2, respectively.
If it is spinning at ωs = 6 rad/s when it is launched, determine its angular momentum.
Precession occurs about the inertial Z axis.
{Ans.: ‖HG‖ = 13 450 kg · m2/s}

z

Z6°

G

ωs

Figure P.10.1

10.2 A spacecraft is symmetrical about its body-fixed z axis. Its principal mass moments of
inertia are A = B = 300 kg · m2 and C = 500 kg · m2. The z axis sweeps out a cone with
a total vertex angle of 10◦ as it precesses around the angular momentum vector. If the
spin velocity is 6 rad/s, compute the period of precession.
{Ans.: 0.417 s}

x

y

z

10°

G

Figure P.10.2
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10.3 A thin ring tossed into the air with a spin velocity of ωs has a very small nutation angle
θ (in radians). What is the precession rate ωp?
{Ans.: ωp = 2ωs(1 + θ2/2), retrograde}

Figure P.10.3

10.4 For an axisymmetric rigid satellite,

[IG] =

Ixx 0 0

0 Iyy 0
0 0 Izz


 =


1000 0 0

0 1000 0
0 0 5000


 kg · m2

It is spinning about the body z axis in torque-free motion, precessing around the
angular momentum vector H at the rate of 2 rad/s. Calculate the magnitude of H.
{Ans.: 2000 N · m · s}

10.5 At a given instant the box-shaped 500 kg satellite (in torque-free motion) has an

absolute angular velocity ω= 0.01î − 0.03ĵ + 0.02k̂ (rad/s). Its moments of iner-
tia about the principal body axes xyz are A = 385.4 kg · m2, B = 416.7 kg · m2 and
C = 52.08 kg · m2, respectively. Calculate the magnitude of its absolute angular
acceleration.
{Ans.: 6.167 × 10−4 m/s2}

y

z

xG

0.5 m

1.0 m

3 m

Figure P.10.5
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10.6 An 8 kg thin ring in torque-free motion is spinning with an angular velocity of
30 rad/s and a constant nutation angle of 15◦. Calculate the rotational kinetic energy
if A = B = 0.36 kg · m2, C = 0.72 kg · m2.

{Ans.: 370.5 J}

15°

x

y

z

Figure P.10.6

10.7 The rectangular block has an angular velocity ω= 1.5ω0 î + 0.8ω0 ĵ + 0.6ω0k̂, where
ω0 has units of rad/s.
(a) Determine the angular velocity ω of the block if it spins around the body z axis

with the same rotational kinetic energy.
(b) Determine the angular velocity ω of the block if it spins around the body z axis

with the same angular momentum.
{Ans.: (a) ω = 1.31ω0, (b) ω = 1.04ω0}

2l

l

3l

x y

z

G

Figure P.10.7

10.8 For a rigid axisymmetric satellite, the mass moment of inertia about its long axis is
1000 kg · m2, and the moment of inertia about transverse axes through the centroid is
5000 kg · m2. It is spinning about the minor principal body axis in torque-free motion
at 6 rad/s with the angular velocity lined up with the angular momentum vector H.
Over time, the energy degrades due to internal effects and the satellite is eventually
spinning about a major principal body axis with the angular velocity lined up with
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the angular momentum vector H. Calculate the change in rotational kinetic energy
between the two states.
{Ans.: −14.4 kJ}

10.9 Let the object in Example 9.11 be a highly dissipative torque-free satellite, whose
angular velocity at the instant shown is ω= 10î rad/s. Calculate the decrease in kinetic
energy after it becomes, as eventually it must, a major axis spinner.
{Ans.: −0.487 J}

4

3

2

1

0.4 m

0.5 m

0.3 m

0.2 m

O

x

y

z

Body-fixed frame

G

Figure P.10.9

10.10 For a non-precessing, dual-spin satellite, Cr = 1000 kg · m2 and Cp = 500 kg · m2. The

angular velocity of the rotor is 3k̂ rad/s and the angular velocity of the platform relative

to the rotor is 1k̂ rad/s. If the relative angular velocity of the platform is reduced to

0.5k̂ rad/s, what is the new angular velocity of the rotor?
{Ans.: 3.17 rad/s}

Rotor

x

y

z

Gp

Platform

G

Gr

ωz
(r)

ωz   � ωp
(r)

Figure P.10.10
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10.11 For a rigid axisymmetric satellite, the mass moment of inertia about its long axis
is 1000 kg · m2, and the moment of inertia about transverse axes through the center
of mass is 5000 kg · m2. It is initially spinning about the minor principal body axis
in torque-free motion at ωs = 0.1 rad/s, with the angular velocity lined up with the
angular momentum vector H0. A pair of thrusters exert an external impulsive torque
on the satellite, causing an instantaneous change �H of angular momentum in the
direction normal to H0 (no change in spin rate), so that the new angular momentum is
H1, at an angle of 20◦ to H0, as shown in the figure. How long does it take the satellite
to precess (‘cone’) through an angle of 180◦ around H1?
{Ans.: 118 s}

20°

G

H0
�H

H1Position just after 
the impulsive torque

Position after 180° 
precession at the 

rate ωp 

ωs ωp

Figure P.10.11

10.12 The solid right-circular cylinder of mass 500 kg is set into torque-free motion with its
symmetry axis initially aligned with the fixed spatial line a–a. Due to an injection error,
the vehicle’s angular velocity vector ω is misaligned 5◦ (the wobble angle) from the
symmetry axis. Calculate to three significant figures the maximum angle φ between
fixed line a–a and the axis of the cylinder.
{Ans.: 31◦}

10.13 A satellite is spinning at 0.01 rev/s. The moment of inertia of the satellite about the
spin axis is 2000 kg · m2. Paired thrusters are located at a distance of 1.5 m from the
spin axis. They deliver their thrust in pulses, each thruster producing an impulse of
15 N · s per pulse. At what rate will the satellite be spinning after 30 pulses?
{Ans.: 0.0637 rev/s}

10.14 A satellite has moments of inertia A = 2000 kg · m2, B = 4000 kg · m2 and C =
6000 kg · m2 about its principal body axes xyz. Its angular velocity is ω= 0.1î + 0.3ĵ +
0.5k̂ (rad/s). If thrusters cause the angular momentum vector to undergo the change

�HG = 50î −100ĵ + 3000k̂ (kg · m2/s), what is the magnitude of the new angular
velocity?
{Ans.: 0.628 rad/s}

10.15 The body-fixed xyz axes are principal axes of inertia passing through the center of mass
of the 300 kg cylindrical satellite, which is spinning at 1 revolution per second about
the z axis. What impulsive torque about the y axis must the thrusters impart to cause
the satellite to precess at 0.1 revolution per second?
{Ans.: 137 N · m · s}
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5°

G

�

a

φ

a

2 m

0.5 m

Figure P.10.12

z

x

y

G

1.5 m

1.5 m

1 rev/s

Figure P.10.15
10.16 A satellite is to be despun by means of a tangential-release yo-yo mechanism consisting

of two masses, 3 kg each, wound around the mid plane of the satellite. The satellite is
spinning around its axis of symmetry with an angular velocity ωs = 5 rad/s. The radius
of the cylindrical satellite is 1.5 m and the moment of inertia about the spin axis is
C = 300 kg · m2.
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(a) Find the cord length and the deployment time to reduce the spin rate to 1 rad/s.
(b) Find the cord length and time to reduce the spin rate to zero.
{Ans.: (a) l = 5.902 m, t = 0.787 s; (b) l = 7.228 m, t = 0.964 s}

10.17 A cylindrical satellite of radius 1 m is initially spinning about the axis of symmetry at the
rate of 2 revolutions per second with a nutation angle of 15◦. The principal moments
of inertia are Ix = Iy = 30 kg · m2, Iz = 60 kg · m2. An energy dissipation device is built
into the satellite, so that it eventually ends up in pure spin around the z axis.
(a) Calculate the final spin rate about the z axis.
(b) Calculate the loss of kinetic energy.
(c) A tangential release yo-yo despin device is also included in the satellite. If the two

yo-yo masses are each 7 kg, what cord length is required to completely despin the
satellite? Is it wrapped in the proper direction in the figure?

{Ans.: (a) 2.071 rad/s; (b) 8.62 J; (c) 2.3 m}

Hz

x

y

15°

Yo-yo cord and mass

ωs

Figure P.10.17

10.18 A communications satellite is in a GEO (geostationary equatorial orbit) with a period
of 24 hours. The spin rate ωs about its axis of symmetry is 1 revolution per minute, and
the moment of inertia about the spin axis is 550 kg · m2. The moment of inertia about
transverse axes through the mass center G is 225 kg · m2. If the spin axis is initially
pointed towards the earth, calculate the magnitude and direction of the applied torque
MG required to keep the spin axis pointed always towards the earth.
{Ans.: 0.00420 N · m, about the negative x axis}

10.19 The moments of inertia of a satellite about its principal body axes xyz are
A = 1000 kg · m2, B = 600 kg · m2 and C = 500 kg · m2, respectively. The moments of
inertia of a momentum wheel at the center of mass of the satellite and aligned with
the x axis are Ix = 20 kg · m2 and Iy = Iz = 6 kg · m2. The absolute angular velocity

of the satellite with the momentum wheel locked is ω0 = 0.1î + 0.05ĵ (rad/s). Calcu-
late the angular velocity ωf of the momentum wheel (relative to the satellite) required
to reduce the x component of the absolute angular velocity of the satellite to 0.003 rad/s.
{Ans.: 4.95 rad/s}
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Figure P.10.18
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Figure P.10.19

10.20 A satellite has principal moments of inertia I1 = 300 kg · m2, I2 = 400 kg · m2,
I3 = 500 kg · m2. Determine the permissible orientations in a circular orbit for gravity-
gradient stabilization. Specify which axes may be aligned in the pitch, roll and yaw
directions. (Recall that, relative to a Clohessy–Wiltshire frame at the center of mass of
the satellite, yaw is about the x axis (outward radial from earth’s center); roll is about
the y axis (velocity vector); pitch is about the z axis (normal to orbital plane).
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11.1 Introduction

In previous chapters we have made frequent reference to delta-v maneuvers of
spacecraft. These require a propulsion system of some sort whose job it is to throw

vehicle mass (in the form of propellants) overboard. Newton’s balance of momentum
principle dictates that when mass is ejected from a system in one direction, the mass
left behind must acquire a velocity in the opposite direction. The familiar and oft-
quoted example is the rapid release of air from an inflated toy balloon. Another is that
of a diver leaping off a small boat at rest in the water, causing the boat to acquire a
motion of its own. The unfortunate astronaut who becomes separated from his ship
in the vacuum of space cannot with any amount of flailing of arms and legs ‘swim’
back to safety. If he has tools or other expendable objects of equipment, accurately

551
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throwing them in the direction opposite to his spacecraft may do the trick. Spewing
compressed gas from a tank attached to his back through to a nozzle pointed away
from the spacecraft would be a better solution.

The purpose of a rocket motor is to use the chemical energy of solid or liquid pro-
pellants to steadily and rapidly produce a large quantity of hot, high pressure gas which
is then expanded and accelerated through a nozzle. This large mass of combustion
products flowing out of the nozzle at supersonic speed possesses a lot of momentum
and, leaving the vehicle behind, causes the vehicle itself to acquire a momentum in the
opposite direction. This is represented as the action of the force we know as thrust.
The design and analysis of rocket propulsion systems is well beyond our scope.

This chapter contains a necessarily brief introduction to some of the fundamentals
of rocket vehicle dynamics. The equations of motion of a launch vehicle in a gravity
turn trajectory are presented first. This is followed by a simple development of the
thrust equation, which brings in the concept of specific impulse. The thrust equation
and the equations of motion are then combined to produce the rocket equation, which
relates delta-v to propellant expenditure and specific impulse. The sounding rocket
provides an important but relatively simple application of the concepts introduced
to this point. The chapter concludes with an elementary consideration of multi-stage
launch vehicles.

Those seeking a more detailed introduction to the subject of rockets and rocket
performance will find the texts by Wiesel (1997) and Hale (1994), as well as references
cited therein, useful.

11.2 Equations of motion

Figure 11.1 illustrates the trajectory of a satellite launch vehicle and the forces acting
on it during the powered ascent. Rockets at the base of the booster produce the

T

D

mg

v

�

�

C

un

ut

�

x

h
y

Trajectory's center of curvature

Trajectory

Local horizon

To earth's center

ˆ

ˆ

Figure 11.1 Launch vehicle boost trajectory. γ is the flight path angle.
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thrust T which acts along the vehicle’s axis in the direction of the velocity vector v.
The aerodynamic drag force D is directed opposite to the velocity, as shown. Its
magnitude is given by

D = qACD (11.1)

where q = 1
2�v2 is the dynamic pressure, in which � is the density of the atmosphere

and v is the speed, i.e., the magnitude of v. A is the frontal area of the vehicle and
CD is the coefficient of drag. CD depends on the speed and the external geometry of
the rocket. The force of gravity on the booster is mg, where m is its mass and g is the
local gravitational acceleration, pointing towards the center of the earth. As discussed
in Section 1.2, at any point of the trajectory, the velocity v defines the direction of
the unit tangent ût to the path. The unit normal ûn is perpendicular to v and points
towards the center of curvature C. The distance of point C from the path is � (not to
be confused with density). � is the radius of curvature.

In Figure 11.1 the vehicle and its flight path are shown relative to the earth. In the
interest of simplicity we will ignore the earth’s spin and write the equations of motion
relative to a non-rotating earth. The small acceleration terms required to account for
the earth’s rotation can be added for a more refined analysis. Let us resolve Newton’s
second law, Fnet = ma, into components along the path directions ût and ûn. Recall
from Section 1.2 that the acceleration along the path is

at = dv

dt
(11.2)

and the normal acceleration is an = v2/� (where � is the radius of curvature). It was
shown in Example 1.4 (Equation 1.9) that for flight over a flat surface, v/� = −dγ/dt ,
in which case the normal acceleration can be expressed in terms of the flight path
angle as

an = −v
dγ

dt

To account for the curvature of the earth, as was done in Section 1.6, one can use
polar coordinates with origin at the earth’s center to show that a term must be added
to this expression, so that it becomes

an = −v
dγ

dt
+ v2

RE + h
cos γ (11.3)

where RE is the radius of the earth and h is the altitude of the rocket. Thus, in the
direction of ût Newton’s second law requires

T − D − mg sin γ = mat (11.4)

whereas in the ûn direction

mg cos γ = man (11.5)

After substituting Equations 11.2 and 11.3, these latter two expressions may be written

dv

dt
= T

m
− D

m
− g sin γ (11.6)
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v
dγ

dt
= −

(
g − v2

RE + h

)
cos γ (11.7)

To these we must add the equations for downrange distance x and altitude h,

dx

dt
= RE

RE + h
v cos γ

dh

dt
= v sin γ (11.8)

Recall that the variation of g with altitude is given by Equation 1.8. Numerical meth-
ods must be used to solve Equations 11.6, 11.7 and 11.8. To do so, one must account
for the variation of the thrust, booster mass, atmospheric density, the drag coefficient,
and the acceleration of gravity. Of course, the vehicle mass continuously decreases
as propellants are consumed to produce the thrust, which we shall discuss in the
following section.

The free-body diagram in Figure 11.1 does not include a lifting force, which, if the
vehicle were an airplane, would act normal to the velocity vector. Launch vehicles are
designed to be strong in lengthwise compression, like a column. To save weight they
are, unlike an airplane, made relatively weak in bending, shear and torsion, which are
the kinds of loads induced by lifting surfaces. Transverse lifting loads are held closely
to zero during powered ascent through the atmosphere by maintaining zero angle
of attack, i.e., by keeping the axis of the booster aligned with its velocity vector (the
relative wind). Pitching maneuvers are done early in the launch, soon after the rocket
clears the launch tower, when its speed is still low. At the high speeds acquired within
a minute or so after launch, the slightest angle of attack can produce destructive
transverse loads in the vehicle. The space shuttle orbiter has wings so it can act as a
glider after re-entry into the atmosphere. However, the launch configuration of the
orbiter is such that its wings are at the zero-lift angle of attack throughout the ascent.

Satellite launch vehicles take off vertically and, at injection into orbit, must be
flying parallel to the earth’s surface. During the initial phase of the ascent, the rocket
builds up speed on a nearly vertical trajectory taking it above the dense lower layers
of the atmosphere. While it transitions the thinner upper atmosphere, the trajectory
bends over, trading vertical speed for horizontal speed so the rocket can achieve orbital
perigee velocity at burnout. The gradual transition from vertical to horizontal flight,
illustrated in Figure 11.1, is caused by the force of gravity, and it is called a gravity
turn trajectory.

At lift off, the rocket is vertical and the flight path angle γ is 90◦. After clearing
the tower and gaining speed, vernier thrusters or gimbaling of the main engines
produce a small, programmed pitchover, establishing an initial flight path angle γ0,
slightly less than 90◦. Thereafter, γ will continue to decrease at a rate dictated by
Equation 11.7. (For example, if γ = 85◦, v = 110 m/s (250 mph), and h = 2 km, then
dγ/dt = −0.44◦/s.) As the speed v of the vehicle increases, the coefficient of cos γ

in Equation 11.7 decreases, which means the rate of change of the flight path angle
becomes increasingly smaller, tending towards zero as the booster approaches orbital
speed, vcircular orbit =

√
g(R + h). Ideally, the vehicle is flying horizontally (γ = 0) at

that point.
The gravity turn trajectory is just one example of a practical trajectory, tailored

for satellite boosters. On the other hand, sounding rockets fly straight up from launch
through burnout. Rocket-powered guided missiles must execute high-speed pitch and
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yaw maneuvers as they careen towards moving targets, and require a rugged structure
to withstand the accompanying side loads.

11.3 The thrust equation

To discuss rocket performance requires an expression for the thrust T in Equa-
tion 11.6. It can be obtained by a simple one-dimensional momentum analysis.
Figure 11.2(a) shows a system consisting of a rocket and its propellants. The exterior
of the rocket is surrounded by the static pressure pa of the atmosphere everywhere
except at the rocket nozzle exit where the pressure is pe . pe acts over the nozzle exit
area Ae . The value of pe depends on the design of the nozzle. For simplicity, we
assume no other forces act on the system. At time t the mass of the system is m and
the absolute velocity in its axial direction is v. The propellants combine chemically in
the rocket’s combustion chamber, and during the small time interval �t a small mass
�m of combustion products is forced out of the nozzle, to the left. As a result of this
expulsion, the velocity of the rocket changes by the small amount �v, to the right.
The absolute velocity of �m is ve , assumed to be to the left. According to Newton’s
second law of motion,

(momentum of the system at t + �t) − (momentum of the system at t)

= net external impulse

or [
(m − �m)(v + �v)î + �m

(
−ve î

)]
− mvî = (pe − pa)Ae�t î (11.9)

Let ṁe (a positive quantity) be the rate at which exhaust mass flows across the nozzle
exit plane. The mass m of the rocket decreases at the rate dm/dt , and conservation
of mass requires the decrease of mass to equal the mass flow rate out of the nozzle.
Thus,

dm

dt
= −ṁe (11.10)

υ� ∆υυe

pa
m � ∆m

υ

pa

pe

m

Time t

(a) (b)

Time t � ∆tx

∆m

Figure 11.2 (a) System of rocket and propellant at time t . (b) The system an instant later, after ejection of
a small element �m of combustion products.
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Assuming ṁe is constant, the vehicle mass as a function of time (from t = 0) may
therefore be written

m(t) = m0 − ṁet (11.11)

where m0 is the initial mass of the vehicle. Since �m is the mass which flows out in
the time interval �t , we have

�m = ṁe�t (11.12)

Let us substitute this expression into Equation 11.9 to obtain[
(m − ṁe�t)(v + �v)î + ṁe�t

(
−ve î

)]
− mvî = (pe − pa)Ae�t î

Collecting terms, we get

m�vî − ṁe�t(ve + v)î − ṁe�t�vî = (pe − pa)Ae�t î

Dividing through by �t , taking the limit as �t → 0, and canceling the common unit
vector leads to

m
dv

dt
− ṁeca = (pe − pa)Ae (11.13)

where ca is the speed of the exhaust relative to the rocket,

ca = ve + v (11.14)

Rearranging terms, Equation 11.13 may be written

ṁeca + (pe − pa)Ae = m
dv

dt
(11.15)

The left-hand side of this equation is the unbalanced force responsible for the
acceleration dv/dt of the system in Figure 11.2. This unbalanced force is the
thrust T,

T = ṁeca + (pe − pa)Ae (11.16)

where ṁeca is the jet thrust and (pe − pa)Ae is the pressure thrust. We can write
Equation 11.16 as

T = ṁe

[
ca + (pe − pa)Ae

ṁe

]
(11.17)

The term in brackets is called the effective exhaust velocity c,

c = ca + (pe − pa)Ae

ṁe
(11.18)

In terms of the effective exhaust velocity, the thrust may be expressed simply as

T = ṁec (11.19)
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The specific impulse Isp is defined as the thrust per sea-level weight rate (per second)
of propellant consumption. That is,

Isp = T

ṁeg0
(11.20)

where g0 is the standard sea-level acceleration of gravity. The unit of specific impulse
is force ÷ (force/second) or seconds. Together, Equations 11.19 and 11.20 imply that

c = Ispg0 (11.21)

Obviously, one can infer the jet velocity directly from the specific impulse. Specific
impulse is an important performance parameter for a given rocket engine and propel-
lant combination. However, large specific impulse equates to large thrust only if the
mass flow rate is large, which is true of chemical rocket engines. The specific impulses
of chemical rockets typically lie in the range 200–300 s for solid fuels and 250–450 s
for liquid fuels. Ion propulsion systems have very high specific impulse (>104 s), but
their very low mass flow rates produce much smaller thrust than chemical rockets.

11.4 Rocket performance

From Equations 11.10 and 11.20 we have

T = −Ispg0
dm

dt
(11.22)

or

dm

dt
= − T

Ispg0

If the thrust and specific impulse are constant, then the integral of this expression
over the burn time �t is

�m = − T

Ispg0
�t

from which we obtain

�t = Ispg0

T
(m0 − mf ) = Ispg0

T
m0

(
1 − mf

m0

)
(11.23)

where m0 and mf are the mass of the vehicle at the beginning and end of the burn,
respectively. The mass ratio is defined as the ratio of the initial mass to final mass,

n = m0

mf
(11.24)

Clearly, the mass ratio is always greater than unity. In terms of the initial mass ratio,
Equation 11.23 may be written

�t = n − 1

n

Isp

T/m0g0
(11.25)
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T/mg0 is the thrust-to-weight ratio. The thrust-to-weight ratio for a launch vehicle
at lift-off is typically in the range 1.3 to 2.

Substituting Equation 11.22 into Equation 11.6, we get

dv

dt
= −Ispg0

dm/dt

m
− D

m
− g sin γ

Integrating with respect to time, from t0 to tf , yields

�v = Ispg0 ln
m0

mf
− �vD − �vG (11.26)

where the drag loss �vD and the gravity loss �vg are given by the integrals

�vD =
∫ tf

t0

D

m
dt �vG =

∫ tf

t0

g sin γ dt (11.27)

Since the drag D, acceleration of gravity g , and flight path angle γ are unknown
functions of time, these integrals cannot be computed. (Equations 11.6 through 11.8,
together with 11.3, must be solved numerically to obtain v(t) and γ(t); but then �v

would follow from those results.) Equation 11.26 can be used for rough estimates
where previous data and experience provide a basis for choosing conservative values
of �vD and �vG. Obviously, if drag can be neglected, then �vD = 0. This would be
a good approximation for the last stage of a satellite booster, for which it can also be
said that �vG = 0, since γ ∼= 0◦ when the satellite is injected into orbit.

Sounding rockets are launched vertically and fly straight up to their maximum
altitude before falling back to earth, usually by parachute. Their purpose is to measure
remote portions of the earth’s atmosphere. (‘Sound’ in this context means to measure
or investigate.) If for a sounding rocket γ = 90◦, then �vG ≈ g0(tf − t0), since g is
within 90 percent of g0 out to 300 km altitude.

Example
11.1

A sounding rocket of initial mass m0 and mass mf after all propellant is consumed is
launched vertically (γ = 90◦). The propellant mass flow rate ṁe is constant. Neglect-
ing drag and the variation of gravity with altitude, calculate the maximum height h
attained by the rocket. For what flow rate is the greatest altitude reached?

