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PREFACE

This textbook evolved from a formal set of notes developed over nearly ten years
of teaching an introductory course in orbital mechanics for aerospace engineering
students. These undergraduate students had no prior formal experience in the subject,
but had completed courses in physics, dynamics and mathematics through differential
equations and applied linear algebra. That is the background I have presumed for
readers of this book.

Thisis by no means a grand, descriptive survey of the entire subject of astronautics.
It is a foundations text, a springboard to advanced study of the subject. I focus on the
physical phenomena and analytical procedures required to understand and predict, to
first order, the behavior of orbiting spacecraft. I have tried to make the book readable
for undergraduates, and in so doing I do not shy away from rigor where it is needed
for understanding. Spacecraft operations that take place in earth orbit are considered
as are interplanetary missions. The important topic of spacecraft control systems is
omitted. However, the material in this book and a course in control theory provide
the basis for the study of spacecraft attitude control.

A brief perusal of the Contents shows that there are more than enough topics
to cover in a single semester or term. Chapter 1 is a review of vector kinematics in
three dimensions and of Newton’s laws of motion and gravitation. It also focuses on
the issue of relative motion, crucial to the topics of rendezvous and satellite attitude
dynamics. Chapter 2 presents the vector-based solution of the classical two-body
problem, coming up with a host of practical formulas for orbit and trajectory analy-
sis. The restricted three-body problem is covered in order to introduce the notion of
Lagrange points. Chapter 3 derives Kepler’s equations, which relate position to time
for the different kinds of orbits. The concept of ‘universal variables’ is introduced.
Chapter 4 is devoted to describing orbits in three dimensions and accounting for the
major effects of the earth’s oblate, non-spherical shape. Chapter 5 is an introduction
to preliminary orbit determination, including Gibbs” and Gauss’s methods and the
solution of Lambert’s problem. Auxiliary topics include topocentric coordinate sys-
tems, Julian day numbering and sidereal time. Chapter 6 presents the common means
of transferring from one orbit to another by impulsive delta-v maneuvers, including
Hohmann transfers, phasing orbits and plane changes. Chapter 7 derives and employs
the equations of relative motion required to understand and design two-impulse ren-
dezvous maneuvers. Chapter 8 explores the basics of interplanetary mission analysis.
Chapter 9 presents those elements of rigid-body dynamics required to characterize
the attitude of an orbiting satellite. Chapter 10 describes the methods of controlling,
changing and stabilizing the attitude of spacecraft by means of thrusters, gyros and
other devices. Finally, Chapter 11 is a brief introduction to the characteristics and
design of multi-stage launch vehicles.

Chapters 1 through 4 form the core of a first orbital mechanics course. The time
devoted to Chapter 1 depends on the background of the student. It might be surveyed
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briefly and used thereafter simply as a reference. What follows Chapter 4 depends on
the objectives of the course.

Chapters 5 through 8 carry on with the subject of orbital mechanics. Chapter 6
on orbital maneuvers should be included in any case. Coverage of Chapters 5, 7 and
8 is optional. However, if all of Chapter 8 on interplanetary missions is to form a part
of the course, then the solution of Lambert’s problem (Section 5.3) must be studied
beforehand.

Chapters 9 and 10 must be covered if the course objectives include an introduction
to satellite dynamics. In that case Chapters 5, 7 and 8 would probably not be studied
in depth.

Chapter 11 is optional if the engineering curriculum requires a separate course in
propulsion, including rocket dynamics.

To understand the material and to solve problems requires using a lot of under-
graduate mathematics. Mathematics, of course, is the language of engineering.
Students must not forget that Sir Isaac Newton had to invent calculus so he could solve
orbital mechanics problems precisely. Newton (1642-1727) was an English physi-
cist and mathematician, whose 1687 publication Mathematical Principles of Natural
Philosophy (‘the Principia’) is one of the most influential scientific works of all time. It
must be noted that the German mathematician Gottfried Wilhelm von Leibniz (1646—
1716) is credited with inventing infinitesimal calculus independently of Newton in
the 1670s.

In addition to honing their math skills, students are urged to take advantage
of computers (which, incidentally, use the binary numeral system developed by
Leibniz). There are many commercially available mathematics software packages for
personal computers. Wherever possible they should be used to relieve the burden of
repetitive and tedious calculations. Computer programming skills can and should be
put to good use in the study of orbital mechanics. Elementary MATLAB® programs
(M-files) appear at the end of this book to illustrate how some of the procedures devel-
oped in the text can be implemented in software. All of the scripts were developed
using MATLAB version 5.0 and were successfully tested using version 6.5 (release 13).
Information about MATLAB, which is a registered trademark of The MathWorks,
Inc., may be obtained from:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7101

E-mail: info@mathworks.com
Web: www.mathworks.com

The text contains many detailed explanations and worked-out examples. Their
purpose is not to overwhelm but to elucidate. It is always assumed that the material is
being seen for the first time and, wherever possible, solution details are provided so as
to leave little to the reader’s imagination. There are some exceptions to this objective,
deemed necessary to maintain the focus and control the size of the book. For example,
in Chapter 6, the notion of specific impulse is laid on the table as a means of rating
rocket motor performance and to show precisely how delta-v is related to propellant
expenditure. In Chapter 10 Routh—Hurwitz stability criteria are used without proof to
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show quantitatively that a particular satellite configuration is, indeed, stable. Specific
impulse is covered in more detail in Chapter 11, and the stability of linear systems is
treated in depth in books on control theory. See, for example, Nise (2003) and Ogata
(2001).

Supplementary material appears in the appendices at the end of the book.
Appendix A lists physical data for use throughout the text. Appendix B is a ‘road
map’ to guide the reader through Chapters 1, 2 and 3. Appendix C shows how to set
up the n-body equations of motion and program them in MATLAB. Appendix D lists
the MATLAB implementations of algorithms presented in several of the chapters.
Appendix E shows that the gravitational field of a spherically symmetric body is the
same as if the mass were concentrated at its center.

The field of astronautics is rich and vast. References cited throughout this text are
listed at the end of the book. Also listed are other books on the subject that might be
of interest to those seeking additional insights.

I wish to thank colleagues who provided helpful criticism and advice during the
development of this book. Yechiel Crispin and Charles Eastlake were sources for
ideas about what should appear in the summary chapter on rocket dynamics. Habib
Eslami, Lakshmanan Narayanaswami, Mahmut Reyhanoglu and Axel Rohde all used
the evolving manuscript as either a text or a reference in their space mechanics courses.
Based on their classroom experiences, they gave me valuable feedback in the form
of corrections, recommendations and much-needed encouragement. Tony Hagar
voluntarily and thoroughly reviewed the entire manuscript and made a number of
suggestions, nearly all of which were incorporated into the final version of the text.

I am indebted to those who reviewed the manuscript for the publisher for their
many suggestions on how the book could be improved and what additional topics
might be included.

Finally, let me acknowledge how especially grateful I am to the students who,
throughout the evolution of the book, reported they found it to be a helpful and
understandable introduction to space mechanics.

Howard D. Curtis
Embry-Riddle Aeronautical University
Daytona Beach, Florida
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SUPPLEMENTS
TO THE TEXT

For the student:

Copies of the MATLAB programs (M-files) that appear in Appendix D can
be downloaded from the companion website accompanying this book. To
access these please visit http://books.elsevier.com/companions and follow the
instructions on screen.

For the instructor:

A full Instructor’s Solutions Manual is available for adopting tutors, which pro-
vides complete worked-out solutions to the problems set at the end of each
chapter. To access these please visit http://books.elsevier.com/manuals and follow
the instructions on screen.
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1.1

CHAPTER

DYNAMICS OF
POINT MASSES

CHAPTER OUTLINE

1.1 INTRODUCTION 1
1.2 KINEMATICS 2
1.3 MASS, FORCE AND NEWTON’S LAW OF GRAVITATION 7
1.4 NEWTON’S LAW OF MOTION 10
1.5 TIME DERIVATIVES OF MOVING VECTORS 15
1.6 RELATIVE MOTION 20
PROBLEMS 29
INTRODUCTION

his chapter serves as a self-contained reference on the kinematics and dynamics

of point masses as well as some basic vector operations. The notation and

concepts summarized here will be used in the following chapters. Those familiar with

the vector-based dynamics of particles can simply page through the chapter and then

refer back to it later as necessary. Those who need a bit more in the way of review

will find the chapter contains all of the material they need in order to follow the
development of orbital mechanics topics in the upcoming chapters.

We begin with the problem of describing the curvilinear motion of particles

in three dimensions. The concepts of force and mass are considered next, along

with Newton’s inverse-square law of gravitation. This is followed by a presentation

1



2 Chapter 1 Dynamics of point masses

of Newton’s second law of motion (‘force equals mass times acceleration’) and the
important concept of angular momentum.

As a prelude to describing motion relative to moving frames of reference, we
develop formulas for calculating the time derivatives of moving vectors. These are
applied to the computation of relative velocity and acceleration. Example problems
illustrate the use of these results as does a detailed consideration of how the earth’s
rotation and curvature influence our measurements of velocity and acceleration. This
brings in the curious concept of Coriolis force. Embedded in exercises at the end of
the chapter is practice in verifying several fundamental vector identities that will be
employed frequently throughout the book.

1.2 KINEMATICS

Figure 1.1

To track the motion of a particle P through Euclidean space we need a frame of
reference, consisting of a clock and a cartesian coordinate system. The clock keeps
track of time t and the xyz axes of the cartesian coordinate system are used to locate
the spatial position of the particle. In non-relativistic mechanics, a single ‘universal’
clock serves for all possible cartesian coordinate systems. So when we refer to a frame
of reference we need think only of the mutually orthogonal axes themselves.

The unit of time used throughout this book is the second (s). The unit of length
is the meter (m), but the kilometer (km) will be the length unit of choice when large
distances and velocities are involved. Conversion factors between kilometers, miles
and nautical miles are listed in Table A.3.

Given a frame of reference, the position of the particle P at a time ¢ is defined
by the position vector r(¢) extending from the origin O of the frame out to P itself,
as illustrated in Figure 1.1. (Vectors will always be indicated by boldface type.) The

Position, velocity and acceleration vectors.
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components of r(¢) are just the x, y and z coordinates,
r(t) = x(0)i + y(1)j + z(t)k

i, j and k are the unit vectors which point in the positive direction of the x, y and z
axes, respectively. Any vector written with the overhead hat (e.g., a) is to be considered
a vector of unit dimensionless magnitude.

The distance of P from the origin is the magnitude or length of r, denoted ||r| or

just 7,
el =r=/x24+y2 + 22

The magnitude of r, or any vector A for that matter, can also be computed by means
of the dot product operation,

r=.r-r Al = VA-A

The velocity vand acceleration a of the particle are the first and second time derivatives
of the position vector,

dx(t), dy(t), dz(t) s N N N
= k = Uy 2 k
v(t) I i+ I j+ I V()i + v, (1) + v(t)
X N d 1)y d z i N n -
ate) = 2 05 DO o (0 40,0) + a0k

It is convenient to represent the time derivative by means of an overhead dot. In this
shorthand notation, if () is any quantity, then

. d() o d2() " a0
():E ()=W ():w,etc.
Thus, for example,
v=r1
a=v=rF
Uy =X vy =y v, =2

aGe=0x=X a,=V,=) a=0,=1%2

The locus of points that a particle occupies as it moves through space is called its path
or trajectory. If the path is a straight line, then the motion is rectilinear. Otherwise, the
path is curved, and the motion is called curvilinear. The velocity vector v is tangent
to the path. If 4, is the unit vector tangent to the trajectory, then

v = vy

where v, the speed, is the magnitude of the velocity v. The distance ds that P travels
along its path in the time interval dt is obtained from the speed by

ds =vdt


louiscoo
下划线


4 Chapter 1 Dynamics of point masses

EXAMPLE
1.1

In other words,
v=>;

The distance s, measured along the path from some starting point, is what the odome-
ters in our automobiles record. Of course, §, our speed along the road, is indicated by
the dial of the speedometer.

Note carefully that v # 7, i.e., the magnitude of the derivative of r does not equal
the derivative of the magnitude of r.

The position vector in meters is given as a function of time in seconds as
r = (82 + 7t + 6)i + (56> 4 4)) + (0.3¢t* + 2¢% + 1)k (m) (a)

At t =10 seconds, calculate v (the magnitude of the derivative of r) and  (the
derivative of the magnitude of r).

The velocity v is found by differentiating the given position vector with respect to
time,

d . . .
v = d—: = (16t + 7)i + 157 + (1.2¢> + 4)k

The magnitude of this vector is the square root of the sum of the squares of its
components,

V]| = (1.44¢° + 234.6¢% + 272¢% + 224 + 49)2
Evaluating this at t = 10 s, we get
v =1953.3m/s
Calculating the magnitude of r in (a), leads to
el = (0098 + 26.26° + 68.6t* + 15263 + 149¢% + 84t + 53)2
Differentiating this expression with respect to time,

dr 0.3617 + 78.6t° + 137.2t> + 22812 + 149t + 42

= — =
dt (0.09¢8 4 26.2t% + 68.6¢% + 15213 + 14912 + 84t + 53)%

Substituting t = 10, yields
7 =1935.5m/s

If v is given, then we can find the components of the unit tangent @, in the cartesian
coordinate frame of reference

~ \4 VUx o Uy » UV, A~
iy = — =—i+2j+—k <v:,/v§+v}%+v§)
]| v v v



Figure 1.2

1.2 Kinematics 5

The acceleration may be written,
a= a[ﬁt + anﬁn

where a; and a, are the tangential and normal components of acceleration, given by
a; =0 (=5%) a, = — (1.1)

o is the radius of curvature, which is the distance from the particle P to the center of
curvature of the path at that point. The unit principal normal @, is perpendicular to
u; and points towards the center of curvature C, as shown in Figure 1.2. Therefore,
the position of C relative to P, denoted r¢/p, is

rc/p = 0uy,

The orthogonal unit vectors i; and @, form a plane called the osculating plane. The
unit normal to the osculating plane is @y, the binormal, and it is obtained from
and u, by taking their cross product,

a, = U X 4,
The center of curvature lies in the osculating plane. When the particle P moves an
incremental distance ds the radial from the center of curvature to the path sweeps

out a small angle d¢, measured in the osculating plane. The relationship between this
angle and ds is

ds=od¢
so that § = ¢, or

¢ = (1.2)

|

Osculating plane

Orthogonal triad of unit vectors associated with the moving point P.



6 Chapter 1 Dynamics of point masses

EXAMPLE
1.2

Relative to a cartesian coordinate system, the position, velocity and acceleration of a
particle relative at a given instant are

r = 250i + 630j + 430k (m)

v = 90i 4 125j + 170k (m/s)

a = 16i + 125 + 30k (m/s?)
Find the coordinates of the center of curvature at that instant.

First, we calculate the speed v,

v = |Iv]l = v/902 + 1252 + 1702 = 229.4m/s

The unit tangent is, therefore,

= 0.3923 + 0.5449] + 0.7411k

. v 90i+ 125)+ 170k
u = — =
T 797.4

We project the acceleration vector onto the direction of the tangent to get its tangential
component ay,

ar =a- 4 = (161 + 125§ + 30k) - (0.3923 + 0.5449j + 0.7411k) = 96.62 m/s>
The magnitude of a is

a=+/16 4 1252 + 302 = 129.5m/s’

Since a=a,l; + a,1, and G, and 1, are perpendicular to each other, it follows that

a? = a? + a2, which means

ay = /a? — a2 = v/129.52 — 96.622 = 86.29 m /s>

Hence,

A 1 N
u, = —(a—asly)
n

= 86.29 [(161 + 125) + 30k) — 96.62(0.39231 + 0.5449) + 0.7411k)]

= —0.2539i + 0.8385] — 0.4821k

The equation a, = v?/@ can now be solved for g to yield

vi229.47

= T 86.29

= 609.9m
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Let r¢ be the position vector of the center of curvature C. Then

rc =r+rc/p
= + ofi, = 250i + 630j + 430k + 609.9(—0.2539i + 0.8385) — 0.4821k)
= 95.16i + 1141j + 136.0k (m)
That is, the coordinates of C are

x=095.16m y =1141m z=136.0m

1.3 MASS, FORCE AND NEWTON’S LAW OF
GRAVITATION

Mass, like length and time, is a primitive physical concept: it cannot be defined in
terms of any other physical concept. Mass is simply the quantity of matter. More
practically, mass is a measure of the inertia of a body. Inertia is an object’s resistance
to changing its state of motion. The larger its inertia (the greater its mass), the more
difficult it is to set a body into motion or bring it to rest. The unit of mass is the
kilogram (kg).

Force is the action of one physical body on another, either through direct contact
or through a distance. Gravity is an example of force acting through a distance, as are
magnetism and the force between charged particles. The gravitational force between
two masses m; and m; having a distance r between their centers is

mini;
2

F,=G (1.3)

r
This is Newton’s law of gravity, in which G, the universal gravitational constant, has
the value 6.6742 x 10'! m?®/kg - s?. Due to the inverse-square dependence on distance,
the force of gravity rapidly diminishes with the amount of separation between the
two masses. In any case, the force of gravity is minuscule unless at least one of the
masses is extremely big.
The force of a large mass (such as the earth) on a mass many orders of magnitude
smaller (such as a person) is called weight, W. If the mass of the large object is M and
that of the relatively tiny one is m, then the weight of the small body is

2 2
or

W = mg (1.4)
where

g= (15)
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g has units of acceleration (m/s?) and is called the acceleration of gravity. If planetary
gravity is the only force acting on a body, then the body is said to be in free fall. The
force of gravity draws a freely falling object towards the center of attraction (e.g.,
center of the earth) with an acceleration g. Under ordinary conditions, we sense our
own weight by feeling contact forces acting on us in opposition to the force of gravity.
In free fall there are, by definition, no contact forces, so there can be no sense of weight.
Even though the weight is not zero, a person in free fall experiences weightlessness,
or the absence of gravity.

Let us evaluate Equation 1.5 at the surface of the earth, whose radius according
to Table A.1 is 6378 km. Letting gy represent the standard sea-level value of g, we get

GM
g = R—% (1.6)
In SI units,
g0 = 9.807 m/s (1.7)

Substituting Equation 1.6 into Equation 1.5 and letting z represent the distance above
the earth’s surface, so that r = Rg + z, we obtain
2
Ry 80

O Re+22 ~ (1+2/Rp)? (1.8)

Commercial airliners cruise at altitudes on the order of 10 kilometers (six miles). At
that height, Equation 1.8 reveals that ¢ (and hence weight) is only three-tenths of a
percent less than its sea-level value. Thus, under ordinary conditions, we ignore the
variation of g with altitude. A plot of Equation 1.8 out to a height of 1000 km (the
upper limit of low-earth orbit operations) is shown in Figure 1.3. The variation of
g over that range is significant. Even so, at space station altitude (300 km), weight is
only about 10 percent less that it is on the earth’s surface. The astronauts experience
weightlessness, but they clearly are not weightless.

0 f f f f {
0 200 400 600 800 1000
z, km

Figure 1.3  Variation of the acceleration of gravity with altitude.
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1.4

1.3 Mass, force and Newton’s law of gravitation 9

Show that in the absence of an atmosphere, the shape of a low altitude ballistic
trajectory is a parabola. Assume the acceleration of gravity g is constant and neglect
the earth’s curvature.

(0> o)

Flight of a low altitude projectile in free fall (no atmosphere).

Figure 1.4 shows a projectile launched at t =0 with a speed vy at a flight path angle
yp from the point with coordinates (xy, yo). Since the projectile is in free fall after
launch, its only acceleration is that of gravity in the negative y-direction:

Integrating with respect to time and applying the initial conditions leads to
x = xo + (vo cos o)t (a)
. 1
y =yo+ (vosinyp)t — Egtz (b)

Solving (a) for t and substituting the result into (b) yields

1
¥ =y + (x — xo) tan yp — — —5——(x — x9)? (c)

2 vg €os Yy

This is the equation of a second-degree curve, a parabola, as sketched in Figure 1.4.

An airplane flies a parabolic trajectory like that in Figure 1.4 so that the passengers
will experience free fall (weightlessness). What is the required variation of the flight
path angle y with speed v? Ignore the curvature of the earth.

Figure 1.5 reveals that for a ‘flat’ earth, dy = —d¢, i.e,,

7 =—d
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(Example 1.4
continued)

Figure 1.5

It follows from Equation 1.2 that

oy = —v (1.9)

The normal acceleration a,, is just the component of the gravitational acceleration g
in the direction of the unit principal normal to the curve (from P towards C). From
Figure 1.5, then,

an = g Cosy (a)

Substituting Equation 1.1 into (a) and solving for the radius of curvature yields

U2

Q:
g cosy

(b)

Combining Equations 1.9 and (b), we find the time rate of change of the flight path
angle,
gcosy
v

g

\ X

C

Relationship between dy and d¢ for a ‘flat’ earth.

1.4: NEWTON’S LAW OF MOTION

Force is not a primitive concept like mass because it is intimately connected with the
concepts of motion and inertia. In fact, the only way to alter the motion of a body is
to exert a force on it. The degree to which the motion is altered is a measure of the
force. This is quantified by Newton’s second law of motion. If the resultant or net
force on a body of mass 11 is Fye, then

Fpet = ma (1.10)



Figure 1.6

1.4 Newton’s law of motion 11

~.
~.

Inertial frame

N X
i~

The absolute acceleration of a particle is in the direction of the net force.

In this equation, a is the absolute acceleration of the center of mass. The absolute
acceleration is measured in a frame of reference which itself has neither translational
nor rotational acceleration relative to the fixed stars. Such a reference is called an
absolute or inertial frame of reference.

