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103 years ago, in 1906, Maurice Fréchet submitted his outstanding thesis Sur
quelques points du calcul functionnel introducing (within a systematic study
of functional operations) the notion of metric space (E-espace, E from écart).

Also, 95 years ago, in 1914, Felix Hausdorff published his famous
Grundzüge der Mengenlehre where the theory of topological and metric
spaces (metrische Räume) was created.

Let this Encyclopedia be our homage to the memory of these great mathe-
maticians and their lives of dignity through the hard times of the first half of
the twentieth century.

Maurice Fréchet (1878–1973) coined
in 1906 the concept of écart

(semi-metric)

Felix Hausdorff (1868–1942) coined
in 1914 the term metric space



Preface

Encyclopedia of Distances is the result of re-writing and extending
our Dictionary of Distances published in 2006 (and put online
http://www.sciencedirect.com/science/book/9780444520876) by Elsevier.
About a third of the definitions are new, and majority of the remaining
ones have been upgraded.

We were motivated by the growing intensity of research on metric spaces
and, especially, in distance design for applications. Even if we do not address
the practical questions arising during the selection of a “good” distance func-
tion, just a sheer listing of the main available distances should be useful for
the distance design community.

This Encyclopedia is the first one treating fully the general notion of dis-
tance. This broad scope is useful per se, but has limited our options for
referencing. We have given an original reference for many definitions but
only when it was not too difficult to do so. On the other hand, citing some-
body who well developed the notion but was not the original author may
induce problems. However, with our data (usually, author name(s) and year),
a reader can easily search sources using the Internet.

We found many cases where authors developed very similar distances in
different contexts and, clearly, were unaware of it. Such connections are indi-
cated by a simple “cf.” in both definitions, without going into priority issues
explicitly.

Concerning the style, we have tried to make it a mixture of resource and
coffee-table book, with maximal independence of its parts and many cross-
references.

PREFACE TO DICTIONARY OF DISTANCES 2006

The concept of distance is basic to human experience. In everyday life it
usually means some degree of closeness of two physical objects or ideas, i.e.,
length, time interval, gap, rank difference, coolness or remoteness, while the
term metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathe-
matical meaning of those terms, which is an abstraction of measurement.

vii
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viii Preface

The mathematical notions of distance metric (i.e., a function d(x, y) from
X ×X to the set of real numbers satisfying to d(x, y) ≥ 0 with equality only
for x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z)+d(z, y)) and of metric space
(X, d) were originated a century ago by M. Fréchet (1906) and F. Hausdorff
(1914) as a special case of an infinite topological space. The triangle inequal-
ity above appears already in Euclid. The infinite metric spaces are usually
seen as a generalization of the metric |x−y| on the real numbers. Their main
classes are the measurable spaces (add measure) and Banach spaces (add
norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces
in Geometry) and L.M. Blumenthal (1953), an explosion of interest in both
finite and infinite metric spaces occurred. Another trend is that many math-
ematical theories, in the process of their generalization, settled on the level of
metric space. It is an ongoing process, for example, for Riemannian geometry,
Real Analysis, Approximation Theory.

Distance metrics and distances have now become an essential tool in
many areas of Mathematics and its applications including Geometry, Proba-
bility, Statistics, Coding/Graph Theory, Clustering, Data Analysis, Pattern
Recognition, Networks, Engineering, Computer Graphics/Vision, Astronomy,
Cosmology, Molecular Biology, and many other areas of science. Devising
the most suitable distance metrics and similarities, to quantify the prox-
imity between objects, has become a standard task for many researchers.
Especially intense ongoing search for such distances occurs, for example, in
Computational Biology, Image Analysis, Speech Recognition, and Informa-
tion Retrieval.

Often the same distance metric appears independently in several differ-
ent areas; for example, the edit distance between words, the evolutionary
distance in Biology, the Levenstein distance in Coding Theory, and the
Hamming+Gap or shuffle-Hamming distance.

This body of knowledge has become too big and disparate to operate
in. The numbers of worldwide web entries offered by Google on the topics
“distance,” “metric space” and “distance metric” approach 300 million (i.e.,
about 2% of all), 6.5 million and 5.5 million, respectively, not to mention
all the printed information outside the Web, or the vast “invisible Web”
of searchable databases. However, this vast information on distances is too
scattered: the works evaluating distance from some list usually treat very
specific areas and are hardly accessible to non-experts.

Therefore many researchers, including us, keep and cherish a collection
of distances for use in their areas of science. In view of the growing gen-
eral need for an accessible interdisciplinary source for a vast multitude
of researchers, we have expanded our private collection into this Dictio-
nary. Some additional material was reworked from various encyclopedias,
especially Encyclopedia of Mathematics [EM98], MathWorld [Weis99],
PlanetMath [PM], and Wikipedia [WFE]. However, the majority of dis-
tances are extracted directly from specialist literature.



Preface ix

Besides distances themselves, we have collected many distance-related
notions (especially in Chap. 1) and paradigms, enabling people from applica-
tions to get those (arcane for non-specialists) research tools, in ready-to-use
fashion. This and the appearance of some distances in different contexts can
be a source of new research.

In the time when over-specialization and terminology fences isolate re-
searchers, this Dictionary tries to be “centripetal” and “ecumenical,” provid-
ing some access and altitude of vision but without taking the route of scientific
vulgarization. This attempted balance has defined the structure and style of
the Dictionary.

This reference book is a specialized encyclopedic dictionary organized by
subject area. It is divided into 29 chapters grouped into seven parts of about
the same length. The titles of the parts are purposely approximative: they
allow a reader to figure out her/his area of interest and competence. For
example, Parts II, III and IV, V require some culture in, respectively, pure
and applied Mathematics. Part VII can be read by a layman.

The chapters are thematic lists, by areas of Mathematics or applications,
which can be read independently. When necessary, a chapter or a section
starts with a short introduction: a field trip with the main concepts. Be-
sides these introductions, the main properties and uses of distances are given,
within items, in some instances. We also tried, when it was easy, to trace dis-
tances to their originator(s), but the proposed extensive bibliography has a
less general ambition: just to provide convenient sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections
between them. All item titles and (with majiscules only for proper nouns)
selected key terms can be traced in the large Subject Index; they are boldfaced
unless the meaning is clear from the context. So, the definitions are easy to
locate, by subject, in chapters and/or, by alphabetic order, in the Subject
Index.

The introductions and definitions are reader-friendly and generally inde-
pendent of each other; but they are interconnected, in the three-dimensional
HTML manner, by hyperlink-like boldfaced references to similar definitions.

Many nice curiosities appear in this “Who is Who” of distances. Examples
of such sundry terms are: ubiquitous Euclidean distance (“as-the-crow-flies”),
flower-shop metric (shortest way between two points, visiting a “flower-shop”
point first), knight-move metric on a chessboard, Gordian distance of knots,
Earth Mover distance, biotope distance, Procrustes distance, lift metric, Post
Office metric, Internet hop metric, WWW hyperlink quasi-metric, Moscow
metric, and dogkeeper distance.

Besides abstract distances, the distances having physical meaning also
appear (especially in Part VI); they range from 1.6 × 10−35 m (Planck
length) to 4.3× 1026 m (the estimated size of the observable Universe, about
27× 1060 Planck lengths).

The number of distance metrics is infinite, and therefore our Dictionary
cannot enumerate all of them. But we were inspired by several success-
ful thematic dictionaries on other infinite lists; for example, on Numbers,
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Integer Sequences, Inequalities, Random Processes, and by atlases of Func-
tions, Groups, Fullerenes, etc. On the other hand, the large scope often forced
us to switch to the mode of laconic tutorial.

The target audience consists of all researchers working on some measuring
schemes and, to a certain degree, students and a part of the general public
interested in science.

We have tried to address, even if incompletely, all scientific uses of the
notion of distance. But some distances did not made it to this Dictionary due
to space limitations (being too specific and/or complex) or our oversight. In
general, the size/interdisciplinarity cut-off, i.e., decision where to stop, was
our main headache. We would be grateful to readers who send us their favorite
distances missed here. Four pages at the end are reserved for such personal
additions.
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Part I
Mathematics of Distances



Chapter 1
General Definitions

1.1 Basic definitions

• Distance
Let X be a set. A function d : X × X → R is called a distance (or
dissimilarity) on X if, for all x, y ∈ X, there holds:

1. d(x, y) ≥ 0 (non-negativity).
2. d(x, y) = d(y, x) (symmetry).
3. d(x, x) = 0 (reflexivity).

In Topology, the distance d with d(x, y) = 0 implying x = y is called a
symmetric. A distance which is a squared metric is called a quadrance.

For any distance d, the function D1, defined for x �= y by D1(x, y) =
d(x, y)+c, where c = maxx,y,z∈X(d(x, y)−d(x, z)−d(y, z)), and D(x, x) =
0, is a metric. Also, D2(x, y) = d(x, y)c is a metric for sufficiently small
c ≥ 0.

The function D3(x, y) = inf
∑

i d(zi, zi+1), where the infimum is taken
over all sequences x = z0, . . . , zn+1 = y, is a semi-metric.

• Distance space
A distance space (X, d) is a set X equipped with a distance d.

• Similarity
Let X be a set. A function s : X×X → R is called a similarity on X if s
is non-negative, symmetric, and if s(x, y) ≤ s(x, x) holds for all x, y ∈ X,
with equality if and only if x = y.

The main transforms used to obtain a distance (dissimilarity) d from a
similarity s bounded by 1 from above are: d = 1− s, d = 1−s

s , d =
√

1− s,
d =

√
2(1− s2), d = arccos s, d = − ln s (cf. Chap. 4).

• Semi-metric
Let X be a set. A function d : X × X → R is called a semi-metric (or
écart) on X if d is non-negative, symmetric, if d(x, x) = 0 for all x ∈ X,
and if

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X (triangle or, sometimes, triangular inequality).

M.M. Deza and E. Deza, Encyclopedia of Distances, 3
DOI 10.1007/978-3-642-00234-2 1, c© Springer-Verlag Berlin Heidelberg 2009
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In Topology, it is called a pseudo-metric, while the term semi-metric
is sometimes used for a symmetric (a distance d(x, y) with d(x, y) = 0
only if x = y) or for a special case of it; cf. symmetrizable space in
Chap. 2.

For a semi-metric d, the triangle inequality is equivalent, for each fixed
n ≥ 4, to the following n-gon inequality

d(x, y) ≤ d(x, z1) + d(z1, z2) + · · ·+ d(zn−2, y),

for all x, y, z1, . . . , zn−2 ∈ X.
For a semi-metric d on X, define an equivalence relation by x ∼ y if

d(x, y) = 0; equivalent points are equidistant from all other points. Let [x]
denote the equivalence class containing x; then D([x], [y]) = d(x, y) is a
metric on the set {[x] : x ∈ X} of classes.

• Metric
Let X be a set. A function d : X ×X → R is called a metric on X if, for
all x, y, z ∈ X, there holds:

1. d(x, y) ≥ 0 (non-negativity).
2. d(x, y) = 0 if and only if x = y (identity of indiscernibles).
3. d(x, y) = d(y, x) (symmetry).
4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

In fact, 1 follows from 3 and 4.
• Metric space

A metric space (X, d) is a set X equipped with a metric d.
A pointed metric space (X, d, x0) is a metric space (X, d) with a

selected base point x0 ∈ X.
• Metric scheme

A metric scheme is a metric space with an integer-valued metric.
• Extended metric

An extended metric is a generalization of the notion of metric: the value
∞ is allowed for a metric d.

• Quasi-distance
Let X be a set. A function d : X ×X → R is called a quasi-distance on
X if d is non-negative, and d(x, x) = 0 holds for all x ∈ X.

In Topology, it is also called a parametric.
For a quasi-distance d, the strong triangle inequality d(x, y) ≤

d(x,z) + d(y, z) imply that d is symmetric and so, a semi-metric.
• Quasi-semi-metric

Let X be a set. A function d : X ×X → R is called a quasi-semi-metric
on X if d is non-negative, if d(x, x) = 0 for all x ∈ X, and if

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X (oriented triangle inequality).



1.1 Basic definitions 5

The set X can be partially ordered by the specialization order: x 
 y if
and only if d(x, y) = 0.

A weak quasi-metric is a quasi-semi-metric d on X with weak sym-
metry, i.e., for all x, y ∈ X the equality d(x, y) = 0 implies d(y, x) = 0.

An Albert quasi-metric is a quasi-semi-metric d on X with weak
definiteness, i.e., for all x, y ∈ X the equality d(x, y) = d(y, x) = 0 implies
x = y.

A weightable quasi-semi-metric is a quasi-semi-metric d on X with
relaxed symmetry, i.e., for all x, y, z ∈ X

d(x, y) + d(y, z) + d(z, x) = d(x, z) + d(z, y) + d(y, x),

holds or, equivalently, there exists a weight function w(x) ∈ R on X with
d(x, y)−d(y, x) = w(y)−w(x) for all x, y ∈ X (i.e., d(x, y)+ 1

2 (w(x)−w(y))
is a semi-metric). If d is a weightable quasi-semi-metric, then d(x, y)+w(x)
is a partial semi-metric (moreover, partial metric if d is an Albert
quasi-metric).

• Partial metric
Let X be a set. A non-negative symmetric function p : X × X → R is
called a partial metric [Matt92] if, for all x, y, z ∈ X, there holds:

1. p(x, x) ≤ p(x, y) (i.e., every self-distance p(x, x) is small).
2. x = y if p(x, x) = p(x, y) = p(y, y) = 0 (T0 separation axiom).
3. p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (sharp triangle inequality).

If above separation axiom is dropped, the function p is called a partial
semi-metric. The function p is a partial semi-metric if and only if p(x, y)
−p(x, x) is a weightable quasi-semi-metric with w(x) = p(x, x).

If above condition p(x, x) ≤ p(x, y) is also dropped, the function p is
called (Heckmann 1999) a weak partial semi-metric.

Cf. distance from measurement in Chap. 3; it is related topologically
(Waszkiewicz 2001) to partial metrics.

Sometimes, the term partial metric is used when a metric d(x, y) is
defined only on a subset of the set of all pairs x, y of points.

• Quasi-metric
Let X be a set. A function d : X ×X → R is called a quasi-metric on X
if d(x, y) ≥ 0 holds for all x, y ∈ X with equality if and only if x = y, and

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X (oriented triangle inequality). A quasi-metric space
(X, d) is a set X equipped with a quasi-metric d.

For any quasi-metric d, the functions max{d(x, y), d(y, x)}, min{d(x, y),
d(y, x)} and 1

2 (dp(x, y) + dp(y, x))
1
p with p ≥ 1 (usually, p = 1 is taken)

are equivalent metrics.
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A non-Archimedean quasi-metric d is a quasi-distance on X
which satisfies the following strengthened version of the oriented triangle
inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}
for all x, y, z ∈ X.

• Near-metric
Let X be a set. A distance d on X is called a near-metric (or weak
metric) if

d(x, y) ≤ C(d(x, z) + d(z, y))

for all x, y, z ∈ X and some constant C ≥ 1 (C-triangle inequality).
Some recent papers use the term quasi-triangle inequality for above in-

equality and so, quasi-metric for the notion of near-metric.
The power transform (cf. Chap. 4) (d(x, y))α of any near-metric is a

near-metric for any α > 0. Also, any near-metric d admits a bi-Lipschitz
mapping on (D(x, y))α for some semi-metric D on the same set and a
positive number α.

A near-metric d on X is called a Hölder near-metric if the inequality

|d(x, y)− d(x, z)| ≤ βd(y, z)α(d(x, y) + d(x, z))1−α

holds for some β > 0, 0 < α ≤ 1 and all points x, y, z ∈ X. Cf. Hölder
mapping.

• Coarse-path metric
Let X be a set. A metric d on X is called a coarse-path metric if, for a
fixed C ≥ 0 and for every pair of points x, y ∈ X, there exists a sequence
x = x0, x1, . . . , xt = y for which d(xi−1, xi) ≤ C for i = 1, . . . , t, and

d(x, y) ≥ d(x0, x1) + d(x1, x2) + · · ·+ d(xt−1, xt)− C,

i.e., the weakened triangle inequality d(x, y) ≤
∑t

i=1 d(xi−1, xi) becomes
an equality up to a bounded error.

• Weak ultrametric
A weak ultrametric (or C-pseudo-distance, C-inframetric) d is a
distance on X such that for a constant C ≥ 1 the inequality

0 < d(x, y) ≤ C max{d(x, z), d(z, y)}

holds for all x, y, z ∈ X, x �= y.
The term pseudo-distance is also used, in some applications, for any

of a pseudo-metric, a quasi-distance, a near-metric, a distance which
can be infinite, a distance with an error, etc.
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• Ultrametric
An ultrametric (or non-Archimedean metric) is (Krasner 1944) a metric
d on X which satisfies the following strengthened version of the triangle
inequality (Hausdorff 1934), called the ultrametric inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}

for all x, y, z ∈ X. So, at least two of d(x, y), d(z, y) and d(x, z) are the
same.

A metric d is an ultrametric if and only if its power transform (see
Chap. 4) dα is a metric for any real positive number α. Any ultrametric
satisfies the four-point inequality. A metric d is an ultrametric if and
only if it is a Farris transform (cf. Chap. 4) of a four-point inequality
metric.

For a finite set X, a symmetric non-negative matrix A = (A(x, y) :
x, y ∈ X) is called ultrametric if there exists an ultrametric d on X such
that d(x, y) ≤ d(x, z) implies A(x, y) ≥ A(x, z).

• Robinsonian distance
A distance d on X is called a Robinsonian distance (or monotone dis-
tance) if there exists a total order 
 on X compatible with it, i.e., for
x, y, w, z ∈ X,

x 
 y 
 w 
 z implies d(y, w) ≤ d(x, z),

or, equivalently, for x, y, z ∈ X,

x 
 y 
 z implies d(x, y) ≤ max{d(x, z), d(z, y)}.

Any ultrametric is a Robinsonian distance.
• Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive
metric) if it satisfies the following strengthened version of the triangle
inequality called the four-point inequality: for all x, y, z, u ∈ X

d(x, y) + d(z, u) ≤ max{d(x, z) + d(y, u), d(x, u) + d(y, z)}

holds. Equivalently, among the three sums d(x, y)+d(z, u), d(x, z)+d(y, u),
d(x, u) + d(y, z) the two largest sums are equal.

A metric satisfies the four-point inequality if and only if it is a tree-like
metric.

Any metric, satisfying the four-point inequality, is a Ptolemaic metric
and an L1-metric (cf. Lp-metric in Chap. 5).
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A bush metric is a metric for which all four-point inequalities are
equalities, i.e., d(x, y) + d(u, z) = d(x, u) + d(y, z) holds for any u, x, y,
z ∈ X.

• Relaxed four-point inequality metric
A metric d on X satisfies the relaxed four-point inequality if, for all
x, y, z, u ∈ X, among the three sums

d(x, y) + d(z, u), d(x, z) + d(y, u), d(x, u) + d(y, z)

at least two (not necessarily the two largest) are equal.
A metric satisfies the relaxed four-point inequality if and only if it is a

relaxed tree-like metric.
• Ptolemaic metric

A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic
inequality

d(x, y)d(u, z) ≤ d(x, u)d(y, z) + d(x, z)d(y, u)

(shown by Ptolemy to hold in the Euclidean space) for all x, y, u, z ∈ X.
A Ptolemaic space is a normed vector space (V, ||.||) such that its norm

metric ||x − y|| is a Ptolemaic metric. A normed vector space is a Ptole-
maic space if and only if it is an inner product space (cf. Chap. 5);
so, a Minkowskian metric (cf. Chap. 6) is Euclidean if and only if it is
Ptolemaic.

The involution space (X\z, dz), where dz(x, y) = d(x,y)
d(x,z)d(y,z) , is a metric

space, for any z ∈ X, if and only if d is Ptolemaic [FoSC06].
For any metric d, the metric

√
d is Ptolemaic [FoSC06].

• δ-hyperbolic metric
Given a number δ ≥ 0, a metric d on a set X is called δ-hyperbolic if
it satisfies the Gromov δ-hyperbolic inequality (another weakening of
the four-point inequality): for all x, y, z, u ∈ X

d(x, y) + d(z, u) ≤ 2δ + max{d(x, z) + d(y, u), d(x, u) + d(y, z)}

holds. A metric space (X, d) is δ-hyperbolic if and only if

(x.y)x0 ≥ min{(x.z)x0 , (y.z)x0} − δ

for all x, y, z ∈ X and for any x0 ∈ X, where (x.y)x0 = 1
2 (d(x0, x) +

d(x0, y) − d(x, y)) is the Gromov product of the points x and y of X
with respect to the base point x0 ∈ X.

A metric space (X, d) is 0-hyperbolic exactly when d satisfies the
four-point inequality. Every bounded metric space of diameter D is
D-hyperbolic. The n-dimensional hyperbolic space is ln 3-hyperbolic.
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Every δ-hyperbolic metric space is isometrically embeddable into a
geodesic metric space (Bonk and Schramm 2000).

• Gromov product similarity
Given a metric space (X, d) with a fixed point x0 ∈ X, the Gromov
product similarity (or Gromov product, covariance) (.)x0 is a similarity
on X, defined by

(x.y)x0 =
1
2
(d(x, x0) + d(y, x0)− d(x, y)).

If (X, d) is a tree, then (x.y)x0 = d(x0, [x, y]). If (X, d) is a measure
semi-metric space, i.e., d(x, y) = μ(x�y) for a Borel measure μ on
X, then (x.y)∅ = μ(x ∩ y). If d is a distance of negative type, i.e.,
d(x, y) = d2

E(x, y) for a subset X of an Euclidean space E
n, then (x.y)0 is

the usual inner product on E
n.

Cf. Farris transform metric in Chap. 4.
• Cross difference

Given a metric space (X, d) and quadruple (x, y, z, w) of its points, the
cross difference is the real number cd defined by

cd(x, y, z, w) = d(x, y) + d(z, w)− d(x, z)− d(y, w).

For all x, y, z, w, p ∈ X,

1
2
cd(x, y, z, w) = −(x.y)p − (z.w)p + (x.z)p + (y.w)p

in terms of the Gromov product similarity; in particular, it becomes
(x.y)p if y = w = p.

Given a metric space (X, d) and quadruple (x, y, z, w) of its points with
x �= z and y �= w, the cross-ratio is the real number cr defined by

cr(x, y, z, w) =
d(x, y)d(z, w)
d(x, z)d(y, w)

≥ 0.

• 2k-gonal distance
A 2k-gonal distance d is a distance on X which satisfies the 2k-gonal
inequality

∑

1≤i<j≤n

bibjd(xi, xj) ≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 0 and

∑n
i=1 |bi| = 2k, and for all distinct

elements x1, . . . , xn ∈ X.
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• Distance of negative type
A distance of negative type d is a distance on X which is 2k-gonal for
any k ≥ 1, i.e., satisfies the negative type inequality

∑

1≤i<j≤n

bibjd(xi, xj) ≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 0, and for all distinct elements x1, . . . ,

xn ∈ X.
A distance can be of negative type without being a semi-metric. Cayley

proved that a metric d is an L2-metric if and only if d2 is a distance of
negative type.

• (2k + 1)-gonal distance
A (2k+1)-gonal distance d is a distance on X which satisfies the (2k+1)-
gonal inequality ∑

1≤i<j≤n

bibjd(xi, xj) ≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 1 and

∑n
i=1 |bi| = 2k +1, and for all distinct

elements x1, . . . , xn ∈ X.
The (2k+1)-gonal inequality with k = 1 is the usual triangle inequality.

The (2k + 1)-gonal inequality implies the 2k-gonal inequality.
• Hypermetric

A hypermetric d is a distance on X which is (2k + 1)-gonal for any
k ≥ 1, i.e., satisfies the hypermetric inequality

∑

1≤i<j≤n

bibjd(xi, xj) ≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 1, and for all distinct elements x1, . . . ,

xn ∈ X.
Any hypermetric is a semi-metric, a distance of negative type and,

moreover, it can be isometrically embedded into some n-sphere S
n with

squared Euclidean distance. Any L1-metric (cf. Lp-metric in Chap. 5) is
a hypermetric.

• P -metric
A P -metric d is a metric on X with values in [0, 1] which satisfies the
correlation triangle inequality

d(x, y) ≤ d(x, z) + d(y, z)− d(x, z)d(z, y).

The equivalent inequality (1−d(x, y)) ≥ (1−d(x, z))(1−d(z, y)) expresses
that the probability, say, to reach x from y via z is either equal to (1 −
d(x, z))(1− d(z, y)) (independence of reaching z from x and y from z), or
greater than it (positive correlation).

A metric is a P -metric if and only if it is a Schoenberg transform
metric (cf. Chap. 4).
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1.2 Main distance-related notions

• Metric ball
Given a metric space (X, d), the metric ball (or closed metric ball) with
center x0 ∈ X and radius r > 0 is defined by B(x0, r) = {x ∈ X :
d(x0, x) ≤ r}, and the open metric ball with center x0 ∈ X and radius
r > 0 is defined by B(x0, r) = {x ∈ X : d(x0, x) < r}.

The metric sphere with center x0 ∈ X and radius r > 0 is defined by
S(x0, r) = {x ∈ X : d(x0, x) = r}.

For the norm metric on an n-dimensional normed vector space (V, ||.||),
the metric ball B

n
= {x ∈ V : ||x|| ≤ 1} is called the unit ball, and the set

Sn−1 = {x ∈ V : ||x|| = 1} is called the unit sphere (or unit hypersphere).
In a two-dimensional vector space, a metric ball (closed or open) is called
a metric disk (closed or open, respectively).

• Distance-invariant metric space
A metric space (X, d) is distance-invariant if all metric balls B(x0, r) =
{x ∈ X : d(x0, x) ≤ r} of the same radius have the same number of
elements.

• Closed subset of metric space
Given a subset M of a metric space (X, d), a point x ∈ X is called a limit
point of M (or accumulation point) if every open metric ball B(x, r) =
{y ∈ X : d(x, y) < r} contains a point x′ ∈ M with x′ �= x. The closure
of M , denoted by M , is the set M together with all its limit points. The
subset M is called closed if M = M .

A closed subset M is perfect if every point of M is a limit point of M .
Every point of M which is not a limit point of M , is called an iso-

lated point. The interior int(M) of M is the set of all its isolated points;
the exterior ext(M) of M is int(X\M) and the boundary ϑ(M) of M is
X\(int(M) ∪ ext(M)).

A subset M is called topologically discrete if M = int(M).
• Open subset of metric space

A subset M of a metric space (X, d) is called open if, given any point
x ∈ M , the open metric ball B(x, r) = {y ∈ X : d(x, y) < r} is
contained in M for some positive number r. The family of open subsets of
a metric space forms a natural topology on it.

An open subset of a metric space is called clopen if it is closed. An open
subset of a metric space is called a domain if it is connected.

A door space is a metric (in general, topological) space in which every
subset is either open or closed.

• Connected metric space
A metric space (X, d) is called connected if it cannot be partitioned into
two non-empty open sets (cf. connected space in Chap. 2).

(X, d) is distance m locally (path)-connected (extending Holub-Xiong,
2009) if any subspace ({y ∈ X: d(x, y) ∈ (0,m]}, d), x ∈ X, is (path)-
connected. A totally disconnected metric space is a space in which
all connected subsets are ∅ and one-point sets.
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A path-connected metric space is a connected metric space such
that any two its points can be joined by an arc (cf. metric curve).

• Cantor connected metric space
A metric space (X, d) is called Cantor connected (or pre-connected) if,
for any two its points x, y and any ε > 0, there exists an ε-chain joining
them, i.e., a sequence of points x = z0, z1, . . . , zn−1, zn = y such that
d(zk, zk+1) ≤ ε for every 0 ≤ k ≤ n. A metric space (X, d) is Cantor
connected if and only if it cannot be partitioned into two remote parts
A and B, i.e., such that inf{d(x, y) : x ∈ A, y ∈ B} > 0.

The maximal Cantor connected subspaces of a metric space are called its
Cantor connected components. A totally Cantor disconnected metric
is the metric of a metric space in which all Cantor connected components
are one-point sets.

• Indivisible metric space
A metric space (X, d) is called indivisible if it cannot be partitioned
into two parts, neither of which contains an isometric copy of (X, d). Any
indivisible metric space with |X| ≥ 2 is infinite, bounded and totally
Cantor disconnected (Delhomme, Laflamme, Pouzet and Sauer 2007).

A metric space (X, d) is called an oscillation stable metric space
(Nguyen Van The 2006) if, given any ε > 0 and any partition of X into
finitely many pieces, the ε-neighborhood of one of the pieces includes an
isometric copy of (X, d).

• Metric topology
A metric topology is a topology on X induced by a metric d on X; cf.
equivalent metrics.

More exactly, given a metric space (X, d), define the open set in X
as an arbitrary union of (finitely or infinitely many) open metric balls
B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X, r ∈ R, r > 0. A closed set is defined
now as the complement of an open set. The metric topology on (X, d) is
defined as the set of all open sets of X. A topological space which can arise
in this way from a metric space is called a metrizable space (cf. Chap. 2).

Metrization theorems are theorems which give sufficient conditions
for a topological space to be metrizable.

On the other hand, the adjective metric in several important mathe-
matical terms indicates connection to a measure, rather than distance,
for example, metric Number Theory, metric Theory of Functions, metric
transitivity.

• Equivalent metrics
Two metrics d1 and d2 on a set X are called equivalent if they define the
same topology on X, i.e., if, for every point x0 ∈ X, every open metric ball
with center at x0 defined with respect to d1, contains an open metric ball
with the same center but defined with respect to d2, and conversely.

Two metrics d1 and d2 are equivalent if and only if, for every ε > 0 and
every x ∈ X, there exists δ > 0 such that d1(x, y) ≤ δ implies d2(x, y) ≤ ε
and, conversely, d2(x, y) ≤ δ implies d1(x, y) ≤ ε.
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All metrics on a finite set are equivalent; they generate the discrete
topology.

• Closed metric interval
Given two different points x, y ∈ X of a metric space (X, d), the closed
metric interval between x and y is the set

I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}.

• Underlying graph of a metric space
The underlying graph (or neighborhood graph) of a metric space (X, d)
is a graph with the vertex-set X and xy being an edge if I(x, y) = {x, y},
i.e., there is no third point z ∈ X, for which d(x, y) = d(x, z) + d(z, y).

• Distance monotone metric space
A metric space (X, d) is called distance monotone if any interval I(x, x′)
is closed, i.e., for any y ∈ X\I(x, x′), there exists x′′ ∈ I(x, x′) with
d(y, x′′) > d(x, x′).

• Metric triangle
Three distinct points x, y, z ∈ X of a metric space (X, d) form a met-
ric triangle if the closed metric intervals I(x, y), I(y, z) and I(z, x)
intersect only in the common end points.

• Metric space having collinearity
A metric space (X, d) has collinearity if for any ε > 0 every its infinite
subset M contains three distinct ε-collinear (i.e., with d(x, y) + d(y, z) −
d(x, z) ≤ ε) points x, y, z.

• Modular metric space
A metric space (X, d) is called modular if, for any three different points
x, y, z ∈ X, there exists a point u ∈ I(x, y) ∩ I(y, z) ∩ I(z, x). This should
not be confused with modular distance in Chap. 10 and modulus met-
ric in Chap. 6.

• Median metric space
A metric space (X, d) is called a median metric space if, for any three
points x, y, z ∈ X, there exists an unique point u ∈ I(x, y)∩I(y, z)∩I(z, x).

Any median metric space is an L1-metric; cf. Lp-metric in Chap. 5 and
median graph in Chap. 15.

A metric space (X, d) is called an antimedian metric space if, for any
three points x, y, z ∈ X, there exists a unique point u ∈ X maximizing
d(x, u) + d(y, u) + d(z, u).

• Metric quadrangle
Four different points x, y, z, u ∈ X of a metric space (X, d) form a metric
quadrangle if x, z ∈ I(y, u) and y, u ∈ I(x, z). Then d(x, y) = d(z, u) and
d(x, u) = d(y, z) in such metric quadrangle.

A metric space (X, d) is called weakly spherical if, for any three different
points x, y, z ∈ X with y ∈ I(x, z), there exists u ∈ X such that x, y, z, u
form a metric quadrangle.
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• Metric curve
A metric curve (or, simply, curve) γ in a metric space (X, d) is a

continuous mapping γ : I → X from an interval I of R into X. A curve is
called an arc (or path, simple curve) if it is injective. A curve γ : [a, b] →
X is called a Jordan curve (or simple closed curve) if it does not cross
itself, and γ(a) = γ(b).

The length of a curve γ : [a, b] → X is the number l(γ) defined by

l(γ) = sup{
∑

1≤i≤n

d(γ(ti), γ(ti−1)) : n ∈ N, a = t0 < t1 < · · · < tn = b}.

A rectifiable curve is a curve with a finite length. A metric space (X, d),
where every two points can be joined by a rectifiable curve, is called a
quasi-convex metric space (or, specifically, C-quasi-convex metric
space) if there exists a constant C ≥ 1 such that every pair x, y ∈ X
can be joined by a rectifiable curve of length at most Cd(x, y). If C = 1,
then this length is equal to d(x, y), i.e., (X, d) is a geodesic (or strictly
intrinsic) metric space (cf. Chap. 6).

The metric derivative of an arc γ : I → X at a limit point t of I is,
if it exists,

lim
s→0

d(γ(t + s), γ(t))
|s| .

It generalizes the notion of speed to the metric spaces which have not a
notion of direction (such as vector spaces).

• Geodesic
Given a metric space (X, d), a geodesic is a locally shortest metric
curve, i.e., it is a locally isometric embedding of R into X; cf. Chap. 6.

A subset S of X is called a geodesic segment (or metric segment,
shortest path, minimizing geodesic) between two distinct points x and y in
X, if there exists a segment (closed interval) [a,b] on the real line R and
an isometric embedding γ : [a, b] → X, such that γ[a, b] = S, γ(a) = x and
γ(b) = y.

A metric straight line is a geodesic which is minimal between any two
of its points; it is an isometric embedding of the whole R into X. A metric
ray and metric great circle are isometric embeddings of, respectively,
the half-line R≥0 and a circle S1(0, r) into X.

A geodesic metric space (cf. Chap. 6) is a metric space in which any
two points are joined by a geodesic segment. If, moreover, the geodesic
is unique, the space is called totally geodesic. A geodesic metric space is
called geodesically complete if every geodesic is a subarc of a metric straight
line.

• Geodesic convexity
Given a geodesic metric space (X, d) and a subset M ⊂ X, the set
M is called geodesically convex (or convex) if, for anytwo points of M ,
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there exists a geodesic segment connecting them which lies entirely in M ;
the space is called locally convex if such a segment exists for any two
sufficiently close points in M .

The injectivity radius of the set M is the least number r such that,
for any two points in M at distance <r, there exists exactly one geodesic
segment connecting them which lies entirely in M .

The set M ⊂ X is called a totally convex metric subspace of (X, d)
if, for any two points of M , any geodesic segment connecting them lies
entirely in M . For a given point x ∈ X, the radius of convexity is the
radius of largest totally convex metric ball with center at x.

• Busemann convexity
A geodesic metric space (X, d) is called Busemann convex (or glob-
ally non-positively Busemann curved) if, for any three points x, y, z ∈
X and midpoints m(x, z) and m(y, z) (i.e., d(x,m(x, z)) = d(m(x, z), z) =
1
2d(x, z) and d(y,m(y, z)) = d(m(y, z), z) = 1

2d(y, z)), there holds

d(m(x, z),m(y, z)) ≤ 1
2
d(x, y).

Equivalently, the distance D(c1, c2) between any geodesic segments c1 =
[a1, b1] and c2 = [a2, b2] is a convex function; cf. metric between inter-
vals in Chap. 10. (A real-valued function f defined on an interval is called
convex if f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) for any x, y and λ ∈ (0, 1).)

The flat Euclidean strip {(x, y) ∈ R
2 : 0 < x < 1} is Gromov hyper-

bolic but not Busemann convex. In a complete Busemann convex metric
space any two points are joined by a unique geodesic segment. A metric
space is CAT(0) (cf. Chap. 6) if and only if it is Busemann convex and
Ptolemaic (Foertsch, Lytchak and Schroeder 2007).

A geodesic metric space (X, d) is Busemann locally convex
(Busemann 1948) if the above inequality holds locally. Any geodesic
locally CAT(0) metric space (cf. Chap. 6) is Busemann locally convex,
and any geodesic CAT(0) metric space is Busemann convex but not
vice versa.

• Menger convexity
A metric space (X, d) is called Menger convex if, for any different points
x, y ∈ X, there exists a third point z ∈ X for which d(x, y) = d(x, z) +
d(z, y), i.e., |I(x, y)| > 2 holds for the closed metric interval I(x, y) =
{z ∈ X : (x, y) = d(x, z) + d(z, y)}. It is called strictly Menger convex
if such z is unique for all x, y ∈ X.

The geodesic convexity implies the Menger convexity. The converse
holds for complete metric spaces.

A subset M ⊂ X is a d-convex set (Menger 1928) if I(x, y) ⊂M for any
different points x, y ∈ M . A function f : M → R defined on a d-convex
set M ⊂ X is a d-convex function if for any z ∈ I(x, y) ⊂M

f(z) ≤ d(y, z)
d(x, y)

f(x) +
d(x, z)
d(x, y)

f(y).
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• Midpoint convexity
A metric space (X, d) is called midpoint convex (or having mid-
points, admitting a midpoint map) if, for any different points x, y ∈
X, there exists a third point m(x, y) ∈ X for which d(x,m(x, y)) =
d(m(x, y), y) = 1

2d(x, y). Such a point m(x, y) is called a midpoint and
the map m : X ×X → X is called a midpoint map (cf. midset); this map
is unique if m(x, y) is unique for all x, y ∈ X. For example, the geomet-
ric mean

√
xy is the midpoint map for the metric space (R>0, d(x, y) =

| log x− log y|).
A complete metric space is a geodesic metric space if and only if it is

midpoint convex.
A metric space (X, d) is said to have approximate midpoints if, for

any points x, y ∈ X and any ε > 0, there exists an ε-midpoint, i.e., a point
z ∈ X such that d(x, z) ≤ 1

2d(x, y) + ε ≥ d(z, y).
• Ball convexity

A midpoint convex metric space (X, d) is called ball convex if

d(m(x, y), z) ≤ max{d(x, z), d(y, z)}

for all x, y, z ∈ X and any midpoint map m(x, y).
Ball convexity implies that all metric balls are totally convex and,

in the case of geodesic metric space, vice versa. Ball convexity implies
also the uniqueness of a midpoint map (geodesics in the case of complete
metric space).

The metric space (R2, d(x, y) =
∑2

i=1

√
|xi − yi|) is not ball convex.

• Distance convexity
A midpoint convex metric space (X, d) is called distance convex if

d(m(x, y), z) ≤ 1
2
(d(x, z) + d(y, z)).

A geodesic metric space is distance convex if and only if the restriction
of the distance function d(x, ·), x ∈ X, to every geodesic segment is a
convex function.

Distance convexity implies ball convexity and, in the case of
Busemann convex metric space, vice versa.

• Metric convexity
A metric space (X, d) is called metrically convex if, for any differ-
ent points x, y ∈ X and any λ ∈ (0, 1), there exists a third point z =
z(x, y, λ) ∈ X for which d(x, y) = d(x, z) + d(z, y) and d(x, z) = λd(x, y).
Metric convexity implies Menger convexity.

The space is called strictly metrically convex if such point z(x, y, λ)
is unique for all x, y ∈ X and any λ ∈ (0, 1).

A metric space (X, d) is called strongly metrically convex if, for any
different points x, y ∈ X and any λ1, λ2 ∈ (0, 1), there exists a third point
z = z(x, y, λ) ∈ X for which d(z(x, y, λ1), z(x, y, λ2)) = |λ1 − λ2|d(x, y).
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Strong metric convexity implies metric convexity, and every Menger convex
complete metric space is strongly metrically convex.

A metric space (X, d) is called nearly convex (Mandelkern 1983) if, for
any different points x, y ∈ X and any λ, μ > 0 such that d(x, y) < λ + μ,
there exists a third point z ∈ X for which d(x, z) < λ and d(z, y) < μ, i.e.,
z ∈ B(x, λ) ∩B(y, μ). Metric convexity implies near convexity.

• Takahashi convexity
A metric space (X, d) is called Takahashi convex if, for any differ-
ent points x, y ∈ X and any λ ∈ (0, 1), there exists a third point
z = z(x, y, λ) ∈ X such that d(z(x, y, λ), u) ≤ λd(x, u) + (1 − λ)d(y, u)
for all u ∈ X. Any convex subset of a normed space is a Takahashi convex
metric space with z(x, y, λ) = λx + (1− λ)y.

A set M ⊂ X is Takahashi convex if z(x, y, λ) ∈M for all x, y ∈ X and
any λ ∈ [0, 1]. Takahashi has shown in 1970 that, in a Takahashi convex
metric space, all metric balls, open metric balls, and arbitrary intersections
of Takahashi convex subsets are all Takahashi convex.

• Hyperconvexity
A metric space (X, d) is called hyperconvex (Aronszajn and Panitchpakdi
1956) if it is metrically convex and its metric balls have the infinite
Helly property, i.e., any family of mutually intersecting closed balls in X
has non-empty intersection. A metric space (X, d) is hyperconvex if and
only if it is an injective metric space.

The spaces ln∞, l∞∞ and l21 are hyperconvex but l∞2 is not.
• Distance matrix

Given a finite metric space (X = {x1, · · · , xn}, d), its distance matrix
is the symmetric n× n matrix ((dij)), where dij = d(xi, xj) for any 1≤ i,
j ≤ n.

The probability that a symmetric n×n matrix, whose diagonal elements
are zeros and all other elements are uniformly random real numbers, is a
distance matrix is (Mascioni 2005) 1

2 , 17
120 for n = 3, 4 and it is within

[1− (0.918)n2
, 1− (0.707)n2

] for n = 5.
• Metric cone

The metric cone METn is the polyhedral cone in R
(n
2) of all distance

matrices of semi-metrics on the set Vn = {1, . . . , n}. Vershik (2004)
considers MET∞, i.e., the weakly closed convex cone of infinite distance
matrices of semi-metrics on N.

The metric fan is a canonical decomposition MFn of METn into sub-
cones whose faces belong to the fan, and the intersection of any two of
them is their common boundary. Two semi-metrics d, d′ ∈ METn lie in
the same cone of the metric fan if the subdivisions δd, δd′ of the polyhedron
δ(n, 2) = conv{ei+ej : 1 ≤ i < j ≤ n} ⊂ R

n are equal. Here a subpolytope
P of δ(n, 2) is a cell of the subdivision δd if there exists y ∈ R

n satisfying
yi + yj = dij if ei + ej is a vertex of P , and yi + yj > dij otherwise. The
complex of bounded faces of the polyhedron dual to δd is the tight span
of the semi-metric d; cf. combinatorial dimension.
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The term metric cone is also used in Bronshtein (1998) for a convex
cone equipped with a complete metric compatible with its operations of
addition and multiplication by non-negative numbers.

• Cayley–Menger matrix
Given a finite metric space (X = {x1, . . . , xn}, d), its Cayley–Menger
matrix is the symmetric (n + 1)× (n + 1) matrix

CM(X, d) =
(

0 e
eT D

)

,

where D = ((d2(xi, xj))) and e is the n-vector all components of which
are 1.

The determinant of CM(X, d) is called the Cayley–Menger determinant.
If (X, d) is a metric subspace of the Euclidean space E

n−1, then CM(X, d)
is (−1)n2n−1((n − 1)!)2 times squared (n − 1)-dimensional volume of the
convex hull of X in R

n−1.
• Gram matrix

Given elements v1, . . . , vk of a Euclidean space, their Gram matrix is the
symmetric k × k matrix

G(v1, . . . , vk) = ((〈vi, vj〉))

of pairwise inner products of v1, . . . , vk.
A k×k matrix is positive-semi-definite if and only if it is a Gram matrix.

A k × k matrix is positive-definite if and only if it is a Gram matrix with
linearly independent defining vectors.

We have G(v1, . . . vk) = 1
2 ((d2

E(v0, vi)+d2
E(v0, vj)−d2

E(vi, vj))), i.e., the
inner product 〈, 〉 is the Gromov product similarity of the squared
Euclidean distance d2

E . A k×k matrix ((d2
E(vi, vj))) defines a distance

of negative type on {1, . . . , k}; all such k × k matrices form the (non-
polyhedral) closed convex cone of all such distances on a k-set.

The determinant of a Gram matrix is called the Gram determinant; it
is equal to the square of the k-dimensional volume of the parallelotope
constructed on v1, . . . vk.

• Midset
Given a metric space (X, d) and distinct y, z ∈ X, the midset (or bisector)
of points y and z is the set M = {x ∈ X : d(x, y) = d(x, z)} of midpoints x.

A metric space is said to have the n-points midset property if, for every
pair of its points, the midset has exactly n points. The 1-point midset
property mean uniqueness of the midpoint map (cf. midpoint convexity).

• Distance k-sector
Given a metric space (X, d) and disjoint subsets Y,Z ⊂ X, the bisector of
Y and Z is the set M = {x ∈ X : infy∈Y d(x, y) = infz∈Z d(x, z)}.

The distance k-sector of Y and Z is the sequence M1, . . . ,Mk−1 of
subsets of X such that Mi, for any 1 ≤ i ≤ k−1, is the bisector of sets Mi−1
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and Mi+1, where Y = M0 and Z =Mk. Asano, Matousek and Tokuyama
(2006) considered the distance k-sector on the Euclidean plane (R2, l2);
for compact sets Y and Z, the sets M1, . . . ,Mk−1 are curves partitioning
the plane into k parts.

• Metric basis
Given a metric space (X, d), a subset M ⊂ X is called a metric basis (or
set of uniqueness) of X if d(x, s) = d(y, s) for all s ∈ M implies x = y. For
x ∈ X, the numbers d(x, s), s ∈ M, are called metric coordinates of x.

1.3 Metric numerical invariants

• Metric density
A metric space (X, d) is called metrically dense (or, specifically, μ-dense)
if (Tukia and Väisälä 1980) there exist numbers λ1, λ2 with 0 ≤ λ1 ≤
λ2 ≤ 1 such that, for every pair of points x, y ∈ X, there exists a point
z ∈ X with λ1d(x, y) ≤ d(x, z) ≤ λ2d(x, y). In this case, μ = ( 1+λ2

λ1(1−λ2)
)2.

The quantity inf{μ}, where (X, d) is μ-dense, is the coefficient of metric
density of (X, d). For the middle-third Cantor set on the interval [0, 1],
this coefficient is 12.25 (Ibragimov 2002).

• Metric entropy
Given ε > 0, the metric entropy (or ε-entropy) Hε(M,X) of a subset
M ⊂ X of a metric space (X, d), is defined (Kolmogorov and Tihomirov
1956) by

Hε(M,X) = log2 CAPε(M,X),

where the function CAPε(M,X) of ε > 0, called the capacity of metric
space (M,d), is the smallest number of points in an ε-net (or ε-covering,
ε-approximation) for the metric space (M,d), i.e., a set of points such that
the union of open ε-balls, centered at those points, covers M .

The notion of metric entropy for a dynamical system is one of the
most important invariants in Ergodic Theory.

• Metric dimension
For a metric space (X, d) and any real number ε > 0, let NX(ε) be the min-
imal number of sets with diameter at most ε which are needed in order to
cover X (cf. metric entropy). The number limε→0

ln N(ε)
ln((ε)−1) (if it exists) is

called the metric dimension (or Minkowski–Bouligand dimension,
Minkowski dimension, packing dimension, box-counting dimension) of X.

If the limit above does not exist, then the following notions of dimension
are considered:

1. The number limε→0
ln N(ε)
ln((ε−1) is called the lower Minkowski dimen-

sion (or lower metric dimension, lower box dimension, Pontryagin–
Snirelman dimension);
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2. The number limε→0
ln N(ε)
ln((ε−1) is called the Kolmogorov–Tihomirov di-

mension (or upper metric dimension, entropy dimension, upper box
dimension).

See below examples of other, less prominent, notions of metric dimension
occurring in the mathematical literature:

1. The (basis) metric dimension (or location number) of a metric space is
the minimum cardinality of its metric basis. The partition dimension
(Chartrand, Salevi and Zhang 1998) is the minimum cardinality of its
resolving partition, i.e., an ordered partition S1, . . . , Sk of the space such
that no two points have, for 1 ≤ i ≤ k, the same minimal distances to
the set Si. So, partition dimension is at most basis metric dimension
plus 1.

2. The (equilateral) metric dimension of a metric space is the maximum
cardinality of its equidistant subset, i.e., such that any two of its distinct
points are at the same distance. For a normed space, this dimension is
equal to the maximum number of translates of its unit ball that pairwise
touch.

3. For any c > 1, the (normed space) metric dimension dimc(X) of a
finite metric space (X, d) is the least dimension of a real normed space
(V, ||.||) such that there is an embedding f : X → V with 1

cd(x, y) ≤
||f(x)− f(y)|| ≤ d(x, y).

4. The (Euclidean) metric dimension of a finite metric space (X, d) is
the least dimension n of a Euclidean space E

n such that (X, f(d)) is
its metric subspace, where the minimum is taken over all continuous
monotone increasing functions f(t) of t ≥ 0.

5. The dimensionality of a metric space is μ2

2σ2 , where μ and σ2 are the
mean and variance of its histogram of distance values; this notion is used
in Information Retrieval for proximity searching. The term dimension-
ality is also used for the minimal dimension, if it is finite, of Euclidean
space in which a given metric space embeds isometrically.

• Volume of finite metric space
Given a metric space (X, d) with |X| = k < ∞, its volume (Feige 2000)
is the maximal (k − 1)-dimensional volume of the simplex with vertices
{f(x) : x ∈ X} over all short mappings f : (X, d) → (Rk−1, l2). The
volume coincides with the metric for k = 2. It is monotonically increasing
and continuous in the metric d.

• Rank of metric space
The Minkowski rank of metric space (X, d) is the maximal dimension
of a normed vector space (V, ||.||) such that there is an isometric embedding
(V, ||.||) → (X, d).

The Euclidean rank of metric space (X, d) is the maximal dimension
of a flat in it, that is of a Euclidean space E

n such that there is an isometric
embedding E

n → (X, d).
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The quasi-Euclidean rank of metric space (X, d) is the maximal
dimension of a quasi-flat in it, that is, of a Euclidean space E

n such that
there is a quasi-isometry E

n → (X, d). Every Gromov hyperbolic
metric space has this rank 1.

• Hausdorff dimension
For a metric space (X, d) and any real p, q > 0, let Mq

p (X)= inf
∑+∞

i=1 (diam(Ai))p, where the infimum is taken over all countable cov-
erings {Ai}i of X with the diameter of Ai less than q. The Hausdorff
dimension (or fractal dimension, Hausdorff–Besicovitch dimension,
capacity dimension) dimHaus(X, d) of (X, d) is defined by

inf{p : lim
q→0

Mq
p (X) = 0}.

Any countable metric space has Hausdorff dimension 0; the Hausdorff
dimension of the Euclidean space E

n is equal to n.
For each totally bounded metric space, its Hausdorff dimension is

bounded from above by its metric dimension and from below by its
topological dimension.

• Topological dimension
For any compact metric space (X, d) its topological dimension (or
Lebesgue covering dimension) is defined by

inf
d′
{dimHaus(X, d′)},

where d′ is any metric on X topologically equivalent to d, and dimHaus is
the Hausdorff dimension.

This dimension does not exceed also the Assouad-Nagata dimension
of (X, d).

In general, the topological dimension of a topological space X is the
smallest integer n such that, for any finite open covering of X, there exists
a finite open sub-covering (i.e., a refinement of it) with no point of X
belonging to more than n + 1 elements.

• Fractal
For a metric space, its topological dimension does not exceed its
Hausdorff dimension. A fractal is a metric space for which this in-
equality is strict. (Originally, Mandelbrot defined a fractal as a point set
with non-integer Hausdorff dimension.) For example, the Cantor set, seen
as a compact metric subspace of (R, d(x, y) = |x − y|) has the Hausdorff
dimension ln 2

ln 3 ; cf. another Cantor metric on it in Chaps. 11 and 18. An-
other classical fractal, the Sierpinski carpet of [0, 1]× [0, 1] is a complete
geodesic metric subspace of (R2, d(x, y) = ||x− y||1).

The term fractal is used also, more generally, for self-similar (i.e.,
roughly, looking similar at any scale) object (usually, a subset of R

n).
Cf. scale invariance in Chap. 29.
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• Doubling dimension
The doubling dimension of a metric space (X, d) is the smallest integer
n (or ∞ if such n does not exist) such that every metric ball (or, say, a set
of finite diameter) can be covered by a family of at most 2n metric balls
(respectively, sets) of half the diameter.

If (X, d) has finite doubling dimension (or, equivalently, finite Assouad-
Nagata dimension), then d is called a doubling metric.

• Assouad-Nagata dimension
The Assouad-Nagata dimension dimAN (X, d) of a metric space (X, d)
is the smallest integer n (or ∞ if such n does not exist) for which there
exists a constant C > 0 such that, for all s > 0, there exists a covering of
X by its subsets of diameter ≤Cs with every subset of X of diameter ≤s
meeting ≤n + 1 elements of covering.

Replacing “for all s > 0” in above definition by “for s > 0 suffi-
ciently large” or by “for s > 0 sufficiently small,” gives microscopic
mi-dimAN (X, d) and macroscopic ma-dimAN (X, d) Assouad-Nagata
dimensions, respectively. Then (Brodskiy, Dudak, Higes and Mitra
2006) mi-dimAN (X, d) = dimAN (X,min{d, 1}) and ma-dimAN (X, d) =
dimAN (X,max{d, 1}) (here max{d(x, y), 1} means 0 for x = y).

In general, the Assouad-Nagata dimension is not preserved under quasi-
isometry but it is preserved (Lang and Schlichenmaier 2004) under quasi-
symmetric mapping.

• Vol’berg–Konyagin dimension
The Vol’berg–Konyagin dimension of a metric space (X, d) is the
smallest constant C > 1 (or ∞ if such C does not exist) for which X
carries a doubling measure, i.e., a Borel measure μ such that

μ(B(x, 2r)) ≤ Cμ(B(x, r))

for all x ∈ X and r > 0.
A metric space (X, d) carries a doubling measure if and only if d is a

doubling metric, and any complete doubling metric carries a doubling
measure.

The Karger–Ruhl constant of a metric space (X, d) is the smallest
constant c > 1 (or ∞ if such c does not exist) such that

|B(x, 2r)| ≤ c|B(x, r)|

for all x ∈ X and r > 0.
If c is finite, then the doubling dimension of (X, d) is at most 4c.

• Hyperbolic dimension
A metric space (X, d) is called an (R,N)-large-scale doubling if there exist
a number R > 0 and integer N > 0 such that every ball of radius r ≥ R
in (X, d) can be covered by N balls of radius r

2 .
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The hyperbolic dimension hypdim(X, d) of a metric space (X, d)
(Buyalo and Schroeder 2004) is the smallest integer n such that, for every
r > 0, there exist a real number R > 0, an integer N > 0 and a covering
of X with the following properties:

1. Every ball of radius r meets at most n + 1 elements of covering.
2. The covering is an (R,N)-large-scale doubling, and any finite union of

its elements is an (R′, N)-large-scale doubling for some R′ > 0.

The hyperbolic dimension is 0 if (X, d) is a large-scale doubling, and it is
n if (X, d) is the n-dimensional hyperbolic space.

Also, hypdim(X, d) ≤ asdim(X, d) since the asymptotic dimen-
sion asdim(X, d) corresponds to the case N = 1 in the definition of
hypdim(X, d).

The hyperbolic dimension is preserved under a quasi-isometry.
• Asymptotic dimension

The asymptotic dimension asdim(X, d) of a metric space (X, d)
(Gromov 1993) is the smallest integer n such that, for every r > 0,
there exist a constant D = D(r) and a covering of X by its subsets of
diameter at most D such that every ball of radius r meets at most n + 1
elements of the covering.

The asymptotic dimension is preserved under a quasi-isometry.
• Width dimension

Let (X, d) be a compact metric space. For a given number ε > 0, the width
dimension Widimε(X, d) of (X, d) is (Gromov 1999) the minimum integer
n such that there exist an n-dimensional polyhedron P and a continuous
map f : X → P (called an ε-embedding) with Diamf−1(y) ≤ ε for all
y ∈ P .

limε→0Widimε(X, d) is the topological dimension of (X, d). Thus the
width dimension of (X, d) is its macroscopic dimension at the scale ≥ ε.

• Godsil–MaKay dimension
We say that a metric space (X, d) has Godsil–McKay dimension n ≥ 0
if there exists an element x0 ∈ X and two positive constants c and C
such that the inequality ckn ≤ |{x ∈ X : d(x, x0) ≤ k}| ≤ Ckn holds for
every integer k ≥ 0. This notion was introduced in [GoMc80] for the path
metric of a countable locally finite graph. It was proved there that, if the
group Z

n acts faithfully and with a finite number of orbits on the vertices
of the graph, then this dimension is equal to n.

• Length of metric space
The Fremlin length of a metric space (X, d) is the one-dimensional
Hausdorff outer measure on X.

The Hejcman length lng(M) of a subset M ⊂ X of a metric space
(X, d) is sup{lng(M ′) : M ′ ⊂ M, |M ′| < ∞}. Here lng(∅) = 0 and, for a
finite subset M ′ ⊂ X, lng(M ′) = min

∑n
i=1 d(xi−1, xi) over all sequences

x0, . . . , xn such that {xi : i = 0, 1, . . . , n} = M ′.



24 1 General Definitions

The Schechtman length of a finite metric space (X, d) is inf
√∑n

i=1 a2
i

over all sequences a1, . . . , an of positive numbers such that there exists a
sequence X0, . . . , Xn of partitions of X with following properties:

1. X0 = {X} and Xn = {{x} : x ∈ X}.
2. Xi refines Xi−1 for i = 1, . . . , n.
3. For i = 1, . . . , n and B,C ⊂ A ∈ Xi−1 with B,C ∈ Xi, there exists

a one-to-one map f from B onto C such that d(x, f(x)) ≤ ai for all
x ∈ B.

• Roundness of metric space
The roundness of a metric space (X, d) is the supremum of all q such
that

d(x1, x2)q + d(y1, y2)q ≤ d(x1, y1)q + d(x1, y2)q + d(x2, y1)q + d(x2, y2)q

for any four points x1, x2, y1, y2 ∈ X.
Every metric space has roundness ≥1; it is ≤2 if the space has approx-

imate midpoints. The roundness of Lp-space is p if 1 ≤ p ≤ 2.
The generalized roundness of a metric space (X, d) is (Enflo 1969) the

supremum of all q such that, for any 2k ≥ 4 points xi, yi ∈ X with
1 ≤ i ≤ k,

∑

1≤i<j≤k

(d(xi, xj)q + d(yi, yj)q) ≤
∑

1≤i,j≤k

d(xi, yj)q.

So, the generalized roundness is the supremum of q such that the power
transform (cf. Chap. 4) dq is 2k-gonal distance.

Every CAT(0) space (cf. Chap. 6) has roundness 2, but some of them
have generalized roundness 0 (Lafont and Prassidis 2006).

• Type of metric space
The Enflo type of a metric space (X, d) is p if there exists a con-
stant 1 ≤ C < ∞ such that, for every n ∈ N and every function
f : {−1, 1}n → X,

∑
ε∈{−1,1}n dp(f(ε), f(−ε)) is at most Cp

∑n
j=1∑

ε∈{−1,1}n dp(f(ε1, . . . , εj−1, εj , εj+1, . . . , εn), f(ε1, . . . , εj−1,−εj , εj+1,

. . . , εn)).
A Banach space (V, ||.||) of Enflo type p has Rademacher type p, i.e., for

every x1, . . . , xn ∈ V ,

∑

ε∈{−1,1}n

||
n∑

j=1

εjxj ||p ≤ Cp
n∑

j=1

||xj ||p.

Given a metric space (X, d), a symmetric Markov chain on X is a
Markov chain {Zl}∞l=0 on a state space {x1, . . . , xm} ⊂ X with a symmetri-
cal transition m×m matrix ((aij)), such that P (Zl+1 = xj : Zl = xi) = aij
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and P (Z0 = xi) = 1
m for all integers 1 ≤ i, j ≤ m and l ≥ 0. A metric

space (X, d) has Markov type p (Ball 1992) if supT Mp(X,T ) <∞ where
Mp(X,T ) is the smallest constant C > 0 such that the inequality

Edp(ZT , Z0) ≤ TCp
Edp(Z1, Z0)

holds for every symmetric Markov chain {Zl}∞l=0 on X holds, in terms
of expected value (mean) E[X] =

∑
x xp(x) of the discrete random vari-

able X.
A metric space of Markov type p has Enflo type p.

• Strength of metric space
Given a finite metric space (X, d) with s different non-zero values of dij =
d(i, j), its strength is the largest number t such that, for any integers
p, q ≥ 0 with p + q ≤ t, there is a polynomial fpq(s) of degree at most
min{p, q} such that ((d2p

ij ))((d2q
ij )) = ((fpq(d2

ij))).
• Polynomial metric space

Let (X, d) be a metric space with a finite diameter D and a finite nor-
malized measure μX . Let the Hilbert space L2(X, d) of complex-valued
functions decompose into a countable (when X is infinite) or a finite (with
D + 1 members when X is finite) direct sum of mutually orthogonal sub-
spaces L2(X, d) = V0 ⊕ V1 ⊕ . . . .

Then (X, d) is a polynomial metric space if there exists an ordering of
the spaces V0, V1, . . . such that, for i = 0, 1, . . . , there exist zonal spherical
functions, i.e., real polynomials Qi(t) of degree i such that

Qi(t(d(x, y))) =
1
ri

ri∑

j=1

vij(x)vij(y)

for all x, y ∈ X, where ri is the dimension of Vi, {vii(x) : 1 ≤ j ≤ ri} is an
orthonormal basis of Vi, and t(d) is a continuous decreasing real function
such that t(0) = 1 and t(D) = −1. The zonal spherical functions constitute
an orthogonal system of polynomials with respect to some weight w(t).

The finite polynomial metric spaces are also called (P and Q)-polynomial
association schemes; cf. distance-regular graph in Chap. 15.

The infinite polynomial metric spaces are the compact connected two-
point homogeneous spaces; Wang (1952) classified them as the Euclidean
unit spheres, the real, complex, quaternionic projective spaces or the Cay-
ley projective line and plane.

• Growth rate of metric space
Let (X, d) be a distance-invariant metric space, i.e., all metric balls
B(x, n) = {y ∈ X : d(x, y) ≤ n} of the same radius have the same number
of elements. The growth rate of a metric space (X, d) is the function
f(n) = |B(x, n)|.
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(X, d) is a metric space of polynomial growth if there are some pos-
itive constants k,C such that f(n)≤Cnk for all n≥ 0. It has expo-
nential growth if there is a constant C > 1 such that f(n)> Cn for all
n ≥ 0. Cf. graph of polynomial growth, including the group case, in
Chap. 15.

For a metrically discrete metric space (X, d) (i.e., with a =
infx,y∈X,x	=y d(x, y) > 0), its growth rate was defined also (Gordon, Linial
and Rabinovich 1998) by

max
x∈X,r≥2

log |B(x, ar)|
log r

.

• Rendez-vous number
Given a metric space (X, d), its rendez-vous number (or Gross num-
ber, magic number) is a positive real number r(X, d) (if it exists), defined
by the property that for each integer n and all (not necessarily distinct)
x1, . . . , xn ∈ X there exists a point x ∈ X such that

r(X, d) =
1
n

n∑

i=1

d(xi, x).

If the number r(X, d) exists, then it is said that (X, d) has the average
distance property. Every compact connected metric space has this prop-
erty. The unit ball {x ∈ V : ||x|| ≤ 1} of a Banach space (V, ||.||) has the
rendez-vous number 1.

• Wiener polynomial
Given a finite subset M of a metric space (X, d) and a parameter q, the
Wiener polynomial of M is

W (M ; q) =
1
2

∑

x,y∈M :x	=y

qd(x,y).

It is a generating function for the distance distribution (cf. a very similar
notion in Chap. 16) of M , i.e., the coefficient of qi in W (M ; q) is the number
of unordered pairs x, y ∈ M having d(x, y) = i.

The number W ′(M ; 1) = 1
2

∑
x,y∈M d(x, y), in the case when d is the

path metric of a graph with vertex-set M , is called Wiener index; cf.
chemical distance in Chap. 24. The degree distance of this graph is
(Dobrynin and Kochetova 1994) 1

2

∑
x,y∈M d(x, y)(r(x)+r(y)), where r(z)

is the degree of the vertex z ∈M .
The average distance of M is the number 1

|M |(|M |−1)

∑
x,y∈M d(x, y).
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• s-energy
Given a finite subset M of a metric space (X, d), the s-energy of M is
the number

∑

x,y∈M,x 	=y

1
ds(x, y)

and
∑

x,y∈M,x 	=y

log
1

d(x, y)
= −

∏

x,y∈M,x 	=y

d(x, y),

for s �= 0 and s = 0, respectively. The (−s)-energy with s > 0 is also called
the (unnormalized) s-moment of M .

The discrete Riesz s-energy is s-energy for Euclidean distance d and
s ≥ 0.

A 1-median and a center of mass of M are points x∗
1, x

∗
2 ∈ X minimizing

the functionals
∑

y∈M d(x1, y) and
∑

y∈M d2(x2, y), respectively.
In general, given a completely monotonic (i.e., (−1)kfk ≥ 0 for any k)

function f ∈ C
∞, the f-potential energy of a finite subset M of a met-

ric space (X, d) is
∑

x,y∈M,x 	=y f(d2(x, y)). The metric subspace (M,d)
is called (Cohn and Kumar 2007) universally optimal if it minimizes,
among subspaces (M ′, d) with |M ′| = |M |, f -potential energy for any
such function f .

Given an ordered subset M = {x1, . . . , xn} of a metric space (X, d)
(usually l32), its Lennard-Jones potential energy is

∑n−1
i=1

∑n
j=i+1(d(xi,

xj)−12 − 2d(xi, xj)−6).
• Transfinite diameter

The n-th diameter Dn(M) and the n-th Chebyshev constant Cn(M) of a
set M ⊆ X in a metric space (X, d) are defined (Fekete 1923, for the
complex plane C) as

Dn(M) = sup
x1,...,xn∈M

∏

i	=j

d(xi, xj)
1

n(n−1) and

Cn(M) = inf
x∈X

sup
x1,...,xn∈M

n∏

j=1

d(x, xj)
1
n .

The number log Dn(M) (the supremum of average distance) is called the
n-extent of M . The numbers Dn(M), Cn(M) come from the geometric
mean averaging; they also come as the limit case s → 0 of the s-moment∑

i	=j d(xi, xj)s averaging.
The transfinite diameter (or∞-th diameter) and the∞-th Chebyshev

constant C∞(M) of M are defined as

D∞(M) = lim
n→∞

Dn(M) and C∞(M) = lim
n→∞

Cn(M);

these limits existing since {Dn(M)} and {Cn(M)} are non-increasing se-
quences of non-negative real numbers. Define D∞(∅) = 0. The transfinite
diameter of a compact subset of C is its capacity; for a segment in C, it is
1
4 of its length.



28 1 General Definitions

• Metric diameter
The metric diameter (or diameter, width) diam(M) of a set M ⊆X in
a metric space (X, d) is defined by

sup
x,y∈M

d(x, y).

The diameter graph of M has, as vertices, all points x∈M with
d(x, y) = diam(M) for some y ∈M ; it has, as edges, all pairs of its vertices
at distance diam(M) in (X, d).

A metric space (X, d) is called an antipodal metric space (or dia-
metrical metric space) if, for any x ∈ X, there exists the antipode, i.e., a
unique x′ ∈ X such that the interval I(x, x′) is X.

In a metric space endowed with a measure, one says that the isodiametric
inequality holds if the metric balls maximize the measure among all sets
with given diameter. It holds for the volume in Euclidean space but not,
for example, for the Heisenberg metric on the Heisenberg group (cf.
Chap. 10).

The k-diameter of a finite metric space (X, d) is (Chung, Delorme and
Sole 1999) maxK⊆X: |K|=k minx,y∈K: x	=y d(x, y); cf. minimum distance
in Chap. 16.

Given a property P ⊆ X × X of a pair (K,K ′) of subsets of a finite
metric space (X, d), the conditional diameter (or P -diameter, Balbuena,
Carmona, Fábrega and Fiol 1996) is max(K,K′)∈P min(x,y)∈K×K′ d(x, y).
It is diam(X, d) if P = {(K,K ′) ∈ X ×X : |K| = |K ′| = 1}. When (X, d)
models an interconnection network, the P -diameter corresponds to the
maximum delay of the messages interchanged between any pair of clusters
of nodes, K and K ′, satisfying a given property P of interest.

• Metric spread
Given a metric space (X, d), let M be a bounded (i.e., with finite di-
ameter A) and metrically discrete (i.e., the infimum a = infx,y∈M,x 	=y

d(x, y) > 0) subset of X.
The metric spread (or aspect ratio, distance ratio, normalized diame-

ter) of M is the ratio A
a .

• Eccentricity
Given a bounded metric space (X, d), the eccentricity (or Koenig num-
ber) of a point x ∈ X is the number e(x) = maxy∈X d(x, y).

The numbers maxx∈X e(x) and minx∈X e(x) are called the diameter
and the radius of (X, d), respectively. For finite |X|, the average eccen-
tricity is 1

|X|
∑

x∈X e(x).
The sets {x ∈ X : e(x) ≤ e(z) for any z ∈ X}, {x ∈ X : e(x) ≥

e(z) for any z ∈ X} and {x ∈ X :
∑

y∈X d(x, y) ≤
∑

y∈X d(z, y) for any
z ∈ X} are called, respectively, the metric center (or eccentricity center,
center), metric antimedian (or periphery) and the metric median (or
distance center) of (X, d).
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• Radii of metric space
Given a bounded metric space (X, d) and a set M ⊆ X, the metric radius
(or radius) r(M) of M is the infimum of radii of metric balls which con-
tain M , i.e., the number infx∈M supy∈M d(x, y). Then diam(M)

2 ≤ r(M) ≤
diam(M), where diam(M) is the diameter of the set M , with r(M) =
diam(M) in any equidistant metric space and r(M) = diam(M)

2 in any
injective metric space. Some authors define the radius to be the number
diam(M)

2 .
The covering radius of a set M ⊂ X is maxx∈X miny∈M d(x, y), i.e.,

the smallest number R such that the open metric balls of radius R with
centers at the elements of M cover X. It is also called the directed Haus-
dorff distance from X to M . The set M is called an ε-covering if its
covering radius does not exceed ε. Given a positive number m, a min-
imax distance design of size m is a m-subset of X having smallest
covering radius.

The packing radius of a set M ⊂ X is the largest r such that the open
metric balls of radius r with centers at the elements of M are pairwise
disjoint, i.e., minx∈M miny∈M\{x} d(x, y) > 2r. The set M is called an
ε-packing if its packing radius is no less than ε. Given a positive number
m, a maximum distance design of size m is an m-subset of X having
largest packing radius.

The size of the smallest ε-covering is at most the size of the largest ε
2 -

packing. An ε
2 -packing M is non-extendible if M ∪{x} is not an ε

2 -packing
for every x ∈ X\M , i.e., M is also an ε-net.

• Congruence order of metric space
A metric space (X, d) has congruence order n if every finite metric space
which is not isometrically embeddable in (X, d) has a subspace with
at most n points which is not isometrically embeddable in (X, d).

For example, the congruence order of ln2 is n + 3 (Menger 1928); it is 4
for the path metric of a tree.

• Chromatic numbers of metric space
Given a metric space (X, d) and a set D of positive real numbers, the
D-chromatic number of (X, d) is the standard chromatic number of
the D-distance graph of (X, d), i.e., the graph with the vertex-set X
and the edge-set {xy : d(x, y) ∈ D}. Usually, (X, d) is an lp-space and
D = {1} (Benda–Perles chromatic number) or D = [1− ε, 1 + ε] (the
chromatic number of the ε-unit distance graph). Rosenfeld conjectured that
the D-chromatic number of R

2 is ∞ if D is the set of odd integers.
For a metric space (X, d), the polychromatic number is the minimum

number of colors needed to color all the points x ∈ X so that, for each
color class Ci, there is a distance di such that no two points of Ci are at
distance di.

For any integer t > 0, the t-distance chromatic number of a metric
space (X, d) is the minimum number of colors needed to color all the points
x ∈ X so that any two points whose distance is ≤t have distinct colors.
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For any integer t > 0, the t-th Babai number of (X, d) is the minimum
number of colors needed to color all the points x ∈ X so that, for any set D
of positive distances with |D| ≤ t, any two points whose distance belongs
to D have distinct colors.

• Steiner ratio
Given a metric space (X, d) and a finite subset V ⊂X, consider the com-
plete weighted graph G = (V,E) with the vertex-set V and edge-weights
d(x, y) for all x, y ∈ V .

A spanning tree T in G is a subset of |V | − 1 edges forming a tree on V
with the weight d(T ) equal to the sum of weights of its edges. Let MSTV

be a minimum spanning tree in G, i.e., a spanning tree in G with the
minimal weight d(MSTV ).

A minimum Steiner tree on V is a tree SMTV such that its vertex-set
is a subset of X containing V , and d(SMTV ) = infM⊂X : V ⊂M d(MSTM ).

The Steiner ratio St(X, d) of the metric space (X, d) is defined by

inf
V ⊂X

d(SMTV )
d(MSTV )

.

For any metric space (X, d) we have 1
2 ≤ St(X, d) ≤ 1. For the l2-metric

(cf. Lp-metric in Chap. 5) on R
2, it is equal to

√
3

2 , while for the l1-metric
on R

2 it is equal to 2
3 .

Cf. arc routing problems in Chap. 15.

1.4 Metric mappings

• Distance function
A distance function (or ray function) is a continuous function on a
metric space (X, d) (usually, on an Euclidean space E

n) f : X → R≥0

which is homogeneous, i.e., f(tx) = tf(x) for all t ≥ 0 and all x ∈ X.
A distance function f is called symmetric if f(x) = f(−x), positive if

f(x) > 0 for all x �= 0, and convex if f(x+y) ≤ f(x)+f(y) with f(0) = 0.
If X = E

n, the set {x ∈ R
n : f(x) < 1} is called a star body; it cor-

responds to a unique distance function. The star body is bounded if f is
positive, it is symmetric about the origin if f is symmetric, and it is convex
if f is a convex distance function.

In Topology, the term distance function is often used for distance.
• Convex distance function

Given a compact convex region B ⊂ R
n which contains the origin in its

interior, the convex distance function (or gauge, Minkowski distance
function) dB(x, y) is the quasi-metric on R

n defined, for x �= y, by

inf{α > 0 : y − x ∈ αB}.
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It is also defined, equivalently, as ||y−x||2
||z−x||2 , where z is the unique point of the

boundary ∂(x + B) hit by the ray from x through y. Then B = {x ∈ R
n :

dB(0, x) ≤ 1} with equality only for x ∈ ∂B. A convex distance function
is called polyhedral if B is a polytope, tetrahedral if it is a tetrahedron and
so on.

If B is centrally-symmetric with respect to the origin, then dB is a
Minkowskian metric (cf. Chap. 6) whose unit ball is B.

• Element of best approximation
Given a metric space (X, d) and a subset M ⊂ X, an element u0 ∈ M is
called an element of best approximation to a given element x ∈ X
if d(x, u0) = infu∈M d(x, u), i.e., if d(x, u0) is the point-set distance
d(x,M).

A metric projection (or operator of best approximation, nearest point
map) is a multi-valued mapping associating to each element x ∈ X the set
of elements of best approximation from the set M (cf. distance map).

A Chebyshev set in a metric space (X, d) is a subset M ⊂ X contain-
ing a unique element of best approximation for every x ∈ X.

A subset M ⊂X is called a semi-Chebyshev set if the number of
such elements is at most one, and a proximinal set if this number is at
least one.

The Chebyshev radius of the set M is infx∈X supy∈M d(x, y), and a
Chebyshev center of M is an element x0 ∈ X realizing this infimum.

• Distance map
Given a metric space (X, d) and a subset M ⊂ X, the distance map is a
function fM : X → R≥0, where fM (x) = infu∈M d(x, u) is the point-set
distance d(x,M) (cf. metric projection).

If the boundary B(M) of the set M is defined, then the signed distance
function gM is defined by gM (x) = − infu∈B(M) d(x, u) for x ∈ M , and
gM (x) = infu∈B(M) d(x, u) otherwise. If M is a (closed and orientable)
manifold in R

n, then gM is the solution of the eikonal equation |∇g| = 1
for its gradient ∇.

If X = R
n and, for every x ∈ X, there is unique element u(x) with

d(x,M) = d(x, u(x)) (i.e., M is a Chebyshev set), then ||x − u(x)|| is
called a vector distance function.

Distance maps are used in Robot Motion (M being the set of obstacle
points) and, especially, in Image Processing (M being the set of all or
only boundary pixels of the image). For X = R

2, the graph {(x, fM (x)) :
x ∈ X} of d(x,M) is called the Voronoi surface of M .

• Isometry
Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is called
an isometric embedding of X into Y if it is injective and the equality
dY (f(x), f(y)) = dX(x, y) holds for all x, y ∈ X.

An isometry (or congruence mapping) is a bijective isometric embed-
ding. Two metric spaces are called isometric (or isometrically isomorphic)
if there exists an isometry between them.
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A property of metric spaces which is invariant with respect to isometries
(completeness, boundedness, etc.) is called a metric property (or metric
invariant).

A path isometry (or arcwise isometry) is a mapping from X into Y
(not necessarily bijective) preserving lengths of curves.

• Rigid motion of metric space
A rigid motion (or, simply, motion) of a metric space (X, d) is an
isometry of (X, d) onto itself.

For a motion f , the displacement function df (x) is d(x, f(x)). The
motion f is called semisimple if infx∈X df (x) = d(x0, f(x0)) for some
x0 ∈ X, and parabolic otherwise. A semisimple motion is called elliptic if
infx∈X df (x) = 0, and axial (or hyperbolic) otherwise. A motion is called
a Clifford translation if the displacement function df (x) is a constant for
all x ∈ X.

• Symmetric metric space
A metric space (X, d) is called symmetric if, for any point p ∈ X, there
exists a symmetry relative to that point, i.e., a motion fp of this metric
space such that fp(fp(x)) = x for all x ∈ X, and p is an isolated fixed
point of fp.

• Homogeneous metric space
A metric space is called homogeneous (or highly transitive, ultrahomoge-
neous) if any isometry between two of its finite subspaces extends to the
whole space.

A metric space is called point-homogeneous if, for any two points of it,
there exists a motion mapping one of the points to the other. In general,
a homogeneous space is a set together with a given transitive group of
symmetries.

A metric space (X, d) is called (Grünbaum–Kelly) a metrically homo-
geneous metric space if {d(x, z) : z ∈ X} = {d(y, z) : z ∈ X} for any
x, y ∈ X.

• Dilation
Given a metric space (X, d) and a positive real number r, a function
f : X → X is called a dilation if d(f(x), f(y))= rd(x, y) holds for any
x, y ∈ X.

• Metric cone structure
Given a pointed metric space (X, d, x0) (i.e., a space (X, d) with a fixed
point x0 ∈ X), a metric cone structure on it is a (pointwise) continuous
family ft (t ∈ R>0) of dilations of X, leaving the point x0 invariant, such
that d(ft(x), ft(y)) = td(x, y) for all x, y and ft◦ fs = fts.

A Banach space has such a structure for the dilations ft(x) = tx (t ∈
R>0). The Euclidean cone over a metric space (cf. cone over metric
space in Chap. 9) is another example. Cf. also cone metric in Chap. 3.

A cone over a topological space (X, τ) (the base of the cone) is the
quotient space (X × [0, 1])/(X ×{0}) obtained from the product X × [0, 1]
by collapsing the subspace X ×{0} to a point v (the vertex of the cone).
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The tangent metric cone over a metric space (X, d) at a point x0 is
(for all dilatations tX = (X, td)) the closure of ∪t>0tX, i.e., of limt→∞
tX taken in the pointed Gromov–Hausdorff topology (cf. Gromov–
Hausdorff metric).

The asymptotic metric cone over (X, d) is its tangent metric cone
“at infinity,” i.e., ∩t>0tX = limt→0 tX. Cf. boundary of metric space
in Chap. 6.

• Metric fibration
Given a complete metric space (X, d), two subsets M1 and M2 of X are
called equidistant if for each x ∈M1 there exists y ∈M2 with d(x, y) being
equal to the Hausdorff metric between the sets M1 and M2. A metric
fibration of (X, d) is a partition F of X into isometric mutually equidis-
tant closed sets.

The quotient metric space X/F inherits a natural metric for which the
distance map is a submetry.

• Paradoxical metric space
Given a metric space (X, d) and an equivalence relation on the subsets
of X, the space (X, d) is called paradoxical metric space if X can be
decomposed into two disjoint sets M1, M2 so that M1, M2 and X are
pairwise equivalent.

Deuber, Simonovitz and Sós (1995) introduced this idea for wobbling
equivalent subsets M1,M2⊂X, i.e., there is a bijective wobbling (a map-
ping f : M1 → M2 with bounded supx∈X d(x, f(x))). For example,
(R2, l2) is paradoxical for wobbling equivalence but not for isometry
equivalence.

• Homeomorphic metric spaces
Two metric spaces (X, dX) and (Y, dY ) are called homeomorphic
(or topologically isomorphic) if there exists a homeomorphism from X
to Y , i.e., a bijective function f : X → Y such that f and f−1 are
continuous (the preimage of every open set in Y is open in X).

Two metric spaces (X, dX) and (Y, dY ) are called uniformly isomorphic
if there exists a bijective function f : X → Y such that f and f−1 are
uniformly continuous functions. (A function g is uniformly continuous if,
for any ε> 0, there exists δ > 0 such that, for any x, y ∈ X, the inequal-
ity dX(x, y) < δ implies that dY (g(x), f(y))< ε; a continuous function is
uniformly continuous if X is compact.)

• Möbius mapping
Given a metric space (X, d) and quadruple (x, y, z, w) of its distinct points,
the cross-ratio is the positive number defined by

cr((x, y, z, w), d) =
d(x, y)d(z, w)
d(x, z)d(y, w)

.
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Given metric spaces (X, dX) and (Y, dY), a homeomorphism f :X→Y
is called a Möbius mapping if, for every quadruple (x, y, z, w) of distinct
points of X,

cr((x, y, z, w), dX) = cr((f(x), f(y), f(z), f(w)), dY ).

A homeomorphism f : X→Y is called a quasi-Möbius mapping
(Väisälä 1984) if there exists a homeomorphism τ : [0,∞) → [0,∞) such
that, for every quadruple (x, y, z, w) of distinct points of X,

cr((f(x), f(y), f(z), f(w)), dY ) ≤ τ(cr((x, y, z, w), dX)).

• Quasi-symmetric mapping
Given metric spaces (X, dX) and (Y, dY ), a homeomorphism f : X →Y
is called a quasi-symmetric mapping (Tukia and Väisälä 1980) if there
exists a homeomorphism τ : [0,∞) → [0,∞) such that, for every triple
(x, y, z) of distinct points of X,

dY (f(x), f(y))
dY (f(x), f(z))

≤ τ
dX(x, y)
dX(x, z)

.

Quasi-symmetric mappings are quasi-Möbius, and quasi-Möbius map-
pings between bounded metric spaces are quasi-symmetric. In the case
f : R

n → R
n, quasi-symmetric mappings are exactly the same as quasi-

conformal mappings.
• Conformal metric mapping

Given metric spaces (X, dX) and (Y, dY ), which are domains in R
n, a

homeomorphism f : X → Y is called a conformal metric mapping
if, for any non-isolated point x ∈ X, the limit limy→x

dY (f(x),f(y))
d(x,y) exists,

is finite and positive.
A homeomorphism f : X → Y is called a quasi-conformal mapping

(or, specifically, C-quasi-conformal mapping) if there exists a constant
C such that

lim
r→0

sup
max{dY (f(x), f(y)) : dX(x, y) ≤ r}
min{dY (f(x), f(y)) : dX(x, y) ≥ r} ≤ C

for each x ∈ X. The smallest such constant C is called the conformal
dilation.

The conformal dimension of a metric space (X, d) (Pansu 1989) is
the infimum of Hausdorff dimension over all quasi-conformal mappings
of (X, d) into some metric space. For the middle-third Cantor set on [0, 1],
it is 0 but, for any of its quasi-conformal images, it is positive.
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• Hölder mapping
Let c, α ≥ 0 be constants. Given metric spaces (X, dX) and (Y, dY ), a func-
tion f : X → Y is called Hölder mapping (or α-Hölder mapping if the
constant α should be mentioned) if for all x, y ∈ X

dY (f(x), f(y)) ≤ c(dX(x, y))α.

A 1-Hölder mapping is a Lipschitz mapping; 0-Hölder mapping means
that the metric dY is bounded.

• Lipschitz mapping
Let c be a positive constant. Given metric spaces (X, dX) and (Y, dY ),
a function f : X → Y is called a Lipschitz mapping (or c-Lipschitz
mapping if the constant c should be mentioned) if for all x, y ∈ X

dY (f(x), f(y)) ≤ cdX(x, y).

A c-Lipschitz mapping is called a short mapping if c = 1, and is called
a contraction if c < 1.

• Bi-Lipschitz mapping
Let c > 1 be a positive constant. Given metric spaces (X, dX) and (Y, dY ),
a function f : X → Y is called a bi-Lipschitz mapping (or c-bi-Lipschitz
mapping, c-embedding) if there exists a positive real number r such that,
for any x, y ∈ X, we have the following inequalities:

rdX(x, y) ≤ dY (f(x), f(y)) ≤ crdX(x, y).

Every bi-Lipschitz mapping is a quasi-symmetric mapping.
The smallest c for which f is a c-bi-Lipschitz mapping is called the dis-

tortion of f . Bourgain proved that every k-point metric space c-embeds
into a Euclidean space with distortion O(ln k). Gromov’s distortion for
curves is the maximum ratio of arclength to chord length.

Two metrics d1 and d2 on X are called bi-Lipschitz equivalent met-
rics if there are positive constants c and C such that cd1(x, y) ≤ d2(x, y) ≤
Cd1(x, y) for all x, y ∈ X, i.e., the identity mapping is a bi-Lipschitz
mapping from (X, d1) into (X, d2). Bi-Lipschitz equivalent metrics are
equivalent, i.e., generate the same topology but, for example, equiva-
lent L1-metric and L2-metric (cf. Lp-metric in Chap. 5) on R are not
bi-Lipschitz equivalent.

A bi-Lipschitz mapping f : X → Y is a c-isomorphism f : X → f(X).
• c-isomorphism of metric spaces

Given two metric spaces (X, dX) and (Y, dY ), the Lipschitz norm ||.||Lip

on the set of all injective mappings f : X → Y is defined by

||f ||Lip = sup
x,y∈X,x	=y

dY (f(x), f(y))
dX(x, y)

.
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Two metric spaces X and Y are called c-isomorphic if there exists an
injective mapping f : X → Y such that ||f ||Lip||f−1||Lip ≤ c.

• Metric Ramsey number
For a given class M of metric spaces (usually, lp-spaces), an integer n ≥ 1,
and a real number c ≥ 1, the metric Ramsey number (or c-metric
Ramsey number) RM(c, n) is the largest integer m such that every n-point
metric space has a subspace of size m that c-embeds into a member of M
(see [BLMN05]).

The Ramsey number Rn is the minimal number of vertices of a com-
plete graph such that any coloring of the edges with n colors produces a
monochromatic triangle. The following metric analog of Rn was consid-
ered in [Masc04]. Let Dn be the least number of points a finite metric
space must contain in order to contain an equilateral triangle, i.e., to have
equilateral metric dimension greater than 2.

• Uniform metric mapping
Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is called
a uniform metric mapping if there are two non-decreasing functions g1

and g2 from R≥0 to itself with limr→∞ gi(r) = ∞ for i = 1, 2, such that
the inequality

g1(dX(x, y)) ≤ dY (f(x), f(y)) ≤ g2(dX(x, y))

holds for all x, y ∈ X.
A bi-Lipschitz mapping is a uniform metric mapping with linear func-

tions g1 and g2.
• Metric compression

Given metric spaces (X, dX) (unbounded) and (Y, dY ), a function
f : X→Y is a large scale Lipschitz mapping if, for some c > 0,D ≥ 0 and
all x, y ∈ X,

dY (f(x), f(y)) ≤ cdX(x, y) + D.

The compression of such a mapping f is ρf (r) = infdX(x,y)≥r dY (f(x),
f(y)).

The metric compression of (X, dX) in (Y, dY ) is defined by

R(X,Y ) = sup
f
{limr→∞

log max{ρf (r), 1}
log r

},

where supremum is over all large scale Lipschitz mappings f .
The main interesting case, when (Y, dY ) is a Hilbert space and (X, dX)

is a (finitely generated discrete) group with word metric, was considered
by Guentner and Kaminker in 2004. Then R(X,Y ) = 0 if there is no
uniform metric mapping from (X, dX) to (Y, dY ) and R(X,Y ) = 1 for
free groups (even if there is no quasi-isometry). Arzhantzeva, Guba and
Sapir (2006) found groups with 1

2 ≤ R(X,Y ) ≤ 3
4 .
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• Quasi-isometry
Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is called
a quasi-isometry (or (C, c)-quasi-isometry) if there exist real numbers
C ≥ 1 and c ≥ 0 such that

C−1dX(x, y)− c ≤ dY (f(x), f(y)) ≤ CdX(x, y) + c,

and Y = ∪x∈XBdY
(f(x), c), i.e., for every point y ∈ Y , there exists a point

x ∈ X such that dY (y, f(x)) < c
2 . Quasi-isometry is an equivalence relation

on metric spaces; it is a bi-Lipschitz equivalence up to small distances.
A quasi-isometry with C = 1 is called a coarse isometry (or rough

isometry, almost isometry, Hausdorff approximation).
Cf. quasi-Euclidean rank of a metric space.

• Coarse embedding
Given metric spaces (X, dX) and (Y, dY ), a function f : X→Y is called
a coarse embedding if there exist non-decreasing functions ρ1, ρ2 :
[0,∞) → [0,∞) such that ρ1(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ2(dX(x, y))
for all x, y ∈ X, and limt→∞ ρ1(t) = +∞.

Metrics d1 and d2 on X are called coarsely equivalent metrics if there
exist non-decreasing functions f, g : [0,∞) → [0,∞) such that d1 ≤ f(d2)
and d2 ≤ g(d1).

• Contraction
Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is called
a contraction if the inequality

dY (f(x), f(y)) ≤ cdX(x, y)

holds for all x, y ∈ X and some real number c, 0 ≤ c < 1.
Every contraction is a contractive mapping (but not necessarily the

other way around) and it is uniformly continuous. Banach Fixed Point
Theorem (or Contraction Principle): every contraction from a complete
metric space into itself has a unique fixed point.

• Contractive mapping
Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is called
a contractive mapping (or strictly short mapping) if, for all different
points x, y ∈ X,

dY (f(x), f(y)) < dX(x, y).

Every contractive mapping from a compact metric space into itself has
a unique fixed point.

A function f : X → Y is called a non-contractive mapping (or
dominating mapping) if, for all different x, y ∈ X,

dY (f(x), f(y)) ≥ dX(x, y).

Every non-contractive bijection from a totally bounded metric space
onto itself is an isometry.
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• Short mapping
Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is called a
short mapping (or 1-Lipschitz mapping, non-expansive mapping, metric
mapping semi-contraction) if the inequality

dY (f(x), f(y)) ≤ dX(x, y)

holds for all x, y ∈ X.
A submetry is a short mapping such that the image of any metric ball

is a metric ball of the same radius.
The set of short mappings f : X → Y for bounded metric spaces (X, dX)

and (Y, dY ) is a metric space under uniform metric sup{dY (f(x), g(x)) :
x ∈ X}.

Two subsets A and B of a metric space (X, d) are called (Gowers 2000)
similar if there exist short mappings f : A → X, g : B → X and a small
ε > 0 such that every point of A is within ε of some point of B, every point
of B is within ε of some point of A, and |d(x, g(f(x)))− d(y, f(g(y)))| ≤ ε
for every x ∈ A and y ∈ B.

• Category of metric spaces
A category Ψ consists of a class ObΨ, whose elements are called objects of
the category, and a class MorΨ, elements of which are called morphisms
of the category. These classes have to satisfy the following conditions:

1. To each ordered pair of objects A, B is associated a set H(A,B) of
morphisms.

2. Each morphism belongs to only one set H(A,B).
3. The composition f · g of two morphisms f : A → B, g : C → D is

defined if B = C in which case it belongs to H(A,D).
4. The composition of morphisms is associative.
5. Each set H(A,A) contains, as an identity, a morphism idA such that

f ·idA = f and idA ·g = g for any morphisms f : X → A and g : A → Y .

The category of metric spaces, denoted by Met (see [Isbe64]), is a
category which has metric spaces as objects and short mappings as mor-
phisms. A unique injective envelope exists in this category for every
one of its objects; it can be identified with its tight span. In Met,
the monomorphisms are injective short mappings, and isomorphisms are
isometries. Met is a subcategory of the category which has metric spaces
as objects and Lipschitz mappings as morphisms.

• Injective metric space
A metric space (X, d) is called injective if, for every isometric embedding
f : X → X ′ of (X, d) into another metric space (X ′, d′), there exists a
short mapping f ′ from X ′ into X with f ′ · f = idX , i.e., X is a retract
of X ′. Equivalently, X is an absolute retract, i.e., a retract of every
metric space into which it embeds isometrically. A metric space (X, d) is
injective if and only if it is hyperconvex.



1.4 Metric mappings 39

Examples of injective metric spaces include l21-space, ln∞-space, any real
tree and the tight span of a metric space.

• Injective envelope
The notion of injective envelope (or metric envelope) is a generaliza-
tion of the notion of Cauchy completion. Given a metric space (X, d),
it can be embedded isometrically into an injective metric space (X̂, d̂);
given any such isometric embedding f : X → X̂, there exists a unique
smallest injective subspace (X, d) of (X̂, d̂) containing f(X) which is called
injective envelope of X. It is isometrically identified with the tight span
of (X, d).

A metric space coincides with its injective envelope if and only if it is
an injective metric space.

• Tight extension
An extension (X ′, d′) of a metric space (X, d) is called a tight extension
if, for every semi-metric d′′ on X ′ satisfying the conditions d′′(x1, x2) =
d(x1, x2) for all x1, x2 ∈ X, and d′′(y1, y2) ≤ d′(y1, y2) for any y1, y2 ∈ X ′,
one has d′′(y1, y2) = d′(y1, y2) for all y1, y2 ∈ X ′.

The tight span is the universal tight extension of X, i.e., it contains, up
to canonical isometries, every tight extension of X, and it has no proper
tight extension itself.

• Tight span
Given a metric space (X, d) of finite diameter, consider the set R

X =
{f : X → R}. The tight span T (X, d) of (X, d) is defined as the set
T (X, d) = {f ∈ R

X : f(x) = supy∈X(d(x, y) − f(y)) for all x ∈ X},
endowed with the metric induced on T (X, d) by the sup norm ||f || =
supx∈X |f(x)|.

The set X can be identified with the set {hx ∈ T (X, d) : hx(y) = d(y, x)}
or, equivalently, with the set T 0(X, d) = {f ∈ T (X, d) : 0 ∈ f(X)}. The
injective envelope (X, d) of X is isometrically identified with the tight
span T (X, d) by

X → T (X, d), x→ hx ∈ T (X, d) : hx(y) = d(f(y), x).

The tight span T (X, d) of a finite metric space is the metric space
(T (X),D(f, g) = max |f(x) − g(x)|), where T (X) is the set of functions
f : X → R such that for any x, y ∈ X, f(x) + f(y) ≥ d(x, y) and, for each
x ∈ X, there exists y ∈ X with f(x)+f(y) = d(x, y). The mapping of any
x into the function fx(y) = d(x, y) gives an isometric embedding of (X, d)
into T (X, d). For example, if X = {x1, x2}, then T (X, d) is the interval of
length d(x1, x2).

The tight span of a metric space (X, d) of finite diameter can be con-
sidered as a polytopal complex of bounded faces of the polyhedron

{y ∈ R
n
≥0 : yi + yj ≥ d(xi, xj) for 1 ≤ i < j ≤ n}
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if, for example, X = {x1, . . . , xn}. The dimension of this complex is called
(Dress 1984) the combinatorial dimension of (X, d).

• Real tree
A metric space (X, d) is called (Tits 1977) a real tree (or R-tree) if, for all
x, y ∈ X, there exists a unique arc from x to y, and this arc is a geodesic
segment. So, an R-tree is a (uniquely) arcwise connected metric space in
which each arc is isometric to a subarc of R. A real tree is also called a
metric tree, not to be confused with a metric tree in Data Analysis (cf.
Chap. 17).

A metric space (X, d) is a real tree if and only if it is path-connected
and Gromov 0-hyperbolic (i.e., satisfies the four-point inequality).

Real trees are exactly tree-like metric spaces which are geodesic; they
are injective metric spaces among tree-like spaces. Tree-like metric spaces
are by definition metric subspaces of real trees.

If (X, d) is a finite metric space, then the tight span T (X, d) is a real
tree and can be viewed as an edge-weighted graph-theoretical tree.

A metric space is a complete real tree if and only if it is hyperconvex
and any two points are joined by a metric segment.

The plane R
2 with the Paris metric or lift metric (cf. Chap. 19) are

examples of R-tree.

1.5 General distances

• Discrete metric
Given a set X, the discrete metric (or trivial metric, sorting dis-
tance) is a metric on X, defined by d(x, y) = 1 for all distinct x, y ∈ X
and d(x, x) = 0. Cf. the more general notion of a (metrically or topologi-
cally) discrete metric space.

• Indiscrete semi-metric
Given a set X, the indiscrete semi-metric d is a semi-metric on X,
defined by d(x, y) = 0 for all x, y ∈ X.

• Equidistant metric
Given a set X and a positive real number t, the equidistant metric d
is a metric on X, defined by d(x, y) = t for all distinct x, y ∈ X (and
d(x, x) = 0).

• (1, 2)−B-metric
Given a set X, the (1, 2)−B-metric d is a metric on X such that, for any
x ∈ X, the number of points y ∈ X with d(x, y) = 1 is at most B, and all
other distances are equal to 2. The (1, 2) − B-metric is the truncated
metric of a graph with maximal vertex degree B.
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• Permutation metric
Given a finite set X, a metric d on it is called a permutation met-
ric (or linear arrangement metric) if there exists a bijection ω : X →
{1, . . . , |X|} such that for all x, y ∈ X

d(x, y) = |ω(x)− ω(y)|.

Given an integer n ≥ 1, the line metric on {1, . . . , n} is defined by
|x− y| for any 1 ≤ x, y ≤ n. Even, Naor, Rao and Schieber (2000) defined
more general spreading metric, i.e., any metric d on {1, . . . , n} such that
∑

y∈M d(x, y) ≥ |M |(|M |+2)
4 for any 1 ≤ x ≤ n and M ⊆ {1, . . . , n} \ {x}

with |M | ≥ 2.
• Induced metric

Given a metric space (X, d) and a subset X ′ ⊂ X, an induced metric
is the restriction d′ of d to X ′. A metric space (X ′, d′) is called a met-
ric subspace of (X, d), and the metric space (X, d) is called a metric
extension of (X ′, d′).

• Katĕtov mapping
Given a metric space (X, d), the mapping f : X→R is a Katĕtov map-
ping if

|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y)

for any x, y ∈ X, i.e., setting d(x, z) = f(x) defines a one-point metric
extension (X ∪ {z}, d) of (X, d).

The set E(X) of Katĕtov mappings on X endowed with distance
D(f, g) = supx∈X |f(x)− g(x)| is a complete metric space; (X, d) embeds
isometrically in it via the Kuratowski mapping x → d(x, .), with unique
extension of each isometry of X to one of E(X).

• Dominating metric
Given metrics d and d1 on a set X, d1 dominates d if d1(x, y) ≥ d(x, y) for
all x, y ∈ X. Cf. non-contractive mapping (or dominating mapping).

• Metric transform
A metric transform is a distance obtained as a function of a given metric
(cf. Chap. 4).

• Complete metric
Given a metric space (X, d), a sequence {xn}, xn ∈ X, is said to have
convergence to x∗ ∈ X if limn→∞ d(xn, x∗) = 0, i.e., for any ε > 0, there
exists n0 ∈ N such that d(xn, x∗) < ε for any n > n0.

A sequence {xn}n, xn ∈ X, is called a Cauchy sequence if, for any ε > 0,
there exists n0 ∈ N such that d(xn, xm) < ε for any m,n > n0.

A metric space (X, d) is called a complete metric space if every
Cauchy sequence in it converges. In this case the metric d is called a com-
plete metric. An example of incomplete metric space is (N, d(m,n) =
|m−n|

mn ).
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• Cauchy completion
Given a metric space (X, d), its Cauchy completion is a metric space
(X∗, d∗) on the set X∗ of all equivalence classes of Cauchy sequences, where
the sequence {xn}n is called equivalent to {yn}n if limn→∞ d(xn, yn) = 0.
The metric d∗ is defined by

d∗(x∗, y∗) = lim
n→∞

d(xn, yn)

for any x∗, y∗ ∈ X∗, where {xn}n (respectively, {yn}n) is any element in
the equivalence class x∗ (respectively, y∗).

The Cauchy completion (X∗, d∗) is a unique, up to isometry, complete
metric space, into which the metric space (X, d) embeds as a dense metric
subspace.

The Cauchy completion of the metric space (Q, |x − y|) of rational
numbers is the real line (R, |x − y|). A Banach space is the Cauchy
completion of a normed vector space (V, ||.||) with the norm metric
||x− y||. A Hilbert space corresponds to the case an inner product norm
||x|| =

√
〈x, x〉.

• Perfect metric space
A complete metric space (X, d) is called perfect if every point x ∈ X is a
limit point, i.e., |B(x, r) = {y ∈ X : d(x, y) < r}| > 1 holds for any r > 0.

Every non-empty perfect totally disconnected compact metric space
is homeomorphic to the Cantor set with the natural metric |x− y|. The
totally disconnected countable metric space (Q, |x−y|) of rational numbers
also consists only of limit points but it is not complete and not locally
compact.

Every proper metric ball of radius r in a metric space has diameter
at most 2r. Given a number 0 < c ≤ 1, a metric space is called a c-
uniformly perfect metric space if this diameter is at least 2cr. Cf.
radius of metric space.

• Metrically discrete metric space
A metric space (X, d) is called metrically discrete (or uniformly discrete)
if there exists a number r > 0 such that B(x, r) = {y ∈ X : d(x, y) < r} =
{x} for every x ∈ X.

(X, d) is a topologically discrete metric space (or a discrete met-
ric space) if the underlying topological space is discrete, i.e., each point
x ∈ X is an isolated point: there exists a number r(x) > 0 such that
B(x, r(x)) = {x}. For X = { 1

n : n = 1, 2, 3, . . . }, the metric space
(X, |x − y|) is topologically but not metrically discrete. Cf. translation
discrete metric in Chap. 10.

Alternatively, a metric space (X, d) is called discrete if any of the fol-
lowing holds:

1. (Burdyuk and Burdyuk 1991) it has a proper isolated subset, i.e.,
M ⊂ X with inf{d(x, y) : x ∈M,y /∈ M} > 0 (any such space admits a
unique decomposition into continuous, i.e., non-discrete, components).
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2. (Lebedeva, Sergienko and Soltan 1984) for any two distinct points x, y ∈
X, there exists a point z of the closed metric interval I(x, y) with
I(x, z) = {x, z}.

3. a stronger property holds: for any two distinct points x, y ∈ X, every
sequence of points z1, z2, . . . with zk ∈ I(x, y) but zk+1 ∈ I(x, zk)\{zk}
for k = 1, 2, . . . is a finite sequence.

• Bounded metric space
A metric (moreover, a distance) d on a set X is called bounded if there
exists a constant C > 0 such that d(x, y) ≤ C for any x, y ∈ X.

For example, given a metric d on X, the metric D on X, defined by
D(x, y) = d(x,y)

1+d(x,y) , is bounded with C = 1.
A metric space (X, d) with a bounded metric d is called a bounded

metric space.
• Totally bounded metric space

A metric space (X, d) is called totally bounded if, for every ε > 0,
there exists a finite ε-net, i.e., a finite subset M ⊂ X with the point-set
distance d(x,M) < ε for any x ∈ X (cf. totally bounded space in
Chap. 2).

Every totally bounded metric space is bounded and separable.
A metric space is totally bounded if and only if its Cauchy completion

is a compact metric space.
• Separable metric space

A metric space is called separable if it contains a countable dense subset,
i.e., some countable subset with which all its elements can be approached.

A metric space is separable if and only if it is second-countable, and
if and only if it is Lindelöf.

• Metric compactum
A metric compactum (or compact metric space) is a metric space in
which every sequence has a Cauchy subsequence, and those subsequences
are convergent. A metric space is compact if and only if it is totally
bounded and complete.

Every bounded and closed subset of a Euclidean space is compact. Every
finite metric space is compact. Every compact metric space is second-
countable.

• Proper metric space
A metric space is called proper (or finitely compact, or having the
Heine-Borel property) if every closed metric ball in it is compact. Every
proper metric space is complete.

• UC metric space
A metric space is called a UC metric space (or Atsuji space) if any
continuous function from it into an arbitrary metric space is uniformly
continuous.

Every metric compactum is a UC metric space. Every UC metric
space is complete.
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• Polish space
A Polish space is a complete separable metric space. A metric space
is called a Souslin space if it is a continuous image of a Polish space.

A metric triple (or mm-space) is a Polish space (X, d) with a Borel
probability measure μ, i.e., a non-negative real function μ on the Borel
sigma-algebra F of X with the following properties: μ(∅) = 0, μ(X) = 1,
and μ(∪nAn) =

∑
n μ(An) for any finite or countable collection of pairwise

disjoint sets An ∈ F .
Given a topological space (X, τ), a sigma-algebra on X is a collection

F of subsets of X with the following properties: ∅ ∈ F , X\U ∈ F for
U ∈ F , and ∪nAn ∈ F for a finite or countable collection {An}n, An ∈ F .

The sigma-algebra on X which is related to the topology of X, i.e.,
consists of all open and closed sets of X, is called a Borel sigma-algebra
of X. Any metric space is a Borel space, i.e., a set equipped with a Borel
sigma-algebra.

• Norm metric
Given a normed vector space (V, ||.||), the norm metric on V is defined by

||x− y||.

The metric space (V, ||x − y||) is called a Banach space if it is com-
plete. Examples of norm metrics are lp- and Lp-metrics, in particular,
the Euclidean metric.

Any metric space (X, d) admits an isometric embedding into a Banach
space B such that its convex hull is dense in B (cf. Monge–Kantorovich
metric); (X, d) is a linearly rigid metric space if such embedding is
unique up to isometry.

• Path metric
Given a connected graph G = (V,E), its path metric (or graphic met-
ric) dpath is a metric on V , defined as the length (i.e., the number of
edges) of a shortest path connecting two given vertices x and y from V
(cf. Chap. 15).

• Editing metric
Given a finite set X and a finite set O of (unary) editing operations on
X, the editing metric on X is the path metric of the graph with the
vertex-set X and xy being an edge if y can be obtained from x by one of
the operations from O.

• Gallery metric
A chamber system is a set X (whose elements are referred to as chambers)
equipped with n equivalence relations ∼i, 1 ≤ i ≤ n. A gallery is a se-
quence of chambers x1, . . . , xm such that xi ∼j xi+1 for every i and some
j depending on i.

The gallery metric is an extended metric on X which is the length
of the shortest gallery connecting x and y ∈ X (and is equal to∞ if there is
no connecting gallery). The gallery metric is the (extended) path metric
of the graph with the vertex-set X and xy being an edge if x ∼i y for some
1 ≤ i ≤ n.
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• Riemannian metric
Given a connected n-dimensional smooth manifold Mn, its Riemannian
metric is a collection of positive-definite symmetric bilinear forms ((gij))
on the tangent spaces of Mn which varies smoothly from point to point.

The length of a curve γ on Mn is expressed as
∫

γ

√∑
i,j gijdxidxj , and

the intrinsic metric on Mn, sometimes also called the Riemannian
distance, is the infimum of lengths of curves connecting any two given
points x, y ∈Mn. Cf. Chap. 7.

• Linearly additive metric
A linearly additive metric (or projective metric) d is a continuous metric
on R

n which satisfies the condition

d(x, z) = d(x, y) + d(y, z)

for any collinear points x, y, z lying in that order on a common line. The
Hilbert fourth problem asked in 1900 to classify such metrics; it is solved
only for dimension n = 2 [Amba76]. Cf. Chap. 6.

Every norm metric on R
n is linearly additive. Every linearly additive

metric on R
2 is a hypermetric.

• Product metric
Given a finite or countable number n of metric spaces (X1, d1), (X2, d2),
. . . , (Xn, dn), the product metric is a metric on the Cartesian product
X1 × X2 × · · · × Xn = {x = (x1, x2, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn},
defined as a function of d1, . . . , dn (cf. Chap. 4).

• Hamming metric
The Hamming metric dH is a metric on R

n, defined (Hamming 1950) by

|{i : 1 ≤ i ≤ n, xi �= yi}|.

On binary vectors x, y ∈ {0, 1}n the Hamming metric and the l1-metric
(cf. Lp-metric in Chap. 5) coincide; they are equal to |I(x)ΔI(y)| =
|I(x)\I(y)| + |I(y)\I(x)|, where I(z) = {1 ≤ i ≤ n : zi = 1}. In fact,
max{|I(x)\I(y)|, |I(y)\I(x)|} is also a metric.

• Lee metric
Given m,n ∈ N, m ≥ 2, the Lee metric dLee is a metric on Z

n
m =

{0, 1, . . . ,m− 1}n, defined (Lee 1958) by
∑

1≤i≤n

min{|xi − yi|,m− |xi − yi|}.

The metric space (Zn
m, dLee) is a discrete analog of the elliptic space.

The Lee metric coincides with the Hamming metric dH if m = 2 or
m = 3. The metric spaces (Zn

4 , dLee) and Z2n
2 , dH) are isometric. The Lee

metric is applied for phase modulation while the Hamming metric is used
in case of orthogonal modulation.
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Cf. absolute summation distance and generalized Lee metric in
Chap. 16.

• Symmetric difference metric
Given a measure space (Ω,A, μ), the symmetric difference semi-
metric (or measure semi-metric) d� is a semi-metric on the set
Aμ = {A ∈ A : μ(A) < ∞}, defined by

μ(A�B),

where A�B = (A ∪B)\(A ∩B) is the symmetric difference of the sets A
and B ∈ Aμ.

The value d�(A,B) = 0 if and only if μ(A�B) = 0, i.e., A and B are
equal almost everywhere. Identifying two sets A,B ∈ Aμ if μ(A�B) = 0,
we obtain the symmetric difference metric (or Fréchet–Nikodym–
Aronszyan distance, measure metric).

If μ is the cardinality measure, i.e., μ(A) = |A| is the number of elements
in A, then d�(A,B) = |A�B|. In this case |A�B| = 0 if and only if A =
B. The Johnson distance between k-sets A and B is |A�B|

2 = k−|A∩B|.
The symmetric difference metric between ordered q-partitions A =

(A1, . . . , Aq) and B = (B1, . . . , Bq) of a finite set is
∑q

i=1 |AiΔBi|. Cf.
metrics between partitions in Chap. 10.

• Enomoto–Katona metric
Given a finite set X and an integer k, 2k ≤ |X|, the Enomoto–Katona
metric is the distance between unordered pairs (X1,X2) and (Y1, Y2) of
disjoint k-subsets of X, defined by

min{|X1 \ Y1|+ |X2 \ Y2|, |X1 \ Y2|+ |X2 \ Y1|}.

• Steinhaus distance
Given a measure space (Ω,A, μ), the Steinhaus distance dSt is a semi-
metric on the set Aμ = {A ∈ A : μ(A) < ∞}, defined by

μ(A�B)
μ(A ∪B)

= 1− μ(A ∩B)
μ(A ∪B)

if μ(A∪B) > 0 (and is equal to 0 if μ(A) = μ(B) = 0). It becomes a metric
on the set of equivalence classes of elements from Aμ; here A,B ∈ Aμ are
called equivalent if μ(A�B) = 0.

The biotope distance (or Tanimoto distance, Marczewski–
Steinhaus distance) |A�B|

|A∪B| is the special case of Steinhaus distance
obtained for the cardinality measure μ(A) = |A| for finite sets (cf. also
generalized biotope transform metric in Chap. 4).
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• Point-set distance
Given a metric space (X, d), the point-set distance d(x,A) between a
point x ∈ X and a subset A of X is defined as

inf
y∈A

d(x, y).

For any x, y ∈ X and for any non-empty subset A of X, we have the
following version of the triangle inequality: d(x,A) ≤ d(x, y) + d(y,A) (cf.
distance map).

For a given point-measure μ(x) on X and a penalty function p, an op-
timal quantizer is a set B ⊂ X such that

∫
p(d(x,B))dμ(x) is as small

as possible.
• Set-set distance

Given a metric space (X, d), the set-set distance between two subsets A
and B of X is defined by

inf
x∈A,y∈B

d(x, y).

This distance can be 0 even for disjoint sets, for example, for the intervals
(1, 2), (2, 3) on R. The sets A and B are positively separated if their set-set
distance is positive.

In Data Analysis, the set-set distance between clusters is called the
single linkage, while supx∈A,y∈B d(x, y) is called the complete linkage.

• Matching distance
Given a metric space (X, d), the matching distance (or multiset-multiset
distance) between two multisets A and B in X is defined by

inf
φ

max
x∈A

d(x, φ(x)),

where φ runs over all bijections between A and B, as multisets. Cf. metrics
between multisets.

The matching distance in d’Amico, Frosini and Landi (2006) is, roughly,
the case when d is the L∞-metric on cornerpoints of the size functions
f : {(x, y) ∈ R

2 : x < y} → N.
The matching distance is not related to the perfect matching dis-

tance in Chap. 15 nor to the non-linear elastic matching distance in
Chap. 21.

• Hausdorff metric
Given a metric space (X, d), the Hausdorff metric (or two-sided
Hausdorff distance) dHaus is a metric on the family F of all compact
subsets of X, defined by

max{ddHaus(A,B), ddHaus(B,A)},
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where ddHaus(A,B) = maxx∈A miny∈B d(x, y) is the directed Hausdorff
distance (or one-sided Hausdorff distance) from A to B. In other words,
dHaus(A,B) is the minimal number ε (called also the Blaschke dis-
tance) such that closed ε-neighborhood of A contains B and a closed
ε-neighborhood of B contains A. Then dHaus(A,B) is equal to

sup
x∈X

|d(x,A)− d(x,B)|,

where d(x,A) = miny∈A d(x, y) is the point-set distance. The Hausdorff
metric is not a norm metric.

If the above definition is extended for non-compact closed subsets A and
B of X, then dHaus(A,B) can be infinite, i.e., it becomes an extended
metric.

For not necessarily closed subsets A and B of X, the Hausdorff semi-
metric between them is defined as the Hausdorff metric between their
closures. If X is finite, dHaus is a metric on the class of all subsets of X.

• Lp-Hausdorff distance
Given a finite metric space (X, d), the Lp-Hausdorff distance [Badd92]
between two subsets A and B of X is defined by

(
∑

x∈X

|d(x,A)− d(x,B)|p) 1
p ,

where d(x,A) is the point-set distance. The usual Hausdorff metric
corresponds to the case p = ∞.

• Generalized G-Hausdorff metric
Given a group (G, ·, e) acting on a metric space (X, d), the generalized
G-Hausdorff metric between two closed bounded subsets A and B of
X is defined by

min
g1,g2∈G

dHaus(g1(A), g2(B)),

where dHaus is the Hausdorff metric. If d(g(x), g(y)) = d(x, y) for any
g ∈ G (i.e., if the metric d is left-invariant with respect of G), then above
metric is equal to ming∈G dHaus(A, g(B)).

• Gromov–Hausdorff metric
The Gromov–Hausdorff metric is a metric on the set of all isometry
classes of compact metric spaces, defined by

inf dHaus(f(X), g(Y ))

for any two classes X∗ and Y ∗ with the representatives X and Y , respec-
tively, where dHaus is the Hausdorff metric, and the minimum is taken
over all metric spaces M and all isometric embeddings f : X→M , g : Y →
M . The corresponding metric space is called the Gromov–Hausdorff space.
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The Hausdorff–Lipschitz distance between isometry classes of
compact metric spaces X and Y is defined by

inf{dGH(X,X1) + dL(X1, Y1) + dGH(Y, Y1)},

where dGH is the Gromov–Hausdorff metric, dL is the Lipschitz metric,
and the minimum is taken over all (isometry classes of compact) metric
spaces X1, Y1.

• Fréchet metric
Let (X, d) be a metric space. Consider a set F of all continuous map-
pings f : A → X, g : B → X, . . . , where A,B, . . . are subsets of R

n,
homeomorphic to [0, 1]n for a fixed dimension n ∈ N.

The Fréchet semi-metric dF is a semi-metric on F , defined by

inf
σ

sup
x∈A

d(f(x), g(σ(x))),

where the infimum is taken over all orientation preserving homeomor-
phisms σ : A→B. It becomes the Fréchet metric on the set of
equivalence classes f∗ = {g : dF (g, f) = 0}. Cf. the Fréchet surface
metric in Chap. 8.

• Banach–Mazur distance
The Banach–Mazur distance dBM between two Banach spaces V and
W is

ln inf
T
||T || · ||T−1||,

where the infimum is taken over all isomorphisms T : V → W .
It can also be written as ln d(V,W ), where the number d(V,W ) is

the smallest positive d ≥ 1 such that B
n

W ⊂ T (B
n

V ) ⊂ d B
n

W for some lin-
ear invertible transformation T : V → W . Here B

n

V = {x ∈ V : ||x||V ≤ 1}
and B

n

W = {x ∈ W ; ||x||W ≤ 1} are the unit balls of the normed spaces
(V, ||.||V ) and (W, ||.||W ), respectively.

One has dBM (V,W ) = 0 if and only if V and W are isometric, and dBM

becomes a metric on the set Xn of all equivalence classes of n-dimensional
normed spaces, where V ∼W if they are isometric. The pair (Xn, dBM ) is
a compact metric space which is called the Banach–Mazur compactum.

The Gluskin–Khrabrov distance (or modified Banach–Mazur dis-
tance) is defined by

inf{||T ||X→Y : |detT | = 1} · inf{||T ||Y →X : |detT | = 1}.

Tomczak–Jaegermann distance (or weak Banach–Mazur distance)
is defined by

max{γY (idX), γX(idY )},
where id is the identity map and, for an operator U : X → Y , γZ(U) de-
notes inf

∑
||Wk||||Vk||. Here the infimum is taken over all representations

U =
∑

WkVk for Wk : X → Z and Vk : Z → Y . This distance never
exceeds the corresponding Banach–Mazur distance.
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• Kadets distance
The gap (or opening) between two closed subspaces X and Y of a Banach
space (V, ||.||) is defined by

gap(X,Y ) = max{δ(X,Y ), δ(Y,X)},

where δ(X,Y ) = sup{infy∈Y ||x− y|| : x ∈ X, ||x|| = 1} (cf. gap distance
in Chap. 12 and gap metric in Chap. 18).

The Kadets distance between two Banach spaces V and W is a
semi-metric, defined (Kadets 1975) by

inf
Z,f,g

gap(Bf(V ), Bg(W )),

where the infimum is taken over all Banach spaces Z and all linear iso-
metric embeddings f : V → Z and g : W → Z; here Bf(V ) and Bg(W ) are
the unit metric balls of Banach spaces f(V ) and g(W ), respectively.

The non-linear analogue of the Kadets distance is the following
Gromov–Hausdorff distance between Banach spaces U and W :

inf
Z,f,g

dHaus(f(BV ), g(BW )),

where the infimum is taken over all metric spaces Z and all isometric em-
beddings f : V → Z and g : W → Z; here dHaus is the Hausdorff metric.

The Kadets path distance between Banach spaces V and W is de-
fined (Ostrovskii 2000) as the infimum of the length (with respect to the
Kadets distance) of all curves joining V and W (and is equal to ∞ if there
is no such curve).

• Lipschitz distance
Given α ≥ 0 and two metric spaces (X, dX), (Y, dY ), the α-Hölder norm
||.||Hol on the set of all injective functions f : X → Y is defined by

||f ||Hol = sup
x,y∈X,x 	=y

dY (f(x), f(y))
dX(x, y)α

.

The Lipschitz norm ||.||Lip is the case α = 1 of ||.||Hol.
The Lipschitz distance between metric spaces (X, dX) and (Y, dY ) is

defined by
ln inf

f
||f ||Lip · ||f−1||Lip,

where the infimum is taken over all bijective functions f :X→Y . Equiva-
lently, it is the infimum of numbers ln a such that there exists a bijective
bi-Lipschitz mapping between (X, dX) and (Y, dY ) with constants
exp(−a), exp(a).
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It becomes a metric – Lipschitz metric – on the set of all isometry
classes of compact metric spaces. Cf. Hausdorff–Lipschitz distance.

This distance is an analog to the Banach–Mazur distance and, in
the case of finite-dimensional real Banach spaces, coincides with it.

It coincides also with the Hilbert projective metric on non-negative
projective spaces, obtained by starting with R

n
>0 and identifying any point

x with cx, c > 0.
• Lipschitz distance between measures

Given a compact metric space (X, d), the Lipschitz semi-norm ||.||Lip on
the set of all functions f :X→R is defined by ||f ||Lip = supx,y∈X,x 	= y
|f(x)−f(y)|

d(x,y) .
The Lipschitz distance between measures μ and ν on X is de-

fined by

sup
||f ||Lip≤1

∫

fd(μ− ν).

If μ and ν are probability measures, then it is the Kantorovich–
Mallows–Monge–Wasserstein metric.

An analog of the Lipschitz distance between measures for the state
space of unital C∗-algebra is the Connes metric.

• Barycentric metric space
Given a metric space (X, d), let (B(X), ||μ − ν||TV ) be the metric space,
where B(X) is the set of all regular Borel probability measures on X
with bounded support, and ||μ− ν||TV is the total variation norm dis-
tance

∫
X
|p(μ)− p(ν)|dλ. Here p(μ) and p(ν) are the density functions of

measures μ and ν, respectively, with respect to the σ-finite measure μ+ν
2 .

A metric space (X, d) is barycentric if there exist a constant β > 0
and a surjection f : B(X) → X such that the inequality

d(f(μ), f(ν)) ≤ βdiam(supp(μ + ν))||μ− ν||TV

holds for any measures μ, ν ∈ B(X).
Any Banach space (X, d = ||x − y||) is a barycentric metric space with

the smallest β being 1 and the map f(μ) being the usual center of mass∫
X

xdμ(x).
Any Hadamard space (i.e., a complete CAT(0) space, cf. Chap. 6)

is barycentric with the smallest β being 1 and the map f(μ) being the
unique minimizer of the function g(y) =

∫
X

d2(x, y)dμ(x) on X.
• Metrics between multisets

A multiset (or bag) on a set S is a mapping m : S → Z≥0, where m(x)
represents the “multiplicity” of x ∈ S. Multisets are good models for
multi-attribute objects as, say, all symbols in a string, all words in a
document, criminal records, etc.

A multiset m is finite if S and all m(x) are finite; the complement
of a finite multiset m is the multiset m : S → Z≥0, where m(x) =
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maxy∈S m(y)−m(x). Given two multisets m1 and m2, denote by m1∪m2,
m1 ∩ m2, m1\m2 and m1Δm2 the multisets on S, defined, for any
x∈S, by m1 ∪ m2(x)= max{m1(x),m2(x)}, m1 ∩ m2(x) = min{m1(x),
m2(x)}, m1\m2(x) = max{0,m1(x) − m2(x)} and m1Δm2(x) =
|m1(x)−m2(x)|, respectively. Also, m1 ⊆ m2 denotes that m1(x) ≤ m2(x)
for all x ∈ S.

The measure μ(m) of a multiset m may be defined, for instance, as a
linear combination μ(m) =

∑
x∈S λ(x)m(x) with λ(x) ≥ 0. In particular,

the number |m| of elements in the multiset m,
∑

x∈S m(x), is its counting
measure.

For any measure μ(m) ∈ R≥0, Petrovsky (2003) proposed several met-
rics between multisets m1 and m2 including d1(m1,m2) = μ(m1Δm2)
and d2(m1,m2) = μ(m1Δm2)

μ(m1∪m2)
(with d2(∅, ∅) = 0 by definition). Cf. sym-

metric difference metric and Steinhaus distance.
Among examples of other metrics between multisets are matching

distance in Chap. 1, metric space of roots in Chap. 12, μ-metric in
Chap. 15 and, in Chap. 11, bag distance max{|m1\m2|, |m2\m1|} and
q-gram similarity.

• Metrics between fuzzy sets
A fuzzy subset of a set S is a mapping μ : S → [0, 1], where μ(x) represents
the “degree of membership” of x ∈ S. It is an ordinary (crisp) if all μ(x)
are 0 or 1. Fuzzy sets are good models for gray scale images (cf. gray
scale images distances in Chap. 21), random objects and objects with
non-sharp boundaries.

Bhutani and Rosenfeld (2003) introduced the following two metrics be-
tween two fuzzy subsets μ and ν of a finite set S. The diff-dissimilarity
is a metric (a fuzzy generalization of Hamming metric), defined by

d(μ, ν) =
∑

x∈S

|μ(x)− ν(x)|.

The perm-dissimilarity is a semi-metric, defined by

min{d(μ, p(ν))},

where the minimum is taken over all permutations p of S.
The Chaudhuri–Rosenfeld metric (1996) between two fuzzy sets

μ and ν with crisp points (i.e., the sets {x ∈ S : μ(x) = 1} and
{x ∈ S : ν(x) = 1} are non-empty) is an extended metric, defined by

∫ 1

0

2tdHaus({x ∈ S : μ(x) ≥ t}, {x ∈ S : ν(x) ≥ t})dt,

where dHaus is the Hausdorff metric.
A fuzzy number is a fuzzy subset μ of the real line R such that the level

set {x ∈ R : μ(x) ≥ t} is convex for every t ∈ [0, 1]. The sendograph of a
fuzzy set μ is the set
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send(μ) = {(x, t) ∈ S × [0, 1] : μ(x) > 0, μ(x) ≥ t}.

The sendograph metric (Kloeden 1980) between two fuzzy numbers μ,
ν with crisp points and compact sendographs is the Hausdorff metric

max{ sup
a=(x,t)∈send(μ)

d(a, send(ν)), sup
b=(x′,t′)∈send(ν)

d(b, send(μ))},

where d(a, b) = d((x, t), (x′, t′)) is a box metric (cf. Chap. 4) max{|x −
x′|, |t− t′|}.

The t-cut of a fuzzy set μ is the set Aμ(t) = {x ∈ S : μ(x) ≥ t}.
The Klement–Puri–Ralesku metric (1988) between two fuzzy

numbers μ, ν is ∫ 1

0

dHaus(Aμ(t), Aν(t))dt,

where dHaus(Aμ(t), Aν(t)) is the Hausdorff metric

max{ sup
x∈Aμ(t)

inf
y∈Aν(t)

|x− y|, sup
x∈Aν(t)

inf
x∈Aμ(t)

|x− y|}.

Several other Hausdorff-like metrics on some families of fuzzy sets were
proposed by Boxer in 1997, Fan in 1998 and Brass in 2002; Brass also
argued the non-existence of a “good” such metric.

If q is a quasi-metric on [0, 1] and S is a finite set, then Q(μ, ν) =
supx∈S q(μ(x), ν(x)) is a quasi-metric on fuzzy subsets of S.

Cf. fuzzy Hamming distance in Chap. 11 and, in Chap. 23, fuzzy set
distance and fuzzy polynucleotide metric. Cf. fuzzy metric spaces
in Chap. 3 for fuzzy-valued generalizations of metrics and, for example,
[Bloc99] for a survey.

• Metrics between intuitionistic fuzzy sets
An intuitionistic fuzzy subset of a set S is (Atanassov 1999) an ordered pair
of mappings μ, ν :→ [0, 1] with 0 ≤ μ(x) + ν(x) ≤ 1 for all x ∈ S, repre-
senting the “degree of membership” and the “degree of non-membership”
of x ∈ S, respectively. It is an ordinary fuzzy subset if μ(x) + ν(x) = 1 for
all x ∈ S.

Given two intuitionistic fuzzy subsets (μ(x), ν(x)) and (μ′(x), ν′(x)) of
a finite set S = {x1, . . . , xn}, their Atanassov distances (1999) are:

1
2

n∑

i=1

(|μ(xi)− μ′(xi)|+ |ν(xi)− ν′(xi)|) (Hamming distance) and

√
√
√
√1

2

n∑

i=1

((μ(xi)− μ′(xi))2 + (ν(xi)− ν′(xi)2) (Euclidean distance).
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Their Grzegorzewski distances (2004) are:

n∑

i=1

max{|μ(xi)− μ′(xi)|, |ν(xi)− ν′(xi)|} (Hamming distance) and

√
√
√
√

n∑

i=1

max{(μ(xi)− μ′(xi))2, (ν(xi)− ν′(xi))2} (Euclidean distance).

The normalized versions – dividing the above four sums by n – were
proposed also.

Szmidt and Kacprzyk (1997) proposed modification of the above, adding
π(x)− π′(x), where π(x) is the third mapping 1− μ(x)− ν(x).

An interval-valued fuzzy subset of a set S is a mapping μ :→ [I], where
[I] is the set of closed intervals [a−, a+] ⊆ [0, 1]. Let μ(x) = [μ−(x), μ+(x)],
where 0 ≤ μ−(x) ≤ μ+(x) ≤ 1 and an interval-valued fuzzy subset is an
ordered pair of mappings μ− and μ+. This notion is very close to the
above intuitionistic one; so, the above distance can easily be adapted. For
example,

∑n
i=1 max{|μ−(xi)− μ′−(xi)|, |μ+(xi)− μ′+(xi)|} is a Hamming

distance between interval-valued fuzzy subsets (μ−, μ+) and (μ′−, μ′+).
• Compact quantum metric space

Let V be a normed space (or, more generally, a locally convex topological
vector space, and let V ′ be its continuous dual space, i.e., the set of
all continuous linear functionals f on V . The weak∗ topology (or Gelfand
topology) on V ′ is defined as the weakest (i.e., with the fewest open sets)
topology on V ′ such that, for every x ∈ V , the map Fx : V ′ → R defined
by Fx(f) = f(x) for all f ∈ V ′, remains continuous.

An order-unit space is a partially ordered real (complex) vector space
(A,
) with a distinguished element e, called an order unit, which satisfies
the following properties:

1. For any a ∈ A, there exists r ∈ R with a 
 re.
2. If a ∈ A and a 
 re for all positive r ∈ R, then a 
 0 (Archimedean

property).

The main example of an order-unit space is the vector space of all self-
adjoint elements in a unital C∗-algebra with the identity element being
the order unit. Here a C∗-algebra is a Banach algebra over C equipped
with a special involution. It is called unital if it has a unit (multiplica-
tive identity element); such C∗-algebras are also called, roughly, compact
non-commutative topological spaces.

The typical example of a unital C∗-algebra is the complex algebra of
linear operators on a complex Hilbert space which is topologically closed
in the norm topology of operators, and is closed under the operation of
taking adjoints of operators.
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The state space of an order-unit space (A,
, e) is the set S(A) =
{f ∈ A′

+ : ||f || = 1} of states, i.e., continuous linear functionals f with
||f || = f(e) = 1.

Rieffel’s compact quantum metric space is a pair (A, ||.||Lip), where
(A,
, e) is an order-unit space, and ||.||Lip is a semi-norm on A (with val-
ues in [0,+∞]), called Lipschitz semi-norm, which satisfies the following
conditions:

1. For a ∈ A, ||a||Lip = 0 holds if and only if a ∈ Re.
2. The metric dLip(f, g) = supa∈A:||a||Lip≤1 |f(a) − g(a)| generates on the

state space S(A) its weak∗ topology.

So, one has a usual metric space (S(A), dLip). If the order-unit space
(A,
, e) is a C∗-algebra, then dLip is the Connes metric, and if, more-
over, the C∗-algebra is non-commutative, the metric space (S(A), dLip) is
called a non-commutative metric space.

The expression quantum metric space comes from the belief, by many
experts in Quantum Gravity and String Theory, that the Planck-scale ge-
ometry of space–time is similar to one coming from such non-commutative
C∗-algebras.

For example, Non-commutative Field Theory supposes that, on suffi-
ciently small (quantum) distances, the spatial coordinates do not commute,
i.e., it is impossible to measure exactly the position of a particle with re-
spect to more than one axis.

• Dynamical system
A (deterministic) dynamical system is a tuple (T,X, f) consisting of
a metric space (X, d), called the phase space, a time set T ⊆ R, and a
continuous function f : T ×X → X, called the evolution law. The system
is discrete (or cascade) if T = {0, 1, 2 . . . }; it is continuous (or real, flow)
if T is an open interval in R.

The dynamical systems are studied in Control Theory in the context of
stability of systems; Chaos Theory considers the systems with maximal
possible instability.

A discrete dynamical system is defined by a self-map f :X→X. For
any x ∈ X, its orbit (or trajectory) is the sequence {fn(x)}n; here
fn(x) = f(fn−1(x)) with f0(x) = x. The orbit of x ∈ X is called periodic
if fn(x) = x for some n > 0.

A pair (x, y) ∈ X ×X is called proximal if limn→∞d(fn(x), fn(y)) = 0,
and distal otherwise. The system is called distal if any pair (x, y) of distinct
points is distal.

The dynamical system is called expansive if there exists a constant
D > 0 such that the inequality d(fn(x), fn(y)) ≥ D holds for any distinct
x, y ∈ X and some n.

An attractor is a closed subset A of X such that there exists an open
neighborhood U of A with the property that limn→∞ d(fn(b), A) = 0 for
every b ∈ U , i.e., A attracts all nearby orbits. Here d(x,A) = infy∈A d(x, y)
is the point-set distance.
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If for large n and small r there exists a number α such that

C(X,n, r) =
|{(i, j) : d(f i(x), f j(x)) ≤ r, 1 ≤ i, j ≤ n}|

n2
∼ rα,

then α is called (Grassberger, Hentschel and Procaccia 1983) the correla-
tion dimension.

• Universal metric space
A metric space (U, d) is called universal for a collection M of metric
spaces if any metric space (M,dM ) from M is isometrically embed-
dable in (U, d), i.e., there exists a mapping f : M → U which satisfies
dM (x, y) = d(f(x), f(y)) for any x, y ∈M . Some examples follow.

Every separable metric space (X, d) isometrically embeds (Fréchet 1909)
in (a non-separable) Banach space l∞∞. In fact, d(x, y) = supi |d(x, ai)
−d(y, ai)|, where (a1, . . . , ai, . . . ) is a dense countable subset of X.

Every metric space isometrically embeds (Kuratowski 1935) in the
Banach space L∞(X) of bounded functions f : X → R with the norm
supx∈X |f(x)|.

The Urysohn space is a homogeneous complete separable space
which is the universal metric space for all separable metric spaces.

The Hilbert cube is the universal metric space for the class of metric
spaces with a countable base.

The graphic metric space of the Random graph (Rado 1964; the
vertex-set consists of all prime numbers p ≡ 1 (mod 4) with pq being an
edge if p is a quadratic residue modulo q) is the universal metric space for
any finite or countable metric space with distances 0, 1 and 2 only. It is a
discrete analog of the Urysohn space.

There exists a metric d on R, inducing the usual (interval) topology,
such that (R, d) is a universal metric space for all finite metric spaces
(Holsztynski 1978). The Banach space ln∞ is a universal metric space for
all metric spaces (X, d) with |X| ≤ n + 2 (Wolfe 1967). The Euclidean
space E

n is a universal metric space for all ultrametric spaces (X, d) with
|X| ≤ n + 1; the space of all finite functions f(t) : R≥0 → R equipped
with the metric d(f, g) = sup{t : f(t) �= g(t)} is a universal metric space
for all ultrametric spaces (A. Lemin and V. Lemin 1996).

The universality can be defined also for mappings, other than isometric
embeddings, of metric spaces, say, bi-Lipschitz embedding, etc. For exam-
ple, any compact metric space is a continuous image of the Cantor set
with the natural metric |x−y| inherited from R, and any complete separa-
ble metric space is a continuous image of the space of irrational numbers.

• Constructive metric space
A constructive metric space is a pair (X, d), where X is some set
of constructive objects (usually, words over an alphabet), and d is an
algorithm converting any pair of elements of X into a constructive real
number d(x, y) such that d becomes a metric on X.
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• Effective metric space
Let {xn}n∈N be a sequence of elements from a given complete met-
ric space (X, d) such that the set {xn : n ∈ N} is dense in (X, d). Let
N (m,n, k) be the Cantor number of a triple (n,m, k) ∈ N

3, and let {qk}k∈N

be a fixed total standard numbering of the set Q of rational numbers.
The triple (X, d, {xn}n∈N) is called an effective metric space

[Hemm02] if the set {N (n,m, k) : d(xm, xn) < qk} is recursively enu-
merable. It is an adaptation of Weihrauch’s notion of computable
metric space (or recursive metric space).



Chapter 2
Topological Spaces

A topological space (X, τ) is a set X with a topology τ , i.e., a collection of
subsets of X with the following properties:

1. X ∈ τ , ∅ ∈ τ .
2. If A,B ∈ τ , then A ∩B ∈ τ .
3. For any collection {Aα}α, if all Aα ∈ τ , then ∪αAα ∈ τ .

The sets in τ are called open sets, and their complements are called closed
sets. A base of the topology τ is a collection of open sets such that every
open set is a union of sets in the base. The coarsest topology has two open
sets, the empty set and X, and is called the trivial topology (or indiscrete
topology). The finest topology contains all subsets as open sets, and is called
the discrete topology.

In a metric space (X, d) define the open ball as the set B(x, r) = {y ∈ X :
d(x, y) < r}, where x ∈ X (the center of the ball), and r ∈ R, r > 0 (the
radius of the ball). A subset of X which is the union of (finitely or infinitely
many) open balls, is called an open set. Equivalently, a subset U of X is called
open if, given any point x ∈ U , there exists a real number ε > 0 such that,
for any point y ∈ X with d(x, y) < ε, y ∈ U .

Any metric space is a topological space, the topology (metric topology,
topology induced by the metric d) being the set of all open sets. The metric
topology is always T4 (see below a list of topological spaces). A topological
space which can arise in this way from a metric space, is called a metrizable
space.

A quasi-pseudo-metric topology is a topology on X induced similarly by a
quasi-semi-metric d on X, using the set of open d-balls B(x, r) as the base.
In particular, quasi-metric topology and pseudo-metric topology are the terms
used in Topology for the case of, respectively, quasi-metric and semi-metric
d. In general, those topologies are not T0.

Given a topological space (X, τ), a neighborhood of a point x ∈ X is a set
containing an open set which in turn contains x. The closure of a subset of a
topological space is the smallest closed set which contains it. An open cover
of X is a collection L of open sets, the union of which is X; its subcover is
a cover K such that every member of K is a member of L; its refinement

M.M. Deza and E. Deza, Encyclopedia of Distances, 59
DOI 10.1007/978-3-642-00234-2 2, c© Springer-Verlag Berlin Heidelberg 2009
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is a cover K, where every member of K is a subset of some member of L.
A collection of subsets of X is called locally finite if every point of X has a
neighborhood which meets only finitely many of these subsets.

A subset A ⊂ X is called dense if it has non-empty intersection with every
non-empty open set or, equivalently, if the only closed set containing it is X.
In a metric space (X, d), a dense set is a subset A ⊂ X such that, for any
x ∈ X and any ε > 0, there exists y ∈ A, satisfying d(x, y) < ε. A local base
of a point x ∈ X is a collection U of neighborhoods of x such that every
neighborhood of x contains some member of U .

A function from one topological space to another is called continuous if
the preimage of every open set is open. Roughly, given x ∈ X, all points
close to x map to points close to f(x). A function f from one metric space
(X, dX) to another metric space (Y, dY ) is continuous at the point c ∈ X
if, for any positive real number ε, there exists a positive real number δ such
that all x ∈ X satisfying dX(x, c) < δ will also satisfy dY (f(x), f(c)) < ε; the
function is continuous on an interval I if it is continuous at any point of I.

The following classes of topological spaces (up to T4) include any metric
space:

• T0-space
A T0-space (or Kolmogorov space) is a topological space (X, τ) fulfilling
the T0-separation axiom: for every two points x, y ∈ X there exists an
open set U such that x ∈ U and y �∈ U , or y ∈ U and x �∈ U (every two
points are topologically distinguishable).

• T1-space
A T1-space (or accessible space) is a topological space (X, τ) fulfilling the
T1-separation axiom: for every two points x, y ∈ X there exist two open
sets U and V such that x ∈ U , y �∈ U , and y ∈ V , x �∈ V (every two points
are separated). T1-spaces are always T0.

• T2-space
A T2-space (or Hausdorff space, separated space) is a topological space
(X, τ) fulfilling the T2-axiom: every two points x, y ∈ X have disjoint
neighborhoods. Thus, (X, τ) is Hausdorff if and only if it is both T0 and
preregular, i.e., any two topologically distinguishable points in it are sep-
arated by neighbourhoods. T2-spaces are always T1.

• Regular space
A regular space is a topological space in which every neighborhood of a
point contains a closed neighborhood of the same point.

• T3-space
A T3-space (or Vietoris space, regular Hausdorff space) is a topological
space which is T1 and regular.

• Completely regular space
A completely regular space (or Tychonoff space) is a Hausdorff space
(X, τ) in which any closed set A and any x �∈ A are functionally separated.
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Two subsets A and B of X are functionally separated if there exists a
continuous function f : X → [0, 1] such that f(x) = 0 for any x ∈ A, and
f(y) = 1 for any y ∈ B.

• Perfectly normal space
A perfectly normal space is a topological space (X, τ) in which any two
disjoint closed subsets of X are functionally separated.

• Normal space
A normal space is a topological space in which, for any two disjoint
closed sets A and B, there exist two disjoint open sets U and V such that
A ⊂ U , and B ⊂ V .

• T4-space
A T4-space (or Tietze space, normal Hausdorff space) is a topological
space which is T1 and normal. Any metric space (X, d) is a T4-space.

• Completely normal space
A completely normal space is a topological space in which any two
separated sets have disjoint neighborhoods.

Sets A and B are separated in X if each is disjoint from the other’s
closure.

• T5-space
A T5-space (or completely normal Hausdorff space) is a topological space
which is completely normal and T1. T5-spaces are always T4.

• T6-space
A T6-space (or perfectly normal Hausdorff space) is a topological space
which is T1 and perfectly normal. T6-spaces are always T5.

• Moore space
A Moore space is a regular space with a development.

A development is a sequence {Un}n of open covers such that, for ev-
ery x ∈ X and every open set A containing x, there exists n such that
St(x,Un) = ∪{U ∈ Un : x ∈ U} ⊂ A, i.e., {St(x,Un)}n is a neighborhood
base at x.

• Separable space
A separable space is a topological space which has a countable dense
subset.

• Lindelöf space
A Lindelöf space is a topological space in which every open cover has a
countable subcover.

• First-countable space
A topological space is called first-countable if every point has a countable
local base. Any metric space is first-countable.

• Second-countable space
A topological space is called second-countable if its topology has a
countable base. Second-countable spaces are always separable, first-
countable, and Lindelöf.

For metric spaces the properties of being second-countable, separable,
and Lindelöf are all equivalent.

The Euclidean space E
n with its usual topology is second-countable.
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• Baire space
A Baire space is a topological space in which every intersection of count-
ably many dense open sets is dense. Every complete metric space is a Baire
space. Every locally compact T2-space (hence, every manifold) is a Baire
space.

• Alexandrov space
An Alexandrov space is a topological space in which every intersection
of arbitrarily many open sets is open.

A topological space is called a P -space if every Gδ-set (i.e., the inter-
section of countably many open sets) is open.

A topological space (X, τ) is called a Q-space if every subset A ⊂ X is
a Gδ-set.

• Connected space
A topological space (X, τ) is called connected if it is not the union of
a pair of disjoint non-empty open sets. In this case the set X is called a
connected set.

A topological space (X, τ) is called locally connected if every point
x ∈ X has a local base consisting of connected sets.

A topological space (X, τ) is called path-connected (or 0-connected)
if for every points x, y ∈ X there is a path γ from x to y, i.e., a continuous
function γ : [0, 1] → X with γ(x) = 0, γ(y) = 1.

A topological space (X, τ) is called simply connected (or 1-connected)
if it consists of one piece, and has no circle-shaped “holes” or “handles”
or, equivalently, if every continuous curve of X is contractible, i.e., can be
reduced to one of its points by a continuous deformation.

• Paracompact space
A topological space is called paracompact if every open cover of it has
an open locally finite refinement. Every metric (moreover, metrizable)
space is paracompact.

• Totally bounded space
A topological space (X, τ) is called totally bounded (or pre-compact) if
it can be covered by finitely many subsets of any fixed size.

A metric space (X, d) is a totally bounded metric space if, for every
real number r > 0, there exist finitely many open balls of radius r, whose
union is equal to X.

• Compact space
A topological space (X, τ) is called compact if every open cover of X has
a finite subcover.

Compact spaces are always Lindelöf, totally bounded, and para-
compact. A metric space is compact if and only if it is complete and
totally bounded. A subset of a Euclidean space E

n is compact if and
only if it is closed and bounded.

There exist a number of topological properties which are equivalent to
compactness in metric spaces, but are nonequivalent in general topological
spaces. Thus, a metric space is compact if and only if it is a sequentially



2 Topological Spaces 63

compact space (every sequence has a convergent subsequence), or a count-
ably compact space (every countable open cover has a finite subcover), or a
pseudo-compact space (every real-valued continuous function on the space
is bounded), or a weakly countably compact space (i.e., every infinite subset
has an accumulation point).

• Continuum
A continuum is a compact connected T2-space.

• Locally compact space
A topological space is called locally compact if every point has a local
base consisting of compact neighborhoods. The Euclidean spaces E

n and
the spaces Qp of p-adic numbers are locally compact.

A topological space (X, τ) is called a k-space if, for any compact set
Y ⊂ X and A ⊂ X, the set A is closed whenever A ∩ Y is closed. The
k-spaces are precisely quotient images of locally compact spaces.

• Locally convex space
A topological vector space is a real (complex) vector space V which is a
T2-space with continuous vector addition and scalar multiplication. It is
a uniform space (cf. Chap. 3).

A locally convex space is a topological vector space whose topology
has a base, where each member is a convex balanced absorbent set. A subset
A of V is called convex if, for all x, y ∈ A and all t ∈ [0, 1], the point
tx + (1− t)y ∈ A, i.e., every point on the line segment connecting x and y
belongs to A. A subset A is balanced if it contains the line segment between
x and −x for every x ∈ A; A is absorbent if, for every x ∈ V , there exist
t > 0 such that tx ∈ A.

The locally convex spaces are precisely vector spaces with topology in-
duced by a family {||.||α} of semi-norms such that x = 0 if ||x||α = 0 for
every α.

Any metric space (V, ||x− y||) on a real (complex) vector space V with
a norm metric ||x− y|| is a locally convex space; each point of V has a
local base consisting of convex sets. Every Lp with 0 < p < 1 is an example
of a vector space which is not locally convex.

• Fréchet space
A Fréchet space is a locally convex space (V, τ) which is complete as
a uniform space and whose topology is defined using a countable set of
semi-norms ||.||1, . . . , ||.||n, . . . , i.e., a subset U ⊂ V is open in (V, τ) if, for
every u ∈ U , there exist ε > 0 and N ≥ 1 with {v ∈ V : ||u−v||i < ε if i ≤
N} ⊂ U .

A Fréchet space is precisely a locally convex F-space (cf. Chap. 5). Its
topology can be induced by a translation invariant metric and it is a
complete and metrizable space with respect to this topology. But this
topology may be induced by many such metrics; so, there is no natural
notion of distance between points of a Fréchet space.

Every Banach space is a Fréchet space.
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• Countably-normed space
A countably-normed space is a locally convex space (V, τ) whose
topology is defined using a countable set of compatible norms ||.||1, . . . ,
||.||n, . . . . It means that, if a sequence {xn}n of elements of V that is
fundamental in the norms ||.||i and ||.||j converges to zero in one of these
norms, then it also converges in the other. A countably-normed space is a
metrizable space, and its metric can be defined by

∞∑

n=1

1
2n

||x− y||n
1 + ||x− y||n

.

• Metrizable space
A topological space is called metrizable if it is homeomorphic to a metric
space, i.e., X admits a metric d such that the set of open d-balls {B(x, r) :
r > 0} forms a neighborhood base at each point x ∈ X.

Metrizable spaces are always paracompact T2-spaces (hence, normal
and completely regular), and first-countable.

A topological space is called locally metrizable if every point in it has
a metrizable neighborhood.

A topological space (X, τ) is called submetrizable if there exists a
metrizable topology τ ′ on X which is coarser than τ .

A topological space (X, τ) is called protometrizable if it is paracom-
pact and has an orthobase, i.e., a base B such that, for B′ ⊂ B, either ∩B′

is open, or B′ is a local base at the unique point in ∩B′.
Some examples of other direct generalizations of metrizable spaces

follow.
A sequential space is a quotient image of a metrizable space.
Morita’s M-space is a topological space (X, τ) from which there exists

a continuous map f onto a metrizable topological space (Y, τ ′) such that
f is closed and f−1(y) is countably compact for each y ∈ Y .

Ceder’s M1-space is a topological space (X, τ) having a σ-closure-
preserving base (metrizable spaces have σ-locally finite bases).

Okuyama’s σ-space is a topological space (X, τ) having a σ-locally
finite net, i.e., a collection U of subsets of X such that, given of a point
x ∈ U with U open, there exists U ′ ∈ U with x ∈ U ′ ⊂ U (a base is a net
consisting of open sets). Every compact subset of a σ-space is metrizable.

Michael’s cosmic space is a topological space (X, τ) having a countable
net (equivalently, a Lindelöf σ-space). It is exactly a continuous image of a
separable metric space. A T2-space is called analytic if it is a continuous
image of a complete separable metric space; it is called a Lusin space if,
moreover, the image is one-to-one.

• Quasi-metrizable space
A topological space (X, τ) is called a quasi-metrizable space if X admits
a quasi-metric d such that the set of open d-balls {B(x, r) : r > 0} forms
a neighborhood base at each point x ∈ X.
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A more general γ-space is a topological space admitting a γ-metric d
(i.e., a function d : X×X → R≥0 with d(x, zn) → 0 whenever d(x, yn) → 0
and d(yn, zn) → 0) such that the set of open forward d-balls {B(x, r) : r >
0} forms a neighborhood base at each point x ∈ X.

The Sorgenfrey line is the topological space (R, τ) defined by the base
{[a, b) : a, b ∈ R, a < b}. It is not metrizable but it is a first-countable
separable and paracompact T5-space; neither it is second-countable, nor
locally compact or locally connected. However, the Sorgenfrey line is quasi-
metrizable by the Sorgenfrey quasi-metric (cf. Chap. 12) defined as y−x
if y ≥ x, and 1 otherwise.

• Symmetrizable space
A topological space (X, τ) is called symmetrizable (and τ is called the
distance topology) if there is a symmetric d on X (i.e., a distance
d : X × X → R≥0 with d(x, y) = 0 implying x = y) such that a subset
U ⊂ X is open if and only if, for each x ∈ U , there exists ε > 0 with
B(x, ε) = {y ∈ X : d(x, y) < ε} ⊂ U . In other words, a subset H ⊂ X
is closed if and only if d(x,H) = infy{d(x, y) : y ∈ H} > 0 for each
x ∈ X\U . A symmetrizable space is metrizable if and only if it is a
Morita’s M-space.

In Topology, the term semi-metrizable space refers to a topological
space (X, τ) admitting a symmetric d such that, for each x ∈ X, the family
{B(x, ε) : ε > 0} of balls forms a (not necessarily open) neighborhood base
at x. In other words, a point x is in the closure of a set H if and only if
d(x,H) = 0. A topological space is semi-metrizable if and only if it is
symmetrizable and first-countable. Also, a symmetrizable space is semi-
metrizable if and only if it is a Fréchet–Urysohn space (or E-space), i.e.,
for any subset A and for any point x of its closure, there is a sequence in
A converging to x.

• Hyperspace
A hyperspace of a topological space (X, τ) is a topological space on the
set CL(X) of all non-empty closed (or, moreover, compact) subsets of X.
The topology of a hyperspace of X is called a hypertopology. Examples
of such a hit-and-miss topology are the Vietoris topology, and the Fell
topology. Examples of such a weak hyperspace topology are the Hausdorff
metric topology, and the Wijsman topology.

• Discrete topological space
A topological space (X, τ) is discrete if τ is the discrete topology (the
finest topology on X), i.e., containing all subsets of X as open sets. Equiv-
alently, it does not contain any limit point, i.e., it consists only of isolated
points.

• Indiscrete topological space
A topological space (X, τ) is indiscrete if τ is the indiscrete topology
(the coarsest topology on X), i.e., having only two open sets, ∅ and X.
It can be considered as the semi-metric space (X, d) with the indiscrete
semi-metric: d(x, y) = 0 for any x, y ∈ X.
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• Extended topology
Consider a set X and a map cl : P (X) → P (X), where P (X) is the set
of all subsets of X. The set cl(A) (for A ⊂ X), its dual set int(A) =
X\cl(X\A) and the map N : X → P (X) with N(x) = {A ⊂ X : x ∈
int(A)} are called the closure, interior and neighborhood map, respectively.
So, x ∈ cl(A) is equivalent to X\A ∈ P (X)\N(x). A subset A ⊂ X
is closed if A = cl(A) and open if A = int(A). Consider the following
possible properties of cl; they are meant to hold for all A,B ∈ P (X):

1. cl(∅) = ∅.
2. A ⊆ B implies cl(A) ⊆ cl(B) (isotony).
3. A ⊆ cl(A)(enlarging).
4. cl(A ∪B) = cl(A) ∪ cl(B) (linearity, and, in fact, 4 implies 2).
5. cl(cl(A)) = cl(A) (idempotency).

The pair (X, cl) satisfying 1 is called an extended topology if 2 holds,
a Brissaud space (Brissaud 1974) if 3 holds, a neighborhood space
(Hammer 1964) if 2 and 3 hold, a Smyth space (Smyth 1995) if 4 holds,
a pretopology (Čech 1966) if 3 and 4 hold, and a closure space (Soltan
1984) if 2, 3 and 5 hold.

(X, cl) is the usual topology, in closure terms, if 1, 3, 4 and 5 hold.



Chapter 3
Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, quasi-
metric, near-metric, extended metric, were defined in Chap. 1. Here
we give some generalizations in the direction of Topology, Probability,
Algebra, etc.

3.1 m-metrics

• m-hemi-metric
Let X be a set. A function d : Xm+1 → R is called m-hemi-metric if:

1. d is non-negative, i.e., d(x1, . . . , xn+1) ≥ 0 for all x1, . . . , xn+1 ∈ X.
2. d is totally symmetric, i.e., satisfies d(x1, . . . , xm+1) = d(xπ(1), . . . ,

xπ(m+1)) for all x1, . . . , xm+1 ∈ X and for any permutation π of
{1, . . . ,m + 1}.

3. d is zero conditioned, i.e., d(x1, . . . , xm+1) = 0 if and only if
x1, . . . , xm+1 are not pairwise distinct.

4. For all x1, . . . , xm+2 ∈ X, d satisfies the m-simplex inequality:

d(x1, . . . , xm+1) ≤
m+1∑

i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2).

• 2-metric
Let X be a set. A function d : X3 → R is called a 2-metric if d is
non-negative, totally symmetric, zero conditioned, and satisfies the tetra-
hedron inequality

d(x1, x2, x3) ≤ d(x4, x2, x3) + d(x1, x4, x3) + d(x1, x2, x4).

It is the most important case m = 2 of the m-hemi-metric.

M.M. Deza and E. Deza, Encyclopedia of Distances, 67
DOI 10.1007/978-3-642-00234-2 3, c© Springer-Verlag Berlin Heidelberg 2009
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• (m, s)-super-metric
Let X be a set, and let s be a positive real number. A function d : Xm+1 →
R is called (m, s)-super-metric [DeDu03] if d is non-negative, totally sym-
metric, zero conditioned, and satisfies t the (m, s)-simplex inequality:

sd(x1, . . . , xm+1) ≤
m+1∑

i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2).

An (m, s)-super-metric is an m-hemi-metric if s ≥ 1.

3.2 Indefinite metrics

• Indefinite metric
An indefinite metric (or G-metric) on a real (complex) vector space V is
a bilinear (in the complex case, sesquilinear) form G on V , i.e., a function
G : V ×V → R (C), such that, for any x, y, z ∈ V and for any scalars α, β,
we have the following properties: G(αx+βy, z) = αG(x, z)+βG(y, z), and
G(x, αy + βz) = αG(x, y) + βG(x, z), where α = a + bi = a − bi denotes
the complex conjugation.

If a positive-definite form G is symmetric, then it is an inner product on
V , and one can use it to canonically introduce a norm and the correspond-
ing norm metric on V . In the case of a general form G, there is neither
a norm, nor a metric canonically related to G, and the term indefinite
metric only recalls the close relation of such forms with certain metrics
in vector spaces (cf. Chaps. 7 and 26).

The pair (V,G) is called a space with an indefinite metric. A finite-
dimensional space with an indefinite metric is called a bilinear metric space.
A Hilbert space H, endowed with a continuous G-metric, is called a
Hilbert space with an indefinite metric. The most important example of
such space is a J-space.

A subspace L in a space (V,G) with an indefinite metric is called a posi-
tive subspace, negative subspace, or neutral subspace, depending on whether
G(x, x) > 0, G(x, x) < 0, or G(x, x) = 0 for all x ∈ L.

• Hermitian G-metric
A Hermitian G-metric is an indefinite metric GH on a complex vector
space V such that, for all x, y ∈ V , we have the equality

GH(x, y) = GH(y, x),

where α = a + bi = a− bi denotes the complex conjugation.
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• Regular G-metric
A regular G-metric is a continuous indefinite metric G on a Hilbert
space H over C, generated by an invertible Hermitian operator T by the
formula

G(x, y) = 〈T (x), y〉,
where 〈, 〉 is the inner product on H.

A Hermitian operator on a Hilbert space H is a linear operator T on H,
defined on a domain D(T ) of H such that 〈T (x), y〉 = 〈x, T (y)〉 for any
x, y ∈ D(T ). A bounded Hermitian operator is either defined on the whole
of H, or can be so extended by continuity, and then T = T ∗. On a finite-
dimensional space a Hermitian operator can be described by a Hermitian
matrix ((aij)) = ((aji)).

