

Zachary Shute

Speed up web development with the powerful
features and benefits of JavaScript

Advanced JavaScript

b |

Advanced JavaScript

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Zachary Shute

Reviewer: Houssem Yahiaoui

Managing Editor: Aritro Ghosh

Acquisitions Editor: Aditya Date

Production Editor: Samita Warang

Editorial Board: David Barnes, Ewan Buckingham, Shivangi Chatterji, Simon Cox,
Manasa Kumar, Alex Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary,
Saman Siddiqui, Erol Staveley, Ankita Thakur, and Mohita Vyas

First Published: January 2019

Production Reference: 1310119

ISBN: 978-1-78980-010-4

 | c

Table of Contents

Preface i

Introducing ECMAScript 6 1

Introduction .. 2

Beginning with ECMAScript .. 2

Understanding Scope ... 2

Function Scope ... 3

Function Scope Hoisting .. 4

Block Scope ... 4

Exercise 1: Implementing Block Scope .. 6

Declaring Variables ... 8

Exercise 2: Utilizing Variables ... 11

Introducing Arrow Functions ... 13

Exercise 3: Converting Arrow Functions ... 14

Arrow Function Syntax .. 15

Exercise 4: Upgrading Arrow Functions .. 18

Learning Template Literals ... 20

Exercise 5: Converting to Template Literals ... 21

Exercise 6: Template Literal Conversion ... 24

Enhanced Object Properties ... 26

Object Properties ... 26

Function Declarations ... 27

Computed Properties .. 28

Exercise 7: Implementing Enhanced Object Properties 30

d |

Destructuring Assignment .. 31

Array Destructuring ... 31

Exercise 8: Array Destructuring ... 34

Rest and Spread Operators .. 36

Object Destructuring ... 39

Exercise 9: Object Destructuring .. 41

Exercise 10: Nested Destructuring .. 44

Exercise 11: Implementing Destructuring .. 45

Classes and Modules ... 47

Classes ... 48

Exercise 12: Creating Your Own Class ... 49

Classes – Subclasses .. 51

Modules ... 52

Export Keyword .. 53

Import Keyword ... 55

Exercise 13: Implementing Classes .. 58

Transpilation .. 60

Babel- Transpiling .. 62

Exercise 14: Transpiling ES6 Code .. 63

Iterators and Generators .. 65

Iterators .. 65

Generators .. 67

Exercise 15: Creating a Generator ... 68

Activity 1: Implementing Generators .. 70

Summary ... 72

Asynchronous JavaScript 75

Introduction .. 76

 | e

Asynchronous Programming ... 76

Sync Versus Async ... 76

Synchronous versus Asynchronous Timing ... 76

Introducing Event Loops .. 79

Stack .. 80

Heap and Event Queue ... 81

Event Loops .. 82

Things to Consider ... 84

Exercise 16: Handling the Stack with an Event Loop 86

Callbacks ... 88

Building Callbacks .. 89

Callback Pitfalls .. 91

Fixing Callback Hell .. 92

Exercise 17: Working with Callbacks ... 94

Promises ... 96

Promises States .. 96

Resolving or Rejecting a Promise ... 96

Using Promises ... 97

Exercise 18: Creating and Resolving Your First Promise 99

Handling Promises .. 100

Promise Chaining .. 102

Promises and Callbacks ... 108

Wrapping Promises in Callbacks ... 108

Exercise 19: Working with Promises ... 110

Async/Await .. 112

Async/Await Syntax .. 112

Asnyc/Await Promise Rejection .. 114

f |

Using Async Await ... 116

Activity 2: Using Async/Await .. 119

Summary ... 121

DOM Manipulation and Event Handling 123

Introduction .. 124

DOM Chaining, Navigation, and Manipulation 124

Exercise 20: Building the HTML Document from a DOM Tree Structure . 126

DOM Navigation .. 127

Finding a DOM Node .. 127

Traversing the DOM .. 133

DOM Manipulation ... 133

Updating Nodes in the DOM ... 139

Updating Nodes in the DOM ... 142

Exercise 21: DOM Manipulation .. 144

DOM Events and Event Objects .. 147

DOM Event ... 147

Event Listeners .. 148

Event Objects and Handling Events .. 149

Event Propagation .. 150

Firing Events .. 150

Exercise 22: Handling Your First Event ... 152

Custom Events ... 153

Exercise 23: Handling and Delegating Events .. 155

JQuery .. 157

jQuery Basics ... 159

jQuery Selector .. 160

jQuery DOM Manipulation ... 161

 | g

Selecting Elements .. 161

Traversing the DOM .. 162

Modifying the DOM ... 164

Chaining ... 165

jQuery Events .. 165

Firing Events .. 166

Custom Events ... 166

Activity 3: Implementing jQuery ... 166

Summary ... 168

Testing JavaScript 171

Introduction .. 172

Testing ... 172

Reasons to Test Code ... 173

Test-driven Development .. 175

TDD Cycle ... 176

Conclusion ... 177

Exercise 24: Applying Test-Driven Development .. 178

