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Functional Programming for Systems Software

Abstract

Programming in a baremetal environment, directly on top of hard-
ware with very little to help manage memory or ensure safety, can
be dangerous even for experienced programmers. Programming lan-
guages can ease the burden on developers and sometimes take care of
entire sets of errors. This is not the case for a language like C that
will do almost anything you want, for better or worse. To operate in
a baremetal environment often requires direct control over memory,
but it would be nice to have that capability without sacrificing safety
guarantees. Rust is a new language that aims to fit this role and is
relatively similar to C in syntax and functionality. However, it may be
worthwhile to branch farther away from C. Functional programming
could offer a more productive, verifiably correct development cycle,
but implementations of functional languages like Haskell often come
with a heavy runtime and no built-in memory management. Thus the
inspiration for Habit, a functional programming language specially de-
signed for baremetal programming. This thesis explores Habit and its
intermediate language LC to see what benefits could come from devel-
oping systems software in a functional language, while simultaneously
testing its prototype compiler for bugs, looking for gaps in features,
and contributing to the continued development of Habit.

1 Introduction

Software development is tricky. There can be a large gap between what
we expect a piece of software to do and the actual properties of the code.
The 2020 Open Source Security and Risk Analysis (OSSRA) report audited
over 1,200 projects and found 75% had at least one vulnerability while 49%
contained high-risk vulnerabilities [1]. Baremetal programs – programs that
run directly on top of hardware, such as an operating system – can be
particularly hard to verify [2]. Baremetal programs are typically written in
C and assembly, since those languages can still interact with and manipulate
memory even without a stack or heap. Unfortunately, C and assembly
are prone to human error and even minor mistakes could create high-risk
vulnerabilities or crash the system altogether [3, 4].

seL4 is a microkernel related to the L4 family of microkernels, composed
of ∼8,700 lines of C code and ∼600 lines of assembly [3]. seL4 is notable
as the first operating system with end-to-end verification of its formal spec-
ification. This end-to-end verification was especially impressive given the
choice of C as an implementation language where there are very few guar-
antees, especially in regards to null pointers, hanging pointers, and largely
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Functional Programming for Systems Software

unrestricted type casting. To mathematically prove the correctness of the C
implementation required ∼200,000 lines of Isabelle, a general purpose the-
orem proving language [3]. Thus the formal verification of C is a massive
effort, requiring many more lines of proof than for the implementation itself.
These proofs also make it harder to refactor the seL4 implementation, as
refactoring also requires adding to or changing large portions of the theorem
prover code. So it seems preferable to use a language with memory safety
and type correctness guarantees, instead of needing to formally verify those
properties in a C implementation.

Using a higher-level language for baremetal programming could have ad-
ditional benefits aside from reducing formal verification efforts. For seL4,
the developers first implemented a prototype of the microkernel in Haskell,
which allowed them to reason about the program, identify areas of code
that required side effects, and smooth out the design process [3]. The team
found the prototyping to be beneficial to productivity, as they were able to
design and implement the microkernel in less time than similar projects. Al-
together, developing the seL4 Haskell prototype and C implementation took
only 2.2 person years (py) worth of effort, whereas similar projects without
a Haskell prototype took 4 to 6 py [3]. However, Haskell could only be used
for a prototype because GHC, the standard Haskell compiler, has a runtime
that is larger than the microkernel itself; the code couldn’t be optimized to
the same extent; and the language doesn’t provide enough control over the
memory layout. Given the enormous gains from first prototyping in Haskell,
it seems worthwhile to work towards a high-level functional language that
can meet the needs of baremetal programming.

At PSU there has been a series of research projects on the use of func-
tional programming languages for baremetal programming. In 2005, an
entire OS was built using Haskell, nicknamed House [5]. Haskell cannot do
low-level operations, thus House required using the Foreign Function Inter-
face to export code in C that Haskell could not do. These unsafe operations
were put into the Hardware monad, or H monad, that was then used to
build a kernel, systems programs, and applications. Then, building off this
experience, Dr. Leslie wrote her dissertation on the H interface, a library
for memory safe baremetal programming in Haskell [6]. However, in both
projects there were still performance concerns regarding the Haskell runtime
and lack of control over memory layout.

The experience from House and the H interface helped guide the de-
sign of the functional programming language, Habit [7]. Habit is partially
derived from Haskell, sharing some of its syntax and using a similar type sys-
tem. Unlike Haskell, Habit has built-in functionality for controlling memory
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layout and accessing memory locations in a type safe manner. Addition-
ally, Habit lets programmers define the layout and size of data types, as
well as the ability to assign names for areas within that type. These built-
in features should give the programmer the flexibility to interact with the
hardware exactly as they want, while still being type correct and memory
safe. Finally, the Habit compiler features several aggressive optimization
steps. One of the compilation steps uses the Monadic Intermediate Lan-
guage (MIL), an intermediate language specifically designed for functional
programming languages [8]. MIL retains many properties of a functional
programming language and can use those properties to make functional lan-
guage specific optimizations. Afterwards, the MIL code is translated to
LLVM and goes through another optimization process. These features and
compilation process aim to bridge the gap between a reliable, high-level
language like Haskell and the performance of a language like C.

Research Question: Can Habit aid the development of reliable, pre-
dictable, and portable baremetal programs?

Since its creation, Habit has seen limited use as a baremetal program-
ming language. Mark Jones wrote a handful of baremetal programs in LC,
an intermediate language of the Habit compiler with similar features and
syntax. Several of the LC baremetal programs were originally labs in the
Low-Level Programming (LLP) course [9]. The page table lab, using the
IA32 architecture [10], currently does not have an LC implementation. Thus
to answer the research question, this thesis involves implementing a page
table in LC based on the associated lab, and comparing it to the C im-
plementation. In the future it may be possible to build a fully functional
L4 microkernel from these LC programs, and a page table implementation
serves as a step in that direction. Furthermore, continued use of LC provides
valuable feedback about compilation issues or features to consider adding.

2 Background

2.1 Habit and LC

LC is an intermediate language for Habit, originally an acronym for Lambda-
Case due to it mainly supporting lambda expressions and case constructs [11].
The intent of LC was to ease testing for the monadic intermediate language
(MIL), but has since been expanded for use in the Habit compiler. At the
time of writing it was preferable to work in LC due to Mark Jones’ famil-
iarity with the compiler and ability to work through potential bugs. This
leaves LC in a peculiar place, with enough features to produce equivalent
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Functional Programming for Systems Software 2.1 Habit and LC

code to Habit, but with fewer conveniences. For a full account of Habit’s
features, see the technical report [7]. In LC there are no type classes, the LC
compiler sometimes cannot infer types, and there is no string formatting.
This means more verbose and redundant code. However, there are many
features in LC that make it worthwhile to use, showcasing some of the core
features of Habit as well as additional features added over time.

