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Abstract

Timely accurate traffic forecast is crucial for ur-
ban traffic control and guidance. Due to the high
nonlinearity and complexity of traffic flow, tradi-
tional methods cannot satisfy the requirements of
mid-and-long term prediction tasks and often ne-
glect spatial and temporal dependencies. In this pa-
per, we propose a novel deep learning framework,
Spatio-Temporal Graph Convolutional Networks
(STGCN), to tackle the time series prediction prob-
lem in traffic domain. Instead of applying regu-
lar convolutional and recurrent units, we formulate
the problem on graphs and build the model with
complete convolutional structures, which enable
much faster training speed with fewer parameters.
Experiments show that our model STGCN effec-
tively captures comprehensive spatio-temporal cor-
relations through modeling multi-scale traffic net-
works and consistently outperforms state-of-the-art
baselines on various real-world traffic datasets.

1 Introduction

Transportation plays a vital role in everybody’s daily life. Ac-
cording to a survey in 2015, U.S. drivers spend about 48 min-
utes on average behind the wheel daily.1 Under this circum-
stance, accurate real-time forecast of traffic conditions is of
paramount importance for road users, private sectors and gov-
ernments. Widely used transportation services, such as flow
control, route planning, and navigation, also rely heavily on
a high-quality traffic condition evaluation. In general, multi-
scale traffic forecast is the premise and foundation of urban
traffic control and guidance, which is also one of main func-
tions of the Intelligent Transportation System (ITS).
In the traffic study, fundamental variables of traffic flow,

namely speed, volume, and density are typically chosen as in-
dicators to monitor the current status of traffic conditions and

⇤Equal contributions.
†Corresponding author.
1https://aaafoundation.org/american-driving-survey-2014-2015/

to predict the future. Based on the length of prediction, traffic
forecast is generally classified into two scales: short-term (5
⇠ 30 min), medium and long term (over 30 min). Most preva-
lent statistical approaches (for example, linear regression) are
able to perform well on short interval forecast. However, due
to the uncertainty and complexity of traffic flow, those meth-
ods are less effective for relatively long-term predictions.
Previous studies on mid-and-long term traffic prediction

can be roughly divided into two categories: dynamical mod-
eling and data-driven methods. Dynamical modeling uses
mathematical tools (e.g. differential equations) and physi-
cal knowledge to formulate traffic problems by computational
simulation [Vlahogianni, 2015]. To achieve a steady state,
the simulation process not only requires sophisticated system-
atic programming but also consumes massive computational
power. Impractical assumptions and simplifications among
the modeling also degrade the prediction accuracy. Therefore,
with rapid development of traffic data collection and storage
techniques, a large group of researchers are shifting their at-
tention to data-driven approaches.
Classic statistical and machine learning models are two

major representatives of data-driven methods. In time-
series analysis, autoregressive integrated moving average
(ARIMA) and its variants are one of the most consolidated
approaches based on classical statistics [Ahmed and Cook,
1979; Williams and Hoel, 2003]. However, this type of model
is limited by the stationary assumption of time sequences
and fails to take the spatio-temporal correlation into account.
Therefore, these approaches have constrained representabil-
ity of highly nonlinear traffic flow. Recently, classic statistical
models have been vigorously challenged by machine learning
methods on traffic prediction tasks. Higher prediction accu-
racy and more complex data modeling can be achieved by
these models, such as k-nearest neighbors algorithm (KNN),
support vector machine (SVM), and neural networks (NN).
Deep learning approaches have been widely and suc-

cessfully applied to various traffic tasks nowadays. Sig-
nificant progress has been made in related work, for in-
stance, deep belief network (DBN) [Jia et al., 2016; Huang
et al., 2014], stacked autoencoder (SAE) [Lv et al., 2015;
Chen et al., 2016]. However, it is difficult for these dense
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networks to extract spatial and temporal features from the in-
put jointly. Moreover, within narrow constraints or even com-
plete absence of spatial attributes, the representative ability of
these networks would be hindered seriously.
To take full advantage of spatial features, some researchers

