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Networked structures arise in a wide array of different contexts
such as technological and transportation infrastructures, social
phenomena, and biological systems. These highly interconnected
systems have recently been the focus of a great deal of attention
that has uncovered and characterized their topological complexity.
Along with a complex topological structure, real networks display
a large heterogeneity in the capacity and intensity of the connec-
tions. These features, however, have mainly not been considered
in past studies where links are usually represented as binary states,
i.e., either present or absent. Here, we study the scientific collab-
oration network and the world-wide air-transportation network,
which are representative examples of social and large infrastruc-
ture systems, respectively. In both cases it is possible to assign to
each edge of the graph a weight proportional to the intensity or
capacity of the connections among the various elements of the
network. We define appropriate metrics combining weighted and
topological observables that enable us to characterize the complex
statistical properties and heterogeneity of the actual strength of
edges and vertices. This information allows us to investigate the
correlations among weighted quantities and the underlying topo-
logical structure of the network. These results provide a better
description of the hierarchies and organizational principles at the
basis of the architecture of weighted networks.

A large number of natural and man-made systems are struc-
tured in the form of networks. Typical examples include

large communication systems (the Internet, the telephone net-
work, the World Wide Web), transportation infrastructures
(railroad and airline routes), biological systems (gene and�or
protein interaction networks), and a variety of social interaction
structures (1–3). The macroscopic properties of these networks
have been the subject of intense scientific activity that has
highlighted the emergence of a number of significant topological
features. Specifically, many of these networks show the small-
world property (4), which implies that the network has an
average topological distance between the various nodes increas-
ing very slowly with the number of nodes (logarithmically or even
slower), despite showing a large degree of local interconnect-
edness typical of more ordered lattices. Additionally, several of
these networks are characterized by a statistical abundance of
‘‘hubs’’ with a very large number of connections k compared with
the average degree value �k�. The empirical evidence collected
from real data indicates that this distinctive feature finds its
statistical characterization in the presence of scale-free degree
distributions P(k), i.e., showing a power-law behavior P(k) � k��

for a significant range of values of k (5). These topological
features turn out to be extremely relevant because they have a
strong impact in assessing such networks’ physical properties as
their robustness or vulnerability (6–9).

While these findings alone might provide insight for threat
analysis and policy decisions, networks are specified not only by
their topology but also by the dynamics of information or traffic
f low taking place on the structure. In particular, the heteroge-
neity in the intensity of connections may be very important in the
understanding of social systems. Analogously, the amount of
traffic characterizing the connections in communication systems
and large transport infrastructures is fundamental for a full
description of these networks.

Motivated by these observations, we undertake in this paper
the statistical analysis of complex networks whose edges have
been assigned a given weight (the flow or the intensity) and thus
can be generally described in terms of weighted graphs (10, 11).
Working with two typical examples of this kind of network, we
introduce some metrics that combine in a natural way both the
topology of the connections and the weight assigned to them.
These quantities provide a general characterization of the het-
erogenous statistical properties of weights and identify alterna-
tive definitions of centrality, local cohesiveness, and affinity. By
appropriate measurements it is also possible to exploit the
correlation between the weights and the topological structure of
the graph, unveiling the complex architecture shown by real
weighted networks.

Weighted Networks Data
To proceed to the general analysis of complex weighted networks
we consider two specific examples for which it is possible to have
a full characterization of the links among the elements of the
systems, the world-wide airport network (WAN) and the scien-
tist collaboration network (SCN).

WAN. We analyze the International Air Transportation Associ-
ation (www.iata.org) database containing the world list of air-
ports pairs connected by direct f lights and the number of
available seats on any given connection for the year 2002. The
resulting air-transportation graph comprises N � 3,880 vertices
denoting airports and E � 18,810 edges accounting for the
presence of a direct f light connection. The average degree of the
network is �k� � 2E�N � 9.70, while the maximal degree is 318.
The topology of the graph exhibits both small-world and scale-
free properties as already observed in different dataset analyses
(12, 13). In particular, the average shortest path length, mea-
sured as the average number of edges separating any two nodes
in the network, shows the value ��� � 4.37, very small compared
with the network size N. The degree distribution takes the form
P(k) � k��f(k�kx), where � � 2.0 and f(k�kx) is an exponential
cut-off function that finds its origin in physical constraints on the
maximum number of connections that a single airport can handle
(3, 13). The airport connection graph is therefore a clear
example of a network with an heterogeneous degree distribution,
showing scale-free properties on a wide range of degree values.