2.1.1 Numeric Literals

Numeric literals have been expanded upon from Haskell. Integer literals in
LC come in the standard integer form (e.g., 2, 100, 1234), but also can be
represented in binary and hexadecimal. To create an integer literal in binary
requires the 0b prefix, followed by binary. Integer literals can be represented
in hexadecimal as well, but with the 0x prefix instead.

0b1 = 1 0xf = 15

0b101 = 3 0xab = 171

Integer literals may alternatively use a suffix to denote a multiplier.

K -> kilo -> 2^10 1K = 2^10 = 1024

4K = 2^12 = 4096

M -> mega -> 2^20 2M = 2^21

In addition to integer literals, LC provides syntax for fixed width bit
vector literals. These literals are represented by the Bit n type, where n is
the number of bits for the associated bit vector. Bit vector literals can be
represented in binary or hexadecimal, using the prefix B or X respectively.

B1 -> 1 Xf -> 1111

B101 -> 101 Xab -> 10101011

Note that, because these are fixed width bit vectors, even if the values of
the bit vectors are the same they may not be equivalent since the number of
bits used changes the type. For example, B101 =/= X3 because the first has
type Bit 3, which does not match the type, Bit 4, of the second. However,
B0101 = X3 because they both are of type Bit 4.

Finally, for both integer literals and bit vector literals, underscores, “ ”,
can be used anywhere in the literal for readability, as the compiler will just
ignore the underscores.

100000 = 100_000

0b1011 = 0b10_11 = 0b1_0_1_1

0xffff0000 = 0xffff_0000
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2.1.2 Types and Kinds

The Bit n type highlights another important feature of Habit and LC, the
refactored type and kind system. LC and Habit expand upon Haskell’s kind
system to include the standard * kind, also written type, but also includes
nat for natural numbers, area for memory areas to restrict how and where
memory areas can be declared, and lab for labels used to reference fields
in struct and bitdata types. The Bit n constructor has kind nat -> *,
meaning it takes a natural number and produces a new type of kind *.
For example, the Bit 4 stated before is of kind * because the number has
already been specified, so it is now a first class value. This opens up a new
family of types that are related and can use the same class of functions, but
when used will be a distinct type that will not interact with the other types
without special functions to make them equivalent. The other important
type constructor with this property is the index type, Ix n. The index type
only allows for the use of valid integers in the range [0, n), and is good for
setting bounds. The Ix n type can never produce a number outside of the
range [0, n), and trying to pass a number not in its range into a function with
it’s type will result in a type error. This significantly limits the potential
for out of bounds errors or buffer overflows, and instead will provide a type
error if something is wrong. This eliminates a large class of potential errors
and is used frequently, either explicitly or predefined for certain types like
Array n a, used to create an array with n components of memory layout a.

2.1.3 Memory Management

One of the most important features in Habit and LC that distinguishes
it from Haskell and other functional languages is the ability to reserve a
block of memory, initialize it, and access it later. Memory areas cannot
be manipulated as first class values because they have kind area not *.
Accessing memory must be done through references that make read and
writes explicit. A memory area can only be initialized and reserved at the
start of the program.

In addition to declaring and interacting with blocks of memory, there
are special versions of type declarations that allow full control over a data
type’s memory layout. The first is the struct, similar to its C counterpart.
Structs are stored as a contiguous block of memory, with each field assigned
to a portion of that block of memory. Additionally, structs may specify a
length such that, if the fields take up more or less space than the specified
length, then the compiler will throw an error.
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struct DLL [ data :: Stored Unsigned

| prev :: Stored (Ref DLL)

| next :: Stored (Ref DLL) ]

Furthermore, each field within the struct can specify a memory layout,
size, name, and how it should be initialized. That means whenever the
struct is created the data members will be initialized using the functions set
for them. Structs can also be aligned to ensure that they start at an address
that is a multiple of some specific power of two. This is necessary for some
baremetal applications; for example, an IA-32 page table must start at an
address that is a multiple of 4KB. Finally, the named members of a struct
can be individually retrieved or updated as desired.

initDLL :: Unsigned -> Init DLL

initDLL v = initSelf (\self -> DLL [ prev <- initStored self

| next <- initStored self

| val <- initStored v ])

The next special type declaration is the bitdata definition, which allows
for the creation of types that are represented by bit vectors. Similar to
struct, the fields in a bitdata type can be given names and lengths. Also
similar to struct, a length (in bits) can be declared for a bitdata type.
The length of the bitdata and its fields are specified with the Bit n type,
and the total length of the fields must match the length of the bitdata.

bitdata Perms /3 = Perms [ read, write, grant :: Bool ]

Different from a struct, bitdata constructors can have multiple different
types of the same length, each using their own fields. Pattern matching can
be used to determine the type of the bitdata.

bitdata Bool /1 = False [B0] | True [B1]

To actually interact with memory requires the use of the Ref, Ptr, or
Phys types. Ref is the reference type, and is guaranteed to always point
to a valid memory region. Ptr is like Ref but with the additional Null

constructor, such that Ptr evaluates into either a Ref or a Null. Phys is
similar to Ref, but uses a physical memory address not a virtual memory
address.
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2.1.4 Export and External

Lastly, there are several important keywords that describe how functions are
compiled and if they can be seen or used by other programs. The export

keyword makes a function visible globally, and is what lets functions be
imported from one LC file or another.

The external keyword is used for several important features. The first
use case for external is naming a symbol that will be declared in another
part of the program. The name must be accompanied by a type to state how
the compiler should treat the symbol and interact with it. This could be
viewed as a Foreign Function Interface, allowing for C or assembly code to be
imported for use into a Habit or LC file. The imported C or assembly code
would be considered unsafe and potentially breaks some of the guarantees
provided by the language, but it is sometimes necessary to do so. The
external keyword can still help minimize and identify unsafe code. Symbols
identified with external may also be renamed, and a constant parameter
may be passed to them. [12]

external putchar :: Char -> Proc Unit

external wordToByte {primWordToBit 8} :: Word -> Byte

The other important functionality of external is the ability to declare
an implementation for a symbol. The type of the implementation function
and the type declared for the symbol do not have to be the same, but they
must be equivalent. For example, a Ref type can be interchanged with
a Word, because Ref compiles down to Word. When using the symbol in
other parts of the program it will be treated as its declared type, while the
implementation function is what will actually be called after compilation.
Retyping like this once again breaks some safety guarantees, but it can
be used to isolate and minimize unsafe code that other functions have to go
through. For example, in the core library the refToWord function makes use
of the external keyword to convert a Ref to a Word, which would otherwise
be impossible. [12]

external refToWord = ptrToWordImp :: Ref a -> Word

external ptrToWord = ptrToWordImp :: Ptr a -> Word

ptrToWordImp :: Word -> Word

ptrToWordImp x = x

7



Functional Programming for Systems Software 2.2 IA-32 Paging

2.2 IA-32 Paging

The paging structures are defined by the IA-32 architecture, specified in
Intel 64 and IA-32 Architectures Software Developer Manuals, Volume 3 [10].
Each paging structure is allocated from a 4KB page. The base address of
the page directory is stored in the %cr3 register, and first 10 bits of the
32-bit virtual address is used to index to the appropriate page directory
entry (PDE). The PDEs either point to a page table, where the translation
will follow Figure 1, or a a super page where the translation will follow
Figure 2. If the PDE points to a super page, then the other 22 bits from
the virtual address are used as the offset, with the physical address from
the PDE pointing to the base of the super page. If the PDE is for a 4KB
page, then the PDE will point to a page table, with the first 20 bits of the
PDE holding the physical address for the base of the page table, and the
next 10 bits of the virtual address used to index to the associated page table
entry (PTE). Finally, the PTE will point to the base of the 4KB page being
accessed, with the last 12 bits of the virtual address used as the offset for
that page.