The vehicle mass as a function of time, up to burnout, is

m = m0 − ṁet (a)

At burnout, m = mf , so the burnout time tbo is

tbo = m0 − mf

ṁe
(b)

The drag loss is assumed to be zero, and the gravity loss is

�vG =
∫ tbo

0
g0 sin(90◦)dt = g0tbo
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Recalling that Ispg0 = c and using (a), it follows from Equation 11.26 that, up to
burnout, the velocity as a function of time is

v = c ln
m0

m0 − ṁet
− g0t (c)

Since dh/dt = v, the altitude as a function of time is

h =
∫ t

0
v dt =

∫ t

0

(
c ln

m0

m0 − ṁet
− g0t

)
dt

= c

ṁe

[
(m0 − ṁet)ln

m0 − bt

m0
+ ṁet

]
− 1

2
g0t2 (d)

The height at burnout hbo is found by substituting (b) into this expression,

hbo = c

ṁe

(
mf ln

mf

m0
+ m0 − mf

)
− 1

2

(
m0 − mf

ṁe

)2

g (e)

Likewise, the burnout velocity is obtained by substituting (b) into (c),

vbo = c ln
m0

mf
− g0

ṁe
(m0 − mf ) (f)

After burnout, the rocket coasts upward with the constant downward acceleration of
gravity,

v = vbo − g0(t − tbo)

h = hbo + vbo(t − tbo) − 1

2
g0(t − tbo)2

Substituting (b), (e) and (f) into these expressions yields, for t > tbo,

v = c ln
m0

mf
− g0t

h = c

ṁe

(
m0 ln

mf

m0
+ m0 − mf

)
+ ct ln

m0

mf
− 1

2
g0t2 (g)

The maximum height hmax is reached when v = 0,

c ln
m0

mf
− g0tmax = 0 ⇒ tmax = c

g0
ln

m0

mf

Substituting tmax into (g) leads to our result,

hmax = cm0

ṁe
(1 + ln n − n) + 1

2

c2

g0
ln2 n

where n is the mass ratio (n > 1). Since n > (1 + ln n), it follows that (1 + ln n − n)
is negative. Hence, hmax can be increased by increasing the mass flow rate ṁe . In fact,
the greatest height is achieved when ṁe → ∞, i.e., all of the propellant is expended
at once, like a mortar shell.
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11.5 Restricted staging in field-free space

In field-free space we neglect drag and gravitational attraction. In that case, Equation
11.26 becomes

�v = Ispg0 ln
m0

mf
(11.28)

This is at best a poor approximation for high-thrust rockets, but it will suffice to shed
some light on the rocket staging problem. Observe that we can solve this equation for
the mass ratio to obtain

m0

mf
= e

�v
Ispg0 (11.29)

The amount of propellant expended to produce the velocity increment �v is m0−mf .
If we let �m = m0 − mf , then Equation 11.29 can be written as

�m

m0
= 1 − e

− �v
Ispg0 (11.30)

This relation is used to compute the propellant required to produce a given delta-v.
The gross mass m0 of a launch vehicle consists of the empty mass mE , the

propellant mass mp and the payload mass mPL,

m0 = mE + mp + mPL (11.31)

The empty mass comprises the mass of the structure, the engines, fuel tanks, control
systems, etc. mE is also called the structural mass, although it embodies much more
than just structure. Dividing Equation 11.31 through by m0, we obtain

πE + πp + πPL = 1 (11.32)

where πE = mE/m0, πp = mp/m0 and πPL = mPL/m0 are the structural fraction, pro-
pellant fraction and payload fraction, respectively. It is convenient to define the
payload ratio

λ = mPL

mE + mp
= mPL

m0 − mPL
(11.33)

and the structural ratio

ε = mE

mE + mp
= mE

m0 − mPL
(11.34)

The mass ratio n was introduced in Equation 11.24. Assuming all of the propellant is
consumed, that may now be written

n = mE + mp + mPL

mE + mPL
(11.35)

λ, ε and n are not independent. From Equation 11.34 we have

mE = ε

1 − ε
mp (11.36)
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Figure 11.3 Dimensionless burnout speed versus payload ratio.

whereas Equation 11.33 gives

mPL = λ(mE + mp) = λ

(
ε

1 − ε
mp + mp

)
= λ

1 − ε
mp (11.37)

Substituting Equations 11.36 and 11.37 into Equation 11.35 leads to

n = 1 + λ

ε + λ
(11.38)

Thus, given any two of the ratios λ, ε and n, we obtain the third from Equation 11.38.
Using this relation in Equation 11.28 and setting �v equal to the burnout speed vbo,
when the propellants have been used up, yields

vbo = Ispg0 ln n = Ispg0 ln
1 + λ

ε + λ
(11.39)

This equation is plotted in Figure 11.3 for a range of structural ratios. Clearly, for a
given empty mass, the greatest possible �v occurs when the payload is zero. However,
what we want to do is maximize the amount of payload while keeping the structural
weight to a minimum. Of course, the mass of load-bearing structure, rocket motors,
pumps, piping, etc., cannot be made arbitrarily small. Current materials technology
places a lower limit on ε of about 0.1. For this value of the structural ratio and
λ = 0.05, Equation 11.39 yields

vbo = 1.94Ispg0 = 0.019Isp (km/s)
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Figure 11.4 Tandem two-stage booster.

The specific impulse of a typical chemical rocket is about 300 s, which in this case
would provide �v = 5.7 km/s. However, the circular orbital velocity at the earth’s
surface is 7.905 km/s. So this booster by itself could not orbit the payload. The
minimum specific impulse required for a single stage to orbit would be 416 s. Only
today’s most advanced liquid hydrogen/liquid oxygen engines, e.g., the space shuttle
main engines, have this kind of performance. Practicality and economics would likely
dictate going the route of a multi-stage booster.

Figure 11.4 shows a series or tandem two-stage rocket configuration, with one
stage sitting on top of the other. Each stage has its own engines and propellant tanks.
The dividing line between the stages is where they separate during flight. The first
stage drops off first, the second stage next, etc. The payload of an N stage rocket is
actually stage N + 1. Indeed, satellites commonly carry their own propulsion systems
into orbit. The payload of a given stage is everything above it. Therefore, as illustrated
in Figure 11.4, the initial mass m01 of stage 1 is that of the entire vehicle. After stage
1 expels all of its fuel, the mass mf1 which remains is stage 1’s empty mass mE1 plus
the mass of stage 2 and the payload. After separation of stage 1, the process continues
likewise for stage 2, with m02 being its initial mass.

Titan II, the launch vehicle for the US Gemini program, had the two-stage, tandem
configuration. So did the Saturn 1B, used to launch earth orbital flights early in the
US Apollo program, as well as to send crews to Skylab and an Apollo spacecraft to
dock with a Russian Soyuz spacecraft in 1975.
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Figure 11.5 Parallel staging.

Figure 11.5 illustrates the concept of parallel staging. Two or more solid or liquid
rockets are attached (‘strapped on’) to a core vehicle carrying the payload. Whereas in
the tandem arrangement, the motors in a given stage cannot ignite until separation
of the previous stage, all of the rockets ignite at once in the parallel-staged vehicle.
The strap-on boosters fall away after they burn out early in the ascent. The space
shuttle is the most obvious example of parallel staging. Its two solid rocket boosters
are mounted on the external tank, which fuels the three ‘main’ engines built into the
orbiter. The solid rocket boosters and the external tank are cast off after they are
depleted. In more common use is the combination of parallel and tandem staging,
in which boosters are strapped to the first stage of a multi-stage stack. Examples
include the United States’ Titan III and IV and Delta launchers, Europe’s Ariane 4 and
5, Russia’s Proton and Soyuz variants, Japan’s H-2, and China’s Long March launch
vehicles.

The original Atlas, used in many variants, for among other things, to launch the
orbital flights of the US Mercury program, had three main liquid-fuel engines at its
base. They all fired simultaneously at launch, but several minutes into the flight, the
outer two ‘boosters’ dropped away, leaving the central sustainer engine to burn the
rest of the way to orbit. Since the booster engines shared the sustainer’s propellant
tanks, the Atlas exhibited partial staging, and is sometimes referred to as a one and a
half stage rocket, the discarded boosters comprising the half stage.

We will for simplicity focus on tandem staging, although parallel-staged systems
are handled in a similar way (Wiesel, 1997). Restricted staging involves the simple
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but unrealistic assumption that all stages are similar. That is, each stage has the same
specific impulse Isp, the same structural ratio ε, and the same payload ratio λ. From
Equation 11.38 it follows that the mass ratios n are identical, too. Let us investigate
the effect of restricted staging on the final burnout speed vbo for a given payload mass
mPL and overall payload fraction

πPL = mPL

m0
(11.40)

where m0 is the total mass of the tandem-stacked vehicle.
For a single-stage vehicle, the payload ratio is

λ = mPL

m0 − mPL
= 1

m0

mPL
− 1

= πPL

1 − πPL
(11.41)

so that, from Equation 11.38, the mass ratio is

n = 1

πPL(1 − ε) + ε
(11.42)

According to Equation 11.39, the burnout speed is

vbo = Ispg0 ln
1

πPL(1 − ε) + ε
(11.43)

Let m0 be the total mass of the two-stage rocket of Figure 11.4, i.e.,

m0 = m01 (11.44)

The payload of stage 1 is the entire mass m02 of stage 2. Thus, for stage 1 the payload
ratio is

λ1 = m02

m01 − m02

= m02

m0 − m02

(11.45)

The payload ratio of stage 2 is

λ2 = mPL

m02 − mPL
(11.46)

By virtue of the two stages’ being similar, λ1 = λ2, or

m02

m0 − m02

= mPL

m02 − mPL

Solving this equation for m02 yields

m02 = √
m0

√
mPL

But m0 = mPL/πPL, so the gross mass of the second stage is

m02 =
√

1

πPL
mPL (11.47)
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Putting this back into Equation 11.45 (or 11.46), we obtain the common two-stage
payload ratio λ = λ1 =λ2,

λ2-stage = πPL
1
2

1 − πPL
1
2

(11.48)

This together with Equation 11.38 and the assumption that ε1 = ε2 = ε leads to the
common mass ratio for each stage,

n2-stage = 1

πPL
1
2 (1 − ε) + ε

(11.49)

Assuming that stage 2 ignites immediately after burnout of stage 1, the final velocity
of the two-stage vehicle is the sum of the burnout velocities of the individual stages,

vbo = vbo1 + vbo2

or

vbo2-stage = Ispg0 ln n2-stage + Ispg0 ln n2-stage = 2Ispg0 ln n2-stage

so that, with Equation 11.49, we get

vbo2-stage = Ispg0 ln

[
1

πPL
1
2 (1 − ε) + ε

]2

(11.50)

The empty mass of each stage can be found in terms of the payload mass using the
common structural ratio ε,

mE1

m01 − m02

= ε
mE2

m02 − mPL
= ε

Substituting Equations 11.40 and 11.44 together with 11.47 yields

mE1 =
(

1 − πPL
1
2

)
ε

πPL
mPL mE2 =

(
1 − πPL

1
2

)
ε

πPL
1
2

mPL (11.51)

Likewise, we can find the propellant mass for each stage from the expressions

mp1 = m01 − (mE1 + m02 ) mp2 = m02 − (mE2 + mPL) (11.52)

Substituting Equations 11.40 and 11.44, together with 11.47, 11.51 and 11.52,
we get

mp1 =
(

1 − πPL
1
2

)
(1 − ε)

πPL
mPL mp2 =

(
1 − πPL

1
2

)
(1 − ε)

πPL
1
2

mPL (11.53)
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Example
11.2

The following data is given

mPL = 10 000 kg

πPL = 0.05

ε = 0.15 (a)

Isp = 350 s

g0 = 0.00981 km/s2

Calculate the payload velocity vbo at burnout, the empty mass of the launch vehicle
and the propellant mass for (a) a single stage and (b) a restricted, two-stage vehicle.

(a) From Equation 11.43 we find

vbo = 350 · 0.00981 ln
1

0.05(1 + 0.15) + 0.15
= 5.657 km/s

Equation 11.40 yields the gross mass

m0 = 10 000

0.05
= 200 000 kg

from which we obtain the empty mass using Equation 11.34,

mE = ε(m0 − mPL) = 0.15(200 000 − 10 000) = 28 500 kg

The mass of propellant is

mp = m0 − mE − mPL = 200 000 − 28 500 − 10 000 = 161 500 kg

(b) For a restricted two-stage vehicle, the burnout speed is given by Equation 11.50,

vbo2-stage = 350 · 0.00981 ln

[
1

0.05
1
2 (1 − 0.15) + 0.15

]2

= 7.407 km/s

The empty mass of each stage is found using Equations 11.51,

mE1 =
(

1 − 0.05
1
2

)
· 0.15

0.05
· 10 000 = 23 292 kg

mE2 =
(

1 − 0.05
1
2

)
· 0.15

0.05
1
2

· 10 000 = 5208 kg

For the propellant masses, we turn to Equations 11.53

mp1 =
(

1 − 0.05
1
2

)
· (1 − 0.15)

0.05
· 10 000 = 131 990 kg
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mp2 =
(

1 − 0.05
1
2

)
· (1 − 0.15)

0.05
1
2

· 10 000 = 29 513 kg

The total empty mass, mE = mE1 + mE2 , and the total propellant mass, mp = mp1 +
mp2 , are the same as for the single stage rocket. The mass of the second stage, including
the payload, is 22.4 percent of the total vehicle mass.

Observe in the previous example that, although the total vehicle mass was unchanged,
the burnout velocity increased 31 percent for the two-stage arrangement. The reason
is that the second stage is lighter and can therefore be accelerated to a higher speed.
Let us determine the velocity gain associated with adding another stage, as illustrated
in Figure 11.6.

The payload ratios of the three stages are

λ1 = m02

m01 − m02

λ2 = m03

m02 − m03

λ3 = mPL

m03 − mPL

Since the stages are similar, these payload ratios are all the same. Setting λ1 = λ2 and
recalling that m01 = m0, we find

m2
02

− m03 m0 = 0

Payload

Stage 2

Stage 1

Stage 3

mf3

mPL

mE3

mE2

mp2

mp1

mE1

mp3mf2

mf1

m02

m01

m03

Figure 11.6 Tandem three-stage launch vehicle.
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Similarly, λ1 = λ3 yields

m02 m03 − m0mPL = 0

These two equations imply that

m02 = mPL

π
2
3
PL

m03 = mPL

π
1
3
PL

(11.54)

Substituting these results back into any one of the above expressions for λ1, λ2 or λ3

yields the common payload ratio for the restricted three-stage rocket,

λ3-stage = π
1
3
PL

1 − π
1
3
PL

With this result and Equation 11.38 we find the common mass ratio,

n3-stage = 1

πPL
1
3 (1 − ε) + ε

(11.55)

Since the payload burnout velocity is vbo = vbo1 + vbo2 + vbo3 , we have

vbo3-stage = 3Ispg0 ln n3-stage = Ispg0 ln


 1

π
1
3
PL(1 − ε) + ε


3

(11.56)

Because of the common structural ratio across each stage,
mE1

m01 − m02

= ε
mE2

m02 − m03

= ε
mE3

m03 − mPL
= ε

Substituting Equations 11.40 and 11.54 and solving the resultant expressions for the
empty stage masses yields

mE1 =

(
1 − π

1
3
PL

)
ε

πPL
mPL mE2 =

(
1 − π

1
3
PL

)
ε

π
2
3
PL

mPL mE3 =

(
1 − π

1
3
PL

)
ε

π
1
3
PL

mPL

(11.57)
The stage propellant masses are

mp1 = m01 − (mE1 + m02 ) mp2 = m02 − (mE2 + m03 ) mp3 = m03 − (mE3 + mPL)

Substituting Equations 11.40, 11.54 and 11.57 leads to

mp1 =

(
1 − π

1
3
PL

)
(1 − ε)

πPL
mPL

mp2 =

(
1 − π

1
3
PL

)
(1 − ε)

π
2
3
PL

mPL (11.58)

mp3 =

(
1 − π

1
3
PL

)
(1 − ε)

π
1
3
PL

mPL
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Example
11.3

Repeat Example 11.2 for the restricted three-stage launch vehicle.

Equation 11.56 gives the burnout velocity for three stages,

vbo = 350 · 0.00981 · ln

(
1

0.05
1
3 (1 − 0.15) + 0.15

)3

= 7.928 km/s

Substituting mPL = 10 000 kg,πPL = 0.05 and ε = 0.15 into Equations 11.57 and 11.58
yields

mE1 = 18 948 kg mE2 = 6980 kg mE3 = 2572 kg

mp1 = 107 370 kg mp2 = 39 556 kg mp3 = 14 573 kg

Again, the total empty mass and total propellant mass are the same as for the single
and two-stage vehicles. Notice that the velocity increase over the two-stage rocket is
just 7 percent, which is much less than the advantage the two-stage had over the single
stage vehicle.

Looking back over the velocity formulas for one, two and three stage vehicles
(Equations 11.43, 11.50 and 11.56), we can induce that for an N-stage rocket,

vboN-stage = Ispg0 ln

(
1

πPL
1
N (1 − ε) + ε

)N

= Ispg0N ln

(
1

πPL
1
N (1 − ε) + ε

)
(11.59)

What happens as we let N become very large? First of all, it can be shown using Taylor
series expansion that, for large N ,

πPL
1
N ≈ 1 + 1

N
ln πPL (11.60)

Substituting this into Equation 11.59, we find that

vb0N-stage
≈ Ispg0N ln

[
1

1 + 1
N (1 − ε) ln πPL

]

Since the term 1
N (1 − ε) ln πPL is arbitrarily small, we can use the fact that

1/(1 + x) = 1 − x + x2 − x3 + · · · to write

1

1 + 1
N (1 − ε) ln πPL

≈ 1 − 1

N
(1 − ε) ln πPL

which means

vb0N-stage
≈ Ispg0N ln

[
1 − 1

N
(1 − ε) ln πPL

]
Finally, since ln(1 − x) = −x − x2/2 − x3/3 − x4/4 − · · · , we can write this as

vb0N-stage
≈ Ispg0N

[
− 1

N
(1 − ε) ln πPL

]
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ε  = 0.15

πPL = 0.05

Figure 11.7 Burnout velocity versus number of stages (Equation 11.59).

Therefore, as N, the number of stages, tends towards infinity, the burnout velocity
approaches

vbo∞ = Ispg0(1 − ε) ln
1

πPL
(11.61)

Thus, no matter how many similar stages we use, for a given specific impulse, payload
fraction and structural ratio, we cannot exceed this burnout speed. For example,
using Isp = 350 s, πPL = 0.05 and ε = 0.15 from the previous two examples yields
vb0∞ = 8.743 km/s, which is only 10 percent greater than vbo of a three-stage vehicle.
The trend of vbo towards this limiting value is illustrated by Figure 11.7.

Our simplified analysis does not take into account the added weight and com-
plexity accompanying additional stages. Practical reality has limited the number of
stages of actual launch vehicles to rarely more than three.

11.6 Optimal staging

Let us now abandon the restrictive assumption that all stages of a tandem-stacked
vehicle are similar. Instead, we will specify the specific impulse Ispi and structural ratio
εi of each stage, and then seek the minimum-mass N-stage vehicle that will carry a
given payload mPL to a specified burnout velocity vbo. To optimize the mass requires
using the Lagrange multiplier method, which we shall briefly review.

11.6.1 Lagrange multiplier

Consider a bivariate function f on the xy plane. Then z = f (x, y) is a surface lying
above or below the plane, or both. f (x, y) is stationary at a given point if it takes on
a local maximum or a local minimum, i.e., an extremum, at that point. For f to be
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stationary means df = 0; i.e.,

∂f

∂x
dx + ∂f

∂y
dy = 0 (11.62)

where dx and dy are independent and not necessarily zero. It follows that for an
extremum to exist,

∂f

∂x
= ∂f

∂y
= 0 (11.63)

Now let g(x, y) = 0 be a curve in the xy plane. Let us find the points on the curve
g = 0 at which f is stationary. That is, rather than searching the entire xy plane for
extreme values of f , we confine our attention to the curve g = 0, which is therefore a
constraint. Since g = 0, it follows that dg = 0, or

∂g

∂x
dx + ∂g

∂y
dy = 0 (11.64)

If Equations 11.62 and 11.64 are both valid at a given point, then

dy

dx
= −∂f /∂x

∂f /∂y
= −∂g/∂x

∂g/∂y

That is,

∂f /∂x

∂g/∂x
= ∂f /∂y

∂g/∂y
= −η

From this we obtain

∂f

∂x
+ η

∂g

∂x
= 0

∂f

∂y
+ η

∂g

∂y
= 0

But these, together with the constraint g(x, y) = 0, are the very conditions required
for the function

h(x, y, η) = f (x, y) + ηg(x, y) (11.65)

to have an extremum, namely,

∂h

∂x
= ∂f

∂x
+ η

∂g

∂x
= 0

∂h

∂y
= ∂f

∂y
+ η

∂g

∂y
= 0

∂h

∂η
= g = 0

(11.66)

η is the Lagrange multiplier. The procedure generalizes to functions of any number
of variables.

One can determine mathematically whether the extremum is a maximum or a
minimum by checking the sign of the second differential d2h of the function h in
Equation 11.65,

d2h = ∂2h

∂x2
dx2 + 2

∂2h

∂x∂y
dxdy + ∂2h

∂y2
dy2 (11.67)
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If d2h < 0 at the extremum for all dx and dy satisfying the constraint condition,
Equation 11.64, then the extremum is a local maximum. Likewise, if d2h > 0, then
the extremum is a local minimum.

Example
11.4

(a) Find the extrema of the function z = −x2 − y2. (b) Find the extrema of the same
function under the constraint y = 2x + 3.

(a) To find the extrema we must use Equations 11.63. Since ∂z/∂x = −2x and
∂z/∂y = −2y, it follows that ∂z/∂x = ∂z/∂y = 0 at x = y = 0, at which point z = 0.
Since z is negative everywhere else (see Figure 11.8), it is clear that the extreme
value is the maximum value.

(b) The constraint may be written g = y − 2x − 3. Clearly, g = 0. Multiply the con-
straint by the Lagrange multiplier η and add the result (zero!) to the function
−(x2 + y2) to obtain

h = −(x2 + y2) + η(y − 2x − 3)

This is a function of the three variables x, y and η. For it to be stationary, the
partial derivatives with respect to all three of these variables must vanish. First
we have

∂h

∂x
= −2x − 2η

Setting this equal to zero yields

x = −η (a)

Next,

∂h

∂y
= −2y + η

For this to be zero means

y = η

2
(b)

Finally

∂h

∂η
= y − 2x − 3

Setting this equal to zero gives us back the constraint condition,

y − 2x − 3 = 0 (c)

Substituting (a) and (b) into (c) yields η = 1.2, from which (a) and (b) imply,

x = −1.2 y = 0.6 (d)

These are the coordinates of the point on the line y = 2x + 3 at which
z = −x2 − y2 is stationary. Using (d), we find that z = −1.8 at this point.

Figure 11.8 is an illustration of this problem, and it shows that the com-
puted extremum (a maximum, in the sense that small negative numbers exceed
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}

�1.8
y � 2x � 3

x

y

z

(�1.2, 0.6, 0) z � �x2 � y2

Figure 11.8 Location of the point on the line y = 2x + 3 at which the surface z = −x2 − y2 is closest to the

xy plane.

large negative numbers) is where the surface z = −x2 − y2 is closest to the line
y = 2x + 3, as measured in the z direction. Note that in this case, Equation 11.67
yields d2h = −2dx2 − 2dy2, which is negative, confirming our conclusion that
the extremum is a maximum.

Now let us return to the optimal staging problem. It is convenient to introduce the
step mass mi of the ith stage. The step mass is the empty mass plus the propellant
mass of the stage, exclusive of all the other stages,

mi = mEi + mpi (11.68)

The empty mass of stage i can be expressed in terms of its step mass and its structural
ratio εi as follows,

mEi = εi(mEi + mpi ) = εimi (11.69)

The total mass of the rocket excluding the payload is M , which is the sum of all of the
step masses,

M =
N∑

i=1

mi (11.70)

Thus, recalling that m0 is the total mass of the vehicle, we have

m0 = M + mPL (11.71)

Our goal is to minimize m0.
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For simplicity, we will deal first with a two-stage rocket, and then generalize our
results to N stages. For a two-stage vehicle, m0 = m1 + m2 + mPL, so we can write,

m0

mPL
= m1 + m2 + mPL

m2 + mPL

m2 + mPL

mPL
(11.72)

The mass ratio of stage 1 is

n1 = m01

mE1 + m2 + mPL
= m1 + m2 + mPL

ε1m1 + m2 + mPL
(11.73)

where Equation 11.69 was used. Likewise, the mass ratio of stage 2 is

n2 = m02

ε2m2 + mPL
= m2 + mPL

ε2m2 + mPL
(11.74)

We can solve Equations 11.73 and 11.74 to obtain the step masses from the mass
ratios,

m2 = n2 − 1

1 − n2ε2
mPL

m1 = n1 − 1

1 − n1ε1
(m2 + mPL)

(11.75)

Now,

m1 + m2 + mPL

m2 + mPL
= 1 − ε1

1 − ε1

m1 + m2 + mPL

m2 + mPL + (ε1m1 − ε1m1)

1

ε1m1 + m2 + mPL
1

ε1m1 + m2 + mPL

These manipulations leave the right-hand side unchanged. Carrying out the
multiplications proceed as follows,

m1 + m2 + mPL

m2 + mPL
= (1 − ε1)(m1 + m2 + mPL)

ε1m1 + m2 + mPL − ε1(m1 + m2 + mPL)

1

ε1m1 + m2 + mPL
1

ε1m1 + m2 + mPL

=
(1 − ε1)

m1 + m2 + mPL

ε1m1 + m2 + mPL
ε1m1 + m2 + mPL

ε1m1 + m2 + mPL
− ε1

m1 + m2 + mPL

ε1m1 + m2 + mPL

Finally, with the aid of Equation 11.73, this algebraic trickery reduces to

m1 + m2 + mPL

m2 + mPL
= (1 − ε1)n1

1 − ε1n1
(11.76)

Likewise,

m2 + mPL

mPL
= (1 − ε2)n2

1 − ε2n2
(11.77)
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so that Equation 11.72 may be written in terms of the stage mass ratios instead of the
step masses,

m0

mPL
= (1 − ε1)n1

1 − ε1n1

(1 − ε2)n2

1 − ε2n2
(11.78)

Taking the natural logarithm of both sides, we get

ln
m0

mPL
= ln

(1 − ε1)n1

1 − ε1n1
+ ln

(1 − ε2)n2

1 − ε2n2

Expanding the logarithms on the right side leads to

ln
m0

mPL
= [ln(1 − ε1) + ln n1 − ln(1 − ε1n1)]

+ [ln(1 − ε2) + ln n2 − ln(1 − ε2n2)] (11.79)

Observe that for mPL fixed, ln(m0/mPL) is a monotonically increasing function of m0,

d

dm0

(
ln

m0

mPL

)
= 1

m0
> 0

Therefore, ln (m0/mPL) is stationary when m0 is stationary.
From Equations 11.21 and 11.39, the burnout velocity of the two-stage rocket is

vbo = vbo1 + vbo2 = c1 ln n1 + c2 ln n2 (11.80)

which means that, given vbo, our constraint equation is

vbo − c1 ln n1 − c2 ln n2 = 0 (11.81)

Introducing the Lagrange multiplier η, we combine Equations 11.79 and 11.81 to
obtain

h = [ln(1 − ε1) + ln n1 − ln(1 − ε1n1)] + [ln(1 − ε2) + ln n2 − ln(1 − ε2n2)]

+ η(vbo − c1 ln n1 − c2 ln n2) (11.82)

Finding the values of n1 and n2 for which h is stationary will extremize ln(m0/mPL)
(and, hence, m0) for the prescribed burnout velocity vbo. h is stationary when
∂h/∂n1 = ∂h/∂n2 = ∂h/∂η = 0. Thus,

∂h

∂n1
= 1

n1
+ ε1

1 − ε1n1
− η

c1

n1
= 0

∂h

∂n2
= 1

n2
+ ε2

1 − ε2n2
− η

c2

n2
= 0

∂h

∂η
= vbo − c1 ln n1 − c2 ln n2 = 0

These three equations yield, respectively,

n1 = c1η − 1

c1ε1η
n2 = c2η − 1

c2ε2η
vbo = c1 ln n1 + c2 ln n2 (11.83)
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Substituting n1 and n2 into the expression for vbo, we get

c1 ln

(
c1η − 1

c1ε1η

)
+ c2 ln

(
c2η − 1

c2ε2η

)
= vbo (11.84)

This equation must be solved iteratively for η, after which η is substituted into Equa-
tions 11.831,2 to obtain the stage mass ratios n1 and n2. These mass ratios are used in
Equations 11.75 together with the assumed structural ratios, exhaust velocities, and
payload mass to obtain the step masses of each stage.