use convolutional neural network (CNN) to capture adjacent
relations among the traffic network, along with employing
recurrent neural network (RNN) on time axis. By combin-
ing long short-term memory (LSTM) network [Hochreiter
and Schmidhuber, 1997] and 1-D CNN, Wu and Tan [2016]
presented a feature-level fused architecture CLTFP for short-
term traffic forecast. Although it adopted a straightforward
strategy, CLTFP still made the first attempt to align spatial
and temporal regularities. Afterwards, Shi et al. [2015] pro-
posed the convolutional LSTM, which is an extended fully-
connected LSTM (FC-LSTM) with embedded convolutional
layers. However, the normal convolutional operation applied
restricts the model to only process grid structures (e.g. im-
ages, videos) rather than general domains. Meanwhile, recur-
rent networks for sequence learning require iterative training,
which introduces error accumulation by steps. Additionally,
RNN-based networks (including LSTM) are widely known to
be difficult to train and computationally heavy.
For overcoming these issues, we introduce several strate-

gies to effectively model temporal dynamics and spatial de-
pendencies of traffic flow. To fully utilize spatial informa-
tion, we model the traffic network by a general graph instead
of treating it separately (e.g. grids or segments). To handle
the inherent deficiencies of recurrent networks, we employ a
fully convolutional structure on time axis. Above all, we pro-
pose a novel deep learning architecture, the spatio-temporal
graph convolutional networks, for traffic forecasting tasks.
This architecture comprises several spatio-temporal convolu-
tional blocks, which are a combination of graph convolutional
layers [Defferrard et al., 2016] and convolutional sequence
learning layers, to model spatial and temporal dependencies.
To the best of our knowledge, it is the first time that to ap-
ply purely convolutional structures to extract spatio-temporal
features simultaneously from graph-structured time series in
a traffic study. We evaluate our proposed model on two real-
world traffic datasets. Experiments show that our framework
outperforms existing baselines in prediction tasks with multi-
ple preset prediction lengths and network scales.

2 Preliminary

2.1 Traffic Prediction on Road Graphs

Traffic forecast is a typical time-series prediction problem,
i.e. predicting the most likely traffic measurements (e.g.
speed or traffic flow) in the next H time steps given the pre-
vious M traffic observations as,
v̂t+1, ..., v̂t+H =

argmax
vt+1,...,vt+H

log P (vt+1, ..., vt+H |vt�M+1, ..., vt), (1)

where vt 2 Rn is an observation vector of n road segments
at time step t, each element of which records historical obser-
vation for a single road segment.
In this work, we define the traffic network on a graph and

focus on structured traffic time series. The observation vt is

vt+H…
vt…

wij

vt-M+1

Time

Figure 1: Graph-structured traffic data. Each vt indicates a frame
of current traffic status at time step t, which is recorded in a graph-
structured data matrix.

not independent but linked by pairwise connection in graph.
Therefore, the data point vt can be regarded as a graph sig-
nal that is defined on an undirected graph (or directed one) G
with weights wij as shown in Figure 1. At the t-th time step,
in graph Gt = (Vt, E ,W ), Vt is a finite set of vertices, corre-
sponding to the observations from nmonitor stations in a traf-
fic network; E is a set of edges, indicating the connectedness
between stations; while W 2 Rn⇥n denotes the weighted
adjacency matrix of Gt.

2.2 Convolutions on Graphs

A standard convolution for regular grids is clearly not appli-
cable to general graphs. There are two basic approaches cur-
rently exploring how to generalize CNNs to structured data
forms. One is to expand the spatial definition of a convolu-
tion [Niepert et al., 2016], and the other is to manipulate in
the spectral domain with graph Fourier transforms [Bruna et
al., 2013]. The former approach rearranges the vertices into
certain grid forms which can be processed by normal con-
volutional operations. The latter one introduces the spectral
framework to apply convolutions in spectral domains, often
named as the spectral graph convolution. Several following-
up studies make the graph convolution more promising by
reducing the computational complexity from O(n2) to linear
[Defferrard et al., 2016; Kipf and Welling, 2016].
We introduce the notion of graph convolution operator

“⇤G” based on the conception of spectral graph convolution,
as the multiplication of a signal x 2 Rn with a kernel ⇥,

⇥ ⇤G x = ⇥(L)x = ⇥(U⇤UT )x = U⇥(⇤)UT
x, (2)

where graph Fourier basis U 2 Rn⇥n is the matrix of
eigenvectors of the normalized graph Laplacian L = In �

D
� 1

2WD
� 1

2 = U⇤UT
2 Rn⇥n (In is an identity matrix,

D 2 Rn⇥n is the diagonal degree matrix withDii = ⌃jWij);
⇤ 2 Rn⇥n is the diagonal matrix of eigenvalues of L, and fil-
ter⇥(⇤) is also a diagonal matrix. By this definition, a graph
signal x is filtered by a kernel ⇥ with multiplication between
⇥ and graph Fourier transform U

T
x [Shuman et al., 2013].