SCN. We consider the network of scientists who have authored
manuscripts submitted to the e-Print Archive relative to con-
densed matter physics (http:��xxx.lanl.gov�archive�cond-mat)
between 1995 and 1998. Scientists are identified with nodes, and
an edge exists between two scientists if they have coauthored at
least one paper. The resulting connected network has N � 12,722
nodes, with an average degree (i.e., average number of collab-
orators) �k� � 6.28 and maximal degree 97. The topological
properties of this network and other similar networks of scien-
tific collaborations have been studied in refs. 14–16.

Abbreviations: WAN, world-wide airport network; SCN, scientist collaboration network.
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The properties of a graph can be expressed by its adjacency
matrix aij, whose elements take the value 1 if an edge connects
the vertex i to the vertex j and 0 otherwise. The data contained
in the previous datasets permit one to go beyond this topological
representation by defining a weighted graph (10) that assigns a
weight or value characterizing each connecting link. In the case
of the WAN the weight wij of an edge linking airports i and j
represents the number of available seats in flights between these
two airports. The inspection of the weights shows that the
average numbers of seats in both directions are identical wij � wji

for an overwhelming majority of edges. In the following we will
thus work with the symmetric undirected graph and avoid the
complication deriving from flow imbalances. We show an ex-
ample of the resulting weighted graph in Fig. 1. Noticeably, the
above definition of weights is a straightforward and objective
measure of the traffic f low on top of the network.

For the SCN we follow the definition of weight introduced in
refs. 14 and 15: The intensity wij of the interaction between two
collaborators i and j is defined as

wij � �
p

�i
p�j

p

np � 1
if i � j, wii � 0, [1]

where the index p runs over all papers, np is the number of
authors of paper p, and �i

p is 1 if author i has contributed to paper
p and 0 otherwise. While any definition of the intensity of a
connection in social networks depends on the particular ele-
ments chosen to be relevant, the above definition seems to be
rather objective and representative of the scientific interaction:
It is large for collaborators having many papers in common but
the contribution to the weight introduced by any given paper is
inversely proportional to the number of authors.

Centrality and Weights
To take into account the information provided by the weighted
graph, we shall identify the appropriate quantities characterizing
its structure and organization at the statistical level. The statis-
tical analysis of weights wij between pairs of vertices indicates the
presence of right-skewed distributions, already signaling a high
level of heterogeneity in the system for both the WAN and the
SCN as also reported in refs. 12, 14, and 15. It has been observed,
however, that the individual edge weights do not provide a
general picture of the network’s complexity (11). A more
significant measure of the network properties in terms of the
actual weights is obtained by extending the definition of vertex
degree ki � ¥j aij in terms of the vertex strength si, defined as

si � �
j�1

N

aijwij. [2]

This quantity measures the strength of vertices in terms of the
total weight of their connections. In the case of the WAN the
vertex strength simply accounts for the total traffic handled by
each airport. For the SCN, on the other hand, the strength is a
measure of scientific productivity because it is equal to the total
number of publications of any given scientist, excluding single-
author publications. This quantity is a natural measure of the
importance or centrality of a vertex i in the network.

