
https://books.google.com/books?id=JhAxEAAAQBAJ&authuser=0

EXPERT INSIGHT

Mastering

Tableau 2021

Implement advanced business intelligence

techniques and analytics with Tableau

Foreword by:

Kate Strachnyi

Founder, DATAcated®

Third Edition

Marleen Meier

David Baldwin Packt

Mastering Tableau 2021

Third Edition

Implement advanced business intelligence techniques

and analytics with Tableau

Marleen Meier

David Baldwin

BIRMINGHAM - MUMBAI

Mastering Tableau 2021

Third Edition

Copyright © 2021 Packt Publishing

All rights reserved.
No

part of this book may
be

reproduced, stored in a retrieval

system, or transmitted in any form or
by

any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book
to

ensure the accuracy

of the information presented. However, the information contained in this book is

sold without warranty, either express or implied. Neither the authors, nor Packt

Publishing or its dealers and distributors, will be held liable for any damages caused

or alleged
to

have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta

Acquisition Editor – Peer Reviews: Divya Mudaliar

Content Development Editor: Edward Doxey

Technical Editor: Gaurav Gavas

Project Editor: Parvathy Nair

Proofreader: Safis Editing

Indexer: Manju Arasan

Presentation Designer: Ganesh Bhadwalkar

First published: May 2021

Production reference: 1270521

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-80056-164-9

www.packt.com

Foreword

Hello, I'm Kate Strachnyi, founder of DATAcated®, and I am extremely passionate

about data visualization and storytelling. In 2013, I made a career shift from risk

management and regulatory compliance into the world of data analytics, and

Tableau played a significant role in my professional journey. As I jumped into data

analytics, I was provided with access to Tableau Desktop, along with various sets of

data. My task was to derive insights and design visuals to support and communicate

those insights. It was love at first sight. Tableau's intuitive layout made it easy for

me to connect data sources and extract information, and I was able to build my first

dashboard within minutes of obtaining access to the tool. From that point on, I was

hooked on data visualization.

In this book, Mastering Tableau 2021 - Third Edition, Marleen Meier and David

Baldwin take the reader on a journey that teaches the advanced offerings of Tableau

2021 and empowers them to tackle various data challenges. The book starts with

the basics, by connecting Tableau
to

data and performing various data preparation

activities, before going into more advanced features, such as Level of Detail

calculations and data densification. The authors deftly illustrate Tableau's ability to

create various charts with just a few clicks
or

by dragging and dropping fields into

the view, which speeds up the visualization process and lets the user focus purely

on the stories within the data. The authors take this a step further
by

demonstrating

how basic visualizations can
be

evolved beyond their basic functionality. The

book goes on to demonstrate a spectrum of advanced topics, including geo-spatial

visualizations, time series visualizations, implementing Python and R functionality,

and more!

My personal passion lies in using visual design best practices to tell impactful data

stories. Meier and Baldwin make it simple to customize data visualizations and

dashboards in a way that drives data-informed decision making, with a focus on

formatting and design customization. This book considers the steps that we can take,

such as reducing clutter, improving formatting, and using color intelligently, that can

help tell more effective stories with data. Meier and Baldwin take the reader through

the process of applying these steps in Tableau, discussing design theory, color rules,

and other dos and don'ts of data visualization that will help focus your audience's

attention.

In addition to designing useful dashboards, the book covers methods for improving

the performance of those dashboards. The authors address various aspects of

performance, with the intent of empowering the reader with techniques to create

workbooks that load quickly and respond
to

end user interaction. With the end user

in mind, Meier and Baldwin also provide extended use cases that take the reader

through the thought process of analyzing queries, generating insights, and creating

useful self-service dashboards. In doing so, the book helps you create visualizations

to empower users (whether that might be your boss, a colleague, or a customer) to dig

into data themselves, as opposed to waiting on IT or data teams to present it to them.

Kate Strachnyi

DATAcated®

Contributors

About the authors

Marleen Meier has been working in the field of data science since 2013. Her

experience includes Tableau training, producing proofs of concept, and implementing

and enabling projects, as well as quantitative analysis, machine learning and

artificial intelligence. In 2018, she was a speaker at the Tableau conference, where

she showcased an anomaly detection model using neural networks, visualized in

Tableau. In February 2019, her first book in this series was published.

Writing this book has been such a rewarding journey and would never

have been possible without the Packt team. I want to thank Tushar Gupta,

Parvathy Nair, and Ravi Mistry for your encouragement, guidance, and

great work relationships—a special thanks to Edward Doxey, my editor, for

your attention to detail and for always pushing me to do better. Thank you!

David Baldwin has provided consulting in the business intelligence sector for

21 years. His experience includes Tableau training and consulting, developing BI

solutions, project management, technical writing, and the web and graphic design.

His vertical experience includes corporate, government, higher education, and non

profit. As a Tableau trainer and consultant, David enjoys serving a variety of clients

throughout the USA. Tableau provides David with a platform that collates his broad

experience into a skill set that can service a diverse client base.

Many people provided invaluable support
in

the writing of this book.

Although I cannot name everyone, I would like to draw special attention

to my wife, Kara, and my children, Brent and Brooke, for their unfailing

support. Also, my colleagues
at

Teknion Data Solutions exemplify world

class technical expertise and always challenge me to do my best.

About the reviewer

Ravi Mistry is a Tableau Zen Master and Ambassador, and a data visualization

specialist. A lapsed economist, he enables folks to make sense of data through

analytics and visualization. When he's not following his hometown football team,

Ipswich Town, Ravi is a keen enthusiast in contemporary technology, as well as TV,

film, and media.

Table of Contents

ixPreface

Chapter 1: Getting Up to Speed – A Review of the Basics

Creating worksheets and dashboards

Creating worksheets

Creating a visualization

Beyond the default behavior

Show Me

Creating dashboards

Building a dashboard

Adding interactivity to a dashboard

Connecting Tableau
to

your data

Connecting to a file

Connecting to Tableau Server

Connecting to saved data sources

Measure Names and Measure Values

Measure Names and Measure Values shortcuts

Three essential Tableau concepts

Dimensions and measures

Row-level, aggregate-level, and table-level calculations

Continuous and discrete

Exporting data to other devices

Exporting data to a mobile phone

Tableau Mobile

Summary

Chapter 2: All About Data – Getting Your Data Ready

Understanding Hyper

The Tableau data-handling engine

1

2

2

3

6

12

13

14

18

22

23

24

26

28

31

34

35

36

39

43

43

45

47

49

50

50

[i]

Table of Contents

52

55

57

57

58

58

59

61

61

62

66

71

71

77

81

83

Changing field attribution

Table calculation

Hyper takeaways

Data mining and knowledge discovery process models

Survey
of

the process models

CRISP-DM

CRISP-DM phases

Focusing on data preparation

Surveying data

Establishing null values

Extrapolating data

Cleaning messy data

Cleaning the data

Extracting data

Summary

Chapter 3: Tableau Prep Builder

Connecting to data

The Tableau Prep Builder GUI

Getting to know Tableau Prep Builder

Prepping data

Cleaning data

Unions and joins

Adding unions

Adding joins

Aggregating

Pivoting

Scripting

Additional options with Tableau Prep Builder

Insert flow

Incremental refresh

Tableau Prep Conductor

Exporting data

Summary

Chapter 4: All About Data – Joins, Blends, and Data Structures

Relationships

Joins

Join culling

Snowflaking

Join calculations

Spatial joins

Unions

Blends

84

86

91

93

94

97

98

104

107

111

116

121

121

123

127

127

130

131

132

136

137

142

144

145

146

150

[ii]

Table of Contents

Exploring the order of operations

Adding secondary dimensions

Introducing scaffolding

Understanding data structures

Summary

Chapter 5: Table Calculations

A definition and two questions

Introducing functions

Directional and non-directional table calculations

Exploring each unique table calculation function

Lookup and Total

Previous Value

Running

Window

First and Last

Index

Rank

Size

Application of functions

Building a playground

Partitioning and addressing with one dimension

Partitioning and addressing with two dimensions

Partitioning and addressing with three dimensions

Summary

Chapter 6: All About Data – Data Densification, Cubes,

and Big Data

Using the OData connector

Introducing data densification

Domain completion

Deploying domain completion

The usefulness of domain completion

Removing unwanted domain completion

Domain padding

Deploying domain padding

The usefulness of domain padding

Problems of domain padding

Working with cubes

Data blending for continuous months

Data blending for hierarchies, aliasing, and grouping

Tableau and big data

Addressing Excel's row limitation

Massively parallel processing

Building a visualization with Google BigQuery

151

160

164

175

183

185

186

187

188

191

191

193

194

196

198

200

202

204

208

210

212

214

224

238

241

242

245

245

246

251

253

260

260

263

266

270

270

274

277

278

280

281

[iii]

Table of Contents

Summary

Chapter 7: Level of Detail Calculations

Introducing LOD calculations

Playground I: FIXED and EXCLUDE

Setting up the workbook

Understanding FIXED

Table-scoped expressions

Quick LOD calculations

Understanding EXCLUDE

Understanding Tableau's order of operations

Playground II: INCLUDE

Setting up the workbook

Understanding INCLUDE

Building practical applications with LODs

Using the LOD calculation FIXED

Using the LOD calculation INCLUDE

Using the LOD calculation EXCLUDE

Summary

Chapter 8: Beyond the Basic Chart Types

Improving popular visualizations

Bullet graphs

Using bullet graphs

Bullet graphs – beyond the basics

Pies and donuts

Pies and donuts on maps

Pies and donuts – beyond the basics

Pareto charts

Using Pareto charts

Pareto charts – beyond the basics

Custom background images

Creating custom polygons

Drawing a square around Null Island

Creating an interactive bookshelf using polygons

Analyzing a game of chess in Tableau

Creating an SVG file in Tableau

Creating a grid

Using a grid to generate a dataset

Visualizing a chess game

Creating polygons
on

a background image

Tableau extensions

Using Show me More

Einstein Discovery

Summary

283

285

286

286

287

294

297

298

299

305

309

309

311

317

317

321

323

327

329

330

330

330

333

337

337

340

346

346

353

358

359

359

363

371

371

372

384

385

389

396

397

401

403

[iv]

Table of Contents

Chapter 9: Mapping 405

Extending Tableau's mapping capabilities without leaving Tableau 406

Creating custom polygons 413

Polygons for Texas 415

Heatmaps 420

Dual axes and layering maps 422

Using dual axes 422

Adding map layers 426

Extending Tableau mapping with other technology 438

Using custom maps with a Web Map Service 438

Exploring Mapbox 441

Swapping maps 444

Summary 448

Chapter 10: Tableau for Presentations 449

Getting the best images out of Tableau 450

Tableau's native export capabilities 450

From Tableau to PowerPoint 451

Creating a template 453

Creating a dashboard for print 460

Semi-automating a PowerPoint presentation 462

Embedding Tableau in PowerPoint 464

Animating Tableau 472

Using an animation to export many images 477

Using an animation in Tableau to create an animation in PowerPoint 480

Story points and dashboards for presentations 481

Presentation resources 482

483

Chapter 11: Visualization Best Practices and Dashboard Design 485

Visualization design theory 486

Formatting rules 486

Keep the font choice simple 486

Use lines in order of visibility 487

Use bands in groups of three to five 488

Color rules 489

Keep colors simple and limited 489

Respect the psychological implications of colors 489

Be colorblind-friendly 490

Use pure colors sparingly 490

Choose color variations over symbol variation 491

Visualization type rules 492

Summary

[v]

Table of Contents

Keep shapes simple

Use pie charts sparingly

Compromises

Making the dashboard simple and robust

Presenting dense information

Telling a story

Maximizing documentation on a dashboard

Keeping visualizations simple

Dashboard design

Dashboard layout

The golden ratio layout

The quad layout

The small multiple layout

Utilizing sheet swapping

Creating a collapsible menu

Dashboard best practices for user experience

Actions

Filter actions

Highlight actions

URL actions

Navigation actions

Parameter actions

Set actions

Export Dashboard Button

Item hierarchy

Used In

Summary

Chapter 12: Advanced Analytics

Visualizing world indices correlations

Plotting a scattergraph

Adding axis distributions

Adding a correlation matrix

Finalizing the dashboard

Geo-spatial analytics with Chicago traffic violations

Preparing the data

Building a map of intersections

Adding a corresponding heatmap worksheet

Finalizing the dashboard

Extending geo-spatial analytics with distance measures

Adding measure points to the map

Adding the distance line

493

495

496

496

497

498

499

501

502

503

503

506

506

507

513

525

525

525

530

532

534

536

539

543

544

545

546

547

548

548

561

570

574

579

580

583

589

591

592

595

599

603Summary

[vi]

Table of Contents

Chapter 13: Improving Performance

Understanding the performance-recording dashboard

Hardware and on-the-fly techniques

Configuring auto updates

The Run Update feature

Small extracts

Connecting to data sources

Working efficiently with large data sources

Defining primary and foreign keys

Defining columns as NOT NULL

Indexing

Working with extracts

Constructing an extract

Aggregation

Optimizing extracts

Using filters wisely

Extract filters

Data source filters

Context filters

Dimension and measure filters

Table calculation filters

Using actions instead of filters

Efficient calculations

Prioritizing code values

Level-of-detail calculation or table calculations

Other ways to improve performance

Avoid overcrowding a dashboard

Fixing dashboard sizing

Setting expectations

Summary

Chapter 14: Interacting with Tableau Server/Online

Publishing a data source to Tableau Server

Tableau file types

Tableau data source

Tableau packaged data source

Tableau workbook

Tableau packaged workbook

Other file types

Tableau Server architecture

Approaches to avoid

Approaches to adopt

Web authoring

605

606

610

612

614

615

617

618

619

619

620

621

623

625

629

633

634

634

635

636

638

639

639

640

640

641

641

641

641

642

643

644

647

647

648

648

649

649

650

651

654

658

[vii]

Table of Contents

Editing an existing workbook with web authoring

Understanding the Tableau Server
web

authoring environment

Comparing Tableau Desktop and web authoring

Maintaining workbooks on Tableau Server

Revision history

User filters

Performance-recording dashboard

More Tableau Server settings and features

Features on the worksheet level

Features on the view level

Summary

Chapter 15: Programming Tool Integration

Integrating programming languages

R installation and integration

Implementing R functionality

Reproducing native Tableau functionality in R

Using R for regression calculations

Clustering in Tableau using R

Introducing quantiles

Performance challenges

Python installation and integration

Implementing Python functionality

Random and random normal

Generating random numbers

Random normal

Calculating sentiment analysis

Deploying models with TabPy

Predeployed TabPy functions

Summary

Why subscribe?Other Books You May Enjoy

Index

658

660

665

666

666

668

674

675

676

688

700

701

702

703

708

710

715

719

723

729

730

733

734

734

737

742

748

756

757

759

761

763

[viii]

Preface

Tableau is one of the leading business intelligence (BI) tools used
to

solve data

analysis challenges. With this book, you will master Tableau's features and offerings

in various paradigms of the BI domain.

Updated with fresh topics and the newest Tableau Server features, including

relationships, Quick Level of Detail (LOD) expressions, Einstein Discovery, and

more, this book covers essential Tableau concepts and advanced functionalities.

Leveraging Tableau Hyper files and using Prep Builder, you'll be able
to

perform

data preparation and handling easily. You'll gear up to perform complex joins,

spatial joins, unions, and data blending tasks using practical examples. Following

this, you'll learn how to use data densification, and consider how to use Tableau

extensions
to

help you with calculations, mapping, and visual design. You'll cover

advanced use cases such as self-service analysis, time series analysis, and geo-spatial

analysis, before moving on to improving dashboard performance and connecting
to

Tableau Server with expert-level examples. Finally, you'll connect to and implement

Python and R within Tableau, to achieve things that are impossible with Tableau's

native functionalities alone.

By the end of this Tableau book, you'll have mastered the advanced offerings of

Tableau 2021 and be able to tackle common and advanced BI challenges.

Who this book is for

This book is designed for business analysts, BI professionals, and data analysts who

want to master Tableau
to

solve a range of data science and BI problems. The book is

ideal if you have a good understanding of Tableau and want to take your skills
to

the

next level.

[ix]

Preface

What this book covers

Chapter 1, Getting Up to Speed – A Review of the Basics, takes you through the basic and

essential Tableau concepts needed to get
you

started.

Chapter 2, All About Data – Getting Your Data Ready, introduces the Tableau data

handling engine, after which we will dive into knowledge-discovery process models,

as well as data mining. Last but not least,
we

will talk about data cleaning.

Chapter 3, Tableau Prep Builder, discusses Tableau Prep Builder, a new member of the

Tableau family, and how it can benefit your workflows.

Chapter 4, All About Data – Joins, Blends, and Data Structures, considers the big

question that Tableau users face on a daily basis: should I blend, join, or union my

data? We will also discuss relationships, join calculations, and spatial joins, which

are fairly new features in Tableau.

Chapter 5, Table Calculations, covers functions and table calculations in the process

flow and explains why table calculations are still relevant now that LOD calculations

are available.

Chapter 6, All About Data – Data Densification, Cubes, and Big Data, discusses data

densification and how
we

can display more granular data than the given granularity

of the dataset. We will then move on to cubes and big data, and how
to

deal with it

in Tableau.

Chapter 7, Level of Detail Calculations, helps you understand how to use LODs in such

a way that you won't want to live without them any longer, by building a variety of

playgrounds to experiment with. We will then combine LOD calculations with table

calculations, sets, and parameters
to

maximize their potential.

Chapter 8, Beyond the Basic Chart Types, introduces some widely used chart types,

demonstrating how to extend their usefulness, along with some more unique chart

types, all beyond the "Show Me" section. Tableau extensions, a new feature, are

explained too, with a couple of examples.

Chapter 9, Mapping, covers Tableau's mapping capabilities using custom polygons,

heatmaps, and layered maps, and looks at extending Tableau mapping with other

technologies, such as Web Map Services and Mapbox.

Chapter 10, Tableau for Presentations, shows how the user can make use of Tableau for

presentation purposes. Tableau is typically thought of as a BI and analytics platform;

however, it can be, and often is, used as a presentation tool. In this chapter, you will

get some insight into tips and tricks to make the most of this element of Tableau.

[x]

Preface

Chapter 11, Visualization Best Practices and Dashboard Design, takes you through

different formatting techniques and design rules to maximize the aesthetics and

utility of your Tableau visualizations.

Chapter 12, Advanced Analytics, will help you test your knowledge using three use

cases, which incorporate elements of self-service analytics, time series analytics, and

geo-spatial analytics.

Chapter 13, Improving Performance, addresses various aspects of performance on

Tableau with the intent of empowering you with techniques to create workbooks

that load quickly and respond snappily to end user interaction.

Chapter 14, Interacting with Tableau Server/Online, covers the Tableau Server

architecture and its different offerings and functionalities. We will go through the

process of publishing, editing, and maintaining your visualizations on Tableau

Server.

Chapter 15, Programming Tool Integration, shows how to integrate Tableau with R

and Python, in order to implement advanced models such as regression analysis,

sentiment analysis, and more in your Tableau projects.

To get the most out of this book

A basic knowledge of Tableau is required. You will need a Tableau license, or to sign

up for the 14-day free trial version of Tableau. Readers are also expected to have a

basic knowledge of R/RStudio and Python in order to make the most of the final

chapter.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/

PacktPublishing/Mastering-Tableau-2021.We also have other code bundles

from our rich catalog of books and videos available at https://github.com/

PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams

used in this book. You can download it here: https://static.packt-cdn.com/

downloads/9781800561649_ColorImages.pdf.

[xi]

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,

filenames, file extensions, pathnames, dummy URLs, user input, and Twitter

handles. For example: "We can configure webpack using the webpack.config.js file"

A block of code is set as follows:

SCRIPT_REAL("from numpy import random as rd

mu, sigma = _arg2, _arg3

return (rd.normal(mu, sigma, _arg1[0])).tolist()

",

SIZE(), [mu], [sigma]

)

Any command-line input or output is written as follows:

pip install tabpy

Bold: Indicates a new term, an important word, or words that you see on the screen,

for example, in menus or dialog boxes, also appear in the text like this. For example:

"To start R within a Windows environment, navigate
to

Start | Programs | R x64

4.0.3."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the

subject of your message. If you have questions about any aspect of this book, please

email us at questions@packtpub.com.

Errata: Although
we

have taken every care
to

ensure the accuracy of our content,

mistakes do happen. If you have found a mistake in this book we would be grateful

if you would report this to us. Please visit, http://www.packtpub.com/submit-errata,

selecting your book, clicking on the Errata Submission Form link, and entering the

details.

Piracy: If you come across any illegal copies of our works in any form on the

Internet,
we

would be grateful if you would provide us with the location address

or website name. Please contact us at copyright@packtpub.com with a link to the

material.

If you are interested in becoming an author: If there is a topic that you have

expertise in and you are interested in either writing or contributing to a book, please

visit http://authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a

review on the site that you purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions, we at Packt can understand what

you think about our products, and our authors can see your feedback on their book.

Thank you!

For more information about Packt, please visit packtpub.com.

1
Getting Up to Speed –

A Review of the Basics

Tableau is one of the leading tools used to solve business intelligence (BI) and

analytics challenges. With this book, you will master Tableau's features and offerings

in various paradigms of the BI domain. As an update to the successful Mastering

Tableau series, this book covers essential Tableau concepts, data preparation, and

calculations with Tableau, all the way up to machine learning use cases.

This edition comes with new datasets, more examples of how to improve dashboard

performance, and the most up-to-date know-how on data visualizations, Tableau

Server, and Tableau Prep Builder. This new edition will also explore Tableau's

connections with Python and R, Tableau extensions, joins, and unions, and last but

not least, three new use cases of powerful self-service analytics, time series analytics,

and geo-spatial analytics in order
to

implement the learned content. By the end

of this book, you'll have mastered the advanced offerings of Tableau and its latest

updates, up to Tableau version 2021.

Those who are fairly new to Tableau should find this chapter helpful in getting up
to

speed quickly; however, since this book targets advanced topics, relatively little time

is spent considering the basics. For a more thorough consideration of fundamental

topics, consider Learning Tableau, Fourth Edition, written by Joshua Milligan and

published by Packt Publishing.

[1]

Getting Up
to

Speed – A Review of the Basics

In this chapter, we'll discuss the following topics:

• Creating worksheets and dashboards

• Connecting Tableau to your data

• Measure Names and Measure Values

• Three essential Tableau concepts

• Exporting data to other devices

Now, let's get started
by

exploring worksheet and dashboard creation in Tableau.

Creating worksheets and dashboards

At the heart of Tableau are worksheets and dashboards. Worksheets contain

individual visualizations and dashboards contain one or more worksheets.

Additionally, worksheets and dashboards may be combined into stories to

communicate particular insights to the end user through a presentation environment.

Lastly, all worksheets, dashboards, and stories are organized in workbooks that can

be accessed using Tableau Desktop, Server, Reader, or the Tableau mobile app.

At this point, I would like to introduce you to Tableau Public (https://public.

tableau.com). At times you might need some inspiration, or you might want to

replicate a dashboard created by another Tableau user. In this case, Tableau Public

will be your place to go! It is a web-based collection of dashboards and works like

LinkedIn for the Tableau community. You can create your own profile—registration

is free—and share all the dashboards you've created, that you think the world

shouldn't miss out on. The best part, however, is that you can download all of them,

open them in your own version of Tableau, and start learning and replicating. Even

without your own profile or registration, it is possible to download dashboards.

In this section, we'll consider how to create worksheets and dashboards. Our

intention here is to communicate the basics, but we'll also provide some insight that

may prove helpful to more seasoned Tableau users.

Creating worksheets

Before creating a worksheet, we'll need
to

create a visualization to populate it with.

At the most fundamental level, a visualization in Tableau is created by placing one

or more fields on one or more shelves. As
an

example, note that the visualization

created in the following diagram is generated by placing the Number of Records

field on the Text shelf on the Marks card:

[2]

Chapter 1

Figure 1.1: The Marks card

Having considered some basic theory, in the next subsection you will get the chance

to follow along in your own Tableau workbook. Let's go!

Creating a visualization

Now, let's explore the basics of creating a visualization using an exercise:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Open the file by double-clicking on the downloaded workbook.

3. In the workbook, find and select the tab labeled Fundamentals of

Visualizations:

Figure 1.2: Navigating worksheet tabs

[3]

Getting Up
to

Speed – A Review of the Basics

4. Locate Sport within the Dimensions portion of the Data pane, which can be

found on the left-hand side of the Fundamentals of Visualizations sheet:

Figure 1.3: Dimensions on the Data pane

5. Drag Sport to Color on the Marks card:

Figure 1.4: Dragging Color to the Marks card

[4]

Chapter 1

6. Click on Color on the Marks card and then on Edit Colors… to adjust the

colors of your visualization as desired. This will allow you to edit the colors

used in your visualization, and Transparency and Border effects:

Figure 1.5: Edit Colors…

7. Now see what happens if you move Sport to the Size, Label, Detail,

Columns, and Rows shelves. After placing Sport on each shelf, you can click

on each shelf individually to access additional options.

[5]

Getting Up
to

Speed – A Review of the Basics

8. Drop other fields on various shelves to continue exploring Tableau's

behavior. One example could be, on an empty canvas, dragging Year
to

the

Columns shelf, Number of Records to the Rows shelf, and Medal to Color

on the Marks card. You will now see the number of medals per medal type

over time:

Figure 1.6: Medals over time

9. Did you come up with any interesting visualizations? Feel free to share them

on Tableau Public. Add the tag #MasteringTableau if you want other readers

of this book to find them—sharing is caring!

As you explore Tableau's behavior by dragging and dropping different fields onto

different shelves, you'll notice that Tableau responds with default behaviors. These

defaults, however, can be overridden, which we'll explore next.

Beyond the default behavior

In the preceding exercise, Creating a visualization, we can notice that the Marks card reads

Automatic. This means that Tableau is providing the default view. The default view can

be easily overridden by choosing a different selection from the drop-down menu:

[6]

Chapter 1

Figure 1.7: The Marks card drop-down menu

By changing these settings on the Marks card,
we

can adjust the format in which

your data will be displayed.

Another type of default behavior can be observed when dragging a field onto a

shelf. For example, dragging and dropping a measure onto a shelf will typically

result in the SUM() aggregation, which will sum
up

all the values to the highest

level of aggregation. If no dimension is present, it will be the sum of all values. If a

dimension is present on the Marks card, for example, this same dimension will serve

as the highest level of aggregation. We will see an example of this behavior later in

this section.

[
7
]

Getting Up
to

Speed – A Review of the Basics

In Windows, you can override this default behavior by right-clicking and dragging

a pill from the Data pane and dropping it onto a shelf. Tableau will respond with a

dialog box with possible options:

Figure 1.8: Changing the default aggregation

If you are working on macOS, you can right-click on the pill after you've dragged

it to its location and then adjust the default behavior by changing the measure.

This works on Windows as well. Another option is to right-click on the field while

it is still in the Data pane on your left-hand side and select Default Properties |

Aggregation.

Now, let's walk through an exercise where we'll override another default behavior

on the Marks card:

1. In the workbook associated with this chapter, navigate to the Overriding

Defaults worksheet.

2. Right-click and drag Year from the data pane to the Columns shelf:

Figure 1.9: Year to Columns

[8]

Chapter 1

3. Place Number of Records on the Rows shelf (which is automatically

aggregated to SUM(Number of Records) and Sport on the Detail shelf.

4. Click on the dropdown on the Marks card and select Area:

Figure 1.10: Area chart

In Figure 1.10,
we

can see the Number of Records over time (Year), where each line

represents one type of Sport. We chose to visualize this in a stacked area chart.

Sorting and nested sorting

Now that you are familiar with the basics
of

dragging and dropping pills and are

aware of Tableau's default behavior, the next thing most users want to do is to sort

the data
to
draw first conclusions, regarding, for example, minimum and maximum

values.

Navigate to the Nested Sorting tab and try to sort the countries by the amount of

medals won but separately for gold, silver, and bronze.

[9]

Getting Up
to

Speed – A Review of the Basics

Did it work for you? In Tableau, sorting and nested sorting can be done by simply

clicking on the icon next to each column name:

Figure 1.11: Sorting

To double-check the way of sorting, click
on

the arrow next to a given field, in this

case, Country, and select Sort:

Figure 1.12: Sort settings

[10]

Chapter 1

From the dropdown, select Nested and the desired Field Name as well as the

Aggregation type:

Figure 1.13: Nested Sort

After having completed and understood Sort and Nested Sort, you will immediately

be able to add value to your dashboards by presenting values in the most logical

way. Now
we

can move on to the next topic, the different default chart types Tableau

comes with: Show Me.

[11]

Getting Up
to

Speed – A Review of the Basics

Show Me

Show Me can help people new to Tableau to create the visualization they are looking

for, such as bar charts, histograms, and area charts. It allows the Tableau author

to create visualizations from inputted data at the click of a button. To understand

how it works, let's refer to the following screenshot, which again makes use of the

Overriding Defaults worksheet. This view can be accessed by clicking the Show Me

button in the upper-right corner of any Tableau sheet:

Figure 1.14: Show Me

Now let's look at the following aspects that are highlighted in the preceding

screenshot:

• A: Selected fields in the Data pane

• B: Fields deployed in the view, that is, pills

• C: The recommended view, highlighted in the Show Me panel

• D: Help text that communicates the requirements for creating the

recommended view or any selection choice over which the cursor is placed

Every icon in Show Me that isn't grayed out represents a visualization that can be

created simply by clicking on it. For example, in the preceding screenshot, Figure

1.14, the Tableau author may choose to click on the area chart icon to create an area

chart based on the selected and deployed fields.

[12]

Chapter 1

Show Me options are highlighted based on two criteria: the

selected fields in the Data pane and the fields deployed in the

view.

Show Me may be effectively used for the following reasons:

• Efficiency: The proficient Tableau author already knows how to create the

basic visualization types. Show
Me

automates these basic types and thus may

be used for quicker production.

• Inspiration: Determining an effective way to visualize a dataset can be

challenging. Show
Me

can help with this challenge by allowing the Tableau

author to quickly consider various options.

• Education: An inexperienced Tableau author may access Show Me
to

better understand how various visualizations are created. By reading the

help text displayed at the bottom of Show
Me

and changing pill placement

accordingly, much can be learned.

These three reasons demonstrate the strong capabilities that Show Me provides for

worksheet creation; however,
be

careful not
to

use it as a crutch. If you click on the

various options without understanding how each visualization is created, you're not

only shortchanging the educational process, but you may generate results that aren't

well understood and could lead to detrimental business decisions.

Once you are happy with the results and confident that the selected visualization

puts enough emphasis on your data story, your worksheet is ready for the next

round of development. We've looked at some basic visualization creation and

configuration techniques, so let's now look at how
to

group multiple worksheets into

a dashboard.

Creating dashboards

Although, as stated earlier in this section, a dashboard contains one or more

worksheets, dashboards are much more than static presentations. They're an

essential part of Tableau's interactivity. In this section, we'll populate a dashboard

with worksheets and then deploy actions for interactivity.

Let's begin by building a dashboard.

[13]

Getting Up
to

Speed – A Review of the Basics

Building a dashboard

The following are the steps for building a dashboard:

1. In the workbook for this chapter, navigate to the Building a Dashboard tab.

2. In the Dashboard pane, located on the left side of the Figure 1.15, double

click on each of the following worksheets (in the order in which they are

listed)
to
add them to the dashboard pane: Count of Disciplines, Attendees,

Medals, and Medal Shapes:

Figure 1.15: Creating a dashboard

[14]

Chapter 1

3. In the bottom-right corner of the dashboard, click in the blank area (indicated

by an arrow in Figure 1.16)
to

select a container. Containers are a selection

of sheets that auto-adjust to fit next to/underneath each other on your

dashboard:

Figure 1.16: Deleting a container

4. After clicking in the blank area, you should see a blue border around the

filter and the legends. This indicates that the vertical container is selected.

Select the vertical container handle and delete it.

[15]

Getting Up
to

Speed – A Review of the Basics

5. A selected container can also be dragged to a different location on the

dashboard, replacing
an

existing sheet
or

sharing space. Note the gray shading

in Figure 1.17, which communicates where the selection will be placed. Drag

the Attendees worksheet by selecting and holding the handle and put it on top

of the Count of Disciplines worksheet in order to swap the two:

Figure 1.17: Moving worksheets

The gray shading provided by Tableau when dragging

elements, such as worksheets and containers, onto a

dashboard helpfully communicates where the element

will be placed. Take your time and observe carefully when

placing an element on a dashboard or the results may be

unexpected.

[16]

Chapter 1

6. Note the Floating and Tiled buttons at the bottom left, next
to

your

dashboard, as well as under the handle dropdown. If you select Floating

instead of Tiled, your worksheets will not auto-adjust anymore and will be

"floating" around the dashboard instead. This is a free form of worksheet

arrangement on a dashboard, which is a powerful functionality, especially

combined with transparent backgrounds. Note that floating can also be

achieved by selecting it from the More Options dropdown on the right-hand

side of every sheet in the dashboard:

Figure 1.18: Tiled and Floating

7. Now, you can format the dashboard as desired. The following tips may

prove helpful:

• Adjust the sizes of the elements on the screen by hovering over the

edges between each element and then clicking and dragging. Drag

the edges of containers
to

adjust the size of each worksheet.

• Make an element floating,
as

shown in Figure 1.18.

• Create horizontal and vertical containers
by

dragging Horizontal and

Vertical from the Objects pane onto the dashboard. Other objects,

such as Text, Image, and Blank, can be added to containers too.

[17]

Getting Up
to

Speed – A Review of the Basics

• Display the dashboard title
by

selecting Dashboard in the top pane,

then Show Title. Double-click the title itself to adjust:

Figure 1.19:
The

Olympics dashboard

As you can see, you have just created your first dashboard. All worksheets are in

place now. In the next part,
we

will add filter functionality to make the dashboard

more interactive and meaningful.

Adding interactivity to a dashboard

One of the primary benefits of Tableau is
the

interactivity it provides the end user.

Dashboards aren't simply for viewing; they're meant for interaction. In this exercise,

we'll add interactivity to the dashboard that was created in the previous exercise:

[18]

Chapter 1

1. Select the Medals sheet on the dashboard and click on the drop-down arrow

on the right-hand side, which will open a menu as shown in Figure 1.20.

From there, select Filters, then Sport:

Figure 1.20: Adding a filter

[19]

Getting Up
to

Speed – A Review of the Basics

2. Now select the newly created filter, Sport, click again on the drop-down

options arrow, and select Multiple Values (dropdown) as well as Apply to

Worksheets | All Using This Data Source, as shown in Figure 1.21:

Figure 1.21: Filter settings

3. Lastly, place the filter above the Medals sheet
by

clicking and dragging it.

4. To use the images of the medals as a filter for the other worksheets on the

dashboard pane, click the Use as Filter icon located at the top-right corner of

the Medals Shapes worksheet:

Figure 1.22: The Use as Filter option

[20]

Chapter 1

5. Alternatively, navigate
to
Dashboard | Actions. In the dialog box, click Add

Action | Filter and create a filter, as shown:

Figure 1.23: Adding a filter action

From here on in, you are good
to go

and use filters and action filters. In Chapter 13,

Improving Performance, this topic will be discussed in more detail.

Having completed the preceding dashboard exercise, you should now be able to

click on various objects on the dashboard to observe the interactivity. To learn some

more advanced dashboard techniques,
be

sure to check out Chapter 11, Visualization

Best Practices and Dashboard Design.

To conclude, you have learned how to put existing worksheets, as tiled or floating

objects, on a dashboard. You have changed the dashboard layout by dragging and

dropping, as well as
by

using containers, filters, and action filters. Each of these core

activities will be repeated multiple more times throughout the book, so feel free to

come back to this chapter and repeat the exercise steps whenever needed!

Next, you will learn how to connect your own data to Tableau and work with it.

[21]

Getting Up
to

Speed – A Review of the Basics

Connecting Tableau to your data

At the time of writing, Tableau's data connection menu includes more than 70 different

connection types. And that's somewhat of an understatement since some of those types

contain multiple options. For example, Other Files includes 34 options. Of course, we

won't cover the details for every connection type, but we will cover the basics.

Upon opening a new instance of Tableau Desktop, you'll notice a link in the top-left

corner of the workspace. Clicking on that link will enable you
to

connect
to

the data.

Alternatively, you can click on the New Data Source icon on the toolbar:

Figure 1.24: Connecting to data

Although in future chapters we'll connect
to

other data sources, here we'll limit the

discussion to connecting to Microsoft Excel and text files.

[22]

Chapter 1

Connecting to a file

Let's see how you can connect to a file, using Excel as an example:

1. In a new instance of Tableau, navigate to Data | New Data Source | Excel to

connect to the sample Superstore dataset that installs with Tableau Desktop

(it should be located on your hard drive under My Tableau Repository |

Data sources).

2. Double-click on the Orders sheet.

3. Click on the New Worksheet tab,
as

shown in Figure 1.25:

Figure 1.25: New worksheet

4. Rename the newly created tab
to

First Worksheet by right-clicking and

selecting Rename.

5. Place Discount on the Text shelf in the Marks card.

[23]

Getting Up
to

Speed – A Review of the Basics

6. Double-click on Profit and Sales:

Figure 1.26: First worksheet

7. You've just created your first worksheet!

If you want to connect to a .csv file, you could use the Text file option, as shown in

Figure 1.24. I encourage you to try that option, as well as Access files if applicable

for you. Later in this book, in Chapter 12, Advanced Analytics, we will also connect
to

spatial files.

In this section, we learned how to connect to files. We'll continue with another

important connection type in the next section: Tableau Server.

Connecting to Tableau Server

Connecting to Tableau Server is perhaps the single most important server connection

type to consider, since it's frequently used
to

provide a better level of performance

than may otherwise be possible. Additionally, connecting to Tableau Server enables

the author to receive not only data, but information regarding how that data is to be

interpreted—for example, whether a given field should be considered a measure or

a dimension. We'll discuss the difference between these terms in the Dimensions and

measures section later in the chapter.

[24]

Chapter 1

The following are the steps for connecting
to

Tableau Server:

1. To complete this exercise, access to an instance of Tableau Server is

necessary. If you don't have access to Tableau Server, consider installing a

trial version on your local computer.

2. In the workbook associated with this chapter, navigate to the Connecting to

Tableau Server worksheet.

3. Right-click on the Superstore data source and select Publish to Server…:

Figure 1.27: Publish to Server…

4. Log in to Tableau Server and follow the prompts to complete the publication

of the data source.

5. Open a new instance of Tableau Desktop and select Data | New Data Source

| Tableau Server, then search for the Superstore dataset you just published

and connect.

[25]

Getting Up
to

Speed – A Review of the Basics

Having completed the preceding two exercises, let's discuss the most germane point,

that is, metadata. Metadata is often defined as data about the data. In the preceding

case, the data source name, default aggregation, and default number formatting are

all examples of consistency across multiple authors. If you were
to

change a field

name, for example, then publish the data source
to

Tableau Server, the new field

name would remain, since Tableau remembers changes made to the metadata. This

is important, for example, if your company has a policy regarding the use of decimal

points when displaying currency; that policy will be easily adhered to if all Tableau

authors start building workbooks by pointing
to

data sources where all formatting

has been predefined.

Later on in this book, we will connect to other server types, like Google BigQuery,

but the handling of all servers is pretty much the same and very straightforward.

If you still have questions, you can always check out https://help.tableau.com/

current/pro/desktop/en-us/exampleconnections_overview.htm.

Now, our last missing piece regarding connections is saved data sources. Please

follow along with the next section to understand those as well.

Connecting to saved data sources

Connecting to a saved data source on a local machine is very similar to connecting to

a data source published on Tableau Server. Metadata definitions associated with the

local data source are preserved just as they are on Tableau Server.
Of

course, since

the data source is local instead of remote,
the

publication process is different.

Let's explore the following steps to create a local data connection using an example:

1. In the workbook associated with this chapter, navigate to the First

Worksheet tab.

2. In the Data pane, right-click on the Superstore data source and select Add to

Saved Data Sources.

3. Using the resulting dialog box, save the data source as Superstore in My

Tableau Repository | Data sources, which is located on your hard drive.

4. Click on the Go to Start icon located in the top-left part of your screen and

observe the newly saved data source:

[26]

Chapter 1

Figure 1.28: Saved Data Sources

[27]

Getting Up
to

Speed – A Review of the Basics

You can save a local data source that points to a published data

source on Tableau Server. First, connect to a published data source

on Tableau Server. Then, right-click on the data source in your

workspace and choose Add to Saved Data Sources. Now you can

connect to Tableau Server directly from your start page!

Now that we've learned how to connect to files, Tableau Server, and saved data

sources, we will continue our journey and dive into more details regarding Measure

Names and Measure Values.

Measure Names and Measure Values

I've observed the following scenario frequently: a new Tableau author creates a

worksheet and drags a measure to the Text shelf. The author does this in order to

create another row
to

display a second measure but doesn't know how. They drag

the second measure to various places on the view and get results that seem entirely

unpredictable. The experience is very frustrating for the author since it's so easy
to

accomplish this in Microsoft Excel! The good news is that it's also easy to accomplish

this in Tableau. It just requires a different approach.

Measure Names and Measure Values are generated fields in Tableau. They don't

exist in the underlying data, but they're indispensable for creating many kinds

of views. As may be guessed from its placement in the Data pane and its name,

Measure Names is a dimension whose members are made up of the names of each

measure in the underlying dataset. Measure Values contains the numbers or values

of each measure in the dataset.

In this section, we'll watch what happens when these generated fields are used

independently, then observe how they work elegantly together to create a view. Let's

explore this with an exercise:

1. In the workbook associated with this chapter, navigate to the

MeasureNames/Values worksheet and make sure that the Olympics data

source is selected.

2. Drag Measure Values to the Text shelf and observe the results:

[28]

Chapter 1

Figure 1.29: Measure Values

3. Clear the worksheet by clicking on the Clear Sheet icon on the toolbar:

Figure 1.30: Clear Sheet

4. Now, drag Measure Names to the Rows shelf and observe that the view

merely displays no Measure Values.

[29]

Getting Up
to

Speed – A Review of the Basics

5. Drag Measure Values to the Text shelf. Note the list of measures and

associated values:

Figure 1.31: List
of

Measure Values

Perhaps the relationship between Measure Names and Measure Values is best

explained by an analogy. Consider several pairs of socks and a partitioned sock

drawer. Step 2 is the equivalent of throwing the socks into a pile. The results are,

well, disorganized. Step 4 is the equivalent of an empty sock drawer with partitions.

The partitions are all in place but where are the socks? Step 5 is a partitioned drawer

full of nicely organized socks. Measure Names is like the partitioned sock drawer.

Measure Values is like the socks.

Independent of one another, they aren't of much use. Used together, they can be

applied in many different ways.

[30]

Chapter 1

Measure Names and Measure Values

shortcuts

Tableau provides various shortcuts to quickly create the desired visualization. If

you're new to the software, this shortcut behavior may not seem intuitive. But with

a little practice and a few pointers, you'll quickly gain an understanding of it. Let's

use the following exercise to explore how you can use a shortcut
to

rapidly deploy

Measure Names and Measure Values:

1. In the workbook associated with this chapter, navigate to the

MeasureNames/Values ShrtCts worksheet.

2. Drag # Women onto Text in the Marks card.

3. Drag # Men directly on top of # Women in the view (Show Me appears):

Figure 1.32: Show Me and Measures

[31]

Getting Up
to

Speed – A Review of the Basics

4. Observe the results, including the appearance of the Measure Values shelf,

and the deployment of Measure Names on the Rows and Filters shelves and

Measure Values on the Text shelf:

Figure 1.33: Measure Values appearance

Several things happened in Step 2 of this exercise. After placing the # Men number on

top of the # Women number in the view, Tableau did the following:

1. Deployed Measure Names on the Filters shelf:

• Open the Measure Names filter by right-clicking and hit Edit. Observe

that only # Men and # Women are selected. This limits the view to

display only those two measures.

2. Deployed Measure Names on the Rows shelf:

• Measure Names is acting like a partitioned container, that is, like the

sock drawer in the analogy. Because of the filter, the only rows that

display are for # Men and # Women.

[32]

Chapter 1

3. Displayed the Measure Values shelf:

• The Measure Values shelf
is
somewhat redundant. Although it

clearly shows the measures that display in the view, it essentially acts

as an easy way to access the filter. You can simply drag measures

on and off of the Measure Values shelf
to

adjust the filter and thus

display/hide additional Measure Values. You can also change the

order within the Measure Values shelf to change the order of the

measures in the view.

4. Deployed Measure Values on the Text shelf:

• Measure Values
is
simply defining the numbers that will display for

each row—in this case, the numbers associated with # Men and # Women.

If the visualization has an axis, the shortcut
to

deploy Measure Names and Measure

Values requires the placement of a second measure on top of the axis of an initial

measure. In Figure 1.34, Year is located on
the

Columns shelf and Number of

Records on the Rows shelf. Note that the screenshot has been taken while # Women

has been placed on top of the y-axis:

Figure 1.34: Axis shortcut

[33]

Getting Up
to

Speed – A Review of the Basics

The resulting worksheet can be seen in Figure 1.35. Note that Measure Names has

been placed on Color to better see which line has been added:

Figure 1.35: Two-line chart

The preceding section gave
us

a better understanding of Measure Names and

Measure Values. You will come across those concepts more in your Tableau career,

but now that you've successfully mastered the basics, let's move on to three other

concepts that will be beneficial for your learning curve.

Three essential Tableau concepts

An important step on the road to mastering Tableau involves three essential

concepts. In this section, we'll discuss each of them:

• Dimensions and measures

• Row-level, aggregate-level, and table-level calculations

• Continuous and discrete

We'll start
by

defining dimensions and measures.

[34]

Chapter 1

Dimensions and measures

Tableau categorizes every field from an underlying data source as either a

dimension or a measure. A dimension is qualitative or, to use another word,

categorical. A measure is quantitative or aggregable. A measure is usually a number

but may be an aggregated, non-numeric field, such as MAX (Date).A dimension is

usually a text, Boolean, or date field, but may also be a number, such as Number of

Records. Dimensions provide meaning to numbers
by

slicing those numbers into

separate parts/categories. Measures without dimensions are mostly meaningless.

