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Crystallization of struvite in the presence of
calcium ions: Change in reaction rate,
morphology and chemical composition

D. S. Perwitasari’, S. Muryanto?, J. Jamari® and A. P. Bayuseno*

Abstract: Ammonium, phosphorus, and potassium from wastewater treatment
with a coexisting ion of calcium may be recovered simultaneously through struvite
and struvite-(K) crystallization. This paper presents the quantitative assessment of
the impact of calcium ions on the kinetics and crystallization of those crystals.
Initial solutions containing dose levels of Ca®" ion and pH 9 were set up for
experiments in a stirred laboratory crystallization at ambient temperature.
According to the pH reduction data, the observed precipitation kinetics followed in
two steps; the first step (0-3 min) and the second step (3-60 min) in which linear
regression analysis of both kinetic data fit with first-order rate constants. In the
absence of calcium, the computed kinetic constants are respectively 2.568 h™! for
the first stage and 1.548 h™? for the second stage. The kinetic rate constants
followed with the increased dose of Ca (Ca/Mg > 0.5), which lengthened the crys-
tallization of multiphase crystallization of Mg and Ca-phosphates. Accordingly,
calcium had a negative effect on the morphology, purity, and quantity of the final
crystalline product. This quantitative understanding of how calcium affects the
crystallization of struvite and struvite-(K) reliably improves knowledge about con-
trolling the quantity of wastewater recovery products.
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1. Introduction

Over the last decades, the industrial demand for phosphorus (P) for fertilizer production has
increased dramatically along with the increase in the worldwide population, while natural phos-
phorus-bearing minerals are depleting rapidly (Scholz et al., 2013). On the other hand, the aquatic
system in many regions worldwide is surplus insoluble phosphorus due to gray water from house-
hold liquid discharge impregnating with phosphate detergents. Such P-rich domestic effluents,
along with agricultural run-off where fertilizer may have been used extensively, instigate the
uncontrolled growth of algae and other aquatic plants. The unrestrained growth water florae,
termed eutrophication, is unsightly as well as detrimental to environments (Li et al, 2019).
Detergents containing nitrate or phosphate, fertilizer in wastewater may be found in many regions,
where these substances are often discharged into an aquatic system as a result of inadequate
wastewater treatment resulting in eutrophication. Therefore, extensive research to alleviate such
environmental burden on the environment utilizing different techniques has been carried out.

Since%sphorus (P) is one of the vital elements required for life (Ali & Schneider, 2005; Lahav et al,,
2013), the techniques capable of getting rid of eutrophication coupled with recovering the P for subse-
quent use are obviously more preferable, and among the various methods applied, those which could be
with the intention to recover the nutrient. It is believed that simultaneous crystallization from a solution
of the common three species in wastewater: Mg, N, P, termed MAP solution, yielding crystalline struvite
[MgNH,4PO,4+6H,0] and its variant, e.g., struvite(K) [KMg(PO,)-6(H.0)] is promising and worth implement-
ing (Bhuiyan, Mavinic, Koch et al., 2008a; Bouropoulos & Koutsoukos, 2000; Doyle & Parsons, 2002). This
crystallization method can be used for the concurrent reclamation of ammonium, potassium, and
phosphorus from the wastewater (Ali & Schneider, 2005). Accordingly, it has been proposed as a simple
and realistic means of providing a long-term supply of phosphorus (Lahav et al., 2013).

Recently, much attention has been given to implementing crystallization of struvite and/or
struvite-(K) for ammonium and phosphate recovery in various types of wastewater (Bhuiyan,
Mavinic, Koch et al, 2008a; Bouropoulos & Koutsoukos, 2000; Doyle & Parsons, 2002), and in the
hydrothermal solution (Bayuseno & Schmahl, 2018, 2020). For this reason, the crystallization of
struvite and/or struvite-(K) in MAP solution {(magnesium, ammonium, and phosphate) containing
potassium may be performed by adding magnesium ions in a simple bath reactor. As reported, the
crystallizati oducts of struvite and struvite-(K), both are highly insoluble in water, can be used
as fertilizermorre et al., 2009).

Further, the struvite crystallization from an MAP solution is commonly represented by the
following equation (Doyle & Parsons, 2002):

Mg?* +NH™*+HnPO,"* +6H,0 — MgNH,PO,-6H,0 + nH™ (1)

Hence, the mineralization of struvite depends mainly on pH, and n may vary between 0, 1, and 2. Also,
struvite could be crystallized from the supersaturated solution depending on the MAP molar ratio in
which a mola io of 1:1:1 could be a favorable condition of its formation. Fundamentally, the
mechanism of the crystallization of struvite is governed by a number of factors including nucleation
and crystal growth, which can be controlled by physicochemical factors such as pH, mixing intensity,
temperature, and impurities in the solution (Li et al., 2016; Y. Song et al., 2014). In addition, struvite
crystallized from the supersaturated solution reflects the ion activity product (IAP) of Mg?* NH,*, and
PO;,}, which has a value above its solubility product (KSP; Bayuseno & Schmahl, 2018; Doyle & Parsons,
2002). Specifically, the successful crystallization of struvite may be under the control of pH solution and
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supplied by phosphate ion: us, the most recent study on struvite crystallization focused mainly on
controlling the pH solution with the variable molar ratio Mg/P in solution chemistry (Huang et al., 2019;
Shihetal,, 2017; Wang et al., 2005). As previously indicated, the pH range of 8-9 and the Mg/P ratio of 1.0-
1.5 have been shown to be favorable wastewater conditions for the recovery of phosphate ions (species
of PO,*"and their variants dictated by the pH levels) in the form of struvite (Bhuiyan et al., 2007; Bhuiyan,
Mavinic, Koch et al., 2008b; Doyle & Parsons, 2002).