Force, then, is related to the primitive concepts of mass, length and time by
Newton’s second law. The unit of force, appropriately, is the Newton, which is the
force required to impart an acceleration of 1 m/s? to a mass of 1kg. A mass of one
kilogram therefore weighs 9.81 Newtons at the earth’s surface. The kilogram is not a
unit of force.

Confusion can arise when mass is expressed in units of force, as frequently occurs
in US engineering practice. In common parlance either the pound or the ton (2000
pounds) is more likely to be used to express the mass. The pound of mass is officially
defined precisely in terms of the kilogram as shown in Table A.3. Since one pound of
mass weighs one pound of force where the standard sea-level acceleration of gravity
(g0 = 9.80665 m/s?) exists, we can use Newton’s second law to relate the pound of
force to the Newton:

11b (force) = 0.4536 kg x 9.807 m/s*
= 4.448 N

The slug is the quantity of matter accelerated at one foot per second? by a force of
one pound. We can again use Newton’s second law to relate the slug to the kilogram.
Noting the relationship between feet and meters in Table A.3, we find

11b 4.448 N kg - m/s?

1 slug = - — 14.59 8 TS
= Thys? ~ 0.3048m/s m/s?

= 14.59kg


louiscoo
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EXAMPLE
1.5

On a NASA mission the space shuttle Atlantis orbiter was reported to weigh 239 2551b
just prior to lift-off. On orbit 18 at an altitude of about 350 km, the orbiter’s weight
was reported to be 236 900 1b. (a) What was the mass, in kilograms, of Atlantis on the
launch pad and in orbit? (b) If no mass were lost between launch and orbit 18, what
would have been the weight of Atlantis in pounds?

(a) The given data illustrates the common use of weight in pounds as a measure of
mass. The ‘weights’ given are actually the mass in pounds of mass. Therefore,
prior to launch

0.4536 k
Mlaunch pad = 2392551b (mass) x ————8 — 108500 kg
11b (mass) ——
In orbit,
0.4536 kg
Morbit 18 = 236 9001b (mass) x ——— = 107500 kg
11b (mass) ——

The decrease in mass is the propellant expended by the orbital maneuvering and
reaction control rockets on the orbiter.

(b) Since the space shuttle launch pad at Kennedy Space Center is essentially at sea
level, the launch-pad weight of Atlantis in 1b (force) is numerically equal to its
mass in Ib (mass). With no change in mass, the force of gravity at 350 km would
be, according to Equation 1.8,

350

W = 2392551b (force) x (
6378

2
) = 2150001b (force)

The integral of a force F over a time interval is called the impulse I of the force,

5]
I=/ Fdt (1.11)
f

From Equation 1.10 it is apparent that if the mass is constant, then

Lo dv
Lt = f md—dt = mv, — mvy (1.12)
51 t

That is, the net impulse on a body yields a change mAv in its linear momentum,
so that

Av=— (1.13)

If Fye¢ is constant, then I,e¢ = Fpet At, in which case Equation 1.13 becomes

F
Av = At (if Fpet 1s constant) (1.14)
m
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1.4 Newton’s law of motion 13

Let us conclude this section by introducing the concept of angular momentum. The
moment of the net force about O in Figure 1.6 is

Mo, =1 X Fpet
Substituting Equation 1.10 yields
dav
Mo, =rxma=r1 X m— (1.15)
dt
But, keeping in mind that the mass is constant,
dv d ( ) dr d ( - )
rxm—=—(@xmv)—|—xmv)]=—(@xmv)—(vxmv
dt dt dt dt
Since v x mv =m(v x v) = 0, it follows that Equation 1.15 can be written
dHp
M = — 1.16
Onet dt ( )
where Ho is the angular momentum about O,
Hop =r x mv (1.17)

Thus, just as the net force on a particle changes its linear momentum mv, the moment
of that force about a fixed point changes the moment of its linear momentum about
that point. Integrating Equation 1.16 with respect to time yields

t
/ Moneldt = HO2 — HOI (1.18)
t

The integral on the left is the net angular impulse. This angular impulse-momentum
equation is the rotational analog of the linear impulse-momentum relation given
above in Equation 1.12.

A particle of mass m is attached to point O by an inextensible string of length I.
Initially the string is slack when m is moving to the left with a speed v, in the position
shown. Calculate the speed of m just after the string becomes taut. Also, compute the

S T
d

Particle attached to O by an inextensible string.
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(Example 1.6
continued)

average force in the string over the small time interval At required to change the
direction of the particle’s motion.

Initially, the position and velocity of the particle are

r = a+ di V] = —voi
The angular momentum is
i)k .
H =1 xmv; = c d 0 |=myk (a)
—myyg 0 O

Just after the string becomes taut

n=—VE-Fitd  vi=vitu) ©

and the angular momentum is

i j Kk A
H=nxmvw=|-J/2—-d d 0|= (—mvxd — my,VI2 — d2> k (o
Uy vy 0

Initially the force exerted on m by the slack string is zero. When the string becomes
taut, the force exerted on m passes through O. Therefore, the moment of the net force
on m about O remains zero. According to Equation 1.18,

H, =H;

Substituting (a) and (c) yields

ved + V12 — d?v, = —vod (d)
The string is inextensible, so the component of the velocity of m along the string must
be zero:
vy 1, =0
Substituting v, and r; from (b) and solving for v, we get
2
vy = Uy roi 1 (e)

Solving (d) and (e) for v, and v, leads to

d? [ d*d
vx:—l—zvo v, = — 1—1—271)0 (f)

Thus, the speed, v=_/v2 + v2, after the string becomes taut is
d

V= =1

l
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From Equation 1.12, the impulse on m during the time it takes the string to become

taut is
& Fd . :
I=m(vy, —vi)=m —l—zvol— 1— 1—271)0] — (—wpi)
d? 2 dd 2
= 1—l—2 muvpl — l—l—zjmvo]

The magnitude of this impulse, which is directed along the string, is

Hence, the average force in the string during the small time interval At required to
change the direction of the velocity vector turns out to be

I d? mu,
Favg:_= l— ——
At 12 At

]..5 TIME DERIVATIVES OF MOVING VECTORS

Figure 1.8(a) shows a vector A inscribed in a rigid body B that is in motion relative
to an inertial frame of reference (a rigid, cartesian coordinate system which is fixed
relative to the fixed stars). The magnitude of A is fixed. The body B is shown at two
times, separated by the differential time interval d¢. At time ¢ + dt the orientation of

Rigid body B

AD) A(t + dt)

t t+ dt

Inertial frame

(a) (b)

Figure 1.8  Displacement of a rigid body.
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vector A differs slightly from that at time ¢, but its magnitude is the same. According
to one of the many theorems of the prolific eighteenth century Swiss mathematician
Leonhard Euler (1707-1783), there is a unique axis of rotation about which B and,
therefore, A rotates during the differential time interval. If we shift the two vectors
A(t) and A(t 4 dt) to the same point on the axis of rotation, so that they are tail-to-tail
as shown in Figure 1.8(b), we can assess the difference dA between them caused by
the infinitesimal rotation. Remember that shifting a vector to a parallel line does not
change the vector. The rotation of the body B is measured in the plane perpendicular
to the instantaneous axis of rotation. The amount of rotation is the angle 40 through
which a line element normal to the rotation axis turns in the time interval dt. In
Figure 1.8(b) that line element is the component of A normal to the axis of rotation.
We can express the difference dA between A(t) and A(t + dt) as

magnitude of dA
——
dA = [(J|A]| - sin $)d0] i (1.19)

where 1 is the unit normal to the plane defined by A and the axis of rotation, and
it points in the direction of the rotation. The angle ¢ is the inclination of A to the
rotation axis. By definition,

do = ||| dt (1.20)

where w is the angular velocity vector, which points along the instantaneous axis of
rotation and its direction is given by the right-hand rule. That is, wrapping the right
hand around the axis of rotation, with the fingers pointing in the direction of d6,
results in the thumb’s defining the direction of w. This is evident in Figure 1.8(b). It
should be pointed out that the time derivative of @ is the angular acceleration, usually
given the symbol «. Thus,

dw
o= — 1.21
o (1.21)
Substituting Equation 1.20 into Equation 1.19, we get
dA = ||A| - sin¢||®|dt -0 = (|@] - |A] - sin¢g)ndt (1.22)

By definition of the cross product,  x A is the product of the magnitude of w, the
magnitude of A, the sine of the angle between @ and A and the unit vector normal to
the plane of @ and A, in the rotation direction. That is,

@ X A= |l@[-[|A]l-sin¢ - A (1.23)
Substituting Equation 1.23 into Equation 1.22 yields
dA = @ x Adt

Dividing through by dt, we finally obtain

dA A (1.24)
— =X .
dt

Equation 1.24 is a formula we can use to compute the time derivative of any vector

of constant magnitude.
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1.5 Time derivatives of moving vectors 17

Calculate the second time derivative of a vector A of constant magnitude, expressing
the result in terms of w and its derivatives and A.

Differentiating Equation 1.24 with respect to time, we get

d’A  d dA

= —d(wa)—dwa—i—wdi
ar2  dt dt  dr N

dt dt

Using Equations 1.21 and 1.24, this can be written

d*A
W:axA—l—wx(wa) (1.25)

Calculate the third derivative of a vector A of constant magnitude, expressing the
result in terms of w and its derivatives and A.

BPA ddPA 4 (o x A+ (© x A)]
— = —— = —|a X X X
dt3 dt dt? dt ¢ @@

d d
:Z(axA)—i—E[wX(wXA)]

= d—axA—i— xd—A + d—wx( x A) + xi( x A)
- \dt X ar ar ¢ O
= d—axA—i— X (0 x A) |+ X (0 X A)+ o x d—wa—i— xd—A
CLdr * e * e © dt @
do
:[ExA—i—ocx(wa)]—i—{otx(wa)—l—wx[otxA—i—wx(wa)]}
do
:E><A+oc><(wa)+ocx(wa)+wx(och)+wx[wx(wa)]
do
=ExA+2ax(wa)+wx(axA)+wx[wx(wa)]
dS—A—d—axA—i-Zozx(wa)—i—wx[ozxA—{—wx(wa)]
ars  dr

Let XYZ be a rigid inertial frame of reference and xyz a rigid moving frame of
reference, as shown in Figure 1.9. The moving frame can be moving (translating and
rotating) freely of its own accord, or it can be imagined to be attached to a physical
object, such as a car, an airplane or a spacecraft. Kinematic quantities measured
relative to the fixed inertial frame will be called absolute (e.g., absolute acceleration),
and those measured relative to the moving system will be called relative (e.g., relative
acceleration). The unit vectors along the inertial XYZ system are i, i and K, whereas
those of the moving xyz system are i, j and k. The motion of the moving frame is
arbitrary, and its absolute angular velocity is . If, however, the moving frame is
rigidly attached to an object, so that it not only translates but rotates with it, then the



18 Chapter 1 Dynamics of point masses

Figure 1.9

Q
Q.
Q
k
A N\
K Z Pl )
A y
z (0]
Moving frame
/ x

4
Inertial frame

) X
i«

Fixed (inertial) and moving rigid frames of reference.

frame is called a body frame and the axes are referred to as body axes. A body frame
clearly has the same angular velocity as the body to which it is bound.

Let Q be any time-dependent vector. Resolved into components along the inertial
frame of reference, it is expressed analytically as

Q= Qxl+ QyJ +QzK

where Qx, Qy and Qy are functions of time. Since 1, J and K are fixed, the time
derivative of Q is simply given by

dQ dQx. dQy. dQz

— = I K

dt dt + dt I+ dt

dQx /dt,dQy /dt and dQ /dt are the components of the absolute time derivative of Q.
Q may also be resolved into components along the moving xyz frame, so that, at

any instant,

Q= Qi +Qj+Qk (1.26)
Using this expression to calculate the time derivative of Q yields
dQ  dQ., dQ,. dQ,. di dj dk
R _ it K+ 2 e Wi 1.27
T T T R R T T (1.27)

The unit vectors i, j and k are not fixed in space, but are continuously changing
direction; therefore, their time derivatives are not zero. They obviously have a constant
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magnitude (unity) and, being attached to the xyz frame, they all have the angular
velocity 2. It follows from Equation 1.24 that

di : o dj dk .
— =R xi =Q — =@ xk
dt . dt < dt x

Substituting these on the right-hand side of Equation 1.27 yields

dQ  dQ.; dQy.  dQ..
PP T R

deA aQ,, dQ, -
e R

dQc, dQy. Q
= dt"1+d—ty;+ dzk+Slx(Qx1+Qy)+sz)

k+ Qu(® x 1) + Q2 x ) + Q( x k)

k+ (£ x Qxl) + (R x Qy]) + (£ x sz)

In view of Equation 1.26, this can be written

dQ _ dQ
T=@), e (128

where

(1.29)

d_Q) de ° @ N sz l’;
dt T a T a dt
dQ/dt). is the time derivative of Q relative to the moving frame. Equation 1.28 shows
how the absolute time derivative is obtained from the relative time derivative. Clearly,
dQ/dt =dQ/dt)ye only when the moving frame is in pure translation (2 =0).

Equation 1.28 can be used recursively to compute higher order time derivatives.
Thus, differentiating Equation 1.28 with respect to ¢, we get

£Q  ddQ\  de dQ
a4 _ 44 Qx =
a2 dt) o ARy

Using Equation 1.28 in the last term yields

£Q  ddQ i Q
aQ _ d44Q as ax Q) e 1.30
a2 adr )rel’L g QT [ ar >rel+ x Q] (1.30)

Equation 1.28 also implies that

d dQ a’Q dQ
_—— = — Qx — 1.31
dt dt )rel dt? )rel " ) dt )rel ( )

where

dZQ szx’: szy? szzl’;
—_— — 1
ar? ) .4 dr? ar ) ae
Substituting Equation 1.31 into Equation 1.30 yields

£Q  [4Q dQ 9 dQ
ﬁ_ [ﬁ>rel+ﬂx E)reli|+g X QX [E>rel+9XQj| (132



20 Chapter 1 Dynamics of point masses

Collecting terms, this becomes

£Q  &Q
2~ dr?

) +R2xQ+ 2 x (2 x Q)+ 22 x i-?)
rel rel

where = d/dt is the absolute angular acceleration of the xyz frame.
Formulas for higher order time derivatives are found in a similar fashion.

1.6 RELATIVE MOTION

Let P be a particle in arbitrary motion. The absolute position vector of P is r and the
position of P relative to the moving frame is ry. If ro is the absolute position of the

origin of the moving frame, then it is clear from Figure 1.10 that
I =710 + Trel
Since ry| is measured in the moving frame,
Il = xi + yi + zlA(

where x, y and z are the coordinates of P relative to the moving reference.

The absolute velocity v of P is dr/dt, so that from Equation 1.33 we have

dre
dt

V=vp+

where vo =drp/dt is the (absolute) velocity of the origin of the xyz frame. From

Equation 1.28, we can write

drrel
dt

= Vyel + R X Tpe

Inertial frame
(non-rotating, non-accelerating)

/X

Figure 1.10  Absolute and relative position vectors.
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where v, is the velocity of P relative to the xyz frame:

dre dx. dy, dzn
! 1) e P Bl (1.37)
dt rel

Vel =

Substituting Equation 1.36 into Equation 1.35 yields
V=vo+ R X I + Vpel (1.38)
The absolute acceleration a of P is dv/dt, so that from Equation 1.35 we have

d 2 Irel
dt?

where ap = dvp/dt is the absolute acceleration of the origin of the xyz frame. We
evaluate the second term on the right using Equation 1.32:

a=ap+ (1.39)

dzrrel dzrrel d drg
= — Q x Q x (2 x 292 x 1.40
di2 a2 . + I'rel + ( Irel) + r ). ( )
Since Vye) = dryel/dt)rel and age) = drre1/dt?) el this can be written
dzrrel .
W =are]+9ere]+Q X (erre])—i-Zﬂ X Vrel (141)

Upon substituting this result into Equation 1.39, we find
a=ao+§2 X Trel + & X (R X Trep) + 282 X Vil + arel (1.42)

The cross product 282 x v, is called the Coriolis acceleration after Gustave Gaspard de
Coriolis (1792—1843), the French mathematician who introduced this term (Coriolis,
1835). For obvious reasons, Equation 1.42 is sometimes referred to as the five-term
acceleration formula.

At a given instant, the absolute position, velocity and acceleration of the origin O of
a moving frame are

ro = 1001 + 200] + 300K (m)
vo = —501 + 30§ — 10K (m/s) (given) (a)
ap = —151 + 40] + 25K (m/s%)

The angular velocity and acceleration of the moving frame are

Q = 1.0I — 0.4] 4 0.6K (rad/s)

. " N N (given) (b)
Q = —1.0I + 0.3] — 0.4K (rad/s?)
The unit vectors of the moving frame are
i=0.55711 + 0.7428] + 0.3714K
j = —0.063311 + 0.4839] — 0.8728K  (given) (c)

k = —0.82801 + 0.4627J 4 0.3166K
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(Example 1.9 The absolute position, velocity and acceleration of P are
continued) . . .
r = 300I — 100J + 150K (m)

v = 701 + 25] — 20K (m/s) (given) (d)
a=7.51—8.5] + 6.0K (m/s)
Find the velocity v and acceleration ay of P relative to the moving frame.

First use Equations (c) to solve for I, J and K in terms of i, i andk (three equations
in three unknowns):

I =0.5571i — 0.06331j — 0.8280k
j = 0.74281 + 0.4839) + 0.4627k (e)

K = 0.37141 — 0.8728] + 0.3166k
The relative position vector is

Il = —ro = (3001 — 100 4 150K) — (1001 + 200§ + 300K)
= 2001 — 300] — 150K (m) ()

From Equation 1.38, the relative velocity vector is

Viel =V — V0o — & X Iyl

A N A

i j K
= (70 + 25] — 20K) — (=501 +30] — 10K) — | 1.0 —0.4 0.6
200 —300 —150

= (701 + 25] — 20K) — (—501 + 30] — 10K) — (2401 + 270] — 220K)

or
Viel = —1201 — 275] + 210K (m/s) ()

To obtain the components of the relative velocity along the axes of the moving frame,
substitute Equations (e) into Equation (g).

Vel = —120(0.5571i — 0.06331j — 0.8280k)
—275(0.7428i + 0.4839j + 0.4627k) + 210(0.3714i — 0.8728j + 0.3166k)

so that

Viel = —193.1i — 308.8) -+ 38.60k (m/s) (h)

Alternatively,

Viel = 366.20, (m/s), where i, = —0.5272i — 0.8432]j + 0.1005k (i)
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To find the relative acceleration, we use the five-term acceleration formula,
Equation 1.42:

Arel =4 — a0 — Sl X Trel — & X (8 X Ire) — 2(82 X Veel)

I Jj K
=a—ap—| —1.0 03 —04 |—R
200 —300 —150
I J K I J K
x|11.0 —0.4 0.6 |—2 1.0 —-04 0.6
200 —300 —150 —120 =275 210

=a—ap — (—1651 — 230 + 240K) — I1.0 —1).4 5.6
240 270 —220
— (1621 — 564] — 646K)
= (7.51 — 8.5] 4+ 6K) — (—151 + 40J + 25K)
— (—1651 — 230] + 240K) — (—741 + 364] + 366K)
— (1621 — 564] — 646K)

are = 99.51 + 381.5] + 21.0K (m/s?) ()

The components of the relative acceleration along the axes of the moving frame are
found by substituting Equations (e) into Equation (j):

arq = 99.5(0.5571i — 0.06331j — 0.8280Kk)

+ 381.5(0.7428i + 0.4839) + 0.4627k) + 21.0(0.3714i — 0.8728) + 0.3166k)

arel = 346.61 + 160.0j + 100.8k (m/s?) (k)
or
a,q = 394.80, (m/s?), where @i, = 0.8778i + 0.4052j + 0.2553k 0

Figure 1.11 shows the non-rotating inertial frame of reference XYZ with its origin
at the center C of the earth, which we shall assume to be a sphere. That assumption
will be relaxed in Chapter 5. Embedded in the earth and rotating with it is the
orthogonal x'y’z’ frame, also centered at C, with the z’ axis parallel to Z, the earth’s
axis of rotation. The x” axis intersects the equator at the prime meridian (zero degrees
longitude), which passes through Greenwich in London, England. The angle between
X and x’ is 0y, and the rate of increase of 6 is just the angular velocity €2 of the earth.
P is a particle (e.g., an airplane, spacecraft, etc.), which is moving in an arbitrary
fashion above the surface of the earth. r, is the position vector of P relative to C in
the rotating x'y’z" system. At a given instant, P is directly over point O, which lies on
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Figure 1.11

Q
Z,z
Greenwich meridian —
.y (North) z (Zenith)
j p Xk
0 % (East)
B T [ iy \ 4
A 2@\ \‘ 1
—— —
_ 1T - ,
e C \ y
Equator [ %
I
RE g ¢ (North latitude)
)‘I
0, A /
X (East longitude) /

Earth-centered inertial frame (XYZ); earth-centered non-inertial x'y’z’ frame embedded in
and rotating with the earth; and a non-inertial, topocentric-horizon frame xyz attached to a
point O on the earth’s surface.

the earth’s surface at longitude A and latitude ¢. Point O coincides instantaneously
with the origin of what is known as a topocentric-horizon coordinate system xyz.
For our purposes x and y are measured positive eastward and northward along the
local latitude and meridian, respectively, through O. The tangent plane to the earth’s
surface at O is the local horizon. The z axis is the local vertical (straight up) and
it is directed radially outward from the center of the earth. The unit vectors of the
xyz frame are ﬁf(, as indicated in Figure 1.11. Keep in mind that O remains directly
below P, so that as P moves, so do the xyz axes. Thus, the ile( triad, which are the
unit vectors of a spherical coordinate system, vary in direction as P changes location,
thereby accounting for the curvature of the earth.