3 Proposed Model

3.1 Network Architecture

In this section, we elaborate on the proposed architecture of
spatio-temporal graph convolutional networks (STGCN). As
shown in Figure 2, STGCN is composed of several spatio-
temporal convolutional blocks, each of which is formed as a
“sandwich” structure with two gated sequential convolution
layers and one spatial graph convolution layer in between.
The details of each module are described as follows.
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l l
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t
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Figure 2: Architecture of spatio-temporal graph convolutional net-
works. The framework STGCN consists of two spatio-temporal
convolutional blocks (ST-Conv blocks) and a fully-connected output
layer in the end. Each ST-Conv block contains two temporal gated
convolution layers and one spatial graph convolution layer in the
middle. The residual connection and bottleneck strategy are applied
inside each block. The input vt�M+1, ..., vt is uniformly processed
by ST-Conv blocks to explore spatial and temporal dependencies co-
herently. Comprehensive features are integrated by an output layer
to generate the final prediction v̂.

3.2 Graph CNNs for Extracting Spatial Features

The traffic network generally organizes as a graph structure.
It is natural and reasonable to formulate road networks as
graphs mathematically. However, previous studies neglect
spatial attributes of traffic networks: the connectivity and
globality of the networks are overlooked, since they are split
into multiple segments or grids. Even with 2-D convolu-
tions on grids, it can only capture the spatial locality roughly
due to compromises of data modeling. Accordingly, in our
model, the graph convolution is employed directly on graph-
structured data to extract highly meaningful patterns and fea-
tures in the space domain. Though the computation of kernel
⇥ in graph convolution by Eq. (2) can be expensive due to
O(n2) multiplications with graph Fourier basis, two approx-
imation strategies are applied to overcome this issue.

Chebyshev Polynomials Approximation To localize the
filter and reduce the number of parameters, the kernel ⇥ can
be restricted to a polynomial of ⇤ as ⇥(⇤) =

P
K�1
k=0 ✓k⇤k,

where ✓ 2 RK is a vector of polynomial coefficients. K

is the kernel size of graph convolution, which determines
the maximum radius of the convolution from central nodes.
Traditionally, Chebyshev polynomial Tk(x) is used to ap-
proximate kernels as a truncated expansion of order K�1 as
⇥(⇤) ⇡

P
K�1
k=0 ✓kTk(⇤̃) with rescaled ⇤̃ = 2⇤/�max � In

(�max denotes the largest eigenvalue of L) [Hammond et al.,
2011]. The graph convolution can then be rewritten as,

⇥ ⇤G x = ⇥(L)x ⇡

K�1X

k=0

✓kTk(L̃)x, (3)

where Tk(L̃) 2 Rn⇥n is the Chebyshev polynomial of order
k evaluated at the scaled Laplacian L̃ = 2L/�max � In. By
recursively computing K-localized convolutions through the

polynomial approximation, the cost of Eq. (2) can be reduced
to O(K|E|) as Eq. (3) shows [Defferrard et al., 2016].

1
st
-order Approximation A layer-wise linear formulation

can be defined by stacking multiple localized graph convo-
lutional layers with the first-order approximation of graph
Laplacian [Kipf and Welling, 2016]. Consequently, a deeper
architecture can be constructed to recover spatial information
in depth without being limited to the explicit parameteriza-
tion given by the polynomials. Due to the scaling and nor-
malization in neural networks, we can further assume that
�max ⇡ 2. Thus, the Eq. (3) can be simplified to,

⇥ ⇤G x ⇡ ✓0x+ ✓1(
2

�max

L� In)x

⇡ ✓0x� ✓1(D
� 1

2WD
� 1

2 )x,

(4)

where ✓0, ✓1 are two shared parameters of the kernel. In
order to constrain parameters and stabilize numerical per-
formances, ✓0 and ✓1 are replaced by a single parameter ✓
by letting ✓ = ✓0 = �✓1; W and D are renormalized by
W̃ = W + In and D̃ii = ⌃jW̃ij separately. Then, the graph
convolution can be alternatively expressed as,

⇥ ⇤G x = ✓(In +D
� 1

2WD
� 1

2 )x

= ✓(D̃� 1
2 W̃ D̃

� 1
2 )x.