Figure 1: “Linear-Address Translation to a 4-KByte Page using 32-Bit
Paging”. Taken from the Intel developer manual [10]

The formats for the PDEs, PTEs, and %cr3 are specified in Figure 3.
For both PDEs and PTEs, a 0 in the last bit, or “present” bit (P), indicates
that the entry should be ignored. For PDEs pointing to a super page, bits
31 to 22 specify the base of the super page, while bits 8 through 0 are the

8
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Figure 2: “Linear-Address Translation to a 4-MByte Page using 32-Bit
Paging”. Taken from the Intel developer manual [10]

control bits. Relevant control bits for the page table lab include bit 8 for
global access (G), bit 7 set to 1 to indicate the PDE points to a super page
(PS), bit 2 for user level access (U/S), bit 1 for write permission (R/W), and
bit 0 (P). For PDEs pointing to a page table, bits 31 to 12 are the physical
address for the start of the page table, while relevant control bits include bit
7 set to 0 (PS), bit 2 (U/S), bit 1 (R/W), and bit 0 (P). For PTEs, bits 31
to 12 point are the physical address of the page, with relevant control bits
including bit 8 (G), bit 2 (U/S), bit 1 (R/W), and bit 0 (P). %cr3 is also
32-bits, where bits 31 to 12 store the physical address of the page directory.
There are only two control bits for %cr3, bit 4 and bit 3, neither of which
were used in the page table lab.

Paging in IA-32 requires setting flags in the %cr0 and %cr4 registers, as
well as storing a page directory’s base address in %cr3. Setting bit 31 in
%cr0 will enable segmenting the address space in pages (PG), while setting
bit 0 in %cr0 enables protected mode (PE). Both bit 31 and bit 0 in %cr0

need to be set to fully enable paging. To enable 4MB pages, bit 4 in the
%cr4 register must be set to 1 (PSE).

9
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Figure 3: “Formats of CR3 and Paging-Structure Entries with 32-Bit
Paging”. Taken from the Intel developer manual [10]

3 Code Comparison

In this section, different aspects of each implementation are highlighted and
discussed, to showcase some of the key differences between the C and LC
code. For a more full code review, see Appendix A.

3.1 Constants

The C implementation includes several constants defined by macros, used
in both the C and assembly code. These macros improved code readability
and made the bit arithmetic consistent across the C and assembly code.

#define PAGESIZE 12

#define PAGEBYTES (1 << PAGESIZE)

#define PAGEWORDS (PAGEBYTES >> 2)

#define PAGEMASK (PAGEBYTES - 1)

#define SUPERSIZE 22

#define SUPERBYTES (1 << SUPERSIZE)

LC does not have the functionality to share constants with the assembly
code. So those macros were defined in the assembly code, with separate but
equivalent constants defined in the LC code.

10



Functional Programming for Systems Software 3.2 Bit Manipulation

3.2 Bit Manipulation

In C, a PDE is created by adding the aligned physical address of a paging
structure to the control bits. For the first half, an unsigned integer that
represents the physical address is taken and cleared of its lower 12 bits.
Then, one of the control bit related macros are added to this address, setting
the lower 8 bits. But how do you verify that the correct values were used
to set the PDE? First, confirm that the physical address was aligned to a
4KB boundary. For example, when creating a PDE for a page table, the
page table is allocated using the allocPage function and casted to a Ptab*.
All newly allocated pages are aligned to 4KB, and converting the virtual
address to a physical address with toPhys won’t affect the lower 12 bits, so
the physical address should be aligned properly.

ptab = (struct Ptab *)allocPage();

pdir->pde[pde_index] = toPhys(ptab) + PERMS_USER_RW;

Secondly, to verify the macros set the correct permissions, the hexadec-
imal must be converted to binary to check which bits are set. Then, those
bits are cross referenced with the specification to ensure the correct bits
were set for the desired outcome. For example, PERMS USER RW should set
the control bits such that a user can read and write to the address in that
PDE. The 0x07 translates to 0000 0111, thus it should set the lowest three
bits and leave the rest 0. Figure 4 is a reference diagram for this type of
PDE, with the meaning of each bit explained in the Intel manual. According
to the reference manual, enabling user read/write access requires setting the
2nd bit (U/S) to 1 to give users access, the 1st bit (R/W) to 1 to give users
write permissions, and the 0th bit (P) to 1 to indicate that this is a valid
PDE. Thus, PERMS USER RW correctly sets the bits to give a user read and
write permissions.

#define PERMS_USER_RW 0x07

Figure 4: Specification for a PDE that points to a page table. Taken from
the Intel developer manual [10]

In LC, bits for PDEs are manipulated with the PDE bitdata type. The
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PDE type means that the correct bits will always be set and referenced, as
long as the field and labels match the specification. Looking at Figure 4, the
first 20 bits should be dedicated to the physical address of the page table. In
the PageTablePDE constructor, ptab has type Phys PageTable, and since
the PageTable type is aligned to 4KB, Phys PageTable only requires 20
bits, thus ptab is also 20 bits. Then in the PageTablePDE constructor, 4
bits are ignored, followed by the 7th bit being set to 0, the next 6 bits are
various control bits represented by the PagingAttrs type, and finally the
0th bit is set to 1, which exactly matches Figure 4.

bitdata PDE /WordSize

...

| PageTablePDE [ ptab :: Phys PageTable

| unused=bit0 :: Bit 4

| B0

| attrs=readWrite :: PagingAttrs

| B1 ]

...

