UNSUPERVISED LEARNING IN R

Welcome to the course!

Chapter 1 overview

- Unsupervised learning
- Three major types of machine learning
- Execute one type of unsupervised learning using R

Types of machine learning

- Unsupervised learning
 - Finding structure in unlabeled data
- Supervised learning
 - Making predictions based on labeled data
 - Predictions like regression or classification
- Reinforcement learning

Labeled vs. unlabeled data

Undbeledddataa

Sample from Murphy, <u>Machine Learning: A Probabilistic Perspective</u>

People have features such as income, education attainment, and gender

- - Clustering

Clustering examples

- - Clustering
- Finding patterns in the features of the data
 - **Dimensionality reduction**

Dimensionality reduction

- Find patterns in the features of the data
- Visualization of high dimensional data
- Pre-processing before supervised learning

Challenges and benefits

- No single goal of analysis
- Requires more creativity
- Much more unlabeled data available than cleanly labeled data

Let's practice!

UNSUPERVISED LEARNING IN R

UNSUPERVISED LEARNING IN R

Introduction to k-means clustering

k-means clustering algorithm

- First of two clustering algorithms covered in this course
- Breaks observations into pre-defined number of clusters

2 groups

k-means in R

> # k-means algorithm with 5 centers, run 20 times > kmeans(x, centers = 5, nstart = 20)

- One observation per row, one feature per column
- k-means has a random component
- Run algorithm multiple times to improve odds of the best model

First exercises

- First exercise uses synthetic data
- Synthetic data generated from 3 subgroups
- Selecting the best number of subgroups for k-means
- Example with more fun data later in the chapter

Let's practice!

UNSUPERVISED LEARNING IN R

UNSUPERVISED LEARNING IN R

How kmeans() works and practical matters

Objectives

- Explain how k-means algorithm is implemented visually
- Model selection: determining number of clusters

Observations

Iteration 1 - After Reassignment

Model selection

- Recall k-means has a random component
- Best outcome is based on *total within cluster sum of squares*:
 - For each cluster
 - For each observation in the cluster
 - to cluster center
 - Sum all of them together

Determine squared distance from observation

Model selection

- > # k-means algorithm with 5 centers, run 20 times > kmeans(x, centers = 5, nstart = 20)
- Running algorithm multiple times helps find the global minimum total within cluster sum of squares
- You'll see an example in the exercises

Determining number of clusters Trial and error is not the best approach

Scree plot

Let's practice!

UNSUPERVISED LEARNING IN R

Introduction to Pokemon data

UNSUPERVISED LEARNING IN R

"Real" data exercise

Costa catch comenn

The Pokemon dataset

> head(pokemon)						
	HitPoints	Attack	Defense	SpecialAttack	SpecialDefense	Speed
[1,]	45	49	49	65	65	45
[2,]	60	62	63	80	80	60
[3,]	80	82	83	100	100	80
[4,]	80	100	123	122	120	80
[5,]	39	52	43	60	50	65
[6,]	58	64	58	80	65	80

- Hosted at <u>https://www.kaggle.com/abcsds/pokemon</u>
- More information on Pokemon and these features can be found at http://pokemondb.net/pokedex

Data challenges

- Selecting the variables to cluster upon
- Scaling the data (will handle in last chapter)
- Determining the number of clusters
 - Often no clean "elbow" in scree plot
 - This will be a core part of the exercises
- Visualize the results for interpretation

Let's practice!

UNSUPERVISED LEARNING IN R

UNSUPERVISED LEARNING IN R

Review of k-means clustering

Chapter review

- Unsupervised vs. supervised learning
- How to create k-means cluster model in R
- How k-means algorithm works
- Model selection
- Application to "real" (and hopefully fun) dataset

Coming up: chapter 2

Coming up: chapter 3

PC1 describes most of data variance

Principal Component 1

Coming up: chapter 4

> # Repeat for components 1 and 3 > plot(wisc.prx[, c(1, 3)], col = (diagnosis + 1),xlab = "PC1", ylab = "PC3")

Let's practice!

UNSUPERVISED LEARNING IN R