(5)

Applying a stack of graph convolutions with the 1st-order ap-
proximation vertically that achieves the similar effect as K-
localized convolutions do horizontally, all of which exploit
the information from the (K�1)-order neighborhood of cen-
tral nodes. In this scenario,K is the number of successive fil-
tering operations or convolutional layers in a model instead.
Additionally, the layer-wise linear structure is parameter-
economic and highly efficient for large-scale graphs, since
the order of the approximation is limited to one.

Generalization of Graph Convolutions The graph convo-
lution operator “⇤G” defined on x 2 Rn can be extended
to multi-dimensional tensors. For a signal with Ci channels
X 2 Rn⇥Ci , the graph convolution can be generalized by,

yj =
CiX

i=1

⇥i,j(L)xi 2 Rn
, 1  j  Co (6)

with the Ci ⇥ Co vectors of Chebyshev coefficients ⇥i,j 2

RK (Ci, Co are the size of input and output of the feature
maps, respectively). The graph convolution for 2-D variables
is denoted as “⇥ ⇤G X” with ⇥ 2 RK⇥Ci⇥Co . Specifically,
the input of traffic prediction is composed ofM frame of road
graphs as Figure 1 shows. Each frame vt can be regarded as
a matrix whose column i is the Ci-dimensional value of vt
at the i

th node in graph Gt, as X 2 Rn⇥Ci (in this case,
Ci = 1). For each time step t of M , the equal graph con-
volution operation with the same kernel ⇥ is imposed on
Xt 2 Rn⇥Ci in parallel. Thus, the graph convolution can
be further generalized in 3-D variables, noted as “⇥ ⇤G X ”
with X 2 RM⇥n⇥Ci .
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3.3 Gated CNNs for Extracting Temporal Features

Although RNN-based models become widespread in time-
series analysis, recurrent networks for traffic prediction still
suffer from time-consuming iterations, complex gate mecha-
nisms, and slow response to dynamic changes. On the con-
trary, CNNs have the superiority of fast training, simple struc-
tures, and no dependency constraints to previous steps. In-
spired by [Gehring et al., 2017], we employ entire convolu-
tional structures on time axis to capture temporal dynamic
behaviors of traffic flows. This specific design allows parallel
and controllable training procedures through multi-layer con-
volutional structures formed as hierarchical representations.
As Figure 2 (right) shows, the temporal convolutional layer

contains a 1-D causal convolution with a width-Kt kernel fol-
lowed by gated linear units (GLU) as a non-linearity. For
each node in graph G, the temporal convolution explores
Kt neighbors of input elements without padding which lead-
ing to shorten the length of sequences by Kt-1 each time.
Thus, input of temporal convolution for each node can be
regarded as a length-M sequence with Ci channels as Y 2

RM⇥Ci . The convolution kernel � 2 RKt⇥Ci⇥2Co is de-
signed to map the input Y to a single output element [P Q] 2
R(M�Kt+1)⇥(2Co) (P , Q is split in half with the same size of
channels). As a result, the temporal gated convolution can be
defined as,

� ⇤T Y = P � �(Q) 2 R(M�Kt+1)⇥Co , (7)
where P ,Q are input of gates in GLU respectively;� denotes
the element-wise Hadamard product. The sigmoid gate �(Q)
controls which input P of the current states are relevant for
discovering compositional structure and dynamic variances
in time series. The non-linearity gates contribute to the ex-
ploiting of the full input filed through stacked temporal layers
as well. Furthermore, residual connections are implemented
among stacked temporal convolutional layers. Similarly, the
temporal convolution can also be generalized to 3-D variables
by employing the same convolution kernel � to every node
Yi 2 RM⇥Ci (e.g. sensor stations) in G equally, noted as
“� ⇤T Y” with Y 2 RM⇥n⇥Ci .