Physicochemical factors affecting struvite crystallization may also relate to the chemical com-
position of a digestion solution, which comes from the different sources of wastewaters with
dissolved foreign ions (Rahman et al., 2011,Yan & Shih, 2016). In some cases, other constituents
of wastewater could be discharged from wastewater treatment plants that subsequently react
with MAP ions leading to crystallization of struvite (Le Corre et al., 2009; Karabegovic et al.,, 2013).
In some cases, different sources of wastewater clearly contain different dissolved ions (Rahman et
al, 2011,Yan & Shih, 20 hence dictating various physicochemical variables for successful
crystallization of struvite (Le Corre et al., 2009; Karabegovic et al., 2013).

In general, wastewater streams, especially in dairy wastewaters are richer in calcium than
magnesium, ammonium, and phosphate, and foreign ions (Cu®, Zn?*, APY, CO;Z' and 5042'; Le
Corre, 2006; Le Corre et al., 2005; Sabbag et al., 2015). A number of studies have revealed that the
presence of competing ions, i.e. apart from as noted above, calcium may interfere with magnesium
in MAP crystallization (Wang et al., 2005), which produced a small proportion of struvite due to
unexpected bearing minen@rmutions of Ca, such as hydroxyapatite [Cas(PO,)30H], whitlockite
[TCP, Cas(POs)2l, octacalcic phosphate [OCP, Cas(HPO,)2(P0O4)4+5H20]1 and monenite (DCP, CaHPC,;
Bayuseno & Schmahl, 2020; Celen et al., 2007; Hao et al., 2013).

36

It is common to estimate the purity of struvite as the ratio of NH4/PO. in the precipitates. In regard
this estimation, it has long been observed that a clear trend in the decreasing of struvite purity was
seen when higher Ca/Mg ratios were employed (Wang et al, 2005). Using synthetic wastewater
mimicking the effluents of anaerobic digestion lagoons treating piggery wastes, Wang et al. (2005)
reported a gradual decrease in struvite purity from 85% down to a mere 38% when the Ca/Mg were
increased four times, i.e. from 0.5:2 to 2:2. With such a decrease it can be assumed that Ca is the main
interfering cation during the precipitation of struvite capable of replacing the NH, ions in the process.

Compared with calcium phosphate crystallization, MAP one involves the process of recovering
ammonium and phosphate on which there is no need for i tion of seed crystals. The crystal-
lization method is also simply used to recover phosphates IEet al., 2013; song, Donnert et al,
2007; Song, Yuan et al., 2007). MAP precipitation can also be applied as a slow-release, long-acting
fertilizer (Liu et al., 2013). Because of its favorable technique, MAP crystallization could be used for
phosphate recovery from pig sewage (Capdevielle et al,, 2013; Crutchik & Garrido, 2011).

Conversely, high concentrations of Ca®* in the MAP solution could increase phosphorus removal
efficiency from 58% to 92% (Huang & Liu, 2014; Lee et al., 2013; Pastor et al., 2008). This
substantial gain in the phosphorus removal efficiency occurred favorably at Ca/Mg molar gsios
above 2, while ratios below 0.5 would not impact the crystallization of struvite (Desmidt et al.,
2013). The impact of calcium on struvite crystallization was also observed at low concentrations of
magnesium and ammonium in the solution, resulting in the formation of other undesirable
minerals and a change in struvite morphology (Le Corre et al., 2005).

Currently, the impact of varying Ca/Mg ratio on the struvite crystallization in the wastewater has
become an intensive study focusing on morphology and purity of the product, whilst the use of simple
reactors with the batch system for phosphate recovery by adding magnesium reagent on the wastewater
is commonly implemented (Dalecha et al., 2014). In particular, batch crystallization offers numerous
advantages in the laboratory and industrial applications. The laboratory crystallizer also assists in
characterizing the crystallization kinetics and crystal size distribution (RDS) and determining the impacts
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of process conditions on these kinetics and CSDs. Therefore, wastewater treatment in the batch system is
seen as a good deal more economical with low production capacities of approximately 1 m? of product
per day or less. In addition, batch crystallization offers an advantage with the ability to produce uniform
particle size.

However, the quantification of precipitates containing struvite and struvite-(K) from a batch
crystallization process as indicators of economic viability has not been specifically investigated.
The corresponding data of the mineral compositions of solid products precipitated from the
aqueous solution at varying Ca/Mg ratios and their effects of competition between Ca-P and Mg-
P, including their crystallization kinetics, were nevertheless limited. Consequently, this batch
crystallization study with synthetic wastewater was designed to study the influence of Ca2+ ions
on the crystallization of precipitates based on the analysis of the analytical tool. In addition, the
Mg and Ca-competiti@s for the recovery of phosphates from synthetic wastewater as potential
phosphate minerals were studied using XRPD (X-ray powder diffraction) and SEM (scanning elec-
tron microscopy) analyses combined with kinetic data. The predicted limit value of the Ca/Mg
molar ratio controlling crystallization in the synthetic wastewater would be helpful in managing
the purity and quality of struvite and struvite-(K) in the future.