Let's look at an example to understand better:

1. In the workbook associated with this chapter, navigate to the Dimensions

and Measures worksheet.

2. Drag Number of Records to the Rows shelf. The result is mostly

meaningless. The Number of Records measure is 15,316, but without the

context supplied
by

slicing the measure with one or more dimensions, there

is really
no

way to understand what it means:

Figure 1.36: Worksheet without context

[35]

Getting Up
to

Speed – A Review of the Basics

3. Place Country and Year on the Columns shelf:

Figure 1.37: Dimensions and Measures

As shown in Figure 1.37, Step 3 brings meaning. Placing Country and Year on the

Columns shelf provides context, which imparts meaning to the visualization.

Row-level, aggregate-level, and table-level

calculations

There are three levels of calculations in Tableau: row, aggregate, and table. To

understand how these three levels function, it's important to understand the Tableau

processes. We'll do so with an example that considers the Number of Records and

Quantity fields from the Superstore dataset.

Consider the following calculation types, calculated fields, and queries. A

comparison to the commonly used language SQL will give
us

a better understanding

of how to interpret Tableau calculations. Note that the SQL is slightly simplified for

the sake of this example.

[36]

Chapter 1

Let's take a deeper look at the three levels
of

calculations and consider the example

in the following table:

Calculated field in Tableau Query passed to data sourceCalculation

type

Row level Number of Records/Quantity SELECT SUM(Number of Records

/ Quantity)

FROM Orders

Aggregate

level

Sum([Number of Records])/Sum(Quantity) SELECT SUM([Number of

Records]),

Table level WINDOW_AVG(Sum([Number of

Records])/Sum(Quantity))

SUM(Quantity) FROM [Orders]

SELECT SUM([Number of

Records]),

SUM(Quantity) FROM [Orders]

For the row- and aggregate-level calculations, the computation is actually completed

by the data source engine, as Tableau is an in-memory tool. Tableau merely displays

the results. This, however, isn't the case for the table-level calculation. Although the

query passed
to

the data source for the table-level calculation is identical to the query

for the aggregate-level calculation, Tableau performs additional computations on the

returned results. Let's explore this further with an exercise using the same calculated

fields.

Let's look at the following steps and begin our exercise:

1. In the workbook associated with this chapter, navigate to the Row_Agg_Tbl

worksheet.

2. Select Analysis | Create Calculated Field to create the following calculated

fields. Note that each must be created separately; that is, it isn't possible

in this context to create a single calculated field that contains all three

calculations:

• Name the first calculation Lev – Row and enter the following code:

[Number of Records]/[Quantity].

• Next, name the second calculation Lev – Agg and enter the following

code: SUM ([Number of Records])/SUM (Quantity).

• Lastly, name the third calculation Lev – Tab and enter WINDOW_AVG

([Lev - Agg]).

3. In the Data pane, right-click on the three calculated fields you just created

and select Default Properties | Number format.

[37]

Getting Up
to

Speed – A Review of the Basics

4. In the resulting dialog box, select Percentage and click OK.

5. Place Order Date on the Columns shelf.

6. Place Measure Names on the Rows shelf, and Measure Values on Text on

the Marks card.

7. Exclude all values except for Lev - Row, Lev - Agg, and Lev – Tab by

dragging them off the Measure Values shelf or removing them from the

Measure Names filter:

Figure 1.38: Level of calculations

• Lev - Agg is an aggregate-level calculation. The computation is

completed by the data source engine. The sum of [Number of

Records] is divided by the sum of [Quantity]. The results of the

calculation are likely useful for the Tableau author.

[38]

Chapter 1

• Lev - Row is a row-level calculation. The computation is completed

by the data source engine. [Number of Records] is divided by

[Quantity] for each row of the underlying data. The results are

then summed across all rows. Of course, in this case, the row-level

calculation doesn't provide useful results; however, since a new

Tableau author may mistakenly create a row-level calculation when

an aggregate-level calculation is what's really needed, the example is

included here.

• Lev - Tab is a table calculation. Some of the computation is

completed by the data source engine, that is, the aggregation. Tableau

completes additional computation on the results returned from the

data source engine based on the dimensions and level of detail in

the data displayed in the sheet. Specifically, the results of Lev – Agg

are summed and then divided by the number of members in the

dimension. For the preceding example, this is:

26.29%+ 26.34%+ 26.30%+ 26.55%

4

Once again, the results in this case aren't particularly helpful but do demonstrate

knowledge that the budding Tableau author should possess.

Continuous and discrete

Continuous and discrete aren't concepts that are unique to Tableau. Indeed, both can

be observed in many arenas. Consider the following example:

Figure 1.39: Continuous and discrete

[39]

Getting Up
to

Speed – A Review of the Basics

The preceding diagram is of two rivers: River-Left and River-Right. Water is flowing

in River-Left. River-Right is composed of ice cubes. Could you theoretically sort the

ice cubes in River-Right? Yes! Is there any way to sort the water in River-Left? In

other words, could you take buckets of water from the bottom of the river, cart those

buckets upstream and pour the water back into River-Left and thereby say, I have

sorted the water in the river? No. Theis, water. The H

2

O in River-Right is inH

a 2

discreteO in River-Leftform, thatis inis,aice.continuous form, that

Having considered continuous and discrete examples in nature, let's turn our

attention back to Tableau. Continuous and discrete in Tableau can be more clearly

understood with the following seven considerations:

1. Continuous is green. Discrete is blue:

• Select any field in the Data pane or place any field on a shelf and

you'll note that it's either green or blue. Also, the icons associated

with fields are either green or blue.

2. Continuous is always numeric. Discrete may be a string.

3. Continuous and discrete aren't synonymous with dimension and measure:

• It's common for new Tableau authors to conflate continuous with

measure and discrete with dimension. They aren't synonymous. A

measure may be either discrete or continuous. Also, a dimension,

if it's a number, may be discrete or continuous. To prove this point,

right-click on any numeric
or

date field in Tableau and note that you

can convert it:

Figure 1.40: Converting between discrete and continuous

[40]

Chapter 1

4. Discrete values can be sorted. Continuous values can't:

• Sortable/not sortable behavior is most easily observed with dates, as

shown in the following example:

Figure 1.41: Left: continuous (not sortable). Right: discrete (sortable)

5. Continuous colors are gradients. Discrete colors are distinct:

• The following example shows Profit as continuous and then as

discrete. Note the difference in how colors are rendered. The left

portion of the screenshot demonstrates the continuous results in

gradients, and the right portion demonstrates the discrete results in

distinctly colored categories:

Figure 1.42: Profit as continuous (left) and discrete (right)

[41]

Getting Up
to

Speed – A Review of the Basics

6. Continuous pills can be placed to the right of discrete pills, but not to the left

because the discrete pills define the aggregation level:

• The Tableau author is able
to

place Region to the right of Year when

Year is discrete.

• The Tableau author is unable to place Region
to

the right of Year

when Year is continuous.

7. Continuous creates axes. Discrete creates headers:

• Note in the left portion of the following screenshot that Year(Order

Date) is continuous and the Year
of

Order Date axis is selected.

Since Year
of

Order Date is an axis, the entire x-plane is selected. In

the right portion, however, Year(Order Date) is discrete and 2014 is

selected. Since 2014 is a header only, it's selected and not the entire

x-plane:

Figure 1.43: Continuous (left) and discrete (right) dates

Congratulations, you just mastered three important concepts in Tableau: measures

and dimensions, the level of calculations, and discrete and continuous values. With

this knowledge alone, you will be able
to

create your first dashboards. I want
to

highly encourage you to do so; the learning curve when playing around with these

tools will be very steep, and you will gain confidence quickly with practice! It will

also help you to follow along in the upcoming chapters.

To conclude the basics,
we

will cover the export of dashboards to other devices next.

Even if you don't feel ready to do so yet, it will round up the basic Tableau Desktop

tour and will provide the raw diamond as a whole. We can then continue improving

all bits and pieces in future chapters!

[42]

Chapter 1

Exporting data to other devices

Once a dashboard looks as it's expected to, the developer has different choices

for sharing the work. An upload to Tableau Server is the most likely option. The

end user might not look at the results on just a laptop; they could use a tablet or

cellphone, too.

Exporting data to a mobile phone

While developing a dashboard, Tableau Creator has the option to take a look at

Device Designer or Device Preview. You can find it here:

Figure 1.44: Device Preview

[43]

Getting Up
to

Speed – A Review of the Basics

Tableau comes with default phone settings. If needed, those defaults can be adjusted

by clicking on Phone and then on the three dots. Once you're in the Device Designer

mode, select a Device type option and you'll get choices of the most common

models:

Figure 1.45: Device type set to Phone

Please
be

aware that you can only use the sheets that are in the default layout of

your dashboard. If you want to add a default layout for a tablet, for example,
go

into

Device Designer mode, select Tablet, and move the content in a way that means the

sheets you want to see on your tablet are within the device frame. Satisfied? Then

add the new layout (highlighted with a red box in Figure 1.46) to the workbook. It

will appear under the Default one in the top-left area:

Figure 1.46: Add Tablet Layout

The user can now select the design needed whenever opening a workbook from

Tableau Server.

Not only can your projects be viewed conveniently on a mobile device, but you

can also work on them on the go using Tableau Mobile! We'll cover this in the next

section.

[44]

Chapter 1

Tableau Mobile

In order to support flexible working, Tableau has created an app that can
be

downloaded in the App Store or from Google Play, called Tableau Mobile. Once

installed on your phone and/or tablet, you will get an option
to

connect the app to

Tableau Server or Tableau Online.
Go

ahead and publish the dashboard we created

in this chapter, The Olympics, to either of those two instances. If you have questions

regarding the publishing, please see Chapter 14, Interacting with Tableau Server/Online,

for further instructions.

At the bottom of your landing page, click Explore
to

see all the views you just

published. Click on the Building a Dashboard view and see your previously created

dashboard, The Olympics:

Figure 1.47: Mobile dashboard

[45]

Getting Up
to

Speed – A Review of the Basics

And the best part is yet to come. The dashboard is fully interactive, so try the drop

down filter or the medals filter. Also, try to click on a mark and select Keep Only. By

clicking on the workbook icon at the top right, the first icon from the left, all the other

sheets you created will be visible, making
it
possible to switch between sheets:

Figure 1.48: Sheet selection

Now, if you click the three dots at the top right, even more options will appear, such

as Revert, Alert, Subscribe, and so on. To learn more about the different options that

are also available on Tableau Server, see Chapter 14, Interacting with Tableau Server/

Online. For now,
we

can conclude that Tableau Mobile makes it easy
to

check your

favorite dashboards wherever you are.

[46]

Chapter 1

Summary

In this chapter, we covered the basics of Tableau. We began with some basic

terminology, then
we

looked at the basics
of

creating worksheets and dashboards.

We focused on default behavior, how to override that behavior, and we considered

some best practices. Then,
we

reviewed the fundamental principles of Measure

Names and Measure Values. After that,
we

explored three essential Tableau

concepts: dimensions and measures; row-, aggregate-, and table-level calculations;

and the concepts of continuous and discrete.
Of

particular importance is

understanding that row- and aggregate-level calculations are computed by the data

source engine, while table-level calculations are handled
by

Tableau. Finally, we saw

how to adjust your dashboard for other devices, such as a cellphone or tablet and

Tableau Mobile in action.

In the next chapter, we'll continue our Tableau exploration by looking at data. We'll

consider how data is prepared using Tableau's data handling engine, Hyper, and

explore some useful data preparation models and techniques.

[47]

2
All About Data –

Getting Your Data Ready

Ever asked yourself whether your data is clean enough to be analyzed? It's likely that

everyone who works with data has, which is why this chapter is dedicated to getting

your data ready for analysis, otherwise known as data cleaning.

The first part of this chapter is theory-oriented and does not include exercises. A

careful reading of this information is encouraged, since it provides a foundation

for greater insight. The latter portion of the chapter provides various exercises

specifically focused on data preparation.

Now let's dive into this fascinating topic with the goal of enriching our

understanding and becoming ever-better data stewards.

In this chapter, we will discuss the following topics:

• Understanding Hyper

• Data mining and knowledge discovery process models

• CRISP-DM

• Focusing on data preparation

• Surveying data

• Cleaning messy data

[49]

All About Data – Getting Your Data Ready

Since Tableau Desktop 10.5 has been on the market for some time, you may already

have heard of Hyper. Regardless of whether you have or not, continue reading for a

primer on this useful tool!

Understanding Hyper

In this section,
we

will explore Tableau's data-handling engine, and how it enables

structured yet organic data mining processes in enterprises. Since the release of

Tableau 10.5,
we

can now make use of Hyper, a high-performing database, allowing

us to query source data faster than ever before. Hyper is Tableau's data-handling

engine, which is usually not well understood by even advanced developers, because

it's not an overt part of day-to-day activities; however, if you want to truly grasp

how to prepare data for Tableau, this understanding is crucial.

Hyper originally started as a research project at the University of Munich in 2008. In

2016, it was acquired by Tableau and appointed as the dedicated data engine group

of Tableau, maintaining its base and employees in Munich. Initially in 10.5, Hyper

replaced the earlier data-handling engine only for extracts. It is still true that live

connections are not touched by Hyper, but Tableau Prep Builder now runs on the

Hyper engine too, with more use cases to follow.

What makes Hyper so fast? Let's have a look under the hood!

The Tableau data-handling engine

The vision shared by the founders of Hyper was
to

create a high-performing, next

generation database; one system, one state, no trade-offs, and
no

delays. And it

worked—today, Hyper can serve general database purposes, data ingestion, and

analytics at the same time.

Memory prices have decreased exponentially. If
we

go back in time
to

1996, 1 GB

of data could cost $45,000 in production costs. Today, much more than that can be

found on every phone, or even on a smartwatch, costing as little $2 to produce. The

same goes for CPUs; transistor counts increased according to Moore's law, while

other features stagnated. Memory is cheap but processing still needs to be improved.

Moore's Law is the observation made by Intel co-founder Gordon

Moore that the number of transistors on a chip doubles every two

years while the costs are halved. In 1965, Gordon Moore noticed

that the number of transistors per square inch on integrated circuits

had doubled every two years since their invention. Information

on Moore's Law can be found on Investopedia at https://www.

investopedia.com/terms/m/mooreslaw.asp.

[50]

Chapter 2

While experimenting with Hyper, the founders measured that handwritten C code is

faster than any existing database engine, so they came up with the idea to transform

Tableau Queries into LLVM code and optimize it simultaneously, all behind the

scenes, so the Tableau user won't notice it. This translation and optimization comes

at a cost; traditional database engines can start executing code immediately. Tableau

needs to first translate queries into code, optimize that code, then compile it into

machine code, after which it can
be

executed. So the big question is, is it still faster?

As proven by many tests on Tableau Public and other workbooks, the answer is yes!

Furthermore, if there is a query estimated to be faster if executed without the

compilation to machine code, Tableau has its own virtual machine (VM) in which

the query will be executed right away. And next to this, Hyper can utilize 99%

of available CPUs, whereas other paralyzed processes can only utilize 29% of

available CPUs. This is due
to

the unique
and

innovative technique of morsel-driven

parallelization.

For those of you that want to know more about morsel-driven

parallelization, a paper, which later on served as a baseline for the

Hyper engine, can be found at https://15721.courses.cs.cmu.

edu/spring2016/papers/p743-leis.pdf.

If you want to know more about the Hyper engine, I can

highly recommend the following video at https://youtu.be/

h2av4CX0k6s.

Hyper parallelizes three steps of traditional data warehousing operations:

• Transactions and Continuous Data Ingestion (Online Transaction

Processing, or OLTP)

• Analytics (Online Analytical Processing, or OLAP)

• Beyond Relational (Online Beyond Relational Processing, or OBRP)

Executing those steps simultaneously makes it more efficient and more performant,

as opposed to traditional systems where those three steps are separated and executed

one after the other.

To sum up, Hyper is a highly specialized database engine that allows us as users

to get the best out of our queries. If you recall, in Chapter 1, Getting Up to Speed – A

Review of the Basics, we already saw that every change on a sheet or dashboard,

including drag and drop pills, filters, and calculated fields, among others, are

translated into queries. Those queries are pretty much SQL-lookalikes, however, in

Tableau we call the querying engine VizQL.

[51]

All About Data – Getting Your Data Ready

VizQL, another hidden gem in your Tableau Desktop, is responsible for visualizing

data into chart format and is fully executed in memory. The advantage is that no

additional space on the database site is required here. VizQL is generated when a

user places a field on a shelf. VizQL is then translated into SQL, MDX, or Tableau

Query Language (TQL), and passed to the backend data source with a driver. Two

aspects of the VizQL module are of primary importance:

• VizQL allows you to change field attributions on the fly

• VizQL enables table calculations

We'll discuss these two aspects in more detail in the following sections.

Changing field attribution

In this section, we'll demonstrate how changing a worksheet's field attribution will

allow you more flexibility in your dashboard creation.

Let's look at the World Happiness Report. Please navigate to the workbook

associated with this chapter on https://public.tableau.com/profile/marleen.

meier and open the Score per country sheet. We create the following worksheet by

placing AVG(Happiness Score) and Country on the Columns and Rows shelves

respectively. AVG(Happiness Score) is, of course, treated as a measure in this case.

Lastly, sort the countries by their happiness score, highest to lowest.

Let's take a look at this in the following screenshot:

[52]

Chapter 2

Figure 2.1: Happiness score by country

Next, please create a second worksheet called Score/Rank to analyze the scores

relative
to

the ranks by using Happiness Score on Rows and Happiness Rank on

Columns. Both pills should be continuous, hence green-colored.

[53]

All About Data – Getting Your Data Ready

In order to accomplish this, the user defines Happiness Rank as a Dimension, as

shown in the following screenshot:

Figure 2.2: Ranking score per country

Please note that Columns and Rows have been moved to the

left for better readability. This can be achieved by dragging and

dropping the shelves.

In order to add steps to your visualization, click on Path in the

Marks Card and select the second option, Step.

[54]

Chapter 2

You can view the code generated by Tableau that is passed
to

the data source with

the performance recorder, which is accessible through Help, then Settings and

Performance, and then Start Performance Recording. See Chapter 13, Improving

Performance, for additional details.

Studying the SQL generated by VizQL to create the preceding visualization is

particularly insightful:

SELECT ['Happiness Report$'].[Happiness.Rank] AS [Happiness.Rank],

AVG(['Happiness Report$'].[Happiness.Score]) AS [avg:Happiness.

Score:ok] FROM

[dbo].['Happiness Report$'] ['Happiness Report$'] GROUP BY ['Happiness

Report$'].[Happiness.Rank]"

The GROUP BY clause clearly communicates that Happiness Rank is treated as a

dimension because grouping is only possible on dimensions. The takeaway is to note

that VizQL enables the analyst
to

change the SQL code input by changing a field

from measure to dimension rather than the source metadata. This on-the-fly ability

enables creative exploration of the data that's not possible with other tools, and

avoids lengthy exercises attempting to define all possible uses for each field.

The previous section taught us how
we

can manipulate data types in Tableau itself

without touching the data source and its metadata itself. In the next section, we will

take a closer look at table calculations.

Table calculation

In this section,
we

will explore how VizQL's table calculations can
be

used to add

data to a dashboard without adding any data to the data source.

In the following example, which can be viewed by opening Sheet 4 on this chapter's

workbook, note that Freedom on the vertical axis is set to Quick Table Calculation

and Moving Average. Calculating a Moving Average, Running Total, or other such

comparison calculations can be quite challenging to accomplish in a data source.

Not only must a data architect consider what comparison calculations to include

in the data source, but they must also determine the dimensions for which these

calculations are relevant.

[55]

All About Data – Getting Your Data Ready

VizQL greatly simplifies such challenges using table calculations, as seen in the

following screenshot:

Figure 2.3: Moving average

Taking a look at the relevant portion of SQL generated by the preceding worksheet

shows that the table calculation is not performed by the data source. Instead, it is

performed in Tableau by the VizQL module.

The following is the SQL query:

SELECT SUM([Happiness Report$].[Freedom]) AS [sum:Freedom:ok],

[Happiness Report$].[Happiness.Rank] AS [Happiness.Rank]

FROM [dbo].[Happiness Report$] [Happiness Report$] GROUP BY ['Happiness

Report$'].[Happiness.Score]

[56]

Chapter 2

To reiterate, nothing in the preceding call to the data source generates the moving

average. Only an aggregated total is returned, and Tableau calculates the moving

average with VizQL.

Hyper takeaways

This overview of the Tableau data-handling engine demonstrates a flexible approach

to interfacing with data. Knowledge of the data-handling engine is helpful if you

want to understand the parameters for Tableau data readiness. Two major takeaways

from this section are as follows:

• It is not necessary to explicitly define data types and roles for optimal

Tableau usage.

• Comparison calculations such as moving averages and running totals can

be addressed by table calculations in Tableau and thus do not need to be

calculated in advance.

The knowledge of these two takeaways can reduce data preparation and data

modeling efforts, and thus helps us streamline the overall data mining life cycle. Don't

worry too much about data types and data that can be calculated based on the fields

you have in your database. Tableau can do
all

the work for you in this respect. In the

next section, we will discuss what you should consider from a data source perspective.

Data mining and knowledge discovery

process models

Data modeling, data preparation, database design, data architecture—the question

that arises is, how do these and other similar terms fit together? This is
no

easy

question to answer! Terms may
be

used interchangeably in some contexts and be

quite distinct in others. Also, understanding the interconnectivity of any technical

jargon can be challenging.

In the data world, data mining and knowledge discovery process models attempt to

consistently define terms and contextually position and define the various data sub

disciplines. Since the early 1990s, various models have been proposed.

[57]

All About Data – Getting Your Data Ready

Survey of the process models

In the following table,
we

can see a comparison of blueprints for conducting a data

mining project with three data processing models, all of which are used to discover

patterns and relationships in data in order to help make better business decisions.

The following list is adapted from A Survey of Knowledge Discovery

and Data Mining Process Models by Lukasz A. Kurgan and Petr

Musilek, and published in The Knowledge Engineering Review,

Volume 21, Issue 1, March 2006.

Later on,
we

will see how Tableau comes into play and makes this process easier and

faster for us.

KDD CRISP-DM SEMMA

Phase I Selection Business understanding Sample

Phase II Pre-processing Data understanding Explore

Phase III Transformation Data preparation Modify

Phase IV Data mining Modeling Model

Phase V Interpretation/ evaluation Evaluation Assess

Phase VI Consolidate knowledge Deployment -

Since CRISP-DM is used by four to five times the number of people as the closest

competing model (SEMMA), it is the model we will consider in this chapter.

For more information, see http://www.kdnuggets.com/2014/10/crisp-dm-top

methodology-analytics-data-mining-data-science-projects.html.

The important takeaway is that each of these models grapples with the same

problems, particularly concerning the understanding, preparing, modeling, and

interpreting of data.

CRISP-DM

Cross Industry Standard Process for Data Mining (CRISP-DM) was created

between 1996 and 2000 as a result of a consortium including SPSS, Teradata,

Daimler AG, NCR Corporation, and OHRA. It divides the process of data mining

into six major phases, as shown in the CRISP-DM reference model in the preceding

comparison table.

[58]

Chapter 2

This model provides a bird's-eye view of a data-mining project life cycle. The

sequence of the phases are not rigid; jumping back and forth from phase to phase

is allowed and expected. Data mining does not cease upon the completion of a

particular project. Instead, it exists as long as the business exists, and should be

constantly revisited to answer new questions as they arise.

In the next section,
we

will consider each
of

the six phases that comprise CRISP-DM

and explore how Tableau can be used throughout the life cycle. We will particularly

focus on the data preparation phase, as that is the phase encompassing data cleaning,

the focus of this chapter. By considering the following steps, you will be able
to

understand in more detail what a full data mining process circle looks like under

CRISP-DM. This framework can be used to make your workflow in Tableau more

efficient by working according to an established model.

CRISP-DM phases

In the following sections,
we

will briefly define each of the six CRISP-DM phases and

include high-level information on how Tableau might be used.

Phase I – business understanding:

• This phase determines the business objectives and corresponding data

mining goals. It also assesses risks, costs, and contingencies, and culminates

in a project plan.

• Tableau is a natural fit for presenting information to enhance business

understanding.

Phase II – data understanding:

• This phase begins with an initial data collection exercise. The data is then

explored
to

discover early insights and identify data quality issues.

• Once the data is collected into one or more relational data sources, Tableau

can be used
to

effectively explore the data and enhance data understanding.

Phase III – data preparation:

• This phase includes data selection, cleaning, construction, merging, and

formatting.

• Tableau can
be

effectively used
to

identify the preparation tasks that need

to occur; that is, Tableau can be used to quickly identify the data selection,

cleaning, merging, and so on, that should be addressed. Additionally,

Tableau can sometimes be used to
do

actual data preparation. We will walk

through examples in the next section.

[59]

All About Data – Getting Your Data Ready

As Tableau has evolved, functionality has been introduced to do

more and more of the actual data preparation work as well as the

visualization. For example, Tableau Prep Builder is a standalone

product that ships with Tableau Desktop and is dedicated to data

prep tasks. We will cover Tableau Prep Builder in Chapter 3, Tableau

Prep Builder.

Phase IV – modeling:

• In this phase, data modeling methods and techniques are considered and

implemented in one or more data sources. It is important to choose an

approach that works well with Tableau; for example, as discussed in

Chapter 6, All About Data – Data Densification, Cubes, and Big Data, Tableau

works better with relational data sources than with cubes.

• Tableau has some limited data modeling capabilities, such as pivoting

datasets through the data source page.

Phase V – evaluation:

• The evaluation phase considers the results; do they meet the business goals

with which we started the data mining process? Test the model on another

dataset, for example, from another day or on a production dataset, and

determine whether it works as well in the workplace as it did in your tests.

• Tableau is an excellent fit for considering the results during this phase, as it

is easy to change the input dataset as long as the metadata layer remains the

same—for example, the column header stays the same.

Phase VI – deployment:

• This phase should begin with a carefully considered plan to ensure a smooth

rollout. The plan should include ongoing monitoring and maintenance to

ensure continued streamlined access to quality data. Although the phase

officially ends with a final report and accompanying review, the data mining

process, as stated earlier, continues for the life of the business. Therefore, this

phase will always lead to the previous five phases.

• Tableau should certainly
be

considered a part of the deployment phase. Not

only is it an excellent vehicle for delivering end-user reporting; it can also be

used to report on the data mining process itself. For instance, Tableau can
be

used to report on the performance
of

the overall data delivery system and

thus be an asset for ongoing monitoring and maintenance.

[60]

Chapter 2

• Tableau Server is the best fit for Phase VI. We will discuss this separate

Tableau product in Chapter 14, Interacting with Tableau Server/Online.

Now that
we

have learned what a full data mining circle looks like (and looked like

pre-Tableau) and understood that every step can be executed in Tableau,
we

can see

how it makes sense that data people celebrate Tableau Software products.

The phrase "data people" is especially memorable after listening

to the song written for the 2019 Las Vegas Tableau Conference, at

https://youtu.be/UBrH7MXf-Q4.

Tableau makes data mining so much easier and efficient, and the replication of steps

is also easier than it was before, without Tableau. In the next section, we will take

a look at a practical example
to

explore the content we've just learned with some

hands-on examples.

Focusing on data preparation

As discussed earlier, Tableau can be used effectively throughout the CRISP-DM

phases. Unfortunately, a single chapter is not sufficient
to

thoroughly explore how

Tableau can be used in each phase. Indeed, such a thorough exploration may
be

worthy of an entire book! Our focus, therefore, will be directed to data preparation,

since that phase has historically accounted for up
to
60% of the data mining effort.

Our goal will
be to

learn how Tableau can
be

used to streamline that effort.

Surveying data

Tableau can be a very effective tool for simply surveying data. Sometimes in the

survey process, you may discover ways to clean the data or populate incomplete

data based on existing fields. Sometimes, regretfully, there are simply not enough

pieces of the puzzle to put together an entire dataset. In such cases, Tableau can be

useful to communicate exactly what the gaps are, and this, in turn, may incentivize

the organization to more fully populate the underlying data.

In this exercise,
we

will explore how to use Tableau
to

quickly discover the

percentage of null values for each field in a dataset. Next, we'll explore how the data

might
be

extrapolated from existing fields
to

fill in the gaps.

[61]

All About Data – Getting Your Data Ready

Establishing null values

The following are the steps for surveying
the

data:

1. If you haven't done so just yet, navigate to https://public.tableau.com/

profile/marleen.meier to locate and download the workbook associated

with this chapter.

2. Navigate to the worksheet entitled Surveying & Exploring Data.

3. Drag Region and Country to the Rows shelf. Observe that in some cases the

Region field has Null values for some countries:

Figure 2.4: Null regions

4. Right-click and Edit the parameter entitled Select Field. Note that the Data

Type is set to Integer and
we

can observe a list that contains an entry for

each field name in the dataset:

[62]

Chapter 2

Figure 2.5: Editing a parameter

5. In the Data pane, right-click on the parameter
we

just created and select

Show Parameter Control.

6. Create a calculated field entitled % Populated and write the following

calculation:

SUM([Number of Records]) / TOTAL(SUM([Number of Records]))

[63]

All About Data – Getting Your Data Ready

7. In the Data pane, right-click on % Populated and select Default Properties |

Number Format…:

Figure 2.6: Adjusting default properties

8. In the resulting dialog box, choose Percentage.

9. Create a calculated field entitled Null & Populated and add the following

code. Note that the complete case statement is fairly lengthy but is also

repetitive.

In cases requiring a lengthy but repetitive calculation,

consider using Excel to more quickly and accurately write

the code. By using Excel's CONCATENATE function, you may

be able to save time and avoid typos.

In the following code block, the code lines represent only a percentage of the

total but should
be

sufficient
to

enable you to produce the whole:

CASE [Select Field]

WHEN 1 THEN IF ISNULL ([Country]) THEN 'Null Values' ELSE

'Populated Values' END

WHEN 2 THEN IF ISNULL ([Region]) THEN 'Null Values' ELSE

[64]

Chapter 2

'Populated Values' END

WHEN 3 THEN IF ISNULL ([Economy (GDP per Capita)]) THEN 'Null

Values' ELSE

'Populated Values' END

WHEN 4 THEN IF ISNULL ([Family]) THEN 'Null Values' ELSE

'Populated Values' END

WHEN 5 THEN IF ISNULL ([Freedom]) THEN 'Null Values' ELSE

'Populated Values' END

WHEN 6 THEN IF ISNULL ([Happiness Rank]) THEN 'Null Values' ELSE

'Populated Values' END

WHEN 7 THEN IF ISNULL ([Happiness Score]) THEN 'Null Values'

ELSE

'Populated Values' END

WHEN 8 THEN IF ISNULL ([Health (Life Expectancy)]) THEN 'Null

Values' ELSE

'Populated Values' END

WHEN 9 THEN IF ISNULL ([Standard Error]) THEN 'Null Values' ELSE

'Populated Values' END

END

10. Remove Region and Country from the Rows shelf.

11. Place Null & Populated on the Rows and Color shelves and% Populate on

the Columns and Label shelves:

Figure 2.7: Populated values

12. Change the colors
to

red for Null Values and green for Populated Values

if desired. You can do so by clicking on Color in the Marks card and Edit

Colors.

13. Click on the arrow in the upper right corner of the Select Field parameter on

your sheet and select Single Value List.

[65]

All About Data – Getting Your Data Ready

14. Select various choices in the Select Field parameter and note that some fields

have a high percentage of null values. For example, in the following diagram,

32.98% of records do not have a value for Region:

Figure 2.8: Comparing null and populated values

Building on this exercise, let's explore how
we

might clean and extrapolate data from

existing data using the same dataset.

Extrapolating data

This exercise will expand on the previous exercise
by

cleaning existing data and

populating some of the missing data from known information. We will assume that

we know which country belongs to which region. We'll use that knowledge to fix

errors in the Region field and also
to

fill in the gaps using Tableau:

1. Starting from where the previous exercise ended, create a calculated field

entitled Region Extrapolated with the following code block:

CASE [Country]

WHEN 'Afghanistan' THEN 'Southern Asia'

WHEN 'Albania' THEN 'Central and Eastern Europe'

WHEN 'Algeria' THEN 'Middle East and Northern Africa'

WHEN 'Angola' THEN 'Sub-Saharan Africa'

WHEN 'Argentina' THEN 'Latin America and Caribbean'

WHEN 'Armenia' THEN 'Central and Eastern Europe'

WHEN 'Australia' THEN 'Australia and New Zealand'

WHEN 'Austria' THEN 'Western Europe'

[66]

Chapter 2

//complete the case statement with the remaining fields in the

data set

END

To speed up the tedious creation of a long calculated field, you could

download the data to an Excel file and create the calculated field
by

concatenating the separate parts, as shown here:

Figure 2.9: Compiling a calculation in Excel

You can then copy them from Excel into Tableau. However, for this

exercise, I have created a backup field called Backup, which can be found

in the Tableau Workbook associated with this chapter, which contains the

full calculation needed for the Region Extrapolated field. Use this at your

convenience. The Solutions dashboard also contains all of the countries. You

can therefore copy the Region Extrapolated field from that file too.

[67]

All About Data – Getting Your Data Ready

2. Add a Region Extrapolated option to the Select Field parameter:

Figure 2.10: Adding Region Extrapolated to parameter

3. Add the following code to the Null & Populated calculated field:

WHEN 10 THEN IF ISNULL ([Region Extrapolated]) THEN 'Null

Values' ELSE

'Populated Values' END

4. Note that the Region Extrapolated field is now fully populated:

[68]

Chapter 2

Figure 2.11: Fully populated Region Extrapolated field

Now let's consider some of the specifics from the previous exercises:

• Let's look at the following code block:

Note that the complete case statement is several lines long.

The following is a representative portion.

CASE [% Populated]

WHEN 1 THEN IF ISNULL ([Country]) THEN 'Null Values' ELSE

'Populated Values' END

...

This case statement is a row-level calculation that considers each field in the

dataset and determines which rows are populated and which are not. For

example, in the representative line of the preceding code, every row of the

Country field is evaluated for nulls. The reason for this is that a calculated

field will add a new column to the existing data—only in Tableau, not in the

data source itself—and every row will get a value. These values can
be
N/A

or null values.

• The following code is the equivalent of the quick table calculation Percent of

Total:

SUM([Number of Records]) / TOTAL(SUM([Number of Records]))

[69]

All About Data – Getting Your Data Ready

In conjunction with the Null & Populated calculated field, it allows us to see

what percentage of our fields are actually populated with values.

It's a good idea to get into the habit of writing table

calculations from scratch, even if an equivalent quick table

calculation is available. This will help you more clearly

understand the table calculations.

• The following CASE statement is an example of how you might use one or

more fields to extrapolate what another field should be:

CASE [Country]

WHEN 'Afghanistan' THEN 'Southern Asia'

... END

For example, the Region field in the dataset had a large percentage of null

values, and even the existing data had errors. Based on our knowledge of the

business (that is, which country belongs
to

which region)
we

were able to

use the Country field to achieve 100% population of the dataset with accurate

information.

Nulls are a part of almost every extensive real dataset. Understanding how many

nulls are present in each field can be vital to ensuring that you provide accurate

business intelligence. It may be acceptable to tolerate some null values when the final

results will not be substantially impacted, but too many nulls may invalidate results.

However, as demonstrated here, in some cases one or more fields can be used to

extrapolate the values that should be entered into an underpopulated or erroneously

populated field.

As demonstrated in this section, Tableau gives you the ability to effectively

communicate to your data team which values are missing, which are erroneous, and

how possible workarounds can
be

invaluable to the overall data mining effort. Next,

we will look into data that is a bit messier and not in a nice column format. Don't

worry, Tableau has us covered.

[70]

Chapter 2

Cleaning messy data

The United States government provides helpful documentation for various

bureaucratic processes. For example, the Department of Health and Human

Services (HSS) provides lists of ICD-9 codes, otherwise known as International

Statistical Classification of Diseases and Related Health Problems codes.

Unfortunately, these codes are not always
in

easily accessible formats.

As an example, let's consider an actual HHS document known as R756OTN, which

can be found at https://www.cms.gov/Regulations-and-Guidance/Guidance/

Transmittals/downloads/R756OTN.pdf.

Cleaning the data

Navigate to the Cleaning the Data worksheet in this workbook and execute the

following steps:

1. Within the Data pane, select the R756OTN Raw data source:

Figure 2.12: Selecting the raw file

[71]

All About Data – Getting Your Data Ready

2. Drag Diagnosis to the Rows shelf and choose Add all members. Note the

junk data that occurs in some rows:

Figure 2.13: Adding Diagnosis to Rows

3. Create a calculated field named DX with the following code:

SPLIT([Diagnosis], "", 1)

4. Create a calculated field named Null Hunting with the following code:

INT(MID([DX],2,1))

5. In the Data pane, drag Null Hunting from Measures to Dimensions.

[72]

Chapter 2

6. Drag Diagnosis, DX, and Null Hunting to the Rows shelf. Observe that Null

is returned when the second character in the Diagnosis field is not numeric:

Figure 2.14: Ordering fields on Rows

7. Create a calculated field named Exclude from ICD codes containing the

following code:

ISNULL([Null Hunting])

8. Clear the sheet of all fields, as demonstrated in Chapter 1, Getting Up to Speed

– a Review of the Basics, and set the Marks card to Shape.

[73]

All About Data – Getting Your Data Ready

9. Place Exclude from ICD Codes on the Rows, Color, and Shape shelves, and

then place
DX

on the Rows shelf. Observe the rows labeled as True:

Figure 2.15: Excluding junk data

10. In order to exclude the junk data (that is, those rows where Exclude from ICD

Codes equates to TRUE), place Exclude from ICD Codes on the Filter shelf and

deselect True.

11. Create a calculated field named Diagnosis Text containing the following

code:

REPLACE([Diagnosis],[DX] + "","")

12. Place Diagnosis Text on the Rows shelf after DX. Also, remove Exclude

from ICD Codes from the Rows shelf and the Marks Card, and set the mark

type to Automatic:

[74]

Chapter 2

Figure 2.16: Observing the cleaned data

Now that we've completed the exercise, let's take a moment to consider the code
we

have used:

• The SPLIT function was introduced in Tableau 9.0:

SPLIT([Diagnosis], "", 1)

As described in Tableau's help documentation about the function, the

function does the following:

Returns a substring from a string, as determined
by

the delimiter extracting

the characters from the beginning or end
of

the string.

This function can also be called directly in the Data Source tab when clicking

on a column header and selecting Split. To extract characters from the end of

the string, the token number (that is, the number at the end of the function)

must be negative.

[75]

All About Data – Getting Your Data Ready

• Consider the following code, which
we

used
to

create the Null Hunting field:

INT(MID([DX],2,1))

The use of MID is quite straightforward, and is much the same as the

corresponding function in Excel. The use of INT in this case, however, may

be confusing. Casting an alpha character with an INT function will result

in Tableau returning Null. This satisfactorily fulfills our purpose, since we

simply need
to

discover those rows not starting with an integer by locating

the nulls.

• ISNULL is a Boolean function that simply returns TRUE in the case of Null:

ISNULL([Null Hunting])

• The REPLACE function was used while creating the Diagnosis Text field:

REPLACE([Diagnosis],[DX] + "","")

This calculated field uses the ICD-9 codes isolated in DX to remove those same

codes from the Diagnosis field and thus provides a fairly clean description.

Note the phrase fairly clean. The rows that were removed were initially

associated with longer descriptions that thus included a carriage return. The

resulting additional rows are what we removed in this exercise. Therefore,

the longer descriptions are truncated in this solution using the replace

calculation.

The final output for this exercise could be
to

export the data from Tableau as an

additional source of data. This data could then be used
by

Tableau and other tools

for future reporting needs. For example, the DX field could be useful in data blending.

Does Tableau offer a better approach that might solve the issue of truncated data

associated with the preceding solution? Yes! Let's turn our attention to the next

exercise, where
we

will consider regular expression functions.

[76]

Chapter 2

Extracting data

Although, as shown in the previous exercise, Cleaning the data, the SPLIT function can

be useful for cleaning data, regular expression functions are far more powerful and

represent a broadening of the scope from Tableau's traditional focus on visualization

and analytics to also include data cleaning capabilities. Let's look at an example that

requires us
to

deal with some pretty messy data in Tableau. Our objective will
be to

extract phone numbers.

The following are the steps:

1. If you have not already done so, please download the Chapter 2 workbook

from https://public.tableau.com/profile/marleen.meier and open it in

Tableau.

2. Select the Extracting the Data tab.

3. In the Data pane, select the String
of

Data data source and drag the String

of Data field to the Rows shelf. Observe the challenges associated with

extracting the phone numbers:

Figure 2.17: Extracting data from a messy data format

[77]

All About Data – Getting Your Data Ready

4. Access the underlying data
by

clicking the View data button and copy

several rows:

Figure 2.18: Accessing underlying data

5. Navigate to http://regexpal.com/ and paste the data into the pane labeled

Test String; that is, the second pane:

Figure 2.19: Regexpal

6. In the first pane (the one labeled Regular Expression), type the following:

\([0-9]{3}\)-[0-9]{3}-[0-9]{4}

[78]

Chapter 2

7. Return to Tableau and create a calculated field called Phone Number with the

following code block. Note the regular expression nested in the calculated field:

REGEXP_EXTRACT([String of Data (String of Data)],'(\([0-9]{3}\)-

[0-9]{3}-[0-9]{4})')

8. Place Phone Number on the Rows shelf, and observe the result:

Figure 2.20: Extracting data final view

Now let's consider some of the specifics from the preceding exercise in more detail:

• Consider the following code block:

REGEXP_EXTRACT([String of Data],'()')

The expression pattern is purposely excluded here as it will be covered in

detail later. The '()' code acts as a placeholder for the expression pattern. The

REGEXP_EXTRACT function used in this example is described in Tableau's help

documentation as follows:

Returns a substring
of

the given string that matches the capturing group

within the regular expression pattern.

[79]

All About Data – Getting Your Data Ready

Note that as of the time of writing, the Tableau documentation does not

communicate how to ensure that the pattern input section of the function

is properly delimited . For this example, be sure to include ' () 'around the

pattern input section to avoid a null output.

Nesting within a calculated field that is itself nested within a VizQL query

can affect performance (if there are too many levels of nesting /aggregation).

There are numerous regular expression websites that allow you to enter your

own code and help you out, so to speak, by providing immediate feedback

based on sample data that you provide . http://regexpal.com/ is only one of

those sites, so search as desired to find one that meets your needs!

Now, consider the expression:
.

\ ([0-9] { 3 } \) - [0-9] { 3 } - [0-9] { 4 }

In this context, the indicates that the next character should not be treated

as special but as literal . For our example, we are literally looking for an open

parenthesis . [0-9] simply declares that we are looking for one or more digits .

Alternatively, consider \d to achieve the same results . The { 3 } designates that

we are looking for three consecutive digits .

As with the opening parenthesis at the beginning of the pattern, the \

character designates the closing parentheses as a literal . The - is a literal that

specifically looks for a hyphen . The rest of the expression pattern should be

decipherable based on the preceding information.

After reviewing this exercise, you may be curious about how to return just the

email address . According to http://www.regular-expressions.info/email.html,

the regular expression for email addresses adhering to the RFC 5322 standard is as

follows :

(? : [a - z0-9 ! # $ %& ' *+ / = ? ^ _ { l } -] + (? : \. [a - z0-9 ! # $ % & ' *+ / = ? ^ _ {1 }^

] +) * | " (? : [\x01 -6x08 \x0b \xOc \x0e-\x1f \x21\x23- \x5b \x5d

\x7f] l \\ [\x01- 1x09 \xOb \x0c\xDe- \x7f]) * ") @ (? : (? : [a -z0-9] (? : [a -Z0-9

] * [a - z0-9]) ? \ .) + [a - z0-9] (? : [a - z0-9 -] * [a

20-9]) ? | \ [(? :(?: 25 [0-5] | 2 [0-4] [0-9] [01] ? [0-9] [0-9] ?) \.) { 3 } (?:25 [0

5] | 2 [0-4] [0-9] [01] ? [0-9] [0-9] ? | [a -z0-9 -] * [a - 20-9] : (? : [\x01-

\ x68 \ x65 \ x62 \ xoe- \ x2F \ x21- \ x5a \ x53- \x7f3 | \\[\ x61-\ x69 \ x6E\x6C \xoe

\x7f]) +) \]).

Emails do not always adhere to RFC 5322 standards, so additional

work may be required to truly clean email address data .

[80]

Chapter 2

Although I won't attempt a detailed explanation of this code, you can read all about

it at http://www.regular-expressions.info/email.html, which is a great resource

for learning more about regular expressions. Also, YouTube has several helpful

regular expression tutorials.

The final output for this exercise should probably
be

used to enhance existing source

data. Data dumps such as this example do not belong in data warehouses; however,

even important and necessary data can
be

hidden in such dumps, and Tableau can

be effectively used to extract it.

Summary

We began this chapter with a discussion of the Tableau data-handling engine. This

illustrated the flexibility Tableau provides in working with data. The data-handling

engine is important to understand in order to ensure that your data mining efforts

are intelligently focused. Otherwise, your effort may be wasted on activities not

relevant to Tableau.

Next,
we

discussed data mining and knowledge discovery process models, with an

emphasis on CRISP-DM. The purpose of this discussion was to get an appropriate

bird's-eye view of the scope of the entire data mining effort. Tableau authors

(and certainly end users) can become so focused on the reporting produced in the

deployment phase that they end up forgetting or short-changing the other phases,

particularly data preparation.

Our last focus in this chapter was on the phase that can be the most time-consuming

and labor-intensive, namely data preparation. We considered using Tableau for

surveying and also cleaning data. The data cleaning capabilities represented by

the regular expression functions are particularly intriguing, and are worth further

investigation.

Having completed our first data-centric discussion, we'll continue with Chapter 3,

Tableau Prep Builder, looking at one of the newer features Tableau has brought to the

market. Tableau Prep Builder is a dedicated data pre-processing interface that is able

to reduce the amount of time you need for pre-processing even more. We'll take a

look at cleaning, merging, filtering, joins, and the other functionality Tableau Prep

Builder has to offer.