3.4 Spatio-temporal Convolutional Block

In order to fuse features from both spatial and temporal
domains, the spatio-temporal convolutional block (ST-Conv
block) is constructed to jointly process graph-structured time
series. The block itself can be stacked or extended based on
the scale and complexity of particular cases.
As illustrated in Figure 2 (mid), the spatial layer in the

middle is to bridge two temporal layers which can achieve
fast spatial-state propagation from graph convolution through
temporal convolutions. The “sandwich” structure also helps
the network sufficiently apply bottleneck strategy to achieve
scale compression and feature squeezing by downscaling and
upscaling of channels C through the graph convolutional
layer. Moreover, layer normalization is utilized within every
ST-Conv block to prevent overfitting.
The input and output of ST-Conv blocks are all 3-D tensors.

For the input vl 2 RM⇥n⇥C
l

of block l, the output vl+1
2

R(M�2(Kt�1))⇥n⇥C
l+1

is computed by,
v
l+1 = �l

1 ⇤T ReLU(⇥l
⇤G (�l

0 ⇤T v
l)), (8)

where �l

0, �l

1 are the upper and lower temporal kernel within
block l, respectively; ⇥l is the spectral kernel of graph con-
volution; ReLU(·) denotes the rectified linear units function.
After stacking two ST-Conv blocks, we attach an extra tem-
poral convolution layer with a fully-connected layer as the
output layer in the end (See the left of Figure 2). The tempo-
ral convolution layer maps outputs of the last ST-Conv block
to a single-step prediction. Then, we can obtain a final output
Z 2 Rn⇥c from the model and calculate the speed predic-
tion for n nodes by applying a linear transformation across
c-channels as v̂ = Zw + b, where w 2 Rc is a weight vector
and b is a bias. We use L2 loss to measure the performance
of our model. Thus, the loss function of STGCN for traffic
prediction can be written as,

L(v̂;W✓) =
X

t

||v̂(vt�M+1, ..., vt,W✓)� vt+1||
2
, (9)

where W✓ are all trainable parameters in the model; vt+1 is
the ground truth and v̂(·) denotes the model’s prediction.

We now summarize the main characteristics of our model
STGCN in the following,
• STGCN is a universal framework to process structured
time series. It is not only able to tackle traffic network
modeling and prediction issues but also to be applied to
more general spatio-temporal sequence learning tasks.

• The spatio-temporal block combines graph convolutions
and gated temporal convolutions, which can extract the
most useful spatial features and capture the most essen-
tial temporal features coherently.

• The model is entirely composed of convolutional struc-
tures and therefore achieves parallelization over input
with fewer parameters and faster training speed. More
importantly, this economic architecture allows the model
to handle large-scale networks with more efficiency.

4 Experiments

4.1 Dataset Description

We verify our model on two real-world traffic datasets,
BJER4 and PeMSD7, collected by Beijing Municipal Traffic
Commission and California Deportment of Transportation,
respectively. Each dataset contains key attributes of traffic
observations and geographic information with corresponding
timestamps, as detailed below.
BJER4 was gathered from the major areas of east ring

No.4 routes in Beijing City by double-loop detectors. There
are 12 roads selected for our experiment. The traffic data are
aggregated every 5 minutes. The time period used is from 1st
July to 31st August, 2014 except the weekends. We select the
first month of historical speed records as training set, and the
rest serves as validation and test set respectively.
PeMSD7 was collected from Caltrans Performance Mea-

surement System (PeMS) in real-time by over 39, 000 sensor
stations, deployed across the major metropolitan areas of Cal-
ifornia state highway system [Chen et al., 2001]. The dataset
is also aggregated into 5-minute interval from 30-second data
samples. We randomly select a medium and a large scale
among the District 7 of California containing 228 and 1, 026
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Figure 3: PeMS sensor network in District 7 of California (left),
each dot denotes a sensor station; Heat map of weighted adjacency
matrix in PeMSD7(M) (right).

stations, labeled as PeMSD7(M) and PeMSD7(L), respec-
tively, as data sources (shown in the left of Figure 3). The
time range of PeMSD7 dataset is in the weekdays of May
and June of 2012. We split the training and test sets based on
the same principles as above.