To confirm a valid physical address is being set for a PDE, note that only
a Phys PageTable type can be used for ptab. Due to the properties of the
language, a Phys PageTable should always be referencing a valid physical
address. So, by being able to set the ptab field at all, there is some guarantee
that it will be referencing a valid memory are for a page table. Also, the
0th bit, for present, is always guaranteed to be 1 when using this type. It
is also simple to confirm that the correct control bits are being set because
the label for the field is used, such as us or rw, and then explicitly set to
True or False. For example, the readWrite function explicitly sets the us

and rw fields to True.

bitdata PagingAttrs /6

= PagingAttrs [ dirty = False :: Bool

| accessed = False :: Bool

| caching = Caching[] :: Caching

| us :: Bool

| rw :: Bool ]

readWrite:: PagingAttrs

readWrite = PagingAttrs[ us=True | rw=True ]

12



Functional Programming for Systems Software 3.3 Extern and External

3.3 Extern and External

In C, the extern keyword is used to reference a global variable declared
elsewhere. Adding [] to the end of the extern declaration will set the
pointer with the address of the variable rather than the value of the variable.
The initdir declaration uses this syntax, and it correctly points to the
initial page directory with a Pdir*.

extern struct Pdir initdir[];

In LC, the external keyword serves a similar purpose. However, there
is no way to use the address of the specified global variable, and instead it
will set the value of a pointer to the value stored in the global variable. For
example, external initdir :: Ref PageDir will set the Ref using the
value stored at initdir, which would make the reference point to some other
region of memory. The workaround is to declare another global variable
in the assembly that holds the address of the desired symbol. For this
implementation, the new global variable was named initdir ptr, although
it was renamed to initdir in the external declaration.

initdir_ptr:

.long initdir

external initdir {initdir_ptr} :: Ref PageDir

3.4 Page Allocation

In C, pages are allocated by pulling from a set of usable memory that should
be aligned to 4KB, converting it to a virtual address, then using that virtual
address as an array to zero out the page word by word. PAGEWORDS is a
constant that should be the number of words per page.

unsigned *allocPage() {

...

unsigned *page = fromPhys(unsigned *, physStart);

for (unsigned i = 0; i < PAGEWORDS; ++i) {

page[i] = 0;

}

...
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return page;

}

Similarly in LC, the starting address for a page is pulled from a set of
usable memory, which should be aligned to 4KB, converting from a Word to a
Ptr. In both the LC and C code this is an unsafe operation, and special care
has to be taken to ensure that the memory being used is valid and aligned
properly. The big difference is that in LC the page can be initialized using
an initialization function of the desired type. For example, allocPageDir
uses the initialization function for page directories, which effectively just
zeroes out the entire page. These initialization functions are guaranteed to
only set valid values for the page type, and will never go out of the page
boundary.

allocPageDir :: Proc (Ptr PageDir)

allocPageDir = allocPage initPageDir

allocPage :: Init pg -> Proc (Ptr pg)

allocPage init = do rpg <- allocRawPage

case rpg of

Null -> return Null

Ref pg -> reInit pg init

return rpg

external allocRawPage = allocRawPageImp :: Proc (Ptr pg)

allocRawPageImp :: Proc Word

allocRawPageImp = case<- getPageInterval physmap of

Just int -> return int.lo

Nothing -> return 0

4 Discussion

LC and by extension Habit felt far more predictable than C. In C I felt the
need to re-verify several times that I was using the right types, converting
types in the correct places, and that the bit manipulation set the correct bits.
In LC, whenever a bit vector is being changed it is clear what bit is being
updated as well as what that bits purpose is, since the field names are closely
related to the actual specifications labels. Additionally, when allocating
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pages, I felt more confident when I was able to use the initialization functions
in LC since those functions are guaranteed to never go out of bounds. In the
C implementation, I am still not confident that this initialization is correct,
even after reverifying the math and stepping through this process several
times to justify that it correctly zeroes out the entire page, but nothing else.

While LC felt more predictable than C, it only felt slightly more portable
than the C code, and not as portable as its equivalent Habit code could be.
The bitdata for page directory entries, and their associated functions, felt
reasonably portable and easy to expand upon. Page allocation felt portable
and adjustable as well, where different initialization functions could be used
to set the paging structures in different ways, and more page allocation
functions could easily be added if needed. Unfortunately, LC does not have
type classes, which could have otherwise made for even more portable and
extendable code, with potentially less boilerplate as well. One area more
portable in C is that initdir can be explicitly referenced in the C code,
which works as anticipated. However, for LC a new global variable has
to be created that just stores the address of initdir. If there were more
global variables for arrays or other objects, extra variables would be needed
to reference them, thus making LC less portable when wanting to use the
address of a global variable. Also, C macros can be used in both the C
program and the assembly, allowing for constants to be defined that are used
throughout the program. Without this, LC needs to define the constants
in several places, making it less portable than C if any of the constants
needed to be changed. The common theme here is that C has an easier time
interacting with assembly, in a way that could easily be updated or moved
to another program, which LC currently lacks.

Lastly, C is more reliable than LC. I ran into a compilation error while
working on the LC implementation, preventing me from progressing further.
C is an old and well tested language, used by a large number of people over
many years. The same cannot be said for LC, and thus also Habit. This
unreliability was anticipated, and was the driving factor for using LC over
Habit. The idea was that running into a compilation error was always a
possibility, but it could be potentially easier to resolve an error for LC. It’s
uncertain if LC compiles and optimizes in the correct and expected manner,
and it won’t really be possible to tell until the language is used more and
feedback is subsequently given to the developers.
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5 Conclusion

LC is a promising language with the potential to be great for baremetal
programming. Many of the core features already aid the developer in pro-
ducing more predictable code, sometimes offering a direct representation of
the specification. Habit is an even more exciting language, given its extended
built-in functionality, helper functions, and typeclasses to create even more
portable, less redundant, code. However, the Habit and LC compiler are
not currently reliable. So while there is potential, Habit and LC are not
necessarily suitable for more serious projects in their current state. There
are also some features that would be useful, such as additions to the external
keyword to directly use a global variables address as the reference, or the
ability to define constants between assembly and Habit/LC programs. To
amend these problems and unknown issues, the compiler should continue
to be worked on and the languages should be used in a variety of smaller
projects, reporting any errors or feature gaps along the way.
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Appendices

A Annotated Code

This appendix details the major components of the C and LC
implementations, to help clarify what the code does and where each
implementation differs. Both the week 4 and week 5 lab from the LLP
course were implemented in C, but due to a compilation error only part of
the week 4 lab was implemented in LC. So, annotations are limited to the
relevant code for the week 4 lab. Both implementations are public on
Github:

• C implementation: https://github.com/dvaneson/paging

• LC implementation: https://github.com/dvaneson/paging-lc

A.1 Shared Assembly

Both implementations use almost identical assembly code for setup and
starting the kernel. The most important part of the shared assembly code
is setting up and enabling paging before being able to use the high address
space. “High address space” refers to virtual memory at 3GB and up, the
kernel space, which is reserved for the kernel regardless of the program
running. The program starts with no mappings and no kernel space, so
everything that would normally have a virtual address starting at the
kernel space or above has to be readjusted to its physical address. Also,
before turning on paging, a page directory must be initialized with kernel
mappings in both the low and high address space. That way everything
will continue to function properly before and after moving to the high
address space. Figure 5 shows how the virtual address space should be
mapped, such that the upper and lower address space both map to the
physical memory the instruction pointer is located in, alongside other
important information. First, space for an initial page directory, initdir,
is allocated.