[81]

3
Tableau Prep Builder

Tableau Prep Builder was introduced with version 2018.1 of Tableau Desktop, but

what can we use Tableau Prep Builder (henceforth referred
to

in this chapter as Prep)

for? The core purpose of the tool is data preparation. The good news is, Prep is fully

compatible with Tableau Desktop, and also with Tableau Server. That means you can

execute jobs in Prep
to

clean your data with the click of a button. Additionally, Prep

is as visual as its big brother, Tableau Desktop, meaning that you can see every step

of data preparation in a fully visual format.

Therefore, let's dive into the Graphical User Interface (GUI) and be amazed by

another high-end product, which will allow you to get initial data insights, enabling

you to decide faster if your dataset is worth analysis. Prep will pave the way for an

even smoother Tableau Desktop experience.

In this chapter, the following topics will be discussed:

• Connecting to data

• The Tableau Prep Builder GUI

• Prepping data

• Additional options with Tableau Prep Builder

• Exporting data

[83]

Tableau Prep Builder

In order to get started, we need to load data. How to do so in Prep will be described

in the following section.

Connecting to data

If you are familiar with Tableau Desktop, Tableau Prep Builder will be an easy

game for you. The handling and interfaces are very similar, and connecting to data,

if the connector is available in Prep, works all the same whether it's a text file, a

database, or an extract. At first sight, you might not even notice a difference between

the Tableau Prep Builder the Tableau Desktop GUIs, which provides the handy

advantage that you can start prepping right away.

To get started, begin by opening Tableau Prep Builder:

Figure 3.1: Tableau Prep Builder

[84]

Chapter 3

From here, click on the + in order to open a file. After doing so, the following screen

will appear:

Figure 3.2: Connecting to data

From the preceding screenshot,
we

can see that you can choose the type of data you

want to connect to in the search bar. Just as in Tableau, the repertoire of Tableau Prep

Builder includes multiple databases.

Now let's connect to a dataset with a practical exercise. For this exercise, we need

the following dataset: https://www.kaggle.com/airbnb/boston. Please download

calendar.csv, listings.csv, and reviews.csv. Alternatively, download them from

the workbook associated with this chapter on Tableau Public: https://public.

tableau.com/profile/marleen.meier.

[85]

Tableau Prep Builder

First,
we

are going to start with the calendar.csv file. Add it
to

the empty Prep

canvas by making a connection with a text file, followed by the selection of your .csv

file. You will now see the following screen:

Figure 3.3: Input data

Congratulations—you've just made your first Tableau Prep Builder connection. Here,

you can manipulate and visualize your connected dataset as required!

In the following section, I will describe the GUI in more detail.

The Tableau Prep Builder GUI

User experience is an important topic, not only when you build a dashboard but also

when you use other aspects of Tableau.
One

of the biggest selling points of Tableau

is and has always been the ease of using the GUI, and is only one of the reasons

Tableau is a much-loved tool by its customers.

The Tableau Prep Builder GUI has two important canvases to look at. Right after you

have connected data to Tableau Prep Builder, the workspace will split into several

parts:

[86]

Chapter 3

Figure 3.4: Prep workspace sections

Let's look at what
we

can see from the preceding screenshot:

• A: The connection pane, showing you the input files available at the location

selected.

• B: The flow pane, which shows your current Prep flow. This always starts

with an input step.

• C: The input pane settings, which give you several options to configure your

input.

• D: The input pane samples, showing the fields you moved to the connection

pane, including sample values.

In the input pane (the section marked with C), you can use the

wildcard union (multiple files) function to add multiple files from

the same directory. Also, you can limit the sample set that Tableau

Prep Builder will print in order to increase performance. In the

input pane samples (the section marked with D) you can select and

deselect the fields you want to import and change their data types.

The data type options are, for example, strings, dates, or numbers.

[87]

Tableau Prep Builder

The second GUI is the profile pane. Once you've selected the input data needed,

click on the + in the flow pane and select Add: Clean Step. Now the profile pane will

appear:

Figure 3.5: Cleaning data

[88]

Chapter 3

In the preceding screenshot, the profile pane shows every column from the data

source in two sections. The upper sections show aggregates. For example, column

2, date, shows the number of rows per date in a small histogram. The columns can

all be sorted by clicking on the sort icon (a mini bar-chart that appears when your

mouse is hovering over a column) next to
the

column name and by selecting one

item. Let's take, for example, True, in available (column 3). All related features will

be highlighted:

Figure 3.6: Visual filtering

[89]

Tableau Prep Builder

This gives you the chance
to

get some insights into the data before
we

even start to

clean it up. In the following screenshot, each row is shown as it is in the data source

in the lower part of the profile pane:

Figure 3.7: Data overview

So far
we

have seen that, after loading data in Prep, visual filters can
be

applied by

clicking on a field or bar in one of the columns. The lower pane will always show the

data source of the selection made at the row level. Next,
we

will continue by adding

more data sources.

[90]

Chapter 3

Getting to know Tableau Prep Builder

Let's start with a practical example.

Next to the calendar.csv file, connect to the following files:

• listings.csv

• reviews.csv

Now, drag them onto the flow pane:

Figure 3.8: Multiple tables input

Can you answer the following questions?

• How many listings use the word "beach" in their description?

• What is the percentage of condominiums that are marked with "exact

location"?

• On which day were the most reviews entered?

Without a tool like Tableau Prep Builder, it is much more difficult to find the solution

to these types of questions. Prep makes our data analytics journey much faster and

easier and that is exactly the reason why I encourage you to spend the additional

time and learn Prep as well as Tableau Desktop!

[91]

Tableau Prep Builder

Solutions can be found in the workbook associated with this

chapter at the following link: https://public.tableau.com/

profile/marleen.meier.

Here you see, as an example, I used the sort function on date in order to answer the

third question: On which day were the most reviews entered?

Figure 3.9: Sorting by date

[92]

Chapter 3

As you can see, sorting this field ordered the dates by number of entries, thus

making it very simple
to

answer the question,
on

which day were the most reviews

entered? After the first few clicks, it already starts
to

feel natural, doesn't it?

All the changes you made
to

the dataset can be traced back on the

left side of the profile pane. But don't forget to add a proper name

to each step: this will make it much easier for others, and yourself,

to understand your process.

So, let's continue on to the cleaning features of Tableau Prep Builder.

Prepping data

Tableau Prep Builder comes with lots of different features. Sometimes you might

use many different tools to prepare your dataset in order to get it in a shape you

desire. Other times you might just run an aggregation (one feature) and be done. It

really depends on the dataset itself and the expected output. The fact is, the closer

your Prep output data is to what you need for your Tableau Desktop visualization,

the more efficiently VizQL will run on Tableau Desktop. Fewer queries in Tableau

Desktop means faster generation of dashboards.

To me, the best part about Tableau Prep Builder is that it can handle a huge

amount of data. Sometimes I even use it for datasets I don't want to visualize in

Tableau Desktop, just to get a quick overview of, for example, how many rows

contain a specific word, how many columns are needed, what happens to the date

range if I filter a particular value, and so on! Within a few minutes I have insights

that would have taken me much more time
to

get with database queries or Excel

functions. I hope that by the end of this chapter you will be able to cut your time

spent data prepping in half (at least). We will divide the prepping features into five

subcategories: cleaning, unions and joins, aggregating, pivoting, and scripting. Let's

start with cleaning data!

[93]

Tableau Prep Builder

Cleaning data

We have seen the following canvas before in the The Tableau Prep Builder GUI section.

To create the cleaning step, the user can simply click on + next to the input and select

Add: Clean Step. During the cleaning step, multiple operations can be performed,

such as filtering or creating a calculated field. Also note the recommendations

Tableau Prep Builder gives you:

Figure 3.10: Recommendations

Tableau Prep Builder analyzes the column content and proposes changes that might

fit the data. The column listing_url for example is being recognized as a webpage

and therefore Prep recommends you change it to the data role URL. The second,

third, and several more recommendations after listing_url are to remove certain

columns. This is probably the case because the column does not contain any data or

contains only a small amount of data. The list goes on.

[94]

Chapter 3

This feature can
be

very useful, especially for unfamiliar datasets. My way of

working would be, look at the recommendations, check if they make sense, and

execute the change—or not. Don't blindly trust these recommendations, but they can

point out data flaws you might have missed otherwise.

Data is often messy, involving null values, typos from manual entries, different

formatting, changes in another system, and so on. As a consequence, you will have
to

sort out the mess before you can get reliable results from an analysis or a dashboard.

This section will show you how to clean data on a column level.

Once a value is selected within your clean step, you have the option to Keep Only,

Exclude, Edit Value, or Replace with Null:

Figure 3.11: Quick access

None of these changes will change the data source itself. Prep is like an in-between

step, or a filter between the original data source and your Tableau Desktop.

Excluding a value, as highlighted in Figure 3.11, will only remove it from Tableau

Prep Builder. However, if used later on as input for Tableau Desktop, there won't be

an option to add that specific value back in. This option will remain in Tableau Prep

Builder only.

[95]

Tableau Prep Builder

Another slightly hidden option is to click
on

the ellipses (...) next to the column

headers (as shown in Figure 3.12) and select Clean:

Figure 3.12: More options

This Clean functionality operates based on the data type of the column. In the

preceding screenshot, the data type is a string (indicated by the Abc icon). For other

data types, the option will be grayed out since Clean is only available for strings. The

option allows you to make use of eight more cleaning features:

Figure 3.13: Selecting Clean

[96]

Chapter 3

The data type can
be

changed just above each column header; you will find a symbol

above the column name, which can be changed by clicking on it, just like in Tableau

Desktop:

Figure 3.14: Changing Data Type

This comes in handy in case Prep misinterprets the data type of a column. A wrongly

assigned data type can have effects on the calculation you perform on them and how

Tableau Desktop would visualize the column.

In the upcoming section, we will practice combining multiple datasets. You might

want to combine for example order data with shipment data (using join) or append

2020 sales data to your 2019 sales dataset (using union). To find out how, read on!

Unions and joins

We will now join the three datasets, so that we may analyze and visualize them

together. The nature of the three datasets (listings.csv, reviews.csv, and calendar.

csv) require a join but not a union. However, I will still walk you through the steps

of a union in order for you
to
know when you need it!

[97]

Tableau Prep Builder

Adding unions

A union in Tableau is the appending of data to an existing dataset. Imagine you have

two Excel files. Both have the exact same header, but one contains data from 2019,

the other data from 2020. If you union the 2020 data to the 2019 data, you append the

rows of the 2020 files
to
add them underneath the rows of the 2019 files. To perform a

union, both datasets need to have almost the same layout/header. Why almost? You

will see in the following exercise:

1. To begin this exercise, your Prep flow pane should look like this:

Figure 3.15: Flow pane

2. Add a clean step by clicking the + next
to

the listings dataset.

You can change the color of each step according to your

preferences by right-clicking on a step and selecting Edit

Color.

3. Select the column host_identity_verified and filter on True:

[98]

Chapter 3

Figure 3.16: Filtering on True

4. Now, create a calculated field, called DatasetA_ID, containing just a string,

'A':

Figure 3.17: Creating a calculated field

[99]

Tableau Prep Builder

5. Create a second cleaning step from the same listings data and filter this time

on False in the host_identity_verified column:

Figure 3.18: Filtering on False

6. Create a calculated field DatasetB_ID containing just a string 'B', using the

same process shown in Figure 3.17. Renaming the steps by right-clicking and

hitting Rename helps to keep track of the applied changes. Your flow should

look like the following:

[100]

Chapter 3

Figure 3.19: Visual flow

7. You have now created two datasets that can be combined using a union,

without changing the original data. Union the two
by

either selecting Union

after clicking on the + next to the step DatasetA or by dragging one step over

the other (DatasetB over DatasetA or vice versa):

Figure 3.20: Union

[101]

Tableau Prep Builder

8. Check whether all fields match by clicking on the step Union 1 and looking

at the input details in the bottom left of the screen:

Figure 3.21: Visual check

9. In the preceding screenshot, you can see that on the left, you have

information about the union. From top to bottom: the Inputs and their

respective colors (these are the same as in the flow pane), the Resulting

Fields, showing 2 mismatching fields, and finally, the mismatched fields

themselves: DatasetA_ID and DatasetB_ID. The colors next to each

mismatched field show that our DatasetB_ID field does not exist in

DatasetA, and the DatasetA_ID field does not exist in DatasetB.

10. In this case, we know that those columns can be appended even despite the

different naming conventions. A better name for both fields would have

been Dataset_ID (you can
go

a few steps back and try this out). Prep will not

show any mismatches then. But for us here,
we

can
go

ahead and drag and

drop one field on top of the other to merge them and thereby give Prep the

permission to view them as one column:

[102]

Chapter 3

Figure 3.22: Merge

11. See how the Resulting Fields now show 0 mismatches, and how both dataset

colors are now represented in the bar underneath the column header:

Figure 3.23: Color coding

12. Rename by selecting and right-clicking the union step from Union 1 to

listings2, and add a description by selecting and right-clicking the union step

and hit Add Description if you like—all the extra effort you make now will

help you later with replication, documentation, and explanation.

Congratulations, your first union was a success. We first split the original listings

dataset in two and then combined them again to one. Stacking data with the same

layout on top of each other, as we've done here, is a typical task for unions.

[103]

Tableau Prep Builder

Adding joins

Now, we will continue to work in the same flow pane and focus on a join. As a quick

refresher, a join appends data horizontally. As a rule of thumb, unions increase the

number of rows, joins change the number
of

columns.

1. Drag listings2 onto reviews until the Join option appears.

Figure 3.24: Join

2. Select listing_id from reviews and id from listings2 for your join. Please note

that you can change the join type by clicking on the Venn diagram under

Join Type:

[104]

Chapter 3

Figure 3.25: Visual check join

What the preceding overview tells us is that all 68,275 rows of the reviews

dataset were matched
to

a row in the listing2 dataset. However,
we

do have

756 mismatches from the listing2 dataset. Our total Join Result is therefore

68,275 rows. But it is likely that not all listings have reviews and therefore

we can safely assume that our join worked as expected.

[105]

Tableau Prep Builder

3. Another check could be to change the join
to

a full outer join and dive deeper

into the data later in Tableau Desktop. In order to get
to

a full outer join,

simply click on the outer edge of the two circles:

Figure 3.26: Full join

4. If you want to check immediate results, simply right-click on, for example,

the join symbol (represented
by

the Venn diagram icon, as shown in the

following screenshot), and you'll be able to check the data in Tableau

Desktop by selecting Preview in Tableau Desktop:

Figure 3.27: Preview

5. We can also rename the step; let's change our join's name to lis&rev.

By now, we've seen how to clean data, and how
to

use unions and joins. The union

part taught
us
how to append data vertically or underneath each other. The join part

allowed
us

to combine data horizontally or next to each other. More specifically,
we

were able
to

combine the listings with their respective reviews. Instead of having two

datasets, we have created one that allows
us

to look up a listing review, and in the

same row, view all the data regarding the listing itself, like type of listing, number of

bedrooms, whether it has an ocean view, and so on.

Let's continue next with the aggregation step.

[106]

Chapter 3

Aggregating

An aggregation is used when you want
to

change the granularity of your data. In

our dataset, we have one row per review. However,
we

want
to

see if hosts that have

been in the Airbnb business in Boston longer have more reviews compared to hosts

that started more recently. In order to do so we need
to

get an aggregated number of

reviews per year that the host started offering listings. The field host_since will give

us helpful information as well as the field reviewer_id. For the latter
we

will count

the distinct reviewers that left reviews. Let's do it!

Our current flow pane looks like this:

Figure 3.28: Flow pane

To aggregate the amount of reviews, please take the following steps:

1. First, click on the + sign next to the lis&rev and choose Aggregate:

Figure 3.29: Aggregate

[107]

Tableau Prep Builder

2. This will open a window entitled Aggregate 1. Our goal is to see how many

people reviewed accommodation per year from when the host started

offering listings; therefore, take the following actions.

a. Using the search field in the Additional Fields pane, as indicated

by the arrow on the left in Figure 3.30, add the host_since field to

Grouped Fields by dragging and dropping.

b. Add the reviewer_id to Aggregated Fields, also by dragging and

dropping. Note that the default aggregation is SUM, as indicated by

the arrow on the right:

Figure 3.30: Aggregated fields

3. Change the reviewer_id aggregation by clicking on SUM under Aggregated

Fields, and change it to Count Distinct:

[108]

Chapter 3

Figure 3.31: Count Distinct

4. This will change the default aggregation, Sum (where every review

is counted), to Count Distinct, which counts the distinct reviewer ID

aggregation. This will allow us to focus on how many different reviewers

left reviews. This is just an arbitrary choice; feel free to try out the other

aggregations and see how the data changes.

[109]

Tableau Prep Builder

Let's have a look at the Tableau Desktop preview by right-clicking on the Aggregate

step on our flow pane and selecting Preview in Tableau Desktop:

Figure 3.32: Host chart

[110]

Chapter 3

In the preceding screenshot, we can see the distinct count of reviews per host_since

date. Of course, in this specific example, Tableau Desktop could also count the

reviews per host_since date if those were the only fields dragged onto the view

without the help of Tableau Prep Builder. But a benefit of aggregating prior to

importing the data into Tableau Desktop is that you have less data to import; hence,

it's possible
to

achieve better performance. If you want to continue analyzing the

dataset in either Tableau Prep Builder or Tableau Desktop, you can now ask further

questions, such as the following:

• Which type of accommodation has the highest discount for staying a week

rather than a day?

• Is there a correlation between the size of the accommodation and the

monthly price?

• How many hosts (as a percentage) have more than one listing?

Good luck and happy dashboard building!

We finish this section here and look back at a graph consisting of only 9 datapoints,

which we created
by

aggregating the almost 64,000 rows of review_id data by year

that the host started offering the listing. The graph tells a story; 64,000 individual

rows of data don't. That is why it is so important
to

always reduce your data, and

aggregate it if possible. In the next section
we

will talk about another important

feature: pivoting.

Pivoting

Do you recognize a situation where you drag and drop your fields onto your Tableau

Desktop row and column shelves but somehow the visualization doesn't do what

you want? Chances are that you have to turn your data, or better, pivot it. If data

that you expect to be in one column, spread over multiple rows, appears in multiple

columns instead, it's a case for pivoting. The following example will showcase a need

for pivoting.

[111]

Tableau Prep Builder

For our pivot example, we will make use of another dataset. You can find it at

https://public.tableau.com/profile/marleen.meier. The dataset is very simple

and looks like this:

Figure 3.33: Excel input

It has three different colors that were observed on five different days, x amount of

times. This data is a typical example of when pivoting is helpful to tidy
up

the data

because multiple columns have the same purpose—B, C, andD are all observations.

If you wanted to visualize this table, it could look like the following:

Figure 3.34: Pivot I

[112]

Chapter 3

But you might be wondering, since the color scheme already indicates which color

has been observed, wouldn't it
be

better
to

put all three lines in one graph? Separate

lines per color, within one line-chart? Let's accomplish this!

Begin by connecting the PivotDataSet to Tableau Prep Builder, then follow these

steps to pivot the data:

1. From Prep, connect to the just created Excel file and add the PivotDataSet to

the flow pane, click on the + next to the input data step, and select Pivot. A

new step called Pivot 1 will appear:

Figure 3.35: Adding a Pivot step

2. Click on the Pivot 1 step in the flow pane, and Figure 3.36 will appear at the

bottom of your Prep window. Select all three colors from the Fields pane

shown in Step I, and drag them onto the Pivoted Fields pane, as shown in

Step II:

Figure 3.36: Pivot steps

[113]

Tableau Prep Builder

3. Now, have a look at the Pivot Results pane, as shown in Step III of the

preceding screenshot, and rename Pivot1 Names to Colors and Pivot1

Values
to

Observations by right-clicking and selecting Rename. And voilá,

we now have a clean table, called Clean 1 by default:

Figure 3.37: Pivot results

4. Remember our problem from the beginning? Our line chart can now be

created in a different way, as shown in Figure 3.38. Note that Colors is a

dimension now and the Observations are their own field, compared to

before when they were located under the column header of each color:

Figure 3.38: Pivoted line chart

[114]

Chapter 3

This is a simple use case for pivoting, but the technique here can be transferred to

any other dataset.

As a quick tip: Tableau Prep Builder has a built-in feature recommendation.

Whenever you see a light-bulb at the upper-right corner of a column, check it out

and see if this recommendation applies to your needs:

Figure 3.39: Trim spaces

In this case, Tableau recommends us to remove all leading and trailing spaces, which

is exactly what
we

need! As demonstrated here, it's always worth it to check the

recommendations.

Perfect, you are all set with the main Prep functionality. However, you might be

wondering what you are supposed
to
do if you require any further preparation.

No problem, Prep has you covered. Scripting is the newest addition
to

Prep and

the most powerful of all; it is virtually limitless! Continue reading to explore Prep's

scripting feature.

[115]

Tableau Prep Builder

Scripting

The script functionality that we will discuss next is one of the more recently added

features to Tableau. We will discuss it next because a programming language like

Python or R gives you endless flexibility. If you ever reach the boundaries of Prep's

offerings you can fall back on scripting and write your own code to do exactly what

you want.

In order to make use of it, you have to connect to Python (or R, if using), outside of

Tableau first. The following steps are based on the instructions from https://help.

tableau.com/current/prep/en-us/prep_scripts_TabPy.htm for Python or https://

help.tableau.com/current/prep/en-us/prep_scripts._R.htm for R.

For this exercise we will be using the Boston Airbnb dataset, more specifically the

calendar table. Download this dataset from https://www.kaggle.com/airbnb/boston

and connect to the calendar table in Tableau Prep Builder:

Figure 3.40: Calendar dataset

Now, let's take a step back and connect Python to Tableau Prep Builder:

1. Download and install Python from python.org (or download and install R

from https://www.r-project.org/).

2. Download and install tabpy by executing the following command in your

terminal or on the command line:

pip install tabpy

3. Alternatively, if using R, open R and execute:

install.packages("Rserve", , "http://rforge.net")

[116]

Chapter 3

4. Open tabpy on the command line/terminal by entering the following

command:

tabpy

Or, in the RGUI, type:

library(Rserve)

Rserve()

5. Back in Tableau Prep Builder, click on the + on the right-hand side of the

calendar table and add a Clean Step.

6. Add a calculated field called PythonTest (use RTest instead if you've chosen

to experiment with R) with a string value "Test":

Figure 3.41: Python test

[117]

Tableau Prep Builder

7. Now, click on the + on the right-hand side of the Clean 1 step and add

Script.

By selecting the Script step, the Settings pane at the

bottom (see Figure 3.41) will give you an option to connect

to Rserve or TabPy. Rserve is the Tableau server for R and

TabPy is the Tableau server for Python.

8. Choose your connection type by selecting Rserve or Tableau Python (TabPy)

Server. Connect Tableau Prep Builder
to

tabpy by using localhost and Port

9004 (if using R, connect to Rserve
by

selecting it under Connection type and

using localhost and Port 6311 in
the

same popup):

If using an SSL-encrypted Rserve server, Port 4912 is the

default port.

Figure 3.42: TabPy Server

[118]

Chapter 3

9. Next, if experimenting with Python, create a .py file containing the following

code:

def ChangeString(df):

df['PythonTest'] = 'Python'

return df

Alternatively, create a .R file containing the following code:

Get ChangeString<- add_column(.data,

.before = 'Test'

.after = 'R') {

Return (data.frame ())

}

10. The script we just created is written
to

change an existing column in Prep and

rename every row from Test to Python or R, depending on which language

you've chosen.

11. We'll continue with the Python script. Back in Tableau Prep Builder, browse

for the .py file we just created and add the function name to the Tableau Prep

Builder interface. I called the file PrepTableau.py and the function name is

ChangeString, as defined in the preceding step:

Figure 3.43: Adding a function

[119]

Tableau Prep Builder

12. Run the flow and observe that the PythonTest column has changed from

Test to Python:

Figure 3.44: PythonTest

Our little experiment worked! And even though
we

used a very simplistic example,

it shows that the scripting feature works, and you can just follow your creativity with

what else you might be able to do
by

using scripting. Examples include everything

from calculating an inverse normal distribution
to

machine learning with sentiment

analysis or clustering.

You might have noticed that we did not import pandas in the script itself, but still

used a pandas DataFrame. This is due
to

the fact that the pandas import comes with

tabpy. You can see this in your command line/terminal after opening tabpy:

Figure 3.45: Importing pandas on the command line

If you want to use other libraries in your script, you can install them by using pip

install on your command line/terminal. You only have to restart tabpy afterward

and you will be able to use them too. Remember, always open tabpy on the

terminal/command line first or else Tableau Prep Builder can't execute the script.

[120]

Chapter 3

At the time of writing, Tableau Prep Builder does not support a

script as input yet—you could however use a dummy .csv file as a

workaround and add a script to the flow immediately after it.

Additional options with Tableau Prep

Builder

This section will discuss some smaller stand-alone but very powerful features. Some

of you might have been using Prep already since the very first release. With each

release and each additional user and given feedback, Tableau was able
to

create a

priority list of features that stakeholders—like you and I—really wished to see. The

upcoming topics are some of the best examples. None of these features were present

in the initial release but have made the product so much better, more valuable, and

more complete. You are able now to save part of your flow and reuse it, write back

your data to an external database, refresh parts of your dataset, and schedule flows

with the Tableau Data Management add-on. Let's take a closer look and start with

the 'insert flow' in flow function.

Insert flow

An option in Tableau Prep Builder is
to
add an existing flow

to
your own flow. For

example, say someone already worked on the Boston Airbnb dataset and created a

flow of the highlighted steps only:

Figure 3.46: Save to File

[121]

Tableau Prep Builder

You could save the steps you wish
to

insert into your flow by right-clicking and

selecting Save to File, as shown in Figure 3.46. These steps can
be

inserted back into

your flow by right-clicking on the canvas, selecting Insert Flow, and browsing your

.tfl files for the previously downloaded file:

Figure 3.47: Insert Flow

After inserting the file containing the steps you previously downloaded, the result

will look like this:

Figure 3.48: Prep flow

[122]

Chapter 3

This functionality is very convenient
to

share work and reuse already created steps.

Next
we

will look into another functionality that will allow you to refresh the data

used in your Prep flow: the incremental refresh.

Incremental refresh

Tableau Prep Builder 2020.2 saw the introduction of the incremental refresh feature.

After completing a flow and adding an output you can decide if you want a full or

incremental refresh, and which field you want to use as an indicator. Imagine you

have a dataset of infections per day of a particular disease. By every end of the day,

you want to add the new data, which comes from a health ministry database, to your

dataset. So, what are you going to do?

Typically, you would load the whole dataset, all of it, after the newest datapoints

were added. But nothing changes about the datapoints older than that day; they

will remain the same and you loaded them before already. Therefore, it is a waste

of resources to reload the whole dataset. An incremental refresh will only load new

datapoints and add them to the existing data, which has been built up over many

days. You can imagine how much time and effort this will save. It is a much more

sustainable way
to

keep your data
up

to date than a full refresh.

We are going to look at an example in the following workflow. It is important that

the Output is there:

Figure 3.49: Incremental refresh

[123]

Tableau Prep Builder

To add the incremental refresh, take the following steps:

1. Click on the calendar input table and scroll down the Settings tab until you

see the Set up Incremental Refresh option. Then, click the Enable toggle:

Figure 3.50: Set up Incremental Refresh

[124]

Chapter 3

2. After you click on the Enable box, a dropdown will appear. This dropdown

contains all fields that Tableau Prep Builder finds useful as an indicator for a

data refresh. In our case, date is the perfect field to use since as soon as a new

date is added to the original data source, the refresh will start:

Figure 3.51: Select a refresh field

3. Tableau Prep Builder will also ask you for the output field that will represent

the date column in the output. In our case it is still date:

Figure 3.52: Select an output field

[125]

Tableau Prep Builder

4. After everything is set up, click on the Output step again and note how you

can now select the type of refresh, full or incremental, you prefer for this flow

by clicking on the drop-down menu on the Run Flow option:

Figure 3.53: Refresh options

You just learned how
to

set
up

your data refresh—full as well as incremental.

This will help you with the sustainable usage of compute resources and
to

always

have your data up to date. Next we will introduce another Tableau feature that

unfortunately does not ship with the normal license but is definitely worth

investigating—Tableau Prep Conductor.

[126]

Chapter 3

Tableau Prep Conductor

With Tableau Prep Conductor you can publish your Prep flows
to

Tableau Server,

schedule them to run at a certain time, and always have refreshed data. The

conductor is available in the Tableau Data Management add-on and doesn't ship

with Tableau Desktop nor Tableau Prep Builder.

For more information, please check https://www.tableau.com/

products/add-ons/data-management.

Exporting data

Last, but not least, we may want to export
our

data. We have seen before that a

right-click on a symbol in the flow pane offers the possibility to preview the data in

Tableau Desktop:

1. If you want a flow to run according to a schedule or save it to a location, it's

best to use Add | Output:

Figure 3.54: Output

[127]

Tableau Prep Builder

2. After you do this, the following screen will appear:

Figure 3.55: Save to file

3. The user now has the option to save the data
to

a file, and also
to

save it in

Hyper file format as .hyper, as .xlsx (new in Tableau 2021.1), or as a .csv

file.

4. Another option is to publish the newly generated data source directly to

Tableau Server and make it available for other users. For this option, select

Publish as a data source instead of Save to File from the dropdown.

[128]

Chapter 3

5. A third option to save Prep output was been added in Tableau 2020.3:

writing the resulting data to an external database. If you want to do so, select

the option Database table from the dropdown. At the time of writing, seven

databases are compatible with the write back functionality, but more will

likely be added based on user demand:

Figure 3.56: Save to external database

This section has shown us how to save our work or even more so, the output of

our Prep flows. To me, the ability
to

save output to an external database is the best

new feature, because it is the easiest way
to

share my output in a structured and

organized way with others. So not only I,
but

also other users, can work with the

prepped data, saving additional work. The flow can then be reused not only
by

me,

but by anyone.

[129]

Tableau Prep Builder

Summary

We started this chapter with
an

introduction to Tableau Prep Builder. We looked
at

the

GUI and how we can connect data to it. After that, we did some exercises regarding

data preparation. This can be divided into five parts: data cleaning, unions and joins,

aggregating, pivoting, and scripting. We also considered several additional options to

improve the usefulness of your data, including inserting steps from other flows, and

incremental refreshes. To round out this chapter on Tableau Prep Builder, we looked
at

exporting data. Here, we saw that the new dataset can be saved
as

a file or data extract,

written back to an external database,
or

pushed directly to Tableau Server.

Just like Tableau Desktop, Tableau Prep Builder is very much self-explanatory

and highly visual. Colors, symbols, and highlights make it easy to get used to this

extract, transform, and load tool, which is invaluable for preparing your data before

manipulating it on the main Tableau interface!

In the next chapter, we'll continue our exploration of data in Tableau. We'll explore

how to prepare data for Tableau by looking at joins, blends, and data structures.

[130]

4
All About Data – Joins,

Blends, and Data Structures

Connecting Tableau to data often means more than connecting to a single table in a

single data source. You may need
to

use Tableau to join multiple tables from a single

data source. For this purpose, we can use joins, which combine a dataset row with

another dataset's row if a given key value matches. You can also join tables from

disparate data sources or union data with a similar metadata structure.

Sometimes, you may need to merge data that does not share a common row-level

key, meaning if you were
to

match two datasets on a row level like in a join, you

would duplicate data because the row data in one dataset is of much greater detail

(for example, cities) than the other dataset (which might contain countries). In such

cases, you will need
to

blend the data. This functionality allows you to, for example,

show the count of cities per country without changing the city dataset to a country

level.

Also, you may find instances when it is necessary to create multiple connections

to a single data source in order to pivot the data in different ways. This is possible

by manipulating the data structure, which can help you achieve data analysis from

different angles, using the same dataset. It may be required in order
to

discover

answers to questions that are difficult or simply not possible with a single data

structure.

[131]

All About Data – Joins, Blends, and Data Structures

In this chapter, we will discuss the following topics:

• Relationships

• Joins

• Unions

• Blends

• Understanding data structures

In version 2020.2, Tableau added functionality that will you allow you to join

or blend without specifying one of the two methods in particular. It is called

relationships. We will start this chapter off by explaining this new feature before
we

look into the details of joins, blends, and more.

Relationships

Although this chapter will primarily focus on joins, blends, and manipulation of data

structures, let's begin with an introduction to relationships: a new functionality since

Tableau 2020.2, and one that the Tableau community has been waiting for a long

time. It is the new default option in the data canvas; therefore, we will first look into

relationships, which belong on the logical layer
of

the data model, before diving

deeper into the join and union functionalities that operate on the physical layer.

To read all about the physical and logical layers of Tableau's data

model, visit the Tableau help pages: https://help.tableau.

com/current/online/en-us/datasource_datamodel.htm.

For now, you can think of the logical layer as more generic, where

the specifics are dependent on each view, whereas the physical

layer dives deeper, starting from the data source pane.

In the following screenshot, you can see the data source canvas, with two datasets

combined in a relationship on the left-hand side, and the same datasets combined

using a join on the right-hand side. Please note that relationships only show a line

between the tables (DimProduct and DimProductSubcategory), whereas joins

indicate the type of join by two circles:

[132]

Chapter 4

Figure 4.1: Relationships and joins
on

the data source canvas

A key difference is that the preview of the data, at the bottom, will show only data

from the selected table in relationships, compared to all data when using joins. This

makes sense because the granularity of data can change in relationships, depending

on the fields you are using in your dashboard. Joins however have a fixed level of

granularity, which is defined
by

the type of join and join clauses you choose.

Relationships are the default for Tableau Desktop 2020.2 and

higher. However, if you still want to make use of the join

functionality, you can drag a dataset into the data source canvas,

click on the drop-down arrow, and select Open…:

This will open the dataset
as

you used to see it in the data pane in

Tableau in versions before 2020.2 and you will be able to use joins

the old way, as we will describe in the Joins section.

[133]

All About Data – Joins, Blends, and Data Structures

The line between two datasets in a relationship (based on the logical layer) is called a

noodle. Tableau detects a relationship as soon as you drag in the second data source

to the data source canvas, but you can add more key columns or remove and adjust

them if needed, by clicking on the noodle itself:

Figure 4.2: Relationships

If you open older dashboards in Tableau 2020.2 or later versions, you will see that the

joined data will be shown as Migrated. This is intentional. Just click on the migrated

data source and Tableau will switch from the logical to the physical layer, meaning

you will see the join-based data source canvas instead of the relationship canvas.

Looking at the worksheet, you will notice differences
as

well.
In

Figure 4.3 you will see

that
in

the new relationships layout (left), the columns are divided by table name first

and then split into Dimensions and Measures per data source, while in a join (right),

the columns are divided into dimensions and measures and split by table name:

[134]

Chapter 4

Figure 4.3: New and old Tableau layout

To conclude on relationships, the new data source layout makes it a lot easier

to combine datasets and you don't have to decide upfront if you want to join or

blend. People that are used to the old data source pane might have
to

get used to

the new flexibility a bit, but for new Tableau users, it will
be

much easier to work

with different datasets from the start. Nevertheless, we will still cover joins next,

especially because the functionality is still part of Tableau in the physical layer.

[135]

All About Data – Joins, Blends, and Data Structures

Joins

This book assumes basic knowledge of joins, specifically inner, left-outer, right-outer,

and full-outer joins. If you are not familiar with the basics of joins, consider taking

W3Schools' SQL tutorial at https://www.w3schools.com/sql/default.asp. The basics

are not difficult, so it won't take you long
to

get up to speed.

The terms simple join and complex join mean different things in different contexts.

For our purposes, we will consider a simple join to be a single join between two

tables. Every other instance of joining will
be

considered complex.

The following screenshot shows a star schema, as an example of a complex join:

Figure 4.4: Star schema

A star schema consists of a fact table (represented by FactInternetSales in Figure 4.4)

that references one or more dimension tables (DimCurrency, DimSalesTerritory,DimCustomer, DimProduct, and DimPromotion). The fact table typically contains

measures, whereas the dimension tables, as the name suggests, contain dimensions.

Star schemas are an important part of data warehousing since their structure is

optimal for reporting.

The star schema pictured is based on the AdventureWorks data warehouse for
MS

SQL Server 2014.

Access to the database, at https://github.com/Microsoft/

sql-server-samples/releases/tag/adventureworks, may

prove helpful when working through some of the exercises in this

chapter.

[136]

Chapter 4

The workbook associated with this chapter does not include the whole SQL Server

database but just an extract. Also,
to

keep
the

file size of the workbook small, the

extract has been filtered
to

only include data for the United Kingdom.

One feature Tableau has that is less visible
to

us developers is join culling, which

Tableau makes use
of

every time multiple datasets are joined. To better understand

what Tableau does to your data when joining multiple tables, let's explore join culling.

Join culling

The following screenshot is a representation of the star schema graphic shown in

Figure 4.4 on the Tableau data source page using joins:

Figure 4.5: Join culling

The preceding screenshot communicates an inner join between the fact table,

FactInternetSales, and various dimension tables. FactInternetSales and

DimSalesTerritory are connected through an inner join on the common key,

SalesTerritoryKey.

In order to better understand what just has been described, we will continue with

a join culling exercise. We will look at the SQL queries generated by Tableau when

building a simple view using these two tables, which will show us what Tableau

does under the hood while we simply drag and drop.

Note that Tableau always de-normalizes or flattens extracts; that

is, no joins are included in our AdventureWorks extract that ships

with the Tableau workbook for this chapter. If you still want to

see the SQL join queries and you don't have access to the database

or the data files on GitHub, you can download the data from the

Tableau workbook and put it in separate Excel sheets yourself. You

can then join the tables in the manner shown in Figure 4.4.

[137]

All About Data – Joins, Blends, and Data Structures

As shown in the following screenshot, you can separate the data based on the table

structure in the worksheets:

Figure 4.6: Tables

Open the tables and place the columns into separate files:

Figure 4.7: Separate input data

Once you have done so, please follow these steps:

1. Locate and download the workbook associated with this chapter from

https://public.tableau.com/profile/marleen.meier/.

[138]

Chapter 4

2. Select the Join Culling worksheet and click on the AdventureWorks_Join_

Culling data source.

3. Drag Sales Territory Country to the Rows shelf and place SalesAmount on

the Text shelf:

Figure 4.8: Sales amount

[139]

All About Data – Joins, Blends, and Data Structures

4. From the menu, select Help, then Settings and Performance, and then Start

Performance Recording:

Figure 4.9: Start Performance Recording

5. Press F5 on your keyboard
to

refresh the view.

6. Stop the recording with Help, then Settings and Performance, and finally

Stop Performance Recording.

7. In the resulting Performance Summary dashboard, drag the time slider

to 0.0000 and select Executing Query. Now you see the SQL generated by

Tableau:

[140]

Chapter 4

Figure 4.10: Performance recording

So far,
we

have connected Tableau to our dataset, then
we

created a very simple

worksheet, showing us the number of sales for the United Kingdom. But, in order

for Tableau
to
show the country and the sales amount, it needs to get data from

two different tables: DimSalesTerritory and FactInternetSales. The performance

recording in Figure 4.10 shows how long each step of building the dashboard

took and which query was sent to the database. That query is exactly what
we

are

interested in, to see what is going on behind the scenes. Let's look at it in detail:

SELECT "DimSalesTerritory"."SalesTerritoryCountry" AS

"SalesTerritoryCountry", "FactInternetSales"."SalesAmount" AS

"SalesAmount"

FROM "TableauTemp"."FactInternetSales$" "FactInternetSales"

INNER JOIN "TableauTemp"."DimSalesTerritory$" "DimSalesTerritory" ON

("FactInternetSales"."SalesTerritoryKey" = "DimSalesTerritory"."SalesTe

rritoryKey")

GROUP BY 1, 2

[141]

All About Data – Joins, Blends, and Data Structures

Note that a single inner join was generated, between FactInternetSales and

DimSalesTerritory. Despite the presence
of

a complex join—meaning that multiple

tables are being joined—Tableau only generated the SQL necessary to create the

view. In other words, it only created one out of a number of possible joins. This is

join culling in action.

In Tableau, join culling assumes tables in the database have referential integrity; that

is, a join between the fact table and a dimension table does not require joins
to

other

dimension tables. Join culling ensures that if a query requires only data from one

table, other joined tables will not
be

referenced. The end result is better performance.

Next, we'll consider another concept in Tableau that affects how datasets are joined:

snowflaking.

Snowflaking

Let's make one small change to the star schema and add the

DimProductSubcategory dimension. In the workbook provided with this chapter,

the worksheet is entitled Joins w/ Snowflaking. Viewing the joins presupposes that

you have connected to a database as opposed to using the extracted data sources

provided with the workbook.

Let's look at the changes made in the following screenshot:

Figure 4.11: Snowflaking

Note that there is
no

common key between FactInternetSales and

DimProductSubcategory. The only way to join this additional table is to connect it to

DimProduct, so we want to understand what Tableau is doing in this case and if this

will have any complications for our dashboard building.

[142]

Chapter 4

Let's repeat the steps listed in the Join culling section
to

observe the underlying SQL

and consider the results in the following code block:

1. Select the Join w/ Snowflaking worksheet and click on the

AdventureWorks_w_Snowflaking data source

2. Drag Sales Territory Country to the Rows shelf and place SalesAmount on

the Text shelf

3. From the menu, select Help, then Settings and Performance, and then Start

Performance Recording

4. Press F5 on your keyboard
to

refresh the view

5. Stop the recording with Help, then Settings and Performance, and finally

Stop Performance Recording

6. In the resulting Performance Summary dashboard, drag the time slider to

0.0000 and select Executing Query

Now you should see the SQL generated by Tableau:

SELECT "DimSalesTerritory"."SalesTerritoryCountry" AS

"SalesTerritoryCountry", "FactInternetSales"."SalesAmount" AS

"SalesAmount"

FROM "TableauTemp"."FactInternetSales" "FactInternetSales" INNER JOIN

"TableauTemp"."DimProduct" "DimProduct" ON ("FactInternetSales"."Produc

tKey" = "DimProduct"."ProductKey")

INNER JOIN "TableauTemp"."DimSalesTerritory" "DimSalesTerritory" ON

("FactInternetSales"."SalesTerritoryKey" = "DimSalesTerritory"."SalesTe

rritoryKey")

WHERE (NOT ("DimProduct"."ProductSubcategoryKey" IS NULL)) GROUP BY 1,

2

Although our view does not require the DimProduct table, an additional join was

generated for the DimProduct table. Additionally, a WHERE clause was included.

What's going on?

The additional inner join was created because of snowflaking. Snowflaking

normalizes a dimension table by moving attributes into one or more additional tables

that are joined on a foreign key. As a result of the snowflaking, Tableau is limited in

its ability to exercise join culling, and the resulting query is less efficient. The same is

true for any secondary join.

[143]

All About Data – Joins, Blends, and Data Structures

A materialized view is the result of a query that is physically stored

in a database. It differs from a view in that a view requires the

associated query to be run every time it needs to be accessed.

The important points to remember from this section are as follows:

• Using secondary joins limits Tableau's ability to employ join culling. This

results in less efficient queries to the underlying data source.

• Creating an extract materializes all joins. Thus even if secondary joins are

used when connecting to the data source, any extract from that data source

will be denormalized or flattened. This means that any query
to

an extract

will not include joins and may thus perform better. Therefore, in the case of

complex joins, try to use extracts where possible to improve performance.

Now that the technical details have been discussed, let's take a look at joins in

dashboards themselves.

Join calculations

In Tableau, it is also possible to join two files based on a calculation. You would use

this functionality to resolve mismatches between two data sources. The calculated

join can be accessed in the dropdown of each join.

See the following screenshot:

Figure 4.12: Create Join Calculation...

[144]

Chapter 4

As an example, imagine a dataset that contains one column for First Name, and

another column for Last Name. You want to join it to a second dataset that has one

column called Name, containing the first and last name. One option to join those two

datasets is to create a Join Calculation like the following in the first dataset:

[First Name] + ' ' + [Last Name]

Now, select the Name column in the second dataset and your keys should be

matching!

If you want to know more about calculated joins, please check the Tableau Help

pages: https://help.tableau.com/current/pro/desktop/en-us/joining_tables.htm#use-calculations-to-resolve-mismatches-between-fields-in-a-join.

Spatial joins

In Tableau 2018.2, spatial joins were added. What this means is that you can join

spatial fields from Esri shapefiles, KML, GeoJSON, MapInfo tables, Tableau extracts,

and SQL Server. Imagine two datasets, one about the location of basins, indicated
by

a spatial field, and a second dataset containing the locations of waterfowl sightings,

also in a spatial column. Tableau allows you to join the two, which is very hard to do

otherwise because most programs don't support spatial data.

In order to join on spatial columns, you have to select the Intersects field from the

Join dropdown:

Figure 4.13: Intersects

[145]

All About Data – Joins, Blends, and Data Structures

For more information on joining spatial files in Tableau, read the following resources

from Tableau:

• https://help.tableau.com/current/pro/desktop/en-us/maps_spatial_

join.htm

• https://www.tableau.com/about/blog/2018/8/perform-advanced-spatial

analysis-spatial-join-now-available-tableau-92166

Alternatively
to

a horizontal join, you might need a vertical join, also called a union.

A typical union use case is visualizing data that is stored in multiple files or tables

over time. You might have a daily report, in which the column structure is the same

but collected as a new file every day, stored in a monthly or yearly folder.

Combining those files gives so much more insight than a single one at a time! You

will be able
to

analyze trends and changes from day to day or maybe year
to

day. So,

we will continue with an in-depth explanation of unions in Tableau next.

Unions

Sometimes you might want
to

analyze data with the same metadata structure, which

is stored in different files, for example, sales data from multiple years, or different

months, or countries. Instead of copying and pasting the data, you can union it.

We already touched upon this topic in Chapter 3, Tableau Prep Builder, but a union is

basically where Tableau will append new rows of data
to

existing columns with the

same header. Let's consider how to create a union, by taking the following steps:

1. Create the union by dragging and dropping FactInternetSalesPartII from the

left pane on top of FactInternetSales in the data source pane, until the word

Union appears, a sign that when dropping the data now, the data will be

used for a union:

[146]

Chapter 4

Figure 4.14: Union

2. Alternatively, right-click on the primary dataset and select Convert to

Union…:

Figure 4.15: Convert to Union...