4.2 Data Preprocessing

The standard time interval in two datasets is set to 5 min-
utes. Thus, every node of the road graph contains 288 data
points per day. The linear interpolation method is used to fill
missing values after data cleaning. In addition, data input are
normalized by Z-Score method.
In BJER4, the topology of the road graph in Beijing east

No.4 ring route system is constructed by the deployment dia-
gram of sensor stations. By collating affiliation, direction and
origin-destination points of each road, the ring route system
can be digitized as a directed graph.
In PeMSD7, the adjacency matrix of the road graph is com-

puted based on the distances among stations in the traffic net-
work. The weighted adjacency matrix W can be formed as,

wij =

8
<

:
exp(�

d
2
ij

�2
), i 6= j and exp(�

d
2
ij

�2
) � ✏

0 , otherwise.
(10)

where wij is the weight of edge which is decided by dij (the
distance between station i and j). �2 and ✏ are thresholds to
control the distribution and sparsity of matrixW , assigned to
10 and 0.5, respectively. The visualization of W is presented
in the right of Figure 3.

4.3 Experimental Settings

All experiments are compiled and tested on a Linux cluster
(CPU: Intel(R) Xeon(R) CPU E5-2620 v4@ 2.10GHz, GPU:
NVIDIA GeForce GTX 1080). In order to eliminate atypical
traffic, only workday traffic data are adopted in our experi-
ment [Li et al., 2015]. We execute grid search strategy to
locate the best parameters on validations. All the tests use
60 minutes as the historical time window, a.k.a. 12 observed
data points (M = 12) are used to forecast traffic conditions
in the next 15, 30, and 45 minutes (H = 3, 6, 9).

Evaluation Metric & Baselines To measure and evaluate
the performance of different methods, Mean Absolute Er-
rors (MAE), Mean Absolute Percentage Errors (MAPE), and

Model BJER4 (15/ 30/ 45 min)
MAE MAPE (%) RMSE

HA 5.21 14.64 7.56
LSVR 4.24/ 5.23/ 6.12 10.11/ 12.70/ 14.95 5.91/ 7.27/ 8.81
ARIMA 5.99/ 6.27/ 6.70 15.42/ 16.36/ 17.67 8.19/ 8.38/ 8.72
FNN 4.30/ 5.33/ 6.14 10.68/ 13.48/ 15.82 5.86/ 7.31/ 8.58

FC-LSTM 4.24/ 4.74/ 5.22 10.78/ 12.17/ 13.60 5.71/ 6.62/ 7.44
GCGRU 3.84/ 4.62/ 5.32 9.31/ 11.41/ 13.30 5.22/ 6.35/ 7.58

STGCN(Cheb) 3.78/ 4.45/ 5.03 9.11/ 10.80/ 12.27 5.20/ 6.20/ 7.21
STGCN(1

st
) 3.83/ 4.51/ 5.10 9.28/ 11.19/ 12.79 5.29/ 6.39/ 7.39

Table 1: Performance comparison of different approaches on the
dataset BJER4.

Root Mean Squared Errors (RMSE) are adopted. We com-
pare our framework STGCN with the following baselines: 1).
Historical Average (HA); 2). Linear Support Victor Regres-
sion (LSVR); 3). Auto-Regressive Integrated Moving Aver-
age (ARIMA); 4). Feed-Forward Neural Network (FNN); 5).
Full-Connected LSTM (FC-LSTM) [Sutskever et al., 2014];
6). Graph Convolutional GRU (GCGRU) [Li et al., 2018].

STGCN Model For BJER4 and PeMSD7(M/L), the chan-
nels of three layers in ST-Conv block are 64, 16, 64 respec-
tively. Both the graph convolution kernel size K and tem-
poral convolution kernel size Kt are set to 3 in the model
STGCN(Cheb)with the Chebyshev polynomials approxima-
tion, while the K is set to 1 in the model STGCN(1

st
) with

the 1st-order approximation. We train our models by mini-
mizing the mean square error using RMSprop for 50 epochs
with batch size as 50. The initial learning rate is 10�3 with a
decay rate of 0.7 after every 5 epochs.