The identification of the most central nodes in the system is a
major issue in network characterization (17). The most intuitive
topological measure of centrality is given by the degree: more
connected nodes are more central. However, more is not nec-
essarily better. Indeed, by considering solely the degree of a node
we overlook that nodes with small degree may be crucial for
connecting different regions of the network by acting as bridges.
To quantitatively account for the role of such nodes, between-
ness centrality (14, 15, 17, 18) has been defined as the number
of shortest paths between pairs of vertices that pass through a
given vertex.¶ Central nodes are therefore part of more shortest
paths within the network than peripheral nodes. Moreover, the
betweenness centrality is often used in transport networks to
provide an estimate of the traffic handled by the vertices,
assuming that the number of shortest paths is a zeroth-order
approximation to the frequency of use of a given node.� The
above definition of centrality relies only on topological elements.
It is therefore intuitive to consider the alternative definition of
centrality constructed by looking at the strength si of the vertices
as a more appropriate definition of the importance of a vertex
in weighted networks. For instance, in the case of the WAN this
quantity provides the actual traffic going through the vertex i,
and it is natural to study how it compares and correlates with
other topological measures of centrality.

The probability distribution P(s) that a vertex has strength s is
heavy tailed in both networks, and the functional behavior
exhibits similarities with the degree distribution P(k) (see Fig. 2).
A precise functional description of the heavy-tailed distributions
may be very important in understanding the network evolution
and will be deferred to future analysis. This behavior is not
unexpected because it is plausible that the strength si increases
with the vertex degree ki, and thus the slow decaying tail of P(s)
stems directly from the very slow decay of the degree distribu-
tion. To shed more light on the relationship between the vertices’
strength and degree, we investigate the dependence of si on ki.
We find that the average strength s(k) of vertices with degree k
increases with the degree as

s�k� � k�. [3]

In the absence of correlations between the weight of edges and
the degree of vertices, the weights wij are on average independent
of i and j, and therefore we can approximate wij � �w� �
(2E)�1¥i,j aijwij, where �w� is the average weight in the network.
From Eq. 2 we then have si � �w�¥j aij � �w�ki. That is, the
strength of a vertex is simply proportional to its degree, yielding
an exponent � � 1, and the two quantities provide therefore the
same information on the system. In Fig. 3 we report the behavior

¶More precisely, if Dhj is the total number of shortest paths from h to j and Dhj(i) is the
number of these shortest paths that pass through the vertex i, the betweenness of the
vertex i is defined as bi � ¥ Dhj(i)�Dhj, where the sum runs over all h, j pairs with j � h �

i. An efficient algorithm to compute betweenness centrality is reported in ref. 19.

�For the airport network, the analysis of the betweenness centrality and its correlation with
the degree has been discussed in ref. 13.

Fig. 1. Pictorial representation of the weighted graph obtained from the
airport network data. Major U.S. airports are connected by edges denoting
the presence of a nonstop flight in both directions whose weights represent
the number of available seats (million�year).
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obtained for both the real weighted networks and their random-
ized versions, generated by a random redistribution of the actual
weights on the existing topology of the network. For the SCN the
curves are very similar and well fitted by the uncorrelated
approximation s(k) � �w�k. Interestingly, this is not the case of
the WAN. Fig. 3B clearly shows a very different behavior for the
real data set and its randomized version. In particular, the
power-law fit for the real data gives an ‘‘anomalous’’ exponent
�WAN � 1.5 	 0.1. This value implies that the strength of vertices
grows faster than their degree, i.e., the weight of edges belonging
to highly connected vertices tends to have a value higher than the
one corresponding to a random assignment of weights. This
tendency denotes a strong correlation between the weight and
the topological properties in the WAN, where the larger is an
airport, the more traffic it can handle.

The fingerprint of these correlations is also observed in the
dependence of the weight wij on the degrees of the end-point
nodes ki and kj. As we can see in Fig. 4, for the WAN the behavior
of the average weight as a function of the end-point degrees can
be well approximated by a power-law dependence

�wij� � �kikj�
� [4]

with an exponent � � 0.5 	 0.1. This exponent can be related to
the � exponent by noticing that si � ki �wij� � ki

1
�kj
�, resulting

in � � 1 
 �, if the topological correlations between the degrees
of connected vertices can be neglected. This is indeed the case
of the WAN, where the above scaling relation is well satisfied by
the numerical values provided by the independent measure-

ments of the exponents. In the SCN, instead, �wij� is almost
constant for more than two decades, confirming a general lack
of correlations between the weights and the vertex degrees.