Let us find the absolute velocity and acceleration of P. It is convenient first to
obtain the velocity and acceleration of P relative to the non-rotating earth, and then
use Equations 1.38 and 1.42 to calculate their inertial values.

The relative position vector can be written

rr = (Rp + 2)k (1.43)
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where Rg is the radius of the earth and z is the height of P above the earth (i.e., its
altitude). The time derivative of ry is the velocity v relative to the non-rotating
earth,

drrel
dt

To calculate dk/dt, we must use Equation 1.24. The angular velocity ® of the xyz
frame relative to the non-rotating earth is found in terms of the rates of change of
latitude ¢ and longitude A,

Vel =

. dk
:ék—f-(RE—i-z)E (1.44)

W= —éi+[\c05¢f+[\sin¢f< (1.45)
Thus,
dk . R
Z:ka:Acos¢1+¢] (1.46)
Let us also record the following for future use:
dj P
E:wx]z—Asmqb]—dm (1.47)
di s s .
E:wx1:Asm¢]—Acos¢k (1.48)
Substituting Equation 1.46 into Equation 1.44 yields
Vil = i + ] + 2k (1.49a)
where
%= (Rp+2)Acos¢p 7= (Rp+2)¢ (1.49b)

It is convenient to use these results to express the rates of change of latitude and
longitude in terms of the components of relative velocity over the earth’s surface,

h=—2 A= ————— 1.50
¢ Rg +z (Rg + z) cos ¢ ( )

The time derivatives of these two expressions are
5= (RE+2)y —yz K= (Rg + z)X cos¢p — (zcos¢p — ysin ¢p)x (151)

(Rg + 2)? (Rg +2)? cos? ¢
The acceleration of P relative to the non-rotating earth is found by taking the time

derivative of v|. From Equation 1.49 we thereby obtain

Gk .di+.di+.df<
ag = Xi X—4+y—+z—
rel T T o T 0

= [2A cos$ + (Rg + z)A cosp — (Rg + z) A sin qb]i

~

+ [2¢ + (R + 2)91j + 7k + (Rg + 2) A cos p(w x 1)
+ (Rg + 2)p(@ x ) + 2(0 x k)
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Substituting Equations 1.46 through 1.48 together with 1.50 and 1.51 into this
expression yields, upon simplification,

. x(z—ytang)]. (. jyz+x*tang\. [. X +7%\»
_ —ytang) yz+xtang _ k (152
Arel [X—i- Re 2 :|l+<}’+ Re + 2 j+\z R 12 ( )

Observe that the curvature of the earth’s surface is neglected by letting Rp + z become
infinitely large, in which case

arel)neglecting earth’s curvature = X1 + )/] +zk

That is, for a ‘flat earth’, the components of the relative acceleration vector are just the
derivatives of the components of the relative velocity vector.
For the absolute velocity we have, according to Equation 1.38,

V=vVc+ R X Iel + Vel (1.53)

From Figure 1.11 it can be seen that K = cos ¢f + sin ¢>1A(, which means the angular
velocity of the earth is

Q=0K= Qcosq&i—i— Qsinqﬁf( (1.54)

Substituting this, together with Equations 1.43 and 1.49a and the fact that ve =0,
into Equation 1.53 yields

v = [x 4+ Q(Rg + z) cos i + jj + 2k (1.55)
From Equation 1.42 the absolute acceleration of P is
a:aC+Q X Trel + 2 X (R X Trel) + 2R X Viel + el

Sinceac = £ =0, we find, upon substituting Equations 1.43, 1.49a, 1.52 and 1.54, that

[me(zmw_m@]a

a—=
Rg+z
.. yz+x*tan . s
+{y—l—u—I—Qsmqb[Q(RE—i-z)costb—i—Zx]}J
Rg+z
N e
+1Z — — Qcosp[QREg +z)cosgp +2x] 1 k (1.56)
Rg+z

Some special cases of Equations 1.55 and 1.56 follow.



1.6 Relative motion 27

Straight and level, unaccelerated flight: z=2=x%=y =0

v =[x+ QRg + 2) cos pi + jj (1.57a)
[ Xy tan ¢
| Rg+2

+2Qy sin ¢} i

%% tan ¢
Rg+z

A

+ Qsin ¢[Q(Rg + z) cos ¢ + 2561}1

%+ 57
Rp+z

+ Q cos [ QR +z)cos¢+z5c]}f< (1.57b)
Flight due north (y) at constant speed and altitude: z=7Z =x=X=y =0
v = Q(Rg + z) cos qbi + yj (1.58a)

a= —2Qysin d)i + Q*(Rg + z) sin ¢ cos d)j

-2
Y 2 2 L
— Q k 1.
|:RE e + Q“(Rg + z) cos ¢:| (1.58b)

Flight due east (x) at constant speed and altitude: z=Z=%X=y=y=0

v=[x+QQRg+2) cosqb]i (1.59a)
-2
a= {x tan ¢ +Qsin¢[Q(RE+z)cos¢+25c]}i
Rg+z
-2
—{ * +Qcos¢[§2(RE+z)cos¢+25c]}lA< (1.59b)
Rg+z

Flight straight up (z): x=X=y=y=0
v = Q(Rg + z) cos qﬁ + 2k (1.60a)
a=2Q(zcos ¢>)i + Q*(Rg + z) sin ¢ cos qu

+[2 — Q*(Rg + 2) cos® ¢ k (1.60b)

Stationary: x=X=y=y=z=2=0

v=Q(Rg+2) cos¢f (1.61a)

a = Q*(Rg + z) sin ¢ cos ¢j — Q*(Rp + 2) cos® ¢)1A( (1.61b)

EXAMPLE An airplane of mass 70 000 kg is traveling due north at latitude 30° north, at an altitude
1.10 of 10 km (32 800 ft) with a speed of 300 m/s (671 mph). Calculate (a) the components

of the absolute velocity and acceleration along the axes of the topocentric-horizon
reference frame, and (b) the net force on the airplane.
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(Example 1.10 (a) First, using the sidereal rotation period of the earth in Table A.1, we note that the
continued) earth’s angular velocity is
2mrad 2mrad 2mrad

(b)

= = = = 7.292 x 10 °rad
siderealday _ 23.93hr _ 86160 rad/s  (a)

From Equation 1.58a, the absolute velocity is
v = Q(Rg +2) cos ¢i +jj = [(7.292 x 107°) - (6378 + 10) - 10° cos 30°] i + 300

or

v = 403.4i 4 300 (m/s)

The 403.4 m/s (901 mph) component of velocity to the east (x direction) is due
entirely to the earth’s rotation.
From Equation 1.58b,, the absolute acceleration is
)'/2
Rp+z

a = —2Qysin q}i + Q*(Rg + z) sin ¢ cos ¢§ - |: + Q%(Rg + z) cos? ¢i| k

= —2(7.292 x 10~°) - 300 - sin 30°1
+(7.292 x 107%)? - (6378 + 10) - 10° - sin 30° - cos 30°)

3002 )
- [m +(7.292 x 107°) - (6378 + 10) - 10° - cos” 300] i
or

a = —0.02187i 4 0.01471j — 0.03956k (m/s?) (a)

The westward acceleration of 0.02187 m/s? is the Coriolis acceleration.

Since the acceleration in part (a) is the absolute acceleration, we can use it in
Newton’s law to calculate the net force on the airplane,

Fpet = ma = 70 000(—0.02187 + 0.01471j — 0.03956Kk)

= —1531i + 1029j — 2769k (N)

Figure 1.12 shows the components of this relatively small force. The forward and
downward forces are in the directions of the airplane’s centripetal acceleration,
caused by the earth’s rotation and, in the case of the downward force, by the
earth’s curvature as well. The westward force is in the direction of the Coriolis
acceleration, which is due to the combined effects of the earth’s rotation and the
motion of the airplane. These net external forces must exist if the airplane is to
fly the prescribed path.

In the vertical direction, the net force is that of the upward lift L of the wings
plus the downward weight W of the aircraft, so that

Foet) =L—W =-2769 = L= W-2769(N)
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Up
z
1531 N
— —" (3441b)
x
East
1029 N
(2311b)
2769 N \y
(622 1b)
North

Components of the net force on the airplane.

1.1

Thus, the effect of the earth’s rotation and curvature is to apparently produce an
outward centrifugal force, reducing the weight of the airplane a bit, in this case
by about 0.4 percent. The fictitious centrifugal force also increases the apparent
drag in the flight direction by 1029 N. That is, in the flight direction

Fret)y =T — D = —2769N
where T is the thrust and D is the drag. Hence
T =D+ 1029 (N)

The 1531 N force to the left, produced by crabbing the airplane very slightly in
that direction, is required to balance the fictitious Coriolis force which would
otherwise cause the airplane to deviate to the right of its flight path.

Given the three vectors A= A,i+A,j+ Ak B =B,i+B,j+B.k C=Cid+Cj+Ck
show, analytically, that
(a) A-A=A?

(b) A-(BxC)=(AxB)-C (interchangeability of the ‘dot’ and ‘cross’)
() Ax(BxC)=B(A-C)—C(A-B) (thebac— cabrule)
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1.2

1.3

1.4

(Simply compute the expressions on each side of the = signs and demonstrate conclusively
that they are the same. Do not substitute numbers to ‘prove’ your point. Use the fact that the
cartesian coordinate unit vectors i, j and k form a right-handed orthogonal triad, so that

i5oikej k=0 iizjjk k=1
ixf:f( fxﬁ:i ﬁxf:i (1xﬁ:—i ;xi:—f( RX;:—I)
Also,

Use just the vector identities in parts (a) and (b) of Exercise 1.1 to show that
(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)
The absolute position, velocity and acceleration of O are
ro = 3001 + 200§ + 100K (m)
vo = —101 + 30 — 50K (m/s)
ap = 251 + 40§ — 15K (m/s?)
The angular velocity and acceleration of the moving frame are
@ = 0.61 — 0.4] + 1.0K (rad/s)
@ = —0.41 + 0.3] — 1.0K (rad/s?)
The unit vectors of the moving frame are

i=0.577351 + 0.57735] + 0.57735K
= —0.742961 + 0.66475] + 0.078206K

j
k = —0.338641 — 0.47410] + 0.81274K
The absolute position of P is
r = 1501 — 200§ + 300K (m)
The velocity and acceleration of P relative to the moving frame are
Viel = —20i + 25) + 70k (m/s)  apl = 7.51 — 8.5] + 6.0k (m/s?)
Calculate the absolute velocity vp and acceleration ap of P.

{Ans.: vp = 478.70, (m/s), 1, = 0.53521 — 0.5601] — 0.6324K;
ap = 616.30, (m/s?), @, = 0.1655I 4 0.9759] + 0.1424K}

F is a force vector of fixed magnitude embedded on a rigid body in plane motion (in the
xy plane). At a given instant, » = 3k rad/s, ® = —2k rad/s%, & = 0 and F= 10i N. At that
instant, calculate F.

{Ans.: F = 180i — 270j N/s}
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Trel

r @)
Moving frame

Iy

Inertial frame

Figure P.1.3

Figure P.1.5

1.5 An airplane in level flight at an altitude # and a uniform speed v passes directly over
a radar tracking station A. Calculate the angular velocity 6 and angular acceleration of
the radar antenna 6 as well as the rate 7 at which the airplane is moving away from the
antenna. Use the equations of this chapter (rather than polar coordinates, which you can
use to check your work). Attach the inertial frame of reference to the ground and assume
a non-rotating earth. Attach the moving frame to the antenna, with the x axis pointing
always from the antenna towards the airplane.

{Ans.: (a) 6 =vcos?0/h; (b) 6 =—2v2 cos® O sinO/h2; () vy = v sin O}
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1.6 At 30° north latitude, a 1000 kg (22051b) car travels due north at a constant speed of
100 km/hr (62 mph) on a level road at sea level. Taking into account the earth’s rotation,
calculate the lateral (sideways) force of the road on the car, and the normal force of the
road on the car.

{Ans.: Fiateral = 2.026 N, to the left (west); N = 9784 N}

1.7 At 29° north latitude, what is the deviation d from the vertical of a plumb bob at the end
of a 30 m string, due to the earth’s rotation?
{Ans.: 44.1 mm to the south}

North

Figure P.1.7
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2.1 INTRODUCTION

his chapter presents the vector-based approach to the classical problem of deter-
mining the motion of two bodies due solely to their own mutual gravitational
attraction. We show that the path of one of the masses relative to the other is a
conic section (circle, ellipse, parabola or hyperbola) whose shape is determined by
the eccentricity. Several fundamental properties of the different types of orbits are

33



34 Chapter 2 The two-body problem

developed with the aid of the laws of conservation of angular momentum and energy.
These properties include the period of elliptical orbits, the escape velocity associated
with parabolic paths and the characteristic energy of hyperbolic trajectories. Follow-
ing the presentation of the four types of orbits, the perifocal frame is introduced. This
frame of reference is used to describe orbits in three dimensions, which is the subject
of Chapter 4.

In this chapter the perifocal frame provides the backdrop for developing the
Lagrange f and g coefficients. By means of the Lagrange f and g coefficients, the posi-
tion and velocity on a trajectory can be found in terms of the position and velocity at
an initial time. These functions are needed in the orbit determination algorithms of
Lambert and Gauss presented in Chapter 5.

The chapter concludes with a discussion of the restricted three-body problem in
order to provide a basis for understanding of the concepts of Lagrange points as well
as the Jacobi constant. This material is optional.

In studying this chapter it would be well from time to time to review the road
map provided in Appendix B.

2.2 EQUATIONS OF MOTION IN AN INERTIAL FRAME

Figure 2.1

Figure 2.1 shows two point masses acted upon only by the mutual force of gravity
between them. The positions of their centers of mass are shown relative to an inertial
frame of reference XYZ. The origin O of the frame may move with constant velocity
(relative to the fixed stars), but the axes do not rotate. Each of the two bodies is acted
upon by the gravitational attraction of the other. F; is the force exerted on m; by m;,
and F,; is the force exerted on m; by m;.

The position vector Rg of the center of mass G of the system in Figure 2.1(a) is,
defined by the formula

m1R1 + msz

Rp= ——— = = 2.1
G e (2.1)

X Inertial frame of reference X
(fixed with respect to the fixed stars)

(a) (b)

(a) Two masses located in an inertial frame. (b) Free-body diagrams.
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Therefore, the absolute velocity and the absolute acceleration of G are

. R R
ve = Rg = B Ry (2.2)
my + my
N R R
ac = Rg = MR+ MR 2.3)
my + my

The adjective ‘absolute’ means that the quantities are measured relative to an inertial
frame of reference.
Let r be the position vector of m; relative to m;. Then

r = R2 — R1 (2-4)

Furthermore, let G, be the unit vector pointing from #1; towards m,, so that

. F
a, = -
;

(2.5)

where r = ||r||, the magnitude of r. The body m; is acted upon only by the force of
gravitational attraction towards m,. The force of gravitational attraction, Fg, which
acts along the line joining the centers of mass of m; and m,, is given by Equation 1.3.
The force exerted on m; by m is

Gmymy . Gmymy
F = r—z(_ur) =2 W (2.6)

where —1, accounts for the fact that the force vector F,; is directed from m, towards
mj. (Do not confuse the symbol G, used in this context to represent the universal
gravitational constant, with its use elsewhere in the book to denote the center of
mass.) Newton’s second law of motion as applied to body m, is Fy; = myR,, where
R, is the absolute acceleration of #1,. Thus

Gmym, ..
—#ur = m2R2 (2.7)
;
By Newton’s third law (the action—reaction principle), Fj; = —F;1, so that for m; we
have
Gmym; . ..
228, = mRy (2.8)

r2

Equations 2.7 and 2.8 are the equations of motion of the two bodies in inertial space.
By adding each side of these equations together, we find m; R, + m;R, = 0. According
to Equation 2.3, that means the acceleration of the center of mass G of the system of
two bodies m; and m; is zero. G moves with a constant velocity v¢ in a straight line,
so that its position vector relative to XYZ given by

Rg =Rg, + vit (2.9)

where Rg, is the position of G at time t = 0. The center of mass of a two-body system
may therefore serve as the origin of an inertial frame.
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EXAMPLE
2.1

Use the equations of motion to show why orbiting astronauts experience
weightlessness.

We sense weight by feeling the contact forces that develop wherever our body is
supported. Consider an astronaut of mass 1, strapped into the space shuttle of mass
ms, in orbit about the earth. The distance between the center of the earth and the
spacecraft is r, and the mass of the earth is Mg. Since the only external force on the
space shuttle is that of gravity, Fg),, the equation of motion of the shuttle is

FS)g = mgas (a)
According to Equation 2.6,
GMgms
Fs)g = —r—zur (b)

where @, is the unit vector pointing outward from the earth to the orbiting space
shuttle. Thus, (a) and (b) imply

GME
a, (c)

ag = —
r2

The equation of motion of the astronaut is
Fa)g + Cq = mypan (d)

where Fa), is the force of gravity on (i.e., the weight of) the astronaut, Cy4 is the
net contact force on the astronaut from restraints (e.g., seat, seat belt), and a4 is the
astronaut’s acceleration. According to Equation 2.6,

GMgmay |,
FA)g = _r—zur (e)

Since the astronaut is moving with the shuttle we have, noting (c),

GM,
Eg, (f)

ay =ag = —
2

Substituting (e) and (f) into (d) yields

GMgmay |, GMEg
T, 4 Cy = mA<——2Eur>
r r

from which it is clear that C4 = 0. The net contact force on the astronaut is zero. With
no reaction to the force of gravity exerted on the body, there is no sensation of weight.

The potential energy V of the gravitational force in Equation 2.6 is given by

Gmymy

V=— (2.10)

r
A force can be obtained from its potential energy function by means of the gradient
operator,

F=-VV (2.11)
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where, in cartesian coordinates,
V=—it+—j+—k (2.12)
x

In Appendix E it is shown that the gravitational potential, and hence the gravitational
force, outside of a sphere with a spherically symmetric mass distribution M is the
same as that of a point mass M located at the center of the sphere. Therefore, the two-
body problem applies not just to point masses but also to spherical bodies (as long,
of course, as they do not come into contact!).

23 EQUATIONS OF RELATIVE MOTION

Let us now multiply Equation 2.7 by m; and Equation 2.8 by m;, to obtain

Gm?m, ..

L = R
= O =mmRy
Gmlm% . ..
= R
5 U = mmR,

Subtracting the second of these two equations from the first yields

.. .. G ~
mlmz(Rz - Rl) =— rr;;mz (m1 + mz)ur

Canceling the common factor m;m; and using Equation 2.4 yields

G(my + my)
=—— "3

2 r (2.13)
Let the gravitational ; parameter be defined as
n = G(my +my) (2.14)

The units of w are km3s™2

write Equation 2.13 as

. Using Equation 2.14 together with Equation 2.5, we can

=Ly (2.15)
)

This is the second order differential equation that governs the motion of m; relative to
mj. It has two vector constants of integration, each having three scalar components.
Therefore, Equation 2.15 has six constants of integration. Note that interchanging
the roles of m; and m, in all of the above amounts to simply multiplying Equation
2.15 through by —1, which, of course, changes nothing. Thus, the motion of m; as
seen from m is precisely the same as the motion of m; as seen from m,.

The relative position vector r in Equation 2.15 was defined in the inertial frame
(Equation 2.4). It is convenient, however, to measure the components of r in a frame
of reference attached to and moving with m;. In a co-moving reference frame, such
as the xyz system illustrated in Figure 2.2, r has the expression

rzxi—i—y]t—i—zlz
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Figure 2.2

N /V”’

Moving reference frame xyz attached to the center of mass of m;.

The relative velocity Iy, and acceleration ¥ in the co-moving frame are found by
simply taking the derivatives of the coefficients of the unit vectors, which themselves
are fixed in the xyz system. Thus

el =5+ 7] + 2k Fra = ¥+ jj + 7k

From Equation 1.40 we know that the relationship between absolute acceleration ¥
and relative acceleration ¥, is

F=f + R XT+ 2 X (RX1)+ 2R X frf

where @ and € are the angular velocity and angular acceleration of the moving frame
of reference. Thus ¥ =t only if 2 = € = 0. That is to say, the relative acceleration
may be used on the left of Equation 2.15 as long as the co-moving frame in which it
is measured is not rotating.

As an example of two-body motion, consider two identical, isolated bodies
and m; positioned in an inertial frame of reference, as shown in Figure 2.3. At time
t =0,m is at rest at the origin of the frame, whereas m;, to the right of m;, has
a velocity v, directed upward to the right, making a 45° angle with the X axis. The
subsequent motion of the two bodies, which is due solely to their mutual gravitational
attraction, is determined relative to the inertial frame by means of Equations 2.7 and
2.8. Figure 2.3 is a computer-generated solution of those equations. The motion is
rather complex. Nevertheless, at any time ¢, #1; and m; lie in the XY plane, equidistant
and in opposite directions from their center of mass G, whose straight-line path is
also shown in Figure 2.3. The very same motion appears rather less complex when
viewed from m;, as the computer simulation reveals in Figure 2.4(a). Figure 2.4(a)
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Path of m;

Path of m,
Path of G

Inertial

m G my - frame

(initially at rest)

The motion of two identical bodies acted on only by their mutual gravitational attraction, as
viewed from the inertial frame of reference.

represents the solution to Equation 2.15, and we see that, relative to 1y, m;, follows
what appears to be an elliptical path. (So does the center of mass.) Figure 2.4(b)
reveals that both m; and m; follow elliptical paths around the center of mass.