We can now generalize the optimization procedure to an N-stage vehicle, for
which Equation 11.82 becomes

h =
N∑

i=1

[
ln(1 − εi) + ln ni − ln(1 − εini)

] − η

(
vbo −

N∑
i=1

ci ln ni

)
(11.85)

At the outset, we know the required burnout velocity vbo, the payload mass mPL,
and for every stage we have the structural ratio εi and the exhaust velocity ci (i.e.,
the specific impulse). The first step is to solve for the Lagrange parameter η using
Equation 11.84, which, for N stages, is written

N∑
i=1

ci ln
ciη − 1

ciεiη
= vbo

Expanding the logarithm, this can be written

N∑
i=1

ci ln(ciη − 1) − ln η

N∑
i=1

ci −
N∑

i=1

ci ln ciεi = vbo (11.86)

After solving this equation iteratively for η, we use that result to calculate the optimum
mass ratio for each stage (cf. Equation 11.83),

ni = ciη − 1

ciεiη
, i = 1, 2, . . . , N (11.87)

Of course, each ni must be greater than 1.
Referring to Equations 11.75, we next obtain the step masses of each stage,

beginning with stage N and working our way down the stack to stage 1,

mN = nN − 1

1 − nNεN
mPL

mN−1 = nN−1 − 1

1 − nN−1εN−1
(mN + mPL)

mN−2 = nN−2 − 1

1 − nN−2εN−2
(mN−1 + mN + mPL) (11.88)

...

m1 = n1 − 1

1 − n1ε1
(m2 + m3 + · · · mPL)
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Having found each step mass, each empty stage mass is

mEi = εimi (11.89)

and each stage propellant mass is

mpi = mi − mEi (11.90)

For the function h in Equation 11.85 it is easily shown that

∂2h

∂ni∂nj
= 0, i, j = 1, . . . , N(i �= j)

It follows that the second differential of h is

d2h =
N∑

i=1

N∑
j=1

∂2h

∂ni∂nj
dnidnj =

N∑
i=1

∂2h

∂n2
i

(dni)
2 (11.91)

where it can be shown, again using Equation 11.85, that

∂2h

∂n2
i

= ηci(εini − 1)2 + 2εini − 1

(εini − 1)2n2
i

(11.92)

For h to be minimum at the mass ratios ni given by Equation 11.87, it must be true
that d2h > 0. Equations 11.91 and 11.92 indicate that this will be the case if

ηci(εini − 1)2 + 2εini − 1 > 0, i = 1, . . . , N (11.93)

Example
11.5

Find the optimal mass for a three-stage launch vehicle which is required to lift a
5000 kg payload to a speed of 10 km/s. For each stage, we are given that

Stage 1 Isp1 = 400 s (c1 = 3.924 km/s) ε1 = 0.10

Stage 2 Isp2 = 350 s (c2 = 3.434 km/s) ε2 = 0.15

Stage 3 Isp3 = 300 s (c3 = 2.943 km/s) ε3 = 0.20

Substituting this data into Equation 11.86, we get

3.924 ln(3.924η − 1) + 3.434 ln(3.434η − 1) + 2.943 ln(2.943η − 1)

− 10.30 ln η + 7.5089 = 10

As can be checked by substitution, the iterative solution of this equation is

η = 0.4668

Substituting η into Equations 11.87 yields the optimum mass ratios,

n1 = 4.541 n2 = 2.507 n3 = 1.361

For the step masses, we appeal to Equations 11.88 to obtain

m1 = 165 700 kg m2 = 18 070 kg m3 = 2477 kg
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(Example 11.5
continued)

Using Equations 11.89 and 11.90, the empty masses and propellant masses are found
to be

mE1 = 16 570 kg mE2 = 2710 kg mE3 = 495.4 kg

mp1 = 149 100 kg mp2 = 15 360 kg mp3 = 1982 kg

The payload ratios for each stage are

λ1 = m2 + m3 + mPL

m1
= 0.1542

λ2 = m3 + mPL

m2
= 0.4139

λ3 = mPL

m3
= 2.018

The total mass of the vehicle is

m0 = m1 + m2 + m3 + mPL = 191 200 kg

and the overall payload fraction is

πPL = mPL

m0
= 5000

191 200
= 0.0262

Finally, let us check Equation 11.93,

ηc1(ε1n1 − 1)2 + 2ε1n1 − 1 = 0.4541

ηc2(ε2n2 − 1)2 + 2ε2n2 − 1 = 0.3761

ηc3(ε3n3 − 1)2 + 2ε3n3 − 1 = 0.2721

A positive number in every instance means we have indeed found a local minimum
of the function in Equation 11.85.

Problems

11.1 Suppose a spacecraft in permanent orbit around the earth is to be used for delivering
payloads from low earth orbit (LEO) to geostationary equatorial orbit (GEO). Before
each flight from LEO, the spacecraft is refueled with propellant which it uses up in
its round trip to GEO. The outbound leg requires four times as much propellant as
the inbound return leg. The delta-v for transfer from LEO to GEO is 4.22 km/s (see
Example 6.12). The specific impulse of the propulsion system is 430 s. If the payload
mass is 3500 kg, calculate the empty mass of the vehicle.
{Ans.: 2733 kg}

11.2 A two stage, solid-propellant sounding rocket has the following properties:

First stage: m0 = 249.5 kg mf = 170.1 kg ṁe = 10.61 kg/s Isp = 235 s

Second stage: m0 = 113.4 kg mf = 58.97 kg ṁe = 4.053 kg/s Isp = 235 s

Delay time between burnout of first stage and ignition of second stage: 3 seconds.
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As a preliminary estimate, neglect drag and the variation of earth’s gravity with altitude
to calculate the maximum height reached by the second stage after burnout.
{Ans.: 322 km}

11.3 A two-stage launch vehicle has the following properties:

First stage: 2 solid propellant rockets. Each one has a total mass of 525 000 kg, 450 000 kg
of which is propellant. Isp = 290 s.

Second stage: 2 liquid rockets with Isp = 450 s. Dry mass = 30 000 kg, propellant
mass = 600 000 kg.

Calculate the payload mass to a 300 km orbit if launched due east from KSC. Let the
total gravity and drag loss be 2 km/s.
{Ans.: 114 000 kg}

11.4 Consider a rocket comprising three similar stages (i.e., each stage has the same specific
impulse, structural ratio and payload ratio). The common specific impulse is 310 s. The
total mass of the vehicle is 150 000 kg, the total structural mass (empty mass) is 20 000 kg
and the payload mass is 10 000 kg. Calculate
(a) The mass ratio n and the total �v for the three-stage rocket.

{Ans.: n = 2.04, �v = 6.50 km/s}
(b) mp1 , mp2 , and mp3 .
(c) mE1 , mE2 and mE3 .
(d) m01 , m02 and m03 .

11.5 A small two-stage vehicle is to propel a 10 kg payload to a speed of 6.2 km/s. The
properties of the stages are: for the first stage, Isp = 300 s and ε = 0.2; for the second
stage, Isp = 235 s and ε = 0.3. Estimate the optimum mass of the vehicle.
{Ans.: 1125 kg}

11.6 Find the extrema of the function z = x2 + y2 + 2xy subject to the constraint
x2 − 2x + y2 = 0.
{Ans.: zmin = 0.1716 at (x, y) = (0.2929, −0.7071) and zmax = 5.828 at (x, y) = (1.707,
0.7071)}
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Physical data

The following tables contain information that is commonly available and may
be found in the literature and on the world wide web. See, for example, the

Astronomical Almanac (US Naval Observatory, 2004) and National Space Science
Data Center (NASA Goddard Space Flight Center, 2003).

Table A.1 Astronomical data for the sun, the planets and the moon

Inclination
Inclination of orbit

Sidereal of equator Semimajor to the Orbit
Radius rotation to orbit axis of Orbit ecliptic sidereal

Object (km) Mass (kg) period plane orbit (km) eccentricity plane period

Sun 696 000 1.989 × 1030 25.38d 7.25◦ – – – –
Mercury 2440 330.2 × 1021 58.65d 0.01◦ 57.91 × 106 0.2056 7.00◦ 87.97d
Venus 6052 4.869 × 1024 243d* 177.4◦ 108.2 × 106 0.0067 3.39◦ 224.7d
Earth 6378 5.974 × 1024 23.9345h 23.45◦ 149.6 × 106 0.0167 0.00◦ 365.256d
(Moon) 1737 73.48 × 1021 27.32d 6.68◦ 384.4 × 103 0.0549 5.145◦ 27.322d
Mars 3396 641.9 × 1021 24.62h 25.19◦ 227.9 × 106 0.0935 1.850◦ 1.881y
Jupiter 71 490 1.899 × 1027 9.925h 3.13◦ 778.6 × 106 0.0489 1.304◦ 11.86y
Saturn 60 270 568.5 × 1024 10.66h 26.73◦ 1.433 × 109 0.0565 2.485◦ 29.46y
Uranus 25 560 86.83 × 1024 17.24h* 97.77◦ 2.872 × 109 0.0457 0.772◦ 84.01y
Neptune 24 760 102.4 × 1024 16.11h 28.32◦ 4.495 × 109 0.0113 1.769◦ 164.8y
Pluto 1195 12.5 × 1021 6.387d* 122.5◦ 5.870 × 109 0.2444 17.16◦ 247.7y

* Retrograde
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Table A.2 Gravitational parameter (µ) and sphere of influence (SOI) radius
for the sun, the planets and the moon

Celestial body µ (km3/s2) SOI radius (km)

Sun 132 712 000 000 –
Mercury 22 030 112 000
Venus 324 900 616 000
Earth 398 600 925 000
Earth’s moon 4903 66 200
Mars 42 828 577 000
Jupiter 126 686 000 48 200 000
Saturn 37 931 000 54 800 000
Uranus 5 794 000 51 800 000
Neptune 6 835 100 86 600 000
Pluto 830 3 080 000

Table A.3 Some conversion factors

1 ft = 0.3048 m
1 mile (mi) = 1.609 km
1 nautical mile (n mi) = 1.151 mi = 1.852 km
1 mi/h = 0.0004469 km/s
1 lb (mass) = 0.4536 kg
1 lb (force) = 4.448 N
1 psi = 6895 kPa
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A road map

Figure B.1 is a road map through Chapters 1, 2 and 3. Those who from time to
time feel they have lost their bearings may find it useful to refer to this flow

chart, which shows how the various concepts and results are interrelated. The pivotal
influence of Sir Isaac Newton is obvious. All of the equations of classical orbital
mechanics (the two-body problem) are derived from those listed here.

dA

dt
=

h

2

h = r × r 

υ⊥ = h
r υr =

µ
h

e sin θ

Kepler's
second law

Conservation of
mechanical energy

The orbit formula
(Kepler's first law)

Newton's laws

Definition

2-body equation 
of relative motion

T =
2π
µ

a
3
2

Kepler's
third law

Kepler's equations
relating true anomaly

to time

r = − 
µ
r3 r υ2

2
− µ

r
= const

r = h2

µ
1

1 + e cos θ

F = ma

Fg = G m1m2

r2
ˆ ur 

t = h3 dϑ
(1 + e cosϑ)2

0

θ
∫µ2

·

··

Figure B.1 Logic flow for the major outcomes of Chapters 1, 2 and 3.
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CA p p e n d i x

Numerical integration
of the n-body

equations of motion

Appendix outline

C.1 Function file accel_3body.m 590
C.2 Script file threebody.m 592

Without loss of generality we shall derive the equations of motion of the three-
body system illustrated in Figure C.1. The equations of motion for n bodies

can easily be generalized from those of a three-body system.
Each mass of a three-body system experiences the force of gravitational attraction

from the other members of the system. As shown in Figure C.1, the forces exerted on
body 1 by bodies 2 and 3 are F12 and F13, respectively. Likewise, body 2 experiences the
forces F21 and F23 whereas the forces F31 and F32 act on body 3. These gravitational
forces can be inferred from Equation 2.6:

F12 = −F21 = Gm1m2(R2 − R1)

‖R2 − R1‖3
(C.1a)

F13 = −F31 = Gm1m3(R3 − R1)

‖R3 − R1‖3
(C.1b)

F23 = −F32 = Gm2m3(R3 − R2)

‖R3 − R2‖3
(C.1c)
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X

Y

Z

O

R1

R2

R3

m1

m2

m3

F12

F21

F13

F31

F23 F32

G

Inertial frame

Figure C.1 Three-body problem.

Relative to an inertial frame of reference the accelerations of the bodies are

ai = R̈i i = 1, 2, 3

where Ri is the absolute position vector of body i. The equation of motion of body 1 is

F12 + F13 = m1a1

Substituting Equations C.1a and C.1b yields

a1 = Gm2(R2 − R1)

‖R2 − R1‖3
+ Gm3(R3 − R1)

‖R3 − R1‖3
(C.2a)

For bodies 2 and 3 we find in a similar fashion that

a2 = Gm1(R1 − R2)

‖R1 − R2‖3
+ Gm3(R3 − R2)

‖R3 − R2‖3
(C.2b)

a3 = Gm1(R1 − R3)

‖R1 − R3‖3
+ Gm2(R2 − R3)

‖R2 − R3‖3
(C.2c)

The velocities are related to the accelerations by

dvi

dt
= ai i = 1, 2, 3 (C.3)

and the position vectors are likewise related to the velocities,

dRi

dt
= vi i = 1, 2, 3 (C.4)

Equations C.2 through C.4 constitute a system of ordinary differential equations
(ODEs) in the variable time.
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Since there are no external forces on the system, the acceleration of the center of
mass is zero

aG = 0 (C.5a)

so that

dvG

dt
= 0 (C.5b)

and

dRG

dt
= vG (C.5c)

Given the initial positions Ri0 and initial velocities vi0, we must integrate Equation C.3
to find vi as a function of time and substitute those results into Equations C.4 to obtain
Ri as a function of time. The integrations must be done numerically.

To do this using MATLAB, we first resolve all of the vectors into their three
components along the XYZ axes of the inertial frame and write them as column
vectors,

{R1} =



R1X

R1Y

R1Z


 {R2} =




R2X

R2Y

R2Z


 {R3} =




R3X

R3Y

R3Z


 {RG} =




RGX

RGY

RGZ


 (C.6)

{v1} =



v1X

v1Y

v1Z


 {v2} =




v2X

v2Y

v2Z


 {v3} =




v3X

v3Y

v3Z


 {vG} =




vGX

vGY

vGZ


 (C.7)

According to Equations C.2,

{a1} =



a1X

a1Y

a1Z


 =




Gm2(R2X − R1X )

R12
+ Gm3(R3X − R1X )

R13

Gm2(R2Y − R1Y )

R12
+ Gm3(R3Y − R1Y )

R13

Gm2(R2Z − R1Z )

R12
+ Gm3(R3Z − R1Z )

R13




(C.8a)

{a2} =



a2X

a2Y

a2Z


 =




Gm1(R1X − R2X )

R12
+ Gm3(R3X − R2X )

R13

Gm1(R1Y − R2Y )

R12
+ Gm3(R3Y − R2Y )

R13

Gm1(R1Z − R2Z )

R12
+ Gm3(R3Z − R2Z )

R13




(C.8b)

{a3} =



a3X

a3Y

a3Z


 =




Gm1(R1X − R3X )

R12
+ Gm2(R2X − R3X )

R13

Gm1(R1Y − R3Y )

R12
+ Gm2(R2Y − R3Y )

R13

Gm1(R1Z − R3Z )

R12
+ Gm2(R2Z − R3Z )

R13




(C.8c)
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where

R12 = ‖{R2} − {R1}‖3 R13 = ‖{R3} − {R1}‖3 R23 = ‖{R3} − {R2}‖3 (C.9)

Next, we form the 24-component column vector

{f} = �{R1} {R2} {R3} {RG} {v1} {v2} {v3} {vG}�T (C.10)

The first derivatives of the components of this vector comprise the column vector{
df

dt

}
= �{v1} {v2} {v3} {vG} {a1} {a2} {a3} {0}�T (C.11)

If the vector {f} is given at time t , then {df/dt} is used to obtain an accurate estimate
of {f} at time t + �t by means of a procedure such as that due originally to the
German mathematicians Carle Runge (1856–1927) and Martin Kutta (1867–1944).
Sophisticated Runge–Kutta algorithms are implemented in MATLAB in the form
of the solvers ode23 and ode45. ode45 is the more accurate of the two and is
recommended as a first try for solving most ODEs.

For simplicity, we will use MATLAB to solve the three-body problem in the plane.
That is, we will restrict ourselves to only the XY components of the vectors R, v and
a. The reader can use these scripts as a starting point for investigating more complex
n-body problems.

The M-function accel_3body.m is used by ode45 to calculate the accelera-
tions of each of the masses from Equations C.8.

C.1 Function file accel_3body.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function dfdt = accel_3body(t,f)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function evaluates the acceleration of each member of a
% planar 3-body system at time t from their positions and
% velocities at that time.
%
% G - gravitational constant
% (kmˆ3/kg/sˆ2)
% m - vector [m1, m2, m3] containing
% the masses m1, m2, m3 of the
% three bodies (kg)
% r1x, r1y; r2x, r2y; r3x, r3y - components of the position
% vectors of each mass (km)
% v1x, v1y; v2x, v2y; v3x, v3y - components of the velocity
% vectors of each mass (km/s)
% a1x, a1y; a2x, a2y; a3x, a3y - components of the acceleration
% vectors of each mass (km/sˆ2)
% rGx, rGy; vGx, vGy; aGx, aGy - components of the position,
% velocity and acceleration of
% the center of mass
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% t - time (s)
% f - column vector containing the
% position and velocity
% components of the three
% masses and the center of
% mass at time t
% dfdt - column vector containing the
% velocity and acceleration
% components of the three
% masses and the center of
% mass at time t
%
% User M-functions required: none
% ------------------------------------------------------------

global G m

%...Initialize the 16 by 1 column vector dfdt:
dfdt = zeros(16,1);

%...For ease of reading the code, assign each component of f
%...to a mnemonic variable:

r1x = f( 1);
r1y = f( 2);

r2x = f( 3);
r2y = f( 4);

r3x = f( 5);
r3y = f( 6);

rGx = f( 7);
rGy = f( 8);

v1x = f( 9);
v1y = f(10);

v2x = f(11);
v2y = f(12);

v3x = f(13);
v3y = f(14);

vGx = f(15);
vGy = f(16);

%...Equations C.9:
r12 = norm([r2x - r1x, r2y - r1y])ˆ3;
r13 = norm([r3x - r1x, r3y - r1y])ˆ3;
r23 = norm([r3x - r2x, r3y - r2y])ˆ3;
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%...Equations C.8:
a1x = G*m(2)*(r2x - r1x)/r12 + G*m(3)*(r3x - r1x)/r13;
a1y = G*m(2)*(r2y - r1y)/r12 + G*m(3)*(r3y - r1y)/r13;
a2x = G*m(1)*(r1x - r2x)/r12 + G*m(3)*(r3x - r2x)/r23;
a2y = G*m(1)*(r1y - r2y)/r12 + G*m(3)*(r3y - r2y)/r23;
a3x = G*m(1)*(r1x - r3x)/r13 + G*m(2)*(r2x - r3x)/r23;
a3y = G*m(1)*(r1y - r3y)/r13 + G*m(2)*(r2y - r3y)/r23;

%...Equation C.5a:
aGx = 0;
aGy = 0;

%...Place the evaluated velocity and acceleration components
%...into the vector dfdt, to be returned to the calling
%...program:

dfdt = [v1x; v1y; ...
v2x; v2y; ...
v3x; v3y; ...
vGx; vGy; ...
a1x; a1y; ...
a2x; a2y; ...
a3x; a3y; ...
aGx; aGy];

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

The script threebody.m defines the initial conditions, passes that information to
ode45 and finally plots the solutions. The results of this program were used to create
Figures 2.5 and 2.6. Similar scripts can obviously be written for the two-body problem
and may be used to produce Figures 2.3 and 2.4.

C.2 Script file threebody.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% threebody

% ˜˜˜˜˜˜˜˜˜
%
% This program presents the graphical solution of the motion of
% three bodies in the plane for data provided in the input
% definitions below.
%
% G - gravitational constant (kmˆ3/kg/sˆ2)
% t_initial, t_final - initial and final times (s)
% m - vector [m1, m2, m3] containing the
% masses m1, m2, m3 of the three
% bodies (kg)
% r0 - 3 by 2 matrix each row of which
% contains the initial x and y components
% of the position vector of the
% respective mass (km)
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% v0 - 3 by 2 matrix each row of which contains
% the initial x and y components of the
% velocity of the respective mass (km/s)
% rG0 - vector containing the initial x and y
% components of the center of mass (km)
% vG0 - vector containing the initial x and y
% components of the velocity of the
% center of mass (km/s)
% f0 - column vector of the initial conditions
% passed to the Runge-Kutta solver ode45
% t - column vector of times at which the
% solution was computed
% f - matrix the columns of which contain the
% position and velocity components
% evaluated at the times t(:):
% f(:,1) , f(:,2) = x1(:), y1(:)
% f(:,3) , f(:,4) = x2(:), y2(:)
% f(:,5) , f(:,6) = x3(:), y3(:)
% f(:,7) , f(:,8) = xG(:), yG(:)
%
% f(:,9) , f(:,10) = v1x(:), v1y(:)
% f(:,11), f(:,12) = v2x(:), v2y(:)
% f(:,13), f(:,14) = v3x(:), v3y(:)
% f(:,15), f(:,16) = vGx(:), vGy(:)
%
% User M-function required: accel_3body
% ------------------------------------------------------------

clear
global G m
G = 6.67259e-20;

%...Input data:
t_initial = 0; t_final = 67000;
m = [1.e29 1.e29 1.e29];
r0 = [[ 0 0]

[300000 0]
[600000 0]];

v0 = [[ 0 0]
[250 250]
[ 0 0]];

%...

%...Initial position and velocity of center of mass:
rG0 = m*r0/sum(m);
vG0 = m*v0/sum(m);

%...Initial conditions must be passed to ode45 in a column
%...vector:
f0 = [r0(1,:)’; r0(2,:)’; r0(3,:)’; rG0’; ...

v0(1,:)’; v0(2,:)’; v0(3,:)’; vG0’]
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%...Pass the initial conditions and time interval to ode45,
%...which calculates the position and velocity at discrete
%...times t, returning the solution in the column vector f.
%...ode45 uses the m-function ’accel_3body’ to evaluate the
%...acceleration at each integration time step.
[t,f] = ode45(’accel_3body’, [t_initial t_final], f0);

close all

%...Plot the motion relative to the inertial frame
%...(Figure 2.5):
figure
title(’Figure 2.5: Motion relative to the inertial frame’, ...

’Fontweight’, ’bold’, ’FontSize’, 12)
hold on

%...x1 vs y1:
plot(f(:,1), f(:,2), ’r’, ’LineWidth’, 0.5)

%...x2 vs y2:
plot(f(:,3), f(:,4), ’g’, ’LineWidth’, 1.0)

%...x3 vs y3:
plot(f(:,5), f(:,6), ’b’, ’LineWidth’, 1.5)

%...xG vs yG:
plot(f(:,7), f(:,8), ’--k’, ’LineWidth’, 0.25)

xlabel(’X’); ylabel(’Y’)
grid on
axis(’equal’)

%...Plot the motion relative to the center of mass
%...(Figure 2.6):
figure
title(’Figure 2.6: Motion relative to the center of mass’, ...

’Fontweight’, ’bold’, ’FontSize’, 12)
hold on

%...(x1 - xG) vs (y1 - yG):
plot(f(:,1) - f(:,7), f(:,2) - f(:,8), ’r’, ’LineWidth’, 0.5)

%...(x2 - xG) vs (y2 - yG):
plot(f(:,3) - f(:,7), f(:,4) - f(:,8), ’--g’, ’LineWidth’, 1.0)

%...(x3 - xG) vs (y3 - yG):
plot(f(:,5) - f(:,7), f(:,6) - f(:,8), ’b’, ’LineWidth’, 1.5)

xlabel(’X’); ylabel(’Y’)
grid on
axis(’equal’)
% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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D.1 Introduction

This appendix lists MATLAB scripts which implement all of the numbered algo-
rithms presented throughout the text. The programs use only the most basic

features of MATLAB and are liberally commented so as to make reading the code
as easy as possible. To ‘drive’ the various algorithms, one can use MATLAB to create
graphical user interfaces (GUIs). However, in the interest of simplicity and keep-
ing our focus on the algorithms rather than elegant programming techniques, GUIs
were not developed. Furthermore, the scripts do not use files to import and export
data. Data is defined in declaration statements within the scripts. All output is to the
screen, i.e., to the MATLAB command window. It is hoped that interested students
will embellish these simple scripts or use them as a springboard towards generating
their own programs.