Analogously, a study of the average value s(b) of the strength
for vertices with betweenness b shows that the functional be-
havior can be approximated by a scaling form s(b) � b� with �SCN
� 0.5 and �WAN � 0.8 for the SCN and the WAN, respectively.
As before, the comparison between the behavior of the real data
and the randomized case shows more pronounced differences in
the case of the WAN. In both networks, the strength grows with
the betweenness faster than in the randomized case, especially in
the WAN. This behavior is another clear signature of the

Fig. 2. (A) Degree (Inset) and strength distribution in the SCN. The degree k
corresponds to the number of coauthors of each scientist, and the strength s
represents the scientist’s total number of publications. The distributions are
heavy-tailed even if it is not possible to distinguish a definite functional form.
(B) The same distributions for the WAN. The degree k (Inset) is the number of
nonstop connections to other airports, and the strength s is the total number
of passengers handled by any given airport. In this case, the degree distribu-
tion can be approximated by the power-law behavior P(k) � k�� with � � 1.8 	
0.2. The strength distribution has a heavy tail extending over more than four
orders of magnitude.

Fig. 3. Average strength s(k) as function of the degree k of nodes. (A) In the
SCN the real data are very similar to those obtained in a randomized weighted
network. Only at very large k values is it possible to observe a slight departure
from the expected linear behavior. (B) In the WAN real data follow a power-
law behavior with exponent � � 1.5 	 0.1. This value denotes anomalous
correlations between the traffic handled by an airport and the number of its
connections.

Fig. 4. Average weight as a function of the end-point degree. The solid line
corresponds to a power-law behavior �wij� � (kikj)�, with exponent � � 0.5 	
0.1. In the case of the SCN it is possible to observe an almost flat behavior for
roughly two orders of magnitude.
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correlations between weighted properties and the network
topology.

Structural Organization of Weighted Networks
Along with the vertices hierarchy imposed by the strength
distribution, the larger the more central, complex networks show
an architecture imposed by the structural and administrative
organization of these systems. For instance, topical areas and
national research structures give rise to well defined groups or
communities in the SCN. In the WAN, on the other hand,
different hierarchies correspond to domestic or regional airport
groups and intracontinental transport systems; political or eco-
nomic factors can impose additional constraints on the network
structure (13). To uncover these structures, some topological
quantities are customarily studied. The clustering coefficient
measures the local group cohesiveness and is defined for any
vertex i as the fraction of connected neighbors of i (4). The
average clustering coefficient C � N�1¥i ci thus expresses the
statistical level of cohesiveness measuring the global density of
interconnected vertex triplets in the network. Further informa-
tion can be gathered by inspecting the average clustering coef-
ficient C(k) restricted to classes of vertices with degree k. In real
networks (20, 21), C(k)exhibits a highly nontrivial behavior with
a power-law decay as a function of k, signaling a hierarchy in
which low degree vertices belong generally to well intercon-
nected communities (high clustering coefficient), while hubs
connect many vertices that are not directly connected (small
clustering coefficient) (20, 21). Another quantity used to probe
the networks’ architecture is the average degree of nearest
neighbors, knn(k), for vertices of degree k (22). This last quantity
is related to the correlations between the degree of connected
vertices (22, 23) because it can be expressed as knn(k) � ¥k�

k�P(k��k), where P(k��k) is the conditional probability that a given
vertex with degree k is connected to a vertex of degree k�. In the
absence of degree correlations, P(k��k) does not depend on k and
neither does the average nearest neighbors’ degree; i.e., knn(k) �
constant (22). In the presence of correlations, the behavior of
knn(k) identifies two general classes of networks. If knn(k) is an
increasing function of k, vertices with high degree have a larger
probability to be connected with large degree vertices. This
property is referred to in physics and social sciences as assortative
mixing (24). In contrast, a decreasing behavior of knn(k) defines
disassortative mixing, in the sense that high-degree vertices have
a majority of neighbors with low degree, whereas the opposite
holds for low-degree vertices.