Types of Testing ... 180

Black Box and White Box Testing .. 180

Unit Tests ... 181

Exercise 25: Building Unit Tests .. 183

Functional Testing ... 185

Integration Tests ... 187

Building Tests .. 189

Exercise 26: Writing Tests .. 190

Test Tools and Environments ... 194

Testing Frameworks ... 194

h |

Mocha ... 195

Setting Up Mocha .. 195

Mocha Basics ... 197

Exercise 27: Setting Up a Mocha Testing Environment 197

Mocha Async .. 198

Mocha Hooks ... 199

Activity 4: Utilizing Test Environments ... 200

Summary ... 201

Functional Programming 201

Introduction .. 202

Introducing Functional Programming .. 202

Object-Oriented Programming .. 203

Functional Programming .. 203

Declarative Versus Imperative ... 203

Imperative Functions ... 204

Declarative Functions .. 204

Exercise 28: Building Imperative and Declarative Functions 205

Pure Functions ... 207

Same Output Given Same Input ... 207

No Side Effects .. 208

Referential Transparency ... 209

Exercise 29: Building Pure Controllers ... 209

Higher Order Functions .. 211

Exercise 30: Editing Object Arrays .. 212

Shared State ... 214

Exercise 31: Fixing Shared States .. 215

 | i

Immutability ... 216

Immutability in JavaScript ... 218

Side Effects ... 219

Avoiding Side Effects .. 220

Function Composition ... 221

Activity 5: Recursive Immutability .. 222

Summary ... 223

The JavaScript Ecosystem 227

Introduction .. 228

JavaScript Ecosystem .. 228

Frontend JavaScript .. 228

Command-Line Interface ... 229

Mobile Development .. 229

Backend Development ... 229

Node.js ... 230

Setting Up Node.js .. 230

Node Package Manager ... 231

Loading and Creating Modules ... 234

Exercise 32: Exporting and Importing NPM Modules 235

Basic Node.js Server ... 236

Exercise 33: Creating a Basic HTTP Server ... 238

Streams and Pipes .. 240

Types of Streams ... 240

Writeable Stream Events: .. 241

Readable Stream Events: ... 242

Filesystem Operations ... 245

Express Server ... 246

j |

Exercise 34: Creating a Basic Express Server ... 248

Routing ... 250

Advanced Routing ... 251

Middleware .. 255

Error Handling ... 256

Exercise 35: Building a Backend with Node.js ... 258

React .. 262

Installing React .. 262

React Basics ... 264

React Specifics ... 266

JSX ... 266

ReactDOM .. 267

React.Component ... 268

State .. 269

Conditional Rendering ... 271

List of Items ... 273

HTML Forms ... 273

Activity 6: Building a Frontend with React ... 275

Summary ... 276

Appendix 279

Index 301

About

This section briefly introduces the author, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software required to complete all of the included
activities and exercises.

Preface

>

ii | Preface

About the Book
JavaScript is a core programming language for web technology that can be used to
modify both HTML and CSS. It is frequently abbreviated to just JS. JavaScript is used
for processes that go on in the user interfaces of most web browsers, such as Internet
Explorer, Google Chrome, and Mozilla Firefox. It is the most widely-used client-side
scripting language today, due to its ability to make the browser do its work.

In this book, you will gain a deep understanding of JavaScript. You will learn how to
write JavaScript in a professional environment using the new JavaScript syntax in ES6,
how to leverage JavaScript's asynchronous nature using callbacks and promises, and
how to set up test suites and test your code. You will be introduced to JavaScript's
functional programming style and you will apply everything you learn to build a simple
application in various JavaScript frameworks and libraries for backend and frontend
development.

About the Author

Zachary Shute studied computer and systems engineering at RPI. He is now the
lead full-stack engineer at a machine learning start-up in San Francisco, CA. For his
company, Simple Emotion, he manages and deploys Node.js servers, a MongoDB
database, and JavaScript and HTML websites.

Objectives

• Examine major features in ES6 and implement those features to build applications

• Create promise and callback handlers to work with asynchronous processes

• Develop asynchronous flows using Promise chaining and async/await syntax

• Manipulate the DOM with JavaScript

• Handle JavaScript browser events

About the Book | iii

• Explore Test Driven Development and build code tests with JavaScript code
testing frameworks.