Each algorithm is illustrated by a MATLAB coding of a related example problem
in the text. The actual output of each of these examples is also listed.

It would be helpful to have MATLAB documentation at hand. There are a number
of practical references on the subject, including Hahn (2002), Kermit and Davis (2002)
and Magrab (2000). MATLAB documentation may also be found at The MathWorks
web site (www.mathworks.com). Should it be necessary to do so, it is a fairly simple
matter to translate these programs into other software languages.

These programs are presented solely as an alternative to carrying out otherwise
lengthy hand computations and are intended for academic use only. They are all based
exclusively on the introductory material presented in this text and therefore do not
include the effects of perturbations of any kind.

D.2 Algorithm 3.1: solution of Kepler’s
equation by Newton’s method

Function file kepler_E.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function E = kepler_E(e, M)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
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% This function uses Newton’s method to solve Kepler’s
% equation E - e*sin(E) = M for the eccentric anomaly,
% given the eccentricity and the mean anomaly.
%
% E - eccentric anomaly (radians)
% e - eccentricity, passed from the calling program
% M - mean anomaly (radians), passed from the calling program
% pi - 3.1415926...
%
% User M-functions required: none
% ------------------------------------------------------------

%...Set an error tolerance:
error = 1.e-8;

%...Select a starting value for E:
if M < pi

E = M + e/2;
else

E = M - e/2;
end

%...Iterate on Equation 3.14 until E is determined to within
%...the error tolerance:
ratio = 1;
while abs(ratio) > error

ratio = (E - e*sin(E) - M)/(1 - e*cos(E));
E = E - ratio;

end

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_3_02.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_3_02

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 3.1 and the data of Example 3.2
% to solve Kepler’s equation.
%
% e - eccentricity
% M - mean anomaly (rad)
% E - eccentric anomaly (rad)
%
% User M-function required: kepler_E
% ------------------------------------------------------------

clear

%...Input data for Example 3.2:
e = 0.37255;
M = 3.6029;
%...

%...Pass the input data to the function kepler_E, which returns E:
E = kepler_E(e, M);
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%...Echo the input data and output to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 3.2\n')
fprintf('\n Eccentricity = %g',e)
fprintf('\n Mean anomaly (radians) = %g\n',M)
fprintf('\n Eccentric anomaly (radians) = %g',E)
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_3_02

-----------------------------------------------------
Example 3.2

Eccentricity = 0.37255
Mean anomaly (radians) = 3.6029

Eccentric anomaly (radians) = 3.47942
-----------------------------------------------------

D.3 Algorithm 3.2: solution of Kepler’s
equation for the hyperbola using
Newton’s method

Function file kepler_H.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function F = kepler_H(e, M)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function uses Newton’s method to solve Kepler’s
% equation for the hyperbola e*sinh(F) - F = M for the
% hyperbolic eccentric anomaly, given the eccentricity and
% the hyperbolic mean anomaly.
%
% F - hyperbolic eccentric anomaly (radians)
% e - eccentricity, passed from the calling program
% M - hyperbolic mean anomaly (radians), passed from the
% calling program
%
% User M-functions required: none
% ------------------------------------------------------------

%...Set an error tolerance:
error = 1.e-8;

%...Starting value for F:
F = M;
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%...Iterate on Equation 3.42 until F is determined to within
%...the error tolerance:
ratio = 1;
while abs(ratio) > error

ratio = (e*sinh(F) - F - M)/(e*cosh(F) - 1);
F = F - ratio;

end

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_3_05.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_3_05

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 3.2 and the data of
% Example 3.5 to solve Kepler’s equation for the hyperbola.
%
% e - eccentricity
% M - hyperbolic mean anomaly (dimensionless)
% F - hyperbolic eccentric anomaly (dimensionless)
%
% User M-function required: kepler_H
% ------------------------------------------------------------

clear

%...Input data for Example 3.5:
e = 2.7696;
M = 40.69;
%...

%...Pass the input data to the function kepler_H, which returns F:
F = kepler_H(e, M);

%...Echo the input data and output to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 3.5\n')
fprintf('\n Eccentricity = %g',e)
fprintf('\n Hyperbolic mean anomaly = %g\n',M)
fprintf('\n Hyperbolic eccentric anomaly = %g',F)
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_3_05

-----------------------------------------------------
Example 3.5

Eccentricity = 2.7696
Hyperbolic mean anomaly = 40.69

Hyperbolic eccentric anomaly = 3.46309
-----------------------------------------------------
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D.4 Calculation of the Stumpff functions
S(z) and C(z)

The following scripts implement Equations 3.49 and 3.50 for use in other programs.

Function file stumpS.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function s = stumpS(z)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function evaluates the Stumpff function S(z) according
% to Equation 3.49.
%
% z - input argument
% s - value of S(z)
%
% User M-functions required: none
% ------------------------------------------------------------

if z > 0
s = (sqrt(z) - sin(sqrt(z)))/(sqrt(z))ˆ3;

elseif z < 0
s = (sinh(sqrt(-z)) - sqrt(-z))/(sqrt(-z))ˆ3;

else
s = 1/6;

end

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Function file stumpC.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function c = stumpC(z)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function evaluates the Stumpff function C(z) according
% to Equation 3.50.
%
% z - input argument
% c - value of C(z)
%
% User M-functions required: none
% ------------------------------------------------------------

if z > 0
c = (1 - cos(sqrt(z)))/z;

elseif z < 0
c = (cosh(sqrt(-z)) - 1)/(-z);

else
c = 1/2;

end

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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D.5 Algorithm 3.3: solution of the universal
Kepler’s equation using Newton’s method

Function file kepler_U.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function x = kepler_U(dt, ro, vro, a)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function uses Newton’s method to solve the universal
% Kepler equation for the universal anomaly.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% x - the universal anomaly (kmˆ0.5)
% dt - time since x = 0 (s)
% ro - radial position (km) when x = 0
% vro - radial velocity (km/s) when x = 0
% a - reciprocal of the semimajor axis (1/km)
% z - auxiliary variable (z = a*xˆ2)
% C - value of Stumpff function C(z)
% S - value of Stumpff function S(z)
% n - number of iterations for convergence
% nMax - maximum allowable number of iterations
%
% User M-functions required: stumpC, stumpS
% ------------------------------------------------------------
global mu

%...Set an error tolerance and a limit on the number of
% iterations:
error = 1.e-8;
nMax = 1000;

%...Starting value for x:
x = sqrt(mu)*abs(a)*dt;

%...Iterate on Equation 3.62 until convergence occurs within
%...the error tolerance:
n = 0;
ratio = 1;
while abs(ratio) > error & n <= nMax

n = n + 1;
C = stumpC(a*xˆ2);
S = stumpS(a*xˆ2);
F = ro*vro/sqrt(mu)*xˆ2*C + (1 - a*ro)*xˆ3*S + ro*x-...

sqrt(mu)*dt;
dFdx = ro*vro/sqrt(mu)*x*(1 - a*xˆ2*S)+...

(1 - a*ro)*xˆ2*C+ro;

ratio = F/dFdx;
x = x - ratio;

end

%...Deliver a value for x, but report that nMax was reached:
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if n > nMax
fprintf('\n **No. iterations of Kepler''s equation')
fprintf(' = %g', n)
fprintf('\n F/dFdx = %g\n', F/dFdx)

end

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_3_06.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_3_06

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 3.3 and the data of Example 3.6
% to solve the universal Kepler’s equation.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% x - the universal anomaly (kmˆ0.5)
% dt - time since x = 0 (s)
% ro - radial position when x = 0 (km)
% vro - radial velocity when x = 0 (km/s)
% a - semimajor axis (km)
%
% User M-function required: kepler_U
% ------------------------------------------------------------

clear
global mu
mu = 398600;

%...Input data for Example 3.6:
ro = 10000;
vro = 3.0752;
dt = 3600;
a = -19655;
%...

%...Pass the input data to the function kepler_U, which returns x
%...(Universal Kepler’s requires the reciprocal of
% semimajor axis):
x = kepler_U(dt, ro, vro, 1/a);

%...Echo the input data and output the results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 3.6\n')
fprintf('\n Initial radial coordinate (km) = %g',ro)
fprintf('\n Initial radial velocity (km/s) = %g',vro)
fprintf('\n Elapsed time (seconds) = %g',dt)
fprintf('\n Semimajor axis (km) = %g\n',a)
fprintf('\n Universal anomaly (kmˆ0.5) = %g',x)
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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Output from Example_3_06

-----------------------------------------------------
Example 3.6

Initial radial coordinate (km) = 10000
Initial radial velocity (km/s) = 3.0752
Elapsed time (seconds) = 3600
Semimajor axis (km) = -19655

Universal anomaly (kmˆ0.5) = 128.511
-----------------------------------------------------

D.6 Calculation of the Lagrange coefficients
f and g and their time derivatives

The following scripts implement Equations 3.66 for use in other programs.

Function file f_and_g.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [f, g] = f_and_g(x, t, ro, a)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function calculates the Lagrange f and g coefficients.
%
% mu - the gravitational parameter (kmˆ3/sˆ2)
% a - reciprocal of the semimajor axis (1/km)
% ro - the radial position at time t (km)
% t - the time elapsed since t (s)
% x - the universal anomaly after time t (kmˆ0.5)
% f - the Lagrange f coefficient (dimensionless)
% g - the Lagrange g coefficient (s)
%
% User M-functions required: stumpC, stumpS
% ------------------------------------------------------------

global mu

z = a*xˆ2;

%...Equation 3.66a:
f = 1 - xˆ2/ro*stumpC(z);

%...Equation 3.66b:
g = t - 1/sqrt(mu)*xˆ3*stumpS(z);

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Function file fDot_and_gDot.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [fdot, gdot] = fDot_and_gDot(x, r, ro, a)
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% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function calculates the time derivatives of the
% Lagrange f and g coefficients.
%
% mu - the gravitational parameter (kmˆ3/sˆ2)
% a - reciprocal of the semimajor axis (1/km)
% ro - the radial position at time t (km)
% t - the time elapsed since initial state vector (s)
% r - the radial position after time t (km)
% x - the universal anomaly after time t (kmˆ0.5)
% fDot - time derivative of the Lagrange f coefficient (1/s)
% gDot - time derivative of the Lagrange g coefficient
% (dimensionless)
%
% User M-functions required: stumpC, stumpS
% ------------------------------------------------------------

global mu

z = a*xˆ2;

%...Equation 3.66c:
fdot = sqrt(mu)/r/ro*(z*stumpS(z) - 1)*x;

%...Equation 3.66d:
gdot = 1 - xˆ2/r*stumpC(z);

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

D.7 Algorithm 3.4: calculation of the state
vector (r, v) given the initial state
vector (r0, v0) and the time lapse �t

Function file rv_from_r0v0.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [R,V] = rv_from_r0v0(R0, V0, t)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% This function computes the state vector (R,V) from the
% initial state vector (R0,V0) and the elapsed time.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% R0 - initial position vector (km)
% V0 - initial velocity vector (km/s)
% t - elapsed time (s)
% R - final position vector (km)
% V - final velocity vector (km/s)
%
% User M-functions required: kepler_U, f_and_g, fDot_and_gDot
% ------------------------------------------------------------
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global mu

%...Magnitudes of R0 and V0:
r0 = norm(R0);
v0 = norm(V0);

%...Initial radial velocity:
vr0 = dot(R0, V0)/r0;

%...Reciprocal of the semimajor axis (from the energy equation):
alpha = 2/r0 - v0ˆ2/mu;

%...Compute the universal anomaly:
x = kepler_U(t, r0, vr0, alpha);

%...Compute the f and g functions:
[f, g] = f_and_g(x, t, r0, alpha);

%...Compute the final position vector:
R = f*R0 + g*V0;

%...Compute the magnitude of R:
r = norm(R);

%...Compute the derivatives of f and g:
[fdot, gdot] = fDot_and_gDot(x, r, r0, alpha);

%...Compute the final velocity:
V = fdot*R0 + gdot*V0;

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_3_07.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_3_07

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program computes the state vector (R,V) from the
% initial state vector (R0,V0) and the elapsed time using the
% data in Example 3.7.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% R0 - the initial position vector (km)
% V0 - the initial velocity vector (km/s)
% R - the final position vector (km)
% V - the final velocity vector (km/s)
% t - elapsed time (s)
%
% User M-functions required: rv_from_r0v0
% ------------------------------------------------------------

clear
global mu
mu = 398600;
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%...Input data for Example 3.7:
R0 = [ 7000 -12124 0];
V0 = [2.6679 4.6210 0];
t = 3600;
%...

%...Algorithm 3.4:
[R V] = rv_from_r0v0(R0, V0, t);

%...Echo the input data and output the results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 3.7\n')
fprintf('\n Initial position vector (km):')
fprintf('\n r0 = (%g, %g, %g)\n', R0(1), R0(2), R0(3))
fprintf('\n Initial velocity vector (km/s):')
fprintf('\n v0 = (%g, %g, %g)', V0(1), V0(2), V0(3))
fprintf('\n\n Elapsed time = %g s\n',t)
fprintf('\n Final position vector (km):')
fprintf('\n r = (%g, %g, %g)\n', R(1), R(2), R(3))
fprintf('\n Final velocity vector (km/s):')
fprintf('\n v = (%g, %g, %g)', V(1), V(2), V(3))
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_3_07

-----------------------------------------------------
Example 3.7

Initial position vector (km):
r0 = (7000, -12124, 0)

Initial velocity vector (km/s):
v0 = (2.6679, 4.621, 0)

Elapsed time = 3600 s

Final position vector (km):
r = (-3297.77, 7413.4, 0)

Final velocity vector (km/s):
v = (-8.2976, -0.964045, -0)

-----------------------------------------------------

D.8 Algorithm 4.1: calculation of the orbital
elements from the state vector

Function file coe_from_sv.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function coe = coe_from_sv(R,V)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
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% This function computes the classical orbital elements (coe)
% from the state vector (R,V) using Algorithm 4.1.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% R - position vector in the geocentric equatorial frame
% (km)
% V - velocity vector in the geocentric equatorial frame
% (km)
% r, v - the magnitudes of R and V
% vr - radial velocity component (km/s)
% H - the angular momentum vector (kmˆ2/s)
% h - the magnitude of H (kmˆ2/s)
% incl - inclination of the orbit (rad)
% N - the node line vector (kmˆ2/s)
% n - the magnitude of N
% cp - cross product of N and R
% RA - right ascension of the ascending node (rad)
% E - eccentricity vector
% e - eccentricity (magnitude of E)
% eps - a small number below which the eccentricity is
% considered to be zero
% w - argument of perigee (rad)
% TA - true anomaly (rad)
% a - semimajor axis (km)
% pi - 3.1415926...
% coe - vector of orbital elements [h e RA incl w TA a]
%
% User M-functions required: None
% ------------------------------------------------------------

global mu;
eps = 1.e-10;

r = norm(R);
v = norm(V);

vr = dot(R,V)/r;

H = cross(R,V);
h = norm(H);

%...Equation 4.7:
incl = acos(H(3)/h);

%...Equation 4.8:
N = cross([0 0 1],H);
n = norm(N);

%...Equation 4.9:
if n ∼ = 0

RA = acos(N(1)/n);
if N(2) < 0

RA = 2*pi - RA;
end

else
RA = 0;

end
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%...Equation 4.10:
E = 1/mu*((vˆ2 - mu/r)*R - r*vr*V);
e = norm(E);

%...Equation 4.12 (incorporating the case e = 0):
if n ∼ = 0

if e > eps
w = acos(dot(N,E)/n/e);
if E(3) < 0

w = 2*pi - w;
end

else
w = 0;

end
else

w = 0;
end

%...Equation 4.13a (incorporating the case e = 0):
if e > eps

TA = acos(dot(E,R)/e/r);
if vr < 0

TA = 2*pi - TA;
end

else
cp = cross(N,R);
if cp(3) >= 0

TA = acos(dot(N,R)/n/r);
else

TA = 2*pi - acos(dot(N,R)/n/r);
end

end

%...Equation 2.61 (a < 0 for a hyperbola):
a = hˆ2/mu/(1 - eˆ2);

coe = [h e RA incl w TA a];

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_4_03.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_4_03

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 4.1 to obtain the orbital
% elements from the state vector provided in Example 4.3.
%
% pi - 3.1415926...
% deg - factor for converting between degrees and radians
% mu - gravitational parameter (kmˆ3/sˆ2)
% r - position vector (km) in the geocentric equatorial
% frame
% v - velocity vector (km/s) in the geocentric equatorial
% frame
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% coe - orbital elements [h e RA incl w TA a]
% where h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending node
% (rad)
% incl = orbit inclination (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% a = semimajor axis (km)
% T - Period of an elliptic orbit (s)
%
% User M-function required: coe_from_sv
% ------------------------------------------------------------

clear
global mu
deg = pi/180;
mu = 398600;

%...Input data:
r = [ -6045 -3490 2500];
v = [-3.457 6.618 2.533];
%...

%...Algorithm 4.1:
coe = coe_from_sv(r,v);

%...Echo the input data and output results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 4.3\n')
fprintf('\n Gravitational parameter (kmˆ3/sˆ2) = %g\n', mu)
fprintf('\n State vector:\n')
fprintf('\n r (km) = [%g %g %g]', ...

r(1), r(2), r(3))
fprintf('\n v (km/s) = [%g %g %g]', ...

v(1), v(2), v(3))
disp(' ')
fprintf('\n Angular momentum (kmˆ2/s) = %g', coe(1))
fprintf('\n Eccentricity = %g', coe(2))
fprintf('\n Right ascension (deg) = %g', coe(3)/deg)
fprintf('\n Inclination (deg) = %g', coe(4)/deg)
fprintf('\n Argument of perigee (deg) = %g', coe(5)/deg)
fprintf('\n True anomaly (deg) = %g', coe(6)/deg)
fprintf('\n Semimajor axis (km): = %g', coe(7))

%...if the orbit is an ellipse, output its period:
if coe(2)<1

T = 2*pi/sqrt(mu)*coe(7)ˆ1.5; % Equation 2.73
fprintf('\n Period:')
fprintf('\n Seconds = %g', T)
fprintf('\n Minutes = %g', T/60)
fprintf('\n Hours = %g', T/3600)
fprintf('\n Days = %g', T/24/3600)

end

fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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Output from Example_4_03

-----------------------------------------------------
Example 4.3

Gravitational parameter (kmˆ3/sˆ2) = 398600

State vector:

r (km) = [-6045 -3490 2500]
v (km/s) = [-3.457 6.618 2.533]

Angular momentum (kmˆ2/s) = 58311.7
Eccentricity = 0.171212
Right ascension (deg) = 255.279
Inclination (deg) = 153.249
Argument of perigee (deg) = 20.0683
True anomaly (deg) = 28.4456
Semimajor axis (km): = 8788.1
Period:

Seconds = 8198.86
Minutes = 136.648
Hours = 2.27746
Days = 0.0948942

-----------------------------------------------------

D.9 Algorithm 4.2: calculation of the state
vector from the orbital elements

Function file sv_from_coe.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [r, v] = sv_from_coe(coe)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% This function computes the state vector (r,v) from the
% classical orbital elements (coe).
%
% mu - gravitational parameter (kmˆ3; sˆ2)
% coe - orbital elements [h e RA incl w TA]
% where
% h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending node (rad)
% incl = inclination of the orbit (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% R3_w - Rotation matrix about the z-axis through the angle w
% R1_i - Rotation matrix about the x-axis through the angle i
% R3_W - Rotation matrix about the z-axis through the angle RA
% Q_pX - Matrix of the transformation from perifocal to
% geocentric equatorial frame
% rp - position vector in the perifocal frame (km)
% vp - velocity vector in the perifocal frame (km/s)
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% r - position vector in the geocentric equatorial frame
% (km)
% v - velocity vector in the geocentric equatorial frame
% (km/s)
%
% User M-functions required: none
% ------------------------------------------------------------

global mu

h = coe(1);
e = coe(2);
RA = coe(3);
incl = coe(4);
w = coe(5);
TA = coe(6);

%...Equations 4.37 and 4.38 (rp and vp are column vectors):
rp = (hˆ2/mu) * (1/(1 + e*cos(TA))) * (cos(TA)*[1;0;0] ...

+ sin(TA)*[0;1;0]);
vp = (mu/h) * (-sin(TA)*[1;0;0] + (e + cos(TA))*[0;1;0]);

%...Equation 4.39:
R3_W = [ cos(RA) sin(RA) 0

-sin(RA) cos(RA) 0
0 0 1];

%...Equation 4.40:
R1_i = [1 0 0

0 cos(incl) sin(incl)
0 -sin(incl) cos(incl)];

%...Equation 4.41:
R3_w = [ cos(w) sin(w) 0

-sin(w) cos(w) 0
0 0 1];

%...Equation 4.44:
Q_pX = R3_W'*R1_i'*R3_w';

%...Equations 4.46 (r and v are column vectors):
r = Q_pX*rp;
v = Q_pX*vp;

%...Convert r and v into row vectors:
r = r';
v = v';

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_4_05.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_4_05
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% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 4.2 to obtain the state vector
% from the orbital elements provided in Example 4.5.
%
% pi - 3.1415926...
% deg - factor for converting between degrees and radians
% mu - gravitational parameter (kmˆ3/sˆ2)
% coe - orbital elements [h e RA incl w TA a]
% where h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending node
% (rad)
% incl = orbit inclination (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% a = semimajor axis (km)
% r - position vector (km) in geocentric equatorial frame
% v - velocity vector (km) in geocentric equatorial frame
%
% User M-functions required: sv_from_coe
% ------------------------------------------------------------

clear
global mu
deg = pi/180;
mu = 398600;

%...Input data (angles in degrees):
h = 80000;
e = 1.4;
RA = 40;
incl = 30;
w = 60;
TA = 30;
%...

coe = [h, e, RA*deg, incl*deg, w*deg, TA*deg];

%...Algorithm 4.2 (requires angular elements be in radians):
[r, v] = sv_from_coe(coe);

%...Echo the input data and output the results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 4.5\n')
fprintf('\n Gravitational parameter (kmˆ3/sˆ2) = %g\n', mu)
fprintf('\n Angular momentum (kmˆ2/s) = %g', h)
fprintf('\n Eccentricity = %g', e)
fprintf('\n Right ascension (deg) = %g', RA)
fprintf('\n Argument of perigee (deg) = %g', w)
fprintf('\n True anomaly (deg) = %g', TA)
fprintf('\n\n State vector:')
fprintf('\n r (km) = [%g %g %g]', r(1), r(2), r(3))
fprintf('\n v (km/s) = [%g %g %g]', v(1), v(2), v(3))
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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Output from Example_4_05

-----------------------------------------------------
Example 4.5

Gravitational parameter (kmˆ3/sˆ2) = 398600

Angular momentum (kmˆ2/s) = 80000
Eccentricity = 1.4
Right ascension (deg) = 40
Argument of perigee (deg) = 60
True anomaly (deg) = 30

State vector:
r (km) = [-4039.9 4814.56 3628.62]
v (km/s) = [-10.386 -4.77192 1.74388]

-----------------------------------------------------

D.10 Algorithm 5.1: Gibbs’ method of
preliminary orbit determination

Function file gibbs.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [V2, ierr] = gibbs(R1, R2, R3)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function uses the Gibbs method of orbit determination
% to compute the velocity corresponding to the second of
% three supplied position vectors.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% R1, R2, R3 - three coplanar geocentric position vectors
% (km)
% r1, r2, r3 - the magnitudes of R1, R2 and R3 (km)
% c12, c23, c31 - three independent cross products among
% R1, R2 and R3
% N, D, S - vectors formed from R1, R2 and R3 during
% the Gibbs’ procedure
% tol - tolerance for determining if R1, R2 and R3
% are coplanar
% ierr - = 0 if R1, R2, R3 are found to be coplanar
% = 1 otherwise
% V2 - the velocity corresponding to R2 (km/s)
%
% User M-functions required: none
% -----------------------------------------------------------

global mu
tol = 1e-4;
ierr = 0;
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%...Magnitudes of R1, R2 and R3:
r1 = norm(R1);
r2 = norm(R2);
r3 = norm(R3);

%...Cross products among R1, R2 and R3:
c12 = cross(R1,R2);
c23 = cross(R2,R3);
c31 = cross(R3,R1);

%...Check that R1, R2 and R3 are coplanar; if not set error flag:
if abs(dot(R1,c23)/r1/norm(c23)) > tol

ierr = 1;
end

%...Equation 5.13:
N = r1*c23 + r2*c31 + r3*c12;

%...Equation 5.14:
D = c12 + c23 + c31;

%...Equation 5.21:
S = R1*(r2 - r3) + R2*(r3 - r1) + R3*(r1 - r2);

%...Equation 5.22:
V2 = sqrt(mu/norm(N)/norm(D))*(cross(D,R2)/r2 + S);

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_5_01.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_5_01

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 5.1 (Gibbs’ method) and
% Algorithm 4.1 to obtain the orbital elements from the data
% provided in Example 5.1.
%
% deg - factor for converting between degrees and
% radians
% pi - 3.1415926...
% mu - gravitational parameter (kmˆ3/sˆ2)
% r1, r2, r3 - three coplanar geocentric position vectors (km)
% ierr - 0 if r1, r2, r3 are found to be coplanar
% 1 otherwise
% v2 - the velocity corresponding to r2 (km/s)
% coe - orbital elements [h e RA incl w TA a]
% where h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending
% node (rad)
% incl = orbit inclination (rad)
% w = argument of perigee (rad)
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% TA = true anomaly (rad)
% a = semimajor axis (km)
% T - period of elliptic orbit (s)
%
% User M-functions required: gibbs, coe_from_sv
% ------------------------------------------------------------

clear
deg = pi/180;
global mu

%...Input data for Example 5.1:
mu = 398600;
r1 = [-294.32 4265.1 5986.7];
r2 = [-1365.4 3637.6 6346.8];
r3 = [-2940.3 2473.7 6555.8];
%...