.globl initdir

.align (1<<PAGESIZE)

initdir:

.space 4096
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Figure 5: One to one mapping in lower and upper memory, mapping
to the physical address the instruction pointer is currently in.
Taken from the LLP week 4 slides [9].

Then, initdir is subtracted by KERNEL SPACE to get the actual physical
address of the intial page directory. The address is then stored in %edi for
use in the next step, and stored in %esi to hold onto for later.

leal (initdir-KERNEL_SPACE), %edi

movl %edi, %esi

Next, all the memory in the page directory needs to be zeroed out. %edi
holds the starting address of the page directory, and %ecx holds the
number loops needed to zero the page word by word, which would be the
number of words in a page, PAGEWORDS. In each loop the address %edi

references is zeroed, then %edi is incremented by 4 to move to the start of
the next word. The loop continues until %ecx decrements to 0.

movl $(PAGEWORDS), %ecx

movl $0, %eax

1: movl %eax, (%edi)

addl $4, %edi

decl %ecx

jnz 1b

Now the initial mappings for the page directory must be made for both the
low address space currently being operated in and the high address space
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that will be jumped to later. So, identical super page mappings are made
in both the low and high address spaces. PHYSMAP is the ending address for
physical memory that can be mapped to. SUPERSIZE is the bit super pages
are aligned to, 22, and 2^SUPERSIZE gives the number of bytes in each
super page. PHYSMAP >> SUPERSIZE is equivalent to
(PHYSMAP/2^SUPERSIZE), which is how many super pages it takes to map
all the memory up to PHYSMAP. PERMS KERNELSPACE just specifies the lower
7 bits needed to set a page directory entry for super pages with only kernel
read/write access. Thus, %ecx holds the counter for the loop, and %eax

holds the settings for the PDEs. %edi is reset using %esi, so that it once
again has the addresses starting at initdir.

movl %esi, %edi

movl $(PHYSMAP>>SUPERSIZE), %ecx

movl $(PERMS_KERNELSPACE), %eax

KERNEL SPACE is the starting address of the kernel space, 3GB.
KERNEL SPACE >> SUPERSIZE is equivalent to
(KERNEL_SPACE/ 2^SUPERSIZE), which is the number of super pages
needed to map up to 3GB. Alternatively, it is the starting index for the
portion of the page directory that maps the kernel space, since the index
starts after the 3GBs has ended. The index is multiplied by 4 since it is an
array of words, or 4 byte entries. The PDEs at both low and high memory
map to the same physical addresses with the same permissions, stored in
%eax. %edi is incremented by 4 to move to the next PDE, because each
PDE is 4 bytes. %eax is incremented by 1 << SUPERSIZE because that is
the bit super pages are aligned to, and incrementing by this value will
move to the start of the next super page. The loop continues until %ecx
reaches 0.

1: movl %eax, (%edi)

movl %eax, (4*(KERNEL_SPACE>>SUPERSIZE))(%edi)

addl $4, %edi

addl $(1<<SUPERSIZE), %eax

decl %ecx

jnz 1b

After initdir is initialized, paging is enabled by setting the correct values
in the control registers. First, the page directory address in %cr3 is set to
initdir. Then, bit 4 of %cr4 is set to 1 to allow for super pages. Lastly,
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set bit 0 and bit 31 in %cr0 are set to 1 to turn on paging.

movl %esi, %cr3

mov %cr4, %eax

orl $(1<<4), %eax

movl %eax, %cr4

movl %cr0, %eax

orl $((1<<31)|(1<<0)), %eax

movl %eax, %cr0

Finally, the program jumps to the high address space before calling the
kernel. The address of high is stored in %eax, then %eax is used to jump.
jmp $high would not have jumped to the high address space because it
would only jump locally, staying in the low address space but moving down
one line. If jmp $high did jump to the high address space, then the
previous loops would have also jumped into the high address space.

movl $high, %eax

jmp *%eax

high:

...

A.2 C

A.2.1 Macros

For the C implementation various code was given up front, such as
switching between virtual and physical memory. The self made distinction
here is that physical addresses are typically represented by an unsigned
integer, whereas a virtual address is represented by a pointer, adjusted to
be within the kernel space, 3GB and above. The following macros are used
to convert between the two types of addresses.

• fromPhys takes the physical address, casts it to an unsigned integer
just in case, adds KERNEL SPACE to it, then casts it to pointer type, t.

• toPhys takes a pointer, ptr, casts it to an unsigned integer, then
subtracts KERNEL SPACE from it.
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#define fromPhys(t, addr) ((t)((unsigned)(addr)+KERNEL_SPACE))

#define toPhys(ptr) ((unsigned)(ptr)-KERNEL_SPACE)

There are also several macros to clear the bits for a given variable,

• maskTo takes a variable, e, and an integer, a, and clears the bits from
bit position a and up, leaving only the lower bits left. To achieve
this, first 1 is shifted to bit position a, and after subtracting 1 all bits
below position a will be set to 1. Taking the bitwise and of this value
and e results in bits at position a and above being cleared for e.

• alignTo takes a variable, e, and an integer, a, and clears the bits
below bit position a. To achieve this, e is shifted right a times,
leaving only bits a and above untouched, then e is left shifted a

times, clearing all bits below a.

#define maskTo(e, a) ((e) & ((1 << (a)) - 1))

#define alignTo(e, a) (((e) >> (a)) << (a))

Pages must be aligned to 4KB, such that the top 20 bits of a physical
address correspond to the start of the page. Several macros are provided
to find the start and end of a page, as well as moving between pages.
These macros should work as shown in Figure 6

Figure 6: Page boundaries and the effect the macros should have. Taken
from the LLP week 4 lab [9].

• PAGEMASK is 0xfff

• pageStart should return the address of the first byte in the page
that contains address x. To achieve this, PAGEMASK is negated to
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produce the value 0xffff f000, which is then used to bitwise and x,
clearing its lower 12 bits, and aligning it to the start of the page.

• pageEnd should return the address of the last byte in the page that
contains address x. To achieve this, x is bitwise or’d with PAGEMASK,
producing the end of the page for address x.

• pageNext should return the address of the first byte in the page that
comes immediately after the page containing x. To achieve this, the
end of the page is found with pageEnd, then adding one to the end of
the page will result in the start of the next page.

• firstPageAfter should return the address of the first page whose
starting address is greater than or equal to x. Different from
pageNext since it can return x if it is at the start of the page. To
achieve this, PAGEMASK is added to x, then the start of the page for
the new address is found using pageStart. If x was the start of a
page, then adding PAGEMASK to it will bring it to the end of the page,
and pageStart will return to the original address, x. Otherwise, the
start of the next page will be returned.