• J-metric
A J-metric is a continuous indefinite metric G on a Hilbert space H
over C, defined by a certain Hermitian involution J on H by the formula

G(x, y) = 〈J(x), y〉,

where 〈, 〉 is the inner product on H.
An involution is a mapping H onto H whose square is the identity

mapping. The involution J may be represented as J = P+−P−, where P+

and P− are orthogonal projections in H, and P+ + P− = H. The rank of
indefiniteness of the J-metric is defined as min{dim P+,dim P−}.

The space (H,G) is called a J-space. A J-space with finite rank of
indefiniteness is called a Pontryagin space.

3.3 Topological generalizations

• Metametric space
A metametric space (Väisälä 2003) is a pair (X, d), where X is a set,
and d is a non-negative symmetric function d : X × X → R such that
d(x, y) = 0 implies x = y and triangle inequality d(x, y) ≤ d(x, z)+ d(z, y)
holds for all x, y, z ∈ X. A metametric space is metrizable: the metametric
d defines the same topology as the metric d′ defined by d′(x, x) = 0 and
d′(x, y) = d(x, y) if x �= y. A metametric d induces a Hausdorff topology
with the usual definition of a ball B(x0, r) = {x ∈ X : d(x0, x) < r}.

• Resemblance
Let X be a set. A function d : X ×X → R is called a resemblance on X
if d is symmetric and if, for all x, y ∈ X, either d(x, x) ≤ d(x, y) (in which
case d is called a forward resemblance), or d(x, x) ≥ d(x, y) (in which
case d is called a backward resemblance).
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Every resemblance d induces a strict partial order ≺ on the set of all
unordered pairs of elements of X by defining {x, y} ≺ {u, v} if and only if
d(x, y) < d(u, v).

For any backward resemblance d, the forward resemblance −d induces
the same partial order.

• w-distance
Given a metric space (X, d), a w-distance on X (Kada, Suzuki and
Takahashi 1996) is a non-negative function p : X × X → R which sat-
isfies the following conditions:

1. p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X.
2. For any x ∈ X, the function p(x, .) : X → R is lower semicontinuous,

i.e., if a sequence {yn}n in X converges to y ∈ X, then p(x, y) ≤
lim infn→∞ p(x, yn).

3. For any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ
imply d(x, y) ≤ ε, for each x, y, z ∈ X.

• τ-distance space
A τ-distance space is a pair (X, f), where X is a topological space and
f is an Aamri-Moutawakil’s τ -distance on X, i.e., a non-negative function
f : X ×X → R such that, for any x ∈ X and any neighborhood U of x,
there exists ε > 0 with {y ∈ X : f(x, y) < ε} ⊂ U .

Any distance space (X, d) is a τ -distance space for the topology τf

defined as follows: A ∈ τf if, for any x ∈ X, there exists ε > 0 with
{y ∈ X : f(x, y) < ε} ⊂ A. However, there exist non-metrizable τ -distance
spaces. A τ -distance f(x, y) need be neither symmetric, nor vanishing for
x = y; for example, e|x−y| is a τ -distance on X = R with usual topology.

• Proximity space
A proximity space (Efremovich 1936) is a set X with a binary relation
δ on the power set P (X) of all of its subsets which satisfies the following
conditions:

1. AδB if and only if BδA (symmetry).
2. Aδ(B ∪ C) if and only if AδB or AδC (additivity).
3. AδA if and only if A �= ∅ (reflexivity).

The relation δ defines a proximity (or proximity structure) on X. If AδB
fails, the sets A and B are called remote sets.

Every metric space (X, d) is a proximity space: define AδB if and only
if d(A,B) = infx∈A,y∈B d(x, y) = 0.

Every proximity on X induces a (completely regular) topology on X
by defining the closure operator cl : P (X) → P (X) on the set of all subsets
of X as cl(A) = {x ∈ X : {x}δA}.

• Uniform space
A uniform space is a topological space (with additional structure) pro-
viding a generalization of metric space, based on set-set distance.
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A uniform space (Weil 1937) is a set X with an uniformity (or
uniform structure) U – a non-empty collection of subsets of X ×X, called
entourages, with the following properties:

1. Every subset of X ×X which contains a set of U belongs to U .
2. Every finite intersection of sets of U belongs to U .
3. Every set V ∈ U contains the diagonal, i.e., the set {(x, x) : x ∈ X} ⊂

X ×X.
4. If V belongs to U , then the set {(y, x) : (x, y) ∈ V } belongs to U .
5. If V belongs to U , then there exists V ′ ∈ U such that (x, z) ∈ V

whenever (x, y), (y, z) ∈ V ′.

Every metric space (X, d) is a uniform space. An entourage in (X, d) is a
subset of X×X which contains the set Vε = {(x, y) ∈ X×X : d(x, y) < ε}
for some positive real number ε. Other basic example of uniform space are
topological groups.

Every uniform space (X,U) generates a topology consisting of all sets
A ⊂ X such that, for any x ∈ A, there is a set V ∈ U with {y : (x, y) ∈
V } ⊂ A.

Every uniformity induces a proximity σ where AσB if and only if A×B
has non-empty intersection with any entourage.

A topological space admits a uniform structure inducing its topology
if only if the topology is completely regular (cf. Chap. 2) and, also,
if only if it is a gauge space, i.e., the topology is defined by a family of
semi-metrics.

• Nearness space
A nearness space (Herrich 1974) is a set X with a nearness structure, i.e.,
a non-empty collection U of families of subsets of X, called near families,
with the following properties:

1. Each family refining a near family is near.
2. Every family with non-empty intersection is near.
3. V is near if {cl(A) : A ∈ V } is near, where cl(A) is {x ∈ X : {{x}, A} ∈
U}.

4. ∅ is near, while the set of all subsets of X is not.
5. If {A ∪B : A ∈ F1, B ∈ F2} is near family, then so is F1 or F2.

The uniform spaces are precisely paracompact nearness spaces.
• Approach space

An approach space is a topological space providing a generalization of
metric space, based on point-set distance.

An approach space (Lowen 1989) is a pair (X,D), where X is a set and
D is a point-set distance, i.e., a function X × P (X) → [0,∞] (where
P (X) is the set of all subsets of X) satisfying, for all x ∈ X and all
A,B ∈ P (X), the following conditions:

1. D(x, {x}) = 0.
2. D(x, {∅}) = ∞.
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3. D(x,A ∪B) = min{D(x,A),D(x,B)}.
4. D(x,A) ≤ D(x,Aε)+ε for any ε ∈ [0,∞], where Aε = {x : D(x,A) ≤ ε}

is the “ε-ball” with center x.

Every metric space (X, d) (moreover, any extended quasi-semi-metric
space) is an approach space with D(x,A) being the usual point-set distance
miny∈A d(x, y).

Given a locally compact separable metric space (X, d) and the family
F of its non-empty closed subsets, the Baddeley–Molchanov distance
function gives a tool for another generalization. It is a function D : X ×
F → R which is lower semi-continuous with respect to its first argument,
measurable with respect to the second, and satisfies the following two
conditions: F = {x ∈ X : D(x, F ) ≤ 0} for F ∈ F , and D(x, F1) ≥
D(x, F2) for x ∈ X, whenever F1, F2 ∈ F and F1 ⊂ F2.

The additional conditions D(x, {y}) = D(y, {x}), and D(x, F ) ≤
D(x, {y}) + D(y, F ) for all x, y ∈ X and every F ∈ F , provide analogs of
symmetry and the triangle inequality. The case D(x, F ) = d(x, F ) corre-
sponds to the usual point-set distance for the metric space (X, d); the case
D(x, F ) = d(x, F ) for x ∈ X\F and D(x, F ) = −d(x,X\F ) for x ∈ X
corresponds to the signed distance function in Chap. 1.

• Metric bornology
Given a topological space X, a bornology of X is any family A of proper
subsets A of X such that the following conditions hold:

1. ∪A∈AA = X.
2. A is an ideal, i.e., contains all subsets and finite unions of its members.

The family A is a metric bornology [Beer99] if, moreover:
3. A contains a countable base.
4. For any A ∈ A there exists A′ ∈ A such that the closure of A coincides

with the interior of A′.

The metric bornology is called trivial if A is the set P (X) of all subsets of
X; such a metric bornology corresponds to the family of bounded sets of
some bounded metric. For any non-compact metrizable topological space
X, there exists an unbounded metric compatible with this topology. A non-
trivial metric bornology on such a space X corresponds to the family of
bounded subsets with respect to some such unbounded metric. A non-
compact metrizable topological space X admits uncountably many non-
trivial metric bornologies.

3.4 Beyond numbers

• Probabilistic metric space
A notion of probabilistic metric space is a generalization of the notion
of metric space (see, for example, [ScSk83]) in two ways: distances become
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probability distributions, and the sum in the triangle inequality becomes
a triangle operation.

Formally, let A be the set of all probability distribution functions, whose
support lies in [0,∞]. For any a ∈ [0,∞] define step functions εa ∈ A by
εa(x) = 1 if x > a or x = ∞, and εa(x) = 0, otherwise. The functions
in A are ordered by defining F ≤ G to mean F (x) ≤ G(x) for all x ≥ 0;
the minimal element is ε0. A commutative and associative operation τ
on A is called a triangle function if τ(F, ε0) = F for any F ∈ A and
τ(E,F ) ≤ τ(G,H) whenever E ≤ G, F ≤ H. The semi-group (A, τ)
generalizes the group (R,+).

A probabilistic metric space is a triple (X,D, τ), where X is a set,
D is a function X × X → A, and τ is a triangle function, such that for
any p, q, r ∈ X:

1. D(p, q) = ε0 if and only if p = q.
2. D(p, q) = D(q, p).
3. D(p, r) ≥ τ(D(p, q),D(q, r)).

For any metric space (X, d) and any triangle function τ , such that
τ(εa, εb) ≥ εa+b for all a, b ≥ 0, the triple (X,D = εd(x,y), τ) is a proba-
bilistic metric space.

For any x ≥ 0, the value D(p, q) at x can be interpreted as “the proba-
bility that the distance between p and q is less than x;” this was approach
of Menger, who proposed in 1942 the original version, statistical metric
space, of this notion.

A probabilistic metric space is called a Wald space if the triangle function
is a convolution, i.e., of the form τx(E,F ) =

∫
R

E(x− t)dF (t).
A probabilistic metric space is called a generalized Menger space if

the triangle function has form τx(E,F ) = supu+v=x T (E(u), F (v)) for a
t-norm T , i.e., such a commutative and associative operation on [0, 1] that
T (a, 1) = a, T (0, 0) = 0 and T (c, d) ≥ T (a, b) whenever c ≥ a, d ≥ b.

• Fuzzy metric spaces
A fuzzy subset of a set S is a mapping μ : S → [0, 1], where μ(x) represents
the “degree of membership” of x ∈ S.

A continuous t-norm is a binary commutative and associative continuous
operation T on [0, 1], such that T (a, 1) = a and T (c, d) ≥ T (a, b) whenever
c ≥ a, d ≥ b.

A KM fuzzy metric space (Kramosil and Michalek 1975) is a pair
(X, (μ, T )), where X is a non-empty set and a fuzzy metric (μ, T ) is a pair
comprising a continuous t-norm T and a fuzzy set μ : X2 × R≥0 → [0, 1],
such that for x, y, z ∈ X and s, t ≥ 0:

1. μ(x, y, 0) = 0.
2. μ(x, y, t) = 1 if and only if x = y, t > 0.
3. μ(x, y, t) = μ(y, x, t).
4. T (μ(x, y, t), μ(y, z, s)) ≤ μ(x, z, t + s).
5. The function μ(x, y, ·) : R≥0 → [0, 1] is left continuous.



74 3 Generalizations of Metric Spaces

A KM fuzzy metric space is called also a fuzzy Menger space since by
defining Dt(p, q) = μ(p, q, t) one gets a generalized Menger space. The
following modification of the above notion, using a stronger form of metric
fuzziness, can be seen as a generalized Menger space with Dt(p, q) positive
and continuous on R>0 for all p, q.

A GV fuzzy metric space (George and Veeramani 1994) is a pair
(X, (μ, T )), where X is a non-empty set, and a fuzzy metric (μ, T ) is a pair
comprising a continuous t-norm T and a fuzzy set μ : X2 × R>0 → [0, 1],
such that for x, y, z ∈ X and s, t > 0:

1. μ(x, y, t) > 0.
2. μ(x, y, t) = 1 if and only if x = y.
3. μ(x, y, t) = μ(y, x, t).
4. T (μ(x, y, t), μ(y, z, s)) ≤ μ(x, z, t + s).
5. The function μ(x, y, ·) : R>0 → [0, 1] is continuous.

An example of a GV fuzzy metric space can be obtained from any metric
space (X, d) by defining T (a, b) = b − ab and μ(x, y, t) = t

t+d(x,y) . Con-
versely, any GV fuzzy metric space (and also any KM fuzzy metric space)
generates a metrizable topology.

A fuzzy number is a fuzzy set μ : R → [0, 1] which is normal ({x ∈ R :
μ(x) = 1} �= ∅), convex (μ(tx+(1−t)y) ≥ min{μ(x), μ(y)} for every x, y ∈
R and t ∈ [0, 1]) and upper semicontinuous (at each point x0, the values
μ(x) for x near x0 are either close to μ(x0) or less than μ(x0)). Denote
the set of all fuzzy numbers which are non-negative, i.e., μ(x) = 0 for all
x < 0, by G. The additive and multiplicative identities of fuzzy numbers
are denoted by 0̃ and 1̃, respectively. The level set [μ]t = {x : μ(x) ≥ t} of
a fuzzy number μ is a closed interval.

Given a non-empty set X and a mapping d : X2 → G, let the mappings
L,R : [0, 1]2 → [0, 1] be symmetric and non-decreasing in both arguments
and satisfy L(0, 0) = 0, R(1, 1) = 1. For all x, y ∈ X and t ∈ (0, 1], let
[d(x, y)]t = [λt(x, y), ρt(x, y)].

A KS fuzzy metric space (Kaleva and Seikkala 1984) is a quadruple
(X, d, L,R) with fuzzy metric d, if for all x, y, z ∈ X:

1. d(x, y) = 0̃ if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, y)(s + t) ≥ L(d(x, z)(s), d(z, y)(t)) whenever s ≤ λ1(x, z), t ≤

λ1(z, y), and s + t ≤ λ1(x, y).
4. d(x, y)(s + t) ≤ R(d(x, z)(s), d(z, y)(t)) whenever s ≥ λ1(x, z), t ≥

λ1(z, y), and s + t ≥ λ1(x, y).

The following functions are some frequently used choices for L and R:

max{a + b− 1, 0}, ab,min{a, b},max{a, b}, a + b− ab,min{a + b, 1}.
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Several other notions of fuzzy metric space were proposed, including
those by Erceg (1979), Deng (1982), and Voxman (1998), Xu and Li
(2001), Tran and Duckstein (2002), C. Chakraborty and D. Chakraborty
(2006). Cf. also metrics between fuzzy sets, fuzzy Hamming dis-
tance, gray-scale image distances and fuzzy polynucleotide metric
in Chaps. 1, 11, 21 and 23, respectively.

• Interval-valued metric space
Let I(R≥0) denote the set of closed intervals of R≥0.

An interval-valued metric space (Coppola and Pacelli 2006) is a pair
((X,≤),Δ), where (X,≤) is a partially ordered set and Δ is an interval-
valued mapping Δ : X ×X → I(R≥0), such that for every x, y, z ∈ X:

1. Δ(x, x) � [0, 1] = Δ(x, x).
2. Δ(x, y) = Δ(y, x).
3. Δ(x, y)−Δ(z, z) 
 Δ(x, z) + Δ(z, y).
4. Δ(x, y)−Δ(x, y) 
 Δ(x, x) + Δ(y, y).
5. x ≤ x′ and y ≤ y′ imply Δ(x, y) ⊆ Δ(x′, y′).
6. Δ(x, y) = 0 if and only if x = y and x, y are atoms (minimal elements

of (X,≤)).

Here the following interval arithmetic rules hold: [u, v] 
 [u′, v′] if and only
if u ≤ u′,

[u, v] � [u′, v′] = [min{uu′, uv′, vu′, vv′},max{uu′, uv′, vu′, vv′}],
[u, v] + [u′, v′] = [u + u′, v + v′] and [u, v]− [u′, v′] = [u− u′, v − v′].
Cf. metric between intervals in Chap. 10.
The usual metric spaces coincide with above spaces in which all x ∈ X

are atoms.
• Generalized metric

Let X be a set. Let (G,+,≤) be an ordered semi-group (not necessarily
commutative) having a least element 0. A function d : X × X → G is
called a generalized metric if the following conditions hold:

1. d(x, y) = 0 if and only if x = y.
2. d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X.
3. d(x, y) = d(y, x), where α is a fixed order-preserving involution of G.

The pair (X, d) is called a generalized metric space.
If the condition 2 and “only if” in 1 above are dropped, we obtain a

generalized distance d, and a generalized distance space (X, d).
• Cone metric

Let C be a proper cone in a real Banach space W , i.e., C is closed, C �= ∅,
the interior of C is not equal to {0} and:

1. If x, y ∈ C and a, b ∈ R≥0, then ax + by ∈ C.
2. If x ∈ C and −x ∈ C, then x = 0.
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Define a partial ordering (W,≤) on W by letting x ≤ y if y − x ∈ C.
The following variation of generalized metric was defined in Huang and
Zhang (2007). Given a set X, a cone metric is a mapping d : X ×X →
(W,≤) such that:

1. d(x, y) ≥ 0 with equality if and only if x = y.
2. d(x, y) = d(y, x) for all x, y ∈ X.
3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X.

• Distance on building
A Coxeter group is a group (W, ·, 1) generated by the elements
{w1, . . . , wn : (wiwj)mij = 1, 1 ≤ i, j ≤ n}. Here M = ((mij)) is a
Coxeter matrix, i.e., an arbitrary symmetric n × n matrix with mii = 1,
and the other values are positive integers or ∞.

The length l(x) of x ∈W is the smallest number of generators w1, . . . , wn

needed to represent x.
Let X be a set, and let (W, ·, 1) be a Coxeter group. The pair (X, d) is

called a building over (W, ·, 1) if the function d : X × X → W , called a
distance on building, has the following properties:

1. d(x, y) = 1 if and only if x = y.
2. d(y, x) = (d(x, y))−1.
3. The relation ∼i, defined by x ∼i y if d(x, y) = 1 or wi, is an equivalence

relation.
4. Given x ∈ X and an equivalence class C of ∼i, there exists a unique y ∈

C such that d(x, y) is shortest (i.e., of smallest length), and d(x, y′) =
d(x, y)wi for any y′ ∈ C, y′ �= y.

The gallery distance on building d′ is a usual metric on X, defined
by l(d(x, y)). The distance d′ is the path metric in the graph with the
vertex-set X and xy being an edge if d(x, y) = wi for some 1 ≤ i ≤ n.
The gallery distance on building is a special case of a gallery metric (of
chamber system X).

• Boolean metric space
A Boolean algebra (or Boolean lattice) is a distributive lattice (B,∨,∧)
admitting a least element 0 and greatest element 1 such that every x ∈ B
has a complement x with x ∨ x = 1 and x ∧ x = 0.

Let X be a set, and let (B,∨,∧) be a Boolean algebra. The pair (X, d)
is called a Boolean metric space over B if the function d : X ×X → B
has the following properties:

1. d(x, y) = 0 if and only if x = y.
2. d(x, y) ≤ d(x, z) ∨ d(z, y) for all x, y, z ∈ X.

• Space over algebra
A space over algebra is a metric space with a differential-geometric
structure, whose points can be provided with coordinates from some alge-
bra (usually, an associative algebra with identity).
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A module over an algebra is a generalization of a vector space over a
field, and its definition can be obtained from the definition of a vector
space by replacing the field by an associative algebra with identity. An
affine space over an algebra is a similar generalization of an affine space
over a field. In affine spaces over algebras one can specify a Hermitian
metric, while in the case of commutative algebras even a quadratic metric
can be given. To do this one defines in a unital module a scalar product
〈x, y〉, in the first case with the property 〈x, y〉 = J(〈y, x〉), where J is
an involution of the algebra, and in the second case with the property
〈y, x〉 = 〈x, y〉.

The n-dimensional projective space over an algebra is defined as the vari-
ety of one-dimensional submodules of an (n+1)-dimensional unital module
over this algebra. The introduction of a scalar product 〈x, y〉 in a unital
module makes it possible to define a Hermitian metric in a projective space
constructed by means of this module or, in the case of a commutative alge-
bra, quadratic elliptic and hyperbolic metrics. The metric invariant of the
points of these spaces is the cross-ratio W = 〈x, x〉−1〈x, y〉〈y, y〉−1〈y, x〉. If
W is a real number, then the invariant w, for which W = cos2 w, is called
the distance between x and y in the space over algebra.

• Partially ordered distance
Let X be a set. Let (G,≤) be a partially ordered set with a least element g0.
A partially ordered distance is a function d : X ×X → G such that,
for any x, y ∈ X, d(x, y) = g0 if and only if x = y.

A generalized ultrametric (Priess-Crampe and Ribenboim 1993) is
a symmetric (i.e., d(x, y) = d(y, x)) partially ordered distance, such that
d(z, x) ≤ g and d(z, y) ≤ g imply d(x, y) ≤ g for any x, y, z ∈ X and
g ∈ G.

Suppose from now that G′ = G\{g0} is non-empty and, for any g1, g2 ∈
G′, there exists g3 ∈ G′ such that g3 ≤ g1 and g3 ≤ g2. Consider the
following possible properties:

1. For any g1 ∈ G′, there exists g2 ∈ G′ such that, for any x, y ∈ X, from
d(x, y) ≤ g2 it follows that d(y, x) ≤ g1.

2. For any g1 ∈ G′, there exist g2, g3 ∈ G′ such that, for any x, y, z ∈ X,
from d(x, y) ≤ g2 and d(y, z) ≤ g3 it follows that d(x, z) ≤ g1.

3. For any g1 ∈ G′, there exists g2 ∈ G′ such that, for any x, y, z ∈ X,
from d(x, y) ≤ g2 and d(y, z) ≤ g2 it follows that d(y, x) ≤ g1.

4. G′ has no first element.
5. d(x, y) = d(y, x) for any x, y ∈ X.
6. For any g1 ∈ G′, there exists g2 ∈ G′ such that, for any x, y, z ∈ X,

from d(x, y) <∗ g2 and d(y, z) <∗ g2 it follows that d(x, z) <∗ g1; here
p <∗ q means that either p < q, or p is not comparable to q.

7. The order relation < is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered
distance if 1 and 2 hold; the Golmez partially ordered distance of
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first type if 4, 5, and 6 hold; the Golmez partially ordered distance
of second type if 3, 4, and 5 hold; the Kurepa–Fréchet distance if 3,
4, 5, and 7 hold.

In fact, the case G = R≥0 of the Kurepa–Fréchet distance corresponds to
the Fréchet V -space, i.e., a pair (X, d), where X is a set, and d(x, y) is a
non-negative symmetric function d : X×X → R (voisinage of points x and
y) such that d(x, y) = 0 if and only if x = y, and there exists a non-negative
function f : R → R with limt→0 f(t) = 0 with the following property: for
all x, y, z ∈ X and all positive r, the inequality max{d(x, y), d(y, z)} ≤ r
implies d(x, z) ≤ f(r).

• Distance from measurement
This notion is an analog of distance on domains in Computer Science; it
was developed in [Mart00].

A dcpo is a partially ordered set (D,
), in which every directed subset
S ⊂ D (i.e., S �= ∅ and any pair x, y ∈ S is bounded: there is z ∈ S with
x, y 
 z) has a supremum �S, i.e., the least of such upper bounds z. For
x, y ∈ D, y is an approximation of x if, for all directed subsets S ⊂ D,
x 
 �S implies y 
 s for some s ∈ S.

A dcpo (D,
) is continuous if for all x ∈ D the set of all approxima-
tions of x is directed and x is its supremum. A domain is a continuous
dcpo (D,
) such that for all x, y ∈ D there is z ∈ D with z 
 x, y. A
Scott domain is a continuous dcpo (D,
) with least element, in which any
bounded pair x, y ∈ D has a supremum.

A measurement is a mapping μ : D → R≥0 between dcpo (D,
) and
dcpo (R≥0,
), where R≥0 is ordered as x 
 y if y ≤ x, such that:

1. x 
 y implies μ(x) 
 μ(y).
2. μ(�S) = �({μ(s) : s ∈ S}) for every directed subset S ⊂ D.
3. For all x ∈ D with μ(x) = 0 and all sequences (xn), n →∞, of approx-

imations of x with limn→∞ μ(xn) = μ(x), one has �(∪∞
n=1{xn}) = x.

Given a measurement μ, the distance from measurement is a mapping
d : D ×D → R≥0 given by

d(x, y) = inf{μ(z) : z approximates x, y} = inf{μ(z) : z 
 x, y}.

One has d(x, x) 
 μ(x). The function d(x, y) is a metric on the set
{x ∈ D : μ(x) = 0} if μ satisfies the following measurement triangle
inequality: for all bounded pairs x, y ∈ D, there is an element z 
 x, y
such that μ(z) ≤ μ(x) + μ(y).

Waszkiewicz (2001) found topological connections between topologies
coming from a distance from measurement and from a partial metric
defined in Chap. 1.



Chapter 4
Metric Transforms

There are many ways to obtain new distances (metrics) from given distances
(metrics). Metric transforms give new distances as a functions of given metrics
(or given distances) on the same set X. A metric so obtained is called a
transform metric. We give some important examples of transform metrics
in Sect. 4.1.

Given a metric on a set X, one can construct a new metric on an exten-
sion of X; similarly, given a collection of metrics on sets X1, . . . , Xn, one
can obtain a new metric on an extension of X1, . . . , Xn. Examples of such
operations are given in Sect. 4.2.

Given a metric on X, there are many distances on other structures con-
nected with X, for example, on the set of all subsets of X. The main distances
of this kind are considered in Sect. 4.3.

4.1 Metrics on the same set

• Metric transform
A metric transform is a distance on a set X, obtained as a function of
given metrics (or given distances) on X.

In particular, given a continuous monotone increasing function f(x) of
x ≥ 0 with f(0) = 0, called the scale, and a distance space (X, d), one
obtains another distance space (X, df ), called a scale metric transform
of X, defining df (x, y) = f(d(x, y)). For every finite distance space (X, d),
there exists a scale f , such that (X, df ) is a metric subspace of a Euclidean
space E

n.
If (X, d) is a metric space and f is a continuous differentiable strictly

increasing scale with f(0) = 0 and non-increasing f ′, then (X, df ) is a
metric space (cf. functional transform metric).

The metric d is an ultrametric if and only if f(d) is a metric for every
non-decreasing function f : R≥0 → R≥0.

• Transform metric
A transform metric is a metric on a set X which is a metric transform,
i.e., is obtained as a function of a given metric (or given metrics) on X. In

M.M. Deza and E. Deza, Encyclopedia of Distances, 79
DOI 10.1007/978-3-642-00234-2 4, c© Springer-Verlag Berlin Heidelberg 2009
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particular, transform metrics can be obtained from a given metric d (or
given metrics d1 and d2) on X by any of the following operations (here
t > 0):

1. td(x, y) (t-scaled metric, or dilated metric, similar metric)
2. min{t, d(x, y)} (t-truncated metric)
3. max{t, d(x, y)} for x �= y (t-uniformly discrete metric)
4. d(x, y) + t for x �= y (t-translated metric)
5. d(x,y)

1+d(x,y)

6. dp(x, y) = 2d(x,y)
d(x,p)+d(y,p)+d(x,y) , where p is an fixed element of X

(biotope transform metric, or Steinhaus transform metric)
7. max{d1(x, y), d2(x, y)}
8. αd1(x, y) + βd2(x, y), where α, β > 0 (cf. metric cone in Chap. 1)

• Generalized biotope transform metric
For a given metric d on a set X and a closed set M ⊂ X, the generalized
biotope transform metric dM on X is defined by

dM (x, y) =
2d(x, y)

d(x, y) + infz∈M (d(x, z) + d(y, z))
.

In fact, dM (x, y) and its 1-truncation min{1, dM (x, y)} are both met-
rics. The biotope transform metric is dM (x, y) with M consisting only
of a point, say, p; the Steinhaus distance from Chap. 1 is the case
d(x, y) = μ(x�y) with p �= ∅ and the biotope distance from Chap. 23 is
its subcase d(x, y) = μ(x�y) = |x�y|.

• Metric-preserving function
A function f : R≥0 → R≥0 with f−1(0) = {0} is a metric-preserving
function if, for each metric space (X, d), the metric transform

df (x, y) = f(d(x, y))

is a metric on X; cf. [Cora99]. In this case df is called a functional
transform metric. For example, αd (α > 0), dα(0 < α ≤ 1), ln(1 + d),
arcsinh d, arccosh (1 + d), and d

1+d are functional transform metrics.
The superposition, sum and maximum of two metric-preserving func-

tions are metric-preserving. If f is subadditive, i.e., f(x+ y) ≤ f(x)+ f(y)
for all x, y ≥ 0, and non-decreasing, then it is metric-preserving. But, for
example, the function f(x) = x+2

x+1 , for x > 0, and f(0) = 0, is decreas-

ing and metric-preserving. If f is concave, i.e., f(x+y
2 ) ≥ f(x)+f(y)

2 for all
x, y ≥ 0, then it is metric-preserving. In particular, a twice differentiable
function f : R≥0 → R≥0 such that f(0) = 0, f ′(x) > 0 for all x ≥ 0, and
f ′′(x) ≤ 0 for all x ≥ 0, is metric-preserving.

If f is metric-preserving, then it is subadditive.
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The function f is strongly metric-preserving function if d and
f(d(x, y)) are equivalent metrics on X, for each metric space (X, d).
A metric-preserving function is strongly metric-preserving if and only if it
is continuous at 0.

• Power transform metric
Let 0 < α ≤ 1. Given a metric space (X, d), the power transform metric
(or snowflake transform metric) is a functional transform metric on
X, defined by

(d(x, y))α.

The distance d(x, y) = (
∑n

1 |xi − yi|p)
1
p with 0 < p = α < 1 is not a

metric on R
n, but its power transform (d(x, y)α) is a metric.

For a given metric d on X and any α > 1, the function dα is, in general,
only a distance on X. It is a metric, for any positive α, if and only if d is
an ultrametric.

A metric d is a doubling metric if and only if (Assouad 1983) the
power transform metric dα admits a bi-Lipschitz embedding in some
Euclidean space for every 0 < α < 1 (cf. Chap. 1 for definitions).

• Schoenberg transform metric
Let λ > 0. Given a metric space (X, d), the Schoenberg transform
metric is a functional transform metric on X, defined by

1− e−λd(x,y).

The Schoenberg transform metrics are exactly P -metrics (cf. Chap. 1).
• Pullback metric

Given two metric spaces (X, dX), (Y, dY ) and an injective mapping g :
X → Y , the pullback metric (of (Y, dY ) by g) on X is defined by

dY (g(x), g(y)).

If (X, dX) coincides with (Y, dY ), then the pullback metric is called a
g-transform metric.

• Internal metric
Given a metric space (X, d) in which every pair of points x, y is joined
by a rectifiable curve, the internal metric (or inner metric, induced
intrinsic metric, interior metric) D is a transform metric on X,
obtained from d as the infimum of the lengths of all rectifiable curves
connecting two given points x and y ∈ X.

The metric d on X is called an intrinsic metric (or length metric,
cf. Chap. 6) if it coincides with its internal metric.

• Farris transform metric
Given a metric space (X, d) and a point z ∈ X, the Farris transform is a
metric transform Dz on X\{z} defined by Dz(x, x) = 0 and, for different
x, y ∈ X\{z}, by

Dz(x, y) = C − (x.y)z,
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where C is a positive constant, and (x.y)z = 1
2 (d(x, z) + d(y, z) −

d(x, y)) is the Gromov product (cf. Chap. 1). It is a metric if C ≥
maxx∈X\{z} d(x, z); in fact, there exists a number C0 ∈ (maxx,y∈X\{z},x 	=y

(x.y)z,maxx∈X\{z} d(x, z)] such that it is a metric if and only if C ≥ C0.
The Farris transform is an ultrametric if and only if d satisfies the four-
point inequality. In Phylogenetics, where it was applied first, the term
Farris transform is used for the function d(x, y)− d(x, z)− d(y, z).

• Involution transform metric
Given a metric space (X, d) and a point z ∈ X, the involution transform
metric is a metric transform dz on X\{z} defined by

dz(x, y) =
d(x, y)

d(x, z)d(y, z)
.

It is a metric for any z ∈ X, if and only if d is a Ptolemaic met-
ric [FoSC06].

4.2 Metrics on set extensions

• Extension distances
If d is a metric on Vn = {1, . . . , n}, and α ∈ R, α > 0, then the following
extension distances (see, for example, [DeLa97]) are used.

The gate extension distance gat = gatdα is a metric on Vn+1 =
{1, . . . , n + 1}, defined by the following conditions:

1. gat(1, n + 1) = α.
2. gat(i, n + 1) = α + d(1, i) if 2 ≤ i ≤ n.
3. gat(i, j) = d(i, j) if 1 ≤ i < j ≤ n.

The distance gatd0 is called the gate 0-extension or, simply, 0-extension
of d.

If α ≥ max2≤i≤n d(1, i), then the antipodal extension distance ant =
antdα is a distance on Vn+1, defined by the following conditions:

1. ant(1, n + 1) = α.
2. ant(i, n + 1) = α− d(1, i) if 2 ≤ i ≤ n.
3. ant(i, j) = d(i, j) if 1 ≤ i < j ≤ n.

If α ≥ max1≤i,j≤n d(i, j), then the full antipodal extension distance
Ant = Antdα is a distance on V2n = {1, . . . , 2n}, defined by the following
conditions:

1. Ant(i, n + i) = α if 1 ≤ i ≤ n.
2. Ant(i, n + j) = α− d(i, j) if 1 ≤ i �= j ≤ n.
3. Ant(i, j) = d(i, j) if 1 ≤ i �= j ≤ n.
4. Ant(n + i, n + j) = d(i, j) if 1 ≤ i �= j ≤ n.
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It is obtained by applying the antipodal extension operation iteratively n
times, starting from d.

The spherical extension distance sph = sphd
α is a metric on Vn+1,

defined by the following conditions:

1. sph(i, n + 1) = α if 1 ≤ i ≤ n.
2. sph(i, j) = d(i, j) if 1 ≤ i < j ≤ n.

• 1-sum distance
Let d1 be a distance on a set X1, let d2 be a distance on a set X2, and
suppose that X1 ∩ X2 = {x0}. The 1-sum distance of d1 and d2 is the
distance d on X1 ∪X2, defined by the following conditions:

d(x, y) =

⎧
⎨

⎩

d1(x, y), if x, y ∈ X1,
d2(x, y), if x, y ∈ X2,

d(x, x0) + d(x0, y), if x ∈ X1, y ∈ X2.

In Graph Theory, the 1-sum distance is a path metric, corresponding to
the clique 1-sum operation for graphs.

• Disjoint union metric
Given a family (Xt, dt), t ∈ T , of metric spaces, the disjoint union met-
ric is an extended metric on the set

⋃
t Xt × {t}, defined by

d((x, t1), (y, t2)) = dt(x, y)

for t1 = t2, and d((x, t1), (y, t2)) = ∞ otherwise.
• Product metric

Given finite or countable number n of metric spaces (X1, d1), (X2, d2),
. . . , (Xn, dn), the product metric is a metric on the Cartesian product
X1 × X2 × · · · × Xn = {x = (x1, x2, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn},
defined as a function of d1, . . . , dn. The simplest finite product metrics are
defined by:

1.
∑n

i=1 di(xi, yi)
2. (

∑n
i=1 dp

i (xi, yi))
1
p , 1 < p <∞

3. max1≤i≤n di(xi, yi)
4.

∑n
i=1

1
2i

di(xi,yi)
1+di(xi,yi)

The last metric is bounded and can be extended to the product of count-
ably many metric spaces.

If X1 = · · · = Xn = R, and d1 = · · · = dn = d, where d(x, y) = |x− y| is
the natural metric on R, all product metrics above induce the Euclidean
topology on the n-dimensional space R

n. They do not coincide with the
Euclidean metric on R

n, but they are equivalent to it. In particular, the set
R

n with the Euclidean metric can be considered as the Cartesian product
R × · · · × R of n copies of the real line (R, d) with the product metric,
defined by

√∑n
i=1 d2(xi, yi).
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• Box metric
Let (X, d) be a metric space and I the unit interval of R. The box metric
is the product metric d′ on the Cartesian product X × I defined by

d′((x1, t1), (x2, t2)) = max(d(x1, x2), |t1 − t2|).

Cf. unrelated bounded box metric in Chap. 18.
• Fréchet product metric

Let (X, d) be a metric space with a bounded metric d. Let X∞ =
X × · · · × X . . . = {x = (x1, . . . , xn, . . . ) : x1 ∈ X1, . . . , xn ∈ Xn, . . . }
be the countable Cartesian product space of X.

The Fréchet product metric is a product metric on X∞, defined by

∞∑

n=1

And(xn, yn),

where
∑∞

n=1 An is any convergent series of positive terms. Usually, An =
1
2n is used.

A metric (sometimes called the Fréchet metric) on the set of all se-
quences {xn}n of real (complex) numbers, defined by

∞∑

n=1

An
|xn − yn|

1 + |xn − yn|
,

where
∑∞

n=1 An is any convergent series of positive terms, is a Fréchet
product metric of countably many copies of R (C). Usually, An = 1

n! or
An = 1

2n are used.
• Hilbert cube metric

The Hilbert cube Iℵ0 is the Cartesian product of countable many copies of
the interval [0, 1], equipped with the metric

∞∑

i=1

2−i|xi − yi|

(cf. Fréchet infinite metric product). It also can be identified up to
homeomorphisms with the compact metric space formed by all sequences
{xn}n of real numbers such that 0 ≤ xn ≤ 1

n , where the metric is defined
as

√∑∞
n=1(xn − yn)2.

• Hamming cube
Given integers n ≥ 1 and q ≥ 2, the Hamming space H(n, q) is the set
of all n-tuples over an alphabet of size q (say, the Cartesian product of n
copies of the set {0, 1, . . . , q − 1}), equipped with the Hamming metric
(cf. Chap. 1), i.e., the distance between two n-tuples is the number of
coordinates where they differ. The Hamming cube is the Hamming space
H(n, 2).
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The infinite Hamming cube H(∞, 2) is the set of all infinite strings over
the alphabet {0, 1} containing only finitely many 1s, equipped with the
Hamming metric.

• Cameron–Tarzi cube
Given integers n ≥ 1 and q ≥ 2, the normalized Hamming space Hn(q)
is the set of all n-tuples over an alphabet of size q, equipped with the
Hamming metric divided by n. Clearly, there are isometric embeddings

H1(q) → H2(q) → H4(q) → H8(q) → . . .

Let H(q) denote the Cauchy completion (cf. Chap. 1) of the union
(denote it by Hω(q)) of all metric spaces Hn(q) with n ≥ 1. This metric
space was introduced in [CaTa08]. Call H(2) the Cameron–Tarzi cube.

It is shown in [CaTa08] that Hω(2) is the word metric space (cf.
Chap. 10) of the countable Nim group, i.e., the elementary Abelian 2-group
of all natural numbers under bitwise addition modulo 2 of the number ex-
pressions in base 2. The Cameron–Tarzi cube is also the word metric space
of an Abelian group.

• Warped product metric
Let (X, dX) and (Y, dY ) be two complete length spaces (cf. Chap. 1),
and let f : X → R be a positive continuous function. Given a curve
γ : [a, b] → X × Y , consider its projections γ1 : [a, b] → X and
γ2 : [a, b] → Y to X and Y , and define the length of γ by the formula
∫ b

a

√
|γ′

1|2(t) + f2(γ1(t))|γ′
2|2(t)dt.

The warped product metric is a metric on X × Y , defined as the
infimum of lengths of all rectifiable curves connecting two given points in
X × Y (see [BuIv01]).

4.3 Metrics on other sets

Given a metric space (X, d), one can construct several distances between
some subsets of X. The main such distances are: the point-set distance
d(x,A) = infy∈A d(x, y) between a point x ∈ X and a subset A ⊂ X,
the set-set distance infx∈A,y∈B d(x, y) between two subsets A and B
of X, and the Hausdorff metric between compact subsets of X, which
are considered in Chap. 1. In this section we list some other distances of
this kind.

• Line-line distance
The line-line distance (or vertical distance between lines) is the
set-set distance in E

3 between two skew lines, i.e., two straight lines
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that do not lie in a plane. It is the length of the segment of their common
perpendicular whose end points lie on the lines. For l1 and l2 with equations
l1: x = p + qt, t ∈ R, and l2: x = r + st, t ∈ R, the distance is given by

|〈r − p, q × s〉|
||q × s||2

,

where × is the cross product on E
3, 〈, 〉 is the inner product on E

3, and
||.||2 is the Euclidean norm. For x = (q1, q2, q3), s = (s1, s2, s3), one has
q × s = (q2s3 − q3s2, q3s1 − q1s3, q1s2 − q2s1).

• Point-line distance
The point-line distance is the point-set distance between a point and
a line.

In E
2, the distance between a point z = (z1, z2) and a line l: ax1 +bx2 +

c = 0 is given by
|az1 + bz2 + c|√

a2 + b2
.

In E
3, the distance between a point z and a line l: x = p + qt, t ∈ R, is

given by
||q × (p− z)||2

||q||2
,

where × is the cross product on E
3, and ||.||2 is the Euclidean norm.

• Point-plane distance
The point-plane distance is the point-set distance in E

3 between a
point and a plane. The distance between a point z = (z1, z2, z3) and a
plane α: ax1 + bx2 + cx3 + d = 0 is given by

|az1 + bz2 + cz3 + d|√
a2 + b2 + c2

.

• Prime number distance
The prime number distance is the point-set distance in (N, |n−m|)
between a number n ∈ N and the set of prime numbers P ⊂ N. It is the
absolute difference between n and the nearest prime number.

• Distance up to nearest integer
The distance up to nearest integer is the point-set distance in
(R, |x − y|) between a number x ∈ R and the set of integers Z ⊂ R,
i.e., minn∈Z |x− n|.

• Busemann metric of sets
Given a metric space (X, d), the Busemann metric of sets (see [Buse55])
is a metric on the set of all non-empty closed subsets of X, defined by

sup
x∈X

|d(x,A)− d(x,B)|e−d(p,x),

where p is a fixed point of X, and d(x,A) = miny∈A d(x, y) is the point-
set distance.
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Instead of the weighting factor e−d(p,x), one can take any distance trans-
form function which decreases fast enough (cf. Lp-Hausdorff distance in
Chap. 1, and the list of variations of the Hausdorff metric in Chap. 21).

• Quotient semi-metric
Given an extended metric space (X, d) (i.e., a possibly infinite metric)
and an equivalence relation ∼ on X, the quotient semi-metric is a
semi-metric on the set X = X/ ∼ of equivalence classes defined, for any
x, y ∈ X, by

d(x, y) = inf
m∈N

m∑

i=1

d(xi, yi),

where the infimum is taken over all sequences x1, y1, x2, y2, . . . , xm, ym

with x1 ∈ x, ym ∈ y, and yi ∼ xi+1 for i = 1, 2, . . . ,m − 1. One has
d(x, y) ≤ d(x, y) for all x, y ∈ X, and d is the biggest semi-metric on X
with this property.



Chapter 5
Metrics on Normed Structures

In this chapter we consider a special class of metrics, defined on some normed
structures, as the norm of the difference between two given elements. This
structure can be a group (with a group norm), a vector space (with a vector
norm or, simply, a norm), a vector lattice (with a Riesz norm), a field (with
a valuation), etc.

• Group norm metric
A group norm metric is a metric on a group (G,+, 0), defined by

||x + (−y)|| = ||x− y||,

where ||.|| is a group norm on G, i.e., a function ||.|| : G → R such that,
for all x, y ∈ G, we have the following properties:

1. ||x|| ≥ 0, with ||x|| = 0 if and only if x = 0.
2. ||x|| = || − x||.
3. ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

Any group norm metric d is right-invariant, i.e., d(x, y) = d(x + z, y + z)
for any x, y, z ∈ G. Conversely, any right-invariant (as well as any left-
invariant, and, in particular, any bi-invariant) metric d on G is a group
norm metric, since one can define a group norm on G by ||x|| = d(x, 0).

• F -norm metric
A vector space (or linear space) over a field F is a set V equipped with
operations of vector addition + : V × V → V and scalar multiplication · :
F×V → V such that (V,+, 0) forms an Abelian group (where 0 ∈ V is the
zero vector), and, for all vectors x, y ∈ V and any scalars a, b ∈ F, we have
the following properties: 1 ·x = x (where 1 is the multiplicative unit of F),
(ab) · x = a · (b · x), (a + b) · x = a · x + b · x, and a · (x + y) = a · x + a · y.

A vector space over the field R of real numbers is called a real vector
space. A vector space over the field C of complex numbers is called complex
vector space.

A F -norm metric is a metric on a real (complex) vector space V ,
defined by

||x− y||F ,

M.M. Deza and E. Deza, Encyclopedia of Distances, 89
DOI 10.1007/978-3-642-00234-2 5, c© Springer-Verlag Berlin Heidelberg 2009
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where ||.||F is an F -norm on V , i.e., a function ||.||F : V → R such that,
for all x, y ∈ V and for any scalar a with |a| = 1, we have the following
properties:

1. ||x||F ≥ 0, with ||x||F = 0 if and only if x = 0.
2. ||ax||F = ||x||F .
3. ||x + y||F ≤ ||x||F + ||y||F (triangle inequality).

An F -norm is called p-homogeneous if ||ax||F = |a|p||x||F for any scalar a.
Any F -norm metric d is a translation invariant metric, i.e., d(x, y) =

d(x + z, y + z) for all x, y, z ∈ V . Conversely, if d is a translation invariant
metric on V , then ||x||F = d(x, 0) is an F -norm on V .

• F ∗-metric
An F ∗-metric is an F -norm metric ||x− y||F on a real (complex) vec-
tor space V such that the operations of scalar multiplication and vector
addition are continuous with respect to ||.||F . Thus ||.||F is a function
||.||F : V → R such that, for all x, y, xn ∈ V and for all scalars a, an, we
have the following properties:

1. ||x||F ≥ 0, with ||x||F = 0 if and only if x = 0.
2. ||ax||F = ||x||F for all a with |a| = 1.
3. ||x + y||F ≤ ||x||F + ||y||F .
4. ||anx||F → 0 if an → 0.
5. ||axn||F → 0 if xn → 0.
6. ||anxn||F → 0 if an → 0, xn → 0.

The metric space (V, ||x− y||F ) with an F ∗-metric is called a nF ∗-space.
Equivalently, an F ∗-space is a metric space (V, d) with a translation
invariant metric d such that the operation of scalar multiplication and
vector addition are continuous with respect to this metric.

A complete F ∗-space is called an F -space. A locally convex F -space
is known as a Fréchet space (cf. Chap. 2) in Functional Analysis.

A modular space is an F ∗-space (V, ||.||F ) in which the F -norm ||.||F
is defined by

||x||F = inf{λ > 0 : ρ
(x

λ

)
< λ},

and ρ is a metrizing modular on V , i.e., a function ρ : V → [0,∞] such
that, for all x, y, xn ∈ V and for all scalars a, an, we have the following
properties:

1. ρ(x) = 0 if and only if x = 0.
2. ρ(ax) = ρ(x) implies |a| = 1.
3. ρ(ax + by) ≤ ρ(x) + ρ(y) implies a, b ≥ 0, a + b = 1.
4. ρ(anx) → 0 if an → 0 and ρ(x) < ∞.
5. ρ(axn) → 0 if ρ(xn) → 0 (metrizing property).
6. For any x ∈ V , there exists k > 0 such that ρ(kx) < ∞.
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• Norm metric
A norm metric is a metric on a real (complex) vector space V , defined
by

||x− y||,
where ||.|| is a norm on V , i.e., a function ||.|| : V → R such that, for all
x, y ∈ V and for any scalar a, we have the following properties:

1. ||x|| ≥ 0, with ||x|| = 0 if and only if x = 0.
2. ||ax|| = |a|||x||.
3. ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

Therefore, a norm ||.|| is a 1-homogeneous F -norm. The vector space
(V, ||.||) is called a normed vector space or, simply, normed space.

Any metric space can be embedded isometrically in some normed vector
space as a closed linearly independent subset. Every finite-dimensional
normed space is complete, and all norms on it are equivalent.

In general, the norm ||.|| is equivalent (Maligranda 2008) to the norm

||x||u,p = (||x + ||x|| · u||p + ||x− ||x|| · u||p) 1
p ,

introduced, for any u ∈ V and p ≥ 1, by Odell and Schlumprecht in 1998.
The norm-angular distance between x and y is defined (Clarkson

1936) by
d(x, y) = || x

||x|| −
y

||y|| ||.

The following sharpening of the triangle inequality (Maligranda 2003)
holds:

||x− y|| − |||x|| − ||y|||
min{||x||, ||y||} ≤ d(x, y) ≤ ||x− y||+ |||x|| − ||y|||

max{||x||, ||y||} , i.e.,

(2− d(x,−y))min{||x||, ||y||} ≤ ||x||+ ||y|| − ||x + y||
≤ (2− d(x,−y))max{||x||, ||y||}.

Dragomir, 2004, call |
∫ b

a
f(x)dx| ≤

∫ b

a
f |(x)|dx continuous triangle

inequality.
• Reverse triangle inequality

The triangle inequality ||x + y|| ≤ ||x||+ ||y|| in a normed space (V, ||.||) is
equivalent to the following inequality, for any x1, . . . , xn ∈ V with n ≥ 2:

||
n∑

i=1

xi|| ≤
n∑

i=1

||xi||.

If in the normed space (V, ||.||) for some C ≥ 1 one has

C||
n∑

i=1

xi|| ≥
n∑

i=1

||xi||,
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then this inequality is called the reverse triangle inequality. This term
is used, sometimes, also for the inverse triangle inequality (cf. kine-
matic metric in Chap. 26) and for the eventual inequality Cd(x, z) ≥
d(x, y) + d(y, z) with C ≥ 1 in a metric space (X, d).

The triangle inequality ||x + y|| ≤ ||x|| + ||y||, for any x, y ∈ V , in a
normed space (V, ||.||) is, for any number q > 1, equivalent (Belbachir,
Mirzavaziri and Moslenian 2005) to the following inequality:

||x + y||q ≤ 2q−1(||x||q + ||y||q).

The parallelogram inequality ||x + y||2 ≤ 2(||x||2 + ||y||2) is the case q = 2
of above.

• Semi-norm semi-metric
A semi-norm semi-metric is a semi-metric on a real (complex) vector
space V , defined by

||x− y||,

where ||.|| is a semi-norm (or pseudonorm) on V , i.e., a function ||.|| : V →
R such that, for all x, y ∈ V and for any scalar a, we have the following
properties:

1. ||x|| ≥ 0, with ||0|| = 0.
2. ||ax|| = |a|||x||.
3. ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

The vector space (V, ||.||) is called a semi-normed vector space. Many
normed vector spaces, in particular, Banach spaces, are defined as the
quotient space by the subspace of elements of semi-norm zero.

A quasi-normed space is a vector space V , on which a quasi-norm is
given. A quasi-norm on V is a non-negative function ||.|| : V → R which
satisfies the same axioms as a norm, except for the triangle inequality
which is replaced by the weaker requirement: there exists a constant
C > 0 such that, for all x, y ∈ V , the following C-triangle inequality
holds:

||x + y|| ≤ C(||x||+ ||y||)

(cf. near-metric in Chap. 1). An example of a quasi-normed space, that
is not normed, is the Lebesgue space Lp(Ω) with 0 < p < 1 in which a
quasi-norm is defined by

||f || = (
∫

Ω

|f(x)|pdx)1/p, f ∈ Lp(Ω).
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• Banach space
A Banach space (or B-space) is a complete metric space (V, ||x − y||)
on a vector space V with a norm metric ||x − y||. Equivalently, it is the
complete normed space (V, ||.||). In this case, the norm ||.|| on V is called
the Banach norm. Some examples of Banach spaces are:

1. lnp -spaces, l∞p -spaces, 1 ≤ p ≤ ∞, n ∈ N

2. The space C of convergent numerical sequences with the norm ||x|| =
supn |xn|

3. The space C0 of numerical sequences which converge to zero with the
norm ||x|| = maxn |xn|

4. The space Cp
[a,b], 1 ≤ p ≤ ∞, of continuous functions on [a, b] with the

Lp-norm ||f ||p = (
∫ b

a
|f(t)|pdt)

1
p

5. The space CK of continuous functions on a compactum K with the
norm ||f || = maxt∈K |f(t)|

6. The space (C[a,b])n of functions on [a, b] with continuous deriva-
tives up to and including the order n with the norm ||f ||n =∑n

k=0 maxa≤t≤b |f (k)(t)|
7. The space Cn[Im] of all functions defined in an m-dimensional cube that

are continuously differentiable up to and including the order n with the
norm of uniform boundedness in all derivatives of order at most n

8. The space M[a,b] of bounded measurable functions on [a, b] with the
norm

||f || = ess sup
a≤t≤b

|f(t)| = inf
e,μ(e)=0

sup
t∈[a,b]\e

|f(t)|

9. The space A(Δ) of functions analytic in the open unit disk Δ = {z ∈
C : |z| < 1} and continuous in the closed disk Δ with the norm ||f || =
maxz∈Δ |f(z)|

10. The Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞
11. The Sobolev spaces W k,p(Ω), Ω ⊂ R

n, 1 ≤ p ≤ ∞, of functions f
on Ω such that f and its derivatives, up to some order k, have a finite
Lp-norm, with the norm ||f ||k,p =

∑k
i=0 ||f (i)||p

12. The Bohr space AP of almost periodic functions with the norm

||f || = sup
−∞<t<+∞

|f(t)|

A finite-dimensional real Banach space is called a Minkowskian space.
A norm metric of a Minkowskian space is called a Minkowskian
metric (cf. Chap. 6). In particular, any lp-metric is a Minkowskian
metric.

All n-dimensional Banach spaces are pairwise isomorphic; the set of such
spaces becomes compact if one introduces the Banach–Mazur distance
by dBM (V,W ) = ln infT ||T || · ||T−1||, where the infimum is taken over all
operators which realize an isomorphism T : V →W .
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• lp-metric
The lp-metric dlp , 1 ≤ p ≤ ∞, is a norm metric on R

n (or on C
n),

defined by
||x− y||p,

where the lp-norm ||.||p is defined by

||x||p = (
n∑

i=1

|xi|p)
1
p .

For p = ∞, we obtain ||x||∞ = limp→∞
p
√∑n

i=1 |xi|p = max1≤i≤n |xi|.
The metric space (Rn, dlp) is abbreviated as lnp and is called lnp -space.

The lp-metric, 1 ≤ p ≤ ∞, on the set of all sequences x = {xn}∞n=1

of real (complex) numbers, for which the sum
∑∞

i=1 |xi|p (for p = ∞, the
sum

∑∞
i=1 |xi|) is finite, is defined by

(
∞∑

i=1

|xi − yi|p)
1
p .

For p = ∞, we obtain maxi≥1 |xi − yi|. This metric space is abbreviated
as l∞p and is called l∞p -space.

Most important are l1-, l2- and l∞-metrics; the l2-metric on R
n is also

called the Euclidean metric. The l2-metric on the set of all sequences
{xn}n of real (complex) numbers, for which

∑∞
i=1 |xi|2 < ∞, is also known

as the Hilbert metric. On R all lp-metrics coincide with the natural
metric |x− y|.

Among lp-metrics, only l1- and l∞-metrics are crystalline metrics,
i.e., metrics having polygonal unit balls.

• Euclidean metric
The Euclidean metric (or Pythagorean distance, as-the-crow-flies
distance, beeline distance) dE is the metric on R

n, defined by

||x− y||2 =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

It is the ordinary l2-metric on R
n. The metric space (Rn, dE) is abbre-

viated as E
n and is called Euclidean space (or real Euclidean space).

Sometimes, the expression “Euclidean space” stands for the case n = 3,
as opposed to the Euclidean plane for the case n = 2. The Euclidean line
(or real line) is obtained for n = 1, i.e., it is the metric space (R, |x − y|)
with the natural metric |x− y| (cf. Chap. 12).

In fact, E
n is an inner product space (and even a Hilbert space),

i.e., dE(x, y) = ||x − y||2 =
√
〈x− y, x− y〉, where 〈x, y〉 is the inner

product on R
n which is given in a suitably chosen (Cartesian) coordinate

system by the formula 〈x, y〉 =
∑n

i=1 xiyi. In a standard coordinate system
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one has 〈x, y〉 =
∑

i,j gijxiyj , where gij = 〈ei, ej〉, and the metric tensor
((gij)) is a positive-definite symmetric n× n matrix.

In general, a Euclidean space is defined as a space, the properties of
which are described by the axioms of Euclidean Geometry.

• Norm-related metrics on R
n

On the vector space R
n, there are many well-known metrics related to

a given norm ||.|| on R
n, especially, to the Euclidean norm ||.||2. Some

examples are given below:

1. The British Rail metric (cf. Chap. 19), defined by

||x||+ ||y||,

for x �= y (and is equal to 0, otherwise).
2. The radar screen metric (cf. Chap. 19), defined by

min{1, ||x− y||}.

3. The (p, q)-relative metric (cf. Chap. 19), defined by

||x− y||2
( 1
2 (||x||p2 + ||y||p2))

q
p

,

for x or y �= 0 (and equal to 0, otherwise), where 0 < q ≤ 1, and
p ≥ max{1 − q, 2−q

3 }. For q = 1 and any 1 ≤ p < ∞, one obtains the
p-relative metric; for q = 1 and p = ∞, one obtains the relative
metric (cf. Chap. 19).

4. The M-relative metric (cf. Chap. 19), defined by

||x− y||2
f(||x||2) · f(||y||2)

,

for x or y �= 0, where f : [0,∞) → (0,∞) is a convex increasing func-
tion such that f(x)

x is decreasing for x > 0. In particular, the distance
||x−y||2

p
√

1+||x||p2
p
√

1+||y||p2
is a metric on R

n if and only if p ≥ 1. A similar

metric on R
n\{0} can be defined by ||x−y||2

||x||2·||y||2 .

The last two constructions can be used for any Ptolemaic space (V, ||.||).
• Unitary metric

The unitary metric (or complex Euclidean metric) is the l2-metric on
C

n, defined by

||x− y||2 =
√
|x1 − y1|2 + · · ·+ |xn − yn|2.
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The metric space (Cn, ||x − y||2) is called the unitary space (or complex
Euclidean space). For n = 1, we obtain the complex plane (or Argand
plane), i.e., the metric space (C, |z − u|) with the complex modulus
metric |z − u|; here |z| = |z1 + iz2| =

√
z2
1 + z2

2 is the complex modulus
(cf. also quaternion metric in Chap. 12).

• Lp-metric
An Lp-metric dLp

, 1 ≤ p ≤ ∞, is a norm metric on Lp(Ω,A, μ), defined by

||f − g||p

for any f, g ∈ Lp(Ω,A, μ). The metric space (Lp(Ω,A, μ), dLp
) is called

the Lp-space (or Lebesgue space).
Here Ω is a set, and A is n σ-algebra of subsets of Ω, i.e., a collection of

subsets of Ω satisfying the following properties:

1. Ω ∈ A.
2. If A ∈ A, then Ω\A ∈ A.
3. If A = ∪∞

i=1Ai with Ai ∈ A, then A ∈ A.

A function μ : A → R≥0 is called a measure on A if it is additive, i.e.,
μ(∪i≥1Ai) =

∑
i≥1 μ(Ai) for all pairwise disjoint sets Ai ∈ A, and satisfies

μ(∅) = 0. A measure space is a triple (Ω,A, μ).
Given a function f : Ω → R(C), its Lp-norm is defined by

||f ||p =
(∫

Ω

|f(ω)|pμ(dω)
) 1

p

.

Let Lp(Ω,A, μ) = Lp(Ω) denote the set of all functions f : Ω → R (C)
such that ||f ||p < ∞. Strictly speaking, Lp(Ω,A, μ) consists of equivalence
classes of functions, where two functions are equivalent if they are equal
almost everywhere, i.e., the set on which they differ has measure zero. The
set L∞(Ω,A, μ) is the set of equivalence classes of measurable functions
f : Ω → R (C) whose absolute values are bounded almost everywhere.

The most classical example of an Lp-metric is dLp
on the set Lp(Ω,A, μ),

where Ω is the open interval (0, 1), A is the Borel σ-algebra on (0, 1), and
μ is the Lebesgue measure. This metric space is abbreviated by Lp(0, 1)
and is called Lp(0, 1)-space.

In the same way, one can define the Lp-metric on the set C[a,b] of
all real (complex) continuous functions on [a, b]: dLp

(f, g) = (
∫ b

a
|f(x) −

g(x)|pdx)
1
p . For p = ∞, dL∞(f, g) = maxa≤x≤b |f(x)− g(x)|. This metric

space is abbreviated by Cp
[a,b] and is called Cp

[a,b]-space.
If Ω = N, A = 2Ω is the collection of all subsets of Ω, and μ is the

cardinality measure (i.e., μ(A) = |A| if A is a finite subset of Ω, and
μ(A) =∞, otherwise), then the metric space (Lp(Ω, 2Ω, |.|), dLp

) coincides
with the space l∞p .



5 Metrics on Normed Structures 97

If Ω = Vn is a set of cardinality n, A = 2Vn , and μ is the cardinality
measure, then the metric space (Lp(Vn, 2Vn , |.|), dLp

) coincides with the
space lnp .

• Dual metrics
The lp-metric and the lq-metric, 1 < p, q < ∞, are called dual if 1/p +
1/q = 1.

In general, when dealing with a normed vector space (V, ||.||V ), one is
interested in the continuous linear functionals from V into the base field
(R or C). These functionals form a Banach space (V ′, ||.||V ′), called
the continuous dual of V . The norm ||.||V ′ on V ′ is defined by ||T ||V ′ =
sup||x||V ≤1 |T (x)|.

The continuous dual for the metric space lnp (l∞p ) is lnq (l∞q , respectively).
The continuous dual of ln1 (l∞1 ) is ln∞ (l∞∞, respectively). The continuous
duals of the Banach spaces C (consisting of all convergent sequences, with
l∞-metric) and C0 (consisting of the sequences converging to zero, with
l∞-metric) are both naturally identified with l∞1 .

• Inner product space
An inner product space (or pre-Hilbert space) is a metric space (V, ||x−
y||) on a real (complex) vector space V with an inner product 〈x, y〉 such
that the norm metric ||x− y|| is constructed using the inner product norm
||x|| =

√
〈x, x〉.

An inner product 〈, 〉 on a real (complex) vector space V is a symmetric
bilinear (in the complex case, sesquilinear) form on V , i.e., a function
〈, 〉 : V ×V −→ R (C) such that, for all x, y, z ∈ V and for all scalars α, β,
we have the following properties:

1. 〈x, x〉 ≥ 0, with 〈x, x〉 = 0 if and only if x = 0.
2. 〈x, y〉 = 〈y, x〉, where the bar denotes complex conjugation.
3. 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.
For a complex vector space, an inner product is called also a Hermitian
inner product, and the corresponding metric space is called a Hermitian
inner product space.

A norm ||.|| in a normed space (V, ||.||) is generated by an inner product if
and only if, for all x, y ∈ V , we have: ||x+y||2+||x−y||2 = 2(||x||2+||y||2).

• Hilbert space
A Hilbert space is an inner product space which, as a metric space,
is complete. More precisely, a Hilbert space is a complete metric space
(H, ||x−y||) on a real (complex) vector space H with an inner product 〈, 〉
such that the norm metric ||x− y|| is constructed using the inner product
norm ||x|| =

√
〈x, x〉. Any Hilbert space is a Banach space.

An example of a Hilbert space is the set of all sequences x = {xn}n of
real (complex) numbers such that

∑∞
i=1 |xi|2 converges, with the Hilbert

metric defined by

(
∞∑

i=1

(xi − yi)2)
1
2 .
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Other examples of Hilbert spaces are any L2-space, and any finite-
dimensional inner product space. In particular, any Euclidean space is
a Hilbert space.

A direct product of two Hilbert spaces is called a Liouville space (or
line space, extended Hilbert space).

Given an infinite cardinal number τ and a set A of the cardinality τ , let
Ra, a ∈ A, be the copies of R. Let H(A) = {{xa} ∈

∏
a∈A Ra :

∑
a x2

a <
∞}; then H(A) with the metric, defined for {xa}, {ya} ∈ H(A) as

(
∑

a∈A

(xa − ya)2)
1
2 ,

is called the generalized Hilbert space of weight τ .
• Erdös space

The Erdös space (or rational Hilbert space) is the metric subspace of l2
consisting of all vectors in l2 the coordinates of which are all rational. It
has topological dimension 1 and is not complete. Erdös space is homeo-
morphic to its countable infinite power, and every non-empty open subset
of it is homeomorphic to whole space.

The complete Erdös space (or irrational Hilbert space) is the complete
metric subspace of l2 consisting of all vectors in l2 the coordinates of which
are all irrational.

• Riesz norm metric
A Riesz space (or vector lattice) is a partially ordered vector space (VRi,
)
in which the following conditions hold:

1. The vector space structure and the partial order structure are compat-
ible, i.e., from x 
 y it follows that x + z 
 y + z, and from x � 0,
a ∈ R, a > 0 it follows that ax � 0.

2. For any two elements x, y ∈ VRi, there exist the join x ∨ y ∈ VRi and
meet x ∧ y ∈ VRi (cf. Chap. 10).

The Riesz norm metric is a norm metric on VRi defined by

||x− y||Ri,

where ||.||Ri is a Riesz norm on VRi, i.e., a norm such that, for any x, y ∈
VRi, the inequality |x| 
 |y|, where |x| = (−x) ∨ (x), implies ||x||Ri ≤
||y||Ri.

The space (VRi, ||.||Ri) is called a normed Riesz space. In the case of
completeness, it is called a Banach lattice.

• Banach–Mazur compactum
The Banach–Mazur distance dBM between two n-dimensional normed
spaces (V, ||.||V ) and (W, ||.||W ) is defined by

ln inf
T
||T || · ||T−1||,
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where the infimum is taken over all isomorphisms T : V → W . It is a
metric on the set Xn of all equivalence classes of n-dimensional normed
spaces, where V ∼ W if and only if they are isometric. Then the pair
(Xn, dBM ) is a compact metric space which is called the Banach–Mazur
compactum.

• Quotient metric
Given a normed space (V, ||.||V ) with a norm ||.||V and a closed subspace
W of V , let (V/W, ||.||V/W ) be the normed space of cosets x+W = {x+w :
w ∈W}, x ∈ V , with the quotient norm ||x+W ||V/W = infw∈W ||x+w||V .

The quotient metric is a norm metric on V/W defined by

||(x + W )− (y + W )||V/W .

• Tensor norm metric
Given normed spaces (V, ||.||V ) and (W, ||.||W ), a norm ||.||⊗ on the tensor
product V ⊗ W is called tensor norm (or cross norm) if ||x ⊗ y||⊗ =
||x||V ||y||W for all decomposable tensors x⊗ y.

The tensor product metric is a norm metric on V ⊗W defined by

||z − t||⊗.

For any z ∈ V ⊗W , z =
∑

j xj ⊗ yj , xj ∈ V , yj ∈W , the projective norm
(or π-norm) of z is defined by ||z||pr = inf

∑
j ||xj ||V ||yj ||W , where the

infimum is taken over all representations of z as a sum of decomposable
vectors. It is the largest tensor norm on V ⊗W .

• Valuation metric
A valuation metric is a metric on a field F defined by

||x− y||,

where ||.|| is a valuation on F, i.e., a function ||.|| : F → R such that, for
all x, y ∈ F, we have the following properties:

1. ||x|| ≥ 0, with ||x|| = 0 if and only if x = 0.
2. ||xy|| = ||x|| ||y||.
3. ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

If ||x + y|| ≤ max{||x||, ||y||}, the valuation ||.|| is called non-Archimedean.
In this case, the valuation metric is an ultrametric. The simplest valua-
tion is the trivial valuation ||.||tr: ||0||tr = 0, and ||x||tr = 1 for x ∈ F\{0}.
It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the
function ν : F → R ∪ {∞} is called a valuation if ν(x) ≥ 0, ν(0) = ∞,
ν(xy) = ν(x) + ν(y), and ν(x + y) ≥ min{ν(x), ν(y)} for all x, y ∈ F.
The valuation ||.|| can be obtained from the function ν by the formula
||x|| = αν(x) for some fixed 0 < α < 1 (cf. p-adic metric in Chap. 12).
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The Kürschäk valuation |.|Krs is a function |.|Krs : F → R such that
|x|Krs ≥ 0, |x|Krs = 0 if and only if x = 0, |xy|Krs = |x|Krs|y|Krs, and
|x + y|Krs ≤ C max{|x|Krs, |y|Krs} for all x, y ∈ F and for some positive
constant C, called the constant of valuation. If C ≤ 2, one obtains the
ordinary valuation ||.|| which is non-Archimedean if C ≤ 1. In general,
any |.|Krs is equivalent to some ||.||, i.e., |.|pKrs = ||.|| for some p > 0.

Finally, given an ordered group (G, ·, e,≤) equipped with zero, the Krull
valuation is a function |.| : F → G such that |x| = 0 if and only if x = 0,
|xy| = |x||y|, and |x+y| ≤ max{|x|, |y|} for any x, y ∈ F. It is a generaliza-
tion of the definition of non-Archimedean valuation ||.|| (cf. generalized
metric in Chap. 3).

• Power series metric
Let F be an arbitrary algebraic field, and let F〈x−1〉 be the field of power
series of the form w = α−mxm + · · · + α0 + α1x

−1 + · · · , αi ∈ F. Given
l > 1, a non-Archimedean valuation ||.|| on F〈x−1〉 is defined by

||w|| =
{

lm, if w �= 0,
0, if w = 0.

The power series metric is the valuation metric ||w − v|| on F〈x−1〉.



Part II
Geometry and Distances



Chapter 6
Distances in Geometry

Geometry arose as the field of knowledge dealing with spatial relationships.
It was one of the two fields of pre-modern Mathematics, the other being the
study of numbers. Earliest known evidence of abstract representation – ochre
rocks marked with cross hatches and lines to create a consistent complex
geometric motif, dated about 70,000 BC – were found in Blombos Cave, South
Africa. In modern times, geometric concepts have been generalized to a high
level of abstraction and complexity.

6.1 Geodesic Geometry

In Mathematics, the notion of “geodesic” is a generalization of the notion of
“straight line” to curved spaces. This term is taken from Geodesy, the science
of measuring the size and shape of the Earth.

Given a metric space (X, d), a metric curve γ is a continuous function
γ : I → X, where I is an interval (i.e., non-empty connected subset) of R.
If γ is r times continuously differentiable, it is called a regular curve of class
Cr; if r = ∞, γ is called a smooth curve.

In general, a curve may cross itself. A curve is called a simple curve (or arc,
path) if it does not cross itself, i.e., if it is injective. A curve γ : [a, b] → X is
called a Jordan curve (or simple closed curve) if it does not cross itself, and
γ(a) = γ(b).

The length (which may be equal to ∞) l(γ) of a curve γ : [a, b] → X is
defined by sup

∑n
i=1 d(γ(ti−1), γ(ti)), where the supremum is taken over all

finite decompositions a = t0 < t1 < ... < tn = b, n ∈ N, of [a, b]. A curve with
finite length is called rectifiable. For each regular curve γ : [a, b] → X define
the natural parameter s of γ by s = s(t) = l(γ|[a,t]), where l(γ|[a,t]) is the
length of the part of γ corresponding to the interval [a, t]. A curve with this
natural parametrization γ = γ(s) is called of unit speed, (or parameterized
by arc length, normalized); in this parametrization, for any t1, t2 ∈ I, one has
l(γ|[t1,t2]) = |t2 − t1|, and l(γ) = |b− a|.

M.M. Deza and E. Deza, Encyclopedia of Distances, 103
DOI 10.1007/978-3-642-00234-2 6, c© Springer-Verlag Berlin Heidelberg 2009



104 6 Distances in Geometry

The length of any curve γ : [a, b] → X is at least the distance between its
end points: l(γ) ≥ d(γ(a), γ(b)). The curve γ, for which l(γ) = d(γ(a), γ(b)),
is called the geodesic segment (or shortest path) from x = γ(a) to y =
γ(b), and denoted by [x, y]. Thus, a geodesic segment is a shortest join of its
endpoints; it is an isometric embedding of [a, b] in X. In general, geodesic
segments need not exist, except for a trivial case when the segment consists
of one point only. A geodesic segment joining two points need not be unique.

A geodesic (cf. Chap. 1) is a curve which extends indefinitely in both
directions and behaves locally like a segment, i.e., is everywhere locally a
distance minimizer. More exactly, a curve γ : R → X, given in the natural
parametrization, is called a geodesic if, for any t ∈ R, there exists a neighbor-
hood U of t such that, for any t1, t2 ∈ U , we have d(γ(t1), γ(t2)) = |t1 − t2|.
Thus, any geodesic is a locally isometric embedding of the whole of R in X.

A geodesic is called a metric straight line if the equality d(γ(t1), γ(t2)) =
|t1 − t2| holds for all t1, t2 ∈ R. Such a geodesic is an isometric embedding of
the whole real line R in X. A geodesic is called a metric great circle if it is
an isometric embedding of a circle S1(0, r) in X. In general, geodesics need
not exist.

• Geodesic metric space
A metric space (X, d) is called geodesic if any two points in X can be
joined by a geodesic segment, i.e., for any two points x, y ∈ X, there is an
isometry from the segment [0, d(x, y)] into X. Any complete Riemannian
space and any Banach space is a geodesic metric space.

A metric space (X, d) is called a locally geodesic metric space if any
two sufficiently close points in X can be joined by a geodesic segment; it
is called D-geodesic if any two points at distance <D can be joined by a
geodesic segment.

• Geodesic distance
The geodesic distance (or shortest path distance) is the length of a
geodesic segment (i.e., a shortest path) between two points.

• Intrinsic metric
Given a metric space (X, d) in which every two points are joined by a
rectifiable curve, the internal metric (cf. Chap. 4) D on X is defined as
the infimum of the lengths of all rectifiable curves, connecting two given
points x, y ∈ X.

The metric d on X is called the intrinsic metric (or length metric)
if it coincides with its internal metric D. A metric space with the intrinsic
metric is called a length space (or path metric space, inner metric
space, intrinsic space).

If, moreover, any pair x, y of points can be joined by a curve of length
d(x, y), the intrinsic metric d is called strictly intrinsic, and the length
space (X, d) is a geodesic metric space.

A complete metric space (X, d) is a length space if and only if it is hav-
ing approximate midpoints, i.e., for any points x, y ∈ X and for any
ε > 0, there exists a third point z ∈ X with d(x, z), d(y, z) ≤ 1

2d(x, y) + ε.
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Any complete locally compact length space is a proper geodesic metric
space.

• G-space
A G-space (or space of geodesics) is a metric space (X, d) with the
geometry characterized by the fact that extensions of geodesics, defined
as locally shortest lines, are unique. Such geometry is a generalization of
Hilbert Geometry (see [Buse55]).

More exactly, a G-space (X, d) is defined by the following conditions:

1. It is proper (or finitely compact), i.e., all metric balls are compact.
2. It is Menger-convex, i.e., for any different x, y ∈ X, there exists a

third point z ∈ X, z �= x, y, such that d(x, z) + d(z, y) = d(x, y).
3. It is locally extendable, i.e., for any a ∈ X, there exists r > 0 such that,

for any distinct points x, y in the ball B(a, r), there exists z distinct
from x and y such that d(x, y) + d(y, z) = d(x, z).

4. It is uniquely extendable, i.e., if in 3 above two points z1 and z2 were
found, so that d(y, z1) = d(y, z2), then z1 = z2.

The existence of geodesic segments is ensured by finite compactness and
Menger-convexity: any two points of a finitely compact Menger-convex set
X can be joined by a geodesic segment in X. The existence of geodesics is
ensured by the axiom of local prolongation: if a finitely compact Menger-
convex set X is locally extendable, then there exists a geodesic containing a
given segment. Finally, the uniqueness of prolongation ensures the assump-
tion of Differential Geometry that a line element determines a geodesic
uniquely.

All Riemannian and Finsler spaces are G-spaces. A one-dimensional
G-space is a metric straight line or a metric great circle. Any two-
dimensional G-space is a topological manifold.

Every G-space is a chord space, i.e., a metric space with a set distin-
guished geodesic segments such that any two points are joined by a unique
such segment (see [BuPh87]).

• Desarguesian space
A Desarguesian space is a G-space (X, d) in which the role of geodesics
is played by ordinary straight lines. Thus, X may be topologically mapped
into a projective space RPn so that each geodesic of X is mapped into a
straight line of RPn. Any X mapped into RPn must either cover all of
RPn and, in such a case, the geodesics of X are all metric great circles of
the same length, or X may be considered as an open convex subset of an
affine space An.

A space (X, d) of geodesics is a Desarguesian space if and only if the
following conditions hold:

1. The geodesic passing through two different points is unique.
2. For dimension n = 2, both the direct and the converse Desargues the-

orems are valid and, for dimension n > 2, any three points in X lie in
one plane.
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Among Riemannian spaces, the only Desarguesian spaces are Euclidean,
hyperbolic, and elliptic spaces. An example of the non-Riemannian De-
sarguesian space is the Minkowskian space which can be regarded as the
prototype of all non-Riemannian spaces, including Finsler spaces.

• G-space of elliptic type
A G-space of elliptic type is a G-space in which the geodesic through
two points is unique, and all geodesics are the metric great circles of the
same length.

Every G-space such that there is unique geodesic through each given
pair of points is either a G-space of elliptic type, or a straight G-space.

• Straight G-space
A straight G-space is a G-space in which extension of a geodesic is

possible globally, so that any segment of the geodesic remains a shortest
path. In other words, for any two points x, y ∈ X, there is a unique geodesic
segment joining x to y, and a unique metric straight line containing x
and y.

Any geodesic in a straight G-space is a metric straight line, and is
uniquely determined by any two of its points. Any two-dimensional straight
G-space is homeomorphic to the plane.

All simply-connected Riemannian spaces of non-positive curvature (in-
cluding Euclidean and hyperbolic spaces), Hilbert geometries, and Te-
ichmüller spaces of compact Riemann surfaces of genus g > 1 (when
metrized by the Teichmüller metric) are straight G-spaces.

• Gromov hyperbolic metric space
A metric space (X, d) is called Gromov hyperbolic if it is geodesic and
δ-hyperbolic for some δ ≥ 0.

Any complete simply connected Riemannian space of sectional curvature
k ≤ −a2 is a Gromov hyperbolic metric space with δ = ln 3

a . An important
class of Gromov hyperbolic metric spaces are the hyperbolic groups, i.e.,
finitely generated groups whose word metric is δ-hyperbolic for some
δ ≥ 0. A metric space is a real tree exactly when it is a Gromov hyperbolic
metric space with δ = 0.

A geodesic metric space (X, d) is δ-hyperbolic if and only if it is Rips
4δ-hyperbolic, i.e., each of its geodesic triangles (the union of three geodesic
segments [x, y], [x, z], [y, z]) is 4δ-thin (or 4δ-slim): every side of the
triangle is contained in the 4δ-neighborhood of the other two sides (a 4δ-
neighborhood of a subset A ⊂ X is the set {b ∈ X : infa∈A d(b, a) < 4δ}).

Every CAT(κ) space with κ < 0 is Gromov hyperbolic. Every Euclidean
space E

n is a CAT(0) space; it is Gromov hyperbolic only for n = 1.
• CAT(κ) space

Let (X, d) be a metric space. Let M2 be a simply connected two-
dimensional Riemannian manifold of constant curvature κ, i.e., the
2-sphere S2

κ with κ > 0, the Euclidean plane E
2 with κ = 0, or the

hyperbolic plane H2
κ with κ < 0. Let Dκ denote the diameter of M2, i.e.,

Dκ = π√
κ

if κ > 0, and Dκ =∞ if κ ≤ 0.
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A triangle T in X consists of three points in X together with three
geodesic segments joining them pairwise; the segments are called the sides
of the triangle. For a triangle T ⊂ X, a comparison triangle for T in M2

is a triangle T ′ ⊂M2 together with a map fT which sends each side of T
isometrically onto a side of T ′. A triangle T is said to satisfy the Gromov
CAT(κ) inequality (for Cartan, Alexandrov and Toponogov) if, for every
x, y ∈ T , we have

d(x, y) ≤ dM2(fT (x), fT (y)),

where fT is the map associated to a comparison triangle for T in M2.
So, the geodesic triangle T is at least as “thin” as its comparison triangle
in M2.

The metric space (X, d) is a CAT(κ) space if it is Dκ-geodesic (i.e.,
any two points at distance <Dκ can be joined by a geodesic segment), and
all triangles T with perimeter <2Dκ satisfy the CAT(κ) inequality.

Every CAT(κ1) space is a CAT(κ2) space if κ1 < κ2. Every real tree
is a CAT(−∞) space, i.e., is a CAT(κ1) space for all κ ∈ R.

An Alexandrov space with curvature bounded from above by
κ (or locally CAT(κ) space) is a metric space (X, d) in which every
point p ∈ X has a neighborhood U such that any two points x, y ∈ U
are connected by a geodesic segment, and the CAT(κ) inequality holds for
any x, y, z ∈ U . A Riemannian manifold is locally CAT(κ) if and only if
its sectional curvature is at most κ.

An Alexandrov space with curvature bounded from below by
κ is a metric space (X, d) in which every point p ∈ X has a neighborhood
U such that any two points x, y ∈ U are connected by a geodesic segment,
and the reverse CAT(κ) inequality

d(x, y) ≥ dM2(fT (x), fT (y))

holds for any x, y, z ∈ U , where fT is the map associated to a comparison
triangle for T in M2.

The above two definitions differ only by the sign (≤0 or ≥0) of
d(x, y)− dM2(fT (x), fT (y)). In the case κ = 0, the above spaces are called
non-positively curved and non-negatively curved metric spaces,
respectively; they differ also by the sign of

2d2(z,m(x, y))− (d2(z, x) + d2(z, y) +
1
2
d2(x, y))

(≤0 or ≥0, respectively) where again x, y, z are any three points in a
neighborhood U for each p ∈ X, and m(x, y) is the midpoint of the metric
interval I(x, y).

In a CAT(0) space, any two points are connected by a unique geodesic
segment, and the distance is a convex function. Any CAT(0) space is Buse-
mann convex and Ptolemaic (cf. Chap. 1) and vice versa.
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Euclidean spaces, hyperbolic spaces, and trees are CAT(0) spaces.
Complete CAT(0) spaces are called also Hadamard spaces.

• Bruhat–Tits metric space
A metric space (X, d) satisfies semi-parallelogram law (or Bruhat–Tits
CN inequality) if for any x, y ∈ X, there is a point m(x, y) that satisfies

2d2(z,m(x, y))− (d2(z, x) + d2(z, y) +
1
2
d2(x, y)) ≤ 0.

In fact, the point m(x, y) is the unique midpoint between x and y (cf.
midpoint convexity in Chap. 1).

A geodesic space is a CAT(0) space if and only if it satisfies above
inequality.

The usual vector parallelogram law ||u−v||2+||u+v||2 = 2||u||2+2||v||2,
characterizing norms induced by inner products, is equivalent to the semi-
parallelogram law with the inequality replaced by an equality.

A Bruhat–Tits metric space is a complete metric space satisfying
the semi-parallelogram law.

• Boundary of metric space
There are many notions of the boundary ∂X of a metric space (X, d).
We give below some of the most general among them. Usually, if (X, d) is
locally compact, X ∪ ∂X is its compactification:

1. Ideal boundary. Given a geodesic metric space (X, d), let γ1 and
γ2 be two metric rays, i.e., geodesics with isometry of R≥0 into X.
These rays are called equivalent if the Hausdorff distance between
them (associated with the metric d) is finite, i.e., if supt≥0 d(γ1(t), γ2(t))
<∞.

The boundary at infinity (or ideal boundary) of (X, d) is the
set ∂∞X of equivalence classes γ∞ of all metric rays. Cf. metric cone
structure, asymptotic metric cone in Chap. 1.

If (X, d) is a complete CAT(0) space, then the Tits metric (or
asymptotic angle of divergence) on ∂∞X is defined by

2 arcsin
(ρ

2

)

for all γ1
∞, γ2

∞ ∈ ∂∞X, where ρ = limt→+∞
1
t d(γ1(t), γ2(t)). The set

∂∞X equipped with the Tits metric is called the Tits boundary of X.
If (X, d, x0) is a pointed complete CAT(−1) space, then the Bourdon

metric (or visual distance) on ∂∞X is defined by

e−(x.y)

for any distinct points x, y ∈ ∂∞X, where (x.y) denotes the Gromov
product (x.y)x0 .
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The visual sphere of (X, d) at a point x0 ∈ X is the set of
equivalence classes of all metric rays emanating from x0.

2. Gromov boundary. Given a pointed metric space (X, d, x0), the
Gromov boundary of it (as generalized by Buckley and Kokkendorff
2005, from the case of the Gromov hyperbolic space) is the set ∂GX of
equivalence classes of Gromov sequences. A sequence x = {xn}n in X is
a Gromov sequence if the Gromov product (xi.xj)x0 →∞ as i, j →∞.
Two Gromov sequences x and y are equivalent if there is a finite chain
of Gromov sequences xk, 0 ≤ k ≤ k′, such that x = x0, y = xk′

, and
limi,j→∞ inf(xk−1

i .xk
j ) = ∞ for 0 ≤ k ≤ k′.

In a proper geodesic Gromov hyperbolic space (X, d), the visual
sphere does not depends on the base point x0 and is naturally isomor-
phic to its Gromov boundary ∂GX, which can be identified with ∂∞X.

3. g-boundary. Denote by Xd the metric completion of (X, d) and, view-
ing X as a subset of Xd, denote by ∂Xd the difference Xd\X. Let
(X, l, x0) be a pointed unbounded length space, i.e., its metric coin-
cides with the internal metric l of (X, d). Given a measurable function
g : R≥0 → R≥0, the g-boundary of (X, d, x0) (as generalized by
Buckley and Kokkendorff 2005, from spherical and Floyd boundaries) is
∂gX = ∂Xσ\∂Xl, where σ(x, y) = inf

∫
γ

g(z)dl(z) for all x, y ∈ X (here
the infimum is taken over all metric segments γ = [x, y]).

4. Hotchkiss boundary. Given a pointed proper Busemann convex
metric space (X, d, x0), the Hotchkiss boundary of it is the set
∂H(X,x0) of isometries f : R≥0 → X with f(0) = x0. The bound-
aries ∂x0

H X and ∂x1
H X are homeomorphic for distinct x0, x1 ∈ X. In

a Gromov hyperbolic space, ∂x0
H X is homeomorphic to the Gromov

boundary ∂GX.
5. Metric boundary. Given a pointed metric space (X, d, x0) and an

unbounded subset S of R≥0, a ray γ : S → X is called a weakly geodesic
ray if, for every x ∈ X and every ε > 0, there is an integer N such that
|d(γ(t), γ(0))−t| < ε, and |d(γ(t), x)−d(γ(s), x)−(t−s)| < ε for all s, t ∈
T with s, t ≥ N . Let G(X, d) be the commutative unital C∗-algebra with
the norm ||.||∞, generated by the (bounded, continuous) functions which
vanish at infinity, the constant functions, and the functions of the form
gy(x) = d(x, x0)− d(x, y); cf. quantum metric space for definitions.
The Rieffel’s metric boundary ∂RX of (X, d) is the difference X

d\X,
where X

d
is the metric compactification of (X, d), i.e., the maximum

ideal space (the set of pure states) of this C∗-algebra.
For a proper metric space (X, d) with a countable base, the bound-

ary ∂RX consists of the limits limt→∞ f(γ(t)) for every weakly
geodesic ray γ and every function f from the above C∗-algebra (Rieffel
2002).
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• Projectively flat metric space
A metric space, in which geodesics are defined, is called projectively
flat if it locally admits a geodesic mapping (or projective mapping), i.e., a
mapping preserving geodesics into an Euclidean space. Cf. Euclidean rank
of metric space in Chap. 1; similar terms are: affinely flat, conformally
flat, etc.

A Riemannian space is projectively flat if and only if it has constant
(sectional) curvature.

6.2 Projective Geometry

Projective Geometry is a branch of Geometry dealing with the properties and
invariants of geometric figures under projection. Affine Geometry, Similarity
(or Metric) Geometry and Euclidean Geometry are subsets of Projective Ge-
ometry of increasing complexity. The main invariants of Projective, Affine,
Metric, Euclidean Geometry are, respectively, cross-ratio, parallelism (and
relative distances), angles (and relative distances), absolute distances.

An n-dimensional projective space FPn is the space of one-dimensional
vector subspaces of a given (n+1)-dimensional vector space V over a field F.
The basic construction is to form the set of equivalence classes of non-zero
vectors in V under the relation of scalar proportionality. This idea goes back
to mathematical descriptions of perspective. The use of a basis of V allows
the introduction of homogeneous coordinates of a point in KPn which are
usually written as (x1 : x2 : ... : xn : xn+1) – a vector of length n + 1, other
than (0 : 0 : 0 : ... : 0). Two sets of coordinates that are proportional denote
the same point of the projective space. Any point of projective space which
can be represented as (x1 : x2 : ... : xn : 0) is called a point at infinity. The
part of a projective space KPn not “at infinity,” i.e., the set of points of the
projective space which can be represented as (x1 : x2 : ... : xn : 1), is an
n-dimensional affine space An.

The notation RPn denotes the real projective space of dimension n, i.e.,
the space of one-dimensional vector subspaces of R

n+1. The notation CPn

denotes the complex projective space of complex dimension n. The projective
space RPn carries a natural structure of a compact smooth n-dimensional
manifold. It can be viewed as the space of lines through the zero element 0 of
R

n+1 (i.e., as a ray space). It can be viewed also as the set R
n, considered as

an affine space, together with its points at infinity. Also it can be seen as the
set of points of an n-dimensional sphere in R

n+1 with identified diametrically-
opposite points.

The projective points, projective straight lines, projective planes, . . . ,
projective hyperplanes of KPn are one-dimensional, two-dimensional, three-
dimensional, . . . , n-dimensional subspaces of V , respectively. Any two
projective straight lines in a projective plane have one and only one common
point. A projective transformation (or collineation, projectivity) is a bijection
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of a projective space onto itself, preserving collinearity (the property of
points to be on one line) in both directions. Any projective transformation is
a composition of a pair of perspective projections. Projective transformations
do not preserve sizes or angles but do preserve type (that is, points remain
points, and lines remain lines), incidence (that is, whether a point lies on a
line), and cross-ratio.

Here, given four collinear points x, y, z, t ∈ FPn, their cross-ratio is defined
by (x, y, z, t) = (x−z)(y−t)

(y−z)(x−t) , where x−z
x−t denotes the ratio f(x)−f(z)

f(x)−f(t) for some
affine bijection f from the straight line lx,y through the points x and y onto
K. Given four projective straight lines lx, ly, lz, lt, containing points x, y, z, t,
respectively, and passing through a given point, their cross-ratio, defined by
(lx, ly, lz, lt) = sin(lx,lz) sin(ly,lt)

sin(ly,lz) sin(lx,lt)
, coincides with (x, y, z, t). The cross-ratio of

four complex numbers x, y, z, t is given by (x, y, z, t) = (x−z)(y−t)
(y−z)(x−t) . It is real

if and only if the four numbers are either collinear or concyclic.

• Projective metric
Given a convex subset D of a projective space RPn, the projective met-
ric d is a metric on D such that shortest paths with respect to this metric
are parts of or entire projective straight lines. It is assumed that the fol-
lowing conditions hold:

1. D does not belong to a hyperplane.
2. For any three non-collinear points x, y, z ∈ D, the triangle inequality

holds in the strict sense: d(x, y) < d(x, z) + d(z, y).
3. If x, y are different points in D, then the intersection of the straight

line lx,y through x and y with D is either all of lx,y, and forms a met-
ric great circle, or is obtained from lx,y by discarding some segment
(which can be reduced to a point), and forms a metric straight line.

The metric space (D, d) is called a projective metric space (cf. pro-
jectively flat space). The problem of determining all projective metrics
constitutes the fourth problem of Hilbert; it has been solved only for dimen-
sion n = 2. In fact, given a smooth measure on the space of hyperplanes
in RPn, define the distance between any two points x, y ∈ RPn as one-
half the measure of all hyperplanes intersecting the line segment joining x
and y. The obtained metric is projective; it is the Busemann’s construction
of projective metrics. For n = 2, Ambartzumian [Amba76] proved that all
projective metrics can be obtained from the Busemann’s construction.

In a projective metric space there cannot simultaneously be both types
of straight lines: they are either all metric straight lines, or they are all met-
ric great circles of the same length (Hamel’s theorem). Spaces of the first
kind are called open. They coincide with subspaces of an affine space; the
geometry of open projective metric spaces is a Hilbert Geometry. Hyper-
bolic Geometry is a Hilbert Geometry in which there exist reflections at all
straight lines. Thus, the set D has Hyperbolic Geometry if and only if it is
the interior of an ellipsoid. The geometry of open projective metric spaces
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whose subsets coincide with all of affine space, is a Minkowski Geometry.
Euclidean Geometry is a Hilbert Geometry and a Minkowski Geometry,
simultaneously. Spaces of the second kind are called closed; they coincide
with the whole of RPn. Elliptic Geometry is the geometry of a projective
metric space of the second kind.

• Strip projective metric
The strip projective metric [BuKe53] is a projective metric on the
strip St = {x ∈ R

2 : −π/2 < x2 < π/2} defined by

√
(x1 − y1)2 + (x2 − y2)2 + | tan x2 − tan y2|.

Note, that St with the ordinary Euclidean metric
√

(x1 − y1)2 + (x2 − y2)2
is not a projective metric space.

• Half-plane projective metric
The half-plane projective metric [BuKe53] is a projective metric on
R

2
+ = {x ∈ R

2 : x2 > 0} defined by

√
(x1 − y1)2 + (x2 − y2)2 +

∣
∣
∣
∣

1
x2
− 1

y2

∣
∣
∣
∣ .

• Hilbert projective metric
Given a set H, the Hilbert projective metric h is a complete pro-
jective metric on H. It means that H contains, together with two
arbitrary distinct points x and y, also the points z and t for which
h(x, z)+h(z, y) = h(x, y), h(x, y)+h(y, t) = h(x, t), and that H is homeo-
morphic to a convex set in an n-dimensional affine space An, the geodesics
in H being mapped to straight lines of An. The metric space (H,h) is called
the Hilbert projective space, and the geometry of a Hilbert projective space
is called Hilbert Geometry.

Formally, let D be a non-empty convex open set in An with the bound-
ary ∂D not containing two proper coplanar but non-collinear segments
(ordinarily the boundary of D is a strictly convex closed curve, and D
is its interior). Let x, y ∈ D be located on a straight line which intersects
∂D at z and t, z is on the side of y, and t is on the side of x. Then the
Hilbert metric h on D is defined by

r

2
ln(x, y, z, t),

where (x, y, z, t) is the cross-ratio of x, y, z, t, and r is a fixed positive
constant.

The metric space (D,h) is a straight G-space. If D is an ellipsoid,
then h is the hyperbolic metric, and defines Hyperbolic Geometry on D.
On the unit disk Δ = {z ∈ C : |z| < 1} the metric h coincides with



6.2 Projective Geometry 113

the Cayley–Klein–Hilbert metric. If n = 1, the metric h makes D
isometric to the Euclidean line.

If ∂D contains coplanar but non-collinear segments, a projective metric
on D can be given by h(x, y) + d(x, y), where d is any Minkowskian
metric (usually, the Euclidean metric).

• Minkowskian metric
The Minkowskian metric (or Minkowski–Hölder distance) is the
norm metric of a finite-dimensional real Banach space.

Formally, let R
n be an n-dimensional real vector space, let K be a

symmetric convex body in R
n, i.e., an open neighborhood of the origin

which is bounded, convex, and symmetric (x ∈ K if and only if −x ∈ K).
Then the Minkowski functional ||.||K : R

n → [0,∞) defined by

||x||K = inf{α > 0 :
x

α
∈ ∂K}

is a norm on R
n, and the Minkowskian metric m on R

n is defined by

||x− y||K .

The metric space (Rn,m) is called Minkowskian space. It can be considered
as an n-dimensional affine space An with a metric m in which the role of
the unit ball is played by a given centrally-symmetric convex body. The
geometry of a Minkowskian space is called Minkowski Geometry. For a
strictly convex symmetric body the Minkowskian metric is a projective
metric, and (Rn,m) is a G-straight space. A Minkowski Geometry is
Euclidean if and only if its unit sphere is an ellipsoid.

The Minkowskian metric m is proportional to the Euclidean metric dE

on every given line l, i.e., m(x, y) = φ(l)dE(x, y). Thus, the Minkowskian
metric can be considered as a metric which is defined in the whole affine
space An and has the property that the affine ratio ac

ab of any three collinear
points a, b, c (cf. Sect. 6.3) is equal to their distance ratio m(a,c)

m(a,b) .
• Busemann metric

The Busemann metric [Buse55] is a metric on the real n-dimensional
projective space RPn defined by

min

{
n+1∑

i=1

∣
∣
∣
∣

xi

||x|| −
yi

||y||

∣
∣
∣
∣ ,

n+1∑

i=1

∣
∣
∣
∣

xi

||x|| +
yi

||y||

∣
∣
∣
∣

}

for any x = (x1 : ... : xn+1), y = (y1 : ... : yn+1) ∈ RPn, where ||x|| =√∑n+1
i=1 x2

1 .
• Flag metric

Given an n-dimensional projective space FPn, the flag metric d is a metric
on FPn defined by a flag, i.e., an absolute consisting of a collection of
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m-planes αm, m = 0, . . . , n − 1, with αi−1 belonging to αi for all i ∈
{1, . . . , n − 1}. The metric space (FPn, d) is abbreviated by Fn and is
called a flag space.

If one chooses an affine coordinate system (xi)i in a space Fn, so that
the vectors of the lines passing through the (n − m − 1)-plane αn−m−1

are defined by the condition x1 = . . . xm = 0, then the flag metric d(x, y)
between the points x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined by

d(x, y) = |x1 − y1|, if x1 �= y1, d(x, y) = |x2 − y2|, if x1 = y1, x2 �= y2, . . .

. . . , d(x, y) = |xk − yk|, if x1 = y1, . . . , xk−1 = yk−1, xk �= yk, . . . .

• Projective determination of a metric
The projective determination of a metric is an introduction, in sub-
sets of a projective space, of a metric such that these subsets become
isomorphic to a Euclidean, hyperbolic, or elliptic space.

To obtain a Euclidean determination of a metric in RPn, one should
distinguish in this space an (n − 1)-dimensional hyperplane π, called the
hyperplane at infinity, and define E

n as the subset of the projective space
obtained by removing from it this hyperplane π. In terms of homogeneous
coordinates, π consists of all points (x1 : ... : xn : 0), and E

n consists of
all points (x1 : ... : xn : xn+1) with xn+1 �= 0. Hence, it can be written as
E

n = {x ∈ RPn : x = (x1 : ... : xn : 1)}. The Euclidean metric dE on E
n

is defined by
√
〈x− y, x− y〉,

where, for any x = (x1 : ... : xn : 1), y = (y1 : ... : yn : 1) ∈ E
n, one has

〈x, y〉 =
∑n

i=1 xiyi.
To obtain a hyperbolic determination of a metric in RPn, a set D of inte-

rior points of a real oval hypersurface Ω of order two in RPn is considered.
The hyperbolic metric dhyp on D is defined by

r

2
| ln(x, y, z, t)|,

where z and t are the points of intersection of the straight line lx,y through
the points x and y with Ω, (x, y, z, t) is the cross-ratio of the points x, y, z, t,
and r is a fixed positive constant. If, for any x = (x1 : ... : xn+1), y =
(y1 : ... : yn+1) ∈ RPn, the scalar product 〈x, y〉 = −x1y1 +

∑n+1
i=2 xiyi is

defined, the hyperbolic metric on the set D = {x ∈ RPn : 〈x, x〉 < 0} can
be written as

r arccosh
|〈x, y〉|

√
〈x, x〉〈y, y〉

,

where r is a fixed positive constant, and arccosh denotes the non-negative
values of the inverse hyperbolic cosine.
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To obtain an elliptic determination of a metric in RPn, one should
consider, for any x = (x1 : ... : xn+1), y = (y1 : ... : yn+1) ∈ RPn, the
inner product 〈x, y〉 =

∑n+1
i=1 xiyi. The elliptic metric dell on RPn is

defined now by

r arccos
|〈x, y〉|

√
〈x, x〉〈y, y〉

,

where r is a fixed positive constant, and arccos is the inverse cosine in [0, π].
In all the considered cases, some hypersurfaces of the second order

remain invariant under given motions, i.e., projective transformations
preserving a given metric. These hypersurfaces are called absolutes. In the
case of a Euclidean determination of a metric, the absolute is an imaginary
(n−2)-dimensional oval surface of order two, in fact, the degenerate abso-
lute x2

1 + · · ·+x2
n = 0, xn+1 = 0. In the case of a hyperbolic determination

of a metric, the absolute is a real (n− 1)-dimensional oval hypersurface of
order two, in the simplest case, the absolute −x2

1 + x2
2 + · · · + x2

n+1 = 0.
In the case of an elliptic determination of a metric, the absolute is an
imaginary (n− 1)-dimensional oval hypersurface of order two, in fact, the
absolute x2

1 + · · ·+ x2
n+1 = 0.

6.3 Affine Geometry

An n-dimensional affine space over a field F is a set An (the elements of which
are called points of the affine space) to which corresponds an n-dimensional
vector space V over F (called the space associated to An) such that, for any a ∈
An, A = a+V = {a+v : v ∈ V }. In the other words, if a = (a1, . . . , an)andb =
(b1, . . . , bn) ∈ An, then the vector

−→
ab = (b1 − a1, . . . , bn − an) belongs to V .

In an affine space, one can add a vector to a point to get another point, and
subtract points to get vectors, but one cannot add points, since there is no
origin. Given points a, b, c, d ∈ An such that c �= d, and the vectors

−→
ab and−→

cd are collinear, the scalar λ, defined by
−→
ab = λ

−→
cd, is called the affine ratio

of ab and cd, and is denoted by ab
cd .

An affine transformation (or affinity) is a bijection of An onto itself which
preserves collinearity (i.e., all points lying on a line initially, still lie on a
line after transformation) and ratios of distances (for example, the midpoint
of a line segment remains the midpoint after transformation). In this sense,
affine indicates a special class of projective transformations that do not move
any objects from the affine space to the plane at infinity or conversely. Any
affine transformation is a composition of rotations, translations, dilations, and
shears. The set of all affine transformations of An forms a group Aff(An),
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called the general affine group of An. Each element f ∈ Aff(A) can be given
by a formula f(a) = b, bi =

∑n
j=1 pijaj + cj , where ((pij)) is an invertible

matrix.
The subgroup of Aff(An), consisting of affine transformations with

det((pij)) = 1, is called the equi-affine group of An. An equi-affine space is
an affine space with the equi-affine group of transformations. The funda-
mental invariants of an equi-affine space are volumes of parallelepipeds. In
an equi-affine plane A2, any two vectors v1, v2 have an invariant |v1 × v2|
(the modulus of their cross product) – the surface area of the parallelogram
constructed on v1 and v2. Given a non-rectilinear curve γ = γ(t), its affine
parameter (or equi-affine arc length) is an invariant parameter defined by
s =

∫ t

t0
|γ′ × γ

′′ |1/3dt. The invariant k = d2γ
ds2 × d3γ

ds3 is called the equi-affine
curvature of γ. Passing to the general affine group, two more invariants of
the curve are considered: the affine arc length σ =

∫
k1/2ds, and the affine

curvature k = 1
k3/2

dk
ds .

For An, n > 2, the affine parameter (or equi-affine arc length) of a curve
γ = γ(t) is defined by s =

∫ t

t0
|(γ′

, γ
′′
, . . . , γ(n))|

2
n(n+1) dt, where the invariant

(v1, . . . , vn) is the (oriented) volume spanned by the vectors v1, . . . , vn, which
is equal to the determinant of the n × n matrix whose i-th column is the
vector vi.

• Affine distance
Given an affine plane A2, a line element (a, la) of A2 consists of a point
a ∈ A2 together with a straight line la ⊂ A2 passing through a.

The affine distance is a distance on the set of all line elements of A2

defined by

2f1/3,

where, for a given line elements (a, la) and (b, lb), f is the surface area of
the triangle abc if c is the point of intersection of the straight lines la and
lb. The affine distance between (a, la) and (b, lb) can be interpreted as the
affine length of the arc ab of a parabola such that la and lb are tangent to
the parabola at a and b, respectively.

• Affine pseudo-distance
Let A2 be an equi-affine plane, and let γ = γ(s) be a curve in A2 defined as
a function of the affine parameter s. The affine pseudo-distance dpaff

for A2 is defined by

dpaff (a, b) =
∣
∣
∣
∣
−→
ab × dγ

ds

∣
∣
∣
∣ ,

i.e., is equal to the surface area of the parallelogram constructed on the
vectors

−→
ab and dγ

ds , where b is an arbitrary point in A2, a is a point on γ,
and dγ

ds is the tangent vector to the curve γ at the point a.
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The affine pseudo-distance for an equi-affine space A3 can be defined
in a similar manner as ∣

∣
∣
∣(
−→
ab,

dγ

ds
,
d2γ

ds2
)
∣
∣
∣
∣ ,

where γ = γ(s) is a curve in A3, defined as a function of the affine param-
eter s, b ∈ A3, a is a point of γ, and the vectors dγ

ds , d2γ
ds2 are obtained at

the point a.
For An, n > 3, we have dpaff (a, b) = |(−→ab, dγ

ds , . . . , dn−1γ
dsn−1 )|. For an ar-

bitrary parametrization γ = γ(t), one obtains dpaff (a, b) = |(−→ab, γ
′
, . . . ,

γ(n−1))||(γ′
, . . . , γ(n−1))|

1−n
1+n .

• Affine metric
The affine metric is a metric on a non-developable surface r = r(u1, u2)
in an equi-affine space A3, given by its metric tensor ((gij)):

gij =
aij

|det((aij))|1/4
,

where aij = (∂1r, ∂2r, ∂ijr), i, j ∈ {1, 2}.

6.4 Non-Euclidean Geometry

The term non-Euclidean Geometry describes both Hyperbolic Geometry (or
Lobachevsky Geometry, Lobachevsky–Bolyai–Gauss Geometry) and Elliptic
Geometry (sometimes called also Riemannian Geometry) which are con-
trasted with Euclidean Geometry (or Parabolic Geometry). The essential
difference between Euclidean and non-Euclidean Geometry is the nature of
parallel lines. In Euclidean Geometry, if we start with a line l and a point a,
which is not on l, then there is only one line through a that is parallel to l. In
Hyperbolic Geometry there are infinitely many lines through a parallel to l.
In Elliptic Geometry, parallel lines do not exist.

The Spherical Geometry is also “non-Euclidean,” but it fails the axiom
that any two points determine exactly one line.

• Spherical metric
Let Sn(0, r) = {x ∈ R

n+1 :
∑n+1

i=1 x2
i = r2} be the sphere in R

n+1 with
the center 0 and the radius r > 0.

The spherical metric (or great circle metric) dsph is a metric on
Sn(0, r) defined by

r arccos

(
|
∑n+1

i=1 xiyi|
r2

)

,
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where arccos is the inverse cosine in [0, π]. It is the length of the great
circle arc, passing through x and y. In terms of the standard inner prod-
uct 〈x, y〉 =

∑n+1
i=1 xiyi on R

n+1, the spherical metric can be written as
r arccos |〈x,y〉|√

〈x,x〉〈y,y〉
.

The metric space (Sn(0, r), dsph) is called n-dimensional spherical space.
It is a space of curvature 1/r2, and r is the radius of curvature. It is a model
of n-dimensional Spherical Geometry. The great circles of the sphere are
its geodesics and all geodesics are closed and of the same length. (See, for
example, [Blum70].)

• Elliptic metric
Let RPn be the real n-dimensional projective space. The elliptic metric
dell is a metric on RPn defined by

r arccos
|〈x, y〉|

√
〈x, x〉〈y, y〉

,

where, for any x = (x1 : ... : xn+1) and y = (y1 : ... : yn+1) ∈ RPn, one
has 〈x, y〉 =

∑n+1
i=1 xiyi, r is a fixed positive constant, and arccos is the

inverse cosine in [0, π].
The metric space (RPn, dell) is called n-dimensional elliptic space. It is

a model of n-dimensional Elliptic Geometry. It is the space of curvature
1/r2, and r is the radius of curvature. As r → ∞, the metric formulas
of Elliptic Geometry yield formulas of Euclidean Geometry (or become
meaningless).

If RPn is viewed as the set En(0, r), obtained from the sphere Sn(0, r) =
{x ∈ R

n+1 :
∑n+1

i=1 x2
i = r2} in R

n+1 with center 0 and radius r by iden-
tifying diametrically-opposite points, then the elliptic metric on En(0, r)
can be written as dsph(x, y) if dsph(x, y) ≤ π

2 r, and as πr − dsph(x, y) if
dsph(x, y) > π

2 r, where dsph is the spherical metric on Sn(0, r). Thus,
no two points of En(0, r) have distance exceeding π

2 r. The elliptic space
(E2(0, r), dell) is called the Poincaré sphere.

If RPn is viewed as the set En of lines through the zero element 0 in
R

n+1, then the elliptic metric on En is defined as the angle between the
corresponding subspaces.

An n-dimensional elliptic space is a Riemannian space of constant pos-
itive curvature. It is the only such space which is topologically equivalent
to a projective space. (See, for example, [Blum70], [Buse55].)

• Hermitian elliptic metric
Let CPn be the n-dimensional complex projective space. The Hermitian
elliptic metric dH

ell (see, for example, [Buse55]) is a metric on CPn defined
by

r arccos
|〈x, y〉|

√
〈x, x〉〈y, y〉

,
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where, for any x = (x1 : ... : xn+1) and y = (y1 : ... : yn+1) ∈ CPn, one
has 〈x, y〉 =

∑n+1
i=1 xiyi, r is a fixed positive constant, and arccos is the

inverse cosine in [0, π].
The metric space (CPn, dH

ell) is called n-dimensional Hermitian elliptic
space (cf. Fubini–Study metric in Chap. 7).

• Elliptic plane metric
The elliptic plane metric is the elliptic metric on the elliptic plane
RP 2. If RP 2 is viewed as the Poincaré sphere (i.e., a sphere in R

3 with
identified diametrically-opposite points) of diameter 1 tangent to the ex-
tended complex plane C = C ∪ {∞} at the point z = 0, then, under the
stereographic projection from the “north pole” (0, 0, 1), C with identified
points z and − 1

z is a model of the elliptic plane, and the elliptic plane

metric dell on it is defined by its line element ds2 = |dz|2
(1+|z|2)2 .

• Pseudo-elliptic distance
The pseudo-elliptic distance (or elliptic pseudo-distance) dpell is a dis-
tance on the extended complex plane C = C∪{∞}, with identified points
z and − 1

z defined by
∣
∣
∣
∣

z − u

1 + zu

∣
∣
∣
∣ .

In fact, dpell(z, u) = tan dell(z, u), where dell is the elliptic plane metric.
• Hyperbolic metric

Let RPn be the n-dimensional real projective space. Let, for any x =
(x1 : ... : xn+1) and y = (y1 : ... : yn+1) ∈ RPn, the scalar product
〈x, y〉 = −x1y1 +

∑n+1
i=2 xiyi be considered.

The hyperbolic metric dhyp is a metric on the set Hn = {x ∈ RPn :
〈x, x〉 < 0} defined by

rarccosh
|〈x, y〉|

√
〈x, x〉〈y, y〉

,

where r is a fixed positive constant, and arccosh denotes the non-negative
values of the inverse hyperbolic cosine. In this construction, the points of
Hn can be viewed as the one-spaces of the pseudo-Euclidean space R

n,1

inside the cone C = {x ∈ R
n,1 : 〈x, x〉 = 0}.

The metric space (Hn, dhyp) is called n-dimensional hyperbolic space.
It is a model of n-dimensional Hyperbolic Geometry. It is the space of
curvature −1/r2, and r is the radius of curvature. Replacement of r by
ir transforms all metric formulas of Hyperbolic Geometry into the corre-
sponding formulas of Elliptic Geometry. As r → ∞, both systems yield
formulas of Euclidean Geometry (or become meaningless).
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If Hn is viewed as the set {x ∈ R
n :

∑n
i=1 x2

i < K}, where K > 1 is an
arbitrary fixed constant, the hyperbolic metric can be written as

r

2
ln

1 +
√

1− γ(x, y)
1−

√
1− γ(x, y)

,

where γ(x, y) = (K−
∑n

i=1 x2
i )(K−

∑n
i=1 y2

i )

(K−
∑n

i=1 xiyi)2
, and r is a positive number with

tanh 1
r = 1√

K
.

If Hn is viewed as a submanifold of the (n + 1)-dimensional pseudo-
Euclidean space R

n,1 with the scalar product 〈x, y〉 = −x1y1 +
∑n+1

i=2 xiyi

(in fact, as the top sheet {x ∈ R
n,1 : 〈x, x〉 = −1, x1 > 0} of the two-

sheeted hyperboloid of revolution), then the hyperbolic metric on Hn is
induced from the pseudo-Riemannian metric on Rn,1 (cf. Lorentz
metric in Chap. 26).

An n-dimensional hyperbolic space is a Riemannian space of constant
negative curvature. It is the only such space which is complete and topo-
logically equivalent to an Euclidean space. (See, for example, [Blum70],
[Buse55].)

• Hermitian hyperbolic metric
Let CPn be the n-dimensional complex projective space. Let, for any x =
(x1 : ... : xn+1) and y = (y1 : ... : yn+1) ∈ CPn, the scalar product
〈x, y〉 = −x1y1 +

∑n+1
i=2 xiyi be considered.

The Hermitian hyperbolic metric dH
hyp (see, for example, [Buse55])

is a metric on the set CHn = {x ∈ CPn : 〈x, x〉 < 0} defined by

rarccosh
|〈x, y〉|

√
〈x, x〉〈y, y〉

,

where r is a fixed positive constant, and arccosh denotes the non-negative
values of the inverse hyperbolic cosine.

The metric space (CHn, dH
hyp) is called n-dimensional Hermitian hyper-

bolic space.
• Poincaré metric

The Poincaré metric dP is the hyperbolic metric for the Poincaré disk
model (or conformal disk model) of Hyperbolic Geometry. In this model
every point of the unit disk Δ = {z ∈ C : |z| < 1} is called a hyperbolic
point, the disk Δ itself is called the hyperbolic plane, circular arcs (and
diameters) in Δ which are orthogonal to the absolute Ω = {z ∈ C : |z| = 1}
are called hyperbolic straight lines. Every point of Ω is called an ideal point.
The angular measurements in this model are the same as in Hyperbolic
Geometry. The Poincaré metric on Δ is defined by its line element

ds2 =
|dz|2

(1− |z|2)2 =
dz2

1 + dz2
2

(1− z2
1 − z2

2)2
.
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The distance between two points z and u of Δ can be written as

1
2

ln
|1− zu|+ |z − u|
|1− zu| − |z − u| = arctanh

|z − u|
|1− zu| .

In terms of cross-ratio, it is equal to

1
2

ln(z, u, z∗, u∗) =
1
2

ln
(z∗ − z)(u∗ − u)
(z∗ − u)(u∗ − z)

,

where z∗ and u∗ are the points of intersection of the hyperbolic straight
line passing through z and u with Ω, z∗ on the side of u, and u∗ on the
side of z.

In the Poincaré half-plane model of Hyperbolic Geometry the hyperbolic
plane is the upper half-plane H2 = {z ∈ C : z2 > 0}, and the hyperbolic
lines are semi-circles and half-lines which are orthogonal to the real axis.
The absolute (i.e., the set of ideal points) is the real axis together with the
point at infinity. The angular measurements in the model are the same as
in Hyperbolic Geometry.

The line element of the Poincaré metric on H2 is given by

ds2 =
|dz|2
(�z)2

=
dz2

1 + dz2
2

z2
2

.

The distance between two points z, u can be written as

1
2

ln
|z − u|+ |z − u|
|z − u| − |z − u| = arctanh

|z − u|
|z − u| .

In terms of cross-ratio, it is equal to

1
2

ln(z, u, z∗, u∗) =
1
2

ln
(z∗ − z)(u∗ − u)
(z∗ − u)(u∗ − z)

,

where z∗ is the ideal point of the half-line emanating from z and passing
through u, and u∗ is the ideal point of the half-line emanating from u and
passing through z.

In general, the hyperbolic metric in any domain D ⊂ C with at least
three boundary points is defined as the preimage of the Poincaré metric in
Δ under a conformal mapping f : D → Δ. Its line element has the form

ds2 =
|f ′(z)|2|dz|2
(1− |f(z)|2)2 .
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The distance between two points z and u in D can be written as

1
2

ln
|1− f(z)f(u)|+ |f(z)− f(u)|
|1− f(z)f(u)| − |f(z)− f(u)|

.

• Pseudo-hyperbolic distance
The pseudo-hyperbolic distance (or Gleason distance, hyperbolic
pseudo-distance) dphyp is a metric on the unit disk Δ = {z ∈ C : |z| < 1},
defined by ∣

∣
∣
∣

z − u

1− zu

∣
∣
∣
∣ .

In fact, dphyp(z, u) = tanh dP (z, u), where dP is the Poincaré metric
on Δ.

• Cayley–Klein–Hilbert metric
The Cayley–Klein–Hilbert metric dCKH is the hyperbolic metric
for the Klein model (or projective disk model, Beltrami-Klein model) for
Hyperbolic Geometry. In this model the hyperbolic plane is realized as the
unit disk Δ = {z ∈ C : |z| < 1}, and the hyperbolic straight lines are
realized as the chords of Δ. Every point of the absolute Ω = {z ∈ C :
|z| = 1} is called an ideal point. The angular measurements in this model
are distorted. The Cayley–Klein–Hilbert metric on Δ is given by its
metric tensor ((gij)), i, j = 1, 2:

g11 =
r2(1− z2

2)
(1− z2

1 − z2
2)2

, g12 =
r2z1z2

(1− z2
1 − z2

2)2
, g22 =

r2(1− z2
1)

(1− z2
1 − z2

2)2
,

where r is an arbitrary positive constant. The distance between points z
and u in Δ can be written as

r arccosh

(
1− z1u1 − z2u2√

1− z2
1 − z2

2

√
1− u2

1 − u2
2

)

,

where arccosh denotes the non-negative values of the inverse hyperbolic
cosine.

• Weierstrass metric
Given a real n-dimensional inner product space (Rn, 〈, 〉), n ≥ 2, , the
Weierstrass metric dW is a metric on R

n defined by

arccosh(
√

1 + 〈x, x〉
√

1 + 〈y, y〉 − 〈x, y〉),

where arccosh denotes the non-negative values of the inverse hyperbolic
cosine.
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Here, (x,
√

1 + 〈x, x〉) ∈ R
n ⊕ R are the Weierstrass coordinates of x ∈

R
n, and the metric space (Rn, dW ) can be identified with the Weierstrass

model of Hyperbolic Geometry.
The Cayley–Klein–Hilbert metric dCKH(x, y) = arccosh

1−〈x,y〉√
1−〈x,x〉

√
1−〈y,y〉

on the open ball Bn = {x ∈ R
n : 〈x, x〉 < 1} can be

obtained from dW by dGKH(x, y) = dW (μ(x), μ(y)), where μ : R
n → Bn

is the Weierstrass mapping: μ(x) = x√
1−〈x,x〉

.

• Harnack metric
Given a domain D ⊂ R

n, n ≥ 2, the Harnack metric is a metric on
D defined by

sup
f
| log

f(x)
f(y)

|,

where the supremum is taken over all positive functions which are har-
monic on D.

• Quasi-hyperbolic metric
Given a domain D ⊂ R

n, n ≥ 2, the quasi-hyperbolic metric is a metric
on D defined by

inf
γ∈Γ

∫

γ

|dz|
ρ(z)

,

where the infimum is taken over the set Γ of all rectifiable curves connecting
x and y in D, ρ(z) = infu∈∂D ||z − u||2 is the distance between z and the
boundary ∂D of D, and ||.||2 is the Euclidean norm on R

n.
This metric is Gromov hyperbolic if the domain D is uniform, i.e.,

there exist constants C,C ′ such that each pair of points x, y ∈ D can
be joined by a rectifiable curve γ = γ(x, y) ∈ D of length l(γ) at most
C|x− y|, and min{l(γ(x, z)), l(γ(z, y))} ≤ C ′d(z, ∂D) holds for all z ∈ γ.

For n = 2, one can define the hyperbolic metric on D by

inf
γ∈Γ

∫

γ

2|f ′(z)|
1− |f(z)|2 |dz|,

where f : D → Δ is any conformal mapping of D onto the unit disk
Δ = {z ∈ C : |z| < 1}. For n ≥ 3, this metric is defined only for the
half-hyperplane Hn and for the open unit ball Bn as the infimum over all
γ ∈ Γ of the integrals

∫
γ

|dz|
zn

and
∫

γ
2|dz|

1−||z||22
, respectively.

The quasi-hyperbolic metric is the inner metric (cf. Chap. 4) of the
Vuorinen metric.

• Apollonian metric
Let D ⊂ R

n, D �= R
n, be a domain such that the complement of D is not

contained in a hyperplane or a sphere.
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The Apollonian metric (or Barbilian metric, [Barb35]) is a metric
on D defined by the cross-ratio in the following way:

sup
a,b∈∂D

ln
||a− x||2||b− y||2
||a− y||2||b− x||2

,

where ∂D is the boundary of D, and ||.||2 is the Euclidean norm on R
n.

This metric is Gromov hyperbolic.
• Half-Apollonian metric

Given a domain D ⊂ R
n, D �= R

n, the half-Apollonian metric ηD

(Ha̋sto and Lindén 2004) is a metric on D, defined by

sup
a∈∂D

∣
∣
∣
∣ln
||a− y||2
||a− x||2

∣
∣
∣
∣ ,

where ∂D is the boundary of D, and ||.||2 is the Euclidean norm on R
n.

This metric is Gromov hyperbolic only if the domain is R
n\{x}, i.e.,

D has only one boundary point.
• Gehring metric

Given a domain D ⊂ R
n, D �= R

n, the Gehring metric j̃D (Gehring
1982) is a metric on D, defined by

1
2

ln
((

1 +
||x− y||2

ρ(x)

)(

1 +
||x− y||2

ρ(y)

))

,

where ||.||2 is the Euclidean norm on R
n, and ρ(x) = infu∈∂D ||x− u||2 is

the distance between x and the boundary ∂D of D.
This metric is Gromov hyperbolic.

• Vuorinen metric
Given a domain D ⊂ R

n, D �= R
n, the Vuorinen metric jD (Vuorinen

1988) is a metric on D defined by

ln
(

1 +
||x− y||2

min{ρ(x), ρ(y)}

)

,

where ||.||2 is the Euclidean norm on R
n, and ρ(x) = infu∈∂D ||x− u||2 is

the distance between x and the boundary ∂D of D.
This metric is Gromov hyperbolic only if the domain is R

n\{x}, i.e.,
D has only one boundary point.

• Ferrand metric
Given a domain D ⊂ R

n, D �= R
n, the Ferrand metric σD (Ferrand

1987) is a metric on D defined by

inf
γ∈Γ

∫

γ

sup
a,b∈∂D

||a− b||2
||z − a||2||z − b||2

|dz|,
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where the infimum is taken over the set Γ of all rectifiable curves connecting
x and y in D, ∂D is the boundary of D, and ||.||2 is the Euclidean norm
on R

n.
This metric is Gromov hyperbolic if D is uniform, i.e., there ex-

ist constants C,C ′ such that each pair of points x, y ∈ D can be
joined by a rectifiable curve γ ∈D of length l(γ) at most C|x − y|, and
min{l(γ(x, z)), l(γ(z, y))} ≤ C ′d(z, ∂D) holds for all z ∈ γ.

The Ferrand metric is the inner metric (cf. Chap. 4) of the Seitten-
ranta metric.

• Seittenranta metric
Given a domain D ⊂ R

n, D �= R
n, the Siettenranta metric δD (Siet-

tenranta 1999) is a metric on D defined by

sup
a,b∈∂D

ln
(

1 +
||a− x||2||b− y||2
||a− b||2||x− y||2

)

,

where ∂D is the boundary of D, and ||.||2 is the Euclidean norm on R
n.

This metric is Gromov hyperbolic.
• Modulus metric

Let D ⊂ R
n, D �= R

n, be a domain, whose boundary ∂D has positive
capacity.

The modulus metric (Gal 1960) μD (Gál 1960) is a metric on D,
defined by

inf
Cxy

M(Δ(Cxy, ∂D,D)),

where M(Γ) is the conformal modulus of the curve family Γ, and Cxy is
a continuum such that for some γ : [0, 1] → D we have the following
properties: Cxy = γ([0, 1]), γ(0) = x, and γ(1) = y (cf. extremal metric
in Chap. 8).

This metric is Gromov hyperbolic if D is the open ball Bn = {x ∈
R

n : 〈x, x〉 < 1} or a simply connected domain in R
2.

• Ferrand second metric
Let D ⊂ R

n, D �= R
n, be a domain such that |Rn\{D}| ≥ 2. The Ferrand

second metric λ∗
D (Ferrand 1997) is a metric on D defined by

(

inf
Cx,Cy

M(Δ(Cx, Cy,D)
)

)
1

1−n ,

where M(Γ) is the conformal modulus of the curve family Γ, and Cz,
z = x, y, is a continuum such that, for some γz : [0, 1] → D, Cz = γ([0, 1)),
z ∈ |γz|, and γz(t) → ∂D as t → 1 (cf. extremal metric in Chap. 8).

This metric is Gromov hyperbolic if D is the open ball Bn = {x ∈
R

n : 〈x, x〉 < 1} or a simply connected domain in R
2.
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• Parabolic distance
The parabolic distance is a metric on R

n+1, considered as R
n×R defined

by
√

(x1 − y1)2 + · · ·+ (xn − yn)2 + |tx − ty|1/m,m ∈ N,

for any x = (x1, . . . , xn, tx), y = (y1, . . . , yn, ty) ∈ R
n × R.

The space R
n × R can be interpreted as multidimensional space–time.

Usually, the value m = 2 is applied. There exist some variants of the
parabolic distance, for example, the parabolic distance

sup{|x1 − y1|, |x2 − y2|1/2}

on R
2 (cf. also Rickman’s rug metric in Chap. 19), or the half-space

parabolic distance on R
3
+ = {x ∈ R

3 : x1 ≥ 0} defined by

|x1 − y1|+ |x2 − y2|√
x1 +

√
x2 +

√
|x2 − y2|

+
√
|x3 − y3|.



Chapter 7
Riemannian and Hermitian Metrics

Riemannian Geometry is a multidimensional generalization of the intrinsic ge-
ometry of two-dimensional surfaces in the Euclidean space E

3. It studies real
smooth manifolds equipped with Riemannian metrics, i.e., collections of
positive-definite symmetric bilinear forms ((gij)) on their tangent spaces
which vary smoothly from point to point. The geometry of such (Riemannian)
manifolds is based on the line element ds2 =

∑
i,j gijdxidxj . This gives, in

particular, local notions of angle, length of curve, and volume. From these
notions some other global quantities can be derived, by integrating local
contributions. Thus, the value ds is interpreted as the length of the vector
(dx1, . . . , dxn), and it is called the infinitesimal distance. The arc length of
a curve γ is expressed by

∫
γ

√∑
i,j gijdxidxj , and then the intrinsic met-

ric on a Riemannian manifold is defined as the infimum of lengths of curves
joining two given points of the manifold.

Therefore, a Riemannian metric is not an ordinary metric, but it induces an
ordinary metric, in fact, the intrinsic metric, sometimes called Riemannian
distance, on any connected Riemannian manifold. A Riemannian metric is
an infinitesimal form of the corresponding Riemannian distance.

As particular special cases of Riemannian Geometry, there occur Euclidean
Geometry as well as the two standard types, Elliptic Geometry and Hyperbolic
Geometry, of Non-Euclidean Geometry.

If the bilinear forms ((gij)) are non-degenerate but indefinite, one obtains
Pseudo-Riemannian Geometry. In the case of dimension four (and signa-
ture (1, 3)) it is the main object of the General Theory of Relativity. If
ds = F (x1, . . . , xn, dx1, . . . , dxn), where F is a real positive-definite convex
function which can not be given as the square root of a symmetric bilinear
form (as in the Riemannian case), one obtains the Finsler Geometry gener-
alizing Riemannian Geometry.

Hermitian Geometry studies complex manifolds equipped with Hermitian
metrics, i.e., collections of positive-definite symmetric sesquilinear forms (or
3
2 -linear forms) since they are linear in one argument and antilinear in the
other) on their tangent spaces, which vary smoothly from point to point. It
is a complex analog of Riemannian Geometry. A special class of Hermitian

M.M. Deza and E. Deza, Encyclopedia of Distances, 127
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metrics form Kähler metrics which have a closed fundamental form w.
A generalization of Hermitian metrics give complex Finsler metrics which
can not be written in terms of a bilinear symmetric positive-definite sesqulin-
ear form.

7.1 Riemannian metrics and generalizations

A real n-dimensional manifold Mn with boundary is a Hausdorff space in
which every point has an open neighborhood homeomorphic to either an open
subset of E

n, or an open subset of the closed half of E
n. The set of points

which have an open neighborhood homeomorphic to E
n is called the interior

(of the manifold); it is always non-empty. The complement of the interior is
called the boundary (of the manifold); it is an (n− 1)-dimensional manifold.
If the boundary of Mn is empty, one obtains a real n-dimensional manifold
without boundary.

A manifold without boundary is called closed if it is compact, and open
otherwise.

An open set of Mn together with a homeomorphism between the open
set and an open set of E

n is called a coordinate chart. A collection of charts
which cover Mn is called an atlas on Mn. The homeomorphisms of two over-
lapping charts provide a transition mapping from a subset of E

n to some
other subset of E

n. If all these mappings are continuously differentiable, then
Mn is called a differentiable manifold. If all the connecting mappings are k
times continuously differentiable, then the manifold is called a Ck manifold;
if they are infinitely often differentiable, then the manifold is called a smooth
manifold (or C∞ manifold).

An atlas of a manifold is called oriented if the coordinate transformations
between charts are all positive, i.e., the Jacobians of the coordinate transfor-
mations between any two charts are positive at every point. An orientable
manifold is a manifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space. In particu-
lar, they are locally path-connected, locally compact, and locally metrizable.
Every smooth Riemannian manifold embedds isometrically (Nash 1956) in
some finite-dimensional Euclidean space.

Associated with every point on a differentiable manifold is a tangent space
and its dual, a cotangent space. Formally, let Mn be a Ck manifold, k ≥ 1,
and p a point of Mn. Fix a chart ϕ : U → E

n, where U is an open subset
of Mn containing p. Suppose that two curves γ1 : (−1, 1) → Mn and γ2 :
(−1, 1) → Mn with γ1(0) = γ2(0) = p are given such that ϕ ·γ1 and ϕ ·γ2 are
both differentiable at 0. Then γ1 and γ2 are called tangent at 0 if the ordinary
derivatives of ϕ · γ1 and ϕ · γ2 coincide at 0: (ϕ · γ1)

′
(0) = (ϕ · γ2)

′
(0). If the

functions ϕ ·γi : (−1, 1) → E
n, i = 1, 2, are given by n real-valued component

functions (ϕ · γi)1(t), . . . , (ϕ · γi)n(t), the condition above means that their
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Jacobians
(

d(ϕ·γi)1(t)
dt , . . . , d(ϕ·γi)n(t)

dt

)
coincide at 0. This is an equivalence

relation, and the equivalence class γ
′
(0) of the curve γ is called a tangent

vector of Mn at p. The tangent space Tp(Mn) of Mn at p is defined as the
set of all tangent vectors at p. The function (dϕ)p : Tp(Mn) → E

n defined by
(dϕ)p(γ

′
(0)) = (ϕ · γ)

′
(0), is bijective and can be used to transfer the vector

space operations from E
n over to Tp(Mn).

All the tangent spaces Tp(Mn), p ∈Mn, when “glued together,” form the
tangent bundle T (Mn) of Mn. Any element of T (Mn) is a pair (p, v), where
v ∈ Tp(Mn). If for an open neighborhood U of p the function ϕ : U → R

n is
a coordinate chart, then the preimage V of U in T (Mn) admits a mapping
ψ : V → R

n×R
n defined by ψ(p, v) = (ϕ(p), dϕ(p)). It defines the structure of

a smooth 2n-dimensional manifold on T (Mn). The cotangent bundle T ∗(Mn)
of Mn is obtained in similar manner using cotangent spaces T ∗

p (Mn), p ∈ Mn.
A vector field on a manifold Mn is a section of its tangent bundle T (Mn),

i.e., a smooth function f : Mn → T (Mn) which assigns to every point p ∈Mn

a vector v ∈ Tp(Mn).
A connection (or covariant derivative) is a way of specifying a derivative of

a vector field along another vector field on a manifold. Formally, the covariant
derivative ∇ of a vector u (defined at a point p ∈Mn) in the direction of the
vector v (defined at the same point p) is a rule that defines a third vector at
p, called ∇vu, which has the properties of a derivative. A Riemannian metric
uniquely defines a special covariant derivative called the Levi–Civita connec-
tion. It is the torsion-free connection ∇ of the tangent bundle, preserving the
given Riemannian metric.

The Riemann curvature tensor R is the standard way to express the cur-
vature of Riemannian manifolds. The Riemann curvature tensor can be given
in terms of the Levi–Civita connection ∇ by the following formula:

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

where R(u, v) is a linear transformation of the tangent space of the manifold
Mn; it is linear in each argument. If u = ∂

∂xi
and v = ∂

∂xj
are coordi-

nate vector fields, then [u, v] = 0, and the formula simplifies to R(u, v)w =
∇u∇vw − ∇v∇uw, i.e., the curvature tensor measures anti-commutativity
of the covariant derivative. The linear transformation w → R(u, v)w is also
called the curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the
trace of the full curvature tensor R. It can be thought of as a Laplacian of
the Riemannian metric tensor in the case of Riemannian manifolds. Ricci
curvature is a linear operator on the tangent space at a point. Given an
orthonormal basis (ei)i in the tangent space Tp(Mn), we have

Ric(u) =
∑

i

R(u, ei)ei.
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The value of Ric(u) does not depend on the choice of an orthonormal ba-
sis. Starting with dimension four, the Ricci curvature does not describe the
curvature tensor completely.

The Ricci scalar (or scalar curvature) Sc of a Riemannian manifold Mn

is the full trace of the curvature tensor; given an orthonormal basis (ei)i at
p ∈ Mn, we have

Sc =
∑

i,j

〈R(ei, ej)ej , ei〉 =
∑

i

〈Ric(ei), ei〉.

The sectional curvature K(σ) of a Riemannian manifold Mn is defined as
the Gauss curvature of an σ-section at a point p ∈ Mn. Here, given a 2-
plane σ in the tangent space Tp(Mn), a σ-section is a locally-defined piece of
surface which has the plane σ as a tangent plane at p, obtained from geodesics
which start at p in the directions of the image of σ under the exponential
mapping.

• Metric tensor
The metric tensor (or basic tensor, fundamental tensor) is a symmetric
tensor of rank 2, that is used to measure distances and angles in a real
n-dimensional differentiable manifold Mn. Once a local coordinate system
(xi)i is chosen, the metric tensor appears as a real symmetric n×n matrix
((gij)).

The assignment of a metric tensor on an n-dimensional differentiable
manifold Mn introduces a scalar product (i.e., symmetric bilinear, but in
general not positive-definite, form) 〈, 〉p on the tangent space Tp(Mn) at
any point p ∈Mn defined by

〈x, y〉p = gp(x, y) =
∑

i,j

gij(p)xiyj ,

where gij(p) is a value of the metric tensor at the point p ∈Mn, and x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Tp(Mn). The collection of all these scalar
products is called the metric g with the metric tensor ((gij)). The length
ds of the vector (dx1, . . . , dxn) is expressed by the quadratic differential
form

ds2 =
∑

i,j

gijdxidxj ,

which is called the line element (or first fundamental form) of the metric
g. The length of a curve γ is expressed by the formula

∫
γ

√∑
i,j gijdxidxj .

In general it may be real, purely imaginary, or zero (an isotropic curve).
The signature of a metric tensor is the pair (p, q) of positive (p) and

negative (q) eigenvalues of the matrix ((gij)). The signature is said to
be indefinite if both p and q are non-zero, and positive-definite if q = 0.
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A Riemannian metric is a metric g with a positive-definite signature (p, 0),
and a pseudo-Riemanian metric is a metric g with an indefinite signa-
ture (p, q).

• Non-degenerate metric
A non-degenerate metric is a metric g with the metric tensor ((gij)),
for which the metric discriminant det((gij)) �= 0. All Riemannian and
pseudo-Riemannian metrics are non-degenerate.

A degenerate metric is a metric g with the metric tensor ((gij))
for which the metric discriminant det((gij)) = 0 (cf. semi-Riemannian
metric and semi-pseudo-Riemannian metric). A manifold with a de-
generate metric is called an isotropic manifold.

• Diagonal metric
A diagonal metric is a metric g with a metric tensor ((gij)) which is zero
for i �= j. The Euclidean metric is a diagonal metric, as its metric tensor
has the form gii = 1, gij = 0 for i �= j.

• Riemannian metric
Consider a real n-dimensional differentiable manifold Mn in which each
tangent space is equipped with an inner product (i.e., a symmetric positive-
definite bilinear form) which varies smoothly from point to point.

A Riemannian metric on Mn is a collection of inner products 〈, 〉p on
the tangent spaces Tp(Mn), one for each p ∈ Mn.

Every inner product 〈, 〉p is completely defined by inner products
〈ei, ej〉p = gij(p) of elements e1, . . . , en of a standard basis in E

n, i.e., by
the real symmetric and positive-definite n× n matrix ((gij)) = ((gij(p))),
called a metric tensor. In fact, 〈x, y〉p =

∑
i,j gij(p)xiyj , where

x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Tp(Mn). The smooth function g
completely determines the Riemannian metric.

A Riemannian metric on Mn is not an ordinary metric on Mn. However,
for a connected manifold Mn, every Riemannian metric on Mn induces
an ordinary metric on Mn, in fact, the intrinsic metric of Mn; for any
points p, q ∈Mn the Riemannian distance between them is defined as

inf
γ

∫ 1

0

〈dγ

dt
,
dγ

dt
〉 1

2 dt = inf
γ

∫ 1

0

√
∑

i,j

gij
dxi

dt

dxj

dt
dt,

where the infimum is taken over all rectifiable curves γ : [0, 1] → Mn,
connecting p and q.

A Riemannian manifold (or Riemannian space) is a real n-dimensional
differentiable manifold Mn equipped with a Riemannian metric. The the-
ory of Riemannian spaces is called Riemannian Geometry. The simplest
examples of Riemannian spaces are Euclidean spaces, hyperbolic spaces,
and elliptic spaces. A Riemannian space is called complete if it is a com-
plete metric space.
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• Conformal metric
A conformal structure on a vector space V is a class of pairwise-homothetic
Euclidean metrics on V . Any Euclidean metric dE on V defines a conformal
structure {λdE : λ > 0}.

A conformal structure on a manifold is a field of conformal structures
on the tangent spaces or, equivalently, a class of conformally equivalent
Riemannian metrics. Two Riemannian metrics g and h on a smooth man-
ifold Mn are called conformally equivalent if g = f · h for some positive
function f on Mn, called a conformal factor.

A conformal metric is a Riemannian metric that represents the con-
formal structure (cf. conformally invariant metric in Chap. 8).

• Conformal space
The conformal space (or inversive space) is the Euclidean space E

n

extended by an ideal point (at infinity). Under conformal transformations,
i.e., continuous transformations preserving local angles, the ideal point can
be taken to be an ordinary point. Therefore, in a conformal space a sphere
is indistinguishable from a plane: a plane is a sphere passing through the
ideal point.

Conformal spaces are considered in Conformal Geometry (or Angle-
Preserving Geometry, Möbius geometry, Inversive Geometry) in which
properties of figures are studied that are invariant under conformal trans-
formations. It is the set of transformations that map spheres into spheres,
i.e., generated by the Euclidean transformations together with inversions
which in coordinate form are conjugate to xi → r2xi∑

j x2
j
, where r is the

radius of the inversion. An inversion in a sphere becomes an everywhere
well-defined automorphism of period two. Any angle inverts into an equal
angle.

The two-dimensional conformal space is the Riemann sphere, on which
the conformal transformations are given by the Möbius transformations
z → az+b

cz+d , ad− bc �= 0.
In general, a conformal mapping between two Riemannian manifolds is

a diffeomorphism between them such that the pulled back metric is con-
formally equivalent to the original one. A conformal Euclidean space
is a Riemannian space admitting a conformal mapping onto an Euclidean
space.

In the General Theory of Relativity, conformal transformations are con-
sidered on the Minkowski space R

1,3 extended by two ideal points.
• Space of constant curvature

A space of constant curvature is a Riemannian space Mn for which the
sectional curvature K(σ) is constant in all two-dimensional directions σ.

A space form is a connected complete space of constant curvature. A
flat space is a space form of zero curvature.

The Euclidean space and the flat torus are space forms of zero curvature
(i.e., flat spaces), the sphere is a space form of positive curvature, the
hyperbolic space is a space form of negative curvature.



7.1 Riemannian metrics and generalizations 133

• Generalized Riemannian spaces
A generalized Riemannian space is a metric space with the intrin-
sic metric, subject to certain restrictions on the curvature. Such spaces
include spaces of bounded curvature, Riemannian spaces, etc. Generalized
Riemannian spaces differ from Riemannian spaces not only by greater gen-
erality, but also by the fact that they are defined and investigated on the
basis of their metric alone, without coordinates.

A space of bounded curvature (≤k and ≥k′) is a generalized Riemannian
space defined by the condition: for any sequence of geodesic triangles Tn

contracting to a point we have

k ≥ lim
δ(Tn)
σ(T 0

n)
≥ lim

δ(Tn)
σ(T 0

n)
≥ k

′
,

where a geodesic triangle T = xyz is the triplet of geodesic segments [x, y],
[y, z], [z, x] (the sides of T ) connecting in pairs three different points x, y, z,
δ(T ) = α + β + γ−π is the excess of the geodesic triangle T , and σ(T 0) is
the area of a Euclidean triangle T 0 with the sides of the same lengths. The
intrinsic metric on the space of bounded curvature is called a metric
of bounded curvature.

Such a space turns out to be Riemannian under two additional condi-
tions: local compactness of the space (this ensures the condition of local
existence of geodesics), and local extendibility of geodesics. If in this case
k = k

′
, it is a Riemannian space of constant curvature k (cf. space of

geodesics in Chap. 6).
A space of curvature ≤k is defined by the condition lim δ(Tn)

σ(T 0
n) ≤ k. In

such a space any point has a neighborhood in which the sum α + β + γ of
the angles of a geodesic triangle T does not exceed the sum αk + βk + γk

of the angles of a triangle T k with sides of the same lengths in a space
of constant curvature k. The intrinsic metric of such space is called a
k-concave metric.

A space of curvature ≥k is defined by the condition lim δ(Tn)
σ(T 0

n) ≥ k. In
such a space any point has a neighborhood in which α + β + γ ≥ αk +
βk +γk for triangles T and T k. The intrinsic metric of such space is called
a K-concave metric.

An Alexandrov space is a generalized Riemannian space with upper,
lower or integral curvature bounds.

• Complete Riemannian metric
A Riemannian metric g on a manifold Mn is called complete if Mn forms
a complete metric space with respect to g. Any Riemannian metric on a
compact manifold is complete.

• Ricci-flat metric
A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature
tensor.
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A Ricci-flat manifold is a Riemannian manifold equipped with a
Ricci-flat metric. Ricci-flat manifolds represent vacuum solutions to the
Einstein field equation, and are special cases of Kähler–Einstein man-
ifolds. Important Ricci-flat manifolds are Calabi–Yau manifolds, and
hyper-Kähler manifolds.

• Osserman metric
An Osserman metric is a Riemannian metric for which the Riemannian
curvature tensor R is Osserman. It means that the eigenvalues of the Jacobi
operator J (x) : y → R(y, x)x are constant on the unit sphere Sn−1 in E

n,
i.e., they are independent of the unit vectors x.

• G-invariant metric
A G-invariant metric is a Riemannian metric g on a differentiable man-
ifold Mn, that does not change under any of the transformations of a
given Lie group (G, ·, id) of transformations. The group (G, ·, id) is called
the group of motions (or group of isometries) of the Riemannian space
(Mn, g).

• Ivanov–Petrova metric
Let R be the Riemannian curvature tensor of a Riemannian manifold Mn,
and let {x, y} be an orthogonal basis for an oriented 2-plane π in the
tangent space Tp(Mn) at a point p of Mn.

The Ivanov–Petrova metric is a Riemannian metric on Mn for
which the eigenvalues of the antisymmetric curvature operator R(π) =
R(x, y) [IvSt95] depend only on the point p of a Riemannian manifold
Mn, but not upon the plane π.

• Zoll metric
A Zoll metric is a Riemannian metric on a smooth manifold Mn whose
geodesics are all simple closed curves of an equal length. A two-dimensional
sphere S2 admits many such metrics, besides the obvious metrics of con-
stant curvature. In terms of cylindrical coordinates (z, θ) (z ∈ [−1, 1],
θ ∈ [0, 2π]), the line element

ds2 =
(1 + f(z))2

1− z2
dz2 + (1− z2)dθ2

defines a Zoll metric on S2 for any smooth odd function f : [−1, 1] →
(−1, 1) which vanishes at the end points of the interval.

• Cycloidal metric
The cycloidal metric is a Riemannian metric on the half-plane R

2
+ =

{x ∈ R
2 : x1 ≥ 0} defined by the line element

ds2 =
dx2

1 + dx2
2

2x1
.

It is called cycloidal because its geodesics are cycloid curves. The cor-
responding distance d(x, y) between two points x, y ∈ R

2
+ is equivalent to

the distance
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ρ(x, y) =
|x1 − y1|+ |x2 − y2|√
x1 +

√
x2 +

√
|x2 − y2|

in the sense that d ≤ Cρ, and ρ ≤ Cd for some positive constant C.
• Berger metric

The Berger metric is a Riemannian metric on the Berger sphere (i.e.,
the three-sphere S3 squashed in one direction) defined by the line element

ds2 = dθ2 + sin2 θdφ2 + cos2 α(dψ + cos θdφ)2,

where α is a constant, and θ, φ, ψ are Euler angles.
• Carnot–Carathéodory metric

A distribution (or polarization) on a manifold Mn is a subbundle of the
tangent bundle T (Mn) of Mn. Given a distribution H(Mn), a vector field
in H(Mn) is called horizontal. A curve γ on Mn is called horizontal (or
distinguished, admissible) with respect to H(Mn) if γ

′
(t) ∈ Hγ(t)(Mn)

for any t.
A distribution H(Mn) is called completely non-integrable if the Lie

brackets of H(Mn), i.e., [· · · , [H(Mn),H(Mn)]], span the tangent bun-
dle T (Mn), i.e., for all p ∈ Mn any tangent vector v from Tp(Mn) can be
presented as a linear combination of vectors of the following types: u, [u,w],
[u, [w, t]], [u, [w, [t, s]]], · · · ∈ Tp(Mn), where all vector fields u,w, t, s, . . .
are horizontal.

TheCarnot–Carathéodorymetric(orCCmetric,sub-Riemannian
metric, control metric) is a metric on a manifold Mn with a completely
non-integrable horizontal distribution H(Mn) defined as the section gC of
positive-definite scalar products on H(Mn). The distance dC(p, q) between
any points p, q ∈ Mn is defined as the infimum of the gC-lengths of the
horizontal curves joining p and q.

A sub-Riemannian manifold (or polarized manifold) is a manifold Mn

equipped with a Carnot–Carathéodory metric. It is a generalization of a
Riemannian manifold. Roughly, in order to measure distances in a sub-
Riemannian manifold, one is allowed to go only along curves tangent to
horizontal spaces.

• Pseudo-Riemannian metric
Consider a real n-dimensional differentiable manifold Mn in which every
tangent space Tp(Mn), p ∈ Mn, is equipped with a scalar product which
varies smoothly from point to point and is non-degenerate, but indefinite.

A pseudo-Riemannian metric on Mn is a collection of scalar prod-
ucts 〈, 〉p on the tangent spaces Tp(Mn), p ∈ Mn, one for each p ∈Mn.

Every scalar product 〈, 〉p is completely defined by scalar products
〈ei, ej〉p = gij(p) of elements e1, . . . , en of a standard basis in E

n, i.e.,
by the real symmetric indefinite n × n matrix ((gij)) = ((gij(p))), called
a metric tensor (cf. Riemannian metric in which case this tensor
is not only non-degenerate but, moreover, positive-definite). In fact,
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〈x, y〉p =
∑

i,j gij(p)xiyj , where x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈
Tp(Mn). The smooth function g determines the pseudo-Riemannian metric.

The length ds of the vector (dx1, . . . , dxn) is given by the quadratic
differential form

ds2 =
∑

i,j

gijdxidxj .

The length of a curve γ : [0, 1] → Mn is expressed by the formula
∫

γ

√∑
i,j gijdxidxj =

∫ 1

0

√∑
i,j gij

dxi

dt
dxj

dt dt. In general it may be real,

purely imaginary or zero (an isotropic curve).
A pseudo-Riemannian metric on Mn is a metric with a fixed, but

indefinite signature (p, q), p + q = n. A pseudo-Riemannian metric is non-
degenerate, i.e., its metric discriminant det((gij)) �= 0. Therefore, it is a
non-degenerate indefinite metric.

A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a
real n-dimensional differentiable manifold Mn equipped with a pseudo-
Riemannian metric. The theory of pseudo-Riemannian spaces is called
Pseudo-Riemannian Geometry.

• Pseudo-Euclidean distance
The model space of a pseudo-Riemannian space of signature (p, q) is
the pseudo-Euclidean space R

p,q, p + q = n, which is a real n-dimensional
vector space R

n equipped with the metric tensor ((gij)) of signature (p, q)
defined by g11 = · · · = gpp = 1, gp+1,p+1 = · · · = gnn = −1, gij = 0 for
i �= j. The line element of the corresponding metric is given by

ds2 = dx2
1 + · · ·+ dx2

p − dx2
p+1 − · · · − dx2

n.

The pseudo-Euclidean distance of signature (p, q = n− p) on R
n is

defined, for x, y ∈ R
n, by

d2
pE(x, y) =

p∑

i=1

(xi − yi)2 −
n∑

i=p+1

(xi − yi)2.

Such a pseudo-Euclidean space can be seen as R
p×iRq, where i =

√
−1.

The pseudo-Euclidean space with (p, q) = (1, 3) is used as space–time
model of Special Relativity; cf. Minkowsky metric in Chap. 26. The
points correspond to events; the line spanned by events x and y is space-
like if d(x, y) > 0 and time-like if d(x, y) < 0. If d(x, y) > 0, then

√
d(x, y)

is Euclidean distance and if d(x, y) < 0, then
√
|d(x, y)| is the life time of

a particle (from x to y).
The general quadratic-form distance for two points x, y ∈ R

n, is de-
fined by

√
(x− y)T A(x− y), where A is a real non-singular symmetric

n × n matrix; cf. Mahalonobis distance in Chap. 17. The pseudo-
Euclidean distance of signature (p, q = n − p) is the case A = diag(ai)
with ai = 1 for 1 ≤ i ≤ p and ai = −1 for p + 1 ≤ i ≤ n.
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• Lorentzian metric
A Lorentzian metric (or Lorentz metric) is a pseudo-Riemannian
metric of signature (1, p).

A Lorentzian manifold is a manifold equipped with a Lorentzian metric.
The Minkowski space R

1,p with the flat Minkowski metric is a model of
it, in the same way as Riemannian manifolds can be modeled on Euclidean
space.

• Osserman Lorentzian metric
An Osserman Lorentzian metric is a Lorentzian metric for which
the Riemannian curvature tensor R is Osserman, i.e., the eigenvalues of the
Jacobi operator J (x) : y → R(y, x)x are independent of the unit vectors x.

A Lorentzian manifold is Osserman if and only if it is of constant
curvature.

• Blaschke metric
The Blaschke metric on a non-degenerate hypersurface is a pseudo-
Riemannian metric, associated to the affine normal of the immersion
φ : Mn → R

n+1, where Mn is an n-dimensional manifold, and R
n+1

is considered as an affine space.
• Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable
manifold Mn is a degenerate Riemannian metric, i.e., a collection of
positive-semi-definite scalar products 〈x, y〉p =

∑
i,j gij(p)xiyj on the tan-

gent spaces Tp(Mn), p ∈Mn; the metric discriminant det((gij)) = 0.
A semi-Riemannian manifold (or semi-Riemannian space) is a

real n-dimensional differentiable manifold Mn equipped with a semi-
Riemannian metric.

The model space of a semi-Riemannian manifold is the semi-Euclidean
space Rn

d , d ≥ 1 (sometimes denoted also by R
n
n−d), i.e., a real

n-dimensional vector space R
n equipped with a semi-Riemannian metric.

It means that there exists a scalar product of vectors such that, relative to
a suitably chosen basis, the scalar product 〈x, x〉 of any vector with itself
has the form 〈x, x〉 =

∑n−d
i=1 x2

i . The number d ≥ 1 is called the defect (or
deficiency) of the space.

• Grushin metric
The Grushin metric is a semi-Riemannian metric on R

2 defined by the
line element

ds2 = dx2
1 +

dx2
2

x2
1

.

• Agmon distance
Given a Schrödinger operator H(h) = −h2Δ + V (x) on L2(Rd), where V
is a potential and h is the Planck constant, consider a semi-Riemannian
metric on R

d with respect to the energy E0(h) = h−αe0 defined by the
line element

ds2 = max{0, V (x)− E0(h)}dx2.
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Then the Agmon distance on R
d is the corresponding Riemannian

distance defined, for any x, y ∈ R
d, by

inf
γ
{
∫ 1

0

√
max{V (γ(s))− E0(h), 0} · |γ′

(s)|ds :γ(0) = x, γ(1) = y, γ ∈ C1}.

• Semi-pseudo-Riemannian metric
A semi-pseudo-Riemannian metric on a real n-dimensional differen-
tiable manifold Mn is a degenerate pseudo-Riemannian metric, i.e., a col-
lection of degenerate indefinite scalar products 〈x, y〉p =

∑
i,j gij(p)xiyj on

the tangent spaces Tp(Mn), p ∈Mn; the metric discriminant det((gij)) =
0. In fact, a semi-pseudo-Riemannian metric is a degenerate indefinite
metric.

A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian
space) is a real n-dimensional differentiable manifold Mn equipped with a
semi-pseudo-Riemannian metric.

The model space of a semi-pseudo-Riemannian manifold is the semi-
pseudo-Euclidean space R

n
l1,...,lr
m1,...,mr−1

, i.e., a real n-dimensional vector space

R
n equipped with a semi-pseudo-Riemannian metric. It means that there

exist r scalar products 〈x, y〉a =
∑

εia
xia

yia
, where a = 1, . . . r, 0 = m0 <

m1 < · · · < mr = n, ia = ma−1 + 1, . . . ma, εia
= ±1, and −1 occurs

la times among the numbers εia
. The product 〈x, y〉a is defined for those

vectors for which all coordinates xi, i ≤ ma−1 or i > ma + 1 are zero.
The first scalar square of an arbitrary vector x is a degenerate quadratic
form 〈x, x〉1 = −

∑l1
i=1 x2

i +
∑n−d

j=l1+1 x2
j . The number l1 ≥ 0 is called the

index, and the number d = n − m1 is called the defect of the space. If
l1 = · · · = lr = 0, we obtain a semi-Euclidean space. The spaces R

n
m

and
R

n
k,l
m

are called quasi-Euclidean spaces.
The semi-pseudo-non-Euclidean space S

n
l1,...,lr
m1,...,mr−1

can be defined as a

hypersphere in R
n+1
l1,...,lr
m1,...,mr−1

with identified antipodal points. If l1 = · · · =

lr = 0, the space S
n
m1,...,mr−1

is called a semi-elliptic space (or semi-non-

Euclidean space). If there exist li �= 0, the space S
n
l1,...,lr
m1,...,mr−1

is called a

semi-hyperbolic space.
• Finsler metric

Consider a real n-dimensional differentiable manifold Mn in which every
tangent space Tp(Mn), p ∈Mn, is equipped with a Banach norm ||.|| such
that the Banach norm as a function of position is smooth, and the matrix
((gij)),

gij = gij(p, x) =
1
2

∂2||x||2
∂xi∂xj

,

is positive-definite for any p ∈Mn and any x ∈ Tp(Mn).
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A Finsler metric on Mn is a collection of Banach norms ||.|| on the
tangent spaces Tp(Mn), one for each p ∈ Mn. The line element of this
metric has the form

ds2 =
∑

i,j

gijdxidxj .

The Finsler metric can be given by a real positive-definite convex function
F (p, x) of coordinates of p ∈ Mn and components of vectors x ∈ Tp(Mn)
acting at the point p. F (p, x) is positively homogeneous of degree one in
x: F (p, λx) = λF (p, x) for every λ > 0. The value of F (p, x) is interpreted
as the length of the vector x. The Finsler metric tensor has the form
((gij)) = ((1

2
∂2F 2(p,x)

∂xi∂xj
)). The length of a curve γ : [0, 1] → Mn is given by

∫ 1

0
F (p, dp

dt )dt. For each fixed p the Finsler metric tensor is Riemannian in
the variables x.

The Finsler metric is a generalization of the Riemannian metric, where
the general definition of the length ||x|| of a vector x ∈ Tp(Mn) is not
necessarily given in the form of the square root of a symmetric bilinear
form as in the Riemannian case.

A Finsler manifold (or Finsler space) is a real n-dimensional differen-
tiable manifold Mn equipped with a Finsler metric. The theory of Finsler
spaces is called Finsler Geometry. The difference between a Riemannian
space and a Finsler space is that the former behaves locally like a Euclidean
space, and the latter locally like a Minkowskian space or, analytically, the
difference is that to an ellipsoid in the Riemannian case there corresponds
an arbitrary convex surface which has the origin as the center.