2. Experimental

2.1. Batch precipitation experiments

The struvite crystallization experiments were carried out using an agitated laboratory glass beaker
of 200 ml volume. Anhydrous magnesium chloride (MgClz) and ammonium dihydrogen phosphate
(NH,H,PO,) crystals (Merck, AR grades) were used for the struvite crystallization providing ions: Mg?
* NH**, and PO~ necessary for the reaction. Moreover, a stock solution concentration of 0.17 M
each was prepared from those chloride and phosphate powder crystals, which were analytically
weighed (WANT Balance, FA-N Series, 0.0001 g) and then diluted separately with distilled water.
The dissolution was carried out using standard laboratory glassware (graduated cylinders, volu-
metric flasks, and other glass apparatus of various sizes). In view of the pH solution being affected
by absorbing CO; from the air into the solution due to long-standing distilled water, boiling the
distilled water was necessary and left to cool in a closed container prior to the dissolution. Next, a
pH of 9.00 in the mixed solution was set up by drop-wise addition of 0.2 N KOH (Bhuiyan et al.,
2007; Bhuiyan, Mavinic, Koch et al., 2008b; Doyle & Parsons, 2002). The pH adjustment was
required for struvite crystallization that occurs only in basic conditions. In the experiment, the
chemical compositions of crystal-forming solutions are presented in Table 1.

In the individual crystallization run, 175.5 mM MgCl, and 175.5 mM NH4H:PO, s jons were
dissolved in 50 ml each of a 200 ml-glass beaker. The beaker containing mixedution was
constantly stirred to ensure that the crystallizing solution was homogeneous. An impeller speed of
200 rpm was found to be appropriate for the homogeneity of the solution without breaking the
crystals. The pH solution was continuously read using a pH meter (METTLER Toledo-portable pH

Table 1. The chemical composition of the crystallizing solution

No Ion Mg:NH,:PO,, Ca: Ca: Mg Ca:Mg
(mM) (1:1:1) (0.5: (1:1) (2:1)
1. | Mg ' 1755 | 1755 ' 1755 1755
2. ' NH, [ 1755 | 1755 ' 1755 175.5
3. PO, ' 1755 [ 155 ' 1755 1755
4. K ' 500 | s00 ' 500 500
5. Ca [ 0:001:01;02 | 8775 | 1755 351
6. al ' 351 [ 3 ' 351 351
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meter), which was immersed in the mix solution for about 80 min. Eventually, the precipitates were
quickly filtered by filter membrane (Whatman(@®—WHA1001325—grade 1) and air-dried in cure
place. The precipitating solids were kept for subsequent material characterizations, i.e. scanning
electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), and X-ray powder
diffraction (XRPD) method.

2.2. Kinetic analysis

As stated previously, the current crystallization was focused on the influence of impurity on
crystallization, i.e. calcium ions since Ca®* is one of the major cations present in wastewater. It
was previously reported that the presence of impurities, i.e. even in ppm quantities, might influ-
ence significantly on the crystallization (Bayuseno et al., 2020; Muryanto & Bayuseno, 2014). For
this experiment, powder crystals of CaCl,-2H,0 were dissolved in distilled water and subsequently
diluted into the MgCl; solution in predetermined concentrations (1, 10, 20 ppm and, Ca: Mg ratios
of 0.5, 1 and 2). The experiment was carried out at ambient temperature to make sure that no
ammonia/nitrogen component evaporated from the solution. In fact, many WWTP (wastewater
treatment plants) normally work at ambient conditions (Shih et al., 2017). Correspondingly, experi-
mental runs were performed to predict the length of the crystallization run and to validate the
reproducibility of the measurements. Therefore, it was then decided that the run was done in
triplicate for each measurement.

In the present study, the struvite growth rate was estimated by observing the pH changes as the
crystallization progressed; while the pH drop corresponded to the decrease in [Mg®*] as described
in Equation (2). As shown in Equation (1; see Introduction), the rate of struvite crystallization can

be presented as either the rate of reduction of [Mg?*] or the rate of increase in hydrogen ion
concentration, [H']. Mathematically, the relationship is expressed (Muryanto & Bayuseno, 2014) as:

In(C — Ceq)= —kt + In{C — Co} (2)
where:

C = [Mg?*] at any time t (molar)

Ceq = [Mg2+] at equilibrium (molar)

Co = initial [Mg2+] at time zero (t = 0) (molar)

k = kinetic parameter (h™?)

-+

= precipitation time (min)

In batch experiments, a digital pH meter recorded the pH continuously during precipitation. In
the kinetic analysis, a pH solution was seen over time (Bayuseno et al, 2020; Muryanto &
Bayuseno, 2014). After 80 minutes of testing, the stirrer was turned off, then the solution was
separated by 0.45 pm filters. Eventually, the precipitates were cleaned with deionized water to
remove impurities from the crystal surfaces. In this study, only chlorides and alkali ions could be
released during scrubbing. The precipitate slurries were then dried at room temperature for
48 hours, and stored in a small plastic container for later characterization.