• List the benefits and drawbacks of functional programming compared to
other styles

• Construct applications with the Node.js backend framework and the React
frontend framework

Audience

This book is designed to target anyone who wants to write JavaScript in a professional
environment. We expect the audience to have used JavaScript in some capacity and be
familiar with the basic syntax. This book would be good for a tech enthusiast wondering
when to use generators or how to use Promises and Callbacks effectively, or a novice
developer who wants to deepen their knowledge on JavaScript and understand TDD.

Approach

This book thoroughly explains the technology in an easy-to-understand way, while
perfectly balancing theory and exercises. Each chapter is designed to build on what was
learned in the previous chapter. The book contains multiple activities that use real-life
business scenarios for you to practice and apply your new skills in a highly relevant
context.

Minimum Hardware Requirements

For the optimal student experience, we recommend the following hardware
configuration:

• Processor: Intel Core i5 or equivalent

• Memory: 4 GB RAM

• Storage: 35 GB available space

• An internet connection

iv | Preface

Software Requirements

You'll also need the following software installed in advance:

• Operating system: Windows 7 SP1 64-bit, Windows 8.1 64-bit, or Windows 10
64-bit

• Google Chrome (https://www.google.com/chrome/)

• Atom IDE (https://atom.io/)

• Babel (https://www.npmjs.com/package/babel-install)

• Node.js and Node Package Manager (npm) (https://nodejs.org/en/)

Access to installation instructions can be provided separately to book material for large
training centers and organizations. All source code is publicly available on GitHub and
fully referenced within the training material.

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

Additional Resources

The code bundle for this book is also hosted on GitHub at https://github.com/
TrainingByPackt/Advanced-JavaScript.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
three ways to declare variables in JavaScript: var, let, and const."

A block of code is set as follows:

var example; // Declare variable

example = 5; // Assign value

console.log(example); // Expect output: 5

About the Book | v

Any command-line input or output is written as follows:

npm install babel --save-dev

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "This means that
variables created with block scope are subject to the Temporal Dead Zone (TDZ)."

Installing Atom IDE

1. To install Atom IDE, go to https://atom.io/ in your browser.

2. Click on Download Windows Installer for Windows to download the setup file
called AtomSetup-x64.exe.

3. Run the executable file.

4. Add the atom and apm commands to your path.

5. Create shortcuts on the desktop and Start menu.

Babel is installed locally to each code project. To install Babel in a NodeJs project,
complete the following steps:

1. Open a command, line interface and navigate to a project folder.

2. Run the command npm init command.

3. Fill in all the required questions. If you are unsure about the meaning of any of
the prompts, you can press the 'enter' key to skip the question and use the default
value.

4. Run the npm install --save-dev babel-cli command.

5. Run the command install --save-dev babel-preset-es2015.

6. Verify that the devDependencies field in package.json has babel-cli and babel-pre-
sets-es2015.

7. Create a file called .babelrc.

8. Open this file in a text editor and add the code { "presets": ["es2015"] }.

vi | Preface

Installing Node.js and npm

1. To install Node.js, go to https://nodejs.org/en/ in your browser.

2. Click on Download for Windows (x64), to download the LTS setup file recom-
mended for most users called node-v10.14.1-x64.msi.

3. Run the executable file.

4. Ensure that you select the npm package manager bundle during the setup.

5. Accept the license and default installation settings.

6. Restart your computer for the changes to take effect.

Learning Objectives

By the end of this chapter, you will be able to:

• Define the different scopes in JavaScript and characterize variable declaration

• Simplify JavaScript object definitions

• Destructure objects and arrays, and build classes and modules

• Transpile JavaScript for compatibility

• Compose iterators and generators

In this chapter, you'll be learning how to use the new syntax and concepts of ECMAScript.

Introducing
ECMAScript 6

1

2 | Introducing ECMAScript 6

Introduction
JavaScript, often abbreviated as JS, is a programming language designed to allow the
programmer to build interactive web applications. JavaScript is one of the backbones
of web development, along with HTML and CSS. Nearly every major website, including
Google, Facebook, and Netflix, make heavy use of JavaScript. JS was first created for the
Netscape web browser in 1995. The first prototype of JavaScript was written by Brendan
Eich in just a mere 10 days. Since its creation, JavaScript has become one of the most
common programming languages in use today.

In this book, we will deepen your understanding of the core of JavaScript and its
advanced functionality. We will cover the new features that have been introduced
in the ECMAScript standard, JavaScript's asynchronous programming nature, DOM
and HTML event interaction with JavaScript, JavaScript's functional programming
paradigms, testing JavaScript code, and the JavaScript development environment. With
the knowledge gained from this book, you will be ready to begin using JavaScript in a
professional setting to build powerful web applications.

Beginning with ECMAScript
ECMAScript is a scripting language specification standardized by ECMA International.
It was created to standardize JavaScript in an attempt to allow for independent and
compatible implementations. ECMAScript 6, or ES6, was originally released in 2015 and
has gone through several minor updates since then.