A generalized Finsler space is a space with the intrinsic metric, subject
to certain restrictions on the behavior of shortest curves, i.e., the curves
with length equal to the distance between their ends. Such spaces include
spaces of geodesics, Finsler spaces, etc. Generalized Finsler spaces differ
from Finsler spaces not only in their greater generality, but also in the
fact that they are defined and investigated starting from a metric, without
coordinates.

• Kropina metric
The Kropina metric is a Finsler metric FKr on a real n-dimensional
manifold Mn defined by ∑

i,j gijxixj
∑

i bi(p)xi

for any p ∈ Mn and x ∈ Tp(Mn), where ((gij)) is a Riemannian metric
tensor, and b(p) = (bi(p)) is a vector field.

• Randers metric
The Randers metric is a Finsler metric FRa on a real n-dimensional
manifold Mn defined by

√∑

i,j

gijxixj +
∑

i

bi(p)xi
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for any p ∈ Mn and x ∈ Tp(Mn), where ((gij)) is a Riemannian metric
tensor, and b(p) = (bi(p)) is a vector field.

• Klein metric
The Klein metric is a Riemannian metric on the open unit ball Bn =
{x ∈ R

n : ||x||2 < 1} in R
n defined by

√
||y||22 − (||x||22||y||22 − 〈x, y〉2)

1− ||x||22

for any x ∈ Bn and y ∈ Tx(Bn), where ||.||2 is the Euclidean norm on R
n,

and 〈, 〉 is the ordinary inner product on R
n.

• Funk metric
The Funk metric is a Finsler metric FFu on the open unit ball Bn =
{x ∈ R

n : ||x||2 < 1} in R
n defined by

√
||y||22 − (||x||22||y||22 − 〈x, y〉2) + 〈x, y〉

1− ||x||22

for any x ∈ Bn and y ∈ Tx(Bn), where ||.||2 is the Euclidean norm on R
n,

and 〈, 〉 is the ordinary inner product on R
n. It is a projective metric.

• Shen metric
Given a vector a ∈ R

n, ||a||2 < 1, the Shen metric is a Finsler metric
FSh on the open unit ball Bn = {x ∈ R

n : ||x||2 < 1} in R
n defined by

√
||y||22 − (||x||22||y||22 − 〈x, y〉2) + 〈x, y〉

1− ||x||22
+

〈a, y〉
1 + 〈a, x〉

for any x ∈ Bn and y ∈ Tx(Bn), where ||.||2 is the Euclidean norm on R
n,

and 〈, 〉 is the ordinary inner product on R
n. It is a projective metric.

For a = 0 it becomes the Funk metric.
• Berwald metric

The Berwald metric is a Finsler metric FBe on the open unit ball Bn =
{x ∈ R

n : ||x||2 < 1} in R
n defined by

(√
||y||22 − (||x||22||y||22 − 〈x, y〉2) + 〈x, y〉

)2

(1− ||x||22)2
√
||y||22 − (||x||22||y||22 − 〈x, y〉2)

for any x ∈ Bn and y ∈ Tx(Bn), where ||.||2 is the Euclidean norm on R
n,

and 〈, 〉 is the ordinary inner product on R
n. It is a projective metric.

In general, every Finsler metric on a manifold Mn induces a spray
(second-order homogeneous ordinary differential equation) yi

∂
∂xi
−2Gi ∂

∂yi

which determines the geodesics. A Finsler metric is called a Berwald
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metric if the spray coefficients Gi = Gi(x, y) are quadratic in y ∈ Tx(Mn)
at any point x ∈ Mn, i.e., Gi = 1

2Γ i
jk(x)yiyk. Every Berwald metric is

affinely equivalent to a Riemannian metric.
• Douglas metric

A Douglas metric a Finsler metric for which the spray coefficients Gi =
Gi(x, y) have the following form:

Gi =
1
2
Γi

jk(x)yiyk + P (x, y)yi.

Every Finsler metric which is projectively equivalent to a Berwald
metric is a Douglas metric. Every known Douglas metric is (locally) pro-
jectively equivalent to a Berwald metric.

• Bryant metric
Let α be an angle with |α| < π

2 . Let, for any x, y ∈ R
n, A = ||y||42 sin2 2α+

(
||y||22 cos 2α + ||x||22||y||22 − 〈x, y〉2

)2, B = ||y||22 cos 2α+||x||22||y||22−〈x, y〉2,
C = 〈x, y〉 sin 2α, D = ||x||42 + 2||x||22 cos 2α + 1. Then one obtains a (pro-
jective) Finsler metric F by

√√
A + B

2D
+
(

C

D

)2

+
C

D
.

On the two-dimensional unit sphere S2, it is the Bryant metric.
• Kawaguchi metric

The Kawaguchi metric is a metric on a smooth n-dimensional manifold
Mn, given by the arc element ds of a regular curve x = x(t), t ∈ [t0, t1],
expressed by the formula

ds = F (x,
dx

dt
, . . . ,

dkx

dtk
)dt,

where the metric function F satisfies Zermelo’s conditions:
∑k

s=1 sx(s)

F(s)i = F ,
∑k

s=r(
s
k)x(s−r+1)iF(s)i = 0, x(s)i = dsxi

dts , F(s)i = ∂F
∂x(s)i , and r =

2, . . . , k. These conditions ensure that the arc element ds is independent
of the parametrization of the curve x = x(t).

A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold
equipped with a Kawaguchi metric. It is a generalization of a Finsler
manifold.

• DeWitt supermetric
The DeWitt supermetric (or Wheeler–DeWitt supermetric) G =
((Gijkl)) calculates distances between metrics on a given manifold, and
it is a generalization of a Riemannian (or pseudo-Riemannian) metric
g = ((gij)).
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More exactly, for a given connected smooth three-dimensional manifold
M3, consider the spaceM(M3) of all Riemannian (or pseudo-Riemannian)
metrics on M3. Identifying points of M(M3) that are related by a diffeo-
morphism of M3, one obtains the space Geom(M3) of 3-geometries (of
fixed topology), points of which are the classes of diffeomorphically equiv-
alent metrics. The space Geom(M3) is called a superspace. It plays an
important role in several formulations of Quantum Gravity.

A supermetric, i.e., a “metric on metrics,” is a metric on M(M3) (or
on Geom(M3)) which is used for measuring distances between metrics on
M3 (or between their equivalence classes). Given a metric g = ((gij)) ∈
M(M3), we obtain

||δg||2 =
∫

M3
d3xGijkl(x)δgij(x)δgkl(x),

where Gijkl is the inverse of the DeWitt supermetric

Gijkl =
1

2
√

det((gij))
(gikgjl + gilgjk − λgijgkl).

The value λ parameterizes the distance between metrics in M(M3), and
may take any real value except λ = 2

3 , for which the supermetric is singular.
• Lund–Regge supermetric

The Lund–Regge supermetric (or simplicial supermetric) is an ana-
log of the DeWitt supermetric, used to measure the distances between
simplicial 3-geometries in a simplicial configuration space.

More exactly, given a closed simplicial three-dimensional manifold M3

consisting of several tetrahedra (i.e., 3-simplices), a simplicial geometry on
M3 is fixed by an assignment of values to the squared edge lengths of
M3, and a flat Riemannian Geometry to the interior of each tetrahedron
consistent with those values. The squared edge lengths should be posi-
tive and constrained by the triangle inequalities and their analogs for the
tetrahedra, i.e., all squared measures (lengths, areas, volumes) must be
non-negative (cf. tetrahedron inequality in Chap. 3). The set T (M3)
of all simplicial geometries on M3 is called a simplicial configuration
space.

The Lund–Regge supermetric ((Gmn)) on T (M3) is induced from the
DeWitt supermetric on M(M3), using for representations of points in
T (M3) such metrics in M(M3) which are piecewise flat in the tetrahedra.

• Space of Lorentz metrics
Let Mn be an n-dimensional compact manifold, and L(Mn) the set of
all Lorentz metrics (i.e., the quasi-Riemannian metrics of signature
(n− 1, 1)) on Mn.

Given a Riemannian metric g on Mn, one can identify the vector space
S2(Mn) of all symmetric 2-tensors with the vector space of endomorphisms
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of the tangent to Mn, which are symmetric with respect to g. In fact, if h̃ is
the endomorphism associated to a tensor h, then the distance on S2(Mn)
is given by

dg(h, t) = sup
x∈Mn

√

tr(h̃x − t̃x)2.

The set L(Mn) equipped with the distance dg is an open subset of
S2(Mn) called the space of Lorentz metrics. Cf. manifold triangu-
lation metric in Chap. 9.

• Perelman supermetric proof
The Thurston’s Geometrization Conjecture is that, after two well-known
splittings, any three-dimensional manifold admits, as remaining compo-
nents, only one of 8 Thurston model geometries. If true, this conjecture
implies the validity of the famous Poincaré Conjecture of 1904, that any
3-manifold, in which every simple closed curve can be deformed continu-
ously to a point, is homeomorphic to the 3-sphere.

In 2003, Perelman gave a sketch of a proof of Thurston’s conjecture using
a kind of supermetric approach to the space of all Riemannian metrics on
a given smooth 3-manifold. In a Ricci flow the distances decrease in direc-
tions of positive curvature since the metric is time-dependent. Perelman’s
modification of the standard Ricci flow permitted systematic elimination
of arising singularities.

7.2 Riemannian metrics in Information Theory

Some special Riemannian metrics are commonly used in Information Theory.
A list of such metrics is given below.

• Fisher information metric
In Statistics, Probability, and Information Geometry, the Fisher infor-
mation metric (or Fisher metric, Rao metric) is a Riemannian metric
for a statistical differential manifold (see, for example, [Amar85], [Frie98]).
It addresses the differential geometry properties of families of classical
probability densities.

Formally, let pθ = p(x, θ) be a family of densities, indexed by n param-
eters θ = (θ1, . . . , θn) which form the parameter manifold P . The Fisher
information metric g = gθ on P is a Riemannian metric, defined by the
Fisher information matrix ((I(θ)ij)), where

I(θ)ij = Eθ

[
∂ ln pθ

∂θi
· ∂ ln pθ

∂θj

]

=
∫

∂ ln p(x, θ)
∂θi

∂ ln p(x, θ)
∂θj

p(x, θ)dx.
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It is a symmetric bilinear form which gives a classical measure (Rao
measure) for the statistical distinguishability of distribution parameters.
Putting i(x, θ) = − ln p(x, θ), one obtains an equivalent formula

I(θ)ij = Eθ

[
∂2i(x, θ)
∂θi∂θj

]

=
∫

∂2i(x, θ)
∂θi∂θj

p(x, θ)dx.

In a coordinate-free language, we get

I(θ)(u, v) = Eθ [u(ln pθ) · v(ln pθ)] ,

where u and v are vectors tangent to the parameter manifold P , and
u(ln pθ) = d

dt ln pθ+tu|t=0 is the derivative of ln pθ along the direction u.
A manifold of densities M is the image of the parameter manifold P

under the mapping θ → pθ with certain regularity conditions. A vector u
tangent to this manifold is of the form u = d

dtpθ+tu|t=0, and the Fisher
metric g = gp on M , obtained from the metric gθ on P , can be written as

gp(u, v) = Ep

[
u

p
· v

p

]

.

• Fisher–Rao metric
Let Pn = {p ∈ R

n :
∑n

i=1 pi = 1, pi > 0} be the simplex of strictly
positive probability vectors. An element p ∈ Pn is a density of the n-point
set {1, . . . , n} with p(i) = pi. An element u of the tangent space Tp(Pn) =
{u ∈ R

n :
∑n

i=1 ui = 0} at a point p ∈ Pn is a function on {1, . . . , n} with
u(i) = ui.

The Fisher–Rao metric gp on Pn is a Riemannian metric defined by

gp(u, v) =
n∑

i=1

uivi

pi

for any u, v ∈ Tp(Pn), i.e., it is the Fisher information metric on Pn.
The Fisher–Rao metric is the unique (up to a constant factor) Riemannian
metric on Pn, contracting under stochastic maps [Chen72].

The Fisher–Rao metric is isometric, by p → 2(
√

p1, . . . ,
√

pn), with the
standard metric on an open subset of the sphere of radius two in R

n. This
identification of Pn allows one to obtain on Pn the geodesic distance,
called the Fisher distance (or Bhattacharya distance 1), by

2 arccos(
∑

i

p
1/2
i q

1/2
i ).

The Fisher–Rao metric can be extended to the set Mn = {p ∈ R
n, pi > 0}

of all finite strictly positive measures on the set {1, . . . , n}. In this case,
the geodesic distance on Mn can be written as
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2(
∑

i

(
√

pi −
√

qi)2)1/2

for any p, q ∈Mn (cf. Hellinger metric in Chap. 14).
• Monotone metric

Let Mn be the set of all complex n × n matrices. Let M ⊂ Mn be the
manifold of all complex positive-definite n × n matrices. Let D ⊂ M,
D = {ρ ∈ M : Trρ = 1}, be the manifold of all density matrices. The
tangent space of M at ρ ∈M is Tρ(M) = {x ∈Mn : x = x∗}, i.e., the set
of all n× n Hermitian matrices. The tangent space Tρ(D) at ρ ∈ D is the
subspace of traceless (i.e., with trace 0) matrices in Tρ(M).

A Riemannian metric λ on M is called monotone metric if the in-
equality

λh(ρ)(h(u), h(u)) ≤ λρ(u, u)

holds for any ρ ∈ M, any u ∈ Tρ(M), and any completely positive trace
preserving mapping h, called stochastic mapping. In fact [Petz96], λ is
monotone if and only if it can be written as

λρ(u, v) = Tr uJρ(v),

where Jρ is an operator of the form Jρ = 1
f(Lρ/Rρ)Rρ

. Here Lρ and Rρ are
the left and the right multiplication operators, and f : (0,∞) → R is an
operator monotone function which is symmetric, i.e., f(t) = tf(t−1), and
normalized, i.e., f(1) = 1. Then Jρ(v) = ρ−1v if v and ρ are commute,
i.e., any monotone metric is equal to the Fisher information metric on
commutative submanifolds. Therefore, monotone metrics generalize the
Fisher information metric on the class of probability densities (classical
or commutative case) to the class of density matrices (quantum or non-
commutative case) which are used in Quantum Statistics and Information
Theory. In fact, D is the space of faithful states of an n-level quantum
system.

A monotone metric λρ(u, v) = Tr u 1
f(Lρ/Rρ)Rρ

(v) can be rewritten as
λρ(u, v) = Tr u c(Lρ, Rρ)(v), where the function c(x, y) = 1

f(x/y)y is the
Morozova-Chentsov function related to λ.

The Bures metric is the smallest monotone metric, obtained for f(t) =
1+t
2 (for c(x, y) = 2

x+y ). In this case Jρ(v) = g, ρg + gρ = 2v, is the
symmetric logarithmic derivative.

The right logarithmic derivative metric is the greatest monotone
metric, corresponding to the function f(t) = 2t

1+t (for c(x, y) = x+y
2xy ). In

this case Jρ(v) = 1
2 (ρ−1v + vρ−1) is the right logarithmic derivative.

The Bogolubov–Kubo–Mori metric is obtained for f(x) = x−1
ln x (for

c(x, y) = ln x−ln x
x−y ). It can be written as λρ(u, v) = ∂2

∂s∂tTr(ρ + su) ln(ρ +
tv)|s,t=0.
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The Wigner–Yanase–Dyson metrics λα
ρ are monotone for α ∈

[−3, 3]. For α = ±1, we obtain the Bogolubov–Kubo–Mori metric; for
α = ±3 we obtain the right logarithmic derivative metric. The smallest in
the family is the Wigner–Yanase metric, obtained for α = 0.

• Bures metric
The Bures metric (or statistical metric) is a monotone metric on
the manifold M of all complex positive-definite n× n matrices defined by

λρ(u, v) = Tr uJρ(v),

where Jρ(v) = g, ρg + gρ = 2v, is the symmetric logarithmic derivative. It
is the smallest monotone metric.

For any ρ1, ρ2 ∈ M the Bures distance, i.e., the geodesic distance
defined by the Bures metric, can be written as

2
√

Trρ1 + Trρ2 − 2Tr(ρ1/2
1 ρ2ρ

1/2
1 )1/2.

On the submanifold D = {ρ ∈ M : Trρ = 1} of density matrices it has
the form

2 arccos Tr(ρ1/2
1 ρ2ρ

1/2
1 )1/2.

• Right logarithmic derivative metric
The right logarithmic derivative metric (or RLD-metric) is a mono-
tone metric on the manifold M of all complex positive-definite n × n
matrices defined by

λρ(u, v) = Tr uJρ(v),

where Jρ(v) = 1
2 (ρ−1v + vρ−1) is the right logarithmic derivative. It is the

greatest monotone metric.
• Bogolubov–Kubo–Mori metric

The Bogolubov–Kubo–Mori metric (or BKM-metric) is a monotone
metric on the manifold M of all complex positive-definite n×n matrices
defined by

λρ(u, v) =
∂2

∂s∂t
Tr(ρ + su) ln(ρ + tv)|s,t=0.

• Wigner–Yanase–Dyson metrics
The Wigner–Yanase–Dyson metrics (or WYD-metrics) form a family
of metrics on the manifoldM of all complex positive-definite n×n matrices
defined by

λα
ρ (u, v) =

∂2

∂t∂s
Trfα(ρ + tu)f−α(ρ + sv)|s,t=0,

where fα(x) = 2
1−αx

1−α
2 , if α �= 1, and is lnx, if α = 1. These

metrics are monotone for α ∈ [−3, 3]. For α = ±1 one obtains the
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Bogolubov–Kubo–Mori metric; for α = ±3 one obtains the right
logarithmic derivative metric.

The Wigner–Yanase metric (or WY-metric) λρ is the Wigner–
Yanase–Dyson metric λ0

ρ, obtained for α = 0. It can be written as

λρ(u, v) = 4Tr u(
√

Lρ +
√

Rρ)2(v),

and is the smallest metric in the family. For any ρ1, ρ2 ∈M the geodesic
distance defined by the WY -metric, has the form

2
√

Trρ1 + Trρ2 − 2Tr(ρ1/2
1 ρ

1/2
2 ).

On the submanifold D = {ρ ∈ M : Trρ = 1} of density matrices it is
equal to

2 arccos Tr(ρ1/2
1 ρ

1/2
2 ).

• Connes metric
Roughly, the Connes metric is a generalization (from the space of all
probability measures of a set X, to the state space of any unital C∗-algebra)
of the Kantorovich–Mallows–Monge–Wasserstein metric defined as
the Lipschitz distance between measures.

Let Mn be a smooth n-dimensional manifold. Let A = C∞(Mn) be the
(commutative) algebra of smooth complex-valued functions on Mn, rep-
resented as multiplication operators on the Hilbert space H = L2(Mn, S)
of square integrable sections of the spinor bundle on Mn by (fξ)(p) =
f(p)ξ(p) for all f ∈ A and for all ξ ∈ H. Let D be the Dirac opera-
tor. Let the commutator [D, f ] for f ∈ A be the Clifford multiplication
by the gradient ∇f so that its operator norm ||.|| in H is given by
||[D, f ]|| = supp∈Mn ||∇f ||.

The Connes metric is the intrinsic metric on Mn, defined by

sup
f∈A,|| [D,f ] ||≤1

|f(p)− f(q)|.

This definition can also be applied to discrete spaces, and even general-
ized to “non-commutative spaces” (unital C∗-algebras). In particular, for
a labeled connected locally finite graph G = (V,E) with the vertex-set
V = {v1, . . . , vn, . . . }, the Connes metric on V is defined by

sup
|| [D,f ] ||=||df ||≤1

|fvi
− fvj

|

for any vi, vj ∈ V , where {f =
∑

fvi
vi :

∑
|fvi
|2 < ∞} is the set of

formal sums f , forms a Hilbert space, and || [D, f ] || can be obtained by
|| [D, f ] || = supi(

∑deg(vi)
k=1 (fvk

− fvi
)2)

1
2 .
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7.3 Hermitian metrics and generalizations

A vector bundle is a geometrical construct where to every point of a topological
space M we attach a vector space so that all those vector spaces “glued
together” form another topological space E. A continuous mapping π : E →
M is called a projection E on M . For every p ∈ M , the vector space π−1(p) is
called a fiber of the vector bundle. A real (complex) vector bundle is a vector
bundle π : E → M whose fibers π−1(p), p ∈ M , are real (complex) vector
spaces.

In a real vector bundle, for every p ∈ M , the fiber π−1(p) locally looks
like the vector space R

n, i.e., there is an open neighborhood U of p, a natural
number n, and a homeomorphism ϕ : U×R

n → π−1(U) such that, for all x ∈
U and v ∈ R

n, one has π(ϕ(x, v)) = v, and the mapping v → ϕ(x, v) yields an
isomorphism between R

n and π−1(x). The set U , together with ϕ, is called a
local trivialization of the bundle. If there exists a “global trivialization,” then
a real vector bundle π : M×R

n →M is called trivial. Similarly, in a complex
vector bundle, for every p ∈ M , the fiber π−1(p) locally looks like the vector
space C

n. The basic example of a complex vector bundle is the trivial bundle
π : U × C

n → U , where U is an open subset of R
k.

Important special cases of a real vector bundle are the tangent bundle
T (Mn) and the cotangent bundle T ∗(Mn) of a real n-dimensional manifold
Mn

R
= Mn. Important special cases of a complex vector bundle are the tan-

gent bundle and the cotangent bundle of a complex n-dimensional manifold.
Namely, a complex n-dimensional manifold Mn

C
is a topological space in

which every point has an open neighborhood homeomorphic to an open set
of the n-dimensional complex vector space C

n, and there is an atlas of charts
such that the change of coordinates between charts is analytic. The (complex)
tangent bundle TC(Mn

C
) of a complex manifold Mn

C
is a vector bundle of all

(complex) tangent spaces of Mn
C

at every point p ∈ Mn
C
. It can be obtained

as a complexification TR(Mn
R
) ⊗ C = T (Mn) ⊗ C of the corresponding real

tangent bundle, and is called the complexified tangent bundle of Mn
C
.

The complexified cotangent bundle of Mn
C

is obtained similarly as
T ∗(Mn) ⊗ C. Any complex n-dimensional manifold Mn

C
= Mn can be re-

garded as a special case of a real 2n-dimensional manifold equipped with
a complex structure on each tangent space. A complex structure on a real
vector space V is the structure of a complex vector space on V that is
compatible with the original real structure. It is completely determined by
the operator of multiplication by the number i, the role of which can be
taken by an arbitrary linear transformation J : V → V , J2 = −id, where id
is the identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative
of a vector field along another vector field in a vector bundle. A metric
connection is a linear connection in a vector bundle π : E → M , equipped
with a bilinear form in the fibers, for which parallel displacement along an
arbitrary piecewise-smooth curve in M preserves the form, that is, the scalar
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product of two vectors remains constant under parallel displacement. In the
case of a non-degenerate symmetric bilinear form, the metric connection is
called the Euclidean connection. In the case of non-degenerate antisymmetric
bilinear form, the metric connection is called the symplectic connection.

• Bundle metric
A bundle metric is a metric on a vector bundle.

• Hermitian metric
A Hermitian metric on a complex vector bundle π : E → M is a
collection of Hermitian inner products (i.e., positive-definite symmetric
sesquilinear forms) on every fiber Ep = π−1(p), p ∈ M , that varies
smoothly with the point p in M . Any complex vector bundle has a Her-
mitian metric.

The basic example of a vector bundle is the trivial bundle π : U ×C
n →

U , where U is an open set in R
k. In this case a Hermitian inner product

on C
n, and hence, a Hermitian metric on the bundle π : U × C

n → U , is
defined by

〈u, v〉 = uT Hv,

where H is a positive-definite Hermitian matrix, i.e., a complex n × n

matrix such that H∗ = H
T

= H, and vT Hv > 0 for all v ∈ C
n\{0}. In

the simplest case, one has 〈u, v〉 =
∑n

i=1 uivi.
An important special case is a Hermitian metric h on a complex manifold

Mn, i.e., on the complexified tangent bundle T (Mn) ⊗ C of Mn. This is
the Hermitian analog of a Riemannian metric. In this case h = g+ iw, and
its real part g is a Riemannian metric, while its imaginary part w is a non-
degenerate antisymmetric bilinear form, called a fundamental form. Here
g(J(x), J(y)) = g(x, y), w(J(x), J(y)) = w(x, y), and w(x, y) = g(x, J(y)),
where the operator J is an operator of complex structure on Mn; as a
rule, J(x) = ix. Any of the forms g, w determines h uniquely. The term
Hermitian metric can also refer to the corresponding Riemannian metric
g, which gives Mn a Hermitian structure.

On a complex manifold a Hermitian metric h can be expressed in local
coordinates by a Hermitian symmetric tensor ((hij)):

h =
∑

i,j

hijdzi ⊗ dzj ,

where ((hij)) is a positive-definite Hermitian matrix. The associated fun-
damental form w is then written as w = i

2

∑
i,j hijdzi ∧ dzj .

A Hermitian manifold (or Hermitian space) is a complex manifold
equipped with a Hermitian metric.

• Kähler metric
A Kähler metric (or Kählerian metric) is a Hermitian metric h = g +
iw on a complex manifold Mn whose fundamental form w is closed, i.e.,
satisfies the condition dw = 0. A Kähler manifold is a complex manifold
equipped with a Kähler metric.
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If h is expressed in local coordinates, i.e., h =
∑

i,j hijdzi⊗dzj , then the
associated fundamental form w can be written as w = i

2

∑
i,j hijdzi ∧ dzj ,

where ∧ is the wedge product which is antisymmetric, i.e., dx∧dy = −dy∧
dx (hence, dx ∧ dx = 0). In fact, w is a differential 2-form on Mn, i.e.,
a tensor of rank 2 that is antisymmetric under exchange of any pair of
indices: w =

∑
i,j fijdxi∧dxj , where fij is a function on Mn. The exterior

derivative dw of w is defined by dw =
∑

i,j

∑
k

∂fij

∂xk
dxk ∧ dxi ∧ dxk. If

dw = 0, then w is a symplectic (i.e., closed non-degenerate) differential
2-form. Such differential 2-forms are called Kähler forms.

The metric on a Kähler manifold locally satisfies

hij =
∂2K

∂zi∂zj

for some function K, called the Kähler potential.
The term Kähler metric can also refer to the corresponding Riemannian

metric g, which gives Mn a Kähler structure. Then a Kähler manifold is
defined as a complex manifold which carries a Riemannian metric and a
Kähler form on the underlying real manifold.

• Hessian metric
Given a smooth f on an open subset of a real vector space, the associated
Hessian metric is defined by

gij =
∂2f

∂xi∂xj
.

A Hessian metric is also called an affine Kähler metric since a Kähler
metric on a complex manifold has an analogous description as ∂2f

∂zi∂zj
.

• Calabi–Yau metric
The Calabi–Yau metric is a Kähler metric which is Ricci-flat.

A Calabi–Yau manifold (or Calabi–Yau space) is a simply-connected
complex manifold equipped with a Calabi–Yau metric. It can be consid-
ered as a 2n-dimensional (six-dimensional being particularly interesting)
smooth manifold with holonomy group (i.e., the set of linear transforma-
tions of tangent vectors arising from parallel transport along closed loops)
in the special unitary group.

• Kähler–Einstein metric
A Kähler–Einstein metric (or Einstein metric) is a Kähler metric
on a complex manifold Mn whose Ricci curvature tensor is proportional
to the metric tensor. This proportionality is an analog of the Einstein field
equation in the General Theory of Relativity.

A Kähler–Einstein manifold (or Einstein manifold) is a complex man-
ifold equipped with a Kähler–Einstein metric. In this case the Ricci
curvature tensor, considered as an operator on the tangent space, is just
multiplication by a constant.
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Such a metric exists on any domain D ⊂ C
n that is bounded and pseudo-

convex. It can be given by the line element

ds2 =
∑

i,j

∂2u(z)
∂zi∂zj

dzidzj ,

where u is a solution to the boundary value problem: det( ∂2u
∂zi∂zj

) = e2u on
D, and u = ∞ on ∂D.

The Kähler–Einstein metric is a complete metric. On the unit disk Δ =
{z ∈ C : |z| < 1} it is coincides with the Poincaré metric.

• Hodge metric
The Hodge metric is a Kähler metric whose fundamental form w de-
fines an integral cohomology class or, equivalently, has integral periods.

A Hodge manifold (or Hodge variety) is a complex manifold equipped
with a Hodge metric. A compact complex manifold is a Hodge manifold
if and only if it is isomorphic to a smooth algebraic subvariety of some
complex projective space.

• Fubini–Study metric
The Fubini–Study metric (or Cayley–Fubini–Study metric) is a Kähler
metric on a complex projective space CPn defined by a Hermitian inner
product 〈, 〉 in C

n+1. It is given by the line element

ds2 =
〈x, x〉〈dx, dx〉 − 〈x, dx〉〈x, dx〉

〈x, x〉2 .

The distance between two points (x1 : ... : xn+1) and (y1 : ... : yn+1) ∈
CPn, where x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1) ∈ Cn+1\{0}, is
equal to

arccos
|〈x, y〉|

√
〈x, x〉〈y, y〉

.

The Fubini–Study metric is a Hodge metric. The space CPn endowed
with the Fubini–Study metric is called a Hermitian elliptic space (cf. Her-
mitian elliptic metric).

• Bergman metric
The Bergman metric is a Kähler metric on a bounded domain D ⊂

C
n defined by the line element

ds2 =
∑

i,j

∂2 ln K(z, z)
∂zi∂zj

dzidzj ,

where K(z, u) is the Bergman kernel function. The Bergman metric is in-
variant under all automorphisms of D; it is complete if D is homogeneous.
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For the unit disk Δ = {z ∈ C : |z| < 1} the Bergman metric coincides
with the Poincaré metric (cf. also Bergman p-metric in Chap. 13).

The Bergman kernel function is defined as follows. Consider a domain
D ⊂ C

n in which there exists analytic functions f �= 0 of class L2(D)
with respect to the Lebesgue measure. The set of these functions forms
the Hilbert space L2,a(D) ⊂ L2(D) with an orthonormal basis (φi)i.
The Bergman kernel function in the domain D × D ⊂ C

2n is defined by
KD(z, u) = K(z, u) =

∑∞
i=1 φi(z)φi(u).

• Hyper-Kähler metric
A hyper-Kähler metric is a Riemannian metric g on a 4n-dimensional
Riemannian manifold which is compatible with a quaternionic structure
on the tangent bundle of the manifold.

Thus, the metric g is Kählerian with respect to the three Kähler struc-
tures (I, wI , g), (J,wJ , g), and (K,wK , g), corresponding to the complex
structures, as endomorphisms of the tangent bundle which satisfy the
quaternionic relationship

I2 = J2 = K2 = IJK = −JIK = −1.

A hyper-Kähler manifold is a Riemannian manifold equipped with a
hyper-Kähler metric. It is a special case of a Kähler manifold. All hyper-
Kähler manifolds are Ricci-flat. Compact four-dimensional hyper-Kähler
manifolds are called K3-surfaces; they are studied in Algebraic Geometry.

• Calabi metric
The Calabi metric is a hyper-Kähler metric on the cotangent bundle
T ∗(CPn+1) of a complex projective space CPn+1. For n = 4k + 4, this
metric can be given by the line element

ds2 =
dr2

1− r−4
+

1
4
r2(1− r−4)λ2 + r2(ν2

1 + ν2
2)+

+
1
2
(r2 − 1)(σ2

1α + σ2
2α) +

1
2
(r2 + 1)(Σ2

1α + Σ2
2α),

where (λ, ν1, ν2, σ1α, σ2α, Σ1α, Σ2α), with α running over k values, are left-
invariant one-forms (i.e., linear real-valued functions) on the coset SU(k+
2)/U(k). Here U(k) is the unitary group consisting of complex k×k unitary
matrices, and SU(k) is the special unitary group of complex k× k unitary
matrices with determinant 1.

For k = 0, the Calabi metric coincides with the Eguchi–Hanson
metric.

• Stenzel metric
The Stenzel metric is a hyper-Kähler metric on the cotangent bundle
T ∗(Sn+1) of a sphere Sn+1.

• SO(3)-invariant metric
An SO(3)-invariant metric is a four-dimensional hyper-Kähler metric
with the line element given, in the Bianchi-IX formalism, by
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ds2 = f2(t)dt2 + a2(t)σ2
1 + b2(t)σ2

2 + c2(t)σ2
3 ,

where the invariant one-forms σ1, σ2, σ3 of SO(3) are expressed in terms of
Euler angles θ, ψ, φ as σ1 = 1

2 (sin ψdθ− sin θ cos ψdφ), σ2 = − 1
2 (cos ψdθ+

sin θ sinψdφ), σ3 = 1
2 (dψ+cos θdφ), and the normalization has been chosen

so that σi ∧ σj = 1
2εijkdσk. The coordinate t of the metric can always be

chosen so that f(t) = 1
2abc, using a suitable reparametrization.

• Atiyah–Hitchin metric
The Atiyah–Hitchin metric is a complete regular SO(3)-invariant
metric with the line element

ds2 =
1
4
a2b2c2

(
dk

k(1− k2)K2

)2

+ a2(k)σ2
1 + b2(k)σ2

2 + c2(k)σ2
3 ,

where a, b, c are functions of k, ab = −K(k)(E(k) − K(k)), bc = −K(k)
(E(k)−(1−k2)K(k)), ac = −K(k)E(k), and K(k), E(k) are the complete
elliptic integrals, respectively, of the first and second kind, with 0 < k < 1.
The coordinate t is given by the change of variables t = −2K(1−k2)

πK(k) up to
an additive constant.

• Taub-NUT metric
The Taub-NUT metric is a complete regular SO(3)-invariant met-
ric with the line element

ds2 =
1
4

r + m

r −m
dr2 + (r2 −m2)(σ2

1 + σ2
2) + 4m2 r −m

r + m
σ2

3 ,

where m is the relevant moduli parameter, and the coordinate r is related
to t by r = m + 1

2mt .
• Eguchi–Hanson metric

The Eguchi–Hanson metric is a complete regular SO(3)-invariant
metric with the line element

ds2 =
dr2

1−
(

a
r

)4 + r2

(

σ2
1 + σ2

2 +
(

1−
(a

r

)4
)

σ2
3

)

,

where a is the moduli parameter, and the coordinate r is related to t by
r2 = a2 coth(a2t).

The Eguchi–Hanson metric coincides with the four-dimensional Calabi
metric.

• Complex Finsler metric
A complex Finsler metric is an upper semi-continuous function F :
T (Mn) → R+ on a complex manifold Mn with the analytic tangent bundle
T (Mn) satisfying the following conditions:

1. F 2 is smooth on M̌n, where M̌n is the complement in T (Mn) of the
zero section.
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2. F (p, x) > 0 for all p ∈ Mn and x ∈ M̌n
p .

3. F (p, λx) = |λ|F (p, x) for all p ∈ Mn, x ∈ Tp(Mn), and λ ∈ C.

The function G = F 2 can be locally expressed in terms of the coordinates
(p1, . . . , pn, x1, . . . , xn); the Finsler metric tensor of the complex Finsler
metric is given by the matrix((Gij)) = ((1

2
∂2F 2

∂xi∂xj
)), called the Levi matrix.

If the matrix ((Gij)) is positive-definite, the complex Finsler metric F is
called strongly pseudo-convex.

• Distance-decreasing semi-metric
Let d be a semi-metric which can be defined on some class M of com-
plex manifolds containing the unit disk Δ = {z ∈ C : |z| < 1}. It is
called distance-decreasing for all analytic mappings if, for any ana-
lytic mapping f : M1 → M2 with M1,M2 ∈ M, the inequality d(f(p),
f(q)) ≤ d(p, q) holds for all p, q ∈M1 .

Cf. Kobayashi metric, Carathéodory metric and Wu metric.
• Kobayashi metric

Let D be a domain in C
n. Let O(Δ,D) be the set of all analytic mappings

f : Δ → D, where Δ = {z ∈ C : |z| < 1} is the unit disk.
The Kobayashi metric (or Kobayashi–Royden metric) FK is a

complex Finsler metric defined by

FK(z, u) = inf{α > 0 : ∃f ∈ O(Δ,D), f(0) = z, αf
′
(0) = u}

for all z ∈ D and u ∈ C
n. It is a generalization of the Poincaré metric

to higher-dimensional domains. Then FK(z, u) ≥ FC(z, u), where FC is
the Carathéodory metric. If D is convex, and d(z, u) = inf{λ : z + u

α ∈
D if |α| > λ}, then d(z,u)

2 ≤ FK(z, u) = FC(z, u) ≤ d(z, u).
Given a complex manifold Mn, the Kobayashi semi-metric FK is

defined by

FK(p, u) = inf{α > 0 : ∃f ∈ O(Δ,Mn), f(0) = p, αf
′
(0) = u}

for all p ∈ Mn and u ∈ Tp(Mn). FK(p, u) is a semi-norm of the tangent
vector u, called the Kobayashi semi-norm. FK is a metric if Mn is taut,
i.e., O(Δ,Mn) is a normal family.

The Kobayashi semi-metric is an infinitesimal form of the so-called
Kobayashi semi-distance (or Kobayashi pseudo-distance) KMn on Mn,
defined as follows. Given p, q ∈ Mn, a chain of disks α from p to q
is a collection of points p = p0, p1, . . . , pk = q of Mn, pairs of points
a1, b1; . . . ; ak, bk of the unit disk Δ, and analytic mappings f1, . . . fk from
Δ into Mn, such that fj(aj) = pj−1 and fj(bj) = pj for all j. The length
l(α) of a chain α is the sum dP (a1, b1) + · · ·+ dP (ak, bk), where dP is the
Poincaré metric. The Kobayashi semi-metric KMn on Mn is defined by

KMn(p, q) = inf
α

l(α),
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where the infimum is taken over all lengths l(α) of chains of disks α from
p to q.

The Kobayashi semi-distance is distance-decreasing for all analytic
mappings. It is the greatest semi-metric among all semi-metrics on Mn,
that are distance-decreasing for all analytic mappings from Δ into Mn,
where distances on Δ are measured in the Poincaré metric. KΔ is the
Poincaré metric, and KCn ≡ 0.

A manifold is called Kobayashi hyperbolic if the Kobayashi semi-distance
is a metric on it. In fact, a manifold is Kobayashi hyperbolic if and only if
it is biholomorphic to a bounded homogeneous domain.

• Kobayashi–Busemann metric
Given a complex manifold Mn, the Kobayashi–Busemann semi-
metric on Mn is the double dual of the Kobayashi semi-metric. It is
a metric if Mn is taut.

• Carathéodory metric
Let D be a domain in C

n. Let O(D,Δ) be the set of all analytic mappings
f : D → Δ, where Δ = {z ∈ C : |z| < 1} is the unit disk.

The Carathéodory metric FC is a complex Finsler metric de-
fined by

FC(z, u) = sup{|f ′
(z)u| : f ∈ O(D,Δ)}

for any z ∈ D and u ∈ C
n. It is a generalization of the Poincaré metric to

higher-dimensional domains. Then FC(z, u) ≤ FK(z, u), where FK is the
Kobayashi metric. If D is convex and d(z, u) = inf{λ : z + u

α ∈ D if |α| >
λ}, then d(z,u)

2 ≤ FC(z, u) = FK(z, u) ≤ d(z, u).
Given a complex manifold Mn, the Carathéodory semi-metric FC

is defined by

FC(p, u) = sup{|f ′
(p)u| : f ∈ O(Mn,Δ)}

for all p ∈ Mn and u ∈ Tp(Mn). FC is a metric if Mn is taut.
The Carathéodory semi-distance (or Carathéodory pseudo-distance)

CMn is a semi-metric on a complex manifold Mn, defined by

CMn(p, q) = sup{dP (f(p), f(q)) : f ∈ O(Mn,Δ)},

where dP is the Poincaré metric. In general, the integrated semi-
metric of the infinitesimal Carathéodory semi-metric is internal for
the Carathéodory semi-distance, but does not coincides with it.

The Carathéodory semi-distance is distance-decreasing for all an-
alytic mappings. It is the smallest distance-decreasing semi-metric. CΔ

coincides with the Poincaré metric, and CCn ≡ 0.
• Azukawa metric

Let D be a domain in C
n. Let gD(z, u) = sup{f(u) : f ∈ KD(z)},

where KD(z) is the set of all logarithmically plurisubharmonic functions
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f : D → [0, 1) such that there exist M, r > 0 with f(u) ≤ M ||u − z||2 for
all u ∈ B(z, r) ⊂ D; here ||.||2 is the l2-norm on C

n, and B(z, r) = {x ∈
C

n : ||z − x||2 < r}.
The Azukawa metric (in general, a semi-metric) FA is a complex

Finsler metric defined by

FA(z, u) = lim
λ→0

sup
1
|λ|gD(z, z + λu)

for all z ∈ D and u ∈ C
n. It “lies between” the Carathéodory metric

FC and the Kobayashi metric FK : FC(z, u) ≤ FA(z, u) ≤ FK(z, u) for
all z ∈ D and u ∈ C

n. If D is convex, then all these metrics coincide.
The Azukawa metric is an infinitesimal form of the so-called Azukawa

semi-distance.
• Sibony semi-metric

Let D be a domain in C
n. Let KD(z) be the set of all logarithmically

plurisubharmonic functions f : D → [0, 1) such that there exist M, r > 0
with f(u) ≤ M ||u− z||2 for all u ∈ B(z, r) ⊂ D; here ||.||2 is the l2-norm
on C

n, and B(z, r) = {x ∈ C
n : ||z − x||2 < r}. Let C2

loc(z) be the set of
all functions of class C2 on some open neighborhood of z.

The Sibony semi-metric FS is a complex Finsler semi-metric
defined by

FS(z, u) = sup
f∈KD(z)∩C2

loc(z)

√
√
√
√
∑

i,j

∂2f

∂zi∂zj
(z)uiuj

for all z ∈ D and u ∈ C
n. When it is a metric, it “lies between” the

Carathéodory metric FC and the Kobayashi metric FK : FC(z, u) ≤
FS(z, u) ≤ FA(z, u) ≤ FK(z, u) for all z ∈ D and u ∈ C

n, where FA is the
Azukawa metric. If D is convex, then all these metrics coincide.

The Sibony semi-metric is an infinitesimal form of the so-called Sibony
semi-distance.

• Wu metric
The Wu metric WMn is an upper-semi-continuous Hermitian metric on
a complex manifold Mn, that is distance-decreasing for all analytic
mappings. In fact, for two n-dimensional complex manifolds Mn

1 and Mn
2 ,

the inequality WMn
2
(f(p), f(q)) ≤ √nWMn

1
(p, q) holds for all p, q ∈Mn

1 .
Invariant metrics, including the Carathéodory, Kobayashi, Bergman,

and Kähler–Einstein metrics, play an important role in Complex Function
Theory and Convex Geometry. The Carathéodory and Kobayashi met-
rics are used mostly because of the distance-decreasing property. But they
are almost never Hermitian. On the other hand, the Bergman metric and
the Kähler–Einstein metric are Hermitian (in fact, Kählerian), but the
distance-decreasing property, in general, fails for them.
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• Teichmüller metric
A Riemann surface R is a one-dimensional complex manifold. Two
Riemann surfaces R1 and R2 are called conformally equivalent if there ex-
ists a bijective analytic function (i.e., a conformal homeomorphism) from
R1 into R2. More precisely, consider a fixed closed Riemann surface R0 of
a given genus g ≥ 2. For a closed Riemann surface R of genus g, construct
a pair (R, f), where f : R0 → R is a homeomorphism. Two pairs (R, f)
and (R1, f1) are called conformally equivalent if there exists a conformal
homeomorphism h : R → R1 such that the mapping (f1)−1 ·h·f : R0 → R0

is homotopic to the identity.
An abstract Riemann surface R∗ = (R, f)∗ is the equivalence class of

all Riemann surfaces, conformally equivalent to R. The set of all equiva-
lence classes is called the Teichmüller space T (R0) of the surface R0. For
closed surfaces R0 of given genus g, the spaces T (R0) are isometrically
isomorphic, and one can speak of the Teichmüller space Tg of surfaces of
genus g. Tg is a complex manifold. If R0 is obtained from a compact sur-
face of genus g ≥ 2 by removing n points, then the complex dimension of
Tg is 3g − 3 + n.

The Teichmüller metric is a metric on Tg defined by

1
2

inf
h

ln K(h)

for any R∗
1, R

∗
2 ∈ Tg, where h : R1 → R2 is a quasi-conformal homeomor-

phism, homotopic to the identity, and K(h) is the maximal dilation of h.
In fact, there exists a unique extremal mapping, called the Teichmüller
mapping, which minimizes the maximal dilation of all such h, and the dis-
tance between R∗

1 and R∗
2 is equal to 1

2 ln K, where the constant K is the
dilation of the Teichmüller mapping.

In terms of the extremal length extR∗(γ), the distance between R∗
1 and

R∗
2 is

1
2

ln sup
γ

extR∗
1
(γ)

extR∗
2
(γ)

,

where the supremum is taken over all simple closed curves on R0.
The Teichmüller space Tg, with the Teichmüller metric on it, is a

geodesic metric space (moreover, a straight G-space) but it is nei-
ther Gromov hyperbolic, nor a globally non-positively Busemann
curved metric space.

The Thurston quasi-metric on the Teichmüller space Tg is defined by

1
2

inf
h

ln ||h||Lip
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for any R∗
1, R

∗
2 ∈ Tg, where h : R1 → R2 is a quasi-conformal homeo-

morphism, homotopic to the identity, and ||.||Lip is the Lipschitz norm
on the set of all injective functions f : X → Y defined by ||f ||Lip =
supx,y∈X,x	=y

dY (f(x),f(y))
dX(x,y) .

The moduli space Rg of conformal classes of Riemann surfaces of genus
g is obtained by factorization of Tg by some countable group of auto-
morphisms of it, called the modular group. Examples of metrics related
to moduli and Teichmüller spaces are, besides the Teichmüller metric,
the Weil–Petersson metric, Quillen metric, Carathéodory met-
ric, Kobayashi metric, Bergman metric, Cheng-Yau-Mok metric,
McMullen metric, asymptotic Poincaré metric, Ricci metric, perturbed
Ricci metric, VHS-metric.

• Weil–Petersson metric
The Weil–Petersson metric is a Kähler metric on the Teichmüller
space Tg,n of abstract Riemann surfaces of genus g with n punctures and
negative Euler characteristic.

The Weil–Peterson metric is Gromov hyperbolic if and only if
(Brock and Farb 2006) the complex dimension 3g − 3 + n of Tg,n is at
most 2.

• Gibbons–Manton metric
The Gibbons–Manton metric is a 4n-dimensional hyper-Kähler met-
ric on the moduli space of n-monopoles, admitted an isometric action of
the n-dimensional torus Tn. It can be described also as a hyper-Kähler
quotient of a flat quaternionic vector space.

• Zamolodchikov metric
The Zamolodchikov metric is a metric on the moduli space of two-
dimensional conformal field theories.

• Metrics on determinant lines
Let Mn be an n-dimensional compact smooth manifold, and let F be a
flat vector bundle over Mn. Let H•(Mn, F ) = ⊕n

i=0H
i(Mn, F ) be the de

Rham cohomology of Mn with coefficients in F . Given an n-dimensional
vector space V , the determinant line det V of V is defined as the top
exterior power of V , i.e., det V = ∧nV . Given a finite-dimensional
graded vector space V = ⊕n

i=0Vi, the determinant line of V is defined
as the tensor product det V = ⊗n

i=0(detVi)(−1)i

. Thus, the determi-
nant line detH•(Mn, F ) of the cohomology H•(Mn, F ) can be written
as detH•(Mn, F ) = ⊗n

i=0(detHi(Mn, F ))(−1)i

.
The Reidemeister metric is a metric on detH•(Mn, F ), defined by a

given smooth triangulation of Mn, and the classical Reidemeister–Franz
torsion.

Let gF and gT (Mn) be smooth metrics on the vector bundle F and
tangent bundle T (Mn), respectively. These metrics induce a canoni-
cal L2-metric hH•(Mn,F ) on H•(Mn, F ). The Ray–Singler metric
on detH•(Mn, F ) is defined as the product of the metric induced on
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detH•(Mn, F ) by hH•(Mn,F ) with the Ray–Singler analytic torsion. The
Milnor metric on detH•(Mn, F ) can be defined in a similar manner us-
ing the Milnor analytic torsion. If gF is flat, the above two metrics coincide
with the Reidemeister metric. Using a co-Euler structure, one can define
a modified Ray–Singler metric on detH•(Mn, F ).

The Poincaré–Reidemeister metric is a metric on the cohomo-
logical determinant line detH•(Mn, F ) of a closed connected oriented
odd-dimensional manifold Mn. It can be constructed using a combination
of the Reidemeister torsion with the Poincaré duality. Equivalently, one can
define the Poincaré–Reidemeister scalar product on detH•(Mn, F ) which
completely determines the Poincaré–Reidemeister metric but contains an
additional sign or phase information.

The Quillen metric is a metric on the inverse of the cohomological de-
terminant line of a compact Hermitian one-dimensional complex manifold.
It can be defined as the product of the L2-metric with the Ray–Singler
analytic torsion.

• Kähler supermetric
The Kähler supermetric is a generalization of the Kähler metric for
the case of a supermanifold. A supermanifold is a generalization of the
usual manifold with fermonic as well as bosonic coordinates. The bosonic
coordinates are ordinary numbers, whereas the fermonic coordinates are
Grassmann numbers.

• Hofer metric
A symplectic manifold (Mn, w), n = 2k, is a smooth even-dimensional
manifold Mn equipped with a symplectic form, i.e., a closed non-
degenerate 2-form, w.

A Lagrangian manifold is a k-dimensional smooth submanifold Lk of
a symplectic manifold (Mn, w), n = 2k, such that the form w vanishes
identically on Lk, i.e., for any p ∈ Lk and any x, y ∈ Tp(Lk), one has
w(x, y) = 0.

Let L(Mn,Δ) be the set of all Lagrangian submanifolds of a closed sym-
plectic manifold (Mn, w), diffeomorphic to a given Lagrangian submanifold
Δ. A smooth family α = {Lt}t, t ∈ [0, 1], of Lagrangian submanifolds
Lt ∈ L(Mn,Δ) is called an exact path connecting L0 and L1, if there ex-
ists a smooth mapping Ψ : Δ× [0, 1] → Mn such that, for every t ∈ [0, 1],
one has Ψ(Δ×{t}) = Lt, and Ψ ∗w = dHt ∧ dt for some smooth function
H : Δ× [0, 1] → R. The Hofer length l(α) of an exact path α is defined by
l(α) =

∫ 1

0
{maxp∈Δ H(p, t)−minp∈Δ H(p, t)}dt.

The Hofer metric on the set L(Mn,Δ) is defined by

inf
α

l(α)

for any L0, L1 ∈ L(Mn,Δ), where the infimum is taken over all exact
paths on L(Mn,Δ), that connect L0 and L1.
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The Hofer metric can be defined in similar way on the group Ham(Mn, w)
of Hamiltonian diffeomorphisms of a closed symplectic manifold (Mn, w),
whose elements are time-one mappings of Hamiltonian flows φH

t : it is
infα l(α), where the infimum is taken over all smooth paths α = {φH

t },
t ∈ [0, 1], connecting φ and ψ.

• Sasakian metric
A Sasakian metric is a metric of positive scalar curvature on a contact
manifold, naturally adapted to the contact structure.

A contact manifold equipped with a Sasakian metric is called a Sasakian
space, and is an odd-dimensional analog of Kähler manifolds.

• Cartan metric
A Killing form (or Cartan–Killing form) on a finite-dimensional Lie algebra
Ω over a field F is a symmetric bilinear form

B(x, y) = Tr(adx · ady),

where Tr denotes the trace of a linear operator, and adx is the image of
x under the adjoint representation of Ω, i.e., the linear operator on the
vector space Ω defined by the rule z → [x, z], where [, ] is the Lie bracket.

Let e1, . . . en be a basis for the Lie algebra Ω, and [ei, ej ] =
∑n

k=1 γk
ijek,

where γk
ij are corresponding structure constants. Then the Killing form is

given by

B(xi, xj) = gij =
n∑

k,l=1

γk
ilγ

l
ik.

In Theoretical Physics, the metric tensor ((gij)) is called a Cartan
metric.



Chapter 8
Distances on Surfaces and Knots

8.1 General surface metrics

A surface is a real two-dimensional manifold M2, i.e., a Hausdorff space,
each point of which has a neighborhood which is homeomorphic to a plane
E

2, or a closed half-plane (cf. Chap. 7).
A compact orientable surface is called closed if it has no boundary, and it is

called a surface with boundary, otherwise. There are compact non-orientable
surfaces (closed or with boundary); the simplest such surface is the Möbius
strip. Non-compact surfaces without boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with,
say, g (cylindric) handles, or a sphere with, say, g cross-caps (i.e., caps with
a twist like Möbius strip in them). In both cases the number g is called the
genus of the surface. In the case of handles, the surface is orientable; it is
called a torus (doughnut), double torus, and triple torus for g = 1, 2 and
3, respectively. In the case of cross-caps, the surface is non-orientable; it is
called the real projective plane, Klein bottle, and Dyck’s surface for g = 1, 2
and 3, respectively. The genus is the maximal number of disjoint simple closed
curves which can be cut from a surface without disconnecting it (the Jordan
curve theorem for surfaces).

The Euler–Poincaré characteristic of a surface is (the same for all polyhe-
dral decompositions of a given surface) the number χ = v− e + f , where v, e
and f are, respectively, the number of vertices, edges and faces of the decom-
position. Then χ = 2 − 2g if the surface is orientable, and χ = 2 − g if not.
Every surface with boundary is homeomorphic to a sphere with an appropri-
ate number of (disjoint) holes (i.e., what remains if an open disk is removed)
and handles or cross-caps. If h is the number of holes, then χ = 2 − 2g − h
holds if the surface is orientable, and χ = 2− g − h if not.

The connectivity number of a surface is the largest number of closed cuts
that can be made on the surface without separating it into two or more parts.
This number is equal to 3−χ for closed surfaces, and 2−χ for surfaces with
boundaries. A surface with connectivity number 1, 2 and 3 is called, respec-
tively, simply, doubly and triply connected. A sphere is simply connected,
while a torus is triply connected.

M.M. Deza and E. Deza, Encyclopedia of Distances, 161
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A surface can be considered as a metric space with its own intrinsic
metric, or as a figure in space. A surface in E

3 is called complete if it is a
complete metric space with respect to its intrinsic metric.

A surface is called differentiable, regular, or analytic, respectively, if in a
neighborhood of each of its points it can be given by an expression

r = r(u, v) = r(x1(u, v), x2(u, v), x3(u, v)),

where the position vector r = r(u, v) is a differentiable, regular (i.e., a suf-
ficient number of times differentiable), or real analytic, respectively, vector
function satisfying the condition ru × rv �= 0.

Any regular surface has the intrinsic metric with the line element (or first
fundamental form)

ds2 = dr2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2,

where E(u, v) = 〈ru, ru〉, F (u, v) = 〈ru, rv〉, G(u, v) = 〈rv, rv〉. The length of
a curve, defined on the surface by the equations u = u(t), v = v(t), t ∈ [0, 1],
is computed by ∫ 1

0

√
Eu′2 + 2Fu′v′ + Gv′2dt,

and the distance between any points p, q ∈ M2 is defined as the infimum of
the lengths of all curves on M2, connecting p and q. A Riemannian metric
is a generalization of the first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature,
and mean curvature. To compute these curvatures at a given point of the
surface, consider the intersection of the surface with a plane, containing a
fixed normal vector, i.e., a vector which is perpendicular to the surface at this
point. This intersection is a plane curve. The curvature k of this plane curve
is called the normal curvature of the surface at the given point. If we vary
the plane, the normal curvature k will change, and there are two extremal
values, the maximal curvature k1, and the minimal curvature k2, called the
principal curvatures of the surface. A curvature is taken to be positive if the
curve turns in the same direction as the surface’s chosen normal, otherwise
it is taken to be negative.

The Gaussian curvature is K = k1k2 (it can be given entirely in terms of
the first fundamental form). The mean curvature is H = 1

2 (k1 + k2).
A minimal surface is a surface with mean curvature zero or, equivalently,

a surface of minimum area subject to constraints on the location of its
boundary.

A Riemann surface is a one-dimensional complex manifold, or a two-
dimensional real manifold with a complex structure, i.e., in which the local
coordinates in neighborhoods of points are related by complex analytic func-
tions. It can be thought of as a deformed version of the complex plane. All



8.1 General surface metrics 163

Riemann surfaces are orientable. Closed Riemann surfaces are geometrical
models of complex algebraic curves. Every connected Riemann surface can be
turned into a complete two-dimensional Riemannian manifold with constant
curvature −1, 0, or 1. The Riemann surfaces with curvature −1 are called
hyperbolic, and the unit disk Δ = {z ∈ C : |z| < 1} is the canonical example.
The Riemann surfaces with curvature 0 are called parabolic, and C is a typical
example. The Riemann surfaces with curvature 1 are called elliptic, and the
Riemann sphere C ∪ {∞} is a typical example.

• Regular metric
The intrinsic metric of a surface is regular if it can be specified by the
line element

ds2 = Edu2 + 2Fdudv + Gdv2,

where the coefficients of the form ds2 are regular functions.
Any regular surface, given by an expression r = r(u, v), has a regular

metric with the line element ds2, where E(u, v) = 〈ru, ru〉, F (u, v) =
〈ru, rv〉, G(u, v) = 〈rv, rv〉.

• Analytic metric
The intrinsic metric on a surface is analytic if it can be specified by the
line element

ds2 = Edu2 + 2Fdudv + Gdv2,

where the coefficients of the form ds2 are real analytic functions.
Any analytic surface, given by an expression r = r(u, v), has an analytic

metric with the line element ds2, where E(u, v) = 〈ru, ru〉, F (u, v) =
〈ru, rv〉, G(u, v) = 〈rv, rv〉.

• Metric of positive curvature
A metric of positive curvature is the intrinsic metric on a surface of
positive curvature, i.e., a surface in E

3 that has positive Gaussian curvature
at every point.

• Metric of negative curvature
A metric of negative curvature is the intrinsic metric on a surface
of negative curvature, i.e., a surface in E

3 that has negative Gaussian
curvature at every point.

A surface of negative curvature locally has a saddle-like structure. The
intrinsic geometry of a surface of constant negative curvature (in par-
ticular, of a pseudo-sphere) locally coincides with the geometry of the
Lobachevsky plane. There exists no surface in E

3 whose intrinsic geometry
coincides completely with the geometry of the Lobachevsky plane (i.e., a
complete regular surface of constant negative curvature).

• Metric of non-positive curvature
A metric of non-positive curvature is the intrinsic metric on a saddle-
like surface. A saddle-like surface is a generalization of a surface of negative
curvature: a twice continuously-differentiable surface is a saddle-like sur-
face if and only if at each point of the surface its Gaussian curvature is
non-positive.



164 8 Distances on Surfaces and Knots

These surfaces can be seen as antipodes of convex surfaces, but they do
not form such a natural class of surfaces as do convex surfaces.

• Metric of non-negative curvature
A metric of non-negative curvature is the intrinsic metric on a convex
surface.

A convex surface is a domain (i.e., a connected open set) on the boundary
of a convex body in E

3 (in some sense, it is an antipode of a saddle-like
surface).

The entire boundary of a convex body is called a complete convex sur-
face. If the body is finite (bounded), the complete convex surface is called
closed. Otherwise, it is called infinite (an infinite convex surface is home-
omorphic to a plane or to a circular cylinder).

Any convex surface M2 in E
3 is a surface of bounded curvature. The total

Gaussian curvature w(A) =
∫ ∫

A
K(x)dσ(x) of a set A ⊂ M2 is always

non-negative (here σ(.) is the area, and K(x) is the Gaussian curvature
of M2 at a point x), i.e., a convex surface can be seen as a surface of
non-negative curvature.

The intrinsic metric of a convex surface is a convex metric (not to be
confused with metric convexity from Chap. 1) in the sense of Surface
Theory, i.e., it displays the convexity condition: the sum of the angles of
any triangle whose sides are shortest curves is not less that π.

• Metric with alternating curvature
A metric with alternating curvature is the intrinsic metric on a surface
with alternating (positive or negative) Gaussian curvature.

• Flat metric
A flat metric is the intrinsic metric on a developable surface, i.e., a surface,
on which the Gaussian curvature is everywhere zero.

• Metric of bounded curvature
A metric of bounded curvature is the intrinsic metric ρ on a surface
of bounded curvature.

A surface M2 with an intrinsic metric ρ is called a surface of bounded
curvature if there exists a sequence of Riemannian metrics ρn, defined
on M2, such that for any compact set A ⊂ M2 one has ρn → ρ uniformly,
and the sequence |wn|(A) is bounded, where |w|n(A) =

∫ ∫
A
|K(x)|dσ(x)

is the total absolute curvature of the metric ρn (here K(x) is the Gaussian
curvature of M2 at a point x, and σ(.) is the area).

• Λ-metric
A Λ-metric (or metric of type Λ) is a complete metric on a surface with
curvature bounded from above by a negative constant.

A Λ-metric does not have embeddings into E
3. It is a generalization

of the classical result of Hilbert (1901): no complete regular surface of
constant negative curvature (i.e., a surface whose intrinsic geometry co-
incides completely with the geometry of the Lobachevsky plane) exists
in E

3.
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• (h,Δ)-metric
A (h,Δ)-metric is a metric on a surface with a slowly-changing negative
curvature.

A complete (h,Δ)-metric does not permit a regular isometric embed-
ding in three-dimensional Euclidean space (cf. Λ-metric).

• G-distance
A connected set G of points on a surface M2 is called a geodesic region
if, for each point x ∈ G, there exists a disk B(x, r) with center at x, such
that BG = G ∩B(x, r) has one of the following forms: BG = B(x, r) (x is
a regular interior point of G); BG is a semi-disk of B(x, r) (x is a regular
boundary point of G); BG is a sector of B(x, r) other than a semi-disk (x is
an angular point of G); BG consists of a finite number of sectors of B(x, r)
with no common points except x (a nodal point of G).

The G-distance between any x and y ∈ G is the greatest lower bound of
the lengths of all rectifiable curves connecting x and y ∈ G and completely
contained in G.

• Conformally invariant metric
Let R be a Riemann surface. A local parameter (or local uniformizing
parameter, local uniformizer) is a complex variable z considered as a con-
tinuous function zp0 = φp0(p) of a point p ∈ R which is defined everywhere
in some neighborhood (parametric neighborhood) V (p0) of a point p0 ∈ R
and which realizes a homeomorphic mapping (parametric mapping) of
V (p0) onto the disk (parametric disk) Δ(p0) = {z ∈ C : |z| < r(p0)},
where φp0(p0) = 0. Under a parametric mapping, any point function g(p),
defined in the parametric neighborhood V (p0), goes into a function of the
local parameter z: g(p) = g(φ−1

p0
(z)) = G(z).

A conformally invariant metric is a differential ρ(z)|dz| on the Rie-
mann surface R which is invariant with respect to the choice of the local
parameter z. Thus, to each local parameter z (z : U → C) a function
ρz : z(U)→ [0,∞] is associated such that, for any local parameters z1 and
z2, we have

ρz2(z2(p))
ρz1(z1(p))

=
∣
∣
∣
∣
dz1(p)
dz2(p)

∣
∣
∣
∣ for any p ∈ U1 ∩ U2.

Every linear differential λ(z)dz and every quadratic differential Q(z)dz2

induce conformally invariant metrics |λ(z)||dz| and |Q(z)|1/2||dz|, respec-
tively (cf. Q-metric).

• Q-metric
An Q-metric is a conformally invariant metric ρ(z)|dz| = |Q(z)|1/2

|dz| on a Riemann surface R, defined by a quadratic differential Q(z)dz2.
A quadratic differential Q(z)dz2 is a non-linear differential on a Rie-

mann surface R which is invariant with respect to the choice of the local
parameter z. Thus, to each local parameter z (z : U → C) a function
Qz : z(U) → C is associated such that, for any local parameters z1 and
z2, we have
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Qz2(z2(p))
Qz1(z1(p))

=
(

dz1(p)
dz2(p)

)2

for any p ∈ U1 ∩ U2.

• Extremal metric
An extremal metric is a conformally invariant metric in the modulus
problem for a family Γ of locally rectifiable curves on a Riemann surface
R which realizes the infimum in the definition of the modulus M(Γ).

Formally, let Γ be a family of locally rectifiable curves on a Riemann
surface R, let P be a non-empty class of conformally invariant metrics
ρ(z)|dz| on R such that ρ(z) is square-integrable in the z-plane for every
local parameter z, and the integrals

Aρ(R) =
∫ ∫

R

ρ2(z)dxdy and Lρ(Γ) = inf
γ∈Γ

∫

y

ρ(z)|dz|

are not simultaneously equal to 0 or ∞ (each of the above integrals is
understood as a Lebesgue integral). The modulus of the family of curves
Γ is defined by

M(Γ) = inf
ρ∈P

Aρ(R)
(Lρ(Γ))2

.

The extremal length of the family of curves Γ is equal to supρ∈P
(Lρ(Γ))2

Aρ(R) ,
i.e., is the reciprocal of M(Γ).

The modulus problem for Γ is defined as follows: let PL be the subclass of
P such that, for any ρ(z)|dz| ∈ PL and any γ ∈ Γ, one has

∫
γ

ρ(z)|dz| ≥ 1.
If PL �= ∅, then the modulus M(Γ) of the family Γ can be written as
M(Γ) = infρ∈PL

Aρ(R). Every metric from PL is called an admissible
metric for the modulus problem on Γ. If there exists ρ∗ for which

M(Γ) = inf
ρ∈PL

Aρ(R) = Aρ∗(R),

the metric ρ∗|dz| is called an extremal metric for the modulus problem
on Γ.

• Fréchet surface metric
Let (X, d) be a metric space, M2 a compact two-dimensional manifold, f a
continuous mapping f : M2 → X, called a parameterized surface, and σ :
M2 → M2 a homeomorphism of M2 onto itself. Two parameterized sur-
faces f1 and f2 are called equivalent if infσ maxp∈M2 d(f1(p), f2(σ(p))) = 0,
where the infimum is taken over all possible homeomorphisms σ. A class
f∗ of parameterized surfaces, equivalent to f , is called a Fréchet surface.
It is a generalization of the notion of a surface in Euclidean space to the
case of an arbitrary metric space (X, d).
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The Fréchet surface metric on the set of all Fréchet surfaces is
defined by

inf
σ

max
p∈M2

d(f1(p), f2(σ(p)))

for any Fréchet surfaces f∗
1 and f∗

2 , where the infimum is taken over all
possible homeomorphisms σ. Cf. the Fréchet metric in Chap. 1.

8.2 Intrinsic metrics on surfaces

In this section we list intrinsic metrics, given by their line elements (which, in
fact, are two-dimensional Riemannian metrics), for some selected surfaces.

• Quadric metric
A quadric (or quadratic surface, surface of second order) is a set of points in
E

3, whose coordinates in a Cartesian coordinate system satisfy an algebraic
equation of degree two. There are 17 classes of such surfaces. Among them
are: ellipsoids, one-sheet and two-sheet hyperboloids, elliptic paraboloids,
hyperbolic paraboloids, elliptic, hyperbolic and parabolic cylinders, and
conical surfaces.

For example, a cylinder can be given by the following parametric
equations:

x1(u, v) = a cos v, x2(u, v) = a sin v, x3(u, v) = u.

The intrinsic metric on it is given by the line element

ds2 = du2 + a2dv2.

An elliptic cone (i.e., a cone with elliptical cross-section) has the follow-
ing equations:

x1(u, v) = a
h− u

h
cos v, x2(u, v) = b

h− u

h
sin v, x3(u, v) = u,

where h is the height, a is the semi-major axis, and b is the semi-minor
axis of the cone. The intrinsic metric on it is given by the line element

ds2 =
h2 + a2 cos2 v + b2 sin2 v

h2
du2 + 2

(a2 − b2)(h− u) cos v sin v

h2
dudv+

+
(h− u)2(a2 sin2 v + b2 cos2 v)

h2
dv2.

• Sphere metric
A sphere is a quadric, given by the Cartesian equation (x1 − a)2 + (x2 −
b)2 + (x3 − c)2 = r2, where the point (a, b, c) is the center of the sphere,
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and r > 0 is the radius of the sphere. The sphere of radius r, centered at
the origin, can be given by the following parametric equations:

x1(θ, φ) = r sin θ cos φ, x2(θ, φ) = r sin θ sin φ, x3(θ, φ) = r cos θ,

where the azimuthal angle φ ∈ [0, 2π), and the polar angle θ ∈ [0, π].
The intrinsic metric on it (in fact, the two-dimensional spherical

metric) is given by the line element

ds2 = r2dθ2 + r2 sin2 θdφ2.

A sphere of radius r has constant positive Gaussian curvature equal to r.
• Ellipsoid metric

An ellipsoid is a quadric given by the Cartesian equation x2
1

a2 + x2
2

b2 + x2
3

c2 = 1,
or by the following parametric equations:

x1(θ, φ) = a cos φ sin θ, x2(θ, φ) = b sin φ sin θ, x3(θ, φ) = c cos θ,

where the azimuthal angle φ ∈ [0, 2π), and the polar angle θ ∈ [0, π].
The intrinsic metric on it is given by the line element

ds2 = (b2cos2φ + a2 sin2φ) sin2 θdφ2 + (b2 − a2) cos φ sinφ cos θ sin θdθdφ+

+((a2 cos2 φ + b2 sin2 φ) cos2 θ + c2 sin2 θ)dθ2.

• Spheroid metric
A spheroid is an ellipsoid having two axes of equal length. It is also a
rotation surface, given by the following parametric equations:

x1(u, v) = a sin v cos u, x2(u, v) = a sin v sinu, x3(u, v) = c cos v,

where 0 ≤ u < 2π, and 0 ≤ v ≤ π.
The intrinsic metric on it is given by the line element

ds2 = a2 sin2 vdu2 +
1
2
(a2 + c2 + (a2 − c2) cos(2v))dv2.

• Hyperboloid metric
A hyperboloid is a quadric which may be one- or two-sheeted. The one-
sheeted hyperboloid is a surface of revolution obtained by rotating a
hyperbola about the perpendicular bisector to the line between the foci,
while the two-sheeted hyperboloid is a surface of revolution obtained by
rotating a hyperbola about the line joining the foci. The one-sheeted cir-
cular hyperboloid, oriented along the x3-axis, is given by the Cartesian
equation x2

1
a2 + x2

2
a2 − x2

3
c2 = 1, or by the following parametric equations:

x1(u, v) = a
√

1 + u2 cos v, x2(u, v) = a
√

1 + u2 sin v, x3(u, v) = cu,
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where v ∈ [0, 2π). The intrinsic metric on it is given by the line element

ds2 =
(

c2 +
a2u2

u2 + 1

)

du2 + a2(u2 + 1)dv2.

• Rotation surface metric
A rotation surface (or surface of revolution) is a surface generated by
rotating a two-dimensional curve about an axis. It is given by the following
parametric equations:

x1(u, v) = φ(v) cos u, x2(u, v) = φ(v) sin u, x3(u, v) = ψ(v).

The intrinsic metric on it is given by the line element

ds2 = φ2du2 + (φ
′2 + ψ

′2)dv2.

• Pseudo-sphere metric
A pseudo-sphere is a half of the rotation surface generated by rotating
a tractrix about its asymptote. It is given by the following parametric
equations:

x1(u, v) = sechu cos v, x2(u, v) = sechu sin v, x3(u, v) = u− tanh u,

where u ≥ 0, and 0 ≤ v < 2π. The intrinsic metric on it is given by the
line element

ds2 = tanh2 udu2 + sech2udv2.

The pseudo-sphere has constant negative Gaussian curvature equal to −1,
and in this sense is an analog of the sphere which has constant positive
Gaussian curvature.

• Torus metric
A torus is a surface having genus one. A torus azimuthally symmetric about
the x3-axis is given by the Cartesian equation (c−

√
x2

1 + x2
2)

2 + x2
3 = a2,

or by the following parametric equations:

x1(u, v) = (c + a cos v) cos u, x2(u, v) = (c + a cos v) sin u, x3(u, v) = a sin v,

where c > a, and u, v ∈ [0, 2π).
The intrinsic metric on it is given by the line element

ds2 = (c + a cos v)2du2 + a2dv2.

• Helical surface metric
A helical surface (or surface of screw motion) is a surface described by a
plane curve γ which, while rotating around an axis at a uniform rate, also



170 8 Distances on Surfaces and Knots

advances along that axis at a uniform rate. If γ is located in the plane
of the axis of rotation x3 and is defined by the equation x3 = f(u), the
position vector of the helical surface is

r = (u cos v, u sin v, f(u) = hv), h = const,

and the intrinsic metric on it is given by the line element

ds2 = (1 + f
′2)du2 + 2hf

′
dudv + (u2 + h2)dv2.

If f = const, one has a helicoid; if h = 0, one has a rotation surface.
• Catalan surface metric

The Catalan surface is a minimal surface, given by the following equations:

x1(u, v) = u− sin u cosh v, x2(u, v) = 1− cos u cosh v,

x3(u, v) = 4 sin
(

u
2

)
sinh

(
v
2

)
.

The intrinsic metric on it is given by the line element

ds2 = 2 cosh2
(v

2

)
(cosh v − cos u)du2 + 2 cosh2(

v

2
) (cosh v − cos u) dv2.

• Monkey saddle metric
The monkey saddle is a surface, given by the Cartesian equation x3 =
x1(x2

1 − 3x2
2), or by the following parametric equations:

x1(u, v) = u, x2(u, v) = v, x3(u, v) = u3 − 3uv2.

This is a surface which a monkey can straddle with both legs and his tail.
The intrinsic metric on it is given by the line element

ds2 = (1 + (su2 − 3v2)2)du2 − 2(18uv(u2 − v2))dudv + (1 + 36u2v2)dv2).

8.3 Distances on knots

A knot is a closed, non-self-intersecting curve that is embedded in S3. The
trivial knot (or unknot) O is a closed loop that is not knotted. A knot can be
generalized to a link which is a set of disjoint knots. Every link has its Seifert
surface, i.e., a compact oriented surface with the given link as boundary.

Two knots (links) are called equivalent if one can be smoothly deformed
into another. Formally, a link is defined as a smooth one-dimensional subman-
ifold of the 3-sphere S3; a knot is a link consisting of one component; two
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links L1 and L2 are called equivalent if there exists an orientation-preserving
homeomorphism f : S3 → S3 such that f(L1) = L2.

All the information about a knot can be described using a knot diagram.
It is a projection of a knot onto a plane such that no more than two points
of the knot are projected to the same point on the plane, and at each such
point it is indicated which strand is closest to the plane, usually by erasing
part of the lower strand. Two different knot diagrams may both represent
the same knot. Much of Knot Theory is devoted to telling when two knot
diagrams represent the same knot.

An unknotting operation is an operation which changes the overcrossing
and the undercrossing at a double point of a given knot diagram. The unknot-
ting number of a knot K is the minimum number of unknotting operations
needed to deform a diagram of K into that of the trivial knot, where the
minimum is taken over all diagrams of K. Roughly, the unknotting number
is the smallest number of times a knot K must be passed through itself to
untie it.

An �-unknotting operation in a diagram of a knot K is an analog of the
unknotting operation for a �-part of the diagram consisting of two pairs of par-
allel strands with one of the pair overcrossing another. Thus, an �-unknotting
operation changes the overcrossing and the undercrossing at each vertex of
obtained quadrangle.

• Gordian distance
The Gordian distance is a metric on the set of all knots defined, for
given knots K and K

′
, as the minimum number of unknotting operations

needed to deform a diagram of K into that of K
′
, where the minimum is

taken over all diagrams of K from which one can obtain diagrams of K
′
.

The unknotting number of K is equal to the Gordian distance between K
and the trivial knot O.

Let rK be the knot obtained from K by taking its mirror image, and
let −K be the knot with the reversed orientation. The positive reflec-
tion distance Ref+(K) is the Gordian distance between K and rK. The
negative reflection distance Ref−(K) is the Gordian distance between
K and −rK. The inversion distance Inv(K) is the Gordian distance
between K and −K.

The Gordian distance is the case k = 1 of the Ck-distance which is the
minimum number of Ck-moves needed to transform K into K

′
; Habiro

(1994) and Goussarov (1995), independently proved that, for k > 1, it
is finite if and only if both knots have the same Vassiliev invariants of
order less than k. A C1-move is a single crossing change, a C2-move (or
delta-move) is a simultaneous crossing change for three arcs forming a
triangle. C2- and C3-distances are called delta distance and clasp-pass
distance, respectively.

• �-Gordian distance
The �-Gordian distance (see, for example, [Mura85]) is a metric on the
set of all knots defined, for given knots K and K

′
, as the minimum number
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of �-unknotting operations needed to deform a diagram of K into that of
K

′
, where the minimum is taken over all diagrams of K from which one

can obtain diagrams of K
′
.

Let rK be the knot obtained from K by taking its mirror image, and let
−K be the knot with the reversed orientation. The positive �-reflection
distance Ref �

+(K) is the �-Gordian distance between K and rK. The
negative �-reflection distance Ref �

−(K) is the �-Gordian distance be-
tween K and −rK. The �-inversion distance Inv�(K) is the �-Gordian
distance between K and −K.

• Knot complement hyperbolic metric
The complement of a knot K (or a link L) is S3\K (or S3\L, respectively).

A knot (or, in general, a link) is called hyperbolic if its complement
supports a complete Riemannian metric of constant curvature −1. In this
case, the metric is called a knot (or link) complement hyperbolic
metric, and it is unique.

A knot is hyperbolic if and only if (Thurston 1978) it is not a satellite
knot (then it supports a complete locally homogeneous Riemannian metric)
and not a torus knot (does not lie on a trivially embedded torus in S3). The
complement of any non-trivial knot supports a complete non-positively
curved Riemannian metric.



Chapter 9
Distances on Convex Bodies, Cones,
and Simplicial Complexes

9.1 Distances on convex bodies

A convex body in the n-dimensional Euclidean space E
n is a compact convex

subset of E
n. It is called proper if it has non-empty interior. Let K denote

the space of all convex bodies in E
n, and let Kp be the subspace of all proper

convex bodies.
Any metric space (K, d) on K is called a metric space of convex bodies. Met-

ric spaces of convex bodies, in particular the metrization by the Hausdorff
metric, or by the symmetric difference metric, play a basic role in the
foundations of analysis in Convex Geometry (see, for example, [Grub93]).

For C,D ∈ K\{∅} the Minkowski addition and the Minkowski non-negative
scalar multiplication are defined by C + D = {x + y : x ∈ C, y ∈ D}, and
αC = {αx : x ∈ C}, α ≥ 0, respectively. The Abelian semi-group (K,+)
equipped with non-negative scalar multiplication operators can be considered
as a convex cone.

The support function hC : Sn−1 → R of C ∈ K is defined by hC(u) =
sup{〈u, x〉 : x ∈ C} for any u ∈ Sn−1, where Sn−1 is the (n− 1)-dimensional
unit sphere in E

n, and 〈, 〉 is the inner product in E
n.

Given a set X ⊂ E
n, its convex hull conv(X) is the minimal convex set

containing X.

• Area deviation
The area deviation (or template metric) is a metric on the set Kp in
E

2 (i.e., on the set of plane convex disks), defined by

A(C�D),

where A(.) is the area, and � is the symmetric difference. If C ⊂ D, then
it is equal to A(D)−A(C).

• Perimeter deviation
The perimeter deviation is a metric on Kp in E

2, defined by

2p(conv(C ∪D))− p(C)− p(D),
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where p(.) is the perimeter. In the case C ⊂ D, it is equal to p(D)− p(C).
• Mean width metric

The mean width metric is a metric on Kp in E
2, defined by

2W (conv(C ∪D))−W (C)−W (D),

where W (.) is the mean width: W (C) = p(C)/π, and p(.) is the perimeter.
• Pompeiu–Hausdorff–Blaschke metric

The Pompeiu–Hausdorff–Blaschke metric is a metric on K, de-
fined by

max{sup
x∈C

inf
y∈D

||x− y||2, sup
y∈D

inf
x∈C

||x− y||2},

where ||.||2 is the Euclidean norm on E
n.

In terms of support functions, using Minkowski addition, the metric is

sup
u∈Sn−1

|hC(u)− hD(u)| = ||hC − hD||∞ =

= inf{λ ≥ 0 : C ⊂ D + λB
n
,D ⊂ C + λB

n},
where B

n
is the unit ball of E

n.
This metric can be defined using any norm on R

n instead of the Eu-
clidean norm. It can be defined for the space of bounded closed subsets of
any metric space.

• Pompeiu–Eggleston metric
The Pompeiu–Eggleston metric is a metric on K, defined by

sup
x∈C

inf
y∈D

||x− y||2 + sup
y∈D

inf
x∈C

||x− y||2,

where ||.||2 is the Euclidean norm on E
n.

In terms of support functions, using Minkowski addition, the metric is

max{0, sup
u∈Sn−1

(hC(u)− hD(u))}+ max{0, sup
u∈Sn−1

(hD(u)− hC(u))} =

= inf{λ ≥ 0 : C ⊂ D + λB
n}+ inf{λ ≥ 0 : D ⊂ C + λB

n},
where B

n
is the unit ball of E

n.
This metric can be defined using any norm on R

n instead of the Eu-
clidean norm. It can be defined for the space of bounded closed subsets of
any metric space.

• McClure–Vitale metric
Given 1 ≤ p ≤ ∞, the McClure–Vitale metric is a metric on K, defined
by

(∫

Sn−1
|hC(u)− hD(u)|pdσ(u)

) 1
p

= ||hC − hD||p.
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• Florian metric
The Florian metric is a metric on K, defined by

∫

Sn−1
|hC(u)− hD(u)|dσ(u) = ||hC − hD||1.

It can be expressed in the form 2S(conv(C ∪ D)) − S(C) − S(D) for
n = 2 (cf. perimeter deviation); it can be expressed also in the form
nkn(2W (conv(C ∪ D)) − W (C) − W (D)) for n ≥ 2 (cf. mean width
metric).

Here S(.) is the surface area, kn is the volume of the unit ball B
n

of E
n,

and W (.) is the mean width: W (C) = 1
nkn

∫
Sn−1(hC(u) + hC(−u))dσ(u).

• Sobolev distance
The Sobolev distance is a metric on K, defined by

||hC − hD||w,

where ||.||w is the Sobolev 1-norm on the set GSn−1 of all real continuous
functions on the unit sphere Sn−1 of E

n.
The Sobolev 1-norm is defined by ||f ||w = 〈f, f〉1/2

w , where 〈, 〉w is an
inner product on GSn−1 , given by

〈f, g〉w =
∫

Sn−1
(fg +∇s(f, g))dw0, w0 =

1
n · kn

w,

∇s(f, g) = 〈gradsf, gradsg〉, 〈, 〉 is the inner product in E
n, and grads is

the gradient on Sn−1 (see [ArWe92]).
• Shephard metric

The Shephard metric is a metric on Kp, defined by

ln(1 + 2 inf{λ ≥ 0 : C ⊂ D + λ(D −D),D ⊂ C + λ(C − C)}).

• Nikodym metric
The Nikodym metric is a metric on Kp, defined by

V (C�D),

where V (.) is the volume (i.e., the Lebesgue n-dimensional measure), and
� is the symmetric difference. For n = 2, one obtains the area deviation.

• Steinhaus metric
The Steinhaus metric (or homogeneous symmetric difference
metric, Steinhaus distance) is a metric on Kp, defined by

V (C�D)
V (C ∪D)

,
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where V (.) is the volume. So, it is d�(C,D)
V (C∪D) , where d� is the Nikodym

metric.
This metric is bounded; it is affine invariant, while the Nikodym metric

is invariant only under volume-preserving affine transformations.
• Eggleston distance

The Eggleston distance (or symmetric surface area deviation) is a
distance on Kp, defined by

S(C ∪D)− S(C ∩D),

where S(.) is the surface area. It is not a metric.
• Asplund metric

The Asplund metric is a metric on the space Kp/ ≈ of affine-equivalence
classes in Kp, defined by

ln inf{λ ≥ 1 : ∃T : E
n → E

n affine, x ∈ E
n, C ⊂ T (D) ⊂ λC + x}

for any equivalence classes C∗ and D∗ with the representatives C and D,
respectively.

• Macbeath metric
The Macbeath metric is a metric on the space Kp/ ≈ of affine-
equivalence classes in Kp, defined by

ln inf{|det T · P | : ∃T, P : E
n → E

n regular affine, C ⊂ T (D),D ⊂ P (C)}

for any equivalence classes C∗ and D∗ with the representatives C and D,
respectively.

Equivalently, it can be written as

ln δ1(C,D) + ln δ1(D,C),

where δ1(C,D) = infT {V (T (D))
V (C) ;C ⊂ T (D)}, and T is a regular affine

mapping of E
n onto itself.

• Banach–Mazur metric
The Banach–Mazur metric is a metric on the space Kpo/ ∼ of the
equivalence classes of proper 0-symmetric convex bodies with respect to
linear transformations, defined by

ln inf{λ ≥ 1 : ∃T : E
n → E

n linear, C ⊂ T (D) ⊂ λC}

for any equivalence classes C∗ and D∗ with the representatives C and D,
respectively.

It is a special case of the Banach–Mazur distance between n-
dimensional normed spaces.



9.1 Distances on convex bodies 177

• Separation distance
The separation distance between two disjoint convex bodies C and
D in E

n is (Buckley 1985) the minimum Euclidean distance (in gen-
eral, the set-set distance between any two disjoint subsets of E

n):
inf{||x− y||2 : x ∈ C, y ∈ D}, while sup{||x− y||2 : x ∈ C, y ∈ D} is called
the spanning distance.

• Penetration depth distance
The penetration depth distance between two inter-penetrating convex
bodies C and D in E

n (in general, between any two inter-penetrating
subsets of E

n) is (Cameron and Culley 1986) defined as the minimum
translation distance that one body undergoes to make the interiors of C
and D disjoint:

min{||t||2 : interior(C + t) ∩D = ∅}.

Keerthi and Sridharan (1991) considered ||t||1- and ||t||∞-analogues of the
above definition.

Cf. penetration distance in Chap. 23 and penetration depth in
Chap. 24.

• Growth distances
Let C,D ∈ Kp be two compact convex bodies with non-empty interior.
Fix their seed points pC ∈ intC and pD ∈ intD; usually, they are the
centroids of C and D. The growth function g(C,D) is the minimal number
λ > 0, such that

({pC}+ λ(C\{pC})) ∩ ({pD}+ λ(D\{pD})) �= ∅.

It is the amount objects must be grown if g(C,D) > 1 (i.e., C∩D = ∅), or
contracted if g(C,D) > 1 (i.e., int C ∩ intD �= ∅) from their internal seed
points until their surfaces just touch. The growth separation distance
dS(C,D) and the growth penetration distance dP (C,D) [OnGi96] are
defined as

dS(C,D) = max{0, rCD(g(C,D)− 1)} and

dS(C,D) = max{0, rCD(1− g(C,D))},
where rCD is the scaling coefficient (usually, the sum of radii of circum-
scribing spheres for the sets C\{pC} and D\{pD}).

The one-sided growth distance between disjoint C and D (Leven and
Sharir 1987) is −1 + min λ > 0 : ({pC}+ λ{(C\{pC})) ∩D �= ∅}.

• Minkowski difference
The Minkowski difference on the set of all compact subsets, in par-
ticular, on the set of all sculptured objects (or free form objects), of R

3 is
defined by

A−B = {x− y : x ∈ A, y ∈ B}.
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If we consider object B to be free to move with fixed orientation, the
Minkowski difference is a set containing all the translations that bring
B to intersect with A. The closest point from the Minkowski difference
boundary, ∂(A−B), to the origin gives the separation distance between
A and B.

If both objects intersect, the origin is inside of their Minkowski dif-
ference, and the obtained distance can be interpreted as a penetration
depth distance.

• Demyanov distance
Given C ∈ Kp and u ∈ Sn−1, denote, if |{c ∈ C : 〈u, c〉 = hC(u)}| = 1,
this unique point by y(u,C) (exposed point of C in direction u).

The Demyanov difference A ! B of two subsets A,B ∈ Kp is the
closure of

conv(∪T (A)∩T (B){y(u,A)− y(u,B)}),
where T (C) = {u ∈ Sn−1 : |{c ∈ C : 〈u, c〉 = hC(u)}| = 1}.

The Demyanov distance between two subsets A,B ∈ Kp is defined by

||A!B|| = max
c∈A�B

||c||2.

It is shown in [BaFa07] that ||A ! B|| = supα ||Stα(A) − Stα(M)||2,
where Stα(C) is a generalized Steiner point and the supremum is over all
“sufficiently smooth” probabilistic measures α.

• Maximum polygon distance
The maximum polygon distance is a distance between two convex
polygons P = (p1, . . . , pn) and Q = (q1, . . . , qm), defined by

max
i,j
||pi − qj ||2, i ∈ {1, . . . , n}, j ∈ {1, . . . , m},

where ||.||2 is the Euclidean norm.
• Grenander distance

Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two disjoint convex polygons,
and let L(pi, qj), L(pl, qm) be two intersecting critical support lines for P
and Q. Then the Grenander distance between P and Q is defined by

||pi − qj ||2 + ||pl − qm||2 −Σ(pi, pl)−Σ(gj , qm),

where ||.||2 is the Euclidean norm, and Σ(pi, pl) is the sum of the edges
lengths of the polynomial chain pi, . . . , pl.

Here P = (p1, . . . , pn) is a convex polygon with the vertices in standard
form, i.e., the vertices are specified according to cartesian coordinates in
a clockwise order, and no three consecutive vertices are collinear. A line
L is a line of support of P if the interior of P lies completely to one side
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of L. Given two disjoint polygons P and Q, the line L(pi, qj) is a critical
support line if it is a line of support for P at pi, a line of support for Q at
qj , and P and Q lie on opposite sides of L(pi, qj).

9.2 Distances on cones

A convex cone C in a real vector space V is a subset C of V such that
C + C ⊂ C, λC ⊂ C for any λ ≥ 0, and C ∩ (−C) = {0}. A cone C induces
a partial order on V by

x 
 y if and only if y − x ∈ C.

The order 
 respects the vector structure of V , i.e., if x 
 y and z 
 u, then
x+z 
 y+u, and if x 
 y, then λx 
 λy, λ ∈ R, λ ≥ 0. Elements x, y ∈ V are
called comparable and denoted by x ∼ y if there exist positive real numbers
α and β such that αy 
 x 
 βy. Comparability is an equivalence relation;
its equivalence classes (which belong to C or to −C) are called parts (or
components, constituents).

Given a convex cone C, a subset S = {x ∈ C : T (x) = 1}, where T : V → R

is some positive linear functional, is called a cross-section of C.
A convex cone C is called almost Archimedean if the closure of its restric-

tion to any two-dimensional subspace is also a cone.

• Thompson part metric
Given a convex cone C in a real vector space V , the Thompson part
metric on a part K ⊂ C\{0} is defined by

ln max{m(x, y),m(y, x)}

for any x, y ∈ K, where m(x, y) = inf{λ ∈ R : y 
 λx}.
If C is almost Archimedean, then K equipped with the Thompson

part metric is a complete metric space. If C is finite-dimensional, then
one obtains a chord space, i.e., a metric space in which there is a dis-
tinguished set of geodesics, satisfying certain axioms. The positive cone
R

n
+ = {(x1, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n} equipped with the Thomp-

son part metric is isometric to a normed space which one may think of as
being flat.

If C is a closed cone in R
n with non-empty interior, then int C can be

considered as an n-dimensional manifold Mn. If for any tangent vector v ∈
Tp(Mn), p ∈ Mn, we define a norm ||v||Tp = inf{α > 0 : −αp 
 v 
 αp},
then the length of any piecewise differentiable curve γ : [0, 1] → Mn can
be written as l(γ) =

∫ 1

0
||γ′

(t)||Tγ(t)dt, and the distance between x and y is
equal to infγ l(γ), where the infimum is taken over all such curves γ with
γ(0) = x and γ(1) = y.



180 9 Distances on Convex Bodies, Cones, and Simplicial Complexes

• Hilbert projective semi-metric
Given a convex cone C in a real vector space V , the Hilbert projective
semi-metric is a semi-metric on C\{0}, defined, for any x, y ∈ C\{0}, by

ln(m(x, y) ·m(y, x)),

where m(x, y) = inf{λ ∈ R : y 
 λx}. It is equal to 0 if and only if x = λy
for some λ > 0, and it becomes a metric on the space of rays of the cone.

If C is finite-dimensional, and S is a cross-section of C (in particular,
S = {x ∈ C : ||x|| = 1}, where ||.|| is a norm on V ), then, for any distinct
points x, y ∈ S, their distance is equal to | ln(x, y, z, t)|, where z, t are
the points of the intersection of the line lx,y with the boundary of S, and
(x, y, z, t) is the cross-ratio of x, y, z, t.

If C is almost Archimedean and finite-dimensional, then each part of
C is a chord space under the Hilbert projective metric. The Lorentz cone
{(t, x1, . . . , xn) ∈ R

n+1 : t2 > x2
1 + · · · + x2

n} equipped with the Hilbert
projective metric is isometric to the n-dimensional hyperbolic space. The
positive cone R

n
+ = {(x1, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n} with the Hilbert

projective metric is isometric to a normed space which can be seen as
being flat.

If C is a closed cone in R
n with non-empty interior, then int C can be

considered as an n-dimensional manifold Mn. If for any tangent vector
v ∈ Tp(Mn), p ∈ Mn, we define a semi-norm ||v||Hp = m(p, v) −m(v, p),
then the length of any piecewise differentiable curve γ : [0, 1] → Mn can
be written as l(γ) =

∫ 1

0
||γ′

(t)||Hγ(t)dt, and the distance between x and y is
equal to infγ l(γ), where the infimum is taken over all such curves γ with
γ(0) = x and γ(1) = y.

• Bushell metric
Given a convex cone C in a real vector space V , the Bushell metric on
the set S = {x ∈ C :

∑n
i=1 |xi| = 1} (in general, on any cross-section of

C) is defined by

1−m(x, y) ·m(y, x)
1 + m(x, y) ·m(y, x)

for any x, y ∈ S, where m(x, y) = inf{λ ∈ R : y 
 λx}. In fact, it is equal
to tanh(1

2h(x, y)), where h is the Hilbert projective semi-metric.
• k-oriented distance

A simplicial cone C in R
n is defined as the intersection of n (open or closed)

half-spaces, each of whose supporting planes contain the origin 0. For any
set M of n points on the unit sphere, there is a unique simplicial cone C
that contains these points. The axes of the cone C can be constructed as
the set of the n rays, where each ray originates at the origin, and contains
one of the points from M .
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Given a partition {C1, . . . , Ck} of R
n into a set of simplicial cones

C1, . . . , Ck, the k-oriented distance is a metric on R
n, defined by

dk(x− y)

for all x, y ∈ R
n, where, for any x ∈ Ci, the value dk(x) is the length of the

shortest path from the origin 0 to x traveling only in directions parallel to
the axes of Ci.

• Cones over metric space
A cone over a metric space (X, d) is the quotient space Con(X, d) =
(X × [0, 1])/(X × {0}) obtained from the product X × R≥0 by collapsing
the fiber (subspace X×{0}) to a point (the apex of the cone). Cf. metric
cone structure, tangent metric cone in Chap. 1.

Let a metric on Con(X) be defined, for any (x, t), (y, s) ∈ Con(X, d), by

√
t2 + s2 − 2ts cos(min{d(x, y), π}).

The cone Con(X, d) with this metric is called the Euclidean cone over the
metric space (X, d).

If (X, d) is a compact metric space with diameter <2, the Krakus met-
ric is a metric on Con(X, d) defined, for any (x, t), (y, s) ∈ Con(X, d), by

min{s, t}d(x, y) + |t− s|.

The cone Con(X, d) with the Krakus metric admits a unique midpoint for
each pair of its points if (X, d) has this property.

If Mn is a manifold with a (pseudo) Riemannian metric g, one can
consider a metric dr2 + r2g (more generally, a metric 1

kdr2 + r2g, k �= 0)
on the cone Con(Mn) = Mn × R>0.

• Suspension metric
A spherical cone (or suspension) Σ(X) over a metric space (X, d) is the
quotient of the product X × [0, a] obtained by identifying all points in the
fibers X × {0} and X × {a}.

If (X, d) is a length space (cf. Chap. 6) with diameter diam(X) ≤ π,
and a = π, the suspension metric is a metric on Σ(X), defined, for any
(x, t), (y, s) ∈ Σ(X), by

arccos(cos t cos s + sin t sin s cos d(x, y)).

9.3 Distances on simplicial complexes

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the
convex hull of r + 1 points of E

n which do not lie in any (r − 1)-plane. The
boundary of an r-simplex has r +1 0-faces (polytope vertices), r(r+1)

2 1-faces
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(polytope edges), and (r+1
i+1 ) i-faces, where (r

i ) is the binomial coefficient.
The content (i.e., the hypervolume) of a simplex can be computed using the
Cayley–Menger determinant. The regular simplex of dimension r is denoted
by αr.

Roughly, a geometrical simplicial complex is a space with a triangulation,
i.e., a decomposition of it into closed simplices such that any two simplices
either do not intersect or intersect only along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices,
in which a family of finite non-empty subsets, called simplices, is distin-
guished, such that every non-empty subset of a simplex s is a simplex, called
a face of s, and every one-element subset is a simplex. A simplex is called
i-dimensional if it consists of i + 1 vertices. The dimension of S is the maxi-
mal dimension of its simplices. For every simplicial complex S there exists a
triangulation of a polyhedron whose simplicial complex is S. This geometric
simplicial complex, denoted by GS, is called the geometric realization of S.

• Simplicial metric
Let S be an abstract simplicial complex, and GS a geometric simplicial
complex which is a geometric realization of S. The points of GS can be
identified with the functions α : S → [0, 1] for which the set {x ∈ S :
α(x) �= 0} is a simplex in S, and

∑
x∈S α(x) = 1. The number α(x) is

called the x-th barycentric coordinate of α.
The simplicial metric on GS (Lefschetz 1939) is the Euclidean metric

on it: √∑

x∈S

(α(x)− β(x))2.

Tukey (1939) found another metric on GS, topologically equivalent to
a simplicial one. His polyhedral metric is the intrinsic metric on GS,
defined as the infimum of the lengths of the polygonal lines joining the
points α and β such that each link is within one of the simplices. An
example of a polyhedral metric is the intrinsic metric on the surface of a
convex polyhedron in E

3.
A polyhedral metric can be considered on a complex of simplices in

a space of constant curvature and, in general, on complexes which are
manifolds.

• Manifold triangulation metric
Let Mn be a compact PL (piecewise-linear) n-dimensional manifold. A
triangulation of Mn is a simplicial complex such that its corresponding
polyhedron is PL-homeomorphic to Mn. Let TMn be the set of all combi-
natorial types of triangulations, where two triangulations are equivalent if
they are simplicially isomorphic.

Every such triangulation can be seen as a metric on the smooth manifold
M if one assigns the unit length for any of its one-dimensional simplices;
so, TMn can be seen as a discrete analogue of the space of Riemannian
structures, i.e., isometry classes of Riemannian metrics on Mn.
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A manifold triangulation metric between two triangulations x and
y is (Nabutovsky and Ben-Av 1993) an editing metric on TMn , i.e., the
minimal number of elementary moves, from a given finite list of operations,
needed to obtain y from x.

For example, the bistellar move consists of replacing a subcomplex of
a given triangulation, which is simplicially isomorphic to a subcomplex
of the boundary of the standard (n + 1)-simplex, by the complementary
subcomplex of the boundary of an (n+1)-simplex, containing all remaining
n-simplices and their faces. Every triangulation can be obtained from any
other triangulation by a finite sequence of bistellar moves (Pachner 1986).

• Polyhedral chain metric
An r-dimensional polyhedral chain A in E

n is a linear expression
∑m

i=1 dit
r
i ,

where, for any i, the value tri is an r-dimensional simplex of E
n. The bound-

ary of a chain is the linear combination of boundaries of the simplices in the
chain. The boundary of an r-dimensional chain is an (r − 1)-dimensional
chain.

A polyhedral chain metric is a norm metric

||A−B||

on the set Cr(En) of all r-dimensional polyhedral chains. As a norm ||.||
on Cr(En) one can take:

1. The mass of a polyhedral chain, i.e., |A| =
∑m

i=1 |di||tri |, where |tr| is
the volume of the cell tri .

2. The flat norm of a polyhedral chain, i.e., |A|� = infD{|A− ∂D|+ |D|},
where |D| is the mass of D, ∂D is the boundary of D, and the infimum
is taken over all (r+1)-dimensional polyhedral chains; the completion of
the metric space (Cr(En), |.|�) by the flat norm is a separable Banach
space, denoted by C�

r(E
n), its elements are known as r-dimensional flat

chains.
3. The sharp norm of a polyhedral chain, i.e.,

|A|� = inf

(∑m
i=1 |di||tri ||vi|

r + 1
+ |

m∑

i=1

diTvi
tri |�

)

,

where |A|� is the flat norm of A, and the infimum is taken over all shifts
v (here Tvt

r is the cell obtained by shifting tr by a vector v of length
|v|); the completion of the metric space (Cr(En), |.|�) by the sharp norm
is a separable Banach space, denoted by C�

r(E
n), and its elements are

called r-dimensional sharp chains. A flat chain of finite mass is a sharp
chain. If r = 0, than |A|� = |A|�.
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The metric space of polyhedral co-chains (i.e., linear functions of polyhedral
chains) can be defined in similar way. As a norm of a polyhedral co-chain
X one can take:

1. The co-mass of a polyhedral co-chain, i.e., |X| = sup|A|=1 |X(A)|, where
X(A) is the value of the co-chain X on a chain A

2. The flat co-norm of a polyhedral co-chain, i.e., |X|� = sup|A|�=1 |X
(A)|

3. The sharp co-norm of a polyhedral co-chain, i.e., |X|� = sup|A|�=1

|X(A)|
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Chapter 10
Distances in Algebra

10.1 Group metrics

A group (G, ·, e) is a set G of elements with a binary operation ·, called
the group operation, that together satisfy the four fundamental properties of
closure (x · y ∈ G for any x, y ∈ G), associativity (x · (y · z) = (x · y) · z for any
x, y, z ∈ G), the identity property (x · e = e · x = x for any x ∈ G), and the
inverse property (for any x ∈ G, there exists an element x−1 ∈ G such that
x · x−1 = x−1 · x = e). In additive notation, a group (G,+, 0) is a set G with
a binary operation + such that the following properties hold: x + y ∈ G for
any x, y ∈ G, x + (y + z) = (x + y) + z for any x, y, z ∈ G, x + 0 = 0 + x = x
for any x ∈ G, and, for any x ∈ G, there exists an element −x ∈ G such that
x+(−x) = (−x)+x = 0. A group (G, ·, e) is called finite if the set G is finite.
A group (G, ·, e) is called Abelian if it is commutative, i.e., x · y = y · x for
any x, y ∈ G.

Most metrics considered in this section are group norm metrics on a
group (G, ·, e), defined by

||x · y−1||
(or, sometimes, by ||y−1 · x||), where ||.|| is a group norm, i.e., a function
||.|| : G → R such that, for any x, y ∈ G, we have the following properties:

1. ||x|| ≥ 0, with ||x|| = 0 if and only if x = e.
2. ||x|| = ||x−1||.
3. ||x · y|| ≤ ||x||+ ||y|| (triangle inequality).

In additive notation, a group norm metric on a group (G,+, 0) is defined
by ||x + (−y)|| = ||x− y||, or, sometimes, by ||(−y) + x||.

The simplest example of a group norm metric is the bi-invariant ultra-
metric (sometimes called the Hamming metric) ||x ·y−1||H , where ||x||H = 1
for x �= e, and ||e||H = 0.

• Bi-invariant metric
A metric (in general, a semi-metric) d on a group (G, ·, e) is called bi-
invariant if

d(x, y) = d(x · z, y · z) = d(z · x, z · y)
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for any x, y, z ∈ G (cf. translation invariant metric in Chap. 5). Any
group norm metric on an Abelian group is bi-invariant.

A metric (in general, a semi-metric) d on a group (G, ·, e) is called a
right-invariant metric if d(x, y) = d(x · z, y · z) for any x, y, z ∈ G,
i.e., the operation of right multiplication by an element z is a motion of
the metric space (G, d). Any group norm metric, defined by ||x · y−1||, is
right-invariant.

A metric (in general, a semi-metric) d on a group (G, ·, e) is called a
left-invariant metric if d(x, y) = d(z · x, z · y) holds for any x, y, z ∈ G,
i.e., the operation of left multiplication by an element z is a motion of
the metric space (G, d). Any group norm metric, defined by ||y−1 · x||, is
left-invariant.

Any right-invariant or left-invariant (in particular, bi-invariant) metric
d on G is a group norm metric, since one can define a group norm on G
by ||x|| = d(x, 0).

• Positively homogeneous metric
A metric (in general, a distance) d on an Abelian group (G,+, 0) is called
positively homogeneous if

d(mx,my) = md(x, y)

for all x, y ∈ G and all m ∈ N, where mx is the sum of m terms all equal
to x.

• Translation discrete metric
A group norm metric (in general, a group norm semi-metric) on a group
(G, ·, e) is called translation discrete if the translation distances (or
translation numbers)

τG(x) = lim
n→∞

||xn||
n

of the non-torsion elements x (i.e., such that xn �= e for any n ∈ N) of the
group with respect to that metric are bounded away from zero.

If the numbers τG(x) are just non-zero, such a group norm metric is
called a translation proper metric.

• Word metric
Let (G, ·, e) be a finitely-generated group with a set A of generators (i.e.,
A is finite, and every element of G can be expressed as a product of finitely
many elements A and their inverses). The word length wA

W (x) of an element
x ∈ G\{e} is defined by

wA
W (x) = inf{r : x = aε1

1 . . . aεr
r , ai ∈ A, εi ∈ {±1}},

and wA
W (e) = 0.

The word metric dA
W associated with A is a group norm metric on

G, defined by
wA

W (x · y−1).
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As the word length wA
W is a group norm on G, dA

W is right-invariant.
Sometimes it is defined as wA

W (y−1 · x), and then it is left-invariant. In
fact, dA

W is the maximal metric on G that is right-invariant, and such that
the distance from any element of A or A−1 to the identity element e is
equal to one.

If A and B are two finite sets of generators of the group (G, ·, e), then
the identity mapping between the metric spaces (G, dA

W ) and (G, dB
W ) is a

quasi-isometry, i.e., the word metric is unique up to quasi-isometry.
The word metric is the path metric of the Cayley graph Γ of (G, ·, e),

constructed with respect to A. Namely, Γ is a graph with the vertex-set G
in which two vertices x and y ∈ G are connected by an edge if and only if
y = aεx, ε = ±1, a ∈ A.

• Weighted word metric
Let (G, ·, e) be a finitely-generated group with a set A of generators. Given
a bounded weight function w : A → (0,∞), the weighted word length
wA

WW (x) of an element x ∈ G\{e} is defined by

wA
WW (x) = inf

{
t∑

i=1

w(ai), t ∈ N : x = aε1
1 . . . aεt

t , ai ∈ A, εi ∈ {±1}
}

,

and wA
WW (e) = 0.

The weighted word metric dA
WW associated with A is a group norm

metric on G, defined by

wA
WW (x · y−1).

As the weighted word length wA
WW is a group norm on G, dA

WW is right-
invariant. Sometimes it is defined as wA

WW (y−1 · x), and then it is left-
invariant.

The metric dA
WW is the supremum of semi-metrics d on G with the

property that d(e, a) ≤ w(a) for any a ∈ A.
The metric dA

WW is a coarse-path metric, and every right-invariant
coarse path metric is a weighted word metric up to coarse isometry.

The metric dA
WW is the path metric of the weighted Cayley graph ΓW

of (G, ·, e) constructed with respect to A. Namely, ΓW is a weighted graph
with the vertex-set G in which two vertices x and y ∈ G are connected by
an edge with the weight w(a) if and only if y = aεx, ε = ±1, a ∈ A.

• Interval norm metric
An interval norm metric is a group norm metric on a finite group
(G, ·, e), defined by

||x · y−1||int,

where ||.||int is an interval norm on G, i.e., a group norm such that the
values of ||.||int form a set of consecutive integers starting with 0.



190 10 Distances in Algebra

To each interval norm ||.||int corresponds an ordered partition {B0, . . . ,
Bm} of G with Bi = {x ∈ G : ||x||int = i} (cf. Sharma–Kaushik dis-
tance in Chap. 16). The Hamming norm and the Lee norm are special
cases of interval norms. A generalized Lee norm is an interval norm for
which each class has a form Bi = {a, a−1}.

• C-metric
A C-metric d is a metric on a group (G, ·, e) satisfying the following
conditions:

1. The values of d form a set of consecutive integers starting with 0.
2. The cardinality of the sphere B(x, r) = {y ∈ G : d(x, y) = r} is inde-

pendent of the particular choice of x ∈ G.

The word metric, the Hamming metric, and the Lee metric are
C-metrics. Any interval norm metric is a C-metric.

• Order norm metric
Let (G, ·, e) be a finite Abelian group. Let ord(x) be the order of an element
x ∈ G, i.e., the smallest positive integer n such that xn = e. Then the
function ||.||ord : G → R, defined by ||x||ord = ln ord(x), is a group norm
on G, called the order norm.

The order norm metric is a group norm metric on G, defined by

||x · y−1||ord.

• Monomorphism norm metric
Let (G,+, 0) be a group. Let (H, ·, e) be a group with a group norm ||.||H .
Let f : G → H be a monomorphism of groups G and H, i.e., an injective
function such that f(x + y) = f(x) · f(y) for any x, y ∈ G. Then the
function ||.||fG : G → R, defined by ||x||fG = ||f(x)||H , is a group norm on
G, called the monomorphism norm.

The monomorphism norm metric is a group norm metric on G,
defined by

||x− y||fG.

• Product norm metric
Let (G,+, 0) be a group with a group norm ||.||G. Let (H, ·, e) be a group
with a group norm ||.||H . Let G × H = {α = (x, y) : x ∈ G, y ∈ H}
be the Cartesian product of G and H, and (x, y) · (z, t) = (x + z, y · t).
Then the function ||.||G×H : G × H → R, defined by ||α||G×H =
||(x, y)||G×H = ||x||G + ||y||H , is a group norm on G × H, called the
product norm.

The product norm metric is a group norm metric on G × H,
defined by

||α · β−1||G×F .
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On the Cartesian product G × H of two finite groups with the inter-
val norms ||.||int

G and ||.||int
H , an interval norm ||.||int

G×H can be defined.
In fact, ||α||int

G×H = ||(x, y)||int
G×H = ||x||G + (m + 1)||y||H , where m =

maxa∈G ||a||int
G .

• Quotient norm metric
Let (G, ·, e) be a group with a group norm ||.||G. Let (N, ·, e) be a
normal subgroup of (G, ·, e), i.e., xN = Nx for any x ∈ G. Let (G/
N, ·, eN) be the quotient group of G, i.e., G/N = {xN : x ∈ G} with
xN = {x · a : a ∈ N}, and xN · yN = xyN . Then the function
||.||G/N : G/N → R, defined by ||xN ||G/N = mina∈N ||xa||X , is a group
norm on G/N , called the quotient norm.

A quotient norm metric is a group norm metric on G/N , de-
fined by

||xN · (yN)−1||G/N = ||xy−1N ||G/N .

If G = Z with the norm being the absolute value, and N = mZ, m ∈ N,
then the quotient norm on Z/mZ = Zm coincides with the Lee norm.

If a metric d on a group (G, ·, e) is right-invariant, then for any normal
subgroup (N, ·, e) of (G, ·, e) the metric d induces a right-invariant metric
(in fact, the Hausdorff metric) d∗ on G/N by

d∗(xN, yN) = max{max
b∈yN

min
a∈xN

d(a, b), max
a∈xN

min
b∈yN

d(a, b)}.

• Commutation distance
Let (G, ·, e) be a finite non-Abelian group. Let Z(G) = {c ∈ G : x · c =
c · x for any x ∈ G} be the center of G. The commutation graph of G
is defined as a graph with the vertex-set G in which distinct elements
x, y ∈ G are connected by an edge whenever they commute, i.e., x·y = y ·x.
(Darafsheh, 2009, consider non-commuting graph on G\Z(G).) Obviously,
any two distinct elements x, y ∈ G that do not commute, are connected in
this graph by the path x, c, y, where c is any element of Z(G) (for example,
e). A path x = x1, x2, . . . , xk = y in the commutation graph is called an
(x−y) N -path if xi /∈ Z(G) for any i ∈ {1, . . . , k}. In this case the elements
x, y ∈ G\Z(G) are called N -connected.

The commutation distance (see [DeHu98]) d is an extended distance
on G, defined by the following conditions:

1. d(x, x) = 0.
2. d(x, y) = 1 if x �= y, and x · y = y · x.
3. d(x, y) is the minimum length of an (x−y) N -path for any N -connected

elements x and y ∈ G\Z(G).
4. d(x, y) = ∞ if x, y ∈ G\Z(G) are not connected by any N -path.

Given a group G and a G-conjugacy class X in it, Bates, Bundy, Perkins
and Rowley in 2003, 2004, 2007, 2008 considered commuting graph (X,E)
whose vertex set is X and distinct vertices x, y ∈ X are joined by an edge
e ∈ E whenever they commute.



192 10 Distances in Algebra

• Modular distance
Let (Zm,+, 0), m ≥ 2, be a finite cyclic group. Let r ∈ N, r ≥ 2. The
modular r-weight wr(x) of an element x ∈ Zm = {0, 1, . . . ,m} is defined
as wr(x) = min{wr(x), wr(m−x)}, where wr(x) is the arithmetic r-weight
of the integer x. The value wr(x) can be obtained as the number of non-
zero coefficients in the generalized non-adjacent form x = enrn+. . . e1r+e0

with ei ∈ Z, |ei| < r, |ei + ei+1| < r, and |ei| < |ei+1| if eiei+1 < 0 (cf.
arithmetic r-norm metric in Chap. 12).

The modular distance is a distance on Zm, defined by

wr(x− y).

The modular distance is a metric for wr(m) = 1, wr(m) = 2, and for
several special cases with wr(m) = 3 or 4. In particular, it is a metric for
m = rn or m = rn − 1; if r = 2, it is a metric also for m = 2n + 1 (see, for
example, [Ernv85]).

The most popular metric on Zm is the Lee metric, defined by ||x−y||Lee,
where ||x||Lee = min{x,m− x} is the Lee norm of an element x ∈ Zm.

• G-norm metric
Consider a finite field Fpn for a prime p and a natural number n. Given a
compact convex centrally-symmetric body G in R

n, define the G-norm of
an element x ∈ Fpn by ||x||G = inf{μ ≥ 0 : x ∈ pZ

n + μG}.
The G-norm metric is a group norm metric on Fpn , defined by

||x · y−1||G.

• Permutation norm metric
Given a finite metric space (X, d), the permutation norm metric is a
group norm metric on the group (SymX , ·, id) of all permutations of X
(id is the identity mapping), defined by

||f · g−1||Sym,

where the group norm ||.||Sym on SymX is given by ||f ||Sym =
maxx∈X d(x, f(x)).

• Metric of motions
Let (X, d) be a metric space, and let p ∈ X be a fixed element of X.

The metric of motions (see [Buse55]) is a metric on the group (Ω, ·, id)
of all motions of (X, d) (id is the identity mapping), defined by

sup
x∈X

d(f(x), g(x)) · e−d(p,x)

for any f, g ∈ Ω (cf. Busemann metric of sets in Chap. 3). If the space
(X, d) is bounded, a similar metric on Ω can be defined as

sup
x∈X

d(f(x), g(x)).
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Given a semi-metric space (X, d), the semi-metric of motions on
(Ω, ·, id) is defined by

d(f(p), g(p)).

• General linear group semi-metric
Let F be a locally compact non-discrete topological field. Let (Fn, ||.||Fn),
n ≥ 2, be a normed vector space over F. Let ||.|| be the operator norm
associated with the normed vector space (Fn, ||.||Fn). Let GL(n, F) be the
general linear group over F. Then the function |.|op : GL(n, F) → R, defined
by |g|op = sup{| ln ||g|| |, | ln ||g−1|| |}, is a semi-norm on GL(n, F).

The general linear group semi-metric is a semi-metric on the group
GL(n, F), defined by

|g · h−1|op.

It is a right-invariant semi-metric which is unique, up to coarse isom-
etry, since any two norms on F

n are bi-Lipschitz equivalent.
• Generalized torus semi-metric

Let (T, ·, e) be a generalized torus, i.e., a topological group which is isomor-
phic to a direct product of n multiplicative groups F

∗
i of locally compact

non-discrete topological fields Fi; then there is a proper continuous ho-
momorphism v : T → R

n, namely, v(x1, . . . , xn) = (v1(x1), . . . , vn(xn)),
where vi : F

∗
i → R are proper continuous homomorphisms from the F

∗
i to

the additive group R, given by the logarithm of the valuation. Every other
proper continuous homomorphism v

′
: T → R

n is of the form v
′

= α · v
with α ∈ GL(n, R). If ||.|| is a norm on R

n, one obtains the corresponding
semi-norm ||x||T = ||v(x)|| on T .

The generalized torus semi-metric is defined on the group (T, ·, e) by

||xy−1||T = ||v(xy−1)|| = ||v(x)− v(y)||.

• Stable norm metric
Given a Riemannian manifold (M, g), the stable norm metric is a group
norm metric on its real homology group Hk(M, R), defined by the follow-
ing stable norm ||h||s: the infimum of the Riemannian k-volumes of real
cycles representing h.

The Riemannian manifold (Rn, g) is within finite Gromov–Hausdoff
distance (cf. Chap. 1) from an n-dimensional normed vector space
(Rn, ||.||s).

If (M, g) is a compact connected oriented Riemannian manifold, then
the manifold H1(M, R)/H1(M, R) with metric induced by ||.||s is called
theAlbanese torus (or Jacobi torus) of (M, g). This Albanese metric is
a flat metric (cf. Chap. 8).

• Heisenberg metric
Let (H, ·, e) be the (real) Heisenberg group Hn, i.e., a group on the set
H = R

n × R
n × R with the group law h · h′ = (x, y, t) · (x′, y′, t′) =

(x+x′, y+y′, t+ t′+2
∑n

i=1(x
′
iyi−xiy

′
i), and the identity e = (0, 0, 0). Let



194 10 Distances in Algebra

|.|Heis be the Heisenberg gauge (Cygan 1978) on Hn, defined by |h|Heis =
|(x, y, t)|Heis = ((

∑n
i=1(x

2
i + y2

i ))2 + t2)1/4.
The Heisenberg metric (or Korányi metric, Cygan metric, gauge

metric) dHeis is a group norm metric on Hn, defined by

|x−1 · y|Heis.

One can identify the Heisenberg group Hn−1 = C
n−1 × R with ∂H

n
C
\

{∞}, where H
n
C

is the Hermitian (i.e., complex) hyperbolic n-space, and
∞ is any point of its boundary ∂H

n
C
. So, the usual hyperbolic metric of

H
n+1
C

induces naturally a metric on Hn. The Hamenstädt distance on
∂H

n
C
\ {∞} (Hersonsky and Paulin 2004) is 1√

2
dHeis.

Sometimes, the term Cygan metric is reserved for the extension of the
metric dHeis on whole H

n
C

and (Apanasov 2004) for its generalization (via
the Carnot group F

n−1 × ImF) on F-hyperbolic spaces H
n
F

over numbers
F that can be complex numbers, or quaternions or, for n = 2, octonions.
Also, the generalization of dHeis on Carnot groups of Heisenberg type is
called the Cygan metric.

The second natural metric on Hn is the Carnot–Carathéodory met-
ric (or CC metric, sub-Riemannian metric; cf. Chap. 7) dC , defined as
the length metric (cf. Chap. 6) using horizontal vector fields on Hn. This
metric is the internal metric (cf. Chap. 4) corresponding to dHeis. The
metric dHeis is bi-Lipschitz equivalent with dC but not with any Rie-
mannian distance and, in particular, not with any Euclidean metric. For
both metrics, the Heisenberg group Hn is a fractal since its Hausdorff
dimension, 2n + 2, is strictly greater than its topological dimension,
2n + 1.

• Metric between intervals
Let G be the set of all intervals [a, b] of R. The set G forms semi-groups
(G,+) and (G, ·) under addition I + J = {x + y : x ∈ I, y ∈ J} and under
multiplication I · J = {x · y : x ∈ I, y ∈ J}, respectively.

The metric between intervals is a metric on G, defined by

max{|I|, |J |}

for all I, J ∈ G, where, for I = [a, b], one has |I| = |a− b|.
• Metric between games

Consider positional games, i.e., two-player nonrandom games of perfect
information with real-valued outcomes. Play is alternating with a nonter-
minated game having move options for both players. Real-world examples
include Chess, Go and Tic-Tac-Toe. Formally, let FR be the universe of
games defined inductively as follows:

1. Every real number r ∈ R belongs to FR and is called an atomic game.
2. If A,B ⊂ FR with 1 ≤ |A|, |B| < ∞, then {A|B} ∈ FR (non-atomic

game).



10.1 Group metrics 195

Write any game G = {A|B} as {GL|GR}, where GL = A and GR = B are
the set of left and right moves of G, respectively.

FR becomes a commutative semi-group under the following addition
operation:

1. If p and q are atomic games, then p + q is the usual addition in R.
2. p + {gl1 , . . . |gr1 , . . . } = {gl1 + p, . . . |gr1 + p, . . . }.
3. If G and H are both non-atomic, then {GL|GR}+{HL|HR} = {IL|IR},

where IL = {gl + H,G + hl : gl ∈ GL, hl ∈ HL} and IR = {gr + H,G +
hr : gr ∈ GR, hr ∈ HR}.

For any game G ∈ FR, define the optimal outcomes L(G) and R(G) (if
both players play optimally with Left and Right starting, respectively) as
follows:

L(p) = R(p) = p and L(G) = max{R(gl) : gl ∈ GL}, R(G) =
max{L(gr) : gr ∈ GR}.

The metric between games G and H defined by Ettinger (2000) is
the following extended metric on FR:

sup
X
|L(G + X)− L(H + X)| = sup

X
|R(G + X)−R(H + X)|.

• Helly semi-metric
Consider a game (A,B,H) between player A and B. Here A and B are
the strategy sets for players A and B respectively, and H = H(·, ·) is the
payoff function, i.e., if player A plays a ∈ A and player B plays b ∈ B, then
A pays H(a,b) to B. A player’s strategy set is the set of available to him
pure strategies, i.e., complete algorithms for playing the game, indicating
the move for every possible situation throughout it.

The Helly semi-metric between strategies a1 ∈ A and a2 ∈ A of A is
defined by

sup
b∈B

|H(a1, b)−H(a2, b)|.

• Factorial ring semi-metric
Let (A,+, ·) be a factorial ring, i.e., a ring with unique factorization.

The factorial ring semi-metric is a semi-metric on the set A\{0},
defined by

ln
l.c.m.(x, y)
g.c.d.(x, y)

,

where l.c.m.(x, y) is the least common multiple, and g.c.d.(x, y) is the great-
est common divisor of elements x, y ∈ A\{0}.

• Frankild–Sather-Wagstaff metric
Let G(R) be the set of isomorphism classes, up to a shift, of semidualizing
complexes over a local Noetherian commutative ring R. An R-complex is
a particular sequence of R-module homomorphisms; see [FrWa]) for exact
Commutative Algebra definitions.
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The Frankild–Sather-Wagstaff metric [FrWa] is a metric on G(R),
defined, for any classes [K], [L] ∈ G(R), as the infimum of the lengths
of chains of pairwise comparable elements starting with [K] and ending
with [L].

10.2 Metrics on binary relations

A binary relation R on a set X is a subset of X ×X; it is the arc-set of the
directed graph (X,R) with the vertex-set X.

A binary relation R which is symmetric ((x, y) ∈ R implies (y, x) ∈ R),
reflexive (all (x, x) ∈ R), and transitive ((x, y), (y, z) ∈ R imply (x, z) ∈ R) is
called an equivalence relation or a partition (of X into equivalence classes).
Any q-ary sequence x = (x1, ..., xn), q ≥ 2 (i.e., with 0 ≤ xi ≤ q − 1 for
1 ≤ i ≤ n), corresponds to the partition {B0, . . . , Bq−1} of Vn = {1, . . . , n},
where Bj = {1 ≤ i ≤ n : xi = j} are the equivalence classes.

A binary relation R which is antisymmetric ((x, y), (y, x) ∈ R imply x = y),
reflexive, and transitive is called a partial order, and the pair (X,R) is called
a poset (partially ordered set). A partial order R on X is denoted also by

 with x 
 y if and only if (x, y) ∈ R. The order 
 is called linear if any
elements x, y ∈ X are compatible, i.e., x 
 y or y 
 x.

A poset (L,
) is called a lattice if every two elements x, y ∈ L have the
join x∨y and the meet x∧y. All partitions of X form a lattice by refinement;
it is a sublattice of the lattice (by set-inclusion) of all binary relations.

• Kemeny distance
The Kemeny distance between binary relations R1 and R2 on a set X
is the Hamming metric |R1�R2|. It is twice the minimal number of
inversions of pairs of adjacent elements of X which is necessary to obtain
R2 from R1.

If R1, R2 are partitions, then the Kemeny distance coincides with the
Mirkin–Tcherny distance, and 1− |R1�R2|

n(n−1) is the Rand index.
If binary relations R1, R2 are linear orders (or rankings, permutations)

on the set X, then the Kemeny distance coincides with the inversion
metric on permutations.

The Drapal–Kepka distance between distinct quasigroups (differing
from groups in that they need not be associative) (X,+) and (X, ·) is
defined by |{(x, y) : x + y �= x · y}|.

• Metrics between partitions
Let X be a finite set of cardinality n = |X|, and let A, B be non-empty

subsets of X. Let PX be the set of partitions of X, and P,Q ∈ PX . Let
B1, . . . , Bq be blocks in the partition P , i.e., the pairwise disjoint sets such
that X = B1 ∪ · · · ∪ Bq, q ≥ 2. Let P ∨ Q be the join of P and Q, and
P ∨Q the meet of P and Q in the lattice PX of partitions of X.
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Consider the following editing operations on partitions:

– An augmentation transforms a partition P of A\{B} into a partition of
A by either including the objects of B in a block, or including B itself
as a new block.

– An removal transforms a partition P of A into a partition of A\{B} by
deleting the objects in B from each block that contains them.

– A division transforms one partition P into another by the simultaneous
removal of B from Bi (where B ⊂ Bi, B �= Bi), and augmentation of
B as a new block.

– A merging transforms one partition P into another by the simultaneous
removal of B from Bi (where B = Bi), and augmentation of B to Bj

(where j �= i).
– A transfer transforms one partition P into another by the simultaneous

removal of B from Bi (where B ⊂ Bi), and augmentation of B to Bj

(where j �= i).

Define (see, for example, [Day81]), in terms of above operations, the fol-
lowing editing metrics on PX :

1. The minimum number of augmentations and removals of single objects
needed to transform P into Q.

2. The minimum number of divisions, mergings, and transfers of single
objects needed to transform P into Q.

3. The minimum number of divisions, mergings, and transfers needed to
transform P into Q.

4. The minimum number of divisions and mergings needed to transform
P into Q; in fact, it is equal to |P |+ |Q| − 2|P ∨Q|.

5. σ(P ) + σ(Q)− 2σ(P ∧Q), where σ(P ) =
∑

Pi∈P |Pi|(|Pi| − 1).
6. e(P ) + e(Q)− 2e(P ∧Q), where e(P ) = log2 n +

∑
Pi∈P

|Pi|
n log2

|Pi|
n .

The Reignier distance is the minimum number of elements that must
be moved between the blocks of partition P in order to transform it into
Q. (Cf. Earth Mover distance in Chap. 21 and the above metric 2.)

10.3 Metrics on lattices

Consider a poset (L,
). The meet (or infimum) x ∧ y (if it exists) of two
elements x and y is the unique element satisfying x∧ y 
 x, y, and z 
 x∧ y
if z 
 x, y; similarly, the join (or supremum) x ∨ y (if it exists) is the unique
element such that x, y 
 x ∨ y, and x ∨ y 
 z if x, y 
 z.

A poset (L,
) is called a lattice if every two elements x, y ∈ L have the
join x ∨ y and the meet x ∧ y. A poset (L,
) is called ameet semi-lattice (or
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lower semi-lattice) if only the meet-operation is defined. A poset (L,
) is
called a join semi-lattice (or upper semi-lattice) if only the join-operation is
defined.

A lattice L = (L,
,∨,∧) is called a semi-modular lattice (or semi-
Dedekind lattice) if the modularity relation xMy is symmetric: xMy implies
yMx for any x, y ∈ L. The modularity relation here is defined as follows: two
elements x and y are said to constitute a modular pair, in symbols xMy, if
x ∧ (y ∨ z) = (x ∧ y) ∨ z for any z 
 x.

A lattice L in which every pair of elements is modular, is called a modular
lattice (or Dedekind lattice). A lattice is modular if and only if the modular
law is valid: if z 
 x, then x ∧ (y ∨ z) = (x ∧ y) ∨ z for any y. A lattice is
called distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for any x, y, z ∈ L.

Given a lattice L, a function v : L→ R≥0, satisfying v(x∨ y) + v(x∧ y) ≤
v(x) + v(y) for all x, y ∈ L, is called a subvaluation on L. A subvaluation v
is called isotone if v(x) ≤ v(y) whenever x 
 y, and it is called positive if
v(x) < v(y) whenever x 
 y, x �= y.

A subvaluation v is called a valuation if it is isotone and v(x∨y)+v(x∧y) =
v(x) + v(y) for all x, y ∈ L. An integer-valued valuation is called the height
(or length) of L.

• Lattice valuation metric
Let L = (L,
,∨,∧) be a lattice, and let v be an isotone subvaluation on
L. The lattice subvaluation semi-metric dv on L is defined by

2v(x ∨ y)− v(x)− v(y).

(It can be defined also on some semi-lattices.) If v is a positive subvaluation
on L, one obtains a metric, called the lattice subvaluation metric. If v
is a valuation, dv can be written as

v(x ∨ y)− v(x ∧ y) = v(x) + v(y)− 2v(x ∧ y),

and is called the valuation semi-metric. If v is a positive valuation on L,
one obtains a metric, called the lattice valuation metric.

If L = N (the set of positive integers), x∨y = l.c.m.(x, y) (least common
multiple), x∧ y = g.c.d.(x, y) (greatest common divisor), and the positive
valuation v(x) = lnx, then dv(x, y) = ln l.c.m.(x,y)

g.c.d(x,y) . This metric can be
generalized on any factorial ring (i.e., a ring with unique factorization)
equipped with a positive valuation v such that v(x) ≥ 0 with equality
only for the multiplicative unit of the ring, and v(xy) = v(x) + v(y). (Cf.
ring semi-metric).

• Finite subgroup metric
Let (G, ·, e) be a group. Let L = (L,⊂,∩) be the meet semi-lattice of
all finite subgroups of the group (G, ·, e) with the meet X ∩ Y and the
valuation v(X) = ln |X|.
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The finite subgroup metric is a valuation metric on L, defined by

v(X) + v(Y )− 2v(X ∧ Y ) = ln
|X||Y |

(|X ∩ Y |)2 .

• Scalar and vectorial metrics
Let L = (L,≤,max,min) be a lattice with the join max{x, y}, and the meet
min{x, y} on a set L ⊂ [0,∞) which has a fixed number a as the greatest
element and is closed under negation, i.e., for any x ∈ L, one has x =
a− x ∈ L.

The scalar metric d on L is defined, for x �= y, by

d(x, y) = max{min{x, y},min{x, y}}.

The scalar metric d∗ on L∗ = L ∪ {∗}, ∗ �∈ L, is defined, for x �= y, by

d∗(x, y) =

⎧
⎨

⎩

d(x, y), if x, y ∈ L,
max{x, x}, if y = ∗, x �= ∗,
max{y, y}, if x = ∗, y �= ∗.

Given a norm ||.|| on R
n, n ≥ 2, the vectorial metric on Ln is de-

fined by
||(d(x1, y1), . . . , d(xn, yn))||,

and the vectorial metric on (L∗)n is defined by

||(d∗(x1, y1), . . . , d∗(xn, yn))||.

The vectorial metric on Ln
2 = {0, 1}n with l1-norm on R

n is the
Fréchet–Nikodym–Aronszyan distance. The vectorial metric on
Ln

m = {0, 1
m−1 , . . . , m−2

m−1 , 1}n with l1-norm on R
n is the Sgarro m-valued

metric. The vectorial metric on [0, 1]n with l1-norm on R
n is the Sgarro

fuzzy metric.
If L is Lm or [0, 1], and x = (x1, . . . , xn, xn+1, . . . , xn+r), y =

(y1, . . . , yn, ∗, . . . , ∗), where ∗ stands in r places, then the vectorial metric
between x and y is the Sgarro metric (see, for example, [CSY01]).

• Metrics on Riesz space
A Riesz space (or vector lattice) is a partially ordered vector space (VRi,
)
in which the following conditions hold:

1. The vector space structure and the partial order structure are com-
patible: from x 
 y it follows that x + z 
 y + z, and from x � 0,
λ ∈ R, λ > 0 it follows that λx � 0.

2. For any two elements x, y ∈ VRi there exists the join x ∨ y ∈ VRi (in
particular, the join and the meet of any finite set of elements from VRi

exist).
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The Riesz norm metric is a norm metric on VRi, defined by

||x− y||Ri,

where ||.||Ri is a Riesz norm, i.e., a norm on VRi such that, for any x, y ∈
VRi, the inequality |x| ≤ |y|, where |x| = (−x) ∨ (x), implies ||x||Ri ≤
||y||Ri. The space (VRi, ||.||Ri) is called a normed Riesz space. In the case
of completeness it is called a Banach lattice. All Riesz norms on a Banach
lattice are equivalent.

An element e ∈ V +
Ri = {x ∈ VRi : x � 0} is called a strong unit of VRi

if for each x ∈ VRi there exists λ ∈ R such that |x| 
 λe. If a Riesz space
VRi has a strong unit e, then ||x|| = inf{λ ∈ R : |x| 
 λe} is a Riesz norm,
and one obtains on VRi a Riesz norm metric

inf{λ ∈ R : |x− y| 
 λe}.

A weak unit of VRi is an element e of V +
Ri such that e ∧ |x| = 0 implies

x = 0. A Riesz space VRi is called Archimedean if, for any two x, y ∈ V +
Ri,

there exists a natural number n, such that nx 
 y. The uniform metric
on an Archimedean Riesz space with a weak unit e is defined by

inf{λ ∈ R : |x− y| ∧ e 
 λe}.

• Gallery distance of flags
Let L be a lattice. A chain C in L is a subset of L which is linearly
ordered, i.e., any two elements of C are compatible. A flag is a chain in L

which is maximal with respect to inclusion. If L is a semi-modular lattice,
containing a finite flag, then L has a unique minimal and a unique maximal
element, and any two flags C, D in L have the same cardinality, n+1. Then
n is the height of the lattice L. Two flags C, D in L are called adjacent if
either they are equal or D contains exactly one element not in C. A gallery
from C to D of length m is a sequence of flags C = C0, C1, . . . , Cm = D
such that Ci−1 and Ci are adjacent for i = 1, . . . ,m.

A gallery distance of flags (see [Abel91]) is a distance on the set
of all flags of a semi-modular lattice L with finite height, defined as the
minimum of lengths of galleries from C to D. It can be written as

|C ∨D| − |C| = |C ∨D| − |D|,

where C ∨ D = {c ∨ d : c ∈ C, d ∈ D} is the upper sub-semi-lattice
generated by C and D.

The gallery distance of flags is a special case of the gallery metric (of
the chamber system consisting of flags).



Chapter 11
Distances on Strings and Permutations

An alphabet is a finite set A, |A| ≥ 2, elements of which are called characters
(or symbols). A string (or word) is a sequence of characters over a given finite
alphabet A. The set of all finite strings over the alphabet A is denoted by
W (A). Examples of real world applications, using distances and similarities of
string pairs, are Speech Recognition, Bioinformatics, Information Retrieval,
Machine Translation, Lexicography, Dialectology.

A substring (or factor, chain, block) of the string x = x1 . . . xn is any
contiguous subsequence xixi+1 . . . xk with 1 ≤ i ≤ k ≤ n. A prefix of a string
x1 . . . xn is any substring of it starting with x1; a suffix is any substring of it
finishing with xn. If a string is a part of a text, then the delimiters (a space,
a dot, a comma, etc.) are added to the alphabet A.

A vector is any finite sequence consisting of real numbers, i.e., a finite
string over the infinite alphabet R. A frequency vector (or discrete probability
distribution) is any string x1 . . . xn with all xi ≥ 0 and

∑n
i=1 xi = 1. A

permutation (or ranking) is any string x1 . . . xn with all xi being different
numbers from {1, . . . , n}.

An editing operation is an operation on strings, i.e., a symmetric binary
relation on the set of all considered strings. Given a set of editing operations
O = {O1, . . . , Om}, the corresponding editing metric (or unit cost edit dis-
tance) between strings x and y is the minimum number of editing operations
from O needed to obtain y from x. It is the path metric of a graph with the
vertex-set W (A) and xy being an edge if y can be obtained from x by one
of the operations from O. In some applications, a cost function is assigned to
each type of editing operation; then the editing distance is the minimal total
cost of transforming x into y. Given a set of editing operations O on strings,
the corresponding necklace editing metric between cyclic strings x and
y is the minimum number of editing operations from O needed to obtain y
from x, minimized over all rotations of x.

The main editing operations on strings are:

• Character indel, i.e., insertion or deletion of a character
• Character replacement
• Character swap, i.e., an interchange of adjacent characters

M.M. Deza and E. Deza, Encyclopedia of Distances, 201
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• Substring move, i.e., transforming, say, the string x = x1 . . . xn into the
string x1 . . . xi−1xj . . .xk−1xi . . . xj−1xk . . . xn

• Substring copy, i.e., transforming, say, x = x1 . . . xn into x1 . . . xi−1xj . . .
xk−1xi . . . xn

• Substring uncopy, i.e., the removal of a substring provided that a copy of
it remains in the string

We list below the main distances on strings. However, some string distances
will appear in Chaps. 15, 21 and 23, where they fit better, with respect to
the needed level of generalization or specification.

11.1 Distances on general strings

• Levenstein metric
The Levenstein metric (or edit distance, shuffle-Hamming distance,
Hamming+Gap metric) is (Levenstein 1965) an editing metric on W (A),
obtained for O consisting of only character replacements and indels.

The Levenstein metric dL(x, y) between strings x = x1 . . . xm and y =
y1 . . . yn is equal to

min{dH(x∗, y∗)},

where x∗, y∗ are strings of length k, k ≥ max{m,n}, over the alphabet
A∗ = A ∪ {∗} so that, after deleting all new characters ∗, strings x∗ and
y∗ shrink to x and y, respectively. Here, the gap is the new symbol ∗, and
x∗, y∗ are shuffles of strings x and y with strings consisting of only ∗.

The Levenstein similarity is 1− dL(x,y)
max{m,n} .

The Damerau–Levenstein metric (Damerau 1964) is an editing met-
ric on W (A), obtained for O consisting only of character replacements,
indels and transpositions. In the Levenstein metric, a transposition corre-
sponds to two editing operations: one insertion and one deletion.

The constrained edit distance (Oomen 1986) is the Levenstein met-
ric, but the ranges for the number of replacements, insertions and deletions
are specified.

• Editing metric with moves
The editing metric with moves is an editing metric on W (A) [Corm03],
obtained for O consisting of only substring moves and indels.

• Editing compression metric
The editing compression metric is an editing metric on W (A) [Corm03],
obtained for O consisting of only indels, copy and uncopy operations.

• Indel metric
The indel metric is an editing metric on W (A), obtained for O consisting
of only indels.
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It is an analog of the Hamming metric |XΔY | between sets X and
Y . For strings x = x1 . . . xm and y = y1 . . . yn it is equal to m + n −
2LCS(x, y), where the similarity LCS(x, y) is the length of the longest
common subsequence of x and y.

The factor distance on W (A) is m + n− 2LCF (x, y), where the simi-
larity LCF (x, y) is the length of the longest common substring (factor) of
x and y.

The LCS ratio and the LCF ratio are the similarities on W (A) defined
by LCS(x,y)

min{m,n} and LCF (x,y)
min{m,n} , respectively; sometimes, the denominator is

max{m,n} or m+n
2 .

• Swap metric
The swap metric is an editing metric on W (A), obtained for O consisting
only of character swaps.

• Edit distance with costs
Given a set of editing operations O = {O1, . . . , Om} and a weight (or cost
function) wi ≥ 0, assigned to each type Oi of operation, the edit distance
with costs between strings x and y is the minimal total cost of an editing
path between them, i.e., the minimal sum of weights for a sequence of
operations transforming x into y.

The normalized edit distance between strings x and y (Marzal and
Vidal 1993) is the minimum, over all editing paths P between them, of
W (P )
L(P ) , where W (P ) and L(P ) are the total cost and the length of the
editing path P .

• Transduction edit distances
The Levenstein metric with costs between strings x and y is modeled
in [RiYi98] as a memoryless stochastic transduction between x and y.

Each step of transduction generates either a character replacement pair
(a, b), a deletion pair (a, ∅), an insertion pair (∅, b), or the specific termi-
nation symbol t according to a probability function δ : E ∪ {t} → [0, 1],
where E is the set of all possible above pairs. Such a transducer induces a
probability function on the set of all sequences of operations.

The transduction edit distances between strings x and y are [RiYi98]
ln p of the following probabilities p:

for the Viterbi edit distance, the probability p of the most likely
sequence of editing operations transforming x into y;

for the stochastic edit distance, the probability p of the string pair
(x, y).

Those distances are never zero unless they are infinite for all other string
pairs.

This model allows one to learn (in order to reduce error rate) the edit
costs for the Levenstein metric from a corpus of examples (training set
of string pairs). This learning is automatic; it reduces to estimating the
parameters of above transducer.
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• Bag distance
The bag distance (or multiset metric, counting filter) is a metric on
W (A), defined (Navarro 1997) by

max{|X\Y |, |Y \X|}

for any strings x and y, where X and Y are the bags of symbols (multisets
of characters) in strings x and y, respectively, and, say, |X\Y | counts the
number of elements in the multiset X\Y . Cf. metrics between multisets
in Chap. 1.

The bag distance is a (computationally) cheap approximation of the
Levenstein metric.

• Marking metric
The marking metric is a metric on W (A) [EhHa88], defined by

log2 ((diff(x, y) + 1)(diff(y, x) + 1))

for any strings x = x1 . . . xm and y = y1 . . . yn, where diff(x, y) is the
minimal size |M | of a subset M ⊂ {1, . . . , m} such that any substring of
x, not containing any xi with i ∈M , is a substring of y.

Another metric, defined in [EhHa88], is log2(diff(x, y)+diff(y, x)+1).
• Transformation distance

The transformation distance is an editing distance with costs on
W (A) (Varre, Delahaye and Rivals 1999) obtained for O consisting only of
substring copy, uncopy and substring indels. The distance between strings
x and y is the minimal cost of transformation x into y using these opera-
tions, where the cost of each operation is the length of its description. For
example, the description of the copy requires a binary code specifying the
type of operation, an offset between the substring locations in x and in y,
and the length of the substring. A code for insertion specifies the type of
operation, the length of the substring and the sequence of the substring.

• L1 rearrangement distance
The L1 rearrangement distance (Amir, Aumann, Indyk, Levy and
Porat 2007) between strings x = x1 . . . xm and y = y1 . . . ym is equal to

min
π

m∑

i=1

|i− π(i)|,

where π : {1, . . . , m} → {1, . . . , m} is a permutation transforming x into
y; if there are no such permutations, the distance is equal to ∞.

The L∞ rearrangement distance (Amir, Aumann, Indyk, Levy
and Porat 2007) between strings x = x1 . . . xm and y = y1 . . . ym is
minπ max1≤i≤m |i − π(i)| and, again, it is ∞ if such a permutation does
not exist.

Cf. genome rearrangement distances in Chap. 23.
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• Normalized information distance
The normalized information distance d between two binary strings x
and y is a symmetric function on W ({0, 1}) [LCLM04], defined by

max{K(x|y∗),K(y|x∗)}
max{K(x),K(y)}

Here, for binary strings u and v, u∗ is a shortest binary program to compute
u on an appropriate (i.e., using a Turing-complete language) universal
computer, the Kolmogorov complexity (or algorithmic entropy) K(u) is
the length of u∗ (the ultimate compressed version of u), and K(u|v) is
the length of the shortest program to compute u if v is provided as an
auxiliary input.

The function d(x, y) is a metric up to small error term: d(x, x) =
O((K(x))−1), and d(x, z) − d(x, y) − d(y, z) = O((max{K(x),K(y),
K(z)})−1). ( Cf. d(x, y) the information metric (or entropy metric)
H(X|Y ) + H(Y |X) between stochastic sources X and Y .)

The Kolmogorov complexity is uncomputable and depends on the cho-
sen computer language; so, instead of K(u), were proposed the minimum
message length (shortest overall message) by Wallace (1968) and the mini-
mum description length (largest compression of data) by Rissanen (1978).

The normalized compression distance is a distance on W ({0, 1})
[LCLM04], [BGLVZ98], defined by

C(xy)−min{C(x), C(y)}
max{C(x), C(y)}

for any binary strings x and y, where C(x), C(y), and C(xy) denote the
size of the compression (by fixed compressor C, such as gzip, bzip2, or
PPMZ) of strings x, y, and their concatenation xy. This distance is not a
metric. It is an approximation of the normalized information distance. A
similar distance is defined by C(xy)

C(x)+C(y) −
1
2 .

• Lempel–Ziv distance
The Lempel–Ziv distance between two binary strings x and y of length
n is

max{LZ(x|y)
LZ(x)

,
LZ(y|x)
LZ(y)

},

where LZ(x) = |P (x)| log |P (x)|
n is the Lempel–Ziv complexity of x, ap-

proximating its Kolmogorov complexity K(x). Here P (x) is the set of
non-overlapping substrings into which x is parsed sequentially, so that
the new substring is not yet contained in the set of substrings generated
so far. For example, such a Lempel–Ziv parsing for x = 001100101010011
is 0|01|1|00|10|101|001|11. Now, LZ(x|y) = |P (x)\P (y)| log |P (x)\P (y)|

n .
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• Anthony–Hammer similarity
The Anthony–Hammer similarity between a binary string x =
x1 . . . xn and the set Y of binary strings y = y1 . . . yn is the maximal
number m such that, for every m-subset M ⊂ {1, . . . , n}, the substring of
x, containing only xi with i ∈ M , is a substring of some y ∈ Y containing
only yi with i ∈M .

• Jaro similarity
Given strings x = x1 . . . xm and y = y1 . . . yn, call a character xi common
with y if xi = yj , where |i − j| ≤ min{m,n}

2 . Let x
′

= x
′

1 . . . x
′

m′ be all
the characters of x which are common with y (in the same order as they
appear in x), and let y

′
= y

′

1 . . . y
′

n′ be the analogous string for y.
The Jaro similarity Jaro(x, y) between strings x and y is defined by

1
3

(
m

′

m
+

n
′

n
+
|{1 ≤ i ≤ min{m′

, n
′} : x

′

i = y
′

i}|
min{m′ , n′}

)

.

This and following two similarities are used in Record Linkage.
• Jaro–Winkler similarity

The Jaro–Winkler similarity between strings x and y is defined by

Jaro(x, y) +
max{4, LCP (x, y)}

10
(1− Jaro(x, y)),

where Jaro(x, y) is the Jaro similarity, and LCP (x, y) is the length of
the longest common prefix of x and y.

• q-gram similarity
Given an integer q ≥ 1 (usually, q is 2 or 3), the q-gram similarity
between strings x and y is defined by

2q(x, y)
q(x) + q(y)

,

where q(x), q(y) and q(x, y) are the sizes of multisets of all q-grams (sub-
strings of length q) occurring in x, y and both of them, respectively.
Sometimes, q(x, y) is divided not by the average of q(x) and q(y), as above,
but by their minimum, maximum or harmonic mean 2q(x)q(y)

q(x)+q(y) . Cf. met-
rics between multisets in Chap. 1 and, in Chap. 17, Dice similarity,
Simpson similarity, Braun–Blanquet similarity and Anderberg
similarity.

Sometimes, the strings x and y are padded before computing their q-gram
similarity, i.e., q − 1 special characters are added to their beginnings and
ends. Padding increases the matching quality since q-grams at the begin-
ning and end of strings are q-grams not matched to other q-grams.

The q-gram similarity is an example of token-based similarities, i.e.,
ones defined in terms of tokens (selected substrings or words). Here tokens
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are q-grams. A generic dictionary-based metric between strings x and
y is |D(x)ΔD(y)|, where D(z) denotes the full dictionary of z, i.e., the set
of all of its substrings.

• Prefix-Hamming metric
The prefix-Hamming metric between strings x = x1 . . . xm and y =
y1 . . . yn is defined by

(max{m,n} −min{m,n}) + |{1 ≤ i ≤ min{m,n} : xi �= yi}|.

• Weighted Hamming metric
If (A, d) is a metric space, then the weighted Hamming metric between
strings x = x1 . . . xm and y = y1 . . . ym is defined by

m∑

i=1

d(xi, yi).

The term weighted Hamming metric (or weighted Hamming distance) is
also used for

∑
1≤i≤m,xi 	=yi

wi, where, for any 1 ≤ i ≤ m, w(i) > 0 is its
weight.

• Fuzzy Hamming distance
If (A, d) is a metric space, the fuzzy Hamming distance between strings
x = x1 . . . xm and y = y1 . . . ym is an editing distance with costs on
W (A) obtained for O consisting of only indels, each of fixed cost q > 0,
and character shifts (i.e., moves of 1-character substrings), where the cost
of replacement of i by j is a function f(|i−j|). This distance is the minimal
total cost of transforming x into y by these operations. Bookstein, Klein,
Raita (2001) introduced this distance for Information Retrieval and proved
that it is a metric if f is a monotonically increasing concave function on
integers vanishing only at 0. The case f(|i− j|) = C|i− j|, where C > 0 is
a constant and |i − j| is a time shift, corresponds to the Victor–Purpura
spike train distance in Chap. 23.

Ralescu (2003) introduced, for Image Retrieval, another fuzzy Ham-
ming distance on Rm. The Ralescu distance between two strings
x = x1 . . . xm and y = y1 . . . ym is the fuzzy cardinality of the difference
fuzzy set Dα(x, y) (where α is a parameter) with membership function

μi = 1− e−α(xi−yi)
2
, 1 ≤ i ≤ m.

The non-fuzzy cardinality of the fuzzy set Dα(x, y) approximating its fuzzy
cardinality is |{1 ≤ i ≤ m : μi > 1

2}|.
• Needleman–Wunsch–Sellers metric

If (A, d) is a metric space, the Needleman–Wunsch–Sellers metric
(or global alignment metric) is an editing distance with costs on
W (A) [NeWu70], obtained for O consisting of only indels, each of fixed
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cost q > 0, and character replacements, where the cost of replacement of i
by j is d(i, j). This metric is the minimal total cost of transforming x into
y by these operations. Equivalently, it is

min{dwH(x∗, y∗)},

where x∗, y∗ are strings of length k, k ≥ max{m,n}, over the alphabet
A∗ = A ∪ {∗}, so that, after deleting all new characters ∗, strings x∗

and y∗ shrink to x and y, respectively. Here dwH(x∗, y∗) is the weighted
Hamming metric between x∗ and y∗ with weight d(x∗

i , y
∗
i ) = q (i.e., the

editing operation is an indel) if one of x∗
i , y∗

i is ∗, and d(x∗
i , y

∗
i ) = d(i, j),

otherwise.
The Gotoh–Smith–Waterman distance (or string distance with

affine gaps) is a more specialized editing metric with costs (see [Goto82]).
It discounts mismatching parts at the beginning and end of the strings x,
y, and introduces two indel costs: one for starting an affine gap (contiguous
block of indels), and another one (lower) for extending a gap.

• Duncan metric
Consider the set X of all strictly increasing infinite sequences x =
{xn}n of positive integers. Define N(n, x) as the number of elements
in x = {xn}n which are less than n, and δ(x) as the density of x, i.e.,
δ(x) = limn→∞

N(n,x)
n . Let Y be the subset of X consisting of all sequences

x = {xn}n for which δ(x) <∞.
The Duncan metric is a metric on Y , defined, for x �= y, by

1
1 + LCP (x, y)

+ |δ(x)− δ(y)|,

where LCP (x, y) is the length of the longest common prefix of x and y.
• Martin metric

The Martin metric da between strings x = x1 . . . xm and y = y1 . . . yn

is defined by

|2−m − 2−n|+
max{m,n}∑

t=1

at

|A|t sup
z
|k(z, x)− k(z, y)|,

where z is any string of length t, k(z, x) is the Martin kernel of a
Markov chain M = {Mt}∞t=0, and the sequence a∈{a= {at}∞t=0 : at > 0,∑∞

t=1 at <∞} is a parameter.
• Baire metric

The Baire metric is an ultrametric between finite or infinite strings x
and y, defined, for x �= y, by

1
1 + LCP (x, y)

,
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where LCP (x, y) is the length of the longest common prefix of x and y.
Cf. Baire space in Chap. 2.

Given an infinite cardinal number κ and a set A of cardinality κ, the
Cartesian product of countably many copies of A endowed with above
ultametric 1

1+LCP (x,y) is called the Baire space of weight κ and denoted
by B(κ). In particular, B(ℵ0) (called the Baire zero-dimensional space) is
homeomorphic to the space Irr of irrationals with continued fraction
metric (cf. Chap. 12).

• Generalized Cantor metric
The generalized Cantor metric (or, sometimes, Baire distance) is an
ultrametric between infinite strings x and y, defined, for x �= y, by

a1+LCP (x,y),

where a is a fixed number from the interval (0, 1), and LCP (x, y) is the
length of the longest common prefix of x and y.

This ultrametric space is compact. In the case a= 1
2 , the metric

1
21+LCP (x,y) was considered on a remarkable fractal (cf. Chap. 1) from
[0, 1], the Cantor set; cf. Cantor metric in Chap. 18.

Comyn and Dauchet (1985) and Kwiatkowska (1990) introduced some
analogues of generalized Cantor metric for traces, i.e., equivalence classes
of strings with respect to a congruence relation identifying strings x, y
that are identical up to permutation of concurrent actions (xy = yx).

• Parentheses string metrics
Let Pn be the set of all strings on the alphabet {(, )} generated by a
grammar and having n open and n closed parentheses. A parentheses
string metric is an editing metric on Pn (or on its subset) corresponding
to a given set of editing operations.

For example, the Monjardet metric (Monjardet 1981) between two
parentheses strings x, y ∈ Pn is the minimum number of adjacent paren-
theses interchanges [“()” to “)(” or “)(” to “()”] needed to obtain y from
x. It is the Manhattan metric between their representations px and px,
where pz = (pz(1), . . . , pz(n)) and pz(i) is the number of open parentheses
written before the i-th closed parenthese of z ∈ Pn.

There is a bijection between parentheses strings and binary trees; cf.
the tree rotation distance in Chap. 15.

Similarly, Autord-Dehornoy distance between shortest expressions x and
y of a permutation as a product of transpositions, is the minimal number
of braid relations needed to get x from y.

• Schellenkens complexity quasi-metric
The Schellenkens complexity quasi-metric is a quasi-metric be-
tween infinite strings x = x0, x1, . . . , xm, . . . and y = y0, y1, . . . , yn, . . .
over R≥0 with

∑∞
i=0 2−i 1

xi
< ∞ (seen as complexity functions), defined

(Schellenkens 1995) by

∞∑

i=0

2−i max{0,
1
xi
− 1

yi
}.



210 11 Distances on Strings and Permutations

• Graev metrics
Let (X, d) be a metric space. Let X = X ∪X ′ ∪{e}, where X ′ = {x′ : x ∈
X} is a disjoint copy of X, and e /∈ X ∪X ′. We use the notation (e′)′ = e
and (x′)′ = x for any x ∈ X; also, the letters x, y, xi, yi will denote elements
of X. Let (X,D) be a metric space such that D(x, y) = D(x′, y′) = d(x, y),
D(x, e) = D(x′, e) and D(x, y′) = D(x′, y) for all x, y ∈ X.

Denote by W (X) the set of all words over X and, for each word
w ∈ W (X), denote by l(w) its length. A word w ∈ W (X) is called irre-
ducible if w = e or w = x0 . . . xn, where xi �= e and xi+1 �= x′

i for 0 ≤ i < n.
For each word w over X, denote by ŵ the unique irreducible word

obtained from w by successively replacing any occurrence of xx′ in w by e
and eliminating e from any occurrence of the form w1ew2, where at least
one of the words w1 and w2 is non-empty.

Denote by F (X) the set of all irreducible words over X and, for
u, v ∈ F (X), define u · v = w′, where w is the concatenation of words
u and v. Then F (X) becomes a group; its identity element is the (non-
empty) word e.

For any two words v = x0 . . . xn and u = y0 . . . yn over X of the same
length, let ρ(v, u) =

∑n
i=0 D(xi, yi). The Graev metric between two

irreducible words u = u, v ∈ F (X) is defined [DiGa07] by

inf{ρ(u∗, v∗) : u∗, v∗ ∈W (X), l(u∗) = l(v∗), û∗ = u, v̂∗ = v}.

Graev proved that this metric is a bi-invariant metric on F (X), ex-
tending the metric d on X, and that F (X) is a topological group in the
topology induced by it.

11.2 Distances on permutations

A permutation (or ranking) is any string x1 . . . xn with all xi being differ-
ent numbers from {1, . . . , n}; a signed permutation is any string x1 . . . xn

with all |xi| being different numbers from {1, . . . , n}. Denote by (Symn, ·, id)
the group of all permutations of the set {1, . . . , n}, where id is the identity
mapping.

The restriction, on the set Symn of all n-permutation vectors, of any metric
on R

n is a metric on Symn; the main example is the lp-metric (
∑n

i=1 |xi −
yi|p)

1
p , p ≥ 1.

The main editing operations on permutations are:

• Block transposition, i.e., a substring move
• Character move, i.e., a transposition of a block consisting of only one

character
• Character swap, i.e., interchanging of any two adjacent characters
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• Character exchange, i.e., interchanging of any two characters (in Group
Theory, it is called transposition)

• One-level character exchange, i.e., exchange of characters xi and xj , i < j,
such that, for any k with i < k < j, either min{xi, xj} > xk, or xk >
max{xi, xj}

• Block reversal, i.e., transforming, say, the permutation x = x1 . . . xn into
the permutation x1 . . . xi−1xjxj−1 . . .xi+1xixj+1 . . . xn (so, a swap is a re-
versal of a block consisting only of two characters)

• Signed reversal, i.e., a reversal in signed permutation, followed by multi-
plication on −1 of all characters of the reversed block

Below we list the most used editing and other metrics on Symn.