2.3. Mineralogical phase characterization

The obtained precipitating solid was dried and then subjected to the X-ray powder diffraction
(XRPD) measurements. Initially, the dried solid was ground to provide a grain size of less than
75 pm and later mounted in the inum-XRPD sample holder. The XRPD data were collected by
Bragg Brentano (Philips 1830/40) X-ray diffractometer at room temperature using Cu Ka radiation,
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Figure 1. The crystallization of
struvite using MgCl; (175 mM)
and a) added Ca®*: 0, 1, 10, and
20 ppm; b) Ca/Mg ratios: 1;
0.5:1, 1:1, 2:1. Error bars are
also shown.

where the fixed measurement parameters (5-85° 20; 0.02° steps; 15s/steps) were employed. The
identified phases in the samples were acquired by the diffraction line-matching program (Match
software), whilst the resulting phases were then verified by the qualitative and quantitative
Rietveld method (Fullproof-2k, version 3.30; Rodriguez-Carvajal, 2005; Wiles & Young, 1981;
Young, 1993). The abundant crystalline phase (weight. %) in the sample was calculated using
refined results of the unit cell parameters and the scale factor (Hill & Howard, 1987). Detailed
Rietveld refining procedures were established according to the methodology reported previously
(Bayuseno & Schmahl, 2015; Mahieux et al., 2010).

Further, the ground powder samples were mounted with glue on the Al-sample holder surface,
and coated with carbon for the morphological analysis by SEM (JEOL JSM 5200), while the
composition of the chemical element was determined by the EDX system.

3. Results and discussion

3.1. Precipitation kinetics

The precipitation kinetics was calculated based on the reduction of the Mg2* in the solution by
manipulating the decrease in pH values as shown by the pH meter readings (Muryanto &
Bayuseno, 2014). The manipulation was fairly simple in that during the process of the precipitation
of struvite it was demonstrated that [Mg2+] = [H'] throughout in the study (Bayuseno et al., 2020;
Nelson et al., 2003; Quintana et al., 2005). In fact, struvite precipitation is mainly under control by
pH, initial relative MAP concentrations, and other coexisting cation of Ca®*. Accordingly, pH is
regarded as a key aspect to control struvite crystallization (shape, morphology, and purity).
Moreover, the present kinetic experiments were relied on the change of pH that could be related
to the decreased Mg?* concentration at the ambient temperature and at a constant stirring speed
of 200 rpm with varying Ca- concentrations. Figure 1 shows a drop in pH over time in the solution
with and without variable calcium concentrations at 30 °C. In the absence of Ca?*, the pH falls
abruptly over the first three (3) minutes and then gradually decreases (Figure 1a-b). Just after
80 minutes, the pH solution appears to be fairly stable. During the first 3-minute pegggl, the pH
decrease corresponded to the struvite crystallization (Ali & Schneider, 2006; Darwish et al.,, 2017;
Kofina et al., 2007; Prywer et al, 2012; Rahaman et al., 2008), whereas the second phase may
concern the formation of other Mg-bearing minerals. The response rate constants were then
predicted by linearly fitting the experimental data in the modified first-order kinetic model

91 - 9.1 * Ca:Mg (0:1)
9 +0 ppm 9 = Ca:Mg (0.5:1)
® | ppm .
Ca:Mg (1:1
80 A 10 ppm 8.9 1d e
20 ppm hi. : faMp(2:1)
8.8 _ e -
2, L]
% 8.7 8.7
8.6 8.6
8.5 8.3
8.4 8.4 ]
0 20 40 60 80 0 20 40 60 80
Time [min.] Time [min]
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Figure 2. Struvite crystalliza-
tion of using using MgCl;

(175 mM) in the absence of Ca?
* fitting at the first-order
kinetic C = [Mg?*] at time t;
Ceq = [Mg?*] at equilibrium, in
the period of a) 0-3 minutes; b)
3-60 minutes.

! : Time (min.
» Time [min.] b e
— oy
$l2345 4)10203040506070
-2.5 +Mg:Ca(l:0) -2.5
=
= 3 [T S -3 y =-0.0192x - 3.0203
S o R2=0.9831
& y =-0.0514x - 2.9063 ‘; 3.5
:__E -3.5 2 =0.9995 ~" ™
4 -4
’
4.5 -4.5

Table 2. Kinetic parameters of the crystallization. Stirring speed of 200 rpm and T = 30°C

The first stage (0-3 min)

ﬁe constant R?

The second stage (3-60 min)

Amount of Ca?* Rate constant R?
(h") (h")

@:}m 2568 0.9551 1.548 0.9507
1ppm 4,074 0.8759 2.430 0.9830
10 ppm 6.684 0.9275 2.406 0.9819
20 ppm 1533 0.9670 2.400 0.9669
Ca/Mg =0.5: 5676 0.9662 1.692 0.9830
Ca/Mg = 1:1 3.060 0.9839 3.486 0.9748
Ca/Mg = 2:1 4.392 09214 4788 0.9389

(Figure 2). The calculated rate constants are presented in Table 2. In the first period, this model
provided an estimated rate constant of 2.568, 4.074, 6.684, 15.33 h~! at Ca®* concentrations of 0,
1, 10 and 20 ppm, respectively. Moreover, those results in the absence of Ca?* are in reasonable
agreement with those reported Nelson et al. (2003) and Rahaman et al. (2008).

In contrast, the increasing reactions to the presence of Ca were observed, in turn, inhibiting
the struvite crystallization (Figures 3a, b). Here, varying rate constants (5.676, 3.060, and
4392 h™Y) with respect to Ca concentration were obtained in Ca/Mg ratios of 0.5, 1, and 2,
respectively (Table 2). In this regard, variable-rate constants may relate the constituent ion
concentrations controlling to the supersaturation ratios of precipitated phosphate-bearing miner-
als. Evidently, calcium delayed the induction time of struvite crystallization for the first appear-
ance of its crystal and interfered with the growth rate of struvite (Bouropoulos & Koutsoukos,
2000; Le Corre et al., 2005).