Note

You may refer to the following link for more information about ECMA
specification:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_
Resources.

Understanding Scope
In computer science, scope is the region of a computer program where the binding or
association of a name to an entity, such as a variable or function, is valid. JavaScript has
the following two distinct types of scope:

• Function scope

• Block scope

Understanding Scope | 3

Until ES6, function scope was the only form of scope in JavaScript; all variable and
function declarations followed function scope rules. Block scope was introduced in ES6
and is used only by the variables declared with the new variable declaration keywords
let and const. These keywords are discussed in detail in the Declaring Variables section.

Function Scope

Function scope in JavaScript is created inside functions. When a function is declared, a
new scope block is created inside the body of that function. Variables that are declared
inside the new function scope cannot be accessed from the parent scope; however, the
function scope has access to variables in the parent scope.

To create a variable with function scope, we must declare the variable with the var
keyword. For example:

var example = 5;

The following snippet provides an example of function scope:

var example = 5;

function test() {

 var testVariable = 10;

 console.log(example); // Expect output: 5

 console.log(testVariable); // Expect output: 10

}

test();

console.log(testVariable); // Expect reference error

Snippet 1.1: Function Scope

Parent scope is simply the scope of the section of code that the function was defined
in. This is usually the global scope; however, in some cases, it may be useful to define a
function inside a function. In that case, the nested function's parent scope would be the
function in which it is defined. In the preceding snippet, the function scope is the scope
that was created inside the function test. The parent scope is the global scope, that is,
where the function is defined.

Note

Parent scope is the block of code, which the function is defined in. It is not the
block of code in which the function is called.

4 | Introducing ECMAScript 6

Function Scope Hoisting

When a variable is created with function scope, it's declaration automatically gets
hoisted to the top of the scope. Hoisting means that the interpreter moves the
instantiation of an entity to the top of the scope it was declared in, regardless of where
in the scope block it is defined. Functions and variables declared using var are hoisted
in JavaScript; that is, a function or a variable can be used before it has been declared.
The following code demonstrates this, as follows:

example = 5; // Assign value

console.log(example); // Expect output: 5

var example; // Declare variable

Snippet 1.2: Function Scope Hoisting

Note

Since a hoisted variable that's been declared with var can be used before it
is declared, we have to be careful to not use that variable before it has been
assigned a value. If a variable is accessed before it has been assigned a value, it will
return the value as undefined, which can cause problems, especially if variables
are used in the global scope.

Block Scope

A new block scope in JavaScript is created with curly braces ({}). A pair of curly braces
can be placed anywhere in the code to define a new scope block. If statements, loops,
functions, and any other curly brace pairs will have their own block scope. This includes
floating curly brace pairs not associated with a keyword (if, for, etc). The code in the
following snippet is an example of the block scope rules:

// Top level scope

function scopeExample() {

 // Scope block 1

 for (let i = 0; i < 10; i++){ /* Scope block 2 */ }

 if (true) { /* Scope block 3 */ } else { /* Scope block 4 */ }

 // Braces without keywords create scope blocks

 { /* Scope block 5 */ }

 // Scope block 1

Understanding Scope | 5

}

// Top level scope

Snippet 1.3: Block Scope

Variables declared with the keywords let and const have block scope. When a variable
is declared with block scope, it does NOT have the same variable hoisting as variables
that are created in function scope. Block scoped variables are not hoisted to the top of
the scope and therefore cannot be accessed until they are declared. This means that
variables that are created with block scope are subject to the Temporal Dead Zone
(TDZ). The TDZ is the period between when a scope is entered and when a variable
is declared. It ends when the variable is declared rather than assigned. The following
example demonstrates the TDZ:

// console.log(example); // Would throw ReferenceError

let example;

console.log(example); // Expected output: undefined

example = 5;

console.log(example); // Expected output: 5

 Snippet 1.4: Temporal Dead Zone

Note

If a variable is accessed inside the Temporal Dead Zone, then a runtime error will
be thrown. This is important because it allows our code to be built more robustly
with fewer semantic errors arising from variable declaration.

To get a better understanding of scope blocks, refer to the following table:

Figure 1.1: Function Scope versus Block Scope

6 | Introducing ECMAScript 6

In summary, scope provides us with a way to separate variables and restrict access
between blocks of code. Variable identifier names can be reused between blocks
of scope. All new scope blocks that are created can access the parent scope, or the
scope in which they were created or defined. JavaScript has two types of scope.
A new function scope is created for each function defined. Variables can be added to
function scope with the var keyword, and these variables are hoisted to the top of the
scope. Block scope is a new ES6 feature. A new block scope is created for each set of
curly braces. Variables are added to block scope with the let and const keywords. The
variables that are added are not hoisted and are subject to the TDZ.