• Hamming metric on permutations
The Hamming metric on permutations dH is an editing metric on
Symn, obtained for O consisting of only character replacements. It is a
bi-invariant metric. Also, n − dH(x, y) is the number of fixed points of
xy−1.

• Spearman ρ distance
The Spearman ρ distance is the Euclidean metric on Symn:

√
√
√
√

n∑

i=1

(xi − yi)2.

(Cf. Spearman ρ rank correlation in Chap. 17.)
• Spearman footrule distance

The Spearman footrule distance is the l1-metric on Symn:
n∑

i=1

|xi − yi|.

(Cf. Spearman footrule similarity in Chap. 17.)
Both Spearman distances are bi-invariant.

• Kendall τ distance
The Kendall τ distance (or inversion metric, permutation swap metric)
I is an editing metric on Symn, obtained for O consisting only of character
swaps.

In terms of Group Theory, I(x, y) is the number of adjacent trans-
positions needed to obtain x from y. Also, I(x, y) is the number of
relative inversions of x and y, i.e., pairs (i, j), 1 ≤ i < j ≤ n, with
(xi − xj)(yi − yj) < 0. (Cf. Kendall τ rank correlation similarity in
Chap. 17.)

In [BCFS97] the following metrics were also given, associated with the
metric I(x, y):

1. minz∈Symn
(I(x, z) + I(z−1, y−1))

2. maxz∈Symn
I(zx, zy)
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3. minz∈Symn
I(zx, zy) = T (x, y), where T is the Cayley metric

4. Editing metric, obtained for O consisting only of one-level character
exchanges

• Daniels–Guilbaud semi-metric
The Daniels–Guilbaud semi-metric is a semi-metric on Symn, defined,
for any x, y ∈ Symn, as the number of triples (i, j, k), 1 ≤ i < j < k ≤ n,
such that (xi, xj , xk) is not a cyclic shift of (yi, yj , yk); so, it is 0 if and
only if x is a cyclical shift of y (see [Monj98]).

• Cayley metric
The Cayley metric T is an editing metric on Symn, obtained for O
consisting only of character exchanges.

In terms of Group Theory, T (x, y) is the minimum number of transposi-
tions needed to obtain x from y. Also, n− T (x, y) is the number of cycles
in xy−1. The metric T is bi-invariant.

• Ulam metric
The Ulam metric (or permutation editing metric) U is an editing
metric on Symn, obtained for O consisting only of character moves.

Equivalently, it is an editing metric, obtained for O consisting only of
indels. Also, n − U(x, y) = LCS(x, y) = LIS(xy−1), where LCS(x, y) is
the length of the longest common subsequence (not necessarily a substring)
of x and y, while LIS(z) is the length of the longest increasing subsequence
of z ∈ Symn.

This and the preceding six metrics are right-invariant.
• Reversal metric

The reversal metric is an editing metric on Symn, obtained for O con-
sisting only of block reversals.

• Signed reversal metric
The signed reversal metric (Sankoff 1989) is an editing metric on the
set of all 2nn! signed permutations of the set {1, . . . , n}, obtained for O
consisting only of signed reversals.

This metric is used in Biology, where a signed permutation represents
a single-chromosome genome, seen as a permutation of genes (along the
chromosome) each having a direction (so, a sign + or −).

• Chain metric
The chain metric (or rearrangement metric) is a metric on Symn [Page65],
defined, for any x, y ∈ Symn, as the minimum number, minus 1, of chains
(substrings) y′

1, . . . , y
′
t of y, such that x can be parsed (concatenated) into,

i.e., x = y′
1 . . . y

′

t.
• Lexicographic metric

The lexicographic metric (Golenko and Ginzburg 1973) is a metric on
Symn, defined by

|N(x)−N(y)|,
where N(x) is the ordinal number of the position (among 1, . . . , n!) occu-
pied by the permutation x in the lexicographic ordering of the set Symn.
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In the lexicographic ordering of Symn, x = x1 . . . xn ≺ y = y1 . . . yn if
there exists 1 ≤ i ≤ n such that x1 = x1, . . . , xi−1 = yi−1, but xi < yi.

• Fréchet permutation metric
The Fréchet permutation metric is the Fréchet product metric on
the set Sym∞ of permutations of positive integers, defined by

∞∑

i=1

1
2i

|xi − yi|
1 + |xi − yi|

.



Chapter 12
Distances on Numbers, Polynomials,
and Matrices

12.1 Metrics on numbers

Here we consider some of the most important metrics on the classical number
systems: the semi-ring N of natural numbers, the ring Z of integers, and the
fields Q, R, and C of rational, real, and complex numbers, respectively. We
consider also the algebra Q of quaternions.

• Metrics on natural numbers
There are several well-known metrics on the set N of natural numbers:

1. |n−m|; the restriction of the natural metric (from R) on N

2. p−α, where α is the highest power of a given prime number p dividing
m − n, for m �= n (and equal to 0 for m = n); the restriction of the
p-adic metric (from Q) on N

3. ln l.c.m.(m,n)
g.c.d.(m,n) ; an example of the lattice valuation metric

4. wr(n−m), where wr(n) is the arithmetic r-weight of n; the restriction
of the arithmetic r-norm metric (from Z) on N

5. |n−m|
mn (cf. M-relative metric in Chap. 19)

6. 1+ 1
m+n for m �= n (and equal to 0 for m = n); the Sierpinski metric

Most of these metrics on N can be extended on Z. Moreover, any one of
the above metrics can be used in the case of an arbitrary countable set X.
For example, the Sierpinski metric is defined, in general, on a countable
set X = {xn : n ∈ N} by 1 + 1

m+n for all xm, xn ∈ X with m �= n (and is
equal to 0, otherwise).

• Arithmetic r-norm metric
Let r ∈ N, r ≥ 2. The modified r-ary form of an integer x is a representation

x = enrn + · · ·+ e1r + e0,

where ei ∈ Z, and |ei| < r for all i = 0, . . . , n. An r-ary form is called
minimal if the number of non-zero coefficients is minimal. The minimal
form is not unique, in general. But if the coefficients ei, 0 ≤ i ≤ n − 1,

M.M. Deza and E. Deza, Encyclopedia of Distances, 215
DOI 10.1007/978-3-642-00234-2 12, c© Springer-Verlag Berlin Heidelberg 2009
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satisfy the conditions |ei + ei+1| < r, and |ei| < |ei+1| if eiei+1 < 0,
then the above form is unique and minimal; it is called the generalized
non-adjacent form.

The arithmetic r-weight wr(x) of an integer x is the number of non-zero
coefficients in a minimal r-ary form of x, in particular, in the general-
ized non-adjacent form. The arithmetic r-norm metric on Z (see, for
example, [Ernv85]) is defined by

wr(x− y).

• p-adic metric
Let p be a prime number. Any non-zero rational number x can be repre-
sented as x = pα c

d , where c and d are integers not divisible by p, and α is a
unique integer. The p-adic norm of x is defined by |x|p = p−α. Moreover,
|0|p = 0 is defined.

The p-adic metric is a norm metric on the set Q of rational numbers,
defined by

|x− y|p.
This metric forms the basis for the algebra of p-adic numbers. In fact, the
Cauchy completion of the metric space (Q, |x−y|p) gives the field Qp of
p-adic numbers; also the Cauchy completion of the metric space (Q, |x−y|)
with the natural metric |x− y| gives the field R of real numbers.

The Gajić metric is an ultrametric on the set Q of rational numbers
defined, for x �= y (via the integer part #z$ of a real number z), by

inf{2−n : n ∈ Z, #2n(x− e)$ = #2n(y − e)$},

where e is any fixed irrational number. This metric is equivalent to the
natural metric |x− y| on Q.

• Continued fraction metric on irrationals
The continued fraction metric on irrationals is a complete metric on
the set Irr of irrational numbers defined, for x �= y, by

1
n

,

where n is the first index for which the continued fraction expansions of
x and y differ. This metric is equivalent to the natural metric |x − y|
on Irr, which is non-complete and disconnected. Also, the Baire zero-
dimensional space B(ℵ0) (cf. Baire metric in Chap. 11) is homeomorphic
to Irr endowed with this metric.

• Natural metric
The natural metric (or absolute value metric, or the distance between
numbers) is a metric on R, defined by

|x− y| =
{

y − x, if x− y < 0,
x− y, if x− y ≥ 0.
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On R all lp-metrics coincide with the natural metric. The metric space
(R, |x− y|) is called the real line (or Euclidean line).

There exist many other metrics on R coming from |x − y| by some
metric transform (cf. Chap. 4). For example: min{1, |x − y|}, |x−y|

1+|x−y| ,
|x|+ |x− y|+ |y| (for x �= y) and, for a given 0 < α < 1, the generalized
absolute value metric |x− y|α.

• Zero bias metric
The zero bias metric is a metric on R, defined by

1 + |x− y|

if one and only one of x and y is strictly positive, and by

|x− y|,

otherwise, where |x−y| is the natural metric (see, for example, [Gile87]).
• Sorgenfrey quasi-metric

The Sorgenfrey quasi-metric is a quasi-metric d on R, defined by

y − x

if y ≥ x, and equal to 1 otherwise.
Some examples of similar quasi-metrics on R are:

1. d1(x, y) = max{y − x, 0}.
2. d2(x, y) = min{y − x, 1} if y ≥ x, and equal to 1 otherwise.
3. d3(x, y) = y − x if y ≥ x, and equal to a(x − y) (for fixed a > 0)

otherwise.
4. d4(x, y) = ey − ex if y ≥ x, and equal to e−y − e−x otherwise.

• Real half-line quasi-semi-metric
The real half-line quasi-semi-metric is defined on the half-line R>0 by

max{0, ln
y

x
}.

• Janous–Hametner metric
The Janous–Hametner metric is defined on the half-line R>0 by

|x− y|
(x + y)t

,

where t = −1 or 0 ≤ t ≤ 1, and |x− y| is the natural metric.
• Extended real line metric

An extended real line metric is a metric on R ∪ {+∞} ∪ {−∞}. The
main example (see, for example, [Cops68]) of such metric is given by

|f(x)− f(y)|,
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where f(x) = x
1+|x| for x ∈ R , f(+∞) = 1, and f(−∞) = −1. Another

metric, commonly used on R ∪ {+∞} ∪ {−∞}, is defined by

| arctan x− arctan y|,

where − 1
2π < arctan x < 1

2π for −∞ < x <∞, and arctan(±∞) = ± 1
2π.

• Complex modulus metric
The complex modulus metric is a metric on the set C of complex
numbers, defined by

|z − u|,
where, for any z ∈ C, the real number |z| = |z1 + z2i| =

√
z2
1 + z2

2 is the
complex modulus. The metric space (C, |z−u|) is called the complex plane
(or Argand plane).

Examples of other useful metrics on C are: the British Rail metric,
defined by

|z|+ |u|
for z �= u (and is equal to 0 otherwise); the p-relative metric, 1 ≤ p ≤ ∞
(cf. (p, q)-relative metric in Chap. 19), defined by

|z − u|
(|z|p + |u|p) 1

p

for |z| + |u| �= 0 (and is equal to 0 otherwise); for p = ∞ one obtains the
relative metric, written for |z|+ |u| �= 0 as

|z − u|
max{|z|, |u|} .

• Chordal metric
The chordal metric dχ is a metric on the set C=C ∪ {∞}, defined by

dχ(z, u) =
2|z − u|

√
1 + |z|2

√
1 + |u|2

for all z, u ∈ C, and by

dχ(z,∞) =
2

√
1 + |z|2

for all z ∈ C (cf. M-relative metric in Chap. 19). The metric space
(C, dχ) is called the extended complex plane. It is homeomorphic and con-
formally equivalent to the Riemann sphere.

In fact, a Riemann sphere is a sphere in the Euclidean space E
3, consid-

ered as a metric subspace of E
3, onto which the extended complex plane
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is one-to-one mapped under stereographic projection. The unit sphere
S2 = {(x1, x2, x3) ∈ E

3 : x2
1 + x2

2 + x2
3 = 1} can be taken as the Riemann

sphere, and the plane C can be identified with the plane x3 = 0 such that
the real axis coincides with the x1-axis, and the imaginary axis with the
x2-axis. Under stereographic projection, each point z ∈ C corresponds to
the point (x1, x2, x3) ∈ S2 obtained as the point where the ray drawn from
the “north pole” (0, 0, 1) of the sphere to the point z meets the sphere S2;
the “north pole” corresponds to the point at infinity ∞. The chordal dis-
tance between two points p, q ∈ S2 is taken to be the distance between
their preimages z, u ∈ C.

The chordal metric can be defined equivalently on R
n

= R
n ∪ {∞}.

Thus, for any x, y ∈ R
n, one has

dχ(x, y) =
2||x− y||2√

1 + ||x||22
√

1 + ||y||22
,

and for any x ∈ R
n, one has

dχ(x,∞) =
2

√
1 + ||x||22

,

where ||.||2 is the ordinary Euclidean norm on R
n.

The metric space (Rn, dχ) is called the Möbius space. It is a Ptolemaic
metric space (cf. Ptolemaic metric in Chap. 1).

Given α > 0, β ≥ 0, p ≥ 1, the generalized chordal metric is a
metric on C (in general, on (Rn, ||.||2) and even on any Ptolemaic space
(V, ||.||)), defined by

|z − u|
(α + β|z|p) 1

p · (α + β|u|p) 1
p

.

It can be easily generalized to C (or R
n
).

• Quaternion metric
Quaternions are members of a non-commutative division algebra Q over
the field R, geometrically realizable in a four-dimensional space [Hami66].
The quaternions can be written in the form q = q1 + q2i + q3j + q4k,
qi ∈ R, where the quaternions i, j, and k, called the basic units, satisfy
the following identities, known as Hamilton’s rules: i2 = j2 = k2 = −1,
and ij = −ji = k.

The quaternion norm ||q|| of q = q1 + q2i + q3j + q4k ∈ Q is defined by

||q|| =
√

qq =
√

q2
1 + q2

2 + q2
3 + q2

4 , q = q1 − q2i− q3j − q4k.

The quaternion metric is a norm metric ||x− y|| on the set Q of all
quaternions.
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12.2 Metrics on polynomials

A polynomial is an expression involving a sum of powers in one or more
variables multiplied by coefficients. A polynomial in one variable (or monic
polynomial) with constant real (complex) coefficients is given by P = P (z) =∑n

k=0 akzk, ak ∈ R (ak ∈ C).
The set P of all real (complex) polynomials forms a ring (P,+, ·, 0). It is

also a vector space over R (over C).

• Polynomial norm metric
A polynomial norm metric (or polynomial bar metric) is a norm
metric on the set P of all real (complex) polynomials, defined by

||P −Q||,

where ||.|| is a polynomial norm, i.e., a function ||.|| : P → R such that, for
all P,Q ∈ P and for any scalar k, we have the following properties:

1. ||P || ≥ 0, with ||P || = 0 if and only if P ≡ 0.
2. ||kP || = |k|||P ||.
3. ||P + Q|| ≤ ||P ||+ ||Q|| (triangle inequality).

For the set P several classes of norms are commonly used. The lp-norm,
1 ≤ p ≤ ∞, of a polynomial P (z) =

∑n
k=0 akzk is defined by

||P ||p = (
n∑

k=0

|ak|p)1/p,

giving the special cases ||P ||1 =
∑n

k=0 |ak|, ||P ||2 =
√∑n

k=0 |ak|2, and
||P ||∞ = max0≤k≤n |ak|. The value ||P ||∞ is called the polynomial height.
The Lp-norm, 1 ≤ p ≤ ∞, of a polynomial P (z) =

∑n
k=0 akzk is defined by

||P ||Lp
= (

∫ 2π

0

|P (eiθ)|p dθ

2π
)

1
p ,

giving the special cases ||P ||L1 =
∫ 2π

0
|P (eiθ)| dθ

2π , ||P ||L2 =
√∫ 2π

0
|P (eiθ)|2 dθ

2π ,
and ||P ||L∞ = sup|z|=1 |P (z)|.

• Bombieri metric
The Bombieri metric (or polynomial bracket metric) is a poly-
nomial norm metric on the set P of all real (complex) polynomials,
defined by

[P −Q]p,
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where [.]p, 0 ≤ p ≤ ∞, is the Bombieri p-norm. For a polynomial P (z) =∑n
k=0 akzk it is defined by

[P ]p = (
n∑

k=0

(n
k )1−p|ak|p)

1
p ,

where (n
k ) is a binomial coefficient.

• Metric space of roots
The metric space of roots is (Ćurgus and Mascioni 2006) the space
(X, d) where X is the family of all multisets of complex numbers with n
elements and the distance between multisets U = {u1, . . . , un} and V =
{v1, . . . , vn} is defined by the following analog of the Fréchet metric:

min
τ∈Symn

max
1≤j≤n

|uj − vτ(j)|,

where τ is any permutation of {1, . . . , n}. Here the set of roots of some
monic complex polynomial of degree n is considered as a multiset with n
elements. Cf. metrics between multisets in Chap. 1.

The function assigning to each polynomial the multiset of its roots
is (Ćurgus and Mascioni 2006) a homeomorphism between the metric
space of all monic complex polynomials of degree n with the polynomial
norm metric l∞ and the metric space of roots.

12.3 Metrics on matrices

An m × n matrix A = ((aij)) over a field F is a table consisting of m rows
and n columns with the entries aij from F. The set of all m×n matrices with
real (complex) entries is denoted by Mm,n. It forms a group (Mm,n,+, 0m,n),
where ((aij)) + ((bij)) = ((aij + bij)), and the matrix 0m,n ≡ 0, i.e., all
its entries are equal to 0. It is also an mn-dimensional vector space over
R (over C). The transpose of a matrix A = ((aij)) ∈ Mm,n is the matrix
AT = ((aji)) ∈ Mn,m. The conjugate transpose (or adjoint) of a matrix
A = ((aij)) ∈ Mm,n is the matrix A∗ = ((aji)) ∈Mn,m.

A matrix is called a square matrix if m = n. The set of all square n× n
matrices with real (complex) entries is denoted by Mn. It forms a ring
(Mn,+, ·, 0n), where + and 0n are defined as above, and ((aij)) · ((bij)) =
((
∑n

k=1 aikbkj)). It is also an n2-dimensional vector space over R (over C).
The trace of a square n × n matrix A = ((aij)) is defined to be the sum of
the elements on the main diagonal (the diagonal from the upper left to the
lower right) of A, i.e., TrA =

∑n
i=1 aii. A matrix A = ((aij)) ∈ Mn is called

symmetric if aij = aji for all i, j ∈ {1, . . . , n}, i.e., if A = AT . The identity
matrix is 1n = ((cij)) with cii = 1, and cij = 0, i �= j. A unitary matrix
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U = ((uij)) is a square matrix, defined by U−1 = U∗, where U−1 is the
inverse matrix of U , i.e., U · U−1 = 1n. An orthonormal matrix is a matrix
A ∈Mm,n such that A∗A = 1n.

If for a matrix A ∈ Mn there is a vector x such that Ax = λx for some
scalar λ, then λ is called an eigenvalue of A with corresponding eigenvector x.
Given a complex matrix A ∈Mm,n, its singular values si(A) are defined as the
square roots of the eigenvalues of the matrix A∗A, where A∗ is the conjugate
transpose of A. They are non-negative real numbers s1(A) ≥ s2(A) ≥ . . . .

• Matrix norm metric
A matrix norm metric is a norm metric on the set Mm,n of all real
(complex) m× n matrices, defined by

||A−B||,

where ||.|| is a matrix norm, i.e., a function ||.|| : Mm,n → R such that, for
all A,B ∈Mm,n, and for any scalar k, we have the following properties:

1. ||A|| ≥ 0, with ||A|| = 0 if and only if A = 0m,n.
2. ||kA|| = |k|||A||.
3. ||A + B|| ≤ ||A||+ ||B|| (triangle inequality).

All matrix norm metrics on Mm,n are equivalent. A matrix norm ||.||
on the set Mn of all real (complex) square n × n matrices is called sub-
multiplicative if it is compatible with matrix multiplication, i.e., ||AB|| ≤
||A|| · ||B|| for all A,B ∈Mn. The set Mn with a sub-multiplicative norm
is a Banach algebra.

The simplest example of a matrix norm metric is the Hamming metric
on Mm,n (in general, on the set Mm,n(F) of all m×n matrices with entries
from a field F), defined by ||A−B||H , where ||A||H is the Hamming norm
of A ∈Mm,n, i.e., the number of non-zero entries in A.

• Natural norm metric
A natural norm metric (or induced norm metric, subordinate
norm metric) is a matrix norm metric on the set Mn of all real (com-
plex) square n× n matrices, defined by

||A−B||nat,

where ||.||nat is a natural norm on Mn.
The natural norm ||.||nat on Mn, induced by the vector norm ||x||, x ∈

R
n (x ∈ C

n), is a sub-multiplicative matrix norm, defined by

||A||nat = sup
||x||	=0

||Ax||
||x|| = sup

||x||=1

||Ax|| = sup
||x||≤1

||Ax||.
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The natural norm metric can be defined in similar way on the set Mm,n

of all m × n real (complex) matrices: given vector norms ||.||Rm on R
m

and ||.||Rn on R
n, the natural norm ||A||nat of a matrix A ∈ Mm,n,

induced by ||.||Rn and ||.||Rm , is a matrix norm, defined by ||A||nat =
sup||x||Rn=1 ||Ax||Rm .

• Matrix p-norm metric
A matrix p-norm metric is a natural norm metric on Mn, defined by

||A−B||pnat,

where ||.||pnat is the matrix p-norm, i.e., a natural norm, induced by the
vector lp-norm, 1 ≤ p ≤ ∞:

||A||pnat = max
||x||p=1

||Ax||p, where ||x||p = (
n∑

i=1

|xi|p)1/p.

The maximum absolute column metric (more exactly, maximum abso-
lute column sum norm metric) is the matrix 1-norm metric ||A−B||1nat

on Mn. The matrix 1-norm ||.||1nat, induced by the vector l1-norm, is
also called the maximum absolute column sum norm. For a matrix A =
((aij)) ∈ Mn it can be written as

||A||1nat = max
1≤j≤n

n∑

i=1

|aij |.

The maximum absolute row metric (more exactly, maximum absolute
row sum norm metric) is the matrix∞-norm metric ||A−B||∞nat on Mn.
The matrix ∞-norm ||.||∞nat, induced by the vector l∞-norm, is also called
the maximum absolute row sum norm. For a matrix A = ((aij)) ∈ Mn it
can be written as

||A||∞nat = max
1≤j≤n

n∑

j=1

|aij |.

The spectral norm metric is the matrix 2-norm metric ||A−B||2nat

on Mn. The matrix 2-norm ||.||2nat, induced by the vector l2-norm, is also
called the spectral norm and denoted by ||.||sp. For a matrix A = ((aij)) ∈
Mn, it can be written as

||A||sp = ( maximum eigenvalue of A∗A)
1
2 ,

where A∗ = ((aji)) ∈ Mn is the conjugate transpose of A (cf. Ky Fan
norm metric).

• Frobenius norm metric
The Frobenius norm metric is a matrix norm metric on Mm,n, de-
fined by

||A−B||Fr,
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where ||.||Fr is the Frobenius norm. For a matrix A = ((aij)) ∈Mm,n, it is

||A||Fr =

√
√
√
√

m∑

i=1

n∑

j=1

|aij |2.

It is also equal to the square root of the matrix trace of A∗A,
where A∗ = ((aji)) is the conjugate transpose of A, or, equivalently, to the
square root of the sum of eigenvalues λi of A∗A: ||A||Fr =

√
Tr(A∗A) =√

∑min{m,n}
i=1 λi (cf. Schatten norm metric in Chap. 13). This norm

comes from an inner product on the space Mm,n, but it is not sub-
multiplicative for m = n.

• (c, p)-norm metric
Let k ∈ N, k ≤ min{m,n}, c ∈ R

k, c1 ≥ c2 ≥ · · · ≥ ck > 0, and 1 ≤ p < ∞.
The (c, p)-norm metric is a matrix norm metric on Mm,n, defined

by
||A−B||k(c,p),

where ||.||k(c,p) is the (c, p)-norm on Mm,n. For a matrix A ∈ Mm,n, it is
defined by

||A||k(c,p) = (
k∑

i=1

cis
p
i (A))

1
p ,

where s1(A) ≥ s2(A) ≥ · · · ≥ sk(A) are the first k singular values of A.
If p = 1, one obtains the c-norm. If, moreover, c1 = · · · = ck = 1, one
obtains the Ky Fan k-norm.

• Ky Fan norm metric
Given k ∈ N, k ≤ min{m,n}, the Ky Fan norm metric is a matrix
norm metric on Mm,n, defined by

||A−B||kKF ,

where ||.||kKF is the Ky Fan k-norm on Mm,n. For a matrix A ∈ Mm,n, it
is defined as the sum of its first k singular values:

||A||kKF =
k∑

i=1

si(A).

For k = 1, it is the spectral norm. For k = min{m,n}, one obtains the
trace norm.

• Schatten norm metric
Given 1 ≤ p <∞, the Schatten norm metric is a matrix norm metric
on Mm,n, defined by

||A−B||pSch,
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where ||.||pSch is the Schatten p-norm on Mm,n. For a matrix A ∈Mm,n, it
is defined as the p-th root of the sum of the p-th powers of all its singular
values:

||A||pSch = (
min{m,n}∑

i=1

sp
i (A))

1
p .

For p = 2, one obtains the Frobenius norm and, for p = 1, one obtains the
trace norm.

• Trace norm metric
The trace norm metric is a matrix norm metric on Mm,n, defined by

||A−B||tr,

where ||.||tr is the trace norm on Mm,n. For a matrix A ∈ Mm,n, it is
defined as the sum of all its singular values:

||A||tr =
min{m,n}∑

i=1

si(A).

• Cut norm metric
The cut norm metric is a matrix norm metric on Mm,n, defined by

||A−B||cut,

where ||.||cut is the cut norm on Mm,n defined, for a matrix A = ((aij)) ∈
Mm,n, as:

||A||cut = max
I⊂{1,...,m},J⊂{1,...,n}

|
∑

i∈I,j∈J

aij |.

Cf. in Chap. 15 the rectangle distance on weighted graphs and
the cut semi-metric, but the weighted cut metric in Chap. 19 is not
related.

• Sym+ metric
Let Sym+ be the set of all n×n real positive definite matrices, i.e., matrices
A such that xT Ax > 0 for any non-zero vector x ∈ R

n.
The Sym+ metric is defined, for any A,B ∈ Sym+, as

(
n∑

i=1

log2 λi)
1
2 ,

where λ1, ..., λn are the eigenvalues of the matrix AB−1.
The Sym+ metric is the Riemannian distance, arising from the

Riemannian metric, called the trace metric: ds2 = Tr(A−1dA)2.



226 12 Distances on Numbers, Polynomials, and Matrices

• Distances between graphs of matrices
The graph G(A) of a complex m× n matrix A is the range (i.e., the span
of columns) of the matrix R(A) = ([IAT ])T . So, G(A) is a subspace of
C

m+n of all vectors v, for which the equation R(A)x = v has a solution.
A distance between graphs of matrices A and B is a distance

between the subspaces G(A) and G(B). It can be an angle distance
between subspaces or, for example, the following distance (cf. also the
Kadets distance in Chap. 1 and the gap metric in Chap. 18).

The spherical gap distance between subspaces A and B is defined by

max{ max
x∈S(A)

dE(x, S(B)), max
y∈S(B)

dE(y, S(A))},

where S(A), S(B) are the unit spheres of the subspaces A,B, d(z, C) is the
point-set distance infy∈C d(z, y) and dE(z, y) is the Euclidean distance.

• Angle distances between subspaces
Consider the Grassmannian space G(m,n) of all n-dimensional subspaces
of Euclidean space E

m; it is a compact Riemannian manifold of dimension
n(m− n).

Given two subspaces A,B ∈ G(m,n), the principal angles π
2 ≥ θ1 ≥ . . .

≥ θn ≥ 0 between them are defined, for k = 1, . . . , n, inductively by

cos θk = max
x∈A

max
y∈B

xT y = (xk)T yk

subject to the conditions ||x||2 = ||y||2 = 1, xT xi = 0, yT yi = 0, for
1 ≤ i ≤ k − 1, where ||.||2 is the Euclidean norm.

The principal angles can also be defined in terms of orthonormal ma-
trices QA and QB spanning subspaces A and B, respectively: in fact, n
ordered singular values of the matrix QAQB ∈ Mn can be expressed as
cosines cos θ1, . . . , cos θn.

The geodesic distance between subspaces A and B is (Wong 1967)
defined by √

√
√
√2

n∑

i=1

θ2
i .

The Martin distance between subspaces A and B is defined by

√
√
√
√ln

n∏

i=1

1
cos2 θi

.

In the case when the subspaces represent autoregressive models, the Martin
distance can be expressed in terms of the cepstrum of the autocorrelation
functions of the models (cf. Martin cepstrum distance in Chap. 21).
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The Asimov distance between subspaces A and B is defined by

θ1.

It can be expressed also in terms of the Finsler metric on the manifold
G(m,n).

The gap distance between subspaces A and B is defined by

sin θ1.

It can be expressed also in terms of orthogonal projectors as the l2-norm of
the difference of the projectors onto A and B, respectively. Many versions
of this distance are used in Control Theory (cf. gap metric in Chap. 18).

The Frobenius distance between subspaces A and B is defined by

√
√
√
√2

n∑

i=1

sin2 θi.

It can be expressed also in terms of orthogonal projectors as the Frobenius
norm of the difference of the projectors onto A and B, respectively. A

similar distance
√∑n

i=1 sin2 θi is called the chordal distance.
• Semi-metrics on resemblances

The following two semi-metrics are defined for any two resemblances d1

and d2 on a given finite set X (moreover, for any two real symmetric
matrices).

The Lerman semi-metric (cf. Kendall τ distance on permutations
in Chap. 11) is defined by

|{({x, y}, {u, v}) : (d1(x, y)− d1(u, v))(d2(x, y)− d2(u, v)) < 0}|
(|X|+1

2

)2 ,

where ({x, y}, {u, v}) is any pair of unordered pairs of elements x, y, u, v
from X.

The Kaufman semi-metric is defined by

|{({x, y}, {u, v}) : (d1(x, y)− d1(u, v))(d2(x, y)− d2(u, v)) < 0}|
|{({x, y}, {u, v}) : (d1(x, y)− d1(u, v))(d2(x, y)− d2(u, v)) �= 0}| .



Chapter 13
Distances in Functional Analysis

Functional Analysis is the branch of Mathematics concerned with the study
of spaces of functions. This usage of the word functional goes back to the
calculus of variations which studies functions whose argument is a function.
In the modern view, Functional Analysis is seen as the study of complete
normed vector spaces, i.e., Banach spaces.

For any real number p ≥ 1, an example of a Banach space is given by
Lp-space of all Lebesgue-measurable functions whose absolute value’s p-th
power has finite integral.

A Hilbert space is a Banach space in which the norm arises from an
inner product. Also, in Functional Analysis are considered continuous linear
operators defined on Banach and Hilbert spaces.

13.1 Metrics on function spaces

Let I ⊂ R be an open interval (i.e., a non-empty connected open set) in R.
A real function f : I → R is called real analytic on I if it agrees with its
Taylor series in an open neighborhood Ux0 of every point x0 ∈ I: f(x) =
∑∞

n=0
f(n)(x0)

n! (x − x0)n for any x ∈ Ux0 . Let D ⊂ C be a domain (i.e., a
convex open set) in C.

A complex function f : D → C is called complex analytic (or, simply, ana-
lytic) on D if it agrees with its Taylor series in an open neighborhood of every
point z0 ∈ D. A complex function f is analytic on D if and only if it is holo-
morphic on D, i.e., if it has a complex derivative f

′
(z0) = limz→z0

f(z)−f(z0)
z−z0

at every point z0 ∈ D.

• Integral metric
The integral metric is the L1-metric on the set C[a,b] of all continuous
real (complex) functions on a given segment [a, b], defined by

∫ b

a

|f(x)− g(x)|dx.

M.M. Deza and E. Deza, Encyclopedia of Distances, 229
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The corresponding metric space is abbreviated by C1
[a,b]. It is a Banach

space.
In general, for any compact (or countably compact) topological space

X the integral metric can be defined on the set of all continuous functions
f : X → R (C) by

∫
X
|f(x)− g(x)|dx.

• Uniform metric
The uniform metric (or sup metric) is the L∞-metric on the set
C[a,b] of all real (complex) continuous functions on a given segment [a, b],
defined by

sup
x∈[a,b]

|f(x)− g(x)|.

The corresponding metric space is abbreviated by C∞
[a,b]. It is a Banach

space.
A generalization of C∞

[a,b] is the space of continuous functions C(X),
i.e., a metric space on the set of all continuous (more generally, bounded)
functions f : X → C of a topological space X with the L∞-metric
supx∈X |f(x)− g(x)|.

In the case of the metric space C(X,Y ) of continuous (more generally,
bounded) functions f : X → Y from one metric compactum (X, dX) to
another (Y, dY ), the sup metric between two functions f, g ∈ C(X,Y ) is
defined by supx∈X dY (f(x), g(x)).

The metric space C∞
[a,b], as well as the metric space C1

[a,b], are two of
the most important cases of the metric space Cp

[a,b], 1 ≤ p ≤ ∞, on the

set C[a,b] with the Lp-metric (
∫ b

a
|f(x)− g(x)|pdx)

1
p . The space Cp

[a,b] is an
example of an Lp-space.

• Dogkeeper distance
Given a metric space (X, d), the dogkeeper distance is a metric on the
set of all functions f : [0, 1] → X, defined by

inf
σ

sup
t∈[0,1]

d(f(t), g(σ(t))),

where σ : [0, 1] → [0, 1] is a continuous, monotone increasing function such
that σ(0) = 0, σ(1) = 1. This metric is a special case of the Fréchet
metric. It is used for measuring the distances between curves.

• Bohr metric
Let R be a metric space with a metric ρ. A continuous function f : R → R

is called almost periodic if, for every ε > 0, there exists l = l(ε) > 0 such
that every interval [t0, t0 + l(ε)] contains at least one number τ for which
ρ(f(t), f(t + τ)) < ε for −∞ < t < +∞.

The Bohr metric is the norm metric ||f − g|| on the set AP of all
almost periodic functions, defined by the norm

||f || = sup
−∞<t<+∞

|f(t)|.
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It makes AP a Banach space. Some generalizations of almost periodic
functions were obtained using other norms; cf. Stepanov distance, Weyl
distance, Besicovitch distance and Bochner metric.

• Stepanov distance
The Stepanov distance is a distance on the set of all measurable func-
tions f : R → C with summable p-th power on each bounded integral,
defined by

sup
x∈R

(
1
l

∫ x+l

x

|f(x)− g(x)|pdx

)1/p

.

The Weyl distance is a distance on the same set, defined by

lim
l→∞

sup
x∈R

(
1
l

∫ x+l

x

|f(x)− g(x)|pdx

)1/p

.

Corresponding to these distances one has the generalized Stepanov and
Weyl almost periodic functions.

• Besicovitch distance
The Besicovitch distance is a distance on the set of all measurable
functions f : R → C with summable p-th power on each bounded integral,
defined by (

limT→∞
1

2T

∫ T

−T

|f(x)− g(x)|pdx

)1/p

.

The generalized Besicovitch almost periodic functions correspond to this
distance.

• Bochner metric
Given a measure space (Ω,A, μ), a Banach space (V, ||.||V ), and 1 ≤ p ≤
∞, the Bochner space (or Lebesgue-Bochner space) Lp(Ω, V ) is the set of
all measurable functions f : Ω → V such that ||f ||Lp(Ω,V ) ≤ ∞.

Here the Bochner norm ||f ||Lp(Ω,V ) is defined by (
∫
Ω
||f(ω)||pV dμ(ω))

1
p

for 1 ≤ p < ∞, and, for p =∞, by ess supω∈Ω ||f(ω)||V .
• Bergman p-metric

Given 1 ≤ p < ∞, let Lp(Δ) be the Lp-space of Lebesgue measur-
able functions f on the unit disk Δ = {z ∈ C : |z| < 1} with

||f ||p =
(∫

Δ
|f(z)|pμ(dz)

) 1
p < ∞.

The Bergman space La
p(Δ) is the subspace of Lp(Δ) consisting of ana-

lytic functions, and the Bergman p-metric is the Lp-metric on La
p(Δ)

(cf. Bergman metric in Chap. 7). Any Bergman space is a Banach space.
• Bloch metric

The Bloch space B on the unit disk Δ = {z ∈ C : |z| < 1} is the set of all
analytic functions f on Δ such that ||f ||B = supz∈Δ(1− |z|2)|f ′

(z)| < ∞.
Using the complete semi-norm ||.||B , a norm on B is defined by

||f || = |f(0)|+ ||f ||B .
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The Bloch metric is the norm metric ||f − g|| on B. It makes B a
Banach space.

• Besov metric
Given 1 < p < ∞, the Besov space Bp on the unit disk Δ = {z ∈ C :
|z| < 1} is the set of all analytic functions f in Δ such that ||f ||Bp

=
(∫

Δ
(1− |z|2)p|f ′

(z)|pdλ(z)
) 1

p

<∞, where dλ(z) = μ(dz)
(1−|z|2)2 is the Möbius

invariant measure on Δ. Using the complete semi-norm ||.||Bp
, the Besov

norm on Bp is defined by

||f || = |f(0)|+ ||f ||Bp
.

The Besov metric is the norm metric ||f − g|| on Bp. It makes Bp a
Banach space.

The set B2 is the classical Dirichlet space of functions analytic on Δ
with square integrable derivative, equipped with the Dirichlet metric.
The Bloch space B can be considered as B∞.

• Hardy metric
Given 1 ≤ p < ∞, the Hardy space Hp(Δ) is the class of functions, analytic
on the unit disk Δ = {z ∈ C : |z| < 1}, and satisfying the following growth
condition for the Hardy norm ||.||Hp :

||f ||Hp(Δ) = sup
0<r<1

(
1
2π

∫ 2π

0

|f(reiθ)|pdθ

) 1
p

<∞.

The Hardy metric is the norm metric ||f−g||Hp(Δ) on Hp(Δ). It makes
Hp(Δ) a Banach space.

In Complex Analysis, the Hardy spaces are analogs of the Lp-spaces
of Functional Analysis. Such spaces are applied in Mathematical Analysis
itself, and also to Scattering Theory and Control Theory (cf. Chap. 18).

• Part metric
The part metric is a metric on a domain D of R

2, defined for any x, y ∈
R

2 by

sup
f∈H+

∣
∣
∣
∣ln

(
f(x)
f(y)

)∣
∣
∣
∣ ,

where H+ is the set of all positive harmonic functions on the domain D.
A twice-differentiable real function f : D → R is called harmonic on D

if its Laplacian Δf = ∂2f
∂x2

1
+ ∂2f

∂x2
2

vanishes on D.
• Orlicz metric

Let M(u) be an even convex function of a real variable which is increas-
ing for u positive, and limu→0 u−1M(u) = limu→∞ u(M(u))−1 = 0. In
this case the function p(v) = M

′
(v) does not decrease on [0,∞), p(0) =
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limv→0 p(v) = 0, and p(v) > 0 when v > 0. Writing M(u) =
∫ |u|
0

p(v)dv,

and defining N(u) =
∫ |u|
0

p−1(v)dv, one obtains a pair (M(u), N(u)) of
complementary functions.

Let (M(u), N(u)) be a pair of complementary functions, and let G be a
bounded closed set in R

n. The Orlicz space L∗
M (G) is the set of Lebesgue-

measurable functions f on G satisfying the following growth condition for
the Orlicz norm ||f ||M :

||f ||M = sup
{∫

G

f(t)g(t)dt :
∫

G

N(g(t))dt ≤ 1
}

<∞.

The Orlicz metric is the norm metric ||f − g||M on L∗
M (G). It makes

L∗
M (G) a Banach space [Orli32].
When M(u) = up, 1 < p < ∞, L∗

M (G) coincides with the space Lp(G),
and, up to scalar factor, the Lp-norm ||f ||p coincides with ||f ||M . The
Orlicz norm is equivalent to the Luxemburg norm ||f ||(M) = inf{λ > 0 :∫

G
M(λ−1f(t))dt ≤ 1}; in fact, ||f ||(M) ≤ ||f ||M ≤ 2||f ||(M).

• Orlicz–Lorentz metric
Let w : (0,∞) → (0,∞) be a non-increasing function. Let M : [0,∞) →
[0,∞) be a non-decreasing and convex function with M(0) = 0. Let G be
a bounded closed set in R

n.
The Orlicz–Lorentz space Lw,M (G) is the set of all Lebesgue-measurable

functions f on G satisfying the following growth condition for the Orlicz–
Lorentz norm ||f ||w,M :

||f ||w,M = inf
{

λ > 0 :
∫ ∞

0

w(x)M
(

f∗(x)
λ

)

dx ≤ 1
}

<∞,

where f∗(x) = sup{t : μ(|f | ≥ t) ≥ x} is the non-increasing rearrangement
of f .

The Orlicz–Lorentz metric is the norm metric ||f − g||w,M on
Lw,M (G). It makes Lw,M (G) a Banach space.

The Orlicz–Lorentz space is a generalization of the Orlicz space L∗
M (G)

(cf. Orlicz metric), and the Lorentz space Lw,q(G), 1 ≤ q < ∞, of all
Lebesgue-measurable functions f on G satisfying the following growth con-
dition for the Lorentz norm:

||f ||w,q =
(∫ ∞

0

w(x)(f∗(x))q

) 1
q

< ∞.

• Hölder metric
Let Lα(G) be the set of all bounded continuous functions f , defined on a
subset G of R

n, and satisfying the Hölder condition on G. Here, a function
f satisfies the Hölder condition at a point y ∈ G with index (or order) α,
0 < α ≤ 1, and with coefficient A(y), if |f(x) − f(y)| ≤ A(y)|x − y|α for
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all x ∈ G sufficiently close to y. If A = supy∈G(A(y)) < ∞, the Hölder
condition is called uniform on G, and A is called the Hölder coefficient
of G. The quantity |f |α = supx,y∈G

|f(x)−f(y)|
|x−y|α , 0 ≤ α ≤ 1, is called the

Hölder α-semi-norm of f , and the Hölder norm of f is defined by

||f ||Lα(G) = sup
x∈G

|f(x)|+ |f |α.

The Hölder metric is the norm metric ||f−g||Lα(G) on Lα(G). It makes
Lα(G) a Banach space.

• Sobolev metric
The Sobolev space W k,p is a subset of an Lp-space such that f and its
derivatives up to order k have a finite Lp-norm. Formally, given a subset
G of R

n, define

W k,p = W k,p(G) = {f ∈ Lp(G) : f (i) ∈ Lp(G), 1 ≤ i ≤ k},

where f (i) = ∂α1
x1

. . . ∂αn
xn

f , α1 + · · ·+αn = i, and the derivatives are taken
in a weak sense. The Sobolev norm on W k,p is defined by

||f ||k,p =
k∑

i=0

||f (i)||p.

In fact, it is enough to take only the first and last in the sequence, i.e., the
norm defined by ||f ||k,p = ||f ||p + ||f (k)||p is equivalent to the norm above.

For p = ∞, the Sobolev norm is equal to the essential supremum of |f |:
||f ||k,∞ = ess supx∈G |f(x)|, i.e., it is the infimum of all numbers a ∈ R

for which |f(x)| > a on a set of measure zero.
The Sobolev metric is the norm metric ||f−g||k,p on W k,p. It makes

W k,p a Banach space.
The Sobolev space W k,2 is denoted by Hk. It is a Hilbert space for the

inner product 〈f, g〉k =
∑k

i=1〈f (i), g(i)〉L2 =
∑k

i=1

∫
G

f (i)g(i)μ(dω).
Sobolev spaces are the modern replacement for the space C1 (of func-

tions having continuous derivatives) for solutions of partial differential
equations.

• Variable exponent space metrics
Let G be a non-empty open subset of R

n, and let p : G → [1,∞) be
a measurable bounded function, called a variable exponent. The variable
exponent Lebesgue space Lp(.)(G) is the set of all measurable functions
f : G → R for which the modular �p(.)(f) =

∫
G
|f(x)|p(x)dx is finite. The

Luxemburg norm on this space is defined by

||f ||p(.) = inf{λ > 0 : �p(.)(f/λ) ≤ 1}.
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The variable exponent Lebesgue space metric is the norm metric
||f − g||p(.) on Lp(.)(G).

A variable exponent Sobolev space W 1,p(.)(G) is a subspace of Lp(.)(G)
consisting of functions f whose distributional gradient exists almost ev-
erywhere and satisfies the condition |∇f | ∈ Lp(.)(G). The norm

||f ||1,p(.) = ||f ||p(.) + ||∇f ||p(.)

makes W 1,p(.)(G) a Banach space. The variable exponent Sobolev
space metric is the norm metric ||f − g||1,p(.) on W 1,p(.).

• Schwartz metric
The Schwartz space (or space of rapidly decreasing functions) S(Rn) is
the class of all Schwartz functions, i.e., infinitely-differentiable functions
f : R

n → C that decrease at infinity, as do all their derivatives, faster than
any inverse power of x. More precisely, f is a Schwartz function if we have
the following growth condition:

||f ||αβ = sup
x∈Rn

|xβ1
1 . . . xβn

n

∂α1+···+αnf(x1, . . . , xn)
∂xα1

1 . . . ∂xαn
n

| <∞

for any non-negative integer vectors α and β. The family of semi-norms
||.||αβ defines a locally convex topology of S(Rn) which is metrizable
and complete. The Schwartz metric is a metric on S(Rn) which can be
obtained using this topology (cf. countably normed space in Chap. 2).

The corresponding metric space on S(Rn) is a Fréchet space in the sense
of Functional Analysis, i.e., a locally convex F -space.

• Bregman quasi-distance
Let G ⊂ R

n be a closed set with the non-empty interior G0. Let f be a
Bregman function with zone G.

The Bregman quasi-distance Df : G×G0 → R≥0 is defined by

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉,

where ∇f = ( ∂f
∂x1

, . . . ∂f
∂xn

). Df (x, y) = 0 if and only if x = y. Also
Df (x, y) + Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x − y〉 but, in general,
Df does not satisfy the triangle inequality, and is not symmetric.

A real-valued function f whose effective domain contains G is called a
Bregman function with zone G if the following conditions hold:

1. f is continuously differentiable on G0.
2. f is strictly convex and continuous on G.
3. For all δ ∈ R the partial level sets Γ (x, δ) = {y ∈ G0 : Df (x, y) ≤ δ}

are bounded for all x ∈ G.
4. If {yn}n ⊂ G0 converges to y∗, then Df (y∗, yn) converges to 0.
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5. If {xn}n ⊂ G and {yn}n ⊂ G0 are sequences such that {xn}n

is bounded, limn→∞ yn = y∗, and limn→∞ Df (xn, yn) = 0, then
limn→∞ xn = y∗.

When G = R
n, a sufficient condition for a strictly convex function to be a

Bregman function has the form: lim||x||→∞
f(x)
||x|| =∞.

13.2 Metrics on linear operators

A linear operator is a function T : V → W between two vector spaces V,W
over a field F, that is compatible with their linear structures, i.e., for any
x, y ∈ V and any scalar k ∈ F, we have the following properties: T (x + y) =
T (x) + T (y), and T (kx) = kT (x).

• Operator norm metric
Consider the set of all linear operators from a normed space (V, ||.||V ) into
a normed space (W, ||.||W ). The operator norm ||T || of a linear operator
T : V → W is defined as the largest value by which T stretches an element
of V , i.e.,

||T || = sup
||v||V 	=0

||T (v)||W
||v||V

= sup
||v||V =1

||T (v)||W = sup
||v||V ≤1

||T (v)||W .

A linear operator T : V → W from a normed space V into a normed
space W is called bounded if its operator norm is finite. For normed spaces,
a linear operator is bounded if and only if it is continuous.

The operator norm metric is a norm metric on the set B(V,W ) of
all bounded linear operators from V into W , defined by

||T − P ||.

The space (B(V,W ), ||.||) is called the space of bounded linear operators.
This metric space is complete if W is. If V = W is complete, the space
B(V, V ) is a Banach algebra, as the operator norm is a sub-multiplicative
norm.

A linear operator T : V → W from a Banach space V into another
Banach space W is called compact if the image of any bounded subset of
V is a relatively compact subset of W . Any compact operator is bounded
(and, hence, continuous). The space (K(V,W ), ||.||) on the set K(V,W ) of
all compact operators from V into W with the operator norm ||.|| is called
the space of compact operators.

• Nuclear norm metric
Let B(V,W ) be the space of all bounded linear operators mapping a Ba-
nach space (V, ||.||V ) into another Banach space (W, ||.||W ). Let the Banach
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dual of V be denoted by V
′
, and the value of a functional x

′ ∈ V
′

at a
vector x ∈ V by 〈x, x

′〉. A linear operator T ∈ B(V,W ) is called a nuclear
operator if it can be represented in the form x %→ T (x) =

∑∞
i=1〈x, x

′

i〉yi,
where {x′

i}i and {yi}i are sequences in V
′
and W , respectively, such that

∑∞
i=1 ||x

′

i||V ′ ||yi||W < ∞. This representation is called nuclear, and can
be regarded as an expansion of T as a sum of operators of rank 1 (i.e.,
with one-dimensional range). The nuclear norm of T is defined as

||T ||nuc = inf
∞∑

i=1

||x′

i||V ′ ||yi||W ,

where the infimum is taken over all possible nuclear representations of T .
The nuclear norm metric is the norm metric ||T − P ||nuc on the

set N(V,W ) of all nuclear operators mapping V into W . The space
(N(V,W ), ||.||nuc), called the space of nuclear operators, is a Banach space.

A nuclear space is defined as a locally convex space for which all
continuous linear functions into an arbitrary Banach space are nuclear
operators. A nuclear space is constructed as a projective limit of Hilbert
spaces Hα with the property that, for each α ∈ I, one can find β ∈ I
such that Hβ ⊂ Hα, and the embedding operator Hβ & x → x ∈ Hα is
a Hilbert–Schmidt operator. A normed space is nuclear if and only if it is
finite-dimensional.

• Finite nuclear norm metric
Let F (V,W ) be the space of all linear operators of finite rank (i.e., with
finite-dimensional range) mapping a Banach space (V, ||.||V ) into another
Banach space (W, ||.||W ). A linear operator T ∈ F (V,W ) can be repre-
sented in the form x %→ T (x) =

∑n
i=1〈x, x

′

i〉yi, where {x′

i}i and {yi}i are
sequences in V

′
(Banach dual of V ) and W , respectively, and 〈x, x

′〉 is the
value of a functional x

′ ∈ V
′

at a vector x ∈ V . The finite nuclear norm
of T is defined as

||T ||fnuc = inf
n∑

i=1

||x′

i||V ′ ||yi||W ,

where the infimum is taken over all possible finite representations of T .
The finite nuclear norm metric is the norm metric ||T −P ||fnuc on

F (V,W ). The space (F (V,W ), ||.||fnuc) is called the space of operators of
finite rank. It is a dense linear subspace of the space of nuclear operators
N(V,W ).

• Hilbert–Schmidt norm metric
Consider the set of all linear operators from a Hilbert space (H1, ||.||H1)
into a Hilbert space (H2, ||.||H2). The Hilbert–Schmidt norm ||T ||HS of a
linear operator T : H1 → H2 is defined by
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||T ||HS = (
∑

α∈I

||T (eα)||2H2
)1/2,

where (eα)α∈I is an orthonormal basis in H1. A linear operator T : H1 →
H2 is called a Hilbert–Schmidt operator if ||T ||2HS <∞.

The Hilbert–Schmidt norm metric is the norm metric ||T −P ||HS

on the set S(H1,H2) of all Hilbert–Schmidt operators from H1 into H2.
For H1 = H2 = H, the algebra S(H,H) = S(H) with the Hilbert–

Schmidt norm is a Banach algebra. It contains operators of finite rank
as a dense subset, and is contained in the space K(H) of compact op-
erators. An inner product 〈, 〉HS on S(H) is defined by 〈T, P 〉HS =
∑

α∈I〈T (eα), P (eα)〉, and ||T ||HS = 〈T, T 〉1/2
HS . Therefore, S(H) is a

Hilbert space (independent of the chosen basis (eα)α∈I).
• Trace-class norm metric

Given a Hilbert space H, the trace-class norm of a linear operator T :
H → H is defined by

||T ||tc =
∑

α∈I

〈|T |(eα), eα〉,

where |T | is the absolute value of T in the Banach algebra B(H) of all
bounded operators from H into itself, and (eα)α∈I is an orthonormal basis
of H. An operator T : H → H is called a trace-class operator if ||T ||tc < ∞.
Any such operator is the product of two Hilbert–Schmidt operators.

The trace-class norm metric is the norm metric ||T − P ||tc on the
set L(H) of all trace-class operators from H into itself. The set L(H)
with the norm ||.||tc forms a Banach algebra which is contained in the
algebra K(H) (of all compact operators from H into itself), and contains
the algebra S(H) (of all Hilbert–Schmidt operators from H into itself).

• Schatten p-class norm metric
Let 1 ≤ p < ∞. Given a separable Hilbert space H, the Schatten p-class
norm of a compact linear operator T : H → H is defined by

||T ||pSch =

(
∑

n

|sn|p
) 1

p

,

where {sn}n is the sequence of singular values of T . A compact operator
T : H → H is called a Schatten p-class operator if ||T ||pSch <∞.

The Schatten p-class norm metric is the norm metric ||T −P ||pSch

on the set Sp(H) of all Schatten p-class operators from H onto itself. The
set Sp(H) with the norm ||.||pSch forms a Banach space. S1(H) is the trace-
class of H, and S2(H) is the Hilbert–Schmidt class of H (cf. also Schatten
norm metric in Chap. 12).
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• Continuous dual space
For any vector space V over some field, its algebraic dual space is the set
of all linear functionals on V .

Let (V, ||.||) be a normed vector space. Let V
′
be the set of all continuous

linear functionals T from V into the base field (R or C). Let ||.||′ be the
operator norm on V

′
, defined by

||T ||′ = sup
||x||≤1

|T (x)|.

The space (V
′
, ||.||′) is a Banach space which is called the continuous

dual (or Banach dual) of (V, ||.||).
In fact, the continuous dual of the metric space lnp (l∞p ) is lnq (l∞q , re-

spectively). The continuous dual of ln1 (l∞1 ) is ln∞ (l∞∞, respectively). The
continuous duals of the Banach spaces C (consisting of all convergent
sequences, with the l∞-metric) and C0 (consisting of all sequences con-
verging to zero, with the l∞-metric) are both naturally identified with l∞1 .

• Distance constant of operator algebra
Let A be an operator algebra contained in B(H), the set of all bounded
operators on a Hilbert space H. For any operator T ∈ B(H), let β(T,A) =
sup{||P⊥TP || : P is a projection, and P⊥AP = (0)}. Let dist(T,A) be
the distance of T from the algebra A, i.e., the smallest norm of an operator
T −A, where A runs over A. The smallest positive constant C (if it exists)
such that, for any operator T ∈ B(H),

dist(T,A) ≤ Cβ(T,A)

is called the distance constant for the algebra A.



Chapter 14
Distances in Probability Theory

A probability space is a measurable space (Ω,A, P ), where A is the set of all
measurable subsets of Ω, and P is a measure on A with P (Ω) = 1. The set Ω
is called a sample space. An element a ∈ A is called an event. In particular,
an elementary event is a subset of Ω that contains only one element. P (a)
is called the probability of the event a. The measure P on A is called a
probability measure, or (probability) distribution law, or simply (probability)
distribution.

A random variable X is a measurable function from a probability space
(Ω,A, P ) into a measurable space, called a state space of possible values of the
variable; it is usually taken to be the real numbers with the Borel σ-algebra,
so X : Ω → R. The range X of the random variable X is called the support
of the distribution P ; an element x ∈ X is called a state.

A distribution law can be uniquely described via a cumulative distribu-
tion function (CDF, distribution function, cumulative density function) F (x)
which describes the probability that a random value X takes on a value at
most x: F (x) = P (X ≤ x) = P (ω ∈ Ω : X(ω) ≤ x).

So, any random variable X gives rise to a probability distribution which
assigns to the interval [a, b] the probability P (a ≤ X ≤ b) = P (ω ∈ Ω : a ≤
X(ω) ≤ b), i.e., the probability that the variable X will take a value in the
interval [a, b].

A distribution is called discrete if F (x) consists of a sequence of
finite jumps at xi; a distribution is called continuous if F (x) is con-
tinuous. We consider (as in the majority of applications) only dis-
crete or absolutely continuous distributions, i.e., the CDF function
F : R → R is absolutely continuous. It means that, for every num-
ber ε > 0, there is a number δ > 0 such that, for any sequence of
pairwise disjoint intervals [xk, yk], 1 ≤ k ≤ n, the inequality

∑
1≤k≤n

(yk − xk) < δ implies the inequality
∑

1≤k≤n |F (yk)− F (xk)| < ε.
A distribution law also can be uniquely defined via a probability density

function (PDF, density function, probability function) p(x) of the underly-
ing random variable. For an absolutely continuous distribution, the CDF
is almost everywhere differentiable, and the PDF is defined as the deriva-
tive p(x) = F

′
(x) of the CDF; so, F (x) = P (X ≤ x) =

∫ x

−∞ p(t)dt, and
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∫ b

a
p(t)dt = P (a ≤ X ≤ b). In the discrete case, the PDF (the density

of the random variable X) is defined by its values p(xi) = P (X = x); so
F (x) =

∑
xi≤x p(xi). In contrast, each elementary event has probability zero

in any continuous case.
The random variable X is used to “push-forward” the measure P on Ω to a

measure dF on R. The underlying probability space is a technical device used
to guarantee the existence of random variables and sometimes to construct
them.

For simplicity, we usually present the discrete version of probability met-
rics, but many of them are defined on any measurable space; see [Bass89],
[Cha08]. For a probability distance d on random quantities, the condi-
tions P (X = Y ) = 1 or equality of distributions imply (and characterize)
d(X,Y ) = 0; such distances are called [Rach91] compound or simple dis-
tances, respectively. In many cases, some ground distance d is given on the
state space X and the presented distance is a lifting of it to a distance on
distributions.

In Statistics, many of the distances below, between distributions P1 and P2,
are used as measures of goodness of fit between estimated, P2, and theoretical,
P1, distributions. Also, in Statistics, a distance that not satisfy the triangle
inequality, is often called a distance statistic; a statistic is a function of a
sample which is independent of its distribution.

Below we use the notation E[X] for the expected value (or mean) of the
random variable X: in the discrete case E[X] =

∑
x xp(x), in the continuous

case E[X] =
∫

xp(x)dx. The variance of X is E[(X−E[X])2]. Also we denote
pX = p(x) = P (X = x), FX = F (x) = P (X ≤ x), p(x, y) = P (X = x,
Y = y).

14.1 Distances on random variables

All distances in this section are defined on the set Z of all random variables
with the same support X ; here X,Y ∈ Z.

• p-average compound metric
Given p ≥ 1, the p-average compound metric (or Lp-metric between
variables) is a metric on Z with X ⊂ R and E[|Z|p] < ∞ for all Z ∈ Z,
defined by

(E[|X − Y |p])1/p = (
∑

(x,y)∈X×X
|x− y|pp(x, y))1/p.

For p = 2 and ∞, it is called, respectively, the mean-square distance and
essential supremum distance between variables.
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• Absolute moment metric
Given p ≥ 1, the absolute moment metric is a metric on Z with X ⊂ R

and E[|Z|p] <∞ for all Z ∈ Z, defined by

(|(E[|X|p])1/p − (E[|Y |p])1/p|.

For p = 1 it is called the engineer metric.
• Indicator metric

The indicator metric is a metric on Z, defined by

E[1X 	=Y ] =
∑

(x,y)∈X×X
1x	=yp(x, y) =

∑

(x,y)∈X×X ,x 	=y

p(x, y).

(Cf. Hamming metric in Chap. 1.)
• Ky Fan metric K

The Ky Fan metric K is a metric K on Z, defined by

inf{ε > 0 : P (|X − Y | > ε) < ε}.

It is the case d(x, y) = |X − Y | of the probability distance.
• Ky Fan metric K∗

The Ky Fan metric K∗ is a metric K∗ on Z, defined by

E

[
|X − Y |

1 + |X − Y |

]

=
∑

(x,y)∈X×X

|x− y|
1 + |x− y|p(x, y).

• Probability distance
Given a metric space (X , d), the probability distance on Z is defined by

inf{ε > 0 : P (d(X,Y ) > ε) < ε}.

14.2 Distances on distribution laws

All distances in this section are defined on the set P of all distribution
laws such that corresponding random variables have the same range X ; here
P1, P2 ∈ P.

• Lp-metric between densities
The Lp-metric between densities is a metric on P (for a countable X ),
defined, for any p ≥ 1, by

(
∑

x

|p1(x)− p2(x)|p) 1
p .
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For p = 1, one half of it is called the total variation metric (or vari-
ational distance, trace-distance). For p = 2, it is the Patrick-Fisher
distance. The point metric supx |p1(x)− p2(x)| corresponds to p =∞.

The Lissak-Fu distance with parameter α > 0 is defined as
∑

x |p1(x)−
p2(x)|α.

• Bayesian distance
The error probability in classification is the following error probability
of the optimal Bayes rule for the classification into 2 classes with a priori
probabilities φ, 1−φ and corresponding densities p1, p2 of the observations:

Pe =
∑

x

min(φp1(x), (1− φ)p2(x)).

The Bayesian distance on P is defined by 1− Pe.
For the classification into m classes with a priori probabilities φi, 1 ≤ i ≤

m, and corresponding densities pi of the observations, the error probability
becomes

Pe = 1−
∑

x

p(x)max
i

P (Ci|x),

where P (Ci|x) is the a posteriori probability of the class Ci given the
observation x and p(x) =

∑m
i=1 φiP (x|Ci). The general mean distance

between m classes Ci (cf. m-hemi-metric in Chap. 3) is defined (Van der
Lubbe 1979), for α > 0 and β > 1, by

∑

x

p(x)(
∑

i

P (Ci|x)β)α.

The case α = 1, β = 2 corresponds to the Bayesian distance in Devijver
(1974); the case β = 1

α was considered in Trouborst, Baker, Boekee and
Boxma (1974).

• Mahalanobis semi-metric
The Mahalanobis semi-metric (or quadratic distance) is a semi-metric
on P (for X ⊂ R

n), defined by

√
(EP1 [X]− EP2 [X])T A−1(EP1 [X]− EP2 [X])

for a given positive-definite matrix A.
• Engineer semi-metric

The engineer semi-metric is a semi-metric on P (for X ⊂ R), defined by

|EP1 [X]− EP2 [X]| = |
∑

x

x(p1(x)− p2(x))|.
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• Stop-loss metric of order m
The stop-loss metric of order m is a metric on P (for X ⊂ R),
defined by

sup
t∈R

∑

x≥t

(x− t)m

m!
(p1(x)− p2(x)).

• Kolmogorov–Smirnov metric
The Kolmogorov–Smirnov metric (or Kolmogorov metric, uniform
metric) is a metric on P (for X ⊂ R), defined by

sup
x∈R

|P1(X ≤ x)− P2(X ≤ x)|.

The Kuiper distance on P is defined by

sup
x∈R

(P1(X ≤ x)− P2(X ≤ x)) + sup
x∈R

(P2(X ≤ x)− P1(X ≤ x)).

(Cf. Pompeiu–Eggleston metric in Chap. 9.)
The Anderson–Darling distance on P is defined by

sup
x∈R

|(P1(X ≤ x)− P2(X ≤ x)|
ln
√

(P1(X ≤ x)(1− P1(X ≤ x))
.

The Crnkovic–Drachma distance is defined by

sup
x∈R

(P1(X ≤ x)− P2(X ≤ x)) ln
1

√
(P1(X ≤ x)(1− P1(X ≤ x))

+

+ sup
x∈R

(P2(X ≤ x)− P1(X ≤ x)) ln
1

√
(P1(X ≤ x)(1− P1(X ≤ x))

.

The above three distances are used in Statistics as measures of goodness
of fit, especially, for VaR (Value at Risk) measurements in Finance.

• Cramer–von Mises distance
The Cramer–von Mises distance is a distance on P (for X ⊂ R),
defined by ∫ +∞

−∞
(P1(X ≤ x)− P2(X ≤ x))2dx.

This is the squared L2-metric between cumulative density functions.
• Levy–Sibley metric

The Levy metric is a metric on P (for X ⊂ R only), defined by

inf{ε>0:P1(X≤x− ε)− ε≤P2(X ≤ x)≤P1(X≤x+ ε)+ ε for any x∈R}.

It is a special case of the Prokhorov metric for (X , d) = (R, |x− y|).
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• Prokhorov metric
Given a metric space (X , d), the Prokhorov metric on P is defined by

inf{ε>0:P1(X∈B) ≤ P2(X∈Bε) + ε and P2(X∈B)≤P1(X∈Bε) + ε},

where B is any Borel subset of X , and Bε = {x : d(x, y) < ε, y ∈ B}.
It is the smallest (over all joint distributions of pairs (X,Y ) of random

variables X,Y such that the marginal distributions of X and Y are P1

and P2, respectively) probability distance between random variables X
and Y .

• Dudley metric
Given a metric space (X , d), the Dudley metric on P is defined by

sup
f∈F

|EP1 [f(X)]− EP2 [f(X)]| = sup
f∈F

|
∑

x∈X
f(x)(p1(x)− p2(x))|,

where F = {f : X → R, ||f ||∞ + Lipd(f) ≤ 1}, and Lipd(f) =
supx,y∈X ,x 	=y

|f(x)−f(y)|
d(x,y) .

• Szulga metric
Given a metric space (X , d), the Szulga metric on P is defined by

sup
f∈F

|(
∑

x∈X
|f(x)|pp1(x))1/p − (

∑

x∈X
|f(x)|pp2(x))1/p|,

where F = {f : X → R, Lipd(f) ≤ 1}, and Lipd(f) = supx,y∈X ,x 	=y
|f(x)−f(y)|

d(x,y) .
• Zolotarev semi-metric

The Zolotarev semi-metric is a semi-metric on P, defined by

sup
f∈F

|
∑

x∈X
f(x)(p1(x)− p2(x))|,

where F is any set of functions f : X → R (in the continuous case, F is any
set of such bounded continuous functions); cf. Szulga metric, Dudley
metric.

• Convolution metric
Let G be a separable locally compact abelian group, and let C(G) be the
set of all real bounded continuous functions on G vanishing at infinity. Fix
a function g ∈ C(G) such that |g| is integrable with respect to the Haar
measure on G, and {β ∈ G∗ : ĝ(β) = 0} has empty interior; here G∗ is the
dual group of G, and ĝ is the Fourier transform of g.
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The convolution metric (or smoothing metric) is defined (Yukich
1985), for any two finite signed Baire measures P1 and P2 on G, by

sup
x∈G

|
∫

y∈G

g(xy−1)(dP1 − dP2)(y)|.

This metric can also be seen as the difference TP1(g)− TP2(g) of convolu-
tion operators on C(G) where, for any f ∈ C(G), the operator TP f(x) is∫

y∈G
f(xy−1)dP (y).

• Discrepancy metric
Given a metric space (X , d), the discrepancy metric on P is defined by

sup{|P1(X ∈ B)− P2(X ∈ B)| : B is any closed ball}.

• Bi-discrepancy semi-metric
The bi-discrepancy semi-metric is a semi-metric evaluating the prox-
imity of distributions P1, P2 (over different collections A1,A2 of measur-
able sets), defined in the following way:

D(P1, P2) + D(P2, P1),

where D(P1, P2) = sup{inf{P2(C) : B ⊂ C ∈ A2} − P1(B) : B ∈ A1}
(discrepancy).

• Le Cam distance
The Le Cam distance is a semi-metric, evaluating the proximity of
probability distributions P1, P2 (on different spaces X1,X2), defined in the
following way:

max{δ(P1, P2), δ(P2, P1)},
where δ(P1, P2) = infB

∑
x2∈X2

|BP1(X2 = x2)−BP2(X2 = x2)| is the Le
Cam deficiency. Here BP1(X2 = x2) =

∑
x1∈X1

p1(x1)b(x2|x1), where B
is a probability distribution over X1 ×X2, and

b(x2|x1) =
B(X1 = x1,X2 = x2)

B(X1 = x1)
=

B(X1 = x1,X2 = x2)∑
x∈X2

B(X1 = x1,X2 = x)
.

So, BP2(X2 = x2) is a probability distribution over X2, since
∑

x2∈X2

b(x2|x1) = 1.
Le Cam distance is not a probabilistic distance, since P1 and P2 are de-

fined over different spaces; it is a distance between statistical experiments
(models).

• Skorokhod–Billingsley metric
The Skorokhod–Billingsley metric is a metric on P, defined by

inf
f

max

{

sup
x
|P1(X≤x)−P2(X≤f(x))|, sup

x
|f(x)−x|, sup

x	=y

∣
∣
∣
∣ln

f(y)−f(x)
y−x

∣
∣
∣
∣

}

,

where f : R → R is any strictly increasing continuous function.
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• Skorokhod metric
The Skorokhod metric is a metric on P, defined by

inf{ε > 0 : max{sup
x
|P1(X < x)− P2(X ≤ f(x))|, sup

x
|f(x)− x|} < ε},

where f : R → R is a strictly increasing continuous function.
• Birnbaum–Orlicz distance

The Birnbaum–Orlicz distance is a distance on P, defined by

sup
x∈R

f(|P1(X ≤ x)− P2(X ≤ x)|),

where f : R≥0 → R≥0 is any non-decreasing continuous function with
f(0) = 0, and f(2t) ≤ Cf(t) for any t > 0 and some fixed C ≥ 1. It is a
near-metric, since the C-triangle inequality d(P1, P2) ≤ C(d(P1, P3)+
d(P3, P2)) holds.

Birnbaum–Orlicz distance is also used, in Functional Analysis, on the
set of all integrable functions on the segment [0, 1], where it is defined by
∫ 1

0
H(|f(x) − g(x)|)dx, where H is a non-decreasing continuous function

from [0,∞) onto [0,∞) which vanishes at the origin and satisfies the Orlicz
condition: supt>0

H(2t)
H(t) <∞.

• Kruglov distance
The Kruglov distance is a distance on P, defined by

∫

f(P1(X ≤ x)− P2(X ≤ x))dx,

where f : R≥0 → R≥0 is any even strictly increasing function with
f(0) = 0, and f(s + t) ≤ C(f(s) + f(t)) for any s, t ≥ 0 and some
fixed C ≥ 1. It is a near-metric, since the C-triangle inequality
d(P1, P2) ≤ C(d(P1, P3) + d(P3, P2)) holds.

• Burbea–Rao distance
Consider a continuous convex function φ(t) : (0,∞) → R and put φ(0) =
limt→0 φ(t) ∈ (−∞,∞]. The convexity of φ implies non-negativity of the
function δφ : [0, 1]2 → (−∞,∞], defined by δφ(x, y) = φ(x)+φ(y)

2 − φ(x+y
2 )

if (x, y) �= (0, 0), and δφ(0, 0) = 0.
The corresponding Burbea–Rao distance on P is defined by

∑

x

δφ(p1(x), p2(x)).

• Bregman distance
Consider a differentiable convex function φ(t) : (0,∞) → R, and put
φ(0) = limt→0 φ(t) ∈ (−∞,∞]. The convexity of φ implies that the
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function δφ : [0, 1]2 → (−∞,∞] defined by continuous extension of
δφ(u, v) = φ(u) − φ(v) − φ

′
(v)(u − v), 0 < u, v ≤ 1, on [0, 1]2 is non-

negative.
The corresponding Bregman distance on P is defined by

m∑

1

δφ(pi, qi).

(Cf. Bregman quasi-distance.)
• f-divergence of Csizar

The f-divergence of Csizar is a function on P × P, defined by

∑

x

p2(x)f
(

p1(x)
p2(x)

)

,

where f is a continuous convex function f : R≥0 → R.
The cases f(t) = t ln t and f(t) = (t − 1)2/2 correspond to the

Kullback–Leibler distance and to the χ2-distance below, respectively.
The case f(t) = |t−1| corresponds to the L1-metric between densities, and
the case f(t) = 4(1 −

√
t) (as well as f(t) = 2(t + 1) − 4

√
t) corresponds

to the squared Hellinger metric.
Semi-metrics can also be obtained, as the square root of the f -divergence

of Csizar, in the cases f(t) = (t − 1)2/(t + 1) (the Vajda–Kus semi-
metric), f(t) = |ta − 1|1/a with 0 < a ≤ 1 (the generalized Matusita

distance), and f(t) = (ta+1)1/a−2(1−a)/a(t+1)
1−1/α (the Osterreicher semi-

metric).
• Fidelity similarity

The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity)
on P is

ρ(P1, P2) =
∑

x

√
p1(x)p2(x).

• Hellinger metric
In terms of the fidelity similarity ρ, the Hellinger metric (or Hellinger-
Kakutani metric) on P is defined by

(2
∑

x

(
√

p1(x)−
√

p2(x))2)
1
2 = 2(1− ρ(P1, P2))

1
2 .

Sometimes, (
∑

x(
√

p1(x) −
√

p2(x))2)
1
2 is called the Matusita dis-

tance, while (
∑

x(
√

p1(x)−
√

p2(x))2 is called the squared-chord distance.
• Harmonic mean similarity

The harmonic mean similarity is a similarity on P, defined by

2
∑

x

p1(x)p2(x)
p1(x) + p2(x)

.
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• Bhattacharya distance 1
In terms of the fidelity similarity ρ, the Bhattacharya distance 1 on
P is

(arccos ρ(P1, P2))2.

Twice this distance is used also in Statistics and Machine Learning, where
it is called the Fisher distance.

• Bhattacharya distance 2
In terms of the fidelity similarity ρ, the Bhattacharya distance 2 on
P is

− ln ρ(P1, P2).

• χ2-distance
The χ2-distance (or Pearson χ2-distance) is a quasi-distance on P,
defined by

∑

x

(p1(x)− p2(x))2

p2(x)
.

The Neyman χ2-distance is a quasi-distance on P, defined by

∑

x

(p1(x)− p2(x))2

p1(x)
.

The probabilistic symmetric χ2-measure is a distance on P, de-
fined by

2
∑

x

(p1(x)− p2(x))2

p1(x) + p2(x)
.

The half of the probabilistic symmetric χ2-measure is called squared χ2.
• Separation quasi-distance

The separation distance is a quasi-distance on P (for a countable X )
defined by

max
x

(

1− p1(x)
p2(x)

)

.

(Not to be confused with separation distance in Chap. 9.)
• Kullback–Leibler distance

The Kullback–Leibler distance (or relative entropy, information devi-
ation, information gain, KL-distance) is a quasi-distance on P, defined by

KL(P1, P2) = EP1 [lnL] =
∑

x

p1(x) ln
p1(x)
p2(x)

,

where L = p1(x)
p2(x) is the likelihood ratio. Therefore,

KL(P1, P2) = −
∑

x

(p1(x) ln p2(x)) +
∑

x

(p1(x) ln p1(x)) = H(P1, P2)−H(P1),
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where H(P1) is the entropy of P1, and H(P1, P2) is the cross-entropy of
P1 and P2.

If P2 is the product of marginals of P1 (say, p2(x, y) = p1(x)p1(y)), the
KL-distance KL(P1, P2) is called the Shannon information quantity and
(cf. Shannon distance) is equal to

∑
(x,y)∈X×X p1(x, y) ln p1(x,y)

p1(x)p1(y) .
• Skew divergence

The skew divergence is a quasi-distance on P, defined by

KL(P1, aP2 + (1− a)P1),

where a ∈ [0, 1] is a constant, and KL is the Kullback–Leibler distance.
The cases a = 1 and a = 1

2 correspond to KL(P1, P2) and K-divergence.
• Jeffrey divergence

The Jeffrey divergence (or J-divergence, divergence distance, KL2-
distance) is a symmetric version of the Kullback–Leibler distance,
defined by

KL(P1, P2) + KL(P2, P1) =
∑

x

(p1(x)− p2(x)) ln
p1(x)
p2(x)

.

For P1 → P2, the Jeffrey divergence behaves like the χ2-distance.
• Jensen–Shannon divergence

The Jensen–Shannon divergence is defined by

aKL(P1, P3) + (1− a)KL(P2, P3),

where P3 = aP1 + (1 − a)P2, and a ∈ [0, 1] is a constant (cf. clarity
similarity).

In terms of entropy H(P ) = −
∑

x p(x) ln p(x), the Jensen–Shannon
divergence is equal to H(aP1 + (1− a)P2)− aH(P1)− (1− a)H(P2).

• Topsøe distance
Let P3 denote 1

2 (P1+P2). The Topsøe distance (or information statistics)
is a symmetric version of the Kullback–Leibler distance (or rather of
the K-divergence KL(P1, P3)):

KL(P1, P3) + KL(P2, P3) =
∑

x

(

p1(x) ln
p1(x)
p3(x)

+ p2(x) ln
p2(x)
p3(x)

)

.

The Topsøe distance is twice the Jensen–Shannon divergence with
a = 1

2 . Some authors use the term Jensen–Shannon divergence only for
this value of a. It is not a metric, but its square root is a metric.

The Taneja distance is defined by

∑

x

p3(x) ln
p3(x)

√
p1(x)p2(x)

.
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• Resistor-average distance
The Johnson–Simanović’s resistor-average distance is a symmetric ver-
sion of the Kullback–Leibler distance on P which is defined by the
harmonic sum (

1
KL(P1, P2)

+
1

KL(P2, P1)

)−1

.

Cf. resistance metric for graphs in Chap. 15.
• Ali–Silvey distance

The Ali–Silvey distance is a quasi-distance on P, defined by the func-
tional

f(EP1 [g(L)]),

where L = p1(x)
p2(x) is the likelihood ratio, f is a non-decreasing function on

R, and g is a continuous convex function on R≥0 (cf. f-divergence of
Csizar).

The case f(x) = x, g(x) = x ln x corresponds to the Kullback–Leibler
distance; the case f(x) = − ln x, g(x) = xt corresponds to the Chernoff
distance.

• Chernoff distance
The Chernoff distance (or Rényi cross-entropy) is a distance on P, de-
fined by

max
t∈[0,1]

Dt(P1, P2),

where 0 ≤ t ≤ 1 and Dt(P1, P2) = − ln
∑

x(p1(x))t(p2(x))1−t (called the
Chernoff coefficient or Hellinger path), which is proportional to the Rényi
distance.

The case t = 1
2 corresponds to the Bhattacharya distance 2.

• Rényi distance
The Rényi distance (or order t Rényi entropy) is a quasi-distance on P,
defined, for any constant 0 ≤ t < 1, by

1
1− t

ln
∑

x

p2(x)
(

p1(x)
p2(x)

)t

.

The limit of the Rényi distance, for t → 1, is the Kullback–Leibler
distance. For t = 1

2 , one half of the Rényi distance is the Bhattacharya
distance 2 (cf. f-divergence of Csizar and Chernoff distance).

• Clarity similarity
The clarity similarity is a similarity on P, defined by

(KL(P1, P3) + KL(P2, P3))− (KL(P1, P2) + KL(P2, P1)) =

=
∑

x

(

p1(x) ln
p2(x)
p3(x)

+ p2(x) ln
p1(x)
p3(x)

)

,



14.2 Distances on distribution laws 253

where KL is the Kullback–Leibler distance, and P3 is a fixed prob-
ability law. It was introduced in [CCL01] with P3 being the probability
distribution of English.

• Shannon distance
Given a measure space (Ω,A, P ), where the set Ω is finite and P is a
probability measure, the entropy (or Shannon information entropy) of a
function f : Ω → X, where X is a finite set, is defined by

H(f) = −
∑

x∈X

P (f = x) loga(P (f = x));

here a = 2, e, or 10 and the unit of entropy is called a bit, nat, or dit (digit),
respectively. The function f can be seen as a partition of the measure
space. For any two such partitions f : Ω → X and g : Ω → Y , denote by
H(f, g) the entropy of the partition (f, g) : Ω → X×Y (joint entropy), and
by H(f |g) the conditional entropy (or equivocation); then the Shannon
distance between f and g is a metric defined by

H(f |g) + H(g|f) = 2H(f, g)−H(f)−H(g) = H(f, g)− I(f ; g),

where I(f ; g) = H(f)+H(g)−H(f, g) is the Shannon mutual information.
If P is the uniform probability law, then Goppa showed that the Shannon

distance can be obtained as a limiting case of the finite subgroup metric.
In general, the information metric (or entropy metric) between two

random variables (information sources) X and Y is defined by

H(X|Y ) + H(Y |X) = H(X,Y )− I(X;Y ),

where the conditional entropy H(X|Y ) is defined by
∑

x∈X

∑
y∈Y p(x, y)

ln p(x|y), and p(x|y) = P (X = x|Y = y) is the conditional probability.
The Rajski distance (or normalized information metric) is defined

(Rajski 1961, for discrete probability distributions X, Y ) by

H(X|Y ) + H(Y |X)
H(X,Y )

= 1− I(X;Y )
H(X,Y )

.

It is equal to 1 if X and Y are independent. (Cf., a different one, normal-
ized information distance in Chap. 11).

• Kantorovich–Mallows–Monge–Wasserstein metric
Given a metric space (X , d), the Kantorovich–Mallows–Monge–
Wasserstein metric is defined by

inf ES [d(X,Y )],
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where the infimum is taken over all joint distributions S of pairs (X,Y ) of
random variables X,Y such that marginal distributions of X and Y are
P1 and P2.

For any separable metric space (X , d), this is equivalent to the
Lipschitz distance between measures supf

∫
fd(P1 − P2), where

the supremum is taken over all functions f with |f(x) − f(y)| ≤ d(x, y)
for any x, y ∈ X .

More generally, the Lp-Wasserstein distance for X = R
n is defined by

(inf ES [dp(X,Y )])1/p,

and, for p = 1, it is also called the ρ-distance. For (X , d) = (R, |x − y|),
it is also called the Lp-metric between distribution functions (CDF), and
can be written as

(inf E[|X − Y |p])1/p =
(∫

R

|F1(x)− F2(x)|pdx

)1/p

=
(∫ 1

0

|F−1
1 (x)− F−1

2 (x)|pdx

)1/p

with F−1
i (x) = supu(Pi(X ≤ x) < u).

The case p = 1 of this metric is called the Monge–Kantorovich met-
ric or Hutchinson metric (in Fractal Theory), Wasserstein metric,
Fortet–Mourier metric.

• Ornstein d-metric
The Ornstein d-metric is a metric on P (for X = R

n), defined by

1
n

inf
∫

x,y

(
n∑

i=1

1xi 	=yi

)

dS,

where the infimum is taken over all joint distributions S of pairs (X,Y ) of
random variables X,Y such that marginal distributions of X and Y are
P1 and P2.



Part IV
Distances in Applied Mathematics



Chapter 15
Distances in Graph Theory

A graph is a pair G = (V,E), where V is a set, called the set of vertices of
the graph G, and E is a set of unordered pairs of vertices, called the edges
of the graph G. A directed graph (or digraph) is a pair D = (V,E), where V
is a set, called the set of vertices of the digraph D, and E is a set of ordered
pairs of vertices, called arcs of the digraph D.

A graph in which at most one edge may connect any two vertices, is called
a simple graph. If multiple edges are allowed between vertices, the graph is
called a multi-graph.

The graph is called finite (infinite) if the set V of its vertices is finite
(infinite, respectively). The order of a finite graph is the number of its vertices;
the size of a finite graph is the number of its edges.

A graph, together with a function which assigns a positive weight to each
edge, is called a weighted graph or network.

A subgraph of a graph G is a graph G
′

whose vertices and edges form
subsets of the vertices and edges of G. If G

′
is a subgraph of G, then G is

called a supergraph of G
′
. An induced subgraph is a subset of the vertices of a

graph G together with all edges both of whose endpoints are in this subset.
A graph G = (V,E) is called connected if, for any vertices u, v ∈ V ,

there exists a (u− v) path, i.e., a sequence of edges uw1 = w0w1, w1w2, . . . ,
wn−1wn = wn−1v from E such that wi �= wj for i �= j, i, j ∈ {0, 1, . . . , n}.
A graph is called m-connected if there is no set of m−1 edges whose removal
disconnects the graph; a connected graph is 1-connected. A digraph D =
(V,E) is called strongly connected if, for any vertices u, v ∈ V , the directed
(u − v) path and the directed (v − u) path both exist. A maximal connected
subgraph of a graph G is called its connected component.

Vertices connected by an edge are called adjacent. The degree deg(v) of a
vertex v ∈ V of a graph G = (V,E) is the number of its vertices adjacent
to v.

A complete graph is a graph in which each pair of vertices is connected
by an edge. A bipartite graph is a graph in which the set V of vertices is
decomposed into two disjoint subsets so that no two vertices within the same
subset are adjacent. A path is a simple connected graph in which two vertices
have degree one, and other vertices (if they exist) have degree two; the length
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of a path is the number of its edges. A cycle is a closed path, i.e., a simple
connected graph in which every vertex has degree two. A tree is a simple
connected graph without cycles.

Two graphs which contain the same number of vertices connected in the
same way are called isomorphic. Formally, two graphs G = (V (G), E(G))
and H = (V (H), E(H)) are called isomorphic if there is a bijection f :
V (G) → V (H) such that, for any u, v ∈ V (G), uv ∈ E(G) if and only if
f(u)f(v) ∈ E(H).

We will consider mainly simple finite graphs and digraphs; more exactly,
the equivalence classes of such isomorphic graphs.

15.1 Distances on vertices of a graph

• Path metric
The path metric (or graphic metric, shortest path metric) dpath is a
metric on the vertex-set V of a connected graph G = (V,E), defined, for
any u, v ∈ V , as the length of a shortest (u− v) path in G, i.e., a geodesic.

The path metric of the Cayley graph Γ of a finitely-generated group
(G, ·, e) is called a word metric. The path metric of a graph G = (V,E),
such that V can be cyclically ordered in a Hamiltonian cycle (a circuit
containing each vertex exactly once), is called a Hamiltonian metric.

The hypercube metric is the path metric of a hypercube graph H(m, 2)
with the vertex-set V = {0, 1}m, and whose edges are the pairs of vectors
x, y ∈ {0, 1}m such that |{i ∈ {1, . . . , n} : xi �= yi}| = 1; it is equal to
|{i ∈ {1, . . . , n} : xi = 1}�{i ∈ {1, . . . , n} : yi = 1}|. The graphic metric
space associated with a hypercube graph is called a hypercube metric space.
It coincides with the metric space ({0, 1}m, dl1).

Given an integer n ≥ 1, the line metric on {1, . . . , n} in Chap. 1 is the
path metric of the path Pn = {1, . . . , n}.

• Weighted path metric
The weighted path metric dwpath is a metric on the vertex-set V
of a connected weighted graph G = (V,E) with positive edge-weights
(w(e))e∈E , defined by

min
P

∑

e∈P

w(e),

where the minimum is taken over all (u− v) paths P in G.
• Detour distance

Given a connected graph G = (V,E), the detour distance (or codistance)
is a distance on the vertex-set V , defined as the length of a longest (u− v)
path in G. In general, it is not a metric.
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The smallest detour distance between distinct vertices is called the co-
diameter of G. A graph is called a detour graph if its detour distance
coincides with its path metric.

• Path quasi-metric in digraphs
The path quasi-metric in digraphs ddpath is a quasi-metric on the
vertex-set V of a strongly connected directed graph D = (V,E), defined,
for any u, v ∈ V , as the length of a shortest directed (u− v) path in D.

• Graph diameter
Given a connected graph G = (V,E), its graph diameter is the maximal
length of shortest (u − v)-path in G, i.e., it is the largest value of the
path metric between vertices of G. A connected graph is vertex-critical
(edge-critical) if deleting any vertex (edge) increases its diameter.

Given a strong orientation O of a connected graph G = (V,E), i.e.,
a strongly connected directed graph D = (V,E′) with arcs e′ ∈ E′ obtained
from edges e′ ∈ E′ by orientation O, the oriented diameter of D is the
maximal length of shortest directed (u− v)-path in it. The orientation O
is tight if the diameter of G is equal to the oriented diameter of D. For
example, a hypercube graph H(m, 2) admits a tight orientation if m ≥ 4
(McCanna 1988).

• Circular metric in digraphs
The circular metric in digraphs is a metric on the vertex-set V of a
strongly connected directed graph D = (V,E), defined by

ddpath(u, v) + ddpath(v, u),

where ddpath is the path quasi-metric in digraphs.
• Strong metric in digraphs

The strong metric in digraphs is a metric between vertices v and v
of a strongly connected directed graph D = (V,E), defined (Chartrand,
Erwin, Raines and Zhang 1999) as the minimum size (the number of edges)
of a strongly connected subdigraph of D, containing v and v. Cf. Steiner
distance.

• Υ-metric
Given a class Υ of connected graphs, the metric d of a metric space (X, d)
is called a Υ-metric if (X, d) is isometric to a subspace of a metric space
(V, dwpath), where G = (V,E) ∈ Υ, and dwpath is the weighted path
metric on the vertex-set V of G with positive edge-weight function w (see
tree-like metric).

• Tree-like metric
A tree-like metric (or weighted tree metric) d on a set X is a
Υ-metric for the class Υ of all trees, i.e., the metric space (X, d) is iso-
metric to a subspace of a metric space (V, dwpath), where T = (V,E) is
a tree, and dwpath is the weighted path metric on the vertex-set V of
T with a positive weight function w. A metric is a tree-like metric if and
only if it satisfies the four-point inequality.
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A metric d on a set X is called a relaxed tree-like metric if the set
X can be embedded in some (not necessary positively) edge-weighted tree
such that, for any x, y ∈ X, d(x, y) is equal to the sum of all edge weights
along the (unique) path between corresponding vertices x and y in the
tree. A metric is a relaxed tree-like metric if and only if it satisfies the
relaxed four-point inequality.

• Katz similarity
Given a graph G = (V,E) with positive edge-weight function w =
(w(e))e∈E , let V = {v1, . . . , vn}. Denote by A the n × n-matrix ((aij)),
where aij = aji = w(ij) if ij is an edge, and aij = 0, otherwise. Let I
be the identity n × n-matrix, and let α, 0 < α < 1, be a parameter with
α < (maxi |λi|)−1, where the maximum is taken over the eigenvalues λi of
matrix A. Define the n× n-matrix S = ((sij)) as follows:

S =
∑

1≤k≤∞
λkAk = (I − λA)−1 − I.

The number sij is called the Katz similarity between vertices vi and
vj ; it was proposed (Katz 1953) for evaluating social status with better
accounting of all paths between vi and vj .

• Resistance metric
Given a connected graph G = (V,E) with positive edge-weight function
w = (w(e))e∈E , let us interpret the edge-weights as resistances. For any two
different vertices u and v, suppose that a battery is connected across them,
so that one unit of a current flows in at u and out in v. The voltage (poten-
tial) difference, required for this is, by Ohm’s law, the effective resistance
between u and v in an electrical network; it is called the resistance met-
ric Ω(u, v) between them (Gvishiani-Gurvich, 1987, and Klein-Randic,
1993). So, if a potential of one volt is applied across vertices u and v, a
current of 1

Ω(u,v) will flow. The number 1
Ω(u,v) can be seen, like electrical

conductance, as a measure of connectivity between u and v.
Let r(u, v) = 1

w(e) if uv is an edge, and r(u, v) = 0 otherwise. Formally,

Ω(u, v) = (
∑

w∈V

f(w)r(w, v))−1,

where f : V → [0, 1] is the unique function with f(u) = 1, f(v) = 0 and∑
z∈V (f(w)− f(z))r(w, z) = 0 for any w �= u, v.
The resistance metric is applied when the number of paths between any

two vertices u and v matters; in short, it is a weighted average of the
lengths of all (u− v) paths.

A probabilistic interpretation (Gobel and Jagers 1974) is: Ω(u, v) =
(deg(u)Pr(u → v))−1, where deg(u) is the degree of the vertex u, and
Pr(u → v) is the probability for a random walk leaving u to arrive at v
before returning to u. The expected commuting time between vertices u
and v is 2

∑
e∈E w(e)Ω(u, v) in general.
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Then Ω(u, v) ≤ minP

∑
e∈P

1
w(e) , where P is any (u − v) path, with

equality if and only if such a path P is unique. So, if w(e) = 1 for all
edges, the equality means that G is a geodetic graph, and hence the
path and resistance metrics coincide.

If w(e) = 1 for all edges, then Ω(u, v) = (guu + gvv)− (guv + gvu), where
((gij)) is the Moore–Penrose generalized inverse of the Laplacian matrix
((lij)) of the graph G: here lii is the degree of vertex i while, for i �= j,
lij = 1 if the vertices i and j are adjacent, and lij = 0 otherwise.

The distance
√

Ω(u, v) is a Mahalanobis distance (cf. Chap. 17)
with a weighting matrix ((gij)). This distance is called a diffusion metric
in [CLLMNWZ05], because it (as well as diffusion) depends on a ran-
dom walk.

• Hitting time quasi-metric
Let G = (V,E) be a connected graph with m edges. Consider random
walks on G, where at each step the walk moves to a vertex randomly with
uniform probability from the neighbors of the current vertex. The hitting
(or first-passage) time quasi-metric H(u, v) from u ∈ V to v ∈ V is the
expected number of steps (edges) for a random walk on G beginning at u
to reach v for the first time; it is 0 for u = v.

This quasi-metric is a weightable quasi-semi-metric (cf. Chap. 1).
The commuting time metric is C(u, v) = H(u, v) + H(v, u).
Then C(u, v) = 2mΩ(u, v), where Ω(u, v) is the resistance metric

(or effective resistance), i.e., 0 if u = v and, otherwise, 1
Ω(u,v) is the

current flowing into v, when grounding v and applying a 1 V poten-
tial to u (each edge is seen as a resistor of 1 Ω). Then Ω(u, v) =
supf :V →R, D(f)>0

(f(u)−f(v))2

D(f) , where D(f) is the Dirichlet energy of f ,
i. e.,

∑
st∈E(f(s)− f(t))2.

Above setting can be easily generalized to weighted graphs.
• Forest metric

Given α > 0 and a connected weighted multi-graph (multiple edges are
allowed) G = (V,E;w) with positive edge-weight function w = (w(e))e∈E ,
the α-forest metric (Chebotarev and Shamis 2006) between vertices u
and v is defined by

1
2
(quu + qvv − quv − qvu)

for ((gij)) = (I + αL)−1, where I is the identity |V | × |V | matrix, and
L = ((lil)) is the Laplacian (or Kirchhoff) matrix of G, i.e., lij = −w(ij)
for i �= j and lij = −

∑
j 	=i lij .

Chebotarev and Shamis showed that twice the α-forest metric of G is
the resistance distance of the weighted multi-graph G′ = (V ′, E′;w′)
with V ′ = V ∪ {0}, E′ = E ∪ {u0 : u ∈ V }), while w′(e) = αw(e) for all
e ∈ E and w′(u0) = 1 for all u ∈ V .

Their forest metric (1998) is the case α = 1 of the α-forest metric.
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• Truncated metric
The truncated metric is a metric on the vertex-set of a graph, which is
equal to 1 for any two adjacent vertices, and is equal to 2 for any non-
adjacent different vertices. It is the 2-truncated metric for the path
metric of the graph. It is the (1, 2)−B-metric if the degree of any vertex
is at most B.

• Hsu-Lyuu-Flandrin-Li distance
Given an m-connected graph G = (V,E) and two vertices u, v ∈ V , a con-
tainer C(u, v) of width m is a set of m (u− v) paths with any two of them
intersecting only in u and v. The length of a container is the length of the
longest path in it.

The Hsu-Lyuu-Flandrin-Li distance between vertices u and v (Hsu-
Lyuu 1991 and Flandrin-Li 1994) is the minimum of container lengths
taken over all containers C(u, v) of width m. This generalization of the
path metric is used in parallel architectures for interconnection networks.

• Multiply-sure distance
The multiply-sure distance is a distance on the vertex-set V of an
m-connected weighted graph G = (V,E), defined, for any u, v ∈ V , as
the minimum weighted sum of lengths of m disjoint (u − v) paths. This
generalization of the path metric helps when several disjoint paths between
two points are needed, for example, in communication networks, where
m− 1 of (u− v) paths are used to code the message sent by the remaining
(u− v) path (see [McCa97]).

• Cut semi-metric
A cut is a partition of a set into two parts. Given a subset S of Vn =
{1, . . . , n}, we obtain the partition {S, Vn\S} of Vn. The cut semi-metric
(or split semi-metric) δS , defined by this partition, is a semi-metric on
Vn, defined by

δS(i, j) =
{

1, if i �= j, |S ∩ {i, j}| = 1,
0, otherwise.

Usually, it is considered as a vector in R
|En|, E(n) = {{i, j} : 1 ≤ i <

j ≤ n}.
A circular cut of Vn is defined by a subset S[k+1,l] = {k + 1, . . . , l}

(modn) ⊂ Vn: if we consider the points {1, . . . , n} as being ordered along a
circle in that circular order, then S[k+1,l] is the set of its consecutive vertices
from k + 1 to l. For a circular cut, the corresponding cut semi-metric is
called a circular cut semi-metric.

An even cut semi-metric (odd cut semi-metric) is δS on Vn with
even (odd, respectively) |S|. A k-uniform cut semi-metric is δS on
Vn with |S| ∈ {k, n − k}. An equicut semi-metric (inequicut semi-
metric) is δS on Vn with |S| ∈ {#n

2 $, '
n
2 (} (|S| /∈ {#n

2 $, '
n
2 (}, respectively);

see, for example, [DeLa97].
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• Decomposable semi-metric
A decomposable semi-metric is a semi-metric on Vn = {1, . . . , n} which
can be represented as a non-negative linear combination of cut semi-
metrics. The set of all decomposable semi-metrics on Vn is a convex cone,
called the cut cone CUTn.

A semi-metric on Vn is decomposable if and only if it is a finite
l1-semi-metric.

A circular decomposable semi-metric is a semi-metric on Vn =
{1, . . . , n} which can be represented as a non-negative linear combination
of circular cut semi-metrics.

A semi-metric on Vn is circular decomposable if and only if it is
a Kalmanson semi-metric with respect to the same ordering (see
[ChFi98]).

• Finite lp-semi-metric
A finite lp-semi-metric d is a semi-metric on Vn = {1, . . . , n} such that
(Vn, d) is a semi-metric subspace of the lmp -space (Rm, dlp) for some m ∈ N.
If, instead of Vn, is taken X = {0, 1}n, the metric space (X, d) is called
the lnp -cube. The ln1 -cube is called a Hamming cube; cf. Chap. 4.

• Kalmanson semi-metric
A Kalmanson semi-metric d is a semi-metric on Vn = {1, . . . , n} which
satisfies the condition

max{d(i, j) + d(r, s), d(i, s) + d(j, r)} ≤ d(i, r) + d(j, s)

for all 1 ≤ i ≤ j ≤ r ≤ s ≤ n. In this definition the ordering of the
elements is important; so, d is a Kalmanson semi-metric with respect to
the ordering 1, . . . , n.

Equivalently, if the points {1, . . . , n} are ordered along a circle Cn in
that circular order, then the distance d on Vn is a Kalmanson semi-metric
if the inequality

d(i, r) + d(j, s) ≤ d(i, j) + d(r, s)

holds for i, j, r, s ∈ Vn whenever the segments [i, j], [r, s] are crossing chords
of Cn.

A tree-like metric is a Kalmanson metric for some ordering of the
vertices of the tree. The Euclidean metric, restricted to the points that
form a convex polygon in the plane, is a Kalmanson metric.

• Multi-cut semi-metric
Let {S1, . . . , Sq}, q ≥ 2, be a partition of the set Vn = {1, . . . , n}, i.e., a
collection S1, . . . , Sq of pairwise disjoint subsets of Vn such that S1 ∪ · · · ∪
Sq = Vn.

The multi-cut semi-metric δS1,...,Sq
is a semi-metric on Vn, defined by

δS1,...,Sq
(i, j) =

{
0, if i, j ∈ Sh for some h, 1 ≤ h ≤ q,
1, otherwise.
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• Oriented cut quasi-semi-metric
Given a subset S of Vn = {1, . . . , n}, the oriented cut quasi-semi-
metric δ

′

S is a quasi-semi-metric on Vn, defined by

δ
′

S(i, j) =
{

1, if i ∈ S, j �∈ S,
0, otherwise.

Usually, it is considered as the vector of R
|In|, I(n) = {(i, j) : 1 ≤ i �=

j ≤ n}. The cut semi-metric δS is δ
′

S + δ
′

Vn\S .
• Oriented multi-cut quasi-semi-metric

Given a partition {S1, . . . , Sq}, q ≥ 2, of Vn, the oriented multi-cut
quasi-semi-metric δ

′

S1,...,Sq
is a quasi-semi-metric on Vn, defined by

δ
′

S1,...,Sn
(i, j) =

{
1, if i ∈ Sh, j ∈ Sm, h < m,
0, otherwise .

15.2 Distance-defined graphs

Below we first give some graphs defined in terms of distances between their
vertices. Then some graphs associated with metric spaces are presented.

A graph (V,E) is, say, distance-invariant or distance monotone if its metric
space (V, dpath) is distance invariant or distance monotone, respectively
(cf. Chap. 1). The definitions of such graphs, being straightforward subcases
of corresponding metric spaces, will be not given below.

• k-power of a graph
The k-power of a graph G = (V,E) is the supergraph Gk = (V,E′) of G
with edges between all pairs of vertices having path distance at most k.

• Isometric subgraph
A subgraph H of a graph G = (V,E) is called an isometric subgraph
if the path metric between any two points of H is the same as their path
metric in G.

A subgraph H is called a convex subgraph if it is isometric, and for any
u, v ∈ H every vertex on a shortest (u − v)-path belonging to H also
belongs to H.

A subset M ⊂ V is called gated if for every u ∈ V \M there exists a
unique vertex g ∈ M (called a gate) lying on a shortest (u − v)-path for
every v ∈M . The subgraph induced by a gated set is a convex subgraph.

• Retract subgraph
A subgraph H of a graph G = (V,E) is called a retract subgraph
if it is induced by an idempotent short mapping of G into itself, i.e.,
f2 = f : V → V with dpath(f(u), f(v)) ≤ dpath(u, v) for all u, v ∈ V . Any
retract subgraph is isometric.
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• Median graph
A connected graph G = (V,E) is called a median if, for every three
vertices u, v, w ∈ V , there exists a unique vertex that lies simultaneously
on a shortest (u− v)-path, a shortest (u−w)-path and a shortest (w− v)-
path, i.e., (V, dpath) is a median metric space. The median graphs are
exactly retract subgraphs of hypercubes. Also, they are exactly such
isometric subgraphs of hypercubes that the vertex-set of any convex
subgraph is gated (cf. isometric subgraph).

• Geodetic graph
A connected graph is called geodetic if there exists exactly one shortest
path between any two of its vertices. Every tree is a geodetic graph.

The geodetic number of a finite connected graph (V,E) [BuHa90] is
min |M | over sets M ⊂ V of vertices such that any vertex x ∈ V lies on a
shortest (u− v)-path where u, v ∈M .

• Interval distance monotone graph
A connected graph G = (V,E) is called interval distance monotone

if any of its intervals IG(u, v) induces a distance monotone graph, i.e., its
path-metric is distance monotone, cf. Chap. 1. A graph is interval dis-
tance monotone if and only if (Zhang and Wang 2007) each of its intervals
is isomorphic to either a path, a cycle or a hypercube.

• Distance-regular graph
A connected graph G = (V,E) of diameter T is called distance-regular
if, for any of its vertices u, v and any integers 0 ≤ i, j ≤ T , the number of
vertices w, such that dpath(u,w) = i and dpath(v, w) = j, depends only on
i, j and k = dpath(u, v), but not on the choice of u and v.

A special case of it is a distance-transitive graph, i.e., such that its
group of automorphisms is transitive, for any 0 ≤ i ≤ T , on the pairs of
vertices (u, v) with dpath(u, v) = i.

Any distance-regular graph is a distance-balanced graph(i.e., |{x ∈
V : d(x, u) < d(x, v)}| = |{x ∈ V : d(x, v) < d(x, u)}| for any edge uv),
a distance degree regular graph (i.e., |{x ∈ V : d(x, u) = i}| depends
only on i, not on u ∈ V ), and a walk-regular graph (i.e., the number of
closed walks of length i starting at u depends only on i, not on u).

A distance-regular graph is also called a metric association scheme
or P -polynomial association scheme. A finite polynomial metric space
(cf. Chap. 1) is a special case of it, also called a (P and Q)-polynomial
association scheme.

• Metrically almost transitive graph
An automorphism of a graph G = (V,E) is a map g : V → V such that u
is adjacent to v if and only if g(u) is adjacent to g(v), for any vertices u
and v. The set Aut(G) of all automorphisms of G is a group with respect
to the composition of functions.

A graph G(V,E) is metrically almost transitive (Krön and Möller
2008) if there is an integer r such that, for any vertex u,

∪g∈Aut(G){g(B(u, r))} = V,
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where B(u, r) = {v ∈ V : dpath(u, v) ≤ r}. The smallest such integer r
is called the covering radius of G. Cf radii of metric space in Chap. 1.

• Graph of polynomial growth
Let G = (V,E) be a transitive locally-finite graph. For a vertex v ∈ V , the
growth function is defined by

f(n) = |{u ∈ V : d(u, v) ≤ n}|,

and it does not depend on a particular vertex v. Cf. growth rate of
metric space in Chap. 1.

The graph G is a graph of polynomial growth if there are some
positive constants k,C such that f(n) ≤ Cnk for all n ≥ 0. It is a graph
of exponential growth if there is a constant C > 1 such that f(n) > Cn

for all n ≥ 0.
A group with a finite symmetric set of generators has polynomial growth

rate if the corresponding Cayley graph has polynomial growth. Here the
metric ball consists of all elements of the group which can be expressed as
products of at most n generators, i.e., it is a closed ball centered in the
identity in the word metric, cf. Chap. 10.

• Distance-polynomial graph
Given a connected graph G = (V,E) of diameter T , for any 2 ≤ i ≤ T
denote by Gi the graph with the same vertex-set as G, and with edges uv
such that dpath(u, v) = i. The graph G is called a distance-polynomial
if the adjacency matrix of any Gi, 2 ≤ i ≤ T , is a polynomial in terms of
the adjacency matrix of G.

Any distance-regular graph is a distance-polynomial.
• Distance-hereditary graph

A connected graph is called distance-hereditary if each of its connected
induced subgraphs is isometric.

A graph is distance-hereditary if each of its induced paths is isometric.
A graph is distance-hereditary, bipartite distance-hereditary, block
graph, tree if and only if its path metric is a relaxed tree-like met-
ric for edge-weights being, respectively, non-zero half-integers, non-zero
integers, positive half-integers, positive integers.

A graph is called a parity graph if, for any of its vertices u and v, the
lengths of all induced (u − v)-paths have the same parity. A graph G is
k-distance hereditary (Meslem-Aı̈der, 2009) if dH(u, v) ≤ dG(u, v) + k for
vertices of any its connected induced subgraph H.

• Block graph
A graph is called a block graph if each of its blocks (i.e., a maximal
2-connected induced subgraph) is a complete graph. Any tree is a block
graph.
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A graph is a block graph if and only if its path metric is a tree-like
metric or, equivalently, satisfies the four-point inequality.

• Ptolemaic graph
A graph is called Ptolemaic if its path metric satisfies the Ptolemaic
inequality

d(x, y)d(u, z) ≤ d(x, u)d(y, z) + d(x, z)d(y, u).

A graph is Ptolemaic if and only if it is distance-hereditary and chordal,
i.e., every cycle of length greater than 3 has a chord. So, any block graph
is Ptolemaic.

• t-irredundant set
A set S ⊂ V of vertices in a connected graph G = (V,E) is called
t-irredundant (Hattingh and Henning 1994) if for any u ∈ S there exists
a vertex v ∈ V such that, for the path metric dpath of G,

dpath(v, x) ≤ t < dpath(v, V \S) = min
u/∈S

dpath(v, u).

The t-irredundance number irt of G is the smallest cardinality |S| such
that S is t-irredundant but S ∪ {v} is not, for every v ∈ V \S.

The t-domination number γt and t-independent number αt of G are,
respectively, the cardinality of the smallest t-covering and largest t

2 -
packing of the metric space (V, dpath(u, v)) (cf. radius of metric space
in Chap. 1). Denote by γin

t the smallest |S| such that S is t
2 -packing but

S ∪{v} is not, for every v ∈ V \S; so, this non-extendible t
2 -packing is also

a t-covering. Then γt+1
2 ≤ irt ≤ γt ≤ γin

t ≤ αt.
• k-distant chromatic number

The k-distant chromatic number of a graph G = (V,E) is the minimum
number of colors needed to color vertices of G so that any two vertices at
distance at most k have distinct colors, i.e., it is the chromatic number of
the k-power of G.

• D-distance graph
Given a set D of positive numbers containing 1 and a metric space (X, d),
the D-distance graph D(X, d) is a graph with the vertex-set X and the
edge-set {uv : d(u, v) ∈ D} (cf. D-chromatic number in Chap. 1).

A D-distance graph is called a distance graph (or unit-distance graph)
if D = {1}, an ε-unit graph if D = [1−ε, 1+ε], a unit-neighborhood graph if
D = (0, 1], an integral-distance graph if D = Z+, a rational-distance graph
if D = Q+, and a prime-distance graph if D is the set of prime numbers
(with 1).

Usually, the metric space (X, d) is a subspace of a Euclidean space
E

n. Moreover, every finite graph G = (V,E) can be represented by a
D-distance graph in some E

n. The minimum dimension of such Euclidean
space is called the D-dimension of G.
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• Distance-number of a graph
Given a graph G = (V,E), its degenerate drawing is a mapping f : V → R

2

such that |f(V )| = |V | and f(uv) is an open straight-line segment joining
the vertices f(u) and f(v) for any edge uv ∈ E; it is a drawing if, moreover,
f(w) /∈ f(uv) for any uv ∈ E and w ∈ V .

The distance-number of a graph G = (V,E), denoted by dn(G),
is (Carmi, Dujmović, Morin and Wood 2008) the minimum number of
distinct edge-lengths in a drawing of G. The degenerate distance-number
of G, denoted by ddn(G), is the minimum number of distinct edge-lengths
in a degenerated drawing of G.

The first of the Erdös-type distance problems in Chap. 19 is equiv-
alent to determining ddn(Kn).

The unit-distance graph of a set M ⊂ R
2 is a graph G′ = (V ′, E′) with

V ′ = M and xy ∈ E′ if and only if points x, y ∈ S are at unit distance.
In general, ddn(G) = 1 if and only if G is isomorphic to a subgraph of a
unit-distance graph.

Any n-vertex m-edge graph G satisfies (Spencer, Szemerédi and Trotter
1984) dn(G) ≥ ddn(G) ≥ Cmn− 4

3 for a constant C > 0.
Erdös, Harary and Tutte (1965) defined the dimension of a graph G as

the minimum number k such that G has a degenerate drawing in R
k with

straight-line edges of unit length.
A graph is k-realizable if, for every mapping of its vertices to (not nec-

essarily distinct) points of R
s with s ≥ k, there exists such a mapping in

R
k which preserves edge-lengths. K3 is 2-realizable but not 1-realizable.

Belk and Connely (2007) proved that a graph is 3-realizable if and only if
it has no minors K5 or K2,2,2.

• Bar framework
A pair (G, f) is called a bar framework if G = (V,E) is a finite graph (no
loops and multiple edges) and f : V → R

n is a map with f(u) �= f(v) when-
ever uv ∈ E. The vertices and edges are called joints and bars, respectively,
in terms of Structural Engineering. A tensegrity (Fuller 1948) is a bar
framework in which bars are either cables (i.e., cannot get further apart),
or struts (i.e., cannot get closer together).

An (infinitesimal) motion of a bar framework (G, f) is a map m : V →
R

n with (m(u) −m(v))(f(u) − f(v)) = 0 whenever uv ∈ E. A motion is
trivial if it can be extended to an isometry of R

n. A bar framework is an
(infinitesimally) rigid framework if every motion of it is trivial.

A bar framework (G, f) is an elastic framework if, for any ε > 0,
there exists a δ > 0 such that the following condition holds: for every
edge-weighting w : E → R>0 with maxuv∈E |w(uv)− ||f(u)− f(v)||2| ≤ δ,
there exist a bar framework (G, f ′) with maxv∈V ||f(u)− f ′(v)||2 < ε.

A bar framework is isostatic (i.e., rigid and the deletion of any of its
edges will cause loss of rigidity) if and only if (Tay and Nievergelt 1997)
it is elastic and the addition of any new edge will cause loss of elasticity.
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• Distance-two labelling
Given a decreasing sequence α = (α1, . . . , αk) of numbers, λα-labelling of a
graph G = (V,E) is an assignment of labels f(v) from the set {0, 1, . . . , λ}
of integers to the vertices v ∈ V such that, for any t with 0 ≤ t ≤ k,
|f(v) − f(u)| ≥ αt whenever the path distance between u and v is t.
The radio frequency assignment problem, where vertices v are transmitters
and labels f(v) are frequencies of (not-interfering) channels, consists of
minimizing λ.

Distance-two labelling (λ(2,1)-labelling) is the main interesting case
α = (2, 1).

• Distance labelling scheme
A graph family A is said (Peleg 2000) to have an l(n) distance la-
belling scheme if there is a function LG labelling the vertices of each
n-vertex graph G∈A with distinct labels up to l(n) bits, and there
exists an algorithm, called a distance decoder, that decides the dis-
tance d(u, v) between any two vertices u, v ∈ X in a graph G ∈ A, i.e.,
d(u, v) = f(LGu), LGv)), polynomial in time in the length of their labels
L(u), L(v).

• Arc routing problems
Given a finite set X, a quasi-distance d(x, y) on it and a set A ⊆ {(x, y) :
x, y ∈ X}, consider the weighted digraph D = (X,A) with the vertex-
set X and arc-weights d(x, y) for all arcs (x, y) ∈ A. For given sets V of
vertices and E of arcs, the arc routing problem consists of finding a
shortest (i.e., with minimal sum of weights of its arcs) (V,E)-tour, i.e., a
circuit in D = (X,A), visiting each vertex in V and each arc in E exactly
once or, in a variation, at least once.

The Asymmetric Traveling Salesman Problem corresponds to the case
V = X, E = ∅; the Traveling Salesman Problem is the symmetric version
of it (usually, each vertex should be visited exactly once). The Bottle-
neck Traveling Salesman Problem consists of finding a (V,E)-tour T with
smallest max(x,y)∈T d(x, y).

The Windy Postman Problem corresponds to the case V = ∅, E = A,
while the Chinese Postman Problem is the symmetric version of it.

The above problems are also considered for general arc- or edge-weights;
then, for example, term Metric TSP is used when edge-weights in the
Traveling Salesman Problem satisfy the triangle inequality, i.e., d is a
quasi-semi-metric.

• Steiner distance of a set
The Steiner distance of a set S ⊂ V of vertices in a connected graph
G = (V,E) is (Chartrand, Oellermann, Tian and Zou 1989) the minimum
size (number of edges) of a connected subgraph of G, containing S. Such
a subgraph is, obviously, a tree, and is called a Steiner tree for S. Those
of its vertices which are not in S are called Steiner points.
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The Steiner distance of the set S = {u, v} is the path metric between u
and v.

• t-spanner
A spanning subgraph H = (V,E(H)) of a connected graph G = (V,E)
is called a t-spanner of G if, for every u, v ∈ V , the inequality
dH

path(u, v)/dG
path(u, v) ≤ t holds. The value t is called the stretch fac-

tor of H.
A spanning subgraph H = (V,E(H)) of a graph G = (V,E) is called a

k-additive spanner of G if, for every u, v ∈ V , the inequality dH
path(u, v) ≤

dG
path(u, v) + k holds.

• Proximity graph
Given a finite subset V of a metric space (X, d), a proximity graph
of V is a graph representing neighbor relationships between points of V .
Such graphs are used in Computational Geometry and many real-world
problems. The main examples are presented below. Cf. also underlying
graph of a metric space in Chap. 1.

A spanning tree of V is a set T of |V | − 1 unordered pairs (x, y) of dif-
ferent points of V forming a tree on V ; the weight of T is

∑
(x,y)∈T d(x, y).

A minimum spanning tree MST (V ) of V is a spanning tree with
the minimal weight. Such a tree is unique if the edge-weights are
distinct.

Nearest neighbor graph is the directed graph NNG(V ) = (V,E)
with vertex-set V = v1, . . . , v|V | and, for x, y ∈ V , xy ∈ E if y is the
nearest neighbor of x, i.e., d(x, y) = minvi∈V \{x} d(x, vi) and only vi with
maximal index i is picked. The k-nearest neighbor graph arises if k such
vi with maximal indices are picked. The indirect version of NNG(V ) is a
subgraph of MST (V ).

Relative neighborhood graph is (Toussaint 1980) the graph
RNG(V ) = (V,E) with vertex-set V and, for x, y ∈ V , xy ∈ E if
there is no point z ∈ V with max{d(x, z), d(y, z)} < d(x, y). Also consid-
ered, in the main case (X, d) = (R2, ||x − y||2), are the related Gabriel
graph GG(V ) (in general, β-skeleton) and Delaunay triangulation DT (V );
then NNG(V ) ⊆ MST (V ) ⊆ RNG(V ) ⊆ GG(V ) ⊆ DT (V ).

For any x ∈ V , its sphere of influence is the open metric ball B(x, rx) =
{z ∈ X : d(x, z) < r} in (X, d) centered at x with radius rx =
minz∈V \{x} d(x, z).

Sphere of influence graph is the graph SIG(V ) = (V,E) with vertex-
set V and, for x, y ∈ V , xy ∈ E if B(x, rx) ∩ B(y, ry) �= ∅; so, it is a
proximity graph and an intersection graph. The closed sphere of influ-
ence graph is the graph CSIG(V ) = (V,E) with xy ∈ E if B(x, rx) ∩
B(y, ry) �= ∅.
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• Chartrand–Kubicki–Schultz distance
The Chartrand–Kubicki–Schultz distance (or φ-distance 1998)
between two connected graphs G1 = (V1, E1) and G2 = (V2, E2) with
|V1| = |V2| = n is

min{
∑

|dG1(u, v)− dG2(φ(u), φ(v))|},

where dG1 , dG2 are path metrics of graphs G1, G2, the sum is taken over
all unordered pairs u, v of vertices of G1, and the minimum is taken over
all bijections φ : V1 → V2.

• Subgraph metric
Let F = {F1 = (V1, E1), F2 = (V2, E2), . . . , } be the set of isomorphism
classes of finite graphs. Given a finite graph G = (V,E), denote by si(G)
the number of injective homomorphisms from Fi into G (i.e., the number
of injections φ : Vi → V with φ(x)φ(y) ∈ E whenever xy ∈ Ei) divided
by the number |V |!

(|V |−|Vi|)! of such injections from Fi with |Vi| ≤ |V | into
K|V |). Set s(G) = (si(G))∞i=1 ∈ [0, 1]∞.

Let d be the Cantor metric (cf. Chap. 18) d(x, y) =
∑∞

i=1 2−i|xi − yi|
on [0, 1]∞ or any metric on [0, 1]∞ inducing the product topology. Then,
the subgraph metric (Bollobás and Riordan 2007) between the graphs
G1 and G2 is defined by

d(s(G1), s(G2)).

Bollobás and Riordan (2007) defined other metrics and generalized the
subgraph distance on kernels (or graphons), i.e., symmetric measurable
functions k : [0, 1] × [0, 1] → R≥0, replacing G by k and the above si(G)
by si(k) =

∫
[0,1]|Vi|

∏
st∈Ei

k(xsxt)
∏|Vi|

s=1 dxs.
• Rectangle distance on weighted graphs

Let G = G(α, β) be a complete weighted graph on {1, . . . , n} with vertex-
weights αi > 0, 1 ≤ i ≤ n, and edge-weights βij ∈ R, 1 ≤ i < j ≤ n.
Denote by A(G) the n× n matrix ((aij)), where aij = αiαjβij

(
∑

1≤i≤n αi)2
.

The rectangle distance (or cut distance) between two weighted graphs
G = G(α, β) and G′ = G(α′, β′) (with vertex-weights (α′

i) and edge-
weights (β′

ij)) is (Borgs, Chayes, Lovász, Sós and Vesztergombi 2007):

max
I,J⊂{1,...,n}

|
∑

i∈I,j∈J

(aij − a′
ij)|+

n∑

i=1

| αi∑
1≤j≤n αj

− α′
i∑

1≤j≤n α′
j

|,

where A(G) = ((aij)) and A(G′) = ((a′
ij)).

In the case (α′
i) = (αi), the rectangle distance is ||A(G)−A(G′)||cut, i.e.,

the cut norm metric (cf. Chap. 12) between matrices A(G) and A(G′)
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and the rectangle distance from Frieze and Kannan (1999). In this case, the
l1- and l2-metrics between two weighted graphs G and G′ are defined as
||A(G)−A(G′)||1 and ||A(G)−A(G′)||2, respectively. The subcase αi = 1
for all 1 ≤ i ≤ n corresponds to unweighted vertices.

Cf. the Robinson–Foulds weighted metric between phylogenetic
trees.

Borgs, Chayes, Lovász, Sós and Vesztergombi (2007) defined other met-
rics and generalized the rectangle distance on kernels (or graphons), i.e.,
symmetric measurable functions k : [0, 1] × [0, 1] → R≥0, using the cut
norm ||k||cut = supS,T⊂[0,1] |

∫
S×T

k(x, y)dxdy|.
A map φ : [0, 1] → [0, 1] is measure-preserving if, for any measurable

subset A ⊂ [0, 1], the measures of A and φ−1(A) are equal. For a kernel k,
define the kernel kφ by kφ(x, y) = k(φ(x), φ(y)). The Lovász–Szegedy
semi-metric (2007) between kernels k1 and k1 is defined by

inf
φ
||kφ

1 − k2||cut,

where φ ranges over all measure-preserving bijections [0, 1] → [0, 1].
Cf. Chartrand–Kubicki–Schultz distance.

• Subgraph–supergraph distances
A common subgraph of graphs G1 and G2 is a graph which is isomorphic
to induced subgraphs of both G1 and G2. A common supergraph of graphs
G1 and G2 is a graph which contains induced subgraphs isomorphic to G1

and G2.
The Zelinka distance dZ [Zeli75] on the set G of all graphs (more

exactly, on the set of all equivalence classes of isomorphic graphs) is
defined by

dZ = max{n(G1), n(G2)} − n(G1, G2)

for any G1, G2 ∈ G, where n(Gi) is the number of vertices in Gi, i = 1, 2,
and n(G1, G2) is the maximum number of vertices of a common subgraph
of G1 and G2.

The Bunke–Shearer metric (1998) on the set of non-empty graphs is
defined by

1− n(G1, G2)
max{n(G1), n(G2)}

.

Given an arbitrary set M of graphs, the common subgraph distance
dM on M is defined by

max{n(G1), n(G2)} − n(G1, G2),

and the common supergraph distance d∗M on M is defined by

N(G1, G2)−min{n(G1), n(G2)}
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for any G1, G2 ∈M, where n(Gi) is the number of vertices in Gi, i = 1, 2,
n(G1, G2) is the maximum number of vertices of a common subgraph G ∈
M of G1 and G2, and N(G1, G2) is the minimum number of vertices of a
common supergraph H ∈M of G1 and G2.

dM is a metric on M if the following condition (1) holds:
(1) if H ∈M is a common supergraph of G1, G2 ∈M, then there exists

a common subgraph G ∈M of G1 and G2 with n(G) ≥ n(G1) + n(G2)−
n(H).

d∗M is a metric on M if the following condition (2) holds:
(2) if G ∈M is a common subgraph of G1, G2 ∈M, then there exists a

common supergraph H ∈M of G1 and G2 with n(H) ≤ n(G1) + n(G2)−
n(G).

One has dM ≤ d∗M if the condition (1) holds, and dM ≥ d∗M if the
condition (2) holds.

The distance dM is a metric on the set G of all graphs, the set of all
cycle-free graphs, the set of all bipartite graphs, and the set of all trees.
The distance d∗M is a metric on the set G of all graphs, the set of all
connected graphs, the set of all connected bipartite graphs, and the set of
all trees. The Zelinka distance dZ coincides with dM and d∗M on the set
G of all graphs. On the set T of all trees the distances dM and d∗M are
identical, but different from the Zelinka distance.

The Zelinka distance dZ is a metric on the set G(n) of all graphs with
n vertices, and is equal to n− k or to K − n for all G1, G2 ∈ G(n), where
k is the maximum number of vertices of a common subgraph of G1 and
G2, and K is the minimum number of vertices of a common supergraph
of G1 and G2. On the set T(n) of all trees with n vertices the distance dZ

is called the Zelinka tree distance (see, for example, [Zeli75]).
• Fernández–Valiente metric

Given graphs G and H, let G1 = (V1, E1) and G2 = (V2, E2) be their maxi-
mum common subgraph and minimum common supergraph; cf. subgraph–
supergraph distances.

The Fernández–Valiente metric (2001) between graphs G and H is
defined by

(|V2|+ |E2|)− (|V1|+ |E1|).
• Editing graph metric

The editing graph metric (Axenovich, Kézdy and Martin 2008) between
graphs G1 = (V1, E1) and G2 = (V2, E2) with the same number of vertices
is defined by

min
G3
|E1ΔE3|,

where G3 = (V3, E3) is any graph isomorphic to G2. It is the minimum
number of edge deletions or additions (cf. the indel metric in Chap. 11)
needed to transform G1 into a graph isomorphic to G2. It corresponds to
the Hamming distance between the adjacency matrices of G1 and G2.
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Bunke (1997) defined the graph edit distance between vertex- and
edge-labeled graphs G1 and G2 as the minimal total cost of matching
G1 and G2, using deletions, additions and substitutions of vertices and
edges. Cf. also tree, top-down, unit cost and restricted edit distance
between rooted trees.

Myers, Wilson and Hancock (2000) defined the Bayesian graph edit
distance between two relational graphs (i.e., triples (V,E,A), where V,E
and A are the sets of vertices, edges and vertex-attributes) as their graph
edit distance with costs defined by probabilities of operations along an
editing path seen as a memoryless error process. Cf. transduction edit
distances (Chap. 11) and Bayesian distance (Chap. 14).

• Edge distance
The edge distance is a distance on the set G of all graphs, defined by

|E1|+ |E2| − 2|E12|+ ||V1| − |V2||

for any graphs G1 = (V1, E1) and G2 = (V2, E2), where G12 = (V12, E12)
is a common subgraph of G1 and G2 with maximal number of edges. This
distance has many applications in Organic and Medical Chemistry.

• Contraction distance
The contraction distance is a distance on the set G(n) of all graphs
with n vertices, defined by

n− k

for any G1, G2 ∈ G(n), where k is the maximum number of vertices of a
graph which is isomorphic simultaneously to a graph, obtained from each
of G1 and G2 by a finite number of edge contractions.

To perform the contraction of the edge uv ∈ E of a graph G = (V,E)
means to replace u and v by one vertex that is adjacent to all vertices of
V \{u, v} which were adjacent to u or to v.

• Edge move distance
The edge move distance is a metric on the set G(n,m) of all graphs
with n vertices and m edges, defined, for any G1, G2 ∈ G(m,n), as the
minimum number of edge moves necessary for transforming the graph G1

into the graph G2. It is equal to m− k, where k is the maximum size of a
common subgraph of G1 and G2.

An edge move is one of the edge transformations, defined as follows:
H can be obtained from G by an edge move if there exist (not necessarily
distinct) vertices u, v, w, and x in G such that uv ∈ E(G), wx /∈ E(G),
and H = G− uv + wx.

• Edge jump distance
The edge jump distance is an extended metric (which in general can
take the value ∞) on the set G(n,m) of all graphs with n vertices and m
edges, defined, for any G1, G2 ∈ G(m,n), as the minimum number of edge
jumps necessary for transforming G1 into G2.
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An edge jump is one of the edge transformations, defined as follows:
H can be obtained from G by an edge jump if there exist four distinct
vertices u, v, w, and x in G, such that uv ∈ E(G), wx /∈ E(G), and H =
G − av + wx.

• Edge flipping distance
Let P = {v1, ..., vn} be a collection of points on the plane. A triangulation
T of P is a partition of the convex hull of P into a set of triangles such
that each triangle has a disjoint interior and the vertices of each triangle
are points of P .

The edge flipping distance is a distance on the set of all triangulations
of P , defined, for any triangulations T and T1, as the minimum number
of edge flippings necessary for transforming T into T1.

An edge e of T is called flippable if it is the boundary of two triangles t
and t

′
of T , and C = t ∪ t

′
is a convex quadrilateral. The flipping e is one

of the edge transformations, which consists of removing e and replacing it
by the other diagonal of C. The edge flipping is an special case of edge
jump.

Edge flipping distance can be extended on pseudo-triangulations, i.e.,
partitions of the convex hull of P into a set of disjoint interior pseudo-
triangles (simply connected subsets of the plane that lie between any three
mutually tangent convex sets) whose vertices are given points.

• Edge rotation distance
The edge rotation distance is a metric on the set G(n,m) of all graphs
with n vertices and m edges, defined, for any G1, G2 ∈ G(m,n), as the
minimum number of edge rotations necessary for transforming G1 into G2.

An edge rotation is one of the edge transformations, defined as follows: H
can be obtained from G by an edge rotation if there exist distinct vertices
u, v, and w in G, such that uv ∈ E(G), uw /∈ E(G), and H = G−uv+uw.

• Tree edge rotation distance
The tree edge rotation distance is a metric on the set T(n) of all trees
with n vertices, defined, for all T1, T2 ∈ T(n), as the minimum number
of tree edge rotations necessary for transforming T1 into T2. For T(n) the
tree edge rotation distance and the edge rotation distance may differ.

A tree edge rotation is an edge rotation performed on a tree, and resulting
in a tree.

• Edge shift distance
The edge shift distance (or edge slide distance) is a metric on the set
Gc(n,m) of all connected graphs with n vertices and m edges, defined, for
any G1, G2 ∈ Gc(m,n), as the minimum number of edge shifts necessary
for transforming G1 into G2.

An edge shift is one of the edge transformations, defined as follows: H
can be obtained from G by an edge shift if there exist distinct vertices u, v,
and w in G such that uv, vw ∈ E(G), uw /∈ E(G), and H = G− uv + uw.
Edge shift is a special kind of edge rotation in the case when the vertices
v, w are adjacent in G.
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The edge shift distance can be defined between any graphs G and H
with components Gi(1 ≤ i ≤ k) and Hi(1 ≤ i ≤ k), respectively, such that
Gi and Hi have the same order and the same size.

• F -rotation distance
The F -rotation distance is a distance on the set GF (n,m) of all graphs
with n vertices and m edges, containing a subgraph isomorphic to a given
graph F of order at least 2, defined, for all G1, G2 ∈ GF (m,n), as the
minimum number of F -rotations necessary for transforming G1 into G2.

An F -rotation is one of the edge transformations, defined as follows: let
F

′
be a subgraph of a graph G, isomorphic to F , let u, v, w be three distinct

vertices of the graph G such that u �∈ V (F
′
), v, w ∈ V (F

′
), uv ∈ E(G),

and uw /∈ E(G); H can be obtained from G by the F -rotation of the edge
uv into the position uw if H = G− uv + uw.

• Binary relation distance
Let R be a non-reflexive binary relation between graphs, i.e., R ⊂ G×G,
and there exists G ∈ G such that (G,G) /∈ R.

The binary relation distance is an extended metric (which in general
can take the value ∞) on the set G of all graphs, defined, for any graphs
G1 and G2, as the minimum number of R-transformations necessary for
transforming G1 into G2. We say, that a graph H can be obtained from a
graph G by an R-transformation if (H,G) ∈ R.

An example is the distance between two triangular embeddings of a
complete graph (i.e., its cellular embeddings in a surface with only 3-gonal
faces) defined as the minimal number t such that, up to replacing t faces,
the embeddings are isomorphic.

• Crossing-free transformation metrics
Given a subset S of R

2, a non-crossing spanning tree of S is a tree whose
vertices are points of S, and edges are pairwise non-crossing straight line
segments.

The crossing-free edge move metric (see [AAH00]) on the set TS of
all non-crossing spanning trees of a set S, is defined, for any T1, T2 ∈ TS ,
as the minimum number of crossing-free edge moves needed to transform
T1 into T2. A crossing-free edge move is an edge transformation which
consists of adding some edge e in T ∈ TS and removing some edge f from
the induced cycle so that e and f do not cross.

The crossing-free edge slide metric is a metric on the set TS of all
non-crossing spanning trees of a set S, defined, for any T1, T2 ∈ TS , as the
minimum number of crossing-free edge slides necessary for transforming T1

into T2. A crossing-free edge slide is one of the edge transformations which
consists of taking some edge e in T ∈ TS and moving one of its endpoints
along some edge adjacent to e in T , without introducing edge crossings and
without sweeping across points in S (that gives a new edge f instead of e).
The edge slide is a special kind of crossing-free edge move: the new tree is
obtained by closing with f a cycle C of length 3 in T , and removing e from
C, in such a way that f avoids the interior of the triangle C.
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• Traveling salesman tours distances
The Traveling Salesman Problem is the problem of finding the shortest
tour that visits a set of cities. We shall consider only Traveling Salesman
Problems with undirected links. For an N -city traveling salesman problem,
the space TN of tours is the set of (N−1)!

2 cyclic permutations of the cities
1, 2, . . . , N .

The metric D on TN is defined in terms of the difference in form: if tours
T, T

′ ∈ TN differ in m links, then D(T, T
′
) = m.

A k-OPT transformation of a tour T is obtained by deleting k links from
T , and reconnecting. A tour T

′
, obtained from T by a k-OPT transforma-

tion, is called a k-OPT of T . The distance d on the set TN is defined
in terms of the 2-OPT transformations: d(T, T

′
) is the minimal i, for

which there exists a sequence of i 2-OPT transformations which trans-
forms T to T

′
.

In fact, d(T, T
′
) ≤ D(T, T

′
) for any T, T

′ ∈ TN (see, for example,
[MaMo95]).

Cf. arc routing problems.
• Orientation distance

The orientation distance (Chartrand, Erwin, Raines and Zhang 2001)
between two orientations D and D′ of a finite graph is the minimum
number of arcs of D whose directions must be reversed to produce an
orientation isomorphic to D′.

• Subgraphs distances
The standard distance on the set of all subgraphs of a connected graph
G = (V,E) is defined by

min{dpath(u, v) : u ∈ V (F ), v ∈ V (H)}

for any subgraphs F,H of G. For any subgraphs F , H of a strongly con-
nected digraph D = (V,E), the standard quasi-distance is defined by

min{ddpath(u, v) : u ∈ V (F ), v ∈ V (H)}.

Using standard transformations (rotation, shift, etc.) on the edge-set of
a graph, one gets corresponding distances between its edge-induced sub-
graphs with given size, which are subcases of similar distances on the set
of all graphs with a given size and order.

The edge rotation distance on the set Sk(G) of all edge-induced
subgraphs with k edges in a connected graph G is defined as the minimum
number of edge rotations required to transform F ∈ Sk(G) into H ∈ Sk(G).
We say that H can be obtained from F by an edge rotation if there exist
distinct vertices u, v, and w in G such that uv ∈ E(F ), uw ∈ E(G)\E(F ),
and H = F − uv + uw.

The edge shift distance on the set Sk(G) of all edge-induced sub-
graphs with k edges in a connected graph G is defined as the minimum
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number of edge shifts required to transform F ∈ Sk(G) into H ∈ Sk(G).
We say that H can be obtained from F by an edge shift if there exist dis-
tinct vertices u, v and w in G such that uv, vw ∈ E(F ), uw ∈ E(G)\E(F ),
and H = F − uv + uw.

The edge move distance on the set Sk(G) of all edge-induced sub-
graphs with k edges of a graph G (not necessary connected) is defined as
the minimum number of edge moves required to transform F ∈ Sk(G) into
H ∈ Sk(G). We say that H can be obtained from F by an edge move if
there exist (not necessarily distinct) vertices u, v, w, and x in G such that
uv ∈ E(F ), wx ∈ E(G)\E(F ), and H = F − uv + wx. The edge move
distance is a metric on Sk(G). If F and H have s edges in common, then
it is equal to k − s.

The edge jump distance (which in general can take the value ∞)
on the set Sk(G) of all edge-induced subgraphs with k edges of a graph
G (not necessary connected) is defined as the minimum number of edge
jumps required to transform F ∈ Sk(G) into H ∈ Sk(G). We say that
H can be obtained from F by an edge jump if there exist four distinct
vertices u, v, w, and x in G such that uv ∈ E(F ), wx ∈ E(G)\E(F ), and
H = F − uv + wx.

15.4 Distances on trees

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the
root. The depth of a vertex v, depth(v), is the number of edges on the path
from v to the root. A vertex v is called a parent of a vertex u, v = par(u), if
they are adjacent, and depth(u) = depth(v)+1; in this case u is called a child
of v. A leaf is a vertex without child. Two vertices are siblings if they have
the same parent. The in-degree of a vertex is the number of its children. T (v)
is the subtree of T , rooted at a node v ∈ V (T ). If w ∈ V (T (v)), then v is an
ancestor of w, and w is a descendant of v; nca(u, v) is the nearest common
ancestor of the vertices u and v. T is called a labeled tree if a symbol from a
fixed finite alphabet A is assigned to each node. T is called an ordered tree if
a left-to-right order among siblings in T is given.

On the set Trlo of all rooted labeled ordered trees there are three editing
operations:

• Relabel – change the label of a vertex v
• Deletion – delete a non-rooted vertex v with parent v

′
, making the children

of v become the children of v
′
; the children are inserted in the place of v

as a subsequence in the left-to-right order of the children of v
′

• Insertion – the complement of deletion; insert a vertex v as a child of a v
′

making v the parent of a consecutive subsequence of the children of v
′
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For unordered trees the editing operations can be defined similarly, but insert
and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation,
and the cost of a sequence of editing operations is the sum of the costs of
these operations.

The ordered edit distance mapping is a representation of the editing oper-
ations. Formally, define the triple (M,T1, T2) to be an ordered edit distance
mapping from T1 to T2, T1, T2 ∈ Trlo, if M ⊂ V (T1) × V (T2) and, for any
(v1, w1), (v2, w2) ∈ M , the following conditions hold: v1 = v2 if and only if
w1 = w2 (one-to-one condition), v1 is an ancestor of v2 if and only if w1 is
an ancestor of w2 (ancestor condition), v1 is to the left of v2 if and only if w1

is to the left of w2 (sibling condition).
We say that a vertex v in T1 and T2 is touched by a line in M if v occurs

in some pair in M . Let N1 and N2 be the set of vertices in T1 and T2,
respectively, not touched by any line in M . The cost of M is given by γ(M) =∑

(v,w)∈M γ(v → w) +
∑

v∈N1
γ(v → λ) +

∑
w∈N2

γ(λ → w), where γ(a → b)
= γ(a, b) is the cost of an editing operation a → b which is a relabel if a, b ∈ A,
a deletion if b = λ, and an insertion if a = λ. Here λ �∈ A is a special blank
symbol, and γ is a metric on the set A ∪ λ (excepting the value γ(λ, λ)).

• Tree edit distance
The tree edit distance (see [Tai79]) on the set Trlo of all rooted labeled
ordered trees is defined, for any T1, T2 ∈ Trlo, as the minimum cost of a
sequence of editing operations (relabels, insertions, and deletions) turning
T1 into T2.

In terms of ordered edit distance mappings, it is equal to min(M,T1,T2)

γ(M), where the minimum is taken over all ordered edit distance mappings
(M,T1, T2).

The edit tree distance can be defined in similar way on the set of all
rooted labeled unordered trees.

• Selkow distance
The Selkow distance (or top-down edit distance, degree-1 edit dis-
tance) is a distance on the set Trlo of all rooted labeled ordered trees,
defined, for any T1, T2 ∈ Trlo, as the minimum cost of a sequence of edit-
ing operations (relabels, insertions, and deletions) turning T1 into T2 if
insertions and deletions are restricted to leaves of the trees (see [Selk77]).
The root of T1 must be mapped to the root of T2, and if a node v is to be
deleted (inserted), then any subtree rooted at v is to be deleted (inserted).

In terms of ordered edit distance mappings, it is equal to min(M,T1,T2)

γ(M), where the minimum is taken over all ordered edit distance mappings
(M,T1, T2) satisfying the following condition: if (v, w) ∈M , where neither
v nor w is the root, then (par(v), par(w)) ∈ M .

• Restricted edit distance
The restricted edit distance is a distance on the set Trlo of all rooted
labeled ordered trees, defined, for any T1, T2 ∈ Trlo, as the minimum cost
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of a sequence of editing operations (relabels, insertions, and deletions)
turning T1 into T2 with the restriction that disjoint subtrees should be
mapped to disjoint subtrees.

In terms of ordered edit distance mappings, it is equal to min(M,T1,T2)

γ(M), where the minimum is taken over all ordered edit distance mappings
(M,T1, T2) satisfying the following condition: for all (v1, w1), (v2, w2),
(v3, w3) ∈ M , nca(v1, v2) is a proper ancestor of v3 if and only if
nca(w1, w2) is a proper ancestor of w3.

This distance is equivalent to the structure respecting edit distance, de-
fined by min(M,T1,T2) γ(M), where the minimum is taken over all ordered
edit distance mappings (M,T1, T2), satisfying the following condition:

for all (v1, w1), (v2, w2), (v3, w3)∈M , such that none of v1, v2, and
v3 is an ancestor of the others, nca(v1, v2) = nca(v1, v3) if and only if
nca(w1, w2) = nca(w1, w3).

Cf. constrained edit distance in Chap. 11.
• Unit cost edit distance

The unit cost edit distance is a distance on the set Trlo of all rooted
labeled ordered trees, defined, for any T1, T2 ∈ Trlo, as the minimum
number of editing operations (relabels, insertions, and deletions) turning
T1 into T2.

• Alignment distance
The alignment distance (see [JWZ94]) is a distance on the set Trlo of
all rooted labeled ordered trees, defined, for any T1, T2 ∈ Trlo, as the
minimum cost of an alignment of T1 and T2. It corresponds to a restricted
edit distance, where all insertions must be performed before any deletions.

Thus, one inserts spaces, i.e., vertices labeled with a blank symbol λ, into
T1 and T2 so that they become isomorphic when labels are ignored; the
resulting trees are overlayed on top of each other giving the alignment TA
which is a tree, where each vertex is labeled by a pair of labels. The cost
of TA is the sum of the costs of all pairs of opposite labels in TA.

• Splitting-merging distance
The splitting-merging distance (see [ChLu85]) is a distance on the set
Trlo of all rooted labeled ordered trees, defined, for any T1, T2 ∈ Trlo, as the
minimum number of vertex splittings and mergings needed to transform
T1 into T2.

• Degree-2 distance
The degree-2 distance is a metric on the set Tl of all labeled trees
(labeled free trees), defined, for any T1, T2 ∈ Tl, as the minimum number
of editing operations (relabels, insertions, and deletions) turning T1 into
T2 if any vertex to be inserted (deleted) has no more than two neighbors.
This metric is a natural extension of the tree edit distance and the
Selkow distance.

A phylogenetic X-tree is an unordered, unrooted tree with the labeled
leaf set X and no vertices of degree two. If every interior vertex has degree
three, the tree is called binary (or fully resolved).
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• Robinson–Foulds metric
A cut A|B of X is a partition of X into two subsets A and B (see cut
semi-metric). Removing an edge e from a phylogenetic X-tree induces a
cut of the leaf set X which is called the cut associated with e.

The Robinson–Foulds metric (or Bourque metric, bipartition dis-
tance) is a metric on the set T(X) of all phylogenetic X-trees, defined, for
all T1, T2 ∈ T(X), by

1
2
|Σ(T1)�Σ(T2)| =

1
2
|Σ(T1)−Σ(T2)|+

1
2
|Σ(T2)−Σ(T1)|,

where Σ(T ) is the collection of all cuts of X associated with edges of T .
The Robinson–Foulds weighted metric is a metric on the set T(X)

of all phylogenetic X-trees, defined by
∑

A|B∈Σ(T1)∪Σ(T2)

|w1(A|B)− w2(A|B)|

for all T1, T2 ∈ T(X), where wi = (w(e))e∈E(Ti) is the collection of positive
weights, associated with the edges of the X-tree Ti, Σ(Ti) is the collection
of all cuts of X, associated with edges of Ti, and wi(A|B) is the weight of
the edge, corresponding to the cut A|B of X, i = 1, 2.

Cf. more general cut norm metric in Chap. 12 and rectangle dis-
tance on weighted graphs.

• μ-metric
Given a phylogenetic X-tree T with n leaves and a vertex v in it, let
μ(v) = (μ1(v), . . . , μn(v)), where μi(v) is the number of different paths
from the vertex v to the i-th leaf. Let μ(T ) denote the multiset on the
vertex-set of T with μ(v) being the multiplicity of the vertex v.

The μ-metric (Cardona, Roselló and Valiente 2008) is a metric on the
set T(X) of all phylogenetic X-trees, defined, for all T1, T2 ∈ T(X), by

1
2
|μ(T1)Δμ(T2)|,

where Δ denotes the symmetric difference of multisets. Cf. metrics
between multisets in Chap. 1 and Dodge–Shiode WebX quasi-
distance in Chap. 22.

• Nearest neighbor interchange metric
The nearest neighbor interchange metric (or crossover metric) is a
metric on the set T(X) of all phylogenetic X-trees, defined, for all T1, T2 ∈
T(X), as the minimum number of nearest neighbor interchanges required
to transform T1 into T2.

A nearest neighbor interchange consists of swapping two subtrees in a
tree that are adjacent to the same internal edge; the remainder of the tree
is unchanged.
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• Subtree prune and regraft distance
The subtree prune and regraft distance is a metric on the set T(X)
of all phylogenetic X-trees, defined, for all T1, T2 ∈ T(X), as the minimum
number of subtree prune and regraft transformations required to transform
T1 into T2.

A subtree prune and regraft transformation proceeds in three steps:
one selects and removes an edge uv of the tree, thereby dividing the tree
into two subtrees Tu (containing u) and Tv (containing v); then one selects
and subdivides an edge of Tv, giving a new vertex w; finally, one connects
u and w by an edge, and removes all vertices of degree two.

• Tree bisection-reconnection metric
The tree bisection-reconnection metric (or TBR-metric) on the set
T(X) of all phylogenetic X-trees is defined, for all T1, T2 ∈ T(X), as
the minimum number of tree bisection and reconnection transformations
required to transform T1 into T2.

A tree bisection and reconnection transformation proceeds in three steps:
one selects and removes an edge uv of the tree, thereby dividing the tree
into two subtrees Tu (containing u) and Tv (containing v); then one selects
and subdivides an edge of Tv, giving a new vertex w, and an edge of Tu,
giving a new vertex z; finally one connects w and z by an edge, and removes
all vertices of degree two.

• Quartet distance
The quartet distance (see [EMM85]) is a distance of the set Tb(X) of all
binary phylogenetic X-trees, defined, for all T1, T2 ∈ Tb(X), as the number
of mismatched quartets (from the total number (n

4 ) possible quartets) for
T1 and T2.

This distance is based on the fact that, given four leaves {1, 2, 3, 4} of
a tree, they can only be combined in a binary subtree in three different
ways: (12|34), (13|24), or (14|23): a notation (12|34) refers to the binary
tree with the leaf set {1, 2, 3, 4} in which removing the inner edge yields
the trees with the leaf sets {1, 2} and {3, 4}.

• Triples distance
The triples distance (see [CPQ96]) is a distance of the set Tb(X) of
all binary phylogenetic X-trees, defined, for all T1, T2 ∈ Tb(X), as the
number of triples (from the total number (n

3 ) possible triples) that differ
(for example, by which leaf is the outlier) for T1 and T2.

• Perfect matching distance
The perfect matching distance is a distance on the set Tbr(X) of all
rooted binary phylogenetic X-trees with the set X of n labeled leaves,
defined, for any T1, T2 ∈ Tbr(X), as the minimum number of interchanges
necessary to bring the perfect matching of T1 to the perfect matching of T2.

Given a set A = {1, . . . , 2k} of 2k points, a perfect matching of A is
a partition of A into k pairs. A rooted binary phylogenetic tree with n
labeled leaves has a root and n−2 internal vertices distinct from the root.
It can be identified with a perfect matching on 2n− 2, different from the
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root, vertices by following construction: label the internal vertices with
numbers n + 1, . . . , 2n − 2 by putting the smallest available label as the
parent of the pair of labeled children of which one has the smallest label
among pairs of labeled children; now a matching is formed by peeling off
the children, or sibling pairs, two by two.

• Tree rotation distance
The tree rotation distance is a distance on the set Tn of all rooted
ordered binary trees with n interior vertices, defined, for all T1, T2 ∈ Tn,
as the minimum number of rotations, required to transform T1 into T2.

Given interior edges uv, vv′, vv′′ and uw of a binary tree, the rotation
is replacing them by edges uv, uv′′, vv′ and vw.

There is a bijection between edge flipping operations in triangulations
of convex polygons with n + 2 vertices and rotations in binary trees with
n interior vertices.

• Attributed tree metrics
An attributed tree is a triple (V,E, α), where T = (V,E) is the underlying
tree, and α is a function which assigns an attribute vector α(v) to every
vertex v ∈ V . Given two attributed trees (V1, E1, α) and (V2, E2, β), con-
sider the set of all subtree isomorphisms between them, i.e., the set of all
isomorphisms f : H1 → H2, H1 ⊂ V1, H2 ⊂ V2, between their induced
subtrees.

Given a similarity s on the set of attributes, the similarity between
isomorphic induced subtrees is defined as Ws(f)=

∑
v∈H1

s(α(v), β(f(v))).
Let φ be the isomorphism with maximal similarity Ws(φ) = W (φ).

The following semi-metrics on the set Tatt of all attributed trees are
used:

1. max{|V1|, |V2|} −W (φ)
2. |V1|+ |V2| − 2W (φ)
3. 1− W (φ)

max{|V1|,|V2|}

4. 1− W (φ)
|V1|+|V2|−W (φ)

They become metrics on the set of equivalences classes of attributed trees:
two attributed trees (V1, E1, α) and (V2, E2, β) are called equivalent if they
are attribute-isomorphic, i.e., if there exists an isomorphism g : V1 → V2

between the trees T1 and T2 such that, for any v ∈ V1, we have α(v) =
β(g(v)). Then |V1| = |V2| = W (g).

• Greatest agreement subtree distance
The greatest agreement subtree distance is a distance of the set T
of all trees, defined, for all T1, T2 ∈ T, as the minimum number of leaves
removed to obtain a (greatest) agreement subtree.

An agreement subtree (or common pruned tree) of two trees is an iden-
tical subtree that can be obtained from both trees by pruning leaves with
the same label.



Chapter 16
Distances in Coding Theory

Coding Theory deals with the design and properties of error-correcting codes
for the reliable transmission of information across noisy channels in trans-
mission lines and storage devices. The aim of Coding Theory is to find codes
which transmit and decode fast, contain many valid code words, and can
correct, or at least detect, many errors. These aims are mutually exclusive,
however; so, each application has its own good code.

In communications, a code is a rule for converting a piece of information
(for example, a letter, word, or phrase) into another form or representation,
not necessarily of the same sort. Encoding is the process by which a source
(object) performs this conversion of information into data, which is then sent
to a receiver (observer), such as a data processing system. Decoding is the
reverse process of converting data, which has been sent by a source, into
information understandable by a receiver.

An error-correcting code is a code in which every data signal conforms to
specific rules of construction so that departures from this construction in the
received signal can generally be automatically detected and corrected. It is
used in computer data storage, for example in dynamic RAM, and in data
transmission. Error detection is much simpler than error correction, and one
or more “check” digits are commonly embedded in credit card numbers in
order to detect mistakes. The two main classes of error-correcting codes are
block codes, and convolutional codes.

A block code (or uniform code) of length n over an alphabet A, usually,
over a finite field Fq = {0, . . . , q− 1}, is a subset C ⊂ An; every vector x ∈ C
is called a codeword, and M = |C| is called size of the code. Given a metric d
on F

n
q (for example, the Hamming metric, Lee metric, Levenstein met-

ric), the value d∗ = d∗(C) = minx,y∈C,x 	=y d(x, y) is called the minimum
distance of the code C. The weight w(x) of a codeword x ∈ C is defined as
w(x) = d(x, 0). An (n,M, d∗)-code is a q-ary block code of length n, size M ,
and minimum distance d∗. A binary code is a code over F2.

When codewords are chosen such that the distance between them is maxi-
mized, the code is called error-correcting, since slightly garbled vectors can be
recovered by choosing the nearest codeword. A code C is a t-error-correcting
code (and a 2t-error-detecting code) if d∗(C) ≥ 2t + 1. In this case each
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neighborhood Ut(x) = {y ∈ C : d(x, y) ≤ t} of x ∈ C is disjoint with Ut(y) for
any y ∈ C, y �= x. A perfect code is a q-ary (n,M, 2t + 1)-code for which the
M spheres Ut(x) of radius t centered on the codewords fill the whole space
F

n
q completely, without overlapping.
A block code C ⊂ F

n
q is called linear if C is a vector subspace of F

n
q .

An [n, k]-code is a k-dimensional linear code C ⊂ F
n
q (with the minimum

distance d∗); it has size qk, i.e., it is an (n, qk, d∗)-code. The Hamming code
is the linear perfect one-error correcting ( qr−1

q−1 , qr−1
q−1 − r, 3)-code.

A k× n matrix G with rows that are basis vectors for a linear [n, k]-code C
is called a generator matrix of C. In standard form it can be written as (1k|A),
where 1k is the k × k identity matrix. Each message (or information symbol,
source symbol) u = (u1, . . . , uk) ∈ F

k
q can be encoded by multiplying it (on the

right) by the generator matrix: uG ∈ C. The matrix H = (−AT |1n−k) is called
the parity-check matrix of C. The number r = n−k corresponds to the number
of parity check digits in the code, and is called the redundancy of the code C.
The information rate (or code rate) of a code C is the number R = log2 M

n . For
a q-ary [n, k]-code, R = k

n log2 q; for a binary [n, k]-code, R = k
n .

A convolutional code is a type of error-correction code in which each k-bit
information symbol to be encoded is transformed into an n-bit codeword,
where R = k

n is the code rate (n ≥ k), and the transformation is a function
of the last m information symbols, where m is the constraint length of the
code. Convolutional codes are often used to improve the performance of radio
and satellite links. A variable length code is a code with codewords of different
lengths.

In contrast to error-correcting codes which are designed only to increase
the reliability of data communications, cryptographic codes are designed to
increase their security. In Cryptography, the sender uses a key to encrypt
a message before it is sent through an insecure channel, and an authorized
receiver at the other end then uses a key to decrypt the received data to a
message. Often, data compression algorithms and error-correcting codes are
used in tandem with cryptographic codes to yield communications that are
efficient, robust to data transmission errors, and secure to eavesdropping and
tampering. Encrypted messages which are, moreover, hidden in text, image,
etc., are called steganographic messages.

16.1 Minimum distance and relatives

• Minimum distance
Given a code C ⊂ V , where V is an n-dimensional vector space equipped
with a metric d, the minimum distance d∗ = d∗(C) of the code C is
defined by

min
x,y∈C,x 	=y

d(x, y).
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The metric d depends on the nature of the errors for the correction of which
the code is intended. For a prescribed correcting capacity it is necessary
to use codes with a maximum number of codewords. The most widely
investigated such codes are the q-ary block codes in the Hamming metric
dH(x, y) = |{i : xi �= yi, i = 1, . . . , n}|.

For a linear code C the minimum distance d∗(C) = w(C), where
w(C) = min{w(x) : x∈C} is a minimum weight of the code C. As there
are rank(H) ≤ n − k independent columns in the parity check matrix H
of an [n, k]-code C, then d∗(C) ≤ n− k + 1 (Singleton upper bound).

• Dual distance
The dual distance d⊥ of a linear [n, k]-code C ⊂ F

n
q is the minimum

distance of the dual code C⊥ of C.
The dual code C⊥ of C is defined as the set of all vectors of F

n
q that

are orthogonal to every codeword of C: C⊥ = {v ∈ F
n
q : 〈v, u〉 = 0 for any

u ∈ C}. The code C⊥ is a linear [n, n−k]-code. The (n−k)×n generator
matrix of C⊥ is the parity-check matrix of C.

• Bar product distance
Given linear codes C1 and C2 of length n with C2 ⊂ C1, their bar product
C1|C2 is a linear code of length 2n, defined by C1|C2 = {x|x + y : x ∈
C1, y ∈ C2}.

The bar product distance is the minimum distance d∗(C1|C2) of the
bar product C1|C2.

• Design distance
A linear code is called a cyclic code if all cyclic shifts of a codeword
also belong to C, i.e., if for any (a0, . . . , an−1) ∈ C the vector (an−1,
a0, . . . , an−2) ∈ C. It is convenient to identify a codeword (a0, . . . , an−1)
with the polynomial c(x) = a0 + a1x + · · · + an−1x

n−1; then every cyclic
[n, k]-code can be represented as the principal ideal 〈g(x)〉 = {r(x)g(x) :
r(x) ∈ Rn} of the ring Rn = Fq(x)/(xn− 1), generated by the polynomial
g(x) = g0+g1x+· · ·+xn−k, called the generator polynomial of the code C.

Given an element α of order n in a finite field Fqs , a Bose–Chaudhuri–
Hocquenghem [n, k]-code of design distance d is a cyclic code of length
n, generated by a polynomial g(x) in Fq(x) of degree n−k, that has roots
at α, α2, . . . , αd−1. The minimum distance d∗ of such a code of odd design
distance d is at least d.

A Reed–Solomon code is a Bose–Chaudhuri–Hocquenghem code with
s = 1. The generator polynomial of a Reed–Solomon code of design dis-
tance d is g(x) = (x − α) . . . (x − αd−1) with degree n − k = d − 1; that
is, for a Reed–Solomon code the design distance d = n − k + 1, and the
minimum distance d∗ ≥ d. Since, for a linear [n, k]-code the minimum dis-
tance d∗ ≤ n − k + 1 (Singleton upper bound), a Reed–Solomon code has
the minimum distance d∗ = n − k + 1 and achieves the Singleton upper
bound. Compact disc players use a double-error correcting (255, 251, 5)
Reed–Solomon code over F256.
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• Goppa designed minimum distance
The Goppa designed minimum distance [Gopp71] is a lower bound
d�(m) for the minimum distance of one-point geometric Goppa codes (or
algebraic geometry codes) G(m). For G(m), associated to the divisors D
and mP , m ∈ N, of a smooth projective absolutely irreducible algebraic
curve of genus g > 0 over a finite field Fq, one has d�(m) = m + 2− 2g if
2g − 2 < m < n.