Regarding the accuracy for the kinetic model, the present developed model was compared

with other models reported for struvite precipitation from wastewater stream in which some
of the published papers had been refereed (Ali & Schneider, 2006; Le Corre, 2006; Darwish et
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Figure 3. Struvite crystalliza-
tion from the solution with a
MAP ratio of 1:1:1 and the pre-
sence of Ca?* fitting at the
first-order kinetic C = [Mg?*] at
time t; Ceq = [Mg?*] at equili-
brium, in the period of a) 0-

3 minutes; b) 3-60 minutes.

Figure &. (a) XRPD Rietveld
refinement plot of the precipi-
tating solid from the MAP
solution (1:1:1) at initial pH 9
and coexisting Ca?* cation (20
ppm). Noted: Yobs and Ycalc
are observed and calculated
XRPD intensities, respectively.
(b) XRPD pattern of the sam-
ples precipitated from the
solution with MAP molar ratio
(1:1:1) and initial pH with dif-
ferent concentrations of Ca?*
(0, 1, 10 and 20 ppm). Notes:
struvite (S); struvite-(K) (S(k))
and sylvite (Sv), respectively.

Intensity

. Time [min] b) Time [min]
1 2 3 4 f 10 20 30 40 50 o0 70

<123 = CaMg (0.5:1) -1.3

® Ca:Mg(1:1) ® Ca:Mg (0.5:1)

=y [l 2 a CaMg (2:1) —]‘7 ® Ca:Mg (1:1)

\\-'— -0.0732x - 2.1921 2 1 & Ca:Mg (2:1)
R*=09214 =2.

2.1 | L il . \ _—y =-0.0581x - 2.2923
=25 W . S 25 (2w R?=0.9748
=/ o 5] _s _y =-0.0798x - 1.8109
' . | \ I -

o 2.9 ____?'———_ | r‘\_", -2.9 . \‘\X, R? = 0.9389
= —=— N
- / — — \
= P \ - £ 33" y = -0.0282x - 3.0926
= 33 I l". - . __-R*=0983
y = -0.0946x - 2.7797 | 3.7 ad
-3.7 Ee=0Dea ¥y = -0.051x - 2.4305
i R - 0.9830 |
-4.5
-4.5

9201?; Kofina et al., 2007; Nelson et al., 2003; Prywer et al., 2012). Evidently, the obtained
uncertainties of parameters and significant numbers in this current study were in good
agreement with those reported in those papers. Accordingly, the present kinetic analysis
provided accurate results that agreed very well with those of published papers for struvite
crystallization in the batch system.

3.2. Purity and morphological crystal products

The crystallized products without and with calcium (0, 1,10,and 20 p ereassessed qualitatively by a
computerized search-match procedure of the XRPD method, relying on the powder diffraction file (PDF)
from the International Centre for Diffraction Data (ICDD). As a result, most of the struvite-(K) (PDF#70-
2345) and struvite (PDF#71-2089) were found, along with sylvite (PDF #73-0380). These phases identified
were then validated by the Rietveld refining method as shown that the observed (Ys) profile patterns
agreed very well with calculated (Y.4) profile ones (Figure 4a for crystal samples collected with 20 ppm
Ca®"). Moreover, three phases of struvite, struvite-(K), and sylvite were confirmed to be found in the
precipitation collected with increases in Ca concentrations (0 to 20 ppm) (Figure 4b). Clearly, the
composition of the collected precipitate phases was not modified under the influence of these Ca®*
concentrations. As a result of the minerals formed a solid solution, precipitates can be made from a
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Figure &4. Continued.
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Rs"shown revlgus‘f?ﬁtlgures 1 and 2), two stages of precipitation are suggested to occur in the

solution (Ca/Mg ratio > 0.5) at the temperature of 30 °C, upon which two Mg-bearing minerals
would be formed during crystallization. In this regard, the pH decrease was observed in two
distinct steps; in the first stage (0-3 min), the pH decreased quite sharply; but in the second
stage, the pH decreased progressively (3-60 min). These steps were supported by XRPD results
confirming that two crystalline phases were formed. Correspondingly, struvite-(K) was precipitated
instead of struvite according to (Equation 3):

Mg?* + K* + PO}” + 6H;0 — KMgPO, e 6(H;0) g 3)

Hypothetically, struvite-(K) was formed because of excess KOH ions present when adjusting the pH
in the MAP solution. An initial pH-9 solution with a Ca/Mg ratio higher than 0.5 was favorable for
the recovery of phosphate and potassium as struvite-(K; Bouropoulos & Koutsoukos, 2000; Song,
Donnert et al., 2007).

Additionally, XRPD diffractograms of precipitating solids at Ca/Mg ratios are shown in Figure 5.
Each peak profile has been checked using the Rietveld refining method and linked to the standard
mineral database. With Ca/Mg ratios of 1 and 2, the formation of struvite, struvite-(K), sylvite,
hydroxyapatite (Cas(PO,);0H), dolomite (CaMg(CO4);), portlandite (CaOH), Mg-whitlockite (CagMg
(PO4)sPO30H), newberyite (MgPO30H)-3(H,0) could be affirmed. It may also include amorphous
calcium precipitate, which could not be fully identified with the XRPD method. However, this
suggestion would be later justified by the EDX analysis. When the chemistry solution has a
molar ratio of Ca:Mg > 0.5:1, there is evidence of the formation of hydroxyapatite, dolomite, and
portlandite associated with the presence of Ca®* ions, which competes with phosphate ions in
crystallization processes (Le Corre et al., 2005). As a result, the interaction of calcium with
phosphate ions in wastewater systems can typically produce poorly crystallized hydroxylapatite
based on the following reaction (Equation 4):