[147]

All About Data – Joins, Blends, and Data Structures

3. In the following popup (Figure 4.16), the user has the option to select all the

data tables that should be part of the union individually by drag and drop, or

use a Wildcard union that includes all tables in a certain directory based on

the naming convention—a * represents any character. FactInternetSales* will

include any file that starts with FactInternetSales:

Figure 4.16: Edit Union...

[148]

Chapter 4

Unions are used to combine data that is very similar and can be appended

underneath each other. They are most often used for multiple data files where each

has a different date stamp, or a different region, or a different manager, and so forth.

By using a union, you want to make the dataset more complete. We saw that Tableau

allows unions by drag and drop, as well as right-clicking on the initial data source.

We also talked about unions that combine one or more other datasets, using drag

and drop or wildcards. Figure 4.17 presents a typical union example:

Figure 4.17: Union

Let's look at the aspects we need to remember:

• Unions append data in creating additional rows.

• A union should contain datasets that have many common columns.

• Unions should only be used for same-structured data stored across multiple

data sources.

• Keep an eye on performance when using unions. With each additional

dataset in the union, you will increase the complexity of Tableau's VizQL.

[149]

All About Data – Joins, Blends, and Data Structures

Since you just became a union expert, it's time to move on to the next feature Tableau

offers: blending! Blending helps you to combine datasets that have a different

level of granularity. Think one-to-many relationships between datasets. One dataset

has a unique key per row, the other has multiple rows per key. In order to avoid

duplicating rows in the first-mentioned dataset, Tableau came up with blending,

long before relationships were part of the software package.

Blends

Relationships make data blending a little less needed and it can be seen as legacy

functionality. But for the sake of completeness and for older Tableau versions (below

2020.2) let's consider a summary of data blending in the following sections. In a

nutshell, data blending allows you
to
merge multiple, disparate data sources into a

single view. Understanding the following four points will give you a grasp on the

main points regarding data blending:

• Data blending is typically used to merge data from multiple data sources.

Although as of Tableau 10, joins are possible between multiple data sources,

there are still cases when data blending is the only possible option to merge

data from two or more sources. In the following sections,
we

will see a

practical example that demonstrates such a case.

• Data blending requires a shared dimension. A date dimension is often a good

candidate for blending multiple data sources.

• Data blending aggregates and then matches.
On

the other hand, joining

matches and then aggregates.

• Data blending does not enable dimensions from a secondary data source.

Attempting to use dimensions from a secondary data source will result in a

* or null in the view. There is an exception to this rule, which we will discuss

later, in the Adding secondary dimensions section.

Now that we've introduced relationships, joins, and unions, I would like to shift

your focus a bit to data structures within your workbook. You might have set up the

perfect join or union, start dragging and dropping fields onto your workbook canvas,

use a filter, use a calculated field, and then receive some unexpected results. Tableau

is behaving just not the way you like it. Why might that be?! The order of operation

here is key. It is essential
to
know when which filter will be applied and how this

affects your data. Therefore, next in line: order of operations.

[150]

Chapter 4

Exploring the order of operations

Isn't a data blend the same thing as a left join? This is a question that new Tableau

authors often ask. The answer, of course, is no, but let's explore the differences.

The following example is simple, even lighthearted, but does demonstrate serious

consequences that can result from incorrect aggregation resulting from an erroneous

join.

In this example, we will explore in which order aggregation happens in Tableau.

This will help you understand how
to
more effectively use blends and joins.

One day, in the near future, you may move to fulfill a lifelong desire to open a brick

and mortar store. Let's assume that you will open a clothing store specializing in

pants and shirts. Because of the fastidious tendencies you developed as a result of

years of working with data, you are planning to keep everything quite separate, that

is, you plan to normalize your business. As evidenced by the following diagram, the

pants and shirts you sell in your store will be quite separated:

Figure 4.18: Pants and shirts store

You also intend to keep your data stored in separate tables, although these tables will

exist in the same data source.

[151]

All About Data – Joins, Blends, and Data Structures

Let's view the segregation of the data in the following screenshot:

Figure 4.19: Pants and shirts tables

In these tables, two people are listed: Tanya and Zhang. In one table, these people

are members of the Salesperson dimension, and in the other, they are members of

the Sales Associate dimension. Furthermore, Tanya and Zhang both sold $200 in

pants and $100 in shirts. Let's explore different ways Tableau could connect to this

data to better understand joining and data blending.

When we look at the spreadsheets associated with this exercise, you will notice

additional columns. These columns will be used in a later exercise.

Please take the following steps:

1. In the workbook associated with this chapter, right-click on the Pants data

source and look at the data by clicking View data. Do the same for the Shirts

data source.

2. Open the Join data source
by

right-clicking on it and selecting Edit Data

Source, and observe the join between the Pants and Shirts tables using

Salesperson/Sales Associate as the common key:

Figure 4.20: Join

[152]

Chapter 4

3. On the Pants worksheet, select the Pants data source and place Salesperson

on the Rows shelf and Pants Amount on the Text shelf:

Figure 4.21: Setting up the worksheet

4. On the Shirts worksheet, select the Shirts data source and place Sales

Associate on the Rows shelf and Shirt Amount on the Text shelf:

Figure 4.22: Shirts

[153]

All About Data – Joins, Blends, and Data Structures

5. On the Join worksheet, select the Join data source and place Salesperson on

the Rows shelf. Next, double-click Pants Amount and Shirt Amount to place

both on the view:

Figure 4.23: Join

[154]

Chapter 4

6. On the Blend – Pants Primary worksheet, select the Pants data source and

place Salesperson on the Rows shelf and Pants Amount on the Text shelf:

Figure 4.24: Blend pants

7. Stay on the same worksheet and select the Shirts data source from the data

source pane on the left and double-click on Shirt Amount. Click OK if an

error message pops up.

8. Select Data then Edit Blend Relationships…:

Figure 4.25: Edit Blend Relationships...

[155]

All About Data – Joins, Blends, and Data Structures

9. In the resulting dialog box, click on the Custom radio button as shown in

Figure 4.26, then click Add….

10. In the left column, select Sales Associate, and in the right column, select

Salesperson. The left column represents data from the Primary data source

and the right column represents all the data available in the Secondary data

source, as shown in Figure 4.26.

11. Remove all other links if any and click OK. The results in the dialog box

should match what is displayed in the following screenshot:

Figure 4.26: Blend Relationships

A little recap on what we have done so far: we are working with three data

sources: Pants, Shirts, and Join, where Join consists of Pants and Shirts. We

have also created a blend with Pants being the primary data source and we

connected them by using Salesperson and Sales Associate as keys.

[156]

Chapter 4

Don't get confused
by

the name Blend Relationships. This

has nothing to do with the logical layer Relationships. It

is just the name of the pop-up window.

Going back
to

the exercise, continue with the following steps.

12. On the Blend – Shirts Primary worksheet, select the Shirts data source and

place Sales Associate on the Rows shelf and Shirt Amount on the Text shelf:

Figure 4.27: Blend Shirts – Primary

[157]

All About Data – Joins, Blends, and Data Structures

13. On the same workbook, select the Pants data source and double-click Pants

Amount in order to add it to the view:

Figure 4.28: Finalizing the worksheet

[158]

Chapter 4

14. Place all five worksheets on a dashboard. Format and arrange as desired.

Now let's compare the results between the five worksheets in the following

screenshot:

Figure 4.29: Comparison

In the preceding screenshot, the Join worksheet has double the expected results.

Why? Because a join first matches on the common key (in this case, Salesperson/

Sales Associate) and then aggregates the results. The more matches found on a

common key, the worse the problem will become. If multiple matches are found on a

common key, the results will grow exponentially. Two matches will result in squared

results, three matches will result in cubed results, and so forth. This exponential

effect is represented graphically in the following screenshot:

Figure 4.30: Join

[159]

All About Data – Joins, Blends, and Data Structures

On the other hand, the blend functioned more efficiently but before the blend could

function properly, we had to edit the data relationship
so

that Tableau could connect

the two data sources using the Salesperson and Sales Associate fields. If the two

fields had been identically named (for example, Salesperson), Tableau would have

automatically provided an option to blend between the data sources using those fields.

The results for the Blend Pants – Primary and Blend Shirts – Primary worksheets

are correct. There is
no

exponential effect. Why? Because data blending first

aggregates the results from both data sources, and then matches the results on a

common dimension.

In this case, it is Salesperson/Sales Associate, as demonstrated in the following

screenshot:

Figure 4.31: Blending results

What
we

saw in this exercise is that joins can change the data structure, so be careful

when using them and be very aware of which columns are a suitable key. Also, do

checks before and after joining your data, which can be as easy as counting rows and

checking if this is the expected result.

Blending has advantages and disadvantages; adding dimensions, for example, is

not that straightforward. But
we

will explore more details regarding secondary

dimensions in the next section.

Adding secondary dimensions

Data blending, although very useful for connecting disparate data sources, has

limitations. The most important limitation to be aware of is that data blending does

not enable dimensions from a secondary data source. There is an exception
to

this

limitation; that is, there is one way you can add a dimension from a secondary data

source. Let's explore further.

[160]

Chapter 4

There are other fields besides Salesperson/Sales Associate and Shirt Amount/

Pants Amount in the data sources. We will reference those fields in this exercise:

1. In the workbook associated with this chapter, select the Adding Secondary

Dimensions worksheet.

2. Select the Shirts data source.

3. Add a relationship between the Shirts and Pants data sources for Material

Type, taking the following steps:

1. Select Data then Edit Relationships.

2. Ensure that Shirts is the primary data source and Pants is the

secondary data source.

3. Select the Custom radio button.

4. Click Add…:

Figure 4.32: Custom blend relationships

[161]

All About Data – Joins, Blends, and Data Structures

4. Select Material Type in both the left and right columns:

Figure 4.33: Custom blend relationships

5. Click OK to return to the view.

6. Place Material Type on the Rows shelf.

7. Select the Pants data source and make sure that the chain-link icon next to

Material Type in the Data pane is activated and that the chain-link icon next

to Salesperson is deactivated. If the icon is a gray, broken chain-link, it is not

activated. If it is an orange, connected chain-link, it is activated:

Figure 4.34: Shirts and pants

[162]

Chapter 4

8. Place Material Cat before Material Type, and Fastener after Material Type on

the Rows shelf as follows:

Figure 4.35: Secondary dimensions

Material Cat is a dimension from a secondary data source. Data blending does not

enable dimensions from a secondary data source. Why does it work in this case?

There are a few reasons:

• There is a one-to-many relationship between Material Cat and Material

Type; that is, each member of the Material Type dimension is matched with

one and only one member of the Material Cat dimension.

• The view is blended on Material Type, not Material Cat. This is important

because Material Type is at a lower level of granularity than Material Cat.

Attempting to blend the view on Material Cat will not enable Material Type

as a secondary dimension.

• Every member of the Material Type dimension within the primary data

source also exists in the secondary data source.

Fastener is also a dimension from the secondary data source. In Figure 4.35, it

displays * in one of the cells, thus demonstrating that Fastener is not working as a

dimension should; that is, it is not slicing
the

data, as discussed in Chapter 1, Getting

Up to Speed – A Review of the Basics. The reason an asterisk displays is that there are

multiple fastener types associated with Wool. Button and Velcro display because

Acrylic and Polyester each have only one fastener type in the underlying data.

If you use blending, make sure that your main reason is
to

combine measures and

that you don't need the dimensions on a detailed level. It is very useful to know this

before you create a dashboard, in order
to

prepare accordingly. Maybe your data

needs extra prepping (check Chapter 3, Tableau Prep Builder) because neither a join

nor a blend can bring you the expected data structure. Or maybe you can make use

of scaffolding, a technique that uses a helper data source—we will discuss this in the

next section.

[163]

All About Data – Joins, Blends, and Data Structures

Introducing scaffolding

Scaffolding is a technique that introduces a second data source through blending

for the purpose of reshaping and/or extending the initial data source. Scaffolding

enables capabilities that extend Tableau
to

meet visualization and analytical needs

that may otherwise be very difficult or altogether impossible. Joe Mako, who

pioneered scaffolding in Tableau, tells a story in which he used the technique
to

recreate a dashboard using four worksheets. The original dashboard, which did not

use scaffolding, required 80 worksheets painstakingly aligned pixel by pixel.

Among the many possibilities that scaffolding enables is extending Tableau's

forecasting functionality. Tableau's native forecasting capabilities are sometimes

criticized for lacking sophistication. Scaffolding can
be

used to meet this criticism.

The following are the steps:

1. In the workbook associated with this chapter, select the Scaffolding

worksheet and connect to the World Indicators data source.

Using Excel or a text editor, create a Records dataset. The following two-row

table represents the Records dataset in its entirety:

2.

Figure 4.36: Excel file

3. Connect Tableau to the dataset.

[164]

Chapter 4

4. To be expedient, consider copying
the

dataset directly from Excel by using

Ctrl + C and pasting it directly into Tableau with Ctrl + V.

5. Create a Start Date parameter in Tableau, with the settings seen in the

following screenshot. In particular, notice the highlighted sections in the

screenshot by which you can set the desired display format:

Figure 4.37: Display format

6. Create another parameter named End Date with identical settings.

[165]

All About Data – Joins, Blends, and Data Structures

7. In the Data pane, right-click on the Start Date and End Date parameters you

just created and select Show Parameter:

Figure 4.38: Show Parameter

8. Set the start and end dates as desired, for example, 2000–2024:

Figure 4.39: Start and end dates

9. Select the Records data source and create a calculated field called Date with

the following code:

IIF([Records]=1,[Start Date],[End Date])

[166]

Chapter 4

10. Place the Date field on the Rows shelf.

11. Right-click on the Date field on the Rows shelf and select Show Missing

Values. Note that all the dates between the start and end date settings now

display:

Figure 4.40: Show Missing Values

12. Create a parameter named Select Country A with the settings shown in the

following screenshot. In particular, note that the list of countries was added

with the Add from Field button:

Figure 4.41: Add from Field

[167]

All About Data – Joins, Blends, and Data Structures

13. Create another parameter named Select Country B with identical settings.

14. Create a parameter named Select Country A Forecast with the settings given

in the following screenshot. In particular, notice the sections
by

which you

can set the desired display format:

Figure 4.42: Edit parameter

[168]

Chapter 4

15. Create another parameter named Select Country B Forecast with identical

settings.

16. In the Data pane, right-click on the four parameters you just created (Select

Country A, Select Country
B,

Select Country A Forecast, and Select

Country B Forecast) and select Show Parameter:

Figure 4.43: Show Parameter

[169]

All About Data – Joins, Blends, and Data Structures

17. Make sure that the Date field in the World Indicators data source has the

orange chain-link icon deployed. This indicates it's used as a linking field:

Figure 4.44: Link

18. Within the World Indicators dataset, create the following calculated fields:

Calculated field name Calculated field code

Country A Population

[Select Country A],[PopulationIIF([Country]Total],NULL)

IIF([Country]Total],NULL) =

=

[Select Country B],[Population
Country B Population

19. Within the Records dataset, create the following calculated fields:

Calculated field name Calculated field code

Actual/Forecast

IIF(ISNULL(AVG([WorldTotal])),"Forecast","Actual")Indicators].[Population

IF [Actual/Forecast] = "Actual" THEN SUM([World

Indicators].[Country A Population]) ELSE

PREVIOUS_VALUE(0)

Country A Population

*[Select Country A Forecast] + PREVIOUS_

VALUE(0)

END

Country A YOY

Change

([Country A Population] - LOOKUP([Country A

Population], -1)) /

ABS(LOOKUP([Country A Population], -1))

[170]

Chapter 4

IF [Actual/Forecast] = "Actual" THEN SUM([World

Indicators].[Country B Population]) ELSE

PREVIOUS_VALUE(0)

Country B Population

*[Select Country B Forecast] + PREVIOUS_

VALUE(0)

END

LOOKUP([Country B

Country B YOY

Change

([Country B Population]Population], -1)) / -

Country A-B Diff

Country A-B % Diff

ABS(LOOKUP([Country B Population], -1))

[Country A Population] - [Country B Population]

[Country A-B Diff]/[Country A Population]

20. Within the Data pane, right-click on Country A YOY Change, Country B

YOY Change, and Country A-B % Diff and select Default Properties |

Number format… to change the default number format to Percentage, as

shown in the following screenshot:

Figure 4.45: Default Properties

[171]

All About Data – Joins, Blends, and Data Structures

21. With the Records data source selected, place the Actual/Forecast, Measure

Values, and Measure Names fields on the Color, Text, and Columns shelves,

respectively:

Figure 4.46: Forecast setup

22. Adjust the Measure Values shelf so that the fields that display are identical

to the following screenshot. Also, ensure that Compute Using for each of

these fields is set to Table (down):

Figure 4.47: Compute Using

[172]

Chapter 4

So, what have we achieved so far? We basically created a duplicated data structure

that allows us to compare two countries in two separate columns, even though

the data is in one column in the original dataset. This setup allows us
to

ask more

advanced questions.

To demonstrate this, let's ask, "When will India's population overtake China's?" You can

set the parameters as desired—I chose 0.45% and 1.20% as the average yearly growth

rates, but feel free
to

choose any parameter you think works best for a country. In

Figure 4.48 you see that with a growth rate of 0.45% and 1.20% for China and India,

respectively, India will have more inhabitants than China by 2024. You can observe

this by looking at the columns Country A Population and Country B Population.

Everything in orange is a forecast, while everything in blue is actual data from our

dataset:

Figure 4.48: Forecast dashboard

In reality,
we

are obviously already many years ahead; can you use this dashboard

to figure out the actual average growth rate for China and India from 2012
to

2020 if

I tell you that the population in 2020 was 1,439,323,776 in China and 1,380,004,385 in

India? Share your results on Tableau Public with the tag #MasteringTableau!

One key
to

this exercise is data scaffolding. Data scaffolding produces data that

doesn't exist in the data source. The World Indicators dataset only includes dates

from 2000 to 2012 and obviously, the Records dataset does not contain any dates.

[173]

All About Data – Joins, Blends, and Data Structures

By using the Start Date and End Date parameters coupled with the calculated Date

field, we were able
to

produce any set of dates desired. We had to blend the data,

rather than join or union, in order
to

keep
the

original data source intact and create

all additional data outside of the world indicators itself.

The actual data scaffolding occurred upon selecting Show Missing Values from the

Date field dropdown after it was placed on the Rows shelf. This allowed every year

between Start Date and End Date
to

display even when there were no matching

years in the underlying data. Chapter 6, All About Data – Data Densification, Cubes, and

Big Data, will explore something very similar to data scaffolding, data densification,

in more detail.

Let's look at a few of the calculated fields in more depth
to

better understand how

the forecasting works in this exercise.

Calculated Field: Actual/Forecast:

IIF(ISNULL(AVG([World Indicators].[Population

Total])),"Forecast","Actual")

The preceding code determines whether data exists in the World Indicators dataset.

If the date is after 2012, no data exists and thus Forecast is returned.

Calculated Field: Country A Population:

IF [Actual/Forecast] = "Actual" THEN SUM([World Indicators].[Country A

Population]) ELSE PREVIOUS_VALUE(0)

*[Select Country A Forecast] + PREVIOUS_VALUE(0) END

If forecasting is necessary to determine the value (that is, if the date is after 2012), the

ELSE portion of this code is exercised. The PREVIOUS_VALUE function returns the value

of the previous row and multiplies the results by the forecast and then adds the

previous row.

Let's look at an example in the following table:

1,000Previous Row Value (PRV)Forecast (F)

0.01

PRV * F 10

Current Row Value 1,010

One important thing to note in the Country A Population calculated field is that the

forecast is quite simple: multiply the previous population by a given forecast number

and tally the results. Without changing the overall structure of the logic, this section

of code could be modified with more sophisticated forecasting.

[174]

Chapter 4

These exercises have shown that with a few other tricks and techniques, blending

can be used
to

great effect in your data projects. Last but not least
we

will talk about

data structures in general such that you will better understand why Tableau is doing

what it is doing and how you can achieve your visualization goals.

Understanding data structures

The right data structure is not easily definable. True, there are ground rules. For

instance, tall data is generally better than wide data. A wide dataset with lots of

columns can be difficult to work with, whereas the same data structured in a tall

format with fewer columns but more rows is usually easier to work with.

But this isn't always the case! Some business questions are more easily answered

with wide data structures. And that's the crux of the matter. Business questions

determine the right data structure. If one structure answers all questions, great!

However, your questions may require multiple data structures. The pivot feature

in Tableau helps you adjust data structures on the fly in order
to

answer different

business questions.

Before beginning this exercise, make sure you understand the following points:

• Pivoting in Tableau is limited
to

Excel, text files, and Google Sheets,

otherwise, you have to use Custom SQL or Tableau Prep

• A pivot in Tableau is referred to as unpivot in database terminology

As a business analyst for a hospital, you are connecting Tableau to a daily snapshot

of patient data. You have two questions:

• How many events occur on any given date? For example, how many patients

check in on a given day?

• How much time expires between events? For example, what is the average

stay for those patients who are in the hospital for multiple days?

To answer these questions, take the following steps:

1. In the starter workbook associated with this chapter, select the Time Frames

worksheet, and within the Data pane, select the Patient_Snapshot data

source.

2. Click on the dropdown in the Marks card and select Bar as the chart type.

[175]

All About Data – Joins, Blends, and Data Structures

3. Right-click in the Data pane to create a parameter named Select Time Frame

with the settings displayed in the following screenshot:

Figure 4.49: Parameter

4. Right-click on the parameter
we

just created and select Show Parameter.

5. Right-click in the Data pane to create a calculated field called Selected Time

Frame with the following code:

CASE [Select Time Frame]

WHEN 1 THEN DATEDIFF('day',[Check-in Date],[Discharge Date])

WHEN 2 THEN DATEDIFF('day',[Surgery Date],[Discharge Date])

WHEN 3 THEN DATEDIFF('day',[Check-in Date],[Surgery Date])

END

[176]

Chapter 4

6. Drag the following fields to the associated shelves and define them as

directed:

Field name Shelf directions

Patient Type

Check-in Date

Drag to the Filter shelf and check Inpatient.

Drag to the Filter shelf and select Range of dates. Also right-click

on the resulting filter and select Show Filter.

Right-click and drag to the Columns shelf and select MDY.Check-in Date

Selected Time

Frame

Right-click and drag to the Rows shelf and select AVG.

Selected Time

Frame

Right-click and drag to the Color shelf and select AVG. Set colors

as desired.

After these actions, your worksheet should look like the following:

Figure 4.50: Initial dashboard

[177]

All About Data – Joins, Blends, and Data Structures

7. Right-click on the Avg Selected Time Frame axis and select Edit Axis…, as

shown in the following figure. Then delete the title:

Figure 4.51: Edit Axis

[178]

Chapter 4

8. Select Worksheet | Show Title. Edit the title by inserting the parameter

Select Time Frame, as shown in the following screenshot:

Figure 4.52: Add parameter

The data structure was ideal for the first part of this exercise. You were probably able

to create the visualization quickly. The only section of moderate interest was setting

up the Selected Time Frame calculated field with the associated parameter.

[179]

All About Data – Joins, Blends, and Data Structures

This allows the end user to choose which time frame they would like to view:

Figure 4.53: Dashboard

But what happens if you need to find out how many people were involved in a type

of event per day?

[180]

Chapter 4

This question is rather difficult to answer using the current data structure because

we have one row per patient with multiple dates in that row. In Figure 4.54 you can

see the difference: the right-hand side is our current data structure and the left-hand

side is the data structure that would make it easier to count events per day:

Figure 4.54: Patient data structure

Therefore, in the second part of this exercise, we'll try a different approach
by

pivoting the data:

1. In the starter workbook associated with this chapter, select the Events Per

Date worksheet.

2. In the Data pane, right-click the Patient_Snapshot data source and choose

Duplicate.

3. Rename the duplicate Events.

4. Right-click on the Events data source and choose Edit Data Source...:

Figure 4.55: Edit Data Source...

5. Review the highlighted areas of the following screenshot and take the

following steps:

Click on the Manage metadata icon

b. Select all five of the date fields with Shift or Ctrl + click

a.

[181]

All About Data – Joins, Blends, and Data Structures

c. Select the drop-down option for any of the selected fields and choose

Pivot:

Figure 4.56: Pivot

6. The pivot will turn rows and columns around and we will get a data

structure just like in Figure 4.54 on the left-hand side. Rename the pivoted

fields
to

Event Type and Event Date.

7. Select the Events Per Date worksheet and place the following fields on the

associated shelves and define as directed:

Field name Shelf directions

Event Date Right-click and drag to the Rows shelf and select MDY

Place after Event Date on the Rows shelfEvent Type

Patient Type Right-click and select Show Filter

Number of Records Drag to Columns shelf

[182]

Chapter 4

From this, your worksheet should look like the following:

Figure 4.57: Events per Date

The original data structure was not well suited for this exercise; however, after

duplicating the data source and pivoting, the task
to

count events per day was quite

simple since we were able to achieve this
by

using only three fields: Event Date,

Number of Records, and Event Type. That's the main takeaway. If you find yourself

struggling
to

create a visualization to answer a seemingly simple business question,

consider pivoting.

Summary

We began this chapter with an introduction
to

relationships, followed by a

discussion on complex joins, and discovered that, when possible, Tableau uses join

culling to generate efficient queries to the data source. A secondary join, however,

limits Tableau's ability to employ join culling. An extract results in a materialized,

flattened view that eliminates the need for joins to be included in any queries.

Unions come in handy if identically formatted data, stored in multiple sheets or data

sources, needs to be appended.

[183]

All About Data – Joins, Blends, and Data Structures

Then, we reviewed data blending to clearly understand how it differs from joining.

We discovered that the primary limitation in data blending is that no dimensions

are allowed from a secondary source; however, we also discovered that there are

exceptions to this rule. We also discussed scaffolding, which can make data blending

surprisingly fruitful.

Finally,
we

discussed data structures and learned how pivoting can make difficult

or impossible visualizations easy. Having completed our second data-centric

discussion, in the next chapter, we will discuss table calculations as well as

partitioning and addressing.

[184]

5
Table Calculations

The topic of table calculations in Tableau is so rich and deep that it alone could

legitimately
be

the subject of an entire book. Exploring the various options that

are available for each table calculation function and the various ways that table

calculations can be applied is an interesting and rewarding endeavor. As you review

the examples in this chapter, you will undoubtedly encounter techniques that you

can apply in your day-to-day work; however, you may struggle to understand why

some of these techniques work. This chapter has been written with the intent of

providing ways of thinking about table calculations that will prove useful in

journey toward mastering this fascinating topic. Along the way, some practical

examples will be considered as well.

your

I would like to draw your attention to the work of three individuals who helped to

make this chapter possible. Joshua Milligan provided the idea of directional and non

directional as a taxonomy for considering how Tableau table calculation functions

are applied. Of the dozens of blogs, forum posts, conference sessions, articles, and

white papers reviewed for this chapter, Jonathan Drummy's blog post (http://

drawingwithnumbers.artisart.org/at-the-level-unlocking-the-mystery-part-1

ordinal-calcs/), At the Level – Unlocking the Mystery Part 1: Ordinal Calcs, was the

clearest and most insightful for understanding the various nuances of partitioning

and addressing. Lastly, Joe Mako's unsurpassed understanding of the inner

workings of Tableau and his willingness to share that insight through the Tableau

forums was very helpful.

[185]

Table Calculations

In this chapter, we will discuss the following topics:

• A definition and two questions

• Introducing functions

• Directional and non-directional table calculations

• Application of functions

Let's go into more detail and start this chapter off with a general definition of table

calculations and two resulting questions, which we will answer by the end of this

chapter.

A definition and two questions

As discussed in Chapter 1, Getting Up to Speed – A Review of the Basics, calculated fields

can be categorized as either row-level, aggregate-level, or table-level. For

row - and aggregate-level calculations, the underlying data source engine does most

(if not all) of the computational work and Tableau merely visualizes the results. For

table calculations, Tableau also relies on the underlying data source engine and the

available RAM on your machine to execute computational tasks; however, after that

work is completed and a dataset is returned, Tableau performs additional processing

before rendering the results.

Let us look at the definition of table calculations, as follows:

A table calculation
is

a function performed
on

a cached dataset that has been

generated
as

a result of a query from Tableau to the data source.

Let's consider a couple of points regarding the dataset in cache mentioned in the

preceding definition:

• This cache is not simply the returned results of a query. Tableau may adjust

the returned results. We will consider this in Chapter 6, All About Data – Data

Densification, Cubes, and Big Data; Tableau may expand the cache through

data densification but usually, it is user-driven.

[186]

Chapter 5

• It's important to consider how the cache is structured. Basically, the dataset

in cache is the table used in your worksheet and, like all tables, is made
up

of

rows and columns. This is particularly important for table calculations since

a table calculation may be computed as it moves along the cache. Such a table

calculation is directional (for an example, see Figure 5.1).

• Alternatively, a table calculation may
be

computed based on the entire cache

with no directional consideration. These table calculations are non-directional.

Directional and non-directional table calculations will
be

explored more fully

in the Directional and non-directional table calculations section.

Note that in the Tableau documentation, the dataset in cache is

typically referred to as a partition. This chapter will often use both

terms side by side for clarity.

The structure of this chapter was created with the intent of providing a simple

schema for understanding table calculations. This is communicated through two

questions:

• What is the function?

• How is the function applied?

These two questions are inexorably connected. You cannot reliably apply something

until you know what it is. And you cannot get useful results from something until

you correctly apply it. The Introducing functions section explores each unique table

calculation function, and how each can be considered directional or non-directional.

The Application
of

functions section explores how table calculations are applied to the

view via partitioning and addressing dimensions.

Introducing functions

As discussed earlier in this chapter, it may be helpful to enhance your understanding

of table calculations with the following two questions: what is the function and how

is the function applied? We will begin by grouping each table calculation function
to

be directional or non-directional.

[187]

Table Calculations

Tableau offers a wide range of table calculations, but if we narrow our consideration to

unique groups
of

table calculation functions, we will discover that there are only 11.

The following table shows those 11 functions organized into two categories:

Directional Functions Non-Directional Functions

LOOKUP SCRIPT_STR

PREVIOUS VALUE SIZE

RUNNING TOTAL

WINDOW

FIRST

INDEX

LAST

RANK

As mentioned in A definition and two questions, non-directional table calculation

functions operate on the entire cache and thus are not computed based on movement

through the cache. For example, the SIZE function doesn't change based on the value

of a previous row in the cache. On the other hand, RUNNING_SUM does change based on

previous rows in the cache and is therefore considered directional. In the following

section, we'll see directional and non-directional table calculation functions in action.

Directional and non-directional table

calculations

Let us have a closer look at directional and non-directional table calculations:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

[188]

Chapter 5

2. Navigate to the Directional/Non-Directional worksheet.

3. Create the calculated fields, as shown in the following table:

Name Calculation Notes

Lookup LOOKUP(SUM([Sales]),-1) Notice the -1 included in this

calculation. This instructs Tableau to

retrieve the value from the previous

row.

Size SIZE() The SIZE function returns the

number of rows in the partition.

Therefore, as can be seen in the

following screenshot, the size equals

the total number of rows.

Window

Sum

WINDOW_

SUM(SUM([Sales]))

The Window sum functions (WINDOW_

SUM(expression, [start, end])

can operate either directionally or

non-directionally. Since this example

does not include the [start, end]

option, it operates non-directionally.

This example of a window function

is operating directionally, as can be

seen by the inclusion of the [start,

end] option.

Window

Sum w/

Start&End

WINDOW_

SUM(SUM([Sales]),0,1)

Running

Sum

RUNNING_

SUM(SUM([Sales]))

By their nature, RUNNING functions

operate directionally since they

consider previous rows in order to

compute.

4. Place Category and Ship Mode on the Rows shelf.

[189]

Table Calculations

5. Double-click on Sales, Lookup, Size, Window Sum, Window Sum w/

Start&End, and Running Sum to populate the view as shown in the

following screenshot:

Figure 5.1: Table calculation

6. The table in Figure 5.1 shows you that the Size function and the Window Sum

function are the only two non-directional functions. All others present a

number depending on the direction. For example, Lookup moves down and

prints the value prior to the actual field. You can change the direction by

clicking on the triangle of any table calculation field and selecting Edit Table

Calculation.

In answer to the question what is the function, we have considered a taxonomy

composed of two categories: directional and non-directional. Now,
we

will move

on to considering the table calculation functions individually. Regretfully, space

does not allow
us

to explore all table calculations; however, to gain a working

understanding, it should suffice to consider all but one of the unique groups of

options. The four table calculations that begin with Script_ will be covered in

Chapter 15, Programming Tool Integration.

Although some effort has been made to make the following exercises useful for real

world scenarios, each is focused on demonstrating table calculation functionality

while considering how each interacts directionally or non-directionally with the

dataset in cache (also known as the partition).

[190]

Chapter 5

Exploring each unique table calculation

function

The following exercises will show us each table calculation individually, based on an

example.

Lookup and Total

The objectives of the following worksheet are to display those customers who made

purchases in the last 2 days of 2013, and the associated absolute as well as relative

sales of the month of December.

In the following table, LOOKUP behaves directionally whereas TOTAL is non-directional.

This behavior is easy
to

notice in the results. Follow these steps in order
to
do so:

1. In the workbook associated with this chapter, navigate to the Lookup/Total

worksheet.

2. Drag Customer Name and Order Date to the Rows shelf. Set Order Date

to Month/Day/Year discrete
by

right-clicking and selecting Day as well as

Discrete.

3. Place Order Date on the Filters shelf, choose to view only December 2013,

and select Month/Year as the date format.

4. Create the following calculated fields:

Name Calculation

Lookup Intervening Time DATEDIFF('day',LOOKUP(Max([Order

Date]),0), MAKEDATE(2013,12,31))

% Total Sales SUM(Sales)/TOTAL(SUM([Sales]))

5. Right-click on % Total Sales and select Default Properties | Number format

to set the number format to percentage with two decimal places.

6. Place Lookup Intervening Time on the Filters shelf and choose a range from

0 to 1.

7. Double-click on Sales and % Total Sales to place both fields on the view.

[191]

Table Calculations

8. Format as desired:

Figure 5.2: Total Sales

Let's consider how the preceding worksheet functions:

• The filter on Order Date ensures that the dataset returned to Tableau only

includes data from the month of December 2013.

• The % Total Sales SUM(Sales)/TOTAL(SUM([Sales])) includes the

TOTAL(SUM([Sales])) calculated field, which returns the total sales for the entire

dataset. Dividing SUM([Sales])
by

this total returns the percentage
of

the total.

• Lookup Intervening Time: DATEDIFF('day',LOOKUP(Max([Order Date]),0),

MAKEDATE(2013,12,31)) will return an integer that reflects the difference

between the date returned by the LOOKUP function and 12/31/2013. Note that

the LOOKUP function has an offset of zero. This results in each row returning

the date associated with that row. This differs from directional and non

directional table calculations, which include a LOOKUP function with an offset

of -1, which caused each row in the view to return data associated with the

previous row.

At first glance, you might think that you could simplify this workbook by removing

Lookup Intervening Time from the Filters shelf and adjusting the filter on [Order

Date] to display only the last two days of December. However, if you do this, %

Total Sales will add up
to
100% across all rows in the view, which would not satisfy

the workbook's objectives. Think of Lookup Intervening Time as not filtering but

hiding all but the last two days in December. This hiding ensures that the data

necessary
to

calculate % Total Sales is in the dataset in cache/partition.

[192]

Chapter 5

Previous Value

The objectives of the following worksheet are to return the aggregate value of sales

for each year and set next year's sales goal. Note that two options have been provided

for determining next year's sales goal in order to demonstrate how PREVIOUS_VALUE

differs from LOOKUP. Also note that PREVIOUS_VALUE behaves directionally.

Let us have a look at the steps:

1. In the workbook associated with this chapter, navigate to the Previous Value

worksheet.

2. Create the following calculated fields:

Name Calculation

Next Year Goal Prv_Val 1.05PREVIOUS_VALUE(SUM([Sales]))LOOKUP(SUM([Sales]),0) * 1.05*

Next Year Goal Lkup

3. Place Order Date on the Rows shelf.

4. Double-click Sales and Next Year Goal Prv_Val to place each on the view.

5. Format as desired, or as seen in the following screenshot (by dragging the

piles in Measure Values, the order will change accordingly in the view as

seen in the following screenshot):

Figure 5.3: Next year

Let's consider how the preceding worksheet functions:

• Next Year Goal Prv_Val: PREVIOUS_VALUE(SUM([Sales])) *1.05 is applied in

this worksheet, which retrieves the results from each previous row and adds

5%. In other words, the goal is a steady-state growth rate of 5% per year over

all years.

[193]

Table Calculations

• Next Year Goal Lkup: LOOKUP(SUM([Sales]),0) * 1.05 is also applied in

this worksheet; this calculation adds 5% to the current year's sales. In other

words, the goal for next year is for sales that are 5% greater than this year.

Previous years are not considered.

To better understand this exercise, consider the values associated with 2014 in the

preceding screenshot. Next Year Goal Prv_Val is calculated via 2013 Next Year

Goal Prv_Val; that is, $560,577 * 1.05. On the other hand, Next Year Goal Lkup is

calculated via the 2014 sales; that is, $733,947 * 1.05.

Running

The objective of the following worksheet is to display the running minimum profit,

running average profit, and running maximum profit compared with SUM(Profit)

for each month in the dataset.

The following example demonstrates how the Running functions behave

directionally:

1. In the workbook associated with this chapter, navigate to the Running

worksheet.

2. Create the following calculated fields:

Name Calculation

Running Min RUNNING_MIN(SUM([Profit]))

Running Max RUNNING_MAX(SUM([Profit]))

Running Avg RUNNING_AVG(SUM([Profit]))

3. Place Order Date on the Columns shelf and set it to Month/Year continuous.

Place Measure Values on the Rows shelf.

4. Remove all instances of measures from the Measure Values shelf except for

Running Min, Running Max, Running Avg, and Profit.

5. Move SUM(Profit) from the Measure Values shelf to the Rows shelf. Right

click on SUM(Profit) and select Dual Axis.

[194]

Chapter 5

6. Format as desired, or as seen in the following screenshot:

Figure 5.4: Running

Let's consider how the preceding worksheet functions:

• Running Min: RUNNING_MIN(SUM([Profit])) is visible in the preceding

screenshot, which compares the current SUM(Profit) with the least

SUM(Profit) recorded to that point in time. If the current SUM(Profit) is less

than the least SUM(Profit) recorded to date, the current SUM(Profit) replaces

the least SUM(Profit).

• Running Max: RUNNING_MAX(SUM([Profit])) operates similarly to Running

Min, except of course it looks for maximum values.

• Running Avg: RUNNING_AVG(SUM([Profit])) calculates the average

SUM(Profit) based on every month to the current month.

[195]

Table Calculations

Window

The objective of the following worksheet is to display a directional instance of a

WINDOW function and a non-directional instance.

Please follow these steps:

1. In the workbook associated with this chapter, navigate to the Window

worksheet.

2. Create the following calculated fields:

Name Calculation

Win Avg Directional WINDOW_AVG(SUM([Profit]),-2,0)

Win Avg Non-Directional WINDOW_AVG(SUM([Profit]))

3. Place Order Date on the Columns shelf and set it to Month/Year continuous.

Place Measure Values on the Rows shelf.

4. Remove all instances of measures from the Measure Values shelf except Win

Avg Directional, Win Avg Non-Directional, and Profit.

5. From the Data pane, drag another instance of Profit to the Rows shelf. Right

click on the instance of Profit on the Rows shelf and select Quick Table

Calculation | Moving Average. Right-click on the instance of Profit on the

Rows shelf and select Dual Axis.

6. Right-click on the axis labeled Moving Average of Profit and select

Synchronize Axis.

7. Format as desired, or as seen in the following screenshot:

[196]

Chapter 5

Figure 5.5: Window

Let's consider how the preceding worksheet functions:

• Win Avg Directional: Window_AVG(SUM([Profit]),-2,0) has a start point

of -2 and an end point of 0, which signifies that Tableau will create a point

based on the average of the SUM([Profit]) calculated on the current month

and the previous two months. Changing the 0 to 2 would cause the average

of each point to be calculated on the previous 2 months, the current month,

and the next 2 months. Double-click on the instance of Profit on the Rows

shelf to view the underlying code. (This is the instance of Profit that was

changed into a table calculation by right-clicking and selecting Quick Table

Calculation | Moving Average.) Note that the calculation is identical to the

code created for Win Avg Directional. However, if you right-click on both

pills and select Edit Table Calculation, you will notice that the resulting

dialog boxes differ. The dialog box associated with Profit has more options,

including the ability
to

change the previous and next values. Changing the

previous and next values for Win Avg Directional requires adjusting the

calculated field.

[197]

Table Calculations

• Win Avg Non-Directional: WINDOW_AVG(SUM([Profit])) is associated with

the horizontal line across the view. Note that it is not dependent on direction.

Instead, it is a single value generated
by

the average of all aggregated Profit

values in the dataset in cache/partition and will therefore be the same no

matter the order of the data points.

First and Last

The objective of the following worksheet is to display the first and last instance of

the best-selling item in the Superstore dataset. Notice how the following example

demonstrates that the FIRST and LAST functions behave directionally.

Take the following steps:

1. In the workbook associated with this chapter, navigate to the First/Last

worksheet

2. Create the following calculated fields:

Name Calculation

First FIRST()

Last LAST()

First or Last FIRST() = 0 OR LAST() = 0

3. Place Product Name on the Filters shelf, select the Top tab, and choose Top 1

by Sum of Sales, as shown in the following screenshot:

Figure 5.6: Top filter

4. Place First or Last on the Filters shelf and select True in the resulting dialog

box

[198]

Chapter 5

5. Drag Product Name, Order Date,
and

Row ID to the Rows shelf

6. Set Order Date to Month/Day/Year discrete

7. Double-click on Sales, First, and Last to place each on the view

8. Right-click on First, Last, and First or Last and select Compute Using |

Table (down)

9. Format as desired:

Figure 5.7: First and Last

Let's consider how the preceding worksheet functions:

• First: FIRST() starts at 0 and counts down to the last row of the dataset in

cache. In the preceding screenshot, note that the first instance of Canon

imageCLASS occurs on 05/24/13. The fact that FIRST() ranges from 0 to -4

communicates that there are five instances of Canon imageCLASS in the

dataset in cache or within the window cache.

• Last: LAST() starts at the last row of the dataset in cache and counts down

to 0. In the preceding screenshot, note that the last instance of Canon

imageCLASS occurs on 11/18/14. The fact that LAST() ranges from 4 to 0

communicates that there are five instances of Canon imageCLASS in the

dataset in cache.

• First or Last: FIRST() = 0 OR LAST() = 0, when placed on the Filters shelf

and set to True, hides all instances of matching rows except the first and last.

• The Row ID field is included in the view to make sure that the very first

and last instances of Canon imageCLASS display. Otherwise, if there are

multiple instances of Canon imageCLASS on the first or last date, sales

numbers will reflect multiple values. It's important
to

set Compute Using to

Table (down) for each table calculation in the view. Compute Using is the

same as Addressing, which will be discussed in detail in the Application
of

functions section.

[199]

Table Calculations

Index

The objective of the following worksheet is to list those states in the USA with over

50 postal codes represented in the underlying dataset.

Notice how the following example demonstrates that the INDEX function behaves

directionally and can be seen as a count of rows:

1. In the workbook associated with this chapter, navigate to the Index

worksheet.

2. Set the Marks card to Circle.

3. Place State on the Rows shelf and Postal Code on the Detail shelf.

4. Create a calculated field named Index with the code: INDEX(). Drag Index

to the Filters shelf and select the Range of values filter. Choose to view only

values that are 50 or greater by moving the slider
to

a minimum value of 50.

5. Right-click on Index and select Edit Table Calculation. Select Specific

Dimensions and check Postal Code:

Figure 5.8: Index

[200]

Chapter 5

6. Select Analysis | Stack Marks | Off, then review:

Figure 5.9: Final index

Let's consider how the preceding worksheet functions:

• Index: INDEX() counts from 1
to n. As

such, it behaves directionally. In this

case, as a result of the partitioning
and

addressing settings, Index is counting

postal codes. (Partitioning and addressing will be discussed in detail in the

Application
of

functions section.) Setting the Index filter to display only values

of 50 or more ensures that only those states with 50 or more postal codes in

the partition/dataset in cache display.

[201]

Table Calculations

Rank

The objective of the following worksheet is to display the top three selling items in

each region. This example will demonstrate how RANK interacts directionally with the

dataset in cache:

1. In the workbook associated with this chapter, navigate to the Rank

worksheet.

2. Place Product Name on the Filters shelf, select the Top tab, and choose Top 3

by Sum of Sales:

Figure 5.10: Filter

3. Place Region and Product Name on the Rows shelf and Sales on the

Columns shelf.

[202]

Chapter 5

4. Note that only two items display for each region:

Figure 5.11: Reviewing the top two items

5. Create a calculated field named Rank with the code Rank(SUM(Sales)). Drag

Rank between Region and Product Name on the Rows shelf.

6. Note that before you can place Rank between the two pills on the Rows

shelf, you have to cast it as discrete. One way to accomplish this is
by

placing

Rank on the Detail shelf, right-clicking on the pill, and selecting Discrete.

7. Right-click on Rank and select Compute Using | Product Name.

8. Remove Product Name from the Filters shelf.

9. Press Ctrl (or press Option on Mac), and right-click and drag Rank from the

Rows shelf to the Filters shelf. Pressing the Ctrl key while dragging a pill

from one shelf to another will create a copy of that pill. Failing to press the

Ctrl key will, of course, simply result in moving the pill. In the resulting

dialog box, select 1, 2, and 3.

[203]

Table Calculations

10. Format as desired:

Figure 5.12: Rank

Let's consider how the preceding worksheet functions:

• If you followed the step-by-step instructions for this exercise, you will have

noticed that after placing Region and Product Name on the Rows shelf and

filtering to show only the top three product names, the resulting visualization

only showed two products in each region. This is because the filter on

Product Name showed the top three products overall, but it so happened

that two out of the three were always present in each region. But
we

actually

wanted to show the top three per region rather than overall. To fix this issue,

we employed the Rank table calculation function.