In fact, for a Goppa code C(m) the structure of the gap sequence at P
may allow one to give a better lower bound of the minimum distance (cf.
Feng–Rao distance).

• Feng–Rao distance
The Feng–Rao distance δFR(m) is a lower bound for the minimum
distance of one-point geometric Goppa codes G(m) which is better than
the Goppa designed minimum distance. The method of Feng and
Rao for encoding the code C(m) decodes errors up to half the Feng–Rao
distance δFR(m), and gives an improvement of the number of errors that
one can correct for one-point geometric Goppa codes.

Formally, the Feng–Rao distance is defined as follows. Let S be a sub-
semi-group S of N∪{0} such that the genus g = |N∪{0}\S| of S is finite,
and 0 ∈ S. The Feng–Rao distance on S is a function δFR : S → N∪{0}
such that δFR(m) = min{ν(r) : r ≥ m, r ∈ S}, where ν(r) = |{(a, b) ∈
S2 : a + b = r}|. The generalized r-th Feng–Rao distance on S is
defined by δr

FR(m) = min{ν[m1, . . . ,mr] : m ≤ m1 < · · · < mr,mi ∈ S},
where ν[m1, . . . ,mr] = |{a ∈ S : mi − a ∈ S for some i = 1, . . . , r}|. Then
δFR(m) = δ1

FR(m). (See, for example, [FaMu03].)
• Free distance

The free distance is the minimum non-zero Hamming weight of any code-
word in a convolutional code or a variable length code.

Formally, the k-th minimum distance d∗k of a convolutional code or
a variable length code is the smallest Hamming distance between any two
initial codeword segments which are k frame long and disagree in the
initial frame. The sequence d∗1, d

∗
2, d

∗
3, . . . (d∗1 ≤ d∗2 ≤ d∗3 ≤ . . . ) is called

the distance profile of the code. The free distance of a convolutional code
or a variable length code is maxl d

∗
l = liml→∞ d∗l = d∗∞.

• Effective free distance
A turbo code is a long block code in which there are L input bits, and
each of these bits is encoded q times. In the j-th encoding, the L bits are
sent through a permutation box Pj , and then encoded via an [Nj , L] block
encoder (code fragment encoder) which can be thought of as an L × Nj

matrix. The overall turbo code is then a linear [N1 + · · ·+Nq, L]-code (see,
for example, [BGT93]).

The weight-i input minimum distance di(C) of a turbo-code C is the
minimum weight among codewords corresponding to input words of weight
i. The effective free distance of C is its weight-2 input minimum dis-
tance d2(C), i.e., the minimum weight among codewords corresponding to
input words of weight 2.
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• Distance distribution
Given a code C over a finite metric space (X, d) with the diameter
diam(X, d) = D, the distance distribution of C is a (D + 1)-vector
(A0, . . . , AD), where Ai = 1

|C| |{(c, c
′
) ∈ C2 : d(c, c

′
) = i}|. That is, one

considers Ai(c) as the number of code words at distance i from the code-
word c, and takes Ai as the average of Ai(c) over all c ∈ C. A0 = 1 and,
if d∗ = d∗(C) is the minimum distance of C, then A1 = · · · = Ad∗−1 = 0.

The distance distribution of a code with given parameters is important,
in particular, for bounding the probability of decoding error under dif-
ferent decoding procedures from maximum likelihood decoding to error
detection. It can also be helpful in revealing structural properties of codes
and establishing nonexistence of some codes.

• Unicity distance
The unicity distance of a cryptosystem (Shannon 1949) is the minimal
length of a cyphertext that is required in order to expect that there exists
only one meaningful decryption for it. For classic cryptosystems with fixed
key space, the unicity distance is approximated by the formula H(K)/D,
where H(K) is the key space entropy (roughly log2 N , where N is the
number of keys), and D measures the redundancy of the plaintext source
language in bits per letter.

A cryptosystem offers perfect secrecy if its unicity distance is infinite.
For example, the one-time pads offer perfect secrecy; they were used for
the “red telephone” between the Kremlin and the White House.

More generally, Pe-security distance of a cryptosystem (Tilburg and
Boekee 1987) is the minimal expected length of cyphertext that is required
in order to break the cryptogram with an average error probability of at
most Pe.

16.2 Main coding distances

• Arithmetic codes distance
An arithmetic code (or code with correction of arithmetic errors) is a fi-
nite subset of the set Z of integers (usually, non-negative integers). It is
intended for the control of the functioning of an adder (a module perform-
ing addition). When adding numbers represented in the binary number
system, a single slip in the functioning of the adder leads to a change in
the result by some power of 2, thus, to a single arithmetic error. Formally,
a single arithmetic error on Z is defined as a transformation of a number
n ∈ Z to a number n

′
= n± 2i, i = 1, 2, . . . .

The arithmetic codes distance is a metric on Z, defined, for any
n1, n2 ∈ Z, as the minimum number of arithmetic errors taking n1 to n2. It
can be written as w2(n1−n2), where w2(n) is the arithmetic 2-weight of n,
i.e., the smallest possible number of non-zero coefficients in representations
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n =
∑k

i=0 ei2i, where ei = 0,±1, and k is some non-negative integer.
In fact, for each n there is a unique such representation with ek �= 0,
eiei+1 = 0 for all i = 0, . . . , k − 1, which has the smallest number of
non-zero coefficients (cf. arithmetic r-norm metric in Chap. 12).

• Sharma–Kaushik distance
Let q ≥ 2, m ≥ 2. A partition {B0, B1, . . . Bq−1} of Zm is called a
Sharma–Kaushik partition if the following conditions hold:

1. B0 = {0};
2. For any i ∈ Zm, i ∈ Bs if and only if m− i ∈ Bs, s = 1, 2, . . . , q − 1;
3. If i ∈ Bs, j ∈ Bt, and s > t, then min{i,m− i} > min{j,m− j};
4. If s ≥ t, s, t = 0, 1, . . . , q − 1, then |Bs| ≥ |Bt| except for s = q − 1 in

which case |Bq−1| ≥ 1
2 |Bq−2|.

Given a Sharma–Kaushik partition of Zm, the Sharma–Kaushik weight
wSK(x) of any element x ∈ Zm is defined by wSK(x) = i if x ∈ Bi,
i ∈ {0, 1, . . . , q − 1}.

The Sharma–Kaushik distance (see, for example, [ShKa97]) is a met-
ric on Zm, defined by

wSK(x− y).

The Sharma–Kaushik distance on Zn
m is defined by wn

SK(x− y) where,
for x = (x1, . . . xn) ∈ Z

n
m, one has wn

SK(x) =
∑n

i=1 wSK(xi).
The Hamming metric and the Lee metric arise from two specific

partitions of the above type: PH = {B0, B1}, where B1 = {1, 2, . . . , q−1},
and PL = {B0, B1, . . . , B�q/2�}, where Bi = {i,m− i}, i = 1, . . . , # q

2$.
• Absolute summation distance

The absolute summation distance (or Lee distance) is the Lee metric
on the set Z

n
m = {0, 1, . . . ,m− 1}n, defined by

wLee(x− y),

where wLee(x) =
∑n

i=1 min{xi,m − xi} is the Lee weight of x =
(x1, . . . , xn) ∈ Z

n
m.

If Z
n
m is equipped with the absolute summation distance, then a subset

C of Z
n
m is called a Lee distance code. Lee distance codes are used for

phase-modulated and multilevel quantized-pulse-modulated channels, and
have several applications to the toroidal interconnection networks. The
most important Lee distance codes are negacyclic codes.

• Mannheim distance
Let Z[i] = {a+bi : a, b ∈ Z} be the set of Gaussian integers. Let π = a+bi
(a > b > 0) be a Gaussian prime, i.e., either

(1) (a+bi)(a−bi) = a2+b2 = p, where p ≡ 1 (mod 4) is a prime number, or
(2) π = p + 0 · i = p, where p ≡ 3 (mod 4) is a prime number.
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The Mannheim distance is a distance on Z[i], defined, for any two
Gaussian integers x and y, as the sum of the absolute values of the real
and imaginary parts of the difference x−y (mod π). The modulo reduction,
before summing the absolute values of the real and imaginary parts, is the
difference between the Manhattan metric and the Mannheim distance.

The elements of the finite field Fp = {0, 1, . . . , p− 1} for p ≡ 1 (mod 4),
p = a2 + b2, and the elements of the finite field Fp2 for p ≡ 3 (mod 4),
p = a, can be mapped on a subset of the Gaussian integers using the
complex modulo function μ(k) = k − [k(a−bi)

p ](a + bi), k = 0, . . . , p − 1,
where [.] denotes rounding to the closest Gaussian integer. The set of the
selected Gaussian integers a+ bi with the minimal Galois norms

√
a2 + b2

is called a constellation. This representation gives a new way to construct
codes for two-dimensional signals. Mannheim distance was introduced to
make QAM -like signals more susceptible to algebraic decoding methods.
For codes over hexagonal signal constellations a similar metric can be
introduced over the set of the Eisenstein–Jacobi integers. It is useful for
block codes over tori. (See, for example, [Hube93], [Hube94].)

• Generalized Lee metric
Let Fpm denote the finite field with pm elements, where p is prime number
and m ≥ 1 is an integer. Let ei = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ i ≤ k, be
the standard basis of Z

k. Choose elements ai ∈ Fpm , 1 ≤ i ≤ k, and
the mapping φ : Z

k → Fpm , sending any x =
∑k

i=1 xiei, xi ∈ Z
k, to

φ(x) =
∑k

i=1 aixi(mod p), so that φ is surjective. So, for each a ∈ Fpm ,
there exists x ∈ Z

k such that a = φ(x). For each a ∈ Fpm , its k-dimensional
Lee weight is wkL(a) = min{

∑k
i=1 |xi| : x = (xi) ∈ Z, a = φ(x)}.

The generalized Lee metric between vectors (aj) and (bj) of F
n
pm is

defined (Nishimura and Hiramatsu 2008) by

n∑

j=1

wkL(aj − bj).

It is the Lee metric (or absolute summation distance) if φ(e1) = 1
while φ(ei) = 0 for 2 ≤ i ≤ k. It is the Mannheim distance if k = 2,
p ≡ 1 (mod 4), φ(e1) = 1 while φ(e2) = a is a solution in Fp of the
quadratic congruence x2 ≡ −1 (mod p).

• Poset distance
Let (Vn,
) be a poset on Vn = {1, . . . , n}. A subset I of Vn is called ideal
if x ∈ I and y 
 x imply that y ∈ I. If J ⊂ Vn, then 〈J〉 denotes the
smallest ideal of Vn which contains J . Consider the vector space F

n
q over a

finite field Fq. The P -weight of an element x = (x1, . . . , xn) ∈ F
n
q is defined

as the cardinality of the smallest ideal of Vn containing the support of x:
wP (x) = |〈supp(x)〉|, where supp(x) = {i : xi �= 0}.

The poset distance (see [BGL95]) is a metric on F
n
q , defined by

wP (x− y).
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If F
n
q is equipped with a poset distance, then a subset C of F

n
q is called a

poset code. If Vn forms the chain 1 ≤ 2 ≤ · · · ≤ n, then the linear code C
of dimension k consisting of all vectors (0, . . . , 0, an−k+1, . . . , an) ∈ F

n
q is a

perfect poset code with the minimum (poset) distance d∗P (C) = n− k + 1.
If Vn forms an antichain, then the poset distance coincides with

the Hamming metric. If Vn consists of finite disjoint union of
chains of equal lengths, then the poset distance coincides with the
Rosenbloom–Tsfasman metric.

• Rank distance
Let Fq be a finite field, K = Fqm an extension of degree m of Fq, and
E = K

n a vector space of dimension n over K. For any a = (a1, . . . an) ∈ E

define its rank, rank(a), as the dimension of the vector space over Fq,
generated by {a1, . . . , an}.

The rank distance is a metric on E, defined by

rank(a− b).

Since the rank distance between two codewords is at most the Hamming
distance between them, for any code C ⊂ E its minimum (rank) distance
d∗RK(C) ≤ min{m,n − logqm |C| + 1}. A code C with d∗RK(C) = n −
logqm |C|+ 1, n < m, is called a Gabidulin code (see [Gabi85]). A code C
with d∗RK(C) = m, m ≤ n, is called a full rank distance code. Such a code
has at most qn elements. A maximal full rank distance code is a full rank
distance code with qn elements; it exists if and only if m divides n.

• Gabidulin–Simonis metrics
Let F

n
q be the vector space over a finite field Fq and let F = {Fi : i ∈ I} be

a finite family of its subsets such that the minimal linear subspace of F
n
q

containing ∪i∈IFi is F
n
q . Without loss of generality, F can be an antichain

of linear subspaces of F
n
q .

The F -weight wF of a vector x = (x1, . . . , xn) ∈ F
n
q is the smallest |J |

over such subsets J ⊂ I that x belongs to the minimal linear subspace of
F

n
q containing ∪i∈JFi. A Gabidulin–Simonis metric (or F -distance,

see [GaSi98]) on F
n
q is defined by

wF (x− y).

The Hamming metric corresponds to the case of Fi, i ∈ I, forming the
standard basis. The Vandermonde metric is F -distance with Fi, i ∈ I,
being the columns of a generalized Vandermonde matrix. Among other
coding Gabidulin–Simonis metrics are: rank distance, b-burst distance,
Gabidulin’s combinatorial metrics (cf. poset distance), etc.

• Rosenbloom–Tsfasman metric
Let Mm,n(Fq) be the set of all m × n matrices with entries from a fi-
nite field Fq (in general, from any finite alphabet A = {a1, . . . , aq}). The
Rosenbloom–Tsfasman norm ||.||RT on Mm,n(Fq) is defined as follows:
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if m = 1 and a = (ξ1, ξ2, . . . , ξn) ∈ M1,n(Fq), then ||01,n||RT = 0, and
||a||RT = max{i : ξi �= 0} for a �= 01,n; if A = (a1, . . . , am)T ∈ Mm,n(Fq),
aj ∈ M1,n(Fq), 1 ≤ j ≤ m, then ||A||RT =

∑m
j=1 ||aj ||RT .

The Rosenbloom–Tsfasman metric [RoTs96] (or ordered distance,
in [MaSt99]) is a matrix norm metric (in fact, an ultrametric) on
Mm,n(Fq), defined by

||A−B||RT .

For every matrix code C ⊂ Mm,n(Fq) with qk elements the minimum
(Rosenbloom–Tsfasman) distance d∗RT (C) ≤ mn − k + 1. Codes meeting
this bound are called maximum distance separable codes.

The most used distance between codewords of a matrix code C ⊂
Mm,n(Fq) is the Hamming metric on Mm,n(Fq), defined by ||A−B||H ,
where ||A||H is the Hamming weight of a matrix A ∈ Mm,n(Fq), i.e., the
number of its non-zero entries.

The LRTJ-metric (introduced as Generalized-Lee–Rosenbloom–
Tsfasman pseudo-metric by Jain, 2008) is the norm metric for the
following generalization of the above norm ||a||RT in the case a �= 01,n:

||a||LRTJ = max
1≤i≤n

min{ξi, q − ξi}+ max{i− 1 : ξi �= 0}.

It is the Lee metric for m = 1 and the Rosenbloom–Tsfasman metric for
q = 2, 3.

• Interchange distance
The interchange distance (or swap metric) is a metric on the code
C ⊂ An over an alphabet A, defined, for any x, y ∈ C, as the minimum
number of transpositions, i.e., interchanges of adjacent pairs of symbols,
converting x into y.

• ACME distance
The ACME distance on a code C ⊂ An over an alphabet A is defined by

min{dH(x, y), dI(x, y)},

where dH is the Hamming metric, and dI is the interchange distance.
• Indel distance

Let W be the set of all words over an alphabet A. A deletion of a letter in
a word β = b1 . . . bn of the length n is a transformation of β into a word
β

′
= b1 . . . bi−1bi+1 . . . bn of the length n − 1. An insertion of a letter in

a word β = b1 . . . bn of the length n is a transformation of β into a word
β

′′
= b1 . . . bibbi+1 . . . bn, of the length n + 1.

The indel distance (or distance of codes with correction of deletions
and insertions) is a metric on W , defined, for any α, β ∈ W , as the min-
imum number of deletions and insertions of letters converting α into β.
(Cf. indel metric in Chap. 11.)
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A code C with correction of deletions and insertions is an arbitrary finite
subset of W . An example of such a code is the set of words β = b1 . . . bn of
length n over the alphabet A = {0, 1} for which

∑n
i=1 ibi ≡ 0 (mod n+1).

The number of words in this code is equal to 1
2(n+1)

∑
k φ(k)2(n+1)/k, where

the sum is taken over all odd divisors k of n+1, and φ is the Euler function.
• Interval distance

The interval distance (see, for example, [Bata95]) is a metric on a finite
group (G,+, 0), defined by

wint(x− y),

where wint(x) is an interval weight on G, i.e., a group norm whose values
are consecutive non-negative integers 0, . . . ,m. This distance is used for
group codes C ⊂ G.

• Fano metric
The Fano metric is a decoding metric with the goal to find the best
sequence estimate used for the Fano algorithm of sequential decoding of
convolutional codes.

A convolutional code is a type of error-correction code in which each k-bit
information symbol to be encoded is transformed into an n-bit codeword,
where R = k

n is the code rate (n ≥ k), and the transformation is a function
of the last m information symbols. The linear time-invariant decoder (fixed
convolutional decoder) maps an information symbol ui ∈ {u1, . . . , uN},
ui = (ui1, . . . uik), uij ∈ F2, into a codeword xi ∈ {x1, . . . , xN}, xi =
(xi1, . . . , xin), xij ∈ F2, so one has a code {x1, . . . , xN} with N code-
words which occur with probabilities {p(x1), . . . , p(xN )}. A sequence of
l codewords forms a stream (or path) x = x[1,l] = {x1, . . . , xl} which is
transmitted through a discrete memoryless channel, resulting in the re-
ceived sequence y = y[1,l]. The task of a decoder which minimizes the
sequence error probability is to find a sequence which maximizes the joint
probability of input and output channel sequences p(y, x) = p(y|x) · p(x).
Usually it is sufficient to find a procedure that maximizes p(y|x), and
a decoder that always chooses as its estimate one of the sequences that
maximizes it or, equivalently, the Fano metric, is called a max-likelihood
decoder.

Roughly, we consider each code as a tree, where each branch repre-
sents one codeword. The decoder begins at the first vertex in the tree,
and computes the branch metric for each possible branch, determining
the best branch to be the one corresponding to the codeword xj resulting
in the largest branch metric, μF (xj). This branch is added to the path,
and the algorithm continues from the new node which represents the sum
of the previous node and the number of bits in the current best code-
word. Through iterating until a terminal node of the tree is reached, the
algorithm traces the most likely path.
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In this construction, the bit Fano metric is defined by

log2

p(yi|xi)
p(yi)

−R,

the branch Fano metric is defined by

μF (xj) =
n∑

i=1

(log2

p(yi|xji)
p(yi)

−R),

and the path Fano metric is defined by

μF (x[1,l]) =
l∑

j=1

μF (xj),

where p(yi|xji) are the channel transition probabilities, p(yi) =
∑

xm

p(xm)p(yi|xm) is the probability distribution of the output given the input
symbols averaged over all input symbols, and R = k

n is the code rate.
For a hard-decision decoder p(yj = 0|xj = 1) = p(yj = 1|xj = 0) = p,

0 < p < 1
2 , the Fano metric for a path x[1,l] can be written as

μF (x[1,l]) = −αdH(y[1,l], x[1,l]) + β · l · n,

where α = − log2
p

1−p > 0, β = 1−R+log2(1−p), and dH is the Hamming
metric.

The generalized Fano metric for sequential decoding is defined by

μw
F (x[1,l]) =

ln∑

j=1

(

log2

p(yj |xj)w

p(yj)1−w
− wR

)

,

0 ≤ w ≤ 1. When w = 1/2, the generalized Fano metric reduces to the
Fano metric with a multiplicative constant 1/2.

• Metric recursion of a MAP decoding
Maximum a posteriori sequence estimation, or MAP decoding for variable
length codes, used the Viterbi algorithm, and is based on the metric re-
cursion

Λ
(m)
k = Λ(m)

k−1 +
l
(m)
k∑

n=1

x
(m)
k,n log2

p(yk,n|x(m)
k,n = +1)

p(yk,n|x(m)
k,n = −1)

+ 2 log2 p(u(m)
k ),

where Λ(m)
k is the branch metric of branch m at time (level) k, xk,n

is the n-th bit of the codeword having l
(m)
k bits labeled at each branch,
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yk,n is the respective received soft-bit, um
k is the source symbol of branch m

at time k and, assuming statistical independence of the source symbols,
the probability p(u(m)

k ) is equivalent to the probability of the source sym-
bol labeled at branch m, that may be known or estimated. The metric
increment is computed for each branch, and the largest value, when us-
ing log-likelihood-values, of each state is used for further recursion. The
decoder first computes the metric of all branches, and then the branch
sequence with largest metric starting from the final state backward is
selected.



Chapter 17
Distances and Similarities in Data
Analysis

A data set is a finite set comprising m sequences (xj
1, . . . , x

j
n), j ∈ {1, . . . , m},

of length n. The values x1
i , . . . , x

m
i represent an attribute Si. It can be nu-

merical, including continuous (real numbers) and binary (presence/absence
expressed by 1/0), ordinal (numbers expressing rank only), or nominal (which
are not ordered).

Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) con-
sists mainly of partition of data A into a relatively small number of clusters,
i.e., such sets of objects that (with respect to a selected measure of distance)
are at best possible degree, “close” if they belong to the same cluster, “far”
if they belong to different clusters, and further subdivision into clusters will
impair the above two conditions.

We give three typical examples. In Information Retrieval applications,
nodes of peer-to-peer database network export data (collection of text docu-
ments); each document is characterized by a vector from R

n. An user query
consists of a vector x ∈ R

n, and the user needs all documents in the database
which are relevant to it, i.e., belong to the ball in R

n, center x, of fixed
radius and with a convenient distance function. In Record Linkage, each doc-
ument (database record) is represented by a term-frequency vector x ∈ R

n

or a string, and one wants to measure semantic relevancy of syntactically
different records.

In Ecology, let x, y be species abundance distributions, obtained by two
sample methods (i.e., xj , yj are the numbers of individuals of species j,
observed in a corresponding sample); one needs a measure of the distance
between x and y, in order to compare two methods. Often data are organized
in a metric tree first, i.e., in a tree indexed in a metric space.

Once a distance d between objects is selected, the linkage metric, i.e.,
a distance between clusters A = {a1, . . . , am} and B = {b1, . . . , bn} is usually
one of the following:

average linkage: the average of the distances between the all members
of the clusters, i.e.,

∑
i

∑
j d(ai,bj)

mn ;
single linkage: the distance between the nearest members of the clusters,

i.e., mini,j d(ai, bj);

M.M. Deza and E. Deza, Encyclopedia of Distances, 297
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complete linkage: the distance between the furthest members of the
clusters, i.e., maxi,j d(ai, bj);

centroid linkage: the distance between the centroids of the clusters,
i.e., ||ã− b̃||2, where ã =

∑
i ai

m , and b̃ =
∑

j bj

n ;

Ward linkage: the distance
√

mn
m+n ||ã− b̃||2.

Multidimensional Scaling is a technique developed in the behavioral and
social sciences for studying the structure of objects or people. Together with
Cluster Analysis, it is based on distance methods. But in Multi-dimensional
Scaling, as opposed to Cluster Analysis, one starts only with some m × m
matrix D of distances of the objects and (iteratively) looks for a represen-
tation of objects in R

n with low n, so that their Euclidean distance matrix
has minimal square deviation from the original matrix D. The related Metric
Nearness Problem (Dhillon, Sra and Tropp 2003) is to approximate a given
finite distance space (X, d) by a metric space (X, d′).

There are many similarities used in Data Analysis; the choice depends
on the nature of data and is not an exact science. We list below the main
such similarities and distances.

Given two objects, represented by non-zero vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn) from R

n, the following notation is used in this chapter.∑
xi means

∑n
i=1 xi.

1F is the characteristic function of event F : 1F = 1 if F happens, and
1F = 0 otherwise.
||x||2 =

√∑
x2

i is the ordinary Euclidean norm on R
n.

x denotes
∑

xi

n , i.e., the mean value of components of x. So, x = 1
n if x

is a frequency vector (discrete probability distribution), i.e., all xi ≥ 0, and∑
xi = 1; and x = n+1

2 if x is a ranking (permutation), i.e., all xi are different
numbers from {1, . . . , n}.

In the binary case x ∈ {0, 1}n (i.e., when x is a binary n-sequence), let
X = {1 ≤ i ≤ n : xi = 1} and X = {1 ≤ i ≤ n : xi = 0}. Let |X∩Y |, |X∪Y |,
|X\Y | and |X�Y | denote the cardinality of the intersection, union, dif-
ference and symmetric difference (X\Y ) ∪ (Y \X) of the sets X and Y ,
respectively.

17.1 Similarities and distances for numerical data

• Ruzicka similarity
The Ruzicka similarity is a similarity on R

n, defined by
∑

min{xi, yi}∑
max{xi, yi}

.
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The corresponding distance

1−
∑

min{xi, yi}∑
max{xi, yi}

=
∑
|xi − yi|∑

max{xi, yi}

coincides on R
n
≥0 with the fuzzy polyonucleotide metric (cf. Chap. 23).

• Roberts similarity
The Roberts similarity is a similarity on R

n, defined by

∑
(xi + yi)

min{xi,yi}
max{xi,yi}∑

(xi + yi)
.

• Ellenberg similarity
The Ellenberg similarity is a similarity on R

n, defined by
∑

(xi + yi)1xi·yi 	=0∑
(xi + yi)(1 + 1xiyi=0)

.

The binary cases of Ellenberg and Ruzicka similarities coincide; it is
called Tanimoto similarity (or Jaccard similarity of community,
Jaccard 1908):

|X ∩ Y |
|X ∪ Y | .

The Tanimoto distance (or biotope distance, Jaccard distance)
is a distance on {0, 1}n, defined by

1− |X ∩ Y |
|X ∪ Y | =

|XΔY |
|X ∪ Y | .

• Gleason similarity
The Gleason similarity is a similarity on R

n, defined by
∑

(xi + yi)1xi·yi 	=0∑
(xi + yi)

.

The binary cases of Cleason, Motyka and Bray–Curtis similarities coincide;
it is called Dice similarity 1945, (or Sørensen similarity, Czekanowsky
similarity):

2|X ∩ Y |
|X ∪ Y |+ |X ∩ Y | =

2|X ∩ Y |
|X|+ |Y | .

The Czekanowsky–Dice distance (or nonmetric coefficient, Bray and
Curtis 1957) is a near-metric on {0, 1}n, defined by

1− 2|X ∩ Y |
|X|+ |Y | =

|XΔY |
|X|+ |Y | .
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• Intersection distance
The intersection distance is a distance on R

n, defined by

1−
∑

min{xi, yi}
min{

∑
xi,

∑
yi}

.

• Motyka similarity
The Motyka similarity is a similarity on R

n, defined by
∑

min{xi, yi}∑
(xi + yi)

= n

∑
min{xi, yi}
x + y

.

• Bray–Curtis similarity
The Bray–Curtis similarity 1957, is a similarity on R

n, defined by

2
n(x + y)

∑
min{xi, yj}.

It is called Renkonen % similarity (or percentage similarity) if x, y are
frequency vectors.

• Sørensen distance
The Sørensen distance (or Bray–Curtis distance) is a distance on
R

n, defined (Sørensen 1948) by
∑
|xi − yi|∑
(xi + yi)

.

• Canberra distance
The Canberra distance (Lance and Williams 1967) is a distance on R

n,
defined by

∑ |xi − yi|
|xi|+ |yi|

.

• Kulczynski similarity 1
The Kulczynski similarity 1 is a similarity on R

n, defined by
∑

min{xi, yi}∑
|xi − yi|

.

The corresponding distance is
∑
|xi − yi|∑

min{xi, yi}
.

The Soergel distance is
∑
|xi − yi|∑

max{xi, yi}
.
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• Kulczynski similarity 2
The Kulczynski similarity 2 is a similarity on R

n, defined by

n

2

(
1
x

+
1
y

)∑
min{xi, yi}.

In the binary case it takes the form

|X ∩ Y | · (|X|+ |Y |)
2|X| · |Y | .

• Baroni–Urbani–Buser similarity
The Baroni–Urbani–Buser similarity is a similarity on R

n, defined by

∑
min{xi, yi}+

√∑
min{xi, yi}

∑
(max1≤j≤n xj −max{xi, yi})

∑
max{xi, yi}+

√∑
min{xi, yi}

∑
(max1≤j≤n xj −max{xi, yi})

.

In the binary case it takes the form

|X ∩ Y |+
√
|X ∩ Y | · |X ∪ Y |

|X ∪ Y |+
√
|X ∩ Y | · |X ∪ Y |

.

17.2 Relatives of Euclidean distance

• Power (p, r)-distance
The power (p, r)-distance is a distance on R

n, defined by

(
∑

|xi − yi|p)
1
r .

For p = r ≥ 1, it is the lp-metric, including the Euclidean, Manhattan
(or magnitude) and Chebyshev (or maximum-value, dominance) metrics
for p = 2, 1 and ∞, respectively.

The case (p, r) = (2, 1) corresponds to the squared Euclidean dis-
tance.

The power (p, r)-distance with 0 < p = r < 1 is called the fractional
lp-distance (not a metric since the unit balls are not convex); it is used
for “dimensionality-cursed” data, i.e., when there are few observations and
the number n of variables is large. The case 0 < p < r = 1, i.e., of the p-th
power of the fractional lp-distance, corresponds to a metric on R

n.
The weighted versions (

∑
wi|xi−yi|p)

1
p (with non-negative weights wi)

are also used, for p = 1, 2, in applications.



302 17 Distances and Similarities in Data Analysis

• Penrose size distance
The Penrose size distance is a distance on R

n, defined by

√
n
∑

|xi − yi|.

It is proportional to the Manhattan metric.
The mean character distance (Czekanowsky 1909) is defined by∑
|xi−yi|

n .
The Lorentzian distance is a distance defined by

∑
ln(1 + |xi − yi|).

• Penrose shape distance
The Penrose shape distance is a distance on R

n, defined by

√∑
((xi − x)− (yi − y))2.

The sum of squares of two above Penrose distances is the squared
Euclidean distance.

• Binary Euclidean distance
The binary Euclidean distance is a distance on R

n, defined by

√∑
(1xi>0 − 1yi>0)2.

• Mean censored Euclidean distance
The mean censored Euclidean distance is a distance on R

n, defined by

√∑
(xi − yi)2∑
1x2

i +y2
i 	=0

.

• Normalized lp-distance
The normalized lp-distance, 1 ≤ p ≤ ∞, is a distance on R

n, defined by

||x− y||p
||x||p + ||y||p

.

The only integer value p for which the normalized lp-distance is a metric,
is p = 2. Moreover, in [Yian91] it is shown that, for any a, b > 0, the
distance ||x−y||2

a+b(||x||2+||y||2) is a metric.
• Clark distance

The Clark distance (Clark 1952) is a distance on R
n, defined by

(
1
n

∑(
xi − yi

|xi|+ |yi|

)2
) 1

2

.
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• Meehl distance
The Meehl distance (or Meehl index) is a distance on R

n, defined by
∑

1≤i≤n−1

(xi − yi − xi+1 + yi+1)2.

• Hellinger distance
The Hellinger distance is a distance on R

n
+, defined by

√

2
∑(√

xi

x
−
√

yi

y

)2

.

(Cf. Hellinger metric in Chap. 14.)
The Whittaker index of association is defined by 1

2

∑
|xi

x −
yi

y |.
• Symmetric χ2-measure

The symmetric χ2-measure is a distance on R
n, defined by

∑ 2
x · y ·

(xiy − yix)2

xi + yi
.

• Symmetric χ2-distance
The symmetric χ2-distance (or chi-distance) is a distance on R

n, de-
fined by

√
∑ x + y

n(xi + yi)
(
xi

x
− yi

y
)2 =

√
∑ x + y

n(x · y)2
· (xiy − yix)2

xi + yi
.

• Mahalanobis distance
The Mahalanobis distance (or statistical distance) is a distance on R

n,
defined (Mahalanobis 1936) by

||x− y||A =
√

(detA)
1
n (x− y)A−1(x− y)T ,

where A is a positive-definite matrix (usually, the covariance matrix of
a finite set consisting of observation vectors); cf. Mahalanobis semi-
metric in Chap. 14).

If A is a diagonal matrix (moreover, the identity matrix), then the
Mahalanobis distance is called the normalized Euclidean distance
(moreover, is the Euclidean distance). For heterogenous data sets (i.e.,
with ranges and variances of data points x, y ∈ R

n dependent on dimen-
sion i ∈ {1, . . . , n}) the scaled Euclidean distance is

√
∑

i

(xi − yi)2

σ2
i

,
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where σ2
i is the variance in dimension i. The maximum scaled differ-

ence (used by Maxwell and Buddemeier 2002, for coastal typology) is
defined by

max
i

(xi − yi)2

σ2
i

.

17.3 Similarities and distances for binary data

Usually, such similarities s range from 0 to 1 or from −1 to 1; the correspond-
ing distances are usually 1− s or 1−s

2 , respectively.

• Hamann similarity
The Hamann similarity 1961, is a similarity on {0, 1}n, defined by

2|XΔY |
n

− 1 =
n− 2|XΔY |

n
.

• Rand similarity
The Rand similarity (or Sokal–Michener’s simple matching) is a simi-
larity on {0, 1}n, defined by

|XΔY |
n

= 1− |XΔY |
n

.

Its square root is called the Euclidean similarity. The corresponding metric
|XΔY |

n is called the variance or Manhattan similarity; cf. Penrose size
distance.

• Sokal–Sneath similarity 1
The Sokal–Sneath similarity 1 is a similarity on {0, 1}n, defined by

2|XΔY |
n + |XΔY |

.

• Sokal–Sneath similarity 2
The Sokal–Sneath similarity 2 is a similarity on {0, 1}n, defined by

|X ∩ Y |
|X ∪ Y |+ |XΔY | .

• Sokal–Sneath similarity 3
The Sokal–Sneath similarity 3 is a similarity on {0, 1}n, defined by

|XΔY |
|XΔY |

.
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• Russel–Rao similarity
The Russel–Rao similarity is a similarity on {0, 1}n, defined by

|X ∩ Y |
n

.

• Simpson similarity
The Simpson similarity (overlap similarity) is a similarity on {0, 1}n,
defined by

|X ∩ Y |
min{|X|, |Y |} .

• Forbes similarity
The Forbes similarity is a similarity on {0, 1}n, defined by

n|X ∩ Y |
|X||Y | .

• Braun–Blanquet similarity
The Braun–Blanquet similarity is a similarity on {0, 1}n, defined by

|X ∩ Y |
max{|X|, |Y |} .

The average between it and the Simpson similarity is the Dice
similarity.

• Roger–Tanimoto similarity
The Roger–Tanimoto similarity 1960, is a similarity on {0, 1}n, de-
fined by

|XΔY |
n + |XΔY | .

• Faith similarity
The Faith similarity is a similarity on {0, 1}n, defined by

|X ∩ Y |+ |XΔY |
2n

.

• Tversky similarity
The Tversky similarity is a similarity on {0, 1}n, defined by

|X ∩ Y |
a|XΔY |+ b|X ∩ Y | .

It becomes the Tanimoto, Dice and (the binary case of) Kulczynsky 1
similarities for (a, b) = (1, 1), (1

2 , 1) and (1, 0), respectively.
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• Mountford similarity
The Mountford similarity 1962, is a similarity on {0, 1}n, defined by

2|X ∩ Y |
|X||Y \X|+ |Y ||X\Y | .

• Gower–Legendre similarity
The Gower–Legendre similarity is a similarity on {0, 1}n, defined by

|XΔY |
a|XΔY |+ |XΔY |

=
|XΔY |

n + (a− 1)|XΔY | .

• Anderberg similarity
The Anderberg similarity (or Sokal–Sneath 4 similarity) is a similarity
on {0, 1}n, defined by

|X ∩ Y |
4

(
1
|X| +

1
|Y |

)

+
|X ∪ Y |

4

(
1
|X|

+
1
|Y |

)

.

• Yule Q similarity
The Yule Q similarity (Yule 1900) is a similarity on {0, 1}n, defined by

|X ∩ Y | · |X ∪ Y | − |X\Y | · |Y \X|
|X ∩ Y | · |X ∪ Y |+ |X\Y | · |Y \X|

.

• Yule Y similarity of colligation
The Yule Y similarity of colligation (Yule 1912) is a similarity on
{0, 1}n, defined by

√
|X ∩ Y | · |X ∪ Y | −

√
|X\Y | · |Y \X|

√
|X ∩ Y | · |X ∪ Y |+

√
|X\Y | · |Y \X|

.

• Dispersion similarity
The dispersion similarity is a similarity on {0, 1}n, defined by

|X ∩ Y | · |X ∪ Y | − |X\Y | · |Y \X|
n2

.

• Pearson φ similarity
The Pearson φ similarity is a similarity on {0, 1}n, defined by

|X ∩ Y | · |X ∪ Y | − |X\Y | · |Y \X|
√
|X| · |X| · |Y | · |Y |

.
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• Gower similarity 2
The Gower similarity 2 (or Sokal–Sneath 5 similarity) is a similarity on
{0, 1}n, defined by

|X ∩ Y | · |X ∪ Y |
√
|X| · |X| · |Y | · |Y |

.

• Pattern difference
The pattern difference is a distance on {0, 1}n, defined by

4|X\Y | · |Y \X|
n2

.

• Q0-difference
The Q0-difference is a distance on {0, 1}n, defined by

|X\Y | · |Y \X|
|X ∩ Y | · |X ∪ Y |

.

17.4 Correlation similarities and distances

• Covariance similarity
The covariance similarity is a similarity on R

n, defined by
∑

(xi − x)(yi − y)
n

=
∑

xiyi

n
− x · y.

• Correlation similarity
The correlation similarity (or Pearson correlation, or, by its full name,
Pearson product-moment correlation linear coefficient) s is a similarity on
R

n, defined by ∑
(xi − x)(yi − y)

√
(
∑

(xj − x)2)(
∑

(yj − y)2)
.

The dissimilarities 1 − s and 1 − s2 are called the Pearson correlation
distance and squared Pearson distance, respectively. Moreover,

√
2(1− s) =

√
√
√
√
∑

(
xi − x

√∑
(xj − x)2

− yi − y
√∑

(yj − y)2

)

is a normalization of the Euclidean distance (cf., a different one, normal-
ized lp-distance above in this chapter).

In the case x = y = 0, the correlation similarity becomes 〈x,y〉
||x||2·||y||2 .
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• Cosine similarity
The cosine similarity (or Orchini similarity, angular similarity, normal-
ized dot product) is a similarity on R

n, defined by

〈x, y〉
||x||2 · ||y||2

= cos φ,

where φ is the angle between vectors x and y. In the binary case, it becomes

|X ∩ Y |
√
|X| · |Y |

and is called the Ochiai–Otsuka similarity.
In Record Linkage, cosine similarity is called TF-IDF similarity; it (or

tf-idf, TFIDF) are used as an abbreviation of Frequency – Inverse Docu-
ment Frequency. In Ecology, cosine similarity is often called niche overlap
similarity, cf. Chap. 23.

The cosine distance is defined by 1− cos φ.
The Kumar–Hassebrook similarity is defined by

〈x, y〉
||x− y||22 + 〈x, y〉 .

• Angular semi-metric
The angular semi-metric on R

n is the angle (measured in radians) be-
tween vectors x and y:

arccos
〈x, y〉

||x||2 · ||y||2
.

• Orloci distance
The Orloci distance (or chord distance) is a distance on R

n, defined by

√

2
(

1− 〈x, y〉
||x||2 · ||y||2

)

.

• Similarity ratio
The similarity ratio (or Kohonen similarity) is a similarity on R

n,
defined by

〈x, y〉
〈x, y〉+ ||x− y||22

.

Its binary case is the Tanimoto similarity. Sometimes, the similarity
ratio is called the Tanimoto coefficient or extended Jaccard coefficient.
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• Morisita–Horn similarity
The Morisita–Horn similarity (Morisita 1959) is a similarity on R

n,
defined by

2〈x, y〉
||x||22 · y

x + ||y||22 · x
y

.

• Spearman rank correlation
In the case when x, y ∈ R

n are rankings (or permutations), i.e., the compo-
nents of each of them are different numbers 1, . . . , n, one has x = y = n+1

2 .
For such ordinal data, the correlation similarity becomes

1− 6
n(n2 − 1)

∑
(xi − yi)2.

It is the Spearman ρ rank correlation, called also the Spearman rho
metric, but it is not a distance. The Spearman ρ distance is the
Euclidean metric on permutations.

The Spearman footrule is defined by

1− 3
n2 − 1

∑
|xi − yi|.

It is the l1-version of the Spearman rank correlation. The Spearman
footrule distance is the l1-metric on permutations.

Another correlation similarity for rankings is the Kendall τ rank cor-
relation, called also Kendall τ metric (but it is not a distance), which is
defined by

2
∑

1≤i<j≤n sign(xi − xj)sign(yi − yj)
n(n− 1)

.

The Kendall τ distance on permutations is defined by

|{(i, j) : 1 ≤ i < j ≤ n, (xi − xj)(yi − yj) < 0}|.

• Cook distance
The Cook distance is a distance on R

n giving a statistical measure of de-
ciding if some i-th observation alone affects much regression estimates. It
is a normalized squared Euclidean distance between estimated pa-
rameters from regression models constructed from all data and from data
without i-th observation.

The main similar distances, used in Regression Analysis for detecting
influential observations, are DFITS distance, Welsch distance, and Hadi
distance.

• Distance-based machine learning
The following setting is used for many real-world applications (neural
networks, etc.), where data are incomplete and have both continuous
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and nominal attributes. Given an m × (n + 1) matrix ((xij)), its row
(xi0, xi1, . . . , xin) denotes an instance input vector xi = (xi1, . . . , xin) with
output class xi0; the set of m instances represents a training set during
learning. For any new input vector y = (y1, . . . , yn), the closest (in terms
of a selected distance d) instance xi is sought, in order to classify y, i.e.,
predict its output class as xi0.

The distance [WiMa97] d(xi, y) is defined by

√
√
√
√

n∑

j=1

d2
j (xij , yj)

with dj(xij , yj) = 1 if xij or yj is unknown. If the attribute j (i.e., the
range of values xij for 1 ≤ i ≤ m) is nominal, then dj(xij , yj) is defined,
for example, as 1xij 	=yj

, or as

∑

a

∣
∣
∣
∣
|{1≤ t≤m : xt0 =a, xij =xij}|

|{1≤ t≤m : xtj =xij}|
− |{1≤ t≤m : xt0 =a, xij =yj}|

|{1≤ t≤m : xtj =yj}|

∣
∣
∣
∣

q

for q = 1 or 2; the sum is taken over all output classes, i.e., values a from
{xt0 : 1 ≤ t ≤ m}. For continuous attributes j, the number dj is taken
to be |xij − yj | divided by maxt xtj − mint xtj , or by 1

4 of the standard
deviation of values xtj , 1 ≤ t ≤ m.



Chapter 18
Distances in Mathematical Engineering

In this chapter we group the main distances used in Robot Motion, Cellular
Automata, Feedback Systems and Multi-objective Optimization.

18.1 Motion planning distances

Automatic motion planning methods are applied in Robotics, Virtual Real-
ity Systems and Computer Aided Design. A motion planning metric is a
metric used in automatic motion planning methods.

Let a robot be a finite collection of rigid links organized in a kinematic
hierarchy. If the robot has n degrees of freedom, this leads to an n-dimensional
manifold C, called the configuration space (or C-space) of the robot. The
workspace W of the robot is the space in which the robot moves. Usually, it
is modeled as the Euclidean space E

3. The obstacle region CB is the set of
all configurations q ∈ C that either cause the robot to collide with obstacles
B, or cause different links of the robot to collide among themselves. The
closure cl(Cfree) of Cfree = C\{CB} is called the space of collision-free
configurations. A motion planning algorithm must find a collision-free path
from an initial configuration to a goal configuration.

A configuration metric is a motion planning metric on the configuration
space C of a robot.

Usually, the configuration space C consists of six-tuples (x, y, z, α, β, γ),
where the first three coordinates define the position, and the last three the
orientation. The orientation coordinates are the angles in radians. Intuitively,
a good measure of the distance between two configurations is a measure of
the workspace region swept by the robot as it moves between them (the
swept volume distance). However, the computation of such a metric is
prohibitively expensive.

The simplest approach has been to consider the C-space as a Cartesian
space and to use Euclidean distance or its generalizations. For such config-
uration metrics, one normalizes the orientation coordinates so that they

M.M. Deza and E. Deza, Encyclopedia of Distances, 311
DOI 10.1007/978-3-642-00234-2 18, c© Springer-Verlag Berlin Heidelberg 2009
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get the same magnitude as the position coordinates. Roughly, one multiplies
the orientation coordinates by the maximum x, y or z range of the workspace
bounding box. Examples of such metrics are given below.

More generally, the configuration space of a three-dimensional rigid body
can be identified with the Lie group ISO(3): C ∼= R

3 × RP 3. The general
form of a matrix in ISO(3) is given by

(
R X
0 1

)

,

where R ∈ SO(3) ∼= RP 3, and X ∈ R
3. If Xq and Rq represent the trans-

lation and rotation components of the configuration q = (Xq, Rq) ∈ ISO(3),
then a configuration metric between configurations q and r is given by
wtr||Xq−Xr||+wrotf(Rq, Rr), where the translation distance ||Xq−Xr|| is
obtained using some norm ||.|| on R

3, and the rotation distance f(Rq, Rr)
is a positive scalar function which gives the distance between the rotations
Rq, Rr ∈ SO(3). The rotation distance is scaled relative to the translation
distance via the weights wtr and wrot.

A workspace metric is a motion planning metric in the workspace R
3.

There are many other types of metrics used in motion planning methods,
in particular, the Riemannian metrics, the Hausdorff metric and, in
Chap. 9, the separation distance, the penetration depth distance and
the growth distances.

• Weighted Euclidean distance
The weighted Euclidean distance is a configuration metric on R

6,
defined by

(
3∑

i=1

|xi − yi|2 +
6∑

i=4

(wi|xi − yi|)2
) 1

2

for any x, y ∈ R
6, where x = (x1, . . . , x6), x1, x2, x3 are the position

coordinates, x4, x5, x6 are the orientation coordinates, and wi is the nor-
malization factor. It gives the same importance to both position and
orientation.

• Scaled weighted Euclidean distance
The scaled weighted Euclidean distance is a configuration metric
on R

6, defined by

(

s
3∑

i=1

|xi − yi|2 + (1− s)
6∑

i=4

(wi|xi − yi|)2
) 1

2

for any x, y ∈ R
6. The scaled weighted Euclidean distance changes the

relative importance of the position and orientation components through
the scale parameter s.
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• Weighted Minkowskian distance
The weighted Minkowskian distance is a configuration metric on
R

6, defined by

(
3∑

i=1

|xi − yi|p +
6∑

i=4

(wi|xi − yi|)p

) 1
p

for any x, y ∈ R
6. It uses a parameter p ≥ 1; as with Euclidean, both

position and orientation have the same importance.
• Modified Minkowskian distance

The modified Minkowskian distance is a configuration metric on
R

6, defined by

(
3∑

i=1

|xi − yi|p1 +
6∑

i=4

(wi|xi − yi|)p2

) 1
p3

for all x, y ∈ R
6. It distinguishes between position and orientation coordi-

nates using the parameters p1 ≥ 1 (for the position) and p2 ≥ 1 (for the
orientation).

• Weighted Manhattan distance
The weighted Manhattan distance is a configuration metric on R

6,
defined by

3∑

i=1

|xi − yi|+
6∑

i=4

wi|xi − yi|

for any x, y ∈ R
6. It coincides, up to a normalization factor, with the usual

l1-metric on R
6.

• Robot displacement metric
The robot displacement metric (or DISP distance, Latombe 1991, and
LaValle 2006) is a configuration metric on a configuration space C of a
robot, defined by

max
a∈A

||a(q)− a(r)||

for any two configurations q, r ∈ C, where a(q) is the position of the point
a in the workspace R

3 when the robot is at configuration q, and ||.|| is one
of the norms on R

3, usually the Euclidean norm. Intuitively, this metric
yields the maximum amount in workspace that any part of the robot is
displaced when moving from one configuration to another (cf. bounded
box metric).

• Euler angle metric
The Euler angle metric is a rotation metric on the group SO(3) (for
the case of using roll-pitch-yaw Euler angles for rotation), defined by

wrot

√
Δ(θ1, θ2)2 + Δ(φ1, φ2)2 + Δ(η1, η2)2
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for all R1, R2 ∈ SO(3), given by Euler angles (θ1, φ1, η1), (θ2, φ2, η2), re-
spectively, where Δ(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}, θi ∈ [0, 2π], is
the metric between angles, and wrot is a scaling factor.

• Unit quaternions metric
The unit quaternions metric is a rotation metric on the unit quater-
nion representation of SO(3), i.e., a representation of SO(3) as the set
of points (unit quaternions) on the unit sphere S3 in R

4 with identified
antipodal points (q ∼ −q).

This representation of SO(3) suggested a number of possible metrics on
it, for example, the following ones:

1. min{||q − r||, ||q + r||}
2. || ln(q−1r)||
3. wrot(1− |λ|)
4. arccos |λ|

where q = q1 + q2i + q3j + q4k,
∑4

i=1 q2
i = 1, ||.|| is a norm on R

4, λ =
〈q, r〉 =

∑4
i=1 qiri, and wrot is a scaling factor.

• Center of mass metric
The center of mass metric is a workspace metric, defined as the
Euclidean distance between the centers of mass of the robot in the two
configurations. The center of mass is approximated by averaging all object
vertices.

• Bounded box metric
The bounded box metric is a workspace metric, defined as the max-
imum Euclidean distance between any vertex of the bounding box of the
robot in one configuration and its corresponding vertex in the other con-
figuration. Cf. unrelated box metric in Chap. 4.

• Pose distance
A pose distance provides a measure of dissimilarity between actions
of agents (including robots and humans) for Learning by Imitation in
Robotics.

In this context, agents are considered as kinematic chains, and are repre-
sented in the form of a kinematic tree, such that every link in the kinematic
chain is represented by a unique edge in the corresponding tree. The con-
figuration of the chain is represented by the pose of the corresponding tree
which is obtained by an assignment of the pair (ni, li) to every edge ei.
Here ni is the unit normal, representing the orientation of the correspond-
ing link in the chain, and li is the length of the link.

The pose class consists of all poses of a given kinematic tree. One of the
possible pose distances is a distance on a given pose class which is the sum
of measures of dissimilarity for every pair of compatible segments in the
two given poses.

Another way is to view a pose D(m) in the context of the a precedent and
a subsequent frames as a 3D point cloud {Dj(i) : m−a ≤ i ≤ m+a, j ∈ J},
where J is the joint set. The set D(m) contains k = |J |(2a + 1) points
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(joint positions) pi = (xi, yi, zi), 1 ≤ i ≤ k. Let Tθ,x,z denote the linear
transformation which simultaneously rotates all points of a point cloud
about the y axis by an angle θ ∈ [0.2π] and then shifts the resulting points
in the xz plane by a vector (x, 0, z) ∈ R

3. Then the 3D point cloud
distance (Kover and Gleicher 2002) between the poses D(m) = (pi)i∈[1,k]

and D(n) = (qi)i∈[1,k] is defined as

min
θ,x,z

{
k∑

i=1

||pi − Tθ,x,z(qi)||22}.

Cf. Procrustes distance in Chap. 21.
• Millibot train metrics

In Microbotics (the field of miniature mobile robots), nanorobot, micro-
robot, millirobot, minirobot, and small robot are terms for robots with
characteristic dimensions at most 1 μm, mm, cm, dm, and m, respectively.
A millibot train is a team of heterogeneous, resource-limited millirobots
which can collectively share information. They are able to fuse range in-
formation from a variety of different platforms to build a global occupancy
map that represents a single collective view of the environment. In the mo-
tion planning of millibot trains for the construction of a motion planning
metric, one casts a series of random points about a robot and pose each
point as a candidate position for movement. The point with the highest
overall utility is then selected, and the robot is directed to that point.

Thus, the free space metric, determined by free space contour, only
allows candidate points that do not drive the robot through obstructions;
obstacle avoidance metric penalizes for moves that get too close to
obstacles; frontier metric rewards for moves that take the robot to-
wards open space; formation metric rewards for moves that maintain
formation; localization metric, based on the separation angle between
one or more localization pairs, rewards for moves that maximize localiza-
tion (see [GKC04]); cf. collision avoidance distance, piano movers
distance in Chap. 19.

18.2 Cellular automata distances

Let S, 2 ≤ |S| < ∞, denote a finite set (alphabet), and let S∞ denote the
set of bi-infinite sequences {xi}∞i=−∞ (configurations) of elements (letters)
of S. A (one-dimensional) cellular automaton is a continuous mapping f :
S∞ → S∞ that commutes with the translation map g : S∞ → S∞, de-
fined by g(xi) = xi+1. Once a metric on S∞ is defined, the resulting metric
space (X, d) together with the self-mapping f form a dynamical system,
cf. Chap. 1.
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A cellular automaton can be defined as any discrete dynamical system
on the finite state space X. Cellular automata (generally, bi-infinite arrays
instead of sequences) are used in Symbolic Dynamics, Computer Science and,
as models, in Physics and Biology. The main distances between configurations
{xi}i and {yi}i from S∞ (see [BFK99]) follow.

• Cantor metric
The Cantor metric is a metric on S∞ defined, for x �= y, by

2−min{i≥0:|xi−yi|+|x−i−y−i|	=0}.

It corresponds to the case a = 1
2 of the generalized Cantor metric in

Chap. 11. The corresponding metric space is compact.
• Besicovitch semi-metric

The Besicovitch semi-metric is a semi-metric on S∞ defined, for x �=
y, by

liml→∞
| − l ≤ i ≤ l : xi �= yi|

2l + 1
.

Cf. Besicovitch distance on measurable functions in Chap. 13.
The corresponding semi-metric space is complete.

• Weyl semi-metric
The Weyl semi-metric is a semi-metric on S∞, defined by

liml→∞ max
k∈Z

|k + 1 ≤ i ≤ k + l : xi �= yi|
l

.

This and the above semi-metric are translation invariant, but are nei-
ther separable nor locally compact. Cf. Weyl distance in Chap. 13.

18.3 Distances in Control Theory

Control Theory considers the feedback loop of a plant P (a function repre-
senting the object to be controlled, a system) and a controller C (a function
to design). The output y, measured by a sensor, is fed back to the reference
value r. Then the controller takes the error e = r−y to make inputs u = Ce.
Subject to zero initial conditions, the input and output signals to the plant
are related by y = Pu, where r, u, v and P,C are functions of the frequency
variable s. So, y = PC

1+PC r and y ≈ r (i.e., one controls the output by simply
setting the reference) if PC is large for any value of s. If the system is mod-
eled by a system of linear differential equations, then its transfer function

PC
1+PC is a rational function. The plant P is stable if it has no poles in the
closed right half-plane C+={s ∈ C : ) s ≥ 0}.
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The robust stabilization problem is: given a nominal plant (a model) P0

and some metric d on plants, find the open ball of maximal radius which
is centered in P0, such that some controller (rational function) C stabilizes
every element of this ball.

The graph G(P ) of the plant P is the set of all bounded input-output pairs
(u, y = Pu). Both u and y belong to the Hardy space H2(C+) of the right
half-plane; the graph is a closed subspace of H2(C+)+H2(C+). In fact, G(P )
is a closed subspace of H2(C2), and G(P ) = f(P ) ·H2(C2) for some function
f(P ), called the graph symbol.

All metrics below are gap-like metrics; they are topologically equivalent,
and the stabilization is a robust property with respect of each of them.

• Gap metric
The gap metric between plants P1 and P2 (Zames and El-Sakkary 1980)
is defined by

gap(P1, P2) = ||Π(P1)−Π(P2)||2,
where Π(Pi), i = 1, 2, is the orthogonal projection of the graph G(Pi) of
Pi seen as a closed subspace of H2(C2). We have

gap(P1, P2) = max{δ1(P1, P2), δ1(P2, P1)},

where δ1(P1, P2) = infQ∈H∞ ||f(P1) − f(P2)Q||H∞ , and f(P ) is a graph
symbol.

Here H∞ is the space of matrix-valued functions that are analytic and
bounded in the open right half-plane {s ∈ C : ) s > 0}; the H∞-norm is
the maximum singular value of the function over this space.

If A is an m × n matrix with m < n, then its n columns span an
n-dimensional subspace, and the matrix B of the orthogonal projection
onto the column space of A is A(AT A)−1AT . If the basis is orthonormal,
then B = AAT . In general, the gap metric between two subspaces of
the same dimension is the l2-norm of the difference of their orthogonal
projections; see also the definition of this distance as an angle distance
between subspaces.

In some applications, when subspaces correspond to autoregressive mod-
els, the Frobenius norm is used instead of the l2-norm. Cf. Frobenius
distance in Chap. 12.

• Vidyasagar metric
The Vidyasagar metric (or graph metric) between plants P1 and P2 is
defined by

max{δ2(P1, P2), δ2(P2, P1)},
where δ2(P1, P2) = inf ||Q||≤1 ||f(P1)− f(P2)Q||H∞ .

The behavioral distance is the gap between extended graphs of P1

and P2; a term is added to the graph G(P ), in order to reflect all possible
initial conditions (instead of the usual setup with the initial conditions
being zero).
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• Vinnicombe metric
The Vinnicombe metric (ν-gap metric) between plants P1 and P2 is
defined by

δν(P1, P2) = ||(1 + P2P
∗
2 )−

1
2 (P2 − P1)(1 + P ∗

1 P1)−
1
2 ||∞

if wno(f∗(P2)f(P1)) = 0, and it is equal to 1 otherwise. Here f(P ) is
the graph symbol function of plant P . See [Youn98] for the definition
of the winding number wno(f) of a rational function f and for a good
introduction to Feedback Stabilization.

18.4 MOEA distances

Most optimization problems have several objectives but, for simplicity, only
one of them is optimized, and the others are handled as constraints. Multi-
objective optimization considers (besides some inequality constraints) an
objective vector function f : X ⊂ R

n → R
k from the search (or genotype,

decision variables) space X to the objective (or phenotype, decision vectors)
space f(X) = {f(x) : x ∈ X} ⊂ R

k.
A point x∗ ∈ X is Pareto optimal if, for every other x ∈ X, the decision

vector f(x) does not Pareto dominate f(x∗), i.e., f(x) ≤ f(x∗). The Pareto
optimal front is the set PF ∗ = {f(x) : x ∈ X∗}, where X∗ is the set of all
Pareto optimal points.

Multi-objective evolutionary algorithms (MOEA) produce, at each genera-
tion, an approximation set (the found Pareto front PF known approximating
the desired Pareto front PF ∗) in objective space in which no element Pareto
dominates another element. Examples of MOEA metrics, i.e., measures
evaluating how close PF known is to PF ∗, follow.

• Generational distance
The generational distance is defined by

(
∑m

j=1 d2
j )

1
2

m
,

where m = |PF known|, and dj is the Euclidean distance (in the objec-
tive space) between f j(x) (i.e., j-th member of PF known) and the nearest
member of PF ∗. This distance is zero if and only if PF known = PF ∗.

The term generational distance (or rate of turnover) is also used
for the minimal number of branches between two positions in any system
of ranked descent represented by an hierarchical tree. Examples are:
phylogenetic distance on a phylogenetic tree, the number of generations
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separating a photocopy from the original block print, and the number of
generations separating the audience at a memorial from the commemo-
rated event.

• Spacing
The spacing is defined by

(∑m
j=1(d− dj)2

m− 1

) 1
2

,

where m = |PF known|, dj is the L1-metric (in the objective space) between
f j(x) (i.e., j-th member of PF known) and the nearest other member of
PF known, while d is the mean of all dj .

• Overall non-dominated vector ratio
The overall non-dominated vector ratio is defined by

|PF known|
|PF ∗| .
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Chapter 19
Distances on Real and Digital Planes

19.1 Metrics on real plane

In the plane R
2 we can use many different metrics. In particular, any

Lp-metric (as well as any norm metric for a given norm ||.|| on R
2) can be

used on the plane, and the most natural is the L2-metric, i.e., the Euclidean
metric dE(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 which gives the length of the

straight line segment [x, y], and is the intrinsic metric of the plane. How-
ever, there are other, often “exotic,” metrics on R

2. Many of them are used
for the construction of generalized Voronoi diagrams on R

2 (see, for example,
Moscow metric, network metric, nice metric). Some of them are used
in Digital Geometry.

Erdős-type distance problems (given, usually, for the Euclidean metric
on R

2) are of interest for R
n and for other metrics on R

2. Examples of such
problems are to find out:

the least number of different distances (or largest occurrence of a given
distance) in an m-subset of R

2; the largest size of a subset of R
2 determining

at most m distances;
the minimum diameter of an m-subset of R

2 with only integral distances
(or, say, without a pair (d1, d2) of distances with 0 < |d1 − d2| < 1);

existence of an m-subset of R
2 with, for each 1 ≤ i ≤ m, a distance

occurring exactly i times (examples are known for m ≤ 8);
existence of a dense subset of R

2 with rational distances (Ulam problem);
existence of m,m > 7, non-collinear points of R

2 with integral distances;
forbidden distances of a partition of R

2, i.e., distances not occurring within
each part.

• City-block metric
The city-block metric is the L1-metric on R

2, defined by

||x− y||1 = |x1 − y1|+ |x2 − y2|.

This metric is also called the taxicab metric, Manhattan metric,
rectilinear metric, right-angle metric; on Z

2 it is called the grid
metric and 4-metric.

M.M. Deza and E. Deza, Encyclopedia of Distances, 323
DOI 10.1007/978-3-642-00234-2 19, c© Springer-Verlag Berlin Heidelberg 2009
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• Chebyshev metric
The Chebyshev metric (or lattice metric, chessboard metric, king-
move metric, 8-metric) is the L∞-metric on R

2, defined by

||x− y||∞ = max{|x1 − y1|, |x2 − y2|}.

On Z
n, this metric is called also the uniform metric, sup metric and

box metric.
• (p, q)-relative metric

Let 0 < q ≤ 1, p ≥ max{1 − q, 2−q
3 }, and let ||.||2 be the Euclidean norm

on R
2 (in general, on R

n).
The (p, q)-relative metric is a metric on R

2 (in general, on R
n and

even on any Ptolemaic space (V, ||.||)), defined by

||x− y||2
( 1
2 (||x||p2 + ||y||p2))

q
p

for x or y �= 0 (and is equal to 0 otherwise). In the case of p = ∞ it has
the form

||x− y||2
(max{||x||2, ||y||2})q

.

For q = 1 and any 1 ≤ p < ∞, one obtains the p-relative metric (or
Klamkin-Meir metric); for q = 1 and p = ∞, one obtains the relative
metric. The original (1, 1)-relative metric is called the Schattschneider
metric.

• M-relative metric
Let f : [0,∞) → (0,∞) be a convex increasing function such that f(x)

x is
decreasing for x > 0. Let ||.||2 be the Euclidean norm on R

2 (in general,
on R

n).
The M-relative metric is a metric on R

2 (in general, on R
n and even

on any Ptolemaic space (V, ||.||)), defined by

||x− y||2
f(||x||2) · f(||y||2)

.

In particular, the distance

||x− y||2
p
√

1 + ||x||p2 p
√

1 + ||y||p2

is a metric on R
2 (on R

n) if and only if p ≥ 1. A similar metric on R
2\{0}

(on R
n\{0}) can be defined by

||x− y||2
||x||2 · ||y||2

.
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• MBR metric
The MBR metric (Schönemann 1982, for bounded response scales in
Psychology) is a metric on R

2, defined by

||x− y||1
1 + |x1 − y1||x2 − y2|

= tanh(arctanh(|x1 − y1|) + arctanh(|x2 − y2|)).

• Moscow metric
The Moscow metric (or Karlsruhe metric) is a metric on R

2, defined as
the minimum Euclidean length of all admissible connecting curves between
x and y ∈ R

2, where a curve is called admissible if it consists only of
segments of straight lines passing through the origin and segments of circles
centered at the origin (see, for example, [Klei88]).

If the polar coordinates for points x, y ∈ R
2 are (rx, θx), (ry, θy), respec-

tively, then the distance between them is equal to min{rx, ry}Δ(θx−θy)+
|rx − ry| if 0 ≤ Δ(θx, θy) < 2, and is equal to rx + ry if 2 ≤ Δ(θx, θy) < π,
where Δ(θx, θy) = min{|θx − θy|, 2π − |θx − θy|}, θx, θy ∈ [0, 2π), is the
metric between angles.

• French Metro metric
Given a norm ||.|| on R

2, the French Metro metric is a metric on R
2,

defined by
||x− y||

if x = cy for some c ∈ R, and by

||x||+ ||y||,

otherwise. For the Euclidean norm ||.||2, it is called the Paris metric,
hedgehog metric, radial metric, or enhanced SNCF metric. In this
case it can be defined as the minimum Euclidean length of all admissible
connecting curves between two given points x and y, where a curve is
called admissible if it consists only of segments of straight lines passing
through the origin.

In graph terms, this metric is similar to the path metric of the tree
consisting of a point from which radiate several disjoint paths.

The Paris metric is an example of an R-tree T which is simplicial, i.e.,
the set of points x with T\{x} not having two components is discrete and
closed.

• Lift metric
The lift metric (or raspberry picker metric or metric “river”) is a
metric on R

2, defined by
|x1 − y1|

if x2 = y2, and by
|x1|+ |x2 − y2|+ |y1|
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if x2 �= y2 (see, for example, [Brya85]). It can be defined as the mini-
mum Euclidean length of all admissible connecting curves between two
given points x and y, where a curve is called admissible if it consists only
of segments of straight lines parallel to the x1-axis and segments of the
x2-axis.

The lift metric is an example of an non-simplicial (cf. French Metro
metric) R-tree.

• British Rail metric
Given a norm ||.|| on R

2 (in general, on R
n), the British Rail metric is

a metric on R
2 (in general, on R

n), defined by

||x||+ ||y||

for x �= y (and it is equal to 0, otherwise).
It is also called the Post Office metric, caterpillar metric and

shuttle metric.
• Flower-shop metric

Let d be a metric on R
2, and let f be a fixed point (a flower-shop) in the

plane.
The flower-shop metric (sometimes called SNCF metric) is a metric

on R
2 (in general, on any metric space), defined by

d(x, f) + d(f, y)

for x �= y (and is equal to 0 otherwise). So, a person living at point x, who
wants to visit someone else living at point y, first goes to f , to buy some
flowers. In the case d(x, y) = ||x− y|| and the point f being the origin, it
is the British Rail metric.

If k > 1 flower-shops f1, . . . , fk are available, one buys the flowers, where
the detour is a minimum, i.e., the distance between distinct points x, y is
equal to min1≤i≤k{d(x, fi) + d(fi, y)}.

• Radar screen metric
Given a norm ||.|| on R

2 (in general, on R
n), the radar screen metric is

a metric on R
2 (in general, on R

n), defined by

min{1, ||x− y||}.

It is a special case of the t-truncated metric from Chap. 4.
• Rickman’s rug metric

Given a number α ∈ (0, 1), the Rickman’s rug metric on R
2 is defined by

|x1 − y1|+ |x2 − y2|α.

It is the case n = 2 of the parabolic distance in Chap. 6; see there other
metrics on R

n, n ≥ 2.
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• Burago–Ivanov metric
The Burago–Ivanov metric [BuIv01] is a metric on R

2, defined by

| ||x||2 − ||y||2|+ min{||x||2, ||y||2} ·
√

∠(x, y),

where ∠(x, y) is the angle between vectors x and y, and ||.||2 is the
Euclidean norm on R

2. The corresponding internal metric on R
2 is

equal to | ||x||2 − ||y||2| if ∠(x, y) = 0, and is equal to ||x||2 + ||y||2,
otherwise.

• 2n-gon metric
Given a centrally symmetric regular 2n-gon K on the plane, the 2n-gon
metric is a metric on R

2, defined, for any x, y ∈ R
2, as the shortest

Euclidean length of a polygonal line from x to y with each of its sides
parallel to some edge of K.

If K is a square with the vertices {(±1,±1)}, one obtains the Man-
hattan metric. The Manhattan metric arises also as the Minkowskian
metric with the unit ball being the diamond, i.e., a square with the ver-
tices {(1, 0), (0, 1), (−1, 0), (0,−1)}.

• Fixed orientation metric
Given a set A, |A| ≥ 2, of distinct orientations (i.e., angles with fixed
x-axis) on the plane R

2, the A-distance (Widmayer, Wu and Wong 1987)
is Euclidean length of the shortest (zig-zag) path of line segments with
orientations from A. Any A-distance is a metric; it is called also a fixed
orientation metric.

A fixed orientation metric with A = { iπ
n : 1 ≤ i ≤ n} for fixed

n ∈ [2,∞], is called a uniform orientation metric; cf. 2n-gon metric
above. It is the L1-metric, hexagonal metric, L2-metric for n = 2, 3,∞,
respectively.

• Central Park metric
The Central Park metric is a metric on R

2, defined as the length of a
shortest L1-path (Manhattan path) between two points x, y ∈ R

2 in the
presence of a given set of areas which are traversed by a shortest Euclidean
path (for example, Central Park in Manhattan).

• Collision avoidance distance
Let O = {O1, . . . , Om} be a collection of pairwise disjoint polygons on the
Euclidean plane representing a set of obstacles which are neither transpar-
ent nor traversable.

The collision avoidance distance (or piano movers distance,
shortest path metric with obstacles) is a metric on the set R

2\{O},
defined, for any x, y ∈ R

2\{O}, as the length of the shortest path among
all possible continuous paths, connecting x and y, that do not intersect
obstacles Oi\∂Oi (a path can pass through points on the boundary ∂Oi

of Oi), i = 1, . . . m.
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• Rectilinear distance with barriers
Let O = {O1, . . . , Om} be a set of pairwise disjoint open polygonal barriers
on R

2. A rectilinear path (or Manhattan path) Pxy from x to y is a collection
of horizontal and vertical segments in the plane, joining x and y. The path
Pxy is called feasible if Pxy ∩ (∪m

i=1Bi) = ∅.
The rectilinear distance with barriers (or rectilinear distance in

the presence of barriers) is a metric on R
2\{O}, defined, for any x, y ∈

R
2\{O}, as the length of the shortest feasible rectilinear path from x to y.
The rectilinear distance in the presence of barriers is a restriction of the

Manhattan metric, and usually it is considered on the set {q1, . . . , qn} ⊂
R

2 of n origin-destination points: the problem to find such a path arises,
for example, in Urban Transportation, or in Plant and Facility Layout
(see, for example, [LaLi81]).

• Link distance
Let P ⊂ R

2 be a polygonal domain (on n vertices and h holes), i.e., a closed
multiply-connected region whose boundary is a union of n line segments,
forming h + 1 closed polygonal cycles. The link distance (Suri 1986) is a
metric on P , defined, for any x, y ∈ P , as the minimum number of edges
in a polygonal path from x to y within the polygonal domain P .

If the path is restricted to be rectilinear, one obtains the rectilinear link
distance. If each line segment of the path is parallel to one from a set A
of fixed orientations, one obtains the A-oriented link distance; cf. fixed
orientation metric above.

• Facility layout distances
A layout is a partition of a rectangular plane region into smaller rectangles,
called departments, by lines parallel to the sides of original rectangle. All
interior vertices should be three-valent, and some of them, at least one on
the boundary of each department, are doors, i.e., input-output locations.

The problem is to design a convenient notion of distance d(x, y)
between departments x and y which minimizes the cost function∑

x,y F (x, y)d(x, y), where F (x, y) is some material flow between x and y.
The main distances used are:

The centroid distance, i.e., the shortest Euclidean or Manhattan
distance between centroids (the intersections of the diagonals) of x and y;

The perimeter distance, i.e., the shortest rectilinear distance be-
tween doors of x and y, but going only along the walls, i.e., department
perimeters.

• Quickest path metric
A quickest path metric (or network metric, time metric) is a metric
on R

2 (or on a subset of R
2) in the presence of a given transportation

network, i.e., a finite graph G = (V,E) with V ⊂ R
2 and edge-weight

function w(e) > 1: the vertices and edges are stations and roads. For any
x, y ∈ R

2, it is the time needed for a quickest path (i.e., a path minimizing
thetravel duration) between them when using, eventually, the network.
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Movement takes place, either off the network with unit speed, or along its
roads e ∈ E with fixed speeds w(e) >> 1, with respect to a given metric d
on the plane (usually, the Euclidean metric, or the Manhattan metric).
The network G can be accessed or exited only at stations (usual discrete
model) or at any point of roads (the continuous model).

The heavy luggage metric (Abellanas, Hurtado and Palop 2005) is
a quickest path metric on R

2 in the presence of a network with speed 1
outside of the network and speed ∞ (so, travel time 0) inside of it.

The airlift metric is a quickest path metric on R
2 in the presence of an

airports network, i.e., a planar graph G = (V,E) on n vertices (airports)
with positive edge weights (we)e∈E (flight durations). The graph may be
entered and exited only at the airports. Movement off the network takes
place with unit speed with respect to the Euclidean metric. We assume
that going by car takes time equal to the Euclidean distance d, whereas
the flight along an edge e = uv of G takes time w(e)< d(u, v). In the
simplest case, when there is an airlift between two points a, b ∈ R

2, the
distance between x and y is equal to

min{d(x, y), d(x, a) + w + d(b, y), d(x, b) + w + d(a, y)},

where w is the flight duration from a to b.
The city metric is a quickest path metric on R

2 in the presence of
a city public transportation network, i.e., a planar straight line graph G
with horizontal or vertical edges. G may be composed of many connected
components, and may contain cycles. One can enter/exit G at any point,
be it at a vertex or on an edge (it is possible to postulate fixed entry
points, too). Once having accessed G, one travels at fixed speed v > 1
in one of the available directions. Movement off the network takes place
with unit speed with respect to the Manhattan metric (as in a large
modern-style city with streets arranged in north–south and east–west
directions).

The subway metric is a quickest path metric on R
2 which is a variant

of the city metric: a subway (in the form of a line in the plane) is used
within a city grid.

• Shantaram metric
For any positive numbers a, b with b ≤ 2a ≤ 2b, the Shantaram metric
between two points x, y ∈ R

2 is 0, a or b if x and y coincide in exactly 2,
1 or no coordinates, respectively.

• Periodic metric
A metric d on R

2 is called periodic if there exist two linearly independent
vectors v and u such that the translation by any vector w = mv + nu,
m,n ∈ Z, preserves distances, i.e., d(x, y)= d(x + w, y + w) for any
x, y ∈ R

2 (cf. translation invariant metric in Chap. 5).
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• Nice metric
A metric d on R

2 with the following properties is called nice (Klein and
Wood 1989):

1. d induces the Euclidean topology;
2. The d-circles are bounded with respect to the Euclidean metric;
3. If x, y ∈ R

2 and x �= y, then there exists a point z, z �= x, z �= y, such
that d(x, y) = d(x, z) + d(z, y);

4. If x, y ∈ R
2, x ≺ y (where ≺ is a fixed order on R

2, the lexicographic
order, for example), C(x, y) = {z ∈ R

2 : d(x, z) ≤ d(y, z)}, D(x, y) =
{z ∈ R

2 : d(x, z) < d(y, z), and D(x, y) is the closure of D(x, y), then
J(x, y) = C(x, y) ∩ D(x, y) is a curve homeomorphic to (0, 1). The
intersection of two such curves consists of finitely many connected
components.

Every norm metric fulfills 1, 2, and 3 Property 2 means that the metric
d is continuous at infinity with respect to the Euclidean metric. Property
4 is to ensure that the boundaries of the correspondent Voronoi diagrams
are curves, and that not too many intersections exist in a neighborhood
of a point, or at infinity.

A nice metric d has a nice Voronoi diagram: in the Voronoi diagram
V (P, d, R2) (where P = {p1, . . . , pk}, k ≥ 2, is the set of generator points)
each Voronoi region V (pi) is a path-connected set with a non-empty
interior, and the system {V (p1), . . . , V (pk)} forms a partition of the plane.

• Contact quasi-distances
The contact quasi-distances are the following variations of the dis-
tance convex function (cf. Chap. 1) defined on R

2 (in general, on R
n)

for any x, y ∈ R
2.

Given a set B ⊂ R
2, the first contact quasi-distance dB is defined by

inf{α > 0 : y − x ∈ αB}

(cf. sensor network distances in Chap. 29).
Given, moreover, a point b ∈ B and a set A ⊂ R

2, the lin-
ear contact quasi-distance is a point-set distance defined by
db(x,A) = inf{α ≥ 0 : αb + x ∈ A}.

The intercept quasi-distance is, for a finite set B, defined by∑
b∈B db(x,y)

|B| .
• Radar discrimination distance

The radar discrimination distance is a distance on R
2, defined by

|ρx − ρy + θxy|

if x, y ∈ R
2\{0}, and by

|ρx − ρy|
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if x = 0 or y = 0, where, for each “location” x ∈ R
2, ρx denotes the radial

distance of x from {0} and, for any x, y ∈ R2\{0}, θxy denotes the radian
angle between them.

• Ehrenfeucht–Haussler semi-metric
Let S be a subset of R

2 such that x1 ≥ x2−1 ≥ 0 for any x = (x1, x2) ∈ S.
The Ehrenfeucht–Haussler semi-metric (see [EhHa88]) on S is

defined by

log2

((
x1

y2
+ 1

)(
y1

x2
+ 1

))

.

• Toroidal metric
The toroidal metric is a metric on T = [0, 1)× [0, 1) = {x = (x1, x2) ∈

R
2 : 0 ≤ x1, x2 < 1}, defined for any x, y ∈ R

2 by

√
t21 + t22,

where ti = min{|xi − yi|, |xi − yi + 1|} for i = 1, 2 (cf. torus metric).
• Circle metric

The circle metric is the intrinsic metric on the unit circle S1 in the
plane. As S1 = {(x, y) : x2 + y2 = 1} = {eiθ : 0 ≤ θ < 2π}, it is the length
of the shorter of the two arcs joining the points eiθ, eiϑ ∈ S1, and can be
written as

min{|θ − ϑ|, 2π − |θ − ϑ|} =
{

|ϑ− θ|, if 0 ≤ |ϑ− θ| ≤ π,
2π − |ϑ− θ|, if |ϑ− θ| > π.

(Cf. metric between angles.)
• Angular distance

The angular distance traveled around a circle is the number of radians
the path subtends, i.e.,

θ =
l

r
,

where l is the length of the path, and r is the radius of the circle.
• Metric between angles

The metric between angles Δ is a metric on the set of all angles in the
plane, defined for any θ, ϑ ∈ [0, 2π) (cf. circle metric) by

min{|θ − ϑ|, 2π − |θ − ϑ|} =
{

|ϑ− θ|, if 0 ≤ |ϑ− θ| ≤ π,
2π − |ϑ− θ|, if |ϑ− θ| > π.

• Metric between directions
On R

2, a direction l̂ is a class of all straight lines which are parallel to a
given straight line l ⊂ R

2. The metric between directions is a metric
on the set L of all directions on the plane, defined, for any directions
l̂, m̂ ∈ L, as the angle between any two representatives.
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• Circular-railroad quasi-metric
The circular-railroad quasi-metric on the unit circle S1 ⊂ R

2 is de-
fined, for any x, y ∈ S1, as the length of the counterclockwise circular arc
from x to y in S1.

• Inversive distance
The inversive distance between two non-intersecting circles in the plane
is defined as the natural logarithm of the ratio of the radii (the larger to
the smaller) of two concentric circles into which the given circles can be
inverted.

Let c be the distance between the centers of two non-intersecting circles
of radii a and b < a. Then their inversive distance is given by

cosh−1

∣
∣
∣
∣
a2 + b2 − c2

2ab

∣
∣
∣
∣ .

The circumcircle and incircle of a triangle with circumradius R and
inradius r are at the inversive distance 2 sinh−1( 1

2

√
r
R ).

Given three non-collinear points, construct three tangent circles such
that one is centered at each point and the circles are pairwise tangent to
one another. Then there exist exactly two non-intersecting circles that are
tangent to all three circles. These are called the inner and outer Soddy
circles. The inversive distance between the Soddy circles is 2 cosh−1 2.

19.2 Digital metrics

Here we list special metrics which are used in Computer Vision (or Pattern
Recognition, Robot Vision, Digital Geometry).

A computer picture (or computer image) is a subset of Z
n which is called

a digital nD space. Usually, pictures are represented in the digital plane (or
image plane) Z

2, or in the digital space (or image space) Z
3. The points of Z

2

and Z
3 are called pixels and voxels, respectively. An nD m-quantized space

is a scaling 1
mZ

n.
A digital metric (see, for example, [RoPf68]) is any metric on a digital

nD space. Usually, it should take integer values.
The metrics on Z

n that are mainly used are the L1- and L∞-metrics,
as well as the L2-metric after rounding to the nearest greater (or lesser)
integer. In general, a given list of neighbors of a pixel can be seen as a list of
permitted one-step moves on Z

2. Let us associate a prime distance, i.e., a
positive weight, to each type of such move.

Many digital metrics can be obtained now as the minimum, over all admis-
sible paths (i.e., sequences of permitted moves), of the sum of corresponding
prime distances.
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In practice, the subset (Zm)n = {0, 1, . . . ,m− 1}n is considered instead of
the full space Z

n. (Zm)2 and (Zm)3 are called the m-grill and m-framework,
respectively. The most used metrics on (Zm)n are the Hamming metric
and the Lee metric.

• Grid metric
The grid metric is the L1-metric on Z

n. The L1-metric on Z
n can be

seen as the path metric of an infinite graph: two points of Z
n are adjacent

if their L1-distance is equal to one. For Z
2 this graph is the usual grid.

Since each point has exactly four closest neighbors in Z
2 for the L1-metric,

it is also called the 4-metric.
For n = 2, this metric is the restriction on Z

2 of the city-block met-
ric which is also called the taxicab metric, rectilinear metric, or
Manhattan metric.

• Lattice metric
The lattice metric is the L∞-metric on Z

n. The L∞-metric on Z
n can be

seen as the path metric of an infinite graph: two points of Z
n are adjacent if

their L∞-distance is equal to one. For Z
2, the adjacency corresponds to the

king move in chessboard terms, and this graph is called the L∞-grid, while
this metric is also called the chessboard metric, king-move metric, or
king metric. Since each point has exactly eight closest neighbors in Z

2

for the L∞-metric, it is also called the 8-metric.
This metric is the restriction on Z

n of the Chebyshev metric which
is also called the sup metric, or uniform metric.

• Hexagonal metric
The hexagonal metric is a metric on Z

2 with a unit sphere S1(x) (cen-
tered at x∈Z

2), defined by S1(x) = S1
L1

(x) ∪ {(x1 − 1, x2 − 1), (x1 − 1,
x2 + 1)} for x even (i.e., with even x2), and by S1(x) = S1

L1
(x) ∪ {(x1 +

1, x2 − 1), (x1 + 1, x2 + 1)} for x odd (i.e., with odd x2). Since any unit
sphere S1(x) contains exactly six integral points, the hexagonal metric is
also called the 6-metric (see [LuRo76]).

For any x, y ∈ Z
2, this metric can be written as

max
{

|u2|,
1
2

(|u2|+ u2) +
⌊

x2 + 1
2

⌋

−
⌊

y2 + 1
2

⌋

− u1 ,

1
2

(|u2| − u2)−
⌊

x2 + 1
2

⌋

+
⌊

y2 + 1
2

⌋

+ u1

}

,

where u1 = x1 − y1, and u2 = x2 − y2.
The hexagonal metric can be defined as the path metric on the hexag-

onal grid of the plane. In hexagonal coordinates (h1, h2) (in which the h1-
and h2-axes are parallel to the grid’s edges) the hexagonal distance be-
tween points (h1, h2) and (i1, i2) can be written as |h1 − i1| + |h2 − i2| if
(h1−i1)(h2−i2) ≥ 0, and as max{|h1−i1|, |h2−i2|} if (h1−i1)(h2−i2) ≤ 0.
Here the hexagonal coordinates (h1, h2) of a point x are related to its
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Cartesian coordinates (x1, x2) by h1 = x1 − #x2
2 $, h2 = x2 for x even, and

by h1 = x1 − #x2+1
2 $, h2 = x2 for x odd.

The hexagonal metric is a better approximation to the Euclidean metric
than either L1-metric or L∞-metric.

• Neighborhood sequence metric
On the digital plane Z

2, consider two types of motions: the city-block
motion, restricting movements only to the horizontal or vertical directions,
and the chessboard motion, also allowing diagonal movements.

The use of both these motions is determined by a neighborhood sequence
B = {b(1), b(2), . . . , b(l)}, where b(i) ∈ {1, 2} is a particular type of neigh-
borhood, with b(i) = 1 signifying unit change in 1 coordinate (city-block
neighborhood), and b(i) = 2 meaning unit change also in 2 coordinates
(chessboard neighborhood). The sequence B defines the type of motion to
be used at every step (see [Das90]).

The neighborhood sequence metric is a metric on Z
2, defined as the

length of a shortest path between x and y ∈ Z
2, determined by a given

neighborhood sequence B. It can be written as

max{d1
B(u), d2

B(u)},

where u1 = x1 − y1, u2 = x2 − y2, d1
B(u) = max{|u1|, |u2|}, d2

B(u) =
∑l

j=1#
|u1|+|u2|+g(j)

f(l) $, f(0) = 0, f(i) =
∑i

j=1 b(j), 1 ≤ i ≤ l, g(j) =
f(l)− f(j − 1)− 1, 1 ≤ j ≤ l.

For B = {1} one obtains the city-block metric, for B = {2} one
obtains the chessboard metric. The case B = {1, 2} , i.e., the alternative
use of these motions, results in the octagonal metric, introduced in
[RoPf68].

A proper selection of the B-sequence can make the corresponding metric
very close to the Euclidean metric. It is always greater than the chessboard
distance, but smaller than the city-block distance.

• nD-neighborhood sequence metric
The nD-neighborhood sequence metric is a metric on Z

n, defined as
the length of a shortest path between x and y ∈ Z

n, determined by a given
nD-neighborhood sequence B (see [Faze99]).

Formally, two points x, y ∈ Z
n are called m-neighbors, 0 ≤ m ≤ n, if

0 ≤ |xi−yi| ≤ 1, 1 ≤ i ≤ n, and
∑n

i=1 |xi−yi| ≤ m. A finite sequence B =
{b(1), . . . , b(l)}, b(i) ∈ {1, 2, . . . , n}, is called an nD-neighborhood sequence
with period l. For any x, y ∈ Z

n, a point sequence x = x0, x1, . . . , xk = y,
where xi and xi+1, 0 ≤ i ≤ k − 1, are r-neighbors, r = b((i mod l) + 1),
is called a path from x to y determined by B with length k. The distance
between x and y can be written as

max
1≤i≤n

di(u) with di(x, y) =
l∑

j=1

⌊
ai + gi(j)

fi(l)

⌋

,
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where u = (|u1|, |u2|, . . . , |un|) is the non-increasing ordering of |um|, um =
xm − ym, m = 1, . . . , n, that is, |ui| ≤ |uj | if i < j; ai =

∑n−i+1
j=1 uj ;

bi(j) = b(j) if b(j) < n−i+2, and is n−i+1 otherwise; fi(j) =
∑j

k=1 bi(k)
if 1 ≤ j ≤ l, and is 0 if j = 0; gi(j) = fi(l)− fi(j − 1)− 1, 1 ≤ j ≤ l.

The set of 3D-neighborhood sequence metrics forms a complete distribu-
tive lattice under the natural comparison relation.

• Strand–Nagy distances
The face-centered cubic lattice is A3 = {(a1, a2, a3) ∈ Z

3 : a1 + a2 +
a3 ≡ 0(mod 2)}, and the body-centered cubic lattice is its dual A∗

3 =
{(a1, a2, a3) ∈ Z

3 : a1 ≡ a2 ≡ a3(mod 2)}.
Let L ∈ {A3, A

∗
3}. For any points x, y ∈ L, let d1(x, y) =

∑3
j=1 |xj − yj |

denote the L1-metric and d∞(x, y) = maxj∈{1,2,3} |xj − yj | denote the
L∞-metric between them. Two points x, y ∈ L are called 1-neighbors if
d1(x, y) ≤ 3 and 0 < d∞(x, y) ≤ 1; they are called 2-neighbors if d1(x, y) ≤
3 and 1 < d∞(x, y) ≤ 2. Given a sequence B = {b(i)}∞i=1 over the alphabet
{1, 2}, a B-path in L is a point sequence x = x0, x1, . . . , xk = y, where xi

and xi+1, 0 ≤ i ≤ k − 1, are 1-neighbors if b(i) = 1 and 2-neighbors if
b(i) = 2.

The Strand–Nagy distance between two points x, y ∈ L (called the
B-distance by Strand and Nagy 2007) is the length of a shortest B-path
between them. For L = A3, it is

min{k : k ≥ max{d1(x, y)
2

, d∞(x, y)− |{1 ≤ i ≤ k : b(i) = 2}|}.

The Strand–Nagy distance is a metric, for example, for the periodic se-
quence B = (1, 2, 1, 2, 1, 2, . . . ) but not for the periodic sequence B =
(2, 1, 2, 1, 2, 1, . . . ).

• Path-generated metric
Consider the l∞-grid, i.e., the graph with the vertex-set Z

2, and two ver-
tices being neighbors if their l∞-distance is 1. Let P be a collection of paths
in the l∞-grid such that, for any x, y ∈ Z

2, there exists at least one path
from P between x and y, and if P contains a path Q, then it also contains
every path contained in Q. Let dP(x, y) be the length of the shortest path
from P between x and y ∈ Z

2. If dP is a metric on Z
2, then it is called a

path-generated metric (see, for example, [Melt91]).
Let G be one of the sets: G1 = {↑,→}, G2A = {↑,↗}, G2B = {↑,↖},

G2C = {↗,↖}, G2D = {→,↖}, G3A = {→, ↑,↗}, G3B{→, ↑,↖},
G4A = {→,↗,↖}, G4B{↑,↗,↖, }, G5 = {→, ↑,↗,↖}. Let P(G) be
the set of paths which are obtained by concatenation of paths in G and
the corresponding paths in the opposite directions. Any path-generated
metric coincides with one of the metrics dP(G). Moreover, one can obtain
the following formulas:

1. dP(G1)(x, y) = |u1|+ |u2|
2. dP(G2A)(x, y) = max{|2u1 − u2|, |u2|}
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3. dP(G2B)(x, y) = max{|2u1 + u2|, |u2|}
4. dP(G2C)(x, y) = max{|2u2 + u1|, |u1|}
5. dP(G2D)(x, y) = max{|2u2 − u1|, |u1|}
6. dP(G3A)(x, y) = max{|u1|, |u2|, |u1 − u2|}
7. dP(G3B)(x, y) = max{|u1|, |u2|, |u1 + u2|}
8. dP(G4A)(x, y) = max{2'(|u1| − |u2|)/2(, 0}+ |u2|
9. dP(G4B)(x, y) = max{2'(|u2| − |u1|)/2(, 0}+ |u1|

10. dP(G5)(x, y) = max{|u1|, |u2|}
where u1 = x1 − y1, u2 = x2 − y2, and '.( is the ceiling function: for any
real x the number 'x( is the least integer greater than or equal to x.

The metric spaces obtained from G-sets which have the same numerical
index are isometric. dP(G1) is the city-block metric, and dP(G5) is the
chessboard metric.

• Knight metric
The knight metric is a metric on Z

2, defined as the minimum number
of moves a chess knight would take to travel from x to y ∈ Z

2. Its unit
sphere S1

knight, centered at the origin, contains exactly 8 integral points
{(±2,±1), (±1,±2)}, and can be written as S1

knight = S3
L1
∩ S2

l∞
, where

S3
L1

denotes the L1-sphere of radius 3, and S2
L∞

denotes the L∞-sphere
of radius 2, both centered at the origin (see [DaCh88]).

The distance between x and y is 3 if (M,m) = (1, 0), is 4 if (M,m) =
(2, 2) and is equal to max{'M

2 (, '
M+m

3 (}+ (M + m)−max{'M
2 (, '

M+m
3 (}

(mod 2) otherwise, where M = max{|u1|, |u2|}, m = min{|u1|, |u2|},
u1 = x1 − y1, u2 = x2 − y2.

• Super-knight metric
Let p, q ∈ N such that p + q is odd, and (p, q) = 1.

A (p, q)-super-knight (or (p, q)-leaper) is a (variant) chess piece whose
move consists of a leap p squares in one orthogonal direction followed by
a 90◦ direction change, and q squares leap to the destination square.

Chess-variant terms exist for a (p, 1)-leaper with p = 0, 1, 2, 3, 4
(Wazir, Ferz, usual Knight, Camel, Giraffe), and for a (p, 2)-leaper with
p = 0, 1, 2, 3 (Dabbaba, usual Knight, Alfil, Zebra).

A (p, q)-super-knight metric (or (p, q)-leaper metric) is a metric on
Z

2, defined as the minimum number of moves a chess (p, q)-super-knight
would take to travel from x to y ∈ Z

2. Thus, its unit sphere S1
p,q, centered

at the origin, contains exactly 8 integral points {(±p,±q), (±q,±p)}. (See
[DaMu90].)

The knight metric is the (1, 2)-super-knight metric. The city-block
metric can be considered as the Wazir metric, i.e., (0, 1)-super-knight
metric.

• Rook metric
The rook metric is a metric on Z

2, defined as the minimum number of
moves a chess rook would take to travel from x to y ∈ Z

2. This metric can
take only the values {0, 1, 2}, and coincides with the Hamming metric
on Z

2.
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• Chamfer metric
Given two positive numbers α, β with α ≤ β < 2α, consider the (α, β)-
weighted l∞-grid, i.e., the infinite graph with the vertex-set Z

2, two vertices
being adjacent if their l∞-distance is one, while horizontal/vertical and
diagonal edges have weights α and β, respectively.

A chamfer metric (or (α, β)-chamfer metric, [Borg86]) is the weighted
path metric in this graph. For any x, y ∈ Z

2 it can be written as

βm + α(M −m),

where M = max{|u1|, |u2|}, m = min{|u1|, |u2|}, u1 = x1−y1, u2 = x2−y2.
If the weights α and β are equal to the Euclidean lengths 1,

√
2 of

horizontal/vertical and diagonal edges, respectively, then one obtains the
Euclidean length of the shortest chessboard path between x and y. If
α = β = 1, one obtains the chessboard metric. The (3, 4)-chamfer metric
is the most used one for digital images; it is called simply the (3, 4)-metric.

A 3D-chamfer metric is the weighted path metric of the graph
with the vertex-set Z

3 of voxels, two voxels being adjacent if their l∞-
distance is one, while weights α, β, and γ are associated, respectively,
to the distance from 6 face neighbors, 12 edge neighbors, and 8 corner
neighbors.

• Weighted cut metric
Consider the weighted l∞-grid, i.e., the graph with the vertex-set Z

2, two
vertices being adjacent if their l∞-distance is one, and each edge having
some positive weight (or cost). The usual weighted path metric between
two pixels is the minimal cost of a path connecting them. The weighted
cut metric between two pixels is the minimal cost (defined now as the
sum of costs of crossed edges) of a cut, i.e., a plane curve connecting them
while avoiding pixels.

• Digital volume metric
The digital volume metric is a metric on the set K of all bounded
subsets (pictures, or images) of Z

2 (in general, of Z
n), defined by

vol(A�B),

where vol(A) = |A|, i.e., the number of pixels contained in A, and A�B
is the symmetric difference between sets A and B.

This metric is a digital analog of the Nikodym metric.
• Hexagonal Hausdorff metric

The hexagonal Hausdorff metric is a metric on the set of all
bounded subsets (pictures, or images) of the hexagonal grid on the plane,
defined by

inf{p, q : A ⊂ B + qH, B ⊂ A + pH}
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for any pictures A and B, where pH is the regular hexagon of size p (i.e.,
with p + 1 pixels on each edge), centered at the origin and including its
interior, and + is the Minkowski addition: A+B = {x+ y : x ∈ A, y ∈ B}
(cf. Pompeiu–Hausdorff–Blaschke metric in Chap. 9). If A is a pixel
x, then the distance between x and B is equal to supy∈B d6(x, y), where
d6 is the hexagonal metric, i.e., the path metric on the hexagonal
grid.



Chapter 20
Voronoi Diagram Distances

Given a finite set A of objects Ai in a space S, computing the Voronoi diagram
of A means partitioning the space S into Voronoi regions V (Ai) in such a
way that V (Ai) contains all points of S that are “closer” to Ai than to any
other object Aj in A.

Given a generator set P = {p1, . . . pk}, k ≥ 2, of distinct points (genera-
tors) from R

n, n ≥ 2, the ordinary Voronoi polygon V (pi) associated with a
generator pi is defined by

V (pi) = {x ∈ R
n : dE(x, pi) ≤ dE(x, pj) for any j �= i},

where dE is the ordinary Euclidean distance on R
n. The set

V (P, dE , Rn) = {V (p1), . . . , V (pk)}

is called the n-dimensional ordinary Voronoi diagram, generated by P .
The boundaries of (n-dimensional) Voronoi polygons are called ((n − 1)-

dimensional) Voronoi facets, the boundaries of Voronoi facets are called
(n− 2)-dimensional Voronoi faces, ..., the boundaries of two-dimensional
Voronoi faces are called Voronoi edges, and the boundaries of Voronoi edges
are called Voronoi vertices.

A generalization of the ordinary Voronoi diagram is possible in the follow-
ing three ways:

1. The generalization with respect to the generator set A = {A1, . . . , Ak}
which can be a set of lines, a set of areas, etc.

2. The generalization with respect to the space S which can be a sphere
(spherical Voronoi diagram), a cylinder (cylindrical Voronoi diagram), a
cone (conic Voronoi diagram), a polyhedral surface (polyhedral Voronoi
diagram), etc.

3. The generalization with respect to the function d, where d(x,Ai) measures
the “distance” from a point x ∈ S to a generator Ai ∈ A.

This generalized distance function d is called the Voronoi generation
distance (or Voronoi distance, V -distance), and allows many more functions

M.M. Deza and E. Deza, Encyclopedia of Distances, 339
DOI 10.1007/978-3-642-00234-2 20, c© Springer-Verlag Berlin Heidelberg 2009
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than an ordinary metric on S. If F is a strictly increasing function of
a V -distance d, i.e., F (d(x,Ai)) ≤ F (d(x,Aj)) if and only if d(x,Ai) ≤
d(x,Aj), then the generalized Voronoi diagrams V (A,F (d), S) and V (A, d, S)
coincide, and one says that the V -distance F (d) is transformable to the V -
distance d, and that the generalized Voronoi diagram V (A,F (d), S) is a trivial
generalization of the generalized Voronoi diagram V (A, d, S).

In applications, one often uses for trivial generalizations of the ordinary
Voronoi diagram V (P, d, Rn) the exponential distance, the logarithmic
distance, and the power distance. There are generalized Voronoi diagrams
V (P,D, Rn), defined by V -distances, that are not transformable to the Eu-
clidean distance dE : the multiplicatively weighted Voronoi distance,
the additively weighted Voronoi distance, etc.

For additional information see, for example, [OBS92], [Klei89].

20.1 Classical Voronoi generation distances

• Exponential distance
The exponential distance is the Voronoi generation distance

Dexp(x, pi) = edE(x,pi)

for the trivial generalization V (P,Dexp, R
n) of the ordinary Voronoi dia-

gram V (P, dE , Rn), where dE is the Euclidean distance.
• Logarithmic distance

The logarithmic distance is the Voronoi generation distance

Dln(x, pi) = ln dE(x, pi)

for the trivial generalization V (P,Dln, Rn) of the ordinary Voronoi diagram
V (P, dE , Rn), where dE is the Euclidean distance.

• Power distance
The power distance is the Voronoi generation distance

Dα(x, pi) = dE(x, pi)α, α > 0,

for the trivial generalization V (P,Dα, Rn) of the ordinary Voronoi diagram
V (P, dE , Rn), where dE is the Euclidean distance.

• Multiplicatively weighted distance
The multiplicatively weighted distance dMW is the Voronoi genera-
tion distance of the generalized Voronoi diagram V (P, dMW , Rn) (multi-
plicatively weighted Voronoi diagram), defined by

dMW (x, pi) =
1
wi

dE(x, pi)
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for any point x ∈ R
n and any generator point pi ∈ P = {p1, . . . , pk}, k ≥ 2,

where wi ∈ w = {wi, . . . , wk} is a given positive multiplicative weight of
the generator pi, and dE is the ordinary Euclidean distance.

A Möbius diagram (Boissonnat and Karavelas 2003) is a diagram the
midsets (bisectors) of which are hyperspheres. It generalizes the Euclidean
Voronoi and power diagrams, and it is equivalent to power diagrams in
R

n+1.
For R

2, the multiplicatively weighted Voronoi diagram is called a circular
Dirichlet tessellation. An edge in this diagram is a circular arc or a straight
line.

In the plane R
2, there exists a generalization of the multiplicatively

weighted Voronoi diagram, the crystal Voronoi diagram, with the same
definition of the distance (where wi is the speed of growth of the crystal pi),
but a different partition of the plane, as the crystals can grow only in an
empty area.

• Additively weighted distance
The additively weighted distance dAW is the Voronoi generation
distance of the generalized Voronoi diagram V (P, dAW , Rn) (additively
weighted Voronoi diagram), defined by

dAW (x, pi) = dE(x, pi)− wi

for any point x ∈ R
n and any generator point pi ∈ P = {p1, . . . , pk},

k ≥ 2, where wi ∈ w = {wi, . . . , wk} is a given additive weight of the
generator pi, and dE is the ordinary Euclidean distance.

For R
2, the additively weighted Voronoi diagram is called a hyperbolic

Dirichlet tessellation. An edge in this Voronoi diagram is a hyperbolic arc
or a straight line segment.

• Additively weighted power distance
The additively weighted power distance dPW is the Voronoi genera-
tion distance of the generalized Voronoi diagram V (P, dPW , Rn) (additively
weighted power Voronoi diagram), defined by

dPW (x, pi) = d2
E(x, pi)− wi

for any point x ∈ R
n and any generator point pi ∈ P = {p1, . . . , pk}, k ≥ 2,

where wi ∈ w = {wi, . . . , wk} is a given additive weight of the generator
pi, and dE is the ordinary Euclidean distance.

This diagram can be seen as a Voronoi diagram of circles or as a Voronoi
diagram with the Laguerre geometry.

The multiplicatively weighted power distance dMPW (x, pi) =
1

wi
d2

E(x, pi), wi > 0, is transformable to the multiplicatively weighted
distance, and gives a trivial extension of the multiplicatively weighted
Voronoi diagram.
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• Compoundly weighted distance
The compoundly weighted distance dCW is the Voronoi generation
distance of the generalized Voronoi diagram V (P, dCW , Rn) (compoundly
weighted Voronoi diagram), defined by

dCW (x, pi) =
1
wi

dE(x, pi)− vi

for any point x ∈ R
n and any generator point pi ∈ P = {p1, . . . , pk},

k ≥ 2, where wi ∈ w = {wi, . . . , wk} is a given positive multiplicative
weight of the generator pi, vi ∈ v = {v1, . . . , vk} is a given additive weight
of the generator pi, and dE is the ordinary Euclidean distance.

An edge in the two-dimensional compoundly weighted Voronoi diagram
is a part of a fourth-order polynomial curve, a hyperbolic arc, a circular
arc, or a straight line.

20.2 Plane Voronoi generation distances

• Shortest path distance with obstacles
Let O = {O1, . . . , Om} be a collection of pairwise disjoint polygons on the
Euclidean plane, representing a set of obstacles which are neither trans-
parent nor traversable.

The shortest path distance with obstacles dsp is the Voronoi gen-
eration distance of the generalized Voronoi diagram V (P, dsp, R

2\{O})
(shortest path Voronoi diagram with obstacles), defined, for any x, y ∈
R

2\{O}, as the length of the shortest path among all possible continu-
ous (x− y)-paths that do not intersect obstacles Oi\∂Oi (a path can pass
through points on the boundary ∂Oi of Oi), i = 1, . . . m.

The shortest path is constructed with the aid of the visibility polygon
and the visibility graph of V (P, dsp, R

2\{O}).
• Visibility shortest path distance

Let O = {O1, . . . , Om} be a collection of pairwise disjoint line segments
Ol = [al, bl] in the Euclidean plane, with P = {p1, . . . , pk}, k ≥ 2, the set
of generator points,

V IS(pi) = {x ∈ R
2 : [x, pi]∩]al, bl[= ∅ for all l = 1, . . . ,m}

the visibility polygon of the generator pi, and dE the ordinary Euclidean
distance.

The visibility shortest path distance dvsp is the Voronoi generation
distance of the generalized Voronoi diagram V (P, dvsp, R

2\{O}) (visibility
shortest path Voronoi diagram with line obstacles), defined by

dvsp(x, pi) =
{

dE(x, pi), if x ∈ V IS(pi),
∞, otherwise .
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• Network distances
A network on R

2 is a connected planar geometrical graph G = (V,E) with
the set V of vertices and the set E of edges (links).

Let the generator set P = {p1, . . . , pk} be a subset of the set V =
{p1, . . . , pl} of vertices of G, and let the set L be given by points of links
of G.

The network distance dnetv on the set V is the Voronoi generation
distance of the network Voronoi node diagram V (P, dnetv, V ), defined as
the shortest path along the links of G from pi ∈ V to pj ∈ V . It is the
weighted path metric of the graph G, where we is the Euclidean length of
the link e ∈ E.

The network distance dnetl on the set L is the Voronoi generation
distance of the network Voronoi link diagram V (P, dnetl, L), defined as the
shortest path along the links from x ∈ L to y ∈ L.

The access network distance daccnet on R
2 is the Voronoi generation

distance of the network Voronoi area diagram V (P, daccnet, R
2), defined by

daccnet(x, y) = dnetl(l(x), l(y)) + dacc(x) + dacc(y),

where dacc(x) = minl∈L d(x, l) = dE(x, l(x)) is the access distance of
a point x. In fact, dacc(x) is the Euclidean distance from x to the ac-
cess point l(x) ∈ L of x which is the nearest to x point on the links
of G.

• Airlift distance
An airports network is an arbitrary planar graph G on n vertices (airports)
with positive edge weights (flight durations). This graph may be entered
and exited only at the airports. Once having accessed G, one travels at
fixed speed v > 1 within the network. Movement off the network takes
place with the unit speed with respect to the ordinary Euclidean distance.

The airlift distance dal is the Voronoi generation distance of the airlift
Voronoi diagram V (P, dal, R

2), defined as the time needed for a quickest
path between x and y in the presence of the airports network G, i.e., a
path minimizing the travel time between x and y.

• City distance
A city public transportation network, like a subway or a bus transportation
system, is a planar straight line graph G with horizontal or vertical edges.
G may be composed of many connected components, and may contain
cycles. One is free to enter G at any point, be it at a vertex or on an edge
(it is possible to postulate fixed entry points, too). Once having accessed
G, one travels at a fixed speed v > 1 in one of the available directions.
Movement off the network takes place with the unit speed with respect
to the Manhattan metric (we imagine a large modern-style city with
streets arranged in north–south and east–west directions).
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The city distance dcity is the Voronoi generation distance of the city
Voronoi diagram V (P, dcity, R2), defined as the time needed for the quick-
est path between x and y in the presence of the network G, i.e., a path
minimizing the travel time between x and y.

The set P = {p1, . . . , pk}, k ≥ 2, can be seen as a set of some city
facilities (say, post offices or hospitals): for some people several facilities
of the same kind are equally attractive, and they want to find out which
facility is reachable first.

• Distance in a river
The distance in a river driv is the Voronoi generation distance of the
generalized Voronoi diagram V (P, driv, R2) (Voronoi diagram in a river),
defined by

driv(x, y) =
−α(x1 − y1) +

√
(x1 − y1)2 + (1− α2)(x2 − y2)2

v(1− α2)
,

where v is the speed of the boat on still water, w > 0 is the speed of con-
stant flow in the positive direction of the x1-axis, and α = w

v (0 < α < 1)
is the relative flow speed.

• Boat-sail distance
Let Ω ⊂ R

2 be a domain in the plane (water surface), let f : Ω → R
2 be

a continuous vector field on Ω, representing the velocity of the water flow
(flow field); let P = {p1, . . . , pk} ⊂ Ω, k ≥ 2, be a set of k points in Ω
(harbors).

The boat-sail distance [NiSu03] dbs is the Voronoi generation dis-
tance of the generalized Voronoi diagram V (P, dbs,Ω) (boat-sail Voronoi
diagram), defined by

dbs(x, y) = inf
γ

δ(γ, x, y)

for all x, y ∈ Ω, where δ(γ, x, y) =
∫ 1

0

∣
∣
∣
∣F

γ
′
(s)

|γ′ (s)| + f(γ(s))
∣
∣
∣
∣

−1

ds is the time
necessary for the boat with the maximum speed F on still water to move
from x to y along the curve γ : [0, 1] → Ω, γ(0) = x, γ(1) = y, and the
infimum is taken over all possible curves γ.

• Peeper distance
Let S = {(x1, x2) ∈ R

2 : x1 > 0} be the half-plane in R
2, let P =

{p1, . . . , pk}, k ≥ 2, be a set of points contained in the half-plane
{(x1, x2) ∈ R

2 : x1 < 0}, and let the window be the interval (a, b) with
a = (0, 1) and b = (0,−1).

The peeper distance dpee is the Voronoi generation distance of the
generalized Voronoi diagram V (P, dpee, S) (peeper’s Voronoi diagram), de-
fined by

dpee(x, pi) =
{

dE(x, pi), if [x, p]∩]a, b[�= ∅,
∞, otherwise ,

where dE is the ordinary Euclidean distance.
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• Snowmobile distance
Let Ω ⊂ R

2 be a domain in the x1x2-plane of the space R
3 (a two-

dimensional mapping), and let Ω∗ = {(q, h(q)) : q = (x1(q), x2(q)) ∈
Ω, h(q) ∈ R} be the three-dimensional land surface associated with the
mapping Ω. Let P = {p1, . . . , pk} ⊂ Ω, k ≥ 2, be a set of k points in Ω
(snowmobile stations).

The snowmobile distance dsm is the Voronoi generation distance of
the generalized Voronoi diagram V (P, dsm,Ω) (snowmobile Voronoi dia-
gram), defined by

dsm(q, r) = inf
γ

∫

γ

1

F
(
1− αdh(γ(s))

ds

)ds

for any q, r ∈ Ω, and calculating the minimum time necessary for the
snowmobile with the speed F on flat land to move from (q, h(q)) to (r, h(r))
along the land path γ∗ : γ∗(s) = (γ(s), h(γ(s))) associated with the domain
path γ : [0, 1] → Ω, γ(0) = q, γ(1) = r (the infimum is taken over all
possible paths γ, and α is a positive constant).

A snowmobile goes uphill more slowly than downhill. The situation is
opposite for a forest fire: the frontier of the fire goes uphill faster than
downhill. This situation can be modeled using a negative value of α. The
resulting distance is called the forest-fire distance, and the resulting
Voronoi diagram is called the forest-fire Voronoi diagram.

• Skew distance
Let T be a tilted plane in R

3, obtained by rotating the x1x2-plane around
the x1-axis through the angle α, 0 < α < π

2 , with the coordinate system
obtained by taking the coordinate system of the x1x2-plane, accordingly
rotated. For a point q ∈ T , q = (x1(q), x2(q)), define the height h(q) as its
x3-coordinate in R

3. Thus, h(q) = x2(q) · sinα. Let P = {p1, . . . , pk} ⊂ T ,
k ≥ 2.

The skew distance [AACL98] dskew is the Voronoi generation distance
of the generalized Voronoi diagram V (P, dskew, T ) (skew Voronoi diagram),
defined by

dskew(q, r) = dE(q, r) + (h(r)− h(q)) = dE(q, r) + sin α(x2(r)− x2(q))

or, more generally, by

dskew(q, r) = dE(q, r) + k(x2(r)− x2(q))

for all q, r ∈ T , where dE is the ordinary Euclidean distance, and k ≥ 0 is
a constant.
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20.3 Other Voronoi generation distances

• Voronoi distance for line segments
The Voronoi distance for (a set of) line segments dsl is the Voronoi
generation distance of the generalized Voronoi diagram V (A, dsl, R

2) (line
Voronoi diagram, generated by straight line segments), defined by

dsl(x,Ai) = inf
y∈Ai

dE(x, y),

where the generator set A = {A1, . . . , Ak}, k ≥ 2, is a set of pairwise dis-
joint straight line segments Ai = [ai, bi], and dE is the ordinary Euclidean
distance. In fact,

dsl(x,Ai) =

⎧
⎪⎨

⎪⎩

dE(x, ai), if x ∈ Rai
,

dE(x, bi), if x ∈ Rbi
,

dE(x− ai,
(x−ai)

T (bi−ai)
d2

E(ai,bi)
(bi − ai)), if x∈R

2\{Rai
∪Rbi

},

where Rai
= {x ∈ R

2 : (bi − ai)T (x− ai) < 0}, Rbi
= {x ∈ R

2 : (ai − bi)T

(x− bi) < 0}.
• Voronoi distance for arcs

The Voronoi distance for (a set of circle) arcs dca is the Voronoi gen-
eration distance of the generalized Voronoi diagram V (A, dca, R2) (line
Voronoi diagram, generated by circle arcs), defined by

dca(x,Ai) = inf
y∈Ai

dE(x, y),

where the generator set A = {A1, . . . , Ak}, k ≥ 2, is a set of pairwise
disjoint circle arcs Ai (less than or equal to a semicircle) with radius ri

centered at xci
, and dE is the ordinary Euclidean distance. In fact,

dca(x,Ai) = min{dE(x, ai), dE(x, bi), |dE(x, xci
)− ri|},

where ai and bi are the end points of Ai.
• Voronoi distance for circles

The Voronoi distance for (a set of) circles dcl is the Voronoi genera-
tion distance of a generalized Voronoi diagram V (A, dcl, R

2) (line Voronoi
diagram, generated by circles), defined by

dcl(x,Ai) = inf
y∈Ai

dE(x, y),

where the generator set A = {A1, . . . , Ak}, k ≥ 2, is a set of pairwise
disjoint circles Ai with radius ri centered at xci

, and dE is the ordinary
Euclidean distance. In fact,
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dcl(x,Ai) = |dE(x, xci
)− ri|.

There exist different distances for the line Voronoi diagram, generated
by circles. For example, d�

cl(x,Ai) = dE(x, xci
) − ri, or d∗cl(x,Ai) =

d2
E(x, xci

)− r2
i (the Laguerre Voronoi diagram).

• Voronoi distance for areas
The Voronoi distance for areas dar is the Voronoi generation distance
of the generalized Voronoi diagram V (A, dar, R

2) (area Voronoi diagram),
defined by

dar(x,Ai) = inf
y∈Ai

dE(x, y),

where A = {A1, . . . , Ak}, k ≥ 2, is a collection of pairwise disjoint con-
nected closed sets (areas), and dE is the ordinary Euclidean distance.

Note, that for any generalized generator set A = {A1, . . . , Ak}, k ≥ 2,
one can use as the Voronoi generation distance the Hausdorff distance
from a point x to a set Ai: dHaus(x,Ai) = supy∈Ai

dE(x, y), where dE is
the ordinary Euclidean distance.

• Cylindrical distance
The cylindrical distance dcyl is the intrinsic metric on the surface
of a cylinder S which is used as the Voronoi generation distance in the
cylindrical Voronoi diagram V (P, dcyl, S). If the axis of a cylinder with unit
radius is placed at the x3-axis in R

3, the cylindrical distance between any
points x, y ∈ S with the cylindrical coordinates (1, θx, zx) and (1, θy, zy) is
given by

dcyl(x, y) =
{ √

(θx − θy)2 + (zx − zy)2, if θy − θx ≤ π,√
(θx + 2π − θy)2 + (zx − zy)2, if θy − θx > π.

• Cone distance
The cone distance dcon is the intrinsic metric on the surface of a cone
S which is used as the Voronoi generation distance in the conic Voronoi
diagram V (P, dcon, S). If the axis of the cone S is placed at the x3-axis
in R

3, and the radius of the circle made by the intersection of the cone S
with the x1x2-plane is equal to one, then the cone distance between any
points x, y ∈ S is given by

dcon(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
r2
x + r2

y − 2rxry cos(θ′
y − θ′

x),

if θ
′

y ≤ θ
′

x + π sin(α/2),√
r2
x + r2

y − 2rxry cos(θ′
x + 2π sin(α/2)− θ′

y),

if θ
′

y > θ
′

x + π sin(α/2),

where (x1, x2, x3) are the Cartesian coordinates of a point x on S, α is
the top angle of the cone, θx isthe counterclockwise angle from the x1-axis
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to the ray from the origin to the point (x1, x2, 0), θ
′

x = θx sin(α/2), rx =√
x2

1 + x2
2 + (x3 − coth(α/2))2 is the straight line distance from the top of

the cone to the point (x1, x2, x3).
• Voronoi distances of order m

Given a finite set A of objects in a metric space (S, d), and an integer
m ≥ 1, consider the set of all m-subsets Mi of A (i.e., Mi ⊂ A, and
|Mi| = m). The Voronoi diagram of order m of A is a partition of S
into Voronoi regions V (Mi) of m-subsets of A in such a way that V (Mi)
contains all points s ∈ S which are “closer” to Mi than to any other m-set
Mj : d(s, x) < d(s, y) for any x ∈Mi and y ∈ S\Mi. This diagram provides
first, second, . . . , m-th closest neighbors of a point in S.

Such diagrams can be defined in terms of some “distance function”
D(s,Mi), in particular, some m-hemi-metric (cf. Chap. 3) on S. For
Mi = {ai, bi}, there were considered the functions |d(s, ai) − d(s, bi)|,
d(s, ai)+d(s, bi), d(s, ai) ·d(s, bi), as well as 2-metrics d(s, ai)+d(s, bi)+
d(ai, bi) and the area of triangle (s, ai, bi).



Chapter 21
Image and Audio Distances

21.1 Image distances

Image Processing treats signals such as photographs, video, or tomographic
output. In particular, Computer Graphics consists of image synthesis from
some abstract models, while Computer Vision extracts some abstract infor-
mation: say, the 3D (i.e., three-dimensional) description of a scene from video
footage of it. From about 2000, analog image processing (by optical devices)
gave way to digital processing, and, in particular, digital image editing (for
example, processing of images taken by popular digital cameras).

Computer graphics (and our brains) deals with vector graphics images, i.e.,
those represented geometrically by curves, polygons, etc. A raster graphics
image (or digital image, bitmap) in 2D is a representation of a 2D image as a
finite set of digital values, called pixels (short for picture elements) placed on
a square grid Z

2 or a hexagonal grid. Typically, the image raster is a square
2k × 2k grid with k = 8, 9 or 10.

Video images and tomographic or MRI (obtained by cross-sectional slices)
images are 3D (2D plus time); their digital values are called voxels (volume
elements). The spacing distance between two pixels in one slice is referred
to as the interpixel distance, while the spacing distance between slices is
the interslice distance.

A digital binary image corresponds to only two values 0, 1 with 1 being in-
terpreted as logical “true” and displayed as black; so, such image is identified
with the set of black pixels. The elements of a binary 2D image can be seen
as complex numbers x + iy, where (x, y) are coordinates of a point on the
real plane R

2. A continuous binary image is a (usually, compact) subset of a
locally compact metric space (usually, Euclidean space E

n with n = 2, 3).
The gray-scale images can be seen as point-weighted binary images. In

general, a fuzzy set is a point-weighted set with weights (membership values);
see metrics between fuzzy sets in Chap. 1. For the gray-scale images, xyi-
representation is used, where plane coordinates (x, y) indicate shape, while
the weight i (short for intensity, i.e., brightness) indicates texture (inten-
sity est pattern). Sometimes, the matrix ((ixy)) of gray-levels is used. The

M.M. Deza and E. Deza, Encyclopedia of Distances, 349
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brightness histogram of a gray-scale image provides the frequency of each
brightness value found in that image. If an image has m brightness levels
(bins of gray-scale), then there are 2m different possible intensities. Usually,
m = 8 and numbers 0, 1, . . . , 255 represent the intensity range from black to
white; other typical values are m = 10, 12, 14, 16. Humans can differ between
around 350,000 different colors but between only 30 different gray-levels; so,
color has much higher discriminatory power.

For color images, (RGB)-representation is the b known, where space coor-
dinates R, G, B indicate red, green and blue levels; a 3D histogram provides
brightness at each point. Among many other 3D color models (spaces) are:
(CMY) cube (Cyan, Magenta, Yellow colors), (HSL) cone (Hue-color type
given as an angle, Saturation in %, Luminosity in %), and (YUV), (YIQ)
used, respectively, in PAL, NTSC television. CIE-approved conversion of
(RGB) into luminance (luminosity) of gray-level is 0.299R+0.587G+0.114B.

The color histogram is a feature vector of length n (usually, n = 64, 256)
with components representing either the total number of pixels, or the per-
centage of pixels of a given color in the image.

Images are often represented by feature vectors, including color histograms,
color moments, textures, shape descriptors, etc. Examples of feature spaces
are: raw intensity (pixel values), edges (boundaries, contours, surfaces),
salient features (corners, line intersections, points of high curvature), and
statistical features (moment invariants, centroids). Typical video features are
in terms of overlapping frames and motions.

Image Retrieval (similarity search) consists of (as for other data: audio
recordings, DNA sequences, text documents, time-series, etc.) finding images
whose features have values either mutual similarity, or similarity to a given
query or in a given range.

There are two methods to compare images directly: intensity-based (color
and texture histograms), and geometry-based (shape representations by me-
dial axis, skeletons, etc.). The imprecise term shape is used for the extent
(silhouette) of the object, for its local geometry or geometrical pattern (con-
spicuous geometric details, points, curves, etc.), or for that pattern modulo
a similarity transformation group (translations, rotations, and scalings). The
imprecise term texture means all that is left after color and shape have been
considered, or it is defined via structure and randomness.

The similarity between vector representations of images is measured
by the usual practical distances: lp-metrics, weighted editing metrics,
Tanimoto distance, cosine distance, Mahalanobis distance and its
extension, Earth Mover distance. Among probabilistic distances, the
following ones are most used: Bhattacharya 2, Hellinger, Kullback–
Leibler, Jeffrey and (especially, for histograms) χ2-, Kolmogorov–
Smirnov, Kuiper distances.

The main distances applied for compact subsets X and Y of R
n (usually,

n = 2, 3) or their digital versions are: Asplund metric, Shephard metric,
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symmetric difference semi-metric V ol(XΔY ) (see Nykodym metric,
area deviation, digital volume metric and their normalizations) and
variations of the Hausdorff distance (see below).

For Image Processing, the distances below are between “true” and ap-
proximated digital images, in order to assess the performance of algorithms.
For Image Retrieval, distances are between feature vectors of a query and
reference.

• Color distances
A color space is a 3-parameter description of colors. The need for exactly
three parameters comes from the existence of three kinds of receptors (cells
on the retina) in the human eye: for short, middle and long wavelengths,
corresponding to blue, green, and red. In fact, their respective sensitivity
peaks are situated around 570, 543 and 442 nm, while wavelength limits
of extreme violet and red are about 700 and 390 nm, respectively. Some
women are tetrachromats, i.e., they have a fourth type of color receptor.
The zebrafish Danio rerio has cone cells sensitive to red, green, blue, and
ultraviolet light.

The CIE (International Commission on Illumination) derived (XYZ)
color space in 1931 from the (RGB)-model and measurements of the human
eye. In the CIE (XYZ) color space, the values X, Y and Z are also roughly
red, green and blue, respectively.

The basic assumption of Colorimetry, supported experimentally (Indow
1991), is that the perceptual color space admits a metric, the true color
distance. This metric is expected to be locally Euclidean, i.e., a Rieman-
nian metric. Another assumption is that there is a continuous mapping
from the metric space of photic (light) stimuli to this metric space.

Cf. probability-distance hypothesis in Chap. 28 that the probability
with which one stimulus is discriminated from another is a (continuously
increasing) function of some subjective quasi-metric between these stimuli.

Such a uniform color scale, where equal distances in the color space
correspond to equal differences in color, is not obtained yet and existing
color distances are various approximations of it. A first step in this direc-
tion was given by MacAdam ellipses, i.e., regions on a chromaticity (x, y)
diagram which contains all colors looking indistinguishable to the average
human eye; cf. JND (just-noticeable difference) video quality metric.
Those 25 ellipses define, for any ε > 0, the MacAdam metric in a color
space as the metric for which those ellipses are circles of radius ε. Here
x = X

X+Y +Z and y = Y
X+Y +Z are projective coordinates, and the colors

of the chromaticity diagram occupy a region of the real projective plane.
The CIE (L∗a∗b∗) (CIELAB) is an adaptation of CIE 1931 (XYZ)

color space; it gives a partial linearization of the MacAdam color metric.
The parameters L∗, a∗, b∗ of the most complete model are derived from
L, a, b which are: the luminance L of the color from black L = 0 to white
L = 100, its position a between green a < 0 and red a > 0, and its position
b between green b < 0 and yellow b > 0.
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• Average color distance
For a given 3D color space and a list of n colors, let (ci1, ci2, ci3) be
the representation of the i-th color of the list in this space. For a color
histogram x = (x1, . . . , xn), its average color is the vector (x(1), x(2), x(3)),
where x(j) =

∑n
i=1 xicij (for example, the average red, blue and green

values in (RGB)).
The average color distance between two color histograms [HSEFN95]

is the Euclidean distance of their average colors.
• Color component distance

Given an image (as a subset of R
2), let pi denote the area percentage of

this image occupied by the color ci. A color component of the image is a
pair (ci, pi).

The color component distance (Ma, Deng and Manjunath 1997)
between color components (ci, pi) and (cj , pj) is defined by

|pi − pj | · d(ci, cj),

where d(ci, cj) is the distance between colors ci and cj in a given color
space. Mojsilović, Hu and Soljanin (2002) developed an Earth Mover
distance-like modification of this distance.

• Riemannian color space
The proposal to measure perceptual dissimilarity of colors by a Rieman-
nian metric (cf. Chap. 7) on a strictly convex cone C ⊂ R

3 comes from
von Helmholtz (1892) and Luneburg (1947).

Roughly, it was shown in [Resn74] that the only such GL-homogeneous
cones C (i.e., the group of all orientation preserving linear transforma-
tions of R

3, carrying C into itself, acts transitively on C) are either
C1 = R>0 × (R>0 × R>0), or C2 = R>0 × C ′, where C ′ is the set of 2× 2
real symmetric matrices with determinant 1. The first factor R>0 can be
identified with variation of brightness and the other with the set of lights
of a fixed brightness. Let αi be some positive constants.

The Stiles color metric (Stiles 1946) is the GL-invariant Riemannian
metric on C1 = {(x1, x2, x3) ∈ R

3 : xi > 0} given by the line element

ds2 =
3∑

i=1

αi(
dxi

xi
)2.

The Resnikoff color metric (Resnikoff 1974) is the GL-invariant
Riemannian metric on C2 = {(x, u) : x ∈ R>0, u ∈ C ′} given by the line
element

ds2 = α1(
dx

x
)2 + α2ds2

C′ ,

where ds2
C′ , is the Poincare metric (cf. Chap. 6) on C ′; so, C2 with this

metric is not isometric to a Euclidean space.
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• Histogram intersection quasi-distance
Given two color histograms x = (x1, . . . , xn) and y = (y1, . . . , yn) (with
xi, yi representing the number of pixels in the bin i), the histogram
intersection quasi-distance between them (cf. intersection distance
in Chap. 17) is (Swain and Ballard 1991) defined by

1−
∑n

i=1 min{xi, yi}∑n
i=1 xi

.

For normalized histograms (total sum is 1) the above quasi-distance
becomes the usual l1-metric

∑n
i=1 |xi − yi|. The normalized cross corre-

lation (Rosenfeld and Kak 1982) between x and y is a similarity, defined
by

∑n
i=1 xi,yi∑n

i=1 x2
i

.
• Histogram quadratic distance

Given two color histograms x = (x1, . . . , xn) and y = (y1, . . . , yn) (usually,
n = 256 or n = 64) representing the color percentages of two images,
their histogram quadratic distance (used in IBM’s Query By Image
Content system) is the Mahalanobis distance, defined by

√
(x− y)T A(x− y),

where A = ((aij)) is a symmetric positive-definite matrix, and the weight
aij is some, perceptually justified, similarity between colors i and j. For
example (see [HSEFN95]), aij = 1 − dij

max1≤p,q≤n dpq
, where dij is the

Euclidean distance between 3-vectors representing i and j in some color
space. Another definition is given by aij = 1− 1√

5
((vi − vj)2 + (si cos hi −

sj cos hj)2 + (si sin hi − sj sinhj)2)
1
2 , where (hi, si, vi) and (hj , sj , vj) are

the representations of the colors i and j in the color space (HSV).
• Histogram diffusion distance

Given two histogram-based descriptors x = (x1, . . . , xn) and y =
(y1, . . . , yn), their histogram diffusion distance (Ling and Okada
2006) is defined by

∫ T

0

||u(t)||1dt,

where T is a constant, and u(t) is a heat diffusion process with initial
condition u(0) = x − y. In order to approximate the diffusion, the ini-
tial condition is convoluted with a Gaussian window; then the sums of
l1-norms after each convolution approximate the integral.

This distance was generalized in Yan, Wang, Liu, Lu and Ma (2007).
• Gray-scale image distances

Let f(x) and g(x) denote the brightness values of two digital gray-scale
images f and g at the pixel x ∈ X, where X is a raster of pixels. Any
distance between point-weighted sets (X, f) and (X, g) (for example, the
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Earth Mover distance) can be applied for measuring distances between
f and g. However, the main used distances (called also errors) between
the images f and g are:

1. The root mean-square error RMS(f, g) =
(

1
|X|

∑
x∈X(f(x)−g(x))2

)1
2

(a variant is to use the l1-norm |f(x)− g(x)| instead of the l2-norm)

2. The signal-to-noise ratio SNR(f, g) =
( ∑

x∈X g(x)2
∑

x∈X(f(x)−g(x))2

) 1
2

3. The pixel misclassification error rate 1
|X| |{x ∈ X : f(x) �= g(x)}|

(normalized Hamming distance)

4. The frequency root mean-square error
(

1
|U |2

∑
u∈U (F (u)−G(u))2

)1
2
,

where F and G are the discrete Fourier transforms of f and g, respec-
tively, and U is the frequency domain

5. The Sobolev norm of order δ error
(

1
|U |2

∑
u∈U (1 + |ηu|2)δ(F (u)−

G(u))2
) 1

2
, where 0 < δ < 1 is fixed (usually, δ = 1

2 ), and ηu is the 2D

frequency vector associated with position u in the frequency domain U

Cf. metrics between fuzzy sets in Chap. 1.
• Image compression Lp-metric

Given a number r, 0 ≤ r < 1, the image compression Lp-metric is
the usual Lp-metric on R

n2

≥0 (the set of gray-scale images seen as n × n

matrices) with p being a solution of the equation r = p−1
2p−1 · e

p
2p−1 . So,

p = 1, 2, or ∞ for, respectively, r = 0, r = 1
3e

2
3 ≈ 0.65, or r ≥

√
e

2 ≈ 0.82.
Here r estimates the informative (i.e., filled with non-zeros) part of the
image. According to [KKN02], it is the best quality metric to select a
lossy compression scheme.

• Chamfering distances
The chamfering distances are distances approximating Euclidean dis-
tance by a weighted path distance on the graph G = (Z2, E), where two
pixels are neighbors if one can be obtained from another by an one-step
move on Z

2. The list of permitted moves is given, and a prime distance,
i.e., a positive weight (see Chap. 19), is associated to each type of such
move.

An (α, β)-chamfer metric corresponds to two permitted moves – with
l1-distance 1 and with l∞-distance 1 (diagonal moves only) – weighted α
and β, respectively.

The main applied cases are (α, β) = (1, 0) (the city-block metric, or
4-metric), (1,1) (the chessboard metric, or 8-metric), (1,

√
2) (the

Montanari metric), (3, 4) (the (3, 4)-metric), (2, 3) (the Hilditch–
Rutovitz metric), (5, 7) (the Verwer metric).
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The Borgefors metric corresponds to three permitted moves – with
l1-distance 1, with l∞-distance 1 (diagonal moves only), and knight
moves – weighted 5, 7 and 11, respectively.

An 3D-chamfer metric (or (α, β, γ)-chamfer metric) is the weighted
path metric of the infinite graph with the vertex-set Z

3 of voxels, two
vertices being adjacent if their l∞-distance is one, while weights α, β
and γ are associated to 6 face, 12 edge and 8 corner neighbors, respec-
tively. If α = β = γ = 1, we obtain the l∞-metric. The (3, 4, 5)- and
(1, 2, 3)-chamfer metrics are the most used ones for digital 3D images.

The Chaudhuri–Murthy–Chaudhuri metric between sequences
x = (x1, . . . , xm) and y = (y1, . . . , yn) is defined by

|xi(x,y) − yi(x,y)|+
1

1 + 'n
2 (

∑

1≤i≤n,i 	=i(x,y)

|xi − yi|,

where the maximum value of xi − yi is attained for i = i(x, y). For n = 2
it is the (1, 3

2 )-chamfer metric.
• Earth Mover distance

The Earth Mover distance is a discrete form of the Monge–
Kantorovich distance. Roughly, it is the minimal amount of work
needed to transport earth or mass from one position (properly spread
in space) to the other (a collection of holes). For any two finite se-
quences (x1, . . . , xm) and (y1, . . . , yn) over a metric space (X, d), consider
signatures, i.e., point-weighted sets P1 = (p1(x1), . . . , p1(xm)) and P2 =
(p2(y1), . . . , p2(yn)). For example [RTG00], signatures can represent clus-
tered color or texture content of images: elements of X are centroids of
clusters, and p1(xi), p2(yj) are sizes of corresponding clusters. The ground
distance d is a color distance, say, the Euclidean distance in 3D CIE
(L∗a∗b∗) color space.

Let W1 =
∑

i p1(xi) and W2 =
∑

j p2(yj) be the total weights of P1 and
P2, respectively. Then the Earth Mover distance (or transport distance)
between signatures P1 and P2 is defined as the function

∑
i,j f∗

ijd(xi, yj)
∑

i,j f∗
ij

,

where the m × n matrix S∗ = ((f∗
ij)) is an optimal, i.e., minimizing∑

i,j fijd(xi, yj), flow. A flow (of the weight of the earth) is an m × n
matrix S = ((fij)) with following constraints:

1. All fij ≥ 0.
2.

∑
i,j fij = min{W1,W2}.

3.
∑

i fij ≤ p2(yj), and
∑

j fij ≤ p1(xi).

So, this distance is the average ground distance d that weights travel
during an optimal flow.
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In the case W1 = W2, the above two inequalities 3 became equalities.
Normalizing signatures to W1 = W2 = 1 (which not changes the distance)
allows us to see P1 and P2 as probability distributions of random variables,
say, X and Y . Then

∑
i,j fijd(xi, yj) is just ES [d(X,Y )], i.e., the Earth

Mover distance coincides, in this case, with the Kantorovich–Mallows–
Monge–Wasserstein metric.

For, say, W1 < W2, it is not a metric in general. However, replacing the
inequalities 3 in the above definition by equalities:
3
′
.
∑

i fij = p2(yj), and
∑

j fij = p1(xi)W1
W2

, produces the Giannopoulos–
Veltkamp’s proportional transport semi-metric.

• Parameterized curves distance
The shape can be represented by a parametrized curve on the plane.
Usually, such a curve is simple, i.e., it has no self-intersections. Let
X = X(x(t)) and Y = Y (y(t)) be two parametrized curves, where the
(continuous) parametrization functions x(t) and y(t) on [0, 1] satisfy
x(0) = y(0) = 0 and x(1) = y(1) = 1.

The most used parametrized curves distance is the minimum, over
all monotone increasing parametrizations x(t) and y(t), of the maximal
Euclidean distance dE(X(x(t)), Y (y(t))). It is the Euclidean special case
of the dogkeeper distance which is, in turn, the Fréchet metric for
the case of curves. Among variations of this distance are dropping the
monotonicity condition of the parametrization, or finding the part of one
curve to which the other has the smallest such distance [VeHa01].

• Non-linear elastic matching distances
Consider a digital representation of curves. Let r ≥ 1 be a constant, and
let A = {a1, . . . , am}, B = {b1, . . . , bn} be finite ordered sets of consecu-
tive points on two closed curves. For any order-preserving correspondence
f between all points of A and all points of B, the stretch s(ai, bj) of
(ai, f(ai) = bj) is r if either f(ai−1) = bj or f(ai) = bj−1, or zero
otherwise.

The relaxed non-linear elastic matching distance is the minimum,
over all such f , of

∑
(s(ai, bj) + d(ai, bj)), where d(ai, bj) is the difference

between the tangent angles of ai and bj . It is a near-metric for some r.
For r = 1, it is called the non-linear elastic matching distance.

• Turning function distance
For a plane polygon P , its turning function TP (s) is the angle between the
counterclockwise tangent and the x-axis as a function of the arc length s.
This function increases with each left hand turn and decreases with right
hand turns.

Given two polygons of equal perimeters, their turning function dis-
tance is the Lp-metric between their turning functions.

• Size function distance
For a plane graph G = (V,E) and a measuring function f on its vertex-
set V (for example, the distance from v ∈ V to the center of mass of
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V ), the size function SG(x, y) is defined, on the points (x, y) ∈ R
2, as

the number of connected components of the restriction of G on vertices
{v ∈ V : f(v) ≤ y} which contain a point v′ with f(v′) ≤ x.

Given two plane graphs with vertex-sets belonging to a raster R ⊂ Z
2,

their Uras-Verri’s size function distance is the normalized l1-distance
between their size functions over raster pixels.

• Reflection distance
For a finite union A of plane curves and each point x ∈ R

2, let V x
A de-

note the union of intervals (x, a), a ∈ A, which are visible from x, i.e.,
(x, a)∩A = ∅. Denote by ρx

A the area of the set {x+v ∈ V x
A : x−v ∈ V x

A}.
The Hagedoorn-Veltkamp’s reflection distance between finite unions

A and B of plane curves is the normalized l1-distance between the corre-
sponding functions ρx

A and ρx
B , defined by

∫
R2 |ρx

A − ρx
B |dx

∫
R2 max{ρx

A, ρx
B}dx

.

• Distance transform
Given a metric space (X = Z

2, d) and a binary digital image M ⊂ X,
the distance transform is a function fM : X→R≥0, where fM (x) =
infu∈M d(x, u) is the point-set distance d(x,M). Therefore, a distance
transform can be seen as a gray-scale digital image where each pixel is
given a label (a gray-level) which corresponds to the distance to the near-
est pixel of the background. Distance transforms, in Image Processing,
are also called distance fields and, especially, distance maps; but we
reserve the last term only for this notion in any metric space. A distance
transform of a shape is the distance transform with M being the boundary
of the image. For X = R

2, the graph {(x, f(x)) : x ∈ X} of d(x,M) is
called the Voronoi surface of M .

• Medial axis and skeleton
Let (X, d) be a metric space, and let M be a subset of X. The medial axis
of X is the set MA(X) = {x ∈ X : |{m ∈ M : d(x,m) = d(x,M)}| ≥ 2},
i.e., all points of X which have in M at least two elements of best
approximation. MA(X) consists of all points of boundaries of Voronoi
regions of points of M . The cut locus of X is the closure MA(X) of the
medial axis. The medial axis transform MAT (X) is the point-weighted
set MA(X) (the restriction of the distance transform on MA(X)) with
d(x,M) being the weight of x ∈ X.

If (as usual in applications) X ⊂ R
n and M is the boundary of X, then

the skeleton Skel(X) of X is the set of the centers of all d-balls inscribed
in X and not belonging to any other such ball; so, Skel(X) = MA(X).
The skeleton with M being continuous boundary is a limit of Voronoi
diagrams as the number of the generating points becomesinfinite. For 2D
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binary images X, the skeleton is a curve, a single-pixel thin one, in the
digital case. The exoskeleton of X is the skeleton of the complement of X,
i.e., of the background of the image for which X is the foreground.

• Procrustes distance
The shape of a form (configuration of points in R

2), seen as expression
of translation-, rotation- and scale-invariant properties of form, can be
represented by a sequence of landmarks, i.e., specific points on the form,
selected accordingly to some rule. Each landmark point a can be seen as
an element (a

′
, a

′′
) ∈ R

2 or an element a
′
+ a

′′
i ∈ C.

Consider two shapes x and y, represented by their landmark vectors
(x1, . . . , xn) and (y1, . . . , yn) from C

n. Suppose that x and y are corrected
for translation by setting

∑
t xt =

∑
t yt = 0. Then their Procrustes

distance is defined by √
√
√
√

n∑

t=1

|xt − yt|2,

where two forms are, first, optimally (by least squares criterion) aligned
to correct for scale, and their Kendall shape distance is defined by

arccos

√
(
∑

t xtyt)(
∑

t ytxt)
(
∑

t xtxt)(
∑

t ytyt)
,

where α = a
′ − a

′′
i is the complex conjugate of α = a

′
+ a

′′
i.

• Tangent distance
For any x ∈ R

n and a family of transformations t(x, α), where α ∈ R
k is

the vector of k parameters (for example, the scaling factor and rotation
angle), the set Mx = {t(x, α) : α ∈ R

k} ⊂ R
n is a manifold of dimension

at most k. It is a curve if k = 1. The minimum Euclidean distance between
manifolds Mx and My would be a useful distance since it is invariant with
respect to transformations t(x, α). However, the computation of such a
distance is too difficult in general; so, Mx is approximated by its tangent
subspace at x: {x +

∑k
i=1 αkxi : α ∈ R

k} ⊂ R
n, where the tangent vectors

xi, 1 ≤ i ≤ k, spanning it are the partial derivatives of t(x, α) with respect
to α. The one-sided (or directed) tangent distance between elements
x and y of R

n is a quasi-distance d, defined by

√
√
√
√min

α
||x +

k∑

i=1

αkxi − y||2.

The Simard-Le Cun-Denker’s tangent distance is defined by min{d(x, y),
d(y, x)}.

Cf. metric cone structure, tangent metric cone in Chap. 1.
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• Pixel distance
Consider two digital images, seen as binary m × n matrices x = ((xij))
and y = ((yij)), where a pixel xij is black or white if it is equal to 1 or 0,
respectively.

For each pixel xij , the fringe distance map to the nearest pixel of oppo-
site color DBW (xij) is the number of fringes expanded from (i, j) (where
each fringe is composed by the pixels that are at the same distance from
(i, j)) until the first fringe holding a pixel of opposite color is reached.

The pixel distance (Smith, Bourgoin, Sims and Voorhees 1994) is
defined by

∑

1≤i≤m

∑

1≤j≤n

|xij − yij |(DBW (xij) + DBW (yij)).

• Figure of merit quasi-distance
Given two binary images, seen as non-empty finite subsets A and B of a
finite metric space (X, d), their Pratt’s figure of merit quasi-distance
is defined by

(

max{|A|, |B|}
∑

x∈B

1
1 + αd(x,A)2

)−1

,

where α is a scaling constant (usually, 1
9 ), and d(x,A) = miny∈A d(x, y)

is the point-set distance.
Similar quasi-distances are Peli-Malah’s mean error distance 1

|B|
∑

x∈B

d(x,A), and the mean square error distance 1
|B|

∑
x∈B d(x,A)2.

• p-th order mean Hausdorff distance
Given p ≥ 1 and two binary images, seen as non-empty subsets A and B
of a finite metric space (say, a raster of pixels) (X, d), their p-th order
mean Hausdorff distance is [Badd92] a normalized Lp-Hausdorff
distance, defined by

(
1
|X|

∑

x∈X

|d(x,A)− d(x,B)|p
) 1

p

,

where d(x,A) = miny∈A d(x, y) is the point-set distance. The usual
Hausdorff metric is proportional to the ∞-th order mean Hausdorff
distance.

Venkatasubraminian’s Σ-Hausdorff distance ddHaus(A,B) + ddHaus

(B,A) is equal to
∑

x∈A∪B |d(x,A) − d(x,B)|, i.e., it is a version of
L1-Hausdorff distance.

Another version of the first order mean Hausdorff distance is Lindstrom-
Turk’s mean geometric error (1998) between two images, seen as surfaces
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A and B. It is defined by

1
Area(A) + Area(B)

(∫

x∈A

d(x,B)dS +
∫

x∈B

d(x,A)dS

)

,

where Area(A) denotes the area of A. If the images are seen as finite sets
A and B, their mean geometric error is defined by

1
|A|+ |B|

(
∑

x∈A

d(x,B) +
∑

x∈B

d(x,A)

)

.

• Modified Hausdorff distance
Given two binary images, seen as non-empty finite subsets A and B of a
finite metric space (X, d), their Dubuisson–Jain’s modified Hausdorff
distance (1994) is defined as the maximum of point-set distances
averaged over A and B:

max

{
1
|A|

∑

x∈A

d(x,B),
1
|B|

∑

x∈B

d(x,A)

}

.

• Partial Hausdorff quasi-distance
Given two binary images, seen as non-empty subsets A, B of a finite
metric space (X, d), and integers k, l with 1 ≤ k ≤ |A|, 1 ≤ l ≤ |B|,
their Huttenlocher–Rucklidge’s partial (k, l)-Hausdorff quasi-distance
(1992) is defined by

max{kth
x∈Ad(x,B), lthx∈Bd(x,A)},

where kth
x∈Ad(x,B) means the k-th (rather than the largest |A|-th ranked

one) among |A| distances d(x,B) ranked in increasing order. The case
k = # |A|

2 $, l = # |B|
2 $ corresponds to the modified median Hausdorff

quasi-distance.
• Bottleneck distance

Given two binary images, seen as non-empty subsets A, B with |A| =
|B| = m, of a metric space (X, d), their bottleneck distance is defined by

min
f

max
x∈A

d(x, f(x)),

where f is any bijective mapping between A and B.
Variations of the above distance are:

1. The minimum weight matching: minf

∑
x∈A d(x, f(x))

2. The uniform matching: minf{maxx∈A d(x, f(x)) − minx∈A d(x,
f(x)}

3. The minimum deviation matching: minf{maxx∈A d(x, f(x)) −
1
|A|

∑
x∈A d(x, f(x)}



21.1 Image distances 361

Given an integer t with 1 ≤ t ≤ |A|, the t-bottleneck distance be-
tween A and B [InVe00] is the above minimum but with f being any
mapping from A to B such that |{x ∈ A : f(x) = y}| ≤ t.

The cases t = 1 and t = |A| correspond, respectively, to the bottle-
neck distance, and the directed Hausdorff distance ddHaus(A,B) =
maxx∈A miny∈B d(x, y).

• Hausdorff distance up to G
Given a group (G, ·, id) acting on the Euclidean space E

n, the Hausdorff
distance up to G between two compact subsets A and B (used in Image
Processing) is their generalized G-Hausdorff distance (see Chap. 1),
i.e., the minimum of dHaus(A, g(B)) over all g ∈ G. Usually, G is the
group of all isometries or all translations of E

n.
• Hyperbolic Hausdorff distance

For any compact subset A of R
n, denote by MAT (A) its Blum’s medial

axis transform, i.e., the subset of X = R
n × R≥0, whose elements are

all pairs x = (x′, rx) of the centers x′ and the radii rx of the maximal
inscribed (in A) balls, in terms of the Euclidean distance dE in R

n. (Cf.
medial axis and skeleton transforms for the general case.)

The hyperbolic Hausdorff distance [ChSe00] is the Hausdorff
metric on non-empty compact subsets MAT (A) of the metric space
(X, d), where the hyperbolic distance d on X is defined, for its elements
x = (x′, rx) and y = (y′, ry), by

max{0, dE(x′, y′)− (ry − rx)}.

• Non-linear Hausdorff metric
Given two compact subsets A and B of a metric space (X, d), their non-
linear Hausdorff metric (or Szatmári–Rekeczky–Roska wave distance)
is the Hausdorff distance dHaus(A ∩ B, (A ∪ B)∗), where (A ∪ B)∗ is
the subset of A ∪ B which forms a closed contiguous region with A ∩ B,
and the distances between points are allowed to be measured only along
paths wholly in A ∪B.

• Video quality metrics
These metrics are between test and reference color video sequences, usu-
ally aimed at optimization of encoding/compression/decoding algorithms.
Each of them is based on some perceptual model of the human vision sys-
tem, the simplest ones being RMSE (root-mean-square error) and PSNR
(peak signal-to-noise ratio) error measures. Among others, threshold met-
rics estimate the probability of detecting in video an artifact (i.e., a visible
distortion that gets added to a video signal during digital encoding). Ex-
amples are: Sarnoff’s JND (just-noticeable differences) metric, Winkler’s
PDM (perceptual distortion metric), and Watson’s DVQ (digital video
quality) metric. DVQ is an lp-metric between feature vectors representing
two video sequences. Some metrics measure special artifacts in the video:
the appearance of block structure, blurriness, added “mosquito” noise
(ambiguity in the edge direction), texture distortion, etc.
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• Time series video distances
The time series video distances are objective wavelet-based spatial-
temporal video quality metrics. A video stream x is processed into
a time series x(t) (seen as a curve on coordinate plane) which is then
(piecewise linearly) approximated by a set of n contiguous line segments
that can be defined by n+1 endpoints (xi, x

′
i), 0 ≤ i ≤ n, in the coordinate

plane. In [WoPi99] are given the following (cf. Meehl distance) distances
between video streams x and y:

1. Shape(x, y) =
∑n−1

i=0 |(x′
i+1 − x′

i)− (y′
i+1 − y′

i)|.
2. Offset(x, y) =

∑n−1
i=0 |

x′
i+1+x′

i

2 − y′
i+1+y′

i

2 |.
• Handwriting spatial gap distances

Automatic recognition of unconstrained handwritten texts (for example,
legal amounts on bank checks or pre-hospital care reports) require mea-
suring the spatial gaps between connected components in order to extract
words.

Three most used ones, among handwriting spatial gap distances
between two adjacent connected components x and y of text line, are:

Seni and Cohen (1994): the run-length (minimum horizontal Euclidean
distance) between points of x and y;

Seni and Cohen (1994): the horizontal distance between the bounding
boxes of x and y;

Mahadevan and Nagabushnam (1995): Euclidean distance between the
convex hulls of x and y, on the line linking hull centroids.

21.2 Audio distances

Sound is the vibration of gas or air particles that causes pressure variations
within our eardrums. Audio (speech, music, etc.) Signal Processing is the
processing of analog (continuous) or, mainly, digital representation of the
air pressure waveform of the sound. A sound spectrogram (or sonogram) is a
visual three-dimensional representation of an acoustic signal. It is obtained
either by a series of bandpass filters (an analog processing), or by application
of the short-time Fourier transform to the electronic analog of an acoustic
wave. Three axes represent time, frequency and intensity (acoustic energy).
Often this three-dimensional curve is reduced to two dimensions by indicating
the intensity with more thick lines or more intense gray or color values.

Sound is called tone if it is periodic (the lowest fundamental frequency plus
its multiples, harmonics or overtones) and noise, otherwise. The frequency is
measured in cps (the number of complete cycles per second) or Hz (Hertz).
The range of audible sound frequencies to humans is typically 20 Hz–18 kHz.
In fact, it is up to 20 kHz for most young adults, while 8 kHz in the elderly.
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The power P (f) of a signal is energy per unit of time; it is proportional to
the square of signal’s amplitude A(f). Decibel dB is the unit used to express
the relative strength of two signals. One tenth of 1 dB is bel, the original
outdated unit.

The amplitude of an audio signal in dB is 20 log10
A(f)
A(f ′) = 10 log10

P (f)
P (f ′) ,

where f ′ is a reference signal selected to correspond to 0 dB (usually, the
threshold of human hearing). The threshold of pain is about 120–140 dB.

Pitch and loudness are auditory subjective terms for frequency and
amplitude.

The mel scale is a perceptual frequency scale, corresponding to the au-
ditory sensation of tone height and based on mel, a unit of perceived
frequency (pitch). It is connected to the acoustic frequency f hertz scale
by Mel(f) = 1,127 ln(1+ f

700 ) (or, simply, Mel(f) = 1,000 log2(1+ f
1,000 )) so

that 1,000 Hz correspond to 1,000 mels.
The Bark scale (named after Barkhausen) is a psycho-acoustic scale of

frequency: it ranges from 1 to 24 corresponding to the first 24 critical bands
of hearing

(0, 100, 200, . . . , 1,270, 1,480, 1,720, . . . , 950, 12,000, 15,500 Hz).
Those bands correspond to spatial regions of the basilar membrane (of

the inner ear), where oscillations, produced by the sound of given frequency,
activate the hair cells and neurons. The Bark scale is connected to the acoustic
frequency f kilohertz scale by Bark(f) = 13 arctan(0.76f)+3.5 arctan( f

0.75 )2.
The main way that humans control their phonation (speech, song, laugh-

ter) is by control over the vocal tract (the throat and mouth) shape. This
shape, i.e., the cross-sectional profile of the tube from the closure in the
glottis (the space between the vocal cords) to the opening (lips), is repre-
sented by the cross-sectional area function Area(x), where x is the distance
to the glottis. The vocal tract acts as a resonator during vowel phonation, be-
cause it is kept relatively open. These resonances reinforce the source sound
(ongoing flow of lung air) at particular resonant frequencies (or formants) of
the vocal tract, producing peaks in the spectrum of the sound.

Each vowel has two characteristic formants, depending on the vertical and
horizontal position of the tongue in the mouth. The source sound function is
modified by the frequency response function for a given area function. If the
vocal tract is approximated as a sequence of concatenated tubes of constant
cross-sectional area (of equal length, or epilarynx–pharynx–oral cavity, etc.),
then the area ratio coefficients are the ratios Area(xi+1)

Area(xi)
for consecutive tubes;

those coefficients can be computed by LPC (see below).
The spectrum of a sound is the distribution of magnitude (dB) (and

sometimes the phases in frequency (kHz)) of the components of the wave.
The spectral envelope is a smooth contour that connects the spectral peaks.
The estimation of the spectral envelopes is based on either LPC (linear pre-
dictive coding), or FTT (fast Fourier transform using real cepstrum, i.e., the
log amplitude spectrum of the sound).
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FT (Fourier transform) maps time-domain functions into frequency-
domain representations. The cepstrum of the signal f(t) is FT (ln(FT (f(t) +
2πmi))), where m is the integer needed to unwrap the angle or imaginary
part of the complex logarithm function. The complex and real cepstrum use,
respectively, complex and real log function. The real cepstrum uses only the
magnitude of the original signal f(t), while the complex cepstrum uses also
phase of f(t). The FFT method is based on linear spectral analysis. The
FFT performs the Fourier transform on the signal and samples the discrete
transform output at the desired frequencies usually in the mel scale.

Parameter-based distances used in recognition and processing of speech
data are usually derived by LPC, modeling the speech spectrum as a lin-
ear combination of the previous samples (as in autoregressive processes).
Roughly, LPC processes each word of the speech signal in the following six
steps: filtering, energy normalization, partition into frames, windowing (to
minimize discontinuities at the borders of frames), obtaining LPC parameters
by the autocorrelation method and conversion to the LPC-derived cepstral
coefficients. LPC assumes that speech is produced by a buzzer at the glottis
(with occasionally added hissing and popping sounds), and it removes the
formants by filtering.

The majority of distortion measures between sonograms are variations of
squared Euclidean distance (including a covariance-weighted one, i.e.,
Mahalanobis, distance) and probabilistic distances belonging to following
general types: generalized total variation metric, f-divergence of Csizar
and Chernoff distance.

The distances for sound processing below are between vectors x and y
representing two signals to compare. For recognition, they are a template
reference and input signal, while for noise reduction they are the original
(reference) and distorted signal (see, for example, [OASM03]). Often distances
are calculated for small segments, between vectors representing short-time
spectra, and then averaged.

• Segmented signal-to-noise ratio
The segmented signal-to-noise ratio SNRseg(x, y) between signals x =
(xi) and y = (yi) is defined by

10
m

M−1∑

m=0

(

log10

nm+n∑

i=nm+1

x2
i

(xi − yi)2

)

,

where n is the number of frames, and M is the number of segments.
The usual signal-to-noise ratio SNR(x, y) between x and y is given by

10 log10

∑n
i=1 x2

i∑n
i=1(xi − yi)2

.
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Another measure, used to compare two waveforms x and y in the time-
domain, is their Czekanovski–Dice distance, defined by

1
n

n∑

i=1

(

1− 2min{xi, yi}
xi + yi

)

.

• Spectral magnitude-phase distortion
The spectral magnitude-phase distortion between signals x = x(ω)
and y = y(ω) is defined by

1
n

(

λ
n∑

i=1

(|x(w)| − |y(w)|)2 + (1− λ)
n∑

i=1

(∠x(w)− ∠y(w))2
)

,

where |x(w)|, |y(w)| are magnitude spectra, and ∠x(w), ∠y(w) are phase
spectra of x and y, respectively, while the parameter λ, 0 ≤ λ ≤ 1, is
chosen in order to attach commensurate weights to the magnitude and
phase terms. The case λ = 0 corresponds to the spectral phase distance.

Given a signal f(t) = ae−btu(t), a, b > 0, which has Fourier transform
x(w) = a

b+iw , its magnitude (or amplitude) spectrum is |x| = a√
b2+w2 , and

its phase spectrum (in radians) is α(x) = tan−1 w
b , i.e., x(w) = |x|eiα =

|x|(cos α + i sin α).
• RMS log spectral distance

The RMS log spectral distance (or root-mean-square distance, mean
quadratic distance) LSD(x, y) between discrete spectra x = (xi) and y =
(yi) is the following Euclidean distance:

√
√
√
√ 1

n

n∑

i=1

(ln xi − ln yi)2.

The corresponding l1- and l∞-distances are called mean absolute distance
and maximum deviation. These three distances are related to decibel vari-
ations in the log spectral domain by the multiple 10

log 10 .
The square of the RMS log spectral distance, via the cepstrum represen-

tation lnx(ω) =
∑∞

j=−∞ cje
−jωi (where x(ω) is the power spectrum, i.e.,

magnitude-squared Fourier transform) becomes, in the complex cepstral
space, the cepstral distance.