• endPageBefore should return the end address of the first page whose
end address is less than or equal to x. To achieve this, PAGEMASK is
subtracted from x, then the end of the page for the new address is
found using pageEnd. If x was the end of a page, then subtracting
PAGEMASK from it will bring it to the start of the page, and pageEnd

will return to the original address, x. Otherwise, the end of the
previous page will be returned.

#define pageStart(x) ((x) & ~(PAGEMASK))

#define pageEnd(x) ((x) | PAGEMASK)

#define pageNext(x) (pageEnd(x) + 1)

#define firstPageAfter(x) (pageStart((x) + PAGEMASK))

#define endPageBefore(x) (pageEnd((x) - PAGEMASK))

A.2.2 Memory Map

The page table requires page sized regions to create the various paging
structures. The memory for these pages is found by looking through the
memory map, mmap, located in the bootdata. The data for each mmap is
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stored in a contiguous block for the starting and ending address. For a
region to be valid, the following conditions must be met.

• Start address aligned to 4KB (0x000 offset)

• End address aligned to 4KB-1 (0xfff offset)

• Start is less than end

• Start comes after KERNEL LOAD, where the kernel is loaded (1MB)

• End must come before PHYSMAP (32MB)

• Of the set of valid regions, the largest region is selected to be used
for page allocation, denoted by physStart and physEnd.

physStart = 0;

physEnd = 0;

for (i = 0; i < mmap[0]; i++) {

start = firstPageAfter(mmap[2 * i + 1]);

end = endPageBefore(mmap[2 * i + 2]);

if (start >= KERNEL_LOAD && end < PHYSMAP && start < end)

{

if (physEnd - physStart < end - start) {

physStart = start;

physEnd = end;

}

}

}

After looping through mmap, if there were no valid regions the program
terminates and reports a fatal error. If there is a valid region, then the last
step is to look for conflicts in the [physStart, physEnd] region for memory
already in use, as specified by headers. headers is stored similarly to
mmap, with each header being a contiguous block of the region start, end,
and the entry number. If there’s any overlap, that region is removed from
[physStart, physEnd].

if (physEnd <= physStart) {

fatal("Could not find a valid region in memory map.");

}
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for (i = 0; i < hdrs[0]; i++) {

start = hdrs[3 * i + 1];

end = hdrs[3 * i + 2];

if (end < physEnd && end > physStart)

physStart = firstPageAfter(end + 1);

if (start > physStart && start < physEnd)

physEnd = endPageBefore(start - 1);

}

A.2.3 Allocating Pages

Next, the memory region is used to allocate pages. Allocating a page
requires setting aside memory starting at physStart and ending right
before the next page boundary, pageEnd(physStart). So the first checks
are just to make sure there is enough memory between physStart and
physEnd for allocation, and if there isn’t the program terminates and
reports a fatal error. After determining the region [physStart,
pageEnd(physStart)] is usable, the region needs to be zeroed out. To do
this, the physStart physical address is converted to a virtual address,
represented by an unsigned pointer, and this pointer is then used to access
this memory region. PAGEWORDS is the number of words in a page, which is
used as the stopping point because each page[i] = 0 zeroes out a word,
and the next index will start at the next word. After finishing the for loop,
physStart has to be updated to the start of the next page, and the
pointer to the newly zeroed page is returned.

unsigned *allocPage() {

if (physEnd < pageEnd(physStart)) {

fatal("Could not allocate a page");

}

unsigned *page = fromPhys(unsigned *, physStart);

for (unsigned i = 0; i < PAGEWORDS; ++i) {

page[i] = 0;

}

physStart = pageNext(physStart);

return page;

}
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Now that pages can be initialized and referenced, various paging structures
can be created. The first paging structure to initialize is the page
directory. Each page directory needs to have mappings in the kernel space,
which are the same mappings as the assembly that added super page
mappings in the kernel space for the first PHYSMAP bytes of memory. First,
a page is allocated for the page directory, casted from an unsigned* to a
Pdir*. Then the number super pages needed to map the usable region of
physical addresses is stored in kern entries, using the same bit shifting as
the assembly code. The starting index for the kernel space is stored in
kernel addr, using similar bit shifting to the assembly code, but without
the need to multiply by 4. Finally, the physical address of the super pages
and the control bits for each super page mapping must be set. The
physical address for the super page mappings will be at i * SUPERBYTES,
because SUPERBYTES is the number of bytes per super page, 222, and
multiplying by i gives the starting address for the ith super page. The
control bits are added to the physical address because only the 31st
through 22nd bits are set, so adding PERMS KERNELSPACE to it will just set
the lower bits to the value of PERMS KERNELSPACE.

struct Pdir *allocPdir() {

struct Pdir *pdir = (struct Pdir*)allocPage();

unsigned kern_entries = (PHYSMAP >> SUPERSIZE);

unsigned kern_addr = (KERNEL_SPACE >> SUPERSIZE);

for (unsigned i = 0; i < kern_entries; ++i) {

pdir->pde[i + kern_addr] = (i * SUPERBYTES) +

PERMS_KERNELSPACE;

}

return pdir;

}

Allocating the page tables only requires calling allocPage and casting it
to a Ptab*.

struct Ptab *allocPtab() {

return (struct Ptab*)allocPage();

}
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A.2.4 Mapping Pages

Finally, a 4KB page can be mapped in the user space of the page directory.
To map the page requires the page directory, the virtual address to
associate with the page, and the physical address of the page. Despite
being a virtual address, virt is an unsigned integer. Both virt and phys

are aligned to 4KB, clearing their offset.

void mapPage(struct Pdir *pdir, unsigned virt, unsigned phys)

{

virt = alignTo(virt, PAGESIZE);

phys = alignTo(phys, PAGESIZE);

The PDE index is stored in bits 31 to 22 of the virtual address. So,
pde index is set by shifting virt until all that is left is bits 22 and up.
The PTE index is stored from bits 21 to 12, so to single out those bits the
upper 12 bits must be cleared with maskTo, then the result from that
operation is shifted 12 bits and stored in pte index.

unsigned pde_index = (virt >> SUPERSIZE);

unsigned pte_index = maskTo(virt, SUPERSIZE) >> PAGESIZE;

Then pde index is checked to ensure it is within bounds. If it isn’t, panic
and report a fatal error. Otherwise, the PDE is found and stored in pde.

if (pde_index >= PAGEWORDS) {

fatal("PDE index out of bounds");

}

unsigned pde = pdir->pde[pde_index];

Then, pde is checked for the present bit. If the present bit is set to 1, then
pde & 1 will return true. Next, pde is checked to ensure a super page is
not already mapped at that address, and if a super page is already mapped
for pde the process terminates and reports a fatal error. Otherwise, the
lower 12 bits of pde are cleared, leaving only the physical address to the
base of the page table. The page table address is subsequently converted
to a virtual address represented by a Ptab*. One last check before
mapping the PTE ensures that the PTE is not already mapped to another
page, and if it is then the process terminates.