Since the center of mass has zero acceleration, we can use it as an inertial reference
frame. Let r; and r; be the position vectors of m; and m;, respectively, relative to the
center of mass G in Figure 2.1. The equation of motion of m, relative to the center of

mass is
miniy . ..
u, = nmpr, (2.16)

2
where, as before, r is the position vector of m;, relative to m;. In terms of r; and r;,

r=r1;,—1r1;

Since the position vector of the center of mass relative to itself is zero, it follows from
Equation 2.1 that

miry +npr, =0

Therefore,
myp
r=——r1
my
so that
my + mp
r = | %)
my

Substituting this back into Equation 2.16 and using the fact that 4, =r;/r,, we get

G s my ;
—G———F=T1 = mrn
(my + my)2r;
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Non-rotating’frame

X

Non-rotating frame
attached to G

Figure 2.4 The motion in Figure 2.3, (a) as viewed relative to 1, (or m,); (b) as viewed from the center
of mass.

which, upon simplification, becomes

_(m_) B =ty (2.17)
my + my 5

where p is given by Equation 2.14. If we let

= (L)3M
mi + my
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Inertial

my nyp ms frame

The motion of three identical masses as seen from the inertial frame in which 1, and mj3 are
initially at rest, while 1, has an initial velocity vy directed upwards and to the right, as shown.

then Equation 2.17 reduces to
r W r
) =——=I
which is identical in form to Equation 2.15.
In a similar fashion, the equation of motion of m; relative to the center of mass is

found to be

in which

()
H my + my H
Since the equations of motion of either particle relative to the center of mass have the
same form as the equations of motion relative to either one of the bodies, m; or m;,
it follows that the relative motion as viewed from these different perspectives must be
similar, as illustrated in Figure 2.4.

One may wonder what the motion looks like if there are more than two bodies
moving under the influence only of their mutual gravitational attraction. The n-body
problem with n > 2 has no closed form solution, which is complex and chaotic in
nature. We can use a computer simulation (see Appendix C.1) to get an idea of the
motion for some special cases. Figure 2.5 shows the motion of three equal masses,
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Figure 2.6

Non-rotating frame
attached to G

The same motion as Figure 2.5, as viewed from the inertial frame attached to the center of
mass G.

equally spaced initially along the X axis of an inertial frame. The center mass has an
initial velocity, while the other two are at rest. As time progresses, we see no periodic
behavior as was evident in the two-body motion in Figure 2.3. The chaos is more
obvious if the motion is viewed from the center of mass of the three-body system, as
shown in Figure 2.6. The computer simulation from which these figures were taken
shows that the masses eventually collide.

2.4 ANGULAR MOMENTUM AND THE ORBIT FORMULAS

The angular momentum of body m; relative to m; is the moment of m,’s relative
linear momentum m;,¥ (cf. Equation 1.17),

H2/1 =rX mzi‘

where ¥ =v is the velocity of m; relative to m,. Let us divide this equation through
by m; and let h=H,/1 /m, so that

h=rxrt (2.18)

h is the relative angular momentum of m; per unit mass, that is, the specific relative
angular momentum. The units of h are km?s~!.
Taking the time derivative of h yields
dh

— =rXr+rx*¥

dt
But i x ¥ = 0. Furthermore, ¥ = —(11/r*)r, according to Equation 2.15, so that

rxf:rx(—ﬁr)=—ﬁ(rxr)=0
3 3
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Figure 2.7  The path of m, around m, lies in a plane whose normal is defined by h.

Figure 2.8  Components of the velocity of m;,, viewed above the plane of the orbit.

Therefore,

dh
— =0 (orr x = constant) (2.19)

dt

At any given time, the position vector r and the velocity vector r lie in the same plane,
as illustrated in Figure 2.7. Their cross product r x ¥ is perpendicular to that plane.
Since r x ¥ = h, the unit vector normal to the plane is

~ h

h= p (2.20)
But, according to Equation 2.19, this unit vector is constant. Thus, the path of m;,
around m lies in a single plane.

Since the orbit of m; around m; forms a plane, it is convenient to orient oneself
above that plane and look down upon the path, as shown in Figure 2.8. Let us resolve
the relative velocity vector f into components v, = v,0, and v; =v 0, along the
outward radial from m, and perpendicular to it, respectively, where @, and G are the
radial and perpendicular (azimuthal) unit vectors. Then we can write Equation 2.18
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Figure 2.9

Differential area dA swept out by the relative position vector r during time interval dt.

as
h=ra, x (vsu, +v,0,) = er_ﬁ
That is,
h=rv, (2.21)

Clearly, the angular momentum depends only on the azimuth component of the
relative velocity.

During the differential time interval dt the position vector r sweeps out an area
dA, as shown in Figure 2.9. From the figure it is clear that the triangular area dA is
given by

1 1 1 1
dA = 3 x base x altitude = 3 X vdt X rsing = Er(vsinqb)dt = Ervldt

Therefore, using Equation 2.21 we have

dA h I~
2 (222)
dA/dt is called the areal velocity, and according to Equation 2.22 it is constant. Named
after the German astronomer Johannes Kepler (1571-1630), this result is known as
Kepler’s second law: equal areas are swept out in equal times.
Before proceeding with an effort to integrate Equation 2.15, recall the vector
identity known as the bac — cab rule:

Ax(BxC)=B(A-C)—C(A-B) (2.23)
Recall as well that

r-r=r’ (2.24)



2.4 Angular momentum and the orbit formulas 45

so that
d d
d—(r r) = Zrd—:;
But
d ( ) dr n dr B dr
a " ar Ca T

r-r=rr (2.25a)
Since ¥ =v and r = ||r||, this can be written alternatively as

d|lr|]
dt

r-v=|r| (2.25b)

Now let us take the cross product of both sides of Equation 2.15 [¥ = —(u/r*)r] with
the specific angular momentum h:

fxh=—Lrxh (2.26)
r

Since %(1‘ xh)=frxh+7tx h, the left-hand side can be written
fxh d('xh) i x h
r = —(r —r
dt

But according to Equation 2.19, the angular momentum is constant (h=0), so this
reduces to

rxh= %(i‘ x h) (2.27)

The right-hand side of Equation 2.26 can be transformed by the following sequence
of substitutions:

1 1
ST X h= —3[1' X (r x 1)] (Equation 2.18 [h =r x 1])
r r
1
== [r(r-t) —(r-r)] (Equation 2.23 [bac — cab rule])
r
1
== [r(r#) — £r%] (Equations 2.24 and 2.25)
r
i — tr
But
d/r rt — ri ri — rt
E(;) -
Therefore
1 d/r


louiscoo
铅笔
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Substituting Equations 2.27 and 2.28 into Equation 2.26, we get

e =)

or

{fon-sd) -

That is,
ixh—pul=c (2.29)
r

where the vector C is an arbitrary constant of integration having the dimensions of
. Equation 2.29 is the first integral of the equation of motion, ¥ = —(u/r”)r. Taking
the dot product of both sides of Equation 2.29 with the vector h yields

‘h
(ixh)-h—pu—"=cC-h
r

Since T X h is perpendicular to both f and h, it follows that (f x h) - h =0. Likewise,
since h =r x 1 is perpendicular to both r and f, it is true that r - h = 0. Therefore, we
have C-h =0, i.e., Cis perpendicular to h, which is normal to the orbital plane. That
of course means C must lie in the orbital plane.
Let us rearrange Equation 2.29 and write it as
r rxh

_+e:
r n

(2.30)

where e = C/ . The dimensionless vector e is called the eccentricity vector. The line
defined by the vector e is commonly called the apse line. In order to obtain a scalar
equation, let us take the dot product of both sides of Equation 2.30 with r:

) .(+ xh
Ir e XN (2.31)
r %
In order to simplify the right-hand side, we can employ the useful vector identity,
known as the interchange of the dot and the cross,
A-BxC)=(AxB)-C (2.32)
to obtain
r-(fxh)=(xt)-h=h-h="# (2.33)
Substituting this expression into the right-hand side of Equation 2.31, and
substituting r - r = r? on the left yields
h2
r+r-e=— (2.34)
7

Observe that by following the steps leading from Equation 2.30 to 2.34 we have lost
track of the variable time. This occurred at Equation 2.33, because h is constant.
Finally, from the definition of the dot product we have

r-e=recost
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ny

The true anomaly 0 is the angle between the eccentricity vector e and the position vector r.

in which e is the eccentricity (the magnitude of the eccentricity vector e) and 0 is the
true anomaly. 0 is the angle between the fixed vector e and the variable position vector
1, as illustrated in Figure 2.10. (Other symbols used to represent true anomaly include
v,f,v and ¢.) In terms of the eccentricity and the true anomaly, we may therefore

write Equation 2.34 as
2
r+4recosf = —
7

or
S|

= —_ (2.35)
u 1+ ecosb

This is the orbit equation, and it defines the path of the body m; around m,, relative
to m;. Remember that u, h, and e are constants. Observe as well that there is no
significance to negative values of eccentricity; i.e., e > 0. Since the orbit equation
describes conic sections, including ellipses, it is a mathematical statement of Kepler’s
first law, namely, that the planets follow elliptical paths around the sun. Two-body
orbits are often referred to as Keplerian orbits.

In Section 2.3 it was pointed out that integration of the equation of relative
motion, Equation 2.15, leads to six constants of integration. In this section it would
seem that we have arrived at those constants, namely the three components of the
angular momentum h and the three components of the eccentricity vector e. However,
we showed that h is perpendicular to e. This places a condition, namely h - e=0, on
the components of h and e, so that we really have just five independent constants of
integration. The sixth constant of the motion will arise when we work time back into
the picture in the next chapter.

The angular velocity of the position vector r is 6, the rate of change of the true
anomaly. The component of velocity normal to the position vector is found in terms
of the angular velocity by the formula

v, =10 (2.36)

Substituting this into Equation 2.21 (h = rv_ ) yields the specific angular momentum
in terms of the angular velocity,

h=r*0 (2.37)
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Figure 2.11

It is convenient to have formulas for computing the radial and azimuth components
of velocity shown in Figure 2.11. From h =rv, we of course obtain

h
v = —
r

Substituting r from Equation 2.35 readily yields

vl:%(1+ecose) (2.38)

Since v, = 7, we take the derivative of Equation 2.35 to get

dr . h? e(—0sin ) _ K2 esin® h
dt  pu| (Q4ecosd)?| (14 ecosh)?r?

where we made use of the fact that é:h/ r2, from Equation 2.37. Substituting
Equation 2.35 once again and simplifying finally yields

v = %e sinf (2.39)

\ Periapsis

Position and velocity of m;, in polar coordinates centered at #1;, with the eccentricity vector
being the reference for true anomaly (polar angle) 6. y is the flight path angle.



Figure 2.12
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We see from Equation 2.35 that m; comes closest to m; (r is smallest) when 6 =0
(unless e = 0, in which case the distance between m; and m;, is constant). The point
of closest approach lies on the apse line and is called periapsis. The distance 7, to
periapsis, as shown in Figure 2.11, is obtained by setting the true anomaly equal to
Z€ro,

Ko

= ; T+e (2.40)

p

Clearly, v, = 0 at periapsis.

The flight path angle y is also illustrated in Figure 2.11. It is the angle that the
velocity vector v = ¥ makes with the normal to the position vector. The normal to the
position vector points in the direction of v, and it is called the local horizon. From
Figure 2.11 it is clear that

v
tany = — (2.41)
vy

Substituting Equations 2.38 and 2.39 leads at once to the expression

esinf 542

tany_l—i—ecos@ (242)
Since cos(—0) = cos 0, the trajectory described by the orbit equation is symmetric
about the apse line, as illustrated in Figure 2.12, which also shows a chord, the straight
line connecting any two points on the orbit. The latus rectum is the chord through
the center of attraction perpendicular to the apse line. By symmetry, the center of
attraction divides the latus rectum into two equal parts, each of length p, known
historically as the semi-latus rectum. In modern parlance, p is called the parameter
of the orbit. From Equation 2.35 it is apparent that

(2.43)

Apse line Periapsis

Latus rectum

lustration of latus rectum, semi-latus rectum p, and the chord between any two points on an
orbit.
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Since the path of m; around m; lies in a plane, for the time being we will for simplicity
continue to view the trajectory from above the plane. Unless there is reason to do
otherwise, we will assume that the eccentricity vector points to the right and that m,
moves counterclockwise around 1, which means that the true anomaly is measured
positive counterclockwise, consistent with the usual polar coordinate sign convention.

2.5 THE ENERGY LAW

By taking the cross product of Equation 2.15, = —(u/r*)r (Newton’s second law of
motion), with the specific relative angular momentum per unit mass h, we were led
to the vector Equation 2.29, and from that we obtained the orbit formula, Equation
2.35. Now let us see what results from taking the dot product of Equation 2.15 with
the relative linear momentum per unit mass. The relative linear momentum per unit
mass is just the relative velocity,

mzi'

—— =r

my

Thus, carrying out the dot product in Equation 2.15 yields

b= —p (2.44)
r
For the left-hand side we observe that
. . ld . 1d 1d , d(v?
=G D)=V =-—) = —(— 2.45
or zdt(r £) 2dt(v v) 2dt(v) dt<2> (2.45)

For the right-hand side of Equation 2.44 we have, recalling that r - r = r* and

d(1/r)/dt = (—1/7*)(dr/dt),

r-r rt s d/u
— = U—=—=u—=—(= 2.46
R THE=H2 dt ( r ) (246)
Substituting Equations 2.45 and 2.46 into Equation 2.44 yields
d (v
dvomy_,
a\2 r
or
v
5, = & (constant) (2.47)
;

where ¢ is a constant. v?/2 is the relative kinetic energy per unit mass. (—/u/r) is the
potential energy per unit mass of the body m; in the gravitational field of m,. The total
mechanical energy per unit mass ¢ is the sum of the kinetic and potential energies per
unit mass. Equation 2.47 is a statement of conservation of energy, namely, that the
specific mechanical energy is the same at all points of the trajectory. Equation 2.47 is
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also known as the vis-viva (‘living force”) equation. Since ¢ is constant, let us evaluate
it at periapsis (6 =0),

£E=¢g,= (2.48)

2
b ®
2 Tp
where 7, and v, are the position and speed at periapsis. Since v, = 0 at periapsis, we
have V=Vl = h/rp. Thus,

1 k2
f=-m— 2 (2.49)
2 rp rp

Substituting Equation 2.40 into 2.49 yields a formula for the orbital specific energy
in terms of the orbital constants h and e,
’ 2
e=—=—(1-e 2.50
S (2.50)

Clearly, the orbital energy is not an independent orbital parameter.
Note that the mechanical energy £ of a satellite of mass 1, is obtained from the
specific energy ¢ by the formula

E=me (2.51)

26 CIRCULAR ORBITS (e=0)

Setting e = 0 in the orbital equation r = (h*/u)/(1 + e cos 0) yields

h2

u

r (2.52)

That is, r = constant, which means the orbit of m, around m; is a circle. Since # =0, it
follows that v=wv so that the angular momentum formula h = rv, becomes simply
h=rv for a circular orbit. Substituting this expression for h into Equation 2.52 and
solving for v yields the velocity of a circular orbit,
£ (2.53)
,

Ucircular =

The time T required for one orbit is known as the period. Because the speed is
constant, the period of a circular orbit is easy to compute:

circumference 2mr

speed B m

r

so that
2

Tcircular =
NG

1w

r (2.54)
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The specific energy of a circular orbit is found by setting e = 0 in Equation 2.50,

l,uz
2 h?

Employing Equation 2.52 yields

K
2r
Obviously, the energy of a circular orbit is negative. As the radius goes up, the energy
becomes less negative, i.e., it increases. In other words, the higher the orbit, the greater
its energy.

To launch a satellite from the surface of the earth into a circular orbit requires
increasing its specific mechanical energy €. This energy comes from the rocket motors
of the launch vehicle. Since the mechanical energy of a satellite of mass m is £ = me, a
propulsion system that can place a large mass in a low earth orbit can place a smaller
mass in a higher earth orbit.

The space shuttle orbiters are the largest man-made satellites so far placed in orbit
with a single launch vehicle. For example, on NASA mission STS-82 in February
1997, the orbiter Discovery rendezvoused with the Hubble space telescope to repair
and refurbish it. The altitude of the nearly circular orbit was 580 km (360 miles).
Discovery’s orbital mass early in the mission was 106 000 kg (117 tons). That was only
6 percent of the total mass of the shuttle prior to launch (comprising the orbiter’s
dry mass, plus that of its payload and fuel, plus the two solid rocket boosters, plus
the external fuel tank filled with liquid hydrogen and oxygen). This mass of about
2 million kilograms (2200 tons) was lifted off the launch pad by a total thrust in
the vicinity of 35000 kN (7.8 million pounds). Eighty-five percent of the thrust was
furnished by the solid rocket boosters (SRBs), which were depleted and jettisoned
about two minutes into the flight. The remaining thrust came from the three liquid
rockets (space shuttle main engines, or SSMEs) on the orbiter. These were fueled by
the external tank which was jettisoned just after the SSMEs were shut down at MECO
(main engine cut off), about eight and a half minutes after lift-off.

Manned orbital spacecraft and a host of unmanned remote sensing, imaging
and navigation satellites occupy nominally circular, low-earth orbits. A low-earth
orbit (LEO) is one whose altitude lies between about 150 km (100 miles) and about
1000 km (600 miles). An LEO is well above the nominal outer limits of the drag-
producing atmosphere (about 80 km or 50 miles), and well below the hazardous Van
Allen radiation belts, the innermost of which begins at about 2400 km (1500 miles).

Nearly all of our applications of the orbital equations will be to the analysis of
man-made spacecraft, all of which have a mass that is insignificant compared to
the sun and planets. For example, since the earth is nearly 20 orders of magnitude
more massive than the largest conceivable artificial satellite, the center of mass of the
two-body system lies at the center of the earth and p in Equation 3.14 becomes

M= G(mearth J74@111&:) = Gmearth

The value of the earth’s gravitational parameter to be used throughout this book is
found in Table A.2,

(2.55)

Ecircular = —

Wearth = 398 600 km?/s? (2.56)
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Plot the speed v and period T of a satellite in circular LEO as a function of altitude z.

Equations 2.53 and 2.54 give the speed and period, respectively, of the satellite:

[ [ W / 398 600 T 2 3 27 (6378 + )%
V= — = = = r2 —m —— z
r Rg+z 6378 4+ 2z N /398 600

These relations are graphed in Figure 2.13.

8.0 HoT
. 7.8+ _ 1004
E 761 g
= = 904
7.4+
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200 400 600 800 1000 200 400 600 800 1000
z, km z, km

(a) (b)

Circular orbital speed (a) and period (b) as a function of altitude.

If a satellite remains always above the same point on the earth’s equator, then itisin a
circular, geostationary equatorial orbit or GEO. For GEO, the radial from the center of
the earth to the satellite must have the same angular velocity as the earth itself, namely,
27 radians per sidereal day. The sidereal day is the time it takes the earth to complete
one rotation relative to inertial space (the fixed stars). The ordinary 24-hour day, or
synodic day, is the time it takes the sun to apparently rotate once around the earth,
from high noon one day to high noon the next. The synodic and sidereal days would be
identical if the earth stood still in space. However, while the earth makes one absolute
rotation around its axis, it advances 27r/365.26 radians along its solar orbit. Therefore,
its inertial angular velocity wg is [(2m + 27/365.26)radians] /(24 hours); i.e.,

wp = 72.9217 x 10 %rad/s (2.57)

Communications satellites and global weather satellites are placed in geostationary
orbit because of the large portion of the earth’s surface visible from that altitude
and the fact that ground stations do not have to track the satellite, which appears
motionless in the sky.

Calculate the altitude zggo and speed vggo of a geostationary earth satellite.

The speed of the satellite in its circular GEO of radius rggo is

m
TGEO

(a)

UGEO =
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(Example 2.3 On the other hand, the speed vggo along its circular path is related to the absolute
continued) angular velocity wg of the earth by the kinematics formula

UGEO = WETGEO

Equating these two expressions and solving for rggo yields

s n
rGeo = I —
WE

398 600
(72.9217 x 1076)2

Substituting Equation 2.56, we get

Therefore, the distance of the satellite above the earth’s surface is
ZGEO = TGEO — Rp = 42164 — 6378 = 35786 km (22241 mi)

Substituting Equation 2.58 into (a) yields the speed,

228909 _ 5 475 kmy (2.59)
= = J. m .
VGEO 0164 | 2mE

EXAMPLE Calculate the maximum latitude and the percentage of the earth’s surface visible from
2.4 GEO.

To find the maximum viewable latitude ¢, use Figure 2.14, from which it is
apparent that

¢ = cos™! ﬁ (a)
r

Figure 2.14 Satellite in GEO.
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where Rg = 6378 km and, according to Equation 2.57, r =42 164 km. Therefore

6378
¢ = cos™! Diled = 81.30° Maximum visible north or south latitude. (b)

The surface area S visible from GEO is the shaded region illustrated in Figure 2.15. It
can be shown that the area S is given by

S = 27TR%(1 — cos )

Therefore, the percentage of the hemisphere visible from GEO is

S
—— % 100 = (1 — cos 81.30°) x 100 = 84.9%
7Rg

which of course means that 42.4 percent of the total surface of the earth can be seen
from GEO.

Figure 2.15 Surface area S visible from GEO.

Figure 2.16 is a photograph taken from geosynchronous equatorial orbit by one of
the National Oceanic and Atmospheric Administation’s Geostationary Operational
Environmental Satellites (GOES).