%...Echo the input data to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 5.1: Gibbs Method\n')
fprintf('\n\n Input data:\n')
fprintf('\n Gravitational parameter (kmˆ3/sˆ2) = %g\n', mu)
fprintf('\n r1 (km) = [%g %g %g]', r1(1), r1(2), r1(3))
fprintf('\n r2 (km) = [%g %g %g]', r2(1), r2(2), r2(3))
fprintf('\n r3 (km) = [%g %g %g]', r3(1), r3(2), r3(3))
fprintf('\n\n');
%...Algorithm 5.1:
[v2, ierr] = gibbs(r1, r2, r3);

%...If the vectors r1, r2, r3, are not coplanar, abort:
if ierr == 1

fprintf('\n These vectors are not coplanar.\n\n')
return

end

%...Algorithm 4.1
coe = coe_from_sv(r2,v2);

h = coe(1);
e = coe(2);
RA = coe(3);
incl = coe(4);
w = coe(5);
TA = coe(6);
a = coe(7);

%...Output the results to the command window:
fprintf(' Solution:')
fprintf('\n');
fprintf('\n v2 (km/s) = [%g %g %g]', v2(1), v2(2), v2(3))
fprintf('\n\n Orbital elements:');
fprintf('\n Angular momentum (kmˆ2/s) = %g', h)
fprintf('\n Eccentricity = %g', e)
fprintf('\n Inclination (deg) = %g', incl/deg)
fprintf('\n RA of ascending node (deg) = %g', RA/deg)
fprintf('\n Argument of perigee (deg) = %g', w/deg)
fprintf('\n True anomaly (deg) = %g', TA/deg)
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fprintf('\n Semimajor axis (km) = %g', a)
%...If the orbit is an ellipse, output the period:
if e < 1

T = 2*pi/sqrt(mu)*coe(7)ˆ1.5;
fprintf('\n Period (s) = %g', T)

end
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_5_01

-----------------------------------------------------
Example 5.1: Gibbs Method

Input data:

Gravitational parameter (kmˆ3/sˆ2) = 398600

r1 (km) = [-294.32 4265.1 5986.7]
r2 (km) = [-1365.4 3637.6 6346.8]
r3 (km) = [-2940.3 2473.7 6555.8]
Solution:

v2 (km/s) = [-6.2176 -4.01237 1.59915]

Orbital elements:
Angular momentum (kmˆ2/s) = 56193
Eccentricity = 0.100159
Inclination (deg) = 60.001
RA of ascending node (deg) = 40.0023
Argument of perigee (deg) = 30.1093
True anomaly (deg) = 49.8894
Semimajor axis (km) = 8002.14
Period (s) = 7123.94

-----------------------------------------------------

D.11 Algorithm 5.2: solution of
Lambert’s problem

Function file lambert.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [V1, V2] = lambert(R1, R2, t, string)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function solves Lambert’s problem.
%
% mu - gravitational parameter (kmˆ3/sˆ2)
% R1, R2 - initial and final position vectors (km)
% r1, r2 - magnitudes of R1 and R2
% t - the time of flight from R1 to R2
% (a constant) (s)
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% V1, V2 - initial and final velocity vectors (km/s)
% c12 - cross product of R1 into R2
% theta - angle between R1 and R2
% string - 'pro' if the orbit is prograde
% 'retro' if the orbit is retrograde
% A - a constant given by Equation 5.35
% z - alpha*xˆ2, where alpha is the reciprocal of the
% semimajor axis and x is the universal anomaly
% y(z) - a function of z given by Equation 5.38
% F(z,t) - a function of the variable z and constant t,
% given by Equation 5.40
% dFdz(z) - the derivative of F(z,t), given by
% Equation 5.43
% ratio - F/dFdz
% tol - tolerance on precision of convergence
% nmax - maximum number of iterations of Newton’s
% procedure
% f, g - Lagrange coefficients
% gdot - time derivative of g
% C(z), S(z) - Stumpff functions
% dum - a dummy variable
%
% User M-functions required: stumpC and stumpS
% -----------------------------------------------------------

global mu
global r1 r2 A

%...Magnitudes of R1 and R2:
r1 = norm(R1);
r2 = norm(R2);

c12 = cross(R1, R2);
theta = acos(dot(R1,R2)/r1/r2);

%...Determine whether the orbit is prograde or retrograde:
if strcmp(string, 'pro')

if c12(3) <= 0
theta = 2*pi - theta;

end
elseif strcmp(string,'retro')

if c12(3) >= 0
theta = 2*pi - theta;

end
else

string = 'pro'
fprintf('\n ** Prograde trajectory assumed.\n')

end

%...Equation 5.35:
A = sin(theta)*sqrt(r1*r2/(1 - cos(theta)));

%...Determine approximately where F(z,t) changes sign, and
%...use that value of z as the starting value for Equation 5.45:
z = -100;
while F(z,t) < 0

z = z + 0.1;
end
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%...Set an error tolerance and a limit on the number of iterations:
tol = 1.e-8;
nmax = 5000;

%...Iterate on Equation 5.45 until z is determined to within
%...the error tolerance:
ratio = 1;
n = 0;
while (abs(ratio) > tol) & (n <= nmax)

n = n + 1;
ratio = F(z,t)/dFdz(z);
z = z - ratio;

end

%...Report if the maximum number of iterations is exceeded:
if n >= nmax

fprintf('\n\n **Number of iterations exceeds')
fprintf(' %g \n\n ', nmax)

end

%...Equation 5.46a:
f = 1 - y(z)/r1;

%...Equation 5.46b:
g = A*sqrt(y(z)/mu);

%...Equation 5.46d:
gdot = 1 - y(z)/r2;

%...Equation 5.28:
V1 = 1/g*(R2 - f*R1);

%...Equation 5.29:
V2 = 1/g*(gdot*R2 - R1);

return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% Subfunctions used in the main body:

%...Equation 5.38:
function dum = y(z)

global r1 r2 A
dum = r1 + r2 + A*(z*S(z) - 1)/sqrt(C(z));

return

%...Equation 5.40:
function dum = F(z,t)

global mu A
dum = (y(z)/C(z))ˆ1.5*S(z) + A*sqrt(y(z)) - sqrt(mu)*t;

return

%...Equation 5.43:
function dum = dFdz(z)

global A
if z == 0

dum = sqrt(2)/40*y(0)ˆ1.5 + A/8*(sqrt(y(0)) ...
+ A*sqrt(1/2/y(0)));
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else
dum = (y(z)/C(z))ˆ1.5*(1/2/z*(C(z) - 3*S(z)/2/C(z)) ...

+ 3*S(z)ˆ2/4/C(z)) ...
+ A/8*(3*S(z)/C(z)*sqrt(y(z)) ...
+ A*sqrt(C(z)/y(z)));

end
return

%...Stumpff functions:
function dum = C(z)

dum = stumpC(z);
return
function dum = S(z)

dum = stumpS(z);
return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_5_02.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_5_02

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 5.2 to solve Lambert’s problem
% for the data provided in Example 5.2.
%
% deg - factor for converting between degrees and radians
% pi - 3.1415926...
% mu - gravitational parameter (kmˆ3/sˆ2)
% r1, r2 - initial and final position vectors (km)
% dt - time between r1 and r2 (s)
% string - = 'pro' if the orbit is prograde
% = 'retro' if the orbit is retrograde
% v1, v2 - initial and final velocity vectors (km/s)
% coe - orbital elements [h e RA incl w TA a]
% where h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending node
% (rad)
% incl = orbit inclination (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% a = semimajor axis (km)
% TA1 - Initial true anomaly
% TA2 - Final true anomaly
% T - period of an elliptic orbit
%
% User M-functions required: lambert, coe_from_sv
% -----------------------------------------------------------

clear
global mu
deg = pi/180;
mu = 398600;
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%...Input data from Example 5.2:
r1 = [ 5000 10000 2100];
r2 = [-14600 2500 7000];
dt = 3600;
string = 'pro';
%...

%...Algorithm 5.2:
[v1, v2] = lambert(r1, r2, dt, string);

%...Algorithm 4.1 (using r1 and v1):
coe = coe_from_sv(r1, v1);
%...Save the initial true anomaly:
TA1 = coe(6);

%...Algorithm 4.1 (using r2 and v2):
coe = coe_from_sv(r2, v2);
%...Save the final true anomaly:
TA2 = coe(6);

%...Echo the input data and output the results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 5.2: Lambert''s Problem\n')
fprintf('\n\n Input data:\n');
fprintf('\n Gravitational parameter (kmˆ3/sˆ2) = %g\n', mu)
fprintf('\n r1 (km) = [%g %g %g]', ...

r1(1), r1(2), r1(3))
fprintf('\n r2 (km) = [%g %g %g]', ...

r2(1), r2(2), r2(3))
fprintf('\n Elapsed time (s) = %g', dt);
fprintf('\n\n Solution:\n')

fprintf('\n v1 (km/s) = [%g %g %g]', ...
v1(1), v1(2), v1(3))

fprintf('\n v2 (km/s) = [%g %g %g]', ...
v2(1), v2(2), v2(3))

fprintf('\n\n Orbital elements:')
fprintf('\n Angular momentum (kmˆ2/s) = %g', coe(1))
fprintf('\n Eccentricity = %g', coe(2))
fprintf('\n Inclination (deg) = %g', coe(4)/deg)
fprintf('\n RA of ascending node (deg) = %g', coe(3)/deg)
fprintf('\n Argument of perigee (deg) = %g', coe(5)/deg)
fprintf('\n True anomaly initial (deg) = %g', TA1/deg)
fprintf('\n True anomaly final (deg) = %g', TA2/deg)
fprintf('\n Semimajor axis (km) = %g', coe(7))
fprintf('\n Periapse radius (km) = %g', ...

coe(1)ˆ2/mu/(1 + coe(2)))
if coe(2)<1

T = 2*pi/sqrt(mu)*coe(7)ˆ1.5;
fprintf('\n Period:')
fprintf('\n Seconds = %g', T)
fprintf('\n Minutes = %g', T/60)
fprintf('\n Hours = %g', T/3600)
fprintf('\n Days = %g', T/24/3600)

end
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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Output from Example_5_02

-----------------------------------------------------
Example 5.2: Lambert’s Problem

Input data:

Gravitational parameter (kmˆ3/sˆ2) = 398600

r1 (km) = [5000 10000 2100]
r2 (km) = [-14600 2500 7000]
Elapsed time (s) = 3600

Solution:

v1 (km/s) = [-5.99249 1.92536 3.24564]
v2 (km/s) = [-3.31246 -4.19662 -0.385288]

Orbital elements:
Angular momentum (kmˆ2/s) = 80466.8
Eccentricity = 0.433488
Inclination (deg) = 30.191
RA of ascending node (deg) = 44.6002
Argument of perigee (deg) = 30.7062
True anomaly initial (deg) = 350.83
True anomaly final (deg) = 91.1223
Semimajor axis (km) = 20002.9
Periapse radius (km) = 11331.9
Period:

Seconds = 28154.7
Minutes = 469.245
Hours = 7.82075
Days = 0.325865

-----------------------------------------------------

D.12 Calculation of Julian day number
at 0 hr UT

The following script implements Equation 5.48 for use in other programs.

Function file J0.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function j0 = J0(year, month, day)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function computes the Julian day number at 0 UT for any
% year between 1900 and 2100 using Equation 5.48.
%
% j0 - Julian day at 0 hr UT (Universal Time)
% year - range: 1901 - 2099
% month - range: 1 - 12
% day - range: 1 - 31
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%
% User M-functions required: none
% ------------------------------------------------------------

j0 = 367*year - fix(7*(year + fix((month + 9)/12))/4) ...
+ fix(275*month/9) + day + 1721013.5;

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_5_04.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_5_04

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program computes J0 and the Julian day number using the
% data in Example 5.4.
%
% year - range: 1901 - 2099
% month - range: 1 - 12
% day - range: 1 - 31
% hour - range: 0 - 23 (Universal Time)
% minute - range: 0 - 60
% second - range: 0 - 60
% ut - universal time (hr)
% j0 - Julian day number at 0 hr UT
% jd - Julian day number at specified UT
%
% User M-function required: J0
% ------------------------------------------------------------

clear

%...Input data from Example 5.4:
year = 2004;
month = 5;
day = 12;

hour = 14;
minute = 45;
second = 30;
%...

ut = hour + minute/60 + second/3600;

%...Equation 5.48:
j0 = J0(year, month, day);

%...Equation 5.47:
jd = j0 + ut/24;

%...Echo the input data and output the results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 5.4: Julian day calculation\n')
fprintf('\n Input data:\n');
fprintf('\n Year = %g', year)
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fprintf('\n Month = %g', month)
fprintf('\n Day = %g', day)
fprintf('\n Hour = %g', hour)
fprintf('\n Minute = %g', minute)
fprintf('\n Second = %g\n', second)

fprintf('\n Julian day number = %11.3f', jd);
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_5_04

-----------------------------------------------------
Example 5.4: Julian day calculation

Input data:

Year = 2004
Month = 5
Day = 12
Hour = 14
Minute = 45
Second = 30

Julian day number = 2453138.115
-----------------------------------------------------

D.13 Algorithm 5.3: calculation of local
sidereal time

Function file LST.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function lst = LST(y, m, d, ut, EL)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function calculates the local sidereal time.
%
% lst - local sidereal time (degrees)
% y - year
% m - month
% d - day
% ut - Universal Time (hours)
% EL - east longitude (degrees)
% j0 - Julian day number at 0 hr UT
% j - number of centuries since J2000
% g0 - Greenwich sidereal time (degrees) at 0 hr UT
% gst - Greenwich sidereal time (degrees) at the specified UT
%
% User M-function required: J0
% ------------------------------------------------------------

%...Equation 5.48;
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j0 = J0(y, m, d);

%...Equation 5.49:
j = (j0 - 2451545)/36525;

%...Equation 5.50:
g0 = 100.4606184 + 36000.77004*j + 0.000387933*jˆ2 ...

- 2.583e-8*jˆ3;

%...Reduce g0 so it lies in the range 0 - 360 degrees
g0 = zeroTo360(g0);

%...Equation 5.51:
gst = g0 + 360.98564724*ut/24;

%...Equation 5.52:
lst = gst + EL;

%...Reduce lst to the range 0 - 360 degrees:
lst = lst - 360*fix(lst/360);

return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% Subfunction used in the main body:

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function y = zeroTo360(x)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This subfunction reduces an angle to the range
% 0 - 360 degrees.
%
% x - The angle (degrees) to be reduced
% y - The reduced value
%
% ------------------------------------------------------------
if (x >= 360)

x = x - fix(x/360)*360;
elseif (x < 0)

x = x - (fix(x/360) - 1)*360;
end
y = x;
return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_5_06.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_5_06

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 5.3 to obtain the local sidereal
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% time from the data provided in Example 5.6.
%
% lst - local sidereal time (degrees)
% EL - east longitude of the site (west longitude is
% negative):
% degrees (0 - 360)
% minutes (0 - 60)
% seconds (0 - 60)
% WL - west longitude
% year - range: 1901 - 2099
% month - range: 1 - 12
% day - range: 1 - 31
% ut - universal time
% hour (0 - 23)
% minute (0 - 60)
% second (0 - 60)
%
% User M-function required: LST
% ------------------------------------------------------------

clear

%...Input data for Example 5.6:

% East longitude:

degrees = 139;
minutes = 47;
seconds = 0;

% Date:
year = 2004;
month = 3;
day = 3;

% Universal time:
hour = 4;
minute = 30;
second = 0;

%...

%...Convert negative (west) longitude to east longitude:
if degrees < 0

degrees = degrees + 360;
end

%...Express the longitudes as decimal numbers:
EL = degrees + minutes/60 + seconds/3600;
WL = 360 - EL;

%...Express universal time as a decimal number:
ut = hour + minute/60 + second/3600;

%...Algorithm 5.3:
lst = LST(year, month, day, ut, EL);

%...Echo the input data and output the results to the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 5.6: Local sidereal time calculation\n')
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fprintf('\n Input data:\n');
fprintf('\n Year = %g', year)
fprintf('\n Month = %g', month)
fprintf('\n Day = %g', day)
fprintf('\n UT (hr) = %g', ut)
fprintf('\n West Longitude (deg) = %g', WL)
fprintf('\n East Longitude (deg) = %g', EL)
fprintf('\n\n');

fprintf(' Solution:')

fprintf('\n');
fprintf('\n Local Sidereal Time (deg) = %g', lst)
fprintf('\n Local Sidereal Time (hr) = %g', lst/15)

fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_5_06

-----------------------------------------------------
Example 5.6: Local sidereal time calculation

Input data:

Year = 2004
Month = 3
Day = 3
UT (hr) = 4.5
West Longitude (deg) = 220.217
East Longitude (deg) = 139.783

Solution:

Local Sidereal Time (deg) = 8.57688
Local Sidereal Time (hr) = 0.571792

-----------------------------------------------------

D.14 Algorithm 5.4: calculation of the state
vector from measurements of range,
angular position and their rates

Function file rv_from_observe.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [r,v] = rv_from_observe(rho, rhodot, A, Adot, a,...

adot, theta, phi, H)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function calculates the geocentric equatorial position
% and velocity vectors of an object from radar observations of
% range, azimuth, elevation angle and their rates.
%
% deg - conversion factor between degrees and radians
% pi - 3.1415926...
%
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% Re - equatorial radius of the earth (km)
% f - earth’s flattening factor
% wE - angular velocity of the earth (rad/s)
% omega - earth’s angular velocity vector (rad/s) in the
% geocentric equatorial frame
%
% theta - local sidereal time (degrees) of tracking site
% phi - geodetic latitude (degrees) of site
% H - elevation of site (km)
% R - geocentric equatorial position vector (km) of
% tracking site
% Rdot - inertial velocity (km/s) of site
% rho - slant range of object (km)
% rhodot - range rate (km/s)
% A - azimuth (degrees) of object relative to observation
% site
% Adot - time rate of change of azimuth (degrees/s)
% a - elevation angle (degrees) of object relative to
% observation site
% adot - time rate of change of elevation angle (degrees/s)
% dec - topocentric equatorial declination of object (rad)
% decdot - declination rate (rad/s)
% h - hour angle of object (rad)
% RA - topocentric equatorial right ascension of object
% (rad)
% RAdot - right ascension rate (rad/s)
%
% Rho - unit vector from site to object
% Rhodot - time rate of change of Rho (1/s)
% r - geocentric equatorial position vector of object (km)
% v - geocentric equatorial velocity vector of object (km)
%
% User M-functions required: none
% ------------------------------------------------------------

global f Re wE
deg = pi/180;
omega = [0 0 wE];

%...Convert angular quantities from degrees to radians:
A = A *deg;
Adot = Adot *deg;
a = a *deg;
adot = adot *deg;
theta = theta*deg;
phi = phi *deg;

%...Equation 5.56:
R = [(Re/sqrt(1-(2*f - f*f)*sin(phi)ˆ2) + H) ...

*cos(phi)*cos(theta), ...
(Re/sqrt(1-(2*f - f*f)*sin(phi)ˆ2) + H) ...
*cos(phi)*sin(theta), ...
(Re*(1 - f)ˆ2/sqrt(1-(2*f - f*f) ...
*sin(phi)ˆ2) + H)*sin(phi)];

%...Equation 5.66:
Rdot = cross(omega, R);
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%...Equation 5.83a:
dec = asin(cos(phi)*cos(A)*cos(a) + sin(phi)*sin(a));

%...Equation 5.83b:
h = acos((cos(phi)*sin(a) - sin(phi)*cos(A)*cos(a))/cos(dec));
if (A > 0) & (A < pi)

h = 2*pi - h;
end

%...Equation 5.83c:
RA = theta - h;

%...Equations 5.57:
Rho = [cos(RA)*cos(dec) sin(RA)*cos(dec) sin(dec)];

%...Equation 5.63:
r = R + rho*Rho;

%...Equation 5.84:
decdot = (-Adot*cos(phi)*sin(A)*cos(a) ...

+ adot*(sin(phi)*cos(a) ...
- cos(phi)*cos(A)*sin(a)))/cos(dec);

%...Equation 5.85:
RAdot = wE ...

+ (Adot*cos(A)*cos(a) - adot*sin(A)*sin(a) ...
+ decdot*sin(A)*cos(a)*tan(dec)) ...
/(cos(phi)*sin(a) - sin(phi)*cos(A)*cos(a));

%...Equations 5.69 and 5.72:
Rhodot = [-RAdot*sin(RA)*cos(dec) - decdot*cos(RA)*sin(dec),...

RAdot*cos(RA)*cos(dec) - decdot*sin(RA)*sin(dec),...
decdot*cos(dec)];

%...Equation 5.64:
v = Rdot + rhodot*Rho + rho*Rhodot;

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_5_10.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_5_10

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithms 5.4 and 4.1 to obtain the
% orbital elements from the observational data provided in
% Example 5.10.
%
% deg - conversion factor between degrees and radians
% pi - 3.1415926...
% mu - gravitational parameter (kmˆ3/sˆ2)
%
% Re - equatorial radius of the earth (km)
% f - earth’s flattening factor
% wE - angular velocity of the earth (rad/s)
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% omega - earth’s angular velocity vector (rad/s) in the
% geocentric equatorial frame
%
% rho - slant range of object (km)
% rhodot - range rate (km/s)
% A - azimuth (deg) of object relative to observation
% site
% Adot - time rate of change of azimuth (deg/s)
% a - elevation angle (deg) of object relative to
% observation site
% adot - time rate of change of elevation angle
% (degrees/s)
%
% theta - local sidereal time (deg) of tracking site
% phi - geodetic latitude (deg) of site
% H - elevation of site (km)
%
% r - geocentric equatorial position vector of object (km)
% v - geocentric equatorial velocity vector of object (km)
%
% coe - orbital elements [h e RA incl w TA a]
% where h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending node
% (rad)
% incl = inclination of the orbit (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% a = semimajor axis (km)
% rp - perigee radius (km)
% T - period of elliptical orbit (s)
%
% User M-functions required: rv_from_observe, coe_from_sv
% ------------------------------------------------------------

clear
global f Re wE mu

deg = pi/180;
f = 1/298.256421867;
Re = 6378.13655;
wE = 7.292115e-5;
mu = 398600.4418;

%...Input data for Example 5.10:
rho = 2551;
rhodot = 0;
A = 90;
Adot = 0.1130;
a = 30;
adot = 0.05651;
theta = 300;
phi = 60;
H = 0;
%...
%...Algorithm 5.4:
[r,v] = rv_from_observe(rho, rhodot, A, Adot, a, adot, theta, ...

phi, H);



630 Appendix D MATLAB algorithms

%...Algorithm 4.1:
coe = coe_from_sv(r,v);

h = coe(1);
e = coe(2);
RA = coe(3);
incl = coe(4);
w = coe(5);
TA = coe(6);
a = coe(7);

%...Equation 2.40
rp = hˆ2/mu/(1 + e);

%...Echo the input data and output the solution to
% the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 5.10')
fprintf('\n\n Input data:\n')
fprintf('\n Slant range (km) = %g', rho)
fprintf('\n Slant range rate (km/s) = %g', rhodot)
fprintf('\n Azimuth (deg) = %g', A)
fprintf('\n Azimuth rate (deg/s) = %g', Adot)
fprintf('\n Elevation (deg) = %g', a)
fprintf('\n Elevation rate (deg/s) = %g', adot)
fprintf('\n Local sidereal time (deg) = %g', theta)
fprintf('\n Latitude (deg) = %g', phi)
fprintf('\n Altitude above sea level (km) = %g', H)
fprintf('\n\n')

fprintf(' Solution:')

fprintf('\n\n State vector:\n')
fprintf('\n r (km) = [%g, %g, %g]', ...

r(1), r(2), r(3))
fprintf('\n v (km/s) = [%g, %g, %g]', ...

v(1), v(2), v(3))

fprintf('\n\n Orbital elements:\n')
fprintf('\n Angular momentum (kmˆ2/s) = %g', h)
fprintf('\n Eccentricity = %g', e)
fprintf('\n Inclination (deg) = %g', incl/deg)
fprintf('\n RA of ascending node (deg) = %g', RA/deg)
fprintf('\n Argument of perigee (deg) = %g', w/deg)
fprintf('\n True anomaly (deg) = %g\n', TA/deg)
fprintf('\n Semimajor axis (km) = %g', a)
fprintf('\n Perigee radius (km) = %g', rp)
%...If the orbit is an ellipse, output its period:
if e < 1

T = 2*pi/sqrt(mu)*aˆ1.5;
fprintf('\n Period:')
fprintf('\n Seconds = %g', T)
fprintf('\n Minutes = %g', T/60)
fprintf('\n Hours = %g', T/3600)
fprintf('\n Days = %g', T/24/3600)

end
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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Output from Example_5_10

-----------------------------------------------------
Example 5.10

Input data:

Slant range (km) = 2551
Slant range rate (km/s) = 0
Azimuth (deg) = 90
Azimuth rate (deg/s) = 0.113
Elevation (deg) = 5168.62
Elevation rate (deg/s) = 0.05651
Local sidereal time (deg) = 300
Latitude (deg) = 60
Altitude above sea level (km) = 0

Solution:

State vector:

r (km) = [3830.68, -2216.47, 6605.09]
v (km/s) = [1.50357, -4.56099, -0.291536]

Orbital elements:

Angular momentum (kmˆ2/s) = 35621.4
Eccentricity = 0.619758
Inclination (deg) = 113.386
RA of ascending node (deg) = 109.75
Argument of perigee (deg) = 309.81
True anomaly (deg) = 165.352

Semimajor axis (km) = 5168.62
Perigee radius (km) = 1965.32
Period:

Seconds = 3698.05
Minutes = 61.6342
Hours = 1.02724
Days = 0.0428015

-----------------------------------------------------

D.15 Algorithms 5.5 and 5.6: Gauss’s method
of preliminary orbit determination with
iterative improvement

Function file gauss.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [r, v, r_old, v_old] = ...

gauss(Rho1, Rho2, Rho3, R1, R2, R3, t1, t2, t3)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% This function uses the Gauss method with iterative
% improvement (Algorithms 5.5 and 5.6) to calculate the state
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% vector of an orbiting body from angles-only observations at
% three closely-spaced times.
%
% mu - the gravitational parameter (kmˆ3/sˆ2)
% t1, t2, t3 - the times of the observations (s)
% tau, tau1, tau3 - time intervals between observations (s)
% R1, R2, R3 - the observation site position vectors
% at t1, t2, t3 (km)
% Rho1, Rho2, Rho3 - the direction cosine vectors of the
% satellite at t1, t2, t3
% p1, p2, p3 - cross products among the three direction
% cosine vectors
% Do - scalar triple product of Rho1, Rho2 and
% Rho3
% D - Matrix of the nine scalar triple products
% of R1, R2 and R3 with p1, p2 and p3
% E - dot product of R2 and Rho2
% A, B - constants in the expression relating
% slant range to geocentric radius
% a,b,c - coefficients of the 8th order polynomial
% in the estimated geocentric radius x
% x - positive root of the 8th order polynomial
% rho1, rho2, rho3 - the slant ranges at t1, t2, t3
% r1, r2, r3 - the position vectors at t1, t2, t3 (km)
% r_old, v_old - the estimated state vector at the end of
% Algorithm 5.5 (km, km/s)
% rho1_old,
% rho2_old, and
% rho3_old - the values of the slant ranges at t1, t2,
% t3 at the beginning of iterative
% improvement (Algorithm 5.6) (km)
% diff1, diff2,
% and diff3 - the magnitudes of the differences between
% the old and new slant ranges at the end
% of each iteration
% tol - the error tolerance determining
% convergence
% n - number of passes through the
% iterative improvement loop
% nmax - limit on the number of iterations
% ro, vo - magnitude of the position and
% velocity vectors (km, km/s)
% vro - radial velocity component (km)
% a - reciprocal of the semimajor axis (1/km)
% v2 - computed velocity at time t2 (km/s)
% r, v - the state vector at the end of
% Algorithm 5.6 (km, km/s)
%
% User M-functions required: kepler_U, f_and_g
% User subfunctions required: posroot
% ------------------------------------------------------------

global mu

%...Equations 5.98:
tau1 = t1 - t2;
tau3 = t3 - t2;
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%...Equation 5.101:
tau = tau3 - tau1;

%...Independent cross products among the direction cosine vectors:
p1 = cross(Rho2,Rho3);
p2 = cross(Rho1,Rho3);
p3 = cross(Rho1,Rho2);

%...Equation 5.108:
Do = dot(Rho1,p1);

%...Equations 5.109b, 5.110b and 5.111b:
D = [[dot(R1,p1) dot(R1,p2) dot(R1,p3)]

[dot(R2,p1) dot(R2,p2) dot(R2,p3)]
[dot(R3,p1) dot(R3,p2) dot(R3,p3)]];

%...Equation 5.115b:
E = dot(R2,Rho2);

%...Equations 5.112b and 5.112c:
A = 1/Do*(-D(1,2)*tau3/tau + D(2,2) + D(3,2)*tau1/tau);
B = 1/6/Do*(D(1,2)*(tau3ˆ2 - tauˆ2)*tau3/tau ...