• Let's understand how this works. Instead of writing the Rank(Sum(Sales))

function, the same code will be automatically generated by right-clicking

on an instance of Sales on any shelf and selecting Quick Table Calculation

| Rank. Note that Rank is counting the product names within each region.

This demonstrates that the Rank table calculation operates directionally on

the dataset in cache/partition.

Size

The objective of the following worksheet is to display all states with five or fewer

cities in the Superstore dataset. This example will demonstrate how SIZE utilizes the

entire partition/dataset in cache and is thus non-directional. We will also use the

FIRST table calculation function, which is directional, in order
to

clean up the view.

[204]

Chapter 5

Please follow along with the steps:

1. In the workbook associated with this chapter, navigate to the Size worksheet.

2. Set Analysis | Stack Marks to Off.

3. Create the following calculated fields:

Name Calculation

Size SIZE()

City Count IF FIRST() = 0THEN [Size] ELSE NULL

END

4. Drag State to the Rows shelf, City
to

the Detail shelf, City Count to the

Text/Label shelf, and Size to the Detail shelf.

5. Right-click on the Size filter and select Compute Using | City. Move Size

from the Marks card to the Filters shelf.

6. In the resulting dialog box, select an At most value of 5:

Figure 5.13: At most

7. On the Marks card, right-click on City Count and select Edit Table

Calculation. Under Nested Calculations, select City Count.

[205]

Table Calculations

8. Select Compute Using | Specific Dimensions and check City:

Figure 5.14: Specific Dimensions

9. Now use the dropdown under Nested Calculations again and select Size.

Then, select Compute Using | Specific Dimensions and check City.

[206]

Chapter 5

10. Observe the final view:

Figure 5.15: Final worksheet

[207]

Table Calculations

Let's consider how the preceding worksheet functions:

• Size: Size() generates a single number, for example, 3 for Delaware, based

on the partition/dataset in cache. That number can change depending on

the partitioning and addressing settings, but does not change based on

movement across the partition. As such, it behaves non-directionally.

• City Count: The IF FIRST() = 0 THEN LOOKUP([Size],0) ELSE NULLEND field

is not strictly necessary. You could, instead, simply place Size on the Text/

Label shelf. However, if you do so, you will note that the numbers in the

view will look bold. This occurs because the numbers are actually repeated

and then layered on top of each other. Utilizing FIRST() = 0 causes only one

set of numbers to display.

Perhaps the most difficult thing to grasp about this exercise is the use of partitioning

and addressing. We will discuss partitioning and addressing in the Application

of functions section. Note that the preceding exercise had an option for Nested

Calculations, which is because the Size calculated field was referenced within the

City Count calculated field.

Now that
we

have presented the different table calculations,
we

will see how they

can be manipulated in the scope and direction of calculation.

Application of functions

So far, we have covered the first of our two major questions: What is the function?

Now we will proceed to the next question: How is the function applied?

Let's try
to

understand that question via the following three options, which are all

applications of the INDEX function:

Another Application… ...and AnotherOne Application of

INDEX()

The INDEX function is used in each of these three screenshots; however, it is applied

differently in each. The first and second screenshots both display 1, 2, and 3, but

differ directionally. The third screenshot ranges from 1 to 9. So, how is INDEX being

applied in each case?

[208]

Chapter 5

Answering this question can be confusing because Tableau uses different

terminology. Within Tableau itself, the way a table calculation is applied may
be

referred to as running along, moving along, compute using, or partitioning and

addressing. For our purposes, we will utilize the terms partitioning and addressing,

which we will define here according to the Tableau documentation (https://help.

tableau.com/current/pro/desktop/en-us/calculations_tablecalculations.htm):

The dimensions that define how to group the calculation, that is, define the scope

of data it
is

performed on, are called partitioning fields. The table calculation is

performed separately within each partition. The remaining dimensions, upon which

the table calculation is performed, are called addressing fields, and determine the

direction
of

the calculation.

This basically means that the partition defines which fields are being used, for

example, Segment. If you have three segments divided over three categories, you

could look at each combination separately, or at all categories within one segment,

or at all segments within one category. The way you look at it is what Tableau calls

addressing.

If a table calculation is utilized in the view, you can right-click on it and select Edit

Table Calculation. Upon doing so, you will see a dialog box that will allow

to choose specific dimensions. If a dimension is checked, it is addressed. If it is

unchecked, it is partitioned.

you

See an example in the following figure:

Figure 5.16: Addressing and partitioning

[209]

Table Calculations

Tableau provides many out-of-the-box partitioning and addressing settings,

including Table (down), Table (across), Pane (down), and Cell. We will reference

these options occasionally but will not give a detailed review. This leads us
to

our

first partitioning and addressing guideline:

Don't use the out-of-the-box partitioning and addressing settings provided by Tableau,

including Table (across) and Pane (down). Force yourself to click Specific Dimensions and

manually define the partitioning and addressing so that you clearly understand how every

table calculation is applied.

There are a couple of caveats to the preceding guideline:

• There's an exception, which is Cell. It is not possible to address individual

cells in a view using partitioning and addressing. Instead, it is necessary to

use Compute Using as Cell or, within the Table Calculation dialog box, to

select Cell. Surprisingly, addressing a table calculation along each cell can be

useful. An example is provided in the workbook associated with this chapter,

on the worksheet Percent of Total. There it is used to show 100% for each cell

divided into two categories.

• If you set partitioning and addressing for a given table calculation and then

add dimensions to the view, usually Tableau will not automatically adjust

the partitioning and addressing settings; they are locked down. However,

when using Table (down), Pane (across), and the like, Tableau will make

automatic adjustments as dimensions are added to the view.

This leads us to our next guideline:

Place all needed dimensions on the desired shelves before setting partitioning and addressing

for table calculations.

Following these guidelines will help ensure that you are always clear about how

your table calculations are being applied.

Building a playground

Let's set
up

a simple playground environment
to

quickly and efficiently explore

partitioning and addressing:

1. In the workbook associated with this chapter, navigate to the Playground

worksheet.

2. Place Category on the Rows shelf and the Index calculation on the Label

shelf.

[210]

Chapter 5

3. The Index calculation is simply Index(). Click on the drop-down menu

associated with Index and select Edit Table Calculation. In the resulting

dialog box, click Specific Dimensions.

4. Position the screen components optimally. See the following screenshot for

one possible setup:

Figure 5.17: Building a playground

You can see in Figure 5.17 that we created a worksheet displaying the three categories

Furniture, Office Supplies, and Technology. By adding the Index field to the Text

shelf
we

have the minimum requirement to use a table calculation, which is one

dimension, one table calculation. Now we can change the compute used in the

table calculation and can spot what changes in the visualization. Later on,
we

will

explore more complex examples; however, always start easy and increase the level of

complexity slowly
to

fully understand what is happening.

In the following pages,
we

will utilize our playground extensively and modify it

as necessary. However, for the sake of efficiency, we will need to keep the focus of

the playground and the accompanying discussion narrow. The discussion will be

confined to dimensions on the Rows and Columns shelves and the INDEX function on

the Text shelf.

[211]

Table Calculations

We could explore different functions on various shelves and the different options

that that affords. For instance, placing a date field on the Pages shelf will cause a

table calculation that uses the TOTAL function
to

display an option
to

compute the

total across all pages. Regretfully, exploring every possible nuance is simply not

possible in one chapter but if you are interested in this topic, feel free to check out

the Tableau help page for more content and examples: https://help.tableau.com/

current/pro/desktop/en-us/functions_functions_tablecalculation.htm.

Partitioning and addressing with one

dimension

Let's use our playground to start exploring partitioning and addressing with the

simplest possible example:

Figure 5.18: Compute Using | Category

[212]

Chapter 5

In this simple example, addressing Category causes each member of the Category

dimension to be counted. This demonstrates that addressing a dimension determines

the direction of the calculation. In our example,
we

have the Table Calculation

Index, but Index depends on partitioning
and

addressing as we learned before.

Category serves as a partition in the Rows shelf. We split the data into three:

Furniture, Office Supplies, Technology. Now
we

also say address Category for the

Table Calculation. We did that
by

selecting Category from Compute Using (Figure

5.18). Now the Table Calculation will be applied
to

the categories and hence counts

1, 2, 3 categories.

If you were
to

select Compute Using | Cell, the partition into three categories

would still remain in the view—you would still see Furniture, Office Supplies,

Technology—but the counting would happen per cell and not for the whole

Category dimension. Hence the Index will count 1, then move to the next cell and

count 1, then the next cell and again count 1:

Figure 5.19: Compute Using | Cell

Now, let's consider partitioning and addressing with not one, but two dimensions.

[213]

Table Calculations

Partitioning and addressing with two

dimensions

Two additional options are made available when partitioning and addressing two or

more dimensions: At the level and Restarting every. You can compare this scenario

to the task of counting all countries per continent. In this scenario,
At

the level will

be countries, since you are not counting streets or trees but countries. Restarting will

be continents. After you are done counting countries for one continent, you start at 1

again for the next continent:

Figure 5.20: Two dimensions

Both At the level and Restarting every allow the author to choose dimensions

from a drop-down menu. At the level allows the author
to

choose what level to

increment at, and as the name suggests, Restarting every allows the author to choose

which dimensions to restart on. The examples here will provide context for your

understanding.

Note that At the level has one additional choice: Deepest. In this case, setting At

the level
to

Deepest is the same as selecting Ship Mode. This leads us to our next

guideline:

It is not necessary to choose the bottom dimension in the At the level drop-down menu. It is

always identical to Deepest.

To recreate the iterations listed here, you will need to make some changes to the

playground environment. In addition
to

Category on the Rows shelf and Index on

the Label shelf, also place Ship Mode on
the

Rows shelf. We will not cover iterations

that include one or more dimensions on the Columns shelf since the behavior of

these possibilities is much the same.

As you consider and/or reproduce the following options, note that the Addressing

order is important. For examples 3–5, Category is first on the addressing list. For

options 6–8, Ship Mode is first on the list.

[214]

Chapter 5

In the first example, configure the partitioning and addressing settings thus:

• Partitioning: Category

• Addressing: Ship Mode

• At the level: -

• Restarting every: -

This will produce the following visualization:

Figure 5.21: Example 1

Here, we count the Ship Mode per Category.

In the second example, configure the partitioning and addressing settings thus:

• Partitioning: Ship Mode

• Addressing: Category

• At the level: -

• Restarting every: -

[215]

Table Calculations

This will produce the following visualization:

Figure 5.22: Example 2

In this example, we count the Category per Ship Mode.

In the third example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Category, Ship Mode

• At the level: Deepest

• Restarting every: None

[216]

Chapter 5

This will produce the following visualization:

Figure 5.23: Example 3

This time, we count the Category and Ship Mode combination.

In the fourth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Category, Ship Mode

• At the level: Deepest

• Restarting every: Category

[217]

Table Calculations

This will produce the following visualization:

Figure 5.24: Example 4

Here,
we

count the combination Category
and

Ship Mode and restart counting at

every new Category.

In the fifth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Category, Ship Mode

• At the level: Category

• Restarting every: None

[218]

Chapter 5

This will produce the following visualization:

Figure 5.25: Example 5

We count the combination Category and Ship Mode that appears at the Category

level. Since the Category level is higher in the hierarchy than Ship Mode,
we

end up

counting only one value per Category.

In the sixth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Category

• At the level: Deepest

• Restarting every: None

[219]

Table Calculations

This will produce the following visualization:

Figure 5.26: Example 6

We count the combination Ship Mode and Category at the Ship Mode level; hence

we count First Class and all the Category combinations with it before Same Day and

its combinations with Category.

In the seventh example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Category

• At the level: Deepest

• Restarting every: Ship Mode

[220]

Chapter 5

This will produce the following visualization:

Figure 5.27: Example 7

We count the Ship Mode and Category combinations at the deepest level but we

restart at every Ship Mode, therefore
we

count First Class and Furniture, First Class

and Office Supplies, then First Class and Technology. Then we move on to Same

Day and its combinations, restarting at 1 again.

In the eighth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Category

• At the level: Ship Mode

• Restarting every: None

[221]

Table Calculations

This will produce the following visualization:

Figure 5.28: Example 8

We count the Ship Mode and Category combinations at the Ship Mode level.

Now, let's consider some of the possibilities presented here in more detail. Some of

the options are identical. In fact, out of the nine options, only four are unique. Let's

consider examples 1, 4, and 8, each of which have identical end results. Does this

mean that each is truly identical? Options 1 and 4 are identical. Option 8, however,

is slightly different. To understand this, note the description within the table

calculation dialog box for option 8:

[222]

Chapter 5

Figure 5.29: Index

The description in example 8 reads Results are computed along Ship Mode,

Category (Figure 5.29). The text in the description box for example 1 is identical
to

that for example 4: Results are computed along Ship Mode for Category, which can

be translated as partitioning Category and addressing Ship Mode. This translation

is identical to the actual partitioning/addressing setup accomplished in example 1.

Therefore, examples 1 and 4 are identical. But does the slight difference to example 8

mean there are practical differences? No!

[223]

Table Calculations

Example 6 may seem confusing at first. Why has the odd numbering sequence

occurred? Because the order in which the dimensions are addressed differs from

the order of dimensions on the Rows shelf. The addressing order is Ship Mode,

Category. The order on the Rows shelf is Category, Ship Mode. Simply reversing

the position of Category and Ship Mode on the Rows shelf and noting the change in

the number sequence should help dispel any confusion:

Figure 5.30: Switch dimensions

Is there any practical use for example 6? Yes. From time
to

time, it may be necessary

to address dimensions in a different order than they are listed on a shelf. But this is

not usually the case. This leads us to our next guideline:

When addressing multiple dimensions for a table calculation, the order of addressing will

usually reflect the order
of

dimensions on the Rows and/or Columns shelves.

Partitioning and addressing with three

dimensions

Let's add another dimension to our playground and reorder things slightly. Place

Category and Region on the Rows shelf and Ship Mode on the Columns shelf. Index

should remain on the Label shelf. Also add two filters. Filter Region to East, South,

and West. Filter Ship Mode to First Class, Second Class, and Standard Class.

[224]

Chapter 5

When partitioning and addressing three dimensions, the number of possible

iterations jumps to 57; however, only 14 of these are unique. Here is a listing of those

unique possibilities.

In the first example, configure the partitioning and addressing settings thus:

• Partitioning: Category, Region

• Addressing: Ship Mode

• At the level: -

• Restarting every: -

This will produce the following visualization:

Figure 5.31: Example 1

Here we count the different Ship Modes
per

Category and Region combinations.

In the second example, configure the partitioning and addressing settings thus:

• Partitioning: Category, Ship Mode

• Addressing: Region

• At the level: -

• Restarting every: -

[225]

Table Calculations

This will produce the following visualization:

Figure 5.32: Example 2

Here we count the different Regions per Category and Ship Mode combinations.

In the third example, configure the partitioning and addressing settings thus:

• Partitioning: Category

• Addressing: Region, Ship Mode

• At the level: -

• Restarting every: -

[226]

Chapter 5

This will produce the following visualization:

Figure 5.33: Example 3

Here we count the different Categories per Region and Ship Mode combinations.

In the fourth example, configure the partitioning and addressing settings thus:

• Partitioning: Category

• Addressing: Region, Ship Mode

• At the level: Deepest

• Restarting every: None

[227]

Table Calculations

This will produce the following visualization:

Figure 5.34: Example 4

Here we count the different Categories per Region and Ship Mode combinations at

the deepest level.

In the fifth example, configure the partitioning and addressing settings thus:

• Partitioning: Category

• Addressing: Ship Mode, Region

• At the level: Deepest

• Restarting every: None

[228]

Chapter 5

This will produce the following visualization:

Figure 5.35: Example 5

Here we count the different Categories per Ship Mode and Region combinations at

the deepest level.

In the sixth example, configure the partitioning and addressing settings thus:

• Partitioning: Region

• Addressing: Category, Ship Mode

• At the level: Deepest

• Restarting every: None

[229]

Table Calculations

This will produce the following visualization:

Figure 5.36: Example 6

Here we count the different Regions per Category and Ship Mode combinations at

the deepest level.

In the seventh example, configure the partitioning and addressing settings thus:

• Partitioning: Ship Mode

• Addressing: Category, Region

• At the level: Deepest

• Restarting every: None

[230]

Chapter 5

This will produce the following visualization:

Figure 5.37: Example 7

Here we count the different Ship Modes per Category and Region combinations at

the deepest level.

In the eighth example, configure the partitioning and addressing settings thus:

• Partitioning: Ship Mode

• Addressing: Region, Category

• At the level: Deepest

• Restarting every: None

[231]

Table Calculations

This will produce the following visualization:

Figure 5.38: Example 8

Here
we

count the different Ship Modes per Region and Category combinations at

the deepest level.

In the ninth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Category, Ship Mode, Region

• At the level: Deepest

• Restarting every: None

[232]

Chapter 5

This will produce the following visualization:

Figure 5.39: Example 9

Here we count the Category, Ship Mode, and Region combinations at the deepest

level.

In the tenth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Category, Region

• At the level: Deepest

• Restarting every: None

[233]

Table Calculations

This will produce the following visualization:

Figure 5.40: Example 10

Here we count the Ship Mode, Category, and Region combinations at the deepest

level.

In the eleventh example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Category, Region

• At the level: Category

• Restarting every: None

[234]

Chapter 5

This will produce the following visualization:

Figure 5.41: Example 11

Here we count the Ship Mode, Category, and Region combinations at the Category

level.

In the twelfth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Region, Category

• At the level: Deepest

• Restarting every: None

[235]

Table Calculations

This will produce the following visualization:

Figure 5.42: Example 12

Here we count the Ship Mode, Region, and Category combinations at the deepest

level.

In the thirteenth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Ship Mode, Region, Category

• At the level: Deepest

• Restarting every: Ship Mode

[236]

Chapter 5

This will produce the following visualization:

Figure 5.43: Example 13

Here we count the Ship Mode, Region, and Category combinations at the deepest

level.

In the fourteenth example, configure the partitioning and addressing settings thus:

• Partitioning: -

• Addressing: Region, Ship Mode, Category

• At the level: Deepest

• Restarting every: None

[237]

Table Calculations

This will produce the following visualization:

Figure 5.44: Example 14

We will not address the various instances of these possibilities. Instead, the reader

is encouraged
to

recreate these 14 possibilities in Tableau in order to solidify their

understanding of partitioning and addressing. Even better, consider recreating all 57

possible iterations and working to understand how Tableau is producing each end

result. The process may be tedious, but the resulting understanding is invaluable,

allowing the user to understand the things that Tableau is doing in the background

when computing.

Summary

In this chapter, we explored the inner workings of table calculations. We began by

considering two questions:

• What is the function?

• How is the function applied?

As we explored these two questions,
we

surveyed each unique group of table

calculation functions with the exception of the Script_functions, which will be

covered in more detail in Chapter 15, Programming Tool Integration. We also learned

how to apply these functions to a view through partitioning and addressing,

where partitioning can be seen as the scope and addressing as the direction of the

calculation.

[238]

Chapter 5

We have seen examples where
we

counted, for example, the scope as Ship Mode,

and the order of counting was Category and Region. Therefore,
we

would start with

the first Category and Region and set 1 for the Ship Mode. We would then continue

with the next Region in that same Category and count 2 for the next Ship Mode and

so on. The order of how dimensions are being addressed is important and yields

different results.

Using the knowledge we've picked up in this chapter of addressing and partitioning,

in the next chapter,
we

will explore data densification, cubes, and big data.

[239]

6
All About Data – Data

Densification, Cubes,

and Big Data

Many data-related questions that Tableau newbies have are not related
to

data

preparation, joins, unions, data blending,
or

data structures. Some of those questions

are as follows:

• I just created a table calculation and observed that the view displays numbers

that don't exist in the underlying data. Why?

• We use SAP Business Warehouse (SAP BW) in my organization. What

should I know about how Tableau works with cubes?

• How does Tableau work with big data?

This chapter will continue the data discussion from the previous chapters by

addressing the topics these three preceding questions target, respectively: data

densification, working with cubes, and Tableau and big data.

[241]

All About Data – Data Densification, Cubes, and Big Data

There are a few people who have worked diligently to provide resources

that were very helpful while writing this chapter. Joe Mako has championed

data densification—be sure to check out his video on Vimeo (https://vimeo.

com/107354333) for a deep dive into this challenging topic. The Tableau Online

Help (https://help.tableau.com/current/pro/desktop/en-us/cubes.htm) has an

invaluable series of articles and accompanying workbooks for understanding the

ins and outs of working with OLAP cubes, and lastly, the Tableau help pages also

provide an excellent resource on Tableau and big data: https://www.tableau.com/

solutions/big-data.

In this chapter, we will discuss the following topics:

• Using the OData connector

• Introducing data densification

• Domain completion

• Domain padding

• Working with cubes

• Tableau and big data

We will start this chapter by introducing the OData connector. It is a great way

to practice data visualization because it allows you access
to
many different data

sources. We will use it in the Introducing data densification section
to

access and

manipulate the Chicago Crime dataset.

Using the OData connector

The exercises in this chapter can
be

followed along with
by

downloading the

workbook associated with this chapter on https://public.tableau.com/profile/

marleen.meier or by using the OData connector directly. The following steps explain

how datasets from the web can be loaded directly into Tableau
by

using an OData

endpoint:

[242]

Chapter 6

1. Navigate to https://data.cityofchicago.org/Public-Safety/Crimes-2020/

qzdf-xmn8 and select the More icon (indicated by an ellipsis, …), followed by

the Access Data via OData button:

Figure 6.1: Chicago Data Portal

2. Copy the OData Endpoint value and open Tableau Desktop:

Figure 6.2: OData

[243]

All About Data – Data Densification, Cubes, and Big Data

3. In the Data Source pane, search for OData, and select the OData option:

Figure 6.3: OData connector

4. In the Server field, copy in the OData endpoint from the Chicago Crime

website. Authentication is not necessary, so select Sign In
to

get started:

Figure 6.4: Server name

5. Start building your dashboard!

Now that we have the data connection all set up, we can continue with our first real

exercise about data densification. Knowing about data densification will help you to

troubleshoot if you see unexpected data output in your dashboard and set up your

visualization the right way to achieve your goals without having to troubleshoot at all.

[244]

Chapter 6

Introducing data densification

Data densification is a largely undocumented aspect of Tableau that can be useful

in many circumstances but can also be confusing when encountered unexpectedly.

This section will provide information about data densification with the intent of

dispelling confusion and providing the Tableau author with sufficient knowledge
to

use this feature to their advantage.

To begin understanding data densification, four terms should be defined: data

densification, sparse data, domain completion, and domain padding. In addition

to the definitions, each term will be discussed in detail by using examples to help

improve understanding:

• Data densification: A behavior wherein Tableau displays marks in the view

for which there is no corresponding underlying data

• Sparse data: An intersection of one or more dimensions and one measure for

which there is no value

• Domain completion: The addition of marks on a sparsely populated view

that cause all possible dimension/measure combinations
to

display results

• Domain padding: The addition of marks to the visualization through range

aware dimensions (that is, date and bin) even when there is no underlying

data associated with those marks

The definitions should be clear now; let's continue with hands-on exercises.

Domain completion

There are two types of data densification: domain completion and domain padding.

Domain completion is the more complex
of

the two and can be deployed cleverly to

solve sparse data issues but may also appear unexpectedly and prove a challenge
to

address.

Grasping domain completion requires a good understanding of dimensions and

measures—discrete and continuous—and partitioning and addressing within

table calculations. The first two sets of terms, dimensions/measures and discrete/

continuous, are discussed in Chapter 1, Getting Up to Speed – A Review of the Basics.

The second set of terms, partitioning and addressing, was discussed in detail in

Chapter 5, Table Calculations.

Now, let's consider how domain completion can be deployed, when it's helpful, and

when it can be a problem.

[245]

All About Data – Data Densification, Cubes, and Big Data

Deploying domain completion

Domain completion can be activated in numerous and sometimes surprising and

confusing ways. Adjusting the arrangement of pills on shelves, toggling dimensions

between discrete and continuous, switching view types on the Marks card, adjusting

partitioning, addressing, and other changes can impact domain completion

activation. Although examples for every activation possibility will not be covered in

this book, a review of typical domain completion scenarios should prove helpful.

Activating domain completion in a crosstab

The following steps will guide you through an example of domain completion.

Navigate to https://public.tableau.com/profile/marleen.meier to locate and

download the workbook associated with this chapter or use the OData endpoint as

described in the section Using the OData connector:

1. Navigate to the worksheet entitled DC - Crosstab.

2. Ensure that Analysis | Table Layout | Show Empty Rows and Show Empty

Columns are both deselected.

3. In the Chicago Crime dataset, create a calculated field named Index with the

code INDEX().

4. Add a Location Description filter
to

view only a few locations, for example,

all the ones beginning with AIRPORT. Then place Location Description on

the Rows shelf.

5. Place Date on the Columns shelf. Leave it at the year aggregation and change

it to a discrete value. Note, as shown in the following screenshot, that the

view is sparsely populated:

Figure 6.5: Crosstab

[246]

Chapter 6

6. Place Index on the Detail shelf on the Marks card. Note that in the following

screenshot the view now reflects domain completion, that is, the view is fully

populated:

Figure 6.6: Crosstab II

7. Right-click on YEAR(Date) and select Continuous. Note that data

densification is deactivated:

Figure 6.7: Crosstab III

8. Reset YEAR(Date) to Discrete and then right-click on Index and select Edit

Table Calculation.

[247]

All About Data – Data Densification, Cubes, and Big Data

9. In the resulting dialog box, select Specific Dimensions and then observe the

results for each of the following selections:

Select Specific Dimension

Location Description

Data Densification Activated/Deactivated

Activated

Activated

Deactivated

Year of Date

Location Description and

Year of Date

No selection Deactivated

The preceding exercise illustrates the following rule for deploying domain

completion:

• Given a crosstab with discrete dimensions on the Rows and Columns

shelves, utilizing a table calculation (in this case, the Index field) in which at

least one dimension (but not all dimensions) is addressed activates domain

completion

A key term in the preceding rule may have been confusing: addressed. Partitioning

and addressing were covered in Chapter 5, Table Calculations, but will be defined

again here to ensure understanding of this rule. Consider the following, from the

Tableau documentation (https://help.tableau.com/current/pro/desktop/en-us/

calculations_tablecalculations.htm):

The dimensions that define how to group the calculation, that is, that define the scope

of the data it is performed on, are called partitioning fields. The table calculation is

performed separately within each partition. The remaining dimensions, upon which

the table calculation is performed, are called addressing fields, and determine the

direction
of

the calculation.

When editing a table calculation, you can choose
to

select/deselect specific

dimensions. When a dimension is selected, that dimension is used to address

the table calculation. When a dimension is not selected, the dimension is used to

partition the table calculation. The following screenshot of a Table Calculation

editing dialog box demonstrates addressing on Location Description and

partitioning on Year of Date:

[248]

Chapter 6

Figure 6.8: Table Calculation

We will now look at the remaining steps involved in activating domain completion

in a crosstab:

1. Duplicate the worksheet from the previous exercise,
DC

– Crosstab. Name

the new worksheet DC – Crosstab II.

2. Right-click on Index and select Compute Using | Cell. Note that the view is

sparsely populated.

[249]

All About Data – Data Densification, Cubes, and Big Data

3. Select Analysis | Table Layout | Show Empty Columns. The view is now

fully populated:

Figure 6.9: Crosstab

This exercise illustrates the following rules for deploying domain completion:

• Given a crosstab with discrete dimensions on the Rows and Columns

shelves, selecting Compute Using | Cell deactivates domain completion

• Given a crosstab with discrete dimensions on the Rows and Columns

shelves, selecting Analysis | Table Layout | Show Empty Rows/Columns

activates domain completion

Setting Compute Using to Cell may raise a question: what about the other Compute

Using options, such as Table (across) and Table (down)? These options are actually

all variations of partitioning and addressing.

Activating domain completion through view types

We will now look into activating domain completion through view types.

1. Duplicate the worksheet from the previous exercise,
DC

– Crosstab II. Name

the new worksheet DC – View Types.

2. Remove Index from the Marks view card and deselect Analysis | Table

Layout | Show Empty Columns.
The

view is now sparsely populated.

3. Change the Marks type from Automatic
to

Line. The view is now fully

populated with more marks:

[250]

Chapter 6

Figure 6.10: View types

4. Choose each view type option on the Marks card and observe which view

types activate domain completion and which do not.

The preceding exercise illustrates the following rule for deploying data completion:

• Given a view with discrete dimensions on the Rows and Columns shelves,

selecting the Line, Area, and Polygon view types from the Marks view card

activates domain completion

The usefulness of domain completion

Domain completion can be useful in many circumstances. In fact, you may have

gleaned some uses from the previous exercises even though they were designed

merely for illustration purposes. The following exercise demonstrates using domain

completion to display
no

data for cells without a value in a sparsely populated view.

[251]

All About Data – Data Densification, Cubes, and Big Data

Labeling nulls

Let us look at the following steps to begin
the

exercise:

1. Duplicate the worksheet from the previous exercise,
DC

– View Types.

Name the new worksheet DC – Labelling Nulls.

2. Adjust the duplicated worksheet so that the view type is set
to

Text. Also

ensure that only Location Description and Year are deployed on the view.

Be sure to leave Location Description on the Filters shelf so that a few

locations are displayed.

3. Create a calculated field named No Data with the following code:

IF ISNULL(COUNT([Case Number])) THEN 'No Data' ELSE 'Data' END

4. Place Ward and No Data on the Text shelf. Note that the text No Data does

not display:

Figure 6.11: Labeling Nulls

[252]

Chapter 6

5. Place Index on the Detail shelf. Note that the text
No

Data does display.

The domain completion portion of the exercise is now complete but consider

making the visualization more appealing by utilizing a shape:

Figure 6.12: Labeling Nulls, with additional formatting

I hope this exercise has given you a practical example of how domain completion works.

But what if you want to get rid of it altogether? We'll discuss this in the next section.

Removing unwanted domain completion

After being made aware of domain completion, a user will no longer be confused

when unwanted marks display in the view. But knowing how to remove those

unwanted marks from the display can be a challenge. The following exercise shows a

scenario of undesired domain completion and how
to

address the problem. The goal

of the exercise is to display each year that a given crime has been reported, with an

accompanying filter
to

adjust the crimes that display based on the number of years

data is available:

1. In the workbook associated with this chapter, navigate to the DC - Year

Count worksheet.

2. Select the Chicago Crime dataset in the Data pane.

3. Optionally, in order to get the exact same view as in Figure 6.13, place

Description on the Filter shelf and select AGG PO HANDSNO/MIN

INJURY.

[253]

All About Data – Data Densification, Cubes, and Big Data

4. Place Description and Date on the Rows shelf, make YEAR(Date) discrete,

and put Ward on the Text shelf. Format as desired. Note the missing value

for 2001 as shown in the following screenshot:

Figure 6.13: Year Count

This is not an instance of data densification since the dataset actually has a

row for 2001, despite the value for Ward being empty in that year. Therefore

2001 has a null value.

[254]

Chapter 6

5. In order to remove the fields containing null values, click on the drop-down

menu associated with SUM(Ward) and select Filter. In the resulting dialog

box, select Special | Non-null values:

Figure 6.14: Filtering non-null values

6. Create a table calculation named Year Count with the following code:

SIZE()

7. If you put the Description pill on the filters shelf in step 3, please remove it

for the following steps.

[255]

All About Data – Data Densification, Cubes, and Big Data

8. Place a continuous instance of Year Count on the Columns shelf. Note that

the resulting number, 6411, represents every column in the view:

Figure 6.15: Year count

[256]

Chapter 6

9. Right-click on Year Count and select Compute Using | Date. It appears as

if the scenario discussed in step 4 has returned. However, although the issue

looks the same in the view, the underlying problem differs. Year Count is

a table calculation and has caused domain completion. So this time we see

one row for each year in the whole dataset, even though, for example, the

combination of $300 ANDUNDER and 2001 does not exist in the dataset. We

see every year because of the table calculation Year Count:

Figure 6.16: Year count domain completion

[257]

All About Data – Data Densification, Cubes, and Big Data

10. Right-click on Year Count and select Edit Table Calculation.

11. In the resulting dialog box, select Specific Dimensions. Make sure that

Description and Year of Date are both checked and,
by

dragging and

dropping, placed in the order shown in Figure 6.17. Leave At the level at

Deepest and set Restarting every
to

Description. Sort order can remain as

Specific Dimensions and if you check the Show calculation assistance box,

you will see yellow highlighters in the viz, indicating the data points related

to the selection:

Figure 6.17: Specific Dimensions

12. If you have more than one value for Year Count, complete the exercise by

moving Year Count from the Columns shelf to the Filters shelf. Format as

desired (this allows you to filter on dimensions with the same number of

rows in the partition):

[258]

Chapter 6

Figure 6.18: Completing the Year Count worksheet

The formatting of the "This exercise demonstrates..." section is inconsistent

throughout. Please make consistent.

The relevant section in the preceding rule for this exercise is "a table calculation

in which at least one dimension is addressed (but not all dimensions) activates

domain completion." The domain completion occurred when first deploying Year

Count, which is a table calculation. Upon changing the addressing and partitioning

of Year Count so that all dimensions were addressed (that is, no dimensions were

partitioned), the issue was resolved.

Congratulations, you can cross domain completion off your "to learn" list. As

mentioned in the introduction to this chapter, next in line is domain padding. You

will want to know how to use domain padding because it helps you when working

with dates and bins.

[259]

All About Data – Data Densification, Cubes, and Big Data

Domain padding

The second type of data densification is known as domain padding. It is fairly

straightforward and, unlike domain completion, is discussed in the Tableau

documentation. We will now consider how domain padding is deployed and when

it's useful.

Deploying domain padding

You may recall that one of the ways
to

deploy domain completion is Analysis |

Table Layout | Show Empty Rows/Columns. The same is true of domain padding,

as is illustrated in the following exercise. This exercise demonstrates how to toggle

domain padding on and off:

1. In the workbook associated with this chapter, select Data | New Data Source

and connect to the Sample Superstore Excel workbook that ships with

Tableau. It is located in My Tableau Repository | Datasources+.

2. In the resulting instance of the Data Source page, double-click on Orders and

Returns. This will cause a relationship to be created on the field Order ID.

3. Name the data source Superstore – Returns.

4. Navigate to the worksheet entitled DP – Show Missing Values and select the

Superstore – Returns data source that was just created.

[260]

Chapter 6

5. Place Ship Mode and State on the Rows shelf. Next, place Region on the

Filters shelf and select West. Lastly, put SUM(Sales) on the Text shelf. Note

that, for example, Wyoming only appears for Standard Class shipping mode:

Figure 6.19: Show Missing Values

[261]

All About Data – Data Densification, Cubes, and Big Data

6. Select Analysis | Table Layout | Show Empty Rows:

Figure 6.20: Show Missing Values
II

[262]

Chapter 6

And you can see domain padding in action. All states are showing now, even the

ones that were filtered by Region: West. Now, the filter simply removes the sales

amount but does show all possible states.

It was necessary to point to a live data source, such as the instance of Superstore that

ships with Tableau, because using an extract would not, in this case, activate domain

padding even if Analysis | Table Layout | Show Empty Rows was selected. The

functionality gets lost as soon as you activate an extract.

The usefulness of domain padding

Domain padding is often useful when working with dates with gaps. Such gaps

occur when some dates have associated values and some dates do not. As shown

in the following example, returns do not occur every day in the Superstore dataset.

Since a visualization that displays dates with gaps could be confusing, it might be

helpful to fill in those gaps.

Using domain padding to fill in date gaps

We will now try to fill in date gaps:

1. In the workbook associated with this chapter, navigate to the worksheet

entitled DP – Filling Date Gaps.

Select the Superstore – Returns data source that was created in the previous

exercise.

2.

[263]

All About Data – Data Densification, Cubes, and Big Data

3. Place a discrete instance of MDY(Order Date) on the Columns shelf and

place Sales on the Rows shelf. Note that every mark in the view is equally

spaced regardless of the length of time between dates:

Figure 6.21: Filling Date Gaps

4. Right-click on MDY(Order Date) and select Show Missing Values.

[264]

Chapter 6

5. Right-click on SUM(Sales) on the Rows shelf and select Format. In the

resulting format window, choose the Pane tab and select Marks: Show at

Default Value:

Figure 6.22: Filling Date Gaps II

Note that the distance between marks is now based on the length of time between

dates. All dates with no value are displayed with Sales values of zero.

[265]

All About Data – Data Densification, Cubes, and Big Data

Problems of domain padding

Since domain padding can be toggled on or off through specific commands in

Tableau (that is, Show Missing Values and Show Empty Rows/Columns), it's

typically not a problem. There are a few scenarios, however, when domain padding

may cause confusion, one of which is covered in the following example.

From a domain-padded visualization to a crosstab

Let's have a look at creating a crosstab from a domain-padded visualization:

1. In the workbook associated with this chapter, navigate to the worksheet

entitled DP – From Viz to Crosstab.

2. Select the Superstore – Returns data source.

3. Right-click on Discount in the data pane and select Create | Bins. In the

resulting dialog box, choose a bin size of 0.05.

4. Place the newly created Discount (bin) dimension on the Columns shelf.

5. Right-click on Discount (bin) and ensure that Show Missing Values is

selected.

[266]

Chapter 6

6. Right-click and drag the Discount field from the Data pane to the Rows

shelf. Select CNT as the measure. Note that some of the bins have no values.

For example, as shown in the following screenshot, the 0.35 bin has no

associated value:

Figure 6.23: From Viz to Crosstab

[267]

All About Data – Data Densification, Cubes, and Big Data

7. Duplicate the sheet as a crosstab
by

right-clicking on the worksheet tab and

selecting Duplicate as Crosstab. Note that Show Missing Values is still

activated:

Figure 6.24: From Viz to Crosstab II

[268]

Chapter 6

8. Complete the exercise by right-clicking on Discount (bin) and deselecting

Show Missing Values:

Figure 6.25: From Viz to Crosstab III

Utilizing Show Missing Values for bins or dates is often helpful in a visualization

but may not be helpful in a crosstab view. This is especially true if there are many

rows or columns without values.

A special case of data densification will appear with cubes. That's why
we

will

discuss this next. Even if you don't work with cubes now, I would recommend you

follow along now to have a full picture of data densification in Tableau.

[269]

All About Data – Data Densification, Cubes, and Big Data

Working with cubes

For the most part, Tableau's behavior
is
uniform across data sources. For example, the

experience of working with an Access database and
an

Oracle database
is
very similar.

Of course, different data sources will have their nuances but, in general, Tableau

attempts to make working with different data sources a seamless experience. However,

working with cubes (that is, multidimensional data sources) is quite different. Major

differences include the inability to alias, create calculated fields on dimensions, create

groups or hierarchies, change aggregation types, and generate extracts.

As of the time of writing, the central cube-related article is located

at https://onlinehelp.tableau.com/current/pro/desktop/

en-us/cubes.htm.

The preceding article provides detailed information and is worth

studying in detail if you work with cubes. Provided with the article

are many links and examples on how to reproduce typical Tableau

behavior when working in a cube environment.

Although the Tableau Online Help provides many workarounds for these

shortcomings, in this section, we want to mention the topic of using data blending to

work more effectively with cubes.

In order to complete the following cube-related exercises, you must have access

to Microsoft Analysis Services with an instance of the AdventureWorks

cube (AdventureWorks is the sample cube that ships with Microsoft Analysis

Services). Detailed instructions for installing SQL Server, Analysis Services, and

the accompanying AdventureWorks cube are available at MSDN (https://docs.

microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql

server-ver15&tabs=ssms).A search engine query on hh403424 will also return the

link to these instructions.

Data blending for continuous months

Typically, a cube includes one or more date hierarchies. When Tableau is connected

to a cube, the members of a date hierarchy that display in the Data pane behave like

strings. Thus, Tableau's built-in hierarchy capabilities that are usually available when

working with dates in relational data sources are not available. This limitation can

be partially overcome by coding Multidimensional Expressions (MDX) queries in

Tableau, but to achieve all the Tableau date capabilities, a data blend is necessary.

[270]

Chapter 6

We will now look into data blending and cubes:

1. In the workbook associated with this chapter, navigate to the worksheet

entitled Cube – Continuous Days.

2. Connect
to

the AdventureWorks data source through Data | New Data

Source | Microsoft SQL Server (refer to the introduction to this section,

Working with cubes, to learn how to install Analysis Services and the

AdventureWorks cube).

3. In the dimension portion of the Data pane, expand Date and locate the Date

field.

4. Note that different versions of the AdventureWorks cube have slightly

different naming conventions. So, don't worry too much about the naming

convention in the figures.

5. Right-click on Date and select Change Data Type | Date. Drag Date to the

Columns shelf, and place Internet Sales Amount on the Rows shelf:

Figure 6.26: From Viz to Crosstab IV

The current viz looks a bit overwhelming. We have lots of data points and

can't really see the difference between days. Let's continue by aggregating the

data to a single value per month.

6. Select the worksheet entitled Cube – Preparing Dates.

[271]

All About Data – Data Densification, Cubes, and Big Data

7. Expand Date and then Calendar, and lastly Date.Calendar:

Figure 6.27: Dimensions

8. Drag Calendar Year and Month to the Rows shelf. Also, drag Internet Sales

Amount to the Text shelf. Note that including Internet Sales Amount forces

every month to display.

9. Select Worksheet | Export | Crosstab to Excel.

10. Adjust the Excel spreadsheet to look like the following screenshot. Be sure
to

replace the Internet Sales Amount column with a column named Blended

Month, which should include first-of-the-month date information for each

row, for example, 06/01/2011. Also, copy and paste Calendar Year so that

every cell is populated:

Figure 6.28: Copying data to Excel

11. Save the Excel spreadsheet as AWDates.xlsx.

12. In Tableau, select the worksheet entitled Cube – Continuous Months.

[272]

Chapter 6

13. Select the AdventureWorks (AdventureWorksMultiDimensional) dataset and

drag Internet Sales Amount to the Rows shelf.

14. Add AWDates.xlsx as a new dataset.

15. Select Data | Edit Data Relationships and set the relationships so that Date.

Date.Calendar.Calendar Year blends to Calendar Year and Date.Date.

Calendar.Month blends to Month:

Figure 6.29: Blend relationships

16. In the Data pane, select the AWDates data source and blend on Calendar

Year and Month by clicking the gray broken chainlink icons.

17. Right-click and drag Blended Month to the Columns shelf and select Month

continuous:

Figure 6.30: Visualizing the AWDates data source

In steps 1-5, we demonstrated a simple way to create a view with a continuous date

when connected to a cube. No MDX code was necessary. However, these same steps

also reveal the shortcomings of working with a cube, including that many of the

choices normally available for dates in Tableau are not accessible. This is a problem

that cannot be overcome by restructuring the cube or writing MDX code.

[273]

All About Data – Data Densification, Cubes, and Big Data

The remaining steps in the exercise demonstrate how this problem can
be

overcome

through data blending. Although the data blend created in the exercise only provides

month-level granularity, it would not
be

difficult to include day-level granularity.

The end result is a demonstration that the date capabilities normally expected

in Tableau can be made available when connected to a cube. Furthermore, if the

blended data source remains small, the impact on performance should be negligible.

The last missing piece for working with cubes is the data blending for hierarchies,

aliasing, and grouping. Follow along with
the

steps in the next section to understand

how Tableau handles those for you.

Data blending for hierarchies, aliasing, and

grouping

MDX can be used to provide some of the functionality normally available in Tableau

that is otherwise missing when connected
to

a cube. For example, although you

cannot create groups in Tableau when accessing a cube data source, MDX can be

passed to the cube by using a calculated member to create groups. Instructions for

how to do this are provided here: https://help.tableau.com/current/pro/desktop/

en-us/cubes.htm. Similarly, it is possible to use MDX
to

create hierarchies or to alias

dimension members, but that requires knowledge of MDX that most Tableau authors

do not possess.

This exercise will demonstrate how to use data blending to accomplish hierarchies,

aliasing, and grouping when accessing a cube:

1. Create an Excel spreadsheet named Aliasing, with the following data:

Group Hemispheres

Europe Eastern Hemisphere

North America Western Hemisphere

Pacific Eastern Hemisphere

2. In the workbook associated with this chapter, navigate to the Cube –

Hierarchy worksheet.

3. If you have not already added the AdventureWorks dataset, connect

through Data | New Data Source | Microsoft Analysis Services (see

the introduction to this section, Working with cubes, to learn how
to

install

Analysis Services and the AdventureWorks cube).

4. Select the AdventureWorks dataset and place Internet Sales Amount on the

Text shelf.

[274]

Chapter 6

5. Add the newly created Excel spreadsheet, Aliasing, as a data source.

6. In the Aliasing source, blend on Group by clicking the gray broken chainlink

icon next to the field Group:

Figure 6.31: Blend

7. Create a hierarchy on Group and Hemispheres by selecting both in the Data

pane, right-clicking, and selecting Hierarchy | Create Hierarchy. Name the

hierarchy as desired.

8. Make Hemispheres the first dimension in the hierarchy by dragging it above

Group:

Figure 6.32: Hierarchy

9. Place Hemispheres and Group on the Rows shelf:

Figure 6.33: Hemispheres

10. Create a worksheet called Cube – Aliasing and Grouping.

11. Select the AdventureWorks dataset and place Internet Sales Amount on the

Text shelf.

12. Select the Aliasing dataset, right-click on Group, and select Duplicate. Name

the duplicate field Regional Groups.

[275]

All About Data – Data Densification, Cubes, and Big Data

13. Right-click on Regional Groups and select Aliases. Adjust the aliasing so

that Europe is aliased as EMEA, Pacific is aliased as AsiaPac, and North

America is left unchanged.

14. Blend on Group by clicking the gray broken chainlink icon.

15. Place Hemispheres and Regional Groups on the Rows shelf:

Figure 6.34: Hemispheres
II

Typically, dimensions are not enabled for secondary data sources in a data blend;

however, in the preceding case, since the secondary data source is blended on Group

and there is a one-to-many relationship between Hemispheres and Group, both of

these fields can be used as dimensions in the view. Nonetheless, for unrestricted use

of dimensions, always use the primary data source.