The log area ratio distance LAR(x, y) between x and y is defined by

√
√
√
√ 1

n

n∑

i=1

10(log10 Area(xi)− log10 Area(yi))2,
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where Area(zi) denotes the cross-sectional area of the segment of the vocal
tract tube corresponding to zi.

• Bark spectral distance
The Bark spectral distance (Wang-Sekey-Gersho 1992) is a perceptual
distance, defined by

BSD(x, y) =
n∑

i=1

(xi − yi)2,

i.e., is the squared Euclidean distance between Bark spectra (xi) and
(yi) of x and y, where the i-th component corresponds to the i-th auditory
critical band in the Bark scale.

A modification of the Bark spectral distance excludes critical bands i
on which the loudness distortion |xi − yi| is less than the noise masking
threshold.

• Itakura–Saito quasi-distance
The Itakura–Saito quasi-distance (or maximum likelihood distance)
IS(x, y) between LPC-derived spectral envelopes x = x(ω) and y = y(ω)
(1968) is defined by

1
2π

∫ π

−π

(

ln
x(w)
y(w)

+
y(w)
x(w)

− 1
)

dw.

The cosh distance is defined by IS(x, y) + IS(y, x), i.e., is equal to

1
2π

∫ π

−π

(
x(w)
y(w)

+
y(w)
x(w)

− 2
)

dw =
1
2π

∫ π

−π

2 cosh
(

ln
x(w)
y(w)

− 1
)

dw,

where cosh(t) = et+e−t

2 is the hyperbolic cosine function.
• Log likelihood ratio quasi-distance

The log likelihood ratio quasi-distance (or Kullback–Leibler dis-
tance) KL(x, y) between LPC-derived spectral envelopes x = x(ω) and
y = y(ω) is defined by

1
2π

∫ π

−π

x(w) ln
x(w)
y(w)

dw.

The Jeffrey divergence KL(x, y) + KL(y, x) is also used.
The weighted likelihood ratio distance between spectral envelopes

x = x(ω) and y = y(ω) is defined by

1
2π

∫ π

−π

⎛

⎝

(
ln
(

x(w)
y(w)

)
+ y(w)

x(w)−1
)

x(w)

px
+

(
ln
(

y(w)
x(w)

)
+ x(w)

y(w)−1
)

y(w)

py

⎞

⎠dw,
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where P (x) and P (y) denote the power of the spectra x(w) and y(w),
respectively.

• Cepstral distance
The cepstral distance (or squared Euclidean cepstrum metric) CEP
(x, y) between the LPC-derived spectral envelopes x = x(ω) and y = y(ω)
is defined by

1
2π

∫ π

−π

(

ln
x(w)
y(w)

)2

dw =
1
2π

∫ π

−π

(ln x(w)− ln y(w))2 dw

=
∞∑

j=−∞
(cj(x)− cj(y))2,

where cj(z) = 1
2π

∫ π

−π
ejwi ln |z(w)|dw is j-th cepstral (real) coefficient of

z derived from the Fourier transform or LPC.
The quefrency-weighted cepstral distance (or Yegnanarayana

distance, weighted slope distance) between x and y is defined by

∞∑

i=−∞
i2(ci(x)− ci(y))2.

“Quefrency” and “cepstrum” are anagrams of “frequency” and “spec-
trum,” respectively.

The Martin cepstrum distance between two AR (autoregressive)
models is defined, in terms of their cepstra, by

√
√
√
√

∞∑

i=0

i(ci(x)− ci(y))2.

(Cf. general Martin distance in Chap. 12, defined as an angle distance
between subspaces, and Martin metric in Chap. 11 between strings
which is an l∞-analog of it.)

The Klatt slope metric (1982) between discrete spectra x = (xi) and
y = (yi) with n channel filters is defined by

√
√
√
√

n∑

i=1

((xi+1 − xi)− (yi+1 − yi))2.

• Pitch distance
Pitch is a subjective correlate of the fundamental frequency; cf. the above
Bark scale of loudness (perceived intensity) and Mel scale of perceived
tone height. A musical scale is, usually, a linearly ordered collection of
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pitches (notes). A pitch distance (or interval, musical distance) is
the size of the section of the linearly-perceived pitch-continuum bounded
by those two pitches, as modeled in a given scale. So, an interval describes
the difference in pitch between two notes. The pitch distance between two
successive notes in a scale is called a scale step.

In Western music now, the most used scale is the chromatic scale (octave
of 12 notes) of equal temperament, i.e., divided into 12 equal steps with
the ratio between any two adjacent frequencies being 12

√
2. The scale step

here is a semitone, i.e., the distance between two adjacent keys (black and
white) on a piano. The distance between notes whose frequencies are
f1 and f2 is 12 log2(

f1
f2

) semitones.
A MIDI (Musical Instrument Digital Interface) number of fundamental

frequency f is defined by p(f) = 69 + 12 log2
f

440 . The distance be-
tween notes, in terms of MIDI numbers, becomes the natural metric
|m(f1)−m(f2)| on R. It is a convenient pitch distance since it corresponds
to physical distance on keyboard instruments, and psychological distance
as measured by experiments and understood by musicians.

A distance model in Music, is the alternation of two different intervals to
create a non-diatonic musical mode, for example, 1:2 (the octatonic scale),
1:3 (alternation of semitones and minor thirds) and 1:5.

• Distances between rhythms
A rhythm timeline (music pattern) is represented, besides the stan-
dard music notation, in the following ways, used in computational music
analysis.

1. By a binary vector x = (x1, . . . , xm) of m time intervals (equal in a
metric timeline), where xi = 1 denotes a beat, while xi = 0 denotes a
rest interval (silence). For example, the five 12/8 metric timelines of
Flamenco music are represented by five binary sequences of length 12.

2. By a pitch vector q = (q1, . . . , qn) of absolute pitch values qi and a pitch
difference vector p = (p1, . . . , pn−1) where pi = qi+1 − qi represents the
number of semitones (positive or negative) from qi to qi+1.

3. By an inter-onset interval vector t = (t1, . . . , tn) of n time intervals
between consecutive onsets.

4. By a chronotonic representation which is a histogram visualizing t as a
sequence of squares of sides t1, . . . , tn; such a display can be seen as a
piece-wise linear function.

5. By a rhythm difference vector r = (r1, . . . , rn−1), where ri = ti+1
ti

.

Examples of general distances between rhythms are the Hamming
distance, swap metric (cf. Chap. 11) and Earth Mover distance be-
tween their given vector representations.

The Euclidean interval vector distance is the Euclidean distance
between two inter-onset interval vectors. The Gustafson chronotonic
distance is a variation of l1-distance between these vectors using the
chronotonic representation.
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Coyle–Shmulevich interval-ratio distance is defined by

1− n +
n−1∑

i=1

max{ri, r
′
i}

min{ri, r′i}
,

where r and r′ are rhythm difference vectors of two rhythms (cf. the re-
ciprocal of Ruzicka similarity in Chap. 17).

• Acoustics distances
The wavelength is the distance the sound wave travels to complete one
cycle. This distance is measured perpendicular to the wavefront in the
direction of propagation between one peak of a sine wave (sinusoid) and
the next corresponding peak. The wavelength of any frequency may be
found by dividing the speed of sound (331.4 m s−1 at sea level) in the
medium by the fundamental frequency.

The far field (cf. Rayleigh distance in Chap. 24) is the part of a
sound field in which sound waves can be considered planar and the sound
intensity decreases as 1

d2 , where d is the distance from the source. It cor-
responds to a reduction of ≈6 dB in the sound level for each doubling
of distance and to halving of loudness (subjective response) for each re-
duction of ≈10 dB. Humans have the innate ability to adjust their vocal
output to compensate for sound propagation losses to a listener’s position.

The near field is the part of a sound field (usually within about two
wavelengths from the source) where there is no simple relationship between
sound level and distance. A sound measurement is in free field if it is made
in open space at a large distance from the source.

The critical distance is the distance from the source at which the
direct sound (produced by the source) and reverberant sound (reflected
echo produced by the direct sound bouncing off, say, walls, floor, etc.) are
equal in amplitude.

The blanking distance is the minimum sensing range of an ultrasonic
proximity sensor.

The proximity effect (audio) is the anomaly of low frequencies being
enhanced when a directional microphone is very close to the source.

The acoustic metric is the term used occasionally for some distances
between vowels; for example, the Euclidean distance between vectors of
formant frequencies of pronounced and intended vowel. (Not to be confused
with acoustic metrics in General Relativity and Quantum Gravity; cf.
Chap. 24.)



Chapter 22
Distances in Internet and Similar
Networks

22.1 Scale-free networks

A network is a graph, directed or undirected, with a positive number
(weight) assigned to each of its arcs or edges. Real-world complex networks
usually have a gigantic number N of vertices and are sparse, i.e., with rela-
tively few edges.

Interaction networks (Internet, the Web, social networks, etc.) tend to
be small-world [Watt99], i.e., interpolate between regular geometric lat-
tices and random graphs in the following sense: they have a large clustering
coefficient (i.e., the probability that two distinct neighbors of a vertex are
neighbors), as lattices in a local neighborhood, while the average path dis-
tance between two vertices is small, about ln N , as in a random graph.

The main subcase of a small-world network is a scale-free network
[Bara01] in which the probability distribution, say, for a vertex, to have de-
gree k is similar to k−γ for some positive constant γ which usually belongs
to the segment [2, 3].

This power law implies that very few vertices, called hubs (connectors,
super-spreaders), are far more connected than other vertices.

The power law (or long range dependent, heavy-tail) distributions, in
space or time, has been observed in many natural phenomena (both, physical
and sociological).

• Collaboration distance
The collaboration distance is the path metric (see http://www.oakland.
edu/enp/) of the Collaboration graph, having about 0.4 million vertices
(authors in Mathematical Reviews database) with xy being an edge if
authors x and y have a joint publication among about 2 million papers
itemized in this database. The vertex of largest degree 1416, corresponds
to Paul Erdős; the Erdős number of a mathematician is his collaboration
distance to Paul Erdős.

The Barr’s collaboration metric (http://www.oakland.edu/enp/barr.
pdf) is the resistance metric from Chap. 15 in the following extension
of the Collaboration graph. First, put a 1-Ω resistor between any two
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authors for every joint two-authors paper. Then, for each n-authors paper,
n > 2, add a new vertex and connect it by a n

4 -Ω resistor to each of its
co-authors.

• Co-starring distance
The co-starring distance is the path metric of the Hollywood graph,
having about 250,000 vertices (actors in the Internet Movie database) with
xy being an edge if the actors x and y appeared in a feature film together.
The vertices of largest degree are Christopher Lee and Kevin Bacon; the
trivia game Six degrees of Kevin Bacon uses the Bacon number, i.e., the
co-starring distance to this actor.

Similar popular examples of such social scale-free networks are graphs of
musicians (who played in the same rock band), baseball players (as team-
mates), scientific publications (who cite each other), chess-players (who
played each other), mail exchanges, acquaintances among classmates in a
college, business board membership, sexual contacts among members of
a given group. The path metric of the last network is called the sexual
distance.

Among other such studied networks are air travel connections, word co-
occurrences in human language, US power grid, sensor networks, worm
neuronal network, gene co-expression networks, protein interaction net-
works and metabolic networks (with two substrates forming an edge if a
reaction occurs between them via enzymes).

• Forward quasi-distance
In a directed network, where edge-weights correspond to a point in time,
the forward quasi-distance (backward quasi-distance) is the length
of the shortest directed path, but only among paths on which consecutive
edge-weights are increasing (decreasing, respectively).

The forward quasi-distance is useful in epidemiological networks (disease
spreading by contact, or, say, heresy spreading within a church), while the
backward quasi-distance is appropriated in P2P (i.e., peer-to-peer) file-
sharing networks.

• Betweenness centrality
For a geodesic metric space (X, d) (in particular, for the path metric of
a graph), the stress centrality of a point x ∈ X is defined (Shimbel
1953) by

∑

y,z∈X, y 	=x	=z

Number of shortest (y − z) paths throughx,

the betweenness centrality of a point x ∈ X is defined (Freeman
1977) by

g(x) =
∑

y,z∈X, y 	=x	=z

Number of shortest (y − z) paths throughx

Number of shortest (y − z) paths
,
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and the distance-mass function is a function M : R≥0 → Q, defined by

M(a) =
|{y ∈ X : d(x, y) + d(y, z) = a for some x, y ∈ X}|

|{(x, z) ∈ X ×X : d(x, z) = a}| .

It was conjectured in [GOJKK02] that many scale-free networks sat-
isfy to power law g−γ (for the probability that a vertex has betweenness
centrality g), where γ is either 2 or ≈2.2 with the distance-mass function
M(a) being either linear or non-linear, respectively. In the linear case, for
example, M(a)

a ≈ 4.5 for the Internet AS metric, and ≈1 for the Web
hyperlink quasi-metric.

• Distance centrality
Given a finite metric space (X, d) (usually, the path metric on the graph
of a network) and a point x ∈ X, we give here examples of metric function-
als used to measure distance centrality, i.e., the amount of centrality of
the point x in X expressed in terms of its distances d(x, y) to other points:

1. The eccentricity (or Koenig number) maxy∈X d(x, y) was given in
Chap. 1; Hage and Harary (1995) considered 1

maxy∈X d(x,y) .
2. The closeness centrality (Sabidussi 1966) 1∑

y∈X d(x,y) and the mean

distance
∑

y∈X d(x,y)

|X|−1 .
3. Dangalchev (2006) introduced

∑
y∈X, y 	=x 2−d(x,y), which allows the case

d(x, y) = ∞ (disconnected graphs).

• Drift distance
The drift distance is the absolute value of the difference between ob-
served and actual coordinates of a node in a NVE (Networked Virtual
Environment). In models of such large-scale peer-to-peer NVE (for exam-
ple, Massively Multiplayer On-line Games), the users are represented as
coordinate points on the plane (nodes) which can move at discrete time-
steps, and each has a visibility range called the Area of Interest. NVE
creates a synthetic 3D world where each user assumes avatar (a virtual
identity) to interact with other users or computer AI.

The term drift distance is also used for the current going through a
material, in tire production, etc.

• Semantic proximity
For the words in a document, there are short range syntactic relations
and long range semantic correlations, i.e., meaning correlations between
concepts.

The main document networks are Web and bibliographic databases (dig-
ital libraries, scientific databases, etc.); the documents in them are related
by, respectively, hyperlinks and citation or collaboration.

Also, some semantic tags (keywords) can be attached to the documents
in order to index (classify) them: terms selected by author, title words,
journal titles, etc.
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The semantic proximity between two keywords x and y is their
Tanimoto similarity |X∩Y |

|X∪Y | , where X and Y are the sets of documents
indexed by x and y, respectively. Their keyword distance is defined by
|XΔY |
|X∩Y | ; it is not a metric.

22.2 Network-based semantic distances

Among the main lexical networks (such as WordNet, Framenet, Medical
Search Headings, Roget’s Thesaurus) a semantic lexicon WordNet is the most
popular lexical resource used in Natural Language Processing and Computa-
tional Linguistics.

WordNet (see http://wordnet.princeton.edu) is an on-line lexical database
in which English nouns, verbs, adjectives and adverbs are organized into
synsets (synonym sets), each representing one underlying lexical concept.

Two synsets can be linked semantically by one of the following links:
upwards x (hyponym) IS-A y (hypernym) link, downwards x (meronym)
CONTAINS y (holonym) link, or a horizontal link expressing frequent co-
occurrence (antonymy), etc. IS-A links induce a partial order, called IS-A tax-
onomy. The version 2.0 of WordNet has 80,000 noun concepts and 13,500 verb
concepts, organized into 9 and 554 separate IS-A hierarchies, respectively.

In the resulting DAG (directed acyclic graph) of concepts, for any two
synsets (or concepts) x and y, let l(x, y) denote the length of the shortest
path between them, using only IS-A links, and let LPS(x, y) denote their least
common subsumer (ancestor) by IS-A taxonomy. Let d(x) denote the depth of
x (i.e., its distance from the root in IS-A taxonomy) and let D = maxx d(x).

The semantic relatedness of two noons can be estimated by their ancestral
path distance (cf. Chap. 23), i.e., the length of the shortest ancestral path
(directed path through a common ancestor) connecting them. A list of the
other main semantic similarities and distances follows.

• Path similarity
The path similarity between synsets x and y is defined by

path(x, y) = (l(x, y))−1.

• Leacock–Chodorow similarity
The Leacock–Chodorow similarity between synsets x and y is de-
fined by

lch(x, y) = − ln
l(x, y)
2D

,

and the conceptual distance between them is defined by l(x,y)
D .

http://wordnet.princeton.edu
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• Wu–Palmer similarity
The Wu–Palmer similarity between synsets x and y is defined by

wup(x, y) =
2d(LPS(x, y))

d(x) + d(y)
.

• Resnik similarity
The Resnik similarity between synsets x and y is defined by

res(x, y) = − ln p(LPS(x, y)),

where p(z) is the probability of encountering an instance of concept z in
a large corpus, and − ln p(z) is called the information content of z.

• Lin similarity
The Lin similarity between synsets x and y is defined by

lin(x, y) =
2 ln p(LPS(x, y))
ln p(x) + ln p(y)

.

• Jiang–Conrath distance
The Jiang–Conrath distance between synsets x and y is defined by

jcn(x, y) = 2 ln p(LPS(x, y))− (ln p(x) + ln p(y)).

• Lesk similarities
A gloss of a synonym set z is the member of this set giving a definition
or explanation of an underlying concept. The Lesk similarities are those
defined by a function of the overlap of glosses of corresponding concepts;
for example, the gloss overlap is

2t(x, y)
t(x) + t(y)

,

where t(z) is the number of words in the synset z, and t(x, y) is the number
of common words in x and y.

• Hirst–St-Onge similarity
The Hirst–St-Onge similarity between synsets x and y is defined by

hso(x, y) = C − L(x, y)− ck,

where L(x, y) is the length of a shortest path between x and y using all
links, k is the number of changes of direction in that path, and C, c are
constants.

The Hirst–St-Onge distance is defined by L(x,y)
k .
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• Semantic biomedical distances
The semantic biomedical distances are the distances used in bio-
medical lexical networks. The main clinical terminologies are UMLS
(United Medical Language System) and SNOMED CT (Systematized
Nomenclature of Medicine – Clinical Terms).

The conceptual distance between two biomedical concepts in UMLS is
(Caviedes and Cimino 2004) the minimum number of IS-A parent links
between them in the directed acyclic graph of IS-A taxonomy of concepts.

An example of semantic biomedical distances used in SNOMED and
presented in Melton, Parsons, Morrisin, Rothschild, Markatou and Hripsak
(2006) is given by the inter-patient distance between two medical cases
(sets X and Y of patient data). It is the Tanimoto distance (cf. Chap. 1)
|X�Y |
|X∪Y | between them.

22.3 Distances in Internet and Web

Let us consider in detail the graphs of the Web and of its hardware substrate,
Internet, which are small-world and scale-free.

The Internet is the largest WAN (wide area network), spanning the Earth.
This publicly available worldwide computer network came from ARPANET
(started in 1969 by US Department of Defense), NSFNet, Usenet, Bitnet, and
other networks. In 1995, the National Science Foundation in the US gave up
the stewardship of the Internet.

Its nodes are routers, i.e., devices that forward packets of data along net-
works from one computer to another, using IP (Internet Protocol relating
names and numbers), TCP and UDP (for sending data), and (built on top of
them) HTTP, Telnet, FTP and many other protocols (i.e., technical specifi-
cations of data transfer). Routers are located at gateways, i.e., places where
at least two networks connect.

The links that join the nodes together are various physical connectors,
such as telephone wires, optical cables and satellite networks. The Internet
uses packet switching, i.e., data (fragmented if needed) are forwarded not
along a previously established path, but so as to optimize the use of available
bandwidth (bit rate, in million bits per second) and minimize the latency (the
time, in milliseconds, needed for a request to arrive).

Each computer linked to the Internet is usually given a unique “address,”
called its IP address. The number of possible IP addresses is 232 ≈ 4.3 billion
only. The most popular applications supported by the Internet are e-mail,
file transfer, Web, and some multimedia as Internet TV and YouTube. In
2006, 161 EB (161 billion gigabytes, 1,288 × 1018 bites, ≈3 × 106 times the
information in all the books ever written) of digital information was created
and copied. Internet traffic more than doubles each year.
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The Internet IP graph has, as the vertex-set, the IP addresses of all com-
puters linked to the Internet; two vertices are adjacent if a router connects
them directly, i.e., the passing datagram makes only one hop.

The Internet also can be partitioned into ASs (administratively Au-
tonomous Systems or domains). Within each AS the intra-domain routing
is done by IGP (Interior Gateway Protocol), while inter-domain routing is
done by BGP (Border Gateway Protocol) which assigns an ASN (16-bit num-
ber) to each AS. The Internet AS graph has ASs (about 25.000 in 2007) as
vertices and edges represent the existence of a BGP peer connection between
corresponding ASs.

The World Wide Web (WWW or Web, for short) is a major part of Internet
content consisting of interconnected documents (resources). It corresponds to
HTTP (Hyper Text Transfer Protocol) between browser and server, HTML
(Hyper Text Markup Language) of encoding information for a display, and
URLs (Uniform Resource Locators), giving unique “addresses” to web pages.
The Web was started in 1989 in CERN which gave it for public use in 1993.

The Web digraph is a virtual network, the nodes of which are documents
(i.e., static HTML pages or their URLs) which are connected by incoming or
outcoming HTML hyperlinks, i.e., hypertext links.

The number of nodes in the Web digraph in 2007 was, by different esti-
mation, between 15 and 30 billion.

The number of web sites (collections of related web pages found at a single
address) reached 182 million in 2008, from 18,957 in 1995. Along with the
Web lies the Deep or Invisible Web, i.e., searchable databases (about 300.000)
with the number of pages (if not actual content) estimated as being about
500 times more than on static Web pages. Those pages are not indexed by
search engines; they have dynamic URL and so can be retrieved only by a
direct query in real time.

On 30 June 2007, 1,173,109,925 users (17.8% of the global population
6,574,666,417) were online, including 69.5% in North America and 39.8% in
Europe. The top six languages on the Internet, at 30 June 2007, were: English,
Chinese, Spanish, Japanese, French, German with, respectively, 31%, 16%,
9%, 7%, 5%, 5% of all Internet users with corresponding Internet penetration
18%, 14%, 23%, 67%, 15%, 61% by languages.

There are several hundred thousand cyber-communities, i.e., clusters of
nodes of the Web digraph, where the link density is greater among members
than between members and the rest. The cyber-communities (a customer
group, a social network, a concept in a technical paper, etc.) are usually
focused around a definite topic and contain a bipartite hubs-authorities sub-
graph, where all hubs (guides and resource lists) point to all authorities
(useful and relevant pages on the topic). Examples of new media, created by
the Web are (we)blogs (digital diaries posted on the Web), Skype (telephone
calls), social site Facebook and Wikipedia (the collaborative encyclopedia).
The project Semantic Web by WWW Consortium aims at linking to meta-
data, merging social data and transformation of WWW into GGG (Giant
Global Graph) of users.
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On average, nodes of the Web digraph are of size 10 kB, out-degree 7.2, and
probability k−2 to have out-degree or in-degree k. A study in [BKMR00] of
over 200 million web pages gave, approximatively, the largest connected com-
ponent “core” of 56 million pages, with another 44 million of pages connected
to the core (newcomers?), 44 million to which the giant core is connected (cor-
porations?) and 44 million connected to the core only by undirected paths
or disconnected from it. For randomly chosen nodes x and y, the probability
of the existence of a directed path from x to y was 0.25 and the average
length of such a shortest path (if it exists) was 16, while maximal length of
a shortest path was over 28 in the core and over 500 in the whole digraph.

A study in [CHKSS06] of Internet AS graphs revealed the following Medusa
structure of the Internet: “nucleus” (diameter 2 cluster of ≈100 nodes), “frac-
tal” (≈15,000 nodes around it), and “tentacles” (≈5,000 nodes in isolated
subnetworks communicating with the outside world only via the nucleus).

The distances below are examples of host-to-host routing metrics, i.e.,
values used by routing algorithms in the Internet, in order to compare pos-
sible routes. Examples of other such measures are: bandwidth consumption,
communication cost, reliability (probability of packet loss). Also, the main
computer-related quality metrics are mentioned.

• Internet IP metric
The Internet IP metric (or hop count, RIP metric, IP path length) is the
path metric in the Internet IP graph, i.e., the minimal number of hops (or,
equivalently, routers, represented by their IP addresses) needed to forward
a packet of data. RIP imposes a maximum distance of 15 and advertises
by 16 non-reachable routes.

• Internet AS metric
The Internet AS metric (or BGP-metric) is the path metric in the

Internet AS graph, i.e., the minimal number of ISPs (Independent Service
Providers), represented by their ASs, needed to forward a packet of data.

• Geographic distance
The geographic distance is the great circle distance on the Earth
from the client x (destination) to the server y (source). However, for eco-
nomical reasons, the data often do not follow such geodesics; for example,
most data from Japan to Europe transits via US.

• RTT-distance
The RTT-distance is the RTT (Round Trip Time: to send a packet and
receive an acknowledgement back) of transmission between x and y, mea-
sured in milliseconds (usually, by the ping command) during the previous
day.

See [HFPMC02] for variations of this distance and connections with
the above three metrics. Fraigniaud, Lebbar and Viennot (2008) found
that RTT is a C -inframetric (Chap. 1) with C ≈ 7. Sinha, Raz and
Choudhuri (2006) asserted that the average RTT-distance from x to the
nearest backbone (i.e., of Class 1) network, coupled with its geographic
distance, predicts the network distance better than on-line metrics.
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• Administrative cost distance
The administrative cost distance is the nominal number (rating the

trustworthiness of a routing information), assigned by the network to the
route between x and y. For example, Circe assigns values 0, 1, . . . , 200, 255
for the Connected Interface, Static Route, . . . , Internal BGP, Unknown,
respectively.

• DRP-metrics
The DD (Distributed Director) system of Cisco uses (with priorities and
weights) the administrative cost distance, the random metric (select-
ing a random number for each IP address) and the DRP (Direct Response
Protocol) metrics. DRP-metrics ask from all DRP-associated routers one
of the following distances:

1. The DRP-external metric, i.e., the number of BGP (Border Gateway
Protocol) hops between the client requesting service and the DRP server
agent

2. The DRP-internal metric, i.e., the number of IGP hops between the
DRP server agent and the closest border router at the edge of the au-
tonomous system

3. The DRP-server metric, i.e., the number of IGP hops between the
DRP server agent and the associated server

• Network tomography metrics
Consider a network with fixed routing protocol, i.e., a strongly connected
digraph D = (V,E) with a unique directed path T (u, v) selected for any
pair (u, v) of vertices. The routing protocol is described by a binary routing
matrix A = ((aij)), where aij = 1 if the arc e ∈ E, indexed i, belongs to
the directed path T (u, v), indexed j. The Hamming distance between
two rows (columns) of A is called the distance between corresponding
arcs (directed paths) of the network.

Consider two networks with the same digraph, but different routing
protocols with routing matrices A and A′, respectively. Then a routing
protocol semi-metric [Var04] is the smallest Hamming distance between
A and a matrix B, obtained from A′ by permutations of rows and columns
(both matrices are seen as strings).

• Web hyperlink quasi-metric
The Web hyperlink quasi-metric (or click count) is the length of the

shortest directed path (if it exists) between two web pages (vertices in the
Web digraph), i.e., the minimal number of necessary mouse-clicks in this
digraph.

• Average-clicks Web quasi-distance
The average-clicks Web quasi-distance between two web pages x and y

in the Web digraph [YOI03] is the minimum
∑m

i=1 ln p
z+

i

α over all directed
paths x = z0, z1, . . . , zm = y connecting x and y, where z+

i is the out-
degree of the page zi. The parameter α is 1 or 0.85, while p (the average
out-degree) is 7 or 6.
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• Dodge–Shiode WebX quasi-distance
The Dodge–Shiode WebX quasi-distance between two web pages

x and y of the Web digraph is the number 1
h(x,y) , where h(x, y) is the

number of shortest directed paths connecting x and y.
• Web similarity metrics

Web similarity metrics form a family of indicators used to quantify the
extent of relatedness (in content, links or/and usage) between two web
pages x and y.

Some examples are: topical resemblance in overlap terms, co-citation
(the number of pages, where both are given as hyperlinks), bibliograph-
ical coupling (the number of hyperlinks in common) and co-occurrence
frequency min{P (x|y), P (y|x)}, where P (x|y) is the probability that a vis-
itor of the page y will visit the page x.

In particular, search-centric change metrics are metrics used by
search engines on the Web, in order to measure the degree of change be-
tween two versions x and y of a web page. If X and Y are the set of all
words (excluding HTML markup) in x and y, respectively, then the word
page distance is the Dice distance

|X�Y |
|X|+ |Y | = 1− 2|X ∪ Y |

|X|+ |Y | .

If vx and vy are weighted vector representations of x and y, then their
cosine page distance is given by

1− 〈vx, vy〉
||vx||2 · ||vy||2

.

Cf. TF-IDF similarity in Chap. 17.

• Web quality control distance function
Let P be a query quality parameter and X its domain. For example, P
can be query response time, or accuracy, relevancy, size of result.

The Web quality control distance function (Chen, Zhu and Wang
1998) for evaluating the relative goodness of two values, x and y, of pa-
rameter P is a function ρ : X × X → R (not a distance) such that, for
all x, y, z ∈ X:

1. ρ(x, y) = 0 if and only if x = y.
2. ρ(x, y) > 0 if and only if ρ(y, x) < 0.
3. If ρ(x, y) > 0 and ρ(y, z) > 0, then ρ(x, z) > 0.

The inequality ρ(x, y) > 0 means that x is better than y; so, it defines
a partial order (reflexive, antisymmetric and transitive binary relation)
on X.
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• Lostness metric
Users navigating within hypertext systems often experience disorientation
(the tendency to lose sense of location and direction in a non-linear doc-
ument) and cognitive overhead (the additional effort and concentration
needed to maintain several tasks/trails at the same time). Users miss the
global view of document structure and their working space.

Smith’s lostness metric measures it by

(
n

s
− 1)2 + (

r

n
− 1)2,

where s is the total number of nodes visited while searching, n is the
number of different nodes among them, and r is the number of nodes
which need to be visited to complete a task.

• Trust metrics
A trust metric is, in Computer Security, a measure to evaluate a set of
peer certificates resulting in a set of accounts accepted and, in Sociology,
a measure of how a member of the group is trusted by the others in the
group.

For example, the UNIX access metric is a combination of only read,
write and execute kinds of access to a resource. The much finer Advogato
trust metric (used in the community of open source developers to rank
them) is based on bonds of trust formed when a person issues a cer-
tificate about someone else. Other examples are: Technorati, TrustFlow,
Richardson et al’s., Mui et al’s., eBay trust metrics.

• Software metrics
A software metric is a measure of software quality which indicates
the complexity, understandability, description, testability and intricacy of
code. Managers use mainly process metrics which help in monitoring the
processes that produce the software (say, the number of times the program
failed to rebuild overnight).

An architectural metric is a measure of software architecture (de-
velopment of large software systems) quality which indicates the coupling
(inter-connectivity of composites), cohesion (intraconnectivity), abstract-
ness, instability, etc.

• Locality metric
The locality metric is a physical metric measuring globally the locations
of the program components, their calls, and the depth of nested calls by

∑
i,j fijdij
∑

i,j fij
,

where dij is a distance between calling components i and j, while fij is the
frequency of calls from i to j. If the program components are of about same
size, dij = |i − j| is taken. In the general case, Zhang and Gorla (2000)
proposed to distinguish forward calls, which are placed before the called
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component, and backward (other) calls. Define dij = d′i+d′′ij , where d′i is the
number of lines of code between the calling statement and the end of i if call
is forward, and between the beginning of i and the call, otherwise, while
d′′ij =

∑j−1
k=i+1 Lk if the call is forward, and d′′ij =

∑i−1
k=j+1 Lk otherwise.

Here Lk is the number of lines in component k.
• Reuse distance

In a computer, the microprocessor (or processor) is the chip doing all the
computations, and the memory usually refers to RAM (random access
memory). A (processor) cache stores small amounts of recently used infor-
mation right next to the processor where it can be accessed much faster
than memory. The following distance estimates the cache behavior of pro-
grams.

The reuse distance (Mattson, Gecsei, Slutz and Treiger 1970; and
Ding and Zhong 2003) of a memory location x is the number of distinct
memory references between two accesses of x. Each memory reference is
counted only once because after access it is moved in the cache. The reuse
distance from the current access to the previous one or to the next one is
called the backward or forward reuse distance, respectively.

• Action at a distance (in Computing)
In Computing, the action at a distance is a class of programming prob-
lems in which the state in one part of a program’s data structure varies
wildly because of difficult-to-identify operations in another part of the
program.

In Software Engineering, Holland’s Law of Demeter is a style guideline:
an unit should “talk only to immediate friends” (closely related units) and
have limited knowledge about other units; cf. principle of locality in
Chap. 24.
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Distances in Natural Sciences



Chapter 23
Distances in Biology

Distances are mainly used in Biology to pursue basic classification tasks, for
instance, for reconstructing the evolutionary history of organisms in the form
of phylogenetic trees. In the classical approach those distances were based
on comparative morphology, physiology, mating studies, paleontology and
immunodiffusion. The progress of modern Molecular Biology also allowed the
use of nuclear- and/or amino-acid sequences to estimate distances between
genes, proteins, genomes, organisms, species, etc. The importance of distance
can be seen, for example, from the list of 23 Mathematical Challenges funded
by US Department of Defense since DARPA-BAA Tech 2007; the 15-th one
is “The Geometry of Genome Space:” what notion of distance is needed to
incorporate biological utility?

DNA is a sequence of nucleotides (or nuclei acids) A, T, G and C, and
it can be seen as a word over this alphabet of four letters. The (single ring)
nucleotides A, G (short for adenine and guanine) are called purines, while
(double ring) T, C (short for thymine and cytosine) are called pyrimidines (in
RNA, it is uracil U instead of T). Two strands of DNA are held together and
in the opposite orientation (forming a double helix) by weak hydrogen bonds
between corresponding nucleotides (necessarily, a purine and a pyrimidine)
in the strands alignment. These pairs are called base pairs.

A transition mutation is a substitution of a base pair, so that a purine/
pyrimidine is replaced by another purine/pyrimidine; for example, GC is
replaced by AT. A transversion mutation is a substitution of a base pair, so
that a purine/pyrimidine is replaced by a pyrimidine/purine base pair, or
vice versa; for example, GC is replaced by TA.

DNA molecules occur (in the nuclei of eukaryote cells) in the form of long
chaines called chromosomes. Most human cells contain 23 pairs of chromo-
somes, one set of 23 from each parent; human gamete (sperm or egg) is a
haploid, i.e., contains only one set of 23 chromosomes. The (normal) males
and females differ only in the 23-rd pair: XY for males, and XX for female.
The DNA from one human cell has length ≈1.8 m but width of ≈2.4 nm.

A gene is a functionally complete segment of DNA which encodes (via
transcription, information flow to RNA, and then translation, information
flow from RNA to enzymes) a protein or an RNA molecule. The location of
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a gene on its specific chromosome is called the gene locus. Different versions
(states) of a gene are called its alleles. Only ≈1.5% of human DNA are in
protein-coding genes.

A protein is a large molecule which is a chain of amino acids; among them
are hormones, catalysts (enzymes), antibodies, etc. The protein length is
the number of amino acids in the chain; average protein length is around
300. There are 20 standard amino acids; the three-dimensional shape of a
protein is defined by the (linear) sequence of amino acids, i.e., by a word in
this alphabet of 20 letters.

The genetic code is universal to all organisms and is a correspondence
between some codons (i.e., ordered triples of nucleotides) and 20 amino acids.
It express the genotype (information contained in genes, i.e., in DNA) as the
phenotype (proteins). Three stop codons (UAA, UAG, and UGA) signify the
end of a protein; any two, among 61 remaining codons, are called synonymous
if they correspond to the same amino acid. Slight variations of the code (codon
reassignments selected, perhaps, for antiviral defense) were observed for some
mitochondria, ciliates, yeasts, etc. In certain enzymes, non-standard amino
acids (21st, selenocysteine and 22nd, pyrrolysine) are substituted for standard
stop codons: UGA and UAG, respectively. On the other hand, more than 60
amino acids were identified in the Murchison meteorite.

A genome is entire genetic constitution of a species or of a living organism.
For example, the human genome is the set of 23 chromosomes consisting of
≈3.2 billion base pairs of DNA and organized into 20,000–25,000 genes.

IAM (infinite-alleles model of evolution) assumes that an allele can change
from any given state into any other given state. It corresponds to a primary
role for genetic drift (i.e., random variation in gene frequencies from one
generation to another), especially in small populations, over natural selection
(stepwise mutations). IAM is convenient for allozyme (a form of a protein
which is encoded by one allele at a specific gene locus) data.

SMM (for step-wise mutation model of evolution) is more convenient for
(recently, most popular) micro-satellite data. A repeat is a stretch of base
pairs that is repeated with a high degree of similarity in the same sequence.
Micro-satellites are highly variable repeating short sequences of DNA; their
mutation rate is 1 per 1,000–10,000 replication events, while it is 1/1,000,000
for allozymes. It turns out that micro-satellites alone contain enough informa-
tion to plot the lineage tree of an organism. Micro-satellite data (for example,
for DNA fingerprinting) consist of numbers of repeats of micro-satellites for
each allele. Another popular molecular marker is SSU rRNA (small subunit
ribosomal RNA) data because rRNA genes are essential for the survival of
any organism and their sequences change relatively little.

Examples of distances, representing general schemes of measurement in
Biology, follow.

The term taxonomic distance is used for every distance between two
taxa, i.e., entities or groups, which are arranged into an hierarchy (in the
form of a tree designed to indicate degrees of relationship).
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Linnean taxonomic hierarchy is arranged in ascending series of ranks:
Zoology (seven ranks: Kingdom, Phylum, Class, Order, Family Genus,
Species) and Botany (12 ranks). A phenogram is an hierarchy expressing
phenetic relationship, i.e., unweighted overall similarity. A cladogram is a
strictly genealogical (by ancestry) hierarchy in which no attempt is made to
estimate/depict rates or amount of genetic divergence between taxa.

A phylogenetic tree is an hierarchy representing a hypothesis of phylogeny,
i.e., evolutionary relationships within and between taxonomic levels, espe-
cially the patterns of lines of descent. Phenetic distance is a measure of
the difference in phenotype between any two nodes on a phylogenetic tree.
Phylogenetic distance (or cladistic distance, genealogical distance)
between two taxa is the branch length, i.e., the minimum number of edges,
separating them in a phylogenetic tree.

Evolutionary distance (or patristic distance, general genetic dis-
tance) between two taxa is a measure of genetic divergence estimating the
divergence time, i.e., the time that has passed since those populations existed
as a single population. General immunological distance between two taxa
is a measure of the strength of antigen-antibody reactions, indicating the
evolutionary distance separating them.

The next three sections list the main genetic distances for different molec-
ular data (allele frequencies and nucleotide or amino acid sequences). The
main way to estimate the genetic distance between DNA, RNA or proteins
is to compare their nucleotide or amino acid, respectively, sequences. Be-
sides sequencing, the main techniques used are immunological ones, annealing
(cf. hybridization metric) and comparing their gel electrophoresis (sepa-
ration through an electric charge) banding patterns. In fact, chromosomes
stained by some dyes show a 2D pattern of traverse bands of light and heavy
staining.

23.1 Genetic distances for gene-frequency data

In this section, a genetic distance between populations is a way of measur-
ing the amount of evolutionary divergence by counting the number of allelic
substitutions by loci. Among the three most commonly used distances be-
low, Nei standard genetic distance 1972, assumes that differences arise
due to mutation and genetic drift, while Cavalli-Sforza–Edvards chord
distance 1967, and Reynolds–Weir–Cockerham distance 1983, assume
genetic drift only.

A population is represented by a double-indexed vector x = (xij) with∑n
j=1 mj components, where xij is the frequency of i-th allele (the label

for a state of a gene) at the j-th gene locus (the position of a gene on a
chromosome), mj is the number of alleles at the j-th locus, and n is the
number of considered loci.
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Denote by
∑

summation over all i and j. Since xij is the frequency, xij ≥ 0
and

∑mj

i=1 xij = 1.

• Stephens et al. shared allele distance
The Stephens et al. shared allele distance (Stephens, Gilbert, Yuhki
and O’Brien 1992) between populations is defined by

1− SA(x, y)
SA(x) + SA(y)

,

where, for two individuals a and b, SA(a, b) denotes the number of shared
alleles summed over all n loci and divided by 2n, while SA(x), SA(y), and
SA(x, y) are SA(a, b) averaged over all pairs (a, b) with individuals a, b
being in populations, represented by x, by y and, respectively, between
them.

• Dps distance.
The Thorpe similarity between populations is defined by

∑
min{xij ,

yij}.
The Dps distance between populations is defined by

− ln
∑

min{xij , yij}∑n
j=1 mj

.

• Prevosti–Ocana–Alonso distance
The Prevosti–Ocana–Alonso distance between populations is defined
(cf. Manhattan metric) by

∑
|xij − yij |

2n
.

• Roger distance
The Roger distance is a metric between populations, defined by

1√
2n

n∑

j=1

√
√
√
√

mj∑

i=1

(xij − yij)2.

• Cavalli-Sforza–Edvards chord distance
The Cavalli-Sforza–Edvards chord distance between populations is
defined by

2
√

2
πn

n∑

j=1

√
√
√
√1−

mj∑

i=1

√
xijyij .

It is a metric (cf. Hellinger distance in Chap. 17).
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• Cavalli-Sforza arc distance
The Cavalli-Sforza arc distance between populations is defined by

2
π

arccos
(∑√

xijyij

)
.

(Cf. Fisher distance in Chap. 14.)
• Nei–Tajima–Tateno distance

The Nei–Tajima–Tateno distance between populations is defined by

1− 1
n

∑√
xijyij .

• Nei minimum genetic distance
The Nei minimum genetic distance between populations is defined by

1
2n

∑
(xij − yij)2.

• Nei standard genetic distance
The Nei standard genetic distance between populations is defined by

− ln I,

where I is Nei normalized identity of genes, defined by 〈x,y〉
||x||2·||y||2 (cf.

Bhattacharya distances in Chap. 14 and angular semi-metric in
Chap. 17).

• Sangvi χ2 distance
The Sangvi χ2 distance between populations is defined by

2
n

∑ (xij − yij)2

xij + yij
.

• Fuzzy set distance
The Dubois–Prade’s fuzzy set distance between populations is de-
fined by ∑

1xij 	=yij∑n
j=1 mj

.

• Goldstein and al. distance
The Goldstein and al. distance between populations is defined by

1
n

∑
(ixij − iyij)2.
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• Average square distance
The average square distance between populations is defined by

1
n

n∑

k=1

⎛

⎝
∑

1≤i<j≤mj

(i− j)2xikyjk

⎞

⎠ .

• Shriver–Boerwinkle stepwise distance
The Shriver–Boerwinkle stepwise distance between populations is
defined by

1
n

n∑

k=1

∑

1≤i,j≤mk

|i− j|(2xikyjk − xikxjk − yikyjk).

• Kinship distance
The kinship distance between populations is defined by

− ln〈x, y〉,

and 〈x, y〉 is called the kinship coefficient.
• Latter F -statistics distance

The Latter F -statistics distance between populations is defined by

∑
(xij − yij)2

2(n−
∑

xijyij)
.

• Reynolds–Weir–Cockerham distance
The Reynolds–Weir–Cockerham distance (or co-ancestry distance)
between populations is defined by

− ln(1− θ),

where θ =
∑

(xij−yij)
2

2(1−
∑

xijyij)
(cf. Latter F-statistics distance) is an estima-

tion of their co-ancestry coefficient.
This coefficient of two populations (or individuals) is the probability

that a randomly picked allele from the genetic pool of one population (or
from one individual) is identical by descent (i.e., corresponding genes are
physical copies of the same ancestral gene) to a randomly picked allele in
another. Two genes can be identical by state, i.e., with the same allele label,
but not identical by descent. The co-ancestry coefficient of two individuals
is the inbreeding coefficient of their following generation.
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• Ancestral path distance
Hereditary trees (or family trees, pedigree graphs) are used to represent an-
cestry relations and, in particular, to identify inbreeding loops and genes
associated with genetic diseases. In such a directed tree, every vertex (per-
son) has in-degree at most two (known parents).

Generally, given a directed acyclic graph, Bender, Farach, Colton,
Pemmasani, Skiena and Sumazin 2001, defined, for any two vertices x, y,
the ancestral path distance as the length of the shortest ancestral
path (directed path through a common ancestor vertex) and the LCA
ancestral path distance as the length of the shortest directed path
through LCA (the least common ancestor) vertex.

The smallest inbreeding loop containing vertices x and y is formed by
concatenating ancestral and descending paths connecting them. The an-
cestral path distance also measures semantic noun relatedness in WorldNet
(cf. Chap. 22).

The unrelated ancestral distance of an extant taxon (Hearn and Huber
2006) is the time (or the number of speciation events, node depth) sepa-
rating it from its most recent ancestor with at least one extant descendant
having an independent character (trait). Cf., also unrelated, co-ancestry
distance.

• Lasker distance
The Lasker distance (Rodrigues and Larralde 1989) between two hu-
man populations x and y, characterized by surname frequency vectors
(xi) and (yi), is the number − ln 2Rx,y, where Rx,y = 1

2

∑
i xiyi is Lasker’s

coefficient of relationship by isonymy. Surname structure is related to in-
breeding and (in patrilinear societies) to random genetic drift, mutation
and migration. Surnames can be considered as alleles of one locus, and
their distribution can be analyzed by Kimura’s theory of neutral muta-
tions; an isonymy points to a common ancestry.

23.2 Distances for DNA/RNA data

Distances between nucleotide (DNA/RNA) or protein sequences are usually
measured in terms of substitutions, i.e., mutations, between them.

A DNA sequence will be seen as a sequence x = (x1, . . . , xn) over the
four-letter alphabet of four nucleotides A, T, C, G (or two-letter alphabet
purine/pyramidine);

∑
denotes

∑n
i=1.

Protein-coding nucleotide sequences are called codon sequences.

• No. of DNA differences
The No. of DNA differences between DNA sequences is the number of
mutations, i.e., their Hamming metric:

∑
1xi 	=yi

.
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• p-distance
The p-distance dp between DNA sequences is defined by

∑
1xi 	=yi

n
.

• Jukes–Cantor nucleotide distance
The Jukes–Cantor nucleotide distance between DNA sequences is
defined by

−3
4

ln
(

1− 4
3
dp(x, y)

)

,

where dp is the p-distance, subject to dp ≤ 3
4 . If the rate of substitution

varies with the gamma distribution, and a is the parameter describing the
shape of this distribution, then the gamma distance for the Jukes–
Cantor model is defined by

3a

4

((

1− 4
3
dp(x, y)

)−1/a

− 1

)

.

• Tajima–Nei distance
The Tajima–Nei distance between DNA sequences is defined by

−b ln
(

1− dp(x, y)
b

)

, where

b =
1
2

⎛

⎝1−
∑

j=A,T,C,G

(
1xi=yi=j

n

)2

+
1
c

∑(
1xi 	=yi

n

)2
⎞

⎠ , and

c =
1
2

∑

i,k∈{A,T,G,C},j 	=k

(∑
1(xi,yi)=(j,k)

)2

(
∑

1xi=yi=j)(
∑

1xi=yi=k)
.

Let P = 1
n |{1 ≤ i ≤ n : {xi, yi} = {A,G} or {T,C}}|, and Q = 1

n |{1 ≤
i ≤ n : {xi, yi} = {A, T} or {G,C}}|, i.e., P and Q are the frequencies of,
respectively, transition and transversion mutations between x and y.

The following four distances are given in terms of P and Q.

• Jin–Nei gamma distance
The Jin–Nei gamma distance between DNA sequences is defined by

a

2

(

(1− 2P −Q)−1/a +
1
2
(1− 2Q)−1/a − 3

2

)

,

where the rate of substitution varies with the gamma distribution, and a
is the parameter describing the shape of this distribution.
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• Kimura 2-parameter distance
The Kimura 2-parameter distance between DNA sequences is
defined by

−1
2

ln(1− 2P −Q)− 1
2

ln
√

1− 2Q.

• Tamura 3-parameter distance
The Tamura 3-parameter distance between DNA sequences is
defined by

−b ln
(

1− P

b
−Q

)

− 1
2
(1− b) ln(1− 2Q),

where fx = 1
n |{1 ≤ i ≤ n : xi = G or C}|, fy = 1

n |{1 ≤ i ≤ n : yi =
G or C}|, and b = fx + fy − 2fxfy.

In the case fx = fy = 1
2 (so, b = 1

2 ), it is the Kimura 2-parameter
distance.

• Tamura–Nei distance
The Tamura–Nei distance between DNA sequences is defined by

− 2fAfG

fR
ln
(

1− fR

2fAfG
PAG −

1
2fR

PRY

)

− 2fT fC

fY
ln
(

1− fY

2fT fC
PTC −

1
2fY

PRY

)

− 2
(

fRfY −
fAfGfY

fR
− fT fCfR

fY

)

ln
(

1− 1
2fRfY

PRY

)

,

where fj = 1
2n

∑
(1xi=j + 1yi=j) for j = A,G, T,C, and fR = fA + fG,

fY = fT + fC , while PRY = 1
n |{1 ≤ i ≤ n : |{xi, yi} ∩ {A,G}| =

|{xi, yi} ∩ {T,C}| = 1}| (the proportion of transversion differences),
PAG = 1

n |{1 ≤ i ≤ n : {xi, yi} = {A,G}}| (the proportion of transi-
tions within purines), and PTC = 1

n |{1 ≤ i ≤ n : {xi, yi} = {T,C}}| (the
proportion of transitions within pyrimidines).

• Lake paralinear distance
Given two DNA sequences x = (x1, . . . , xn) and y = (y1, . . . , yn), denote
by det(J) the determinant of the 4 × 4 matrix J = ((Jij)), where Jij =
1
n |{1 ≤ t ≤ n : xt = i, yt = j}| (joint probability) and indices i, j =
1, 2, 3, 4 represent nucleotides A, T , C, G, respectively. Let fi(x) denote
the frequency of i-th nucleotide in the sequence x (marginal probability),
and let f(x) = f1(x)f2(x)f3(x)f4(x). The Lake paralinear distance
(1994) between sequences x and y is defined by

−1
4

ln
det(J)

√
f(x)f(y)

.



394 23 Distances in Biology

It is a four-point inequality metric, and it generalizes trivially
for sequences over any alphabet. Related are the LogDet distance
(Lockhart, Steel, Hendy and Penny 1994) − 1

4 ln det(J) and the sym-
metrization 1

2 (d(x, y) + d(y, x)) of the Barry–Hartigan quasi-metric
(1987) d(x, y) = − 1

4 ln det(J)√
f(x)

.

• Eigen–McCaskill–Schuster distance
The Eigen–McCaskill–Schuster distance between DNA sequences x =
(x1, . . . , xn) and y = (y1, . . . , yn) is defined by

|{1 ≤ i ≤ n : {xi, yi} �= {A,G}, {T,C}}|.

It is the number of transversions, i.e., positions i with one of xi, yi denoting
a purine and another one denoting a pyrimidine. It is applied to virus or
cancer proliferation under control of drugs or the immune system.

• Watson–Crick distance
The Watson–Crick distance between DNA sequences x = (x1, . . . , xn)
and y = (y1, . . . , yn) is defined, for x �= y, by

|{1 ≤ i ≤ n : {xi, yi} �= {A, T}, {G,C}}|,

i.e., it is the Hamming metric (cf. No. of differences)
∑

1xi 	=yi
be-

tween x and the Watson–Crick complement y = (y1, . . . , yn) of y. Here
yi = A, T,G,C if yi = T,A,C,G, respectively.

• Hybridization metric
Hybridization is the process of combining complementary, single-stranded
nucleic acids into a single molecule. Annealing is the binding of two strands
by Watson–Crick complementation, i.e., interchange of all A, T , G, C by
T , A, C, G, respectively. Denaturation is the reverse process of separating
two strands of the double stranded DNA/RNA molecule (heating breaks
the hydrogen bonds between bases).

Cf. the proximity effect in the production of chromosome aberrations
among proximity effects in Chap. 24.

The rate of annealing of two strands (or the temperature at which de-
naturation occurs) measures similarity between their base sequences.

H-measure between two DNA n-sequences x and y is defined by

H(x, y) = min
−n≤k≤n

∑
1xi 	=y∗

i+k
,

where the indices i + k are modulo n, and y∗ is the reversal of y followed
by Watson–Crick complementation.

A DNA cube is any maximal set of DNA n-sequences, such that
H(x, y) = 0 for any two of them. The hybridization metric (Garzon,
Neathery, Deaton, Murphy, Franceschetti and Stevens 1997) between DNA
cubes A and B is defined by
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min
x∈A,y∈B

H(x, y).

• Interspot distance.
A DNA microarray is a technology consisting of an arrayed series of
thousands of features (microscopic spots of DNA oligonucleotides, each
containing picomoles of a specific DNA sequence) that are used as probes
to hybridize a target (cRNA sample) under high-stringency conditions.
Probe-target hybridization is quantified by fluorescence-based detection
of fluorophore-labeled targets to determine the relative abundance of nu-
cleic acid sequences in the target.

The interspot distance is the spacing distance between features.
Typical values are 375, 750, 1,500 μm (1 μm = 10−6 m)

• RNA structural distances
An RNA sequence is a string over the alphabet {A,C,G,U} of nucleotides
(bases). Inside a cell, such a string folds in 3D space, because of pairing of
nucleotide bases (usually, by bonds A–U , G–C and G–U). The secondary
structure of an RNA is, roughly, the set of helices (or the list of paired
bases) making up the RNA. Such structure can be represented as a planar
graph and further, as a rooted tree.

The tertiary structure is the geometric form the RNA takes in space;
the secondary structure is its simplified model. The quaternary structure
describes the arrangement of multiple protein molecules into larger com-
plexes.

An RNA structural distance between two RNA sequences is a dis-
tance between their secondary structures. These distances are given in
terms of their selected representation. For example, tree edit distance
(and other distances on rooted trees given in Chap. 15) are based on rooted
tree representation.

Let an RNA secondary structure be represented by a simple graph (V,E)
with vertex-set V = {1, . . . , n} such that, for every 1 ≤ i ≤ n, (i, i+1) /∈ E
and (i, j), (i, k) ∈ E imply j = k. Let E = {(i1, j1), . . . , (ik, jk)}, and let
(ij) denote the transposition of i and j. Then π(G) =

∏k
t=1(itjt) is an

involution.
Let G = (V,E) and G′ = (V,E′) be such planar graph representations

of two RNA secondary structures. The base pair distance between G
and G′ is the number |EΔE′|, i.e., the symmetric difference metric
between secondary structures seen as sets of paired bases.

The Zuker distance between G and G′ is the smallest number k such
that, for every edge (i, j) ∈ E, there is an edge (i′, j′) ∈ E′ with max{|i−
i′|, |j− j′|} ≤ k and, for every edge (k′, l′) ∈ E′, there is an edge (k, l) ∈ E
with max{|k − k′|, |l − l′|} ≤ k.

The Reidys–Stadler–Roselló metric between G and G′ is defined by

|EΔE′| − 2T,
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where T is the number of cyclic orbits of length greater than 2 induced
by the action on V of the subgroup 〈π(G), π(G′)〉 of the group Symn of
permutations on V . It is the number of transpositions needed to represent
π(G)π(G′).

Let IG = 〈xixj : (xi, xj) ∈ E〉 be the monomial ideal (in the ring
of polynomials in the variables x1, . . . , xn with coefficients 0, 1), and let
M(IG)m denotes the set of all monomials of total degree ≤m that belong
to IG. For every m ≥ 3, a Liabrés-Roselló monomial metric between
G = (V,E) and G′ = (V ′, E′) is defined by

|M(IG)m−1ΔM(IG′)m−1|.

The secondary structure of a protein much depends on its backbone con-
figuration, i.e., the sequence of dihedral angles defining backbone. Wang
and Zheng (2007) presented a variation of Lempel–Ziv distance between
two such sequences.

• Fuzzy polynucleotide metric
The fuzzy polynucleotide metric (or NTV-metric) is the metric
introduced by Nieto, Torres and Valques-Trasande in 2003 on the 12-
dimensional unit cube I12. Four nucleotides U,C,A and G of RNA
alphabet being coded as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1),
respectively, 64 possible triplet codons of the genetic code can be seen as
vertices of I12.

So, any point (x1, . . . , x12) ∈ I12 can be seen as a fuzzy polynucleotide
codon with each xi expressing the grade of membership of element i, 1 ≤
i ≤ 12, in the fuzzy set x. The vertices of the cube are called the crisp
sets.

The NTV-metric between different points x, y ∈ I12 is defined by

∑
1≤i≤12 |xi − yi|

∑
1≤i≤12 max{xi, yi}

.

Dress and Lokot showed that
∑

1≤i≤n |xi−yi|
∑

1≤i≤n max{|xi|,|yi|} is a metric on the whole

of R
n. On R

n
≥0 this metric is equal to 1 − s(x, y), where s(x, y) =

∑
1≤i≤n min{xi,yi}

∑
1≤i≤n max{xi,yi} is the Ruzicka similarity (cf. Chap. 17).

• tRNA interspecies distance
An ensemble of tRNA molecules is necessary to translate triplet codons
into amino acids; eukaryotes have up to 80 different tRNAs. Two tRNA
molecules are called isoacceptor tRNAs if they bind the same amino acid.

tRNA interspecies distance between species m and n is (Xue, Tong,
Marck, Grosjean and Wong 2003), averaged for all 20 amino acids, tRNA
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distance for given amino acid aai, which is, averaged for all pairs, Jukes–
Cantor protein distance between each of the one or more isoacceptor
tRNAs of aai from species m and each of the one or more isoacceptor
tRNAs of the same amino acid from species n.

• Whole genome composition distance
Let Ak denote the set of all

∑k
i=1 4i non-empty words of length at most

k over the alphabet of four RNA nucleotides. For an RNA sequence x =
(x1, . . . , xn) and any a ∈ Ak, let fa(x) denote the number of occurrences
of a as a block (contiguous subsequence) in x divided by the number of
blocks of the same length in x.

The whole genome composition distance (or, WGCD, Wu, Goebel,
Wan and Lin 2006) between RNA sequences x and y (of two strains of
HIV-1 virus) is defined as the Euclidean distance

√ ∑

a∈Ak

(fa(x)− fa(y))2.

Cf. k-mer distance and, in Chap. 11, q-gram similarity.
• Genome rearrangement distances

The genomes of related unichromosomal species or single chromosome or-
ganelles (such as small viruses and mitochondria) are represented by the
order of genes along chromosomes, i.e., as permutations (or rankings) of a
given set of n homologous genes. If one takes into account the directional-
ity of the genes, a chromosome is described by a signed permutation, i.e.,
by a vector x = (x1, . . . , xn), where |xi| are different numbers 1, . . . , n, and
any xi can be positive or negative. The circular genomes are represented
by circular (signed) permutations x = (x1, . . . , xn), where xn+1 = x1 and
so on.

Given a set of considered mutation moves, the corresponding ge-
nomic distance between two such genomes is the editing metric (cf.
Chap. 11) with the editing operations being these moves, i.e., the mini-
mal number of moves needed to transform one (signed) permutation into
another.

In addition to (and, usually, instead of) local mutation events, such
as character indels or replacements in the DNA sequence, the large (i.e.,
happening on a large portion of the chromosome) mutations are consid-
ered, and the corresponding genomic editing metrics are called genome
rearrangement distances. In fact, such rearrangement mutations be-
ing rarer, these distances estimate better the true genomic evolutionary
distance. The main genome (chromosomal) rearrangements are inversions
(block reversals), transpositions (exchanges of two adjacent blocks) in a
permutation, and also inverted transposition (inversion combined with
transposition) and, for signed permutations only, signed reversals (sign
reversal combined with inversion).
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The main genome rearrangement distances between two unichromoso-
mal genomes are:

reversal metric and signed reversal metric (cf. Chap. 11);
transposition distance: the minimal number of transpositions needed

to transform (permutation representing) one of them into another;
ITT-distance: the minimal number of inversions, transpositions and

inverted transpositions needed to transform one of them into another.
Given two circular signed permutations x = (x1, . . . , xn) and y =

(y1, . . . , yn) (so, xn+1 = x1 etc.), a breakpoint is a number i, 1 ≤ i ≤ n,
such that yi+1 �= xj(i)+1, where the number j(i), 1 ≤ j(i) ≤ n, is defined
by the equality yi = xj(i). The breakpoint distance (Watterson, Ewens,
Hall and Morgan 1982) between genomes, represented by x and y, is the
number of breakpoints.

This distance and the permutation editing metric (the Ulam met-
ric from Chap. 11: the minimal needed number of character moves, i.e.,
1-character transpositions) are used for the approximation of genome re-
arrangement distances.

• Syntenic distance
This is a genomic distance between multichromosomal genomes, seen as
unordered collections of synteny sets of genes, where two genes are syntenic
if they appear in the same chromosome. The syntenic distance (Ferretti,
Nadeau and Sankoff 1996) between two such genomes is the minimal num-
ber of mutation moves – translocations (exchanges of genes between two
chromosomes), fusions (merging of two chromosomes into one) and fis-
sions (splitting of one chromosome into two) – needed to transfer one
genome into another. All (input and output) chromosomes of these muta-
tions should be non-empty and not duplicated. The above three mutation
moves correspond to interchromosomal genome rearrangements, which are
rarer than intrachromosomal ones; so, they give information about deeper
evolutionary history.

• Strand length
A single strand of nucleic acid (DNA or RNA sequence) is oriented down-
stream, i.e., from 5′ end toward 3 ′ end (sites terminating at fifth and third
carbon in the sugar-ring; 5′-phosphate binds covalently to the 3′-hydroxyl
of another nucleotide). So, the structures along it (genes, transcription
factors, polymerases) are either downstream or upstream. The strand
length is the distance from its 5′ to 3′ end.

For a molecule of messenger RNA (mRNA), the gene length is the
distance from the cap site 5′, where post-translational stability is ensured,
to the polyadenylation site 3′, where a poly(A) tail of 50–250 adenines is
attached after translation.

• Genome distance
The genome distance between two loci on a chromosome is the number
of base pairs (bp) separating them on the chromosome.
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In particular, the intragenic distance of two neighboring genes is the
smallest distance in base pairs separating them on the chromosome. Some-
times, it is defined as the genome distance between the transcription start
sites of those genes.

Nelson, Hersh and Carrol (2004) defined the intergenic distance of a
gene as the amount of non-coding DNA between the gene and its nearest
neighbors, i.e., the sum of upstream and downstream distances, where up-
stream distance is the genome distance between the start of a gene’s first
exon and the boundary of the closest upstream neighboring exon (irre-
spective of DNA strand) and downstream distance is the distance between
the end of a gene’s last exon and the boundary of the closest downstream
neighboring exon. If exons overlap, the intergenic distance is 0.

• Map distance
The map distance between two loci on a genetic map is the recombina-
tion frequency expressed as a percentage; it is measured in centimorgans
cM (or map units), where 1 cM corresponds to their statistically corrected
recombination frequency 1%. It may be either recombination of genes
(chromosome map) or within genes (gene map).

Typically, a map distance of 1 cM (genetic scale) corresponds to a
genome distance (physical scale) of about one megabase (million base
pairs) Mp.

• Action at a distance along a DNA
An action at a distance along a DNA happens when an event at one
location on a DNA molecule affects an event at a distant (say, more than
2,500 base pairs) location on the same molecule.

Many genes are regulated by distant (up to a million base pairs away
and, possibly, located on another chromosome) or short (30–200 base
pairs) regions of DNA, enhancers. Enhancers increase the probability of
such a gene to be transcribed in a manner independent of distance and
position (the same or opposite strand of DNA) relative to the transcription
initiation site (the promoter). The enhancer function can be preserved
even if it is moved on the chromosome or its orientation is reversed.

DNA supercoiling is the coiling of a DNA double helix on itself (twist-
ing around the helical axis once every 10.4 base pairs of sequence, forming
circles and figures of eight) because it has been bent, overwound or under-
wound. Such folding puts a long-range enhancer, which is far from a regu-
lated gene in genome distance, geometrically closer to the promoter. The
genomic radius of regulatory activity of a genome is the genome distance of
the most distant known enhancer from the corresponding promoter; in the
human genome it is ≈1 Mp (for enhancer of SSH, Sonic Hedgehog gene).

There is evidence that genomes are organized into enhancer-promoter
loops. But the long-range enhancer function is not fully understood yet.
Akbari, Bae, Johnsen, Villaluz, Wong and Drewell (2008) explain it by
the action of a tether, i.e., a sequence next to a promoter that, as a kind
of postal code, specifically attracts the enhancer.
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Similarly, some viral RNA elements interact across thousands of inter-
vening nucleotides to control translation, genomic RNA synthesis, and
subgenomic mRNA transcription.

23.3 Distances for protein data

A protein sequence (or primary protein structure) is a sequence x =
(x1, . . . , xn) over a 20-letter alphabet of 20 amino acids;

∑
denotes

∑n
i=1.

There are many notions of similarity/distance (20 × 20 scoring matrices)
on the set of 20 amino acids, based on genetic codes, physico-chemical prop-
erties, observed frequency of mutations, secondary structural matching and
structural properties. The most important is the 20 × 20 Dayhoff PAM250
matrix which expresses the relative mutability of 20 amino acids.

• PAM distance
The PAM distance (or Dayhoff–Eck distance, PAM value) between
protein sequences is defined as the minimal number of accepted (i.e., fixed)
point mutations per 100 amino acids needed to transform one protein into
another.

1 PAM is a unit of evolution: it corresponds to 1 point mutation per
100 amino acids. PAM values 80, 100, 200, 250 correspond to the distance
(in %) 50, 60, 75, 92 between proteins.

• Genetic code distance
The genetic code distance (Fitch and Margoliash 1967) between amino
acids x and y is the minimum number of nucleotides that must be changed
to obtain x from y. In fact, it is 1, 2 or 3, since each amino acid corresponds
to three bases.

• Miyata–Miyazawa–Yasanaga distance
The Miyata–Masada–Yasanaga distance (or Miyata’s biochemical dis-
tance 1979) between amino acids x, y with polarities px, py and volumes
vx, vy, respectively, is

√

(
|px − py|

σp
)2 + (

|vx − vy|
σv

)2,

where σp and σv are standard deviations of |px− py| and |vx− vy|, respec-
tively.

This distance is derived from the similar Grantam’s chemical distance
(Grantam 1974) based on polarity, volume and carbon-composition of
amino acids.

• Polar distance
The following three physico-chemical distances between amino acids x and
y were defined in Hughes, Ota and Nei (1990).
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Dividing amino acids into two groups – polar (C, D, E, H, K, N , Q,
R, S, T , W , Y ) and non-polar (the rest) – the polar distance is 1 if x, y
belong to different groups, and 0 otherwise. The second polarity distance
is the absolute difference between the polarity indices of x and y.

Dividing amino acids into three groups – positive (H, K, R), negative
(D, E) and neutral (the rest) – the charge distance is 1 if x, y belong to
different groups, and 0 otherwise.

• Feng–Wang distance
In [FeWa08], 20 amino acids are ordered linearly by their rank-scaled
functions CI,NI of pKa values for the terminal amino acid groups
COOH and NH+

3 , respectively. 17CI is 1,2,3,4,5,6,7,7,8,9,10,11,12,13,14,
14,15,15,16,17 for C,H,F,P,N,D,R,Q,K,E,Y,S,M,V,G,A,L,I,W,T, while
18NI is 1,2,3,4,5,5,6,7,8,9,10,10,11,12,13,14,15,16,17,18 for N,K,R,Y,F,
Q,S,H,M,W,G,L,V,E,I,A,D,T,P,C.

Given a protein sequence x = (x1, . . . , xm), define xi < xj if i < j,
CI(xi) < CI(xi) and NI(xi) < NI(xi) hold. Represent the sequence
x by the augmented m × m Hasse matrix ((aij(x))), where aii(x) =
CI(xi)+NI(xi)

2 and, for i �= j, aij(x) = −1, 1 or 0 if, respectively, xi < xj ,
xi ≥ xj or otherwise.

The Feng–Wang distance between protein sequences x=(x1, . . . , xm)
and y = (y1, . . . , yn) is ||λ(x)√

m
− λ(y)√

n
||2, where λ(z) denotes the largest

eigenvalue (possibly, a complex number) of the matrix ((aij(z))).
• No. of protein differences

The No. of protein differences is just the Hamming metric between
protein sequences: ∑

1xi 	=yi
.

• Amino p-distance
The amino p-distance (or uncorrected distance) dp between protein se-
quences is defined by ∑

1xi 	=yi

n
.

• Amino Poisson correction distance
The amino Poisson correction distance between protein sequences is
defined, via the amino p-distance dp, by

− ln(1− dp(x, y)).

• Amino gamma distance
The amino gamma distance (or Poisson correction gamma distance)
between protein sequences is defined, via the amino p-distance dp, by

a((1− dp(x, y))−1/a − 1),

where the substitution rate varies with i = 1, . . . , n according to the
gamma distribution, and a is the parameter describing the shape of the
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distribution. For a = 2.25 and a = 0.65, it estimates the Dayhoff and
Grishin distances, respectively. In some applications, this distance with
a = 2.25 is called simply the Dayhoff distance.

• Jukes–Cantor protein distance
The Jukes–Cantor protein distance between protein sequences is de-
fined, via amino p-distance dp, by

−19
20

ln
(

1− 20
19

dp(x, y)
)

.

• Kimura protein distance
The Kimura protein distance between protein sequences is defined, via
the amino p-distance dp, by

− ln

(

1− dp(x, y)−
d2

p(x, y)
5

)

.

• Grishin distance
The Grishin distance d between protein sequences can be obtained, via
the amino p-distance dp, from the formula

ln(1 + 2d(x, y))
2d(x, y)

= 1− dp(x, y).

• k-mer distance
The k-mer distance (Edgar 2004) between sequences x = (x1, . . . , xm)
and y = (y1, . . . , yn) over a compressed amino acid alphabet is defined by

ln
(

1
10

+
∑

a min{x(a), y(a)}
min{m,n} − k + 1

)

,

where a is any k-mer (a word of length k over the alphabet), while x(a)
and y(a) are the number of times a occurs in x and y, respectively, as a
block (contiguous subsequence). Cf. q-gram similarity in Chap. 11.

• Immunological distance
An antigen (or immunogen, pathogen) is any molecule eliciting immune
response. Once it gets into the body, the immune system either neutral-
izes its pathogenic effect or destroys the infected cells. the most important
cells in this response are white blood cells: T-cells and B-cells responsi-
ble for the production and secretion of antibodies (specific proteins that
bind to the antigen). When an antibody strongly matches an antigen, the
corresponding B-cell is stimulated to divide, produce clones of itself that
then produce more antibodies, and then differentiate into a plasma or
memory cell. A secreted antibody binds to antigen, and antigen–antibody
complexes are removed.
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A mammal (usually a rabbit) when injected with an antigen will produce
immunoglobulins (antibodies) specific for this antigen. Then antiserum
(blood serum containing antibodies) is purified from the mammal’s serum.
The produced antiserum is used to pass on passive immunity to many
diseases.

Immunological distance procedures (immunodiffusion and, the main
now, micro-complement fixation) measure relative strengths of the im-
munological responses to antigens from different taxa. This strength is
dependent upon the similarity of the proteins, and the dissimilarity of
the proteins is related to the evolutionary distance between the taxa con-
cerned.

The index of dissimilarity id(x, y) between two taxa x and y is the factor
r(x,x)
r(x,y) by which the heterologous (reacting with an antibody not induced
by it) antigen concentration must be raised to produce a reaction as strong
as that to the homologous (reacting with its specific antibody) antigen.

The immunological distance between two taxa is given by

100(log id(x, y) + log id(y, x)).

It can be 0 between two closely related species.
Earlier immunodiffusion procedures compared the amount of precipitate

when heterologous bloods were added in similar amounts as homologous
ones, or compared the highest dilution giving a positive reaction.

The name of applied antigen (target protein) can be used to spec-
ify immunological distance, say, albumin, transferring lysozyme distances.
Proponents of the molecular clock hypothesis estimate that 1 unit of al-
bumin distance between two taxa corresponds to ≈540,000 years of their
divergence time, and that 1 unit of Nei standard genetic distance
corresponds to 18–20 million years.

Adams and Boots (2006) call the immunological distance between two
immunologically similar pathogen strains (actually, serotypes of dengue
virus) their cross-immunity, i.e., 1 minus the probability that primary in-
fection with one strain prevents secondary infection with the other. Lee and
Chen (2004) define the antigenetic distance between two influenza viruses
to be the reciprocal of their antigenetic relatedness which is (presented

as a percentage) geometric mean
√

r(x,y)
r(x,x)

r(y,x)
r(y,y) of two ratios between the

heterologous and homologous antibody titers.
An antiserum titer is a measurement of concentration of antibodies

found in a serum. Titers are expressed in their highest positive dilution;
for example, the antiserum dilution required to obtain a reaction curve
with given peak height (say, 75% microcomplement fixed), or the recipro-
cal of the dilution consistently showing a twofold increase in absorbency
over that obtained with the pre-bleed serum sample.

• Pharmacological distance
The protein kinases are enzymes which transmit signals and control cells
using transfer of phosphate groups from high-energy donor molecules
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to specific target proteins. So, many drug molecules (against cancer,
inflammation, etc.) are kinase inhibitors (blockers). But their high cross-
reactivity often leads to toxic side effects. Hence, designed drugs should
be specific (say, not to bind to ≥95% of other proteins).

Given a set {a1, . . . , an} of drugs in use, the affinity vector of kinase x
is defined as (− ln B1(x), . . . ,− ln Bn(x)), where Bi(x) is the binding con-
stant for the reaction of x with drug ai, and Bi(x) = 1 if no interaction
was observed. The binding constants are the average of several experiments
where the concentration of binded kinase is measured at equilibrium. The
pharmacological distance (Fabian et al. 2005) between kinases x and y

is the Euclidean distance (
∑n

i=1(ln Bi(x)−ln Bi(y))2)
1
2 between their affin-

ity vectors.
The secondary structure of a protein is given by the hydrogen bonds

between its residues. A dehydron in a solvable protein is a hydrogen bond
which is solvent-accessible. The dehydron matrix of kinase x with residue-
set {R1, . . . , Rm} is the m × m matrix ((Dij(x))), where Dij(x) is 1 if
residues Ri and Rj are paired by a dehydron and is 0 otherwise. The
packing distance (Maddipati and Fernándes 2006) between kinases x
and y is the Hamming distance

∑
1≤i,j≤m |Dij(x)−Dij(y)| between their

dehydron matrices; cf. base pair distance among RNA structural dis-
tances. The environmental distance (Chen, Zhang and Fernándes 2007)
between kinases is a normalized variation of their packing distance.

• Főrster distance
FRET (fluorescence resonance energy transfer; Főrster 1948) is a distance-
dependent quantum mechanical property of a fluorophore (molecule com-
ponent causing its fluorescence) resulting in direct non-radiative energy
transfer between the electronic excited states of two dye molecules, the
donor fluorophore and a suitable acceptor fluorophore, via a dipole. In
FRET microscopy, fluorescent proteins are used as non-invasive probes in
living cells since they fuse genetically to proteins of interest. The efficiency
of FRET transfer depends on the square of the donor electric field mag-
nitude, and this field decays as the inverse sixth power of intermolecular
separation (the physical donor–acceptor distance). The distance at which
this energy transfer is 50% efficient, i.e., 50% of excited donors are deacti-
vated by FRET, is called the Főrster distance of these two fluorophores.

Measurable FRET occurs only if the donor–acceptor distance is less
than ≈10 nm, the mutual orientation of the molecules is favorable, and
the spectral overlap of the donor emission with acceptor absorption is
sufficient.

23.4 Other biological distances

Here we collect the main examples of other notions of distance and distance-
related models used in Biology.
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• Migration distance (in Biomotility)
Migration distance (or penetration distance), in Cattle Reproduction
and human infertility diagnosis, is the distance (in millimeters) traveled
by the vanguard spermatozoon during sperm displacement in vitro through
a capillary tube filled with homologous cervical mucus or a gel mimicking
it. Sperm can swim about 10–20 body lengths per second.

Such measurements, under different specifications (duration, tempera-
ture, etc.) of incubation, estimate the ability of spermatozoa to colonize
the oviduct in vivo.

In general, the term migration distance is used in biological mea-
surements of directional motility using controlled migration; for example,
determining the molecular weight of an unknown protein via its migration
distance through a gel, or comparing the migration distance of mast cells
in different peptide media.

• Penetration distance
Penetration distance is, similarly to migration distance, a general
term used in (especially, biological) measurements for the distance from
the given surface to the point where the concentration of the penetrating
substance (say, a drug) in the medium (say, a tissue) had dropped to the
given level. Several examples follow.

During penetration of a macromolecular drug into the tumor intersti-
tium, tumor interstitial penetration is the distance that the drug carrier
moved away from the source at a vascular surface; it is measured in 3D to
the nearest vascular surface.

During the intraperitoneal delivery of cisplatin and heat to tumor metas-
tases in tissues adjacent to the peritoneal cavity, the penetration distance
is the depth to which drug diffuses directly from the cavity into tissues.
Specifically, it is the distance beyond which such delivery is not preferable
to intravenous delivery. It can be the distance from the cavity surface into
the tissues within which drug concentration is, for example, a) greater, at
a given time point, than that in control cells distant from the cavity, or b)
is much higher than in equivalent intravenous delivery, or c) has first peak
approaching its plateau value within 1% deviation.

The penetration distance of a drug in the brain is the distance from
the probe surface to the point where the concentration is roughly half its
far-field value.

The penetration distance of chemicals into wood is the distance between
the point of application and the 5 mm cut section in which the contami-
nants concentration is at least 3% of the total.

The forest edge-effect penetration distance is the distance to the point
where invertebrate abundance ceased to be different to forest interior abun-
dance. Cf. penetration depth distance in Chap. 9 and penetration
depth in Chap. 24.
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• Capillary diffusion distance
One of diffusion processes is osmosis, i.e., the net movement of water
through a permeable membrane to a region of lower solvent potential.
In the respiratory system (the alveoli of mammalian lungs), oxygen O2

diffuses into the blood and carbon dioxide CO2 diffuses out.
Capillary diffusion distance is, similarly to penetration distance,

a general term used in biological measurements for the distance, from the
capillary blood through the tissues to the mitochondria, to the point where
the concentration of oxygen has dropped to the given low level.

This distance is measured as, say, the average distance from the capillary
wall to the mitochondria, or the distance between the closest capillary
endothelial cell to the epidermis, or in percentage terms. For example, it
can be the distance where a given percentage (95% for maximal, 50% for
average) of the fiber area is served by a capillary. Or the percent cumulative
frequency of fiber area within a given distance of the capillary when the
capillary to fiber ratio is increased, say, from 0.5 to 4.0.

Another practical example: the effective diffusion distance of nitric oxide
NiO in microcirculation in vivo is the distance within which Ni concen-
tration is greater than the equilibrium dissociation constant of the target
enzyme for oxide action.

Cf. the immunological distance for immunodiffusion and, in Chap. 29,
the diffusion tensor distance among distances in Medicine.

• Gendron et al. distance
The Gendron et al. distance (Gendron, Lemieux and Major 2001)
between two base–base interactions, represented by 4 × 4 homogeneous
transformation matrices X and Y , is defined by

S(XY −1) + S(X−1Y )
2

,

where S(M) =
√

l2 + (θ/α)2, l is the length of translation, θ is the angle
of rotation, and α represents a scaling factor between the translation and
rotation contributions.

• Metabolic distance
The metabolic distance (or pathway distance) between enzymes is
the minimum number of metabolic steps separating two enzymes in the
metabolic pathways.

• Spike train distances
A human brain has ≈1011 of neurons (nerve cells) among ≈1014 cells in the
human body. Neuronal response to a stimulus is a continuous time series.
It can be reduced, by a threshold criterion, to a much simpler discrete
series of spikes (short electrical pulses).

A spike train is a sequence x = (t1, . . . , ts) of s events (neuronal spikes, or
heart beats, etc.) listing absolute spike times or inter-spike time intervals.
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The main distances between spike trains x = x1, . . . , xm and y =
y1, . . . , yn follow:

1. The spike count distance is defined by

|n−m|
max{m,n} .

2. The firing rate distance is defined by

∑

1≤i≤s

(x′
i − y′

i)
2,

where x′ = x′
1, . . . , x

′
s is the sequence of local firing rates of train x =

x1, . . . , xm partitioned in s time intervals of length Trate.
3. Let τij = 1

2 min{xi+1 − xi, xi − xi−1, yi+1 − yi, yi − yi−1} and c(x|y)=∑m
i=1

∑n
j=1 Jij , where Jij = 1, 1

2 , 0 if 0 < xi − yi ≤ τij , xi=yi, and oth-
erwise, respectively. The event synchronization distance (Quiroga,
Kreuz and Grassberger 2002) is defined, respectively, by

1− c(x|y) + c(y|x)√
mn

.

4. Let xisi(t) = min{xi : xi > t} − max{xi : xi < t} for x1 < t < xm,
and let I(t) = xisi(t)

yisi(t)
− 1 if xisi(t) ≤ xisi(t) and I(t) = 1− yisi(t)

xisi(t)
other-

wise. The time-weighted and spike-weighted variants of ISI distances
(Kreuz, Haas, Morelli, Abarbanel and Politi 2007) are defined by

∫ T

0

|I(t)|dt and
m∑

i=1

|I(xi)|.

5. Various information distances were applied to spike trains: Kullback–
Leibler distance, Chernoff distance (cf. Chap. 14). Also, if x and y
are mapped into binary sequences, the Lempel–Ziv distance and a
version of the normalized information distance (cf. Chap. 11.) were
used.

6. The Victor–Purpura distance is a cost-based editing metric (i.e.,
the minimal cost of transforming x into y) by the following operations
with their associated costs: insert a spike (cost 1), delete a spike (cost 1),
shift a spike by time t (cost qt); here q > 0 is a parameter. Victor
and Purpura introduced this distance in 1996; the fuzzy Hamming
distance (cf. Chap. 11), introduced in 2001, identifies cost functions of
shift preserving the triangle inequality.
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7. The van Rossum distance 2001, is defined by
√∫ ∞

0

(ft(x)− ft(y))2dt,

where x is convoluted with ht = 1
τ e−t/τ and τ ≈ 12 ms (best); ft(x) =∑m

0 h(t − xi). The Victor–Purpura distance and van Rossum distance
are the most commonly used metrics.

8. If components of x, y are seen as the samples of two 0-mean random
variables, then the cross-correlation distances between x and y are
defined by

1− 〈f(x), f(y)〉
||f(x)||2 · ||f(y)||2

,

where f(x) is the train x filtered by convolution with a kernel function
f(·). This function is exponential (Haas and White 2002) or Gaussian
(Schreiber, Fellous, Whitmer, Tiesinga and Sejnowski 2004).

9. Given two sets of spike trains labeled by neurons firing them, the
Aronov et al. distance (Aronov, Reich, Mechler and Victor 2003)
between them is a cost-based editing metric (i.e., the minimal cost of
transforming one into the other) by the following operations with their
associated costs: insert or delete a spike (cost 1), shift a spike by time t
(cost qt), relabel a spike (cost k), where q and k are positive parameters.

• Prototype distance
Given a finite metric space (X, d) (usually, a Euclidean space) and a se-
lected, as typical by some criterion, vertex x0 ∈ X, called the prototype
(or centroid), the prototype distance of every x ∈ X is the number
d(x, x0). Usually, the elements of X represent phenotypes or morphologi-
cal traits. The average of d(x, x0) over x ∈ X estimates the corresponding
variability.

• Biotope distance
The biotopes here are represented as binary sequences x = (x1, . . . , xn),
where xi = 1 means the presence of the species i. The biotope distance
(or Tanimoto distance) between biotopes x and y is defined by

|{1 ≤ i ≤ n : xi �= yi}|
|{1 ≤ i ≤ n : xi + yi > 0}| =

|XΔY |
|X ∪ Y | ,

where X = {1 ≤ i ≤ n : xi = 1} and Y = {1 ≤ i ≤ n : yi = 1}.
• Niche overlap similarity

Let p(x) = (p1(x), . . . , pn(x)) be a frequency vector (i.e., all pi(x) ≥ 0 and∑
i pi(x) = 1) representing an ecological niche of species x, for instance,

the proportion of resource i, i ∈ {1, . . . , n} used by species x.
Niche overlap similarity (or Pianka’s index Oxy) of species x and

y is the term often (starting with Pianka 1973) used in Ecology for the
cosine similarity (cf. Chap. 17)
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〈p(x), p(y)〉
||p(x)||2 · ||p(y)||2

.

• Ecological distance
Let a given species be distributed in subpopulations over a given landscape,
i.e., a textured mosaic of patches (homogeneous areas of land use, as fields,
lakes, forest) and linear frontiers (river shores, hedges and road sides). The
individuals move across the landscape, preferentially by frontiers, until
they reach a different subpopulation or they exceed a maximum dispersal
distance.

The ecological distance between two subpopulations (patches) x and y
is (Vuilleumier and Fontanillas 2007):

D(x, y) + D(y, x)
2

,

where D(x, y) is the distance an individual covers to reach patch y from
patch x, averaged over all successful dispersers from x to y. If no such
dispersers exist, put D(x, y) = minz(D(x, z) + D(z, x)).

The ecological distance in some heterogeneous landscapes depends more
on the genetic than the geographic (Euclidean) distance. The term distance
is used also to compare the species composition of two samples; cf. biotope
distance.

• Dispersal distance
In Biology, the dispersal distance is a range distance to which a species
maintains or expands the distribution of a population. It refers, for exam-
ple, to seed dispersal by pollination and to natal, breeding and migration
dispersal.

• Long-distance dispersal
Long-distance dispersal (or LDD, Kot, Lewis and van den Driessche
1996) refers to the rare events of biological dispersal (especially, plants)
on distances an order of magnitude greater than the median dispersal
distance.

Together with vicarience theory (dispersal via land bridges) based on
continental drift, LDD emerged in Biogeography as the main factor of
biodiversity and species migration patterns. It explained the fast spread
of different organisms in new habitats, for example in paleocolonization
events, plant pathogens, and invasive species. For the regional survival
of some plants, LDD is more important than local (median-distance)
dispersal.

Also, cancer invasion (spread from primary tumors invading new tissues)
can be thought as an invasive species spread via LDD, followed by localized
dispersal.

Transoceanic LDD by wind currents is a probable source of the strong
floristic similarities among landmasses in the southern hemisphere.
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Examples of other LDD vehicles are: rafting by water (corals can tra-
verse 40,000 km during their lifetime), migrating birds, human transport,
extreme climatic events.

• Island distance effect
An island, in Biogeography, is any area of habitat surrounded by areas
unsuitable for the species on the island: true islands surrounded by ocean,
mountains surrounded by deserts, lakes surrounded by dry land, forest
fragments surrounded by human-altered landscapes. The island distance
effect is that the number of species found on an island is smaller when the
degree of isolation (distance to nearest neighbor and mainland) is larger.
The second main factor of island species diversity is its size: the chance of
extinction is greater on smaller islands.

• Migration distance (in Biogeography)
Migration distance, in Biogeography, is the distance between regu-
lar breeding and non-breeding areas within annual large-scale return
movement of birds, fish and insects. The longest such distance recorded
electronically is 64,000 km (sooty shearwaters flying from New Zealand to
the North Pacific Ocean); its rival in migration distance, the Arctic tern,
is too small to be fit with electronic tags.

Migration differs from ranging, i.e., a movement of an animal beyond
its home range which ceases when suitable resource (food, mates, shel-
ter) is found; for example, wandering albatrosses make several seasonal
foraging round trips of up to 3,000 km. So, Kennedy (1985) defined mi-
gratory behavior as persistent and straightened-out movement effected by
the animal’s own locomotory exertions or by its active embarkation upon
a vehicle (say, wind or water currents).

• Isolation-by-distance
Isolation-by-distance is a biological model predicting that the ge-
netic distance between populations increases exponentially with respect
to geographic distance. So, emergence of regional differences (races) and
new species is explained by restricted gene flow and adaptive variations.
Isolation-by-distance for humans was studied, for example, via the distri-
bution of surnames (cf. Lasker distance).

Speciation by force of distance is a speciation despite gene flow
between populations. It was observed in ring species, i.e., two reproduc-
tively isolated populations connected by gene flow through a chain of
intergrading populations. For example, Irwin, Bensch, Irwin and Price
(2005) showed gradual genetic change between greenish warblers in west
and east Siberia; they coexist without interbreeding in central Siberia.

• Malecot’s distance model
The Malecot’s distance model is a migratory model of isolation by dis-
tance, expressed by the following Malecot’s equation for the dependency
ρd of alleles at two loci at distance d (allelic association, linkage disequi-
librium, polymorphism distance):
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ρd = (1− L)Meεd + L,

where d is the distance between loci along the chromosome (either genome
distance on the physical scale in kilobases, or map distance on the
genetic scale in centimorgans), ε is a constant for a specified region, M ≤ 1
is a parameter expressing mutation rate and L is the parameter predicting
association between unlinked loci.

• Distances in Animal Behavior
The first definitions of such distances were derived in Zoo Biology by
Hediger (1950) namely, fight distance (run boundary), critical distance
(attack boundary), personal distance (separating members of non-contact
species) and social distance (for intraspecies communication). Cf. Hall’s
distances between people in Chap. 28. The main distances in Animal
Behavior follow.

The individual distance: the distance which an animal attempts to
maintain between itself and other animals. It ranges between “proximity”
and “far apart” (for example, ≤8 m and ≥61 m in elephant social calls).

The group distance: the distance which a group of animals attempts
to maintain between it and other groups.

The nearest-neighbor distance: the more or less constant distance
which an animal maintains, in directional movement of large groups (such
as schools of fish or flocks of birds), from its immediate neighbors. The
mechanism of allelomimesis (“do what your neighbor does”) prevents the
structural breakdown of a group and can generate seemingly intelligent
evasive maneuvers in the presence of predators. When this distance de-
creases, the mode of movement of the group can change: marching locusts
align, ants build bridges, etc.

The flight initiation distance (FID): the distance from the predator
when escape begins. The alert distance: the distance between a predator
and the prey when the prey turns towards the predator.

The escape distance: the distance at which the animal reacts on the
appearance of a predator or dominating animal of the same species.

The reaction distance: the distance at which the animal reacts to the
appearance of prey; catching distance: the distance at which the predator
can strike a prey.

In general, the detection distance: the maximal distance from the
observer at which the individual or cluster of individuals is seen or heard.
For example, the approximate visual detection distance is 2,000 m for an
eagle searching for displaying sage-grouse, 200 m for a female sage-grouse
searching for a male, and 1,450 m for a sage-grouse scanning for a flying
eagle.

An example of distance estimation (for prey recognition) by some in-
sects: the velocity of the mantid’s head movement is kept constant during
peering; so, the distance to the target is inversely proportional to the ve-
locity of the retinal image.



412 23 Distances in Biology

Example of unexplained distance prediction by animals is given
(Vannini, Lori, Coffa and Fratini 2008) by snails Cerithidea decollata
migrating up and down in mangrove shore in synchrony with tidal phases.
In the absence of visual cues and chemical marks, snails cluster just above
the high water line, and the distance from the ground correlates better
with the incoming tide level than with previous tide levels.

The gaze following: great apes, ravens and canids follow another’s gaze
direction (head and eye orientation) into distant space, moreover, geo-
metrically behind an obstacle. It could be, more than a mere co-orienting
reflex, an understanding that other has different perception and knowl-
edge, i.e., a precursor to Theory of Mind (the ability to attribute mental
states to oneself and others). But such interpretation, as well as foresight
(mental time travel) in non-human animals is still controversial.

Humans and, perhaps, chimpanzees posess, besides landmark-based rep-
resentation of space, more flexible Euclidean mental map.

The interpupillary distance of mammals in non-leafy environments in-
creases as d ≈ M

1
3 (M is the body mass); their eyes face sideways in

order to get the panoramic vision. In leafy environments, this distance is
constrained by the maximum leaf size. Changizi and Shimojo (2008) sug-
gested that the degree of binocular convergence is selected to maximize
how much the mammal can see. So, in cluttered (say, leafy) environments,
forward-facing eyes (and smaller distance d) are better.

The distance-to-shore: the distance to the coastline used to study
clustering of whale strandings (by distorted echolocation, anomalies of
magnetic field, etc.).

Daily distance traveled and feeding time are much greater in larger
groups of primates, according to a meta-analysis in Majolo et al. (2008).
Also, larger groups spent slightly more time grooming and less time resting
than smaller groups.

In the main non-resource-based mating system, lek mating, females in
estrous visit a congregation of displaying males, the lek, for fertilization,
and mate preferentially with males of higher lekking distance rank, i.e.,
relative distance from male territory (the median of his positions) to the
center of the lek. Dominance rank often influences space use: high-ranking
individuals have smaller, centrally located (so, less to travel and more
secure) home ranges.

A distance pheromone, in animal olfactory communication, is a sol-
uble (for example, in the urine) and/or evaporable substance emitted by
an animal, as a chemosensory cue, in order to send a message (on alarm,
sex, food trail, recognition, etc.) to other members of the same species.
In contrast, a contact pheromone is such an insoluble non-evaporable sub-
stance; it coats the animal’s body and is a contact cue. The action radius
of a distance pheromone is its attraction range, the maximum distance
over which animals can be shown to direct their movement to a source.

Distance effect avoiding refers to observed selection (contrary to typical
decision-making of a central place forager) of some good distant source of
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interest over a poor but nearer one in the same direction. For example,
females at a chorusing lek of anurians or arthropods may use the lower
pitch of a bigger/better distant male’s call to select it over louder to her
weaker call nearby. High-quality males help them by placing their calls to
precede or follow those of inferior males. Franks et al. (2007) showed that
ant colonies are able to select a good distant nest over a poorer one in
the way, even nine times closer. Ants might compensate for distance effect
by increasing recruitment latencies and quorum thresholds at nearby poor
nests; also their scouts, founding a low-quality nest, start to look for a
new one.

Matters of relevance at a distance (a distant food source) are communi-
cated mainly by body language; for example, honeybees dance and wolves,
before a hunt, howl to rally the pack, become tense and have their tails
pointing straight. In Animal Communication were observed: conceptual
generalizations (dolphins can transmit identity information independent of
the caller’s voice and location), syntax (putty-nosed monkeys build alarm
calls as “word sequences”) and metacommunication (the “play face” in
dogs signals that subsequent aggressive signal is a play).

The communication distance, in animal vocal communication, is the
maximal distance at which the receiver can still get the signal; animals can
vary signal amplitude and visual display with receiver distance in order to
ensure signal transmission. The frequency and sound power of a maximal
vocalization by an air-breathing animal with body mass M is, usually,
proportional to M0.4 and M0.6, respectively.

Another example of distance-dependent communication is the protective
coloration of some aposematic animals: it switches from conspicuousness
(signaling non-edibility) to crypsis (camouflage) with increasing distance
from a predator.

• Animal long-distance communication
The main modes of animal communication are infrasound (<20 Hz), sound,
ultrasound (>20 kHz), vision (light), chemical (odor), tactile and electrical.
Infrasound, low-pitched sound (as territorial calls) and light in air can be
long-distance.

A blue whale infrasound can travel thousands of kilometers through the
ocean water using SOFAR channel (a layer where the speed of sound is
at a minimum, because water pressure, temperature, and salinity cause a
minimum of water density; cf. distances in Oceanography in Chap. 25).
On the other hand, Janik (2000) estimated that unmodulated dolphin
whistles at 12 kHz in a habitat having a uniform water depth of 10 m
would be detectable by conspecifics at distances of 1.5–4 km.

Most elephant communication is in the form of infrasonic rumbles which
may be heard by other elephants at 5 km away and, in optimum at-
mospheric conditions, at 10 km. The resulting seismic waves can travel
16–32 km through the ground. But non-fundamental harmonics of ele-
phant calls are sonic. McComb, Reby, Baker, Moss and Sayialel (2003)
found that, for female African elephants, the peak of social call frequency
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is ≈115 Hz and the social recognition distance (over which a contact call
can be identified as belonging to a family) is usually 1.5 km and at most
2.5 km.

Many animals hear infrasound generated by earthquakes, tsunami and
hurricanes before they strike. For example, elephants can hear storms 160–
240 km away.

High-frequency sounds attenuate more rapidly with distance; they are
more directional and vulnerable to scattering. But ultrasounds are used
by bats (echolocation) and antropods. Rodents use them to communicate
selectively to nearby receivers without alerting predators and competitors.
Some anurans shift to ultrasound signals in the presence of continuous
background noise (as waterfall, human traffic).

• Plant long-distance communication
Long-distance signaling was observed from roots and mature leaves, ex-
posed to an environmental stress, to newly developing leaves of a higher
plant. For example, flooding of the soil induces (in a few hours for some
dryland species) bending of leaves and slowing of their expansion.

This communication is done cell-to-cell through the plant vascular tran-
spiration system. In this system, macromolecules (except for water, ions
and hormones) carry nutrients and signals, via phloem and xylem conduct-
ing tissues, only in one direction: from lower mature regions to shoots. The
identity of long-distance signals in plants is still unknown but the existence
of information macromolecules is expected.

• Insecticide distance effect
The main means of pest (termites, ants, etc.) control are chemical liquid
insecticides and repellents. The efficiency of an insecticide can be measured
by its all dead distance, i.e., the maximum distance from the standard
toxicant source within which no targeted insects are found alive after a
fixed period. The insecticide distance effect (or transfer effect) is that
the toxicant is spread through the colony because insects groom and feed
each other. The newer bait systems concentrate on this effect.

The toxicant (usually, a growth inhibitor) should act slowly in order
to maximize distance effect and minimize secondary repellency created by
the presence of dying, dead and decaying insects. A bait system should be
reapplied until insects come to it by chance, eat the toxic bait and go back
to the colony, creating a chemical trail. It acts slowly, but it completely
eliminates a colony and is safer to environment.

• Marital distance
The marital distance is the distance between birthplaces of spouses (or
zygotes).

• Ontogenetic depth
Nelson’s ontogenetic depth is the distance, in number of cell divisions,
from the unicellular state (fertilized egg) to the adult metazoan capable
of reproduction (production of viable gametes).
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• Telomere length
The telomeres are repetitive DNA sequences ((TTAGGG)n in vertebrates
cells) at both ends of each linear chromosome in the cell nucleus. They are
long stretches of noncoding DNA protecting coding DNA. The number n of
TTAGGG repeats is called the telomere length; it is ≈2,000 in humans.
A cell can divide if each of its telomeres has positive length; otherwise, it
becomes senescent and dies, or tries to self-replicate and, eventually, cre-
ates cancer. The Hayflick limit is the maximal number of divisions beneath
which a normal differentiated cell will stop dividing because of shortened
telomeres or DNA damage; for humans it is about 52.

Human telomeres are 3–20 kilobases in length, and they lose ≈100 base
pairs, i.e., 16 repeats, at each mitosis (happening each 20–180 min). The
mean leukocyte telomere length, for example, decreases with age by 9%
per decade. There is correlation between telomere length and longevity in
humans and, for example, between chronic emotional stress in women and
telomere shortening.

But telomere length can increase: by transfer of repeats between
daughter telomers or by action of enzyme telomerase. In humans, telom-
erase acts only in germ, stem or proliferating tumor cells. These cells,
unicellular eukaryotes and hydra species are biologically immortal, i.e.,
there is no aging (sustained increase in rate of mortality with age) since
the Hayflick limit does not apply.

The telomere shortening is one of the main proposed mechanisms of
aging. The other ones are stem cell senescence, oxidative damage, evolu-
tionary accumulation of late-acting harmful genes, and general transition
of a biological network from plasticity (childhood) via adaptation (ado-
lescence) to steady rigid state (aging). In Gerontology, aging is (vital
functions) redundancy decay and contemporary risk.

• Gerontologic distance
The gerontologic distance between individuals of ages x and y from
a population with survival fraction distributions S1(t) and S2(t), respec-
tively, is defined by

| ln S2(y)
S1(x)

|.

A function S(t) can be either an empirical distribution, or a parametric
one based on modeling. The main survival functions S(t) are: N(t

N(0) (where
N(t) is the number of survivors, from an initial population N(0), at time t),

ekt (exponential model), e
a
b (1−ebt) (Gompertz model), e−

atb+1
b+1 (Weibull

model); here a and b are, respectively, age independent and age dependent
mortality rate coefficients.

Distances are used in Human Gerontology also to model the relationship
between geographical distance and contact between adult children and
their elderly parents.
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A surprising phenomenon, the late-life mortality deceleration (even
plateau) was observed for humans and fruit flies: the probability that the
somatic cells of an organism become senescent tends to be independent of
its age in the long-time limit. In fact, the existence of such a plateau is
typical for many Markov processes.

Also, Fukuda, Taki, Sato, Kinomura, Goteau and Kawashima (2008)
found that gray matter volume linearly decreases with age, and the loss is
slower in women. The presence of gene FOX03A GG triples the chance of
living to 95 years.

• Body size rules
Body size, measured as mass or length, is one of the most important traits
of an organism. Payne et al. (2008) claim that the maximum size of Earth’s
organisms increased in two great leaps (about 1,600 and 600 million years
ago: appearance of eukaryotic cells and multicellularity) due leaps in the
oxygen level, and each time it jumped up by a factor of about a million.
Below are given the main rules of large-scale Ecology involving body size.

Island rule is a principle that, on islands, small mammal species evolve
to larger ones while larger ones evolve to smaller. Damuth (1993) suggested
that in mammals there is an optimum body size ≈1 kg for energy acquisi-
tion, and so island species should, in the absence of the usual competitors
and predators, evolve to that size.

Insular dwarfism is an evolutionary trend of the reduction in size
of large mammals when their gene pool is limited to a very small en-
vironment (say, islands). One explanation is that food decline activates
processes where only the smaller of the animals survive since they need
fewer resources, and so are more likely to get past the breakpoint where
population decline allows food sources to replenish.

Island gigantism is a biological phenomenon where the size of animals
isolated on an island increases dramatically over generations due the re-
moval of constraints. It is a form of natural selection in which increased
size provides a survival advantage.

Abyssal gigantism is a tendency of deep-sea species to be larger than
their shallow-water counterparts. It can be adaptation for scarcer food re-
sources (delaying sexual maturity results in greater size), greater pressure
and lower temperature.

The Galileo’s square-cube law states that as an object increases in size
its volume V (and mass) increases as the cube of its linear dimensions
while surface area SA increases as the square; so the ratio SA

V decreases.
For materials, high SA

V speeds up chemical reactions and thermodynamic
processes that minimize free energy. This ratio is the main compactness
measure for 3D shapes in Biology. Higher SA

V permits smaller cells to
gather nutrients and reproduce very rapidly. Also, smaller animals in hot
and dry climates better lose heat through the skin and cool the body.

But lower SA
V (and so larger size) improves temperature control in un-

favorable environments: a smaller proportion of the body being exposed
results in slower heat loss or gain. Bergmann–Mayr’s rule is a principle
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that, within a species, the body size increases with colder climate. For
example, Northern Europeans on average are taller than Southern ones.
Allen’s rule: animals from colder climates usually have shorter limbs than
the equivalent ones from warmer climates.

Cope’s rule is a macro-evolutionary trend (common among mammals):
the tendency of body size to increase over geological time. Large size en-
hances reproductive success, ability to avoid predators and capture prey,
and improves thermal efficiency. In large carnivores, bigger species domi-
nate better smaller competitors.

Cope’s rule can be an evolutionary manifestation of Bergmann’s rule:
species and lineages that conform to Bergmann’s rule should evolve toward
larger sizes during episodes of climatic cooling. Large body size favors the
individual but renders the clade more susceptible to extinction via, for
example, dietary specialization.

An allometric law is a relation between the size of an organism and the
size of any of its parts or attributes; for example, Rensch’s rule is that,
in groups of related species, sexual size dimorphism is more pronounced
in larger species.

Examples of allometric power laws are, in terms of body mass M (or,
assuming constant density of biomass, body size) of an animal, propor-
tionalities of metabolic rate to M0.75 (Kleber’s law) and of breathing
time to M0.25.

Many of the allometric 0.25 scaling laws can be explained by the WBE
model (West, Brown and Enquist 1997) positing that biological rates are
limited by the rate at which energy, materials, and waste can be distributed
or removed, and that the process requires an hierarchic space filling net-
work which minimizes needed time and energy.

A cellular organism (for example, bacteria) of linear size (say, diameter)
S has, roughly, internal metabolic activity proportional to cell volume
(so, to S3) and flux of nutrient and energy dissipation proportional to
cell envelope area (so, to S2). Therefore, this size is within the possible
(nanometers) range of the ratio flux/metabolic activity. For viral particles,
there is no metabolism, and their size is, roughly, proportional to the third
root of the genome size.

A time period t◦ correlates roughly with the size of its cold-blooded
organisms. Also, a rapid average decline of ≈20% in size-reated traits was
observed in human-harvested species.

• Distance running model
The distance running model is a model of antropogenesis proposed in
[BrLi04]. Bipedality is a key derived behavior of hominids which appeared
4.5–6 million years ago. However, australopithecines were still animals.

The genus Homo which emerged about 2 million years ago could already
produce rudimentary tools. The Bramble–Lieberman model attributes this
transition to a suite of adaptations specific to running long distances in the
savanna (in order to compete with other scavengers in reaching carcasses).
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They specify how endurance running, a derived capability of Homo, de-
fined the human body form, producing balanced head, low/wide shoulders,
narrow chest, short forearms and heels, large hip, etc.

• Distance coercion model
The distance coercion model is a model, proposed in [OkBi08], of
the origin of uniquely human extensive/intensive kinship-independent
conspecific social cooperation in spite of conflicts of interest. All the
unique properties of humans (complex symbolic speech, cognitive virtuos-
ity, manipulation-proof transmission of fitness-relevant information, etc.)
can be seen as elements and effects of this cooperation.

The model argues that such non-kin cooperation can arise only as a
result of the instantaneous pursuit of individual self-interest by animals
who possess a capacity for synchronous (remote) projection of coercive
threat.

The individually adaptive advantages of cooperation come as a by-
product of an ongoing individually self-interested coercive threat conjointly
with other group members (preemptive or compensated coercion). So, each
individual will display public behaviors that can be construed as beneficial
to other coalition members.

Humans are the only animal with an innate biological capacity to project
coercive threat remotely: to kill adult conspecifics with thrown projectiles
from a distance of many body diameters (at least 10 m). The model posits
that the human throwing capacity briefly preceded the emergence of brain
expansion and so, of needed (in late pregnancy and child-rearing) social
support.

Historical increases in the scale of human social cooperation could be as-
sociated with prior acquisition of a new coercive technology; for instance,
the bow and agricultural civilizations, gunpowder weaponry and the mod-
ern state.

• Distance model of altruism
In Evolutionary Ecology, altruism is explained by kin selection and group
selection, and it is supposed to be a driving force of the transition from
unicellular organisms to multicellularity. The distance model of altru-
ism (see [Koel00]) suggests that altruists spread locally, i.e., with small
interaction distance and offspring dispersal distance, while the evolution-
ary response of egoists is to invest in increasing of those distances. The
intermediate behaviors are not maintained, and evolution will lead to a
stable bimodal spatial pattern.



Chapter 24
Distances in Physics and Chemistry

24.1 Distances in Physics

Physics studies the behavior and properties of matter in a wide variety of
contexts, ranging from the sub-microscopic particles from which all ordinary
matter is made (Particle Physics) to the behavior of the material Universe
as a whole (Cosmology).

Physical forces which act at a distance (i.e., a push or pull which acts with-
out “physical contact”) are nuclear and molecular attraction and, beyond the
atomic level, gravity (completed, perhaps, by anti-gravity), static electricity,
and magnetism. Last two forces can be both push and pull.

Distances on a small scale are treated in this chapter, while large distances
(in Astronomy and Cosmology) are the subject of Chaps. 25 and 26.

In fact, the distances having physical meaning range from 1.6 × 10−35 m
(Planck length) to 4.3 × 1026 m (the estimated size of the observable Uni-
verse). The world appears Euclidean at distances less than about 1025 m (if
gravitational fields are not too strong).

At present, the Theory of Relativity, Quantum Theory and Newtonian
laws permit us to describe and predict the behavior of physical systems in
the range 10−15 − 1025 m.

Gigantic accelerators are able to register particles measuring 10−18 m. Rel-
ativity and Quantum Theory effects, governing Physics on very large and
small scales, are already accounted for in technology, for instance in GPS
satellites and nanocrystals of solar cells.

• Moment
In Physics and Engineering, moment is the product of a quantity and a
distance (or some power of the distance) to some point associated with
that quantity.

• Displacement
A displacement is a special kind of quasi-metric (directed Euclidean
distance) defined in Mechanics; it is the distance along a straight line from
x1 to x2, where x1 and x2 are positions occupied by the same moving

M.M. Deza and E. Deza, Encyclopedia of Distances, 419
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particle at two instants t1 and t2, t2 ≥ t1, of time. So, a displacement is
a vector −−→x1x2 of length ||x1 − x2||2 specifying the position x2 of a particle
in reference to its previous position x1.

• Mechanic distance
The mechanic distance is the position of a particle as a function of time
t. For a particle with initial position x0 and initial speed v0, which is acted
upon by a constant acceleration a, it is given by

x(t) = x0 + v0t +
1
2
at2.

The distance fallen under uniform acceleration a, in order to reach a
speed v, is given by x = v2

2a .
A free falling body is a body which is falling subject only to acceleration

by gravity g. The distance fallen by it, after a time t, is 1
2gt2; it is called

the free fall distance.
• Terminal distance

The terminal distance is the distance of an object, moving in a resistive
medium, from an initial position to a stop.

Given an object of mass m moving in a resistive medium (where the drag
per unit mass is proportional to speed with constant of proportionality β,
and there is no other force acting on a body), the position x(t) of a body
with initial position x0 and initial velocity v0 is given by

x(t) = x0 +
v0

β
(1− e−βt).

The speed of the body v(t) = x
′
(t) = v0e

−βt decreases to zero over time,
and the body reaches a maximum terminal distance

xterminal = lim
t→∞

x(t) = x0 +
v0

β
.

For a projectile, moving from initial position (x0, y0) and velocity
(vx0 , vy0), the position (x(t), y(t)) is given by x(t) = x0 + vx0

β (1 − e−βt),

y(t) = (y0 + vy0
β − g

β2 ) + vy0β−g

β2 e−βt. The horizontal motion ceases at a
maximum terminal distance

xterminal = x0 +
vx0

β
.

• Acceleration distance
The acceleration distance is the minimum distance at which an object
(or, say, flow, flame), accelerating in given conditions, reaches a given
speed.
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• Ballistics distances
Ballistics is the study of the motion of projectiles, i.e., bodies which are
propelled (or thrown) with some initial velocity, and then allowed to be
acted upon by the forces of gravity and possible drag.

The horizontal distance traveled by a projectile is called the range, the
maximum upward distance reached by it is the height, and the path of
the object is the trajectory.

The range of a projectile launched with a velocity v0 at an angle θ to
the horizontal is

x(t) = v0t cos θ,

where t is the time of motion. On a level plane, where the projectile lands
at the same altitude as it was launched, the full range is

xmax =
v2
0 sin 2θ

g
,

which is maximized when θ = π/4. If the altitude of the landing point is
Δh higher that of the launch point, then

xmax =
v2
0 sin 2θ

2g

(

1 +
(

1− 2Δhg

v2
0 sin2 θ

)1/2
)

.

The height is given by v0 sin2 θ
2g , and is maximized when θ = π/2.

The arc length of the trajectory is given by v2
0
g (sin θ + cos2 θgd−1(θ)),

where gd(x) =
∫ x

0
dt

cosh t is the Gudermannian function. The arc length is
maximized when gd−1(θ) sin θ = (

∫ θ

0
dt

cos t ) sin θ = 1, and the approximate
solution is θ ≈ 0.9855.

• Interaction distance
The impact parameter is the perpendicular distance between the veloc-
ity vector of a projectile and the center of the object it is approaching.

The interaction distance between two particles is the farthest distance
of their approach at which it is discernable that they will not pass at
the impact parameter, i.e., their distance of closest approach if they had
continued to move in their original direction at their original speed.

• Mean free path (length)
The mean free path (length) of a particle (photon, atom or molecule)
in a medium measures its probability to undergo a situation of a given
kind K; it is the average of an exponential distribution of distances until
the situation K occurs. In particular, this average distance d is called:

nuclear collusion length if K is a nuclear reaction;
interaction length if K is an interaction which is neither elastic, nor

quasi-elastic;
scattering length if K is a scattering event;
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attenuation length (or absorption length) if K means that the prob-
ability P (d), that a particle has not been absorbed, drops to 1

e (cf.
Beer–Lambert law);

radiation length (or cascade unit) if K means that the energy of (high
energy electromagnetic-interacting ) charged particles drops by the factor
1
e ≈ 0.368.

In Gamma-ray Radiography, the mean free path of a beam of photons is
the average distance a photon travels between collisions with atoms of the
target material. It is 1

αρ , where α is the material opacity and ρ is its density.
• Neutron scattering length

In Physics, scattering is the random deviation or reflection of a beam of
radiation or a stream of particles by the particles in the medium.

In Neutron Interferometry, the scattering length a is the zero-energy
limit of the scattering amplitude f = − sin δ

k . Since the total scattering
cross section (the likelihood of particle interactions) is 4π|f |2, it can be
seen as the radius of a hard sphere from which a point neutron is scattered.

The spin-independent part of the scattering length is the coherent
scattering length.

In order to expand the scattering formalism to absorption, the scattering
length is made complex a = a′ − ia′′.

Thomson scattering length is the classical electron radius

≈2.81794× 10−15 m.

• Inelastic mean free path
In Electron Microscopy, the inelastic mean free path (or IMFP) is
the average total distance that an electron traverses between events of
inelastic scattering, while the effective attenuation length (or EAL) is
an experimental parameter reflecting the average net distance traveled.

The EAL is the thickness in the material through which electron can
pass with probability 1

e that it survives without inelastic scattering. It is
about 20% less than the IMFP due to the elastic scatterings which deflect
the electron trajectories.

Both are smaller than the total electron range which may be 10–100
times greater.

• Range of a charged particle
The range of a charged particle, passing through a medium and ion-
izing, is the distance to the point where its energy drops to almost zero.

• Gyroradius
The gyroradius (or cyclotron radius, Larmor radius) is the radius of the
circular orbit of a charged particle (for example, an energetic electron that
is ejected from Sun) gyrating around its gliding center.

• Debye screening distance
The Debye screening distance (or Debye length, Debye–Hückel length)
is the distance over which a local electric field affects the distribution of
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mobile charge carriers (for example, electrons) present in the material
(plasmas and other conductors).

Its order increases with decreasing concentration of free charge carriers,
from 10−4 m in gas discharge to 105 m in intergalactic medium.

• Range of fundamental forces
The fundamental forces (or interactions) are gravity and electromagnetic,
weak nuclear and strong nuclear forces. The range of a force is considered
short if it decays (approaches 0) exponentially as the distance d increases.

Both electromagnetic force and gravity are forces of infinite range which
obey inverse-square distance laws. The shorter the range, the higher
the energy. Both weak and strong forces are very short range (about 10−18

and 10−15 m, respectively) which is limited by the uncertainty principle.
At subatomic distances, Quantum Field Theory describes electromag-

netic, weak and strong interactions with the same formalism but different
constants; they almost coincide at very large energy.

• Inverse-square distance laws
Any law stating that some physical quantity is inversely proportional to
the square of the distance from the source that quantity.

Law of universal gravitation (Newton–Bullialdus): the gravitational
attraction between two point-like objects with masses m1, m2 at distance
d is given by

G
m1m2

d2
,

where G is the Newton universal gravitational constant.
The existence of extra dimensions, postulated by M-theory, will be

experimentally checked by LHC (Large Hadron Collider opened 10
September 2008 at CERN, near Geneva) based on the inverse propor-
tionality of the gravitational attraction in n-dimensional space to the
(n − 1)-th degree of the distance between objects; if the Universe has a
fourth dimension, LHC will find out the inverse proportionality to the
cube of the small inter-particle distance.

Coulomb law: the force of attraction or repulsion between two point-
like objects with charges e1, e2 at distance d is given by

κ
e1e2

d2
,

where κ is the Coulomb constant depending upon the medium that the
charged objects are immersed in. The gravitational and electrostatic forces
of two bodies with Planck mass mP ≈ 2.176×10−8 kg and unity electrical
charge have equal strength.

The intensity (power per unit area in the direction of propagation) of
a spherical wavefront (light, sound, etc.) radiating from a point source
decreases (assuming that there are no losses caused by absorption or
scattering) inversely proportional to the square d2 of the distance from
the source (cf. distance decay in Chap. 29). However, for a radio wave,
it decrease like 1

d .
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• EM radiation wavelength range
The wavelength is the distance the wave travels to complete one cycle.

Electromagnetic (EM) radiation wavelength range is: <0.01 nm
for gamma rays, 0.01–10 nm for X-rays, 100–400 nm for ultraviolet,
400–780 nm for visible light, 0.78–1,000 μm for infrared (in lasers),
1–330 mm for microwave, 0.33–3,000 m for radio frequency radiation,
>3 km for low frequency, and ∞ for static field.

Besides gamma rays, X-rays and far ultraviolet, the EM radiation is
non-ionizing, i.e., passing through matter, it only excites electrons: moves
them to a higher energy state, instead of removing them completely from
an atom or molecule.

• Rayleigh distance
In non-ionizing energy radiation (such as sound and much of electromag-
netic radiation), the Rayleigh distance is the minimum of the distance
d from the antenna source, from which the field strength decreases, up to
a given error, as d−1. This Rayleigh limit can be, say, the point where the
phase error is 1

16 of a wavelength λ.
Beyond this point, about from d = 2D2

λ , where D is the maximum overall
dimension of the antenna, the far field starts: the energy radiates only in
the radial direction, its angular distribution does not change with distance,
the wave front is considered planar and the rays approximately parallel.

The Maxwell equations, governing the field strength decay, can be
approximated as d−3, d−2 and d−1 for three regions: the reactive near
field, the radiating near field and the far field. Approximate outer edges
of reactive and radiating near fields are given by λ

2π and, say, 0.62(D3

λ )
1
2 ,

where large with respect to λ. Cf. the acoustic distances in Chap. 21.
In Laser Science, beam divergence is defined by its radius, i.e., (for

a Gaussian beam) the distance from the beam propagation axis where
intensity drops to 1

e2 ≈ 13.5% of the maximal value. The waist (or focus)
of the beam is the position on its axis where the beam radius is at its
minimum and the phase profile is flat.

The Rayleigh length (or Rayleigh range) of the beam is the dis-
tance along its propagation direction from the waist to the place where
the beam radius increases by a factor

√
2, i.e., the beam can propagate

without significantly diverging.
The Rayleigh length divides the near-field and mid-field; it is the dis-

tance from the waist at which the wavefront curvature is at a maximum.
The divergence really starts in the far field where the beam radius is at
least 10 times its Rayleigh length.

The Rayleigh length is the natural defocusing distance of laser beams.
The confocal parameter (or depth of focus) of the beam is twice its Rayleigh
length. Cf. the lens distances in Chap. 28.

• Half-value layer
Ionizing radiation consists of highly-energetic particles or waves (es-
pecially, X-rays, gamma rays and far ultraviolet light), which are
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progressively absorbed during propagation through the surrounding
medium, via ionization, i.e., removing an electron from some of its atoms
or molecules. The half-value layer is the depth within a material where
half of the incident radiation is absorbed.

A basic rule of protection against ionizing radiation exposure: doubling
of distance from its source decreases this exposure to a quarter.

In Maxwell Render light simulation software, the attenuation distance
(or transparency) is the thickness of object that absorbs 50% of light
energy.

• Radiation attenuation with distance
Radiation is the process by which energy is emitted from a source and
propagated through the surrounding medium. Radiant energy described in
wave terms includes sound and electromagnetic radiation, as light, X-rays
and gamma rays.

The incident radiation partially changes its direction, gets absorbed,
and the remainder transmitted. The change of direction is reflection,
diffraction, or scattering if the direction of the outgoing radiation is re-
versed, split into separate rays, or randomised (diffused), respectively.
Scattering occurs in non-homogeneous media.

In Physics, attenuation is any process in which the flux density, power
amplitude or intensity of a wave, beam or signal decreases with increasing
distance from the energy source, as a result of absorption of energy and
scattering out of the beam by the transmitting medium. It comes in ad-
dition to the divergence of flux caused by distance alone as described by
the inverse-square distance laws.

Attenuation of light is caused primarily by scattering and absorption of
photons. The primary causes of attenuation in matter are the photoelectric
effect (emission of electrons), Compton scattering (wavelength increase of
an interacting X-ray or gamma ray photon) and pair production (creation
of an elementary particle and its antiparticle from a high-energy photon).

In Physics, absorption is a process in which atoms, molecules, or ions
enter some bulk phase – gas, liquid or solid material; in adsorption, the
molecules are taken up by the surface, not by the volume. Absorption of
EM radiation is the process by which the energy of a photon is taken up
(and destroyed) by, for example, an atom whose valence electrons make
the transition between two electronic energy levels. The absorbed energy
may be re-emitted or transformed into heat.

Attenuation is measured in units of decibels (dB) or nepers (≈8.7 dB)
per length unit of the medium and is represented by the medium at-
tenuation coefficient α. When possible, specific absorption or scattering
coefficient is used instead.

Attenuation of signal (or loss) is the reduction of its strength
during transmission. In Signal Propagation, attenuation of a propa-
gating EM wave is called the path loss (or path attenuation). Path
loss may be due to free-space loss, refraction, diffraction, reflection,
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absorption, aperture-medium coupling loss, etc. Path loss in decibels is
L = 10n log10 d+C, where n is the path loss exponent, d is the transmitter-
receiver distance in m, and C is a constant accounting for system losses.

The free-space path loss (FSPL) is the loss in signal strength of an
electromagnetic wave that would result from a line-of-sight path through
free space, with no obstacles to cause reflection or diffraction. FSPL is
( 4πd

λ )2, where d is the distance from the transmitter and λ is the signal
wavelength (both in meters), i.e., in decibels it is 10 log10(FSPL) =
20 log10 d + 20 log10 f − 147.56, where f is the frequency in hertz.

• Beer–Lambert law
The Beer–Lambert law is an empirical relationship for the absorbance
Ab of a substance when a radiation beam of given frequency goes
through it:

Ab = αd = −logaT,

where a = e or (for liquids) 10, d is the path length (distance the beam
travels through the medium), T = Id

I0
is the transmittance (Id and I0

are the intensity of the transmitted and incident radiation), and α is the
medium opacity (or linear attenuation coefficient, absorption coefficient);
α is the fraction of radiation lost to absorption and/or scattering per unit
length of the medium.

The extinction coefficient is λw

4π α, where λw is the same frequency
wavelength in a vacuum. In Chemistry, α is given as εC, where C is the
absorber concentration, and ε is the molar extinction coefficient.

The optical depth is τ = − ln Id

I0
, measured along the true (slant)

optical path.
The penetration depth (or attenuation length, mean free path,

optical extinction length) is the thickness d in the medium where the
intensity Id has decreased to 1

e of I0; so, it is 1
α . Cf. half-value layer.

Also, in Helioseismology, the (meridional flow) penetration depth is the
distance from the base of the solar convection zone to the location of the
first reversal of the meridional velocity. In an information network, the
message penetration distance is the maximum distance from the event
message traverses in the valid routing region.

The skin depth is the thickness d where the amplitude Ad of a prop-
agating wave (say, alternating current in a conductor) has decreased to 1

e
of its initial value A0; it is twice the penetration depth. The propagation
constant is γ = − ln Ad

A0
.

The Beer–Lambert law is also applied to describe the attenuation of
solar or stellar radiation. The main components of the atmospheric light
attenuation are: absorption and scattering by aerosols, Rayleigh scattering
(from molecular oxygen O2 and nitrogen Ni2) and (only absorption) by
carbon dioxide CO2, O2, nitrogen dioxide NiO2, water vapor, ozone O3.
Cf. atmospheric visibility distances in Chap. 25.



24.1 Distances in Physics 427

The sea is nearly opaque to light: less than 1% penetrates 100 m deep.
In Oceanography, attenuation of light is the decrease in its intensity
with depth due to absorption (by water molecules) and scattering (by
suspended fine particles).

In Astronomy, attenuation of EM radiation is called extinction (or red-
dening). It arises from the absorption and scattering by the interstellar
medium, the Earth’s atmosphere and dust around an observed object.
The photosphere of a star is the surface where its optical depth is 2

3 . The
optical depth of a planetary ring is the proportion of light blocked by the
ring when it lies between the source and the observer.

• Sound attenuation with distance
Vibrations propagate through elastic solids and liquids, including the
Earth, and consist of two types of elastic (or seismic, body) waves and
two types of surface waves. Elastic waves are: primary (P) wave moving
in the propagation direction of the wave and secondary (S) wave moving
in this direction and perpendicular to it. Also, because the surface acts
as an interface between solid and gas, surface waves occur: the Love wave
moving perpendicular to the direction of the wave and the Rayleigh (R)
wave moving in the direction of the wave and circularly within the vertical
surface perpendicular to it. The geometric attenuation of P- and S-waves
is proportional to 1

d2 , when propagated by the surface of an infinite elastic
body, and it is proportional to 1

d , when propagated inside it. For the
R-wave, it is proportional to 1√

d
.

Sound propagates through gas (say, air) as a P-wave. It attenuates
geometrically over a distance, normally at a rate of 1

d2 : the inverse-square
distance law relating the growing radius d of a wave to its decreas-
ing intensity. The far field (cf. Rayleigh distance) is the part of a
sound field in which sound pressure decreases as 1

d (but sound intensity
decreases as 1

d2 ).
In natural media, further weakening occurs from attenuation, i.e.,

scattering (reflection of the sound in other directions) and absorption
(conversion of the sound energy to heat). Cf. critical distance among
acoustics distances in Chap. 21.

The sound extinction distance is the distance over which its in-
tensity falls to 1

e of its original value. For sonic boom intensities (say,
supersonic flights), the lateral extinction distance is the distance where in
99% of cases the sound intensity is lower than 0.1–0.2 mbar (10–20 Pa) of
atmospheric pressure. The earthquake extinction length is the distance
(in kilometers) over which the primary S-wave energy is decreased by 1

e ;
cf. site-source distances in Seismology in Chap. 25.

Water is transparent to sound. Sound energy is absorbed (due to vis-
cosity) and ≈6% of it scattered (due to water inhomogeneities). Sound
attenuation by zooplankton is used in hydroacoustic measurement of fish
and zooplankton abundance.
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Absorbed less in liquids and solids, low frequency sounds can propagate
in these media over much greater distances along lines of minimum sound
speed. Cf. SOFAR channel among distances in Oceanography in
Chap. 25.

On the other hand, high frequency waves attenuate more rapidly. So,
low frequency waves are dominant further from the source (say, a musical
band or earthquake).

Attenuation of ultrasound waves with frequency f MHz at a given
distance r cm is αfr decibels, where α dB MHz−1 cm−1 is the attenuation
coefficient of the medium. It is used in Ultrasound Biomicroscopy; in a
homogeneous medium (so, without scattering) α is 0.0022, 0.18, 0.85, 20,
41 for water, blood, brain, bone, lung, respectively.

• Optical distance
The optical distance (or optical path length) is a distance dn traveled
by light, where d is the physical distance in a medium and n = c

v is the
refractive index of the medium (c and v are the speeds of an EM wave
in a vacuum and in the medium). By Fermat’s principle light follows the
shortest optical path. Cf. optical depth.

The light extinction distance is the distance where light propagating
through a given medium reaches its steady-state speed, i.e., a characteristic
speed that it can maintain indefinitely. It is proportional to 1

ρλ , where ρ
is the density of the medium and λ is the wavelength, and it is very small
for most common media.

• Proximity effects
In Electronic Engineering, an alternating current flowing through an
electric conductor induces (via the associated magnetic field) eddy cur-
rents within the conductor. The electromagnetic proximity effect is the
“current crowding” which occurs when such currents are flowing through
several nearby conductors such as within a wire. It increases the alter-
nating current resistance (so, electrical losses) and generates undesirable
heating.

In Nanotechnology, the quantum 1
f proximity effect is that the 1

f fun-
damental noise in a semiconductor sample is increased by the presence of
another similar current-carrying sample placed in the close vicinity.

The superconducting proximity effect is the propagation of superconduc-
tivity through a NS (normal-superconductor) interface, i.e., a very thin
layer of “normal” metal behaves like a superconductor (that is, with no
resistance) when placed between two thicker superconductor slices.

In E-beam Lithography, if a material is exposed to an electronic beam,
some molecular chains break and many electron scattering events occur.
Any pattern written by the beam on the material can be distorted by this
E-beam proximity effect.

In LECD (localized electrochemical deposition) technique for fabrica-
tion of miniature devices, the microelectrode (anode) is placed close to
the tip of a fabricated microstructure (cathode). Voltage is applied and
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the structure is grown by deposition. The LECD proximity effect: at small
cathode-anode distances, migration overcomes diffusion, the deposition
rate increases greatly and the products are porous.

In Atomic Physics, the proximity effect refers to the intramolecular
interaction between two (or more) functional groups (in terms of group
contributions models of a molecule) that affects their properties and those
of the groups located nearby.

Cf. also proximity effect (audio) among acoustics distances in
Chap. 21.

The term proximity effect is also used more abstractly, to describe some
undesirable proximity phenomena. For example, the proximity effect in
the production of chromosome aberrations (when ionizing radiation breaks
double-stranded DNA) is that DNA strands can misrejoin if separated
by less than 1

3 of the diameter of a cell nucleus. The proximity effect in
innovation process is the tendency to the geographic agglomeration of
innovation activity.

• Hopping distance
Hopping is atomic-scale long range dynamics that controls diffusivity
and conductivity. For example, oxidation of DNA (loss of an electron)
generates a radical cation which can migrate a long (more that 20 nm)
distance, called the hopping distance, from site to site (to “hop” from
one aggregate to another) before it is trapped by reaction with water.

• Atomic jump distance
In the solid state the atoms are about closely packed on a rigid lattice. The
atoms of some elements (carbon, hydrogen, nitrogen), being too small to
replace the atoms of metallic elements on the lattice, are located in the
interstices between metal atoms and they diffuse by squeezing between
the host atoms.

Interstitial diffusion is the only mechanism by which atoms can be
transported through a solid substance while, in a gas or liquid, mass
transport is possible by both diffusion and the flow of fluid (for example,
convection currents).

The jump distance is the distance an atom is moved through the lat-
tice in a given direction by one exchange of its position with an adjacent
vacant or occupied lattice site.

The mean square diffusion distance dt from the starting point which
a molecule will have diffused in time t, satisfies d2

t = r2N = r2νt = 2nDt,
where r is the jump distance; N is the number of jumps (equal to νt assum-
ing a fixed jump rate ν); n = 1, 2, 3 for one-, two- and three-dimensional
diffusion; and D = νr2

2n is the diffusivity in square centimeters per second.
For example, D = 1–1.5 × 10−5, 10−6 and 10−10 for small molecules in
water, small protein in water and proteins in a membrane, respectively.

In diffusion alloy bonding, a characteristic diffusion distance is the
distance between the joint interface and the site wherein the concentration
of the diffusing substance (say, aluminum in high carbon-steel) falls to
zero up to a given error.
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• Diffusion length
Diffusion is a process of spontaneous spreading of matter, heat, momen-
tum, or light: particles move to lower chemical potential implying a change
in concentration.

In Microfluidics, the diffusion length is the distance from the point
of initial mixing to the complete mixing point where the equilibrium
composition is reached.

In semiconductors, electron-hole pairs are generated and recombine;
the (minority carrier) diffusion length of a material is the average dis-
tance a minority carrier can move from the point of generation until it
recombines with majority carriers. Also, the diffusion length, in electron
transport by diffusion, is the distance over which concentration of free
charge carriers injected into semiconductor falls to 1

e of its original value.
Cf. jump distance and, in Chap. 23, capillary diffusion distance.

• Thermal diffusion length
The heat propagation into material is represented by the thermal diffu-
sion length, i.e., the propagation distance of the thermal wave producing
an attenuation of the peak temperature to about 0.1 of the maximum
surface value.

For lasers with femtosecond pulse duration, it is so small that the
energy of the beam, not being absorbed by laser-induced plasma, is fully
deposited into the target.

The propagation of the laser-generated shock wave is approximated
as blast wave (instantaneous, massless point explosion). The expansion
distance is the distance between the surface of the target and the position
of a blast wave; it depends on the energy converted into the plasma state.

• Hydrodynamic radius
The hydrodynamic radius (or Stokes radius, Stokes–Einstein radius)
of a molecule, undergoing diffusion in a solution (homogeneous mixture
composed of two or more substances), is the hypothetical radius of a hard
sphere which diffuses with the same rate as the molecule.

• Solvent migration distance
In Chromatography, the solvent migration distance is the distance
traveled by the front line of the liquid or gas entering a chromatographic
bed for elution (the process of using a solvent to extract an absorbed
substance from a solid medium).

• Healing length
For a superfluid, the healing length is a length over which the wave
function can vary while still minimizing energy.

For Bose–Einstein condensates, the healing length is the width of the
bounding region over which the probability density of the condensate
drops to zero.

• Coupling length
In optical fibre devices mode coupling occurs during transmission by
multimode fibres (mainly because of random bending of the fibre axis).
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Between two modes, a and b, the coupling length lc is the length
for which the complete power transfer cycle (from a to b and back) take
place, and the beating length z is the length along which the modes
accumulate a 2π phase difference. The resonant coupling effect is adiabatic
(no heat is transferred) if and only if lc > z.

Furuya, Suematsu and Tokiwa (1978) define the coupling length of
modes a and b as the length of transmission at which the ratio Ia

Ib
of mode

intensities reach e2.
• Localization length

Generally, the localization length is the average distance between two
obstacles in a given scale. The localization scaling theory of metal-insulator
transitions predicts that, in zero magnetic field, electronic wave functions
are always localized in disordered 2D systems over a length scale called
the localization length.

• Long range order
A physical system has long range order if remote portions of the same
sample exhibit correlated behavior. For example, in crystals and some
liquids, the positions of an atom and its neighbors define the positions of
all other atoms.

Examples of long range ordered states are: superfluidity and, in solids,
magnetism, charge density wave, superconductivity. Most strongly corre-
lated systems develop long-range order in their ground state.

Short range refers to the first- or second-nearest neighbors of an atom.
More precisely, the system has long range order, quasi-long range order
or is disordered if the corresponding correlation function decays at large
distances to a constant, to zero polynomially, or to zero exponentially (cf.
long range dependency in Chap. 29).

• Correlation length
The correlation length is the distance from a point beyond which
there is no further correlation of a physical property associated with that
point. It is used mainly in statistical mechanics as a measure of the order
in a system for phase transitions (fluid, ferromagnetic, nematic).

For example, in a spin system at high temperature, the correlation
length is − ln d·C(d)

d where d is the distance between spins and C(d) is the
correlation function.

In particular, the percolation correlation length is an average distance
between two sites belonging to the same cluster, while the thermal corre-
lation length is an average diameter of spin clusters in thermal equilibrium
at a given temperature. In second-order phase transitions, the correlation
length diverges at the critical point.

• Magnetic length
The magnetic length (or effective magnetic length) is the distance
between the effective magnetic poles of a magnet.

The magnetic correlation length is a magnetic-field dependent correla-
tion length.
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• Spatial coherence length
The spatial coherence length is the propagation distance from a co-
herent source to the farthest point where an electromagnetic wave still
maintains a specific degree of coherence. This notion is used in Telecommu-
nication Engineering (usually, for the optical regime) and in synchrotron
X-ray Optics (the advanced characteristics of synchrotron sources provide
highly coherent X-rays).

The spatial coherence length is about 20 cm, 100 m, and 100 km for
helium–neon, semiconductor and fiber lasers, respectively. Cf. temporal
coherence length which describes the correlation between signals observed
at different moments of time.

For vortex-loop phase transitions (superconductors, superfluid, etc.),
coherence length is the diameter of the largest loop which is thermally
excited. Besides coherence length, the second characteristic length (cf.
Chap. 29) in a superconductor is its penetration depth. If the ratio of
these values (the Ginzburg–Landau parameter) is <

√
2, then the phase

transition to superconductivity is of second-order.
• Decoherence length

In disordered media, the decoherence length is the propagation distance
of a wave from a coherent source to the point beyond which the phase is
irreversibly destroyed (for example, by a coupling with noisy environment).

• Dephasing length
Intense laser pulses traveling through plasma can generate, for example, a
wake (the region of turbulence around a solid body moving relative to a liq-
uid, caused by its flow around the body) or X-rays. The dephasing length
is the distance after which the electrons outrun the wake, or (for a given
mismatch in speed of pulses and X-rays) laser and X-rays slip out of phase.

• Metric theory of gravity
A metric theory of gravity assumes the existence of a symmetric
metric (seen as a property of space–time itself) to which matter and non-
gravitational fields respond. Such theories differ by the types of additional
gravitational fields, say, by dependency or not on the location and/or
velocity of the local systems. General Relativity is one such theory; it
contains only one gravitational field, the space–time metric itself, and it
is governed by Einstein’s partial differential equations. It has been found
empirically that, besides Nordstrom’s 1913 conformally-flat scalar theory,
every other metric theory of gravity introduces auxiliary gravitational
fields.

A bimetric theory of gravity is a metric theory of gravity in which
two, instead of one, metric tensors are used for, say, effective Riemannian
and background Minkowski space–times.

Østvang (2001) proposed a quasi-metric framework for relativistic
gravity.
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• Gravitational radius
The gravitational radius (or event horizon) is the radius that a spherical
mass must be compressed to in order to transform it into a black hole. The
Schwarzschild radius is the gravitational radius 2Gm

c2 of a Schwarzschild
black hole with mass m.

A “typical” black hole has mass ≈6 MSun, diameter ≈18 km, tempera-
ture ≈10−8 K and lifetime ≈2 × 1068 years. The central black hole of the
galaxy M87 (in the center of our Virgo Supercluster) has mass 3 billions
suns and diameter at least one light-day. Usually central black hole weighs
≈0.1% of the surrounding galactic budge.

On the other hand, a hypothetical quantum mechanical black hole has
mass 103Mproton, size 10−18 m, temperature 1016 K and lifetime 10−27 s.
The smallest black hole is a hypothetical Planck particle, i.e., one whose
Schwarzschild radius and Compton wavelength are equal to the Planck
length (10−20 times the proton’s radius). Its mass is the Planck mass
(13× 1018Mproton); its lifetime is 0.26 times the Planck time.

• Binding energy
The binding energy of a system is the mechanical energy required to sep-
arate its parts so that their relative distances become infinite. For example,
the binding energy of an electron or proton is the energy needed to remove
it from the atom or the nucleus, respectively, to an infinite distance.

In Astrophysics, gravitational binding energy of a celestial body is the
energy required to disassemble it into dust and gas, while the lower
gravitational potential energy is needed to separate two bodies to infinite
distance, keeping each intact.

• Acoustic metric
In Acoustics, the acoustic metric (or sonic metric) is a characteristic
of sound-carrying properties of a given medium: air, water, etc.

In General Relativity and Quantum Gravity, it is a characteristic of
signal-carrying properties in a given analog model (with respect to Con-
densed Matter Physics) where, for example, the propagation of scalar fields
in curved space–time is modeled (see, for example, a survey [BLV05]) as
the propagation of sound in a moving fluid, or slow light in a moving fluid
dielectric, or superfluid (quasi-particles in quantum fluid).

The passage of a signal through an acoustic metric modifies the metric;
for example, the motion of sound in air moves air and modifies the local
speed of the sound. Such “effective” (i.e., recognized by its “effects”)
Lorentzian metric (cf. Chap. 7) governs, instead of the background
metric, the propagation of fluctuations: the particles associated to the
perturbations follow geodesics of that metric.

In fact, if a fluid is barotropic and inviscid, and the flow is irrotational,
then the propagation of sound is describedby an acoustic metric which
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depends on the density ρ of flow, velocity v of flow and local speed s of
sound in the fluid. It can be given by the acoustic tensor

g = g(t,x) =
ρ

s

⎛

⎜
⎜
⎝

−(s2 − v2)
... −vT

· · · · · ·

−v
... 13

⎞

⎟
⎟
⎠ ,

where 13 is the 3 × 3 identity matrix, and v = ||v||. The acoustic line
element can be written as

ds2 =
ρ

s

(
−(s2 − v2)dt2 − 2vdxdt + (dx)2

)
=

ρ

s

(
−s2dt2 + (dx− vdt)2

)
.

The signature of this metric is (3, 1), i.e., it is a Lorentzian metric. If
the speed of the fluid becomes supersonic, then the sound waves will be
unable to come back, i.e., there exists a mute hole, the acoustic analog of
a black hole.

The optical metrics are also used in analog gravity and effective met-
ric techniques; they correspond to the representation of a gravitational
field by an equivalent optical medium with magnetic permitivity equal to
electric one.

• Aichelburg–Sexl metric
In Quantum Gravity, the Aichelburg–Sexl metric (Aichelburg and
Sexl 1971) is a four-dimensional metric created by a relativistic particle
(having an energy of the order of the Planck mass) of momentum p along
the x-axis, described by its line element

ds2 = dudv − dρ2 − ρ2dφ2 + 8p ln
ρ

ρ0
δ(u)du2,

where u = t−x, v = t+x are null coordinates, ρ and φ are standard polar
coordinates, ρ =

√
y2 + z2, and ρ0 is an arbitrary scale constant.

This metric admits an n-dimensional generalization (de Vega and
Sánchez 1989), given by the line element

ds2 = dudv − (dXi)2 + fn(ρ)δ(u)du2,

where u and v are the above null coordinates, Xi are the traverse coor-
dinates, ρ=

√∑
1≤i≤n−2(Xi)2, fn(ρ)=K( ρ

ρ0
)4−n, k= 8π2−0.5n

n−4 Γ(0.5n− 1)

GP , n > 4, f4 = 8GP ln ρ
ρ0

, G is the gravitational constant and P is the
momentum of the considered particle.

This metric describes the gravitational field created, according to Gen-
eral Relativity, during the interaction of spinless neutral particles with
rest mass much smaller than the Planck mass mP and only one of them
having an energy of the order mP .
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• Quantum metrics
A quantum metric is a general term used for a metric expected to
describe the space–time at quantum scales (of order Planck length lP ≈
1.6162× 10−35 m). Extrapolating predictions of Quantum Mechanics and
General Relativity, the metric structure of this space–time is determined
by vacuum fluctuations of very high energy (1019 GeV corresponding to the
Planck mass mP ≈ 2.176×10−8 kg) creating black holes with radii of order
lP . The space–time becomes “quantum foam:” violent warping and turbu-
lence. It loses the smooth continuous structure (apparent macroscopically)
of a Riemannian manifold, to become discrete, fractal, non-differentiable:
breakdown at lP of the functional integral in the classical field equations.

Examples of quantum metric spaces are: Rieffel’s compact quantum
metric space, Fubini–Study metric on quantum states, statistical
geometry of fuzzy lumps [ReRo01] and quantization of the metric cone
(cf. Chap. 1) in [IsKuPe90].

• Quantal distances
A quantal distance is a distance between quantum states.

The pure states correspond to the rays in the Hilbert space of wave
functions.

The Wootters distance between pure states ω1 and ω2 is cos−1|〈ω1, ω2〉|.
The Fubini–Study distance between pure states ω1 and ω2 is√
2(1− |〈ω1, ω2〉|2)

1
2 ; cf. Fubini–Study metric in Chap. 7.

The mixed quantum states are represented by density operators (i.e.,
positive operators of unit trace) in the complex projective space over the
infinite-dimensional Hilbert space. The m-dimensional version corresponds
to the m-qubit quantum states represented by 2m × 2m density matrices.

Let X denote the set of all density operators in this Hilbert space. For
two given quantum states, represented by density operators x, y ∈ X, we
mention the following distances on X.

The Hilbert–Schmidt norm metric (cf. Chap. 13) is ||x−y||HS with
||A||HS =

√
Tr(AT A) is the Hilbert–Schmidt norm of an operator A.

The trace norm metric (cf. Chap. 12) is ||x − y||tr, where ||A||tr =
Tr

√
(AT A) is the trace norm of an operator A. The maximum probability

that a quantum measurement will distinguish x from y is 1
2 ||x− y||tr.

The Bures–Uhlmann distance is
√

2(1− Tr((
√

xy
√

x)2) (cf. Bures
metric in Chap. 7). The Fidelity similarity is Tr((

√
xy
√

x)2).
The Gudder distance is infλ∈[0,1] : (1 − λ)x + λx′ = (1 − λ)y +

λy′;x′, y′ ∈ X. In fact, X is convex, i.e., λx + (1 − λ)y ∈ X whenever
x, y ∈ X and λ ∈ (0, 1).

Examples of other distances used in the quantal setting are the
Frobenius norm metric (cf. Chap. 12), Sobolev metric (cf. Chap. 13),
Monge–Kantorovich metric (cf. Chap. 21).

• Action at a distance (in Physics)
An action at a distance is the interaction, without known mediator,
of two objects separated in space. Einstein used the term spooky action



436 24 Distances in Physics and Chemistry

at a distance for quantum mechanical interaction (like entanglement and
quantum non-locality) which is instantaneous, regardless of distance. His
principle of locality is: distant objects cannot have direct influence
on one another, an object is influenced directly only by its immediate
surroundings.

Alice–Bob distance is the distance between two entangled particles,
“Alice” and “Bob.” In 2004, Zellinger et al. teleported (across a distance
600 m) some quantum information – the polarization property of a pho-
ton – to its mate in an entangled pair of photons. In 2006, Ursin et al.
transmitted an entangled photon over a distance of 144 km (between the
Canary Islands of La Palma and Tenerife) via an optical free-space link.
Quantum Theory predicts that the correlations based on quantum entan-
glement should be maintained over arbitrary Alice–Bob distances. But a
strong non-locality, i.e., a measurable action at a distance (a superlumi-
nal propagation of real, physical information) never was observed and is
generally not expected.

Already controversial (since the speed of light is maximal) long range
non-quantum interaction becomes marginal for “mental action at a dis-
tance” (telepathy, precognition, psychokinesis, etc.). But if Penrose’s
intuition that the human brain utilizes quantum mechanical processes is
right, then such “psychic non-local” communication looks possible.

The term short range interaction is also used for the transmission of
action at a distance by a material medium from point to point with a
certain velocity dependent on properties of this medium. Also, in Informa-
tion Storage, the term near-field interaction is used for very short distance
interaction using scanning probe techniques. Near-field communication
is a standards-based technology enabling convenient short-range wireless
communication between electronic devices.

• Entanglement distance
The entanglement distance is the maximal distance between two entan-
gled electrons in a degenerate electron gas beyond which all entanglement
is observed to vanish. Degenerate matter (for example, in White Dwarf
stars) is matter having so high density that the dominant contribution
to its pressure arises from the Pauli exclusion principle: no two identical
fermions may occupy the same quantum state simultaneously.

24.2 Distances in Chemistry and Crystallography

Main chemical substances are ionic (held together by ionic bonds), metallic
(giant close packed structures held together by metallic bonds), giant co-
valent (as diamond and graphite), or molecular (small covalent). Molecules
are made of a fixed number of atoms joined together by covalent bonds;
they range from small (single-atom molecules in the noble gases) to very
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large ones (as in polymers, proteins or DNA). The interatomic distance
of two atoms is the distance (in angstroms or picometers) between their
nuclei.

• Atomic radius
Quantum Mechanics implies that an atom is not a ball having an exactly
defined boundary. Hence, atomic radius is defined as the distance from
the atomic nucleus to the outermost stable electron orbital in a atom that
is at equilibrium. Atomic radii represent the sizes of isolated, electrically
neutral atoms, unaffected by bonding.

Atomic radii are estimated from bond distances if the atoms of the el-
ement form bonds; otherwise (like the noble gases), only Van-der-Waals
radii are used.

The atomic radii of elements increase as one moves down the column
(or to the left) in the Periodic Table of Elements.

• Bond distance
The bond distance (or bond length) is the distance between the nuclei
of two bonded atoms. For example, typical bond distances for carbon–
carbon bonds in an organic molecule are 1.53, 1.34 and 1.20 Å for single,
double and triple bonds, respectively. The atomic nuclei repel each other;
the equilibrium distance between two atoms in a molecule is the inter-
nuclear distance at the minimum of the electronic (or potential) energy
surface.

Depending on the type of bonding of the element, its atomic radius is
called covalent or metallic. The metallic radius is one half of the metallic
distance, i.e., the closest internuclear distance in a metallic crystal (a
closely packed crystal lattice of metallic element).

Covalent radii of atoms (of elements that form covalent bonds) are in-
ferred from bond distances between pairs of covalently-bonded atoms: they
are equal to the sum of the covalent radii of two atoms. If the two atoms
are of the same kind, then their covalent radius is one half of their bond
distance. Covalent radii for elements whose atoms cannot bond to each
another is inferred by combining the radii of those that bond with bond
distances between pairs of atoms of different kind.

• Van-der-Waals contact distance
Intermolecular distance data are interpreted by viewing atoms as hard
spheres. The spheres of two neighboring non-bonded atoms (in touch-
ing molecules or atoms) are supposed to just touch. So, their inter-
atomic distance, called the Van-der-Waals contact distance, is the
sum of radii, called Van-der-Waals radii, of their hard spheres. The
Van-der-Waals radius of carbon is 1.7 Å, while its covalent radius is 0.76.
The Van-der-Waals contact distance corresponds to a “weak bond,” when
repulsion forces of electronic shells exceed London (attractive electrostatic)
forces.



438 24 Distances in Physics and Chemistry

• Interionic distance
An ion is an atom that has a positive or negative electrical charge. The
interionic distance is the distance between the centers of two adja-
cent (bonded) ions. Ionic radii (Goldschmitt and Pauling, independently,
in 1920’s) are inferred from ionic bond distances in real molecules and
crystals.

The ion radii of cations (positive ions, for example, sodium Na+) are
smaller than the atomic radii of the atoms they come from, while anions
(negative ions, for example, chlorine Cl−) are larger than their atoms.

• Intermicellar distance
Micelle is an electrically charged particle built up from polymeric molecules
or ions and occurring in certain colloidal electrolytic solutions like soaps
and detergents. This term is also used for a submicroscopic aggregation
of molecules, such as a droplet in a colloidal system, and for a coherent
strand or structure in a fiber.

The intermicellar distance is the average distance between micelles.
• Range of molecular forces

Molecular forces (or interactions) are the following electromagnetic forces:
ionic bonds (charges), hydrogen bonds (dipolar), dipole–dipole interac-
tions, London forces (the attraction part of Van-der-Waals forces) and
steric repulsion (the repulsion part of Van-der-Waals forces). If the distance
(between two molecules or atoms) is d, then (experimental observation) the
potential energy function P relates inversely to dn with n = 1, 3, 3, 6, 12
for the above five forces, respectively.

The range (or the radius) of an interaction is considered short if P
approaches 0 rapidly as d increases. It is also called short if it is at most 3 Å;
so, only the range of steric repulsion is short (cf. range of fundamental
forces).

An example: for polyelectrolyte solutions, the long range ionic solvent-
water force competes with the shorter range water-water (hydrogen bond-
ing) force.

In protein molecule, the range of London–Van-der-Waals force is ≈5 Å,
and the range of hydrophobic effect is up to 12 Å, while the length of
hydrogen bond is ≈3 Å, and the length of peptide bond (when the carboxyl
group of one molecule reacts with the amino group of the other molecule,
thereby releasing a molecule of water) is ≈1.5 Å.

• Chemical distance
Various chemical systems (single molecules, their fragments, crystals, poly-
mers, clusters) are well represented by graphs where vertices (say, atoms,
molecules acting as monomers, molecular fragments) are linked by, say,
chemical bonding, Van-der-Waals interactions, hydrogen bonding, reac-
tions path.

In Organic Chemistry, a molecular graph G(x) = (V (x), E(x)) is a graph
representing a molecule x, so that the vertices v ∈ V (x) are atoms and the
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edges e ∈ E(x) correspond to electron pair bonds. The usual and comple-
mentary reciprocal Wiener numbers of G(x) are 1

2

∑
a,b∈V (x) d(a, b) and

1
2

∑
a,b∈V (x)(1 + D − d(a, b))−1, where D is the diameter of G(x).

The (bonds and electrons) BE-matrix of a molecule x is the |V (x)| ×
|V (x)| matrix ((eij(x))), where eii(x) is the number of free unshared va-
lence electrons of the atom Ai and, for i �= j, eij(x) = eji(x) = 1 if there
is a bond between atoms Ai and Aj , and = 0 otherwise.

Given two stoichiometric (i.e., with the same number of atoms)
molecules x and y, their Dugundji–Ugi chemical distance is the
Hamming metric

∑

1≤i,j≤|V |
|eij(x)− eij(y)|,

and their Pospichal–Kvasnic̆ka chemical distance is

min
π

∑

1≤i,j≤|V |
|eij(x)− eπ(i)π(j)(y)|,

where π is any permutation of the atoms.
The above distance is equal to |E(x)|+|E(y)|−2|E(x, y)|, where E(x, y)

is the edge-set of the maximum common subgraph (not induced, in general)
of the molecular graphs G(x) and G(y). (Cf. Zelinka distance in Chap. 15
and Mahalanobis distance in Chap. 17.)

The Pospichal–Kvasnic̆ka reaction distance, assigned to a molec-
ular transformation x → y, is the minimum number of elementary
transformations needed to transform G(x) onto G(y).

• Molecular RMS radius
The molecular RMS radius (or radius of gyration) is the root-mean-
square distance of atoms in a molecule from their common center of
gravity; it is

√∑
1≤i≤n d2

0i

n + 1
=

√∑
i

∑
j d2

ij

(n + 1)2
,

where n is the number of atoms, d0i is the Euclidean distance of the i-th
atom from the center of gravity of the molecule (in a specified conforma-
tion), and dij is the Euclidean distance between the i-th and j-th atoms.

• Mean molecular radius
The mean molecular radius is the number ri

n , where n is the number
of atoms in the molecule, and ri is the Euclidean distance of the i-th
atom from the geometric center

∑
j xij

n of the molecule (here xij is the i-th
Cartesian coordinate of the j-th atom).

• Molecular similarities
Given two three-dimensional molecules x and y characterized by some
structural (shape or electronic) property P , their similarities are called
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molecular similarities. The main electronic similarities correspond to
some correlation similarities from Sect. 17.4 for example, the Spearman
rank correlation and the two that follow now.

The Carbo similarity (Carbo, Leyda and Arnau 1980) is the cosine
similarity (or normalized dot product, cf. Chap. 17) defined by

〈f(x), f(y)〉
||f(x)||2 · ||f(y)||2

,

where the electron density function f(z) of a molecule z is the volumic
integral

∫
P (z)dv over the whole space.

The Hodgkin–Richards similarity (1991) is defined (cf. the Morisita–
Horn similarity in Chap. 17) by

2〈f(x), f(y)〉
||f(x)||22 + ||f(y)||22

,

where f(z) is the electrostatic potential or electrostatic field of a
molecule z.

Petitjean (1995) proposed to use the distance V (x∪y)−V (x∩y), where
the volume V (z) of a molecule z is the union of Van-der-Waals spheres
of its atoms. Cf. Van-der-Waals contact distance and, in Chap. 9,
Nikodym metric V (xΔy).

• Persistence length
A polymer is a large macromolecule composed of repeating structural units
connected by covalent chemical bonds. The persistence length of a poly-
mer chain is the length over which correlations in the direction of the
tangent are lost.

The molecule behaves as a flexible elastic rod for shorter segments, while
for much longer ones it can only be described statistically. Cf. correlation
length.

Twice the persistence length is the Kuhn length, i.e., the length of hy-
pothetical segments which can be thought of as if they are freely jointed
with each other in order to form given polymer chain.

• Repeat distance
Given a periodic layered structure, its repeat distance is the period, i.e.,
the spacing distance between layers (say, lattice planes, bilayers in a
liquid-crystal system, or graphite sheets along the unit cell’s hexagonal
axis).

A crystal lattice, the unit cell in it and the cell spacing are called also a
repeat pattern, the basic repeat unit and the cell repeat distance (or lattice
spacing, interplaner distance), respectively.

The repeat distance in a polymer is the ratio of the unit cell length
that is parallel to the axis of propagation of the polymer to the number of
monomeric units this length covers.
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• Metric symmetry
The full crystal symmetry is given by its space group.

The metric symmetry of the crystal lattice is its symmetry without
taking into account the arrangement of the atoms in the unit cell.

In between lies the Laue group giving equivalence of different reflexions,
i.e., the symmetry of the crystal diffraction pattern. In other words, it
is the symmetry in the reciprocal space (taking into account the reflex
intensities).

The Laue symmetry can be lower than the metric symmetry (for ex-
ample, an orthorhombic unit cell with a = b is metrically tetragonal) but
never higher.

There are seven crystal systems (triclinic, monoclinic, orthorhombic,
tetragonal, trigonal, hexagonal, and cubic); taken together with possible
lattice centerings, there are 14 Bravais lattices.

• Dislocation distances
In Crystallography, a dislocation is a defect extending through a crystal
for some distance (dislocation path length) along a dislocation line. It
either forms a complete loop within the crystal or ends at a surface or
other dislocation.

The mean free path of a dislocation is (Gao, Chen, Kysar, Lee and
Gan 2007), in 2D, the average distance between its origin and the nearest
particle or, in 3D, the maximum radius of a dislocation loop before it
reaches a particle in the slip plane.

The Burgers vector of a dislocation is a crystal vector denoting the
direction and magnitude of the atomic displacement that occurs within a
crystal when a dislocation moves through the lattice. A dislocation is called
edge, screw or mixed if the angle between its line vector and the Burgers
vector is 90◦, 0◦ or otherwise, respectively. The edge dislocation width
is the distance over which the magnitude of the displacement of the atoms
from their perfect crystal position is greater than 1

4 of the magnitude of
the Burgers vector.

The dislocation density ρ is the total length of dislocation lines per unit
volume; typically, it is 10 km cm−3 but can reach 106 km cm−3 in a heavily
deformed metal. The average distance between dislocations depends on
their arrangement; it is ρ−

1
2 for a quadratic array of parallel dislocations.

If the average distance decreases, dislocations start to cancel each other’s
motion.

The spacing dislocation distance is the minimum distance between
two dislocations which can coexist on separate planes without recombining
spontaneously.