The above quantities provide clear signatures of a structural
organization of networks in which different degree classes show
different properties in the local connectivity structure. However,
they are defined solely on topological grounds, and the inclusion
of weights and their correlations might change consistently our
view of the hierarchical and structural organization of the
network. This can be easily understood with the simple example
of a network in which the weights of all edges forming triples of
interconnected vertices are extremely small. Even for a large
clustering coefficient, it is clear that these triples have a minor
role in the network dynamics and organization, and that the
clustering properties are definitely overestimated by a simple
topological analysis. Similarly, high-degree vertices could be
connected to a majority of low-degree vertices while concen-
trating the largest fraction of their strength only on the vertices
with high degree. In this case the topological information would
point to disassortative properties, whereas the network could be
considered assortative in an effective way, because the more
relevant edges in term of weights are linking high-degree
vertices.

To solve the previous incongruities we introduce metrics that
combine the topological information with the weight distribution

of the network. First, we consider the weighted clustering coef-
ficient defined as (see Fig. 5)

ci
w �

1
si�ki � 1�

�
j,h

�wij � wih�

2
aijaihajh. [5]

This coefficient is a measure of the local cohesiveness that takes
into account the importance of the clustered structure on the
basis of the amount of traffic or interaction intensity actually
found on the local triplets. Indeed, ci

w counts for each triplet
formed in the neighborhood of the vertex i the weight of the two
participating edges of the vertex i. In this way we are considering
not just the number of closed triplets in the neighborhood of a
vertex but also their total relative weight with respect to the
strength of the vertex. The normalization factor si(ki � 1)
accounts for the weight of each edge times the maximum possible
number of triplets in which it may participate, and it ensures that
0 	 ci

w 	 1. Consistently, the ci
w definition recovers the topo-

logical clustering coefficient in the case that wij � constant. Next
we define Cw and Cw(k) as the weighted clustering coefficient
averaged over all vertices of the network and over all vertices
with degree k, respectively. These quantities provide global
information on the correlation between weights and topology,
especially by comparing them with their topological analogs. In
the case of a large randomized network (lack of correlations) it
is easy to see that Cw � C and Cw(k) � C(k). In real weighted
networks, however, we can face two opposite cases. If Cw � C,
we are in presence of a network in which the interconnected
triplets are more likely formed by the edges with larger weights.
On the other hand, Cw  C signals a network in which the
topological clustering is generated by edges with low weight. In
this case the clustering has a minor effect in the organization of
the network because the largest part of the interactions (traffic,
frequency of the relations, etc.) is occurring on edges not
belonging to interconnected triplets. The same may happen for
Cw(k), for which it is also possible to analyze the variations with
respect to the degree class k.

Along with the weighted clustering coefficient, we introduce
the weighted average nearest-neighbors degree, defined as (see
Fig. 5)

knn,i
w �

1
si
�
j�1

N

aijwijkj. [6]

In this case, we perform a local weighted average of the
nearest-neighbor degree according to the normalized weight of
the connecting edges, wij�si. This definition implies that knn,i

w �
knn,i if the edges with the larger weights are pointing to the
neighbors with larger degree and knn,i

w  knn,i in the opposite case.

Fig. 5. Examples of local configurations whose topological and weighted
quantities are different. In both cases the central vertex (filled) has a very
strong link with only one of its neighbors. The weighted clustering and
average nearest neighbors degree capture more precisely the effective level
of cohesiveness and affinity due to the actual interaction strength.
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The knn,i
w thus measures the effective affinity to connect with

high- or low-degree neighbors according to the magnitude of the
actual interactions. As well, the behavior of the function knn

w (k)
marks the weighted assortative or disassortative properties con-
sidering the actual interactions among the system’s elements.