Exercise 1: Implementing Block Scope

To implement block scope principles with variables, perform the following steps:

1. Create a function called fn1 as shown (function fn1()).

2. Log the string as scope 1.

3. Create a variable called scope with the value of 5.

4. Log the value of the variable called scope.

5. Create a new block scope inside of the function with curly braces ({}).

6. Inside the new scope block, log the string called scope 2.

7. Create a new variable called scope, inside the scope block and assign the value
different scope.

8. Log the value variable scope inside our block scope (scope 2).

9. Outside of the block scope defined in step 5 (scope 2), create a new block scope
(use curly braces).

10. Log the string called scope 3.

11. Create a variable inside the scope block (scope 3) with the same name as the
variables (call it scope) and assign it the value a third scope.

12. Log the new variable's value.

13. Call fn1 and observe its output

Code

index.js:

function fn1(){

 console.log('Scope 1');

Understanding Scope | 7

 let scope = 5;

 console.log(scope);

 {

 console.log('Scope 2');

 let scope = 'different scope';

 console.log(scope);

 }

 {

 console.log('Scope 3');

 let scope = 'a third scope';

 console.log(scope);

 }

}

fn1();

https://bit.ly/2RoOotW

Snippet 1.5: Block implementation output

Outcome

Figure 1.2: Scope outputs

You have successfully implemented block scope in JavaScript.

In this section, we covered the two types of JavaScript scope, function and block scope,
and the differences between them. We demonstrated how a new instance of function
scope was created inside each function and how block scope was created inside each
set of curly braces. We discussed the variable declaration keywords for each type of
scope, var for function scope and let/const for block scope. Finally, we covered the
basics of hoisting with both function and block scope.

8 | Introducing ECMAScript 6

Declaring Variables
Basic JavaScript uses the keyword var for variable declaration. ECMAScript 6
introduced two new keywords to declare variables; they are let and const. In the world
of Professional JavaScript variable declaration, var is now the weakest link. In this topic,
we will go over the new keywords, let and const, and explain why they are better than
var.

The three ways to declare variables in JavaScript are by using var, let, and const. All
function in slightly different ways. The key differences between the three variable
declaration keywords are the way they handle variable reassignment, variable scope,
and variable hoisting. These three features can be explained briefly as follows:

Variable reassignment: The ability to change or reassign the variable's value at
any time.

Variable scope: The extent or area of the code from which the variable may
be accessed.

Variable hoisting: The variable instantiation and assignment time in relation to
the variable's declaration. Some variables can be used before they are declared.

The var keyword is the older variable declaration keyword that's used to declare
variables in JavaScript. All variables created with var can be reassigned, have function
scope, and have variable hoisting. This means that variables created with var are hoisted
to the top of the scope block, where they are defined and can be accessed before
declaration. The following snippet demonstrates this, as follows:

// Referenced before declaration

console.log(example); // Expect output: undefined

var example = 'example';

Snippet 1.6: Variables created using var are hoisted

Since variables that are created with the keyword var are not constants, they can be
created, assigned, and reassigned a value at will. The following code demonstrates this
aspect of the functionality of var:

// Declared and assigned

var example = { prop1: 'test' };

console.log('example:', example);

// Expect output: example: {prop1: "test"}

// Value reassigned

example = 5;

Declaring Variables | 9

console.log(example); // Expect output: 5

Snippet 1.7: Variables created using var are not constant

Variables created with var can be reassigned at any time and once the variable is
created, it can be accessed from anywhere in the function, even before the original
declaration point.

The let keyword functions similar to the keyword var. As expected, the keyword let
allows us to declare a variable that can be reassigned at any time. This is shown in the
following code:

// Declared and initialized

let example = { prop1: 'test' };

console.log('example:', example);

// Expect output: example: {prop1: 'test"}

// Value reassigned

example = 5;

console.log(example); // Expect output: 5

Snippet 1.8: Variables created with let are not constant

There are two significant differences between let and var. Where let and var differ is
their scoping and variable hoisting properties. Variables declared with let are scoped
at the block level; that is, they are only defined in the block of code contained within a
matching pair of curly braces ({}).

Variables declared with let are not subject to variable hoisting. This means that
accessing a variable declared with let before the assignment will throw a runtime error.
As discussed earlier, this is the Temporal Dead Zone. An example of this is shown in the
following code:

// Referenced before declaration

console.log(example);

// Expect ReferenceError because example is not defined

let example = 'example';

Snippet 1.9: Variables created with let are not hoisted

10 | Introducing ECMAScript 6

The last variable declaration keyword is const. The const keyword has the same scoping
and variable hoisting rules as the let keyword; variables declared with const have block
scoping and do not get hoisted to the top of the scope. This is shown in the following
code:

// Referenced before declaration

console.log(example);

// Expect ReferenceError because example is not defined

const example = 'example';

Snippet 1.10: Variables created with const are not hoisted

The key difference between const and let is that const signifies that the identifier will
not be reassigned. The const identifier signifies a read-only reference to a value. In
other words, the value written in a const variable cannot be changed. If the value of a
variable initialized with const is changed, a TypeError will be thrown.