One point of interest in the preceding exercise is the necessity of creating Regional

Groups in the secondary data source by duplicating Group. This was required
to

successfully alias the dimension members. Attempting to alias members directly

within Group breaks the data blend, as shown in the following screenshot:

Figure 6.35: Null value

[276]

Chapter 6

This section has shown how
we

can leverage cube data sources for hierarchies, using

fields of different data sources within the cube. We needed to duplicate the Group

field to be able to alias it but other than that we were able
to

prove that aliasing and

grouping are possible with cubes. An example could be that you have products

stored in one dimension of the cube database and countries in the other. Tableau will

allow you to combine them with grouping.

Are cubes here
to

stay? Maybe not. The advent of big data solutions and the

continued evolution of the Relational Database Management System (RDBMS)

may make cubes obsolete. Cubes pre-aggregate data, which can make certain

analytic and reporting needs very quick; however, as RDBMS and big data solutions

become faster, easier to query, and more sophisticated, the pre-aggregation paradigm

may become obsolete. Some argue that cubes are already obsolete. Also, cubes have

serious drawbacks, including a lack of performance advantage for non-aggregated

data (which is typical at lower levels of granularity), challenges with more complex

analytic needs, difficulty mastering the
MDX

language, and the fact that many BI

vendors do not cater to cubes. This last point is true of Tableau. Although Tableau

can be used with cubes, there are challenges to overcome. In contrast, the topic we

will discuss next, working with big data, is very straightforward.

Tableau and big data

Perhaps the first challenge of big data is defining it adequately. It's a term so widely

used as to be almost meaningless. For example, some may refer to data exceeding

1,048,576 rows as big data (which is the row limit in Excel 2010 and 2013) while

others would only apply the term to datasets in the multiple petabyte range.

Definitions found on Wikipedia (https://en.wikipedia.org/wiki/Big_data) and

Webopedia (https://www.webopedia.com/TERM/B/big_data.html) are so broad as

to encompass both of these examples. True, it is probably simplistic to consider

data that merely exceeds Excel's row limitation as big data; nevertheless, from

the perspective of an individual for whom Excel is the traditional data-processing

application, the preceding definitions fit.

Rather than try to provide an adequately narrow definition of what is essentially

a buzzword, this section will primarily focus on one aspect of big data: massively

parallel processing. However, before
we

begin, let's consider a couple of

housekeeping items. First, when I have been asked about Tableau and big data,

the intent of the question has invariably been about Tableau's performance when

working with large datasets. Since Chapter 13, Improving Performance, is dedicated

to Tableau's performance, this section will not address performance thoroughly.

Second, for the user who works predominately or exclusively with Excel, exceeding

the row limit is a real problem for which a solution may prove helpful. We'll cover

this next.

[277]

All About Data – Data Densification, Cubes, and Big Data

Addressing Excel's row limitation

As mentioned in the section Tableau and big data, exceeding Excel's row limitation

should not be considered big data. Nevertheless, that limitation can be an issue, and

telling a Tableau author to use a database
is

often not helpful. A Tableau author may

indeed want to utilize a database but may not have direct access. For example, the

data that resides in the database may be exported through a web application and

then imported into an Excel workbook that Tableau utilizes as a data source. If this

process is performed weekly or monthly and each import involves 10,000+ rows, it

won't be long before the Excel row limit is hit. In the next exercise, we will see one

strategy for addressing this issue.

Note that this exercise is Windows-centric, but similar tasks can be implemented in

a macOS environment. Follow the steps to learn more about how to work around

Excel's row limitation:

1. In the workbook associated with this chapter, navigate to the dashboard

entitled Excel Row Limit. That dashboard includes a link (https://github.

com/PacktPublishing/Mastering-Tableau-2021) to GitHub where you can

find the files necessary to complete this exercise.

2. Download the files, and open Spreadsheet_2 in Excel or a text editor and

remove the header, that is, the first row. Save the spreadsheet as a .csv file.

3. Place copies of the two files, Spreadsheet_1 and Spreadsheet_2, in a new

directory.

4. Open Command Prompt. This can be quickly done
by

pressing Windows + R

and then entering cmd.

5. In Command Prompt, type the following, then press Enter:

cd [filepath to the newly created directory]

An example file path might look something like the following:

C:\Users\MarleenMeier\Desktop\New_Directory

6. In Command Prompt, enter the following, then press Enter:

for %f in (*.csv) do type "%f" >> output.csv

Note that the resulting .csv file (that is, output.csv) will not open

successfully in Excel but, as shown in the following steps, it can
be

used as a

data source in Tableau.

[278]

Chapter 6

7. In Tableau, press Ctrl + D to open a new data source, and in the resulting

window, select Text file:

Figure 6.36: Text file data

8. Connect to the output.csv data source.

9. Place Number of Records on the Text shelf and observe that the total

equals the number of rows in Spreadsheet_1 plus the number of rows in

Spreadsheet_2:

Figure 6.37: Number of records

This exercise could also be replaced by Tableau's built-in union function, which

appends the same structured tables automatically. This has been described in detail

in Chapter 4, All About Data – Joins, Blends, and Data Structures.

[279]

All About Data – Data Densification, Cubes, and Big Data

The scheduling of wildcard unions through the command line is

available in Tableau Prep. You can find documentation about it

here: https://onlinehelp.tableau.com/current/prep/en

us/prep_save_share.htm#commandline.

Talking about big data goes hand in hand with parallel processing. To make it

easier for you to understand big data platforms and hence how you can build

high-performing dashboards, we will take a quick turn into the world of massively

parallel processing.

Massively parallel processing

Big data may be semi-structured or unstructured. The massively parallel processing

(MPP) architecture structures big data to enable easy querying for reporting and

analytic purposes. MPP systems are sometimes referred to as shared-nothing systems.

This means that data is partitioned across many servers (otherwise known as nodes)

and each server processes queries locally.

Let's explore MPP in detail using the following diagram as a point of reference:

Figure 6.38: MPP

Please see the following explanation of the diagram:

1. The process begins with the Client issuing a query that is then passed
to

the

Master Node.

2. The Master Node contains information, such as the data dictionary and

session information, that it uses to generate an execution plan designed to

retrieve the needed information from each underlying Node.

[280]

Chapter 6

3. Parallel Execution represents the implementation of the execution plan

generated by the Master Node.

4. Each underlying Node executes the unique query it has received and then

passes the results to the Master Node. Each Node is actually a standalone

server with its own RAM, disk space, and operating system.

5. The Master Node assembles the results, which are then passed to the Client.

On
the plus side, MPP systems are easily scalable. Once the initial architecture is

set up, adding additional hard drive space and processing power can be as easy

as adding additional servers. On the downside, MPP systems can be costly to

implement—requiring thousands or even tens of thousands of servers, along with

associated failover requirements and highly skilled, costly labor for support.

For Tableau and working with big data, it is very important to

know the partitions that your IT team has put in place for parallel

processing.
It
could be, for example, the year, month, and day

column.
If
you use those columns that are also used as partitions

in the database, your Tableau dashboard will perform so much

better than trying to query on a random field in the dataset. So,

first put filters in place—preferably partitions. Then build your

dashboard on a subset of the data. Once you are all done, load the

data you need and check the performance again. More information

regarding performance is given in Chapter 13, Improving

Performance.

As a result of the expense, many organizations opt for a cloud-based solution, such

as Amazon Redshift or Google BigQuery. Amazon Redshift uses an MPP system,

while Google BigQuery uses tree architecture, which is a little different but still takes

advantage of MPP techniques.

Building a visualization with Google BigQuery

One big data solution is BigQuery, next to many others. For this section of the book,

we
have chosen BigQuery just because readers can test it for free as long as you have

a Gmail account. Secondly, you don't have to install anything, which makes it a good

platform for an exercise in this book.

In order
to

build a visualization with Google BigQuery, you will need to first set

up
access to BigQuery. The following exercise will point you in the right direction.

Once you have set up access to BigQuery, you will be able to connect to the BigQuery

sample datasets. In the remainder of the exercise, you will build a visualization while

connected to BigQuery.

[281]

All About Data – Data Densification, Cubes, and Big Data

Assuming you have a good internet connection, the performance will likely exceed

what you experience when working with a local copy of an extracted data source of a

similar size.

Let's have a look at how we can use Google BigQuery in our Tableau dashboard:

1. Log into your Google account, navigate to https://cloud.google.com/

bigquery/, and follow the provided instructions to try BigQuery for free.

2. In the workbook associated with this chapter, navigate to the BigQuery

worksheet.

3. Press Ctrl + D to connect to a data source. In the resulting window,

select Google BigQuery and, when prompted, provide your Gmail login

information.

4. In the Data Source page, choose the publicdata project, the samples dataset,

and the natality table.

5. The natality table provides birth demographics for the United States from

1969 to 2008:

Figure 6.39: BigQuery

6. In the Data pane, double-click Number of Records.

7. From the Data pane, drag Month to the Columns shelf, and set it to Discrete.

8. Right-click on the y axis, Number of Records, and select Edit Axis. Deselect

Include Zero.

[282]

Chapter 6

9. Format as desired. This visualization displays the number of infants born in

each month from 1969 to 2008:

Figure 6.40: BigQuery viz

Knowing the fields on which the big data engine is partitioned will

help a lot when facing performance issues. If, for example, your

data is partitioned by Year, always try to make use of this field in

filters and calculations. Chapter 13, Improving Performance, contains

more information on this topic.

As you can see, BigQuery allows
us

to visualize datasets containing millions of

records quickly and easily.

Summary

We began this chapter with a discussion of data densification and discovered that

there are two types of data densification: domain completion and domain padding.

When reviewing these two types of data densification, we learned how each can

be deployed, when each is useful, and when each can be problematic. Next,
we

learned how to work with cubes. We discussed the Tableau Online Help articles as

well as how to use data blending with cubes. Finally,
we

explored big data. We also

surveyed MPP, and walked through an example of how
to

use Tableau to connect to

Google BigQuery.

In the next chapter,
we

will explore another functionality: level of detail calculations.

Although table calculations remain an important part of everyday Tableau usage,
we

will discover how level of detail calculations can easily accomplish tasks that were

previously only possible through complex table calculations.

[283]

7
Level of Detail Calculations

When we talk about Level of Detail (LOD) calculations in Tableau, we mean three

expressions: FIXED, INCLUDE, and EXCLUDE. These three expressions open a world

of options
by

providing the ability
to

create calculations that target specific levels

of granularity. In older versions of Tableau, data granularity for a worksheet was

established by the dimensions in a view. If the view contained dimensions for,

for example, Region, State, and Postal Code, but the author wanted to create a

City-level calculation, the City dimension would need to be included on the view.

Furthermore, there was
no

mechanism for excluding or ignoring a given dimension

on a view. Admittedly, the desired results could normally be obtained through some

complex and sometimes convoluted use of table calculations, data blends, and so on.

Fortunately, LOD calculations greatly simplify these use case scenarios and, in some

cases, enable what was previously impossible.

In this chapter, we will discuss the following topics:

• Introducing LOD calculations

• Playground I: FIXED and EXCLUDE

• Playground II: INCLUDE

• Building practical applications with LOD

Let's begin by introducing LOD calculations and how they are used.

[285]

Level of Detail Calculations

Introducing LOD calculations

Tableau's default is to show measures in a view based on the dimensions also present

in the view. If you have a dashboard with Sales data and dimensions like State

and City, and you drag the State and Sales data onto the view, the Sales data will

be divided
by

State, showing you Sales per State. If you want to divide the Sales

data further into smaller chunks, you might add the City field, resulting in Sales

data per City, per State. LOD calculations can manipulate this default behavior.

After completing this chapter, you will be able to divide or partition measures by

dimensions that are not in the view and show measures using fewer dimensions than

are visible in the view.

To do this, we will build and use two playgrounds. Delivering reports as required

by one's job duties may lead to a thorough knowledge of a limited set of capabilities;

that is, a deep but narrow understanding. It can
be

difficult to set aside time (and

also justify that time) to explore the capabilities of Tableau that on the surface may

seem to have
no

direct correlation
to

job duties. Playground environments can

help overcome any difficulties and objections, by providing efficient avenues of

exploration. In this chapter, we'll build two playground environments specifically

for LOD calculations, to help make the task of deep and broad understanding easier

by providing an efficient avenue for exploration and understanding. You can always

come back to the workbook accompanying this chapter and test functionality related

to LODs.

Playground I: FIXED and EXCLUDE

The first playground we will build will be for the purpose of exploring two of

the three LOD functions: FIXED and EXCLUDE. We will use a set of parameters and

associated calculated fields
to

efficiently explore how these functions work.

[286]

Chapter 7

Setting up the workbook

Much of the groundwork for this exercise has already been completed in the

workbook associated with this chapter. The steps require more so to open different

calculations and parameters and see how they have been set
up

and why this

works. Explanations are given along the way. If you do not have ready access to the

workbook, you should be able to construct a similar one by referencing the following

information.

To complete the initial setup of a worksheet, take the following steps:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Open the workbook associated with this chapter and navigate to the Fixed

and Exclude worksheet. The worksheet should look as follows:

Figure 7.1: The worksheet

[287]

Level of Detail Calculations

3. Select the Superstore data source
and

inspect the parameter named 1st Dim

by right-clicking and selecting Edit:

Figure 7.2: Parameter I

The parameters named 2nd Dim, 3rd Dim, and 4th Dim are identical to 1st

Dim.

4. Note that except for Order Date and Ship Date, every dimension in the

dataset is included in the list of values (see Figure 7.2). For the purposes of

this exercise, Category, Region, Segment, Ship Mode, and Sub-Category are

particularly important because those are dimensions with fewer members.

Dimensions with many members are more difficult to use in this context.

[288]

Chapter 7

5. Inspect the Choose Fixed Dims, Choose Excluded Dims 1, and Choose

Excluded Dims 2 parameters included in the workbook and note that we

defined a number of integers under the Value column, each of which will

later be visible as a string specified under the Displays As column in the

parameter dropdown. The Value and Display As configurations for Choose

Fixed Dims are as follows:

Figure 7.3: Parameter II

[289]

Level of Detail Calculations

6. Inspect the calculated field named 1st Dim (it is located under the Practical:

All folder in the Data pane); this calculation makes use of the 1st Dim

parameter and will cause a field to be displayed depending on the selection

of the parameter. If the user selects Category in the 1st Dim parameter, value

1 will
be

activated (according to the values specified in Figure 7.2). Value 1

then translates to the field Category in the calculated field 1st Dim as shown

in the following screenshot:

Figure 7.4: Calculated field 1st Dim

7. The calculated fields named 2nd Dim, 3rd Dim, and 4th Dim are identical

to 1st Dim except that each references the parameter bearing its name; for

example, the 2nd Dim calculated field utilizes [Parameters].[2nd Dim].

These Case statements, in conjunction with the associated parameters, will

allow you to choose which dimensions to view from a dropdown in the view

as described in Step 5.

8. Inspect the following calculated fields, which enable you to choose which

LOD calculations to employ and thus to compare and contrast differences

and similarities:

[290]

Chapter 7

Figure 7.5: Case Fixed

The Case Fixed calculation shows that if the user selects 1 in the Choose

Fixed Dims parameter (which is being displayed as 1st), the 1st Dim will be

fixed—no matter the dashboard setup. That means that SUM(Sales) will be

partitioned over the 1st Dim, no matter if it is part of the dashboard.

Figure 7.6: Case Exclude 1

The Case Exclude 1 calculation shows that if the user selects 1 in the Choose

Excluded Dims 1 parameter (which will be displayed as 1st), the 1st Dim will

be excluded from the calculation in the view. That means that SUM(Sales)

won't be partitioned over the 1st Dim, even if it is part of the view.

Figure 7.7: Case Exclude 2

[291]

Level of Detail Calculations

The Case Exclude 2 calculation shows that if the user selects 1 in the Choose

Excluded Dims 2 parameter (which will be displayed as 1st), the 1st Dim will

be excluded from the calculation in the view. That means that SUM(Sales)

won't be partitioned over the 1st Dim, even if it is part of the view.

9. Now, right-click and open the context filter on Product Name for inspection.

In the resulting dialog box, click the Wildcard tab and note the settings

as shown in the following screenshot. The filter has been set to show only

product names that start with S (Match value is not case-sensitive.):

Figure 7.8: Wildcard filter

10. After clicking OK, right-click on the filter and note that context filters are

denoted in gray:

Figure 7.9: Gray context filter

11. Place the following dimensions on the Rows shelf: 1st Dim, 2nd Dim, 3rd

Dim, and 4th Dim.

[292]

Chapter 7

12. Drag Measure Names onto the Filters shelf and select Sales, Case Fixed,

Case Exclude 1, and Case Exclude 2.

13. Add Measure Values to Text and Measure Names to Columns:

Figure 7.10: Measure Values

14. Display each parameter
by

right-clicking each one and selecting Show

Parameter Control. Order the parameter controls as follows:

Figure 7.11: Final playground

[293]

Level of Detail Calculations

By following those previous steps, we are now ready to build various tables in order

to compare the different LOD calculations because the parameters will allow us to

select different dimensions and the calculated fields that incorporated the FIXED and

EXCLUDE functions from Tableau. We will
now

continue using the playground and

explain how LODs change calculated fields.

Understanding FIXED

Now that the playground environment is complete, let's build scenarios
to

better

understand FIXED and EXCLUDE functions. We'll begin with FIXED. The FIXED LOD

considers only the dimensions to which it is directed. Thus, when fixed on a

dimension, all other (if any) dimensions in the view are being ignored. When the

FIXED LOD is used without defining any dimension, the result will be a calculation

ignoring all (if any) dimensions in the view. Let's jump into the exercise and see this

for ourselves:

1. Using the worksheet described previously, set the parameters as shown here:

Figure 7.12: First example

[294]

Chapter 7

What we achieve with the different parameters
is

that we show the

SUM(Sales) per Region and each Region per Category, but we also fixed the

SUM(Sales) calculation for the dimension Category in the column Case Fixed.

2. The Case Fixed column now displays the totals for each Category and

ignores Region because we told the calculation to fix the 2nd Dim (Region)

and ignore the dimensions in the view itself. The effect of this is visible by

comparing the Sales column and the Case Fixed column:

Figure 7.13: Case Fixed I

3. Check for yourself and do the math for Furniture:

10,072 + 14,249 + 4,494 + 18,564 = 47,379

Even though the Region is visible
in

the view, the SUM(Sales) in

column Case Fixed ignores the Region and shows the results as if the

Category dimension is the only dimension in the view. We manipulated

the granularity of the data. In the Case Fixed column, Region serves for

informative purpose only but does not affect the calculation of SUM(Sales).

[295]

Level of Detail Calculations

4. Now change the Choose Fixed Dims parameter to 1st and note that Case

Fixed now displays the totals for each region:

Figure 7.14: Case Fixed II

5. This time we fix the calculation in column Case Fixed to only take the Region

into account but ignore the Category. Check for yourself and do the math for

Central: 10,072 + 16,340 + 13,995 = 40,406

Change the Choose Fixed Dims parameter to Fixed: Nothing and note that the

amount reflects the total SUM(Sales):

Figure 7.15: Fixed: Nothing

[296]

Chapter 7

This time we fixed the calculation
to

nothing, meaning that
we

ignore every

dimension in the view. Check for yourself and do the math
by

summing the Sales

values; the sum will be 194,776.

As is evident, the FIXED LOD considers only the dimensions to which it is directed.

Thus, when fixed on Category, Region is ignored. And, as demonstrated, when fixed

on Region, Category is ignored. Lastly, when Choose Fixed Dims is set to Fixed:

Nothing, the entire dataset that is not restricted by the context filter on Product

Name is displayed.

Next, let's look at a couple of new features introduced with Tableau 2021.1 that

pertain to FIXED LODs.

Table-scoped expressions

A quick way to write a FIXEDLOD expression when using a whole table as the scope

is using code like the following:

{MAX([Order Date])}

If you use this calculation on the Superstore dataset, you will achieve the exact same

as writing:

{FIXED: MAX([Order Date])}

No matter what you show in the view, this field will always retrieve the latest data

from the whole table. Cool, right?

[297]

Level of Detail Calculations

Quick LOD calculations

Tableau 2021.1 allows
us

to create FIXED LODs faster. Simply drag the desired

measure on top of a dimension and press Ctrl (or Cmd on macOS). Now you will see

the dimension highlighted in blue (see Region in Figure 7.16). Then drop the measure

there and a new measure field (in this case, Sales(Region)) will
be

created.

Figure 7.16: Quick LOD

Right click on Sales(Region) and note that a FIXED LOD has been created:

Figure 7.17: Quick LOD II

If you're working with Tableau 2021.1 or higher, you can use this shortcut for FIXED

LODs.

[298]

Chapter 7

The playground
we

built was not only meant for FIXED but also for EXCLUDE. Let us

have a look at EXCLUDE next.

Understanding EXCLUDE

Let us start understanding the EXCLUDE LOD. The EXCLUDELOD will exclude any

dimension to which it is directed. If your view contains Region and Category and

you write an EXCLUDE LOD on Category, only Region will be considered in the

calculations. The following example will make this clearer—our goal in this exercise

is to calculate SUM(Sales)
by

using fewer dimensions than in the view. We want
to

exclude visible dimensions only from the calculation but still show the dimension

values in the dashboard:

1. Set the parameters as shown in the following screenshot:

Figure 7.18: Fixed: Nothing

[299]

Level of Detail Calculations

2. You can observe the following results:

Figure 7.19: Exclude I

Case Exclude 1 displays the total of each Category and Segment and

ignores Region. For example, the total of the Segment Consumer within the

Category Furniture is $26,738. That total is repeated for each Region. The

relevant code that is generating these results is

SUM({EXCLUDE [Region] : SUM([Sales])}).

[300]

Chapter 7

3. Make the following changes to the parameters:

Figure 7.20: Exclude II

Any LOD calculation can be used with multiple dimensions in a view. In this

case, Case Exclude 2 ignores two dimensions: 1st Dim and 2nd Dim, which

are associated with Region and Category. The associated code for Case

Exclude 2 is, therefore:

SUM({EXCLUDE [Region],[Category] : SUM([Sales])})

The associated code for Case Fixed is:

SUM({FIXED [Segment]: SUM([Sales])})

[301]

Level of Detail Calculations

Case Exclude 2 and Case Fixed now have identical results. This is because

excluding the first two dimensions is the same as fixing on the third

dimension. Only the third dimension Segment is taken into account in both

cases. You can observe the results
in

the following screenshot:

Figure 7.21: Exclude II table

[302]

Chapter 7

4. Make the following changes to the parameters:

Figure 7.22: Change 4th dimension

[303]

Level of Detail Calculations

5. You can observe the results as follows:

Figure 7.23: Exclude III

6. Note that Case Exclude 2 and Case Fixed no longer have identical results.

This is because Ship Mode was introduced and Case Exclude 2 considers

Ship Mode whereas Case Fixed does not.

7. Experiment with other settings to further enhance your understanding of the

FIXED and EXCLUDE LODs.

EXCLUDE will cause any dimension addressed in the LOD calculation
to be

removed

from the calculation. Multiple dimensions can
be

part of an EXCLUDE LOD and

common use cases include the direct comparison of sales per category in a region

versus total sales in a region. Without LODs it would not be possible to show those

two sales figures and both dimensions in the same table.

I hope that by following the previous steps you were able to get a better feel for the

EXCLUDE LOD. As a quick interlude after those exercises on FIXED and EXCLUDE, let's

take a closer look at Tableau's order of operations, as getting the same result for

FIXED and EXCLUDE as
we

have seen in this exercise is not always the case.

[304]

Chapter 7

Understanding Tableau's order of operations

The previous exercise led us to believe that the same results for FIXED and EXCLUDE

can be achieved by fixing the dimensions that are not excluded and vice versa.

However, the order in which Tableau executes a FIXED and an EXCLUDE LOD differs

and can hence cause unexpected results. In order to avoid this, I will show you what

to consider when using either FIXED or EXCLUDE LODs.

Let's have a look at the order of filtering:

1. Set the parameters as follows:

Figure 7.24: Set parameters

[305]

Level of Detail Calculations

2. Observe the results:

Figure 7.25: Same results

Note that, as seen in the previous exercise, Case Exclude 2 and Case Fixed

are identical.

3. Right-click on the Product Name filter and select Remove from context:

Figure 7.26: Remove from context

[306]

Chapter 7

4. Observe the results in the following screenshot:

Figure 7.27: Without context filter

5. Case Exclude 2 and Case Fixed are no longer identical. Case Fixed is

no longer impacted by the Product Name filter because the context was

removed.

The behavior difference observed between EXCLUDE and FIXED in the preceding

exercise reflects the underlying filter order of operation. As shown in Figure 7.26,

Context Filters will impact FIXED, EXCLUDE, and INCLUDE calculations because the

Context Filter is being applied first
to

the dataset, then the LOD. Dimension Filters,

however, will only impact EXCLUDE and INCLUDE LODs because the FIXEDLOD will

be applied to the dataset first and then the dimension filter, followed by EXCLUDE and

INCLUDE LODs.

[307]

Level of Detail Calculations

See the following diagram, a schematic representation of the order of operations in

Tableau:

Figure 7.28: Order of operations

Figure 7.28 is sourced from Tableau's help pages, here: https://

help.tableau.com/current/pro/desktop/en-us/order_of_

operations.htm.

This page also contains more information on Tableau's order of

operations.

We just saw that when using a context filter, EXCLUDE and FIXED LODs can result in

the same numbers, whereas a dimension filter will cause the result to differ. This is

happening because Tableau executes the different requests after one another. As can

be seen in the preceding diagram, the order of operation goes:

1. Context filters

2. FIXED LOD

3. Dimension filters

4. INCLUDE and EXCLUDE LODs

This is important for you to know in order to choose the correct filter or LOD for

your purpose.

[308]

Chapter 7

Next,
we

will use a new playground, this time, to show how INCLUDE LODs work.

Playground II: INCLUDE

The second playground
we

will build will
be

for the purpose of exploring INCLUDE.

Like in Playground I: FIXED and EXCLUDE, we'll start with setting up the workbook

for effective exploration. If you do not have ready access
to

the workbook, you

should be able
to

construct a similar one by referencing the following information.

Setting up the workbook

In the following,
we

will set
up

a worksheet with which
we

can practice the INCLUDE

LOD calculations:

1. Open the workbook associated with this chapter and navigate to the

Exploring Include worksheet

2. The parameters and calculated fields named 1st Dim, 2nd Dim, 3rd Dim,

and 4th Dim created in the previous exercises are also utilized for this

worksheet

3. Right-click on the 1st Dim parameter and choose Duplicate

4. Rename the duplicate Choose Included Dims

5. Create a new calculated field named Case Include with the following code:

CASE [Choose Included Dims]

WHEN 1 THEN AVG({INCLUDE [Category]: SUM([Sales])})

WHEN 2 THEN AVG({INCLUDE [City]: SUM([Sales])})

WHEN 3 THEN AVG({INCLUDE [Country]: SUM([Sales])})

WHEN 4 THEN AVG({INCLUDE [Customer ID]: SUM([Sales])})

WHEN 5 THEN AVG({INCLUDE [Customer Name]: SUM([Sales])})

WHEN 6 THEN AVG({INCLUDE [Order ID]: SUM([Sales])})

WHEN 7 THEN AVG({INCLUDE [Postal Code]: SUM([Sales])})

WHEN 8 THEN AVG({INCLUDE [Product ID]: SUM([Sales])})

WHEN 9 THEN AVG({INCLUDE [Product Name]: SUM([Sales])})

WHEN 10 THEN AVG({INCLUDE [Region]: SUM([Sales])})

WHEN 11 THEN AVG({INCLUDE [Segment]: SUM([Sales])})

WHEN 12 THEN AVG({INCLUDE [Ship Mode]: SUM([Sales])})

WHEN 13 THEN AVG({INCLUDE [State]: SUM([Sales])})

WHEN 14 THEN AVG({INCLUDE [Sub-Category]: SUM([Sales])})

WHEN 15 THEN 0

END

[309]

Level of Detail Calculations

6. Place the following measures and dimensions in their respective shelves:

Figure 7.29: Exploring INCLUDE

7. Display each of the following parameters by right-clicking each one and

selecting Show Parameter Control:

Figure 7.30: Parameters

After you have finished the initial setup, we can start to look into, last but not least,

the INCLUDE LOD.

[310]

Chapter 7

Understanding INCLUDE

Now that the playground environment is complete, let's build scenarios
to

better

understand INCLUDE. By now you can probably imagine that if the FIXED and EXCLUDE

LODs remove dimensions from a calculation, INCLUDE adds dimensions. Correct!

It might happen that you want to include one or more dimensions in a calculation

even though the view doesn't show them. The next example will make use of this

functionality in order
to
show an average per sub-category without showing the

sub-category. One would want to do so because the sub-category has so many

additional values that the dashboard will
be

harder
to

read, and it will take longer

to draw quick conclusions. Nevertheless, it is of interest to know the average per

sub-category because the number of sub-categories might differ per region and other

dimensions, and thus including it will give insights into the real average sales.

Let's see it in action:

1. Set the parameters on the right-hand side as shown here

Figure 7.31: Initial layout

[311]

Level of Detail Calculations

2. Add two reference lines by clicking on Analytics and edit them using the

following settings:

Figure 7.32: Reference line settings

Figure 7.33: Reference line settings

[312]

Chapter 7

3. Look at the following screenshot for the result. Note that both Reference

Lines are equal:

Figure 7.34: Sales per region and reference lines

4. If the Reference Lines are overlapping each other, edit the formatting and set

Alignment to Top. To access the formatting, click on the Reference Line in

the view:

Figure 7.35: Format Reference Line

[313]

Level of Detail Calculations

5. Now, set the parameters as shown here:

Figure 7.36: Format Reference Line

[314]

Chapter 7

6. In Tableau Desktop, you should now see the following. As before, both

Reference Lines are equal:

Figure 7.37: Reference Lines

[315]

Level of Detail Calculations

7. Change the Choose Included Dims parameter
to

Category, Ship Mode, and

Segment.

8. Note that the Reference Lines equal one another for each of these settings.

This is because Choose Included Dims is only introducing dimensions

already represented in the view.

9. Change the Choose Included Dims parameter
to

Sub-Category:

Figure 7.38: check caps throughout changed

The Include Dim Avg reference line now includes Sub-Category in the average and

therefore differs from the Overall Avg reference line. The average is smaller because

the total Sales amount is being divided over more points than are visible in the view.

Adding Sub-Category to the LOD leads to more rows, which leads to a smaller

average per row. Furthermore, note that the Sub-Category dimension is not used in

the view. LOD calculations do not require a calculation
to

reside in the view.

[316]

Chapter 7

To summarize, the INCLUDELOD can manipulate a visualization in a way that

partitions can be added that are not used in the view itself. Also, the naming

convention for all three LODs will be your best mnemonic in understanding them:

FIXED to fix the fields used, INCLUDE to add "missing" fields, and EXCLUDE to remove

unwanted fields from the calculations that are already present.

To get more hands-on training, we will continue with a few practical applications.

Building practical applications with LODs

The first portion of this chapter was designed
to

demonstrate how LOD calculations

work. The remainder will be dedicated to practical applications. Specifically, we will

consider three typical challenges that previously were solved using other Tableau

capabilities, such as table calculations and data blending.

This exercise will look at a problem that occurs when mixing a table calculation that

calculates the percentage of the total with a dimension filter. We will consider the

problem, a solution using a LOD calculation, and finish with a commentary section

on the germane points of the solution.

Using the LOD calculation FIXED

First,
we

will start off with a common problem many Tableau users come across

when working with the FIXED LOD. The following steps will guide you through the

exercise:

1. Open the workbook associated with this chapter and navigate to the

worksheet entitled The Problem.

2. Select the 2012_World_Pop dataset.

3. Create a calculated field named Percent of Total with the following code:

SUM([Population]) / TOTAL(SUM([Population]))

4. Right-click on Percent of Total and select Default Properties | Number

Format | Percentage.

5. Place Country on the Columns shelf, Measure Names on the Rows shelf,

and Measure Values on the Text shelf.

6. Remove Number of Records from the Measure Values shelf.

7. Right-click on Percent of Total and set it to Compute Using | Country.

[317]

Level of Detail Calculations

8. Create a filter on Country such that only Afghanistan displays:

Figure 7.39: Population of Afghanistan

Afghanistan displays the percentage of the total as 100%. Obviously, this does

not represent Afghanistan's percentage of
the

total population of the world. Let's

look into a possible solution—to solve the issue with a LOD, follow along with the

exercise steps:

1. Duplicate the worksheet entitled The Problem and rename it Solution LOD.

2. Create a calculated field named Percent of Total LOD with the following

code:

SUM([Population])/SUM({ FIXED : SUM([Population])})

3. Place Percent of Total LOD on the Measure Values shelf and note that

the displayed percentage equals 0.43%. If 0 displays, change the number

formatting to percentage:

Figure 7.40: Percent of total

4. Remove the Percent of Total table calculation that was previously created

from the Measure Values shelf:

[318]

Chapter 7

Figure 7.41: Percent of total LOD

As you can see, problem solved! To better understand what is happening in the

background, let's look at a query that Tableau generates for the worksheet entitled

The Problem. Generated queries can be viewed by clicking Help | Settings and

Performance | Start Performance Recording. (See Chapter 11, Visualization Best

Practices and Dashboard Design, for additional information regarding viewing

Tableau's generated queries.)

The SQL statement is as follows:

SELECT

['2012_World_Pop$'].[Country] AS [Country],

SUM(['2012_World_Pop$'].[Population]) AS [sum:Population:ok]

FROM

[dbo].['2012_World_Pop$'] ['2012_World_Pop$']

WHERE

(['2012_World_Pop$'].[Country] = 'Afghanistan')

GROUP BY

['2012_World_Pop$'].[Country]]

Note that the WHERE clause in the query is limiting the returned dataset to only those

rows that have Afghanistan as Country. This WHERE clause was generated as a result

of placing Country on the Filters shelf. By limiting the returned data, the processing

requirements are shifted from Tableau to
the

underlying data source engine. In other

words, the data source engine does the work of executing the query, and Tableau

thus works with a smaller dataset. The reasoning behind this design is that data

source engines are specifically engineered
to

efficiently query large datasets and also

typically have underlying hardware to support such activities. Furthermore, limiting

the rows of data returned to Tableau can reduce inefficiencies due to latency.

[319]

Level of Detail Calculations

Inefficiencies are further reduced because Tableau works from cache whenever

possible. Often, a user can perform various operations without generating a call to

the underlying data source. However, in the preceding case, if a user were to select

a different Country from the filter, Tableau would generate a new query to the data

source. For example, if a user interacts with the filter and deselects Afghanistan

and selects Albania, a new query with a corresponding WHERE clause is generated.

Although the logic of Tableau's reliance on the data source engine is demonstrable,

the problem proposed in the preceding example still remains. What can a Tableau

author do to calculate the percent of the whole regardless of filtering?

A solution is to create a table calculation that can also be used as a filter. The

difference is that, unlike in the worksheet The Problem, the query generated
by

Tableau to the data source returns the entire dataset. When a table calculation is

used in a filter, the filtering does not take place until the underlying data is returned.

In other words, Tableau performs the filtering. This preserves a percent of the total

percentages regardless of which country population totals the user chooses to view.

But, a potential issue with table calculations is that the returned dataset may be quite

large, which may cause performance challenges. Latency may be experienced due

to increased time required
to

return a large dataset and Tableau may perform more

slowly because of additional processing responsibilities to filter the dataset.

Our proposed solution, an LOD calculation, can address these challenges. Let's take

a look at the SQL queries created by the Percent of Total LOD calculated field in the

Solution LOD worksheet:

SELECT

[t0].[Country] AS [Country],

[t1].[measure 0] AS

[TEMP(Calculation_418553293854285824)(2417030171)(0)],

[t0].[TEMP(Calculation_418553293854285824)(616435453)(0)] AS

[TEMP(Calculation_418553293854285824)(616435453)(0)]

FROM

(SELECT

['2012_World_Pop$'].[Country] AS [Country], SUM(['2012_World_Pop$'].

[Population])

AS [TEMP(Calculation_418553293854285824)(616435453)(0)]

FROM

[320]

Chapter 7

[dbo].['2012_World_Pop$'] ['2012_World_Pop$']

WHERE

(['2012_World_Pop$'].[Country]= 'Afghanistan')

GROUP BY

['2012_World_Pop$'].[Country]) [t0]

CROSS JOIN

(SELECT SUM(['2012_World_Pop$'].[Population]) AS [measure 0] FROM

[dbo].['2012_World_Pop$'] ['2012_World_Pop$']

GROUP BY ()) [t1]

Note the term CROSS JOIN; the LOD calculation generates a query that instructs the

underlying data source engine
to

return data in such a way as
to

allow Tableau to

divide the population values of one or more countries
by

the world population total,

thus returning the correct percentage of the total.

Using the LOD calculation INCLUDE

Next,
we

will practice the INCLUDE LOD. In this exercise,
we

will create a worksheet

that displays the following:

• Total sales per region

• The average of total sales across all regions

• The average of total sales across all states in each region

Using a LOD calculation to display these values is pretty straightforward. Let's

explore. Follow along with the exercise steps:

1. Select the Practical Include worksheet.

2. Select the Superstore dataset.

3. Create a calculated field named Per State INCLUDE with the following code:

{INCLUDE [State]:SUM([Sales])}

4. Drag Region to the Columns shelf, SUM(Sales) to the Rows shelf, and AVG(Per

State INCLUDE) to the Details shelf. Be sure to change Per State INCLUDE to

an average aggregation.

[321]

Level of Detail Calculations

5. Add two Reference Lines
by

right-clicking on the sales axis and selecting

Add Reference Line. Use the following settings:

Figure 7.42: Reference lines

Figure 7.43: Reference lines

[322]

Chapter 7

6. Complete the worksheet
by

formatting it as desired:

Figure 7.44: Average per region and state

As you can see, thanks to the LOD we can display a line chart per Region, as well as

one for the whole dataset. This is possible because
we

included the State dimension

in our Per State INCLUDE calculation. Using this calculated field
to

create a

reference line allows Tableau to show not only the average per (visible) region but

also the average per state (invisible) per region.

Using the LOD calculation EXCLUDE

In this exercise,
we

will create a worksheet using the Superstore dataset, which will

calculate the percentage of sales generated by each city in a region.

Follow along with the exercise steps:

1. Select the Practical Exclude worksheet.

2. Select the Superstore dataset.

[323]

Level of Detail Calculations

3. Create the following calculated fields:

Figure 7.45: Region Values and % Per Region LODs

4. Place Region and City on the Rows shelf.

5. Place Measure Names on the Columns shelf and Measure Values on the

Text shelf.

6. Remove all instances of measures from the Measure Values shelf except

Sales, Region Values, and % Per Region LOD.

7. In order for % Per Region LOD to display as a percentage, the number

formatting must be adjusted. Simply right-click on the calculation in the Data

pane and select Default Properties | Number Format | Percentage:

Figure 7.46: Change number format

[324]

Chapter 7

8. Place an instance of AGG(% Per Region LOD) on the Filter shelf and adjust

to
display at least 0.1 (or, 10%):

Figure 7.47: % filter

9. Observe the current view, with Region and City on the Rows shelf:

Figure 7.48: Jacksonville still visible

[325]

Level of Detail Calculations

10. Now, place State on the Rows shelf between Region and City. Note that

Jacksonville disappears:

Figure 7.49: Jacksonville disappears when Region is added to Rows

This is happening because Jacksonville exists in two states of the South

region, in Florida as well as in North Carolina:

Figure 7.50: Jacksonville existing within two states

Our Region Values calculation excluded City and State and so the% Per Region

LOD will take into account the SUM(Sales) for whatever is visible in the view,

divided by the Region Values. With Region and City in the view only, the

SUM(Sales) for Jacksonville is 44,713 (see Figure 7.48). That number divided by the

Region Values of 391,722 (see Figure 7.50)
is
> 10%. But then

we
added State

to
the

view, changing the SUM(Sales)
to

39,133 for Jacksonville in Florida and 5,580 for

Jacksonville in North Carolina (see Figure 7.50). Neither one of them when divided

by 391,722 for the Region Values is above 10% and will therefore drop from the view

due to our filter.

[326]

Chapter 7

LOD calculations are one of the more advanced topics when using Tableau but they

are very powerful and worth spending the time to understand. For more practical

examples I would recommend you checking the following website:

https://www.tableau.com/about/blog/LOD-expressions. I remember that, when I

first started using Tableau, I didn't think that I would ever want to show data based

on dimensions that are not in my view, or that I would want to exclude dimensions.

But I needed them so many times. I went back to the documentation on LODs

more often than you can imagine, and I can only encourage you
to
do the same; the

more you read about LODs, the easier it will
be

to grasp the concept and use them

naturally. The added flexibility LODs bring to your dashboard is incredible.

Summary

We began this chapter by exploring why LOD calculations are so impactful and why

their inclusion in Tableau was so lauded. Next,
we

built two playgrounds
to

explore

how the three LOD calculations—FIXED, EXCLUDE, and INCLUDE—work. Tableau's

default is to base calculations on the dimensions visible in the view. For example, if

you have states in your view, the sales amount will be presented by state. If you are

adding cities, the sales amount will be adjusted
by

state, by city. But, if you want

to manipulate this default logic, you can use LOD calculations. They allow you
to

calculate measures based on any dimension, no matter whether that dimension

is represented in the view or not. We also saw that FIXED LODs are higher in the

order of operations in Tableau than EXCLUDE and INCLUDE LODs. This is important to

remember in order to use the correct LOD and/or filter in your dashboard.

In the next chapter, we'll turn our attention
to

the visual side of Tableau and explore

different chart types and less common but very useful visualizations.

[327]

8
Beyond the

Basic Chart Types

The assumption behind this chapter is that the reader is familiar with basic chart

types such as bar, line graph, treemap, pie, and area. The focus will be on the

middle ground, with the intent of relating how to improve visualization types you

may already use on a regular basis, as well as introducing chart types with which

you may
be

unfamiliar, but that are, nonetheless, widely useful. And, finally, I will

introduce you to Tableau extensions, which offer some more exotic chart types.

Perhaps the most useful part of this chapter is actually not contained in the book at

all, but rather in the workbook associated with the chapter. Be sure to download that

workbook (the link is provided in the following section)
to

check out a wider range

of visualization types.

This chapter will explore the following visualization types and topics:

• Improving popular visualizations

• Custom background images

• Tableau extensions

[329]

Beyond the Basic Chart Types

Keep in mind that the content of your dashboard is the most important thing,

but if you can have the same content with a nicer design, go for the nicer design.

Marketing sells and will make your users happy; I hope the next sections will help

you find your path and eventually make you a better dashboard designer.

Improving popular visualizations

Most popular visualizations are popular for good reason. Basic bar charts and

line graphs are familiar, intuitive, and flexible and are thus widely used in data

visualization. Other, less basic visualizations such as bullet graphs and Pareto charts

may not be something you use every day but are nonetheless useful additions to a

data analyst's toolbox. In this section, we will explore ideas for how to tweak, extend,

and even overhaul a few popular chart types.

Bullet graphs

The bullet graph was invented by Stephen Few and communicated publicly in 2006

through his book Information Dashboard Design: The Effective Visual Communication

of Data. Stephen Few continues to be a strong voice in the data visualization

space through his books and his blog, www.perceptualedge.com. Bullet graphs

communicate efficiently and intuitively by packing a lot of information into a small

space while remaining attractive and easy
to

read. Understandably, they have gained

much popularity and are being utilized for many purposes, as can be seen through a

web search. The following two exercises communicate the basics of bullet graphs and

how to improve on those basics. That is not to say that I have improved on the bullet

graph in this chapter! The intent is merely
to

relay how this important visualization

type can
be

more effectively used in Tableau. Let's get started.

Using bullet graphs

The following steps are meant to teach you the basics of a bullet graph:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Navigate to the worksheet entitled Bullet Graph and select the CoffeeChain

data source.

[330]

Chapter 8

3. Place these fields on their respective shelves: Profit on Columns, Market on

Rows, and BudgetProfit on Detail in the Marks card.

4. Right-click on the x axis and select Add Reference Line.

5. From the upper left-hand corner of the Edit Reference Line, Band or Box

dialog box, select Line. Also, set Scope to Per Cell, Value
to
SUM(Budget

Profit) as Average, and Label to None. Click OK:

Figure 8.1: Reference line

6. Let's add another reference line. This time, as an alternative method, click

on the Analytics pane and drag Reference Line onto your dashboard. (You

could obviously repeat the method in Step 4 instead.)

[331]

Beyond the Basic Chart Types

7. Within the dialog box, select Distribution and set Scope
to

Per Cell. Under

Computation, set Value to Percentages with 90,95,100 and Percent of to

SUM(Budget Profit). Set Label to None. Click OK:

Figure 8.2: Percentiles

8. Create a calculated field called Profit to Budget Profit Ratio with the

following code:

SUM([Profit])/SUM([Budget Profit])

9. Create another calculated field called Quota Met? with the following code:

SUM([Profit])>=SUM([Budget Profit])

10. Right-click on Profit to Budget Profit Ratio and select Default Properties |

Number Format | Percentage.

11. Place Profit to Budget Profit Ratio on the Label shelf in the Marks card and

Quota Met? on the Color shelf in the Marks card:

Figure 8.3: Preliminary bullet graph

[332]

Chapter 8

As you survey our results thus far, you will notice that there are some important

aspects to this visualization. For example,
the

reference lines and the colored bars

clearly delineate when a quota was met and missed. Furthermore, the percentages

communicate how close the actual profit was to the budgeted profit for each market.

However, there are also some problems to address:

• The percentage associated with the South market is partially obscured.

• The background colors represented
by

the reference distribution are

obscured.

• The colors of the bars are not intuitive. Orange is set to True, which signifies,

in this case, the markets that made the quota. However, psychologically

speaking, orange is a warning color used
to

communicate problems and

therefore would be more intuitively associated with those markets that failed

to make the quota. Furthermore, these colors are not easily distinguishable

when presented in grayscale.

• The words False and True in the legend are not immediately intuitive.

In the upcoming steps,
we

will address those issues and show you possible solutions.