As a general test, we inspect the results obtained for both the
SCN and the WAN by comparing the regular topological
quantities with those obtained with the weighted definition
introduced here. The topological measurements tell us that the
SCN has a continuously decaying spectrum C(k) (see Fig. 6A).
This implies that hubs present a much lower clustered neigh-
borhood than low-degree vertices. This effect can be inter-
preted as the evidence that authors with few collaborators
usually work within a well defined research group in which all
of the scientists collaborate (high clustering). Authors with a
large degree, however, collaborate with different groups and
communities, which in their turn do not often have collabo-
rations, thus creating a lower clustering coefficient. Further-
more, the SCN exhibits an assortative behavior in agreement
with the general evidence that social networks are usually
denoted by a strong assortative character (24) (see Fig. 6B).
The analysis of weighted quantities confirms this topological
picture, providing further information on the network archi-
tecture. The weighted clustering coefficient is very close to the
topological one (Cw�C � 1). This fact states in a quantitative
way that group collaborations tend on average to be stable
and determine the average intensity of the interactions in
the network. In addition, the inspection of Cw(k) (see Fig. 6A)
shows generally that for k 
 10 the weighted clustering
coefficient is larger than the topological one. This difference
implies that high-degree authors (i.e., with many collabora-
tors) tend to publish more papers with interconnected groups
of coauthors. This finding suggests that inf luential scientists
form stable research groups where the largest part of their
production is obtained. Finally, the assortative properties find

a clearcut confirmation in the weighted analysis with a knn
w (k)

growing as a power of k.
A different picture is found in the WAN, where the weighted

analysis provides a richer and somehow different scenario
(Fig. 7). This network also shows a decaying C(k), a conse-
quence of the role of large airports that provide nonstop
connections to very far destinations on an international and
intercontinental scale. These destinations are usually not
interconnected among them, giving rise to a low clustering
coefficient for the hubs. We find, however, that Cw�C � 1.1,
indicating an accumulation of traffic on interconnected groups
of vertices. The weighted clustering coefficient Cw(k) also has
a different behavior in that its variation is much more limited
in the whole spectrum of k. This observation implies that
high-degree airports have a progressive tendency to form
interconnected groups with high-traffic links, thus balancing
the reduced topological clustering. Because high traffic is
associated to hubs, we have a network in which high-degree
nodes tend to form cliques with nodes with equal or higher
degree, the so-called rich-club phenomenon (25). Interesting
evidence emerges also from the comparison of knn(k) and
knn

w (k). The topological knn(k) does show an assortative behav-
ior only at small degrees. For k � 10, knn(k) approaches a
constant value, a fact revealing an uncorrelated structure in
which vertices with very different degrees have a very similar
neighborhood. The analysis of the weighted knn

w (k), however,
exhibits a pronounced assortative behavior in the whole k
spectrum, providing a different picture in which high-degree
airports have a larger affinity for other large airports where the
major part of the traffic is directed.

Conclusions
We have shown that a more complete view of complex networks
is provided by the study of the interactions defining the links of
these systems. The weights characterizing the various connec-

Fig. 6. Topological and weighted quantities for the SCN. (A) The weighted
clustering separates from the topological one around k 
 10. This value marks
a difference for authors with larger number of collaborators. (B) The assor-
tative behavior is enhanced in the weighted definition of the average nearest-
neighbors degree.

Fig. 7. Topological and weighted quantities for the WAN. (A) The weighted
clustering coefficient is larger than the topological one in the whole degree
spectrum. (B) knn(k) reaches a plateau for k � 10 denoting the absence of
marked topological correlations. In contrast, knn

w (k) exhibits a more definite
assortative behavior.

Barrat et al. PNAS � March 16, 2004 � vol. 101 � no. 11 � 3751

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ly

 2
9,

 2
02

1 



tions exhibit complex statistical features with highly varying
distributions and power-law behavior. In particular we have
considered the specific examples of SCN and WAN where it is
possible to appreciate the importance of the correlations be-
tween weights and topology in the characterization of real
network properties. Indeed, the analysis of the weighted quan-
tities and the study of the correlations between weights and
topology provide a complementary perspective on the structural
organization of the network that might be undetected by quan-
tities based only on topological information. Our study thus
offers a quantitative and general approach to understand the
complex architecture of real weighted networks.
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Generalitat de Catalunya (Spain).

1. Albert, R. & Barabási, A.-L. (2002) Rev. Mod. Phys. 74, 47–97.
2. Dorogovtsev, S. N. & Mendes, J. F. F. (2003) Evolution of Networks: From

Biological Nets to the Internet and WWW (Oxford Univ. Press, Oxford).
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