Even though variables created with const cannot be reassigned, this does not mean
that they are immutable. If an array or object is stored in a variable declared with const,
the value of the variable cannot be overwritten. However, the array content or object
properties can be changed. The contents of an array can be modified with functions
such as push(), pop(), or map() and object properties can be added, removed, or
updated. This is shown in the following code:

// Declared and initialized

const example = { prop1: 'test' };

// Variable reassigned

example = 5;

// Expect TypeError error because variable was declared with const

// Object property updated

example.prop1 = 5;

// Expect no error because subproperty was modified

Snippet 1.11: Variables created with const are constant but not immutable

Declaring Variables | 11

To understand the different keywords in more detail, refer to the following table:

Figure 1.3: Differences between var, let, and const

Now that we understand the nuances among var, let, and const, we can decide on
which one to use. In the professional world, we should always use let and const,
because they provide all the functionality of var and allow the programmer to be
specific and restrictive with the variable scope and usage.

In summary, var, let, and const all function similarly. The key differences are in the
nature of const, the scope, and the hoisting. Var is function scoped, not constant, and
hoisted to the top of the scope block. let and const are both block-scoped and not
hoisted. let is not constant, while, const is constant but immutable.

Exercise 2: Utilizing Variables

To utilize the var, const, and let variable declaration keywords for variable hoisting and
reassignment properties, perform the following steps:

1. Log the string Hoisted before assignment: and the value of the hoisted variable.

2. Define a variable called hoisted with the keyword var and assign it the value this
got hoisted.

3. Log the string hoisted after assignment: and the value of the hoisted variable.

4. Create a try-catch block.

5. Inside the try block, log the value of the variable called notHoisted1.

6. Inside the catch block, give the catch block the err parameter, then log the string
Not hoisted1 with error: and the value of err.message.

7. After the try-catch block, create the notHoisted1 variable with the let keyword
and assign the value 5.

8. Log the string notHoisted1 after assignment and the value of notHoisted1.

9. Create another try-catch block.

10. Inside the try block, log the value of the notHoisted2 variable.

12 | Introducing ECMAScript 6

11. Inside the catch block, give the catch block the err parameter, then log the string
Not hoisted2 with error: and the value of err.message.

12. After the second try-catch block, create the notHoisted2 variable with the keyword
const and assign the value [1,2,3].

13. Log the string notHoisted2 after assignment and the value of notHoisted2.

14. Define a final try catch block.

15. Inside the try block, reassign notHoisted2 to the new value string.

16. Inside the catch block, give the catch block the err parameter, then log the string
Not hoisted 2 was not able to be changed.

17. After the try-catch block, push the value 5 onto the array in notHoisted2.

18. Log the string notHoisted2 updated. Now is: and the value of notHoisted2.

Code

index.js:

var hoisted = 'this got hoisted';

try{

 console.log(notHoisted1);

} catch(err){}

let notHoisted1 = 5;

try{

 console.log(notHoisted2);

} catch(err){}

const notHoisted2 = [1,2,3];

try{

 notHoisted2 = 'new value';

} catch(err){}

notHoisted2.push(5);

Snippet 1.12: Updating the contents of the object

https://bit.ly/2RDEynv

Introducing Arrow Functions | 13

Outcome

Figure 1.4: Hoisting the variables

You have successfully utilized keywords to declare variables.

In this section, we discussed variable declaration in ES6 and the benefits of using the
let and const variable declaration keywords over the var variable declaration keyword.
We discussed each keywords variable reassignment properties, variable scoping, and
variable hoisting properties. The keywords let and const are both create variables in
the block scope where var creates a variable in the function scope. Variables created
with var and let can be reassigned at will. However, variables created with const cannot
be reassigned. Finally, variables created with the keyword var are hoisted to the top of
the scope block in which they were defined. Variables created with let and const are
not hoisted.

Introducing Arrow Functions
Arrow functions, or Fat arrow functions, are a new way to create functions in
ECMAScript 6. Arrow functions simplify function syntax. They are called fat arrow
functions because they are denoted with the characters =>, which, when put together
look like a fat arrow. Arrow functions in JavaScript are frequently used in callback
chains, promise chains, array methods, in any situation where unregistered functions
would be useful.