2.7 ELLIPTICAL ORBITS (0 <e < 1)

If 0 <e <1, then the denominator of Equation 2.35 varies with the true anomaly
0, but it remains positive, never becoming zero. Therefore, the relative position
vector remains bounded, having its smallest magnitude at periapsis r,, given by
Equation 2.40. The maximum value of r is reached when the denominator of
r=(h*/u)/(1 + e cos6) obtains its minimum value, which occurs at § = 180°. That
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Figure 2.16  The view from GEO. NASA-Goddard Space Flight Center, data from NOAA GOES.

a a
B
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Figure 2.17  Elliptical orbit. m, is at the focus F. F’ is the unoccupied empty focus.

point is called the apoapsis, and its radial coordinate, denoted r,, is

K
Cul—e

Ta (2.60)

The curve defined by Equation 2.35 in this case is an ellipse.
Let 2a be the distance measured along the apse line from periapsis P to apoapsis
A, as illustrated in Figure 2.17. Then

2a=1p+1,
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Substituting Equations 2.40 and 2.61 into this expression we get

k1
T oul—e2

a (2.61)

a is the semimajor axis of the ellipse. Solving Equation 2.61 for h?/u and putting the
result into Equation 2.35 yields an alternative form of the orbit equation,

1 —é?

a—
1+ ecosf

(2.62)

In Figure 2.17, let F denote the location of the body m;, which is the origin of the
r,0 polar coordinate system. The center C of the ellipse is the point lying midway
between the apoapsis and periapsis. The distance CF from C to F is

CF:a—FP:a—rP

But from Equation 2.62,
rp,=a(l —e) (2.63)

Therefore, CF = ae, as indicated in Figure 2.17.

Let B be the point on the orbit which lies directly above C, on the perpendicular
bisector of AP. The distance b from C to B is the semiminor axis. If the true anomaly
of point B is B, then according to Equation 2.62, the radial coordinate of B is

2

1—e

rgp=a——— (2.64)
1+ecosp
The projection of rg onto the apse line is ae; i.e.,
(180 — ) B L=¢" ) cosp
ae = rg cos —fB) = —rgcosB=—|a——— | cos
B B 1+ ecosp
Solving this expression for e, we obtain

e = —cos B (2.65)

Substituting this result into Equation 2.64 reveals the interesting fact that
rp=a

According to the Pythagorean theorem,

b = rf; — (ae)? = a® — a*é?

which means the semiminor axis is found in terms of the semimajor axis and the
eccentricity of the ellipse as

b=ay1—e? (2.66)

Let an xy cartesian coordinate system be centered at C, as shown in Figure 2.18.
In terms of r and 0, we see from the figure that the x coordinate of a point on
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N

Figure 2.18  Cartesian coordinate description of the orbit.

the orbit is

1 —é? e+ cos0
x=ae+rcosb =ae+|a— JcosO=a———
1+ ecosb 1+ ecosb

From this we have
x e+ cosf

- — (2.67)
a 1l4ecos6
For the y coordinate we have, making use of Equation 2.66,
. 1—e? . 1—e2 .
y=rsinf=(a——— |sinf =b——sin6
14 ecosf 1+ ecos6
Therefore,
/1 — e2
z °_sing (2.68)

=—5
b 1+ ecos®
Using Equations 2.67 and 2.68, we find
2 2

x* oyt 1 2 2y «ina2
;+b—2_m[(e+cose) + (1 —€®)sin® 6]
1

2 2 ) 22
= ———|e“"+2ecosfO + cos” O+ sin“ 0 — e“ sin“ O
(1+ec059)2[ ]

_ 2 2 22
—m[e +2ecosf+ 1 — e“sin 6]

B m[ez(l_smzeH%coseJrl]
_ 1
~ (1 + ecos6)?
_ 1
(14 ecosh)?

[82 cos’ 6 + 2ecos O + 1]

(1 + ecosb)?
That is,

— 4+ =1 (2.69)
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This is the familiar cartesian coordinate formula for an ellipse centered at the origin,
with x intercepts at £a and y intercepts at +b. If a =">b, Equation 2.69 describes a
circle, which is really an ellipse whose eccentricity is zero.
The specific energy of an elliptical orbit is negative, and it is found by substituting
the specific angular momentum and eccentricity into Equation 2.50,
1 Mz

= -2 (1
e=—gp=¢)

However, according to Equation 2.61, h? = pa(1 — €?), so that

7
&= —— 2.70
2a ( )
This shows that the specific energy is independent of the eccentricity and depends
only on the semimajor axis of the ellipse. For an elliptical orbit, the conservation of
energy (Equation 2.47) may therefore be written

2
R (2.71)
2 r 2a
The area of an ellipse is found in terms of its semimajor and semiminor axes by the
formula A = wab (which reduces to the formula for the area of a circle if a="b). To
find the period T of the elliptical orbit, we employ Kepler’s second law, dA/dt = h/2,
to obtain

h
AA = - At
2

For one complete revolution, AA = wab and At =T. Thus, rab= (h/2)T, or

_ 2mab
Tk

Substituting Equations 2.61 and 2.66, we get

2 (K 1\
T:—ﬁa2 l—ezz_ﬂ( _> V1 — e2

h W\ pn1—e

so that the formula for the period of an elliptical orbit, in terms of the orbital

parameters h and e, becomes
2 oy
T=i<___) (2.72)

w\ V1= e?

We can once again appeal to Equation 2.61 to substitute 4 =/ua(l — €?) into this
equation, thereby obtaining an alternative expression for the period,

a3 (2.73)

This expression, which is identical to that of a circular orbit of radius a (Equa-
tion 2.54), reveals that, like the energy, the period of an elliptical orbit is independent
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Figure 2.19

Since all five ellipses have the same major axis, their periods and energies are identical.

of the eccentricity (see Figure 2.19). Equation 2.73 embodies Kepler’s third law: the
period of a planet is proportional to the three-halves power of its semimajor axis.
Finally, observe that dividing Equation 2.40 by Equation 2.60 yields

T _ l1—e
ra 1+e
Solving this for e results in a useful formula for calculating the eccentricity of an
elliptical orbit, namely,
g —1p
fa+1p

o= (2.74)

From Figure 2.17 it is apparent that ra—rpzﬁ, the distance between the
foci. As previously noted, r, +r, =2a. Thus, Equation 2.74 has the geometrical
interpretation,

distance between the foci

eccentricity = - -
7 length of the major axis

What is the average distance of m; from m; in the course of one complete orbit?
To answer this question, we divide the range of the true anomaly (27) into n equal
segments A6, so that

2

n=-—"_
AB

We then use r = (h?/u)/(1 + e cos 6) to evaluate r(6) at the n equally spaced values
of true anomaly, starting at periapsis:

01=0, 6,=A60, 03=2A0,...,0,=(n—1)A6
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The average of this set of #n values of r is given by

n n

I A6 1
o=~ ; r(6) = - >0 = Py D_r(6)A6 (275)

i=1 =1

Now let n become very large, so that A6 becomes very small. In the limit as n — oo,
Equation 2.75 becomes

1 2
o= >— / r(0)do (2.76)
21 0
Substituting Equation 2.62 into the integrand yields

1 mode
g = —a(l — ez)f _
2 o 1l4ecosf

The integral in this expression can be found in integral tables (e.g., Beyer, 1991), from
which we obtain

Fo = a(l ez)(z—”) =ay1—¢? (2.77)
2n 1—e?

Comparing this result with Equation 2.66, we see that the true-anomaly-averaged

orbital radius equals the length of the semiminor axis b of the ellipse. Thus, the

semimajor axis, which is the average of the maximum and minimum distances from

the focus, is not the mean distance. Since, from Equation 2.62, p =a(l —e) and

r, = a(1 + e), Equation 2.77 also implies that

o = \/TpTa (2.78)

The mean distance is the one-half power of the product of the maximum and mini-
mum distances from the focus and not one-half their sum.

An earth satellite is in an orbit with perigee altitude z, =400 km and an eccentricity
e=0.6. Find (a) the perigee velocity, vp; (b) the apogee radius, r,; (c) the semimajor
axis, a; (d) the true-anomaly-averaged radius 7y; (e) the apogee velocity; (f) the period
of the orbit; (g) the true anomaly when r =7y; (h) the satellite speed when r =T7y;
(1) the flight path angle y when r = 7p; (j) the maximum flight path angle ymax and
the true anomaly at which it occurs.

The strategy is always to go after the primary orbital parameters, eccentricity and
angular momentum, first. In this problem we are given the eccentricity, so we
will first seek h. Recall from Equation 2.56 that j =398 600 km®/s? and also that
Rg =6378 km.

(a) The perigee radius is
rp = Re + 2, = 6378 + 400 = 6778 km
Evaluating the orbit formula, Equation 2.35, at 6 = 0 (perigee), we get

o1
Ty = —
P nl+e
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(Example 2.5 We use this to evaluate the angular momentum
continued) 5
6778 =

1
3986001+ 0.6

h = 65750 km?/s

Now we can find the perigee velocity using the angular momentum formula,
Equation 2.21:

) h 65750
Vp = VU 5 = —_— =
P 1 Jperigee 6778

= 9.700km/s

(b) The apogee radius is found by evaluating the orbit equation at & = 180° (apogee):

Bl 657502 1
g = — = =27110km
wl—e 3986001—0.6 ~—

(c) The semimajor axis is the average of the perigee and apogee radii:

tp+ra 6778427110
=2 . - +2 = 16940 km

a

(d) The azimuth-averaged radius is given by Equation 2.78:

9 = \/Tpla = /6778 - 27110 = 13 560 km

(e) Theapogee velocity, like that at perigee, is obtained from the angular momentum
formula,
h 65750

Vg = =—=—— =2425km/s
a J_)apogee ra 27110 /

(f) To find the orbit period, use Equation 2.73

27 h 3 27 65750 \°
T=2" =21950s = 6.098 hr

w\Vi—e) ~ 398600 \ V106
(g) To find the true anomaly when r =7y, we again use the orbit formula
K
g = —————
u 14+ ecosf
657507 1
13560 =

398600 1 4+ 0.6 cos 6
cos = —0.3333

This means
0 =109.5°, where the satellite passes through 7y on its way from perigee

and

0 = 250.5°, where the satellite passes through 7y on its way towards perigee
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To find the speed of the satellite when r =7y, we first calculate the radial and
transverse components of velocity:

h 65750
V] == = = 4.850km/s
To 13560
For the radial velocity component, use Equation 2.38,
398 600
vy = Lesing = 0.6 - 5in(109.5°) = 3.430 km/s
h 65750
or
398 600
v = Ee sinf = -0.6 - sin(250.5°) = —3.430km/s
h 65750

The magnitude of the velocity can now be found as

v=/v2+ v} =+/3.430% 4 4.850% = 5.940km/s

We could have obtained the speed v more directly by using conservation of
energy (Equation 2.71), since the semimajor axis is available from part (c) above.
However, we would still need to compute v, and v, in order to solve the next
part of this problem.

Use Equation 2.39 to calculate the flight path angle at r =7y,

v 3.430
y = tan~! — =tan"! ——

= 35.26° at 0 = 109.5°
vy 4.850

y is positive, meaning the velocity vector is above the local horizon, indicating the
spacecraft is flying away from the attracting force. At 8 = 250.5°, where the space-
craft is flying towards perigee, y = —35.26°. Since the satellite is approaching the
attracting body, the velocity vector lies below the local horizon, as indicated by
the minus sign.

Equation 2.42 gives the flight path angle in terms of the true anomaly,

_; esinf

14+ ecosf @)

y = tan

To find where y is a maximum, we must take the derivative of this expression
with respect to 6 and set the result equal to zero. Using the rules of calculus,

dy 1 d ( esin 6 )_ e(e + cos9)
do . esind \2dO\1+ecos@/)  (1+ecosh)?+ e2sin’6
14+ ecosf
For e < 1, the denominator is positive for all values of 8. Therefore, dy/d0 =0
only if the numerator vanishes, that is, if cos @ = —e. Recall from Equation 2.65

that this true anomaly locates the end-point of the minor axis of the ellipse. The
maximum positive flight path angle therefore occurs at the true anomaly,

0 = cos ' (—0.6) = 126.9°



64 Chapter 2 The two-body problem

(Examp lfe 2.5 Substituting this into (a), we find the value of the flight path angle to be
continued)
! 068In1269°
=tan~ ————— = 36.
Vmax 1+ 0.6c05126.9°
After attaining this greatest magnitude, the flight path angle starts to decrease
steadily towards its value at apogee (zero).
EXAMPLE At two points on a geocentric orbit the altitude and true anomaly are z; =
2.6 1545 km, 6; = 126° and z; = 852 km, 8, = 58°, respectively. Find (a) the eccentricity;

(b) the altitude of perigee; (c) the semimajor axis; and (d) the period.
(a) The radii of the two points are

r1 = Rg 4+ 21 = 6378 4+ 1545 = 7923 km

r» = Rg 4+ z; = 6378 + 852 = 7230 km

Applying the orbit formula, Equation 2.35, to both of these points yields two
equations for the two primary orbital parameters, angular momentum # and
eccentricity e:

h? 1
r=———— "
n 14 ecosb
h? 1
7923 =
398600 1 + ecos 126°
K =3.158 x 10° — 1.856 x 10°%¢ ()
h? 1
rn=————>—
u 14+ ecosb,
h? 1
7230 =
398600 1 + e cos 58°
K =2.882 x 10° + 1.527 x 10°% (b)

Equating (a) and (b), the two expressions for h?, yields a single equation for the
eccentricity e,

3.158 x 10° — 1.856 x 10%¢ = 2.882 x 10° 4+ 1.527 x 10% = 3.384 x 10%
=276.2 x 10°
Therefore,
e = 0.08164 (an ellipse) (c)

(b) By substituting the eccentricity back into (a) [or (b)] we find the angular
momentum,

h? =3.158 x 10° — 1.856 x 10°-0.08164 = h=54830km?/s (d)
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Now we can use the orbit equation to obtain the perigee radius

h? 1 54 8302 1
ry — — =
P 11+ ecos(0) ~ 398600 1 + 0.08164

= 6974 km

and perigee altitude
2y =1y — Rg = 6974 — 6378 = 595.5km

(c) The semimajor axis can be found after we calculate the apogee radius by means
of the orbit equation, just as we did for perigee radius:

K 1 548307 1

r, — — =
7 w1+ ecos(180°) 398600 1 — 0.08164

= 8213 km

Hence
T + 1, _ 8213 4 6974
= 5 =

(d) Since the semimajor axis is available, it is convenient to use Equation 2.74 to find
the period:

a

= 7593 km

3 2 3
a? = —————75932 = 65855 = 1.829 hr

N /398600

2.8 PARABOLIC TRAJECTORIES (e=1)
If the eccentricity equals 1, then the orbit equation (Equation 2.35) becomes

o1

r=———— (2.79)
u 14 cos6

As the true anomaly 6 approaches 180°, the denominator approaches zero, so that
r tends towards infinity. According to Equation 2.50, the energy of a trajectory for
which e=1 is zero, so that for a parabolic trajectory the conservation of energy,
Equation 2.47, is

S}

v<u
2 r

In other words, the speed anywhere on a parabolic path is

v= ,/2—“ (2.80)
r

If the body m;, is launched on a parabolic trajectory, it will coast to infinity, arriving
there with zero velocity relative to ;. It will not return. Parabolic paths are therefore
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called escape trajectories. At a given distance r from m,, the escape velocity is given

by Equation 2.80,

12
Vesc = 7“ (2.81)

Let v, be the speed of a satellite in a circular orbit of radius r. Then from Equations

2.53 and 2.81 we have

Vese = /20, (2.82)

That is, to escape from a circular orbit requires a velocity boost of 41.4 percent.
However, remember our assumption is that m; and m; are the only objects in the
universe. A spacecraft launched from earth with velocity vesc (relative to the earth) will
not coast to infinity (i.e., leave the solar system) because it will eventually succumb to
the gravitational influence of the sun and, in fact, end up in the same orbit as earth.
This will be discussed in more detail in Chapter 8.

For the parabola, Equation 2.42 for the flight path angle takes the form

Using the trigonometric identities

we can write

It follows that

sin @
tany = ———
1+ cos®
. ) 6
sm@:Zsm—cosz
0 6 %
cosf = cos® — —sin®> — = 2cos® — — 1
2 2 2
. .0
2 sin — cos — sin — i
tany = 2 é:tani
2 cos? — Cos —
2 2
%
= - 2.83
v=3 (2.83)

That is, on parabolic trajectories the flight path angle is one-half the true anomaly.
Recall that the parameter p of an orbit is given by Equation 2.43. Let us substitute

that expression into Equation 2.79 and then plot r =2a/(1 + cos#) in a cartesian

coordinate system centered at the focus, as illustrated in Figure 2.21. From the figure

it is clear that

p cos b (2.842)
xX=rcos = p—— .84a
p1+c056

in 6
y=rsinf = pL (2.84b)

1+ cos6
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Figure 2.20  Parabolic trajectory around the focus F.

(% y)

P

Figure2.21  Parabola with focus at the origin of the cartesian coordinate system.
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EXAMPLE
2.7

Figure 2.22

Therefore

x <y>2 cos 6 sin® 6
- 2] =2 +
p/2 14+ cos@® (14 cosh)?

p
Working to simplify the right-hand side, we get

x N ()/)2 _ 2c0s6(1 + cos0) +sin%6 B 2cos0 + 2 cos? 0 + (1 — cos? 6)

p/2 P (1 4 cos9)? B (1 + cos9)?
_ 1+2cosf+ cos? 6 _ (1 4 cos6)? _
- (1 + cosH)? T (14cosh)?
It follows that
2
x=b_r (2.85)
2 2p

This is the equation of a parabola in a cartesian coordinate system whose origin serves
as the focus.

The perigee of a satellite in a parabolic geocentric trajectory is 7000 km. Find the
distance d between points P; and P, on the orbit which are 8000 km and 16 000 km,
respectively, from the center of the earth.

First, let us calculate the angular momentum of the satellite by evaluating the orbit
equation at perigee,

h? 1 h?
= ———"—""=—
P T4 cos(0) — 2u

7000 km

Parabolic geocentric trajectory.
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from which

h = /211, = +/2-398600 - 7000 = 74700 km? /s (a)
To find the length of the chord P; P,, we must use the law of cosines from trigonometry,
d* = 80007 + 16 000%> — 2 - 8000 - 16 000 cos Af (b)

The true anomalies of points P; and P, are found using the orbit equation:

8000 = = 700 1 = cosf; =0.75 = 0, =41.41°
= COS = V. = .
398600 1 + cos 6, ! !
747002 1 o
16000 = = cosbh = —0.125 = 0, =97.18

398600 1 + cos b,
Therefore, A6 =97.18° — 41.41° = 55.78°, so that (b) yields

d =13270km (c)

2.9 HYPERBOLIC TRAJECTORIES (e>1)

If e > 1, the orbit formula,
K

=" (2.86)
w1+ ecos6

describes the geometry of the hyperbola shown in Figure 2.23. The system consists of
two symmetric curves. One of them is occupied by the orbiting body, the other one
is its empty, mathematical image. Clearly, the denominator of Equation 2.86 goes to
zero when cos 6 = —1/e. We denote this value of true anomaly

oo = cos™ 1(—1/e) (2.87)

since the radial distance approaches infinity as the true anomaly approaches 0. 6
is known as the true anomaly of the asymptote. Observe that 0, lies between 90° and
180°. From trigonometry it follows that

7 _

sin 0, = eTl (2.88)
For —6 < 0 < 6, the physical trajectory is the occupied hyperbola I shown on the
left in Figure 2.23. For 05 < 0 < (360° — 6,), hyperbola IT — the vacant orbit around
the empty focus F' —is traced out. (The vacant orbit is physically impossible, because
it would require a repulsive gravitational force.) Periapsis P lies on the apse line on the
physical hyperbola I, whereas apoapsis A lies on the apse line on the vacant orbit.
The point halfway between periapsis and apoapsis is the center C of the hyperbola.
The asymptotes of the hyperbola are the straight lines towards which the curves tend
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. Empty focus

\
\

\
\
\
~T
N
N
N
N

Figure 2.23  Hyperbolic trajectory.

as they approach infinity. The asymptotes intersect at C, making an acute angle
with the apse line, where 8 = 180° — 6. Therefore, cos 8 = —cos 6, which means

B = cos ' (1/e) (2.89)

The angle § between the asymptotes is called the turn angle. This is the angle through
which the velocity vector of the orbiting body is rotated as it rounds the attracting
body at F and heads back towards infinity. From the figure we see that § = 180° — 28,
so that
85 . (180°—28 o £q.2.89
sin— =sin| ——— ) =sin(90° — B) = cos B = —
2 2 e
or
§=2sin"1(1/e) (2.90)

The distance r, from the focus F to the periapsis is given by Equation 2.40,

R
Couldte

Ta (2.91)

Just as for an ellipse, the radial coordinate r, of apoapsis is found by setting 6 = 180°
in Equation 2.35,
K

= 1. (2.92)

Ta

Observe that r, is negative, since e > 1 for the hyperbola. That means the apoapse lies
to the right of the focus F. From Figure 2.23 we see that the distance 2a from periapse
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P to apoapse A is
2a=lrg|l —1rp=—1a—1p

Substituting Equations 2.91 and 2.92 yields

5 W1 N 1
a=——
nw\l—e 1+4e

From this it follows that a, the semimajor axis of the hyperbola, is given by an
expression which is nearly identical to that for an ellipse (Equation 2.62),

W1

a= (2.93)
ne —1

Therefore, Equation 2.86 may be written for the hyperbola
2
-1

—a—t (2.94)

1+ecosf

This formula is analogous to Equation 2.63 for the elliptical orbit. Furthermore, from
Equation 2.94 it follows that

rp =ale—1) (2.95a)

ra=—ale+1) (2.95b)

The distance b from periapsis to an asymptote, measured perpendicular to the apse
line, is the semiminor axis of the hyperbola. From Figure 2.23, we see that the length
b of the semiminor axis PM is
e —1
sin 8 sin (180 — 64) sin O e
=aq =aqa =a
cos B cos (180 — H) — 08 0o B < 1)

b=atanf=a

4

so that for the hyperbola,

b=aver—1 (2.96)

This relation is analogous to Equation 2.67 for the semiminor axis of an ellipse.