4.4 Experiment Results

Table 1 and 2 demonstrate the results of STGCN and base-
lines on the datasets BJER4 and PeMSD7(M/L). Our pro-
posed model achieves the best performance with statistical
significance (two-tailed T-test, ↵ = 0.01, P < 0.01) in all
three evaluation metrics. We can easily observe that tradi-
tional statistical and machine learning methods may perform
well for short-term forecasting, but their long-term predic-
tions are not accurate because of error accumulation, memo-
rization issues, and absence of spatial information. ARIMA
model performs the worst due to its incapability of handling
complex spatio-temporal data. Deep learning approaches
generally achieved better prediction results than traditional
machine learning models.

Benefits of Spatial Topology

Previous methods did not incorporate spatial topology and
modeled the time series in a coarse-grained way. Differently,
through modeling spatial topology of the sensors, our model
STGCN has achieved a significant improvement on short and
mid-and-long term forecasting. The advantage of STGCN is
more obvious on dataset PeMSD7 than BJER4, since the sen-
sor network of PeMS is more complicated and structured (as
illustrated in Figure 3), and our model can effectively utilize
spatial structure to make more accurate predictions.
To compare three methods based on graph convolution:

GCGRU, STGCN(Cheb) and STGCN(1st), we show their
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Model PeMSD7(M) (15/ 30/ 45 min) PeMSD7(L) (15/ 30/ 45 min)
MAE MAPE (%) RMSE MAE MAPE (%) RMSE

HA 4.01 10.61 7.20 4.60 12.50 8.05
LSVR 2.50/ 3.63/ 4.54 5.81/ 8.88/ 11.50 4.55/ 6.67/ 8.28 2.69/ 3.85/ 4.79 6.27/ 9.48/ 12.42 4.88/ 7.10/ 8.72
ARIMA 5.55/ 5.86/ 6.27 12.92/ 13.94/ 15.20 9.00/ 9.13/ 9.38 5.50/ 5.87/ 6.30 12.30/ 13.54/ 14.85 8.63/ 8.96/ 9.39
FNN 2.74/ 4.02/ 5.04 6.38/ 9.72/ 12.38 4.75/ 6.98/ 8.58 2.74/ 3.92/ 4.78 7.11/ 10.89/ 13.56 4.87/ 7.02/ 8.46

FC-LSTM 3.57/ 3.94/ 4.16 8.60/ 9.55/ 10.10 6.20/ 7.03/ 7.51 4.38/ 4.51/ 4.66 11.10/ 11.41/ 11.69 7.68/ 7.94/ 8.20
GCGRU 2.37/ 3.31/ 4.01 5.54/ 8.06/ 9.99 4.21/ 5.96/ 7.13 2.48/ 3.43/ 4.12 ⇤ 5.76/ 8.45/ 10.51 ⇤ 4.40/ 6.25/ 7.49 ⇤

STGCN(Cheb) 2.25/ 3.03/ 3.57 5.26/ 7.33/ 8.69 4.04/ 5.70/ 6.77 2.37/ 3.27/ 3.97 5.56/ 7.98/ 9.73 4.32/ 6.21/ 7.45
STGCN(1

st
) 2.26/ 3.09/ 3.79 5.24/ 7.39/ 9.12 4.07/ 5.77/ 7.03 2.40/ 3.31/ 4.01 5.63/ 8.21/ 10.12 4.38/ 6.43/ 7.81

Table 2: Performance comparison of different approaches on the dataset PeMSD7.

Figure 4: Speed prediction in the morning peak and evening rush
hours of the dataset PeMSD7.

Figure 5: Test RMSE versus the training time (left); Test MAE ver-
sus the number of training epochs (right). (PeMSD7(M))

predictions during morning peak and evening rush hours, as
shown in Figure 4. It is easy to observe that our proposal
STGCN captures the trend of rush hours more accurately than
other methods; and it detects the ending of the rush hours ear-
lier than others. Stemming from the efficient graph convolu-
tion and stacked temporal convolution structures, our model
is capable of fast responding to the dynamic changes among
the traffic network without over-reliance on historical average
as most of recurrent networks do.