The key difference between arrow functions and normal functions in JavaScript is that
arrow functions are anonymous. Arrow functions are not named and not bound to an
identifier. This means that an arrow function is created dynamically and is not given a
name like normal functions. Arrow functions can however be assigned to a variable to
allow for reuse.

14 | Introducing ECMAScript 6

When creating an arrow function, all we need to do is remove the function keyword and
place an arrow between the function arguments and function body. Arrow functions are
denoted with the following syntax:

(arg1, arg2, ..., argn) => { /* Do function stuff here */ }

Snippet 1.13: Arrow function syntax

As you can see from the preceding syntax, arrow functions are a more concise way of
writing functions in JavaScript. They can make our code more concise and easier to
read.

Arrow function syntax can also vary, depending on several factors. Syntax can vary
slightly depending on the number of arguments passed in to the function, and the
number of lines of code in the function body. The special syntax conditions are outlined
briefly in the following list:

• Single input argument

• No input arguments

• Single line function body

• Single expression broken over multiple lines

• Object literal return value

Exercise 3: Converting Arrow Functions

To demonstrate the simplified syntax by converting a standard function into an arrow
function, perform the following steps:

1. Create a function that takes in parameters and returns the sum of the two
parameters. Save the function into a variable called fn1.

2. Convert the function you just created to an arrow function and save into another
variable called fn2.

To convert the function, remove the function keyword. Next, place an arrow
between the function arguments and the function body.

3. Call both functions and compare the output.

Code

index.js:

const fn1 = function(a, b) { return a + b; };

const fn2 = (a, b) => { return a + b; };

Introducing Arrow Functions | 15

console.log(fn1(3 ,5), fn2(3, 5));

Snippet 1.14: Calling the functions

https://bit.ly/2M6uKwN

Outcome

Figure 1.5: Comparing the function's output

You have successfully converted normal functions into arrow functions.

Arrow Function Syntax

If there are multiple arguments being passed in to the function, then we create the
function with the parentheses around the arguments as normal. If we only have a single
argument to pass to the function, we do not need to include the parentheses around
the argument.

There is one exception to this rule, and that is if the parameter is anything other than
a simple identifier. If we include a default value or perform operations in the function
arguments, then we must include the parentheses. For example, if we include a default
parameter, then we will need the parentheses around the arguments. These two rules
are shown in the following code:

// Single argument arrow function

arg1 => { /* Do function stuff here */ }

// Non simple identifier function argument

(arg1 = 10) => { /* Do function stuff here */ }

Snippet 1.15: Single argument arrow function

16 | Introducing ECMAScript 6

If we create an arrow function with no arguments, then we need to include the
parentheses, but they will be empty. This is shown in the following code:

// No arguments passed into the function

() => { /* Do function stuff here */ }

Snippet 1.16: No argument

Arrow functions can also have varied syntax, depending on the body of the function. As
expected, if the body of the function is multiline, then we must surround it with curly
braces. However, if the body of the function is a single line, then we do not need to
include the curly braces around the body of the function. This is shown in the following
code:

// Multiple line body arrow function

(arg1, arg2) => {

 console.log(`This is arg1: ${arg1}`);

 console.log(`This is arg2: ${arg2}`);

 /* Many more lines of code can go here */

}

// Single line body arrow function

(arg1, arg2) => console.log(`This is arg1: ${arg1}`)

Snippet 1.17: Single line body

When using arrow functions, we may also exclude the return keyword if the function
is a single line. The arrow function automatically returns the resolved value of the
expression on that line. This syntax is shown in the following code:

// With return keyword - not necessary

(num1, num2) => { return (num1 + num2) }

// If called with arguments num1 = 5 and num2 = 5, expected output is 10

// Without return keyword or braces

(num1, num2) => num1 + num2

// If called with arguments num1 = 5 and num2 = 5, expected output is 10

Snippet 1.18: Single line body when value is returned

Introducing Arrow Functions | 17

Since arrow functions with single expression bodies can be defined without the curly
braces, we need special syntax to allow us to split the single expression over multiple
lines. To do this, we can wrap the multi-line expression in parentheses. The JavaScript
interpreter sees that the line are wrapped in parentheses and treats it as if it were a
single line of code. This is shown in the following code:

// Arrow function with a single line body

// Assume numArray is an array of numbers

(numArray) => numArray.filter(n => n > 5).map(n => n - 1).every(n => n
< 10)

// Arrow function with a single line body broken into multiple lines

// Assume numArray is an array of numbers

(numArray) => (

 numArray.filter(n => n > 5)

 .map(n => n - 1)

 .every(n => n < 10)

)