+ D(3,2)*(tauˆ2 - tau1ˆ2)*tau1/tau);

%...Equations 5.117:
a = -(Aˆ2 + 2*A*E + norm(R2)ˆ2);
b = -2*mu*B*(A + E);
c = -(mu*B)ˆ2;

%...Calculate the roots of Equation 5.116 using MATLAB’s
% polynomial ‘roots’ solver:
Roots = roots([1 0 a 0 0 b 0 0 c]);

%...Find the positive real root:
x = posroot(Roots);

%...Equations 5.99a and 5.99b:
f1 = 1 - 1/2*mu*tau1ˆ2/xˆ3;
f3 = 1 - 1/2*mu*tau3ˆ2/xˆ3;

%...Equations 5.100a and 5.100b:
g1 = tau1 - 1/6*mu*(tau1/x)ˆ3;
g3 = tau3 - 1/6*mu*(tau3/x)ˆ3;

%...Equation 5.112a:
rho2 = A + mu*B/xˆ3;

%...Equation 5.113:
rho1 = 1/Do*((6*(D(3,1)*tau1/tau3 + D(2,1)*tau/tau3)*xˆ3 ...

+ mu*D(3,1)*(tauˆ2 - tau1ˆ2)*tau1/tau3) ...
/(6*xˆ3 + mu*(tauˆ2 - tau3ˆ2)) - D(1,1));

%...Equation 5.114:
rho3 = 1/Do*((6*(D(1,3)*tau3/tau1 - D(2,3)*tau/tau1)*xˆ3 ...

+ mu*D(1,3)*(tauˆ2 - tau3ˆ2)*tau3/tau1) ...
/(6*xˆ3 + mu*(tauˆ2 - tau3ˆ2)) - D(3,3));
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%...Equations 5.86:
r1 = R1 + rho1*Rho1;
r2 = R2 + rho2*Rho2;
r3 = R3 + rho3*Rho3;

%...Equation 5.118:
v2 = (-f3*r1 + f1*r3)/(f1*g3 - f3*g1);

%...Save the initial estimates of r2 and v2:
r_old = r2;
v_old = v2;

%...End of Algorithm 5.5

%...Use Algorithm 5.6 to improve the accuracy of the initial estimates.

%...Initialize the iterative improvement loop and set error tolerance:
rho1_old = rho1; rho2_old = rho2; rho3_old = rho3;
diff1 = 1; diff2 = 1; diff3 = 1;
n = 0;
nmax = 1000;
tol = 1.e-8;

%...Iterative improvement loop:
while ((diff1 > tol) & (diff2 > tol) & (diff3 > tol)) ...

& (n < nmax)
n = n+1;

%...Compute quantities required by universal kepler’s equation:
ro = norm(r2);
vo = norm(v2);
vro = dot(v2,r2)/ro;
a = 2/ro - voˆ2/mu;

%...Solve universal Kepler’s equation at times tau1 and tau3
% for universal anomalies x1 and x3:

x1 = kepler_U(tau1, ro, vro, a);
x3 = kepler_U(tau3, ro, vro, a);

%...Calculate the Lagrange f and g coefficients at times tau1 and tau3:
[ff1, gg1] = f_and_g(x1, tau1, ro, a);
[ff3, gg3] = f_and_g(x3, tau3, ro, a);

%...Update the f and g functions at times tau1 and tau3 by
% averaging old and new:

f1 = (f1 + ff1)/2;
f3 = (f3 + ff3)/2;
g1 = (g1 + gg1)/2;
g3 = (g3 + gg3)/2;

%...Equations 5.96 and 5.97:
c1 = g3/(f1*g3 - f3*g1);
c3 = -g1/(f1*g3 - f3*g1);

%...Equations 5.109a, 5.110a and 5.111a:
rho1 = 1/Do*( -D(1,1) + 1/c1*D(2,1) - c3/c1*D(3,1));
rho2 = 1/Do*( -c1*D(1,2) + D(2,2) - c3*D(3,2));
rho3 = 1/Do*(-c1/c3*D(1,3) + 1/c3*D(2,3) - D(3,3));
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%...Equations 5.86:
r1 = R1 + rho1*Rho1;
r2 = R2 + rho2*Rho2;
r3 = R3 + rho3*Rho3;

%...Equation 5.118:
v2 = (-f3*r1 + f1*r3)/(f1*g3 - f3*g1);

%...Calculate differences upon which to base convergence:
diff1 = abs(rho1 - rho1_old);
diff2 = abs(rho2 - rho2_old);
diff3 = abs(rho3 - rho3_old);

%...Update the slant ranges:
rho1_old = rho1; rho2_old = rho2; rho3_old = rho3;

end
%...End iterative improvement loop

fprintf('\n( **Number of Gauss improvement iterations')
fprintf(' = %g)\n\n', n)

if n >= nmax

fprintf('\n\n **Number of iterations exceeds %g \n\n ', nmax);
end

%...Return the state vector for the central observation:
r = r2;
v = v2;

return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Subfunction used in the main body:

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function x = posroot(Roots)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This subfunction extracts the positive real roots from
% those obtained in the call to MATLAB's 'roots' function.
% If there is more than one positive root, the user is
% prompted to select the one to use.
%
% x - the determined or selected positive root
% Roots - the vector of roots of a polynomial
% posroots - vector of positive roots
%
% User M-functions required: none
% ------------------------------------------------------------

%...Construct the vector of positive real roots:
posroots = Roots(find(Roots>0 & ˜imag(Roots)));
npositive = length(posroots);

%...Exit if no positive roots exist:
if npositive == 0
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fprintf('\n\n ** There are no positive roots. \n\n')
return

end

%...If there is more than one positive root, output the
%...roots to the command window and prompt the user to
%...select which one to use:
if npositive == 1

x = posroots;
else

fprintf('\n\n ** There are two or more positive roots.\n')
for i = 1:npositive

fprintf('\n root #%g = %g', i, posroots(i))
end
fprintf('\n\n Make a choice:\n')
nchoice = 0;
while nchoice < 1 | nchoice > npositive

nchoice = input(' Use root #? ');
end
x = posroots(nchoice);
fprintf('\n We will use %g .\n', x)

end

return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_5_11.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_5_11

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithms 5.5 and 5.6 (Gauss’s method) to
% compute the state vector from the data provided in
% Example 5.11.
%
% deg - factor for converting between degrees and
% radians
% pi - 3.1415926...
% mu - gravitational parameter (kmˆ3/sˆ2)
% Re - earth’s radius (km)
% f - earth’s flattening factor
% H - elevation of observation site (km)
% phi - latitude of site (deg)
% t - vector of observation times t1, t2, t3 (s)
% ra - vector of topocentric equatorial right
% ascensions at t1, t2, t3 (deg)
% dec - vector of topocentric equatorial right
% declinations at t1, t2, t3 (deg)
% theta - vector of local sidereal times for t1, t2, t3
% (deg)
% R - matrix of site position vectors at t1, t2, t3
% (km)
% rho - matrix of direction cosine vectors at t1,
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% t2, t3
% fac1, fac2 - common factors
% r_old, v_old - the state vector without iterative improvement
% (km, km/s)
% r, v - the state vector with iterative improvement
% (km, km/s)
% coe - vector of orbital elements for r, v:
% [h, e, RA, incl, w, TA, a]
% where h = angular momentum (kmˆ2/s)
% e = eccentricity
% incl = inclination (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% a = semimajor axis (km)
% coe_old - vector of orbital elements for r_old, v_old
%
% User M-functions required: gauss, coe_from_sv
% ------------------------------------------------------------

clear
global mu

deg = pi/180;
mu = 398600;
Re = 6378;
f = 1/298.26;

%...Input data:
H = 1;
phi = 40*deg;
t = [ 0 118.104 237.577];
ra = [ 43.5365 54.4196 64.3178]*deg;
dec = [-8.78334 -12.0739 -15.1054]*deg;
theta = [ 44.5065 45.000 45.4992]*deg;
%...

%...Equations 5.56 and 5.57:
fac1 = Re/sqrt(1-(2*f - f*f)*sin(phi)ˆ2);
fac2 = (Re*(1-f)ˆ2/sqrt(1-(2*f - f*f)*sin(phi)ˆ2) + H) ...

*sin(phi);
for i = 1:3

R(i,1) = (fac1 + H)*cos(phi)*cos(theta(i));
R(i,2) = (fac1 + H)*cos(phi)*sin(theta(i));
R(i,3) = fac2;
rho(i,1) = cos(dec(i))*cos(ra(i));
rho(i,2) = cos(dec(i))*sin(ra(i));
rho(i,3) = sin(dec(i));

end

%...Algorithms 5.5 and 5.6:
[r, v, r_old, v_old] = gauss(rho(1,:), rho(2,:), rho(3,:), ...

R(1,:), R(2,:), R(3,:), ...
t(1), t(2), t(3));

%...Algorithm 4.1 for the initial estimate of the state vector
% and for the iteratively improved one:
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coe_old = coe_from_sv(r_old,v_old);
coe = coe_from_sv(r,v);

%...Echo the input data and output the solution to
% the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 5.11: Orbit determination by the Gauss

method\n')
fprintf('\n Radius of earth (km) = %g', Re)
fprintf('\n Flattening factor = %g', f)
fprintf('\n Gravitational parameter (kmˆ3/sˆ2) = %g', mu)
fprintf('\n\n Input data:\n');
fprintf('\n Latitude (deg) = %g', phi/deg);
fprintf('\n Altitude above sea level (km) = %g', H);
fprintf('\n\n Observations:')
fprintf('\n Time (s) Right ascension (deg) Declination

(deg)')
fprintf(' Local sidereal time (deg)')
for i = 1:3

fprintf('\n %9.4g %17.4f %19.4f %23.4f', ...
t(i), ra(i)/deg, dec(i)/deg, theta(i)/deg)

end

fprintf('\n\n Solution:\n')

fprintf('\n Without iterative improvement...\n')
fprintf('\n');
fprintf('\n r (km) = [%g, %g, %g]', ...

r_old(1), r_old(2), r_old(3))
fprintf('\n v (km/s) = [%g, %g, %g]', ...

v_old(1), v_old(2), v_old(3))
fprintf('\n');

fprintf('\n Angular momentum (kmˆ2/s) = %g', coe_old(1))
fprintf('\n Eccentricity = %g', coe_old(2))
fprintf('\n RA of ascending node (deg) = %g', coe_old(3)/deg)
fprintf('\n Inclination (deg) = %g', coe_old(4)/deg)
fprintf('\n Argument of perigee (deg) = %g', coe_old(5)/deg)
fprintf('\n True anomaly (deg) = %g', coe_old(6)/deg)
fprintf('\n Semimajor axis (km) = %g', coe_old(7))
fprintf('\n Periapse radius (km) = %g', coe_old(1)ˆ2 ...

/mu/(1 + coe_old(2)))
%...If the orbit is an ellipse, output the period:
if coe_old(2)<1

T = 2*pi/sqrt(mu)*coe_old(7)ˆ1.5;
fprintf('\n Period:')
fprintf('\n Seconds = %g', T)
fprintf('\n Minutes = %g', T/60)
fprintf('\n Hours = %g', T/3600)
fprintf('\n Days = %g', T/24/3600)

end

fprintf('\n\n With iterative improvement...\n')
fprintf('\n');
fprintf('\n r (km) = [%g, %g, %g]', ...

r(1), r(2), r(3))
fprintf('\n v (km/s) = [%g, %g, %g]', ...

v(1), v(2), v(3))
fprintf('\n');
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fprintf('\n Angular momentum (kmˆ2/s) = %g', coe(1))
fprintf('\n Eccentricity = %g', coe(2))
fprintf('\n RA of ascending node (deg) = %g', coe(3)/deg)
fprintf('\n Inclination (deg) = %g', coe(4)/deg)
fprintf('\n Argument of perigee (deg) = %g', coe(5)/deg)
fprintf('\n True anomaly (deg) = %g', coe(6)/deg)
fprintf('\n Semimajor axis (km) = %g', coe(7))
fprintf('\n Periapse radius (km) = %g', coe(1)ˆ2 ...

/mu/(1 + coe(2)))
%...If the orbit is an ellipse, output the period:
if coe(2)<1

T = 2*pi/sqrt(mu)*coe(7)ˆ1.5;
fprintf('\n Period:')
fprintf('\n Seconds = %g', T)
fprintf('\n Minutes = %g', T/60)
fprintf('\n Hours = %g', T/3600)
fprintf('\n Days = %g', T/24/3600)

end
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_5_11

( **Number of Gauss improvement iterations = 14)

-----------------------------------------------------
Example 5.11: Orbit determination by the Gauss method

Radius of earth (km) = 6378
Flattening factor = 0.00335278
Gravitational parameter (kmˆ3/sˆ2) = 398600

Input data:

Latitude (deg) = 40
Altitude above sea level (km) = 1

Observations:
Right Local

Time (s) Ascension (deg) Declination (deg) Sidereal
time (deg)

0 43.5365 -8.7833 44.5065
118.1 54.4196 -12.0739 45.0000
237.6 64.3178 -15.1054 45.4992

Solution:

Without iterative improvement...

r (km) = [5659.03, 6533.74, 3270.15]
v (km/s) = [-3.90774, 5.05735, -2.22224]

Angular momentum (kmˆ2/s) = 62426.4
Eccentricity = 0.084887
RA of ascending node (deg) = 270.375
Inclination (deg) = 29.8362
Argument of perigee (deg) = 87.6835
True anomaly (deg) = 46.9821
Semimajor axis (km) = 9847.83
Periapse radius (km) = 9011.88
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Period:
Seconds = 9725.73
Minutes = 162.095
Hours = 2.70159
Days = 0.112566

With iterative improvement...
r (km) = [5662.04, 6537.95, 3269.05]
v (km/s) = [-3.88542, 5.12141, -2.2434]

Angular momentum (kmˆ2/s) = 62816.7
Eccentricity = 0.0999909
RA of ascending node (deg) = 269.999
Inclination (deg) = 30.001
Argument of perigee (deg) = 89.9723
True anomaly (deg) = 45.0284
Semimajor axis (km) = 9999.48
Periapse radius (km) = 8999.62
Period:

Seconds = 9951.24
Minutes = 165.854
Hours = 2.76423
Days = 0.115176

-----------------------------------------------------

D.16 Converting the numerical designation of
a month or a planet into its name

The following simple script can be used in programs that input the numerical values
for a month and/or a planet.

Function file month_planet_names.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [month, planet] = month_planet_names(month_id,

planet_id)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function returns the name of the month and the planet
% corresponding, respectively, to the numbers ‘‘month_id’’ and
% ‘‘planet_id’’.
%
% month - name of the month
% planet - name of the planet
% months - a vector containing the names of the 12 months
% planets - a vector containing the names of the 9 planets
% month_id - the month number (1 - 12)
% planet_id - the planet number (1 - 9)
%
% User M-functions required: none
% ------------------------------------------------------------
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months = ['January '
'February '
'March '
'April '
'May '
'June '
'July '
'August '
'September'
'October '
'November '
'December '];

planets = ['Mercury'
'Venus '
'Earth '
'Mars '
'Jupiter'
'Saturn '
'Uranus '
'Neptune'
'Pluto '];

month = months (month_id, 1:9);
planet = planets(planet_id, 1:7);

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

D.17 Algorithm 8.1: calculation of the state
vector of a planet at a given epoch

Function file planet_elements_and_sv.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [coe, r, v, jd] = planet_elements_and_sv ...

(planet_id, year, month, day, hour, minute, second)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function calculates the orbital elements and the state
% vector of a planet from the date (year, month, day)
% and universal time (hour, minute, second).
%
% mu - gravitational parameter of the sun (kmˆ3/sˆ2)
% deg - conversion factor between degrees and radians
% pi - 3.1415926...
%
% coe - vector of heliocentric orbital elements
% [h e RA incl w TA a w_hat L M E],
% where
% h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension (deg)
% incl = inclination (deg)
% w = argument of perihelion (deg)
% TA = true anomaly (deg)
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% a = semimajor axis (km)
% w_hat = longitude of perihelion
% ( = RA + w) (deg)
% L = mean longitude ( = w_hat + M) (deg)
% M = mean anomaly (deg)
% E = eccentric anomaly (deg)
%
% planet_id - planet identifier:
% 1 = Mercury
% 2 = Venus
% 3 = Earth
% 4 = Mars
% 5 = Jupiter
% 6 = Saturn
% 7 = Uranus
% 8 = Neptune
% 9 = Pluto
%
% year - range: 1901 - 2099
% month - range: 1 - 12
% day - range: 1 - 31
% hour - range: 0 - 23
% minute - range: 0 - 60
% second - range: 0 - 60
%
% j0 - Julian day number of the date at 0 hr UT
% ut - universal time in fractions of a day
% jd - julian day number of the date and time
%
% J2000_coe - row vector of J2000 orbital elements from
% Table 8.1
% rates - row vector of Julian centennial rates from
% Table 8.1
% t0 - Julian centuries between J2000 and jd
% elements - orbital elements at jd
%
% r - heliocentric position vector
% v - heliocentric velocity vector
%
% User M-functions required: J0, kepler_E, sv_from_coe
% User subfunctions required: planetary_elements, zero_to_360
% ------------------------------------------------------------

global mu
deg = pi/180;

%...Equation 5.48:
j0 = J0(year, month, day);

ut = (hour + minute/60 + second/3600)/24;

%...Equation 5.47
jd = j0 + ut;
%...Obtain the data for the selected planet from Table 8.1:
[J2000_coe, rates] = planetary_elements(planet_id);

%...Equation 8.104a:
t0 = (jd - 2451545)/36525;
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%...Equation 8.104b:
elements = J2000_coe + rates*t0;

a = elements(1);
e = elements(2);

%...Equation 2.61:
h = sqrt(mu*a*(1 - eˆ2));

%...Reduce the angular elements to within the range 0 - 360 degrees:
incl = elements(3);
RA = zero_to_360(elements(4));
w_hat = zero_to_360(elements(5));
L = zero_to_360(elements(6));
w = zero_to_360(w_hat - RA);
M = zero_to_360((L - w_hat));

%...Algorithm 3.1 (for which M must be in radians)
E = kepler_E(e, M*deg);

%...Equation 3.10 (converting the result to degrees):
TA = zero_to_360...

(2*atan(sqrt((1 + e)/(1 - e))*tan(E/2))/deg);

coe = [h e RA incl w TA a w_hat L M E/deg];

%...Algorithm 4.2 (for which all angles must be in radians):
[r, v] = sv_from_coe([h e RA*deg incl*deg w*deg TA*deg]);

return

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% Subfunctions used in the main body:

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [J2000_coe, rates] = planetary_elements(planet_id)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function extracts a planet’s J2000 orbital elements and
% centennial rates from Table 8.1.
%
% planet_id - 1 through 9, for Mercury through Pluto
%
% J2000_elements - 9 by 6 matrix of J2000 orbital elements for
% the nine planets Mercury through Pluto. The
% columns of each row are:
% a = semimajor axis (AU)
% e = eccentricity
% i = inclination (degrees)
% RA = right ascension of the ascending
% node (degrees)
% w_hat = longitude of perihelion (degrees)
% L = mean longitude (degrees)
%
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% cent_rates - 9 by 6 matrix of the rates of change of the
% J2000_elements per Julian century (Cy).
% Using ''dot'' for time derivative, the
% columns of each row are:
% a_dot (AU/Cy)
% e_dot (1/Cy)
% i_dot (arcseconds/Cy)
% RA_dot (arcseconds/Cy)
% w_hat_dot (arcseconds/Cy)
% Ldot (arcseconds/Cy)
%
% J2000_coe - row vector of J2000_elements corresponding
% to ''planet_id'', with au converted to km
% rates - row vector of cent_rates corresponding
% to ''planet_id'', with au converted to km
% and arcseconds converted to degrees
%
% au - astronomical unit (km)
%
% User M-functions required: none
% ------------------------------------------------------------

J2000_elements = ...

[ 0.38709893 0.20563069 7.00487 48.33167 77.45645 252.25084

0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973

1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435

1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332

5.20336301 0.04839266 1.30530 100.55615 14.75385 34.40438

9.53707032 0.05415060 2.48446 113.71504 92.43194 49.94432

19.19126393 0.04716771 0.76986 74.22988 170.96424 313.23218

30.06896348 0.00858587 1.76917 131.72169 44.97135 304.88003

39.48168677 0.24880766 17.14175 110.30347 224.06676 238.92881];

cent_rates = ...

[ 0.00000066 0.00002527 -23.51 -446.30 573.57 538101628.29

0.00000092 -0.00004938 -2.86 -996.89 -108.80 210664136.06

-0.00000005 -0.00003804 -46.94 -18228.25 1198.28 129597740.63

-0.00007221 0.00011902 -25.47 -1020.19 1560.78 68905103.78

0.00060737 -0.00012880 -4.15 1217.17 839.93 10925078.35

-0.00301530 -0.00036762 6.11 -1591.05 -1948.89 4401052.95

0.00152025 -0.00019150 -2.09 -1681.4 1312.56 1542547.79

-0.00125196 0.00002514 -3.64 -151.25 -844.43 786449.21

-0.00076912 0.00006465 11.07 -37.33 -132.25 522747.90];

J2000_coe = J2000_elements(planet_id,:);
rates = cent_rates(planet_id,:);

%...Convert from AU to km:
au = 149597871;
J2000_coe(1) = J2000_coe(1)*au;
rates(1) = rates(1)*au;

%...Convert from arcseconds to fractions of a degree:
rates(3:6) = rates(3:6)/3600;
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return
% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function y = zero_to_360(x)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function reduces an angle to lie in the range
% 0 - 360 degrees.
%
% x - the original angle in degrees
% y - the angle reduced to the range 0 - 360 degrees
%
% User M-functions required: none
% ------------------------------------------------------------

if x >= 360
x = x - fix(x/360)*360;

elseif x < 0
x = x - (fix(x/360) - 1)*360;

end

y = x;

return
% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_8_07.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_8_07

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 8.1 to compute the orbital
% elements and state vector of the earth at the date and time
% specified in Example 8.7. To obtain the same results for
% Mars, set planet_id = 4.
%
% mu - gravitational parameter of the sun (kmˆ3/sˆ2)
% deg - conversion factor between degrees and radians
% pi - 3.1415926...
%
% coe - vector of heliocentric orbital elements
% [h e RA incl w TA a w_hat L M E],
% where
% h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension (deg)
% incl = inclination (deg)
% w = argument of perihelion (deg)
% TA = true anomaly (deg)
% a = semimajor axis (km)
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% w_hat = longitude of perihelion
% ( = RA + w) (deg)
% L = mean longitude ( = w_hat + M) (deg)
% M = mean anomaly (deg)
% E = eccentric anomaly (deg)
%
% r - heliocentric position vector (km)
% v - heliocentric velocity vector (km/s)
%
% planet_id - planet identifier:
% 1 = Mercury
% 2 = Venus
% 3 = Earth
% 4 = Mars
% 5 = Jupiter
% 6 = Saturn
% 7 = Uranus
% 8 = Neptune
% 9 = Pluto
%
% year - range: 1901 - 2099
% month - range: 1 - 12
% day - range: 1 - 31
% hour - range: 0 - 23
% minute - range: 0 - 60
% second - range: 0 - 60
%
% User M-functions required: planet_elements_and_sv,
% month_planet_names
% ------------------------------------------------------------

global mu
mu = 1.327124e11;
deg = pi/180;

%...Input data
planet_id = 3;
year = 2003;
month = 8;
day = 27;
hour = 12;
minute = 0;
second = 0;
%...