5Ca®* +3P0,3"+H,0 — Cas (PO );+OH+H* (4)

Instead, under the condition of a (Ca/Mg) ratio greater than 0.5, the presence of calcium was
reported to insignificant contribution to the P removal efficiency but only influence the purity of
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Figure 5. XRPD pattern of the
samples precipitated from the
solution with MAP molar ratio
(1:1:1) and initial pH with dif-
ferent Ca/Mg ratios (0, 1, 2 and
0.5). Notes: dolomite (D);
hydroxyapatite (HA); P (por-
tlandite); struvite (S); struvite-K
(S(k)); sylvite (Sv); Mg-whitlock-
ite (Wt), respectively.
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struvite crystals as confirmed by the XRPD analysis. In some cases, the struvite-like crystals might be
enclosed with an amorphous phase, probably amorphous hydroxylapatite (Le Corre et al., 2005).

Other calcium effects on the development of crystal morphology were also examined with SEM-
EDX. In the absence of calcium, struvite crystals with needle morphology (40 pm long and 10 pm
wide) were evident in the SEM images (Figure 6a). Apparently, the growth of the struvite crystal
appeared to extend along the longitudinal axis. Additionally, struvite-(K) with an elongated rec-
tangular bar-shaped morphology could be observed. The corresponding EDX spectrum confirmed
the distinct peaks associated with K, Mg2+, 0%, and P*" (in % mass), for constituent minerals of
struvite and struvite-(K). It was noted here that the carbon peak could be observed to relate the
carbon-coated on the surface of the sample for the analysis. Instead, at a low calcium concentra-
tion (10 and 20 ppm), the crystals of the struvite and struvite-(K) are shown to be attached with a
precipitate (Figure 6b-c), suggesting that no other phase prempltutes uuse crystal surfaces
interacted with their crystallization and the less amount of Ca** could be absorbed on the surface
of those crystals.

The EDX mapping analysis was afterward aimed at peciﬁc area localized on the SEM micro-
graphs of specimens with a coexisting cation of Ca?* for the molar ratio Ca/Mg more than about
0.5. Their spectra and the specific distribution mapping of elements were presented in Figures 7a, b
and c, respectively. Under the Ca/Mg ratio of 1/2 or above, as confirmed from SEM-EDX analysis,
other phases might be precipitated other than struvite and struvite-(K) crystals, while cation of Ca?
* made the interaction with their formation through the absorption of Ca** on the surface of both
crystals. This condition proposed that the evolution of the struvite and struvite-(K) crystals
appeared to be inhibited and would have formed an amorphous material. For samples with an
Ca/Mg ratio of 1 or greater (Figure 7b-c), EDX analysis also supported earlier XRPD findings
confirming that precipitates formed in this work may include both amorphous and crystalline
calcium phosphate. Additionally, the amorphous phase formed on the precipitating solid could
be deduced from the multitude of background noise in the XRPD diagrams. In Figure 5 for the
sample with the Ca/Mg ratio > 0.5, the XRPD diffractogram displays the background noise, while
the struvite peaks are always identifiable. Likewise, the XRPD pattern for the samples is illustrated
in Figure 5, which has provided evidence of decreased purity of struvite with the evolution of Ca
phosphate minerals into amorphous or crystalline forms (Le Corre et al., 2005).

According to SEM observations (Figure 7a), some needle-like morphology for struvite still
remained, but most were aggregated with irregular crystal sizes and shapes, which are similar
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Figure gmpuct of growing
amount cation of Ca®* on stru-
vite crystal morphology and
purity. SEM micrograph and
their respective EDX spectrum
for MAP precipitation (molar
ratio of 1:1: ded by Ca2
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5404 Mg

Intensity (a.u)

1.0 20 30 40 50 60 70 80
Energy-keV

Intensity (a.u)

10 20 30 40 50 60 70 80
Energy-keV

2824

Intensity (a.u)

1.0 20 30 40 50 60 7.0 B.O
Energy-keV

findings reported previously (Le Corre et al., 2005; Li et al., 2016). Likewise, the sample with the
ratio Mg: Ca of 1:1 has some finer crystals associated with the struvite crystals observed. However,
in the sample at the Ca/Mg ratio of 2:1, the needle morphology had disappeared and had been
replaced by an irregular morphology (Figure 7c). This can be a result of multiphase precipitation as
shown in Table 3. Here, the EDX analysis also supported the formation of Ca-phosphate minerals

with higher calcium content, since both EDX spectra have higher peaks of P, Ca, and O than Mg
(Figure 7b, c).

Apparently, the purity of struvite and struvite-(K) was significantly controlled by the higher ratio
of Ca/Mg 1:2 (Figure 6), including the ammonium content in the chemistry solution (Le Corre et al.,
2005). Although Ca/Mg ratios were similarly applied in the previous study (Le Corre et al,, 2005),
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Figure 7. Impact of growing
amounts of Ca®* ions on stru-
vite crystal morphology and
purity. SEM micrographs and
their respective EDX spectrum
for adding Ca ion to a molar
ratio of Ca: Mg of a) 0.5: 1 b)
1:1; ¢) 2:1.
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the present study employed a concentration of ammonium in 1:1:1 for the MAP molar ratio, which
is more typical of dairy wastewater (Guillen-Jimenez et al., 2000). Where ammonium and phos-
phate are at the same concentration in the solution, the morphology of the product can be less
sensitive to changes in Ca content. However, the degree of supersaturation of magnesium,
ammonium, and phosphate in struvite production may more than offset the cost of chemical
treatment to reduce the Ca content, making it less economically feasible. Accordingly, one of the
main areas of reflection for reducing the concentration of it becomes a consideration for further
research.