Snippet 1.19: Single line expression broken into multiple lines

If we have a single line arrow function returning an object literal, we will need special
syntax. In ES6, scope blocks, function bodies, and object literals are all defined with
curly braces. Since single line arrow functions do not need curly braces, we must use
the special syntax to prevent the object literal's curly braces from being interpreted as
either function body curly braces or scope block curly braces. To do this, we surround
the returned object literal with parentheses. This instructs the JavaScript engine to
interpret curly braces inside the parentheses as an expression instead of a function
body or scope block declaration. This is shown in the following code:

// Arrow function with an object literal in the body

(num1, num2) => ({ prop1: num1, prop2: num2 }) // Returns an object

Snippet 1.20: Object literal return value

18 | Introducing ECMAScript 6

When using arrow functions, we must be careful of the scope that these functions are
called in. Arrow functions follow normal scoping rules in JavaScript, with the exception
of the this scope. Recall that in basic JavaScript, each function is assigned a scope, that
is, the this scope. Arrow functions are not assigned a this scope. They inherit their
parent's this scope and cannot have a new this scope bound to them. This means
that, as expected, arrow functions have access to the scope of the parent function, and
subsequently, the variables in that scope, but the scope of this cannot be changed in
an arrow function. Using the .apply(), .call(), or .bind() function modifiers will NOT
change the scope of an arrow function's this property. If you are in a situation where
you must bind this to another scope, then you must use a normal JavaScript function.

In summary, arrow functions provide us with a way to simplify the syntax of anonymous
functions. To write an arrow function, simply omit the function keyword and add an
arrow between the arguments and function body.

Special syntax can then be applied to the function arguments and body to simplify the
arrow function even more. If the function has a single input argument, then we can
omit the parentheses around it. If the function body has a single line, we can omit the
return keyword and the curly braces around it. However, single-line functions that
return an object literal must be surrounded with parentheses.

We can also use parentheses around the function body to break a single line body into
multiple lines for readability.

Exercise 4: Upgrading Arrow Functions

To utilize the ES6 arrow function syntax to write functions, perform the following steps:

1. Refer to the exercises/exercise4/exercise.js file and perform the updates in this
file.

2. Convert fn1 with basic ES6 syntax.

Remove the function keyword before the function arguments. Add an arrow
between the function arguments and function body.

3. Convert fn2 with single statement function body syntax.

Remove the function keyword before the function arguments. Add an arrow
between the function arguments and function body.

Remove the curly braces ({}) around the function body. Remove the return
keyword.

4. Convert fn3 with Single input argument syntax.

Introducing Arrow Functions | 19

Remove the function keyword before the function arguments. Add an arrow
between the function arguments and function body.

Remove the parentheses around the function input argument.

5. Convert fn4 with no input argument syntax.

Remove the function keyword before the function arguments. Add an arrow
between the function arguments and function body.

6. Convert fn5 with object literal syntax.

Remove the function keyword before the function arguments. Add an arrow
between the function arguments and function body.

Remove the curly braces ({}) around the function body. Remove the return
keyword.

Surround the returned object with parentheses.

Code

index.js:

let fn1 = (a, b) => { … };

let fn2 = (a, b) => a * b;

let fn3 = a => { … };

let fn4 = () => { … };

let fn5 = (a) => (…);

Snippet 1.21: Arrow function conversion

https://bit.ly/2M6qSfg

Outcome

Figure 1.6: Converting the function's output

20 | Introducing ECMAScript 6

You have successfully utilized the ES6 arrow function syntax to write functions.

In this section, we introduced arrow functions and demonstrated how they can be used
to greatly simplify function declaration in JavaScript. First, we covered the basic syntax
for arrow functions: (arg1, arg2, argn) => { /* function body */ }. We proceeded
to cover the five special syntax cases for advanced arrow functions, as outlined in the
following list:

• Single input argument: arg1 => { /* function body */ }

• No input arguments: () => { /* function body */ }

• Single line function body: (arg1, arg2, argn) => /* single line */

• Single expression broken over multiple lines: (arg1, arg2, argn) => (/* multi
line single expression */)

• Object literal return value: (arg1, arg2, argn) => ({ /* object literal */ }
)

Learning Template Literals
Template literals are a new form of string that was introduced in ECMAScript 6. They
are enclosed by the backtick symbol (``) instead of the usual single or double quotes.
Template literals allow you to embed expressions in the string that are evaluated
at runtime. Thus, we can easily create dynamic strings from variables and variable
expressions. These expressions are denoted with the dollar sign and curly braces (${
expression }). The template literal syntax is shown in the following code:

const example = "pretty";

console.log(`Template literals are ${ example } useful!!!`);

// Expected output: Template literals are pretty useful!!!

Snippet 1.22: Template literal basic syntax

Template literals are escaped like other strings in JavaScript. To escape a template
literal, simply use a backslash (\) character. For example, the following equalities
evaluate to true: `\`` === "`",`\t` === "\t", and `\n\r` === "\n\r".