struct Ptab *ptab = 0;
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if (pde & 1) {

if (pde & PERMS_SUPERPAGE) {

fatal("PDE maps to a superpage");

}

ptab = fromPhys(struct Ptab*, alignTo(pde, PAGESIZE));

if (ptab->pte[pte_index] & 1) {

fatal("PTE already mapped to a physical address");

}

}

If pde was unmapped, then a new page table is allocated, with pde set
using the physical address of the new page table as well as user read/write
permissions, PERMS USER RW. Finally, after ensuring a valid PTE, the PTEs
upper 20 bits are set by phys and the lower 12 control bits are set with
user read/write permissions, PERMS USER RW.This addition works because
at the beginning of the function the lower 12 bits of phys were cleared.

else {

ptab = (struct Ptab*)allocPage();

pdir->pde[pde_index] = toPhys(ptab) + PERMS_USER_RW;

}

ptab->pte[pte_index] = phys + PERMS_USER_RW;

}

A.3 LC

A.3.1 Types

Since this is a functional programming language, one of the first steps is
defining types. textttPageSize and SuperPageSize types defined by
numeric literals, namely 4KB and 4MB respectively. Then, the Page and
SuperPage structs use these types to define their length, alignment, and
the size of the array inside each struct.

type PageSize = 4K

type SuperPageSize = 4M

struct SuperPage /SuperPageSize
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[ bytes :: Array SuperPageSize (Stored Byte) ]

aligned SuperPageSize

struct Page /PageSize

[ bytes :: Array PageSize (Stored Byte) ]

aligned PageSize

The PagingAttr type defines the common control bits shared between the
various paging types. The Caching type likewise defines the bits used for
caching. Each field of the bitdata is given a type, usually Bool which has
type Bit 1 with constructors True and False. Several of the bitdata fields
are given a default initialization value as well. For example, the dirty and
accessed bits are set to False by default, and the caching field is
initialized with the default Caching object, denoted Caching[], which in
turn will be initialized with pcd and pwt set to False.

bitdata PagingAttrs /6

= PagingAttrs [ dirty = False :: Bool

| accessed = False :: Bool

| caching = Caching[] :: Caching

| us :: Bool

| rw :: Bool ]

bitdata Caching /2

= Caching [ pcd=False, pwt=False :: Bool ]

There are several useful functions that return a PagingAttr bitdata with
specific fields set. For example, readWrite will return a PagingAttr that
has the us and rw field set to True, meaning that a user can access the
paging structure, and the user has permission to read and write to the
paging object. Similarly, the kernelOnly function returns a PagingAttr

with us set to False and rw set to True, meaning only the kernel will have
read and write permissions for the paging structure.

readWrite :: PagingAttrs

readWrite = PagingAttrs[us=True | rw=True]

kernelOnly :: PagingAttrs

kernelOnly = PagingAttrs[us=False | rw=True]
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Page table entries use the PTE bitdata type. The PTE bitdata has a length
of WordSize, where the value of WordSize depends on the architecture. In
IA-32 words are 32 bits, so WordSize equals 32. B0 and B1 mean that the
bit in that position will always be 0 or 1 respectively, but the bit doesn’t
have a name associated with it. Thus a PTE can either be an UnmappedPTE

if the entries present bit is set to 0, or a MappedPTE if the entry points to a
page. bit0 is a function that returns a zeroed out bit vector of the
appropriate length. Finally, references through Phys or Ref are usually
represented through a Word, which are 32 bits. But, since Page is aligned
to 4KB, the Phys Page type can be referenced using 20 bits instead of 32,
and thus the page field is 20 bits.

bitdata PTE /WordSize

= UnmappedPTE [ unused=bit0 :: Bit 31

| B0 ]

| MappedPTE [ page :: Phys Page

| unused=bit0 :: Bit 3

| global=False :: Bool

| pat=False :: Bool

| attrs :: PagingAttrs

| B1 ]

PageTable is a struct with length and alignment PageSize, or 4KB.
PageTable has one field, pte, an array of 1KB PTEs. The initialization
function for PageTable simply sets each PTE in the array to UnmappedPTE,
which effectively zeroes out the entire array.

struct PageTable /PageSize

[ ptes :: Array 1K (Stored PTE) ]

aligned PageSize

initPageTable :: Init PageTable

initPageTable = PageTable [ ptes <- initArray (\ix ->

initStored UnmappedPTE[])]

Page directory entries use the PDE bitdata type. A PDE can either be
UnmappedPDE for unmapped entries with the present bit set to 0,
PageTablePDE for entries that point to a page table, or SuperPagePDE for
entries that point to a super page. In PageTablePDE the previously
mentioned readWrite function is used to initialize the value of attrs.
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Since PageTable is aligned to 4KB, a Phys PageTable only requires 20
bits, and thus ptab is 20 bits. Similar for Phys SuperPage, except that
SuperPage is aligned to 4MB, and thus super in SuperPagePDE is 10 bits.

bitdata PDE /WordSize

= UnmappedPDE [ unused=bit0 :: Bit 31

| B0 ]

| PageTablePDE [ ptab :: Phys PageTable

| unused=bit0 :: Bit 4

| B0

| attrs=readWrite :: PagingAttrs

| B1 ]

| SuperPagePDE [ super :: Phys SuperPage

| unused=bit0 :: Bit 13

| global=False :: Bool

| B1

| attrs :: PagingAttrs

| B1 ]

The KPDE type is similar to PDE, but intended for page directories in the
kernel space. The KPDE bitdata has two constructors, UnmappedKPDE for
unmapped pages and SuperPageKPDE for super pages. Instead of a Phys

SuperPage field, an index is used. This is to further separate KPDE from
the user level PDE, limiting the overlapping types. The Ix type is set with
KernelSuperPages1, or 255, which is the number of super pages that
could be mapped in the kernel space minus one to leave space for a buffer
page. Since only 8 bits are needed to store a number between 0 and 254,
the beginning is padded with two 0 bits to make the total length 32 bits.

bitdata KPDE /WordSize

= UnmappedKPDE [ unused=bit0 :: Bit 31

| B0 ]

| SuperPageKPDE [ B00

| ix :: Ix KernelSuperPages1

| unused=bit0 :: Bit 13

| global=True :: Bool

| B1

| attrs=kernelOnly :: PagingAttrs

| B1 ]
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PageDir, unlike the PageTable, has three fields. The first is for user level
mappings, defined by the field pdes, which is an array of UserSuperPages,
or 756, PDEs. The second is for kernel level mappings, defined by the field
kpdes, which is an array of 255 KPDEs. The last field is bufferPDE, which
is a single PDE used for a buffer page. PageDir has length and alignment
PageSize, or 4KB. The initialization function for PageDir, initPageDir,
goes through each field and initializes each index of the array to an
unmapped type, effectively zeroing out the entire struct.