Further, different treatments of wastewater containing high calcium have been proposed in terms
of their basic principles, applications, costs, maintenance, and suitability (Huchzermeier & Tao, 2012).
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Currently, the precipitation method has been a proven technology for wastewater with high calcium
content turning calcium carbonate. Calcium carbonate precipitation has been reported to treat
wastewater in anaerobic reactors, providing a cost-effective method, easy implementation, and
high efficiency (Xiaoning Liu & Wang, 2019). Hence, a degree of compromise should be considered
for pre-treatment by calcium carbonate precipitation, because there is a competition between
quality benefits of calcium carbonate precipitation and chemically enhanced wastewater treatment
for subsequent P recovery efficiency and solution pH. In this way, the proposed treatments for
wastewater with high calcium may combine two methods, in which calcium carbonate precipitation
would firstly, be employed, secondly, followed by struvite crystallization.

3.3. Quantitative mineralogical phase analysis of the final products

In agreement with the previous finding of the calcium effect on the struvite crystallization
process (Le Corre et al, 2005; Doyle & Parsons, 2002; Wang et al., 2005), many calcium
phosphate minerals were suggested to precipitate other than struvite in the MAP solution with
calcium at the higher ratio of Ca/Mg of 1. Consequently, multi-minerals would precipitate leading
to the reduced quantity of struvite, although recovering phosphorus from the waste stream
could be very efficient and productive. While a good slow-release fertilizer reflects the morphol-
ogy and purity of struvite (Rahman et al., 2026-2030, Liu et al., 2013), the amount of struvite
produced could be measured in terms of the economic feasibility of the precipitation method. In
the study, the mineralogical composition of precipitates was determined according to the XRPD
Rietveld refinement method, and the quantitative results according to the Ca/Mg molar ratios
and its solubility product constants of the identified minerals (pKsp = —log'®Ksp) are given in
Table 3. At this point, the percentage by weight (wt. %) of each phase was calculated using the
refined lattice parameter of the Rietveld method. Moreover, the pKsp values were used to
understand the possibility of mineral precipitation from the thermodynamic perspective, in
which these values determine the dissociation compound in water in that the greater the pKsp
is the more soluble the compound. Instead of sylvite, all minerals presented in Table 3 with the
positive values of pKsp are considered to have a high possibility for precipitation of the solution
subject to the present study.

Firstly, in the absence of Ca?, struvite (58.45 wt. %), struvite-(K) (40.21 wt. %) were major
minerals found in the collected precipitates with minor sylvite (1.34 wt. %). In this regard, the
lower level of ammonium and the higher level of phosphate activity affected the generation of
struvite-(K) crystal (Bouropoulos & Koutsoukos, 2000; Song, Donnert et al, 2007). In fact, the
proportion of struvite and struvite-(K) products was not significantly modified when the concen-
tration of calcium was less than 20 ppm in the solution. Additionally, the pH solution of 9-10.5 is
suggested for optimal phosphate and potassium recovery in struvite and struvite-(K) products
(Bouropoulos & Koutsoukos, 2000; Song, Donnert et al,, 2007). Nevertheless, the calcium dosage is
increased to make the adverse impact becoming pronounced. An increase in calcium concentra-
tion in the solution (Ca/Mg ratio of 0.5), made three dominant Ca-bearing minerals, namely
dolomite, hydroxyapatite, and portlandite formed, where hydroxyapatite is major (13.01% by
weight). Conversely, the reduction in Ca-concentration is more likely to have been initiated largely
by the precipitation of hydroxyapatite.

FYhiso, the reduced phosphate concentration in precipitates may correspond to the formation of
amorphous calcium phosphate (ACP) as previously suggested by XRPD analysis (Figure 5; Desmidt et
al,, 2013). When the solution chemistry was set up at a Ca/Mg ratio of 1, struvite and struvite-(K) (7.8
and 20.20 % by weight, respectively) seemed to be inhibited by the formation of newberyite and Mg-
whitlockite. Apparently, newberyite crystallized relating to the interaction of magnesium and phos-
phorous contents in the solution, while its crystallization is usually accompanied by struvite (Abbona
et al., 1988). Accordingly, the newberyite forming reaction can be interpreted as follows (Abbona &
Boistelle, 1979; Kontrec et al., 2005):
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Mg "2 +HPO; “+3H,0 — MgHPO,3H,0 51 (5)

As reported previously, newberyite could be favorably formed in the lower pH solution (pH 6;
Abbona & Boistelle, 1579). In the current experiments, however, struvite might be formed earlier
than newberyite, in that the crystal nuclei of struvite supposedly promoted newberyite in the
formation of crystal clusters (Abbona & Boistelle, 1979). In the 1: 1 molar ratio Ca/Mg experiment,
Mg-whitlockite, and hydroxyapatite could be generated with the comparable amount as confirmed
by the XRPD Rietveld method (Downs & Hall-Wallace, 2003). Those calcium phosphate minerals
could be simultaneously crystallized in wastewater at room temperature (Lagier & Baud, 2003),
and had been evidently found in the hydrothermal solution (Bayuseno & Schmahl, 2020; Li et al,,
2016).