%...Algorithm 8.1:
[coe, r, v, jd] = planet_elements_and_sv ...

(planet_id, year, month, day, hour, minute, second);

%...Convert the planet_id and month numbers into names for output:
[month_name, planet_name] = month_planet_names(month, ...

planet_id);

%...Echo the input data and output the solution to
% the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 8.7')
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fprintf('\n\n Input data:\n');
fprintf('\n Planet: %s', planet_name)
fprintf('\n Year : %g', year)
fprintf('\n Month : %s', month_name)
fprintf('\n Day : %g', day)
fprintf('\n Hour : %g', hour)
fprintf('\n Minute: %g', minute)
fprintf('\n Second: %g', second)
fprintf('\n\n Julian day: %11.3f', jd)

fprintf('\n\n');
fprintf(' Orbital elements:')
fprintf('\n');

fprintf('\n Angular momentum (kmˆ2/s) = %g', coe(1));
fprintf('\n Eccentricity = %g', coe(2));
fprintf('\n Right ascension of the ascending node')
fprintf(' (deg) = %g', coe(3));
fprintf('\n Inclination to the ecliptic (deg) = %g', coe(4));
fprintf('\n Argument of perihelion (deg) = %g', coe(5));
fprintf('\n True anomaly (deg) = %g', coe(6));
fprintf('\n Semimajor axis (km) = %g', coe(7));

fprintf('\n');

fprintf('\n Longitude of perihelion (deg) = %g', coe(8));
fprintf('\n Mean longitude (deg) = %g', coe(9));
fprintf('\n Mean anomaly (deg) = %g', coe(10));
fprintf('\n Eccentric anomaly (deg) = %g', coe(11));

fprintf('\n\n');
fprintf(' State vector:')
fprintf('\n');

fprintf('\n Position vector (km) = [%g %g %g]', ...
r(1), r(2), r(3))

fprintf('\n Magnitude = %g\n', norm(r))
fprintf('\n Velocity (km/s) = [%g %g %g]', ...

v(1), v(2), v(3))
fprintf('\n Magnitude = %g', norm(v))

fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_8_07

-----------------------------------------------------
Example 8.7

Input data:

Planet: Earth
Year : 2003
Month : August
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Day : 27
Hour : 12
Minute: 0
Second: 0

Julian day: 2452879.000

Orbital elements:

Angular momentum (kmˆ2/s) = 4.4551e+09
Eccentricity = 0.0167088
Right ascension of the ascending node (deg) = 348.554
Inclination to the ecliptic (deg) = -0.000426218
Argument of perihelion (deg) = 114.405
True anomaly (deg) = 230.812
Semimajor axis (km) = 1.49598e+08

Longitude of perihelion (deg) = 102.959
Mean longitude (deg) = 335.267
Mean anomaly (deg) = 232.308
Eccentric anomaly (deg) = 231.558

State vector:

Position vector (km) = [1.35589e+08 -6.68029e+07 286.909]
Magnitude = 1.51152e+08
Velocity (km/s) = [12.6804 26.61 -0.000212731]
Magnitude = 29.4769

-----------------------------------------------------

D.18 Algorithm 8.2: calculation of the
spacecraft trajectory from planet 1
to planet 2

Function file interplanetary.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
function [planet1, planet2, trajectory] = interplanetary ...

(depart, arrive)

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function determines the spacecraft trajectory from the
% sphere of influence of planet 1 to that of planet 2 using
% Algorithm 8.2.
%
% mu - gravitational parameter of the sun (kmˆ3/sˆ2)
% dum - a dummy vector not required in this procedure
%
% planet_id - planet identifier:
% 1 = Mercury
% 2 = Venus
% 3 = Earth
% 4 = Mars
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% 5 = Jupiter
% 6 = Saturn
% 7 = Uranus
% 8 = Neptune
% 9 = Pluto
%
% year - range: 1901 - 2099
% month - range: 1 - 12
% day - range: 1 - 31
% hour - range: 0 - 23
% minute - range: 0 - 60
% second - range: 0 - 60
%
% jd1, jd2 - Julian day numbers at departure and arrival
% tof - time of flight from planet 1 to planet 2 (s)
%
% Rp1, Vp1 - state vector of planet 1 at departure (km, km/s)
% Rp2, Vp2 - state vector of planet 2 at arrival (km, km/s)
% R1, V1 - heliocentric state vector of spacecraft at
% departure (km, km/s)
% R2, V2 - heliocentric state vector of spacecraft at
% arrival (km, km/s)
%
% depart - [planet_id, year, month, day, hour, minute,
% second] at departure
% arrive - [planet_id, year, month, day, hour, minute,
% second] at arrival

% planet1 - [Rp1, Vp1, jd1]
% planet2 - [Rp2, Vp2, jd2]
% trajectory - [V1, V2]
%
% User M-functions required: planet_elements_and_sv, lambert
% ------------------------------------------------------------

global mu

planet_id = depart(1);
year = depart(2);
month = depart(3);
day = depart(4);
hour = depart(5);
minute = depart(6);
second = depart(7);

%...Use Algorithm 8.1 to obtain planet 1's state vector (don't
%...need its orbital elements [''dum'']):
[dum, Rp1, Vp1, jd1] = planet_elements_and_sv ...

(planet_id, year, month, day, hour, minute, second);

planet_id = arrive(1);
year = arrive(2);
month = arrive(3);
day = arrive(4);
hour = arrive(5);
minute = arrive(6);
second = arrive(7);

%...Likewise use Algorithm 8.1 to obtain planet 2’s state vector:
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[dum, Rp2, Vp2, jd2] = planet_elements_and_sv ...
(planet_id, year, month, day, hour, minute, second);

tof = (jd2 - jd1)*24*3600;

%...Patched conic assumption:
R1 = Rp1;
R2 = Rp2;

%...Use Algorithm 5.2 to find the spacecraft’s velocity at
% departure and arrival, assuming a prograde trajectory:
[V1, V2] = lambert(R1, R2, tof, 'pro');

planet1 = [Rp1, Vp1, jd1];
planet2 = [Rp2, Vp2, jd2];
trajectory = [V1, V2];

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Script file Example_8_08.m

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
% Example_8_08

% ˜˜˜˜˜˜˜˜˜˜˜˜
%
% This program uses Algorithm 8.2 to solve Example 8.8.
%
% mu - gravitational parameter of the sun (kmˆ3/sˆ2)
% deg - conversion factor between degrees and radians
% pi - 3.1415926...
%
% planet_id - planet identifier:
% 1 = Mercury
% 2 = Venus
% 3 = Earth
% 4 = Mars
% 5 = Jupiter
% 6 = Saturn
% 7 = Uranus
% 8 = Neptune
% 9 = Pluto
% planet_name - name of the planet
%
% year - range: 1901 - 2099
% month - range: 1 - 12
% month_name - name of the month
% day - range: 1 - 31
% hour - range: 0 - 23
% minute - range: 0 - 60
% second - range: 0 - 60
%
% depart - [planet_id, year, month, day, hour, minute,
% second] at departure
% arrive - [planet_id, year, month, day, hour, minute,
% second] at arrival
%
% planet1 - [Rp1, Vp1, jd1]
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% planet2 - [Rp2, Vp2, jd2]
% trajectory - [V1, V2]
%
% coe - orbital elements [h e RA incl w TA]
% where
% h = angular momentum (kmˆ2/s)
% e = eccentricity
% RA = right ascension of the ascending
% node (rad)
% incl = inclination of the orbit (rad)
% w = argument of perigee (rad)
% TA = true anomaly (rad)
% a = semimajor axis (km)
%
% jd1, jd2 - Julian day numbers at departure and arrival
% tof - time of flight from planet 1 to planet 2
% (days)
%
% Rp1, Vp1 - state vector of planet 1 at departure
% (km, km/s)
% Rp2, Vp2 - state vector of planet 2 at arrival
% (km, km/s)
% R1, V1 - heliocentric state vector of spacecraft at
% departure (km, km/s)
% R2, V2 - heliocentric state vector of spacecraft at
% arrival (km, km/s)
%
% vinf1, vinf2 - hyperbolic excess velocities at departure
% and arrival (km/s)
%
% User M-functions required: interplanetary, coe_from_sv,
% month_planet_names
% ------------------------------------------------------------

clear
global mu
mu = 1.327124e11;
deg = pi/180;

%...Data for planet 1:
planet_id = 3; % (earth)
year = 1996;
month = 11;
day = 7;
hour = 0;
minute = 0;
second = 0;
%...

depart = [planet_id year month day hour minute second];

%...Data for planet 2:
planet_id = 4; % (Mars)
year = 1997;
month = 9;
day = 12;
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hour = 0;
minute = 0;
second = 0;
%...

arrive = [planet_id year month day hour minute second];

[planet1, planet2, trajectory] = interplanetary ...
(depart, arrive);

R1 = planet1(1,1:3);
Vp1 = planet1(1,4:6);
jd1 = planet1(1,7);

R2 = planet2(1,1:3);
Vp2 = planet2(1,4:6);
jd2 = planet2(1,7);

V1 = trajectory(1,1:3);
V2 = trajectory(1,4:6);

tof = jd2 - jd1;

%...Use Algorithm 4.1 to find the orbital elements of the
% spacecraft trajectory based on [Rp1, V1]...
coe = coe_from_sv(R1, V1);
% ... and [R2, V2]
coe2 = coe_from_sv(R2, V2);

%...Equations 8.102 and 8.103:
vinf1 = V1 - Vp1;
vinf2 = V2 - Vp2;

%...Echo the input data and output the solution to
% the command window:
fprintf('---------------------------------------------------')
fprintf('\n Example 8.8')
fprintf('\n\n Departure:\n');
[month_name, planet_name] = month_planet_names(depart(3), ...

depart(1));
fprintf('\n Planet: %s', planet_name)
fprintf('\n Year : %g', depart(2))
fprintf('\n Month : %s', month_name)
fprintf('\n Day : %g', depart(4))
fprintf('\n Hour : %g', depart(5))
fprintf('\n Minute: %g', depart(6))
fprintf('\n Second: %g', depart(7))
fprintf('\n\n Julian day: %11.3f\n', jd1)
fprintf('\n Planet position vector (km) = [%g %g %g]', ...

R1(1), R1(2), R1(3))

fprintf('\n Magnitude = %g\n', norm(R1))

fprintf('\n Planet velocity (km/s) = [%g %g %g]', ...
Vp1(1), Vp1(2), Vp1(3))

fprintf('\n Magnitude = %g\n', norm(Vp1))
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fprintf('\n Spacecraft velocity (km/s) = [%g %g %g]', ...
V1(1), V1(2), V1(3))

fprintf('\n Magnitude = %g\n', norm(V1))

fprintf('\n v-infinity at departure (km/s) = [%g %g %g]', ...
vinf1(1), vinf1(2), vinf1(3))

fprintf('\n Magnitude = %g\n', norm(vinf1))

fprintf('\n\n Time of flight = %g days\n', tof)

fprintf('\n\n Arrival:\n');
[month_name, planet_name] = month_planet_names(arrive(3), ...

arrive(1));
fprintf('\n Planet: %s', planet_name)
fprintf('\n Year : %g', arrive(2))
fprintf('\n Month : %s', month_name)
fprintf('\n Day : %g', arrive(4))
fprintf('\n Hour : %g', arrive(5))
fprintf('\n Minute: %g', arrive(6))
fprintf('\n Second: %g', arrive(7))
fprintf('\n\n Julian day: %11.3f\n', jd2)
fprintf('\n Planet position vector (km) = [%g %g %g]', ...

R2(1), R2(2), R2(3))

fprintf('\n Magnitude = %g\n', norm(R1))

fprintf('\n Planet velocity (km/s) = [%g %g %g]', ...
Vp2(1), Vp2(2), Vp2(3))

fprintf('\n Magnitude = %g\n', norm(Vp2))

fprintf('\n Spacecraft Velocity (km/s) = [%g %g %g]', ...
V2(1), V2(2), V2(3))

fprintf('\n Magnitude = %g\n', norm(V2))

fprintf('\n v-infinity at arrival (km/s) = [%g %g %g]', ...
vinf2(1), vinf2(2), vinf2(3))

fprintf('\n Magnitude = %g', norm(vinf2))

fprintf('\n\n\n Orbital elements of flight trajectory:\n')

fprintf('\n Angular momentum (kmˆ2/s) = %g', coe(1))
fprintf('\n Eccentricity = %g', coe(2))
fprintf('\n Right ascension of the ascending node')
fprintf(' (deg) = %g', coe(3)/deg)
fprintf('\n Inclination to the ecliptic (deg) = %g', ...

coe(4)/deg)
fprintf('\n Argument of perihelion (deg) = %g', ...

coe(5)/deg)
fprintf('\n True anomaly at departure (deg) = %g', ...

coe(6)/deg)
fprintf('\n True anomaly at arrival (deg) = %g\n', ...

coe2(6)/deg)
fprintf('\n Semimajor axis (km) = %g', coe(7))
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if coe(2) < 1
fprintf('\n Period (days) = %g', ...

2*pi/sqrt(mu)*coe(7)ˆ1.5/24/3600)
end
fprintf('\n-----------------------------------------------\n')

% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Output from Example_8_08

-----------------------------------------------------
Example 8.8

Departure:

Planet: Earth
Year : 1996
Month : November
Day : 7
Hour : 0
Minute: 0
Second: 0

Julian day: 2450394.500

Planet position vector (km) = [1.04994e+08 1.04655e+08 988.331]
Magnitude = 1.48244e+08

Planet velocity (km/s) = [-21.515 20.9865 0.000132284]
Magnitude = 30.0554

Spacecraft velocity (km/s) = [-24.4282 21.7819 0.948049]
Magnitude = 32.7427

v-infinity at departure (km/s) = [-2.91321 0.79542 0.947917]
Magnitude = 3.16513

Time of flight = 309 days

Arrival:

Planet: Mars
Year : 1997
Month : September
Day : 12
Hour : 0
Minute: 0
Second: 0

Julian day: 2450703.500

Planet position vector (km) = [-2.08329e+07 -2.18404e+08 -4.06287e+06]

Magnitude = 1.48244e+08

Planet velocity (km/s) = [25.0386 -0.220288 -0.620623]

Magnitude = 25.0472



D.18 Algorithm 8.2: calculation of the spacecraft trajectory 655

Spacecraft Velocity (km/s) = [22.1581 -0.19666 -0.457847]

Magnitude = 22.1637

v-infinity at arrival (km/s) = [-2.88049 0.023628 0.162776]

Magnitude = 2.88518

Orbital elements of flight trajectory:

Angular momentum (kmˆ2/s) = 4.84554e+09

Eccentricity = 0.205785

Right ascension of the ascending node (deg) = 44.8942

Inclination to the ecliptic (deg) = 1.6621

Argument of perihelion (deg) = 19.9738

True anomaly at departure (deg) = 340.039

True anomaly at arrival (deg) = 199.695

Semimajor axis (km) = 1.84742e+08

Period (days) = 501.254

-------------------------------------------------------------
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EA p p e n d i x

Gravitational
potential energy

of a sphere

Figure E.1 shows a point mass m with cartesian coordinates (x, y, z) as well as a
system of N point masses m1, m2, m3, . . . , mN . The ith one of these particles

has mass mi and coordinates (xi, yi, zi). The total mass of the N particles is M ,

M =
N∑

i=1

mi (E.1)

mi (xi, yi, zi)

m (x, y, z)

ri

z

x

y

Figure E.1 A system of point masses and a neighboring test mass m.

657
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θ

y

x

z

φr ′  

R

dM

m

r

R0

C

Figure E.2 Sphere with a spherically symmetric mass distribution.

The position vector drawn from mi to m is ri and the unit vector in the direction
of ri is

ûi = ri

ri

The gravitational force exerted on m by mi is opposite in direction to ri, and is given by

Fi = −Gmmi

r2
i

ûi = −Gmmi

r3
i

ri

The potential energy of this force is

Vi = −G
mmi

ri
(E.2)

The total gravitational potential energy of the system due to the gravitational
attraction of all of the N particles is

V =
N∑

i=1

Vi (E.3)

Therefore, the total force of gravity F on the mass m is

F = −∇V = −
(

∂V

∂x
î + ∂V

∂y
ĵ + ∂V

∂z
k̂

)
(E.4)

Consider the solid sphere of mass M and radius R0 illustrated in Figure E.2. Instead of
a discrete system as above, we have a continuum with mass density �. Each ‘particle’
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is a differential element dM = �dv of the total mass M . Equation E.1 becomes

M =
∫∫∫

v

�dv (E.5)

where dv is the volume element and v is the total volume of the sphere. In this case,
Equation E.2 becomes

dV = −G
mdM

r
= −Gm

�dv

r

where r is the distance from the differential mass dM to the finite point mass m.
Equation E.3 is replaced by

V = −Gm

∫∫∫
v

�dv

r
(E.6)

Let the mass of the sphere have a spherically symmetric distribution, which means
that the mass density � depends only on r′, the distance from the center C of the
sphere. An element of mass dM has spherical coordinates (r′, θ , φ), where the angle
θ is measured in the xy plane of a cartesian coordinate system with origin at C, as
shown in Figure E.2. In spherical coordinates the volume element is

dv = r′2 sin φ dφ dr′dθ (E.7)

Therefore Equation E.5 becomes

M =
∫ 2π

θ=0

∫ R0

r′=0

∫ π

φ=0
�r′2 sin φ dφ dr′dθ =

(∫ 2π

0
dθ

)(∫ π

0
sin φ dφ

)(∫ R0

0
�r′2dr′

)

= (2π)(2)

(∫ R0

0
�r′2dr′

)
so that the mass of the sphere is given by

M = 4π

∫ R0

r′=0
�r′2 dr′ (E.8)

Substituting Equation E.7 into Equation E.6 yields

V = −Gm

∫ 2π

θ=0

∫ R0

r′=0

∫ π

φ=0

�r′2 sin φ dφ dr′dθ

r

= −2πGm

[∫ R0

0

(∫ π

0

sin φ dφ

r

)
�r′2dr′

]
(E.9)

The distance r is found by using the law of cosines,

r = (R2 + r′2 − 2r′R cos φ)
1
2

where R is the distance from the center of the sphere to the mass m. Differentiating
this equation with respect to φ, holding r′ constant, yields

dr

dφ
= 1

2
(R2 + r′2 − 2r′R cos φ)− 1

2 (2r′R sin φ dφ) = r′R sin φ

r
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so that

sin φ dφ = rdr

r′R
It follows that ∫ π

φ=0

sin φ dφ

r
= 1

r′R

∫ R+r′

R−r′
dr = 2

R

Substituting this result along with Equation E.8 into Equation E.9 yields

V = −GMm

R

We conclude that the gravitational potential energy, and hence (from Equation E.4)
the gravitational force, of a sphere with a spherically symmetric mass distribution M
is the same as that of a point mass M located at the center of the sphere.
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Double-gimbaled control

moment gyros 526–30
Downrange equations 554
Drag force 553, 558
Dual-spin satellites 518–21,

529–30
Dual-spin spacecraft 491–5

Earth
centered inertial frames 23–9
earth orbits 52–3, 149,

258–60
earth satellites 149, 183–7
earth-moon systems 98–101
earth’s curvature 553–4
earth’s gravitational parameter

52
earth’s oblateness 177–87
earth’s shadow 117–19
earth’s sphere of influence

358–9
low earth orbits 52–3, 297–8,

300
East longitude 218–21, 222–3
East-North-Zenith (ENZ) frame

223
Easterly launches 294–5
Eccentric anomaly

hyperbolic trajectories
126–33

Kepler’s equation 113–17,
130, 596–600

MATLAB algorithms 115,
130, 596–600

oblateness 184
orbit equation 135
position as a function of time

111–15, 126–33, 135
Eccentricity

chase maneuvers 286–9
elliptical orbits 55–65
hyperbolic trajectories 125–6
interplanetary trajectories

361–2, 387, 388
limiting values 120–1
non-Hohmann transfers

282–5
orbit formulas 46–7
orbital elements 158–9,

160–1, 163
plane change maneuvers

302–3
planetary departure 361–2
planetary ephemeris 387, 388
planetary flyby 379
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Eccentricity (continued)
planetary rendezvous 369
position as a function of time

113, 120–1, 125–6
preliminary orbit

determination 219
Ecliptic plane 150
Effective exhaust velocity 556–7
Eigenvalues 426–8
Eigenvectors 426–8
Elevation angles 227–8, 232,

235–6, 626–31
Elliptical orbits

Hohmann transfers 257–68
non-Hohmann trajectories

396–7
position as a function of time

109–23, 134–5
two-body motion 55–65

Empty masses 560, 561, 566–9
Energy

circular orbits 52
conservation of 65, 509–10
dissipation 495–503
elliptical orbits 59
Hohmann transfers 257
hyperbolic trajectories 73
kinetic 441–3, 488–91, 493–4,

509–12
law 50–1, 52, 59, 73
non-Hohmann transfers

275–6
orbital elements 158–9
plane change maneuvers 293
position as a function of time

135
potential 36–7, 658–61
sinks 492–5
three dimensional orbits

158–9
ENZ see East-North-Zenith
Ephemeris 152–3, 387–91
Epochs 388, 641–8
Equations of motion

double-gimbaled control
moment gyros 528–9

dual-spin spacecraft 492
inertial frames 34–7

integration 587–94
interplanetary trajectories

356–7
linearization of relative

motion 322–4
numerical integration 587–94
relative 37–42, 322–4
rocket vehicle dynamics

552–5
rotational 410–14, 517–21
satellite attitude dynamics

496–503
translational 408–10

Equations of parabolas 68
Equatorial frames

see also geocentric...
plane change maneuvers

293–4, 301–2
state vectors 154–8
three dimensional orbits 150
topocentric coordinates

221–3, 225–7
Equilibrium points 92–6
Escape velocity 66, 73
Euler, Leonhard 16
Euler rotations 448–59
Euler’s angles 158–9, 448–59,

480
Euler’s equation

rigid-body dynamics 435–40
satellite attitude dynamics

478, 485–7, 525, 533
Excess speed 73–4
Excess velocity 360–6, 368–75,

392–4
Exhaust 555–7
Extremum 571–2

Field-free space restricted
staging 560–70

Five-term acceleration 21, 23
Flattening see oblateness
Flight path angles

elliptical orbits 63–4
hyperbolic flyby 381
Newton’s law of gravitation

9–10

non-Hohmann transfers
274–5

parabolic trajectories 66
rocket vehicle dynamics

552–5
Flight time 265–8
Floor 120
Flow rates 558–9
Fluids 410
Flyby 375–86
Flywheels 516–30
Forces

see also gravitational...
bearing 456–9
drag 553, 558
gyroscopic 456–9
lifting 554
net 27–9
nutation dampers 497
point masses 7–15
sphere of influence 355–9
units of 10–15

Free-fall 9–10

Gases 410
Gauss’s method of preliminary

orbit determination
235–50, 631–41

GEO see geostationary
equatorial orbits

Geocentric...
latitude 219–21
orbits 115–17, 130–3, 442–3
position vectors 194–201
right ascension-declination

149–54, 155–8
satellites 276–9

Geocentric equatorial frames
coordinate transformations

172–6, 186–7, 224–8
MATLAB algorithms 232,

626–31
orbital elements 158–64,

175–6
perifocal frame 172–6, 186–7
state vectors 154–8, 175–6
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topocentric transformations
224–8

transformations 172–6,
186–7, 224–8

Geodetic latitude 220–1
Geostationary equatorial orbits

(GEO) 53–6
phasing maneuvers 271–3
plane change maneuvers

293–4, 297–8, 300
Geosynchronous dual-spin

communication satellites
494

Gibb’s method 194–201, 614–18
Gimbals 406–8, 526–30
Gradient operator 36–7
Gravitation

acceleration 7–10, 177
attraction 33–105
geocentric right

ascension-declination
151–2

point masses 7–10
potential energy 658–61
restricted three-body motion

91–2
satellite attitude dynamics

530–1
sphere of influence 355–9

Gravity assist maneuvers 385–6
Gravity gradient stabilization

530–42
Gravity turn trajectories 552–5
Greenwich sidereal time 214,

216, 218
Ground track 296–7
Guided missiles 554
Gyros

gyroscope equation 447
gyroscopic attitude control

516–30
gyroscopic forces 456–9
gyroscopic moment 447
motors 439–40
rotors 406–8, 420–1
satellite attitude dynamics

491–5

Heliocentric trajectories 359
approach velocity 368
post-flyby 375–86
speed 360, 363
velocity 368, 375–86

High-energy precession rates
446–7

Hohmann transfers
bi-elliptic transfers 264–8
common apse line 274
interplanetary trajectories

348–50, 391–7
non-Hohmann trajectories

391–7
orbital maneuvers 257–73,

274
phasing maneuvers 268–73
plane change maneuvers

297–9, 300–1
planetary rendezvous 368–9,

373
Horizon coordinate system

223–8
Hyperbolas 130, 598–600
Hyperbolic trajectories

approach 368–75, 397
departure 360–6
excess velocity 360–6, 368–86,

392–4
flyby 375–86
position as a function of time

125–35
rotations 370–1
two-body motion 69–76

Identity matrices 167
Impulse

angular 13–15, 413–14
coning maneuvers 503–5
rendezvous maneuvers

257–73, 330–7
rocket vehicle dynamics 552,

557–9, 562–4, 570–8
Impulsive orbital maneuvers

255–73
Inclination

double-gimbaled control
moment gyros 528

plane change maneuvers
294–301

planetary ephemeris 387–8
Sun-synchronous orbits 181
three dimensional orbits 159,