The distance A between the asymptote and a parallel line through the focus is
called the aiming radius, which is illustrated in Figure 2.23. From that figure we see
that

A= (rp+a)sinp

= aesin B8 (Equation 2.95a)

ez —1 .
=ge— (Equation 2.89)

e
= qge sin O (Equation 2.88)
= aey/1 — cos? 0, (trig identity)
1 .

=ae,/l1— — (Equation 2.87)

e2



72 Chapter 2 The two-body problem

< —

a—->

,,:,ﬂ

7_9%
l 3

Figure 2.24 Plot of Equation 2.93 in a cartesian coordinate system with origin O midway between the

two foci.
(2.97)

or
A=aver—1

Comparing this result with Equation 2.96, it is clear that the aiming radius equals the
length of the semiminor axis of the hyperbola.

As with the ellipse and the parabola, we can express the polar form of the equation
of the hyperbola in a cartesian coordinate system whose origin is in this case midway
between the two foci, as illustrated in Figure 2.24. From the figure it is apparent that

(2.98a)

X=—a—r,+rcost
y =rsinf (2.98b)
Using Equations 2.94 and 2.95a in 2.98a, we obtain
2 e+ cosf
0=—a——
1+ ecosf

(e—1)+a—
x=—a—ale— a—
1+ ecos6

Substituting Equations 2.94 and 2.96 into 2.98b yields
b -1 Je2 — 1sinf
inf=>b
1+ ecos6

r= Je2 —1 l—i—ecosGS
2
)2 («/e2 — lsinG)

It follows that

xr y? [ e+cosb
a2 b2 \14ecosh 1+ ecosf
. e? + 2ecosO + cos? @ — (e* — 1)(1 — cos? 0)
(1 + ecos0)?

. 1 + 2ecos8 + €% cos® @ . (1 4 ecos8)?
T (14 ecosh)?

(14 ecosB)?
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That is,

x2 y2

a b
This is the familiar equation of a hyperbola which is symmetric about the x and y
axes, with intercepts on the x axis.
The specific energy of the hyperbolic trajectory is given by Equation 2.50.
Substituting Equation 2.93 into that expression yields

=1 (2.99)

7

= 2.100
> (2.100)

€
The specific energy of a hyperbolic orbit is clearly positive and independent of the
eccentricity. The conservation of energy for a hyperbolic trajectory is

2

v
v_Kr_H (2.101)
2 r 2a

Let vy, denote the speed at which a body on a hyperbolic path arrives at infinity.

According to Equation 2.101
veo = | B (2.102)
a

Voo is called the hyperbolic excess speed. In terms of vo, we may write Equa-
tion 2.101 as

V3
2 r 2

Substituting the expression for escape speed, vesc = +/214 /7 (Equation 2.81), we obtain
for a hyperbolic trajectory

v = vk vl (2.103)

This equation clearly shows that the hyperbolic excess speed v represents the
excess kinetic energy over that which is required to simply escape from the center
of attraction. The square of v, is denoted Cs, and is known as the characteristic
energy,

Cs =2 (2.104)

o0

Cs is a measure of the energy required for an interplanetary mission and Cj is also
a measure of the maximum energy a launch vehicle can impart to a spacecraft of a
given mass. Obviously, to match a launch vehicle with a mission, C3)launchvehicle >
CS)mission-

Note that the hyperbolic excess speed can also be obtained from Equations 2.39
and 2.88,

Voo = %esin@oo = %\/62 -1 (2.105)

Finally, for purposes of comparison, Figure 2.25 shows a range of trajectories, from
a circle through hyperbolas, all having a common focus and periapsis. The parabola
is the demarcation between the closed, negative energy orbits (ellipses) and open,
positive energy orbits (hyperbolas).
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Figure 2.25

EXAMPLE
2.8

e=10 1.1 13 15

2.5

0.9 0.85 0.8 0.7 0.5 /03/ 0

Orbits of various eccentricities, having a common focus F and periapsis P.

At a given point of a spacecraft’s geocentric trajectory, the radius is 14 600 km, the
speed is 8.6 km/s, and the flight path angle is 50°. Show that the path is a hyper-
bola and calculate the following: (a) Cs, (b) angular momentum, (c) true anomaly,
(d) eccentricity, (e) radius of perigee, (f) turn angle, (g) semimajor axis, and (h)
aiming radius.

To determine the type of the trajectory, calculate the escape speed at the given

radius:
[2 /2398600
Vese =] o = [T 7,389 km/s
r 14 600

Since the escape speed is less than the spacecraft’s speed of 8.6 km/s, the path is a
hyperbola.

(a) The hyperbolic excess velocity v, is found from Equation 2.103,
v2, = v* —vi = 8.6 —7.389% = 19.36 km?* /s’

esc

From Equation 2.104 it follows that

Cs = 19.36 km? /s

(b) Knowing the speed and the flight path angle, we can obtain both v, and v :
vy = vsiny = 8.6sin50° = 6.588km/s (a)
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v] =vcosy = 8.6 -cos50° = 5.528 km/s (b)

Then Equation 2.21 provides us with the angular momentum,
h=rv, =14600-5.528 = 80710km?/s (c)

(c) Evaluating the orbit equation at the given location on the trajectory, we get

807102 1
398600 1 + ecosb

14600 =

from which
ecosf = 0.1193 (d)

The radial component of velocity is given by Equation 2.39, v, = e sin 6/h, so
that with (a) and (c), we obtain

398600 .
6.588 = esinf
80170
or
esinf = 1.334 (e)

Computing the ratio of (e) to (d) yields

1.334

tanf =
0.1193

=11.18 = 0 =84.89°

(d) We substitute the true anomaly back into either (d) or (e) to find the eccentricity,
e =1.339

(e) The radius of perigee can now be found from the orbit equation,

h? 1 80710 1

rp=— = = 6986 km
n1+ecos(0) 3986001+ 1.339

(f) The formula for turn angle is Equation 2.90, from which

1 1
§=2sin"! =) =2sin"!{ —— ) = 96.60°
e 1.339

(g) The semimajor axis of the hyperbola is found in Equation 2.93,

Bl 807102 1
q—

= — = = 20590 km
wer—1 3986001.3392 —1

(h) According to Equations 2.96 and 2.97, the aiming radius is

A =ave? —1=20590y/1.3392 — 1 = 18 340 km
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2. 10 PERIFOCAL FRAME

Figure 2.26

The perifocal frame is the ‘natural frame’ for an orbit. It is centered at the focus of the
orbit. Its X ¥ plane is the plane of the orbit, and its x axis is directed from the focus
through periapse, as illustrated in Figure 2.26. The unit vector along the x axis (the
apse line) is denoted p. The ¥ axis, with unit vector q, lies at 90° true anomaly to the
X axis. The z axis is normal to the plane of the orbit in the direction of the angular
momentum vector h. The Z unit vector is w,

h
V= — 2.106
W= ( )

In the perifocal frame, the position vector r is written (see Figure 2.27)

r =Xp+7yq (2.107)
where
X =rcos6 y =rsinf (2.108)

and r, the magnitude of r, is given by the orbit equation, r = (h?/u)[1/(1 + e cos 6)].
Thus, we may write Equation 2.107 as

hZ

= op in 6q 2.109
r " 1_|_ec089(cos p + sin6q) ( )

The velocity is found by taking the time derivative of r,

v=rt=2Xp+7q (2.110)

q
w / Semilatus
_ rectum

Perifocal frame pqw.



Figure 2.27
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From Equations 2.108 we obtain
X = #cosf — rfsinf
?:%sin@—i—r@cos@ (2.111)
i is the radial component of velocity, v,. Therefore, according to Equation 2.39,
= Eesin@ (2.112)
h
From Equations 2.36 and 2.38 we have
: 0
r9=vl=ﬁ(1+ec039) (2.113)

Substituting Equations 2.112 and 2.113 into 2.111 and simplifying the results yields

- Mo
= ——sinf
x p sin
R
y= Z(e + cos ) (2.114)
Hence, Equation 2.110 becomes
v = %[—Sin 0p + (e + cos0)q] (2.115)

Formulating the kinematics of orbital motion in the perifocal frame, as we have done
here, is a prelude to the study of orbits in three dimensions (Chapter 4). We also need
Equations 2.107 and 2.110 in the next section.

‘fl“

Periapse

Position and velocity relative to the perifocal frame.
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2.11 THE LAGRANGE COEFFICIENTS

In this section we will establish what may seem intuitively obvious: if the position
and velocity of an orbiting body are known at a given instant, then the position and
velocity at any later time are found in terms of the initial values. Let us start with
Equations 2.107 and 2.110,

r=xp+7yq (2.116)
v=1f=xp+7q (2.117)

Attach a subscript ‘zero’ to quantities evaluated at time t = #;. Then the expressions
for r and v evaluated at t =t are

ro = Xob + Jod (2.118)

vo = Xop + ¥4 (2.119)

The angular momentum h is constant, so let us calculate it using the initial conditions.
Substituting Equations 2.118 and 2.119 into Equation 2.18 yields

boa W[
h= o X Vo = 2() }?0 0 = W(%oyo — 703_60) (2.120)
Xo Yo 0

Recall that w is the unit vector in the direction of h (Equation 2.106). Therefore, the
coefficient of w on the right of Equation 2.120 must be the magnitude of the angular
momentum. That is,

h = %07 — VoXo (2.121)

Now let us solve the two vector equations (2.118) and (2.119) for the unit vectors p
and q in terms of ry and vy. From (2.118) we get

] —
d=—r10—2p (2.122)
Yo Yo
Substituting this into Equation (2.119), combining terms and using Equation 2.121
yields
sa =1 X0 . FoXo — Xo¥o ~ | Yo h
Vo=Xop+Yogl=to—=pP|=—"——""P+=ro=—=p+ =10
Yo Yo Yo Yo Yo Yo
Solve this for p to obtain
. Yo T
=—ry)— — 2.123
P=7"T0— 5V ( )

Putting this result back into Equation 2.122 gives
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Upon replacing h by the right-hand side of Equation 2.121 we get

. Xo Xo
= ——1) + —V 2.124
q ot 5 vo ( )
Equations 2.123 and 2.124 give p and q in terms of the initial position and veloc-
ity. Substituting those two expressions back into Equations 2.116 and 2.117 yields,

respectively

(¥ ¥ | x X Xy, — 7% —XV, + X
r:x(@ro—&v())—i—y(——oro-}-_ovo): yOhJ’ 0pp + —Fo TV %0

h

-y 7 o x X Xyo — V% —X¥y + V%
V=x<&ro—@vo)+7<——oro+—ovo)= Yo ¥ 0ro+ Yo7 Ovo

h h h h h h
Therefore,
r =f1‘0 +gV() (2125)
v =fro+gvo (2.126)
where f and g are given by
f=220 ;yx" (2.127a)
g= Yot rX °h+y *o (2.127b)

together with their time derivatives

f XYy — ¥ Xo

= IR (2.128a)
§= —_xy°h+yx° (2.128b)

The f and g functions are referred to as the Lagrange coefficients after Joseph-
Louis Lagrange (1736-1813), a French mathematical physicist whose numerous
contributions include calculations of planetary motion.

From Equations 2.125 and 2.126 we see that the position and velocity vectors r
and v are indeed linear combinations of the initial position and velocity vectors. The
Lagrange coefficients and their time derivatives in these expressions are themselves
functions of time and the initial conditions.

Before proceeding, let us show that the conservation of angular momentum h
imposes a condition on f and g and their time derivatives f and g. Calculate h using
Equations 2.125 and 2.126,

h=rxv=(fro+gvo) x (fro + gvo)
Expanding the right-hand side yields

h = (fro x fro) + (fro x gvo) + (gvo X f10) + (gvo X Vo)
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Factoring out the scalars f, g, f and ¢, we get
h = ff(xo x o) + f(ro x vo) + fg(vo X £0) + g&(¥vo X Vo)
But ro Xro=vygxvp=0, so
h = f§(ro x Vo) + fg(vo X 10)

Since

Vo X rg = —(ry X Vo)
this reduces to

h = (f& — fg)(ro x vo)
or
h = (/¢ —f)ho

where hg =ry x vy, which is the angular momentum at #=t,. But the angular
momentum is constant (recall Equation 2.19), which means h = hy, so that

h=(f¢—foh

Since h cannot be zero (unless the body is traveling in a straight line towards the
center of attraction), it follows that

fg— fg =1 (conservation of angular momentum) (2.129)

Thus, if any three of the functions f, g, f and § are known, the fourth may be found
from Equation 2.129.

Let us use Equations 2.127 and 2.128 to evaluate the Lagrange coefficients and
their time derivatives in terms of the true anomaly. First of all, note that evaluating
Equations 2.108 at time t = t; yields

Xy = 1o cosby
(2.130)
Yo = Tosinby

Likewise, from Equations 2.114 we get

Xy = —%sin@o
(2.131)
Vo = %(e—i—cosQO)

To evaluate the function f, we substitute Equations 2.108 and 2.131 into Equation
2.127a,

9_6?0—? 0
h

= % i[rcosQ] [%(e + cos@o)] — [rsin 0] [—% sin@o]}

= %[ecos@+ (cosB cos By + sinf sin Gy) | (2.132)
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If we invoke the trig identity
cos(0 — 0y) = cos cos Oy + sin O sin Gy (2.133)
and let AQ represent the difference between the current and initial true anomalies,
AO =6 — 6y (2.134)
then Equation 2.132 reduces to

f= l;—zr(e cos 8 + cos AO) (2.135)

Finally, from Equation 2.35, we have

2
ecosf=— —1 (2.136)
ur

Substituting this into Equation 2.135 leads to
ur
f=1- ﬁ(l — cos AB) (2.137)

We obtain r from the orbit formula, Equation 2.35, in which the true anomaly 0
appears, whereas the difference in the true anomalies occurs on the right-hand side of
Equation 2.137. However, we can express the orbit equation in terms of the difference
in true anomalies as follows. From Equation 2.134 we have 6 = 6y + A6, which means
we can write the orbit equation as

h? 1
r=— (2.138)
w1+ ecos(6y + AB)
By replacing 6y by — A6 in Equation 2.133, Equation 2.138 becomes
h? 1
= (2.139)

r = —
i 14 ecosbycos AG — e sin Gy sin AO

To remove 6y from this expression, observe first of all that Equation 2.136 implies
that, at t = t,
hZ
ecosfp = — —1 (2.140)
HKro

Furthermore, from Equation 2.39 for the radial velocity we obtain

hv
esinfy = — (2.141)
Substituting Equations 2.140 and 2.141 into 2.139 yields
h? 1
r=— (2.142)

n? h
’ 1+(——1> cos AG — o0 sin AQ
1o 3
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Using this form of the orbit equation, we can find r in terms of the initial conditions
and the change in the true anomaly. Thus f in Equation 2.137 depends only on A6.
The Lagrange coefficient g is found by substituting Equations 2.108 and 2.130
into Equation 2.127b,
—%7) + 7%
§= h

1
A [(=7rcosB)(rgsinBy) + (rsin O)(r cos Op)]
Mo, . .
= 7(sm9c0500 — cosBsin Oy) (2.143)
Making use of the trig identity
sin(0 — 6y) = sin cos Gy — cos O sin H;
together with Equation 2.134, we find
g§= % sin(A0) (2.144)
To obtain ¢, substitute Equations 2.114 and 2.130 into Equation 2.128b,

—??0 +}’;’_CO
h
= % {—[—%sin@] [rosin6y] + [%(e + cosQ)] (ro COS@O)}

= % [ecosBy + (cosB cosBy + sin B sin y) ]
With the aid of Equations 2.133 and 2.140, this reduces to
. 10
g:l—?(l—cosAQ) (2.145)

f can be found using Equation 2.129. Thus

f= é(fg' -1) (2.146)

Substituting Equations 2.137, 2.143 and 2.145 results in

f: m [[1 — %(1 —cosA@)] [1 — %(1 —COSAQ)] - 1}
1 h? purrg

1% 1 1
=T (1 — cos AG)>= — (1 — cos AH) (—+—):|
%sin L |: h? oo r

or

. ml—cosAb [ u 1 1
=22 77120 = AfG) — — — — 2.147
f h sin A |:h2( cos A6) 1o "i| ( :
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To summarize, the Lagrange coefficients in terms of the change in true anomaly are

f=1-— %(1 — cos AB) (2.148a)
g= ?sin A6 (2.148b)
. ul—cosAG | u 1 1

= T R (1 —cosAB) — — — 2.148
f h  sin A6 |:h2( cos A9) 10 r:| ( 2
g=1— %(1 — cos AG) (2.148d)

where r is given by Equation 2.142.

Observe that using the Lagrange coefficients to determine the position and veloc-
ity from the initial conditions does not require knowing the type of orbit we are
dealing with (ellipse, parabola, hyperbola), since the eccentricity does not appear in
Equations 2.142 and 2.148. However, the initial position and velocity give us that
information. From ry and vy we obtain the angular momentum h = |ry x vo|. The
initial radius ry is just the magnitude of the vector ry. The initial radial velocity v, is
the projection of vy onto the direction of ry,

o

Vo =Vo* —
o

From Equations 2.35 and 2.39 we have

h? 1
= Vg = Ee sin 6 (2.149)

rO_ZI—f—ecos@o h

These two equations can be solved for the eccentricity e and the true anomaly of the
initial point 6.

An earth satellite moves in the xy plane of an inertial frame with origin at the earth’s
center. Relative to that frame, the position and velocity of the satellite at time #y are

ro = 8182.4i — 6865.9j (km) "
a
vo = 0.47572i + 8.8116] (km/s)

Compute the position and velocity vectors after the satellite has traveled through a
true anomaly of 120°.
First, use ry and vy to calculate the angular momentum of the satellite:
i Pk )
h=ryxvp= 81824 —6865.9 0|= 75366k (km?/s)
0.47572 8.8116 O

so that
h = 75366 km?/s (b)
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(Example 2.9
continued) j
v
\ y
X i
Figure 2.28 The initial and final position and velocity vectors.

The magnitude of the position vector ry is

ro = 1'0-1'0:10861km

The initial radial velocity v, is found by projecting the velocity vy onto the unit vector

in the radial direction ry,

ro  (0.47572i + 8.8116]) - (8182.4i — 6865.9))

Vg =V — = - _5.2996km/5 (d)

o 10681

The final distance r is obtained from Equation 2.142,

h? 1
T 2 ho
H 1+ (— — 1>cosA9— —rosinAG
Ko M
75366 1
" 398600 75 3662 75366 - (—=5.2995) .
1 —— — 1) cos120° — sin 120°
398600 - 10681 398 600
so that

r = 8378.8 km
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Now we can evaluate the Lagrange coefficients in Equations 2.148:
ur
f=1-— ﬁ(l — cos AB)

398600 - 8378.9

= 5366 (1 — cos120°) = 0.11802 (dimensionless) )
rr
g= -0 sin(Af)
h
8378.9 - 10681 (120°) = 1028.4 (@)
=——— sin = A4s
75366 &
. ul—cosAf | u 1 1
=——— | (1 —cosAf) — — — —
f h  sin A6 [hz( ) o T
398600 1 — cos 120° [ 398 600 o 1 1
= . (1 —cos120°) — - (h)
75366  sin 120° 75 3662 10681 8378.9

—9.8665 x 10~* (dimensionless)

gzl—%(l—cosAG)

398600 - 10 681
75 3662

(1 — cos120°) = —0.12432 (dimensionless) 1)

At this point we have all that is required to find the final position and velocity vectors.
From Equation 2.125 we have

r=fro+gvo
Substituting Equations (a), (f) and (g), we get

r = 0.11802(8182.41 — 6865.9j) + 1028.4(0.47572i + 8.8116j)
= 1454.9i + 8251.6) (km)
Likewise, according to Equation 2.126,
v =fro+4vo
Substituting Equations (a), (h) and (i) yields
v = (—9.8665 x 1074)(8182.41 — 6865.9j) -+ (—0.12435)(0.47572i + 8.8116])

or

v = —8.1323i 4 5.6785j (km/s)

In order to use the Lagrange coefficients to find the position and velocity as a function
of time, we need to come up with a relation between A9 and time. We will deal with
that complex problem in the next chapter. Meanwhile, for times ¢ which are close to
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the initial time fj, we can obtain polynomial expressions for f and g in which the
variable A0 is replaced by the time interval At =1t — 1.

To do so, we expand the position vector r(t), considered to be a function of time,
in a Taylor series about f = #y. By definition, the Taylor series is given by

()= 3 )t — )" (2.150)

n=0

where r" (1) is the nth time derivative of r(t), evaluated at f,

df’l
" (ty) = (—5) (2.151)
dt tty

Let us truncate this infinite series at five terms. Then, to that degree of approximation,

(1) = r(to) + dr At X @’ Ar 4! d’x N
r =T —_ - — — —
0 dt ), 2\dt? J,_, 6\dt*),_,

+1 d'x At (2.152)
24\dt* ), _, '

where At =t —t;. To evaluate the four derivatives, we note first that (dr/dt);—y, is

just the velocity vy at t = to,
d
<—r> =y (2.153)
dat )_y,

(d’r/ dtz)t:to is evaluated using Equation 2.15,

n

r= _r_3r (2.154)
Thus,
2
<%>t=m = —%ro (2.155)
(dPr/dt? )t=1, is evaluated by differentiating Equation 2.154,
d’r d/r v — 3rr’i v T
= () =- <—) sTup g (2156)
From Equation 2.25a we have
P = ¥ (2.157)

Hence, Equation 2.156, evaluated at t = £, is

&r Vo ro - Vo
<F> SACIEE VLML (2.158)
2 ) =4 o o
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Finally, (d*r/dt*),—,, is found by first differentiating Equation 2.156,

d*r _ d r 43 r . rF — 3127t 43 r(Fr + i) — 4r3#%r
at ~ar\ e Ha)=—H r6 ’ r8
(2.159)

7 is found in terms of r and v by differentiating Equation 2.157 and making use of
Equation 2.154. This leads to the expression

. _dfr-r _v2 w  (r-v)?
. Z(T) _v B (2.160)

Substituting Equations 2.154, 2.157 and 2.160 into Equation 2.159, combining terms
and evaluating the result at t = 1 yields

d*r 2 v2 o - Vo) Io -V,
(—) - [—2“—6 30— 15;1@] ro + 6MMVO (2.161)
dtt tty r$ g o o

After substituting Equations 2.153, 2.155, 2.158 and 2.161 into Equation 2.152 and
rearranging terms, we obtain

2
V( Y
r(t):{l——At +ﬁum +— [ pYad +3——15g}m4}ro
270 2 ro r() 0 rO

1 Iy -V
+ [At - —%AP + EMAK‘} o (2.162)
61y 4
Comparing this expression with Equation 2.125, we see that, to the fourth order

in At,

2 o2
f—l——3At +ﬁr° AP+ 2 [ 2%+3U—g—15w}m4
2r, rO 24 0 1y oy
(2.163)
w (ro - vo)
At—LEAp + oA
8= 612 rg

For small values of elapsed time At these f and g series may be used to calculate the
position of an orbiting body from the initial conditions.