Training Efficiency and Generalization

To see the benefits of the convolution along time axis in our
proposal, we summarize the comparison of training time be-
tween STGCN and GCGRU in Table 3. In terms of fairness,
GCGRU consists of three layers with 64, 64, 128 units re-
spectively in the experiment for PeMSD7(M), and STGCN
uses the default settings as described in Section 4.3. Our
model STGCN only consumes 272 seconds, while RNN-type
of model GCGRU spends 3, 824 seconds on PeMSD7(M).
This 14 times acceleration of training speed mainly bene-
fits from applying the temporal convolution instead of re-
current structures, which can achieve fully parallel training
rather than exclusively relying on chain structures as RNN

Dataset Time Consumption (s)
STGCN(Cheb) STGCN(1st) GCGRU

PeMSD7(M) 272.34 271.18 3824.54
PeMSD7(L) 1926.81 1554.37 19511.92

Table 3: Time consumptions of training on the dataset PeMSD7.

do. For PeMSD7(L), GCGRU has to use the half of batch
size since its GPU consumption exceeded the memory capac-
ity of a single card (results marked as “*” in Table 2); while
STGCN only need to double the channels in the middle of
ST-Conv blocks. Even though our model still consumes less
than a tenth of the training time of model GCGRU under this
circumstance. Meanwhile, the advantages of the 1st-order
approximation have appeared since it is not restricted to the
parameterization of polynomials. The model STGCN(1st)
speeds up around 20% on a larger dataset with a satisfactory
performance compared with STGCN(Cheb).
In order to further investigate the performance of compared

deep learning models, we plot the RMSE andMAE of the test
set of PeMSD7(M) during the training process, see Figure 5.
Those figures also suggest that our model can achieve much
faster training procedure and easier convergences. Thanks to
the special designs in ST-Conv blocks, our model has superior
performances in balancing time consumption and parameter
settings. Specifically, the number of parameters in STGCN
(4.54⇥ 105) only accounts for around two third of GCGRU,
and saving over 95% parameters compared to FC-LSTM.

5 Related Works

There are several recent deep learning studies that are also
motivated by the graph convolution in spatio-temporal tasks.
Seo et al. [2016] introduced graph convolutional recurrent
network (GCRN) to identify jointly spatial structures and dy-
namic variation from structured sequences of data. The key
challenge of this study is to determine the optimal combi-
nations of recurrent networks and graph convolution under
specific settings. Based on principles above, Li et al. [2018]
successfully employed the gated recurrent units (GRU) with
graph convolution for long-term traffic forecasting. In con-
trast to these works, we build up our model completely from
convolutional structures; The ST-Conv block is specially de-
signed to uniformly process structured data with residual con-
nection and bottleneck strategy inside; More efficient graph
convolution kernels are employed in our model as well.
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6 Conclusion and Future Work

In this paper, we propose a novel deep learning framework
STGCN for traffic prediction, integrating graph convolution
and gated temporal convolution through spatio-temporal con-
volutional blocks. Experiments show that our model out-
performs other state-of-the-art methods on two real-world
datasets, indicating its great potentials on exploring spatio-
temporal structures from the input. It also achieves faster
training, easier convergences, and fewer parameters with flex-
ibility and scalability. These features are quite promising and
practical for scholarly development and large-scale industry
deployment. In the future, we will further optimize the net-
work structure and parameter settings. Moreover, our pro-
posed framework can be applied into more general spatio-
temporal structured sequence forecasting scenarios, such as
evolving of social networks, and preference prediction in rec-
ommendation systems, etc.
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Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks.
arXiv preprint arXiv:1612.07659, 2016.

[Shi et al., 2015] Xingjian Shi, Zhourong Chen, Hao Wang,
Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: Amachine learning approach
for precipitation nowcasting. In NIPS, pages 802–810,
2015.

[Shuman et al., 2013] David I Shuman, Sunil K Narang, Pas-
cal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and
other irregular domains. IEEE Signal Processing Maga-
zine, 30(3):83–98, 2013.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In NIPS, pages 3104–3112, 2014.

[Vlahogianni, 2015] Eleni I Vlahogianni. Computational in-
telligence and optimization for transportation big data:
challenges and opportunities. In Engineering and Applied
Sciences Optimization, pages 107–128. Springer, 2015.

[Williams and Hoel, 2003] Billy M Williams and Lester A
Hoel. Modeling and forecasting vehicular traffic flow
as a seasonal arima process: Theoretical basis and em-
pirical results. Journal of transportation engineering,
129(6):664–672, 2003.

[Wu and Tan, 2016] Yuankai Wu and Huachun Tan. Short-
term traffic flow forecasting with spatial-temporal correla-
tion in a hybrid deep learning framework. arXiv preprint
arXiv:1612.01022, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3640