• Dynamical diffraction distances
Diffraction is the apparent bending of propagating waves around obsta-
cles of about the wavelength size. Diffraction from a 3D periodic structure
such as an atomic crystal is called Bragg diffraction.It is a convolution of
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the simultaneous scattering of the probe beam (light as X-rays, or mat-
ter waves such as electrons or neutrons) by the sample and interference
(superposition of waves reflecting from different crystal planes).

The Bragg Law, modeling diffraction as reflexion from crystal planes of
atoms, states that waves (with wavelength λ scattered under angle θ from
planes at spacing distance d) interfere only if they remain in phase, i.e.,
2dsinθ

λ is an integer.
The decay of intensity with depth traversed in the crystal occurs by

dynamical extinction, redistributing energy within the wave field, and by
photoelectric absorption (a loss of energy from the wave field to the atoms
of the crystal).

The dynamical (multiple diffraction) theory is used to model the per-
fect (no disruptions in the periodicity) crystals. It considers the incident
and diffracted wave fronts as coupled parts of a wave field that interact
with each other and the periodically varying electrical susceptibility of the
medium so as to satisfy the Maxwell equations.

The former kinematic theory works for imperfect crystals and estimates
absorption.

Dynamical theory distinguishes two cases: Laue (or transmission) and
Bragg (or reflexion) case, when the reflected wave is directed toward the
inside and, respectively, outside of the crystal. The wave field is represented
visually by its dispersion surface. The inverse of the diameter of this surface
is called (Autier 2001) the Pendellösung distance ΛL in the Laue case
and the extinction distance ΛB in the Bragg case.

At the exit face of the crystal, the wave splits into two single waves
with different directions: incident 0-beam and diffracted H-beam. With
increasing thickness of the crystal, the wave leaving it will first appear
mainly in the 0-beam, then entirely in the H-beam at thickness ΛL

2 , and
subsequently it will oscillate between these beams with a period ΛL, called
the Pendellösung length; cf. similar coupling length.

The wave amplitude (and the intensity of the diffracted beam) is trans-
ferred back-and-forth once, i.e., the physical distance acquires a phase
change of 2π. Pendellösung oscillations happen also in Bragg case, but
with very rapidly decaying amplitudes, and Pendellösung fringes are visi-
ble only for θ close to 00 or 450.

Diffraction that involves multiple scattering events is called extinction
since it reduces the observed integrated diffracted intensity. Extinction is
very significant for perfect crystals and is then called primary extinction.
In the Bragg case, the primary extinction length (James 1964) is the
inverse of the extinction factor (maximum extinction coefficient for the
middle of the range of total reflection):

πV cos θ

λre|F |C
,
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where F , C (valued 1 or cos 2θ) are the structure and polarization factors,
V is the volume of unit cell, re ≈ 2.81794×10−15m is the classical electron
radius and λ is the X-ray beam wavelength. The diffracted intensity with
sufficiently large thickness no longer increases significantly with increased
thickness.

The extinction length of an electron or neutron diffraction is πV cos θ
λ|F | .

Half of it gives the number of atom planes needed to reduce the incident
beam to zero intensity.

The X-ray penetration depth (or attenuation length, mean free path,
extinction distance) is (Wolfstieg 1976) the depth into the material where
the intensity of the diffracted beam has decreased e-fold. Cf. penetration
depth.

In Gullity (1956) X-ray penetration depth is the depth z such that Iz

I∞
=

1 − 1
e , where I∞, Iz are the total diffraction intensities given from the

whole specimen and, respectively, the range between the surface and the
depth, z, from it.

• X-ray absorption length
The absorption edge is a sharp discontinuity in the absorption spectrum
of X-rays by an element that occurs when the energy of the photon is
just above the binding energy of an electron in a specific shell of the
atom. The X-ray absorption length of a crystal is the thickness s of
the sample such that the intensity of the X-rays incident upon it at an
energy 50 eV above the absorption edge is attenuated e-fold.

For an X-ray laser, the extinction length is the thickness needed to fully
reflect the beam; usually, it is a few micrometers while the absorption
length is much larger.

In Segmüller (1968) the absorption length is sinθ
μ , where μ is the linear

absorption coefficient, and the beam enters the crystal at an angle θ.



Chapter 25
Distances in Geography, Geophysics,
and Astronomy

25.1 Distances in Geography and Geophysics

• Great circle distance
The great circle distance (or spherical distance, orthodromic dis-
tance) is the shortest distance between points x and y on the surface of
the Earth measured along a path on the Earth’s surface. It is the length
of the great circle arc, passing through x and y, in the spherical model of
the planet.

Let δ1 and φ1 be, respectively, the latitude and the longitude of x, and
δ2 and φ2 those of y; let r be the Earth’s radius. Then the great circle
distance is equal to

r arccos(sin δ1 sin δ2 + cos δ1 cos δ2 cos(φ1 − φ2)).

In the spherical coordinates (θ, φ), where φ is the azimuthal angle and
θ is the colatitude, the great circle distance between x = (θ1, φ1) and
y = (θ2, φ2) is equal to

r arccos (cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)) .

For φ1 = φ2, the formula above reduces to r|θ1 − θ2|.
The spheroidal distance is the distance between two points on the

Earth’s surface in the spheroidal model of the planet. The shape of the
Earth more closely resembles a flattened spheroid with extreme values for
the radius of curvature of 6,336 km at the equator and 6,399 km at the
poles.

• Loxodromic distance
A rhumb line (or loxodromic curve) is a curve on the Earth’s surface that
crosses each meridian at the same angle. It is the path taken by a ship or
plane that maintains a constant compass direction.

The loxodromic distance is a distance between two points on the
Earth’s surface on the rhumb line joining them. It is never shorter than
the great circle distance.

M.M. Deza and E. Deza, Encyclopedia of Distances, 445
DOI 10.1007/978-3-642-00234-2 25, c© Springer-Verlag Berlin Heidelberg 2009
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The nautical distance is the length in nautical miles of the rhumb
line joining any two places on the Earth’s surface. One nautical mile is
equal to 1,852 m (roughly, it is 1′ of latitude; cf. nautical length units
in Chap. 27).

• Continental shelf distance
Article 76 of the United Nations Convention on the Law of the Sea (1999),
defined the continental shelf of a coastal state (its sovereignty domain) as
the seabed and subsoil of the submarine areas that extend beyond its ter-
ritorial sea throughout the natural prolongation of its land territory to the
outer edge of the continental margin. It postulated that the continental
shelf distance, i.e., the range distance from the baselines from which
the breadth of the territorial sea is measured to above the other edge,
should be within 200–350 nautical miles, and gave rules of its (almost)
exact determination.

Article 47 of the same convention postulated that, for an archipelagic
state, the ratio of the area of its archipelagic waters (sovereignty domain)
to the area of its land, including atolls, should be between 1–1 and 9–1,
and elaborated case-by-case rules.

• Radio distances
The main modes of electromagnetic wave (radio, light, X-rays, etc.) prop-
agation are direct wave (line-of-sight), surface wave (interacting with the
Earth’s surface and following its curvature) and skywave (relying on re-
fraction in the ionosphere).

The line-of-sight distance is the distance which radio signals travel,
from one antenna to another, by a line of sight path, where both antennas
are visible to one another, and there are no metallic obstructions.

The horizon distance is the distance on the Earth’s surface reached
by a direct wave; due to ionospheric refraction or tropospheric events, it
is sometimes greater than the distance to the visible horizon.

In Television, the horizon distance is the distance of the farthest point
on the Earth’s surface visible from a transmitting antenna.

The skip distance is the shortest distance that permits a radio signal
(of given frequency) to travel as a skywave from the transmitter to the
receiver by reflection (hop) in the ionosphere.

If two radio frequencies are used (for instance, 12.5 and 25 kHz in
maritime communication), the interoperability distance and adjacent
channel separation distance are the range within which all receivers
work with all transmitters and, respectively, the minimal distance which
should separate adjacent tunes for narrow-band transmitters and wide-
band receivers, in order to avoid interference.

DX is amateur radio slang (and Morse code) for distance; DXing is a
distant radio exchange (amplifiers required).
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• Tolerance distance
In GIS (computer-based Geographic Information System), the tolerance
distance is the maximal distance between points which must be es-
tablished so that gaps and overshoots can be corrected (lines snapped
together) as long as they fall within the tolerance distance.

• Map’s distance
The map’s distance is the distance between two points on the map (not
to be confused with map distance between two loci on a genetic map
from Chap. 25).

The horizontal distance is determined by multiplying the map’s dis-
tance by the numerical scale of the map.

Map resolution is the size of the smallest feature that can be represented
on a surface; more generally, it is the accuracy at which the location and
shape of map features can be depicted for a given map scale.

• Equidistant map
An equidistant map is a map projection of Earth having a well-defined
non-trivial set of standard lines, i.e., lines (straight or not) with constant
scale and length proportional to corresponding lines on Earth. Some ex-
amples are:

Sanson–Flamsteed equatorial map: all parallels are straight lines;
Cylindric equidistant map: the vertical lines and equator are straight

lines;
Azimuthal equidistant map preserves distances along any line through

the central point; Werner cordiform map preserves, moreover, distances
along any arc centered at that point.

• Horizontal distance
The horizontal distance (or ground distance) is the distance on a
true level plane between two points, as scaled off of the map (it does not
take into account the relief between two points). There are two types of
horizontal distance: straight-line distance (the length of the straight-
line segment between two points as scaled off of the map), and distance
of travel (the length of the shortest path between two points as scaled off
of the map, in the presence of roads, rivers, etc.).

• Slope distance
The slope distance (or slant distance) is the inclined distance (as op-
posed to true horizontal or vertical distance) between two points.

Walking uphill, humans and animals minimize metabolic energy ex-
penditure; so, at critical slopes, they shift to zigzag walking. Langmuir’s
mountain hiking handbook advises to do it at 25◦. Llobera and Sluckin
(2007) explain switchbacks in hill trails by the need, for walkers, to zigzag
in order to maintain the critical slope, ≈16◦ uphill and ≈12.4◦ downhill.
Skiing and sailing against the wind also require zigzagging.

• Setback distance
In land use, a setback distance (or setback, buffer distance) is the min-
imum horizontal distance at which a building or other structure must
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legally be from property lines, or street, watercourse, or any other place
which needs protection. Setbacks may also allow for public utilities to
access the buildings, and for access to utility meters. Cf. also buffer dis-
tance and clearance distance in Chap. 29.

• Distance-based numbering
The distance-based exit number is a number assigned to a road junc-
tion, usually an exit from a freeway, expressing in miles (or kilometers)
the distance from the beginning of the highway to the exit. A milestone
(or kilometer sign) is one of a series of numbered markers placed along a
road at regular intervals. Zero Milestone in Washington, DC is designated
as the reference point for all road distances in US.

Distance-based house addressing is the system (especially, in US)
when buildings and blocks are numbered according to distance from a given
baseline. For example, in Florida Keys, house number 67,430 is 67.4 miles
from Mile Marker 0 in Key West; in Naperville, house number 67W430
is 67 miles west of downtown Chicago. The GIS-inspired guideline in US
state Georgia is to use the address n = d

10 +100, where d is the distance in
feet of the house from the reference point; roughly, this distance in miles
is n

500 .
Metes and bounds is a traditional system of land description (in

real estate and town boundaries determination) by courses and distances.
Metes is a boundary defined by the measurement of each straight run spec-
ified as displacement, i.e., by the distance and direction. Bounds refers
to a general boundary description in terms of local geography (along some
watercourse, public road, wall etc.). The boundaries are described in a
running prose style, all the way around the parcel of land in sequence.
Surveying is the technique and science of determining the terrestrial and
spatial position of points and the distances and angles between them; cf.,
for example, Surveyor’s Chain measures among Imperial length mea-
sures in Chap. 27.

• Road travel distance
The road travel (or road, driving, wheel, actual) distance between two
locations (say, cities) of a region is the length of the shortest road connect-
ing them.

Some GISs (Geographic Information Systems) approximate road dis-
tances as the lp-metric with p ≈ 1.7 or as a linear function of great circle
distances; in US the multiplier is ≈1.15 in an east-west direction and
≈1.21 in the north–south direction. Several relevant notions of distance
follow.

The GPS navigation distance: the distance directed by GPS (Global
Positioning System, cf. radio distance measurement in Chap. 29) nav-
igation devices. But this shortest route, from the GPS system point of
view, is not always the best, for instance, when it directs a large truck
to drive through a tiny village. Cf. also the little boy’s paradox among
quotes on “near-far” distances in Chap. 28.
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The official distance: the recognized driving distance between two
locations that will be used for travel or payment of billing.

The distance between zip codes (in general, postal or telephone
area codes) is the estimated driving distance (or driving time) between
two corresponding locations.

The journey length is a general notion of distance (usually in kilome-
ters) used as a reference in transport studies. It can refer to, for example,
the average distance traveled per person by some mode of transport (walk,
cycle, car, bus, rail, taxi) or a statutory vehicle distance as in the evalua-
tion of aircraft fuel consumption.

The world’s remotest place is on the Tibetan plateau (34.7◦N, 85.7◦E):
1 day by car and 20 by foot to Lhasa.

A trip meter is a device used for recording the distance traveled by an
automobile in any particular journey.

• Road sight distances
In Transportation Engineering, the normal visual acuity is the ability of a
person to recognize a letter (or an object) of size ≈8.5 mm from a distance
≈6 m.

The sight distance (or clear sight distance) is the length of highway
visible to a driver. The safe sight distance is the necessary sight distance
needed by the driver in order to accomplish a fixed task; the main safe
distances, used in road design, are:

The stopping sight distance – to stop the vehicle before reaching an
unexpected obstacle

The maneuver sight distance – to drive around an unexpected small
obstacle

The road view sight distance – to anticipate the alignment (eventually
curved and horizontal/vertical) of the road (for instance, choosing a speed)

The passing sight distance – to overtake safely (the distance the opposing
vehicle travels during the overtaking manoeuvre)

The safe overtaking distance is the sum of four distances: the passing
sight distance, the perception-reaction distance (between decision and ac-
tion), the distance physically needed for overtaking and the buffer safety
distance.

Also, adequate sight distances are required locally: at intersections and
in order to process information on traffic signs.

• Atmospheric visibility distances
Atmospheric extinction (or attenuation) is a decrease in the amount of light
going in the initial direction due to absorption (stopping) and scattering
(direction change) by particles (solid or liquid, with diameter 0.002–
100 μm) or gaze molecules. The dominant processes responsible for it are
Rayleigh scattering (by particles smaller than the wavelength of the inci-
dent light) and absorption by dust, ozone O3 and water.

In extremely clean air in the Arctic or mountainous areas, the visibility
can reach 70–100 km. But it is often reduced by air pollution and high
humidity: haze (in dry air) or mist (moist air). Haze is an atmospheric
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condition where dust, smoke and other dry particles (from farming, traffic,
industry, fires, etc.) obscure the sky.

The World Meteorological Organization classifies the horizontal obscu-
ration into the categories of fog (a cloud in contact with the ground), ice
fog, steam fog, mist, haze, smoke, volcanic ash, dust, sand and snow. Fog
and mist are composed mainly of water droplets, haze and smoke can be
of smaller particle size.

Visibility of less than 100 m is usually reported as zero. The international
definition of fog, mist and haze is a visibility of <1, 1–2, and 2–5 km, re-
spectively. Visibility is especially useful for safety reasons in traffic (roads,
sailing and aviation).

In air pollution literature, visibility (or daylight visual range) is the
distance at which the contrast of a visual target against the background
(usually, the sky) is equal to the threshold contrast value for the human
eye, necessary for object identification, while visual range is the distance
at which the target is just visible. Visibility can be smaller than the visual
range since it requires recognition of the object.

Visibility is usually characterized by either visual range or by the ex-
tinction coefficient (attenuation of light per unit distance due to four
components: scattering and absorption by gases and particles in the at-
mosphere). It has units of inverse length and, under certain conditions, is
inversely related to the visual range.

Meteorological range (or standard visibility, standard visual range)
is an instrumental daytime measurement of the (daytime sensory) visual
range of a target. It is the furthest distance at which a black object sil-
houetted against a sky would be visible assuming a 2% threshold value for
an object to be distinguished from the background. Numerically, it is ln 50
divided by the extinction coefficient.

In Meteorology, visibility is the distance at which an object or light
can be clearly discerned with the unaided eye under any particular cir-
cumstances. It is the same in darkness as in daylight for the same air.
Visual range is defined as the greatest distance in a given direction at
which it is just possible to see and identify with the unaided eye in the
daytime, a prominent dark object against the sky at the horizon, and at
night, a known, preferably unfocused, moderately intense light source.

The International Civil Aviation Organization defines the nighttime
visual range (or transmission range) as the greatest distance at which
lights of 1,000 cd can be seen and identified against an unlit background.
Daytime and nighttime ranges measure the atmospheric attenuation of
contrast and flux density, respectively.

In Aviation Meteorology, the runway visual range is the maximum
distance along a runway at which the runway markings are visible to a
pilot after touchdown. It is measured assuming constant contrast and il-
luminance thresholds.
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Oblique visual range (or slant visibility) is the greatest distance at
which a target can be perceived when viewed along a line of sight inclined
to the horizontal.

• Atmosphere distances
The atmosphere distances are the altitudes above Earth’s surface (mean
sea level) which indicate approximately the following specific (in terms of
temperature, electromagnetism, etc.) layers of its atmosphere.

Below 1–2 km: planetary boundary layer where the effects of friction
(diurnal heat, moisture or momentum transfer to or from the surface) are
significant. A thin (roughly, below 10 m) surface boundary layer where fric-
tion effects are more or less constant throughout (as opposed to decreasing
with height, as they do above it) and, like friction, the effects of insulation
and radiational cooling are strongest.

Below 8–16 km (over the poles and equator, respectively): troposphere,
temperature decreases with height (the weather and clouds occur here).

From 8 km: death zone for human climbers (lack of oxygen); 8.848 km:
summit of Mount Everest.

From 7–17 to 50 km: stratosphere, temperature increases with height
(the ozone layer is at 19–48 km).

From 50 to 80–85 km: mesosphere, temperature decreases with height.
From 80–85 to 640–690 km: thermosphere, temperature increases with

height (the altitude of International Space Station is 278–460 km).
100 km: Kármán line prescribed by FAI (Fédération Aéronautique In-

ternational) as the boundary separating aeronautics and astronautics, i.e.,
the beginning of outer space. Above this altitude, a vehicle should travel
faster than orbital velocity in order to get aerodynamic lift from the at-
mosphere needed to support itself.

From ≈500 km upwards: exosphere (or outer atmosphere), where atoms
rarely undergo collisions and so can escape into space. The altitudes of the
Hubble Space Telescope, Landsat and GPS (Global Positioning Satellites)
are 595, 705 and 20,200 km, respectively.

From 50–80 to 2,000 km: ionosphere, electrically conducting region,
while neutrosphere is the region from the Earth’s surface upward in which
the atmospheric constituents are mainly unionized; the region of transition
between the neutrosphere and the ionosphere is 70–90 km depending on
latitude and season.

Up to 6–10 Earth’s radii on sunward side: magnetosphere, where Earth’s
magnetic field still dominates that of the solar wind. Geospace is the region
of space that stretches from the beginning of Earth’s ionosphere to the end
of its magnetosphere.

From about 90,000 km: the 100–1,000 km thick Earth’s bow shock
(boundary between the magnetosphere and an ambient medium).

From 650 to 65,000 km: Van Allen radiation belt of intense ionizing
radiation.
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80–100 km: the upper limit of homosphere, where the Earth’s atmosphere
has relatively uniform gaseous composition; the limit of the atmosphere is
the level at which the atmospheric density becomes about one particle per
cubic centimeter, i.e., the same as the density of interplanetary space (also,
the altitude where a molecule of air ceases to be held in free paths which
are segments of Earth orbits).

From 320,000 km: lunar gravity exceeds Earth’s.
• Distances in Oceanography

The average and maximal depths of the ocean are ≈3,800 and 11,524 m
(Mindanao Deep), while the average and maximal land heights are ≈840
and 8,840 m (Mt. Everest).

Decay distance: the distance through which ocean waves travel as
swell after leaving the generating area.

Deep water (or short, Stokesian) wave: a surface ocean wave that is
traveling in water depth greater than one-quarter of its wavelength; the
velocity of deep-water waves is independent of the depth. Shallow water
(or long, Lagrangian) wave: a surface ocean wave of length 25 or more
times larger than water depth.

Littoral (or intertidal): the zone is between high and low water marks.
Sometimes, littoral refers to the zone between the shore and water depths
of ≈200 m.

Oceanographic equator (or thermal equator): the zone of maximum
sea surface temperature located near the geographic equator. Sometimes,
it is defined more specifically as the zone within which the sea surface
temperature exceeds 28◦C.

Standard depth: a depth below the sea surface at which water prop-
erties should be measured and reported (according to the proposal by the
International Association of Physical Oceanography in 1936), namely (in
meters): 0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 800,
1,000, 1,200, 1,500, 2,000, 2,500, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000,
9,000, 10,000.

Charted depth: the recorded vertical distance from the tidal datum
to the sea-bed.

Depth of no motion: a reference depth in a body of water at which
it is assumed that the horizontal velocities are practically zero.

The thermocline and pycnocline: the layers where the water temper-
ature and density, respectively, change rapidly with depth.

Depth of compensation: the depth at which illuminance has dimin-
ished to the extent that oxygen production through photosynthesis and
oxygen consumption through respiration by plants are equal. The maxi-
mum depth for photosynthesis depends on plants and weather.

Depth of the effective sunlight penetration: the depth at which
≈1% of solar energy penetrates; in general, it does not exceed 100 m. The
ocean is opaque to electromagnetic radiation with a small window in the
visible spectrum, but it is transparent to acoustic transmission.
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Sound energy is absorbed (due to viscosity) and scattered (due to
inhomogeneities such as temperature, bubbles, plankton) in the ocean,
together called attenuation (or extinction). About 6% of the energy is
back-scattered, but absorption is generally the largest of the two terms.
The extinction distance is the distance over which the sound intensity
falls to 1

e of its value. For wavelength λ = 10a × 15 cm, the extinction
distance is ≈437× 100a km.

A SOFAR channel (SOund Fixing And Ranging): a layer of water
deep in the ocean where the speed of sound is at a minimum, because wa-
ter pressure, temperature and salinity cause a minimum of water density.
Sound waves can get caught and bent in this channel and travel hundreds
of kilometers. In low and middle latitudes, the SOFAR channel axis lies
600–1,200 m below the sea surface; it is deepest in the subtropics and comes
to the surface in high latitudes.

The pelagic zone (or open-ocean zone) consists of all the sea other
than that near the coast or the sea floor. Within the epipelagic zone
(above ≈200 m) there is enough light for photosynthesis, and thus
plants and animals are largely concentrated here; the mesopelagic zone
(≈200 − 1, 000 m) is the twilight zone. Below the epipelagic zone lies the
aphotic zone which is not exposed to sunlight; the transition to it hap-
pens roughly at the depth of compensation or depth of effective sunlight
penetration.

Depth of frictional resistance: the depth at which the wind-induced
current direction is 180◦ from that of the true wind.

Mixing length: the distance which an eddy (a circular movement of
water) maintains its identity until it mixes again; analogous to the mean
free path of a molecule.

Mixed layer depth: the depth of the bottom of the mixed layer, i.e.,
a nearly isothermal surface layer of 40–150 m depth where water is mixed
through wave action or thermohaline convection.

Depth of exponential mixing or depth of homogeneous mixing
refers to a surface turbulent mixing layer in which the distribution of
a constituent decreases exponentially, or is constant, respectively, with
height.

Monin–Obukhov length: a rough measure of the height over the
ground, where mechanically produced (by vertical wind shear) turbulence
becomes smaller than the buoyant production of turbulent energy (dissi-
pative effect of negative buoyancy). In the daytime over land, it is usually
1–50 m.

• Moho distance
The Moho distance is the distance from a point on the Earth’s surface
to the Moho interface (or Mohorovicic seismic discontinuity) beneath it.
The Moho interface is the boundary between the Earth’s brittle outer
crust and the hotter softer mantle; the Moho distance ranges between 5
and 10 km beneath the ocean floor to 35–65 km beneath the continents.
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Cf. the world deepest cave (Krubera, Caucasus: 2.1 km), deepest mine
(Western Deep Levels gold mine, South Africa: about 4 km) and deepest
drill (Kola Superdeep Borehole: 12.3 km). The temperature rises usually by
1◦ every 33 m. The Japanese research vessel Chikyu started to drill (from
September 2007, 200 km off Nagoya cost) to the Moho interface. The ice
drills by EPICA (European Program for Ice Coring in Antarctica) went
3.2 km deep and, in terms of climate data, 900,000 years back.

The Earth’s mantle extends from the Moho discontinuity to the mantle-
core boundary at a depth of approximately 2,890 km. Liquid outer core
of radius 3,400 km contains solid inner core of radius 1,220 km. The man-
tle is divided into the upper and the lower mantle by a discontinuity at
about 660 km. Other seismic discontinuities are at about 60–90 km (Hales
discontinuity), 50–150 km (Gutenberg discontinuity), 220 km (Lehmann
discontinuity), 410 km, 520 km, and 710 km.

The tectonic plates are large parts of the lithosphere (the solid layer of
the crust and the upper mantle), up to 60 km deep. They float on the more
plastic part of the mantle, the asthenosphere, 100–200 km deep.

• Distances in Seismology
The Earth’s crust is broken into tectonic plates that move around (at some
centimeters per year) driven by the thermal convection of the deeper mantle
andbygravity.At their boundaries, plates stickmost of the timeand then slip
suddenly.An earthquake, i.e., a sudden (several seconds)motion or trembling
in the Earth, caused by the abrupt release of slowly accumulated strain,
was, from 1906, seen mainly as a rupture (sudden appearance, nucleation
and propagation of new crack or fault) due to elastic rebound. However,
from 1966, it is seen within the framework of slippage along a pre-existing
fault or plate interface, as the result of stick-slip frictional instability. So, an
earthquake happens when dynamic friction becomes less than static friction.
The advancing boundary of the slip region is called the rupture front. The
standard approach assumes that the fault is a definite surface of tangential
displacement discontinuity, embedded in a liner elastic crust.

Ninety percent of earthquakes are of tectonic origin, but they can be
caused also by volcanic eruption, nuclear explosion and work in a large
dam, well or mine. Earthquakes can be measured by focal depth, speed
of slip, intensity (modified Mercali scale of earthquake effects), magnitude,
acceleration (main destruction factor), etc. The Richter logarithmic scale
of magnitude is computed from the amplitude and frequency of shock
waves received by a seismograph, adjusted to account for epicentral dis-
tance. An increase of 1.0 of the Richter magnitude corresponds to an
increase of 10 times in amplitude of the waves and ≈31 times in energy;
the largest recorded value is 9.5 (Chile 1960).

An earthquake first releases energy in the form of shock pressure waves
that move quickly through the ground with an up-and-down motion. Next
come shear waves, which move along the surface, causing much damage:
Love waves in a side-to-side fashion, followed by Rayleigh waves, which
have a rolling motion.
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Distance attenuation models (cf. distance decay in Chap. 29), used
in earthquake engineering for buildings and bridges, postulate usually ac-
celeration decay with increase of some site-source distance, i.e., the
distance between seismological stations and the crucial (for the given
model) “central” point of the earthquake.

The simplest model is the hypocenter (or focus), i.e., the point inside the
Earth from which an earthquake originates (the waves first emanate, the
seismic rupture or slip begins). The epicenter is the point of the Earth’s
surface directly above the hypocenter. This terminology is also used for
other catastrophes, such as an impact or explosion of a nuclear weapon,
meteorite or comet but, for an explosion in the air, the term hypocenter
refers to the point on the Earth’s surface directly below the burst. A list
of the main Seismology distances follows.

The focal depth: the distance between the hypocenter and epicenter;
the average focal depth is 100–300 km.

The hypocentral distance: the distance from the station to the
hypocenter.

The epicentral distance (or earthquake distance:) the great circle
distance from the station to the epicenter.

The Joyner–Boore distance: the distance from the station to the
closest point of the Earth’s surface, located over the rupture surface, i.e.,
the rupturing portion of the fault plane.

The rupture distance: the distance from the station to the closest
point on the rupture surface.

The seismogenic depth distance: the distance from the station to the
closest point of the rupture surface within the seismogenic zone, i.e., the
depth range where the earthquake may occur; usually at depth 8–12 km.

The cross-over distance: the distance on a seismic refraction survey
time-distance chart at which the travel times of the direct and refracted
waves are the same.

Also used are the distances from the station to:

– The center of static energy release and the center of static deformation
of the fault plane

– The surface point of maximal macroseismic intensity, i.e., of maximal
ground acceleration (it can be different from the epicenter)

– The epicenter such that the reflection of body waves from the Moho in-
terface (the crust–mantle boundary) contribute more to ground motion
than directly arriving shear waves (it called the critical Moho distance)

– The sources of noise and disturbances: oceans, lakes, rivers, railroads,
buildings

The space–time link distance between two earthquakes x and y is
defined by √

d2(x, y) + C|tx − ty|2,
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where d(x, y) is the distance between their epicenters or hypocenters, |tx−
ty| is the time lag, and C is a scaling constant needed to connect distance
d(x, y) and time.

The earthquake distance effect: at greater distances from its center, the
perception of an earthquake becomes weaker and the lower frequency shak-
ing dominates it.

Another space–time measure for catastrophic events is distance be-
tween landfalls for hurricanes hitting a given US state. It is (Landreneau
2003) the length of this state’s coastline divided by the number of hurri-
canes which have affected this state from 1899.

25.2 Distances in Astronomy

A celestial object (or celestial body) is a term describing astronomical objects
such as stars and planets. The celestial sphere is the projection of celestial
objects into their apparent positions in the sky as viewed from the Earth.
The celestial equator is the projection of the Earth’s equator onto the celestial
sphere. The celestial poles are the projections of Earth’s North and South
Poles onto the celestial sphere. The hour circle of a celestial object is the
great circle of the celestial sphere, passing through the object and the celestial
poles. The ecliptic is the intersection of the plane that contains the orbit of
the Earth with the celestial sphere: seen from the Earth, it is the path that
the Sun appears to follow across the sky over the course of a year. The vernal
equinox point (or the First point in Aries) is one of the two points on the
celestial sphere, where the celestial equator intersects the ecliptic: it is the
position of the Sun on the celestial sphere at the time of the vernal equinox.

The horizon is the line that separates Earth from sky. It divides the sky into
the upper hemisphere that the observer can see, and the lower hemisphere
that he can not. The pole of the upper hemisphere (the point of the sky
directly overhead) is called the zenith, the pole of the lower hemisphere is
called the nadir.

In general, an astronomical distance is a distance from one celestial
body to another (measured in light-years, parsecs, or Astronomical Units).
The average distance between stars (in a galaxy like our own) is several light-
years. The average distance between galaxies (in a cluster) is only about 20
times their diameter, i.e., several megaparsecs.

• Latitude
In spherical coordinates (r, θ, φ), the latitude is the angular distance
δ from the xy-plane (fundamental plane) to a point, measured from the
origin; δ = 90◦ − θ, where θ is the colatitude.

In a geographic coordinate system (or earth-mapping coordinate system),
the latitude is the angular distance from the Earth’s equator to an object,
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measured from the center of the Earth. Latitude is measured in degrees,
from −90◦ (South pole) to +90◦ (North pole). Parallels are the lines of
constant latitude.

In Astronomy, the celestial latitude is the latitude of a celestial object
on the celestial sphere from the intersection of the fundamental plane with
the celestial sphere in a given celestial coordinate system. In the equatorial
coordinate system the fundamental plane is the plane of the Earth’s equa-
tor; in the ecliptic coordinate system the fundamental plane is the plane
of the ecliptic; in the galactic coordinate system the fundamental plane is
the plane of the Milky Way; in the horizontal coordinate system the fun-
damental plane is the observer’s horizon. Celestial latitude is measured in
degrees.

• Longitude
In spherical coordinates (r, θ, φ), the longitude is the angular distance
φ in the xy-plane from the x-axis to the intersection of a great circle, that
passes through the point, with the xy-plane.

In a geographic coordinate system (or earth-mapping coordinate system),
the longitude is the angular distance measured eastward along the Earth’s
equator from the Greenwich meridian (or Prime meridian) to the intersec-
tion of the meridian that passes through the object. Longitude is measured
in degrees, from 0◦ to 360◦. A meridian is a great circle, passing through
Earth’s North and South Poles; the meridians are the lines of constant
longitude.

In Astronomy, the celestial longitude is the longitude of a celestial
object on the celestial sphere measured eastward, along the intersection of
the fundamental plane with the celestial sphere in a given celestial coor-
dinate system, from the chosen point. In the equatorial coordinate system
the fundamental plane is the plane of the Earth’s equator; in the eclip-
tic coordinate system – the plane of the ecliptic; in the galactic coordinate
system – the plane of the Milky Way; in the horizontal coordinate system –
the observer’s horizon. Celestial longitude is measured in units of time.

• Colatitude
In spherical coordinates (r, θ, φ), the colatitude is the angular distance
θ from the z-axis to the point, measured from the origin; θ = 90◦ − δ,
where δ is the latitude.

In a geographic coordinate system (or earth-mapping coordinate system),
the colatitude is the angular distance from the Earth’s North Pole to an
object, measured from the center of the Earth. Colatitude is measured in
degrees.

• Declination
In the equatorial coordinate system (or geocentric coordinate system), the
declination δ is the celestial latitude of a celestial object on the celestial
sphere, measured from the celestial equator. Declination is measured in
degrees, from −90◦ to +90◦.
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• Right ascension
In the equatorial coordinate system (or geocentric coordinate system), fixed
to the stars, the right ascension RA is the celestial longitude of a ce-
lestial object on the celestial sphere, measured eastward along the celestial
equator from the First point in Aries to the intersection of the hour circle
of the celestial object. Right ascension is measured in units of time (hours,
minutes and seconds) with 1 h of time approximately equal to 15◦.

The time needed for one complete cycle of the precession of the equinoxes
is called the Platonic year (or Great year); it is about 257 centuries and
slightly decreases. This cycle is important in the Maya calendar and As-
trology. The time it takes Earth’s solar system to revolve once around the
Milky Way center is called the Galactic year. It is estimated to be within
220–250 million Earth years.

• Hour angle
In the equatorial coordinate system (or geocentric coordinate system), fixed
to the Earth, the hour angle is the celestial longitude of a celestial
object on the celestial sphere, measured along the celestial equator from
the observer’s meridian to the intersection of the hour circle of the celestial
object. The hour angle is measured in units of time (hours, minutes and
seconds). It gives the time elapsed since the celestial object’s last transit
at the observer’s meridian (for a positive hour angle), or the time until the
next transit (for a negative hour angle).

• Polar distance
In the equatorial coordinate system (or geocentric coordinate system), the
polar distance (or codeclination) PD is the colatitude of a celestial
object, i.e., the angular distance from the celestial pole to a celestial
object on the celestial sphere, similarly as the declination δ is measured
from the celestial equator: PD = 90◦ ± δ. Polar distance is expressed in
degrees, and cannot exceed 90◦ in magnitude. An object on the celestial
equator has PD = 90◦.

• Ecliptic latitude
In the ecliptic coordinate system, the ecliptic latitude is the celestial
latitude of a celestial object on the celestial sphere from the ecliptic.
Ecliptic latitude is measured in degrees.

• Ecliptic longitude
In the ecliptic coordinate system, the ecliptic longitude is the celestial
longitude of a celestial object on the celestial sphere measured eastward
along the ecliptic from the First point in Aries. Ecliptic longitude is mea-
sured in units of time.

• Altitude
In the horizontal coordinate system (or Alt/Az coordinate system), the
altitude ALT is the celestial latitude of an object from the horizon. It
is the complement of the zenith distance ZA: ALT = 90◦−ZA. Altitude
is measured in degrees.
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• Azimuth
In the horizontal coordinate system (or Alt/Az coordinate system), the
azimuth is the celestial longitude of an object, measured eastward
along the horizon from the North point. Azimuth is measured in degrees,
from 0◦ to 360◦.

• Zenith distance
In the horizontal coordinate system (or Alt/Az coordinate system), the
zenith distance (or North polar distance, zenith angle) ZA is the
colatitude of an object, measured from the zenith. It is the comple-
ment the altitude ALT : ZA = 90◦ −ALT .

• Lunar distance
The lunar distance is the angular distance between the Moon and
another celestial object.

• Elliptic orbit distance
The elliptic orbit distance is the distance from a mass M which a
satellite body has in an elliptic orbit about the mass M at the focus. This
distance is given by

a(1− e2)
1 + e cos θ

,

where a is the semi-major axis, e is the eccentricity, and θ is the orbital
angle.

The semi-major axis a of an ellipse (or an elliptic orbit) is half of its
major diameter; it is the average (over the eccentric anomaly) elliptic orbit
distance. Such average distance over the true anomaly is the semi-minor
axis, i.e., half of its minor diameter. The eccentricity e of an ellipse (or an
elliptic orbit) is the ratio of half the distance between the foci c and the
semi-major axis a: e = c

a . For an elliptic orbit, e = r+−r−
r++r−

, where r+ is the
apoapsis distance, and r− is the periapsis distance.

• Periapsis distance
The periapsis distance is the closest distance r− a body reaches in an
elliptic orbit about a mass M : r− = a(1 − e), where a is the semi-major
axis and e is the eccentricity.

The perigee is the periapsis of an elliptical orbit around the Earth. The
perihelion is the periapsis of an elliptical orbit around the Sun. The
periastron is the point in the orbit of a double star where the smaller
star is closest to its primary.

• Apoapsis distance
The apoapsis distance is the farthest distance r+ a body reaches in an
elliptic orbit about a mass M : r+ = a(1 + e), where a is the semi-major
axis, and e is the eccentricity.

The apogee is the apoapsis of an elliptical orbit around the Earth. The
aphelion is the apoapsis of an elliptical orbit around the Sun. The apas-
tron is the point in the orbit of a double star where the smaller star is
farthest from its primary.
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• True anomaly
The true anomaly is the angular distance of a point in an orbit past
the point of periapsis measured in degrees.

• Titius–Bode law
Titius–Bode law is an empirical (not explained well yet) law approximat-
ing the mean planetary distance from the Sun (i.e., its orbital semi-major
axis) by 3k+4

10 AU. Here 1 AU denotes such mean distance for Earth (i.e.,
about 1.5×108 km≈ 8.3 light-minutes) and k = 0, 20, 21, 22, 23, 24, 25, 26, 27

for Mercury, Venus, Earth, Mars, Ceres (the largest one in the Asteroid
Belt, ≈ 1

3 of its mass), Jupiter, Saturn, Uranus, Pluto. However, Neptune
does not fit in the law while Pluto fits Neptune’s spot k = 27.

• Primary-satellite distances
Consider two celestial bodies: a primary M and a smaller one m (a satellite,
orbiting around M , or a secondary star, or a comet passing by).

The mean distance is the arithmetic mean of the maximum and min-
imum distances of a body m from its primary M .

Let ρM , ρm and RM , Rm denote the densities and radii of M and
m. Then the Roche limit of the pair (M,m) is the maximal distance
between them within which m will disintegrate due to the tidal forces
of M exceeding the gravitational self-attraction of m. This distance is
RM

3

√
2ρM

ρm
≈ 1.26RM

3

√
ρM

ρm
if m is a rigid spherical body, and it is about

2.423RM
3

√
ρM

ρm
if body m is fluid. The Roche limit is relevant only if it

exceeds RM . It is 0.80RM , 1.49RM and 2.80RM for the pairs (the Sun,
the Earth), (the Earth, the Moon) and (the Earth, a comet), respectively.
A possible origin of the rings of Saturn is a moon which came closer to
Saturn than its Roche limit.

Let d(m,M) denote the distance between m and M ; let Sm and SM

denote the masses of m and M . Then the Hill sphere of m in presence
of M is an approximation to the gravitational sphere of influence of m in
the face of perturbation from M . Its radius is about d(m,M) 3

√
Sm

3SM
. For

example, the radius of Hill sphere of the Earth is 0.01 AU; the Moon, at
distance 0.0025 AU, is within the Hill sphere of the Earth.

The pair (M,m) can be characterized by five Lagrange points Li,
1 ≤ i ≤ 5, where a third, much smaller body (say, a spacecraft) will
be relatively stable because its centrifugal force is equal to the combined
gravitational attraction of M and m. These points are:

L1, L2, L3 lying on the line through the centers of M and m so
that d(L3,m) = 2d(M,m), d(M,L2) = d(M,L1) + d(L1,m) + d(m,L2),
d(L1,m) = d(m,L2), respectively; The satellite SOHO (Solar and He-
liospheric Observatory) is at the semi-stable point L1 of the Sun–Earth
gravitational system, where the view of the Sun is uninterrupted. The satel-
lite WMAP (Wilkinson Microwave Anisotropy Probe) is at L2; the Planck
Surveyor will be there in 2008. In 2013 NASA will put at L2 the NGST
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(Next Generation Space Telescope) since the cold and stable temperature
of L2 enhances infrared observations of faint and very distant objects.

L4 and L5 lying on the orbit of m around M and forming equilateral
triangles with the centers of M and m. These two points are more stable;
each of them forms with M and m a partial solution of the (unsolved)
gravitational three-body problem. Objects orbiting at the L4 and L5 points
are called Trojans. The Moon was created 4.5 billion years ago by a side-
wise impact on the Earth Big Splash by a Mars-sized Trojan planetoid
slowly approaching from the L4 Lagrange point of the Sun–Earth system.

The most tenuously linked binary in the solar system is 2001 QW322:
two icy bodies in the Kuiper belt, at mean distance ≥104 km, orbiting each
other at 3 km h−1.

• Solar distances
The mean distance of Sun from Earth is 1 AU ≈1.496× 1011 m.

The mean distance of Sun from the Milky Way core is ≈2.5 × 1020 m
(26,000 light-years).

The Sun’s radius is 6.955 × 108 m; it is measured from its center to
the edge of the photosphere (≈500 km thick layer below which the Sun is
opaque to visible light).

The Sun does not have a definite boundary, but it has a well-defined in-
terior structure: the core extending from the center to ≈0.2 solar radii, the
radiative zone at ≈0.2–0.8 solar radii, where thermal radiation is sufficient
to transfer the intense heat of the core outward, the tachocline (transition
layer) and the convection zone, where thermal columns carry hot material
to the surface (photosphere) of the Sun.

The principal zones of the solar atmosphere (parts above the pho-
tosphere) are: temperature minimum, chromosphere, transition region,
corona, and heliosphere.

The chromosphere, ≈3,000 km deep layer, is more visually transparent.
The corona is a highly rarefied tenuous region continually varying in size

and shape; it is visible only during a total solar eclipse. The chromosphere-
corona region is much hotter than the Sun’s surface. As the corona extends
further, it becomes the solar wind, a very thin gas of charged particles that
travels through the solar system.

The heliosphere is the teardrop-shaped region around the Sun created
by the solar wind and filled with solar magnetic fields and outward-moving
gas. It extends from ≈20 solar radii (0.1 AU) outward 86–100 AU past the
orbit of Pluto to the heliopause, where the interstellar medium and solar
wind pressures balance.

The interstellar medium and the solar wind are moving supersonically
in opposite directions, towards and away from the Sun. The point, ≈80 AU
from the Sun, where the solar wind becomes subsonic is the termination
shock. The point, ≈230 AU from the Sun, where the interstellar medium
becomes subsonic is the bow shock.
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• Habitable zone radii
Thehabitablezoneradiiofastarare theminimalandmaximalorbital radii
such that liquid water may exist on a terrestrial (i.e., primarily composed of
silicate or, possibly, carbon rocks) planet orbiting within this range, so that
life could develop there in a similar way as on the early Earth. For our Sun,
such radii are around 0.95 and 1.37 AU and include only Earth. Maximally
Earth-like mean temperature is expected at the distance

√
Lstar

Lsun
AU from

a star, where L is total radiant energy (Earth’s average temperature is
14.4◦C). The Sun is becoming hotter (at least 30% more since the formation
of Earth and another 10% over the next 1.1 billion years); so, it will be too
hot, even for microbial life, in 500–900 million years.

The only known extrasolar planets orbiting near the habitable zone of
their star are super-earths (terrestrial planets of 1–10 Earth’s mass) Gl
581c and Gl 581d orbiting near, respectively, the inner and outer edges of
the habitable zone of red dwarf Gliese 581 in the constellation Libra of our
galaxy, 20.4 light-years from Sun. Gl 581c has temperature within [−3◦C,
40◦C], while Earth’s life exists within [−15◦C, 121◦C].

According to Lineweaver, Fenner and Gibson (2004) the galactic habit-
able zone of our Milky Way is a slowly expanding annular region between
7 and 9 kpc of galactocentric distance; so, the minimal and maximal
radii of this zone are 22,000 and 28,000 light-years. They used four prereq-
uisites for complex life: the presence of a host star, enough heavy elements
to form terrestrial planets, sufficient time (4±1 billion years) for biological
evolution and an environment free of supernovae.

The Dyson radius of a star is the radius of a hypothetical Dyson sphere
around it, i.e., a megastructure (say, a system of orbiting star-powered
satellites) meant to completely encompass a star and capture a large part
of its energy output. The solar energy, available at distance d (measured
in AU) from the Sun, is 1,366

d2 W m−2. The inner surface of the sphere is
intended to be used as habitat. An example of such speculations: at Dyson
radius 300×106 km from Sun a continuous structure with thermal ambient
20◦C (on the inner surface) and efficiency 3% of power generation (by a
heat flux to −3◦C on the outer surface) is conceivable.

• SETI detection ranges
SETI (Search for Extra Terrestrial Intelligence) activity involves using sen-
sitive radio telescopes to search for a possible alien radio transmission. The
recorded signals are mostly random noise but in 1977 a very strong signal
(called WOW!) was received at ≤50 kHz of the frequency 1420.406 MHz of
hydrogene line.

There are SETI detection ranges, i.e., the maximal distances over
which detection is still possible using given assumptions about frequency,
antenna dish size, receiver bandwidth, etc. They are low for broadband
signals from Earth (from 0.007 AU for AM radio up to 5.4 AU for EM
radio) but reach 720 light-years for the S-Band of the world’s largest radio
telescope Arecibo.
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Positive SETI consists of sending signals into space in the hope that
they will be picked up by an alien intelligence. The first radio signals
from Earth to reach space were produced around 1940 but television and
radio signals actually decompose into static within 1–2 light years. In 1974
Arecibo sent a very elaborate radio signal aimed at the globular star cluster
M13, 25,000 light-years away.



Chapter 26
Distances in Cosmology and Theory
of Relativity

26.1 Distances in Cosmology

The Universe is defined as the whole space–time continuum in which we exist,
together with all the energy and matter within it.

Cosmology is the study of the large-scale structure of the Universe. Specific
cosmological questions of interest include the isotropy of the Universe (on the
largest scales, the Universe looks the same in all directions, i.e., is invariant
to rotations), the homogeneousness of the Universe (any measurable property
of the Universe is the same everywhere, i.e., it is invariant to translations),
the density of the Universe, the equality of matter and anti-matter, and the
origin of density fluctuations in galaxies.

In 1929, Hubble discovered that all galaxies have a positive redshift, i.e., all
galaxies, except for a few nearby galaxies like Andromeda, are receding from
the Milky Way. By the Copernican principle (that we are not at a special place
in the Universe), we deduce that all galaxies are receding from each other,
i.e., we live in a dynamic, expanding Universe, and the further a galaxy is
away from us, the faster it is moving away (this is now called the Hubble law).
The Hubble flow is the general outward movement of galaxies and clusters
of galaxies resulting from the expansion of the Universe. It occurs radially
away from the observer, and obeys the Hubble law. Galaxies can overcome
this expansion on scales smaller than that of clusters of galaxies; the clusters,
however, are being forever driven apart by the Hubble flow.

In Cosmology, the prevailing scientific theory about the early develop-
ment and shape of the Universe is the Big Bang Theory. The observation
that galaxies appear to be receding from each other can be combined with
the General Theory of Relativity to extrapolate the condition of the Uni-
verse back in time. This leads to the construction that, as one goes back
in time, the Universe becomes increasingly hot and dense, then leads to a
gravitational singularity, at which all distances become zero, and tempera-
tures and pressures become infinite. The term Big Bang is used to refer to
a hypothesized point in time when the observed expansion of the Universe
began.

M.M. Deza and E. Deza, Encyclopedia of Distances, 465
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Based on measurements of the expansion of the Universe, it is currently
believed that the Universe has an age of 13.7 ± 0.2 billion years. It should
be longer if the expansion accelerates, as was supposed recently. Basing on
the abundance ratio of uranium/thorium chondritic meteorites, [Dau05] es-
timated this age as 14.5± 2 billion years.

In Cosmology (or, more exactly, Cosmography, the measurement of the
Universe) there are many ways to specify the distance between two points,
because in the expanding Universe, the distances between comoving objects
are constantly changing, and Earth-bound observers look back in time as they
look out in distance. The unifying aspect is that all distance measures some-
how measure the separation between events on radial null trajectories, i.e.,
trajectories of photons which terminate at the observer. In general, the cos-
mological distance is a distance far beyond the boundaries of our Galaxy.

The geometry of the Universe is determined by several cosmological pa-
rameters: the expansion parameter (or the scale factor) a, the Hubble constant
H, the density ρ and the critical density ρcrit (the density required for the
Universe to stop expansion and, eventually, collapse back onto itself), the
cosmological constant Λ, the curvature k of the Universe. Many of these
quantities are related under the assumptions of a given cosmological model.
The most common cosmological models are the closed and open Friedmann–
Lemâıtre cosmological models and the Einstein–de Sitter cosmological model.

The Einstein–de Sitter cosmological model assumes a homogeneous,
isotropic, constant curvature Universe with zero cosmological constant Λ and
pressure P . For constant mass M of the Universe, H2 = 8

3πGρ, t = 2
3H−1,

a = 1
RC

( 9GM
2 )1/3t2/3, where G = 6.67×10−11m3kg−1s−2 is the gravitational

constant, RC = |k|− 1
2 is the radius of curvature, and t is the age of the

Universe.
The expansion parameter a = a(t) is a scale factor, relating the size of

the Universe R = R(t) at time t to the size of the Universe R0 = R(t0)
at time t0 by R = aR0. Most commonly in modern usage it is chosen to
be dimensionless, with a(tobser) = 1, where tobser is the present age of the
Universe.

The Hubble constant H is the constant of proportionality between the
speed of expansion v and the size of the Universe R, i.e., v = HR. This

equality is just the Hubble law with the Hubble constant H = a
′
(t)

a(t) . This is
a linear redshift-distance relationship, where redshift is interpreted as reces-
sional velocity v, typically expressed in km/s.

The current value of the Hubble constant is H0 = 71 ± 4 km s−1Mpc−1,
where the subscript 0 refers to the present epoch because H changes with
time. The Hubble time and the Hubble distance are defined by tH = 1

H0
≈

4.35 × 1017 s and DH = c
H0

(here c is the speed of light), respectively. The
Hubble volume is the volume of universe with a comoving size of c

H0
(a sphere

with radius ≈14,000 Mpc, mass ≈1060 kg and ≈1080 atoms).
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The mass density ρ = ρ0 in the present epoch and the value of the cos-
mological constant Λ are dynamical properties of the Universe. They can be
made into dimensionless density parameters ΩM and ΩΛ by ΩM = 8πGρ0

3H3
0

,

ΩΛ = Λ
3H3

0
. A third density parameter ΩR measures the “curvature of space,”

and can be defined by the relation ΩM + ΩΛ + ΩR = 1.
These parameters totally determine the geometry of the Universe if it is

homogeneous, isotropic, and matter-dominated.
The velocity of a galaxy is measured by the Doppler effect, i.e., the fact

that light emitted from a source is shifted in wavelength by the motion of the
source. (The Doppler shift is reversed in some metamateials: a light source
moving toward an observer appears to reduce its frequency.) A relativistic
form of the Doppler shift exists for objects traveling very quickly, and is given
by λobser

λemit
=
√

c+v
c−v , where λemit is the emitted wavelength, and λobser is the

shifted (observed) wavelength. The change in wavelength with respect to the
source at rest is called the redshift (if moving away), and is denoted by the
letter z. The relativistic redshift z for a particle is given by z = Δλobser

λemit
=

λobser

λemit
− 1 =

√
c+v
c−v − 1.

The cosmological redshift is directly related to the scale factor a = a(t):
z +1 = a(tobser)

a(temit)
. Here a(tobser) is the value of the scale factor at the time the

light from the object is observed, and a(temit) is the value of the scale factor
at the time it was emitted.

• Hubble distance
The Hubble distance is a constant

DH =
c

H0
≈ 4220Mpc ≈ 1.3× 1026 m ≈ 13.7× 109 light-years,

where c is the speed of light, and H0 = 71± 4 km s−1 Mpc−1 is the Hubble
constant.

It is the distance from us to the cosmic light horizon which marks the
edge of the visible Universe, i.e., the radius of a sphere, centered upon the
Earth, which is approximately 13.7 billion light-years. It is often referred to
as the lookback distance because astronomers, who view distant objects,
are “looking back” into the history of the Universe.

For small v/c or small distance d in the expanding Universe, the velocity
is proportional to the distance, and all distance measures, for example, an-
gular diameter distance, luminosity distance, etc., converge. Taking
the linear approximation, this reduces to d ≈ zDH , where z is the redshift.
But this is true only for small redshifts.

• Comoving distance
The standard Big Bang model uses comoving coordinates, where the spatial
reference frame is attached to the average positions of galaxies. With this
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set of coordinates, both the time and expansion of the Universe can be
ignored and the shape of space is seen as a spatial hypersurface at constant
cosmological time.

The comoving distance (or coordinate distance, cosmological dis-
tance, χ) is a distance in comoving coordinates between two points in
space at a single cosmological time, i.e., the distance between two nearby
objects in the Universe which remains constant with epoch if the two ob-
jects are moving with the Hubble flow. It is the distance between them
which would be measured with rulers at the time they are being observed
(the proper distance) divided by the ratio of the scale factor of the Uni-
verse then to now. In other words, it is the proper distance multiplied by
(1 + z), where z is the redshift:

dcomov(x, y) = dproper(x, y) · a(tobser)
a(temit)

= dproper(x, y) · (1 + z).

At the time tobser, i.e., in the present epoch, a = a(tobser) = 1, and
dcomov = dproper, i.e., the comoving distance between two nearby events
(close in redshift or distance) is the proper distance between them. In
general, for a cosmological time t, dcomov = dproper

a(t) .
The total line-of sight comoving distance DC from us to a distant

object is computed by integrating the infinitesimal dcomov(x, y) contribu-
tions between nearby events along the time ray from the time temit, when
the light from the object was emitted, to the time tobser, when the object
is observed:

DC =
∫ tobser

temit

cdt

a(t)
.

In terms of redshift, DC from us to a distant object is computed by inte-
grating the infinitesimal dcomov(x, y) contributions between nearby events
along the radial ray from z = 0 to the object: DC = DH

∫ z

0
dz

E(z) , where DH

is the Hubble distance, and E(z) = (ΩM (1 + z)3 + ΩR(1 + z)2 + ΩΛ)
1
2 .

In a sense, the comoving distance is the fundamental distance mea-
sure in Cosmology since all other distances can simply be derived in
terms of it.

• Proper distance
The proper distance (or physical distance, ordinary distance) is a
distance between two nearby events in the frame in which they occur
at the same time. It is the distance measured by a ruler at the time of
observation. So, for a cosmological time t,

dproper(x, y) = dcomov · a(t),

where dcomov is the comoving distance, and a(t) is the scale factor.
In the present epoch (i.e., at the time tobser) a = a(tobser) = 1, and

dproper = dcomov. So, the proper distance between two nearby events (i.e.,
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close in redshift or distance) is the distance which we would measure locally
between the events today if those two points were locked into the Hubble
flow.

• Proper motion distance
The proper motion distance (or transverse comoving distance, con-
temporary angular diameter distance) DM is a distance from us to a distant
object, defined as the ratio of the actual transverse velocity (in distance
over time) of the object to its proper motion (in radians per unit time). It
is given by

DM =

⎧
⎪⎨

⎪⎩

DH
1√
ΩR

sinh(
√

ΩRDC/DH), for ΩR > 0,

DC , for ΩR = 0,

DH
1√
|ΩR|

sin(
√
|ΩR|DC/DH), for ΩR < 0,

where DH is the Hubble distance, and DC is the line-of-sight
comoving distance. For ΩΛ = 0, there is an analytic solution (z is
the redshift):

DM = DH
2(2− ΩM (1− z)− (2− ΩM )

√
1 + ΩMz)

Ω2
M (1 + z)

.

The proper motion distance DM coincides with the line-of-sight comov-
ing distance DC if and only if the curvature of the Universe is equal to
zero. The comoving distance between two events at the same redshift
or distance but separated in the sky by some angle δθ is equal to DMδθ.

The distance DM is related to the luminosity distance DL by DM =
DL

1+z , and to the angular diameter distance DA by DM = (1 + z)DA.
• Luminosity distance

The luminosity distance DL is a distance from us to a distant object,
defined by the relationship between the observed flux S and emitted lu-
minosity L:

DL =

√
L

4πS
.

This distance is related to the proper motion distance DM by DL =
(1 + z)DM , and to the angular diameter distance DA by DL =
(1 + z)2DA, where z is the redshift.

The luminosity distance does take into account the fact that the ob-
served luminosity is attenuated by two factors, the relativistic redshift
and the Doppler shift of emission, each of which contributes an (1 + z)
attenuation: Lobser = Lemiss

(1+z)2 .

The corrected luminosity distance D
′

L is defined by D
′

L = DL

1+z .
• Distance modulus

The distance modulus DM is defined by DM = 5 ln( DL

10pc ), where
DL is the luminosity distance. The distance modulus is the difference
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between the absolute magnitude and apparent magnitude of an astronom-
ical object. Distance moduli are most commonly used when expressing the
distances to other galaxies. For example, the Large Magellanic Cloud is
at a distance modulus 18.5, the Andromeda Galaxy’s distance modulus is
24.5, and the Virgo Cluster has the DM equal to 31.7.

• Angular diameter distance
The angular diameter distance (or angular size distance) DA is a dis-
tance from us to a distant object, defined as the ratio of an object’s physical
transverse size to its angular size (in radians). It is used to convert angular
separations in telescope images into proper separations at the source. It
is special for not increasing indefinitely as z →∞; it turns over at z ∼ 1,
and therefore more distant objects actually appear larger in angular size.
Angular diameter distance is related to the proper motion distance
DM by DA = DM

1+z , and to the luminosity distance DL by DA = DL

(1+z)2 ,
where z is the redshift.

The distance duality DL(z)
DA(z) = (1 + z)2 links DL, based on the apparent

luminosity of standard candles (for example, supernovae) and DA, based
on the apparent size of standard rulers (for example, baryon oscillations).
It holds for any general metric theory of gravity (see Chap. 24) in any
background in which photons travel on unique null geodesics.

If the angular diameter distance is based on the representation of ob-
ject diameter as angle × distance, the area distance is defined similarly
according the representation of object area as solid angle× distance2.

• Einstein radius
General Relativity predicts gravitational lensing, i.e., deformation of the
light from a source (a galaxy or star) in the presence of a gravitational lens,
i.e., a body of large mass M (another galaxy, or a black hole) bending it.

If the source S, lens L and observer O are all aligned, the gravitational
deflection is symmetric around the lens. The Einstein radius is the radius
of the resulting Einstein (or Chwolson) ring. In radians (for the gravita-
tional constant G and the speed c of light) it is

√

M
4G

c2

D(L, S)
D(O,L)D(O,S)

,

where D(O,L) and D(O,S) are the angular diameter distances of the
lens and source, while D(L, S) is the angular diameter distance between
them.

• Light-travel distance
The light-travel distance (or light-travel time distance) Dlt is a distance
from us to a distant object, defined by Dlt = c(tobser− temit), where tobser

is the time when the object was observed, and temit is the time when the
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light from the object was emitted. It is not a very useful distance, because
it is very hard to determine temit, the age of the Universe at the time of
emission of the light which we see.

• Parallax distance
The parallax distance DP is a distance from us to a distant object,
defined from measuring of parallaxes, i.e., its apparent changes of position
in the sky caused by the motion of the observer on the Earth around
the Sun.

The cosmological parallax is measured as the difference in the angles of
line of sight to the object from two endpoints of the diameter of the orbit
of the Earth which is used as a baseline. Given a baseline, the parallax
α − β depends on the distance, and knowing this and the length of the
baseline (two astronomical units AU , where AU ≈150 million kilometers
is the distance from the Earth to the Sun) one can compute the distance
to the star by the formula

DP =
2

α− β
,

where DP is in parsecs, α and β are in arc-seconds.
In Astronomy, “parallax” usually means the annual parallax p which is

the difference in the angles of a star seen from the Earth and from the
Sun. Therefore the distance of a star (in parsecs) is given by DP = 1

p .
• Kinematic distance

The kinematic distance is the distance to a galactic source, which is
determined from differential rotation of the galaxy: the radial velocity of a
source directly corresponds to its Galactocentric radius. But the kinematic
distance ambiguity arises since, in our inner galaxy, any given Galactocen-
tric radius corresponds to two distances along the line of sight, near and
far kinematic distances.

This problem is solved, for some galactic regions, by measurement of
their absorption spectra, if there is an interstellar cloud between the region
and observer.

• Radar distance
The radar distance DR is a distance from us to a distant object, mea-
sured by a radar. Radar typically consists of a high frequency radio pulse
sent out for a short interval of time. When it encounters a conducting ob-
ject, sufficient energy is reflected back to allow the radar system to detect
it. Since radio waves travel in air at close to their speed in vacuum, one
can calculate the distance DR of the detected object from the round-trip
time t between the transmitted and received pulses as

DR =
1
2
ct,

where c is the speed of light.
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• Cosmological distance ladder
For measuring distances to astronomical objects, one uses a kind of “lad-
der” of different methods; each method applies only for a limited distance,
and each method which applies for a larger distance builds on the data of
the preceding methods.

The starting point is knowing the distance from the Earth to the Sun;
this distance is called one astronomical unit (AU), and is roughly 150 mil-
lion kilometers. Copernicus made the first, roughly accurate, solar system
model, using data taken in ancient times, in his famous De Revolution-
ibus (1543). Distances in the inner solar system are measured by bouncing
radar signals off planets or asteroids, and measuring the time until the
echo is received. Modern models are very accurate.

The next step in the ladder consists of simple geometrical methods; with
them, one can go to a few hundred light-years. The distance to nearby stars
can be determined by their parallaxes: using Earth’s orbit as a baseline,
the distances to stars are measured by triangulation. This is accurate to
about 1% at 50 light-years, 10% at 500 light-years.

Using data acquired by the geometrical methods, and adding photome-
try (i.e., measurements of the brightness) and spectroscopy, one gets the
next step in the ladder for stars so far away that their parallaxes are not
measurable yet. As the brightness decreases proportionally to the square
of the distance, if we know the absolute brightness of a star (i.e., its bright-
ness at the standard reference distance 10 pc), and its apparent brightness
(i.e., the actual brightness which we observe on the Earth) we can say
how far away the star is. To define the absolute brightness, one can use
the Hertzsprung–Russel diagram: stars of similar type have similar bright-
nesses; thus, if we know a star’s type (from its color and/or spectrum), we
can find its distance by comparing its apparent and absolute magnitudes;
the latter derived from geometric parallaxes to nearby stars.

For even larger distances in the Universe, one needs an additional el-
ement: standard candles, i.e., several types of cosmological objects, for
which one can determine their absolute brightness without knowing their
distances. Primary standard candles are the Cepheid variable stars. They
periodically change their size and temperature. There is a relationship
between the brightness of these pulsating stars and the period of their
oscillations, and this relationship can be used to determine their absolute
brightness. Cepheids can be identified as far as in the Virgo Cluster (60
million light-years). Another type of standard candle (secondary standard
candles) which is brighter than the Cepheids and, hence can be used to de-
termine the distances to galaxies even hundreds of millions of light-years
away, are supernovae and entire galaxies. However, Howell et al. (2007)
suggested that the brightness of supernova explosions diminish over time
on average, casting doubt on their use as accurate distance gauges (in
particular, for dark energy measurements).
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For really large distances (several hundreds of millions of light-years
or even several billions of light-years), the cosmological redshift and the
Hubble law are used. A complication is that it is not clear what is meant by
“distance” here, and there are several types of distances used in Cosmology
(luminosity distance, proper motion distance, angular diameter
distance, etc.).

Depending on the situation, there is a large variety of special techniques
to measure distances in Cosmology, such as light echo distance, Bondi
radar distance, RR Lyrae distance and secular, statistical, expansion,
spectroscopic parallax distances. For example, since the year 2000 NASA’s
Chandra X-ray Observatory measures the distance to a distant source
via the delay of the halo of scattering material (interstellar dust grains)
between it and the Earth.

26.2 Distances in Theory of Relativity

The Minkowski space–time (or Minkowski space, Lorentz space–time, flat
space–time) is the usual geometric setting for the Einstein Special Theory
of Relativity. In this setting the three ordinary dimensions of space are com-
bined with a single dimension of time to form a four-dimensional space–time
R

1,3 in the absence of gravity.
Vectors in R

1,3 are called four-vectors (or events). They can be written
as (ct, x, y, z), where the first component is called the time-like component
(c is the speed of light, and t is the time) while the other three components
are called spatial components. In spherical coordinates, they can be written as
(ct, r, θ, φ). In the Theory of Relativity, the spherical coordinates are a system
of curvilinear coordinates (ct, r, θ, φ), where c is the speed of light, t is the
time, r is the radius from a point to the origin with 0 ≤ r < ∞, φ is the
azimuthal angle in the xy-plane from the x-axis with 0 ≤ φ < 2π (longitude),
and θ is the polar angle from the z-axis with 0 ≤ θ ≤ π (colatitude). Four-
vectors are classified according to the sign of their squared norm:

||v||2 = 〈v, v〉 = c2t2 − x2 − y2 − z2.

They are said to be time-like, space-like, and light-like (isotropic) if their
squared norms are positive, negative, or equal to zero, respectively.

The set of all light-like vectors forms the light cone. If the coordinate origin
is singled out, the space can be broken up into three domains: domains of
absolute future and absolute past, falling within the light cone, whose points
are joined to the origin by time-like vectors with positive or negative value
of time coordinate, respectively, and the domain of absolute elsewhere, falling
outside of the light cone, whose points are joined to the origin by space-like
vectors.
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A world line of an object is the sequence of events that marks the time
history of the object. A world line traces out the path of a single point
in the Minkowski space. It is a one-dimensional curve, represented by the
coordinates as a function of one parameter. A world line is a time-like curve
in space–time, i.e., at any point its tangent vector is a time-like four-vector.
All world lines fall within the light cone, formed by light-like curves, i.e.,
the curves whose tangent vectors are light-like four-vectors correspond to the
motion of light and other particles of zero rest mass.

World lines of particles at constant speed (equivalently, of free falling par-
ticles) are called geodesics. In Minkowski space they are straight lines.

A geodesic in Minkowski space, which joins two given events x and y, is the
longest curve among all world lines which join these two events. This follows
from the Einstein time (triangle) inequality (cf. inverse triangle inequality
and, in Chap. 5, reverse triangle inequality):

||x + y|| ≥ ||x||+ ||y||,

according to which a time-like broken line joining two events is shorter than
the single time-like geodesic joining them, i.e., the proper time of the particle
moving freely from x to y is greater than the proper time of any other particle
whose world line joins these events. This fact is usually called twin paradox.

The space–time is a four-dimensional manifold which is the usual math-
ematical setting for the Einstein General Theory of Relativity. Here the
three spatial components with a single time-like component form a four-
dimensional space–time in the presence of gravity. Gravity is equivalent to
the geometric properties of space–time, and in the presence of gravity the ge-
ometry of space–time is curved. Thus, the space–time is a four-dimensional
curved manifold for which the tangent space to any point is the Minkowski
space, i.e., it is a pseudo-Riemannian manifold – a manifold, equipped with a
non-degenerate indefinite metric, called pseudo-Riemannian metric – of
signature (1,3).

In the General Theory of Relativity, gravity is described by the properties
of the local geometry of space–time. In particular, the gravitational field can
be built out of a metric tensor, a quantity describing geometrical properties
space–time such as distance, area, and angle. Matter is described by its stress-
energy tensor, a quantity which contains the density and pressure of matter.
The strength of coupling between matter and gravity is determined by the
gravitational constant.

The Einstein field equation is an equation in the General Theory of Rela-
tivity, that describes how matter creates gravity and, conversely, how gravity
affects matter. A solution of the Einstein field equation is a certain Einstein
metric appropriated for the given mass and pressure distribution of the
matter.

A black hole is a massive astrophysical object that is theorized to be created
from the collapse of a neutron or “quark” star. The gravitational forces are so
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strong in a black hole that they overcome neutron degeneracy pressure and,
roughly, collapse to a point (called a singularity). Even light cannot escape
the gravitational pull of a black hole within the black hole’s gravitational
radius (or event horizon). Uncharged, zero angular momentum black holes
are called Schwarzschild black holes. Uncharged non-zero angular momentum
black holes are called Kerr black holes. Non-spinning charged black holes
are called Reissner–Nordström black holes. Charged, spinning black holes are
called Kerr–Newman black holes. Corresponding metrics describe how space–
time is curved by matter in the presence of these black holes.

For an additional information see, for example, [Wein72].

• Minkowski metric
The Minkowski metric is a pseudo-Riemannian metric, defined on
the Minkowski space R

1,3, i.e., a four-dimensional real vector space which
is considered as the pseudo-Euclidean space of signature (1, 3). It is defined
by its metric tensor

((gij)) =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ .

The line element ds2, and the space–time interval element ds of this
metric are given by

ds2 = c2dt2 − dx2 − dy2 − dz2.

In spherical coordinates (ct, r, θ, φ), one has ds2 = c2dt2− dr2− r2dθ2−
r2 sin2 θdφ2.

The pseudo-Euclidean space R
3,1 of signature (3, 1) with the line element

ds2 = −c2dt2 + dx2 + dy2 + dz2

can also be used as a space–time model of the Einstein Special Theory
of Relativity. Usually, signature (1, 3) is used in Particle Physics, whereas
signature (3, 1) is used in Relativity Theory.

• Affine space–time distance
Given a space–time (M4, g), there is a unique affine parametrization
s → γ(s) for each light ray (i.e., light-like geodesic) through the ob-
servation event pobser, such that γ(0) = pobser and g(dγ

dt , Uobser) = 1,
where Uobser is the 4-velocity of the observer at pobser (i.e., a vector with
g(Uobser, Uobser) = −1).

In this case, the affine space–time distance is the affine parameter
s, viewed as a distance measure.

The affine space–time distance is monotone increasing along each ray,
and it coincides, in an infinitesimal neighborhood of pobser, with the Eu-
clidean distance in the rest system of Uobser.



476 26 Distances in Cosmology and Theory of Relativity

• Lorentz metric
A Lorentz metric (or Lorentzian metric) is a pseudo-Riemannian
metric (i.e., non-degenerate indefinite metric) of signature (1, p).

The curved space–time of the General Theory of Relativity can be mod-
eled as a Lorentzian manifold (a manifold equipped with a Lorentz metric)
of signature (1, 3). The Minkowski space R

1,3 with the flat Minkowski
metric is a model of a flat Lorentzian manifold.

In Lorentzian Geometry the following definition of distance is commonly
used. Given a rectifiable non-space-like curve γ : [0, 1] → M in the space–

time M , the length of the curve is defined as l(γ) =
∫ 1

0

√
−〈dγ

dt , dγ
dt 〉dt. For

a space-like curve we set l(γ) = 0. Then the canonic Lorentz distance
between two points p, q ∈M is defined as

sup
γ∈Γ

l(γ)

if p ≺ q, i.e., if the set Γ of future directed non-space-like curves from p to
q is non-empty; otherwise, this distance is 0.

For two points x, y of space–time at geodesic distance d(x, y), their world
function is ± 1

2d2(x, y), where the sign depends on whether x and y are or
are not, respectively, causally related, i.e., can be joined by a time-like or
null path.

• Kinematic metric
Given a set X, a kinematic metric (or time-like metric, abstract
Lorenzian distance) is a function τ : X ×X → R≥0 ∪ {∞} such that,
for all x, y, z ∈ X:

1. τ(x, x) = 0
2. τ(x, y) > 0 implies τ(y, x) = 0 (anti-symmetry)
3. τ(x, y), τ(y, z) > 0 implies τ(x, z) > τ(x, y)+ τ(y, z) (inverse triangle

inequality)

The space–time set X consists of events x = (x0, x1) where, usually,
x0 ∈ R is the time and x1 ∈ R

3 is the spatial location of the event x. The
inequality τ(x, y) > 0 means causality, i.e., x can influence y; usually, it is
equivalent to y0 > x0 and the value τ(x, y) > 0 can be seen as the largest
(since it depends on the speed) proper (i.e., subjective) time of moving
from x to y.

If the gravity is negligible, then τ(x, y) > 0 implies y0−x0 ≥ ||y1−x1||2,
and τp(x, y) = ((y0 − x0)p − ||y1 − x1||p2))

1
p (as defined by Busemann in

1967) is a real number. For p ≈ 2 it is consistent with Special Relativity
observations.

A kinematic metric is not our usual distance metric; also it is not related
to the kinematic distance in Astronomy.
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• Lorentz–Minkowski distance
The Lorentz–Minkowski distance is a distance on R

n (or on C
n),

defined by √
√
√
√|x1 − y1|2 −

n∑

i=2

|xi − yi|2.

• Galilean distance
The Galilean distance is a distance on R

n, defined by

|x1 − y1|

if x1 �= y1, and by
√

(x2 − y2)2 + · · ·+ (xn − yn)2

if x1 = y1. The space R
n equipped with the Galilean distance is called

Galilean space. For n = 4, it is a mathematical setting for the space–time
of classical mechanics according to Galilei–Newton in which the distance
between two events taking place at the points p and q at the moments
of time t1 and t2 is defined as the time interval |t1 − t2|, while if these
events take place at the same time, it is defined as the distance between
the points p and q.

• Einstein metric
In the General Theory of Relativity, describing how space–time is curved
by matter, the Einstein metric is a solution to the Einstein field equation

Rij −
gijR

2
+ Λgij =

8πG

c4
Tij ,

i.e., a metric tensor ((gij)) of signature (1, 3), appropriated for the given
mass and pressure distribution of the matter. Here Eij = Rij− gijR

2 +Λgij

is the Einstein curvature tensor, Rij is the Ricci curvature tensor, R is the
Ricci scalar, Λ is the cosmological constant, G is the gravitational constant,
and Tij is a stress-energy tensor. Empty space (vacuum) corresponds to the
case of zero Ricci tensor: Rij = 0.

The static Einstein metric for a homogeneous and isotropic Universe is
given by the line element

ds2 = −dt2 +
dr2

(1− kr2)
+ r2(dθ2 + sin2 θdφ2),

where k is the curvature of the space–time, and the scale factor is
equal to 1.
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• de Sitter metric
The de Sitter metric is a maximally symmetric vacuum solution to the
Einstein field equation with a positive cosmological constant Λ, given by
the line element

ds2 = dt2 + e2
√

Λ
3 t(dr2 + r2dθ2 + r2 sin2 θdφ2).

Without a cosmological constant (i.e., with Λ = 0), the most symmetric
solution to the Einstein field equation in a vacuum is the flat Minkowski
metric.

The anti-de Sitter metric corresponds to a negative value of Λ.
• Schwarzschild metric

The Schwarzschild metric is a solution to the Einstein field equation for
empty space (vacuum) around a spherically symmetric mass distribution;
this metric gives a representation of the Universe around a black hole
of a given mass, from which no energy can be extracted. It was found
by Schwarzschild in 1916, only a few months after the publication of the
Einstein field equation, and was the first exact solution of this equation.

The line element of this metric is given by

ds2 =
(
1− rg

r

)
c2dt2 − 1

(
1− rg

r

)dr2 − r2(dθ2 + sin2 θdφ2),

where rg = 2Gm
c2 is the Schwarzschild radius, m is the mass of the black

hole, and G is the gravitational constant.
This solution is only valid for radii larger than rg, as at r = rg

there is a coordinate singularity. This problem can be removed by a
transformation to a different choice of space–time coordinates, called
Kruskal–Szekeres coordinates. As r → +∞, the Schwarzschild metric ap-
proaches the Minkowski metric.

• Kruskal–Szekeres metric
The Kruskal–Szekeres metric is a solution to the Einstein field equation
for empty space (vacuum) around a static spherically symmetric mass
distribution, given by the line element

ds2 = 4
rg

r

(rg

R

)2

e
− r

rg (c2dt
′2 − dr

′2)− r2(dθ2 + sin2 θdφ2),

where rg = 2Gm
c2 is the Schwarzschild radius, m is the mass of the

black hole, G is the gravitational constant, R is a constant, and the
Kruskal–Szekeres coordinates (t

′
, r

′
, θ, φ) are obtained from the spherical

coordinates (ct, r, θ, φ) by the Kruskal–Szekeres transformation r
′2−ct

′2 =

R2
(

r
rg
− 1

)
e

r
rg , ct

′

r′ = tanh
(

ct
2rg

)
.
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In fact, the Kruskal–Szekeres metric is the Schwarzschild metric,
written in Kruskal–Szekeres coordinates. It shows that the singularity of
the space–time in the Schwarzschild metric at the Schwarzschild radius rg

is not a real physical singularity.
• Kottler metric

The Kottler metric is the unique spherically symmetric vacuum solution
to the Einstein field equation with a cosmological constant Λ. It is given
by the line element

ds2 =−
(

1− 2m

r
−Λr2

3

)

dt2 +
(

1− 2m

r
− Λr2

3

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

It is called also the Schwarzschild–de Sitter metric for Λ > 0, and the
Schwarzschild–anti-de Sitter metric for Λ < 0.

• Reissner–Nordström metric
The Reissner–Nordström metric is a solution to the Einstein field
equation for empty space (vacuum) around a spherically symmetric mass
distribution in the presence of a charge; this metric gives a representation
of the Universe around a charged black hole.

The line element of this metric is given by

ds2 =
(

1− 2m

r
+

e2

r2

)

dt2 −
(

1− 2m

r
+

e2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

where m is the mass of the hole, e is the charge (e < m), and we have used
units with the speed of light c and the gravitational constant G equal to
one.

• Kerr metric
The Kerr metric (or Kerr–Schild metric) is an exact solution to the
Einstein field equation for empty space (vacuum) around an axially sym-
metric, rotating mass distribution; this metric gives a representation of
the Universe around a rotating black hole.

Its line element is given (in Boyer–Lindquist form) by

ds2 = ρ2

(
dr2

Δ
+ dθ2

)

+ (r2 + a2) sin2 θdφ2− dt2 +
2mr

ρ2
(a sin2 θdφ− dt)2,

where ρ2 = r2 + a2 cos2 θ and Δ = r2 − 2mr + a2. Here m is the mass
of the black hole and a is the angular velocity as measured by a distant
observer.

The generalization of the Kerr metric for a charged black hole is known
as the Kerr–Newman metric. When a = 0, the Kerr metric becomes
the Schwarzschild metric. A black hole can be diagnosed as rotating if
radiation processes are observed inside its Scwarzchild radius but outside
its Kerr radius.
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• Kerr–Newman metric
The Kerr–Newman metric is an exact, unique and complete solution
to the Einstein field equation for empty space (vacuum) around an axially
symmetric, rotating mass distribution in the presence of a charge; this
metric gives a representation of the Universe around a rotating charged
black hole.

The line element of the exterior metric is given by

ds2 = −Δ
ρ2

(dt− a sin2 θdφ)2 +
sin2 θ

ρ2
((r2 + a2)dφ− adt)2 +

ρ2

Δ
dr2 + ρ2dθ2,

where ρ2 = r2 + a2 cos2 θ and Δ = r2 − 2mr + a2 + e2. Here m is the
mass of the black hole, e is the charge, and a is the angular velocity. When
e = 0, the Kerr–Newman metric becomes the Kerr metric.

• Static isotropic metric
The static isotropic metric is the most general solution to the Einstein
field equation for empty space (vacuum); this metric can represent a static
isotropic gravitational field. The line element of this metric is given by

ds2 = B(r)dt2 −A(r)dr2 − r2(dθ2 + sin2 θdφ2),

where B(r) and A(r) are arbitrary functions.
• Eddington–Robertson metric

The Eddington–Robertson metric is a generalization of the
Schwarzschild metric which allows that the mass m, the gravitational
constant G, and the density ρ are altered by unknown dimensionless
parameters α, β, and γ (all equal to 1 in the Einstein field equation).

The line element of this metric is given by

ds2 =

(

1− 2α
mG

r
+ 2(β − αγ)

(
mG

r

)2

+ . . .

)

dt2

−
(

1 + 2γ
mG

r
+ . . .

)

dr2 − r2(dθ2 + sin2 θdφ2).

• Janis–Newman–Wincour metric
The Janis–Newman–Wincour metric is the most general spherically
symmetric static and asymptotically flat solution to the Einstein field equa-
tion coupled to a massless scalar field. It is given by the line element

ds2 = −
(

1− 2m

γr

)γ

dt2 +
(

1− 2m

γr

)−γ

dr2

+
(

1− 2m

γr

)1−γ

r2(dθ2 + sin2 θdφ2),
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where m and γ are constants. For γ = 1 one obtains the Schwarzschild
metric. In this case the scalar field vanishes.

• FLRW metric
The FLRW metric (or Friedmann–Lemâıtre–Robertson–Walker
metric) is a exact solution to the Einstein field equation for a simply
connected, homogeneous, isotropic expanding (or contracting) Universe
filled with a constant density and negligible pressure. This metric gives a
representation of a matter-dominated Universe filled with a pressureless
dust. The FLRW metric models the metric expansion of space, i.e., the
averaged increase of measured distance (an intrinsic expansion) between
objects in the Universe with time.

The line element of this metric is usually written in the spherical coor-
dinates (ct, r, θ, φ):

ds2 = c2dt2 − a(t)2 ·
(

dr2

1− kr2
+ r2 · (dθ2 + sin2 θdφ2)

)

,

where a(t) is the scale factor and k is the curvature of the space–time.
There is also another form for the line element:

ds2 = c2dt2 − a(t)2 · (dr
′2 + r̃2 · (dθ2 + sin2 θdφ2)),

where r′ gives the comoving distance from the observer, and r̃ gives
the proper motion distance, i.e., r̃ = RC sinh(r

′
/RC), or r

′
, or

RCsin(r
′
/RC) for negative, zero or positive curvature, respectively, where

RC = 1/
√
|k| is the absolute value of the radius of curvature.

• Bianchi metrics
The Bianchi metrics are solutions to the Einstein field equation for
cosmological models that have spatially homogeneous sections, invariant
under the action of a three-dimensional Lie group, i.e., they are real four-
dimensional metrics with a three-dimensional isometry group, transitive
on 3-surfaces. Using the Bianchi classification of three-dimensional Lie
algebras over Killing vector fields, we obtain the nine types of Bianchi
metrics.

Each Bianchi model B defines a transitive group GB on some three-
dimensional simply connected manifold M ; so, the pair (M,G) (where G
is the maximal group acting on X and containing GB) is one of eight
Thurston model geometries if M/G′ is compact for a discrete subgroup G′

of G. In particular, Bianchi type IX corresponds to the model geometry S3.
The Bianchi type I metric is a solution to the Einstein field equation for

an anisotropic homogeneous Universe, given by the line element

ds2 = −dt2 + a(t)2dx2 + b(t)2dy2 + c(t)2dz2,
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where the functions a(t), b(t), and c(t) are determined by the Einstein
equation. It corresponds to flat spatial sections, i.e., is a generalization of
the FLRW metric.

The Bianchi type IX metric, or Mixmaster metric, exhibits compli-
cated dynamic behavior near its curvature singularities.

• Kasner metric
The Kasner metric is one of the Bianchi type I metrics, which is a vac-
uum solution to the Einstein field equation for an anisotropic homogeneous
Universe, given by the line element

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2,

where p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1.

The Kasner metric can also be written as

ds2 = −dt2 + t
2
3 (t

4
3 cos(φ+ π

3 )dx2 + t
4
3 cos(φ−π

3 )dy2 + t−
4
3 cos φdz2),

and is called in this case the Kasner circle.
One of the Kasner metrics, the Kasner-like metric, is given by the line

element
ds2 = −dt2 + t2q(dx2 + dy2) + t2−4qdz2.

The Kasner axisymmetric metric is given by the line element

ds2 = −dt2√
t

+
dx2

√
t

+ tdy2 + tdz2.

• Kantowski–Sashs metric
The Kantowski–Sashs metric is a solution to the Einstein field equa-
tion, given by the line element

ds2 = −dt2 + a(t)2dz2 + b(t)2(dθ2 + sin θdφ2),

where the functions a(t) and b(t) are determined by the Einstein equation.
It is the only homogeneous model without a three-dimensional transitive
subgroup.

In particular, the Kantowski–Sashs metric with the line element

ds2 = −dt2 + e2
√

Λtdz2 +
1
Λ

(dθ2 + sin2 θdφ2)

describes a Universe with two spherical dimensions having a fixed size
during the cosmic evolution, and the third dimension is expanding expo-
nentially.
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• GCSS metric
A GCSS (i.e., general cylindrically symmetric stationary) metric
is a solution to the Einstein field equation, given by the line element

ds2 = −fdt2 + 2kdtdφ + eμ(dr2 + dz2) + ldφ2,

where the space–time is divided into two regions: the interior, with 0 ≤
r ≤ R, to a cylindrical surface of radius R centered along z, and the
exterior, with R ≤ r < ∞. Here f, k, μ and l are functions only of r, and
−∞ < t, z < ∞, 0 ≤ φ ≤ 2π; the hypersurfaces φ = 0 and φ = 2π are
identical.

• Lewis metric
The Lewis metric is a cylindrically symmetric stationary metric
which is a solution to the Einstein field equation for empty space (vacuum)
in the exterior of a cylindrical surface. The line element of this metric has
the form

ds2 = −fdt2 + 2kdtdφ− eμ(dr2 + dz2) + ldφ2,

where f = ar−n+1 − c2

n2arn+1, k = −Af , l = r2

f − A2f , eμ = r
1
2 (n2−1)

with A = crn+1

naf + b. The constants n, a, b, and c can be either real or
complex, the corresponding solutions belong to the Weyl class or Lewis
class, respectively. In the last case, the metric coefficients become f =
r(a2

1−b2
1) cos(m ln r)+2ra1b1 sin(m ln r), k = −r(a1a2−b1b2) cos(m ln r)−

r(a1b2 + a2b1) sin(m ln r), l = −r(a2
2 − b2

2) cos(m ln r)− 2ra2b2 sin(m ln r),
eμ = r−

1
2 (m2+1), where m,a1, a2, b1, and b2 are real constants with a1b2 −

a2b1 = 1. Such metrics form a subclass of the Kasner type metrics.
• van Stockum metric

The van Stockum metric is a stationary cylindrically symmetric solu-
tion to the Einstein field equation for empty space (vacuum) with a rigidly
rotating infinitely long dust cylinder. The line element of this metric for
the interior of the cylinder is given (in comoving, i.e., corotating coordi-
nates) by

ds2 = −dt2 + 2ar2dtdφ + e−a2r2
(dr2 + dz2) + r2(1− a2r2)dφ2,

where 0 ≤ r ≤ R, R is the radius of the cylinder, and a is the angular
velocity of the dust particles. There are three vacuum exterior solutions
(i.e., Lewis metrics) that can be matched to the interior solution, de-
pending on the mass per unit length of the interior (the low mass case,
the null case, and the ultrarelativistic case). Under some conditions (for
example, if ar > 1), the existence of closed time-like curves (and, hence,
time-travel) is allowed.
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• Levi–Civita metric
The Levi–Civita metric is a static cylindrically symmetric vacuum so-
lution to the Einstein field equation, with the line element, given (in the
Weyl form) by

ds2 = −r4σdt2 + r4σ(2σ−1)(dr2 + dz2) + C−2r2−4σdφ,

where the constant C refers to the deficit angle, and the parameter σ is
mostly understood in accordance with the Newtonian analogy of the Levi–
Civita solution – the gravitational field of an infinite uniform line-mass
(infinite wire) with the linear mass density σ. In the case σ = − 1

2 , C = 1
this metric can be transformed either into the Taub’s plane symmetric
metric, or into the Robinson–Trautman metric.

• Weyl–Papapetrou metric
The Weyl–Papapetrou metric is a stationary axially symmetric solu-
tion to the Einstein field equation, given by the line element

ds2 = Fdt2 − eμ(dz2 + dr2)− Ldφ2 − 2Kdφdt,

where F , K, L and μ are functions only of r and z, LF + K2 = r2,
∞ < t, z < ∞, 0 ≤ r < ∞, and 0 ≤ φ ≤ 2π; the hypersurfaces φ = 0 and
φ− 2π are identical.

• Bonnor dust metric
The Bonnor dust metric is a solution to the Einstein field equation,
which is an axially symmetric metric describing a cloud of rigidly rotating
dust particles moving along circular geodesics about the z-axis in hyper-
surfaces of z = constant. The line element of this metric is given by

ds2 = dt2 + (r2 − n2)dφ2 + 2ndtdφ + eμ(dr2 + dz2),

where, in Bonnor comoving (i.e., corotating) coordinates, n = 2hr2

R3 , μ =
h2r2(r2−8z2)

2R8 , R2 = r2 + z2, and h is a rotation parameter. As R →∞, the
metric coefficients tend to Minkowski values.

• Weyl metric
The Weyl metric is a general static axially symmetric vacuum solution
to the Einstein field equation given, in Weyl canonical coordinates, by the
line element

ds2 = e2λdt2 − e−2λ
(
e2μ(dr2 + dz2

)
+ r2dφ2),

where λ and μ are functions only of r and z such that ∂2λ
∂r2 + 1

r ·
∂λ
∂r +

∂2λ
∂z2 = 0, ∂μ

∂r = r(∂λ2

∂r −
∂λ2

∂z ), and ∂μ
∂z = 2r ∂λ

∂r
∂λ
∂z .
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• Zipoy–Voorhees metric
The Zipoy–Voorhees metric (or γ-metric) is a Weyl metric, ob-

tained for e2λ =
(

R1+R2−2m
R1+R2+2m

)γ

, e2μ =
(

(R1+R2+2m)(R1+R2−2m)
4R1R2

)γ2

, where

R2
1 = r2 + (z −m)2, R2

2 = r2 + (z + m)2. Here λ corresponds to the New-
tonian potential of a line segment of mass density γ/2 and length 2m,
symmetrically distributed along the z-axis.

The case γ = 1 corresponds to the Schwartzschild metric, the cases
γ > 1 (γ < 1) correspond to an oblate (prolate) spheroid, and for γ = 0
one obtains the flat Minkowski space–time.

• Straight spinning string metric
The straight spinning string metric is given by the line element

ds2 = −(dt− adφ)2 + dz2 + dr2 + k2r2dφ2,

where a and k > 0 are constants. It describes the space–time around a
straight spinning string. The constant k is related to the string’s mass-per-
length μ by k = 1–4 μ, and the constant a is a measure of the string’s spin.
For a = 0 and k = 1, one obtains the Minkowski metric in cylindrical
coordinates.

• Tomimatsu–Sato metric
A Tomimatsu–Sato metric [ToSa73] is one of the metrics from an infi-
nite family of spinning mass solutions to the Einstein field equation, each
of which has the form ξ = U/W , where U and W are some polynomials.
The simplest solution has U = p2(x4 − 1) + q2(y4 − 1)− 2ipqxy(x2 − y2),
W = 2px(x2 − 1)− 2iqy(1− y2), where p2 + q2 = 1. The line element for
this solution is given by

ds2 = Σ−1
(
(αdt + βdφ)2 − r2(γdt + δdφ)2

)
− Σ

p4(x2 − y2)4
(dz2 + dr2),

where α = p2(x2 − 1)2 + q2(1 − y2)2, β = − 2q
p W (p2(x2 − 1)(x2 − y2) +

2(px + 1)W ), γ = −2pq(x2 − y2), δ = α + 4((x2 − 1) + (x2 + 1)(px + 1)),
Σ = αδ − βγ = |U + W |2.

• Gödel metric
The Gödel metric is an exact solution to the Einstein field equation with
cosmological constant for a rotating Universe, given by the line element

ds2 = −(dt2 + C(r)dφ)2 + D2(r)dφ2 + dr2 + dz2,

where (t, r, φ, z) are the usual cylindrical coordinates. The Gödel Universe
is homogeneous if C(r) = 4Ω

m2 sinh2
(

mr
2

)
, D(r) = 1

m sinh(mr), where m
and Ω are constants. The Gödel Universe is singularity-free. There are
closed time-like curves through every event, and hence time-travel is pos-
sible here. The condition required to avoid such curves is m2 > 4Ω2.
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• Conformally stationary metric
The conformally stationary metrics are models for gravitational fields
that are time-independent up to an overall conformal factor. If some
global regularity conditions are satisfied, the space–time must be a prod-
uct R×M3 with a (Hausdorff and paracompact) 3-manifold M3, and the
line element of the metric is given by

ds2 = e2f(t,x)(−(dt +
∑

μ

φμ(x)dxμ)2 +
∑

μ,ν

gμν(x)dxμdxν),

where μ, ν = 1, 2, 3. The conformal factor e2f does not affect the light-like
geodesics apart from their parametrization, i.e., the paths of light rays are
completely determined by the Riemannian metric g =

∑
μ,ν gμν(x)dxμdxν

and the one-form φ =
∑

μ φμ(x)dxμ which both live on M3.
In this case, the function f is called the redshift potential, the metric

g is called the Fermat metric, and the one-form φ is called the Fermat
one-form.

For a static space–time, the geodesics in the Fermat metric are the
projections of the null geodesics of space–time.

In particular, the spherically symmetric and static metrics, includ-
ing models for non-rotating stars and black holes, wormholes, monopoles,
naked singularities, and (boson or fermion) stars, are given by the line
element

ds2 = e2f(r)(−dt2 + S(r)2dr2 + R(r)2(dθ2 + sin2 θdφ2)).

Here, the one-form φ vanishes, and the Fermat metric g has the special
form

g = S(r)2dr2 + R(r)2(dθ2 + sin2 θdφ2).

For example, the conformal factor e2f(r) of the Schwartzschild metric
is equal to 1− 2m

r , and the corresponding Fermat metric has the form

g = (1− 2m

r
)−2(1− 2m

r
)−1r2(dθ2 + sin θdφ2).

• pp-wave metric
The pp-wave metric is an exact solution to the Einstein field equation,
in which radiation moves at the speed of light. The line element of this
metric is given (in Brinkmann coordinates) by

ds2 = H(u, x, y)du2 + 2dudv + dx2 + dy2,

where H is any smooth function. The term “pp” stands for plane-fronted
waves with parallel propagation introduced by Ehlers and Kundt in 1962.



26.2 Distances in Theory of Relativity 487

The most important class of particularly symmetric pp-waves are the
plane wave metrics, in which H is quadratic. The wave of death, for
example, is a gravitational (i.e., the space-time curvature fluctuates) plane
wave exhibiting a strong nonscalar null curvature singularity, which prop-
agates through an initially flat space-time, progressively destroying the
Universe.

Examples of axisymmetric pp-waves include the Aichelburg–Sexl ultra-
boost which models the physical experience of an observer moving past a
spherically symmetric gravitating object at nearly the speed of light, and
the Bonnor beam which models the gravitational field of an infinitely long
beam of incoherent electromagnetic radiation. The Aichelburg–Sexl wave
is obtained by boosting the Schwarzschild solution to the speed of light
at fixed energy, i.e., it describes a Schwarzschild black hole moving at the
speed of light. Cf. Aichelburg–Sexl metric in Chap. 24.

• Bonnor beam metric
The Bonnor beam metric is an exact solution to the Einstein field
equation, which models an infinitely long, straight beam of light. It is an
example of a pp-wave metric.

The interior part of the solution (in the uniform plane wave interior
region, which is shaped like the world tube of a solid cylinder) is defined
by the line element

ds2 = −8πmr2du2 − 2dudv + dr2 + r2dθ2,

where −∞ < u, v < ∞, 0 < r < r0, and −π < θ < π. This is a null dust
solution and can be interpreted as incoherent electromagnetic radiation.

The exterior part of the solution is defined by

ds2 = −8πmr2
0(1 + 2 log(r/r0))du2 − 2dudv + dr2 + r2dθ2,

where −∞ < u, v < ∞, r0 < r <∞, and −π < θ < π.
The Bonnor beam can be generalized to several parallel beams traveling

in the same direction.
• Plane wave metric

The plane wave metric is a vacuum solution to the Einstein field equa-
tion, given by the line element

ds2 = 2dwdu + 2f(u)(x2 + y2)du2 − dx2 − dy2.

It is conformally flat, and describes a pure radiation field. The space–time
with this metric is called the plane gravitational wave. It is an example of
a pp-wave metric.

• Wils metric
The Wils metric is a solution to the Einstein field equation, given by the
line element

ds2 = 2xdwdu− 2wdudx +
(
2f(u)x(x2 + y2)− w2

)
du2 − dx2 − dy2.
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It is conformally flat, and describes a pure radiation field which is not a
plane wave.

• Koutras–McIntosh metric
The Koutras–McIntosh metric is a solution to the Einstein field equa-
tion, given by the line element

ds2 = 2(ax+b)dwdu− 2awdudx+
(
2f(u)(ax + b)(x2 + y2)− a2w2

)

du2 − dx2 − dy2.

It is conformally flat and describes a pure radiation field which, in general,
is not a plane wave. It gives the plane wave metric for a = 0, b = 1, and
the Wils metric for a = 1, b = 0.

• Edgar–Ludwig metric
The Edgar–Ludwig metric is a solution to the Einstein field equation,
given by the line element

ds2 = 2(ax + b)dwdu− 2awdudx+

+
(
2f(u)(ax + b)(g(u)y + h(u) + x2 + y2)− a2w2

)
du2 − dx2 − dy2.

This metric is a generalization of the Koutras–McIntosh metric. It is
the most general metric which describes a conformally flat pure radiation
(or null fluid) field which, in general, is not a plane wave. If plane waves
are excluded, it has the form

ds2 = 2xdwdu− 2wdudx +
(
2f(u)x(g(u)y + h(u) + x2 + y2)− w2

)

du2 − dx2 − dy2.

• Bondi radiating metric
The Bondi radiating metric describes the asymptotic form of a radiat-
ing solution to the Einstein field equation, given by the line element

ds2 = −
(

V
r e2β − U2r2e2γ

)
du2 − 2e2βdudr − 2Ur2e2γdudθ

+r2(e2γdθ2 + e−2γ sin2 θdφ2),

where u is the retarded time, r is the luminosity distance, 0 ≤ θ ≤ π,
0 ≤ φ ≤ 2π, and U, V, β, γ are functions of u, r, and θ.

• Taub-NUT de Sitter metric
The Taub-NUT de Sitter metric (cf. de Sitter metric) is a positive-
definite (i.e., Riemannian) solution to the Einstein field equation with a
cosmological constant Λ, given by the line element

ds2 =
r2 − L2

4Δ
dr2 +

L2Δ
r2 − L2

(dψ + cos θdφ)2 +
r2 − L2

4
(dθ2 + sin2 θdφ2),
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where Δ = r2−2Mr+L2+ Λ
4 (L4+2L2r2− 1

3r4), L and M are parameters,
and θ, φ, ψ are the Euler angles. If Λ = 0, one obtains the Taub-NUT
metric, using some regularity conditions. NUT manifold was discovered
in Ehlers (1957) and rediscovered in Newman, Tamburino, Unti (1963); it
is closely related to the metric in Taub (1951).

• Eguchi–Hanson de Sitter metric
The Eguchi–Hanson de Sitter metric (cf. de Sitter metric) is a
positive-definite (i.e., Riemannian) solution to the Einstein field equation
with a cosmological constant Λ, given by the line element

ds2 =
(

1− a4

r4
− Λr2

6

)−1

dr2 +
r2

4

(

1− a4

r4
− Λr2

6

)

(dψ + cos θdφ)2+

+
r2

4
(dθ2 + sin2 θdφ2),

where a is a parameter, and θ, φ, ψ are the Euler angles. If Λ = 0, one
obtains the Eguchi–Hanson metric.

• Barriola–Vilenkin monopole metric
The Barriola–Vilenkin monopole metric is given by the line element

ds2 = −dt2 + dr2 + k2r2(dθ2 + sin2 θdφ2),

with a constant k < 1. There is a deficit solid angle and a singularity at
r = 0; the plane t = constant, θ = π

2 has the geometry of a cone. This
metric is an example of a conical singularity; it can be used as a model for
monopoles that might exist in the Universe.

A magnetic monopole is a hypothetical isolated magnetic pole, “a mag-
net with only one pole.” It has been theorized that such things might
exist in the form of tiny particles similar to electrons or protons, formed
from topological defects in a similar manner to cosmic strings, but no such
particle has ever been found. Cf. Gibbons–Manton metric in Chap. 7.

• Bertotti–Robinson metric
The Bertotti–Robinson metric is a solution to the Einstein field equa-
tion in a Universe with a uniform magnetic field. The line element of this
metric is

ds2 = Q2(−dt2 + sin2 tdw2 + dθ2 + sin2 θdφ2),

where Q is a constant, t ∈ [0, π], w ∈ (−∞,+∞), θ ∈ [0, π], and φ ∈ [0, 2π].
• Morris–Thorne metric

The Morris–Thorne metric is a wormhole solution to the Einstein field
equation with the line element

ds2 = e
2Φ(w)

c2 c2dt2 − dw2 − r(w)2(dθ2 + sin2 θdφ2),
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where w ∈ [−∞,+∞], r is a function of w that reaches some minimal
value above zero at some finite value of w, and Φ(w) is a gravitational
potential allowed by the space–time geometry.

A wormhole is a hypothetical “tube” in space connecting widely sepa-
rated positions in a Universe. All wormholes require exotic material with
negative energy density in order to hold them open.

• Misner metric
The Misner metric is a metric, representing two black holes. Misner
(1960) provided a prescription for writing a metric connecting a pair of
black holes, instantaneously at rest, whose throats are connected by a
wormhole. The line element of this metric has the form

ds2 = −dt2 + ψ4(dx2 + dy2 + dz2),

where the conformal factor ψ is given by

ψ =
N∑

n=−N

1
sinh(μ0n)

1
√

x2 + y2 + (z + coth(μ0n))2
.

The parameter μ0 is a measure of the ratio of mass to separation of the
throats (equivalently, a measure of the distance of a loop in the surface,
passing through one throat and out of the other). The summation limit N
tends to infinity.

The topology of the Misner space–time is that of a pair of asymptoti-
cally flat sheets connected by a number of Einstein–Rosen bridges. In the
simplest case, the Misner space can be considered as a two-dimensional
space with topology R×S1 in which light progressively tilts as one moves
forward in time, and has closed time-like curves after a certain point.

• Alcubierre metric
The Alcubierre metric (Alcubierre 1994) is a solution to the Einstein
field equation, representing warp drive space–time in which the existence
of closed time-like curves is allowed. What is violated in this case is only
the relativistic principle that a space-traveler may move with any velocity
up to, but not including or exceeding, the speed of light. The Alcubierre
construction corresponds to a warp (i.e., faster than light) drive in that
it causes space–time to contract in front of a spaceship bubble and ex-
pand behind, thus providing the spaceship with a velocity that can be
much greater than the speed of light relative to distant objects, while the
spaceship never locally travels faster than light.

The line element of this metric has the form

ds2 = −dt2 + (dx− vf(r)dt)2 + dy2 + dz2,
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with v = dxs(t)
dt as the apparent velocity of the warp drive spaceship, and

xs(t) as the trajectory of the spaceship along the coordinate x, the radial
coordinate being defined by r = ((x − xs(t))2 + y2 + z2)

1
2 , and f(r) an

arbitrary function subject to the boundary conditions that f = 1 at r = 0
(the location of the spaceship), and f = 0 at infinity.

• Rotating C-metric
The rotating C-metric is a solution to the Einstein–Maxwell equations,
describing two oppositely charged black holes, uniformly accelerating in
opposite directions. The line element of this metric has the form

ds2 = A−2(x + y)−2

(
dy2

F (y)
+

dx2

G(x)
+ k−2G(X)dφ2 − k2A2F (y)dt2

)

,

where F (y) = −1+y2−2mAy3+e2A2y4, G(x) = 1−x2−2mAx3−e2A2x4,
m, e, and A are parameters related to the mass, charge and acceleration
of the black holes, and k is a constant fixed by regularity conditions.

This metric should not be confused with the C-metric from Chap. 11.
• Myers–Perry metric

The Myers–Perry metric describes a five-dimensional rotating black
hole. Its line element is given by

ds2 = −dt2 +
2m

ρ2
(dt− a sin2 θdφ− b cos2 θdψ)2+

+
ρ2

R2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2 + (r2 + b2) cos2 θdψ2,

where ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, and R2 = (r2+a2)(r2+b2)−2mr2

r2 .
• Kaluza–Klein metric

The Kaluza–Klein metric is a metric in the Kaluza–Klein model of
five-dimensional (in general, multidimensional) space–time which seeks to
unify classical gravity and electromagnetism.

Kaluza (1919) found that, if the Einstein theory of pure gravitation
is extended to a five-dimensional space–time, the Einstein field equations
can be split into an ordinary four-dimensional gravitation tensor field, plus
an extra vector field which is equivalent to the Maxwell equation for the
electromagnetic field, plus an extra scalar field (known as the “dilation”)
which is equivalent to the massless Klein–Gordon equation.

Klein (1926) assumed the fifth dimension to have circular topology, so
that the fifth coordinate is periodic, and the extra dimension is curled up to
an unobservable size. An alternative proposal is that the extra dimension
is (extra dimensions are) extended, and the matter is trapped in a four-
dimensional submanifold. This approach has properties similar to the four-
dimensional – all dimensions are extended and equal at the beginning, and
the signature has the form (p, 1).
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In a model of a large extra dimension, the fifth-dimensional metric of a
Universe can be written in Gaussian normal coordinates in the form

ds2 = −(dx5)2 + λ2(x5)
∑

α,β

ηαβdxαdxβ ,

where ηαβ is the four-dimensional metric tensor, and λ2(x5) is an arbi-
trary function of the fifth coordinate.

• Prasad metric
A de Sitter Universe can be described as the sum of the external space
and the internal space.

The internal space has a negative constant curvature − 1
r2 and can be

characterized by the symmetry group SO3,2. The Prasad metric of this
space is given, in hyperspherical coordinates, by the line element

ds2 = r2 cos2 t(dχ2 + sinh2 χ(dθ2 + sin2 θdφ2))− r2dt2.

The value sin χ is the so-called a dimensional normalized radius of the de
Sitter Universe.

The external space has constant curvature 1
R2 and can be characterized

by the symmetry group SO4,1. Its metric has the line element of the form

ds2 = R2 cosh2 t(dχ2 + sin2 χ(dθ2 + sin2 θdφ2))−R2dt2.

• Ponce de León metric
The Ponce de León metric is a five-dimensional background metric,
given by the line element

ds2 = l2dt2 − (t/t0)2pl
2p

p−1 (dx2 + dy2 + dz2)− t2

(p− 1)2
dl2,

where l is the fifth (space-like) coordinate. This metric represents a five-
dimensional apparent vacuum, but it is not flat.



Part VII
Real-world Distances



Chapter 27
Length Measures and Scales

The term length has many meanings: distance lengthwise, extent lengthwise,
linear measure, span, reach, end, limit, etc.; for example, length of a train, a
meeting, a book, a travel, a shirt, a vowel, a proof. The length of an object is
the distance between its ends, its linear extent, while the height is the vertical
extent, and width (or breadth) is the distance from one side to the other at
right angles to the length. The depth is distance downward, distance inward,
deepness, vertical extent, drop.

The ancient Greek mathematicians regarded all numbers as lengths (of
straight line segments), areas or volumes.

In Engineering and Physics, “length” usually means “distance.” Unit dis-
tance is a distance taken as a convenient unit of length in a given context.

In Mathematics, length function is a function l : G → R≥0 on a group
(G,+, 0) such that l(0) = 0 and l(g) = l(−g), l(g + g′) ≤ l(g) + l(g′) for all
g, g′ ∈ G.

But in this chapter we consider length only as a measure of physical dis-
tance. We give selected information on the most important length units and
present, in length terms, a list of interesting physical objects.

27.1 Length scales

The main length measure systems are: Metric, Imperial (British and
American), Japanese, Thai, Chinese Imperial, Old Russian, Ancient Roman,
Ancient Greek, Biblical, Astronomical, Nautical, and Typographical.

There are many other specialized length scales; for example, to measure
cloth, shoe size, gauges (such as interior diameters of shotguns, wires, jewelry
rings), sizes for abrasive grit, sheet metal thickness, etc. Also, many units ex-
press relative or reciprocal distances. For example, the reciprocal of distance
(say, the focal length of a lens, radius of curvature and the convergence of
an optical beam) are measured in diopters, i.e., reciprocal meters m−1. Also,
the hertz Hz is the SI unit of frequency (inverse second s−1).

M.M. Deza and E. Deza, Encyclopedia of Distances, 495
DOI 10.1007/978-3-642-00234-2 27, c© Springer-Verlag Berlin Heidelberg 2009
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• International Metric System
The International Metric System (or SI, short for Système Inter-
national), also known as MKSA (meter–kilogram–second–ampere), is a
modernized version of the metric system of units, established by an inter-
national treaty (the Treaty of the Meter from 20 May 1875), which provides
a logical and interconnected framework for all measurements in science,
industry and commerce. The system is built on a foundation consisting of
the following seven SI base units, assumed to be mutually independent:

(1) Length: meter (m); it is equal to the distance traveled by light
in a vacuum in 1/299,792,458 of a second; (2) time: second (s); (3) mass:
kilogram (kg); (4) temperature: kelvin (K); (5) electric current: ampere (A);
(6) luminous intensity: candela (cd); (7) amount of substance: mole (mol).

Originally, on 26 March 1791, the mètre (French for meter) was defined
as 1

10,000,000 of the distance from the North Pole to the equator along
the meridian that passes through Dunkirk in France and Barcelona in
Spain. The name mètre was derived from the Greek metron (measure).
In 1799 the standard of mètre became a meter-long platinum-iridium bar
kept in Sèvres, a town outside Paris, for people to come and compare their
rulers with. (The metric system, introduced in 1793, was so unpopular that
Napoleon was forced to abandon it and France returned to the mètre only
in 1837.) In 1960, the meter was officially defined in terms of wavelength.

The initial metric unit of mass, the gram, was defined as the mass of
one cubic centimeter of water at its temperature of maximum density. For
capacity, the litre (liter) was defined as the volume of a cubic decimeter.

A metric meterstick is a rough rule of thumb for comprehending a
metric unit in terms of everyday life; for example, 5 cm is the side of
matchbox, and 1 km is about 10-min walk.

• Metrication
The metrication is an ongoing (especially, in US, UK and Caribbean
countries) process of conversion to the International Metric System
SI. Officially, only US, Liberia and Myanmar have not switched to SI. For
example, US uses only miles for road distance signs (milestones). Altitudes
in aviation are usually described in feet; in shipping, nautical miles and
knots are used. Resolutions of output devices are frequently specified in
dpi (dots per inch).

Hard metric means designing in the metric measures from the start
and conformation, where appropriate, to internationally recognized sizes
and designs.

Soft metric means multiplying an inch-pound number by a metric
conversion factor and rounding it to an appropriate level of precision; so,
the soft converted products do not change size. The American Metric
System consists of converting traditional units to embrace the uniform
base 10 method that the Metric System uses. Such SI-Imperial hybrid
units, used in soft metrication, are, for example, kiloyard (914.4 m), kilofoot
(304.8 m), mil or milli-inch (24.5 μm), and min or microinch (25.4 nm).
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Metric inch (2.5 cm) approximating the inch (2.54 cm) was used in some
Soviet computers when building from American blueprints.

In athletics, races of 1,500 or 1,600 m are often called metric miles.
• Meter-related terms

We present this large family of non-mathematical terms by the following
examples (besides the unit of length).

Meter, in Poetry, (or cadence) is a measure of rhythmic quality, the
regular linguistic sound patterns of verse; hypermeter is a part of verse
with an extra syllable. Metromania, in Psychiatry, is a mania for writing
verses.

Meter, in Music, (or metre) is the regular rhythmic patterns of musical
line, the division of a composition into parts of equal time, and the subdi-
vision of them. Isometre is the use of pulse (unbroken series of periodically
occurring short stimuli) without regular meter, polymetre is the use of two
or more different meters simultaneously whereas multimetre is using them
in succession.

Metrometer: in Medicine, an instrument measuring the size of the womb.
The names of various measuring instruments contain meter at the end.

Metra, in Medicine, is a synonym of uterus. So, metropathy is any disease
of the uterus (say, metritis (inflammation), metratonia (atony), metrat-
rophia, metrofibroma), and metrocyte is the mother cell.

Metrography (or hysterography) has two meanings: (1) radiographic ex-
amination of the uterine cavity filled with a contrasting medium and (2)
a graphic procedure used to record uterine contractions. But also, metro-
graph is an instrument attached to a locomotive for recording its speed
and the number and duration of its stops.

Metering: an equivalent term for a measuring; micrometry: measurement
under the microscope.

Metric, as a non-mathematical term, is a standard unit of measure (for
example, font metrics refer to numeric values relating to size and space in
the font) or, more generally, part of a system of parameters; cf. quality
metrics in Chap. 29.

Metrology: the science of, or a system of, weights and measures.
Metronomy: measurement of time by an instrument.
Metrosophy: a cosmology based on a strict number correspondences.
Telemetry: technology that allows remote measurement; archeometry:

the science of exact measuring referring to the remote past; psychometry:
alleged psychic power enabling one to divine facts by handling objects,
and so on.

Psychometrics: the study concerned with the theory and technique of
psychological measurement; psychrometrics: the field of engineering con-
cerned with the determination of physical and thermodynamic properties
of gas–vapor mixtures; biometrics: the study of automated methods for
uniquely recognizing humans based upon one or more intrinsic physical or
behavioral traits, and so on.

Isometropia: equality of refraction in both eyes.
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Isometric exercise: a muscle strength training exercise in which a force is
applied to a resistant object (cf. isometric muscle action in Chap. 29).

Isometric particle: a virus which (at the stage of virion capsid) has icosa-
hedral symmetry.

Isometric process: a thermodynamic process at constant volume.
Isometric projection (or isometric view): the representation of 3D objects

in 2D in which the angles between three projection axes are the same,
or 2π

3 .
Isometric action RPG: a role-playing computer game played from a

“ 3
4 -view,” i.e., third-person isometric view when the camera is set above

and away from the main characters, to view the action (usually real-time
combat) from an angled, top-down perspective.

Isometric crystal system: the cubic crystal lattice; cf. crystal metric
symmetry in Chap. 24. Metrohedry: overlap in 3D of the lattices of twin
domains in a crystal.

Metrohedry: overlap in 3D of the lattices of twin domains in a crystal.
Metrio: the Greek coffee with one teaspoon of sugar (medium sweet). In

Anthropology, metriocranic means having a skull that is moderately high
compared with its width, with a breadth-height index 92–98.

Metroid is the name of a series of video games produced by Nintendo (10
games released in 1986–2007); metroids are a fictional species of parasitic
alien creatures from those games. Metric is a Canadian New Wave rock
band.

Examples of companies with a meter-related term in their name are:
Metron, Metric Inc., Metric Engineering, World Wide Metric.

• Metric length measures
kilometer (km) = 1,000 meters = 103 m;
meter (m) = 10 decimeters = 100 m;
decimeter (dm) = 10 centimeters = 10−1 m;
centimeter (cm) = 10 millimeters = 10−2 m;
millimeter (mm) = 1,000 micrometers = 10−3 m;
micrometer (or micron, μ) = 1,000 nanometers = 10−6 m;
nanometer (nm) = 10 angströms = 10−9 m.

The lengths 103t m, t = −8,−7, . . . ,−1, 1, . . . , 7, 8, are given by met-
ric prefixes: yocto-, zepto-, atto-, fempto-, pico-, nano-, micro-, milli-,
kilo-, mega-, giga-, tera-, peta-, exa-, zetta-, yotta-, respectively. The
lengths 10t m, t = −2,−1, 1, 2, are given by: centi-, deci-, deca-, hecto-,
respectively.

In computers, a bit is 1 or 0, a byte is 8 bits and 103t bytes for t = 1, . . . , 7
are kilo-, mega-, giga-, tera-, peta-, exa-, zettabyte, respectively.

• Imperial length measures
The Imperial length measures (as slightly adjusted by international
agreement on 1 July 1959) are:

league = 3 miles;
(US survey) mile= 5,280 feet ≈ 1,609.347 m;
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international mile = 1,609.344 m;
yard = 3 feet = 0.9144 m;
foot = 12 inches = 0.3048 m;
inch = 2.54 cm (for firearms, caliber);
line = 1

12 inch;
agate line = 1

14 inch;
mickey = 1

200 inch;
mil (British thou) = 1

1,000 inch (mil is also an angle measure
π

3,200 ≈ 0.001 rad).
In addition, Surveyor’s Chain measures are: furlong = 10 chains

= 1
8 mile; chain = 100 links = 66 feet; rope = 20 feet; rod (or pole) = 16.5

feet; link = 7.92 inches. Mile, furlong and fathom (6 feet) come from
the slightly shorter Greco-Roman milos (milliare), stadion and orguia,
mentioned in the New Testament.

For measuring cloth, old measures are used: bolt = 40 yards; ell = 5
4

yard; goad = 3
2 yard; quarter = 1

4 yard; finger = 1
8 yard; nail = 1

16 yard.
The following are also old English units of length (cf. cubit): barl-

eycorn = 1
3 inch; digit = 3

4 inches; palm = 3 inches; hand = 4 inches;
shaftment = 6 inches; span = 9 inches; cubit = 18 inches.

• Cubit
The cubit, originally the distance from the elbow to the tip of the fingers
of an average person, is the ordinary unit of length in the ancient Near East
which varied among the cultures and with time. It is the oldest recorded
measure of length; the cubit was used in the temples of Ancient Egypt
from at least 2700 BC with the following proportions: 1 ordinary Egyptian
cubit= 6 palms= 24 digits= 450 mm (18 inches), and 1 royal Egyptian
cubit= 7 palms= 28 digits= 525 mm. Relevant Sumerian measures were: 1
ku (ordinary Mesopotamian cubit) = 30 shusi= 25 uban= 500 mm, and 1
kus (great Mesopotamian cubit) = 36 shusi= 30 uban= 600 mm.

Biblical measures of length are the cubit and its multiples by 4, 1
2 , 1

6 ,
1
24 called fathom, span, palm, digit, respectively. But the basic length of
the Biblical cubit is unknown; it is estimated now as about 44.5 cm (as
Roman cubitus) for the common cubit, used in commerce, and 51–56 cm
for the sacred one, used for building.

The Talmudic cubit is ≈56 cm.
The pyramid cubit is ≈63.5 cm; this unit, derived in Newton’s Biblical

studies, is supposed to be the basic one in the dimensions of the Great
Pyramid and in far-reaching numeric relations on them.

• Nautical length units
The nautical length units (also used in aerial navigation) are:

sea league = 3 sea (nautical) miles;
nautical mile = 1,852 m (originally, it was defined as 1′ of arc along the

great circle of Earth);
geographical mile ≈1,855.325 m (the average distance on the Earth’s

surface, represented by 1′ of arc along the Earth’s equator);
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cable = 120 fathoms = 720 feet = 219.456 m;
short cable = 1

10 nautical mile ≈608 feet;
fathom = 6 feet.

• ISO paper sizes
In the widely used ISO paper size system, the height-to-width ratio of all
pages is the Lichtenberg ratio, i.e.,

√
2. The system consists of formats An,

Bn and (used for envelopes) Cn with 0 ≤ n ≤ 10, having widths 2−
1
4−n

2 ,
2−

n
2 and 2−

1
8−n

2 , respectively. The above measures are in meters; so, the
area of An is 2−n square meter. They are rounded and expressed usually
in millimeters; for example, format A4 is 210 × 297 and format B7 (used
also for EU and US passports) is 88× 125.

• Typographical length units
point (PostScript) = 1

72 inch = 100 gutenbergs = 3.527777778 cm;
point (TeX) (or printer’s point) = 1

72.27 inch = 3.514598035 cm;
point (ATA) = 3.514598 cm;
kyu (Japanese) (or Q, quarter) = 2.5 cm;
point (Didot) = 1

72 French royal inch = 3.761 cm, and cicero = 12 points
(Didot);
pica (Postscript, TeX or ATA) = 12 points in the corresponding system;
twip = 1

20 of a point in the corresponding system.
• Astronomical length units

The Hubble distance (cf. Chap. 26) or Hubble radius, Hubble length
is DH = c

H0
≈ 4.228 Gpc ≈ 13.7 billion light-years (used to measure

distances d > 1
2 Mpc in terms of redshift z: d = zDH if z ≤ 1, and

d = (z+1)2−1
(z+1)2+1DH , otherwise).

gigaparsec = 103 megaparsec;
hubble (or light-gigayear, light-Gyr, light-Ga) = 109 (billion) light-years

≈306.595 megaparsec;
megaparsec = 103 kiloparsec ≈ 3.262 MLY;
MLY = 106 (million) light-years;
kiloparsec = 103 parsecs;
siriometer = 106 AU ≈ 15.813 light-years (about twice the distance

Earth-Sirius);
parsec = 648,000

π AU ≈ 3.261634 light-years = 3.08568 × 1016 m (the
distance from an imaginary star, when the lines drawn from it to the
Earth and Sun form the maximum angle, i.e., parallax of 1 s);

(Julian) light-year ≈ 9.46073 × 1015 m ≈ 5.2595 × 105 light-minutes
≈π × 107 light-seconds (the distance light travels in vacuum in a year;
used to measure interstellar distances);

spat (used formerly) = 1012 m ≈ 6.6846 AU;
astronomical unit (AU) = 1.49597871 × 1011 m ≈ 8.32 light-minutes

(the average distance between the Earth and the Sun; used to measure
distances within the solar system);



27.1 Length scales 501

light-second ≈ 2.998× 108 m;
picoparsec ≈ 30.86 km (cf. other funny units such as microcentury

≈ 52.5 minutes, usual length of lectures, and nanocentury ≈ π seconds).
• Very small length units

Angström (A) = 10−10 m;
angström star (or Bearden unit): A∗ ≈ 1.0000148 angström (used, from

1965, to measure wavelengths of X-rays and distances between atoms in
crystals);

X unit (or Siegbahn unit) ≈ 1.0021×10−13 m (used formerly to measure
wavelength of X-rays and gamma-rays);

Bohr radius (the atomic unit of length): α0, the mean radius,
≈5.291772 × 10−11 m, of the orbit of the electron of a hydrogen atom
(in the Bohr model);

reduced Compton wavelength of electron (i.e., �

mc ) for electron mass me:
λC = αα0 ≈ 3.862×10−13 m, where � is the Dirac constant, c is the speed
of light, and α ≈ 1

137 is the fine-structure constant;
classical electron radius (Lorentz radius): re = αλC = α2α0 ≈

2.81794× 10−15 m;
Compton wavelength of proton: ≈1.32141 × 10−15 m; the majority of

lengths, appearing in experiments on nuclear fundamental forces, are
integer multiples of it.

Planck length (the smallest physical length): lP =
√

�G
c3 ≈ 1.6162 ×

10−35 m, where G is the Newton universal gravitational constant. It is the
reduced Compton wavelength and also half of the gravitational radius for

the Planck mass mP =
√

�c
G ≈ 2.176× 10−8 kg (weight of a mite).

The remaining base Planck units are Planck time tp = lP
c ≈

5.4 × 10−44 s, Planck temperature TP ≈ 1.4 × 1032 K, Planck density
ρP ≈ 5.1× 1096 kg m−3, and Planck charge qP ≈ 1.9× 10−18 C.

In fact, 1038lP ≈ 1 US mile, 1043tP ≈ 54 s, 109mP ≈ 21.76 kg (close
to 1 talent, 26 kg of silver, a unit of mass in Ancient Greece), 1

100 -th of
10−30TP is, roughly, a step on the kelvin scale, and 1020qP per minute
is very close to 3 A of current. Cottrell (http://planck.com/humanscale.
htm) proposed a “postmetric” human-scale adaptation of the Planck units
system based on the above five units, calling them (Planck) mile, minute,
talent, grade and score, respectively.

• Natural units
In the International Metric System SI, velocity V , angular momentum
W and energy E are derived from the primary quantities length L, time T

and mass M by V = L
T , W = ML2

T and E = ML2

T 2 . Thus L = V W
E , T = W

E

and M = E
V 2 . For the speed of light c = 2.99792458 × 108 m s−1 and the

Dirac constant � = 6.5821 × 10−25 GeV s, the equation c� = 0.197 ×
10−15 GeV m holds. Gev (formerly BeV) means billion-electron-volts.
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It is convenient, in high energy (i.e., short distance) Physics, to redefine
all units by setting c = � = 1. The primary natural units are c = 1 (for
velocity V ), � = 1 (for angular momentum W ) and 1 Gev = 1.602×10−10 J
(for energy).

Length L, time T and mass M are now the derived quantities 1
E , 1

E and
E with conversions 1 GeV−1 = 0.197× 10−15 m, 1 GeV−1 = 6.58× 10−25 s
and 1 GeV= 1.8× 10−27 kg, respectively.

• Length scales in Physics
In Physics, a length scale is a length range (one or several orders of
magnitude) within which given phenomena are consistently described by
a theory. Roughly, the limit scales correspond to Cosmology and High
Energy Particle Physics.

The macroscopic scale of our real world is followed by the mesoscopic
scale (or nanoscale, ∼10−8 m) where materials and phenomena can be
still described continuously and statistically, and average macroscopic
properties (for example, temperature and entropy) are relevant.

In terms of their concept of elementary constituents, Chemistry
(molecules, atoms), Nuclear (proton, neutron, electron, neutrino, photon),
Hadronic (exited states) and Standard Model (quarks and leptons) are
applicable at scales ≥10−10, ≥10−14, ≥10−15 and ≥10−18 m, respectively.

In the atomic scale, ∼10−10 m, the individual atoms should be seen as
separated. The QCD (Quantum Chromodynamics) scale, ∼10−15 m, deals
with strongly interacting particles.

The electroweak scale, ∼10−18 m (100–1,000 GeV, in natural units, i.e.,
in terms of energy), and the Planck scale, ∼10−35 m (∼1019 GeV) follow.

In between, the GUT (Grand Unification Theories) scale, 1014–1016 GeV
is expected with grand unification of non-gravitational fundamental forces
at the length 10−28 m. The compactification scale should give the size of
compact extra-dimensions predicted by M -theory in order to derive all
forces from a gravitational force acting on strings in high-dimensional
space.

The electroweak scale will be probed by LHC (Large Hadron Collider)
and ILC (International Linear Collider). A new proposal moves the string
scale from 10−34 to 10−19 m (1 TeV region) and expects the corresponding
spatial extra-dimensions to be compactified to a “large” radius of some
fraction of a millimeter. LHC will test it; in particular, by looking for
putative deviations from the Newton 1

d2 law of gravitation which was not
tested in the sub-millimeter range below 6× 10−5 m.

Both General Relativity and Quantum Mechanics (with their space–time
being a continuous manifold and discrete lattice, respectively) indicate
some form of minimum length where, by the Uncertainty Principle, the
very notion of distance loses operational meaning. At short distances,
classical geometry is replaced by “quantum geometry” described by 2D
conformal field theory. In String Theory, space–time geometry is not
fundamental and, perhaps, it only emerges at larger distance scales.



27.2 Orders of magnitude for length 503

The T-duality is a symmetry between small and large distances. Two
superstring theories are T-dual if one compactified on a space of large
volume is equivalent to the other compactified on a space of small volume.

Within the Big Bang paradigm humans are roughly in the middle of
nature’s hierarchy of size scales. It supposes a minimal length scale and a
smooth distribution (homogeneous and isotropic) at a large enough scale.
But a new infinite fractal hierarchy paradigm posits a fractal universe
infinite in all directions fractal universe without any boundary, limit to
size scales and preferred reference frame. Parts of the Universe may be
created or annihilated, while this fractal hierarchy remains unchanged
without any temporal limits. Inflation (1050 times increase in 10−32 sec;
cf. Eternal Inflation Theory by Guth, 2007) is, was and always will be
occurring on an infinite number of size scales. Pietonero et al. (2008)
claim that the Universe is fractal at large with fractal dimension ≈2.
Quantum fractal space–time is proposed also; it is seen as 2D at the
Planck scale and gradually becomes 4D at larger scales.

Yet another paradigm – Loop Quantum Cosmology (Bojowald 2000) –
posits that our universe emerged from a pre-existing one that had been
expanding and then contracted due to gravity. At around Planck density
(5.1 × 1096 kg m−3, i.e., a trillion suns compressed down to the size of
a proton), the compressed space–time exerts outward force overriding
gravity. The universe rebounds and keep expanding because of the bounce
inertia.

27.2 Orders of magnitude for length

In this section we present a selection of orders of length magnitudes, expressed
in meters.

1.616 × 10−35: Planck length (smallest physical length). At this scale is
expected Wheeler’s “quantum foam” (violent warping and turbulence of
space–time, no smooth spatial geometry; the dominant structures are little
multiply-connected wormholes and bubbles popping into existence and back
out of it). But if the Holographic Principle holds, i.e., space-time is a grainy
hologram, then the scale of grains is ≈10−16 m;

10−34: length of a putative string in M-theory, which suppose that all
forces and elementary particles arise by vibration of such strings, and hopes
to unify Quantum Mechanics and General Relativity;

10−24 = 1 yoctometer;
10−21 = 1 zeptometer;
10−18 = 1 attometer: weak nuclear force range, size of a quark;
10−15 = 1 femtometer (formerly, fermi);
1.6× 10−15: diameter of proton;
1.3× 10−15: strong nuclear force range, medium-sized nucleus;
10−12 = 1 picometer (formerly, bicron or stigma): distance between

atomic nuclei in a White Dwarf star;



504 27 Length Measures and Scales

10−11: wavelength of hardest (shortest) X-rays and largest wavelength of
gamma rays;

5 × 10−11: diameter of the smallest (hydrogen H) atom; 1.5 × 10−10: di-
ameter of the smallest (hydrogen H2) molecule;

10−10 = 1 angström: diameter of a typical atom, limit of resolution of the
electron microscope;

1.54× 10−10: length of a typical covalent bond (C–C);
3.4× 10−10: distance between base pairs in DNA molecule;
10−9 = 1 nanometer: diameter of typical molecule;
10−8: wavelengths of softest X-rays and most extreme ultraviolet;
1.1× 10−8: diameter of prion (smallest self-replicating biological entity);
4.5×10−8: the smallest feature of computer chip (length of transistor gate

dielectrics from high-K substitutes of silicon) in 2007;
9× 10−8: human immunodeficiency virus, HIV; in general, known viruses

range from 2× 10−8 (adeno-associated virus) to 8× 10−7 (Mimivirus);
10−7: size of chromosomes, maximum size of a particle that can fit through

a surgical mask;
2× 10−7: limit of resolution of the light microscope;
3.8–7.4×10−7: wavelength of visible (to humans) light, i.e., the color range

of purple through red (the sunlight wavelength is 560 nm);
10−6 = 1 micrometer (formerly, micron);
10−6 − 10−5: diameter of a typical bacterium; in general, known (in non-

dormant state) bacteria range from 1.5 × 10−7 (Micoplasma genitalium:
“minimal cell”) to 7× 10−4 (Thiomargarita of Namibia);

7× 10−6: diameter of the nucleus of a typical eukaryotic cell;
8×10−6: mean width of human hair (ranges from 1.8×10−6 to 18×10−6);
10−5: typical size of (a fog, mist, or cloud) water droplet;
10−5, 1.5× 10−5, and 2× 10−5: widths of cotton, silk, and wool fibers;
2 × 10−4: approximately, the lower limit for the human eye to discern an

object;
5× 10−4: diameter of a human ovum, MEMS micro-engine;
10−3 = 1 millimeter;
5×10−3: length of average red ant; in general, insects range from 1.7×10−4

(Megaphragma caribea) to 3.6× 10−1 (Pharnacia kirbyi);
8.9 × 10−3: gravitational radius (2Gm

c2 : the value below which mass m
collapses into a black hole) of the Earth;

10−2 = 1 centimeter;
10−1 = 1 decimeter: wavelengths of the lowest microwave and highest

UHF radio frequency, 3 GHz;
1 meter: wavelength of the lowest UHF and highest VHF radio frequency,

300 MHz;
1.435: standard gauge (the distance between the rails) of a railway

track;
2.77–3.44: wavelength of the broadcast radio FM band, 108–87 MHz;
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5.5, 33.3, and 55: height of the tallest animal (the giraffe), length of a blue
whale (the largest animal), and length of the longest animal (bootlace worm
Lineus longissimus);

10 = 1 decameter: wavelength of the lowest VHF and highest shortwave
radio frequency, 30 MHz;

29: highest measured ocean wave, while 524 m and 1 km are estimated
heights of mega-tsunamis on 10 July 1958 in Lituya Bay, Alaska, and 65
million years ago, in Yucatan (impact of the K-T asteroid that may have
killed off the dinosaurs);

100 = 1 hectometer: wavelength of the lowest shortwave radio frequency
and highest medium wave radio frequency, 3 MHz;

115.5: height of the world’s tallest tree, a sequoia Coast Redwood;
137, 300, 509, 553, and 818: heights of the Great Pyramid of Giza, Eiffel

Tower, Taipei 101 Tower, CN Tower in Toronto, and, planned to open in
2009, Burj Dubai;

187–555: wavelength of the broadcast radio AM band, 1,600–540 kHz;
340: distance which sound travels in air in 1 s;
103 = 1kilometer;
≈1.1 × 103: mean diameter of asteroid 1950 DA which is predicted, with

probability 1
300 , to collide with Earth on 16 March 2880 and may be devas-

tating to human civilization;
2.95× 103: gravitational radius of the Sun;
3.79× 103: mean depth of oceans;
104: wavelength of the lowest medium wave radio frequency, 300 kHz;
8.8× 103 and 10.9× 103: height of the highest mountain, Mount Everest,

and depth of the Mindanao Trench;
5× 104 = 50 km: the maximal distance at which the light of a match can

be seen (at least 10 photons arrive on the retina during 0.1 s);
8× 104 = 80 km: thickness of the ozone layer;
1.11× 105 = 111 km: 1◦ of latitude on the Earth;
1.5 × 104 − 1.5 × 107: wavelength range of audible (to humans) sound

(20 Hz–20 kHz);
1.69 × 105: length of the world’s longest tunnel, Delaware Water Supply,

New York;
2 × 105: wavelength (the distance between the troughs at the bottom of

consecutive waves) of a typical tsunami;
4.83× 105: diameter of Wilkes Land (Antarctica), the largest crater. This

impact is suspected to cause the worst, Permian, mass extinction of life 250
millions years ago;

106 = 1 megameter, thickness of Earth’s atmosphere;
2.4 × 106: diameter of the plutoid Eris, the largest (≈100 km larger than

Pluto) dwarf planet (round planetoids that have not “cleared the neighbor-
hood” through their gravitational effects), at 67.67 AU from Sun; the smallest
dwarf planet is Ceres (the largest asteroid in the Asteroid belt) of diameter
9.42× 105 and at 2.77 AU;
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3.48× 106: diameter of the Moon;
5× 106: diameter of LHS 4033, the smallest known White Dwarf star;
6.4× 106 and 6.65× 106: length of the Great Wall of China and length of

the Nile river;
6.8× 106: diameter of the Earth’s core;
1.28 × 107 and 4.01 × 107: Earth’s equatorial diameter and length of the

equator;
3.84× 108: Moon’s orbital distance from the Earth;
109 = 1 gigameter;
1.39× 109: diameter of the Sun;
1.4 × 109: diameter of the nebulous spherical envelope of the comet

17P/Holmes on 9 November 2007, produced by dust ejected from its ice/rock
nucleus, 3.6 km in diameter.

5.8× 1010: orbital distance of Mercury from the Sun;
1.496× 1011 (1 astronomical unit, AU): mean distance between the Earth

and the Sun (orbital distance of the Earth);
5.7× 1011: length of longest observed comet tail (Hyakutake 1996);
1012 = 1 terameter (formerly, spat);
2.5–2.9 × 1012: diameter of the largest known supergiant star, VY Canis

Majoris;
39.5 AU ≈ 5.9× 1012: radius of the inner solar system (orbital distance of

Pluto);
50 AU: distance from the Sun to the Kuiper cliff, the abrupt unexplained

outer boundary of the Kuiper belt (the region, 30–50 AU around Sun, of
trans-Neptunian objects);

523 AU ≈ 7.8× 1013: orbital distance of Sedna, the farthest known object
in the solar system;

1015= 1 petameter;
1.1 light− year ≈ 1016 ≈ 70,000AU ≈ 0.337 pc: the closest passage

(in 1,360,000 years) of Giese 710, a red dwarf star expected to perturb the
Oort Cloud dangerously;

50,000–100,000 AU: distance from the Sun of the outer boundary of the
Oort cloud (supposed cloud of long-period comets) where galactic tide over-
takes Sun’s gravity;

3.99 × 1016 = 266, 715 AU = 4.22 light-years = 1.3 pc: distance from the
Sun to Proxima Centauri, the nearest star;

8.6 light-years ≈8.1 × 1016: distance from the Sun to Sirius, the brightest
star of our sky;

1018 = 1 exameter;
1.57× 1018 ≈ 50.9 pc: distance to supernova 1987A;
2.62×1020 ≈ 8.5 kpc (2.77×104 light-years): distance from the Sun to the

geometric center of our Milky Way galaxy (in giant black hole Sagittarius
A∗);

3.98×1020 ≈ 12.9 kpc: distance to Canis Major Dwarf, the closest satellite
galaxy to our Solar System (LMC, the largest one, is at 50 kps);
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9.46 × 1020 ≈ 30.66 kpc ≈105 light-years: diameter of the galactic disk of
our Milky Way galaxy;

1021 = 1 zettameter;
2.23 × 1022 = 725 kpc: distance to Andromeda Nebula, the closest (and

approaching by about 140 km s−1) large galaxy;
5× 1022 = 1.6 Mpc: diameter of the Local Group of galaxies;
5.7 × 1023 = 60 MLY: distance to Virgo, the nearest (and approaching)

major cluster; it dominates the Local Supercluster and contains extragalactic
stars and a dark matter galaxy;

1024 = 1 yottameter;
2× 1024 = 60 Mpc: diameter of the Local Supercluster;
2.36 × 1024 = 250 MLY: distance to the Great Attractor (a gravitational

anomaly of ≈5×1016 solar masses, in the direction of the Shapley Superclus-
ter, the largest known concentration of matter) where our galaxy is going;

1,370 MLY: length of the Sloan Great Wall of galaxies, the largest observed
superstructure in the Universe (the space looks uniform on larger scales: “End
of Greatness”). The diameter of the largest known void is ≈3.5 light-Gyr;

8,000 MLY ≈ 7.57× 1025 (redshift z ≥ 1.0): typical distance to the source
of a GRB (Gamma Ray Burst), while the most distant event known, GRB
050904, has z = 6.3, and the most distant event ever seen by human eyes
without optical aid on record, GRB 080319B (19 March 2008), has z = 0.94,
i.e., ≈7,500 MLY;

12,080 MLY= 3,704 Mpc: distance to the quasar SDSS J1148+ 5251 (red-
shift z = 6.43, while 6.5 is supposed to be the “wall of invisibility” for visible
light);

13,230 MLY: near-infrared observed distance to the farthest known in
2008 galaxy Abell 1835 IR1916 (redshift 10). The formation of the first
stars (at the end of the Dark Age, when matter consisted of clouds of
cold hydrogen) corresponds to z ≈ 20 when the Universe was ≈200 million
years old;

1.3 × 1026 = 13.7 light-Gyr = 4.22 Gpc (redshift z ≈ 1,089): the distance
that cosmic background radiation has traveled since the Big Bang (Hubble
radius DH = c

H0
, the cosmic light horizon, the age of the Universe).

4.3 × 1026 = 46 light-Gyr: particle horizon (the present comoving dis-
tance to the edge of the observable Universe; it is larger than the Hubble
radius, since the Universe is expanding). But if the topology of the Universe
is non-simply connected, then it is compact and the estimated maximum
length scale is only 5–15% of Hubble radius;

Projecting into the future: the scale of the Universe will be 1031 in
1014 years (last red dwarf stars die) and 1037 in 1020 years (stars have left
galaxies). If protons decay, their half-life is ≥1035 years; the estimated num-
ber of protons in the Universe is 1077;

The Universe, in the current Heat Death scenario, achieves beyond
101,000 years such a low-energy state, that quantum events became ma-
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jor macroscopic phenomena, and space–time looses its usual meaning again,
as below the Planck time or length;

The hypothesis of parallel universes estimates that one can find another
identical copy of our Universe within the distance 1010118

m.



Chapter 28
Distances in Applied Social Sciences

In this chapter we present selected distances used in real-world applications of
Human Sciences. In this and next chapter, the expression of distances ranges
from numeric (say, in meters) to ordinal (as a degree assigned according
to some rule). Depending on the context, the distances are either practi-
cal ones, used in daily life and work outside of science, or those used as a
metaphor for remoteness (the fact of being apart, being unknown, coldness of
manner, etc.).

28.1 Distances in Psychology and Sociology

• Approximative human-scale distances
An arm’s length is a distance (about 0.7 m, i.e., within personal dis-
tance) sufficient to exclude intimacy, i.e., discouraging familiarity or
conflict; its analogs are: Italian braccio, Turkish pik, and Old Russian
sazhen. The reach distance is the difference between maximum reach
and arm’s length distance.

The striking distance is a short distance (say, through which an object
can be reached by striking).

The spitting distance is a very close distance.
The shouting distance is a short, easily reachable distance.
A stone’s throw is a distance of about 25 fathoms (46 m).
The hailing distance is the distance within which the human voice can

be heard.
The walking distance is the distance normally (depending on the con-

text) reachable by walking. For example, some UK high schools define 2
and 3 miles as the statutory walking distance for children younger and
older than 11 years. Pace out means to measure distance by pacing (walk-
ing with even steps).

The acceptable commute distance, in Real Estate, is the distance
that can be covered in an acceptable travel time and increases with better
connectivity.

M.M. Deza and E. Deza, Encyclopedia of Distances, 509
DOI 10.1007/978-3-642-00234-2 28, c© Springer-Verlag Berlin Heidelberg 2009
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• Optimal eye-to-eye distance
The optimal eye-to-eye distance between two persons was measured
for some types of interaction. For example, such optimal viewing distance
between a baby and its mother’s face, with respect to immature motor and
visual systems of the newborn, is 20–30 cm. Haynes, White, Held (1965)
showed that during the first weeks of life the accommodation system does
not yet function and the lens of the newborn is locked at the focal dis-
tance of about 19 cm.

• Distances between people
In [Hall69], four interpersonal bodily distances were introduced: the
intimate distance for embracing, touching or whispering (15–45 cm),
the personal-casual distance for conversations among good friends
(45–120 cm), the social-consultative distance for conversations among ac-
quaintances (1.2–3.6 m), and the public distance used for public speaking
(over 3.6 m). Cf. distances in Animal Behavior in Chap. 23.

To each of those proxemics distances corresponds an intimacy/confidence
degree and appropriated sound level. The distance which is appropriate for
a given social situation depends on culture, gender and personal preference.
For example, under Islamic law, proximity (being in the same room or
secluded place) between a man and a woman is permitted only in the
presence of their mahram (a spouse or anybody from the same sex or a
pre-puberty one from the opposite sex). For an average westerner, personal
space is about 70 cm in front, 40 cm behind and 60 cm on either side.

Example of other cues of nonverbal communication is given by angles
of vision which individuals maintain while talking. The people angular
distance in a posture is the spatial orientation, measured in degrees,
of an individual’s shoulders relative to those of another; the position of
a speaker’s upper body in relation to a listener’s (for example, facing
or angled away); the degree of body alignment between a speaker and
a listener as measured in the coronal (vertical) plane which divides the
body into front and back. This distance reveals how one feels about people
nearby: the upper body unwittingly angles away from disliked persons and
during disagreement.

Distancing behavior of people can be measured, for example, by the
stop distance (when the subject stops an approach since she/he begins to
feel uncomfortable), or by the quotient of approach, i.e., the percentage of
moves made that reduce the interpersonal distance to all moves made.

• Psychological Size and Distance Scale
The CID (Comfortable Interpersonal Distance) scale by Duke and Nowicky
(1972) consists of a center point 0 and eight equal lines emanating from it.
Subjects are asked to imagine themselves on the point 0 and to respond to
descriptions of imaginary persons by placing a mark at the point on a line
at which they would like the imagined person to stop, that is, the point
at which they would no longer feel comfortable. CID is then measured in
mm from 0.
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The GIPSDS (Psychological Size and Distance Scale) by Grashma
and Ichiyama (1986) is a 22-item rating scale assessing interpersonal status
and affect. Subjects are asked to draw circles, representing the drawer and
other significant persons, so that the radii of the circles and the distances
between them indicate the thoughts and feelings about their relationship.
Then these distances and radii, measured in mm, represent psychological
distance and status, respectively.

• Symbolic distance effect
In Psychology, the brain compares two concepts (or objects) with higher
accuracy and faster reaction time if they differ more on the relevant dimen-
sion. For example, the performance of subjects when comparing a pair of
positive numbers (x, y) decreases for smaller |x− y| (behavioral numerical
distance effect).

The related magnitude effect (or Weber–Fechner law effect) is that per-
formance decreases for larger min{x, y}. Those effects are valid also for
congenitally blind people; they learn spatial relation via tactile input (in-
terpreting, say, numerical distance by placing pegs in a peg board).

A current explanation is that there exists a mental line of numbers,
which is oriented from left to right (as 2, 3, 4) and non-linear (more mental
space for smaller numbers). So, close numbers are easier to confuse since
they are represented on the mental line at adjacent and not always precise
locations. The quantity system providing a semantic representation of the
size and distance relations between numbers is thought to be located in
the parietal cortex.

• Distancing
Distancing is any behavior or attitude causing to be or appearing to be
at a distance.

In Martial Arts, distancing is the selection of an appropriate com-
bat range, i.e., distance from the adversary. For other examples of spatial
distancing, see distances between people and, in Chap. 29, safe dis-
tancing from a risk factor.

In Mediation (a form of alternative dispute resolution), distancing is
the impartial and non-emotive attitude of the mediator versus the dis-
putants and outcome.

In Psychoanalysis, distancing is the tendency to put persons and events
at a distance. It concerns both the patient and the psychoanalyst.

In Developmental Psychology, distancing (Werner and Kaplan 1964, for
deaf-blindpatients) is theprocess of establishinga subject individuality as an
essential phase (prior to symbolic cognition and linguistic communication)
in learning to treat symbols and referential language. For Sigel (1970,
for preschool children), distancing is the process of the development of
cognitive representation: cognitive demands by the teacher or the parent
help to generate a child’s representational competence.

In books by Kantor, distancing refers to APD (Avoidant Personal-
ity Disorder): fear of intimacy and commitment (confirmed bachelors,
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“femmes fatales,” etc.) The distancing language is phrasing used by
a person to avoid thinking about the subject or content of his own state-
ment (for example, referring to death).

Cf. technology-related distancing and antinomy of distance.
• Distance education

Distance education is the process of providing instruction when students
and instructors are separated by physical distance, and technology is used
to bridge the gap. Distance learning is the desired outcome of distance
education.

The transactional distance (Moore 1993) is a perceived degree of
separation during interaction between students and teachers, and within
each group. This distance decreases with dialog (a purposeful positive in-
teraction meant to improve the understanding of the student), with larger
autonomy of the learner, and with lesser predetermined structure of the
instructional program.

• Moral distance
The moral distance is a measure of moral indifference or empathy toward
a person, group of people, or events.

The (moral) distancing is a separation in time or space that reduces
the empathy that a person may have for the suffering of others, i.e., that
increases moral distance. In particular, distantiation is the tendency to
distance oneself (physically or socially, by segregation or congregation)
from those that one does not value. Cf. distanciation.

On the other hand, the term good distancing (Sartre 1943, and Ricoeur
1995) means the process of deciding how long a given ethical link should be.

• Emotional distance
The emotional distance (or psychic distance) is the degree of emotional
detachment (toward a person, group of people or events), aloofness, indif-
ference by personal withdrawal, reserve.

The Bogardus Social Distance Scale (cf. social distance) measures,
in fact, not social but this emotional distance; it offers following eight
response items: would marry, would have as a guest in my household,
would have as next door neighbor, would have in neighborhood, would
keep in the same town, would keep out of my town, would exile, would
kill. Dodd and Nehnevasja attached, in 1954, increasing distances of 10t m,
0 ≤ t ≤ 7, to these eight levels of the Bogardus scale.

The propinquity effect is the tendency for people to get emotionally
involved, as to form friendships or romantic relationships, with those who
have higher propinquity (physical/psychological proximity) with them, i.e.,
whom they encounter often. Walmsley (1978) proposed that emotional
involvement decreases as d−

1
2 with increasing subjective distance d.

• Social distance
In Sociology, the social distance is the extent to which individuals or
groups are removed or excluded from participating in one another’s lives;
a degree of understanding and intimacy which characterize personal and
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social relations generally. This notion was originated by Simmel in 1903; in
his view, the social forms are the stable outcomes of distances interposed
between subject and object.

The Bogardus Social Distance Scale (cf. emotional distance) is scored
so that the responses for each ethnic/racial group are averaged across all
respondents which yields a RDQ (racial distance quotient) ranging from
1.00 to 8.00.

An example of relevant models: Akerlof [Aker97] defines an agent x as
a pair (x1, x2) of numbers, where x1 represents the initial, i.e., inherited,
social position, and the position expected to be acquired, x2. The agent x
chooses the value x2 so as to maximize

f(x1) +
∑

y 	=x

e

(h + |x1 − y1|)(g + |x2 − y1|)
,

where e, h, g are parameters, f(x1) represents the intrinsic value of x, and
|x1−y1|, |x2−y1| are the inherited and acquired social distances of x from
any agent y (with the social position y1) of the given society.

• Rummel sociocultural distances
Rummel defined [Rumm76] the main sociocultural distances between two
persons as follows:

1. Personal distance: one at which people begin to encroach on each
other’s territory of personal space.

2. Psychological distance: perceived difference in motivation, temper-
aments, abilities, moods, and states (subsuming intellectual distance).

3. Interests-distance: perceived difference in wants, means, and goals
(including ideological distance on socio-political programs).

4. Affine distance: degree of sympathy, liking or affection between the
two.

5. Social attributes distance: differences in income, education, race,
sex, occupation, etc.

6. Status-distance: differences in wealth, power, and prestige (including
power distance).

7. Class-distance: degree to which one person is in general authorita-
tively superordinate to the other.

8. Cultural distance: differences in meanings, values and norms reflected
in differences in philosophy-religion, science, ethics-law, language, and
fine arts.

• Cultural distance
The cultural distance between countries x = (x1, . . . , x5) and y =
(y1, . . . , y5) (usually, US) is derived (in [KoSi88]) as the following compos-
ite index

5∑

i=1

(xi − yi)2

5Vi
,
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where Vi is the variance of the index i, and the five indices repre-
sent [Hofs80]:

1. Power distance (preferences for equality)
2. Uncertainty avoidance (risk aversion)
3. Individualism versus collectivism
4. Masculinity versus femininity (gender specialization)
5. Confucian dynamism (long-term versus short-term orientation)

The above power distance measures the extent to which the less powerful
members of institutions and organizations within a country expect and
accept that power is distributed unequally, i.e., how much a culture has
respect for authority. For example, Latin Europe and Japan fall in the
middle range.

Wirsing (1973) defined social distance as a “symbolic gap” between
rulers and ruled designed to set apart the political elite from the public.
It consists of reinforced and validated ideologies (a formal constitution, a
historical myth, etc.).

Davis (1999) theorized social movements (in Latin America) in terms of
their shared distance from the state: geographically, institutionally, socially
(class position and its economic counterpart, income level) and culturally.
For example, the groups distanced from the state on all four dimensions
are more likely to engage in revolutionary action.

Henrikson (2002) identified the following Political Geography distances
between countries: attributional distance (according to cultural character-
istics, say, democracy or not), gravitational distance (according to which
political and other powers “decay”) and topological distance (remoteness
of countries increases when others are located in between them).

28.2 Distances in Economics and Human
Geography

• Effective trade distance
The effective trade distance between countries x and y with popula-
tions x1, . . . , xm and y1, . . . , yn of their main agglomerations is defined in
[HeMa02] as

(
∑

1≤i≤m

xi∑
1≤t≤m xt

∑

1≤j≤n

yj∑
1≤t≤n yt

dr
ij)

1
r ,

where dij is the bilateral distance (in kilometers) of corresponding agglom-
erations xi, yi, and r measures the sensitivity of trade flows to dij .
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As an internal distance of a country, measuring the average distance
between producers and consumers, Head and Mayer [HeMa02] proposed
0.67

√
area

π .
• Technology distances

The technological distance between two firms is a distance (usually,
χ2- or cosine distance) between their patent portfolios, i.e., vectors of
the number of patents granted in (usually, 36) technological sub-categories.
Other measures are based on the number of patent citations, co-authorship
networks, etc.

Granstrand’s cognitive distance between two firms is the Steinhaus
distance μ(A�B)

μ(A∪B) = 1− μ(A∩B)
μ(A∪B) between their technological profiles (sets

of ideas) A and B seen as subsets of a measure space (Ω,A, μ).
The economic model of Olsson (2000) defines the metric space (I, d) of

all ideas (as in human thinking), I ⊂ R
n
+, with some intellectual distance d.

The closed, bounded and connected knowledge set At ⊂ I extends with
time t. New elements are, normally, convex combinations of previous ones:
innovations within gradual technological progress. Exceptionally, break-
throughs (Kuhn’s paradigm shifts) occur. The similar notion of thought
space (an externalized mental space of ideas/knowledge and relationships
among them in thinking) was used in Sumi, Hori and Ohsuga (1997) for
computer-aided thinking with text; they proposed a system of mapping
text-objects into metric spaces.

Introduced in Patel (1965) the economic distance between two coun-
tries is the time (in years) for a lagging country to catch up to the same per
capita income level as the present one of an advanced country. Introduced
in Fukuchi and Satoh (1999) the technology distance between countries
is the time (in years) when a lagging country realizes a similar techno-
logical structure as the advanced one has now. The basic assumption of
the Convergence Hypothesis is that the technology distance between two
countries is smaller than the economic one.

• Production Economics distances
In quantitative Economics, a technology is modeled as a set of pairs (x, y),
where x ∈ R

m
+ is an input vector, y ∈ R

m
+ is an output vector, and x

can produce y. Such set T should satisfy standard economical regularity
conditions.

The technology directional distance function of input/output x, y
toward (projected and evaluated) a direction (−dx, dy) ∈ R

m
− × R

m
+ is

sup{k ≥ 0 : ((x− kdx), (y + kdy)) ∈ T}.

The Shephard output distance function is sup{k ≥ 0 : (x, y
k ) ∈ T}.

The frontier fs(x) is the maximum feasible output of a given input x
in a given system (or year) s. The distance to frontier (Färe, Crosskopf
and Lovell 1994) of a production point (x, y), where y = gs(x), is gs(x)

fs(x) .
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The Malmquist index measuring the change in TFP (total factor pro-
ductivity) between periods s, s′ (or comparing to another unit in the same
period) is g′

s(x)
fs(x) . The term distance to frontier is also used for the inverse

of TFP in a given industry (or of GDP per worker in a given country)
relative to the existing maximum (the frontier, usually, US).

Consider a production set T ⊂ R
n1 × R

n2 (input, output). The measure
of the technical efficiency, given in Briec and Lemaire (1999) is the point-
set distance infy∈we(T ) ||x−y|| (in a given norm ||.|| on R

n1+n2) from x ∈ T
to the weakly efficient set we(T ). It is the set of minimal elements of the
poset (T,
) where the partial order 
 (t1 
 t2 if and only if t2 − t1 ∈ K)
is induced by the cone K = int(Rn1

>0 × R
n2
>0) + {0}.

• Action distance
The action distance is the distance between the set of information gen-
erated by the Active Business Intelligence system and the set of actions
appropriate to a specific business situation. Action distance is the measure
of the effort required to understand information and to effect action based
on that information. It could be the physical distance between information
displayed and action controlled.

• Death of Distance
Death of Distance is the title of the influential book [Cair01] arguing
that the telecommunication revolution (the Internet, mobile telephones,
digital television, etc.) initiated the “death of distance” implying fun-
damental changes: three-shift work, lower taxes, prominence of English,
outsourcing, new ways of government control and citizens communication,
etc. Physical distance (and so, Economic Geography) do not matter, we
all live in a “global village.” Thomas Friedman (2005) announced: “The
World is flat.” Bill Gates claimed (Financial Times 2006): “With the In-
ternet having connected the world together, someone’s opportunity is not
determined by geography.” The proportion of long-distance relationships
in foreign relations increased.

Also the “death of distance” allows also both management-at-a-distance
and concentration of elites within the “latte belt.”

Similarly (see [Ferg03]), steam-powered ships and the telegraph (as rail-
roads previously and cars later) led, via falling transportation costs, to
the “annihilation of distance” in the nineteenth and twentieth centuries.
Further in the past, archaeological evidence points out the appearance of
systematic long-distance trade (≈140,000 years ago), and the innovation of
projectile weapons (40,000 years ago) which allowed humans to kill large
game (and other humans) from a safe distance.

But modern technology eclipsed distance only in that the time to reach
a destination has shrunk (except where places previously well connected,
say, by railroads have fallen off the beaten track). In fact, the distance
(cultural, political, geographic, and economic) “still matters” for, say, a
company’s strategy on the emerging markets, for political legitimacy, etc.
Bilateral trade decreases with distance; Disdier and Head (2004) report
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a slight increase, over the last century, of this negative impact of dis-
tance. Webb (2007) claims that an average distance of trade in 1962 of
4,790 km changed only to 4,938 km in 2000. Partridge, Rickman, Ali and
Olfert (2007) report that proximity to higher-tiered urban centers (with
their higher-order services, urban amenities, higher-paying jobs, lower-cost
products) is an increasingly important positive determinant of local job
growth.

Moreover, increased access to services and knowledge exchange requires
more face-to-face interaction and so, an increase in the role of distance.
Despite globalization, new communication technologies and the demateri-
alization of economy, economic and innovation activity are highly localized
spatially and tend to agglomerate more. Also, the social influence of indi-
viduals, measured by the frequency of memorable interactions, is heavily
determined by distance.