The orbit of an earth satellite has an eccentricity e=0.2 and a perigee radius of
7000 km. Starting at perigee, plot the radial distance as a function of time using the f
and g series and compare the curve with the exact solution.

Since the satellite starts at perigee, fo = 0 and we have, using the perifocal frame,
ro = 7000p (km) (a)

The orbit equation evaluated at perigee is Equation 2.40, which in the present case
becomes

K2 1
398600 1 + 0.2

7000 =
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(Example 2.10
continued)

Figure 2.29

Solving for the angular momentum, we get h =57 864km?/s. Then, using the
angular momentum formula, Equation 2.21, we find that the speed at perigee is
vg = 8.2663 km/s, so that

vo = 8.2663q (km/s) (b)

Clearly, rp - vo = 0. Hence, with © =398 600 km?/s2, the Lagrange series in Equation
2.163 become

f=1-5.8105(10"7)t> +9.0032(10~ *)¢*
g=1—19368(10"7)¢
where the units of ¢ are seconds. Substituting f and g into Equation 2.125 yields
r = [1—5.8105(1077)249.0032(10~4)£*](7000p) + [t —1.9368(10~7)°](8.2663q)
From this we obtain

r=|r|

= /49(109) + 11.389£2 — 1.103(10~6)#* — 2.5633(10~12)6 + 3.9718(10~19)¢8
(c)

For the exact solution of r versus time we must appeal to the methods presented in
the next chapter. The exact solution and the series solution [Equation (c)] are plotted
in Figure 2.29. As can be seen, the series solution begins to seriously diverge from the
exact solution after about ten minutes.

7600
Exact
Y,
—~ 7400
£
<
~
fand g series
7200
7000 .
180 360 540 720 900
t (sec) —10 min

Exact and series solutions for the radial position of the satellite.

If we include terms of fifth and higher order in the f and g series, Equations 2.163,
then the approximate solution in the above example will agree with the exact solution
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for a longer time interval than that indicated in Figure 2.29. However, there is a time
interval beyond which the series solution will diverge from the exact one no matter
how many terms we include. This time interval is called the radius of convergence.
According to Bond and Allman (1996), for the elliptical orbit of Example 2.10, the
radius of convergence is 1700 seconds (not quite half an hour), which is one-fifth of the
period of that orbit. This further illustrates the fact that the series form of the Lagrange
coefficients is applicable only over small time intervals. For arbitrary time intervals
the closed form of these functions, presented in Chapter 3, must be employed.

2.12 RESTRICTED THREE-BODY PROBLEM

Consider two bodies m; and m; moving under the action of just their mutual grav-
itation, and let their orbit around each other be a circle of radius rj;. Consider a
non-inertial, co-moving frame of reference xyz whose origin lies at the center of
mass G of the two-body system, with the x axis directed towards m1,, as shown in
Figure 2.30. The y axis lies in the orbital plane, to which the z axis is perpendicular.
In this frame of reference, m; and m; appear to be at rest.

The constant, inertial angular velocity 2 is given by

Q = Qk (2.164)
where
27
Q="
T

and T is the period of the orbit (Equation 2.54),

3

r122

R

T=2

Plane of motion of m; and m,

(X1> 0, O)
/,,.—
(
N ~
\\\ \\
/
(Xz, 0> 0)

~ _ Co-moving xyz frame
~ ~

—_—— =
~

Figure 2.30  Primary bodies 71, and m; in circular orbit around each other, plus a secondary mass .
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Thus

Q= /—’3‘ (2.165)
r
12

Recall that if M is the total mass of the system,
M =m; +my (2.166)
then

w=GM (2.167)

my and m; lie in the orbital plane, so their y and z coordinates are zero. To determine
their locations on the x axis, we use the definition of the center of mass (Equation
2.1) to write

mix; +myx; =0
Since my; is at a distance 1, from m in the positive x direction, it is also true that
X2 = X1+ 112
From these two equations we obtain

X] = —Tr12 (2.168a)

Xy = 112 (2.168b)

where the dimensionless mass ratios 77; and 7, are given by

ny
T =
my + my
)
;= — (2.169)
? my + my

We now introduce a third body of mass m, which is vanishingly small compared to
the primary masses m; and m; — like the mass of a spacecraft compared to that of a
planet or moon of the solar system. This is called the restricted three-body problem,
because the mass m is assumed to be so small that it has no effect on the motion of
the primary bodies. We are interested in the motion of m due to the gravitational
fields of m; and m,. Unlike the two-body problem, there is no general, closed form
solution for this motion. However, we can set up the equations of motion and draw
some general conclusions from them.

In the co-moving coordinate system, the position vector of the secondary mass m
relative to m, is given by

= (x—xl)i+yf+z11= (x+n2r12)i+y§+zlz (2.170)
Relative to m; the position of m1 is

1= (x — mr)i+yj + 2k (2.171)
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Finally, the position vector of the secondary body relative to the center of mass is
r=xi+yj+zk (2.172)

The inertial velocity of m is found by taking the time derivative of Equation 2.172.

However, relative to inertial space, the xyz coordinate system is rotating with the
angular velocity €, so that the time derivatives of the unit vectors i and j are not zero.
To account for the rotating frame, we use Equation 1.38 to obtain

IF=vG+ R X1+ Vv (2.173)

v is the inertial velocity of the center of mass (the origin of the xyz frame), and v,
is the velocity of m as measured in the moving xyz frame, namely,

Vi = % + jj + 2k (2.174)

The absolute acceleration of m is found using the ‘five-term’ relative acceleration
formula, Equation 1.42,

i‘:ag—l—flxr—i—ﬂx(Slxr)—i—ZSvarel—i—arel (2.175)

Recall from Section 2.2 that the velocity v of the center of mass is constant, so that
a; = 0. Furthermore, £ = 0 since the angular velocity of the circular orbit is constant.
Therefore, Equation 2.175 reduces to

F=R2 x (R X1r)+ 2R X V] + arel (2.176)
where
a,q = Xi 4 ) + 7k (2.177)
Substituting Equations 2.164, 2.172, 2.174 and 2.177 into Equation 2.176 yields
i — (k) x [(912) x (x + 9] + zf()] + 2(QK) x (& + 7 + zk) + % + i + 7k
= [~22d 4] | + 0 — 25 + 3 + 5 + 2k
Collecting terms, we find
= (% — 29y — Q%01 + (5 + 29k — Q%)j + 7k (2.178)

Now that we have an expression for the inertial acceleration in terms of quantities
measured in the rotating frame, let us observe that Newton’s second law for the
secondary body is

mf =F +F, (2.179)

F, and F, are the gravitational forces exerted on m by m; and m;,, respectively.
Recalling Equation 2.6, we have

F, =— U, = ——Tr
1 1’% 8} 1’? 1
(2.180)
Gmym Uom
F2 = — > u,, = — 3 | %)
n n
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where
M1 = Gm1 Mo = sz (2.181)

Substituting Equations 2.180 into 2.179 and canceling out m yields

= — =T - 5 (2.182)

n 2

Finally, we substitute Equation 2.178 on the left and Equations 2.170 and 2.171 on
the right to obtain

(& — 295 — Q20 + (7 + 29k — Q%y)j + 7k = — % [(x iy + 212]
1

- % [(X - 7T1712)i+)’§+2f<]
2

Equating the coefficients of i, j and k on each side of this equation yields the three
scalar equations of motion for the restricted three-body problem:

¥ 2Q) - Qx = —%(anm) - %(x—mru) (2.183a)
1 2
o0k -0y =-"1, -2, (2.183b)
n n
R PP (2.183¢)
n n

2.].2.1 LAGRANGE POINTS

Although Equations 2.183 have no closed form analytical solution, we can use them
to determine the location of the equilibrium points. These are the locations in space
where the secondary mass m would have zero velocity and zero acceleration, i.e., where
m would appear permanently at rest relative to m; and m, (and therefore appear to
an inertial observer to move in circular orbits around m; and m;). Once placed
at an equilibrium point (also called libration point or Lagrange point), a body will
presumably stay there. The equilibrium points are therefore defined by the conditions

x=p=z=0 and ¥X=y=2=0

Substituting these conditions into Equations 2.183 yields

—szZ —M—;(X—F?Tzﬁz)—u—;(x—]tlﬁz) (2.1843.)
n 3
M1 H2
—Qy = - =V = (2.184b)
" b3
o=KL, K, (2.184¢)
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From Equation 2.184c we have
(“_31 + “_32>z -0 (2.185)
noon

Since le/rf >0 and /,Lz/Tg > 0, it must therefore be true that z=0. That is, the
equilibrium points lie in the orbital plane.
From Equations 2.169 it is clear that

T = 1— ) (2.186)

Using this, along with Equation 2.165, and assuming y # 0, we can write Equations
2.184a and 2.184b as

1 1 X

(1—m)(x+mm2) = +m(x+mrn —rm2)5 = 5

5T 53 2
(2.187)

1 1 1

1-m)5+mS5 =+

n 53 2

where we made use of the fact that

T =/ T = po/u (2.188)

Treating Equations 2.187 as two linear equations in 1/r; and 1/r3, we solve them
simultaneously to find that

1 1 1
3T 37 3
n ) 2
or
n =r1ry=ry (2.189)

Using this result, together with z=0 and Equation 2.186, we obtain from
Equations 2.170 and 2.171, respectively,

rfz = (x+ 7121‘12)2 +y2 (2.190)

= (x+mry — ) +y° (2.191)

Equating the right-hand sides of these two equations leads at once to the conclusion
that

X = 7 — 2112 (2.192)

Substituting this result into Equation 2.190 or 2.191 and solving for y yields

NG
yoE

We have thus found two of the equilibrium points, the Lagrange points L4 and Ls.
As Equation 2.189 shows, these points are the same distance r1; from the primary
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bodies m; and m; that the primary bodies are from each other, and in the co-moving
coordinate system their coordinates are

r 3
L4,L5:x = % — Ml Y = ﬂ:%ﬁz, z=0 (2.193)

Therefore, the two primary bodies and these two Lagrange points lie at the vertices
of equilateral triangles, as illustrated in Figure 2.32.

The remaining equilibrium points are found by setting y =0 as well as z=0,
which satisfy both Equations 2.184b and 2.184c. For these values, Equations 2.170
and 2.171 become

r; = (x 4+ marp)i
= (x —mrii= (x +mr — i
Therefore

r =[x + mr2|

1y = |x + mariy — 12|

Substituting these together with Equations 2.165, 2.186 and 2.188 into Equation
2.184a yields

1— ) ) 1
sk tmm)t————————S &+ mm ) — 5 x=0 (2.194)
|x + 72112 |x + w2112 — r12] ™,

Further simplification is obtained by non-dimensionalizing x,

X

r12

In terms of &, Equation 2.194 becomes f (§) = 0, where
1— ) )

)= —2 —2

/ & + m|? |E+m — 1P

The roots of f(§) =0 yields the other equilibrium points besides Ly and Ls. To
find them first requires specifying a value for the mass ratio 7,, and then using a
numerical technique to obtain the roots for that particular value. For example, let the
two primary bodies m; and m; be the earth and the moon, respectively. Then

(E+m) + E+m—1)—¢& (2.195)

m; = 5.974 x 10** kg
my = 7.348 x 10?2 kg (2.196)
12 = 3.844 x 10° km

(from Table A.1) using this data, we find

my
my, = ——— = 0.01215
my + my
Substituting this value of 7, into Equation 2.195 and plotting the function yields the
curves shown in Figure 2.31. By carefully determining where various branches of the
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fi&)
Earth-moon
1 center of mass / I
2
_ L3 \
1.005 7 > 0.8369 I X/ ¢
3 ~0.5 0 0.5 ﬁi 1 /Vl‘156
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—

Graph of Equation 2.195 for earth—-moon data (77, = 0.01215), showing the three real roots.
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Moon's orbit $\ N
relative to earth ~0 >
v NARA
o\
/ Sy S\
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i )
\ line 60° |

Location of the five Lagrange points of the earth-moon system. These points orbit the earth
with the same period as the moon.

curve cross the & axis, we find the real roots, which are the three additional Lagrange
points for the earth—-moon system, all lying on the apse line:

Li:x = 0.8369r, = 3.217 x 10° km
Ly:x = 1.156r;, = 4.444 x 10° km (2.197)
Ly:x = —1.005r1, = —3.863 x 10° km

The locations of the five Lagrange points for the earth—-moon system are shown
in Figure 2.32. For convenience, all of their positions are shown relative to the center
of the earth, instead of the center of mass. As can be seen from Equation 2.168a, the
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center of mass of the earth—-moon system is only 4670 km from the center of the earth.
That is, it lies within the earth at 73 percent of its radius. Since the Lagrange points
are fixed relative to the earth and moon, they follow circular orbits around the earth
with the same period as the moon.

If an equilibrium point is stable, then a small mass occupying that point will tend
to return to that point if nudged out of position. The perturbation results in a small
oscillation (orbit) about the equilibrium point. Thus, objects can be placed in small
orbits (called halo orbits) around stable equilibrium points without requiring much
in the way of station keeping. On the other hand, if a body located at an unstable
equilibrium point is only slightly perturbed, it will oscillate in a divergent fashion,
drifting eventually completely away from that point. It turns out that the Lagrange
points L1, L, and L3 on the apse line are unstable, whereas L4 and Ls — 60° ahead of
and behind the moon in its orbit — are stable. However, Ly and Ls are destabilized
by the influence of the sun’s gravity, so that in actuality station keeping would be
required to maintain position in the neighborhood of those points.

Solar observation spacecraft have been placed in halo orbits around the L; point
of the sun—earth system. L; lies about 1.5 million kilometers from the earth (1/100 the
distance to the sun) and well outside the earth’s magnetosphere. Three such missions
were the International Sun—Earth Explorer 3 (ISSE-3) launched in August 1978; the
Solar and Heliocentric Observatory (SOHO) launched in December 1995; and the
Advanced Composition Explorer (ACE) launched in August 1997.

2.12.2 JACOBI CONSTANT

Multiply Equation 2.183a by x, Equation 2.183b by y and Equation 2.183c by z to
obtain

ik — 29k) — Qxk = — 2 (ck + k) — B2 ok — i)
" "

.. . M1 . H2 .
J + 2Qiy — Qyy = — W= S
1 2

sp= Mg K2
=—3#- 3
LT r

Sum the left and right sides of these equations to get

XxAi+Ez—QF (xk + i) = — (M_Sl + M_32> (xx +yy+ ZZ)—HIZ < 1l;2 - 251) *
n 53 3 n

or, rearranging terms,

B+ + 22— QA(xk 4 y)) = — ok (xk 4y + 22 + mord)
n

- %(xk + ¥+ 22 — mirpk) (2.198)
2

Note that
dv?

1d .2 .2 .2 1
=-— =-— 2.199
Ayt 2dt(x e 2 dt ( )
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where v is the speed of the secondary mass relative to the rotating frame. Similarly,

xx+yy = EZ(’C +57) (2.200)

From Equation 2.170 we obtain

= (x+mrm)* +y2 + 22

Therefore
dr . . .
21 I = 2(x + mari2)x + 2yy + 2zz
or
dT] 1 . . . .
— = —(mrpx +xx +yy + zz)
dt m
It follows that
41 _ 1o _ Lty toitmmd) (2.201)
—— == — = ——(xx zZ + mrX .
dt r rf dt rf Yy 2z

In a similar fashion, starting with Equation 2.171, we find

d 1

1
= ——3(x5c + }/y + zz — 7T11‘123'C) (2.202)
dt o) r5

Substituting Equations 2.199, 2.200, 2.201 and 2.202 into Equation 2.198 yields

1 dv? 1 d1 d1

EE_Z (x +)’)_l/«1dt +M2$E

Alternatively, upon rearranging terms

d[1 2 2 2 2 M1 M2
Q — =0
dt[ ( ) 8l 1

which means the bracketed expression is a constant

L
- 92(x Y L B e N (2.203)
2 &1 ]

v?/2 is the kinetic energy per unit mass relative to the rotating frame. —u;/r|
and —pu;y/ry are the gravitational potential energies of the two primary masses.
—Q%(x% 4+ y?)/2 may be interpreted as the potential energy of the centrifugal force
per unit mass 22(xi+ yj) induced by the rotation of the reference frame. The con-
stant C is known as the Jacobi constant, after the German mathematician Carl Jacobi
(1804-1851), who discovered it in 1836. Jacobi’s constant may be interpreted as the
total energy of the secondary particle relative to the rotating frame. C is a constant
of the motion of the secondary mass just like the energy and angular momentum are
constants of the relative motion in the two-body problem.
Solving Equation 2.203 for v? yields
2102

v =QM P 4y )+ +r—+2c (2.204)
2
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If we restrict the motion of the secondary mass to lie in the plane of motion of the
primary masses, then

rn=,/(x+mr)?+y> n=,/(x—mr)?+y? (2.205)

For a given value of the Jacobi constant, v? is a function only of position in the rotating
frame. Since v? cannot be negative, it must be true that

2 2
]

m
r
Trajectories of the secondary body in regions where this inequality is violated are not
allowed. The boundaries between forbidden and allowed regions of motion are found
by setting v> =0, i.e.,
2,2 2 2ur | 2u
Q(x +y)+7+7+2c=0 (2.207)
For a given value of the Jacobi constant the curves of zero velocity are determined by
this equation. These boundaries cannot be crossed by a secondary mass (spacecraft)
moving within an allowed region.

Since the first three terms on the left of Equation 2.207 are all positive, it follows
that the zero velocity curves correspond to negative values of the Jacobi constant.
Large negative values of C mean that the secondary body is far from the system center
of mass (x? + y? is large) or that the body is close to one of the primary bodies (r is
small or 7, is small).

Let us consider again the earth-moon system. From Equations 2.165,2.166, 2.167,
2.181 and 2.196, together with Table A.2, we have

U1 = fearth = 398 600 km®/s?
U2 = fmoon = 4903.02 km?/s?

o_ [mitm _ [398600+ 4903
N, 384 400°

=2.66538 x 10 %rad/s

(2.208)

Substituting these values into Equation 2.207, we can plot the zero velocity curves for
different values of Jacobi’s constant. The curves bound regions in which the motion
of a spacecraft is not allowed.

For C = —1.8 km?/s?, the allowable regions are circles surrounding the earth and
the moon, as shown in Figure 2.33(a). A spacecraft launched from the earth with this
value of C cannot reach the moon, to say nothing of escaping the earth-moon system.

Substituting the coordinates of the Lagrange points L;, L, and L3 into Equation
2.207, we obtain the successively larger values of the Jacobi constants C;, C; and Cs
which are required to arrive at those points with zero velocity. These are shown along
with the allowable regions in Figure 2.33. From part (c) of that figure we see that C,
represents the minimum energy for a spacecraft to escape the earth-moon system
via a narrow corridor around the moon. Increasing C widens that corridor and at Cs
escape becomes possible in the opposite direction from the moon. The last vestiges of
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Zh

Q

(a) CO = —1.

Ly
~L4 N
Ly 2 Ls L L x
Earth x Earth Y
oon Moon
> /L
5

@

(c) C, = —1.6649 (d) C; = —1.5810
y y
\L4 La
Ls L L L L L
Earth & Earth R
Moon Moon
/LS s

(e) C; = —1.5683 (f) Cs = —1.5600

Figure 2.33  Forbidden regions (shaded) within the earth-moon system for increasing values of Jacobi’s
constant (km? /s).
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the forbidden regions surround L4 and Ls. Further increase in Jacobi’s constant makes
the entire earth—-moon system and beyond accessible to an earth-launched spacecraft.
For a given value of the Jacobi constant, the relative speed at any point within an

allowable region can be found using Equation 2.204.

EXAMPLE A spacecraft has a burnout velocity vy, at a point on the earth-moon line with
2.11 an altitude of 200 km. Find the value of vy, for each of the scenarios depicted in
Figure 2.33.

From Equations 2.168 and 2.196 we have

mp 5974 x 10

T, =

my+my  6.047 x 10%

=0.9878 m,=1—m =0.1215

x) = —mr;; = —0.9878 - 384400 = —4670.6 km

Therefore, the coordinates of the burnout point are

x = 6578 — 4670.6 = 1907.3km y =10

y
Vo
v
S X o Moon (m,)
6578 km
Earth (m;)
Figure 2.34 Spacecraft S burnout position and velocity relative to the rotating earth-moon frame.