Bullet graphs – beyond the basics

To address the problems with the graph in the previous section, take the following

steps:

1. Continuing from the previous exercise, access the Data pane on the left-hand

portion of the screen, right-click on Quota Met?, and adjust the calculation as

follows:

IF SUM([Profit])>=SUM([Budget Profit])

THEN 'Quota Met'

ELSE 'Quota Missed'

END

2. This calculation will create the string Quota Met if the profit is higher than

the budgeted profit or the string Quota Missed if the profit isn't higher than

the budgeted profit. These two strings can be used as a legend and are more

intuitive than the previous True and False.

3. Create a calculated field named Greater of Profit or Budget Profit with

the following code:

IF SUM(Profit)>SUM([Budget Profit])

THEN SUM(Profit)

ELSE SUM([Budget Profit])

END

[333]

Beyond the Basic Chart Types

This calculation will show the profit amount if it is more than the budgeted

amount, or the budgeted amount if the profit is smaller. This will help
us

to

always show the bigger amount of the two.

4. Place Greater of Profit or Budget Profit on the Columns shelf after Profit.

Also, right-click on the pill and select Dual Axis.

5. Right-click on the axis for Greater
of

Profit or Budget Profit and select

Synchronize Axis.

6. Within the Marks card, select the pane labeled All:

Figure 8.4: Marks card

7. Set the mark type to Bar.

8. Remove Measure Names from the Color shelf.

9. Within the Marks card, select the pane labeled AGG(Greater of Profit or

Budget Profit).

10. Click on the Color shelf and set Opacity to 0%.

11. Within the Marks card, select the pane labeled SUM(Profit).

12. Remove AGG(Profit to Budget Profit Ratio) from the Marks card and note

that the percentage labels are
no

longer obscured.

13. Click on the Color shelf and select Edit Colors. Within the resulting dialog

box, complete the following steps:

1. Double-click on Quota Met and set the color to white

2. Double-click on Quota Missed and set the color to black

[334]

Chapter 8

14. After you have clicked OK for each dialog box and returned to the main

screen, once again click on the Color shelf and select black for Border.

15. Click on the Size shelf
to

narrow the width of the bars by dragging the slider

to the left.

16. Right-click on the Profit axis and select Edit Reference Line. Then set Value

to 90%,95%,100% of Average Budget Profit:

Figure 8.5: Reference line

17. Moving down to the Formatting section, set the fill color
to

Grey. Click the

Fill Below checkbox and the Reverse checkbox. Note that the background

colors are now more easily distinguishable:

Figure 8.6: Background colors

[335]

Beyond the Basic Chart Types

18. Right-click on the axis labeled Greater
of

Profit or Budget Profit and deselect

Show Header. You may wish to make some additional tweaks, but our result

looks as follows:

Figure 8.7: Improved bullet graph

Note that each of the aforementioned problems has now been addressed:

• The percentage numbers are
no

longer obscured.

• The background colors are easier to distinguish due to having narrowed the

bars.

• The color of the bars is more intuitive. Furthermore, using black, white, and

gray has circumvented any readability problems arising from color blindness

or grayscale print.

• The words False and True in the legend have been replaced with the more

descriptive terms Quota Met and Quota Missed.

By completing this section, you will have learned how small or bigger tweaks

can improve your visualization and the type of graph you chose. You can do this

whenever the current choices you have made do not tell the full story yet. In addition

to that, it is also a selling point. Your users like a nice design and clear dashboards.

By improving your visualization with more advanced techniques, you will be able
to

improve your storytelling and marketing.

[336]

Chapter 8

In the next section,
we

will continue to add complexity to known visualizations. This

time we will create pie and donut charts and eventually combine the two.

Pies and donuts

Pie charts are normally frowned upon in data visualization circles. They simply

have too many drawbacks. For instance, pie charts don't utilize space well on a

rectangular screen. Treemaps fit much better. Also, the number of slices that are

reasonable on a pie chart is fairly limited, perhaps six to eight at best. Once again,

treemaps are superior because they can be sliced at a finer level of granularity while

remaining useful. Lastly, when using pie charts it can be difficult to discern which of

two similarly sized slices is largest. Treemaps are
no

better in this regard; however,

if the viewer understands that treemap sorting is from top left to bottom right,

that knowledge can
be

used to distinguish size differences. Of course, bar charts

circumvent that particular problem entirely, since the eye can easily distinguish

widths and heights but struggles with angles (pie charts) and volume (treemaps).

Despite these drawbacks, because of their popularity, pie charts will likely continue

to be widely used in data visualization for years to come. For the pessimistic Tableau

author, the best course of action is to grin and bear it. But for one willing
to

explore

and push frontier boundaries, good uses for pie charts can be discovered. The

following exercise is one contribution
to

that exploration.

Pies and donuts on maps

Occasionally, there is a need (or perceived need)
to

construct pie charts atop a

map. The process is not difficult (as you will see in the following exercise), but

there are some shortcomings that cannot
be

easily overcome. We will discuss those

shortcomings after the exercise.

The following are the steps:

1. Within the workbook associated with this chapter, navigate to the worksheet

entitled Pie Map and select the Superstore data source.

2. In the Data pane, double-click on State to create a map of the United States.

[337]

Beyond the Basic Chart Types

3. Place Sales on the Color shelf. Click on the Color shelf and change the

palette
to

Grey:

Figure 8.8: Edit Colours

4. Drag an additional copy of Latitude (generated) on the Rows shelf by

holding Ctrl for Windows and Command for Mac and simultaneously

dragging the pile
to

create two rows, each of which displays a map:

Figure 8.9: Latitude

[338]

Chapter 8

5. In the Marks card, you will notice that there are now three panes: All,

Latitude (generated), and Latitude (generated) (2). Click on Latitude

(generated) (2) and set the mark type to Pie:

Figure 8.10: Marks card panes

6. Place Category on the Color shelf and Sales on the Size shelf.

7. Right-click on the second instance
of

Latitude (generated) in the Rows shelf

and select Dual Axis:

Figure 8.11: Pie map

[339]

Beyond the Basic Chart Types

Can you see issues in the visualization? Two should be immediately apparent:

• First, the smaller pies are difficult to see. Clicking on the drop-down menu

for the Size legend and selecting Edit Sizes could partially address this

problem, but pies on smaller states such as Rhode Island will continue to be

problematic.

• Second, many states have the same light-gray background despite widely

varying sales amounts.

The following approach will address these issues while adding additional

functionality.

Pies and donuts – beyond the basics

The following are the steps required to create a pie and donut chart on top of a map.

By combining the different methods, we will be able to show more information at

once without overloading the view:

1. Within the workbook associated with this chapter, navigate
to

the worksheet

entitled Altered Pie Map and select the Superstore data source.

2. Create the following calculated fields:

Name Code

Category State Sales {FIXED State, Category: SUM(Sales)}

{FIXED State : MAX([Category State Sales])}State Max

[Category State Sales]Top Selling Category

per State

MAX(If [State Max]then Category END) =

3. We need those first two Level of Detail (LOD) calculations and the last

calculation in order to show the sales per category, while also showing the

best-selling category per state.

4. Within the Marks card, set the mark type to Pie.

5. Within the Data pane, select the States data source.

6. Click the chain link next to State in the Data pane in order to use State as a

blended field:

[340]

Chapter 8

Figure 8.12: Linking dimensions

7. Drag Column to the Columns shelf and Row to the Rows shelf.

8. From the Superstore data source, place Category on the Color shelf and

Sales on the Angle shelf.

9. Click on the Size shelf and adjust the size as desired.

10. At this point, you should see a rough map of the United States made
up

of

pie charts. Next, we will further enhance the graphic by changing the pies

into donuts:

Figure 8.13: Map

[341]

Beyond the Basic Chart Types

11. Return to the States data source and place another instance of Row on the

Rows shelf.

12. In the Marks card, select Row (2) and change the view type
to

Circle.

13. From the Superstore dataset, place Top Selling Category per State on the

Color shelf:

Figure 8.14: Map II

14. Place Sales on the Label shelf. Right-click on the instance of Sales you just

placed on the Label shelf and select Format. Make the following adjustments

in the Format window:

1. Set the Numbers formatting to Currency (Custom) with 0 decimal

places and Display Units set to Thousands (K):

[342]

Chapter 8

Figure 8.15: Formatting

2. Set Alignment to Middle Center as shown in the following

screenshot, so that the numbers are centered over the circles:

Figure 8.16: Alignment

[343]

Beyond the Basic Chart Types

15. In the Rows shelf, right-click on the second instance of Row and select Dual

Axis.

16. Right-click on an instance of the Row axis and select Synchronize Axis.

17. Within the Row (2) instance on the Marks card, make sure that Size exceeds

the Size of the Row instance in the Marks card in order to show the pie chart

as an outer ring.

18. Within the Row (2) and Row instances of the Marks card, click on the Color

shelf and select Edit Colors. Adjust the color settings as desired so that the

color of the overlaying circle (the hole of the donut) can be distinguished

from the underlying colors and yet continues to recognize which Category

sold best. I selected the following:

Figure 8.17: Color selection

19. Also within the Color shelf, set Border to the desired color. I used white. I

also used white as the color for Label.

20. Right-click on each axis and deselect Show Header. Select Format | Lines

and set Grid Lines to None. Make other formatting changes as desired:

[344]

Chapter 8

Figure 8.18: Tile grid map

At first glance, the visualization may look peculiar. It's called a tile grid map and

although it's fairly new to the data visualization scene, it has begun to see usage at

media outlets such as NPR. In the right setting, a tile grid map can be advantageous.

Let's consider a couple of advantages the preceding exercise gives us.

First, the grid layout in combination with the Log Sales calculated field creates a

map immediately evident as of the United States, while ensuring that the sizing of

the various pie charts changes only moderately from greatest
to

least. Thus, each

slice of each pie is reasonably visible; for example, the district of Columbia sales are

as easily visible as California sales.

Second, the end user can clearly see the top-selling category for each state via the

color of the inner circle (that is, the hole of the donut). This was accomplished

with the LOD calculations. Thanks to the LOD, we were able to differentiate the

best-selling category from the other two. Since all three categories live in the same

column, you need to use an LOD calculation. You can refer to Chapter 7, Level
of

Detail

Calculations, for more details on LOD calculations. The end result is an information

dense visualization that uses pie charts in a practical, intuitive manner.

[345]

Beyond the Basic Chart Types

This section demonstrated some more creative approaches to show data from

different angles in the same visualization. Next, we will continue to discuss another

advanced visualization, Pareto charts.

Pareto charts

In the late-19th century, an Italian economist named Vilfredo Pareto observed that

80% of the land in Italy was owned by 20% of the people. As he looked around,
he

observed this mathematical phenomenon in many unexpected places. For example,

he noted that 80% of the peas in his garden were produced from 20% of the peapods.

As a result, although Vilfredo Pareto is not a household name, the 80/20 rule has

found its way into the popular vernacular. In the following exercise, we'll discuss

how to build a basic Pareto chart and then how to expand that chart to make it even

more useful.

Using Pareto charts

Of course, not every dataset is going to adhere to the 80/20 rule. Accordingly, the

following exercise considers loan data from a community bank where 80% of the

loan balance is not held by 20% of the bank's customers. Nonetheless, a Pareto chart

can still be a very helpful analytical tool.

Take the following steps:

1. Within the workbook associated with this chapter, navigate
to

the worksheet

entitled Pareto - Basic and select the Bank data source.

2. In the Data pane, change Account # to Dimension. Place Account # on the

Columns shelf and Current Loan Balance on the Rows shelf.

3. Click on the Fit drop-down menu and choose Entire View.

4. Right-click on the Account # pill and select Sort. Set Sort By to Field,

Sort Order to Descending, Field Name to Current Loan Balance, and

Aggregation to Sum:

[346]

Chapter 8

Figure 8.19: Sorting

5. Right-click on SUM(Current Loan Balance) located on the Rows shelf and

select Add Table Calculation. Choose the settings as shown in the following

screenshot:

Figure 8.20: Table Calculation I

[347]

Beyond the Basic Chart Types

6.

7.

Drag an instance of Account # to the Detail shelf.

Click on the Color shelf and set Border to None.

Right-click on the instance of Account # that is on the Columns shelf and

select Measure | Count (Distinct). Note that a single vertical line displays:

8.

Figure 8.21: Pareto displaying a single vertical line

[348]

Chapter 8

9. Once again, right-click on the instance of CNTD(Account #) on the Columns

shelf and select Add Table Calculation. Configure the settings as shown in

the following screenshot:

Figure 8.22: Table Calculation II

10. Click the Analytics tab in the upper left-hand corner of the screen and

perform the following two steps:

1. Drag Constant Line to Table | SUM(Current Loan Balance)

[349]

Beyond the Basic Chart Types

2. In the resulting dialog box, select Constant and set Value
to

0.8 as

shown in the following screenshot:

Figure 8.23: Constant Line

11. Repeat the previous step with the following differences:

1. Drag Constant Line to Table | CNTD(Account #)

2. In the resulting dialog box, select Constant and set Value
to

0.2

12. Drag Current Loan Balance to the Rows shelf. Place it to the right of the

SUM(Current Loan Balance) Δ that is currently on the Rows shelf. Note that the

axis is affected
by

a single loan with a much larger balance than the other loans:

Figure 8.24: Pareto Basic

[350]

Chapter 8

13. Right-click on the Current Loan Balance axis and select Edit Axis. In the

resulting dialog box, set Scale to Logarithmic and close the window. This

addresses the problem of the single large loan affecting the axis and thus

obscuring the view of the other loans.

14. Within the Marks card, select the second instance of SUM(Current Loan

Balance) and set the mark type to Bar:

Figure 8.25: Select Bar

15. Right-click on SUM(Current Loan Balance) on the Rows shelf and select

Dual Axis.

[351]

Beyond the Basic Chart Types

16. Right-click on the % of Total Running Sum
of

Current Loan Balance axis

and select Move Marks Card to Front. Change the colors, tooltips, and

formatting as desired:

Figure 8.26: Pareto chart

There are positive aspects of this visualization to consider. First, the end user can

quickly gain an initial understanding simply by observing both portions of the graph

in conjunction with the values on the axes. The y axis on the left, for example, shows

the percentage of each current loan in regard to the total amount of current loans,

presented in a running sum such that
we

end up at 100%. The y axis on the right side

shows the amount of those same loans. The x axis simply presents
us

with the unique

account IDs or numbers. We can see that in this example, 20% of the accounts hold

almost 60% of the loans and around 50% of the accounts hold 80% of the loans. Those

are the two cross points of the red line and the two reference lines. Furthermore, the

end user can hover the cursor over any part of the curve and see the resulting tooltip.

However, there are a number of ways this visualization could
be

improved. For

example, adding parameters to the two reference lines and rewording the axis labels

to be less verbose would be quick ways to add additional value. Therefore, in the

next exercise, we'll see if
we

can go a little beyond the current visualization.

[352]

Chapter 8

Pareto charts – beyond the basics

In the previous exercise, we had to take a closer look in order to figure out what

percentage of accounts account for how many of the loans. The following steps

will show us how to create a parameter in order to make it easier for
us to

spot the

intersection:

1. Duplicate the sheet from the previous exercise and name the duplicate Pareto

- Improved.

2. Remove both reference lines by selecting them and dragging them out of the

dashboard.

3. Drag SUM(Current Loan Balance) Δ (the table calculation) from the Rows

shelf to the Data pane. When prompted, name the field Running %
of

Balance.

4. Create and display a parameter with the following settings. This parameter

will allow us to set any given value between 0 and 100% and we will be able

to see that area on the Pareto viz in color:

Figure 8.27: Edit Parameter

5. Right-click on the newly created parameter and select Show Parameter.

[353]

Beyond the Basic Chart Types

6. Create the following calculated fields:

Name Code

Running % of

Loans TOTAL(COUNTD([Account #])))

RUNNING_SUM(COUNTD([Account #]) /

IF [Running % of Balance] < [% of Balance] THEN

"Makes up X% of Balance" ELSE "Makes up rest of

Balance" END

Pareto Split

Pareto Split

(label)

IF LOOKUP([Pareto Split], -1) != LOOKUP([Pareto

Split], 0) THEN

MID(STR([Running % of Loans] * 100), 1, 5) + "% of

loans make up

"MID(STR([% of Balance] * 100), 1, 5) +

"% of balance" END

+

7. The configuration that will result in the coloring of a selected area on

the Pareto chart needs some extra attention, therefore we created three

calculations. With the help of those, we can change the color of parts of the

viz and add some explanatory text as well as labels.

8. Select the All portion of the Marks card.

9. Drag Pareto Split to the Detail shelf. Click on the drop-down menu to the

left of the Pareto Split pill on the Marks card and select Color:

Figure 8.28: Pareto Split to Color

[354]

Chapter 8

10. Select the Running % of Balance Δ portion of the Marks card. Set the mark

type to Line.

11. Drag Pareto Split (label)
to

the Label shelf. Note that the expected label does

not display:

Figure 8.29: Pareto chart with no label

12. To address this, first click on the Label shelf and select Allow labels to

overlap other marks.

[355]

Beyond the Basic Chart Types

13. Then, right-click Pareto Split (label) on the Marks card and select Compute

Using | Account #. Now you will see the label:

Figure 8.30: Pareto chart with label

[356]

Chapter 8

14. Click the Analytics tab in the upper left-hand corner of the screen and

perform the following two steps:

1. Drag Reference Line
to

Table | Δ Running % of Balance:

Figure 8.31: Reference line

2. In the resulting dialog box, select % of Balance from the Value drop

down menu and set Label to None:

Figure 8.32: Reference line II

[357]

Beyond the Basic Chart Types

15. Change the colors, tooltips, and formatting as desired:

Figure 8.33: Pareto improved

As you will see in the screenshot, the end user now has a single parameter to slide

(top-right corner) that moves the horizontal reference line on the chart. As the end

user moves the reference line, the text updates
to

display the loan and balance

percentages. The colors also update as the end user adjusts the parameter to vertically

communicate the percentage of loans under consideration.
We

were able
to

achieve

this by creating the calculated fields Pareto Split and Pareto Split (Label), which

perform calculations on the data in the view in combination with the parameter.

The next section discusses a very powerful and still rarely used feature that will

bring your dashboards to the next level! Imagine a street view with houses in

Tableau, where by hovering over each house you will be able to see the rent/buy

price, the size, and maybe other characteristics. You can't imagine how to achieve

this in Tableau? Well, continue reading! We will discuss diverse examples of maps,

images, and even games like chess and darts in the next section.

Custom background images

Custom background images in Tableau open a world of potential. Imagine the ability to

visualize any space. Possibilities encompass sports, health care, engineering, architecture,

interior design, and much, much more. Despite this wealth of potential, background

images in Tableau seem to me to be underutilized. Why? Part of the reason
is
because of

the difficulty of generating datasets that can
be

used with background images.

[358]

Chapter 8

Like the tile grid map discussed before, background images require a grid layout to

pinpoint x and y coordinates. In the following section,
we

will address how to use

Tableau to create a grid that can be superimposed on an image to instantly identify

locations associated with x and y coordinates and relatively quickly produce datasets

that can be accessed by Tableau for visualization purposes.

Creating custom polygons

Geographic areas for which Tableau natively provides polygons include country,

state/province, county, and postcode/ZIP code. This means, for example, that a

filled map can easily be created for the countries of the world. Simply copy a list of

countries and paste that list into Tableau. Next, set the view type in Tableau to Filled

Map and place the country list on the Detail shelf. Tableau will automatically draw

polygons for each of those countries.

Furthermore, special mapping needs may arise that require polygons to be drawn

for areas that are not typically included on maps. For example, an organization may

define sales regions that don't follow usual map boundaries. Lastly, mapping needs

may arise for custom images. A Tableau author may import an image of a basketball

court or football pitch into Tableau and draw polygons
to

represent particular parts

of the playing area. To create a filled map for each of these examples for which

Tableau does not natively provide polygons, custom polygons must be created.

In this section,
we

will start with the basics by drawing a simple square around the

mythical Null Island, which is located at the intersection of the prime meridian and

the equator.

Drawing a square around Null Island

We will progress
to

a more robust example that requires drawing polygons for every

city in Texas. There is an option in Tableau that allows an author to Show Data at

Default Position for unknown locations. Selecting this option will cause Tableau

to set latitude and longitude coordinates of 0 (zero) for all unknown locations, thus

creating a symbol on the world map 1,600 kilometers off the western coast of Africa.

Tableau developers affectionately refer to this area as Null Island.

Null Island even has its own YouTube video: https://youtu.be/

bjvIpI-1w84.

[359]

Beyond the Basic Chart Types

In this exercise, we will draw a square around Null Island:

1. Recreate the following dataset in Excel:

A B C

1 Point Latitude Longitude

2 0 -1 -1

3 1 -1 1

4 2 1 1

5 3 1 -1

6 4 -1 -1

2. Copy and paste the dataset into Tableau. By doing so, a new data source

called Clipboard_... will appear:

Figure 8.34: Null Island coordinates

3. Remove all fields from the worksheet.

[360]

Chapter 8

4. Convert Point
to

a dimension. This can be accomplished by either right

clicking on Point and selecting Convert to Dimension, or
by

dragging it to

the dimensions portion of the Data pane.

5. Double-click on Latitude and Longitude. It doesn't matter in which order,

Tableau will automatically place longitude on the Columns shelf and latitude

on the Rows shelf.

6. Select Map | Background Maps | Streets. You might have to zoom out a bit

to see the land line:

Figure 8.35: Locating Null Island

[361]

Beyond the Basic Chart Types

7. Change the view type
to

Line, and drop Point on the Path shelf. You should

see the following results:

Figure 8.36: Locating Null Island II

8. Go back to your Excel file, switch the rows containing data for points 1 and 2,

and copy the data again into Tableau.

9. Follow Steps 2–7 and observe the resulting image:

Figure 8.37: Incorrectly delineating Null Island

[362]

Chapter 8

This interesting but incorrect image occurred because of incorrect point ordering.

As a rule of thumb, when determining point order, select an order that would make

sense if you were physically drawing the polygon. If you cannot draw the desired

polygon on a sheet of paper using a given point order, neither can Tableau.

It is likely that you found completing this exercise in Tableau relatively easy. The

challenge is in getting the data right, particularly the polygon points. A useful (and

free) tool for generating polygon data can
be

found at

http://powertoolsfortableau.com/tools/drawing-tool. This is one of many tools

created
by

InterWorks that are helpful for addressing common Tableau challenges.

We will use it next to show which books in our library are available and which aren't.

Creating an interactive bookshelf using polygons

I am not very good at drawing myself, but I always loved the fancy polygon

backgrounds I saw on Tableau Public, having shapes of all kinds and being able

to have Tableau interact with them, color them depending on a measure, or

link an action to a specific area. Did you know, for example, that the continents

can be reshaped to build the shape of a chicken? Well, Niccolo Cirone made a

Tableau dashboard out of it, using polygons: https://www.theinformationlab.

co.uk/2016/06/01/polygons-people-polygon-ize-image-tableau/.

Do you want
to

build fancy dashboards too but your drawing skills are mediocre

just like mine? Don't worry! This section will give you the tools
to

achieve it anyway.

InterWorks has developed a tool similar to paint by numbers, the perfect application

to build polygons without drawing too much yourself. You can find it here:

http://powertoolsfortableau.com/tools/drawing-tool. All you need to do is find

an image, upload it
to

the tool, and start drawing along the lines.

For this exercise, I searched for an image of a bookshelf on the internet. You can

do the same and find an image for this exercise or download the image I used,

which can be downloaded here: https://github.com/PacktPublishing/Mastering-Tableau-2021.

1. Open the free drawing tool from InterWorks and upload your image.

[363]

Beyond the Basic Chart Types

2. Now start at the edge of one book
and

click. A red dot will appear. Now
go

to the next edge of the same book and click again. A line will be drawn along

that edge of the book and the coordinates automatically appear in the list at

the bottom left:

Figure 8.38: Drawing tool

3. The last dot of a book should be on top of the first dot, which will finish the

first polygon. The next dot you set somewhere else will get a different shape

number and hence can be distinguished as a different shape by Tableau later

on. And remember, move along the outside of a book to avoid crossing lines.

[364]

Chapter 8

4. When you are done outlining the books, copy the Point Data values (shown

in the bottom left of the preceding screenshot) to Tableau, just like we did

with Null Island, by clicking Ctrl + C and Ctrl + V (use Command for Mac).

5. If you have lots of data points, you can also copy the data to Excel first and

save the file to be used as a data source in Tableau. I did so and in addition,

I added the Name and Available columns. You can also see that each book

has a unique shape ID, the point ID is the order in which you clicked on the

screen, and x and y represent the location on the screen:

Figure 8.39: Excel

[365]

Beyond the Basic Chart Types

6. Next, load the data in Tableau and place X on Columns and Y on Rows. Can

you recognize the bookshelf yet? I only used four books for this exercise:

Figure 8.40: Bookstore

7. Before
we

can add the image to Tableau, we need the coordinates of the

outermost points for the Tableau settings. Simply go back to the drawing tool

and hover over the edges. Note down the x and y coordinates for the four

edges. Either x or y should be 0 in each of the corners:

[366]

Chapter 8

Figure 8.41: Drawing tool

8. Back in Tableau, click on Map | Background Image and select a random one.

In the following popup, define a name and upload the image you used in the

drawing tool. Also fill in the coordinates for the X and Y fields to represent

the edges of the image:

Figure 8.42: Edit Background Image

[367]

Beyond the Basic Chart Types

9. Click on Options and select Always Show Entire Image. Then close this

window:

Figure 8.43: Edit Background Image options

10. Your image should appear on your worksheet now, with matching dots

surrounding the books:

Figure 8.44: Bookshelf with dots

[368]

Chapter 8

11. To create a surrounding line instead of dots, change the mark type to Line

and place Shape Id on Detail and Point Id on Path:

Figure 8.45: Bookshelf with lines

12. To create a polygon, change the mark type to Polygon and set Opacity in the

Color shelf to 0%.

[369]

Beyond the Basic Chart Types

13. In addition, you can add a tooltip with the book name and availability after

placing both fields on the Detail shelf:

Figure 8.46: Edit tooltip

14. If you now hover over the books, you can see the name as well as the

availability:

Figure 8.47: Using a tooltip

[370]

Chapter 8

The best part about polygons is that they fill the whole area. In this example,
no

matter where you hover or click, the complete back of the book is covered because

we drew an area rather than a point or a certain default shape. And this comes with

endless options; imagine a big library where every book is a polygon, and you can

connect live data to the polygon dataset with the up-to-date availability of any book.

Aside from books, you can draw anything. What I have seen most in Tableau are

floor plans, supermarket shelves, office layouts, shapes split into parts… polygons

really allow you to get creative with your visualizations.

But, if you don't have an image at hand and you want to draw something very

specific to your dashboard, you can use paid or free software like Adobe Illustrator

Draw, Sketch, Sketsa SVG Editor, Boxy SVG, Gravit Designer, Vecteezy Editor,

Vectr, Method Draw, Inkpad, iDesign, Affinity Designer, macSVG, Chartist.js, Plain

Pattern, Inkscape, and many others.

Analyzing a game of chess in Tableau

In this exercise,
we

will use Inkscape. But instead of drawing something in one of

the tools, transforming it into polygons, and loading it in Tableau,
we

will create

the code for an SVG file in Tableau, load it in Inkscape to see if it worked, and then

transform it into polygons and load the converted version with x and y coordinates

back into Tableau to analyze a game of chess. By creating an SVG file yourself, you

will be able
to

recognize which are the x and y coordinates Tableau needs and thus

you will always be able to transform SVGs.

Creating an SVG file in Tableau

In this section,
we

will use Tableau to generate the XML required to construct an

SVG file that can
be

opened with the vector graphic tool Inkscape, which is open

source and is thus available free of charge. Visit inkscape.org to download the latest

version. We will also need the Chessboard.png image available on the Packt GitHub

page: https://github.com/PacktPublishing/Mastering-Tableau-2021. Please

download that one as well.

Usually, polygons show their power even more when used in non-linear drawings.

Our chessboard, however, is a good example in this case, because
we

will create

the locations used by Tableau ourselves—creating a square is easier than a more

complex shape because we can work with increments. Note that a grid with 10 rows

and 10 columns is used in the following examples, which of course generates a grid

of 100 cells. This will perform satisfactorily in Inkscape. However, if a large cell count

is required, a professional graphics tool such as Adobe Illustrator may be required.

I tested grids with up
to

10,000 cells and found the performance in Inkscape

unacceptable—however, the same grids performed adequately in Illustrator.

[371]

Beyond the Basic Chart Types

Creating a grid

The following exercise serves multiple purposes. The first purpose is
to

demonstrate

how to use Tableau
to

create a grid. This chapter provides another opportunity

to use data scaffolding, which was discussed in Chapter 4, All About Data – Joins,

Blends, and Data Structures. The difference is that in that chapter, dates were

used for scaffolding purposes whereas in the following section, bins are utilized.

Additionally, this exercise requires many table calculations that will help reinforce

the lessons learned in Chapter 5, Table Calculations. Lastly, this exercise makes use

of data densification, which was discussed in Chapter 6, All About Data – Data

Densification, Cubes, and Big Data.

To get started, take the following steps:

1. Open a new Tableau workbook and name the first sheet Header.

2. Using Excel or a text editor, create a Records dataset. The following two-row

table represents the Records dataset in its entirety:

Figure 8.48: Excel

3. Connect Tableau to the Records dataset:

• For convenience, consider copying the dataset using Ctrl + C and

pasting it directly in Tableau using Ctrl + V.

• Tableau will likely consider Records a measure. Drag Records
to

the

Dimensions portion of the Data pane.

4. Create two parameters. Entitle one Overall Pixel Count and the other Rows

Down/Columns Across. The settings for both are as follows:

• Data type: Integer

• Allowable values: All

[372]

Chapter 8

5. Show both parameters. Set RowsDown/Columns Across
to

10 and Overall

Pixel Count to 1,000:

Figure 8.49: Show parameter

6. Create a calculated field named Concatenate Header with the following code:

<?xml version="1.0" encoding="utf-8"?><svg version="1.1"

id="Squares"

xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

viewBox="0 0 ' +

STR([Overall Pixel Count]) + " " + STR([Overall Pixel Count])+

'"

style="enable-background:new 00 '+ STR([Overall Pixel Count]) +

' ' +

STR([Overall Pixel Count]) + ';" xml:space="preserve">

<style type="text/css"> .st0{fill:none;stroke:#000000;stroke-

miterlimit:10;}

</style>

Note that entering line breaks in the Calculated Field

dialog box may make the results difficult to extract from

Tableau. In other words, remove all line breaks.

7. Now we have created a skeleton or template that will help
us

create

multiple locations in order to draw a grid in Tableau.

8. Place the newly created calculated field on the Text shelf.

[373]

Beyond the Basic Chart Types

9. In the toolbar, choose to fit to Entire View to view the results; you can see

that the parameters fill in STR([Overall Pixel Count]) from Concatenate

Header:

Figure 8.50: Concatenate Header

10. Create a new worksheet named Location Codes.

11. Create the following calculated fields:

Name Code

Rows Down/

Columns Across

[Parameters].[Rows Down/Columns Across]

Which Column?

Which Row?

Grid Size

X

Y

LAST()+1

INDEX()

[Overall Pixel Count]/LOOKUP([Which

Column?],FIRST())

[Overall Pixel Count] - ([Grid Size] * ([Which

Row?]))

[Overall Pixel Count] - ([Grid Size] * ([Which

Column?]-1))

If [Records] = 1 THEN 1 ELSE [Rows Down/Columns

Across] END

If [Records] = 1 THEN 1 ELSE [Rows Down/Columns

Across] END

Index()

'<text transform="matrix(1 0 0 1 ' + STR([X]) + "

" + STR([Y])

Count

Decicount

Location Codes

Concatenate

Locations

+')">' + STR([Location Codes]) + '</text>'

[374]

Chapter 8

12. The created calculated fields will be used in the next steps to create a table of

values, similar to the table of values that we generated in the drawing tool.

Only now, we will do it ourselves and use SVG code instead of longitude and

latitude values.

13. Right-click on Count and select Create | Bins. In the resulting dialog box, set

Size of bins to 1:

Figure 8.51: Count bin

14. Right-click on Decicount and select Create | Bins. In the resulting dialog

box, set Size of bins to 1:

Figure 8.52: Count bin II

[375]

Beyond the Basic Chart Types

15. Place Count (bin), Decicount (bin), Location Codes, X, and Y on the Rows

shelf. Be sure to place those fields in the order listed:

Figure 8.53: Location Codes worksheet

16. If your fields are green (meaning continuous), right-click on each field on the

Rows shelf and set it to Discrete. Then:

1. Right-click on Count (bin)
and

Decicount (bin) and ensure that

Show Missing Values is selected

2. Right-click on Location Codes and select Compute Using | Table

(Down)

3. Set the Compute Using value for X to Count (bin)

4. Set the Compute Using value for Y to Decicount (bin)

17. Place Concatenate Locations on the Text shelf.

18. Right-click on the instance of Concatenate Locations you just placed on the

Text shelf and select Edit Table Calculations.

19. At the top of the resulting dialog box, note that there are four options

under Nested Calculations: Grid Size, Which Column?, Which Row?, and

Location Codes. Set the Compute Using definition for each as follows:

[376]

Chapter 8

Figure 8.54: Table Calculation settings

[377]

Beyond the Basic Chart Types

20. In the toolbar, choose to fit to Fit Width
to

view the results; you can already

see that multiple rows have been created. Those rows will later be used to

draw a grid:

Figure 8.55: Fit width

21. Now, create a new worksheet named Lines.

22. Create the following calculated fields:

Name

H Then V

HLine

Compute Using Setting

Index()

Last()

Index()-1

IF [H Then V] = 1 THEN 0 ELSE

VLine

X1

[Overall Pixel Count] - ([Grid Size] * ([VLine])) END

IF [H Then V] = 2 THEN 0 ELSE

Y1

X2

[Overall Pixel Count] - ([Grid Size] * ([VLine])) END

IF [H Then V] = 1 THEN [Overall Pixel Count] ELSE

[Overall Pixel Count] - ([Grid Size] * ([VLine])) END

IF [H Then V] = 2 THEN [Overall Pixel Count] ELSE

[Overall Pixel Count] - ([Grid Size] * ([VLine])) END
Y2

[378]

Chapter 8

23. Next, place the following fields on the Rows shelf in the following order:

Count (bin), Decicount (bin), H Then V, HLine, VLine, Grid Size, X1, Y1,

X2, and Y2. Note that each should be cast as discrete.

24. Right-click on Count(bin) and Decicount(bin) and set each to Show

Missing Values.

25. Right-click on each of the remaining fields on the Rows shelf and select Edit

Table Calculations. Set the Compute Using definition of each field as shown

in the following table:

Name Nested Calculations

H Then V N/A

HLine N/A

VLine N/A

Compute Using Setting

Count (bin)

Count (bin)

Decicount (bin)

Table (Down)

Decicount (bin)

Count (bin)

Count (bin)

Count (bin)

Decicount (bin)

Grid Size Grid Size

Grid Size Which Column?

X1, Y1, X2, Y2 H Then V

X1, Y1, X2, Y2 Grid Size

X1, Y1, X2, Y2 Which Column?

X1, Y1, X2, Y2 VLine

Note that some of the fields include nested table

calculations. In such cases, the Table Calculation dialog

box will include an extra option at the top entitled Nested

Calculations:

[379]

Beyond the Basic Chart Types

X1, X2, Y1, and Y2 need to be configured for 4 nested calculations.

Start by opening the X1 table calculation and then selecting H Then

V from the Nested Calculations dropdown, and set Compute

Using to Count (bin). Then, in the same window, select Grid Size

from the dropdown and enter the corresponding Compute Using

setting. After all 4 dropdowns have been set, continue with X2 and

do the same.

26. Filter H Then V to display only 1
and

2:

Figure 8.56: Filter

27. Create a calculated field called Concatenate Lines with the following code:

<line class="st0" x1="' + STR([X1]) + '" y1="' + STR([Y1]) +

'" x2="' + STR([X2]) + '" y2="'

+ STR([Y2]) + '"/>

28. This calculation will create a new string by including the fields X1, X2 and

Y1, Y2. By doing so
we

multiply one row of code by as many rows as
we

want, each with a specific combination of X1, X2, Y1, and Y2.

[380]

Chapter 8

29. Place Concatenate Lines on the Text shelf. Your worksheet should look as

follows:

Figure 8.57: Concatenate Lines

30. Export the code from the three worksheets just created.

Exporting the code from the three worksheets can be tricky since

Tableau may try to input additional quotes for string values. I

found the following approach works best:

• Select the Header worksheet.

• Press Ctrl + A to select all the contents of the worksheet.

• Hover the cursor over the selected text in the view and

pause until the tooltip command buttons appear.

• Select the View Data icon at the right-hand side of the

tooltip.

• In the resulting View Data dialog box, select Export All.

• Save the CSV file using the same name as each worksheet;

for instance, the data exported from the Header worksheet

will be named Header.csv.

• Repeat the steps for the remaining worksheets.

31. Open an instance of your favorite text editor and save it as Grid and

LocationCodes.svg.

[381]

Beyond the Basic Chart Types

32. Using Excel, copy the data from Header.csv and paste it into Grid and

LocationCodes.svg. Be sure not to include the header information; include

only the XML code. For example, in the next screenshot, don't copy row 1,

only copy row 2:

Figure 8.58: Excel

33. Using Excel, copy the required data from Location.csv and paste it into Grid

and LocationCodes.svg. The required data only includes the column labeled

Concatenate Locations. Do not include the other columns or the header.

Include only the XML code. For example, in the following screenshot, we

only copy column F:

Figure 8.59: Excel II

34. Using Excel, copy the required data from Lines.csv and paste it into Grid

and LocationCodes.svg. Again, the required data only includes the column

labeled Concatenate Lines. Do not include the other columns or the header,

only the XML code.

35. Lastly, complete the SVG file by entering the </svg> closing tag. The full code

has been added for your convenience on the Generated SVG Code tab:

[382]

Chapter 8

Figure 8.60: Full code

36. Now, open the SVG file in Inkscape (https://inkscape.org/) and observe

the grid:

Figure 8.61: Inkscape II

If for some reason your code does not create a grid or you rather want
to

use the

version that I created, you can find the SVG file together with all the other datasets

on the following GitHub page: https://github.com/PacktPublishing/Mastering

Tableau-2021.

We will cover an example of how to use the grid for a polygon data source in

Tableau in the next exercise.

[383]

Beyond the Basic Chart Types

Using a grid to generate a dataset

Skilled chess players will complete a game in about 40 moves. In chess tournaments,

data is routinely captured for each game, which provides opportunities for data

visualization. In this exercise,
we

will use data from a chess game
to

visualize how

often each square of a chessboard is occupied:

1. Within the workbook associated with this chapter, navigate
to

the worksheet

entitled Chessboard.

2. Download the Chessboard.png pictures from this book's GitHub repository if

you haven't done so yet. Open the SVG file created in the previous exercise in

Inkscape.

If you did not complete the previous exercise, you can

copy the XML code located on the dashboard entitled

Generated SVG Code in the solution workbook

associated with this chapter. Paste that code in a text

editor and save it with an SVG extension, then open the

file with Inkscape.

3. Within Inkscape, press Ctrl + A
to

select all. Group the selection using Ctrl +

G.

4. From the Inkscape menu, select Layer | Layers. The keyboard

shortcut is Shift + Ctrl + L.

5. Within the Layers palette that displays on the right-hand side of the screen,

press the + icon to create a layer. Name the layer Chessboard. Then, create

another layer named Grid:

Figure 8.62: Layers

[384]

Chapter 8

6. Click on any line or number in the view. Right-click on that same line or

number and select Move to layer. Choose the Grid layer.

7. Select File | Import and choose the Chessboard.png image.

8. Make sure that the image is placed on the Chessboard layer so that the

location code numbers are not obscured. Position the chessboard image

such that location code 81 is centered over the top left-hand square of the

chessboard. Since the chessboard is only composed of 64 squares, it will not

encompass all 100 squares the grid provides.

At this point, you can generate a dataset based on how often each location is

occupied. For example, you might note that for one game, position 81 was occupied

for 40 moves, in which case the player may simply have never moved that rook.

However, in another game the position may be occupied for only 10 moves, perhaps

indicating the player performed a castle early in the game.

Visualizing a chess game

In this exercise,
we

will take a look at a dataset generated from a chess game and

discover how to visualize the results based on the work done in the previous

exercises. The following are the steps:

1. Within the workbook associated with this chapter, navigate
to

the worksheet

entitled Chessboard and select the Chessboard data source.

Note:
In

order to follow the next step, you will need to

download the assets associated with this chapter.
To

do

so, simply follow the link to the GitHub repository for

this book: https://github.com/PacktPublishing/

Mastering-Tableau-2021.

2. Right-click on the Chessboard data source and select Edit Data

Source in order to examine the dataset.

3. In the dialog box asking Where is the data file? steer
to

the Chessboard.xlsx

file provided with the assets associated with this chapter.

[385]

Beyond the Basic Chart Types

4. The table named Board Grid contains each location code and the X and

Y coordinates associated with each location code. This dataset was taken

from the Location Codes worksheet created earlier in this chapter. The table

named Squares Occupied contains the fields Location Code and Moves

Occupied. Board Grid and Squares Occupied are connected using a left join

on Location Code:

Figure 8.63: Join

5. On the Chessboard worksheet, select Map | Background Images |

Chessboard.

6. In the resulting dialog box, click Add Image
to
add a background image.

7. Fill out the Add Background Image dialog box as shown:

Figure 8.64: Chessboard background image

[386]

Chapter 8

8. Place the fields X, Y, and Location Code on the Columns, Rows, and Detail

shelves respectively, and the Moves Occupied field on Color and Size:

Figure 8.65: Chessboard background image II

9. Right-click on the X and Y axes and set both to Fixed with a Fixed start value

of 0 and a Fixed end value of 875:

Figure 8.66: Fixed end

10. Edit the Y axis and set it to Reversed. Do not reverse the x axis.

This last step was performed because the data has been

structured to mirror the X and Y coordinate setup that is

the default in most graphic tools. In these, the upper left

hand corner is where X and Y both equal 0.

[387]

Beyond the Basic Chart Types

11. Adjust Color, Size, Shape, and so
on

as desired:

Figure 8.67: Chessboard

In the screenshot, the larger and bluer the square, the more frequently this space was

occupied for a move. The smaller and the redder a square, the less frequently it was

occupied. By hovering over a field, the amount of occupation will show as well.

To recap,
we

started off by creating an SVG file. We did so by creating three different

code types, Header, Location Codes, and Lines, according to the standards of an SVG

file. We then copied those three code pieces into a text editor program and saved it as

an SVG file. Then we downloaded the Inkscape application and opened the SVG file

to check and see the result of our work, a 10-by-10 square field.

[388]

Chapter 8

We added an image of a chessboard
to

Inkscape and aligned the two. Now we could

see which square number will be associated with which chessboard field. Just like in

the bookshelf example, it is necessary
to

identify the shape ID, that is, the chessboard

field ID. Based on the chessboard field IDs, we were able
to

generate a second dataset

containing the number of moves for which a field was occupied. By joining the Board

Grid dataset with the Occupied Moves dataset, we got ourselves a use case. We added

a background image of a chessboard to Tableau and on top of it, we drew squares

and colored as well as sized them depending on the number of moves those fields

were occupied for during the chess games. The numbers are very specific
to

each

game, of course, but by collecting the data for multiple games,
we

would be able

to visually analyze chess strategies and maybe even tell who the better player was.

If you like chess, feel free to try it out and compare the different visual results per

game, or see whether you usually end up with the same pattern, and is this also true

for your opponent?

Talking about games, in the next exercise, we will visualize a dartboard. This exercise

will be shorter than the chess one but also advanced. Follow along with the steps and

learn more about polygons.

Creating polygons on a background image

Utilizing shapes on specific points of a visualization was sufficient for the previous

exercise, but sometimes it may be advantageous to use polygons to outline shapes.

In this section,
we

will utilize polygons on a background image and unlike with the

books, we will fill out the areas such that the background image is not needed (as

much) anymore.

The following are the steps:

1. Within the workbook associated with this chapter, navigate
to

the worksheet

entitled Dashboard - Polygon and select the DartBoard_W_Polygons data

source.

If you have not already done so when completing the

previous exercise, download the images provided

on GitHub. Unzip the contents to a directory of your

choosing.

[389]

Beyond the Basic Chart Types

2. Select Map | Background Images | Dartboard_W_Polygons. In the

Background Images dialog box, select Add Image. Fill out the dialog box as

shown:

Figure 8.68: Dartboard background image

[390]

Chapter 8

3. Create a parameter with the following configuration:

Figure 8.69: Parameter

[391]

Beyond the Basic Chart Types

4. This parameter will
be

used to either switch between player 1: Matthew and

player 2: David or will show the dart hits of both.

5. Display the parameter created in the previous step by right-clicking

on it at the bottom of the Data pane and selecting Show Parameter Control.

6. Create a calculated field called Total Hits with the following code:

[David]+[Matthew]

7. Then, create a calculated field called Case with the following code:

CASE [Select Player]

WHEN 1 THEN SUM([Matthew])

WHEN 2 THEN SUM([David])

WHEN 3 THEN SUM([Total Hits])

END

8. Set the Marks card to Polygon.

9. Survey the Data pane
to

ensure that Point and Shape are both dimensions

(blue color). The other fields are measures:

Figure 8.70: Dimensions and measures

[392]

Chapter 8

10. Place the fields
X, Y,

Point, Shape, and Case on their respective shelves:

Figure 8.71: Dartboard polygon

11. Right-click on each axis and set the Range from 0 to 650:

Figure 8.72: Fixed axis

[393]

Beyond the Basic Chart Types

12. Click on the Color shelf and select Edit Colors. Adjust the color as desired.

One possibility is represented in the following screenshot:

Figure 8.73: Custom Diverging

[394]

Chapter 8

Your final worksheet should look like the following:

Figure 8.74: Final dartboard polygon

The final dashboard shows a dartboard with different colors. Gray color means that

this area has not been hit during the game whereas the redder the color, the more

often this field has been hit. By using the parameter, you can compare Matthew's

score with David's, or you can show the total hits, like in the preceding screenshot.