In military affairs, Boulding (1965) and Bandow (2004) argued that
twentieth-century technology reduced the value of proximity for the pro-
jection of military power because of “a very substantial diminution in
the cost of transportation of armed forces” and “an enormous increase in
the range of the deadly projectile” (say, strategic bombardment). It was
used as partial justification for the withdrawal of US forces from overseas
bases in 2004. But Webb (2007) counterargues that distance retains its im-
portance: for example, any easing of transport is countered by increased
strain put upon transport modes since both sides will take advantage of
the falling costs to send more supplies. Also, by far the greatest movement
of logistics continues to be conducted by sea, with little improvement in
speed since 1900.

• Technology-related distancing
The Moral Distancing Hypothesis postulates that technology increases the
propensity for unethical conduct by creating a moral distance between
an act and the moral responsibility for it.

Print technologies divided people into separate communication systems
and distanced them from face-to-face response, sound and touch. Televi-
sion involved audile-tactile senses and made distance less inhibiting, but
it exacerbated cognitive distancing: story and image are biased against
space/place and time/memory. This distancing has not diminished with
computers; interactivity has however increased. In terms of Hunter: tech-
nology only re-articulates communication distance, because it also must be
regarded as the space between understanding and not. The collapsing of
spatial barriers diminishes economic but not social and cognitive distance.

On the other hand, the Psychological Distancing Model in [Well86]
relates the immediacy of communication to the number of information
channels: sensory modalities decrease progressively as one moves from
face-to-face to telephone, videophone, and e-mail. On-line settings tend
to filter out social and relational cues. Also, the lack of instant feedback,
because of e-mail communication, is asynchronous and can be isolating:
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it and low bandwidth limit visual and aural cues. For example, moral
and cognitive effects of distancing in on-line education are not known at
present.

• Relational proximity
Economic Geography considers, as opposed to geographical proximity, dif-
ferent types of proximity (organizational, institutional, cognitive, etc.).
In particular, relational proximity (or trust-based interaction between
actors) is an inclusive concept of the benefits derived from spatially local-
ized sets of economic activities. In particular, it generates relational capital
through the dynamic exchange of locally produced knowledge.

The five dimensions of relational proximity are proximity: of contact
(directness), through time (continuity, stability), in diversity (multiplicity,
scope), in mutual respect and involvement (parity), of purpose (common-
ality).

Individuals are close to each other in a relational sense when they share
the same interaction structure, make transactions or realize exchanges.
They are cognitively close if they share the same conventions and have
common values and representations (including knowledge and technologi-
cal capabilities).

Bouba-Olga and Grossetti (2007) divide also socio-economic proximity
into relational proximity (role of social networks) and mediation proximity
(role of resources such as newspapers, directories, Internet, agencies, etc.)

• Commuting distance
The commuting distance is the distance (or travel time) separating work
and residence when they are located in separated places (say, municipali-
ties).

• Migration distance (in Economics)
The migration distance, in Economic Geography, is the distance
between the geographical centers of the municipalities of origin and
destination.

• Gravity models
The general gravity model for social interaction is given by the gravity
equation

Fij = a
MiMj

Db
ij

,

where Fij is the “flow” (or “gravitational attraction,” interaction, mass-
distance function) from location i to location j (alternatively, between
those locations), Dij is the “distance” between i and j, Mi and Mj are
relevant economic “masses” of i and j, and a, b are parameters. Cf. New-
ton’s law of universal gravitation in Chap. 24, where b = 2. The first
instances were formulated by Reilly (1929), Stewart (1948), Isard (1956)
and Tinbergen (1962).

If Fij is a monetary flow (say, export values), then M is GDP (gross
domestic product), and Dij is the distance (usually the great circle
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distance between the centers of countries i and j). For trade, the true
distances are different and selected by economic considerations. But the
distance is a proxy for transportation cost, the time elapsed during ship-
ment, cultural distance, and the costs of synchronization, communication,
transaction. The distance effect on trade is measured by the parameter
b; it is 0.94 in Head (2003) and 0.6 in Leamer and Levinsohn (1994).

If Fij is a people (travel or migration) or message flow, then M is the
population size, and Dij is the travel or communication cost (distance,
time, money).

If Fij is the force of attraction from location i to location j (say, for
a consumer, or for a criminal), then, usually b = 2. Reilly’s law of retail
gravitation is that, given a choice between two cities of sizes Mi,Mj and
at distances Di,Dj , a consumer tends to travel further to reach the larger
city with the equilibrium point defined by

Mi

D2
i

=
Mj

D2
j

.

• Distance decay (in Spatial Interaction)
In general, distance decay or distance effect (cf. Chap. 29) is the at-
tenuation of a pattern or process with distance.

In Spatial Interaction, distance decay is the mathematical represen-
tation of the inverse ratio between the quantity of obtained substance and
the distance from its source.

This decay measures the effect of distance on accessibility and number
of interactions between locations. For example, it can reflect a reduction
in demand due to the increasing travel cost. A more abstract example is
provided by bid-rent distance decay: the cost of overcoming distance has
a consequence in a class-based spatial arrangement around a city. In fact,
with increasing distance (and so decreasing rent) commercial, industrial,
residential and agricultural areas follow.

In location planning for a service facility (fire station, retail store, trans-
portation terminal, etc.), the main concerns are coverage standard (the
maximum distance, or travel time, a user is willing to overcome to utilize
it) and distance decay (demand for service decays with distance).

Distance decay is related to gravity models and another “social
physics” notion, friction of distance, which posits that distance usu-
ally requires some amount of effort, money, and/or energy to overcome.

• Nearness principle
The nearness principle (or Zipf’s least effort principle, in Psychology)
is the following basic geographical heuristic: given a choice, a person will
select the route requiring the least expenditure of effort. Similarly, an
information-seeking person will tend to use the most convenient search
method, in the least exacting mode available (path of least resistance).
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The geographical nearness principle is used in transportation planning
and (Rossmo 2000) locating of serial criminals: they tend to commit their
crimes fairly close to where they live.

The first law of geography (Tobler 1970) is: “Everything is related to
everything else, but near things are more related than distant things.”

• Consumer access distance
Consumer access distance is a distance measure between the con-
sumer’s residence and the nearest provider where he can get specific goods
or services (say, a store, market or a health service).

Measures of geographic access and spatial behavior include distance
measures (map distance, road travel distance, perceived travel time,
etc.), distance decay (decreased access with increasing distance) effects,
transportation availability and activity space (the area in km2 of ≈ 2

3 of
the consumer’s routine activities).

For example, US consumers had access in 2007, within driving distance
of their current pharmacy, to 30, 7 and 14 competing pharmacies in ur-
ban, suburban and rural areas, respectively. (By Medicare standards, this
distance, corresponding to the residence of the vast majority of beneficia-
ries, is 2, 5 and 15 miles in urban, suburban and rural areas.) Also, ≈81%
of the population of Texas is within 25 miles of a medical oncologist and
radiation therapy facility.

Similar studies for retailers revealed that the negative effect of distance
on store choice behavior was (for all categories of retailers) much larger
when this behavior was measured as “frequency” than when it was mea-
sured as “budget share.”

• Distance selling
Distance selling, as opposed to face-to-face selling in shops, covers goods
or services sold without face-to-face contact between supplier and con-
sumer but through distance communication means: press adverts with
order forms, catalog sales, telephone, tele-shopping, e-commerce (via Inter-
net), m-commerce (via mobile phone). Examples of the relevant legislation
are Consumer Protection (Distance Selling) Directive 97/7/EC and Reg-
ulations 2000 in EU.

The main provisions are: clear prior information before the purchase, its
confirmation in a durable medium, delivery within 30 days, “cooling-off”
period of 7 working days during which the consumer can cancel contract
without any reason and penalty. Exemptions are: Distance Marketing (fi-
nancial services sold at distance), business-to-business contracts and some
purchases (of land, at an auction, from vending machines).

• Surname distance model
A surname distance model was used in [COR05] in order to estimate
the preference transmission from parents to children by comparing, for 47
provinces of mainland Spain, the 47× 47 distance matrices for surname
distance with those of consumption distance and cultural distance.
The distances were l1-distances

∑
i |xi−yi| between the frequency vectors
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(xi), (yi) of provinces x, y, where zi is, for the province z, either the
frequency of the i-th surname (surname distance), or the budget share
of the i-th product (consumption distance), or the population rate for
the i-th cultural issue, say, rate of weddings, newspaper readership, etc.,
(cultural distance), respectively.

Other (matrices of) distances considered there are:

– Geographical distance (in kilometers, between the capitals of two
provinces)

– Income distance |m(x) − m(y)|, where m(z) is mean income in the
province z

– Climatic distance
∑

1≤i≤12 |xi−yi|, where zi is the average temperature
in the province z during the i-th month

– Migration distance
∑

1≤i≤47 |xi−yi|, where zi is the percentage of people
(living in the province z) born in the province i

Strong vertical preference transmission, i.e., correlation between surname
and consumption distances, was detected only for food items.

• Distances in Criminology
The geographic profiling (or geoforensic analysis) aims to identify the
spatial behavior (target selection and, especially, likely point of origin, i.e.,
the residence or workplace) of a serial criminal offender as it relates to the
spatial distribution of linked crime sites.

The offender’s buffer zone (or coal-sack effect) is an area surrounding
the offender’s heaven (point of origin) from which little or no criminal
activity will be observed; usually, such a zone occurs for premeditated
personal offenses. The primary streets and network arterials that lead into
the buffer zone tend to intersect near the estimated offender’s heaven. An
1 km buffer zone was found for UK serial rapists. Most personal offenses
occur within about 2 km from the offender’s heaven, while property thefts
occur further away.

Given n crime sites (xi, yi), 1 ≤ i ≤ n (where xi and yi are the lati-
tude and longitude of i-th site), the Newton–Swoope Model predicts the
offender’s heaven to be within the circle around the point (

∑
i xi

n ,
∑

i yi

n )
with the search radius being

√
max |xi1 − xi2 | ·max |yi1 − yi2 |

π(n− 1)2
,

where the maxima are over (i1, i2), 1 ≤ i1 < i2 ≤ n. The Ganter–Gregory
Circle Model predicts the offender’s heaven to be within a circle around
the first offense crime site with diameter the maximum distance between
crime sites.

The centrographic models estimate the offender’s heaven as a center, i.e.,
a point from which a given function of travel distances to all crime sites is
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minimized; the distances are the Euclidean distance, the Manhattan dis-
tance, the wheel distance (i.e., the actual travel path), perceived travel
time, etc. Many of these models are the reverse of Location Theory mod-
els aiming to maximize the placement of distribution facilities in order to
minimize travel costs. These models (Voronoi polygons, etc.) are based on
the nearness principle (least effort principle).

The journey-to-crime decay function is a graphical distance curve
used to represent how the number of offenses committed by an offender
decreases as the distance from his/her residence increases. Such functions
are variations of the center of gravity functions; cf. gravity models.

For detection of criminal, terrorist and other hidden networks, there are
also used many data-mining techniques which extract latent associations
(distances and near-metrics between people) from proximity graphs of
their co-occurrence in relevant documents, events, etc.

• Drop distance
In judicial hanging, the drop distance is the distance the executed is
allowed to fall. In order to reduce the prisoner’s physical suffering (to
about a third of a second), this distance is pre-determined, depending on
his/her weight, by special drop tables. For example, (US state) Delaware
protocol prescribes, in pounds/feet, about 252, 183 and 152 cm for at most
55, 77 and at least 100 kg.

In Biosystems Engineering, a ventilation jet drop distance is defined as
the horizontal distance from an air inlet to the point where the jet reaches
the occupational zone. In Aviation, an airlift drop distance (or drop height)
is the vertical distance between the aircraft and the drop zone over which
the airdrop is executed.

28.3 Distances in Perception, Cognition
and Language

• Oliva et al. perception distance
Let {s1, . . . , sn} be the set of stimuli, and let qij be the conditional prob-
ability that a subject will perceive a stimulus sj , when the stimulus si

was shown; so, qij ≥ 0, and
∑n

j=1 qij = 1. Let qi be the probability of
presenting the stimulus si.

The Oliva at al. perception distance [OSLM04] between stimuli si

and sj is defined by
1

qi + qj

n∑

k=1

∣
∣
∣
∣
qik

qi
− qjk

qj

∣
∣
∣
∣ .

• Visual space
Visual space refers to a stable perception (internal representation) of
the environment provided by vision, while haptic space (or tactile space)
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and auditory space refer to such representation provided by the senses
of pressure perception and audition. The geometry of these spaces and the
eventual mappings between them are unknown. The main observed kinds
of distortion of vision and haptic spaces versus physical space follow; the
first three were observed for auditory space also:

1. Horopter lines: perceived frontparallel (to the observer) lines are physi-
cally parallel only at a certain distance depending on subject and task.

2. Parallel-alleys: perceived parallel (to the medial plane of the observer)
lines are, actually, some hyperbolic curves.

3. Distance-alleys: lines with corresponding points perceived as equidis-
tant, are, actually, some hyperbolic curves. Usually, the parallel-alleys
are lying within the distance-alleys and, for visual space, their difference
is small at distances larger than 1.5 m.

4. Oblique effects: performance of certain tasks is worse when the orienta-
tion of stimuli is oblique rather than horizontal or vertical.

5. Equidistant circles: the egocentric distance is direction-dependent;
the points perceived as equidistant from the subject lie on egg-like
curves instead of circles.

The above effects and size-distance phenomena should be incorporated
in a good model of visual space. In a visual space the distance d and
direction are defined from self as the origin (the egocentric distance).
There is evidence that visual space is almost affine and, if it admits a metric
d, then d is a projective metric, i.e., d(x, y) + d(y, z) = d(x, z) for any
three perceptually collinear points x, y, z. The main proposals for visual
space are to see it as a Riemannian space of constant negative curvature
(cf. Riemannian color space in Chap. 21), a general Riemannian/Finsler
space, or an affinely connected (so not metric, in general) space [CKK03].

An affine connection is a linear map sending two vector fields into a
third one. The expansion of perceived depth on near distances and its
contraction at far distances indicate that the mapping between visual and
physical space is not affine.

• Size-distance phenomena
Examples of size-distance phenomena of visual perception follow.

Emmert’s size-distance law states that a retinal image is propor-
tional in perceived size (apparent height) to the perceived distance of the
surface it is projected upon. This law is based on the fact that the per-
ceived size of an object doubles every time its perceived distance from the
observer is cut in half and vice versa. Emmert’s law accounts for constancy
scaling, i.e., the fact that the size of an object is perceived to remain con-
stant despite changes in the retinal image (as objects become more distant
they begin, because of visual perspective, to appear smaller).

The size-distance invariance hypothesis posits that the ratio of
perceived size and perceived distance is the tangent of the physical vi-
sual angle. In particular, objects which appear closer should also appear
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smaller. But with the moon illusion it comes to a size-distance paradox.
The Moon (and, similarly, the Sun) illusion is that, despite constancy of
its visual angle (roughly, 0.52◦), the moon at the horizon may appear to be
about twice the diameter of the zenith moon. This illusion is still not un-
derstood completely; it is supposed to be cognitive: the size of the zenith
moon is underestimated since it is perceived as approaching. The most
common optical illusions distort size or length; for example, the Mueller-
Lyer, Sander, and Ponzo illusions.

The size-distance centration is the overestimation of the size of ob-
jects located near the focus of attention and underestimation of it at the
periphery.

• Probability-distance hypothesis
In Psychophysics, the probability-distance hypothesis is a hypothe-
sis that the probability with which one stimulus is discriminated from
another is a (continuously increasing) function of some subjective quasi-
metric between these stimuli (see [Dzha01]). Under this hypothesis, such
a subjective metric is a Finsler metric if and only if it coincides in the
small with the intrinsic metric (i.e., the infimum of the lengths of all
paths connecting two stimuli).

• Distance ceptor
A distance ceptor is a nerve mechanism of one of the organs of spe-
cial sense whereby the subject is brought into relation with his distant
environment.

• Egocentric distance
In Psychophysiology, the egocentric distance is the perceived absolute
distance from the self (observer or listener) to an object or a stimulus (such
as a sound source); cf. subjective distance. Usually, the visual egocentric
distance underestimates the actual physical distance to far objects, and
overestimates it for near objects. Such distortion is direction-dependent:
it decreases in a lateral direction.

In Visual Perception, the action space of a subject is 1–30 m; the smaller
and larger spaces are called the personal space and vista space, respectively.

The exocentric distance is the perceived relative distance between
objects.

• Distance cues
The distance cues are cues used to estimate the egocentric distance.

For a listener at a fixed location, the main auditory distance cues include:
intensity (in open space it decreases by 5 dB for each doubling of the
distance; cf. far field acoustic distance in Chap. 21), direct-to-reverberant
energy ratio (in the presence of sound reflecting surfaces), spectrum, and
binaural differences.

For an observer, the main visual distance cues include:

– Relative size, relative brightness, light and shade
– Height in the visual field (in the case of flat surfaces lying below the

level of the eye, the more distant parts appear higher)
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– Interposition (when one object partially occludes another from view)
– Binocular disparities, convergence (depending on the angle of the optical

axes of the eyes), accommodation (the state of focus of the eyes)
– Aerial perspective (distant objects become bluer and paler), distance

hazing (distant objects become decreased in contrast, more fuzzy)
– Motion perspective (stationary objects appear to a moving observer to

glide past)

Examples of the techniques which use the above distance cues to create
an optical illusion for the viewer, are:

– Distance fog: a 3D computer graphics technique so that objects further
from the camera are progressively more blurred (obscured by haze).
It is used, for example, to disguise too short draw distance, i.e., the
maximal distance in a 3D scene that is still drawn by the rendering
engine.

– Forced perspective: a film-making technique to make objects appear ei-
ther far away, or nearer depending on their positions relative to the
camera and to each other.

• Subjective distance
The subjective distance (or cognitive distance) is a mental represen-
tation of actual distance molded by an individual’s social, cultural and
general life experiences; cf. egocentric distance. Cognitive distance er-
rors occur either because information about two points is not coded/stored
in the same branch of memory, or because of errors in retrieval of this infor-
mation. For example, the length of a route with many turns and landmarks
is usually overestimated.

• Geographic distance biases
Sources of distance knowledge are either symbolic (maps, road signs, verbal
directions) or directly perceived ones during locomotion: environmental
features (visually-perceived turns, landmarks, intersections, etc.), travel
time, and travel effort.

They relate mainly to the perception and cognition of the, environ-
mental distances i.e., those that cannot be perceived in entirety from
a single point of view but still can be apprehended through direct travel
experience.

Examples of geographic distance biases (subjective distance judg-
ments, location estimates) are:

– Observers are quicker to respond to locations preceded by locations that
were either close in distance or were in the same region.

– Distances are overestimated when they are near to a reference point;
for example, intercity distances from coastal cities are exaggerated.

– Subjective distances are often assymmetrical as the perspective varies
with the reference object: a small village is considered to be close to a
big city while the big city is likely to be seen as far away from it.
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– Traveled routes segmented by features are subjectively longer than
unsegmented routes; moreover, longer segments are relatively under-
estimated.

– Increasing the number of pathway features encountered and recalled by
subjects leads to increased distance estimates.

– Structural features (such as turns and opaque barriers) breaking a
pathway into separate vistas strongly increase subjective distance (sug-
gesting that distance knowledge may result from a process of summing
vista distances).

– Chicago–Rome illusion: belief that some European cities are located far
to the south of their actual location; in fact, Chicago and Rome are at
the same latitude (42◦), as are Philadelphia and Madrid (40◦), etc.

– Miami–Lima illusion: belief that cities on the east coast of US are lo-
cated to the east of cities on the west coast of South America; in fact,
Miami is 3◦ west of Lima.

Possible sources of such illusions could be perceptually based mental
representations that have been distorted through normalization and/or
conceptual non-spatial plausible-reasoning.

• Spatial reasoning
Spatial reasoning is the domain of spatial knowledge representation:
spatial relations between spatial entities, and reasoning based on these
entities and relations.

As a modality of human thought, spatial reasoning is a process of
forming ideas through the spatial relationships between objects (as in
Geometry), while verbal reasoning is the process of forming ideas by as-
sembling symbols into meaningful sequences (as in Language, Algebra,
Programming).

Spatial-temporal reasoning is the ability to visualize spatial pat-
terns and mentally manipulate them over a time-ordered sequence of
spatial transformations. In human-computer interaction, differences in
such ability lead to certain users performing more efficiently than others
at information search and information retrieval.

More specifically, spatial visualization ability is the ability to manipulate
mentally two- and three-dimensional figures.

Visual thinking (or visual/spatial learning, picture thinking) is the com-
mon (about 60% of the general population) phenomenon of thinking
through visual processing. Spatial-temporal reasoning is prominent among
visual thinkers, as well as among kinesthetic learners (who learn through
body mapping and physical patterning) and logical thinkers (mathemat-
ical/systems thinking) who think in patterns and relationships and may
work diagrammatically without this necessary being pictorially.

In Computer Science, spatio-temporal reasoning aims at describing, us-
ing abstract relation algebras, the common-sense background knowledge
on which human perspective of physical reality is based. It provides rather
inexpensive reasoning about entities located in space and time.
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• Spatial language
Spatial language consists of natural-language spatial relations used to
indicate where things are, and so to identify or refer to them.

Among spatial relations there are topological (such as on, to, in, inside,
at), path-related (such as across, through, along, around), distance-related
and more complex ones (such as right/left, between, opposite, back of, south
of, surround).

A distance relation is a spatial relation which specifies how far the
object is away from the reference object: near, far, close, etc.

The distance concept of proximity (Pribbenow 1992) is the area
around the RO (reference object) in which it can be used for localization
of the LO (local object), so that there are visual access from RO and non-
interruption of the spatial region between objects, while LO is less directly
related to a different object. Such proximity can differ with physical dis-
tance as, for example, in “The Morning Star is to the left of the church.”
The area around RO, in which a particular relation is accepted as a valid
description of the distance between objects, is called the acceptance area.

Pribbenow (1991) proposed five distance distinctions: inclusion (accep-
tance area restricted to projection of RO), contact/adjacency (immediate
neighborhood of RO), proximity, geodistance (surroundings of RO) and
remoteness (the complement of the proximal region around RO).

Jackendorff and Landau (1992) showed that in English there are mainly
3 degrees of distance distinctions: interior of RO (in, inside), exterior but
in contact (on, against), proximate (near), plus corresponding negatives
(such as outside, off of, far from).

Semantics of spatial language is considered in Spatial Cognition, Lin-
guistics, Cognitive Psychology, Anatomy, Robotics, Artificial Intelligence
and Computer vision. Cognitively based common-sense spatial ontology
and metric details of spatial language are modeled for eventual interac-
tion between Geographic Information Systems and users. An example of
far-going applications is the Grove’s Clean Space, a neuro-linguistic pro-
gramming psychotherapy based on the spatial metaphors produced by (or
extracted from) the client on his present and desired “space” (state).

• Language distance from English
There are many such measures based either on a typology (comparing
formal similarities between languages), or language trees, or performance
(mutual intelligibility and learnability of languages). Some examples of
language distance from English follow.

Rutheford (1983) defined distance from English as the number of
differences from English in the following three-way typological classifi-
cation: subject/verb/object order, topic-prominence/subject-prominence
and pragmatic word-order/grammatical word-order. It gives distances 1,
2, 3 for Spanish, Arabic/Mandarin, Japanese/Korean.

Borland (1983) compared several languages of immigrants by their
acquisition of four areas of English syntax: copula, predicate complemen-
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tation, negation and articles. The resulting ranking was English, Spanish,
Russian, Arabic, Vietnamese.

Elder and Davies (1998) used ranking based on the following three main
types of languages: isolating, analytic or root (as Chinese, Vietnamese),
inflecting, synthetic or fusional (as Arabic, Latin, Greek), agglutinating
(as Turkish, Japanese). It gave ranks 1, 2, 4, 5 for Romance, Slavic,
Vietnamese/Khmer, Japanese/Korean, respectively, and the intermediate
rank 3 for Chinese, Arabic, Indonesian, Malay.

The language distance index (Chiswick and Miller 1998) is the in-
verse of the language score of the average speaking proficiency (after
24 weeks of instruction) of English speakers learning this language (or,
say, fluency in English of immigrants having it as native language). This
score was measured by a standardized test at regular intervals by incre-
ments of 0.25; it ranges from 1.0 (hardest to learn) to 3.0 (easiest to learn).
The score was, for example, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75,
3.00 for Japanese, Cantonese, Mandarin, Hindi, Hebrew, Russian, French,
Dutch, Afrikaans.

In addition to the above distances, based on syntax, and linguistic
distance, based on pronunciation, see the lexical semantic distances in
Sect. 22.2.

Cf. clarity similarity in Chap. 14, distances between rhythms in
Chap. 21, Lasker distance in Chap. 23 and surname distance model.

• Editex distance
The main phonetic encoding algorithms are (based on English language
pronunciation) Soundex, Phonix and Phonex, converting words into one-
letter three-digits codes. The letter is the first one in the word and the
three digits are derived using an assignment of numbers to other word
letters. Soundex and Phonex assign:
0 to a, e, h, i, o, u, w, y; 1 to b, p, f, v; 2 to c, g, j, k, q, s, x, z; 3
to d, t; 4 to l; 5 to m, n; 6 to r.
Phonix assigns the same numbers, except for 7 (instead of 1) to f and v,
and 8 (instead of 2) to s, x, z.

The Editex distance (Zobel and Dart 1996) between two words x and
y is a cost-based editing metric (i.e., the minimal cost of transforming x
into y by substitution, deletion and insertion of letters). For substitutions,
the costs are 0 if two letters are the same, 1 if they are in the same letter
group, and 2 otherwise.

The syllabic alignment distance (Gong and Chan 2006) between two
words x and y is another cost-based editing metric. It is based on Phonix,
the identification of syllable starting characters and seven edit operations.

• Phone distances
A phone is a sound segment that has distinct acoustic properties, and is
the basic sound unit. Cf. phoneme, i.e., a family of phones that speak-
ers usually hear as a single sound; the number of phonemes range, among
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about 6,000 languages spoken now, from 11 in Rotokas to 112 in !Xóõ (lan-
guages spoken by about 4,000 people in Papua New Guinea and Botswana,
respectively).

The two main classes of phone distance (distances between two phones
x and y) are:

1. Spectrogram-based distances which are physical-acoustic distortion mea-
sures between the sound spectrograms of x and y

2. Feature-based phone distances which are usually the Manhattan dis-
tance

∑
i |xi − yi| between vectors (xi) and (yi) representing phones x

and y with respect to a given inventory of phonetic features (for exam-
ple, nasality, stricture, palatalization, rounding, sillability)

The Laver consonant distance refers to the improbability of confus-
ing 22 consonantal phonemes of English, developed by Laver (1994) from
subjective auditory impressions. The smallest distance, 15%, is between
phonemes [p] and [k], the largest one, 95%, is, for example, between [p] and
[z]. Laver also proposed a quasi-distance based on the likelihood that one
consonant will be misheard as another by an automatic speech-recognition
system.

Liljencrans and Lindlom (1972) developed a vowel space of 14 vow-
els. Each vowel, after a procedure maximizing contrast among them, is
represented by a pair (x, y) of resonant frequencies of the vocal tract
(first and second formants) in linear mel units with 350 ≤ x ≤ 850 and
800 ≤ y ≤ 1,700. Roughly, higher x values correspond to lower vowels and
higher y values to less rounded or farther front vowels. For example, [u], [a],
[i] are represented by (350, 800), (850, 1,150), (350, 1,700), respectively.

• Phonetic word distance
The phonetic word distance (or pronunciation distance) between two
words x and y is the Levenstein metric with costs, i.e., the minimal
cost of transforming x into y by substitution, deletion and insertion of
phones. A word is seen as a string of phones.

Given a phone distance r(u, v) on the International Phonetic Alpha-
bet with the additional phone 0 (the silence), the cost of substitution of
phone u by v is r(u, v), while r(u, 0) is the cost of insertion or deletion of u.

Cf. in Sect. 23.3 distances on the set of 20 amino acids.
• Linguistic distance

The linguistic distance (or dialectology distance) between language
varieties X and Y is the mean, for fixed sample S of notions, phonetic
word distance between cognate (i.e., having the same meaning) words
sX and sY , representing the same notion s ∈ S in X and Y , respec-
tively. Usually, the Levenshtein metric defined in Chap. 11 is used (the
minimum number of inserting, deleting or substituting sounds needed to
recover the word pronunciation).

As an example of similar work, the Stover distance between phrases
with the same key word is (Stover 2005) the sum

∑
−n≤i≤+n aixi, where

0 < ai < 1, and xi is the proportion of non-matched words between the
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phrases within a moving window. Phrases are first aligned, by the common
key word, to compare the uses of it in context; also, the rarest words are
replaced with a common pseudo-token.

• Language distance effect
In Foreign Language Learning, Corder (1981) conjectured the existence
of the following language distance effect: where the mother tongue
(L1) is structurally similar to the target language, the learner will pass
more rapidly along the developmental continuum (or some parts of it) than
where it differs; moreover, all previous learned languages have a facilitating
effect.

Ringbom (1987) added: the influence of the L1 is stronger at early stages
of learning, at lower levels of proficiency and in more communicative tasks.

But such correlation could not be direct. For example, the written form
of Chinese does not vary among the regions of China, but the spoken
languages differ sharply. Alternatively, spoken German and Yiddish are
close but have different alphabets.

• Long-distance dependence (in Language)
In Language, long-distance dependence is a construction – including
diverse wh-questions (who, what, where, etc.), relative clauses and topical-
ization) – which permits an element in one position to fill the grammatical
role associated with another position.

In Generative Linguistics, anaphora is a reciprocal (such as one another
and each other) or reflexive (such as myself, herself, themselves, oneself,
etc.) pronoun in English, or an analogous referential pattern in other
language. In order to be interpreted, anaphora must get its content from
an antecedent in the sentence, which is, usually, syntactically local as in
“Mary excused herself.” A long-distance anaphora is an anaphora with
antecedent outside of its local domain, as in “The players told us stories
about each other.” Its resolution (finding what the anaphora refer to) is
an unsolved linguistic problem of machine translation.

Cf. long range dependence in Chap. 29.

28.4 Distances in Philosophy, Religion and Art

• Kristeva non-metric space
Kristeva’s (1980) basic psychoanalytic distinction is between pre-Oedipal
and Oedipal aspects of personality development. Narcissistic identification
and maternal dependency, anarchic component drives, polymorphic ero-
togenicism, and primary processes characterize the pre-Oedipal. Paternal
competition and identification, specific drives, phallic erotogenicism, and
secondary processes characterize Oedipal aspects. Kristeva describes the
pre-Oedipal feminine phase by an enveloping, amorphous, non-metric
space (Plato’s chora) that both nourishes and threatens; it also defines
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and limits self-identity. She characterizes the Oedipal male phase by a met-
ric space (Aristotle’s topos); the self and the self-to-space are more precise
and well defined in topos. Kristeva posits also that the semiotic process
is rooted in feminine libidinal, pre-Oedipal energy which needs channeling
for social cohesion.

Deleuze and Guattari (1980) divided their multiplicities (networks, man-
ifolds, spaces) into striated (metric, hierarchical, centered and numerical)
and smooth (“non-metric, rhizomic and those that occupy space without
counting it and can be explored only by legwork”).

The above French post-structuralists use the metaphor non-metric in
line with a systematic use of topological terms by the psychoanalyst Lacan.
In particular, he sought the space J (of Jouissance, i.e., sexual relations)
as a bounded metric space.

Back to Mathematics, the non-metricity tensor is the covariant
derivative of a metric tensor. It can be non-zero for pseudo-
Riemannian metrics and vanishes for Riemannian metrics.

• Simone Weil distance
We call the Simone Weil distance a kind of moral radius of the Uni-
verse which the French philosopher, Christian mystic, social activist and
self-hating Jew, Simone Weil (1909–1943) introduced in “The Distance,”
one of the philosophico-theological essays comprising her Waiting for God
(posthumous English edition by Putnam, New York 1951).

She connects God’s love to the distance; so, his absence can be inter-
preted as a presence: “every separation is a link” (Plato’s metaxu). In her
peculiar Christian theodicy, “evil is the form which God’s mercy takes in
this world,” and the crucifixion of Christ (the greatest love/distance) was
necessary “in order that we should realize the distance between ourselves
and God . . . for we do not realize distance except in the downward direc-
tion.” The Simone Weil God-cross distance (or Creator-creature distance)
recalls the old question: can we equate distance from God with proxim-
ity to Evil? Her main drive, the purity, consisted of maximizing moral
distance to Evil, embodied for her by “the social, Rome and Israel.”

Cf. Pascal’s God-nothing distance in Pensée, note 72: “For after all
what is man in nature? A nothing in relation to infinity, all in relation
to nothing, a central point between nothing and all and infinitely far from
understanding either.” Cf. also Tipler’s (2007) Big Bang – Omega Point
time/distance with Initial and Final Singularities seen as God-Father and
God-Son. Omega point is (Teilhard de Chardin 1950) the supreme point
of complexity and consciousness: the Logos, or Christ.

The Weil approach reminds also of the Lurian kabbalistic notions:
tzimtzum (God’s concealment, withdrawal of a part, creation by self-
delimitation) and shattering of the vessels (evil as impure vitality of husks,
produced whenever the force of separation loses its distancing function,
and giving man the opportunity to choose between good and evil). The
purpose is to bridge the distance between God (or Good) and the diversity
of existence, without falling into the facility of dualism (as manicheanism
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and gnosticism). It is done by postulating intermediate levels of being
(and purity) during emanation (unfolding) within the divine and allowing
humans to participate in the redemption of the Creation.

So, a possible individual response to the Creator is purification and
ascent, i.e., a spiritual movement through the levels of emanation in which
the coverings of impurity, that create distance from God, are removed
progressively.

Meanwhile, a song “From a Distance,” written by Julie Gold, is about
how God is watching us and how, despite the distance (physical and emo-
tional) distorting perceptions, there is still a little peace and love in this
world.

• Distance to Heaven
Below are given examples of distances and lengths which old traditions
related (sometimes as a metaphor) to such notions as God and Heaven.

In the early Hebrew mystical text Shi’ur Qomah, i.e., The measure
of the (divine) body, the height of the Holy Blessed One is 236 × 107

parasangs, i.e., 14 × 1010 (divine) spans. In the Biblical verse “Who has
measured the waters in the hollow of his hand and marked off the heaven
with a span” (Isaiah 40:12), the size of the Universe is one such span.

The cosmic light horizon (or age/size of the Universe) is ≈13.7
billion light-years. Sefer HaTemunah (by Nehunia ben Hakane, first cen-
tury) and Otzar HaChaim (by Yitzchok deMin Acco, thirteenth century)
deduced that the World was created in thought 42,000 divine years, i.e.,
42, 000 × 365, 250 ≈ 15.3 billion human years, ago. This exegesis counts,
using a 42-letter name at the start of Genesis, that now we are in the sixth
cycle of the seven cosmic sh’mitah cycles, each one being 7,000 divine years
long. Tohu and bohu followed and less than 6,000 years ago the creation of
world in deed is posited.

In the Talmud (Pesahim, 94), the Holy Spirit points out to “impious
Nebuchadnezzar” (planning “to ascend above the heights of the clouds
like the Most High”): “The distance from earth to heaven is 500 year’s
journey alone, the thickness of the heaven again 500 years . . . .” This
heaven is the firmament plate, and the journey is by walking. Seven other
heavens, each 500 years thick, follow “and the feet of the holy Creatures
are equal to the whole. . . .” Their ankles, wings, necks, heads and horns
are each consecutively equal to the whole. Finally, “upon them is the
Throne of Glory which is equal to the whole.” The resulting journey of
4,096,000 years amounts, at the rate of 80 miles per day, at about ≈2,600
AU ≈ 1

100 of the distance to the nearest other star.
On the other hand, Baraita de Massechet Gehinom affirms in Sect. VII.2

that Hell consists of seven cubic regions of side 300 year’s journey each;
so, 6,300 years altogether.

Islamic tradition (Dawood, Book 40, Nr. 470) also attributes a journey
of 71–500 years (by horse, camel or foot) between each asmaa (the ceiling
containing one of the seven luminaries: Moon, Mercury, Venus, Sun, Mars,
Jupiter, Saturn).
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Vedic texts (Pancavimsa-Brahmana, circa 2000 BC) states that the dis-
tance to Heaven is 1,000 Earth diameters and Sun (the middle one among
seven luminaries) is halfway at 500 diameters. A similar ratio 500–600 was
expected till the first scientific measurement of 1 AU (Earth–Sun distance)
by Cassini in 1672. The actual ratio is ≈11,687.

The sacred Hindu number 108 (=62 + 62 + 62 =
∏

1≤i≤3 ii), also con-
nected to Golden Ratio as the interior angle 1080 of a regular pentagon,
is traced to following Vedic values: 108 Sun’s diameters for the Earth–Sun
distance and 108 Moon’s diameters for the Earth–Moon distance. The
actual values are ≈107.6 and (steadily increasing) ≈110.6; they could be
computed without any instruments during an eclipse, since the angular
size of Moon and Sun, viewed from Earth, is almost identical. Cf. the
Metonic cycle (period of 19 tropical years, i.e., 6,939.60 days, that is equal
to 235 synodic lunar months, ≈29.53 days each, plus about 2 h) and the
Saros cycle (period of 223 sinodic months ≈6,585.33 days) that can be
used to predict eclipses of the Sun and Moon.

Also, the ratio between Sun and Earth diameters is ≈108.6, but it is
unlikely that Vedic sages knew it. In Ayurveda, the devotee’s distance
to his “inner sun” (God within) consists of 108 steps; it corresponds to
108 beads of japamala (rosary): the devotee, while saying beads, does a
symbolic journey from his body to Heaven.

• Swedenborg heaven distances
The Swedish scientist and visionary Emanuel Swedenborg (1688–1772),
in Sect. 22 (Nos. 191–199, Space in Heaven) of his main work Heaven and
Hell (1952, first edition in Latin, London 1758), posits: “distances and so,
space, depend completely on interior state of angels.” A move in heaven
is just a change of such a state, the length of a way corresponds to the
will of a walker, approaching reflects similarity of states. In the spiritual
realm and afterlife, for him, “instead of distances and space, exist only
states and their changes.”

• Space (in Philosophy)
The present Newton–Einstein notion of space were preceded by the Aris-
totelian Cosmos (space is a finite system of relations between material
objects) and earlier, in the same fourth century BC, by Democritus Void
(space is the infinite container of objects).

For Newton, space was absolute: it existed permanently and indepen-
dently of whether there is any matter in it. For Leibniz (in the same
seventeenth century), space was a collection of relations between objects,
given by their distance and direction from one another, i.e., an idealized
abstraction from the relations between individual entities or their possible
locations, which must therefore be discrete.

For Kant (eighteenth century), space and time are not objective fea-
tures of the world, with substance or relation. Instead, they are part of
an unavoidable systematic framework used by humans to organize their
experiences.
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Disagreement continues between philosophers over whether space is an
entity, a relationship between entities, or part of a conceptual framework.

• Quotes on “near-far” distances
“Better is a nearby neighbor, than a far off brother.” (the Bible)
“It is when suffering seems near to them that men have pity; as for

disasters that are ten thousand years off in the past or the future, men
cannot anticipate them, and either feel no pity for them, or at all events
feel it in no comparable measure.” (Aristotle)

“The path of duty lies in what is near, and man seeks for it in what is
remote.” (Mencius)

“Sight not what is near through aiming at what is far.” (Euripides)
“Good government occurs when those who are near are made happy,

and those who are far off are attracted.” (Confucius)
“By what road,” I asked a little boy, sitting at a cross-road, “do we go

to the town?” – “This one,” he replied, “is short but long and that one
is long but short.” I proceeded along the “short but long road.” When I
approached the town, I discovered that it was hedged in by gardens and
orchards. Turning back I said to him, “My son, did you not tell me that
this road was short?” – “And,” he replied, “Did I not also tell you: “But
long”? I kissed him upon his head and said to him, “Happy are you, O
Israel, all of you are wise, both young and old.” (Erubin, Talmud)

The Prophet Muhammad was heard saying: “The smallest reward for
the people of paradise is an abode where there are 80,000 servants and 72
wives, over which stands a dome decorated with pearls, aquamarine, and
ruby, as wide as the distance from Al-Jabiyyah [a Damascus suburb] to
Sana’a [Yemen].” (Hadith, Islamic Tradition)

“There is no object so large . . . that at great distance from the eye it
does not appear smaller than a smaller object near.” (Leonardo da Vinci)

“Nothing makes Earth seems so spacious as to have friends at a distance;
they make the latitudes and longitudes.” (Henri David Thoreau)

“In true love the smallest distance is too great, and the greatest distance
can be bridged.” (Hans Nouwens)

“There is an immeasurable distance between late and too late.” (Og
Mandino)

“Everything is related to everything else, but near things are more
related than distant things.” (Tobler’s first law of Geography).

Cf. nearness principle in Chap. 28 and, in Chaps. 22 and 24, action
at a distance.

• Antinomy of distance
The antinomy of distance, as introduced in [Bull12] for aesthetic expe-
riences by beholder and artist, is that both should find the right amount
of emotional distance, defined in Chap. 28 (neither too involved, nor
too detached), in order to create or appreciate art. The fine line between
objectivity and subjectivity can be crossed easily, and the amount of
distance can fluctuate in time.
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The aesthetic distance is a degree of emotional involvement of the
individual, who undergoes experiences and objective reality of the art, in
a work of art. It means the frame of reference that an artist creates, by
the use of technical devices in and around the work of art, to differentiate
it psychologically from reality; cf. distanciation. Some examples are: the
perspective of a member of the audience in relation to the performance,
the psychological and the emotional distance between the text and the
reader, the actor-character distance in the Stanislavsky system of acting.

Morgan [Morg76] defines pastoral ecstasy as the experience of role-
distancing, or the authentic self’s supra-role suspension, i.e., the capacity
of an individual to stand outside or above himself for purposes of critical
reflexion. Morgan concludes: “The authentic self is an ontological possi-
bility, the social self is an operational inevitability, and awareness of both
selves and the creative coordination of both is the gift of ecstasy. Interplay
of proximity and distance to the Other is central also in Levinas ethics.”

A variation of the antinomy of distance appears in critical thinking:
the need to put some emotional and intellectual distance between oneself
and ideas, in order to better evaluate their validity. Another variation is
detailed in Paradox of Dominance: Distance and Connection (posting on
http://www.leatherpage.com) by Sprott.

The historical distance, in terms of [Tail04], is the position the histo-
rian adopts vis-à-vis his objects – whether far-removed, up-close, or some-
where in between; it is the fantasy through which the living mind of the his-
torian, encountering the inert and unrecoverable, positions itself to make
the material look alive. The antinomy of distance appears again because
historians engage the past not just intellectually but morally and emo-
tionally. Historical knowledge is always mediate/inferential, never empiri-
cal/perceptual. The formal properties of historical accounts are influenced
by the affective, ideological and cognitive commitments of their authors.

A related problem is how much distance people must put between
themselves and their pasts in order to remain psychologically viable;
Freud showed that often there is no such distance with childhoods.

• Distanciation
In scenic art and literature, distanciation (Althusser 1968, on Brecht’s
alienation effect) consists of methods to disturb purposely (in order to
challenge basic codes and conventions of spectator/reader) the narrative
contract with him, i.e., implicit clauses defining logic behavior in a story.
The purpose is to differentiate art psychologically from reality, i.e., to
create some aesthetic distance.

One of distanciation devices is breaking of the fourth wall, when the ac-
tor/author addresses the spectators/readers directly through an imaginary
screen separating them. The “fourth wall” is the conventional boundary
between the fiction and the audience. It is a part of the suspension of
disbelief between them: the audience tacitly agrees to provisionally suspend
their judgment in exchange for the promise of entertainment.

Cf. distancing and distantiation.

http://www.leatherpage.com


536 28 Distances in Applied Social Sciences

• Far Near Distance
Far Near Distance is the name of the program of the House of World
Cultures in Berlin which presents a panorama of contemporary positions
of all artists of Iranian origin. Some examples of similar use of distance
terms in modern popular culture follow.

“Some near distance” is the title of an art exhibition of Mark Lewis (Bil-
bao 2003),“A Near Distance” is a paper collage by Perle Fine (New York,
1961), “Quiet Distance” is a fine art print by Ed Mell, “Zero/Distance” is
the title of an art exhibition of Jim Shrosbree (Des Moines, Iowa, 2007).

“Distance” is a Japanese film directed by Hirokazu Koreeda (2001) and
an album of Utada Hikaru (her famous ballad is called “Final Distance”).
It is also the stage name of a British musician Greg Sanders and the name
of the late-1980 rock/funk band led by Bernard Edwards. “The Distance”
is a film directed by Benjamin Busch (2000) and an album by American
rock band “Silver Bullet” led by Bob Seger. “Near Distance” is a musical
composition by Chen Yi (New York, 1988) and lyric by the Manchester
quartet “Puressence.”

The terms near distance and far distance are also used in Ophthalmology
and for settings in some sensor devices.



Chapter 29
Other distances

In this chapter we group together distances and distance paradigms which do
not fit in the previous chapters, being either too practical (as in equipment),
or too general, or simply hard to classify.

29.1 Distances in Medicine, Antropometry and Sport

• Distances in Medicine
Some examples from this vast family of physical distances follow.

In Dentistry, the inter-occlusal distance: the distance between the oc-
cluding surfaces of the maxillary and mandibular teeth when the mandible
is in a physiologic rest position.

The inter-arch distance: the vertical distance between the maxillary
and mandibular arches. The inter-ridge distance: the vertical distance
between the maxillary and mandibular ridges.

The inter-proximal distance: the spacing distance between adja-
cent teeth; mesial drift is the movement of the teeth slowly toward the
front of the mouth with the decrease of the inter-proximal distance by
wear.

The inter-pediculate distance: the distance between the vertebral
pedicles as measured on the radiograph.

The teardrop distance: the distance from the lateral margin of the
pelvic teardrop to the most medial aspect of the femoral head as seen on
the anteposterior pelvic radiograph. A widening of at least 1 mm indicates
excess hip joint fluid and so inflammation and other joint abnormalities.

The source-skin distance: the distance from the focal spot on the
target of the X-ray tube to the skin of the subject as measured along the
central ray.

The inter-aural distance: the distance between the ears. The inter-
ocular distance: the distance between the eyes.

The anogenital distance (or AGD) : the length of the perineum, i.e.,
the region between anus and genital area (the anterior base of the penis

M.M. Deza and E. Deza, Encyclopedia of Distances, 537
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for a male). For a male it is normally twice what it is for a female; so
this distance is a measure of physical masculinity (used in reproductive
toxicity testing).

In Anesthesia, the thyromental distance (or TMD): the distance
from the upper edge of the thyroid cartilage (laryngeal notch) to the
mental prominence (tip of the chin) when the neck is extended fully.
The sternomental distance: the distance from the upper border of the
manubrium sterni to the tip of the chin, with the mouth closed and the
head fully extended. When the above distances are less than 6.5 cm and
12.5 cm, respectively, a difficult intubation is indicated.

The sedimentation distance (or ESR, erythrocyte sedimentation
rate): the distance red blood cells travel in 1 h in a sample of blood as
they settle to the bottom of a test tube. ESR indicates inflammation and
increases in many diseases.

The stroke distance: the distance a column of blood moves during
each heart beat, from the aortic valve to a point on the arch of the aorta.

The distance between the lesion and the aortic valve being <6
mm, is an important predictor, available before surgical resection of DSS
(discrete subaortic stenosis), of re-operation for recurrent DSS.

The aortic diameter: the maximum diameter of the outer contour of
the aorta. It (as well as the cross sectional diameter of the left ventricle)
varies between the ends of the systole (the time of ventricular contraction)
and diastole (the time between those contractions); the strain is the ratio
between the systolic and diastolic diameters.

The dorsoventral interlead distance of an implanted pacemaker or
defibrillator: the horizontal separation of the right and left ventricular lead
tips on the lateral chest radiograph, divided by the cardiothoracic ratio
(ratio of the cardiac width to the thoracic width on the posteroanterior
film).

In Laser Treatments, the extinction length and absorption length
of the vaporizing beam is the distance into the tissue from the incident
surface along the ray path over which 90% (or 99%) and 63%, respectively,
of its radiant energy is absorbed.

In Ophthalmic Plastic Surgery, the marginal reflex distances MRD1

and MRD2 are the distances from the center of the pupil (identified by
the corneal reflex created by shining a light on the pupil) to the margin
of the upper or lower eyelid, while the vertical palperbal fissure is the
distance between the upper and lower eyelid.

The main distances used in Ultrasound Biomicroscopy (for glaucoma
treatment) are the angle-opening distance (from the corneal endothe-
lium to the anterior iris) and the trabecular ciliary process distance
(from a particular point on the trabecular mesh-work to the ciliary process).

Diffusion MRI is a modality of Magnetic Resonance Imaging producing
noninvasively in vivo images of brain tissues weighted by their water diffu-
sivity. The image-intensities at each position are attenuated proportionally
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to the strength of diffusion in the direction of its gradient. Diffusion in tis-
sues, because of its anisotropy (dependence on direction), is described by
a tensor instead of a diffusivity scalar. Tensor data are displayed, for each
voxel, by ellipsoids; their length in any direction is the diffusion distance
molecules cover in given time in this direction. The diffusion tensor dis-
tance is the length from the center to the surface of the diffusion tensor.

In brain MRI, the distances considered for cortical maps (i.e., outer
layer regions of cerebral hemispheres representing sensory inputs or motor
outputs) are: MRI distance map from the GW (gray/white matter) in-
terface, cortical distance (say, between activation locations of spatially
adjacent stimuli), cortical thickness (the shortest distance between the
GW-boundary and the innermost surface of pia matter enveloping the
brain) and lateralization metrics. Anderson (1996) found that the cortical
thickness of Einstein’s brain is 2.1 mm, while the average one is 2.6 mm;
resulting closer packing of cortical neurons may speed up communication
between them.

In Nerve Regeneration by transplantation of cultured stem cells, the
regeneration distance is the distance between the point of insertion of
the proximal stump and the tip of most distal regenerating axon.

• Distances in Oncology
In Oncology, the tumor radius is the mean radial distance R from the
tumor origin (or its center of mass) to the tumor–host interface (the tu-
mor/cell colony border); the cell proliferation along [0, R] is ≈0 up to some
r0, then increases linearly in r for r0 < r ≤ r1 < R, and it happens mainly
within the outermost band [r1, R].

The tumor diameter is the greatest vertical diameter of any sec-
tion; the tumor growth is the geometric mean of its three perpendicular
diameters.

In Oncological Surgery, the margin distance: the tumor-free surgical
margin (after formalin fixation) of tumor resection, done in order to prevent
local recurrence; Chan et al. (2007) assert that, for vulvar cancer, ≥8 mm
margin clearance is sufficient, instead of 2–3 cm recommended previously.

The perfusion distance: the shortest distance between the infusion
outlet and the surface of the electrodes (during radiofrequency tumor ab-
lation with internally cooled electrodes and saline infusion).

In Radiation Oncology, the maximum heart distance MHD is the
maximum distance of the heart contour (as seen in the beam’s eye view
of the medial tangential field) to the medial field edge, and the central
lung distance CLD is the distance from the dorsal field edge to the
thoracic wall. A “L-bar” armrest, used to position the arm during breast
cancer irradiation, decreases these distances, and so decreases the clinically
relevant amount of heart and lung inside the treatment fields.

A distant cancer (or distant recurrence, relapse, metastasis) is a cancer
that has spread from the original (primary) tumor to distant organs or
distant lymph nodes. DDFS (Distant Disease-free Survival) – the time
until such an event – is a parameter used in clinic trials.
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Tubiana (1986) claims that a critical tumor diameter and mass for
metastatic spread exists, and that this threshold varies with the tumor
type and may be reached before the primary tumor is detectable. For
breast cancer, he found metastases in 50% of the women whose primary
tumor had a diameter of 3.5 cm, i.e., a mass ≈22 g.

• Distances in Rheumatology
The main such distances (measured in cm to the nearest 0.1 cm) follow.

Occiput wall distance: the distance from the patient’s occiput to the
wall during maximal effort to touch the head to the wall, without raising
the chin above its usually carrying level (when heels and, if possible, the
back are against the wall).

Modified Schober test: the distance between two marked points (a
point over the spinous process of L5 and the point directly 10 cm above)
are measured when the patient is extending his lumbar spine in neutral
position and then when he flexes forward as far as possible. Normally, the
10 cm distance increases to ≥16 cm.

Lateral spinal flexion: the distance from the middle fingertip to the
floor in full lateral flexion without flexing forward or bending the knees or
lifting heels and attempting to keep the shoulders in the same place.

Chest expansion: the difference in cm between full expiration and full
inspiration, measured at the nipples.

Intermalleolar distance: the distance between the medial malleoli
when the patient (supine, the knees straight and the feet pointing straight
up) is asked to separate the legs as far as possible.

• Distance healing
Distance (or distant, remote) healing is defined (Sicher and Targ 1998)
as a conscious, dedicated act of mentation attempting to benefit another
person’s physical or emotional well-being at a distance.

It includes prayer (intercessory, supplicative and non-directed), spir-
itual/mental healing and strategies purporting to channel some supra-
physical energy (Non-contact Therapeutic Touch, Reiki healing, External
Qigong).

Distant healing is a part of popular alternative and complementary
medicine but, in the absence of any plausible mechanism, it is highly con-
troversial: some positive results of Therapeutic Touch and intercessory
prayer are attributed to a placebo effect. Still, such rejection (as well as
for Homeopathy) is also a matter of belief; cf. action at a distance (in
Physics) in Chap. 24.

• Space-related phobias
Several space-related phobias have been identified: agoraphobia, astro-
phobia, claustrophobia, and cenophobia, which are fear of open, celestial,
enclosed and empty spaces, respectively. Balint’s syndrome is unability to
localize objects in space.

In Chap. 28, among applications of spatial language is mentioned
Grove’s Clean Space: a neuro-linguistic psychotherapy based on the
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spatial metaphors produced by the client on his present and desired
“space” (state).

• Neurons with spatial firing properties
Known types of neurons with spatial firing properties are listed
below; cf. also spike train distances in Chap. 23.

Many mammals have in several brain areas head direction cells (Taube,
Muller and Ranck 1990): neurons which fire only when the animal’s head
points in a specific direction within an environment.

Place cells (O’Keefe and Dostrovsky 1971) are principal neurons in the
hippocampus that fire strongly whenever an animal is in a specific location
(the cell’s place field) in an environment.

Spatial view cells (Georges-Francois, Rolls and Robertson 1999) are
neurons in hippocampus which fire when the animal views a specific part
of an environment. They differ from head direction cells since they repre-
sent not a global orientation, but the direction towards a specific object.
They also differ from place cells, since they are not localized in space.

Grid cells are neurons in the entorhinal cortex that fire strongly when an
animal is in specific locations in an environment. Hafting, Fyhn, Molden,
Moser, and Moser, who discovered them in 2005, conjecture that the
network of these cells constitute a mental map of the spatial environment.

Border cells (Hafting, Fyhn, Molden, Moser and Moser 2008) are neu-
rons in the entorhinal cortex that fire when a border is present in the
proximal environment.

The smallest processing module of cortical neurons is a minicolumn
– a vertical column through the cortical layers of the brain, comprising
80–120 neurons that seem to work as a team. There are about 2 × 108

minicolumns in humans. The diameter of a minicolumn is about 28–40 μm.
Smaller minicolumns (as observed in scientists and in people with autism)
mean that there are more processing units within any given cortical area;
it may allow for better signal detection and more focused attention.

• Visual Analogue Scales
In Psychophysics and Medicine, a Visual Analogue Scale (or VAS)
is a self-report device used to measure the magnitude of internal states
such as pain and mood (depression, anxiety, sadness, anger, fatigue, etc.)
which range across a continuum and cannot easily be measured directly.
Usually, VAS is a horizontal (or vertical, for Chinese subjects) 100 mm line
anchored by word descriptors at each end. The VAS score is the distance,
measured in millimeters, from the left hand (or lower) end of the line to
the point marked by the subject.

The VAS tries to produce ratio data, i.e., ordered data with constant
scale and a natural zero. It is more suitable when looking at change within
individuals than comparing across a group.

Amongst scales used for pain-rating, the VAS is more sensitive than
the simpler verbal scale (six descriptive or activity tolerance levels), the
Wong–Baker facial scale (six grimaces) and the numerical scale (levels
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0, 1, 2, . . . , 10). On the other hand, the VAS is much simpler and less
intrusive than full-length questionnaires for measuring internal states.

• Vision distances
The inter-pupillary distance (or inter-ocular distance): in Ophthalmol-
ogy, the distance between the centers of the pupils of the two eyes when
the visual axes are parallel. Typically, it is 2.5 inches (6.35 cm).

The near acuity is the eye’s ability to distinguish an object’s shape and
details at a near distance such as 40 cm; the distance acuity is the eye’s
ability to do it at a far distance such as 6 m.

The optical near devices are designed for magnifying close objects and
print; the optical distance devices are for magnifying things in the
distance (from about 3 m to far away).

The near distance: in Ophthalmology, the distance between the object
plane and the spectacle (eyeglasses) plane.

The vertex distance: the distance between a person’s glasses (spectacles
planes) and their eyes (the corneal).

The infinite distance: in Ophthalmology, the distance of 20 feet (6.1 m)
or more; so called because rays entering the eye from an object at that
distance are practically as parallel as if they came from a point at an
infinite distance.

The distance vision is a vision for objects that are at least 6 m from
the viewer.

The angular eye distance is the aperture of the angle made at the eye
by lines drawn from the eye to two objects.

The RPV-distance (or resting point of vergence) is the distance at which
the eyes are set to converge (turn inward toward the nose) when there is
no close object to converge on. It averages about 45 inches (1.14 m) when
looking straight ahead and comes in to about 35 inches (0.89 m) with a 30◦

downward gaze angle. Ergonomists recommend the RPV-distance as the
eye-screen distance in sustained viewing, in order to minimize eyestrain.

The default accommodation distance (or resting point of accommoda-
tion, RPA-distance) is the distance at which the eyes focus when there is
nothing to focus on.

In Painting, the distance is the part of a picture which contains the
representation of those objects which are the farthest away, while the
middle distance is the central part of a scene between the foreground and
the background.

In a Perspective Drawing (when objects are drawn smaller at larger
distances and distorted if viewed at an angle), a point of distance is the
point where the visual rays meet. A vanishing point is the point at which
parallel lines receding from an observer seem to converge; a picture can
have several such points or none.

• Body distances in Antropometry
Besides weight and circumference, all the main standard measurements
in Physical Anthropology and Human Osteology (including Forensic An-
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thropology and Paleoanthropology) are distances between some body
landmark points or planes.

The main vertical distances from a standing surface are: stature (to
the top of the head), nasion height (to the nasion, i.e., the top of the
nose between the eyes), C7 level height (to the first palpable vertebra
from the hairline down, C7), acromial height (to the acromion, i.e., the
lateral tip of the shoulder), L5 level height (to the first palpable vertebra
from the tailbone up, L5), knee height (to the patella, i.e., kneecap, plane).
The similar vertical distances from a sitting surface are called sitting
heights.

Examples of other body distances are the following breadths, lengths
and depths:

Biacromial breadth: the horizontal distance between the right and left
acromions

Hip breadth (seated): the lateral distance at the widest part of the hips
Ankle distance (seated): the horizontal distance from L5 to the lateral

malleolus (bony prominence at the distal end of the fibula)
Buttock-knee length: the distance from the buttocks to the patella
Total foot length: the maximum length of the right foot
Hand length: the length of the right hand between the stylion landmark

on the wrist and the tip of the middle finger
Abdominal depth (seated): the maximum horizontal depth of the ab-

domen
• Head and face measurement distances

The main linear dimensions of the cranium in Archeology are: lengths
(of temporal bone, of tympanic plate, glabella-opistocranion), breadths
(maximum cranial, minimum frontal, biauricular, mastoid), heights
(of temporal bone, basion-bregma), thickness of tympanic plate,
bifrontomolare-temporale distance.

Examples of the viscerocranium measurements in Craniofacial Anthro-
pometry are:

Head width: the (horizontal) maximum breadth of the head above the
ears

Head depth (or head length): the horizontal distance from the nasion to
the opisthocranion (the most prominent point on the back of the head)

Inter-canthal distance (inner or outer): the distance between (inner or
outer) canthi (corners of eyes)

Total face height (or face length): the distance from nasion to menton
Morphological facial height: the distance between nasion and gnathion

(the most inferior point of the mandible in the midline)
Face width (or bizygomatic width): the maximum distance between lat-

eral surfaces of the zygomatic arches; the facial index is the ratio between
face width and face length.

In Face Recognition, the sets of (vertical and horizontal) cephalofa-
cial dimensions, i.e., distances between fiducial (standard of reference
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for measurement) facial points, are used. The distances are normalized,
say, with respect to the inter-pupillary distance for horizontal ones.
For example, the following five independent facial dimensions are derived
in [Fell97] for facial gender recognition: distance E between outer eye
corners, nostril-to-nostril width N , face width at cheek W and (vertical
ones) eye to eyebrow distance B and distance L between eye midpoint
and horizontal line of mouth. “Femaleness” relies on large E, B and
small N,W,L.

• Gender-related body distance measures
The main gender-specific body configuration features are:

For females, WHR (waist-to-hip ratio), i.e., the ratio of the circumfer-
ence of the waist to that of the hips at their widest part and BMI (body
mass index), i.e., the ratio of the weight in kg and squared height in m2

For males, SCR (waist-to-chest ratio), SHR (shoulder-to-hip ratio) and
VHI (volume-to-height index), i.e., the ratio of the volume in liters and
squared height in m2

Androgen equation (three times the shoulder width minus one times the
pelvic width) which is higher for males

Second-to-forth digit (index to ring finger) ratio which is lower for males
in the same population

Anogenital distance (length of the perineum, cf. distances in
Medicine) which is larger for males

Also, a person’s center of mass (slightly below the belly button) is lower
for females, and women have lower mental rotation ability.

BMI and WHR indicate percentage of body fat and fat distribution,
respectively; they are widely used in Medicine to assess risk factors. WHR
is also seen as the main visual cue to female body attractiveness, with
optimum ≈0.7. But Rilling, Kaufman, Smith, Patel and Worthman (2009)
claim that abdominal depth (the depth of the lower torso at the umbilicus)
and WC (waist circumference) are stronger predictors. Fan, Dai, Liu and
Wu (2005) claim that VHI is the main visual cue to male body attrac-
tiveness, with optimum 17.6 and 18.0 for female raters and male raters,
respectively.

• Body distances for clothes
The European standard EN 13402 “Size designation of clothes” defined,
in part EN 13402-1, a standard list of 13 body dimensions (measured
in centimeters) together with a method for measuring each one on a
person. These are: body mass, height, foot length, arm length, inside leg
length, and girth for head, neck, chest, bust, under-bust, waist, hip, hand.
Examples of these definitions follow.

Foot length: horizontal distance between perpendiculars in contact with
the end of the most prominent toe and the most prominent part of the
heel, measured with the subject standing barefoot and the weight of the
body equally distributed on both legs.

Arm length: distance, measured using the tape-measure, from the arm-
scye/shoulder line intersection (acromion), over the elbow, to the far end
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of the prominent wrist bone (ulna), with the subject’s right fist clenched
and placed on the hip, and with the arm bent at 90◦.

Inside leg length: distance between the crotch and the soles of the
feet, measured in a straight vertical line with the subject erect, feet
slightly apart, and the weight of the body equally distributed on both
feet.

The final part EN 13402-4 (a compact three-digits coding system for
the size of clothes) of the standard is expected to became mandatory in
EU after 2007. It should simplify the situation when, for a Miss Average
(88–72–96 cm, i.e., 34–28–37 inch, bust–waist–hips), her dress is (being
10 in US): 12 in the UK, C38 in Norway, Sweden and Finland, 38 in
Germany and the Netherlands, 40 in Belgium and France, 44 in Italy,
44/46 in Portugal and Spain.

• Racing distances
In Racing, length is an informal unit of distance to measure the distance
between competitors in a race; for example, in boat-racing it is the average
length of a boat.

The horse-racing distances are measured in terms of the approximate
length of a horse, i.e., about 8 feet (2.44 m).

Winning margins are measured in lengths, ranging from half the length
to the distance, i.e., more than 20 lengths; the length is often interpreted
as a unit of time equal to 1

5 s. Smaller margins are: short-head, head, or
neck. Also, the hand, i.e., 4 inches (10.2 cm), is used for measuring the
height of horses.

• Triathlon race distances
The Ironman distance (started in Hawaii 1978) is a 3.86 km swim
followed by a 180 km bike and a 42.2 km (marathon distance) run.

The international Olympic distance (started in Sydney, 2000) is
1.5 km (metric mile), 40 km and 10 km of swim, cycle and run, respectively.

Next to the Olympic distance are the sprint distance (0.75, 20, 5 km)
and the ITU long distance (3, 80, 20 km).

DPS (distance per swim stroke) is a metric of swimming efficiency used
in training triathletes; it is obtained by counting strokes on fixed pool dis-
tances. LSD (long slow distance) is a slang term for a training method for
runners that involves running distances longer, and at a slower pace, than
those of races. In Running, sprinting is divided into 100 m, 200 m, 400 m,
while middle distance mean races of various distance from 800 m to 5 km.

Also, the distance is boxing slang for a match that lasts the maximum
number (12 or 10) of scheduled rounds.

• Isometric muscle action
An isometric muscle action refers to exerting muscle strength and ten-
sion without producing an actual movement or a change in muscle length.

The technique of isometric action training is used mainly by weightlifters
and bodybuilders. Examples of such isometric exercises include holding a
weight at a certain position in the range of motion and pushing or pulling
against an immovable external resistance.
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29.2 Equipment distances

• Vehicle distances
The perception-reaction distance (or thinking distance): the distance
a motor vehicle travels from the moment the driver sees a hazard until he
applies the brakes (corresponding to human perception time plus human
reaction time). Physiologically, it takes 1.3–1.5 s, and the brake action
begins 0.5 s after application.

The safe following distance: the reglementary distance from the ve-
hicle ahead of the driver. For reglementary perception-reaction time at
least 2 s (the 2 Second Rule), this distance (in meters) should be 0.56× v,
where v is the speed (in kilometer per hour). Sometimes the 3 Second Rule
applied. The stricter rules are used for heavy vehicles (say, at least 50 m)
and in tunnels (say, at least 150 m).

The braking distance: the distance a motor vehicle travels from the
moment the brakes are applied until the vehicle completely stops.

The (total) stopping distance: the distance a motor vehicle travels from
where the driver perceives the need to stop to the actual stopping point
(corresponding to vehicle reaction time plus vehicle braking capability).

The crash distance: the amount of distance between the driver and
the front end of a vehicle in a frontal impact (or, say, between the pilot
and the first part of airplane to impact the ground). Crushworthy motor
vehicles are designed with structural “crush zones” which collapse in a
prescribed way at specified loads. They achieve, during crush milliseconds,
a uniform deceleration (say, 25 g when measured in a fixed barrier frontal
crush at 50 km h−1, where g = 9.80665 m s−2 is the standard gravity) of the
passenger compartment and absorption of kinetic energy primarily outside
of it. European regulation, for example, requires a 60 km h−1 impact test
into a 40% deformable offset barrier.

The actual landing distance is the distance used in landing and
braking to a complete stop (on a dry runway) after crossing the runway
threshold at 50 feet (15.24 m); it can be affected by various operational
factors.

The JAA/FAA required landing distance (used for dispatch pur-
poses) is factor 1.67 of actual landing distance for a dry runway and factor
1.92 for a wet runway.

The accelerate-stop distance: the runway plus stopway length (able
to support the airplane during an aborted takeoff) declared available and
suitable for the acceleration and deceleration of an airplane aborting a
takeoff.

The endurance distance: the total distance that a ground vehicle or
ship can be self-propelled at any specified endurance speed.

The distance made good is a nautical term: the distance traveled
after correction for current, leeway (the sideways movement of the boat
away from the wind) and other errors that may not have been included in
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the original distance measurement. Log is a device to measure the distance
traveled through the water which is further corrected to a distance made
good. Before log’s introduction, sea distances were measured in units of a
day’s sail.

One of meanings of the term leg – a stage of a journey or course –
includes a nautical term: the distance traveled by a sailing vessel on a
single tack.

The GM-distance (or metacyclic height) of a ship is the distance be-
tween its center of gravity G and the metacenter, i.e., the projection of
the center of buoyancy (the center of gravity of the volume of water which
the hull displaces) on the center line of the ship as it heels. This distance
(usually, 1–2 m) determines the stability of the ship in water.

The distance line: in Diving, a temporary marker (typically, 50 m of
thin polypropylene line) of the shortest route between two points. It is
used, as a kind of Ariadne’s thread, to navigate back to the start in poor
visibility.

Bushell BackTrack GPS Device stores location in its memory so that one
can be directed back to original starting point using directional arrows and
GPS (Global Positioning System; see radio distance measurement)
distance estimations.

• Buffer distance
In nuclear warfare, the horizontal buffer distance is the distance which
should be added to the radius of safety in order to be sure that the specified
degree of risk will not be exceeded. The vertical buffer distance is the
distance which should be added to the fallout safe-height of burst, in order
to determine a desired height of burst so that military significant fallout
will not occur.

The term buffer distance is also used more generally as, for example, the
buffer distance required between sister stores or from a high-voltage line.
Cf. clearance distance and, in Chap. 25, setback distance.

• Offset distance
In nuclear warfare, the offset distance is the distance the desired (or
actual) ground zero is offset from the center of the area (or point) target.

In Computation, offset is the distance from the beginning of a string to
the end of the segment on that string. For a vehicle, offset of a wheel is
the distance from its hub mounting surface to the centerline of the wheel.

The term offset is also used for the displacement vector (cf. Chap. 24)
specifying the position of a point or particle in reference to an origin or to
a previous position.

• Standoff distance
The standoff distance is the distance of an object from the source of
an explosion (in warfare), or from the delivery point of a laser beam (in
laser material processing). Also, in Mechanics and Electronics, it is the
distance separating one part from another; for example, for insulating (cf.
clearance distance), or the distance from a non-contact length gauge to
measured material surface.
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• Distance in Military
In Military, the term distance usually has one the following meanings:

The space between adjacent individual ships or boats measured in any
direction between foremasts

The space between adjacent men, animals, vehicles, or units in a forma-
tion measured from front to rear

The space between known reference points or a ground observer and a
target, measured in meters (artillery), or in units specified by the observer

In amphibious operations, the distant retirement area is the sea area
located to seaward of the landing area, and the distant support area is the
area located in the vicinity of the landing area but at considerable distance
seaward of it.

In military service, a bad distance of the troop means a temporary
intention from the war service to extract itself. This passing was usually
heavily punished and equated with that the desertion (an intention to
extract itself durably).

• Proximity fuse
The proximity fuse is a fuse that is designed to detonate an explosive
automatically when close enough to the target.

• Sensor network distances
The stealth distance (or first contact distance): the distance traveled by
the moving object (or intruder) until detection by an active sensor of the
network (cf. contact quasi-distances in Chap. 19); the stealth time is
the corresponding time.

The first sink contact distance: the distance traveled by the moving
object (or intruder) until the monitoring entity can be notified via a sensor
network.

The miss distance: the distance between the lines of sight representing
estimates from two sensor sites to the target (cf. line-line distance from
Chap. 4).

The sensor tolerance distance: a range distance within which a
localization error is acceptable to the application (cf. tolerance distance
from Chap. 25).

• Proximity sensors
Proximity sensors are varieties of ultrasonic, laser, photoelectric and
fiber optic sensors designed to measure the distance from itself to a target.
For such laser range-finders, a special distance filter removes those sensor
measurements which, with high probability, are shorter than expected,
and which are therefore caused by an unmodeled object. Cf. distances
in Animal Behavior in Chap. 23 (distance estimation by some
insects).

The detection distance is the distance from the detecting surface of a
sensor head to the point where a target approaching it is first detected.
The maximum operating distance of a sensor is its maximum detection dis-
tance from a standard modeled target, disregarding accuracy. The stable
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detection range is the detectable distance range in which a standard de-
tected object can be stably detected with respect to variations in the
operating ambient temperature and power supply voltage.

• Precise distance measurement
The resolution of TEM (transmission electronic microscope) is about
0.2 nm (2 × 10−10 m), i.e., the typical separation between two atoms in
a solid. This resolution is 1,000 times greater than a light microscope and
about 500,000 times greater than that of a human eye. However, only
nanoparticles can fit in the vision field of an electronic microscope.

The methods, based on measuring the wavelength of laser light, are used
to measure macroscopic distances non-treatable by an electronic micro-
scope. However, the uncertainty of such methods is at least the wavelength
of light, say, 633 nm.

The recent adaptation of Fabry–Perot metrology (measuring the fre-
quency of light stored between two highly reflective mirrors) to laser light
permits the measuring of relatively long (up to 5 cm) distances with un-
certainty of only 0.01 nm.

• Radio distance measurement
DME (or distance measuring equipment) is an air navigation tech-
nology that measures distances by timing the propagation delay of UHF
signals to a transponder (receiver-transmitter that will generate a reply sig-
nal upon proper interrogation) and back. DME is expected to be phased
out by global satellite-based systems: GPS and, planned for 2009, Galileo
(EU) and GLOSNASS (Russia).

The GPS (Global Positioning System) is a radio navigation system
which permits one to get her/his exact position on the globe (anywhere,
anytime). It consists of 24 satellites and a monitoring system operated by
the US Department of Defense. The non-military part of GPS can be used
just by the purchase of an adequate receiver and the accuracy is 10 m.

The GPS pseudo-distance (or pseudo-range) from a receiver to a
satellite is the travel time of a satellite time signal to a receiver multiplied
by the propagation time of the radio signal (about the speed of light). It
is called pseudo-distance because of the error: the receiver clock is not so
perfect as the ultra-precise clock of a satellite. The GPS receiver calculates
its position (in latitude, longitude, altitude, etc.) by solving a system of
equations using its pseudo-distances from at least four satellites and the
knowledge of their positions. Cf. radio distances in Chap. 25.

• Transmission distance
The transmission distance is a range distance: for a given signal trans-
mission system (fiber optic cable, wireless, etc.), it is the maximal distance
the system can support within acceptable path loss level.

For a given network of contact that can transmit an infection (or, say,
an idea with the belief system considered as the immune system), the
transmission distance is the path metric of a graph (edges correspond
to events of infection) via the most recent common ancestor, between (in-
fectious agents isolated from) infected individuals.
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• Delay distance
The delay distance is a general term for the distance resulting from a
given delay.

For example, in a meteorological sensor, the delay distance is the length
of a column of air passing a wind vane, such that the vane will respond to
50% of a sudden angular change in wind direction.

When the energy of a neutron is measured by the delay (say, t) between
its creation and detection, the delay distance is vt − D, where v is its
velocity and D is the source-detector distance.

NASA’s X-ray Observatory measures the distance to a very distant
source via the delay of the halo of scattering interstellar dust between
it and the Earth. Cf. also radio distance measurement.

In evaluations of visuospatial working memory (when subjects saw a
dot, following a 10-, 20-, or 30-s delay, and then drew it on a blank sheet
of paper), the delay distance is the distance between the stimulus and the
drawn dot.

• Master–slave distance
A master–slave system refers to a design in which one device (the master)
fully controls one or more other devices (the slaves). It can be a remote
manipulation system (say, a master controller with surgical end effector),
a surveillance system (a stationary master camera with a wide field of view
detects a moving person and turns a slave camera with a narrow field to
that direction), a data transmission system and so on. The master–slave
distance is a measure of distance between the master and slave devices.
Cf. also Sect. 18.3.

• Instrument distances
The load distance: the distance (on a lever) from the fulcrum to the
load. The effort distance (or resistance distance): the distance (on a
lever) from the fulcrum to the resistance.

The K-distance: the distance from the outside fiber of a rolled steel
beam to the web toe of the fillet of a rolled shape.

The end distance: the distance from a bolt, screw, or nail to the end
of a (wood) structural member. The edge distance: the distance from a
bolt, screw, or nail to the edge of a (wood) structural member.

The calibration distance: the standard distance used in the process
of adjusting the output or indication on a measuring instrument.

• Sagging distance
The brazeability of brazing sheets materials is evaluated by their sagging
distance, i.e., the deflection of the free end of the specimen sheet after
brazing.

• Etch depth
Laser etching into a metal substrate produce craters. The etch depth is
the central crater depth averaged over the apparent roughness of the metal
surface.
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• Feeding distance
Carbon steel shrinks during solidification and cooling. In order to avoid
resulting porosity, a riser (cylindric liquid metal reservoir) provides liquid
feed metal until the end of the solidification process.

A riser is evaluated by its feeding distance, which is the maximum
distance over which a riser can supply feed metal to produce a radiograph-
ically sound (i.e., relatively free of internal porosity) casting. The feeding
length is the distance between the riser and furthest point in the casting
fed by it.

• Gear distances
Given two meshed gears, the distance between their centers is called the
center distance. Examples of other distances used in basic gear formulas
(such as b = a + c) follow.

Addendum (a): the radial distance between the Pitch Circle (the circle
whose radius is equal to the distance from the center of the gear to the
pitch point) and the top of the teeth.

Dedendum (b): the radial distance between the bottom of the space
between the teeth and the top of the teeth.

Clearance (c): the distance between the top of a tooth and the bottom
of the space into which it fits on the meshing gear.

Whole depth: the distance between the top of a tooth and the bottom
of the space between teeth.

Backlash: the play between mating teeth.
• Creepage distance

The creepage distance is the shortest path distance along the surface of
the insulation material between two conductive parts.

The shortest (straight-line) distance between two conductive parts is
called the clearance distance; cf. the general term below.

• Clearance distance
A clearance distance (or separation distance, clearance) is, in Engineer-
ing and Safety, a physical distance or unobstructed space tolerance as, for
example, the distance between the lowest point on the vehicle and the road
(ground clearance).

For vehicles going in a tunnel or under a bridge, the clearance is the dif-
ference between the structure gauge (minimum size of tunnel or bridge) and
the vehicles’ loading gauge (maximum size). A clearance distance can be
prescribed by a code or a standard between a piece of equipment contain-
ing potentially hazardous material (say, fuel) and other objects (buildings,
equipment, etc.) and the public.

In general, clearance refers to the distance to the nearest “obstacle”
as defined in a context. Cf. buffer distance and setback distance in
Chap. 25.

• Humidifier absorbtion distance
The absorbtion distance of a (water centrifugal atomizing) humidifier
is the list of minimum clearance dimensions needed to avoid condensation.
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• Protective action distance
The protective action distance is the distance downwind from an in-
cident (a spill involving dangerous goods which are considered toxic by
inhalation) in which persons may become incapacitated.

The notion of the mean distance between people and any hazardous event
operates also at a large scale: expanding the living area of human species
(say, space colonization) will increase this distance and prevent many hu-
man extinction scenarios.

• Vertical separation distance
The vertical separation distance is the distance between the bottom
of the drain field of a sewage septic system and the underlying water
table. This separation distance allows pathogens (disease-causing bacteria,
viruses, or protozoa) in the effluent to be removed by the soil before it
comes in contact with the groundwater.

• Spray distance
The spray distance is the distance maintained between the nozzle tip of
a thermal spraying gun and the surface of the workpiece during spraying.

• Fringe distance
Usually, the fringe distance is the spacing distance between fringes, for
example:

dark and light regions in the interference pattern of light beams (cf., in
Chap. 24, Pendellösung fringes in dynamical diffraction distances);

components into which a spectral line splits in the presence of an electric
or magnetic field (Stark and Zeeman effects, respectively, in Physics).

For, say, a non-contact length gauge, the fringe distance is the value
λ

2 sin α , where λ is the laser wavelength and α is the beam angle.
In Image Analysis, there is also the fringe distance (Brown 1994) be-

tween binary images (cf. pixel distance in Chap. 21).
• Lens distances

The focal distance (effective focal length): the distance from the optical
center of a lens (or a curved mirror) to the focus (to the image). Its re-
ciprocal measured in meters is called the diopter and is used as a unit of
measurement of the (refractive) power of a lens; roughly, the magnification
power of a lens is 1

4 of its diopter.
The back focal length is the distance between the rear surface of a lens

and its image plane; the front focal length is the distance from the vertex
of the first lens to the front focal point.

The depth of field (DoF): the distance in the object plane (in front
of and behind the object) over which the system delivers an acceptably
sharp image, i.e., the region where the blurring is tolerated at a particular
resolution.

The depth of focus: the range of distance in the image plane (the eye-
piece, camera, or photographic plate) over which the system delivers an
acceptably sharp image.
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The working distance: the distance from the front end of a lens system
to the object under inspection when the instrument is correctly focused.
It can be used to modify the depth of the field.

The register distance (or flange distance): the distance between the
flange (protruding rim) of the lens mount and the plane of the film image.

The conjugate image distance and the conjugate object distance: the
distance along the optical axis of a lens from its principle plane to the
image plane and the object plane, respectively. When a converging lens is
placed between the object and the screen, the sum of the inverse conjugate
image and inverse conjugate object distances is equal to the inverse focal
distance.

A circle of confusion (CoC) is an optical spot caused by a cone of light
rays from a lens not coming to a perfect focus; in Photography, it is defined
usually as the largest blur circle that will still be perceived by the human
eye as a point when viewed at a distance of 25 cm.

The close (or minimum, near) focus distance: the closest distance to
which a lens can approach the subject and still achieve focus.

The hyper-focal distance: the distance from the lens to the nearest
point (hyper-focal point) that is in focus when the lens is focused at infinity;
beyond this point all objects are well defined and clear. It is the nearest
distance at which the far end of the depth of field stretches to infinity
(cf. infinite distance).

• Distances in Stereoscopy
A method of 3D imaging is to create a pair of 2D images by a two-camera
system.

The inter-camera distance (or base line length, inter-ocular lens spacing)
is the distance between the two cameras from which the left and right eye
images are rendered.

The convergence distance is the distance between the base line of the
camera center to the convergence point where the two lenses should con-
verge for good stereoscopy. This distance should be 15–30 times the
inter-camera distance.

The picture plane distance is the distance at which the object will appear
on (but not behind or in front of) the picture plane (the apparent surface
of the image). The window is a masking border of the screen frame such
that objects, which appear at (but not behind or outside) it, appear to be
at the same distance from the viewer as this frame. In human viewing, the
picture plane distance is about 30 times the inter-camera distance.

• Distance-related shots
A film shot is what is recorded between the time the camera starts (the
director’s call for “action”) and the time it stops (the call to “cut”).

The main distance-related shots (camera setups) are:

– Establishing shot: a shot, at the beginning of a sequence which estab-
lishes the location of the action and/or the time of day
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– Long shot: a shot taken from at least 50 yards (45.7 m) from the action
– Medium shot: a shot from 5–15 yards (4.6–13.7 m), including a small

entire group, which shows group/objects in relation to the surroundings
– Close-up: a shot taking the actor from the neck upwards, or an object

from a similarly close position
– Two-shot: a shot that features two persons in the foreground
– Insert: an inserted shot (usually a close up) used to reveal greater detail.

29.3 Miscellany

• Range distances
The range distances are practical distances emphasizing a maximum
distance for effective operation such as vehicle travel without refueling, a
bullet range, visibility, movement limit, home range of an animal, etc.

For example, the range of a risk factor (toxicity, blast, etc.) indicates
the minimal safe distancing.

The operating distance (or nominal sensing distance) is the range of
a device (for example, a remote control) which is specified by the manufac-
turer and used as a reference. The activation distance is the maximal
distance allowed for activation of a sensor-operated switch. In order to
stress the large range of a device, some manufacturers mention it in the
product name; for example, Ultimate Distance golf balls (or softball bates,
spinning reels, etc.).

• Spacing distances
The following examples illustrate this large family of practical distances
emphasizing a minimum distance (cf. minimum distance in Chap. 16,
nearest-neighbor distance in Animal Behavior in Chap. 28 and first-
neighbor distance for atoms in a solid in Chap. 24).

The miles in trail: a specified minimum distance, in nautical miles,
required to be maintained between airplanes. Seat pitch and seat width are
airliner distances between, respectively, two rows of seats and the armrests
of a single seat.

The isolation distance: a specified minimum distance required (be-
cause of pollination) to be maintained between variations of the same
species of a crop in order to keep the seed pure (for example, ≈3 m for
rice).

The stop-spacing distance: the interval between bus stops; the mean
stop-spacing distance in the US (for light rail systems) ranges from 500 m
(Philadelphia) to 1,742 m (Los Angeles).

The character spacing: the interval between characters in a given
computer font.

The just noticeable difference (JND): the smallest percent change
in a dimension (for distance/position, etc.) that can be reliably perceived
(cf. tolerance distance in Chap. 25).
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• Cutoff distances
Given a range of values (usually, a length, energy, or momentum scale in
Physics), cutoff is the maximal or minimal value, as, for example, Planck
units.

A cutoff distance is a cutoff in a length scale. For example, infrared
cutoff and ultraviolet cutoff (the maximal and minimal wavelength that the
human eye takes into account) are long-distance cutoff and short-distance
cutoff, respectively, in the visible spectrum.

• Quality metrics
A quality metric (or, simply, metric) is a standard unit of measure or,
more generally, part of a system of parameters, or systems of measurement.
This vast family of measures (or standards of measure) concern different
attributes of objects. In such a setting, our distances and similarities are
rather “similarity metrics,” i.e., metrics (measures) quantifying the extent
of relatedness between two objects.

Examples include academic metrics, crime statistics, corporate invest-
ment metrics, economic metrics (indicators), education metrics, environ-
mental metrics (indices), health metrics, market metrics, political metrics,
properties of a route in computer networking, software metrics and vehicle
metrics. For example, the site http://metripedia.wikidot.com/start aims to
build an Encyclopedia of IT (Information Technology) performance met-
rics. Some examples of non-equipment quality metrics are detailed below.

A symmetry metric (Bhanji, Purchase, Cohen and James 1995) mea-
sures graph-drawing aesthetics by

∑m
i=1(a1i+a2i+a3i)

a ×
∑m

i=1(a1i + a2i+ni

2 ),
where a is the number of all arcs, m is the number of axes of symmetry
and, for a given axis i, ni is the number of vertices which are mirrored
by another vertex about i, while a1i, a2i and a3i are the number of arcs
which are, respectively, bisected at right angles by i, mirrored by another
arc about i and run along i. Axes of symmetry are taken as all straight
lines i with ni, a1i, a2i ≥ 1.

Landscape metrics evaluate, for example, greenway patches in given
landscape by patch density (the number of patches per km2), edge den-
sity (the total length of patch boundaries per hectare), shape index E

4
√

A

(where A is the total area, and E is the total length of edges), connectivity,
diversity, etc.

Management metrics include: surveys (say, of market share, sales
increase, customer satisfactions), forecast (say, of revenue, contingent sales,
investment), R&D effectiveness, absenteeism, etc.

Risk metrics are used in Insurance and, in order to evaluate a portfolio,
in Finance.

An impact factor is a quality metric ranking the relative influence as,
for example:

PageRank of Google ranking web pages;

http://metripedia.wikidot.com/start
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ISI (now Thomson Scientific) Impact Factor of a journal measuring, for a
given 2-year period, the number of times the average article in this journal
is cited by some article published in the subsequent year;

Hirsch’s h-index of a scholar which is the highest number of his/her
published articles that have each received at least that number of citations.

• Distal and proximal
The antipodal notions near (close, nigh) and far (distant, remote) are also
termed proximity and distality.

The adjective distal (or peripheral) is an anatomical term of location
(on the body, the limbs, the jaw, etc.); corresponding adverbs are: dis-
tally, distad. For an appendage (any structure that extends from the main
body), proximal means situated towards the point of attachment, while
distal means situated around the furthest point from this point of attach-
ment. More generally, as opposed to proximal (or central), distal means:
situated away from, farther from a point of reference (origin, center, point
of attachment, trunk). As opposed to mesial it means: situated or directed
away from the midline or mesial plane of the body.

More abstractly: for example, the T-Vision (Earth visualization) project
brings a distal perception of Earth, known before only to astronauts, down
to Earth. In 2008 NASA’s Deep Impact spacecraft has created a video of
the Moon passing before Earth as seen from the spacecraft’s distal (50
million km away) point of view.

Proximal and distal demonstratives are words indicating place deixis,
i.e., a spatial location relative to the point of reference. Usually, they are
two-way as this/that, these/those or here/there, i.e., in terms of the di-
chotomy near/far from the speaker. But, say, Korean, Japanese, Spanish,
Portuguese and Thai make a three-way distinction: proximal (near to the
speaker), medial (near to the addressee) and distal (far from both). En-
glish had the third form, yonder (at an indicated distance, usually within
sight), still spoken in Southern US. Cf. spatial language in Chap. 28.

• Distance effect
The distance effect is a general term for the change of a pattern or
process with distance. Usually, it means distance decay. For example, a
static field attenuates proportionally to the inverse square of the distance
from the source.

Another example of the distance effect is a periodic variation (instead
of uniform decrease) in a certain direction, when a standing wave occurs
in a time-varying field. It is a wave that remains in a constant position
because either the medium is moving in the opposite direction, or two
waves, traveling in opposite directions, interfer; cf. Pendellösung length
in Chap. 24.

The distance effect, together with the size (source magnitude) effect
determine many processes; cf. island distance effect, insecticide dis-
tance effect in Chap. 23 and symbolic distance effect, distance effect
on trade in Chap. 28.
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• Distance decay
The distance decay is the attenuation of a pattern or process with dis-
tance. Cf. distance decay (in Spatial Interaction) in Chap. 28. It is
the main case of distance effect.

Examples of distance-decay curves: Pareto model ln Iij = a − b ln dij ,
and the model ln Iij = a − bdp

ij with p = 1
2 , 1, or 2 (here Iij and dij are

interaction and distance between points i, j, while a and b are parameters).
A mass-distance decay curve is a plot of “mass” decay when the

distance to the center of “gravity” increases. Such curves are used, for
example, to determine an offender’s heaven (the point of origin; cf. dis-
tances in Criminology) or the galactic mass within a given radius from
its center (using rotation-distance curves).

• Incremental distance
An incremental distance is a gradually increasing (usually, by a fixed
amount) distance.

• Distance curve
A distance curve is a plot (or a graph) of a given parameter against a
corresponding distance. Examples of distance curves, in terms of a pro-
cess under consideration, are: time-distance curve (for the travel time
of a wave-train, seismic signals, etc.), height-run distance curve (for the
height of tsunami wave vs. wave propagation distance from the impact
point), drawdown-distance curve, melting-distance curve and wear vol-
ume – distance curve.

A force-distance curve is, in SPM (Scanning Probe Microscopy), a
plot of the vertical force that the tip of the probe applies to the sample
surface, while a contact-AFM (Atomic Force Microscopy) image is being
taken. Also, frequency-distance and amplitude-distance curves are used in
SPM.

The term distance curve is also used for charting growth, for instance,
a child’s height or weight at each birthday. A plot of the rate of growth
against age is called the velocity-distance curve. The last term is also
used for the speed of aircraft.

• Propagation length
For a pattern or process attenuating with distance, the propagation
length is the distance to decay by a factor of 1

e .
Cf., for example, radiation length and the Beer–Lambert law in

Chap. 24.
• Characteristic length

A characteristic length (or scale) is a convenient reference length (usu-
ally constant) of a given configuration, such as the overall length of an
aircraft, the maximum diameter or radius of a body of revolution, or a
chord or span of a lifting surface.

In general, it is a length that is representative of the system (or region)
of interest, or the parameter which characterizes a given physical quantity.
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For example, the characteristic length of a rocket engine is the ratio of
the volume of its combustion chamber to the area of the nozzle’s throat,
representing the average distance that the products of burned fuel must
travel to escape.

• Path length
In general, a path is a line representing the course of actual, potential or
abstract movement. In Topology, a path is a certain continuous function;
cf. parametrized metric curve in Chap. 1.

In Physics, path length is the total distance an object travels, while
displacement is the net distance it travels from a starting point. Cf math-
ematical displacement inelastic mean free path, optical distance
and (in the item dislocation distances) dislocation path length in
Chap. 24. In Chemistry, (cell) path length is the distance that light trav-
els through a sample in an analytical cell.

In Graph Theory, path length is a discrete notion: the number of
vertices in a sequence of vertices of a graph; cf. path metric in Chap. 1.
Cf. Internet IP metric in Chap. 22 for path length in a computer
network. Also, it means the total number of machine code instructions
executed on a section of a program.

• Scale invariance
Scale invariance is a feature of laws or objects which do not change if
length scales are multiplied by a common factor.

Examples of scale invariant phenomena are fractals (in Chap. 1) and
power laws; cf. scale-free network in Chap. 22 and self-similarity in long
range dependence. Scale invariance arising from a power law y = Cxk,
for a constant C and scale exponent k, amounts to linearity log y = log C+
k log x for logarithms.

Much of scale invariant behavior (and complexity in nature) is explained
(Bak, Tang and Wiesenfeld 1987) by self-organized cruciality (SOC) of
many dynamical systems, i.e., the property to have the critical point of
a phase transition as an attractor which can be attained spontaneously
without any fine-tuning of control parameters.

Two moving systems are dynamically similar if the motion of one can
be made identical to the motion of the other by multiplying all lengths
by one scale factor, all forces by another one and all time periods by
a third scale factor. Dynamic similarity can be formulated in terms of
dimensionless parameters (where the units of measurement, and so scale
factors, cancel out) as, for example, the Froude number F = v√

gd
(here

v is the representative speed, d is the representative length, g is Earth
standard gravity 9.80665 m s−2), and the Richardson number F−2.

• Long range dependence
A (second-order stationary) stochastic process Xk, k ∈ Z, is called long
range dependent (or long memory) if there exist numbers α, 0 < α <
1, and cρ > 0 such that limk→∞ cρk

αρ(k) = 1, where ρ(k) is the
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autocorrelation function. So, correlations decay very slowly (asymptoti-
cally hyperbolic) to zero implying that

∑
k∈Z

|ρ(k)| = ∞, and that events
so far apart are correlated (long memory). If above sum is finite and decay
is exponential, then the process is short range.

Examples of such processes are the exponential, normal and Poisson
processes, which are memoryless, and, in physical terms, systems in ther-
modynamic equilibrium. The above power law decay for correlations as a
function of time translates into a power law decay of the Fourier spectrum
as a function of frequency f and is called 1

f noise.
A process has a self-similarity exponent (or Hust parameter) H if Xk and

t−HXtk have the same finite-dimensional distributions for any positive t.
The cases H = 1

2 and H = 1 correspond, respectively, to purely random
process and to exact self-similarity: the same behavior on all scales (cf.
fractal in Chap. 1, scale-free network in Chap. 22, and scale invari-
ance). The processes with 1

2 < H < 1 are long range dependent with
α = 2(1−H).

Long range dependence corresponds to heavy-tailed (or power law) dis-
tributions. The distribution function and tail of a non-negative random
variable X are F (x) = P (X ≤ x) and F (x) = P (X > x). A distribution
F (X) is heavy-tailed if there exists a number α, 0 < α < 1, such that
limx→∞ xαF (x) = 1. Many such distributions occur in the real world (for
example, inPhysics, Economics, Internet) in both space (distances) and time
(durations). A standard example is the Pareto distribution F (x) = x−k,
x ≥ 1, where k > 0 is a parameter (cf. distance decay).

Also, the random-copying model (the cultural analog of genetic drift)
of the frequency distributions of various cultural traits (such as scien-
tific paper citations, first names, dog breeds, pottery decorations) results
(Bentley, Hahn and Shennan 2004) in a power law distribution y = Cx−k,
where y is the proportion of cultural traits that occur with frequency x in
the population, and C and k are parameters.

• Long-distance
The term long-distance refers usually telephone communication (long-
distance call, long-distance operator) or to covering large distances by
moving (long-distance trail, long-distance running, swimming, etc.) or,
more abstractly: long-distance migration, commuting, supervision, rela-
tionship, etc. Long-distance intercourse (coupling at a distance) is found
often in Native American folklore: Coyote, the Trickster, can reach a
woman on the opposite bank of a lake.

Cf. long-distance dispersal, animal and plant long-distance com-
munication, long range order, long range dependence, action at a
distance (in Computing, Physics, along a DNA).

The term short-distance is rarely used. Instead, the adjective short-
range means limited to (or designed for) short distances, or relating to
the near future. Finally, touching, for two objects, is having (or getting)
a zero distance between them.
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• Spatial analysis
In Statistics, spatial analysis (or spatial statistics) includes the formal
techniques for studying entities using their topological, geometric, or geo-
graphic properties. More restrictively, it refers to geostatistics and Human
Geography (techniques applied to structures at the human scale, especially
in the analysis of geographic data).

Starting with mapping, surveying and geography initially, spatial analy-
sis focuses now on computer-based techniques. It is applied in Geography,
Biology, Epidemiology, Statistics, Geographic Information Science, Re-
mote Sensing, Computer Science, Mathematics, and Scientific Modeling.

Also in Statistics, spatial dependence is a measure for the degree
of associative dependence between independently measured values in an
ordered (in situ or temporally) set, determined in samples selected at po-
sitions with different coordinates in a sample space. An example of such
space–time dynamics: Gould (1997) showed that ≈80% of the diffusion
of HIV in US is highly correlated with the air passenger traffic (origin-
destination) matrix for 102 major urban centers.

Spatial analysis considers spatially distributed data as a priori depen-
dent one on another, unless proven otherwise. A significant degree of
spatial dependence gives a higher degree of precision for the central value
of a set of measured values; so, testing for spatial dependence is especially
suitable in geostatistics (mineral exploration, mining, mineral processing,
etc.).

• Space syntax
Space syntax is a set of theories and techniques (cf. Hiller and Hanson
1984) for the analysis of spatial configurations complementing traditional
transport engineering and geographic accessibility analysis in Geographical
Information System.

It breaks down space into components, analyzed as networks of choices,
and then represents it by maps and graphs describing the relative connec-
tivity and integration of parts. The basic notions of space syntax are, for
a given space:

Isovist (or visibility polygon), i.e., the field of view from any fixed point
Axial line, i.e., longest line of sight and access through open space
Convex space, i.e., the maximal inscribed convex polygon (all points

within it are visible to all other points within it)
These components are used to quantify how easily a space is navigable,

for the design of settings where wayfinding is a significant issue, such as
museums, airports, hospitals, etc. Space syntax has also been applied to
predict the correlation between spatial layouts and social effects such as
crime, traffic flow, sales per unit area, etc.

• Go the distance
Go the (full) distance is a general distance idiom meaning to continue
to do something until it is successfully completed.
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It is, for example, the name of a US Masters Swimming fitness event
and a song from the 1997 Disney animated feature Hercules.

• Sabbath distance
The Sabbath distance (or rabbinical mile) is a range distance: 2,000
Talmudic cubits (1,120.4 m, cf. cubit in Chap. 27) which an observant Jew
should not exceed in a public thoroughfare from any given private place
on the Sabbath day.

Other Talmudic length units are: day’s march, parsa, stadium (40, 4, 4
5

of the rabbinical mile, respectively), and span, hasit, hand-breath, thumb,
middle finger, little finger (1

2 , 1
3 , 1

6 , 1
24 , 1

30 , 1
36 of the Talmudic cubit,

respectively).
• Galactocentric distance

A star’s galactocentric distance (or galactocentric radius) is its range
distance from the Galactic Center; it may also refer to a distance be-
tween two galaxies. The Sun’s galactocentric distance is ≈8.5 kpc, i.e.,
27, 700 light-years.

• Cosmic light horizon
The cosmic light horizon (or age of the Universe, or, in Chaps. 26
and 27, Hubble distance) is an increasing range distance: the maxi-
mum distance that a light signal could have traveled since the Big Bang,
the beginning of the Universe.

At present, it is 13–14 × 109 light-years, i.e., about 13 × 1060 Planck
lengths.



References

[Abel91] Abels H. The gallery distance of flags, Order, Vol. 8, pp. 77–92, 1991.
[AACL98] Aichholzer O., Aurenhammer F., Chen D.Z., Lee D.T., Mukhopadhyay A. and

Papadopoulou E. Voronoi Diagrams for Direction-sensitive Distances, In: Proc. 13-th
Symposium on Computational Geometry, ACM Press, New York, 1997.

[AAH00] Aichholzer O., Aurenhammer F. and Hurtado F. Edge Operations on Non-
crossing Spanning Trees, In: Proc. 16-th European Workshop on Computational
Geometry CG’2000, pp. 121–125, 2000.

[Aker97] Akerlof G.A. Social distance and social decisions, Econometrica, Vol. 65, Nr. 5,
pp. 1005–1027, 1997.

[Amar85] Amari S. Differential-geometrical Methods in Statistics, Lecture Notes in Statis-
tics, Springer, Berlin, 1985.

[Amba76] Ambartzumian R. A note on pseudo-metrics on the plane, Zeitschrift fur
Wahrscheinlichkeitstheorie und Verwandte Gebiete, Vol. 37, pp. 145–155, 1976.

[ArWe92] Arnold R. and Wellerding A. On the Sobolev distance of convex bodies, Aeq.
Mathematicae, Vol. 44, pp. 72–83, 1992.

[Badd92] Baddeley A.J. Errors in binary images and an Lp version of the Hausdorff
metric, Nieuw Archief voor Wiskunde, Vol. 10, pp. 157–183, 1992.

[BaFa07] Baier R. and Farkhi E. Regularity and integration of set-valued maps represented
by generalized Steiner points, Set-Valued Analysis, Vol. 15, pp. 185–207, 2007.

[Bara01] Barabási A.L. The Physics of the Web, Physics World, July 2001.
[Barb35] Barbilian D. Einordnung von Lobayschewskys Massenbestimmung in either

Gewissen Allgemeinen Metrik der Jordansche Bereiche, Casopis Mathematiky a
Fysiky, Vol. 64, pp. 182–183, 1935.
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(1, 2) − B-metric, 40

(2k + 1)-gonal distance, 10

(2k + 1)-gonal inequality, 10

(3, 4)-metric, 354

(c, p)-norm metric, 224

(h, Δ)-metric, 165

(m, s)-simplex inequality, 68

(m, s)-super-metric, 68

(p, q)-relative metric, 324

1-sum distance, 83

2-metric, 67

2k-gonal distance, 9

2k-gonal inequality, 9

2n-gon metric, 327

3D-chamfer metric, 355

4-metric, 333

6-metric, 333

8-metric, 333

C-inframetric, 6

C-metric, 190

C-pseudo-distance, 6

C-triangle inequality, 6

D-distance graph, 267

F -norm metric, 89

F -rotation distance, 276

F -space, 90

F ∗-metric, 90

F ∗-space, 90

G-distance, 165

G-invariant metric, 134

G-norm metric, 192

G-space, 105

G-space of elliptic type, 106

GM -distance, 547

J-metric, 69

L1 rearrangement distance, 204

L∞ rearrangement distance, 204

Lp-Hausdorff distance, 48

Lp-Wasserstein distance, 254

Lp-metric, 96

Lp-metric between densities, 243

Lp-space, 96

M -relative metric, 324

P -metric, 10

Q-metric, 165

Q0-difference, 307

SO(3)-invariant metric, 152

Sym+ metric, 225

T0-space, 60

T1-space, 60

T2-space, 60

T3-space, 60

T4-space, 61

T5-space, 61

T6-space, 61

χ2-distance, 250

δ-hyperbolic metric, 8

ε-net, 19

γ-metric, 65, 485

μ-metric, 281

�-Gordian distance, 171

�-inversion distance, 172

τ -distance space, 70

Λ-metric, 164

Σ-Hausdorff distance, 359

Υ-metric, 259

c-isomorphism of metric spaces, 35

c-uniformly perfect metric space, 42

f -divergence of Csizar, 249

f -potential energy, 27

g-transform metric, 81

k-diameter, 28

k-distant chromatic number, 267

k-mer distance, 402

k-oriented distance, 180

k-power of a graph, 264

k-th minimum distance, 288

lp-metric, 94
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m-hemi-metric, 67

m-simplex inequality, 67
nD-neighborhood sequence metric, 334
p-adic metric, 216
p-average compound metric, 242
p-distance, 392
p-relative metric, 218
p-th order mean Hausdorff distance, 359
q-gram similarity, 206
s-energy, 27
t-bottleneck distance, 361
t-irredundant set, 267

t-scaled metric, 80
t-spanner, 270
t-truncated metric, 80
w-distance, 70
écart, 3
3D point cloud distance, 315

Absolute moment metric, 243
Absolute summation distance, 290
absolute value metric, 216
abstract Lorenzian distance, 476
accelerate-stop distance, 546
Acceleration distance, 420
ACME distance, 293
Acoustic metric, 433
Acoustics distances, 369
Action at a distance (in Computing), 382
Action at a distance (in Physics), 435
Action at a distance along a DNA, 399
Action distance, 516
activation distance, 554
actual landing distance, 546
additive metric, 7
Additively weighted distance, 341
Additively weighted power distance, 341
Administrative cost distance, 379
aesthetic distance, 535
Affine distance, 116
affine Kähler metric, 150
Affine metric, 117
Affine pseudo-distance, 116
Affine space–time distance, 475
Agmon distance, 137
Aichelburg–Sexl metric, 434
Airlift distance, 343

Albanese metric, 193

Albert quasi-metric, 5

Alcubierre metric, 490

alert distance, 411

Alexandrov space, 62

Ali–Silvey distance, 252

Alice–Bob distance, 436

Alignment distance, 280

Altitude, 458

Amino p-distance, 401

Amino gamma distance, 401

Amino Poisson correction distance, 401

Analytic metric, 163

Ancestral path distance, 391

Anderberg similarity, 306

Anderson–Darling distance, 245

Angle distances between subspaces, 226

angle-opening distance, 538

Angular diameter distance, 470

Angular distance, 331

Angular semi-metric, 308

Animal long-distance communication, 413

anogenital distance, 537

Anthony–Hammer similarity, 206

anti-de Sitter metric, 478

antimedian metric space, 13

Antinomy of distance, 534

antipodal extension distance, 82

antipodal metric space, 28

aphelion, 459

Apoapsis distance, 459

apogee, 459

Apollonian metric, 123

Appert partially ordered distance, 77

Approach space, 71

approximate midpoints, 16

Approximative human-scale distances, 509

arc, 14

Arc routing problems, 269

Area deviation, 173

area distance, 470

Arithmetic r-norm metric, 215

Arithmetic codes distance, 289

as-the-crow-flies distance, 94

Asplund metric, 176

Assouad-Nagata dimension, 22

astronomical distance, 456

Astronomical length units, 500

Asymptotic dimension, 23

asymptotic metric cone, 33

Atanassov distances, 53

Atiyah–Hitchin metric, 153

Atmosphere distances, 451

Atmospheric visibility distances, 449

Atomic jump distance, 429

Atomic radius, 437

attenuation length, 422

Attributed tree metrics, 283

Average color distance, 352

average distance property, 26

average linkage, 297
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Average square distance, 390

Average-clicks Web quasi-distance, 379

Azimuth, 459

Azukawa metric, 155

bad distance, 548

Baddeley–Molchanov distance function, 72

Bag distance, 204

Baire metric, 208

Baire space, 62

Baire space of weight κ, 209

Ball convexity, 16

Ballistics distances, 421

Banach space, 93

Banach–Mazur compactum, 98

Banach–Mazur distance, 49

Banach–Mazur metric, 176

Bar framework, 268

Bar product distance, 287

Barbilian metric, 124

Bark spectral distance, 366

Baroni–Urbani–Buser similarity, 301

Barriola–Vilenkin monopole metric, 489

Barry–Hartigan quasi-metric, 394

Barycentric metric space, 51

base pair distance, 395

Bayesian distance, 244

Bayesian graph edit distance, 274

beeline distance, 94

Beer–Lambert law, 426

Benda–Perles chromatic number, 29

Berger metric, 135

Bergman p-metric, 231

Bergman metric, 151

Bertotti–Robinson metric, 489

Berwald metric, 140

Besicovitch distance, 231

Besicovitch semi-metric, 316

Besov metric, 232

Betweenness centrality, 372

Bhattacharya distance 1, 250

Bhattacharya distance 2, 250

Bi-discrepancy semi-metric, 247

Bi-invariant metric, 187

bi-Lipschitz equivalent metrics, 35

Bi-Lipschitz mapping, 35

Bianchi metrics, 481

bimetric theory of gravity, 432

Binary Euclidean distance, 302

Binary relation distance, 276

Binding energy, 433

Biotope distance, 408

biotope transform metric, 80

Birnbaum–Orlicz distance, 248

blanking distance, 369

Blaschke distance, 48

Blaschke metric, 137

Bloch metric, 231

Block graph, 266

Boat-sail distance, 344

Bochner metric, 231

Body distances for clothes, 544

Body distances in Antropometry, 542

Body size rules, 416

Bogolubov–Kubo–Mori metric, 146

Bohr metric, 230

Bombieri metric, 220

Bond distance, 437

Bondi radar distance, 473

Bondi radiating metric, 488

Bonnor beam metric, 487

Bonnor dust metric, 484

Boolean metric space, 76

Borgefors metric, 355

Bottleneck distance, 360

Boundary of metric space, 108

Bounded box metric, 314

Bounded metric space, 43

Bourdon metric, 108

Box metric, 84

braking distance, 546

Braun–Blanquet similarity, 305

Bray–Curtis distance, 300

Bray–Curtis similarity, 300

breakpoint distance, 398

Bregman distance, 248

Bregman quasi-distance, 235

British Rail metric, 326

Bruhat–Tits metric space, 108

Bryant metric, 141

Buffer distance, 547

Bundle metric, 149

Bunke–Shearer metric, 272

Burago–Ivanov metric, 327

Burbea–Rao distance, 248

Bures distance, 146

Bures metric, 146

Bures–Uhlmann distance, 435

Busemann convexity, 15

Busemann metric, 113

Busemann metric of sets, 86

bush metric, 8

Bushell metric, 180

CAT(κ) inequality, 107

CAT(κ) space, 106
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c-embedding, 35

Calabi metric, 152

Calabi–Yau metric, 150

Cameron–Tarzi cube, 85

Canberra distance, 300

canonic Lorentz distance, 476

Cantor connected metric space, 12

Cantor metric, 316

capacity of metric space, 19

Capillary diffusion distance, 406

Carathéodory metric, 155

Carnot–Carathéodory metric, 135

Cartan metric, 160

Catalan surface metric, 170

Category of metric spaces, 38

caterpillar metric, 326

Cauchy completion, 42

Cavalli-Sforza arc distance, 389

Cavalli-Sforza–Edvards chord distance, 388

Cayley metric, 212

Cayley–Klein–Hilbert metric, 122

Cayley–Menger matrix, 18

CC metric, 135

Center of mass metric, 314

central lung distance, 539

Central Park metric, 327

centroid distance, 328

centroid linkage, 298

Cepstral distance, 367

Chain metric, 212

Chamfer metric, 337

Chamfering distances, 354

Characteristic length, 557

charge distance, 401

Chartrand–Kubicki–Schultz distance, 271

Chaudhuri–Murthy–Chaudhuri metric, 355

Chaudhuri–Rosenfeld metric, 52

Chebyshev center, 31

Chebyshev metric, 324

Chebyshev radius, 31

Chebyshev set, 31

Chemical distance, 438

Chernoff distance, 252

chessboard metric, 333

chordal distance, 227

Chordal metric, 218

Chromatic numbers of metric space, 29

Circle metric, 331

circular cut semi-metric, 262

circular decomposable semi-metric, 263

Circular metric in digraphs, 259

Circular-railroad quasi-metric, 332

City distance, 343

City-block metric, 323

cladistic distance, 387

Clarity similarity, 252

Clark distance, 302

Clearance distance, 551

Closed metric interval, 13

Closed subset of metric space, 11

Co-starring distance, 372

Coarse embedding, 37

coarse isometry, 37

Coarse-path metric, 6

coarsely equivalent metrics, 37

Colatitude, 457

Collaboration distance, 371

Collision avoidance distance, 327

Color component distance, 352

Color distances, 351

combinatorial dimension, 40

common subgraph distance, 272

common supergraph distance, 272

Commutation distance, 191

Commuting distance, 518

commuting time metric, 261

Comoving distance, 467

compact metric space, 43

Compact quantum metric space, 54

Compact space, 62

complete linkage, 298

Complete metric, 41

complete metric space, 41

Complete Riemannian metric, 133

Completely normal space, 61

Completely regular space, 60

Complex Finsler metric, 153

Complex modulus metric, 218

Compoundly weighted distance, 342

computable metric space, 57

conditional diameter, 28

Cone distance, 347

Cone metric, 75

Cones over metric space, 181

configuration metric, 311

Conformal metric, 132

Conformal metric mapping, 34

Conformal space, 132

Conformally invariant metric, 165

Conformally stationary metric, 486

Congruence order of metric space, 29

Connected metric space, 11

Connected space, 62

Connes metric, 147

constrained edit distance, 202

Constructive metric space, 56

Consumer access distance, 520

Contact quasi-distances, 330
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Continental shelf distance, 446

Continued fraction metric on irrationals,

216

Continuous dual space, 239

Continuum, 63

Contraction, 37

Contraction distance, 274

Contractive mapping, 37

Convex distance function, 30

convex metric, 164

Convolution metric, 246

Cook distance, 309

Correlation length, 431

Correlation similarity, 307

correlation triangle inequality, 10

cortical distance, 539

cosh distance, 366

cosine distance, 308

cosine page distance, 380

Cosine similarity, 308

Cosmic light horizon, 561

cosmological distance, 466

Cosmological distance ladder, 472

Countably-normed space, 64

Coupling length, 430

Covariance similarity, 307

covering radius, 29

Cramer–von Mises distance, 245

crash distance, 546

Creepage distance, 551

critical distance, 369

Crnkovic–Drachma distance, 245

Cross difference, 9

cross-correlation distances, 408

cross-over distance:, 455

cross-ratio, 9

crossing-free edge move metric, 276

crossing-free edge slide metric, 276

Crossing-free transformation metrics, 276

crossover metric, 281

crystalline metrics, 94

Cubit, 499

Cultural distance, 513

Cut norm metric, 225

Cut semi-metric, 262

Cutoff distances, 555

Cycloidal metric, 134

Cygan metric, 194

Cylindrical distance, 347

Czekanowsky–Dice distance, 299

Damerau–Levenstein metric, 202

Daniels–Guilbaud semi-metric, 212

Dayhoff–Eck distance, 400

de Sitter metric, 478

Death of Distance, 516

Debye screening distance, 422

Declination, 457

Decoherence length, 432

Decomposable semi-metric, 263

degenerate metric, 131

degree distance, 26

degree-1 edit distance, 279

Degree-2 distance, 280

Delay distance, 550

delta distance, 171

Demyanov distance, 178

Dephasing length, 432

depth of field, 552

Desarguesian space, 105

Design distance, 287

detection distance, 411

Detour distance, 258

DeWitt supermetric, 141

Diagonal metric, 131

dialectology distance, 529

dictionary-based metric, 207

diff-dissimilarity, 52

Diffusion length, 430

diffusion tensor distance, 539

digital metric, 332

Digital volume metric, 337

dilated metric, 80

Dilation, 32

directed Hausdorff distance, 48

Dirichlet metric, 232

Discrepancy metric, 247

Discrete metric, 40

Discrete topological space, 65

Disjoint union metric, 83

Dislocation distances, 441

Dispersal distance, 409

Dispersion similarity, 306

Displacement, 419

displacement function, 32

dissimilarity, 3

Distal and proximal, 556

Distance, 3

Distance k-sector, 18

distance between landfalls, 456

Distance centrality, 373

Distance ceptor, 524

Distance coercion model, 418

distance concept of proximity, 527

Distance constant of operator algebra, 239

Distance convexity, 16

Distance cues, 524
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Distance curve, 557

Distance decay, 557

Distance decay (in Spatial Interaction),
519

distance decoder, 269

distance degree regular graph, 265

Distance distribution, 289

Distance education, 512

Distance effect, 556

distance effect on trade, 519

Distance from measurement, 78

Distance function, 30

distance graph, 267

Distance healing, 540

Distance in a river, 344

Distance in Military, 548

Distance labelling scheme, 269

distance line, 547

distance made good, 546

Distance map, 31

Distance matrix, 17

distance measuring equipment, 549

Distance model of altruism, 418

Distance modulus, 469

Distance monotone metric space, 13

Distance of negative type, 10

distance of travel, 447

Distance on building, 76

distance pheromone, 412

distance relation, 527

Distance running model, 417

Distance selling, 520

Distance space, 3

distance statistic, 242

distance to frontier, 515

Distance to Heaven, 532

distance topology, 65

Distance transform, 357

Distance up to nearest integer, 86

distance vision, 542

distance-balanced graph, 265

Distance-based machine learning, 309

Distance-based numbering, 448

Distance-decreasing semi-metric, 154

Distance-hereditary graph, 266

Distance-invariant metric space, 11

Distance-number of a graph, 268

Distance-polynomial graph, 266

Distance-regular graph, 265

Distance-related shots, 553

distance-transitive graph, 265

Distance-two labelling, 269

Distances between graphs of matrices, 226

Distances between people, 510

Distances between rhythms, 368

Distances in Animal Behavior, 411

Distances in Criminology, 521

Distances in Medicine, 537

Distances in Oceanography, 452

Distances in Oncology, 539

Distances in Rheumatology, 540

Distances in Seismology, 454

Distances in Stereoscopy, 553

Distanciation, 535

distantiation, 512

Distancing, 511

distancing language, 512

distortion, 35

Dodge–Shiode WebX quasi-distance, 380

Dogkeeper distance, 230

Dominating metric, 41

dorsoventral interlead distance, 538

Doubling dimension, 22

doubling metric, 22

Douglas metric, 141

Dps distance, 388

Drapal–Kepka distance, 196

draw distance, 525

Drift distance, 373

Drop distance, 522

DRP-metrics, 379

Dual distance, 287

Dual metrics, 97

Dudley metric, 246

Dugundji–Ugi chemical distance, 439

Duncan metric, 208

DXing, 446

Dynamical diffraction distances, 441

Dynamical system, 55

Dyson radius, 462

Earth Mover distance, 355

earthquake distance, 455

Eccentricity, 28

Ecliptic latitude, 458

Ecliptic longitude, 458

Ecological distance, 409

Eddington–Robertson metric, 480

Edgar–Ludwig metric, 488

Edge distance, 274

Edge flipping distance, 275

Edge jump distance, 274

Edge move distance, 274

Edge rotation distance, 275

Edge shift distance, 275

edge slide distance, 275

edit distance, 202
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Edit distance with costs, 203

Editex distance, 528

Editing compression metric, 202

Editing graph metric, 273

Editing metric, 44

editing metric, 201

Editing metric with moves, 202

Effective free distance, 288

Effective metric space, 57

Effective trade distance, 514

Eggleston distance, 176

Egocentric distance, 524

Eguchi–Hanson de Sitter metric, 489

Eguchi–Hanson metric, 153

Ehrenfeucht–Haussler semi-metric, 331

Eigen–McCaskill–Schuster distance, 394

Einstein metric, 477

Einstein radius, 470

elastic framework, 268

Element of best approximation, 31

Ellenberg similarity, 299

Ellipsoid metric, 168

Elliptic metric, 118

Elliptic orbit distance, 459

EM radiation wavelength range, 424

Emmert’s size-distance law, 523

Emotional distance, 512

endurance distance, 546

Enflo type, 24

Engineer semi-metric, 244

Enomoto–Katona metric, 46

Entanglement distance, 436

entropy metric, 253

environmental distances, 525

epicentral distance, 455

equicut semi-metric, 262

Equidistant map, 447

Equidistant metric, 40

equilibrium distance, 437

Equivalent metrics, 12

Erdös space, 98

Erdős-type distance problems, 323

escape distance, 411

Etch depth, 550

Euclidean metric, 94

Euclidean rank of metric space, 20

Euclidean space, 94

Euler angle metric, 313

even cut semi-metric, 262

Evolutionary distance, 387

exocentric distance, 524

expansion distance, 430

Exponential distance, 340

Extended metric, 4

Extended real line metric, 217

Extended topology, 66

Extension distances, 82

Extremal metric, 166

Főrster distance, 404

Facility layout distances, 328

factor distance, 203

Factorial ring semi-metric, 195

Faith similarity, 305

Fano metric, 294

far field, 424

Far Near Distance, 536

Farris transform metric, 81

Feeding distance, 551

Feng–Rao distance, 288

Feng–Wang distance, 401

Fermat metric, 486

Fernández–Valiente metric, 273

Ferrand metric, 124

Ferrand second metric, 125

Fidelity similarity, 249, 435

Figure of merit quasi-distance, 359

Finite lp-semi-metric, 263

Finite nuclear norm metric, 237

Finite subgroup metric, 198

Finsler metric, 138

firing rate distance, 407

first contact quasi-distance, 330

first sink contact distance, 548

First-countable space, 61

Fisher distance, 144

Fisher information metric, 143

Fisher–Rao metric, 144

Fixed orientation metric, 327

Flag metric, 113

Flat metric, 164

flat space, 132

flight initiation distance, 411

Florian metric, 175

Flower-shop metric, 326

FLRW metric, 481

focal distance, 552

Forbes similarity, 305

force-distance curve, 557

Forest metric, 261

forest-fire distance, 345

formation metric, 315

Fortet–Mourier metric, 254

Forward quasi-distance, 372

four-point inequality, 7

Four-point inequality metric, 7

Fréchet V -space, 78
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Fréchet metric, 49

Fréchet permutation metric, 213

Fréchet product metric, 84

Fréchet space, 63

Fréchet surface metric, 166

Fréchet–Nikodym–Aronszyan distance, 46

Fractal, 21

fractal dimension, 21

fractional lp-distance, 301

Frankild–Sather-Wagstaff metric, 195

Free distance, 288

free fall distance, 420

free space metric, 315

Fremlin length, 23

French Metro metric, 325

friction of distance, 519

Fringe distance, 552

Frobenius distance, 227

Frobenius norm metric, 223

frontier metric, 315

Fubini–Study distance, 435

Fubini–Study metric, 151

functional transform metric, 80

Funk metric, 140

Fuzzy Hamming distance, 207

Fuzzy metric spaces, 73

Fuzzy polynucleotide metric, 396

Fuzzy set distance, 389

Gödel metric, 485

Gabidulin–Simonis metrics, 292

Gajić metric, 216

Galactocentric distance, 561

Galilean distance, 477

Gallery distance of flags, 200

gallery distance on building, 76

Gallery metric, 44

gap distance, 227

Gap metric, 317

gate extension distance, 82

gauge, 30

gauge metric, 194

GCSS metric, 483

Gear distances, 551

Gehring metric, 124

Gender-related body distance measures,
544

Gendron et al. distance, 406

genealogical distance, 387

General linear group semi-metric, 193

Generalized G-Hausdorff metric, 48

generalized absolute value metric, 217

Generalized biotope transform metric, 80

Generalized Cantor metric, 209

generalized chordal metric, 219

generalized Fano metric, 295

generalized Hilbert space, 98

Generalized Lee metric, 291

generalized Matusita distance, 249

generalized Menger space, 73

Generalized metric, 75

Generalized Riemannian spaces, 133

Generalized torus semi-metric, 193

generalized ultrametric, 77

Generational distance, 318

Genetic code distance, 400

genetic distance, 387

Genome distance, 398

Genome rearrangement distances, 397

Geodesic, 14

Geodesic convexity, 14

Geodesic distance, 104

Geodesic metric space, 104

geodesic segment, 14

Geodetic graph, 265

Geographic distance, 378

Geographic distance biases, 525

Gerontologic distance, 415

Gibbons–Manton metric, 158

Gleason distance, 122

Gleason similarity, 299

Gluskin–Khrabrov distance, 49

Go the distance, 560

Godsil–MaKay dimension, 23

Goldstein and al. distance, 389

Golmez partially ordered distance, 77

Goppa designed minimum distance, 288

Gordian distance, 171

Gower similarity 2, 307

Gower–Legendre similarity, 306

GPS navigation distance, 448

GPS pseudo-distance, 549

Graev metrics, 210

Gram matrix, 18

Graph diameter, 259

graph edit distance, 274

Graph of polynomial growth, 266

graphic metric, 258

Gravitational radius, 433

Gravity models, 518

Gray-scale image distances, 353

Great circle distance, 445

great circle metric, 117

Greatest agreement subtree distance, 283

Grenander distance, 178

Grid metric, 333

Grishin distance, 402
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Gromov δ-hyperbolic inequality, 8

Gromov hyperbolic metric space, 106

Gromov product similarity, 9

Gromov–Hausdorff metric, 48

ground distance, 447

Group norm metric, 89

Growth distances, 177

Growth rate of metric space, 25

Grushin metric, 137

Grzegorzewski distances, 54

Gudder distance, 435

GV fuzzy metric space, 74

Gyroradius, 422

Hölder mapping, 35

Hölder metric, 233

Hölder near-metric, 6

Habitable zone radii, 462

Half-Apollonian metric, 124

Half-plane projective metric, 112

half-space parabolic distance, 126

Half-value layer, 424

Hamann similarity, 304

Hamiltonian metric, 258

Hamming cube, 84

Hamming metric, 45

Hamming metric on permutations, 211

Handwriting spatial gap distances, 362

haptic space, 522

Hard metric, 496

Hardy metric, 232

Harmonic mean similarity, 249

Harnack metric, 123

Hausdorff dimension, 21

Hausdorff distance up to G, 361

Hausdorff metric, 47

Hausdorff space, 60

Hausdorff–Lipschitz distance, 49

having midpoints, 16

Head and face measurement distances, 543

Healing length, 430

heavy luggage metric, 329

hedgehog metric, 325

Heisenberg metric, 193

Hejcman length, 23

Helical surface metric, 169

Hellinger distance, 303

Hellinger metric, 249

Helly semi-metric, 195

Hermitian G-metric, 68

Hermitian elliptic metric, 118

Hermitian hyperbolic metric, 120

Hermitian metric, 149

Hessian metric, 150

Hexagonal Hausdorff metric, 337

Hexagonal metric, 333

Hilbert cube metric, 84

Hilbert metric, 97

Hilbert projective metric, 112

Hilbert projective semi-metric, 180

Hilbert space, 97

Hilbert–Schmidt norm metric, 237

Hilditch–Rutovitz metric, 354

Hirst–St-Onge similarity, 375

Histogram diffusion distance, 353

Histogram intersection quasi-distance, 353

Histogram quadratic distance, 353

historical distance, 535

Hitting time quasi-metric, 261

Hodge metric, 151

Hofer metric, 159

Homeomorphic metric spaces, 33

Homogeneous metric space, 32

Hopping distance, 429

horizon distance, 446

Horizontal distance, 447

Hour angle, 458

Hsu-Lyuu-Flandrin-Li distance, 262

Hubble distance, 467

Humidifier absorbtion distance, 551

Hutchinson metric, 254

Hybridization metric, 394

Hydrodynamic radius, 430

hyper-focal distance, 553

Hyper-Kähler metric, 152

Hyperbolic dimension, 22

Hyperbolic Hausdorff distance, 361

Hyperbolic metric, 119

Hyperboloid metric, 168

Hyperconvexity, 17

hypercube metric, 258

Hypermetric, 10

hypermetric inequality, 10

Hyperspace, 65

hypocentral distance:, 455

Image compression Lp-metric, 354

Immunological distance, 402

impact parameter, 421

Imperial length measures, 498

Incremental distance, 557

Indefinite metric, 68

Indel distance, 293

Indel metric, 202

Indicator metric, 243

Indiscrete semi-metric, 40
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Indiscrete topological space, 65

Indivisible metric space, 12

Induced metric, 41

induced norm metric, 222

Inelastic mean free path, 422

infinitesimal distance, 127

information metric, 253

Injective envelope, 39

Injective metric space, 38

injectivity radius, 15

inner metric, 81

Inner product space, 97

Insecticide distance effect, 414

Instrument distances, 550

Integral metric, 229

inter-arch distance, 537

inter-aural distance, 537

inter-occlusal distance, 537

inter-pediculate distance, 537

inter-proximal distance, 537

inter-pupillary distance, 542

Interaction distance, 421

interaction length, 421

interatomic distance, 437

intercept quasi-distance, 330

Interchange distance, 293

Interionic distance, 438

interior metric, 81

Intermalleolar distance, 540

Intermicellar distance, 438

Internal metric, 81

International Metric System, 496

Internet AS metric, 378

Internet IP metric, 378

Intersection distance, 300

Interspot distance, 395

Interval distance, 294

Interval distance monotone graph, 265

Interval norm metric, 189

interval-ratio distance, 369

Interval-valued metric space, 75

intragenic distance, 399

Intrinsic metric, 104

inverse triangle inequality, 476

Inverse-square distance laws, 423

inversion distance, 171

Inversive distance, 332

Involution transform metric, 82

ISI distances, 407

Island distance effect, 410

ISO paper sizes, 500

Isolation-by-distance, 410

isometric embedding, 31

Isometric muscle action, 545

Isometric subgraph, 264

Isometry, 31

Itakura–Saito quasi-distance, 366

ITT-distance, 398

Ivanov–Petrova metric, 134

Jaccard distance, 299

Jaccard similarity of community, 299

Janis–Newman–Wincour metric, 480

Janous–Hametner metric, 217

Jaro similarity, 206

Jaro–Winkler similarity, 206

Jeffrey divergence, 251

Jensen–Shannon divergence, 251

Jiang–Conrath distance, 375

Jin–Nei gamma distance, 392

Johnson distance, 46

journey length, 449

Joyner–Boore distance, 455

Jukes–Cantor nucleotide distance, 392

Jukes–Cantor protein distance, 402

Kähler metric, 149

Kähler supermetric, 159

Kähler–Einstein metric, 150

Kadets distance, 50

Kalmanson semi-metric, 263

Kaluza–Klein metric, 491

Kantorovich–Mallows–Monge–Wasserstein
metric, 253

Kantowski–Sashs metric, 482

Karlsruhe metric, 325

Kasner metric, 482

Katĕtov mapping, 41

Katz similarity, 260

Kaufman semi-metric, 227

Kawaguchi metric, 141

Kemeny distance, 196

Kendall τ distance, 211

Kendall shape distance, 358

Kerr metric, 479

Kerr–Newman metric, 480

Kerr–Schild metric, 479

Kimura 2-parameter distance, 393

Kimura protein distance, 402

Kinematic distance, 471

Kinematic metric, 476

king-move metric, 333

Kinship distance, 390

Klatt slope metric, 367

Klein metric, 140

Klement–Puri–Ralesku metric, 53
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KM fuzzy metric space, 73

Knight metric, 336

Knot complement hyperbolic metric, 172

Kobayashi metric, 154

Kobayashi–Busemann metric, 155

Kobayashi–Royden metric, 154

Kolmogorov–Smirnov metric, 245

Kolmogorov–Tihomirov dimension, 20

Korányi metric, 194

Kottler metric, 479

Koutras–McIntosh metric, 488

Krakus metric, 181

Kristeva non-metric space, 530

Kropina metric, 139

Kruglov distance, 248

Kruskal–Szekeres metric, 478

KS fuzzy metric space, 74

Kuiper distance, 245

Kulczynski similarity 1, 300

Kulczynski similarity 2, 301

Kullback–Leibler distance, 250

Kumar–Hassebrook similarity, 308

Kurepa–Fréchet distance, 78

Ky Fan metric K, 243

Ky Fan metric K∗, 243

Ky Fan norm metric, 224

Lake paralinear distance, 393

Language distance effect, 530

Language distance from English, 527

Lasker distance, 391

Latitude, 456

Latter F -statistics distance, 390

Lattice metric, 333

Lattice valuation metric, 198

Laver consonant distance, 529

Le Cam distance, 247

Leacock–Chodorow similarity, 374

Lebesgue covering dimension, 21

Lebesgue space, 96

Lee metric, 45

left-invariant metric, 188

lekking distance rank, 412

Lempel–Ziv distance, 205

length function, 495

length metric, 104

length of a curve, 14

Length of metric space, 23

Length scales in Physics, 502

length space, 104

Lens distances, 552

Lerman semi-metric, 227

Lesk similarities, 375

Levenstein metric, 202

Levi–Civita metric, 484

Levy–Sibley metric, 245

Lewis metric, 483

Lexicographic metric, 212

Lift metric, 325

light echo distance, 473

light extinction distance, 428

Light-travel distance, 470

Lin similarity, 375

Lindelöf space, 61

line metric on {1, . . . , n}, 41

Line-line distance, 85

line-of sight comoving distance, 468

line-of-sight distance, 446

linear contact quasi-distance, 330

Linearly additive metric, 45

linearly rigid metric space, 44

Linguistic distance, 529

Link distance, 328

linkage metric, 297

Lipschitz distance, 50

Lipschitz distance between measures, 51

Lipschitz mapping, 35

Lipschitz metric, 51

Lissak-Fu distance, 244

Locality metric, 381

Localization length, 431

localization metric, 315

Locally compact space, 63

Locally convex space, 63

locally geodesic metric space, 104

Log likelihood ratio quasi-distance, 366

Logarithmic distance, 340

LogDet distance, 394

Long range dependence, 558

Long range order, 431

Long-distance, 559

long-distance anaphora, 530

Long-distance dependence (in Language),
530

Long-distance dispersal, 409

Longitude, 457

lookback distance, 467

Lorentz metric, 476

Lorentz–Minkowski distance, 477

Lorentzian metric, 137

Lostness metric, 381

Lovász–Szegedy semi-metric, 272

lower Minkowski dimension, 19

Loxodromic distance, 445

LRTJ-metric, 293

Luminosity distance, 469

Lunar distance, 459

Lund–Regge supermetric, 142
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Möbius mapping, 33

Möbius space, 219

MacAdam metric, 351

Macbeath metric, 176

Magnetic length, 431

Mahalanobis distance, 303

Mahalanobis semi-metric, 244

Malecot’s distance model, 410

Manhattan metric, 323

Manifold triangulation metric, 182

Mannheim distance, 290

Map distance, 399

Map’s distance, 447

Marczewski–Steinhaus distance, 46

margin distance, 539

marginal reflex distances, 538

Marital distance, 414

Marking metric, 204

Markov type, 25

Martin cepstrum distance, 367

Martin distance, 226

Martin metric, 208

Master–slave distance, 550

Matching distance, 47

Matrix p-norm metric, 223

Matrix norm metric, 222

Matusita distance, 249

maximum absolute column metric, 223

maximum distance design of size m, 29

maximum heart distance, 539

Maximum polygon distance, 178

maximum scaled difference, 304

MBR metric, 325

McClure–Vitale metric, 174

Mean censored Euclidean distance, 302

mean character distance, 302

Mean free path (length), 421

Mean molecular radius, 439

Mean width metric, 174

measure metric, 46

measurement triangle inequality, 78

Mechanic distance, 420

Medial axis and skeleton, 357

Median graph, 265

Median metric space, 13

Meehl distance, 303

Menger convexity, 15

Metabolic distance, 406

metallic distance, 437

Metametric space, 69

meter, 496

Meter-related terms, 497

Metric, 4

metric “river”, 325

metric antimedian, 28

metric association scheme, 265

Metric ball, 11

Metric basis, 19

Metric between angles, 331

Metric between directions, 331

Metric between games, 194

Metric between intervals, 194

Metric bornology, 72

metric center, 28

Metric compactum, 43

Metric compression, 36

Metric cone, 17

Metric cone structure, 32

metric connection, 148

Metric convexity, 16

metric coordinates, 19

Metric curve, 14

Metric density, 19

metric derivative, 14

Metric diameter, 28

Metric dimension, 19

metric disk, 11

Metric entropy, 19

metric envelope, 39

metric expansion of space, 481

metric extension, 41

metric fan, 17

Metric fibration, 33

metric great circle, 14

Metric length measures, 498

metric median, 28

metric meterstick, 496

Metric of bounded curvature, 164

Metric of motions, 192

Metric of negative curvature, 163

Metric of non-negative curvature, 164

Metric of non-positive curvature, 163

Metric of positive curvature, 163

metric projection, 31

metric property, 32

Metric quadrangle, 13

metric radius, 29

Metric Ramsey number, 36

metric ray, 14

metric recursion, 295

Metric recursion of a MAP decoding, 295

Metric scheme, 4

metric segment, 14

Metric space, 4

Metric space having collinearity, 13

Metric space of roots, 221

metric sphere, 11

Metric spread, 28
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metric straight line, 14

metric subspace, 41

Metric symmetry, 441

Metric tensor, 130

Metric theory of gravity, 432

Metric topology, 12

Metric transform, 41, 79

metric tree, 40, 297

Metric triangle, 13

metric triple, 44

Metric with alternating curvature, 164

Metric-preserving function, 80

Metrically almost transitive graph, 265

Metrically discrete metric space, 42

metrically homogeneous metric space, 32

Metrication, 496

Metrics between fuzzy sets, 52

Metrics between intuitionistic fuzzy sets,
53

Metrics between multisets, 51

Metrics between partitions, 196

Metrics on determinant lines, 158

Metrics on natural numbers, 215

Metrics on Riesz space, 199

Metrizable space, 64

Metrization theorems, 12

Midpoint convexity, 16

Midset, 18

Migration distance (in Biogeography), 410

Migration distance (in Biomotility), 405

Migration distance (in Economics), 518

Millibot train metrics, 315

Milnor metric, 159

minimax distance design of size m, 29

Minimum distance, 286

minimum spanning tree, 270

Minkowski difference, 177

Minkowski metric, 475

Minkowski rank of metric space, 20

Minkowski–Bouligand dimension, 19

Minkowski–Hölder distance, 113

Minkowskian metric, 113

Mirkin–Tcherny distance, 196

Misner metric, 490

miss distance, 548

Mixmaster metric, 482

Miyata–Miyazawa–Yasanaga distance, 400

Modified Hausdorff distance, 360

Modified Minkowskian distance, 313

Modular distance, 192

Modular metric space, 13

Modulus metric, 125

Moho distance, 453

Molecular RMS radius, 439

Molecular similarities, 439

Moment, 419

Monge–Kantorovich metric, 254

Monjardet metric, 209

Monkey saddle metric, 170

monomial metric, 396

Monomorphism norm metric, 190

Monotone metric, 145

Montanari metric, 354

Moore space, 61

Moral distance, 512

Morisita–Horn similarity, 309

Morris–Thorne metric, 489

Moscow metric, 325

motion planning metric, 311

Motyka similarity, 300

Mountford similarity, 306

Multi-cut semi-metric, 263

Multiplicatively weighted distance, 340

Multiply-sure distance, 262

Myers–Perry metric, 491

Natural metric, 216

Natural norm metric, 222

Natural units, 501

nautical distance, 446

Nautical length units, 499

Near-metric, 6

Nearest neighbor graph, 270

Nearest neighbor interchange metric, 281

Nearness principle, 519

Nearness space, 71

necklace editing metric, 201

Needleman–Wunsch–Sellers metric, 207

negative �-reflection distance, 172

negative reflection distance, 171

negative type inequality, 10

Nei minimum genetic distance, 389

Nei standard genetic distance, 389

Nei–Tajima–Tateno distance, 389

Neighborhood sequence metric, 334

Network distances, 343

network metric, 328

Network tomography metrics, 379

Neurons with spatial firing properties, 541

Neutron scattering length, 422

Neyman χ2-distance, 250

Nice metric, 330

Niche overlap similarity, 408

Nikodym metric, 175

No. of DNA differences, 391

No. of protein differences, 401

non-Archimedean quasi-metric, 6
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non-commutative metric space, 55

non-contractive mapping, 37

Non-degenerate metric, 131

Non-linear elastic matching distances, 356

Non-linear Hausdorff metric, 361

Norm metric, 44, 91

norm-angular distance, 91

Norm-related metrics on R
n, 95

Normal space, 61

Normalized lp-distance, 302

normalized compression distance, 205

normalized edit distance, 203

normalized Euclidean distance, 303

Normalized information distance, 205

NTV-metric, 396

nuclear collusion length, 421

Nuclear norm metric, 236

obstacle avoidance metric, 315

Ochiai–Otsuka similarity, 308

octagonal metric, 334

odd cut semi-metric, 262

official distance, 449

Offset distance, 547

Oliva et al. perception distance, 522

Ontogenetic depth, 414

open metric ball, 11

Open subset of metric space, 11

operating distance, 554

Operator norm metric, 236

optical depth, 426

Optical distance, 428

optical metrics, 434

Optimal eye-to-eye distance, 510

Order norm metric, 190

Orientation distance, 277

Oriented cut quasi-semi-metric, 264

Oriented multi-cut quasi-semi-metric, 264

oriented triangle inequality, 4

Orlicz metric, 232

Orlicz–Lorentz metric, 233

Orloci distance, 308

Ornstein d-metric, 254

orthodromic distance, 445

oscillation stable metric space, 12

Osserman Lorentzian metric, 137

Osserman metric, 134

Osterreicher semi-metric, 249

Overall non-dominated vector ratio, 319

packing distance, 404

packing radius, 29

PAM distance, 400

Parabolic distance, 126

Paracompact space, 62

Paradoxical metric space, 33

Parallax distance, 471

Parameterized curves distance, 356

parametric, 4

Parentheses string metrics, 209

Paris metric, 325

Part metric, 232

Partial Hausdorff quasi-distance, 360

Partial metric, 5

partial semi-metric, 5

Partially ordered distance, 77

path, 14

path isometry, 32

Path length, 558

Path metric, 44, 258

path metric space, 104

Path quasi-metric in digraphs, 259

Path similarity, 374

path-connected metric space, 12

Path-generated metric, 335

Patrick-Fisher distance, 244

patristic distance, 387

Pattern difference, 307

Pe-security distance, 289

Pearson χ2-distance, 250

Pearson φ similarity, 306

Pearson correlation distance, 307

Peeper distance, 344

Pendellösung length, 442

penetration depth, 426

Penetration depth distance, 177

Penetration distance, 405

Penrose shape distance, 302

Penrose size distance, 302

perception-reaction distance, 546

Perelman supermetric proof, 143

Perfect matching distance, 282

Perfect metric space, 42

Perfectly normal space, 61

perfusion distance, 539

Periapsis distance, 459

perigee, 459

perihelion, 459

Perimeter deviation, 173

perimeter distance, 328

Periodic metric, 329

perm-dissimilarity, 52

permutation editing metric, 212

Permutation metric, 41

Permutation norm metric, 192

Persistence length, 440
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Pharmacological distance, 403

Phenetic distance, 387

Phone distances, 528

Phonetic word distance, 529

Phylogenetic distance, 387

physical distance, 468

piano movers distance, 327

Pitch distance, 367

Pixel distance, 359

Plane wave metric, 487

Plant long-distance communication, 414

Poincaré metric, 120

Poincaré–Reidemeister metric, 159

Point-line distance, 86

Point-plane distance, 86

Point-set distance, 47

pointed metric space, 4

Polar distance, 400, 458

Polish space, 44

Polyhedral chain metric, 183

polyhedral metric, 182

polynomial bar metric, 220

polynomial bracket metric, 220

Polynomial metric space, 25

Polynomial norm metric, 220

Pompeiu–Eggleston metric, 174

Pompeiu–Hausdorff–Blaschke metric, 174

Ponce de León metric, 492

Pose distance, 314

Poset distance, 291

positive �-reflection distance, 172

positive reflection distance, 171

Positively homogeneous metric, 188

Pospichal–Kvasnic̆ka chemical distance,
439

Post Office metric, 326

Power (p, r)-distance, 301

Power distance, 340

Power series metric, 100

Power transform metric, 81

pp-wave metric, 486

Prasad metric, 492

Precise distance measurement, 549

Prefix-Hamming metric, 207

Prevosti–Ocana–Alonso distance, 388

primary extinction length, 442

Primary-satellite distances, 460

prime distance, 332

Prime number distance, 86

principle of locality, 436

Probabilistic metric space, 72

Probability distance, 243

Probability-distance hypothesis, 524

Procrustes distance, 358

Product metric, 45, 83

Product norm metric, 190

Production Economics distances, 515

Projective determination of a metric, 114

Projective metric, 111

Projectively flat metric space, 110

Prokhorov metric, 246

Propagation length, 557

Proper distance, 468

Proper metric space, 43

Proper motion distance, 469

propinquity effect, 512

proportional transport semi-metric, 356

Protective action distance, 552

protein length, 386

Prototype distance, 408

proximinal set, 31

proximity, 70

Proximity effects, 428

Proximity fuse, 548

Proximity graph, 270

Proximity sensors, 548

Proximity space, 70

pseudo-distance, 6

Pseudo-elliptic distance, 119

Pseudo-Euclidean distance, 136

Pseudo-hyperbolic distance, 122

pseudo-metric, 4

Pseudo-Riemannian metric, 135

Pseudo-sphere metric, 169

Psychological Size and Distance Scale, 510

Ptolemaic graph, 267

Ptolemaic inequality, 8

Ptolemaic metric, 8

Pullback metric, 81

Pythagorean distance, 94

quadratic-form distance, 136

Quadric metric, 167

Quality metrics, 555

Quantal distances, 435

Quantum metrics, 435

Quartet distance, 282

quasi-conformal mapping, 34

quasi-convex metric space, 14

Quasi-distance, 4

quasi-Euclidean rank of metric space, 21

Quasi-hyperbolic metric, 123

Quasi-isometry, 37

quasi-Möbius mapping, 34

Quasi-metric, 5

Quasi-metrizable space, 64

Quasi-semi-metric, 4
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Quasi-symmetric mapping, 34

Quaternion metric, 219

quefrency-weighted cepstral distance, 367

Quickest path metric, 328

Quillen metric, 159
Quotes on “near-far” distances, 534
Quotient metric, 99
Quotient norm metric, 191
Quotient semi-metric, 87

Rényi distance, 252
Racing distances, 545
Radar discrimination distance, 330
Radar distance, 471
Radar screen metric, 326
radial metric, 325
Radiation attenuation with distance, 425
radiation length, 422
Radii of metric space, 29
Radio distance measurement, 549
Radio distances, 446
radius of convexity, 15
Rajski distance, 253
Ralescu distance, 207
Rand similarity, 304
Randers metric, 139
Random graph, 56
Range distances, 554
Range of a charged particle, 422
Range of fundamental forces, 423
Range of molecular forces, 438
Rank distance, 292
Rank of metric space, 20
Rao metric, 143
raspberry picker metric, 325
Ray–Singler metric, 158
Rayleigh distance, 424
Rayleigh length, 424
Real half-line quasi-semi-metric, 217
Real tree, 40
Rectangle distance on weighted graphs,

271
Rectilinear distance with barriers, 328
rectilinear metric, 323
Reflection distance, 357
regeneration distance, 539
Regular G-metric, 69

Regular metric, 163

Regular space, 60

Reidemeister metric, 158

Reignier distance, 197

Reissner–Nordström metric, 479

Relational proximity, 518

relative metric, 218

Relative neighborhood graph, 270

relaxed four-point inequality, 8

Relaxed four-point inequality metric, 8

relaxed tree-like metric, 260

Rendez-vous number, 26

Repeat distance, 440

Resemblance, 69

Resistance metric, 260

Resistor-average distance, 252

Resnik similarity, 375

Resnikoff color metric, 352

Restricted edit distance, 279

retract, 38

Retract subgraph, 264

Reuse distance, 382

Reversal metric, 212

Reverse triangle inequality, 91

Reynolds–Weir–Cockerham distance, 390

Ricci-flat metric, 133

Rickman’s rug metric, 326

Riemannian color space, 352

Riemannian distance, 131

Riemannian metric, 45, 131

Riesz norm metric, 98

Right ascension, 458

Right logarithmic derivative metric, 146

right-angle metric, 323

right-invariant metric, 188

rigid framework, 268

Rigid motion of metric space, 32

RMS log spectral distance, 365

RNA structural distances, 395

Road sight distances, 449

Road travel distance, 448

Roberts similarity, 299

Robinson–Foulds metric, 281

Robinson–Foulds weighted metric, 281

Robinsonian distance, 7

Robot displacement metric, 313

Roger distance, 388

Roger–Tanimoto similarity, 305

Rook metric, 336

Rosenbloom–Tsfasman metric, 292

Rotating C-metric, 491

rotation distance, 312

Rotation surface metric, 169

Roundness of metric space, 24

routing protocol semi-metric, 379

RR Lyrae distance, 473

RTT-distance, 378

Rummel sociocultural distances, 513

rupture distance:, 455

Russel–Rao similarity, 305

Ruzicka similarity, 298
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Sabbath distance, 561

safe distancing, 554

safe following distance, 546

Sagging distance, 550

Sangvi χ2 distance, 389

Sasakian metric, 160

Scalar and vectorial metrics, 199

Scale invariance, 558

scale metric transform, 79

scale-free network, 371

scaled Euclidean distance, 303

Scaled weighted Euclidean distance, 312

scattering length, 421

Schatten p-class norm metric, 238

Schatten norm metric, 224

Schattschneider metric, 324

Schechtman length, 24

Schellenkens complexity quasi-metric, 209

Schoenberg transform metric, 81

Schwartz metric, 235

Schwarzschild metric, 478

Schwarzschild–anti-de Sitter metric, 479

Schwarzschild–de Sitter metric, 479

search-centric change metrics, 380

Second-countable space, 61

sedimentation distance, 538

Segmented signal-to-noise ratio, 364

seismogenic depth distance:, 455

Seittenranta metric, 125

self-distance, 5

Selkow distance, 279

Semantic biomedical distances, 376

Semantic proximity, 373

Semi-metric, 3

Semi-metrics on resemblances, 227

semi-metrizable space, 65

Semi-norm semi-metric, 92

semi-parallelogram law, 108

Semi-pseudo-Riemannian metric, 138

Semi-Riemannian metric, 137

sendograph metric, 53

Sensor network distances, 548

sensor tolerance distance, 548

Separable metric space, 43

Separable space, 61

Separation distance, 177

Separation quasi-distance, 250

Set-set distance, 47

Setback distance, 447

SETI detection ranges, 462

Sgarro metric, 199

Shannon distance, 253

Shantaram metric, 329

Sharma–Kaushik distance, 290

sharp triangle inequality, 5

Shen metric, 140

Shephard metric, 175

Short mapping, 38

shortest path distance, 104

Shortest path distance with obstacles, 342

Shriver–Boerwinkle stepwise distance, 390

shuttle metric, 326

Sibony semi-metric, 156

Sierpinski metric, 215

signed distance function, 31

Signed reversal metric, 212

similar metric, 80

Similarity, 3

Similarity ratio, 308

Simone Weil distance, 531

Simplicial metric, 182

simplicial supermetric, 142

Simpson similarity, 305

single linkage, 297

Size function distance, 356

size-distance centration, 524

size-distance invariance hypothesis, 523

size-distance paradox, 524

Size-distance phenomena, 523

Skew distance, 345

Skew divergence, 251

skin depth, 426

skip distance, 446

Skorokhod metric, 248

Skorokhod–Billingsley metric, 247

slant distance, 447

Slope distance, 447

SNCF metric, 326

Snowmobile distance, 345

Sobolev distance, 175

Sobolev metric, 234

Social distance, 512

Soergel distance, 300

Soft metric, 496

Software metrics, 381

Sokal–Sneath similarity 1, 304

Sokal–Sneath similarity 2, 304

Sokal–Sneath similarity 3, 304

Solar distances, 461

Solvent migration distance, 430

sonic metric, 433

Sorgenfrey quasi-metric, 217

sorting distance, 40

Sound attenuation with distance, 427

sound extinction distance, 427

source-skin distance, 537

Souslin space, 44

Space (in Philosophy), 533
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space form, 132

Space of constant curvature, 132

Space of Lorentz metrics, 142

Space over algebra, 76

Space syntax, 560

space–time link distance, 455

Space-related phobias, 540

Spacing, 319

Spacing distances, 554

spanning distance, 177

Spatial analysis, 560

Spatial coherence length, 432

spatial dependence, 560

Spatial language, 527

Spatial reasoning, 526

Spatial-temporal reasoning, 526

Spearman ρ distance, 211

Spearman footrule distance, 211

Spearman rank correlation, 309

Speciation by force of distance, 410

Spectral magnitude-phase distortion, 365

spectral phase distance, 365

Sphere metric, 167

Sphere of influence graph, 270

spherical distance, 445

spherical extension distance, 83

spherical gap distance, 226

Spherical metric, 117

Spheroid metric, 168

spheroidal distance, 445

spike count distance, 407

Spike train distances, 406

split semi-metric, 262

Splitting-merging distance, 280

Spray distance, 552

spreading metric, 41

squared Euclidean distance, 301

Stable norm metric, 193

Standoff distance, 547

Static isotropic metric, 480

statistical metric, 146

stealth distance, 548

Steiner distance of a set, 269

Steiner ratio, 30

Steinhaus distance, 46

Steinhaus metric, 175

Steinhaus transform metric, 80

Stenzel metric, 152

Stepanov distance, 231

Stephens et al. shared allele distance, 388

Stiles color metric, 352

stochastic edit distance, 203

Stop-loss metric of order m, 245

stopping distance, 546

stopping sight distance, 449

Stover distance, 529

Straight G-space, 106

Straight spinning string metric, 485

straight-line distance, 447

Strand length , 398

Strand–Nagy distances, 335

Strength of metric space, 25

Strip projective metric, 112

stroke distance, 538

Strong metric in digraphs, 259

strong triangle inequality, 4

strongly metric-preserving function, 81

sub-Riemannian metric, 135

Subgraph metric, 271

Subgraph–supergraph distances, 272

Subgraphs distances, 277

Subjective distance, 525

submetry, 38

subordinate norm metric, 222

Subtree prune and regraft distance, 282

subway metric, 329

sup metric, 230

Super-knight metric, 336

Surname distance model, 520

Suspension metric, 181

Swap metric, 203

Swedenborg heaven distances, 533

swept volume distance, 311

Symbolic distance effect, 511

symmetric, 3

Symmetric χ2-distance, 303

Symmetric χ2-measure, 303

Symmetric difference metric, 46

Symmetric metric space, 32

symmetric surface area deviation, 176

Symmetrizable space, 65

Syntenic distance, 398

Szulga metric, 246

Sørensen distance, 300

Tajima–Nei distance, 392

Takahashi convexity, 17

Tamura 3-parameter distance, 393

Tamura–Nei distance, 393

Taneja distance, 251

Tangent distance, 358

tangent metric cone, 33

Tanimoto distance, 46

Taub-NUT de Sitter metric, 488

Taub-NUT metric, 153

taxicab metric, 323

taxonomic distance, 386
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TBR-metric, 282

teardrop distance, 537

Technology distances, 515

Technology-related distancing, 517

Teichmüller metric, 157

Telomere length, 415

template metric, 173

tensegrity, 268

Tensor norm metric, 99

Terminal distance, 420

tetrahedron inequality, 67

TF-IDF, 308

Thermal diffusion length, 430

Thompson part metric, 179

Thorpe similarity, 388

Thurston quasi-metric, 157

thyromental distance, 538

Tight extension, 39

Tight span, 39

time metric, 328

Time series video distances, 362

time-like metric, 476

Titius–Bode law, 460

Tits metric, 108

token-based similarities, 206

Tolerance distance, 447

Tomczak–Jaegermann distance, 49

Tomimatsu–Sato metric, 485

top-down edit distance, 279

Topological dimension, 21

Topsøe distance, 251

Toroidal metric, 331

Torus metric, 169

total variation metric, 244

Totally bounded metric space, 43

Totally bounded space, 62

totally Cantor disconnected metric, 12

totally convex metric subspace, 15

totally disconnected metric space, 11

trabecular ciliary process distance, 538

Trace norm metric, 225

Trace-class norm metric, 238

transactional distance, 512

Transduction edit distances, 203

Transfinite diameter, 27

Transform metric, 79

Transformation distance, 204

translated metric, 80

Translation discrete metric, 188

translation distance, 312

translation invariant metric, 90

translation proper metric, 188

Transmission distance, 549

transposition distance, 398

transverse comoving distance, 469

Traveling salesman tours distances, 277

Tree bisection-reconnection metric, 282

Tree edge rotation distance, 275

Tree edit distance, 279

Tree rotation distance, 283

Tree-like metric, 259

triangle function, 73

triangle inequality, 3

Triathlon race distances, 545

Triples distance, 282

trivial metric, 40

tRNA interspecies distance, 396

True anomaly, 460

Truncated metric, 262

Trust metrics, 381

Turning function distance, 356

Tversky similarity, 305

Type of metric space, 24

Typographical length units, 500

UC metric space, 43

Ulam metric, 212

Ultrametric, 7

ultrametric inequality, 7

Underlying graph of a metric space, 13

Unicity distance, 289

Uniform metric, 230

Uniform metric mapping, 36

uniform orientation metric, 327

Uniform space, 70

uniformity, 71

Unit cost edit distance, 280

Unit distance, 495

Unit quaternions metric, 314

Unitary metric, 95

Universal metric space, 56

Urysohn space, 56

Vajda–Kus semi-metric, 249

Valuation metric, 99

van Stockum metric, 483

Van-der-Waals contact distance, 437

Variable exponent space metrics, 234

vector distance function, 31

Vehicle distances, 546

vertical distance between lines, 85

Vertical separation distance, 552

Verwer metric, 354

Very small length units, 501

Video quality metrics, 361

Vidyasagar metric, 317
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Vinnicombe metric, 318

Visibility shortest path distance, 342

Vision distances, 542

Visual Analogue Scales, 541

visual distance, 108
Visual space, 522
Viterbi edit distance, 203
Vol’berg–Konyagin dimension, 22
Volume of finite metric space, 20
Voronoi distance for arcs, 346
Voronoi distance for areas, 347
Voronoi distance for circles, 346
Voronoi distance for line segments, 346
Voronoi distances of order m, 348
Voronoi generation distance, 339
Vuorinen metric, 124

walk-regular graph, 265
Ward linkage, 298
Warped product metric, 85
Wasserstein metric, 254
Watson–Crick distance, 394
weak partial semi-metric, 5
weak quasi-metric, 5
Weak ultrametric, 6
Web hyperlink quasi-metric, 379
Web quality control distance function, 380
Web similarity metrics, 380
Weierstrass metric, 122
weightable quasi-semi-metric, 5
Weighted cut metric, 337
Weighted Euclidean distance, 312
Weighted Hamming metric, 207
weighted likelihood ratio distance, 366
Weighted Manhattan distance, 313
Weighted Minkowskian distance, 313
Weighted path metric, 258
weighted tree metric, 259

Weighted word metric, 189

Weil–Petersson metric, 158

Weyl distance, 231

Weyl metric, 484

Weyl semi-metric, 316

Weyl–Papapetrou metric, 484

Whole genome composition distance, 397

Width dimension, 23

Wiener polynomial, 26

Wigner–Yanase metric, 147

Wigner–Yanase–Dyson metrics, 146

Wils metric, 487

Wootters distance, 435

Word metric, 188

word page distance, 380

working distance, 553

workspace metric, 312

Wu metric, 156

Wu–Palmer similarity, 375

X-ray absorption length, 443

Yegnanarayana distance, 367

Yule Q similarity, 306

Yule Y similarity of colligation, 306

Zamolodchikov metric, 158

Zelinka distance, 272

Zelinka tree distance, 273

Zenith distance, 459

Zero bias metric, 217

Zipoy–Voorhees metric, 485

Zoll metric, 134

Zolotarev semi-metric, 246

Zuker distance, 395
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