struct PageDir /PageSize

[ pdes :: Array UserSuperPages (Stored PDE)

| kpdes :: Array KernelSuperPages1 (Stored KPDE)

| bufferPDE :: Stored PDE ]

aligned PageSize

initPageDir :: Init PageDir

initPageDir

= PageDir [ pdes <- initArray (\ix ->

initStored UnmappedPDE[])

| kpdes <- initArray (\ix ->

initStored UnmappedKPDE[])

| bufferPDE <- initStored bufferPtabPDE ]

A.3.2 External Objects

After the paging types are setup, the kernel can reference and use the page
directory initialized by the assembly, initdir. In order to have a proper
reference to initdir an additional variable had to be declared in the
assembly, initdir ptr, which just holds the address of initdir.

initdir_ptr:

.long initdir

Then, initdir ptr is used with external to reference the initial page
directory, by casting it to type Ref PageDir and renaming it initdir.
Once cast to Ref PageDir, the types of each member of the pdes array
will be determined based on what the last bit and 7th bit are set to. If the
last bit is set to 0, the member will be typed UnmappedPDE, if the last bit is
set to 1 and 7th bit is set to 0, it will typed PageTablePDE, and if the last
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bit is set to 1 and the 7th bit is set to 1, it will typed SuperPagePDE.
Similar is true for the kpdes and bufferPDE.

external initdir {initdir_ptr} :: Ref PageDir

To create the paging objects, available memory has to be set aside. Once
more the usable physical addresses will be found through the memory map
and headers, stored in the bootdata. To acquire the bootdata, external is
used with the address 0x1000, typed to Ref MimgBootData. This creates a
reference to memory address 0x1000, that will be accessed as a
MimgBootData type. The specifics of MimgBootData can be found in
mimg.llc.

external bootdata = 0x1000 :: Ref MimgBootData

A.3.3 Memory Map

Now bootdata can be passed to initPhysMap, exported from the
paging.llc file. The paging.llc file also contains an area declaration for
physmap, an IntervalSet for the physical memory available for page
allocation. For more information on the IntervalSet type, refer to
intervals.llc. The IntervalSet type defines a series of disjoint intervals,
where overlapping intervals are merged into one larger interval.

area physmap <- IntervalSet[] :: Ref IntervalSet

There are several helper functions to help with the partitioning and
inserting of intervals into a given IntervalSet. The first is
insertInterval, which simply inserts the interval into the set, looking
first to see if the interval can be merged with an existing interval, or added
as a disjoint interval otherwise. This function is used in conjunction with
the mmap portion of bootdata to create an IntervalSet out of the
memory map.

insertMMaps :: MimgMMapCursor -> Proc Unit

insertMMaps mmapCursor

= forallDo nextMimgMMap insertMMap mmapCursor

where

insertMMap :: Ref MimgMMap -> Proc Unit

insertMMap mmap
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= do start <- get mmap.start

end <- get mmap.end

insertInterval physmap Interval[ hi=end

| lo=start ]

The reserveInterval function scans the IntervalSet for conflicting
intervals, removing them or partitioning them if the specified interval
overlaps with any interval already in the set. The headers in bootdata

are regions of memory already in use, so headers are iterated over with
reserveInterval to remove any intervals already in use.

reserveHeaders :: MimgHeaderCursor -> Proc Unit

reserveHeaders headerCursor

= forallDo nextMimgHeader reserveHeader headerCursor

where

reserveHeader :: Ref MimgHeader -> Proc Unit

reserveHeader header

= do start <- get header.start

end <- get header.end

reserveInterval physmap Interval[ hi=end

| lo=start ]

Several other parts of physmap need to be reserved as well, such as
memory below 1MB for the kernel, and memory above 32MB since that’s
where the usable physical memory section ends. valdiateIntervals
ensures that the intervals start aligned to 4KB and end at 4KB-1, to
match page boundaries.

initPhysMap :: Ref MimgBootData -> Proc Unit

initPhysMap bootdata

= do mmapCursor <- mimgMMap bootdata

insertMMaps mmapCursor

reserveInterval physmap kernInterval

reserveInterval physmap physmapInterval

headerCursor <- mimgHeaders bootdata

reserveHeaders headerCursor

validateIntervals physmap

where

kernInterval

= Interval[ hi = 1M-1 | lo = 0 ]

35



Functional Programming for Systems Software A.3 LC

physmapInterval

= Interval[ hi = 0xffff_ffff | lo = 32M ]

A.3.4 Allocating Pages

Finally, paging objects need to be allocated for the page table. This
allocation is tricky because memory is typically initialized and typed at the
start of the program, to ensure that all memory references are valid and
typed correctly. Additionally, the intervals use type Word, but typically you
are not allowed to convert from a Word to a Ref because the Word could
have been any value, and thus there is no guarantee that after converting
it will be a valid reference. The external keyword can be used to ignore
both of these rules. First, allocRawPageImp is declared, which will try to
pull a 4KB interval from physmap, and if it does then the low address of
the interval is returned to be used as a page, otherwise 0 is returned. Then,
the allocRawPage function is defined with external such that it has type
Proc (Ptr pg), with its implementation set to allocRawPageImp. This
means that allocRawPage will be used everywhere else in the program as
type Proc (Ptr pg), while the underlying implementation has type Proc

Word, thus converting from a Word to a Ptr. If allocRawPageImp returns a
0, it will be converted to a Null, and if it returns anything else it will be
converted to a Ref. However, this conversion is unsafe and allocRawPage

breaks the type and reference guarantees. Thus, care should be taken to
limit the unsafe code and manually verify its correctness.

external allocRawPage = allocRawPageImp :: Proc (Ptr pg)

allocRawPageImp :: Proc Word

allocRawPageImp = case<- getPageInterval physmap of

Just int -> return int.lo

Nothing -> return 0

allcoPage takes an initialization function of the same type as the returned
Ptr’s inner type. allocPageRaw is called to retrieve the raw page, and if
the Ptr to this page is Null, Null is once again returned. Otherwise, the
initialization function is used with reInit to initialize the memory area.
Then, the Ptr for this initialized area is returned.

allocPage :: Init pg -> Proc (Ptr pg)

allocPage init = do rpg <- allocRawPage
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case rpg of

Null -> return Null

Ref pg -> reInit pg init

return rpg

Finally, allocPagedir and allocPageTable call allocPage with their
respective initialization functions. Both functions return a Ptr which will
either be Null or a reference to a freshly initialized memory area of the
corresponding type. These are the only two allocation related functions
exported and usable outside of this file.

export allocPageDir, allocPageTable

allocPageDir :: Proc (Ptr PageDir)

allocPageDir = allocPage initPageDir

allocPageTable :: Proc (Ptr PageTable)

allocPageTable = allocPage initPageTable
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