Substituting these values along with the Jacobi constant into Equations 2.204 and
2.205 yields the burnout velocity vy,. For the six Jacobi constants in Figure 2.33 we

obtain

Co:
Cr:
Cy:
Cs:
Cy:
Cs:

Vpo = 10.845km/s
Vpo = 10.857 km/s
vpo = 10.858 km/s
Vpo = 10.866 km/s
Vpo = 10.867 km/s
vpo = 10.868 km/s
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These velocities are not substantially different from the escape velocity (Equation
2.81) at 200 km altitude,

Vesc = 2—“: M:llmkm/s
TV r TV 6578 '

It is remarkable that a change in vy, on the order of only 10 m/s or less can have a
significant influence on the regions of earth-moon space accessible to the spacecraft.

PROBLEMS

For man-made earth satellites use p =398 600 km?/s2. Rz =6378km (Tables A.1
and A.2).

2.1 Ifr, in meters, is given by r = 3t41 + 23] + 912K, where £ is time in seconds, calculate
7 (where r = ||r||) and ||f|| at t =2s.
{Ans.: ¥ =101.3 m/s, || || = 105.3 m/s}

2.2 Show that, in general, if 4, =r/r, then @, - du, /dt = 0.

2.3 Two particles of identical mass m are acted on only by the gravitational force of one
upon the other. If the distance d between the particles is constant, what is the angular
velocity of the line joining them?

{Ans.: 0 = /2 Gm/d3}

2.4 Three particles of identical mass m are acted on only by their mutual gravitational
attraction. They are located at the vertices of an equilateral triangle with sides of length
d. Consider the motion of any one of the particles about the system center of mass and
use Newton’s second law to determine the angular velocity w required for d to remain
constant.

{Ans.: 0 =+/3 Gm/d3}

2.5 A satellite is in a circular, 350 km orbit (i.e., it is 350 km above the earth’s surface).
Calculate
(a) the speed in km/s;
(b) the period.
{Ans.: (a) 7.697 km/s; (b) 91 min 32 s}

2.6 A spacecraftis in a circular orbit of the moon at an altitude of 80 km. Calculate its speed
and its period.
{Ans.: 1.642 km/s; 1 hr 56 min}

2.7 Itis desired to place a satellite in earth polar orbit such that successive ground tracks at
the equator are spaced 3000 km apart. Determine the required altitude of the circular
orbit.

{Ans.: 1440 km}

2.8 Find the minimum additional speed required to escape from GEO.
{Ans.: 1.274 km/s}

2.9 What velocity, relative to the earth, is required to escape the solar system on a parabolic
path from the earth’s orbit?
{12.34km/s}

2.10 Calculate the area A swept out during the time ¢ = T'/3 since periapsis, where T is the
period of the elliptical orbit.
{Ans.: 1.047ab}
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Figure P.2.10

2.11 Show thatv= %«/ 14 2e cos 0 + €2 for any orbit.

2.12 Determine the true anomaly 6 of the point(s) on an elliptical orbit at which the speed
equals the speed of a circular orbit with the same radius, i.e., Vellipse = Veircle-
{Ans.: 0 = cos~!(—e), where e is the eccentricity of the ellipse}

Figure P.2.12

2.13  Calculate the flight path angle at the locations found in Exercise 2.12.
{Ans. ty=tan"! (e/\/l - €2>}

2.14 An unmanned satellite orbits the earth with a perigee radius of 7000 km and an apogee
radius of 70 000 km. Calculate

(a)
(b)
(©)
(d
(e)

the eccentricity of the orbit;

the semimajor axis of the orbit (km);

the period of the orbit (hours);

the specific energy of the orbit (km?/s?);

the true anomaly at which the altitude is 1000 km (degrees);
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2.18

2.19
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2.22

2.23

2.24
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(f) v, and v, at the points found in part (e) (km/s);
(g) the speed at perigee and apogee (km/s).
{Partial ans.: (c) 20.88 hr; (e) 27.61°; (g) 10.18 km/s, 1.018 km/s}

A spacecraft is in a 250 km by 300 km low earth orbit. How long (in minutes) does it
take to fly from perigee to apogee?
{Ans.: 45.00 min}

The altitude of a satellite in an elliptical orbit around the earth is 1600 km at apogee and
600 km at perigee. Determine

(a) the eccentricity of the orbit;

(b) the orbital speeds at perigee and apogee;

(c) the period of the orbit.

{Ans.: (a) 0.06686; (b) vp =7.81 km/s; (c) v4 = 6.83km/s; (d) T =107.2 min}

A satellite is placed into an earth orbit at perigee at an altitude of 1270 km with a speed
of 9km/s. Calculate the flight path angle y and the altitude of the satellite at a true
anomaly of 100°.

{Ans.: y=31.1% z=6774km}

A satellite is launched into earth orbit at an altitude of 640 km with a speed of 9.2 km/s
and a flight path angle of 10°. Calculate the true anomaly of the launch point and the
period of the orbit.

{Ans.: 0 = 29.8°; T =4.46 hr}

A satellite has perigee and apogee altitudes of 250 km and 42 000 km. Calculate the orbit
period, eccentricity, and the maximum speed.
{Ans.: 12 hr 36 min, 0.759, 10.3 km/s}

A satellite is launched parallel to the earth’s surface with a speed of 8 km/s at an altitude
of 640 km. Calculate the apogee altitude and the period.
{Ans.: 2679 km, 1 hr 59 min 30 s}

A satellite in orbit around the earth has a perigee velocity of 8 km/s. Its period is 2 hours.
Calculate its altitude at perigee.
{Ans.: 648 km}

A satellite in polar orbit around the earth comes within 150 km of the North Pole at its
point of closest approach. If the satellite passes over the pole once every 90 minutes,
calculate the eccentricity of its orbit.

{Ans.: 0.0187}

A hyperbolic earth departure trajectory has a perigee altitude of 300 km and a perigee
speed of 15km/s.

(a) Calculate the hyperbolic excess speed (km/s);

(b) Find the radius (km) when the true anomaly is 100°; {Ans.: 48 497 km}

(¢) Find v, and vy (km/s) when the true anomaly is 100°.

A meteoroid is first observed approaching the earth when it is 402 000 km from the
center of the earth with a true anomaly of 150°. If the speed of the meteoroid at that
time is 2.23 km/s, calculate

(a) the eccentricity of the trajectory;

(b) the altitude at closest approach;

(c) the speed at closest approach.

{Ans.: (a) 1.086; (b) 5088 km; (c) 8.516 km/s}

Calculate the radius r at which the speed on a hyperbolic trajectory is 1.1 times the
hyperbolic excess speed. Express your result in terms of the periapse radius r, and the
eccentricity e.

{Ans.: r=9.524r,/(e — 1)}
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Figure P.2.24

2.26

2.27

2.28

2.29

2.30

2.31

A hyperbolic trajectory has an eccentricity e=3.0 and an angular momentum
=105 000 km?/s. Without using the energy equation, calculate the hyperbolic excess
speed.

{Ans.: 10.7 km/s}

The following position data for an earth orbiter is given:

Altitude = 1700 km at a true anomaly of 130°.
Altitude = 500 km at a true anomaly of 50°.

Calculate

(a) the eccentricity;

(b) the perigee altitude (km);
(c) the semimajor axis (km).
{Ans.: (c) 7547 km}

An earth satellite has a speed of 7 km/s and a flight path angle of 15° when its radius is
9000 km. Calculate

(a) the true anomaly (degrees);

(b) the eccentricity of the orbit.

{Ans.: (a) 83.35°; (b) 0.2785}

If, for an earth satellite, the specific angular momentum is 60 000 km?/s and the specific

energy is —20 km?/s?, calculate the apogee and perigee altitudes.
{Ans.: 6637 km and 537.2 km}

A rocket launched from the surface of the earth has a speed of 8.85 km/s when powered
flight ends at an altitude of 550 km. The flight path angle at this time is 6°. Determine
(a) the eccentricity of the trajectory;

(b) the period of the orbit.

{Ans.: (a) e=0.3742; (b) T = 187.4 min}

A space vehicle has a velocity of 10 km/s in the direction shown when it is 10 000 km

from the center of the earth. Calculate its true anomaly.
{Ans.: 51°}



Figure P.2.31

Problems 105

10 km/s

Apse
line
Earth

2.32 A space vehicle has a velocity of 10 km/s and a flight path angle of 20° when it is 15 000
km from the center of the earth. Calculate its true anomaly.
{Ans.: 27.5°}

2.33 For a spacecraft trajectory around the earth, r=10000km when 6=30°, and
r=30000 km when 6 = 105°. Calculate the eccentricity.
{Ans.: 1.22}

2.34 A spacecraft in a 500 km altitude circular orbit is given a delta-v equal to one-half its
orbital speed. Use the energy equation to calculate the hyperbolic excess velocity.
{Ans.: 3.806 km/s}

2.35 A satellite is in a circular orbit at an altitude of 320 km above the earth’s surface. If an
onboard rocket provides a delta-v of 500 m/s in the direction of the satellite’s motion,
calculate the altitude of the new orbit’s apogee.

{Ans.: 2390 km}

2.36 A spacecraft is in a circular orbit of radius r and speed v around an unspecified planet.
A rocket on the spacecraft is fired, instantaneously increasing the speed in the direction
of motion by the amount Av=w , where o > 0. Calculate the eccentricity of the new
orbit.

{Ans.:e=a(a+2)}

2.37 A satellite is in a circular earth orbit of altitude 400 km. Determine the new perigee and
apogee altitudes if the satellite on-board engine
(a) increases the speed of the satellite in the flight direction by 240 m/s;

(b) gives the satellite a radial (outward) component of velocity of 240 m/s.
{Ans.: (a) z4 = 1230km, zp = 400 km; (b) z4 = 621 km, zp = 196 km}
2.38 For the sun—earth system, find the distance of the L;, L, and L3 Lagrange points from

the center of mass of the sun—earth system.
{Ans.: x; = 151.101 x 10° km, x, = 148.108 x 10° km, x3 = —149.600 x 10° km (oppo-
site side of the sun)}
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3. 1 INTRODUCTION

l n Chapter 2 we found the relationship between position and true anomaly for the
two-body problem. The only place time appeared explicitly was in the expression
for the period of an ellipse. Obtaining position as a function of time is a simple
matter for circular orbits. For elliptical, parabolic and hyperbolic paths we are led to
the various forms of Kepler’s equation relating position to time. These transcendental
equations must be solved iteratively using a procedure like Newton’s method, which
is presented and illustrated in the chapter.

The different forms of Kepler’s equation are combined into a single universal
Kepler’s equation by introducing universal variables. Implementation of this appeal-
ing notion is accompanied by the introduction of an unfamiliar class of functions
known as Stumpff functions. The universal variable formulation is required for the
Lambert and Gauss orbit determination algorithms in Chapter 5.

107
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The road map of Appendix B may aid in grasping how the material presented here
depends on that of Chapter 2.

32 TIME SINCE PERIAPSIS

The orbit formula, r = (h* /1) /(1 + e cos ), gives the position of body 1, in its orbit
around m; as a function of the true anomaly. For many practical reasons we need to
be able to determine the position of m, as a function of time. For elliptical orbits,
we have a formula for the period T (Equation 2.72), but we cannot yet calculate the
time required to fly between any two true anomalies. The purpose of this section is
to come up with the formulas that allow us to do that calculation.
The one equation we have which relates true anomaly directly to time is Equation

2.37, h =126, which can be written

de  h

dt  r?
Substituting r = (h?/)/(1 + e cos #), we find, after separating variables,

2
M—dt = —d9
K3 (14 ecosd)?

Integrating both sides of this equation yields

2 )
7 dd
_ — - 3.1
h3 (t=1) /0 (1 +ecos})? (3D

in which the constant of integration ¢, is the time at periapse passage, where by
definition § = 0. ¢, is the sixth constant of the motion that was missing in Chapter 2.
The origin of time is arbitrary. It is convenient to measure time from periapse passage,
so we will usually set ¢, = 0. In that case we have

2 0
n dv
—t = _ 3.2
K3 /0 (14 ecos®})? (32)

The integral on the right may be found in any standard mathematical handbook.
See, for example, Beyer (1991), integrals 341, 366 and 372. The specific form of the
integral depends on whether the value of the eccentricity e corresponds to a circle,
ellipse, parabola or hyperbola.

3.3 CIRCULAR ORBITS
For a circle, e =0, so the integral in Equation 3.2 is simply fog dvr. Thus we have

h3
t:;@
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Time since periapsis is directly proportional to true anomaly in a circular orbit.

Recall that for a circle (Equation 2.52), r = h?/u. Therefore h* = s ,u% , so that

3
r2

0
NG
Finally, substituting the formula (Equation 2.54) for the period T of a circular orbit,
T=2mr? / /1t yields

t =

0
t = —
2
or
2
0 =—t
T

The reason that ¢ is directly proportional to 6 in a circular orbit is simply that the
angular velocity 27t/ T is constant. Therefore the time At to fly through a true anomaly
of AGis (A6/27)T.

Because the circle is symmetric about any diameter, the apse line — and therefore
the periapsis — can be chosen arbitrarily.

3.4 ELLIPTICAL ORBITS

For 0 < e < 1, we find in integral tables that

? dv 1 f /1—e 6 ev/1 —e?siné
= ~ | 2tan tan- | - ——
o (I1+ecos?)? (1 —¢2)3 l+e 2 1+ ecosf

Therefore, Equation 3.2 in this case becomes

w? 1 ) 1—e 0 ev1 —e?sinf
—t=———|2tan tan— | - —m8M—
h3 (1—e2)3 l+e 2 1+ ecosf




110 Chapter 3 Orbital position as a function of time

Figure 3.2
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Mean anomaly versus true anomaly for ellipses of various eccentricities.

or
1— 0 A/1—e?siné
M, = 2tan"! ¢ tan — | — eV —esmb (3.3)
1+e 2 1+ ecos6
where
w? 3
M, = —(1 — &%)t (3.4)

L3
M, is called the mean anomaly. Equation 3.3 is plotted in Figure 3.2. Observe that for

all values of the eccentricity e, M, is a monotonically increasing function of the true

anomaly 6.

From Equation 2.72, the formula for the period T of an elliptical orbit, we
have u?(1 — ez)% /h* =21 /T, so that the mean anomaly can be written much more
simply as

2
M, = Tt (3.5)

The angular velocity of the position vector of an elliptical orbit is not constant, but

since 27 radians are swept out per period T, the ratio 2 /T is the average angular

velocity, which is given the symbol # and called the mean motion,
27

T

In terms of the mean motion, Equation 3.5 can be written simpler still,

n (3.6)

M, = nt
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Ellipse and the circumscribed auxiliary circle.

The mean anomaly is the azimuth position (in radians) of a fictitious body moving
around the ellipse at the constant angular speed n. For a circular orbit, the mean
anomaly M, and the true anomaly 6 are identical.

It is convenient to simplify Equation 3.3 by introducing an auxiliary angle E called
the eccentric anomaly, which is shown in Figure 3.3. This is done by circumscribing
the ellipse with a concentric auxiliary circle having a radius equal to the semimajor
axis a of the ellipse. Let S be that point on the ellipse whose true anomaly is 6.
Through point S we pass a perpendicular to the apse line, intersecting the auxiliary
circle at point Q and the apse line at point V. The angle between the apse line and the
radius drawn from the center of the circle to Q on its circumference is the eccentric
anomaly E. Observe that E lags 6 from P to A, whereas it leads 6 from A to P.

To find E as a function of 6, we first observe from Figure 3.3 that, in terms
of the eccentric anomaly, OV =acosE whereas in terms of the true anomaly,
OV =ae+rcosf. Thus

acosE = ae + rcos6
Using Equation 2.62, r = a(1 — e?)/(1 + e cos §), we can write this as

a(l — e*) cosf

acosE = ae +
14+ ecosf

Simplifying the right-hand side, we get

0
cosE = LTSy + cos (3.7a)
1+ ecosb
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Figure3.4 For 0 < cosE < 1, E can lie in the first or fourth quadrant. For —1 < cos E < 0, E can lie in the
second or third quadrant.

Solving this for cos & we obtain the inverse relation,

e —cosE
c0$f = ————— (3.7b)
ecosE —1
Substituting Equation 3.7a into the trigonometric identity sin® E + cos? E=1 and
solving for sin E yields
V1 —e?sinf
SNE= ———— (3.8)
1+ ecosf
Equation 3.7a would be fine for obtaining E from 6, except that, given a value of
cos E between —1 and 1, there are two values of E between 0° and 360°, as illustrated
in Figure 3.4. The same comments hold for Equation 3.8. To resolve this quadrant
ambiguity, we use the following trigonometric identity
E 1—cosE

tan?= = ———— (3.9
2 1+ cosE

From Equation 3.7a

1 E= 1790 0 0 and 14 cosE= (1+e)
— COS = — € an COS = e
1+ ecosf 1+ ecosf

Therefore,

bE 1—e 1—cos® 1—e ,0
tan” — = = tan™ —
2 1+e 1+cosf® 1+4e 2
where the last step required applying the trig identity in Equation 3.9 to the term

(1 — cos€)/(1+ cos®). Finally, therefore, we obtain

1—
1+

Q

E 0
tan — = tan — (3.10a)
2 2

x

or

—_

E:2tan_1(
14+

[\

0
tan 5) (3.10b)

(2
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Figure 3.6
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To any value of tan(E/2) there corresponds a unique value of E in the range 0 to 2.
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Mean anomaly, M,
B

T 27
Eccentric anomaly, E

Plot of Kepler’s equation for an elliptical orbit.

Observe from Figure 3.5 that for any value of tan(E/2), there is only one value of E
between 0° and 360°. There is no quadrant ambiguity.
Substituting Equations 3.8 and 3.10b into Equation 3.3 yields Kepler’s equation,

M, =E —esinE (3.11)

This monotonically increasing relationship between mean anomaly and eccentric
anomaly is plotted for several values of eccentricity in Figure 3.6.
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Figure 3.7 Newton’s method for finding a root of f(x) =0.

Given the true anomaly 6, we calculate the eccentric anomaly E using Equations
3.10. Substituting E into Kepler’s formula, Equation 3.11, yields the mean anomaly
directly. From the mean anomaly and the period T we find the time (since periapsis)
from Equation 3.5,

M,
t=—T (3.12)
2

On the other hand, if we are given the time, then Equation 3.12 yields the mean
anomaly M,. Substituting M, into Kepler’s equation we get the following expression
for the eccentric anomaly,

E —esinE =M,

We cannot solve this transcendental equation directly for E. A rough value of E might
be read off Figure 3.6. However, an accurate solution requires an iterative, ‘trial and
error’ procedure.

Newton’s method, or one of its variants, is one of the more common and efficient
ways of finding the root of a well-behaved function. To find a root of the equation
f(x) =0 in Figure 3.7, we estimate it to be x;, and evaluate the function f(x) and its
first derivative f’(x) at that point. We then extend the tangent to the curve at f(x;)
until it intersects the x axis at x;;1, which becomes our updated estimate of the root.
The intercept x;1; is found by setting the slope of the tangent line equal to the slope
of the curve at x;, that is,

0 —f(xi)
g = ST
Xi+1 — Xi
from which we obtain
fxi)
i+l = Xj — —— 3.13
A f/(xi) (3.13)

The process is repeated, using x;1; to estimate x;,, and so on, until the root has been
found to the desired level of precision.
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To apply Newton’s method to the solution of Kepler’s equation, we form the
function

f(E) =E —esinE — M,
and seek the value of eccentric anomaly that makes f (E) =0. Since
f(E)=1—ecosE
for this problem Equation 3.13 becomes

Bl — B E; —esinE; — M, (3.14)
= 1 —ecosE; )

Solve Kepler’s equation for the eccentric anomaly E given the eccentricity e and the
mean anomaly M,. See Appendix D.2 for the implementation of this algorithm in
MATLAB®.

1. Choose an initial estimate of the root E as follows (Prussing and Conway, 1993).
If M, <7, then E=M, +e¢/2. If M, >, then E=M, — e¢/2. Remember that
the angles E and M, are in radians. (When using a hand-held calculator, be sure
it is in radian mode.)

2. At any given step, having obtained E; from the previous step, calculate
f(E;)=E; —esinE; — M, and f'(E;) =1 — e cos E;.
3. Calculate ratio; =f (E;) /f'(E;).

4. If |ratio;| exceeds the chosen tolerance (e.g., 107%), then calculate an updated
value of E

E;4) =E; — ratio;
Return to step 2.

5. If |ratio;| is less than the tolerance, then accept E; as the solution to within the
chosen accuracy.

A geocentric elliptical orbit has a perigee radius of 9600 km and an apogee radius of
21000 km. Calculate the time to fly from perigee P to a true anomaly of 120°.

The eccentricity is readily obtained from the perigee and apogee radii by means of
Equation 2.74,

Ta—Tp 21000 — 9600
ra+1, 21000 4 9600

e= = 0.37255 (a)

We find the angular momentum using the orbit equation,

W 1
9600 = = h=72472km?/s
398600 1 + 0.37255 cos(0)

With h and e, the period of the orbit is obtained from Equation 2.72,

o2 < h )3 27 < 72472 >3 18834 )
_ == — = S
W \J1-e 398 600% \ /1 — 0.372552
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(Example 3.1
continued)

Figure 3.8

EXAMPLE
3.2

9600 km

Geocentric elliptical orbit.

Equation 3.10a yields the eccentric anomaly from the true anomaly,

E 1—e 0 1 —0.37255 120°
tan — = tan — = tan =1.1711 = E =1.7281rad
2 1+e 2 14 0.37255 2

Then Kepler’s equation, Equation 3.11, is used to find the mean anomaly,

M, = 1.7281 — 0.372555sin 1.7281 = 1.3601 rad

Finally, the time follows from Equation 3.12,

M, 1.3601
2

18834 = 4077s (1.132hr)

In the previous example, find the true anomaly at three hours after perigee passage.

Since the time (10 800 seconds) is greater than one-half the period, the true anomaly
must be greater than 180°.

First, we use Equation 3.1