In addition, the corresponding struvite content in calcium experiments with Ca/Mg at 2:1 had
disappeared, suggesting no interaction of ammonium and phosphate under this condition (Abbona
et al, 1986; Gunay et al., 2008). Unexpectedly, a relatively large amount of sylvite (9-34% by
weight) was recovered from the deposits (with Ca/Mg molar ratio < 0.5) that could be obtained
during the drying sample. Moreover, the discovery of the minerals Ca- and Mg-phosphate allowed
controlling the determination of the calcium content in the MAP solution, which influences the
purity and productivity of struvite. This level of Ca concentration should be set in the actual
wastewater by quantifying sufficient additional magnesium and potassium ions to compensate
for the calcium concentration, which enables struvite and struvite-(K) to be produced at an
economic value (Li et al,, 2016; Yan & Shih, 2016).

3.4. Main findings of the present study

A stirred-batch lab of MAP crystallization under varying Ca/Mg ratio and pH solution was successfully
demonstrated in the study, in which the kinetics of crystal growth for struvite and struvite-(K) as
phosphate minerals that often generate a tenacious scale of industrial equipment. This study estab-
lished the kinetic model representing curves of the pH changes versus the Mg?* sensitivity under
various experimental conditions. The kinetic analysis was focused on calculating rates of mineraliza-
tion reactions and validating kinetic equations accordingly. Moreover, the crystallization rate of solid
phase products could be derived from two reaction stages, including a severe initial pH reduction,
accompanied by a gradual pH reduction until the end of the experiments. In the reaction process, the
crystallisation kinetics of the precipitates obeyed two stages according to the pH reduction in the time
periods of 0-3 min and 3-60 min, whereas both patterns appropriately fit the first-order kinetics.

In the case of minute Ca®* amounts (1, 10, and 20 ppm) present in the MAP aqueous solution,
faster solid-phase growth rates could be observed in both time periods that might be related to the
crystal growth rates of struvite and struvite-(K) crystals, according to the XRPD Rietveld analysis
(Table 3). However, growth rates dropped steadily as higher Ca concentrations were added (Ca/Mg
molar ratio > 0.5). As a result, this condition increased the number of minerals that decreased growth
rates. Additionally, the morphology of solid precipitation products was greatly changed. Therefore,
this kinetic relationship provided a theoretical basis for the struvite and struvite-(K) crystal production
with desired morphology. In fact, a significant effect on crystal morphology and structure developed
during experiments might be contributed by the difference in crystal growth of Ca- and Mg-phos-
phate-bearing minerals.

Further investigation by the quantitative XRPD Rietveld analysis (Table 3) supported the previous
finding in the literature that the competition of Ca-P and Mg-P promoted many minerals (e.g.,
hydroxyapatite, dolomite, Mg-whitlockite, and Newberyite) grew simultaneously during struvite
crystallization (Xigoning Liu & Wang, 2019; Yan & Shih, 2016), in which interfering of Ca made
obstruction of the struvite crystallization. The rationale for the crystal growth for hydroxyapatite
found in the study might be related to the nucleation of Ca-P easier than the MgP nucleation
because of its lower solubility (Xiooning Liu & Wang, 2019). For this reason, hydroxyapatite is more
likely to precipitate preferentially rather than struvite at a higher Ca/Mg ratio (~2). Correspondingly,
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an approach of controlling Ca/Mg ratio ions present in the MAP solution should be adopted for
keeping a minimum level of these ions to enhance the struvite crystallization (Xiaoning Liu &
Wang, 2019).

4. Conclusion

Struvite and struvite-(K) could be crystallized to recover phosphate, ammonium, and potassium
levels in the presence of Ca-ion, which is common in wastewater. In this study, the impact of
calcium ions on crystallization kinetics, mineralogical phases, and morphology were examined by
analytical techniques. Overall, the crystallization kinetics of minerals from the aqueous solution
included two stages according to the pH reduction: a severe initial reduction, accompanied by a
gradual reduction until the end, in which growth rates could be derived from equations fit with
first-order kinetics. Struvite and struvite-(K) crystallization rates were faster by Ca®* ions present at
limited doses (from 1 to 20 ppm). At the first stage, however, a gradual increased in the rate
constants was observed with increasing Ca doses added to Ca/Mg > 0.5, while the second stages
showed the gradual reduction of crystal growth rate. The quantitative XRPD analysis confirmed
that lower concentrations of Ca (<20 ppm) did not influence the struvite and struvite-(K) crystal-
lization. However, its adverse impact was evident with the increase Ca/Mg molar ratio to 0.5, which
corresponds to the formation of Ca and Mg phosphates. Specifically, hydroxyapatite in terms of
amorphous and crystalline phases was proposed to dominantly precipitate from the solution under
higher Ca/Mg ratios (>0.5). For samples at Ca/Mg molar ratios of 1 and 0.5, the amount of
hydroxyapatite was comparable with the quantity of struvite and struvite (K). but its amount
became a major phase at Ca/Mg molar ratio of 2 along with the formation of Mg-whitlockite and
newberyite. The struvite crystal with needle morphology could be observed at a higher Ca/Mg ratio,
but in the subsequent decrease in Ca/Mg ratio, this morphology changed to an irregular shape.
Further studies should focus on the control of calg and magnesium in solutions at a low
proportion for recovering phosphate and potassium from waste streams in order to produce the
high quality and quantity of struvite and struvite-(K).
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