160, 162
Inertia

see also moments of inertia
angular velocity 89, 402–3,

535–6
equations of two-body

motion 34–7
gravity-gradient stabilization

531–2, 535–8
matrices 416, 421–8, 519–25
rigid-body dynamics 414–35,

457
tensors 421–8, 434
torque-free motion stability

491
velocity 89, 91, 402–3, 535–6

Insertion points 293–4
Integration, equations of motion

587–94
Intercept trajectories 285–9
Intermediate-axis spinners

502–3
Interplanetary dual-spin

spacecraft 494
Interplanetary trajectories

347–98
ephemeris 387–91
flyby 375–86
Hohmann transfers 348–50
method of patched conics

359–60
non-Hohmann 391–7
patched conics 359–60
planetary departure 360–6
planetary ephemeris 387–91
planetary flyby 375–86
planetary rendezvous 368–75
rendezvous 349–54, 368–75
sensitivity analysis 366–8
sphere of influence 354–9
three dimensional orbits 149
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Iterations 242–3, 245–50,
631–40

Jacobi constant 96–101
Julian centuries 388–91
Julian days (JD) 214–18

numbers 214–18, 388–91,
621–3, 641–8

Jupiter’s right ascension 225–6

Kepler, Johannes 44
Kepler’s equation

Bessel functions 121–2
eccentric anomaly 113–17,

130, 596–600
hyperbola eccentric anomaly

115, 130, 598–600
hyperbolic trajectories

128–30
MATLAB algorithms 115,

130, 596–600, 601–3
Newton’s method 596–600,

601–3
position as a function of time

1, 34–5, 113–17, 121–2,
128–30, 134–44

universal variables 134–5,
136–44

Kepler’s second law 44
Kilograms 10–15
Kinematics 2–7, 400–8
Kinetic energy 441–3, 488–91,

493–4, 509–12

Lagrange coefficients
MATLAB algorithms 603–5
position as a function of time

141–4
preliminary orbit

determination 204,
207–10, 237–9, 249

two-body motion 78–89
Lagrange multiplier method

570–8
Lagrange points 92–6
Lambert’s problem

chase maneuvers 285, 288–9
MATLAB algorithms 208,

616–22
patched conics 391–7
preliminary orbit

determination 202–13,
616–22

Laplace limit 120–1
Latitude 54–5, 218–23, 231,

294–7
Latus rectum 49, 302–3
Launch azimuth 294–7
Launch vehicle boost trajectories

552–5
Leading-side flyby 375–6, 378–9
LEO see low-earth orbits
Libration points 92–6
Lifting forces 554
Limiting values 120–1
Linear momentum 412
Linearized equations of relative

motion 322–4
Local horizon 49
Local sidereal time 214, 216–18,

623–6
Longitude of perihelion 388
Low earth orbits (LEO) 52–3,

297–8, 300
Low-energy precession rates

446–7
Lunar trajectories 359

Major-axis spinners 502–3, 541
Mars missions 354–5
Mass

gravitational potential energy
657–60

moments of inertia 422
nutation dampers 496–503
point masses 7–15
ratios 557–9, 560–1, 564
rocket vehicle dynamics

573–8
MATLAB algorithms 595–656

acceleration 590–4
angular position 232, 626–31
chase maneuvers 287–8

classical orbital elements
159–61, 175, 606–13

eccentric anomaly 115, 130,
138–9, 596–600

epochs 388, 641–8
Gauss’s method of

preliminary orbit
determination 242–3,
245–50, 631–41

geocentric equatorial position
232, 626–31

Gibbs method of preliminary
orbit determination
613–16

hyperbola eccentric anomaly
130, 598–600

Julian day number 388,
621–3, 641–8

Kepler’s equation 115, 130,
138–9, 596–603

Lagrange coefficients 603–5
Lambert’s problem 208,

616–22
local sidereal time 217, 623–7
month identity conversions

640–1
Newton’s method 115, 130,

138–9, 596–603
non-Hohmann trajectories

393
numerical designation

conversions 640–1
orbital elements from the state

vector 159–61, 175,
606–13

planet identity conversions
640–1

planet state vector calculation
388, 641–8

planetary ephemeris 388–9
position as a function of time

142, 604–6
preliminary orbit

determination 198, 208,
217, 232, 242–50, 613–40

range 232, 626–31
sidereal time 217, 623–6
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spacecraft trajectories 393,
648–55

sphere of influence 393,
648–55

state vectors 159–61, 175,
232, 604–13, 626–31

Stumpff functions 600–1
three-body systems 589–94
time lapse 604–6
transformation matrices 175
universal anomaly 138–9,

601–3
universal Kepler’s equation

138–9, 601–3
Universal Time 388, 641–8

Matrices
see also transformation...
Clohessy–Wiltshire frames

329, 333, 336
diagonal 425–8
direction cosines 166–72,

174–6, 186–7
identity matrices 167
inertia 416, 421–8, 519–25
moments of inertia 421–8,

519–25
orthogonal 320, 421–8,

449–50
rotation 460–3
unit 167

Mean...
anomaly 110–15, 124–6,

134–5, 159
distance 61
longitude 388
motion 110, 184, 326, 338

Mercator projections 296–7
Method of patched conics

359–60, 391–7
Minor-axis spinners 502–3, 541
Missiles 554
Molniya orbit 182–3
Moments 410–14, 435–40,

454–6
Moments of inertia

gravity-gradient stabilization
531–2

matrices 421–8, 519–25

parallel axis theorem 428–35
principal 419, 426–8, 431–6,

457
rigid-body dynamics 414–40,

457
torque-free motion stability

491
Momentum

see also angular...
absolute angular 411–14
conservation of 509–10
exchange systems 406–8,

420–1, 439–40, 491–5
linear 412
rigid-body rotational motion

412
rocket vehicle dynamics

555–7
yo-yo despin 509–10

Month identity conversions
640–1

Moon ephemeris 152–3
Moving reference frames 37–42,

316–22, 324–30
Moving vectors 15–20
Multi-stage vehicles 552, 562,

563–78
Mutual gravitational attraction

33–105
see also two-body motion

n body equations of motion
587–94

Net forces 27–9
Net moments 437–40, 454–6
Newton’s law of gravitation

7–10, 355–9
Newton’s laws of motion 10–15,

409
Newton’s method

Kepler’s equation 596–600,
601–3

MATLAB algorithms 138–9,
596–600, 601–3

preliminary orbit
determination 206, 207,
209

roots 114–15
universal Kepler’s equation

138–9, 601–3
Newton’s second law of motion

10–15, 409
Node regression 178–80
Non-coplanar orbits 290–303
Non-Hohmann transfers

273–85, 391–7
Non-rotating inertial frames

23–9
Numerical designation

conversions 640–1
Numerical integration,

equations of motion
587–94

Nutation
dampers 495–503, 509
double-gimbaled control

moment gyros 527
rigid-body dynamics 451–4
spinning tops 445
torque-free motion 476–7

Oblateness
preliminary orbit

determination 219
satellite attitude dynamics

481–2, 494, 495–6
spinner stability 475, 491
three dimensional orbits

177–87
One-dimensional momentum

analysis 555–7
Optimal staging 570–8
Orbit formulas 42–50, 135
Orbit rotation 302–3
Orbital elements

geocentric equatorial frame
158–64

interplanetary trajectories
387, 388, 392

non-Hohmann trajectories
392

oblateness 184–7
planet state vectors 388,

641–8
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Orbital elements (continued)
planetary flyby 379
preliminary orbit

determination 199–201,
208–11, 232–5, 250

state vectors 158–64, 175,
607–14

three dimensional orbits
158–64

Orbital maneuvers 255–314
apse line rotation 279–85
bi-elliptic Hohmann transfers

264–8
chase maneuvers 285–9
common apse line 273–9
Hohmann transfers 257–73,

274
impulsive 255–314
non-Hohmann transfers

273–85
phasing maneuvers 268–73
plane change 290–303
two-impulse rendezvous

330–7
Orbital parameters 286–9
Orbiting Solar Observatory

(OSO-1) 491–2
Orientation

delta-v maneuver 276–9,
280–2

gravity-gradient stabilization
540–2

rigid-body dynamics 448
Orthogonal transformation

matrices 320, 421–8,
449–50

Orthogonal unit vectors 5–7
Orthonormal basis vectors 165
Overall payload fractions 564

Parabolic trajectories 65–9,
124–5

Parallel axis theorem 428–35
Parallel staging 563
Parallelepipeds 456–9, 540–2
Parameter of the orbit 49
Parking orbits 360–6, 394–6

Particles 1–7
Passive altitude stabilization 534
Passive energy dissipation

495–503
Patched conics 359–60, 391–7
Payloads

masses 560, 564–70
ratios 560–1, 564, 567–8
velocity 566–7

Periapse
angle to 373, 374–5
orbit formulas 49
plane change maneuvers

290–303
radius 360–2, 369, 370, 372–3
speed 362
time since 108–9
two-body motion 49, 55–6

Perifocal frame 76–8, 172–6,
186–7

Perigee
advance 178–80, 184
altitude 64–5, 208–10, 211–12
argument of 159, 161, 163,

178–81, 183–7
location 364–6
orbit equation 68–9
passage 115–17
radius 71, 75, 183–7
time since 131, 158–9, 184–5,

208–11, 287–8
time to 211, 212–13
towards the sun 117–19
velocity 61–2

Perihelion radius 384, 385
Period of orbit

circular orbits 51, 53
elliptical orbits 59, 65
orbital elements 158–9
rendezvous opportunities

351–2, 354
restricted three-body motion

89
Perturbations

gravitation 151–2
oblateness 177–8
sphere of influence 357–8

torque-free motion stability
488

Phase angles 350–3
Phasing maneuvers 268–73, 350
Physical data 583–4
Pitch 459–63, 533, 534–42
Pitchover 554
Pivots 514, 526–30
Plane change maneuvers

290–303
Planetary...

see also interplanetary
trajectories

departure 360–6
ephemeris 387–91
flyby 375–86
rendezvous 368–75

Planets
geocentric right

ascension-declination
152–4

identity conversions 644–5
state vectors 645–53

Planning Hohmann transfers
262–4

Point masses 1–32
absolute vectors 20–9
force 7–15
gravitational potential energy

661–4
kinematics 2–7
mass 7–15
moments of inertia 417–18
moving vector time

derivatives 15–20
Newton’s law of gravitation

7–10
Newton’s law of motion

10–15
relative motion 20–9
relative vectors 20–9

Polar coordinates 48
Position errors 366–8
Position as a function of time

107–47
circular orbits 108–9
elliptical orbits 109–23, 134–5
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hyperbolic trajectories
125–35

MATLAB algorithms 142,
601–6

parabolic trajectories 124–5
universal variables 134–44

Position vectors
absolute 20–9
equatorial frames 175
geocentric 175, 194–201
Gibb’s method 194–201
gravitational potential energy

657
gravity-gradient stabilization

530–1, 536
inertial frames 34–7
Lagrange coefficients 78–89,

141–4
MATLAB algorithms 159–61,

175, 232, 604–13,
626–31, 641–8

nutation dampers 496
orbit formulas 47–9
perifocal frame 76–7
point masses 2–7, 20–9
preliminary orbit

determination 218–19,
223–4, 228, 236–8,
242–3, 247–9

restricted three-body motion
90–1

rigid-body dynamics 400–8,
410–14

satellite attitude dynamics
496, 510, 530–1, 536

three dimensional geocentric
orbits 156–8

two-body motion 34–7, 47–9,
78–89

two-impulse maneuvers 330,
336

yo-yo despin 510
Post-flyby orbits 379–86
Potential energy 36–7, 657–60
Pound 10
Powered ascent phase 293
Pre-flyby ellipse 380–1
Precession

double-gimbaled control
moment gyros 527

nutation dampers 497–8
rigid-body dynamics 451–4
satellite attitude dynamics

480–4, 497–8, 508
spinning tops 444–8
thrusters 508
torque-free motion 480–4

Preliminary orbit determination
193–254

angle measurements 228–50
Gauss’s method 235–50,

631–41
Gibbs method 194–201,

613–16
Lagrange coefficients 204,

207–10, 237–9, 249
Lambert’s problem 202–13,

616–21
MATLAB algorithms 198,

208, 217, 232, 242–50,
613–41

range measurements 228–35
sidereal time 213–18
topocentric coordinate

systems 218–28
Primed systems 165, 168, 424–5
Principal directions 425–8,

431–5
Principal moments of inertia

419, 426–8, 431–6, 457
Prograde...

coasting flights 393–4
precession 481–4
trajectories 203

Prolate bodies 481–2, 494
Propellant

field-free space restricted
staging 560–70

Lagrange multiplier method
573–8

mass 256–7, 364–6
rocket vehicle dynamics

555–9, 560–70, 573–8
thrust equation 555–7

Propellers 403–4
Propulsion 551–79

r-bars 316
Radar observations 232,

626–31
Radial distances 85–8
Radial release 514, 515–16
Radius

aiming 71–2, 75, 370–1, 373,
382

apoapse 373
azimuth 62
capture 372
earth’s sphere of influence

358–9
gravitational potential energy

658–60
periapse 360–2, 369, 370,

372–3
perigee 71, 75, 183–7
perihelion 384, 385
true-anomaly-averaged 61,

62–3
Range measurements 228–35,

626–31
Rates of precession 444–8,

451–4
Rates of spin 444–8, 451–4
Regulus 153–4
Relative acceleration

angular 437
point masses 23, 25–6
relative motion and

rendezvous 317–20
rigid-body kinematics 401–8
two-body motion 38

Relative angular...
acceleration 437
momentum 42–4
velocity 350–1

Relative linear momentum 412
Relative motion 315–40

Clohessy–Wiltshire equations
324–30, 336–7

close-proximity circular orbits
338–40

co-moving reference frames
316–22, 324–30
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Relative motion (continued)
linearization of equations of

relative motion 322–4
point masses 20–9
restricted three-body motion

37, 38, 91
two-impulse maneuvers

330–7
Relative position

point masses 22, 24–5
preliminary orbit

determination 230–1
sphere of influence 356
two-body motion 37

Relative vectors 20–9, 37, 230–1,
356

Relative velocity
Clohessy–Wiltshire equations

328–9
close-proximity circular orbits

338–40
point masses 22, 25
relative motion and

rendezvous 317–20
rigid-body kinematics 401–8
two-body motion 38
two-impulse maneuvers 330,

332–3
Rendezvous 315–40

Clohessy–Wiltshire equations
324–30, 336–7

close-proximity circular orbits
338–40

co-moving reference frames
316–22, 324–30

equations of relative motion
322–4

Hohmann transfers 262–4
interplanetary trajectories

349–54, 368–75
relative motion equations

322–4
two-impulse maneuvers

330–7
Restricted staging 560–70
Restricted three-body motion

89–101
Retrofire 262–4

Retrograde orbits 203, 295–6,
481–4

Right ascension
oblateness 178–81, 185–6
planetary ephemeris 388
preliminary orbit

determination 222–3,
225–6, 230–2

state vectors 155–8
three dimensional orbits

149–54, 159, 160, 162
Rigid-body dynamics 399–463

Chasles’ theorem 399–400
equations of rotational

motion 410–14
equations of translational

motion 408–10
Euler angles 448–59
Euler’s equations 435–40
inertia 414–35
kinematics 400–8
kinetic energy 441–3
moments of inertia 414–35
moving vector time

derivatives 15–16
parallel axis theorem 428–35
pitch 459–63
plane change maneuvers

302–3
roll 459–63
rotation of the ellipse 302–3
rotational motion 410–14
satellite attitude dynamics

498–503
spinning tops 443–8
translational motion 408–10
yaw 459–63

Rocket equation 552
Rocket vehicle dynamics

551–79
equations of motion 552–5
field-free space restricted

staging 560–70
impulsive orbital maneuvers

256–7
Lagrange multiplier method

570–8
motors 256–7

optimal staging 570–8
restricted staging 560–70
rocket performance 555–60
staging 560–78
thrust equation 555–7

Rods 418–19, 430–5
Roll 459–63, 533, 534–42
Roots 426, 427, 434
Rotating platforms 447–8,

456–9
Rotation

axis of 150
Cartesian coordinate systems

169–72
coordinate transformations

169–72
geocentric equatorial frames

173–6
matrices 460–3
perifocal frames 173–6
three dimensional orbits 150,

169–72
true anomaly 284–5

Rotational...
equations of motion 410–14,

517–21
kinetic energy 488–91, 493–4,

509–12
motion equations 410–14,

517–21
Rotationally symmetric satellites

477
Round-trip missions 353–5
Routh–Hurwitz stability criteria

501–3

Satellite attitude dynamics
475–550

axisymmetric dual-spin
satellites 518–21, 529–30

coning maneuvers 503–5, 507
control thrusters 504–9
despin mechanisms 509–16
dual-spin spacecraft 491–5
gravity-gradient stabilization

530–42
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gyroscopic attitude control
516–30

gyrostats 491–5
nutation dampers 495–503,

509
passive energy dissipaters

495–503
rigid-body dynamics 399
thrusters 504–9
torque-free motion 476–86,

487–91, 518–21, 529–30
yo-yo despin 509–16

Satellites
dual-spin 518–21, 529–30
earth 149, 183–7
geocentric 276–9
orientation 540–2

Saturation 526
Second order differential

equations 326–8
Second zonal harmonics 177
Semi-latus rectum 49
Semimajor axis

elliptical orbits 62, 65
equation 134–5
hyperbolic trajectories 75
phasing maneuvers 269
planetary ephemeris 387, 388
three dimensional orbits

158–9, 184
Semiminor axis equation 135
Sensitivity analysis 366–8
Series two-stage rockets 562,

563–70
SEZ see South-East-Zenith
Shafts on rotating platforms

456–9
Sidereal time 213–18, 231,

623–6
Single stage rockets 566–7
Single-spin stabilized spacecraft

492–5
Slant ranges 239–41, 246, 249
Slug 11–12
Sounding rockets 552, 554–5,

558–9
South-East-Zenith (SEZ) frame

223

Space cones 482
Spacecraft trajectories 393,

648–55
Specific energy

circular orbits 52
elliptical orbits 59
Hohmann transfers 257
hyperbolic trajectories 73
non-Hohmann transfers

275–6
three dimensional orbits

158–9
Specific impulse

impulsive orbital maneuvers
256–7

rocket vehicle dynamics 552,
557, 559, 562, 564,
570–8

Speed
circular orbits 53–4
elliptical orbits 63
excess 73–4
hyperbolic trajectories 133
parabolic trajectories 65
planetary departure 362
yo-yo despin 511, 515–16

Sphere of influence 354–9,
366–75, 392–4, 648–55

Spheres 657–60
Spherically symmetric

distribution 657–60
Spin

accelerations 521–5
angles 508
rates 451–4, 480, 527
stabilized spacecraft 475

Spinning rotors 447–8
Spinning tops 443–8
Stability

dual-spin spacecraft 492–5
gravity-gradient stabilization

533–4
nutation dampers 500–3
spinning satellites 475
torque-free motion 487–91

Stable pitch oscillation
frequency 537

Staging 552, 560–78

Stars 152–3
State vectors

geocentric equatorial frame
154–8, 175–6

MATLAB algorithms 159–61,
175, 232, 604–13,
626–31, 641–8

non-Hohmann trajectories
393–4

orbital elements 159–61, 175,
606–13

planetary ephemeris 387–9
preliminary orbit

determination 228–9,
232, 237–9, 244–50

three dimensional orbits
154–64, 175–6, 184

two-impulse maneuvers
330–2

Step mass 573–5, 576–8
Strap-on boosters 563
Structural ratios 560–1, 564,

568, 570–8
Stumpff functions 135–6, 142,

204–7, 600–1
Sun-synchronous orbits 180–7
Sunlit side approaches 379, 382,

384–6
Synodic period 351–2, 354

Tandem two-stage rockets 562,
563–70

Tangential release 514–16
Target vehicles 322–40
Tension 514, 515–16
Three dimensional curvilinear

motion 1–7
Three dimensional orbits

149–91
celestial sphere 149–54
coordinate transformations

164–76
declination 149–54
earth’s oblateness 177–87
geocentric equatorial frame

154–8, 172–6
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Three dimensional orbits
(continued)

geocentric right
ascension-declination
149–54

oblateness 177–87
orbital elements 158–64
patched conics 391–7
perifocal frame

transformations 172–6
right ascension 149–54
state vectors 154–64

Three-body systems 41–2,
355–9, 587–94

Three-stage launch vehicles
577–8

Thrust equation 555–7
Thrust-to-weight ratio 558
Thrusters 504–9
Tilt angles 446
Time

see also position as a function
of time

dependent vectors 18–20
derivatives

Lagrange coefficients 80–3,
85–7, 603–5

moving vectors 15–20
relative motion 25–9

Hohmann transfers 265–8
lapse 601–6
manned Mars missions 354–5
to perigee 211, 212–13
satellite attitude dynamics

505, 515–16
since periapse 108–9
since perigee 131, 158–9,

184–5, 208–11, 287–8
Titan II 562
Topocentric coordinates

218–28, 230–5
Torque

axial 523–5
free motion 476–86, 487–91,

518–21, 529–30
rigid-body dynamics 413–14
satellite attitude dynamics

513–14, 521–5, 533

Trailing-side flyby 375, 376
Transfer ellipses 297–8, 348–50
Transfer times 203, 204, 352,

354
Transformation matrices

MATLAB algorithms 175
moments of inertia 421–8
orthogonal 320, 421–8,

449–50
pitch 460–3
relative motion and

rendezvous 320
rigid-body dynamics 421–8,

449–50, 452, 456
roll 460–3
satellite attitude dynamics

536
three dimensional orbits

166–72, 174–6, 186–7
topocentric horizon system

225–8
torque-free motion 484–6
two-impulse maneuvers

330–2
yaw 460–3

Translational motion equations
408–10

Transverse bearing loads 459
True anomalies

averaged orbital radius 61,
62–3

elliptical orbits 110, 135
hyperbolic flyby 382
hyperbolic trajectories 69, 75,

125–6, 132–3
Lagrange coefficients 80–2,

83–5
non-Hohmann transfers

279–85
parabolic trajectories 68–9,

124–5
plane change maneuvers 301
position as a function of time

108–9, 110, 124–6,
132–3, 135, 139–42

preliminary orbit
determination 202–13

rendezvous opportunities 350

three dimensional orbits
158–9, 161, 163–4, 184

time since periapse 108–9
universal variables 139–42

Turn angles 70, 75, 369–70, 378,
382

Two-body motion
angular momentum 42–50
energy law 50–1
equations of motion 34–42
equations of relative motion

37–42
hyperbolic trajectories 69–76
inertial frame equations of

motion 34–7
Lagrange coefficients 78–89
mutual gravitational

attraction 33–105
orbit formulas 42–50
parabolic trajectories 65–9
perifocal frame 76–8
restricted three-body motion

89–101
three dimensional orbits 149

Two-impulse maneuvers
257–73, 330–7

Two-stage rockets 562, 563–70

Unit matrices 167
Unit triads 168–9
Unit vectors

gravitational potential energy
657

Lagrange coefficients 78–9
moments of inertia 422
point masses 5–7, 21
three dimensional orbits

164–72
Units of force 10–15
Universal anomaly 134–44,

601–3
Universal Kepler’s equation

138–9, 601–3
Universal Time (UT) 213–18,

388, 621–8, 641–8
Universal variables 134–44
Unprimed systems 168, 424–5
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UT see Universal time

Vectors 33–105
see also position...; state...;

two-body motion;
unit...; velocity...

direction cosine 242–3, 244
eigenvectors 426–8
moving 15–20
orthogonal unit 5–7
orthonormal basis 165
preliminary orbit

determination 194–201
relative 20–9, 37, 230–1, 356
time dependent 18–20
time derivatives 15–20
weight 444–5

Velocity
see also delta-v...
errors 366–8
escape 66, 73
excess 360–6, 368–75, 392–4
geocentric orbits 156–8

Hohmann transfers 261
non-Hohmann transfers

274–5
plane change maneuvers

290–1, 301–2
relative motion and

rendezvous 316–20
rocket vehicle dynamics

560–70
Vectors

absolute 20–9
geocentric equatorial frame

175
Lagrange coefficients 78–89,

141–4
MATLAB algorithms 159–61,

175, 604–13, 626–31,
641–8

perifocal frame 76–7
point masses 2–7, 16–18,

20–9
preliminary orbit

determination 194–201,
203–4, 228, 241–2, 250

restricted three-body motion
91

rotations 292–3, 299
satellite attitude dynamics

496, 510–11
two-impulse maneuvers 330

Venus ephemeris 152–3
Venus flyby 379–80
Vernal equinox 150–4
Visible surface areas 54–5

Wait time 353–4
Weight 7–10, 36
Weight vectors 444–5
Wobble angles 481–2

Yaw 403, 459–63, 533–42
Yo-yo despin 509–16

Zonal variation 177–87
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A road map

dA

dt
=

h

2

h = r × r 

υ⊥ = h
r υr =

µ
h

e sin θ

Kepler's
second law

Conservation of
mechanical energy

The orbit formula
(Kepler's first law)

Newton's laws

Definition

2-body equation 
of relative motion

T =
2π
µ

a
3
2

Kepler's
third law

Kepler's equations
relating true anomaly

to time

r = − 
µ
r3 r υ2

2
− µ

r
= const

r = h2

µ
1

1 + e cos θ

F = ma

Fg = G m1m2

r2
ˆ ur 

t = h3 dϑ
(1 + e cosϑ)2

0

θ
∫µ2

·

··

See Appendix B (p. 585) for more information.
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