[395]

Beyond the Basic Chart Types

It is likely that you found completing this exercise in

Tableau relatively easy. The challenge is in getting the data

right, particularly the polygon points. A useful (and free)

tool for generating polygon data can be found at http://

powertoolsfortableau.com/tools/drawing-tool. This is one

of many tools created by InterWorks that are helpful for addressing

common Tableau challenges. We used it in the bookshelf exercise.

You may have noticed that the curved sections of the polygons in this exercise aren't

quite perfect. Look, for example, at the triple ring and double ring areas surrounding

the bullseye; you can see that the area is not 100% even. That's simply the nature of

working with points on a Cartesian grid in Tableau. This means that Tableau is based

on a grid structure, so every curve
we

draw will still be many small lines connecting

dots on a grid layout. The more dots you have and the shorter the lines between

the dots, the more likely you will draw curves evenly. But if you followed along

with the bookshelf exercise, you can imagine that a lot of effort has
to go

into such a

background image. Nevertheless, I believe that polygons are absolutely worth it.

The next topic
is
a little bit different from the rest of this chapter. Have you heard about

Tableau extensions yet? Extensions can help you get functionality into

that Tableau does not offer
by

default. Interested? Continue with the next section!

your dashboard

Tableau extensions

Another very helpful tool when it comes to going "beyond the basic chart types" is

the Tableau Extensions API, which was released to the public in 2018. What does

the Extensions API do? Basically, it allows you
to

use third-party tools directly in

Tableau. Some selected extensions are available here: https://extensiongallery.

tableau.com, and the list is always growing.

Please be aware that Tableau does not provide support or guarantees/security

measures for extensions. Those APIs are built by external parties and should be treated

as such. Check with your IT security team first if you want to use them at work.

Let's have a look at one example from Infotopics—a Sankey chart extension.

[396]

Chapter 8

Using Show me More

In the associated workbook, create a new sheet called Show me More and select the

Coffee Chain dataset. Now please reproduce the following worksheet layout
by

adding Type to Columns, Product Type to Rows, and Profit to the Text shelf:

Figure 8.75: Show me More

We want to utilize a Sankey chart for this worksheet, which is a kind of flow chart

that shows based on the size of flow-lines how much of a given measure and a given

dimension flows into a second given dimension. In this case, we want to know how

much Profit of Regular type products comes from Coffee, Espresso, Herbal Tea, or

Tea, and how much Profit can
be

associated with the Decaf types?

Say you know how to build a Sankey chart using calculated fields, but it is time

consuming. Instead, there is an extension to do so. The following are the steps required

to use the extension and ultimately save us time when building a Sankey chart:

1. In the associated workbook, open a Dashboard tab.

[397]

Beyond the Basic Chart Types

2. Drag the Show me More sheet onto the dashboard. Now also drag the

Extension object onto the dashboard:

Figure 8.76: Extension

3. From Tableau 2021.1, you will see the following pop-up window:

Figure 8.77: Extension Gallery

[398]

Chapter 8

4. In the Extension Gallery search for the Show Me More extension. Click on it

and select Add to Dashboard in the next screen:

Figure 8.78: Show Me More

[399]

Beyond the Basic Chart Types

5. Then, select the Show me More sheet and the Sankey Diagram visualization:

Figure 8.79: Show Me More II

6. After selecting the Sankey diagram, configure the variables as follows:

Figure 8.80: Sankey diagram settings

[400]

Chapter 8

7. Hit the Ok button and voilà, you have your Sankey diagram:

Figure 8.81: Sankey diagram

Besides this Sankey chart, I would highly recommend you have a look at the

extensions library. There are many extensions for multiple different use cases; some

are free, some have to be paid for, but you can also build your own. It is worth taking

a look! The next section will be dedicated to a special extension, which is the most

advertised new feature in Tableau 2021.1, Einstein Discovery.

Einstein Discovery

We have discussed extensions in the previous section, however, one deserves a little

extra attention. But before
we

continue, a bit of a backstory. In August 2019 Tableau

was acquired by Salesforce. Probably most of you know Salesforce and even work

with it, but for all other readers, Salesforce is a cloud-native Customer Relationship

Management (CRM) tool. Next to that, the company also developed an analytics

portion, which allows Salesforce users to analyze data from the CRM system and

other data sources.

[401]

Beyond the Basic Chart Types

Connecting Salesforce to Tableau was possible long before the acquisition, but what's

new in Tableau 2021.1 is that the analytics piece of Salesforce is available
to

be called

into Tableau, as an extension and in calculated fields. The Tableau community is

very excited about this feature because of the built-in machine learning capability

and real-time prediction power. This piece of software is called Einstein Discovery.

In order to make use of Einstein Discovery you need a Salesforce

license and more specifically, the analytics license for Salesforce.

The licensing details can be found here: https://www.

salesforce.com/editions-pricing/crm-analytics/.

Now, to give you an idea what Einstein Discovery can
do

for you, I will walk you

through an imaginary use-case. On a supply chain data dashboard you discover that

shipment time can be improved, but you don't know which factors cause the delays.

In this instance, you might decide to use Einstein Discovery for its analysis capabilities.

First, you would drag the Extensions object on to the dashboard, just like we did

with the Show me More extension. You would then select the Einstein Discovery

item, at which point a browser window will open to ask you
to

log in to Salesforce.

After you have done so, you can select which model you want to use on your Tableau

dashboard. The model (for example, a machine learning model) has to be prepared

in Salesforce beforehand. Then, Einstein Discovery will be a part of your dashboard,

and your worksheet will show the output from the model running in the background

on Salesforce. In our example, the model will more easily be able to find the relevant

variables used on your dashboard that are best suited for predicting the time of

delivery and will recommend actions you can take to improve the shipment time.

A video of the described use-case and another use-case can be

viewed under: https://youtu.be/dMWuy6mVE_o.

Alternatively, you can call a Salesforce model directly in a calculated field. How this

works is described here: https://help.tableau.com/current/pro/desktop/en-us/

einstein_discovery_predictions.htm.

If you want to try out these new features, there is a way to test out the new Einstein

capabilities if you do not have a Salesforce license yet. It is a longer process to set

up but for those of you who do want to try, please check this video for assistance:

https://youtu.be/ZReSwXK0reo.

[402]

Chapter 8

Those are the cornerstones of the bespoke new Einstein features in Tableau 2021.1.

Going into detail on the functionality of the Salesforce platform is unfortunately out

of the scope of this book, but if you have Salesforce in place, I would most certainly

set up the connection and test out running some models. If you do not use Salesforce,

the licensing might change over time, so hopefully we can all run those models

soon. For the time being, don't worry, as
we

will discuss machine learning model

integration in Chapter 15, Programming Tool Integration.

Summary

We began this chapter by considering how to tweak popular visualization types.

Specifically, we fine-tuned a bullet graph, considered a very different approach

for using pie charts in mapping, and ended by tweaking a Pareto chart. Next, we

turned our attention to custom background images, where we considered how
to

build a grid using XML to generate an SVG file to expedite generating data
to

use

with background images. Then,
we

completed the chapter by building polygons on

a background image and had a quick excursion into the world of Tableau extensions

and Einstein Discovery.

There are too many options to put them all in this book but since you are an expert

in replicating by now, I added more sheets with other visualizations to the solutions

workbook for you
to

play with. You will find sheets with bar charts, stacked bar

charts, diverging stacked bar charts, crosstabs, highlight tables, discrete highlight

tables, trend lines, area charts, spark lines, combo charts, dual axis, histograms,

box and whisker plots, scatterplots, filled maps, symbol maps, treemaps, tree bar

charts, Gantt charts, KPI charts, funnel charts, jittered distribution, calendar, bump

charts, slopegraphs, waterfall, target, and bar in bar charts. Always make sure to

use the chart that is most suitable for your data and will add value
to

the story you

are trying
to

tell. If you still need a little bit of help with deciding on the appropriate

visualization technique, I advise you
to

look at the following dashboard published

on Tableau Public: https://public.tableau.com/en-us/gallery/visual-vocabulary.

This dashboard was made to show you which visualization type to use depending

on the data you have.

In the next chapter, we will turn our attention to mapping, where we will consider how

to extend Tableau's native mapping capabilities without ever leaving the interface, as

well as how to extend Tableau's mapping capabilities with other technology.

[403]

9
Mapping

When I conduct Tableau classes and workshops for people who are using Tableau

for the first time, I find that demonstrating mapping is always a big hit, sometimes

resulting in murmurs of appreciation and surprise. People have told me on multiple

occasions that Tableau's mapping capability was the key feature that caused them to

take notice of and consider Tableau's offerings more seriously. Tableau's out-of-the-

box mapping capabilities are powerful and flexible. You may be surprised at how

much you can accomplish without ever leaving the user interface. But these out-of-

the-box capabilities are just the tip of the iceberg. With proper guidance (which I

will attempt to provide in this chapter), you can expand beyond the native mapping

functionality and explore techniques that will greatly enhance your workbooks'functionality and aesthetics.

In this chapter, we will discuss the following topics:

• Extending Tableau's mapping capabilities without leaving Tableau

• Creating custom polygons

• Heatmaps

• Dual axes and map layering

• Extending Tableau mapping with other technology

• Swapping maps

[405]

Mapping

The default mapping capability of Tableau already is a big selling point. Take any

city, region, country, or other geographical location, place it on a Tableau worksheet,

and you get a nice map; add a measure like Sales to the Colour shelf and your map

colors change according to sales figures. In the following first section, we will go a

step further and enhance this capability with the less obvious features Tableau has to

offer, like measuring distances on a map and plotting additional data (for example,

weather data) in the background.

Extending Tableau's mapping capabilities

without leaving Tableau

In our everyday lives, a map can be helpful for better understanding the world

around us. For instance, maps are often used on websites, television, or in printed

media to present demographic information. In such instances, the mapping

requirement is static since the immediate goal does not require movement. Some

businesses only have static mapping requirements—for example, a retail chain might

create a visualization that includes a map
to

better understand sales performance in a

given region. In such cases, movement between locations is not a direct need.

Often, however, a map is needed to navigate from point A to point B. This kind of

mapping requirement is more complicated, because it encompasses static needs

(what restaurant is nearby?), but must also deliver additional information, such as

routes and distances (how can I get to that restaurant?). These dynamic mapping

needs assume that movement is required to fulfill a demand. Many businesses need to

understand routes and mileages, that is,
how to

get from point A to point B and the

distances involved. These dynamic mapping requirements can vary greatly but most

of these needs share at least two things in common: routes and distances.

In the following exercise, we will consider flight routes and associated distances in

Australia. Specifically,
we

will cover how
to

extract longitude and latitude numbers

from Tableau and use that information in conjunction with trigonometry
to

calculate

the mileage between various points. Along the way, we will utilize data blending,

table calculations, mapping, and Level of Detail (LOD) calculations for a robust

exercise that touches on many advanced features.

[406]

Chapter 9

Please take the following steps:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Open the workbook and navigate
to

the Map worksheet.

3. Select Transit Data in the Data pane and double-click on City, then change

City from Detail to Text in the Marks card.

4. In the following screenshot, note that the cities Mackay and Brisbane are the

only cities that display. This issue depends on your country setting, but the

following is an example of an issue that may be encountered. If you see it,

click on 14 unknown:

Figure 9.1: Australia

Caveat: If you are in the United States, Melbourne in

Florida will display. If you are in another country, you

may get different results.

[407]

Mapping

5. Select Edit Locations...:

Figure 9.2: Edit Locations…

6. Change Country/Region to Fixed | Australia:

Figure 9.3: Select Australia

[408]

Chapter 9

Australia is now displayed on the map:

Figure 9.4: Australia

7. Navigate to the Miles worksheet and place the Trip ID and City fields on the

Rows shelf, and Latitude (generated) and Longitude (generated) on the Text

shelf, as seen in the following screenshot:

Figure 9.5: Distances

[409]

Mapping

Your screen should look like the preceding screenshot. Note that the

crosstab is pretty cluttered. Ideally, Latitude and Longitude should display

in separate columns. Unfortunately,
we

can't do this with the generated

latitude and longitude because, although they are listed under the Measures

portion of the Data pane, Tableau doesn't treat them as measures. In order

to complete the exercise,
we

will need to be able to access the latitude and

longitude coordinates from a separate data source.

8. To do this, begin by clicking on the Map worksheet tab.

9. Right-click on the visualization and select View Data. Copy all the data in

the Summary tab of the resulting dialog box, by selecting every cell and

clicking Copy.

10. Close the dialog box and press Ctrl + V (Command + V for Mac) to create

a new dataset in Tableau. Rename
the

resulting dataset (now called

Clipboard_[timestamp]) to Lat Long. Also name the worksheet Lat Long.

11. In the Lat Long worksheet, rename Latitude (generated) and Longitude

(generated) to Lat and Long.

12. Return to the Miles worksheet and, within the Transit Data data source,

create two calculated fields: one called LAT, containing the code

AVG([Lat Long].[Lat]), and one called LONG, containing the code

AVG([Lat Long].[Long]).

13. Remove Latitude (generated) and Longitude (generated) from Text on the

Marks card.

14. Place Measure Names on the Columns shelf and the Filter shelf and select

Lat and Long. Also, place Measure Values on the Text shelf. Now,
we

have

the ability
to

treat latitude and longitude as true measures.

15. Create two more calculated fields:
one

called Lookup Lat, containing the

code Lookup(Lat,-1), and one called Lookup Long, containing the code

Lookup(Long, -1). Place the two newly created calculated fields on the

Measure Values shelf.

16. Create a calculated field named Great Circle Distance Formula with the

following code:

3959 * ACOS (

SIN(RADIANS([Lat])) * SIN(RADIANS([Lookup Lat]))+

COS(RADIANS([Lat])) * COS(RADIANS([Lookup Lat])) *

COS(RADIANS([Lookup Long]) - RADIANS([Long])))

[410]

Chapter 9

For kilometers, change 3959 to 6378. This number

represents the radius of the Earth and it needs to be

updated from miles to kilometers.

17. Place the newly created calculated field Great Circle Distance Formula on

the Measure Values shelf.

18. Change the calculation for Great Circle Distance Formula so that it

computes using City by clicking on the field itself and selecting Compute

Using: City.

19. Adjust the following calculations accordingly:

Name Code

Lookup Lat

Lookup Long

IFNULL(LOOKUP(Lat,-1), LOOKUP(Lat,1))IFNULL(LOOKUP(Long,-1), LOOKUP(Long,1))

20. Select the Map worksheet and set the Marks type to Line.

21. Place Trip ID on the Detail shelf.

22. Drag City
to

the bottom of the Marks card view.

23. Place the Great Circle Distance Formula field on the Tooltip shelf. Double

check that it is still set to Compute Using: City:

Figure 9.6: Australia distances

[411]

Mapping

24. Create two more calculated fields,
one

called Source City, containing the

following code:

{ FIXED [Trip ID]:MIN(IF [Dest/Orig]='Source' THEN City END)}

The second calculated field should be called Destination City and contain

the following code:

{ FIXED [Trip ID]:MIN(IF [Dest/Orig]='Destination' THEN City

END)}

25. Use the newly created calculated fields to format as desired. In particular,

notice that in the following screenshot, Source City is on the Colour shelf

and Destination City is used on the Tooltip shelf:

Figure 9.7: Flights

To sum
up

what we have done here, initially
we

added a dataset to Tableau. We then

needed to copy the latitudes and longitudes per city out of the workbook in order to

create a second data source, which we then used as a blend to look up latitude and

longitude values. With the help of LOD calculations,
we

could identify the source

and destination cities and lastly, we were able to measure the distance between

cities by using the so-called great circle formula. Each color in the viz represents

a starting city; for example, all green lines measure distances from Perth to other

cities. By hovering over a line, the source and destination city, as well as the distance

measured in miles (or kilometers), will show.

[412]

Chapter 9

If you wanted to analyze shipment routes
or

any other distances between two points,

you now know exactly how to visualize this kind of data in Tableau. Another, similar

viz can be seen at the following address, which is definitely worth checking out (try

to replicate it!): https://www.tableau.com/solutions/workbook/big-data-more

common-now-ever.

In the next section,
we

will discuss Tableau's map and polygon functionalities.

Creating custom polygons

Geographic areas for which Tableau natively provides polygons include worldwide

airport codes, cities, countries, regions, territories, states, provinces, and some

postcodes and second-level administrative districts (county-equivalents): U.S. area

codes, Core-Based Statistical Areas (CBSA), Metropolitan Statistical Areas (MSA),

congressional districts, and ZIP codes. This means, for example, that a filled map

can easily be created for the countries of the world. Simply copy a list of the world's

countries (Ctrl + C) and paste that list into Tableau
by

pressing Ctrl + V while your

mouse is located on an empty worksheet in Tableau Desktop. A new data source will

be added at the top right under Data. Next, set the View type in Tableau
to

Filled

Map and place the country list on the Detail shelf. Tableau will automatically draw

polygons for each of those data points:

Figure 9.8: Native polygons

[413]

Mapping

There are some geographic types for which Tableau will not automatically provide

polygons. These include telephone area codes. For these geographic types, Tableau

will draw a symbol map but not a filled map, like so:

Figure 9.9: Filled map failed

Even though the filled map Marks type is chosen, Tableau is not able to fill the map

because the outlines of those areas are unknown to Tableau. Furthermore, special

mapping needs may arise that require polygons to be drawn for areas that are not

typically included on maps. For example,
an

organization may define sales regions

that don't follow usual map boundaries. Or, a Tableau author may import an image

of a basketball court or football pitch into Tableau and draw polygons
to

represent

particular parts of the playing area. An alternative, which we discussed in more detail

in Chapter 8, Beyond the Basic Chart Types, could be mapping bookshelves in a store.

But other than drawing polygons yourself, there are also file types that support

drawing polygons. One of those file types is
.shp. In the next exercise, we will make

use of such a file and create polygons for Texas.

[414]

Chapter 9

Polygons for Texas

We got to know polygons in Chapter 8, Beyond the Basic Chart Types, already. We even

drew them ourselves. But other than drawing polygons, in some cases, Tableau can

create them. For example, Tableau natively provides polygons for several shape

files. In the next exercise, we will use a .shp file to show the population of Texas as

polygons on a map of Texas:

1. Open the Texas Department
of

Transportation page: https://gis-txdot.

opendata.arcgis.com/datasets/txdot-city-boundaries.

2. Use the Download dropdown and download Shapefile:

Figure 9.10: Texas data

In your download directory, you should find multiple files:

Figure 9.11: Texas city boundaries

[415]

Mapping

If you were
to

open a .shp file in a text editor, you would see the following:

Figure 9.12: .shp in a text editor

3. Luckily, Tableau has native capabilities
to

read .shp files. In the workbook

associated with this chapter, navigate to the Texas_Cities worksheet and

select Data | New Data Source | Text File.

4. Navigate to your download directory or the path where you saved the Texas

shape files and select the .shp file:

Figure 9.13: Loading spatial file

[416]

Chapter 9

5. In the next screenshot, you can see how Tableau was able
to

read the .shp file

and how it created an additional field called Geometry that indicates that
we

are looking at polygons and multipolygons in this file:

Figure 9.14: Geometry

6. Open a new worksheet and drag Geometry onto the empty canvas:

Figure 9.15: Adding geometry

[417]

Mapping

7. And look at that! Tableau created polygons around areas in Texas right

away:

Figure 9.16: Texas polygons

8. Feel free to adjust the formatting via Map | Background Maps | Dark.

9. Put the City Nm field on Detail and Pop2010 on Colour in the Marks card.

(The color used in Figure 9.17 is Temperature Diverging.)

10. Your dashboard should look as follows:

[418]

Chapter 9

Figure 9.17: Texas city boundaries

You can see that
we

have a nice dark map now with polygons on top. The polygons

define the area per city name (using the field City Nm) as published by the

government of Texas. By placing the measure of the population in 2010 (using the

field Pop2010) on the Colour shelf,
we

can also see that the areas with red polygons

had the highest number of inhabitants in 2010 and dark green the least.

You might not like the polygons or maybe you are wondering if a spatial file like a

.shp will only allow you to use polygons. Luckily, the answer is
we

can change the

map, no matter whether it's a spatial file or not. I really like heatmaps
to

display

geographical density, so let's use them in the next section.

[419]

Mapping

Heatmaps

I want to share a feature with you that was part of an earlier Tableau release and

has proven
to be

very useful when working with geographical data. It is the mark

type Density with which you can create heatmaps. This new feature is not limited to

maps; you can also use it for any other type of chart. However, it is most efficient for

dense data where patterns cannot be spotted easily.

The following steps will illustrate an example of creating a heatmap:

1. Open the Citylimits tab in the workbook related
to

this chapter. If you did

not complete the previous exercise, please open the Citylimits tab from the

solutions workbook of this chapter.

2. Duplicate the worksheet, and call it City Limits (2).

3. Set the Marks card type to Density:

Figure 9.18: Texas city density

[420]

Chapter 9

4. Click on Colour in the Marks card and select any color you like. I chose

Density Gold Dark.

5. Decrease Size in the Marks card by dragging the slider to the left. Drag until

you like the size of the circles on your map:

Figure 9.19: Heatmap

Heatmaps can show you a spatial concentration and are perfect for very dense

datasets. In the preceding figure, you can see that we lost the surroundings of the

city, the polygon structure; however,
we

can still see the densely populated areas

and now every city has the same size, making it easier to compare smaller with

bigger geographic locations. And we were able to prove that a spatial file does not

need to be used with polygons.

In the Tableau 2020.4 release, another feature was added: map layers. What it is and

what it is used for will be described in the next section.

[421]

Mapping

Dual axes and layering maps

You might recall that on many different occasions throughout the previous chapters,

we used dual axes. A dual axes visualization can also be achieved with maps, and,

even better, since the Tableau 2020.4 release, maps can be layered. We simply put

another layer with the same structure (which in this case is a map), and per layer,
we

can display different data.

We will look at two exercises, the first one being about the use of dual axes and the

second one will include map layers.

Using dual axes

Let's get started:

1. First,
we

need a dataset. I simply created one in Excel myself; feel free

to create your own, copy what you see in the following screenshot, or

download the file from this book's GitHub repository (https://github.com/

PacktPublishing/Mastering-Tableau-2021). Name the file freight:

Figure 9.20: Excel

2. Connect the new dataset
to

Tableau and open a new worksheet called Dual

axis map.

[422]

Chapter 9

3. Double-click on Origin Country and the following map will appear:

Figure 9.21: Dual-axis map

4. Change the Mark card type to a filled map and drag Goods onto the Colour

shelf:

Figure 9.22: Dual-axis map
II

[423]

Mapping

5. Click on Longitude in the Columns shelf, press Ctrl (or Command on Mac),

and simultaneously move the field to its right. You should have copied a

second copy of the Longitude field to the Columns shelf:

Figure 9.23: Copying Longitude

6. You can also see that the Marks card maintains two layers now, plus an

additional All layer, just like dual axes on a bar chart would:

Figure 9.24: Marks card

[424]

Chapter 9

7. On the bottom layer, replace Goods with Origin on the Colour shelf and see

how the second map now shows colored dots representing cities:

Figure 9.25: Dual-axis map

8. Click on the right Longitude field
in

the Columns shelf and select Dual Axis.

You created your first layered map! Each country's color represents the types of

goods they ship. The dots indicate the cities for train, ship, plane, or truck transport:

Figure 9.26: Dual-axis map

[425]

Mapping

After completing the first basic exercise, we will move on
to

a more complex one,

using the newer map layering functionality.

Adding map layers

We want to visualize the transport routes with a line from the start to the destination

city. We also want
to
show the time to delivery as well as the weight of the shipment.

We will continue using the freight dataset from before; we just need to do some

adjustments:

1. The freight dataset does not have longitudes or latitudes, which are crucial

for some of Tableau's spatial calculated fields, like MAKEPOINT, which we

will need later on. Open Google Maps and type in a city from the dataset,

for example, Lisbon. In the URL, you will be able to find the longitude and

latitude:

Figure 9.27: Google Maps

[426]

Chapter 9

2. Copy them and add them
to

a separate Excel sheet, as shown in the following

screenshot, and call it latlong:

Figure 9.28: Excel

[427]

Mapping

3. We needed to use a new Excel sheet because we have to create a spatial field

for destinations as well as the origin. Since some cities are an origin as well

as a destination, we will create two inner joins; both times the initial freight

Excel sheet will connect to the recently created latlong Excel sheet:

Figure 9.29: Join

4. The only difference will be that the first join is made on Origin and City and

the second on Destination and City. Rename the latlong data sources by

double-clicking on the name, to avoid confusion:

Figure 9.30: Join II

5. Open a new workbook and name it 4-layer map. Create a calculated field

called Line, with the following code:

MAKELINE(MAKEPOINT([Lat (Origin)], [Long (Origin)]),

MAKEPOINT([Lat (Destination)], [Long (Destination)]))

[428]

Chapter 9

6. The Tableau description shows that to make a point based on a spatial

location, Tableau needs the longitude and latitude, or coordinates.

Figure 9.31: MAKEPOINT

7. Create another calculated field called Days to delivery, with the following

code:

[Delivered]-[Ordered]

8. Double-click on City from the Origin file and a map will appear, but you will

encounter 12 unknown. Click on the error and then Edit Locations…:

Figure 9.32: Unknown cities

[429]

Mapping

9. You will see that Tableau uses United Kingdom (might be different for you)

as a default country to find every city, but Tableau is unsuccessful because

we have cities all over Europe in our dataset. Instead of a Fixed location, use

the From field option and select Origin Country. Now this field will be used

as a country per city in our dataset:

Figure 9.33: Origin Country

[430]

Chapter 9

10. Tableau automatically adds Origin Country
to

the view on the Detail shelf

and displays the cities correctly now. You can also achieve the previous step

by placing Origin Country on the Detail shelf directly:

Figure 9.34: Origin cities

11. Since one of our goals is to draw lines between the Origin and Destination

cities, it only makes sense to also add Destination, correct? Double-click on

Destination to add it to the visualization.

[431]

Mapping

12. We now have all Origin and Destination cities in our view, but we won't

be able to distinguish between them because they are all on the same layer.

Therefore, drag the just-added Destination field from the Detail shelf to the

upper-left corner of your view, until the Add a Marks Layer sign appears:

Figure 9.35: Freight II

13. You will now see that the Marks card shows two layers:

Figure 9.36: Marks

[432]

Chapter 9

14. Rename the Destination layer
to

Destination Country
by

double-clicking on

the name.

15. Add another layer and add Days to Delivery to Colour and Line to Detail.

Name this layer Line and select the Automatic type from the Marks card

dropdown:

Figure 9.37: Marks layer

[433]

Mapping

16. Add another layer called City (2), and add City (Destination) to Detail and

Destination Country to Detail. Select the Automatic type from the Marks

card dropdown:

Figure 9.38: Marks layer

[434]

Chapter 9

17. Lastly,
go

back
to

the Destination Country layer, change Destination

Country
to

Detail, and put Weight on Colour. Select Map from the Marks

card dropdown:

Figure 9.39: Marks layer

[435]

Mapping

18. Sort the layers in the following order: Line, City, City (2), Destination

Country. Your worksheet should now look as follows:

Figure 9.40: Map

19. In order to make the viz a bit easier to interpret, put Origin on the Filters

shelf and select only a few origins
of

your choosing.

20. And to distinguish the Origin from the Destination, open the City and

City (2) map layers and change City and City (Destination) respectively

from Detail to Shape. Select one shape for the Origin and another for the

Destination, for example, filled circles for Origin and crosses for Destination.

You can also give the shapes color
by

clicking on the Colour shelf:

[436]

Chapter 9

Figure 9.41: Final layered map

Now, let's look at what we have created. We can see that goods are being transported

from every circle to a cross city. Both cities are connected by a yellow-to-red range

colored line. More yellow-toned means that the delivery was fast, more red

toned means that the delivery took longer. The destination country is colored in a

turquoise-to-dark blue color range. The darker the color, the more weight has been

transported there. We can easily spot that Italy received the heaviest transport,

coming from Istanbul and being delivered within 6 days. The slowest delivery was

from Budapest to Warsaw, which took 26 days.

I hope that this exercise showed you the benefits of layered maps. Each layer allows

you to use Colour, Shape, Size, Label, and other Marks in its unique way, opening

new paths for your analysis. But if this is not enough, in the next section
we

will
go

even further and use external technology for maps in Tableau.

[437]

Mapping

Extending Tableau mapping with other

technology

Next,
we

will consider how to extend Tableau's mapping capabilities with other

tools. Tableau developers were careful to create a mapping interface that is readily

extensible. Some areas of this extensibility, such as connecting
to

a WebMap Service

(WMS) server, are available directly from the interface.

Using custom maps with a Web Map Service

The easiest way to bring a custom map into Tableau is directly from Desktop. We

need a properly formatted URL that points to a WMS server. Tableau Desktop can

connect to any WMS server that supports the WMS 1.0.0, 1.1.0, or 1.1.1 standards.

Agood place to find a list
of

such URLs is http://directory.

spatineo.com, which provides information for a ton of different

mapping services.

The following exercise was inspired by Jeffrey A. Shaffer's article Building weather

radar in Tableau in under 1 minute, which can be accessed here: https://www.

dataplusscience.com/TableauWeatherRadar.html. However,
we

will include a

different map and our source is the NASA earth observation data (https://neo.sci.

gsfc.nasa.gov/). In this exercise, we will see that by plotting additional data—inthe form of background images—underneath your dataset, you will be able to make

better decisions for your business. For example, if your sales figures are dependent

on good (or bad) weather or your production is at risk of close-by wildfires, you will

be able to see this all in one Tableau dashboard:

1. Open the workbook associated with this chapter and navigate to the WMS

Server worksheet via the desktop.

2. Select the Superstore data source.

3. Place State on the Detail shelf.

[438]

Chapter 9

4. Copy the http://neowms.sci.gsfc.nasa.gov/wms/wms? URL, then in Tableau,

navigate to Map | Background Maps | AddWMS Map. Paste the URL and

click OK:

Figure 9.42: Add WMSMap

5. In the Marks card, set the view type to Map.

6. Click on the Colour shelf to turn on Border, set the color to white, and set

Opacity to 0%:

Figure 9.43: Active fires map

[439]

Mapping

7. You can now see the active fires from the last month. But, by clicking on Map

| Map Layers, more options will appear. Take a look at the left-hand side

on your screen and select any other info domain you are interested in; how

about Average Land Surface Temperature?

Figure 9.44: Land surface temperature map

Or Cloud Fraction (don't forget
to

first deselect a map before you select a

new one):

Figure 9.45: Cloud Fraction map

[440]

Chapter 9

This feature will give you endless ways to analyze data related to geographic

locations. Let's say you own an online store. You could check if the sale of specific

products is higher in specific areas, for example, umbrellas in rainy areas and sun

protection in hotter regions. You can then continue to analyze if the market is already

satisfied or if it makes sense to invest in marketing for those regions.
Or

maybe

you want to move stock to regions where more sales are expected due to a weather

change. Feel free to share your findings on Tableau Public and make sure
to

use the

tag #MasteringTableau.

may be

Before
we

proceed, here's a note on tiling and zooming. Since high-resolution maps

many gigabytes, it's impractical
to

require you to download an entire map

in order to zoom in on one small area. Tiles solve this problem by enabling multiple

zoom levels. A zoom level of 0 results in a single tile (often a 256 x 256-pixel PNG

image) that displays the entire map. As the zoom levels increase, the number of

map tiles increases exponentially. Also, a proportionally smaller section of the map

displays; that is, as the zoom level increases, the area of the entire map that displays

decreases and the total number of tiles required to fill the display remains constant.

This helps control the amount of data downloaded at any given time.

Exploring Mapbox

Mapbox provides custom maps and integrates natively with Tableau. To learn how

to build your own custom maps, you can check out their website here:

https://www.mapbox.com/. Starting with Tableau 2019.3, multiple Mapbox styles are

even available by default:

Figure 9.46: Background maps

Next to that, Mapbox itself provides an extended mapping service with an

accompanying web application that enables users to customize maps. This

customizability encompasses fonts, colors, background images, and more. Mapbox

provides basic services free of charge but,
of

course, more maps and greater

bandwidth needs will require an upgrade with an accompanying fee.

[441]

Mapping

This exercise will show you how to connect to Mapbox:

1. Navigate to https://www.mapbox.com and create an account.

2. After completing the signup and logging into Mapbox, click on the Studio

link:

Figure 9.47: Mapbox

3. Click New Style and start creating a map. I chose Monochrome | Dark |

Customize Monochrome.

4. The Mapbox editor should open. Adjust the map based on your needs:

Figure 9.48: Mapbox integration

[442]

Chapter 9

5. Click Share (top-right corner) once you are done. Select Third Party |

Tableau and copy the URL:

Figure 9.49: Mapbox integration

6. In the workbook associated with this chapter, navigate to the Mapbox

Classic worksheet and select Map | Background Maps | Add Mapbox Map.

7. Add a Style Name (I used MasteringTableau) and copy the URL. Click OK.

[443]

Mapping

8. Select the Superstore data source, double-click on State, and select

the MasteringTableau map style via the Map | Background Maps |

MasteringTableau path:

Figure 9.50: Background Maps

As you can see, Tableau makes use of the map we previously created in Mapbox.

Great! So, this means you can customize your map just the way you like it.

A manual on how to create custom maps and everything else you need to know

about Mapbox can be found here: https://docs.mapbox.com/studio-manual/guides/.

Swapping maps

We will now create a dashboard that allows the end user to choose between the

various maps we just discussed. The technique used for this exercise is known as

sheet swapping. However, a deeper dive into this technique is presented in Chapter

11, Visualization Best Practices and Dashboard Design.

[444]

Chapter 9

Let's look at the necessary steps:

1. Navigate to the sheet MapSwap in the workbook associated with this

chapter. Double-click on State Set the Marks card view to Map, click on

Colour, set Opacity to 0%, and lastly set Border to Automatic:

Figure 9.51: Colour

2. Duplicate the MapSwap sheet twice:

Figure 9.52: Duplicate MapSwap sheet

3. Select the MapSwap sheet and navigate to Map | Background Maps |

Normal

[445]

Mapping

4. Select the MapSwap (2) sheet and navigate to Map | Background Maps |

Dark

5. Select the MapSwap (3) sheet and navigate to Map | Background Maps |

Satellite.

6. Create a parameter called Show Sheet like so:

Figure 9.53: Parameter

7. Right-click on the parameter in the Data pane and select Show Parameter

Control.

8. Create a calculated field called Show Sheet Filter like the following:

[Show Sheet]

9. Select the MapSwap worksheet and place Show Sheet Filter on the Filters

shelf. Select Select from list and Normal:

[446]

Chapter 9

Figure 9.54: Sheet filter

10. Select the MapSwap (2) worksheet and place Show Sheet Filter on the

Filters shelf. This time select Custom value list and type Dark:

Figure 9.55: Custom value list

[447]

Mapping

11. Repeat the previous step on the MapSwap (3) sheet and type Satellite.

12. Create a dashboard and call it db_MapSwap. Place a vertical container on

the dashboard.

13. Place all three MapSwap sheets in the vertical container, and hide their titles.

14. Select a different map style and see how your map changes:

Figure 9.56: Swap map

You might have seen a feature like dark/light or day/night background on your

own computer or maybe on websites like YouTube or IDEs like PyCharm. With

the MapSwap function, you can now offer the same comfort
to

your users on your

Tableau dashboards.

Summary

In this chapter, we explored how to extend Tableau's mapping capabilities without

leaving the interface by capturing Tableau-generated latitude and longitude data and

how to look this up on Google. We created polygons and a heatmap for Texas based

on a .shp file as well as a dashboard with a dual map axis and another dashboard

with 4 map layers. Next,
we

explored various ways
to

extend Tableau's mapping

using other technology. We connected to a WMS server and then explored the

Mapbox offering, followed by an excursion to the world of polygons.

In the next chapter,
we

will explore using Tableau for presentations. Specifically,

we will look at how to get the best images out of Tableau, how to effectively and

efficiently use Tableau with PowerPoint, and how to use Tableau directly for

presentations without relying on third-party tools.

[448]

10
Tableau for Presentations

All Tableau authors are essentially storytellers. Analyzing data is more than just

puzzle- solving; it is a search for a story that will make a difference. Topics can range

from Airbnb to the Zika virus, and may be pleasantly diverting or life-changing, but

they all serve a common need:
to

tell a story. This chapter is dedicated to helping you

stock your toolkit of knowledge with ideas and methods for using Tableau
to
make

presentations that engage, delight, and make a difference.

This chapter will explore the following presentation-centric topics:

• Getting the best images out of Tableau

• From Tableau to PowerPoint

• Embedding Tableau in PowerPoint

• Animating Tableau

• Story points and dashboards for presentations

• Presentation resources

For the content of this chapter, I'm particularly indebted to Robert Mundigl and

Cathy Bridges.

[449]

Tableau for Presentations

Getting the best images out of Tableau

In this section,
we

will review options for exporting an image from Tableau into

other applications and discuss the pros and cons of each method. We'll begin by

surveying various screenshot applications and then we will consider methods that

are available directly in Tableau.

Perhaps the easiest way to capture an image in Tableau is to use a screen capture

tool. The following are some screen capture tools that won't impact your pocketbook:

• Snipping Tool is installed by default with Windows and, although a very

simple tool with few bells and whistles, is easy to use and effective.

• Greenshot is an open-source screen capture tool with many features similar

to SnagIt. Visit http://getgreenshot.org/ to download the application and

learn more.

• Microsoft Office OneNote includes a screen capture feature. If you have

OneNote installed with Windows 7 or earlier, simply press Windows + S
to

activate the screen capture. If you are on Windows 8 or 10, press Windows +

N and then the S key for activation.

• Grab is a screen capture utility natively available on macOS. Grab is located

in the Utilities folder under Applications. You can also access it via the

following shortcuts: Shift + Command + 3 for a screenshot, Shift + Command +

4 for a partial screenshot, and Shift + Command + 5 for a timer screenshot.

Now that
we

have covered the tools and methods for image capturing, let us have a

look into the native capabilities that ship with Tableau.

Tableau's native export capabilities

One of the shortcomings of screen capture tools is that they are limited to raster

images. Raster images are often sufficient for documentation or a PowerPoint

presentation, but are subject to pixilation if enlarged. Vector images, on the other

hand, do not pixelate when enlarged and may therefore provide sharper image

quality. Natively, Tableau includes both raster and vector export options. These

options are discussed in the following section.

[450]

Chapter 10

Tableau can export images in three formats, accessible via Worksheet | Export | Image:

• JPEG is a raster image format that is good for high resolution images such as

photographs, but does not work very well for low color images, such as those

typically deployed in Tableau. Export an image from Tableau in JPEG format

and then zoom in close. Note that the white space (especially white space

surrounding text) includes stray pixels of various colors. These are known as

artifacts or noise. Although these pixels are not visible unless zoomed in, the

overall impact on an exported image is that it can look blurry. Thus, there is

rarely, if ever, a reason to export to JPEG from Tableau.

• Like JPEG images, PNG images are raster. The advantage of the PNG format

is that it works well with both high color images such as photographs and

low color images like those typically used in Tableau. Export an image from

Tableau in PNG format and zoom in to observe that, although pixilation

occurs, the white space comprises only white. Unlike JPEG images, no

artifacts or noise appear. PNG should be considered the format of choice

when using a raster image.

• BMP is a raster image format that looks quite nice but is uncompressed and

can thus result in large image files. Today, the BMP format is considered

antiquated and should typically be avoided.

I suggest you try all three of them. Luckily, Tableau also provides us with a native

feature to export to a PDF as a vector image, as well as exporting to PowerPoint

directly. In the next section,
we

will take a look at the PowerPoint export feature and

some variations to it.

From Tableau to PowerPoint

PowerPoint is ubiquitous. Some may argue that other presentation tools such

as Prezi are superior, but for many organizations (probably the vast majority)

PowerPoint remains the software of choice.

Prezi is a tool that can be accessed via the web. Typically, you

won't see classical slides but an interactive, moving presentation.

Templates are available online and they offer free as well as paid

tiers. You can check it out here: www.prezi.com.

[451]

Tableau for Presentations

As such, it's important
to

integrate Tableau and PowerPoint efficiently and

effectively. Starting from Tableau Desktop version 2019.1, it is possible to export

your dashboard directly to PowerPoint.
You

will find the option under File | Export

As PowerPoint:

Figure 10.1: Export as PowerPoint

After making this selection, you will be asked whether you want to export the

current view or a selection of sheets from the workbook:

Figure 10.2: Export PowerPoint

Try both options to see how the native Tableau export functionality appears in

PowerPoint. If you want
to

put in a little extra effort, there are options to create a

PowerPoint implementation of Tableau via a different route. These alternatives

might present added value for you. The following exercises explore the various

techniques for doing so.

[452]

Chapter 10

Creating a template

For this first PowerPoint-centric exercise, you will create a template that will be

utilized in future exercises. It will include common PowerPoint elements such as a

header and a footer. The size of the template will be 1200 x 900, which adheres
to

the

4:3 aspect ratio typically used for PowerPoint presentations. Of course, other sizes

may be targeted, but the aspect ratio should always be kept in mind. Let us look at

the following steps:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Create a new worksheet and select the Superstore dataset.

3. Name the worksheet Header.

4. Place Sales on the Color shelf in the Marks card.

5. Click on Color in the Marks card, click Edit Colors..., and then select the gray

color palette and set Opacity to 50%:

Figure 10.3: Opacity

[453]

Tableau for Presentations

6. Duplicate the Header worksheet and name the duplicate Footer1.

7. Click on Color in the Marks card, click Edit Colors..., and then select the blue

color palette:

Figure 10.4: Color palette

8. Duplicate the Footer1 worksheet and name the duplicate Footer2.

9. Click on Color in the Marks card, click Edit Colors..., and then select the gray

color palette and set Opacity to 50%.

10. Create a new dashboard called Template.

11. Within the Dashboard pane, set the size to 1200 x 900:

[454]

Chapter 10

Figure 10.5: Custom size the dashboard

12. Display the dashboard title via Dashboard | Show Title.

13. Double-click on the title. In the resulting dialog box, left-justify the text if

needed.

14. In the Dashboard pane, make sure that Tiled is selected. This way, you make

sure that the single worksheets stay in place and don't overlap one another:

Figure 10.6: Tiled

[455]

Tableau for Presentations

15. From the Dashboard pane, drag Blank from the Objects panel and place

it on the left-hand side of the dashboard. Be careful to place it so that it

stretches from the top to the bottom of the dashboard, as shown in the

following screenshot:

Figure 10.7: Adding a blank space

16. Repeat the previous step for the right-hand side, the middle, and the bottom

of the dashboard. When creating
the

bottom margin, be sure
to

position the

object so that it stretches from the far right
to

the far left of the dashboard.

Your final layout should contain four containers and a left-aligned title at the

top, like so:

[456]

Chapter 10

Figure 10.8: Layout

17. Size the blank objects to create appropriate margins. This can be

accomplished by dragging the inner edge of each Blank object (that is, the

edges facing the center) as far
to

the right or left or bottom as possible:

Figure 10.9: Increasing size

18. Change the bottom margin one more time
by

approximately doubling the

height by selecting the container and dragging the bottom line downward, as

indicated by the arrows in Figure 10.9.

[457]

Tableau for Presentations

19. In the Objects portion of the Dashboard pane, click Floating.

20. Drag the Header, Footer1, and Footer2 assets onto the dashboard. It does not

matter where you place them;
we

will align the worksheets shortly. If a Sales

legend appears, delete it.

21. Right-click on the title of each asset and select Hide title.

22. In the Layout pane, enter the following values for each worksheet:

Figure 10.10: Changing position

23. Set each worksheet to Entire View by clicking in the toolbar on the Fit drop

down menu next to the word Standard and selecting Entire view:

Figure 10.11: Changing view

24. The results should be a line for the header just under the title stretching

across 80% of the dashboard and two bars at the bottom stretching across the

entire dashboard:

Figure 10.12: Layout

25. Click on the container located underneath the Template title.

[458]

Chapter 10

26. If you have not already done so, download the assets associated with this

chapter. A link is provided in the workbook.

27. Drag an Image object from the Objects portion of the Dashboard pane onto

the dashboard. When prompted, select the tableau-logo.png image supplied

with this chapter:

Figure 10.13: Adding an image

28. Select the option Centre Image and then click OK.

29. Position the image via the Layout pane as follows:

Figure 10.14: Position logo

[459]

Tableau for Presentations

Your PowerPoint template is now ready
to

use:

Figure 10.15: Template

For every screenshot you will take now, you will always have the same design

surrounding it. By doing so, your presentations will look more professional and your

audience will soon recognize your work
by

its design. A template such as this can

also help you follow company design guidelines. As an extra tip, make sure that you

use matching colors for headers, footers, and your graphs!

Next,
we

will go through some examples in order for you to see the template in use.

Creating a dashboard for print

This exercise will utilize the template created previously to make a dashboard. Basic

instructions are provided, but specifics are left to individual preference:

1. Right-click on the tab entitled Template created in the previous exercise,

Creating a template, and select Duplicate.

2. Rename the duplicate dashboard to Superstore Loss Leaders.

3. Populate the Superstore Loss Leaders dashboard with the worksheets

HexMap and Loss Leaders States. Arrange as desired. An example layout is

given as follows:

[460]

Chapter 10

Figure 10.16: Dashboard and template

The dashboard on top of the template looks really great, doesn't it? It immediately

looks more professional and presentation-worthy. But are you asking yourself why

did I choose to work with that specific layout? Well, let me elaborate: If you want
to

show a Tableau dashboard in a printed version or you have to export the dashboard

to PowerPoint, it is important to remember that all interactivity will be lost. One of

the highlights and biggest selling points of Tableau—interactivity—doesn't work

on a 2D print. But obviously you don't want
to

recreate graphs that already exist in

some form on your Tableau Server, and you don't have to. Just make sure that your

audience understands the viz without being able
to

click on a field or hover over to

show more info:

• Tip 1: The dashboard in Figure 10.17 has been adjusted to the colors of the

template to make it appear as if the two belong together.

• Tip 2: A hexagon map (hexmap) has been used instead of the default map

that comes with Tableau. The reason is that smaller states on the east coast

disappear when printed in the actual ratio and Alaska and Hawaii are so far

away that they usually don't fit on the map either. A hexmap gives the same

space to each state and hence, even if printed, the user can see what's going

on in Alaska, as well as in Rhode Island.

[461]

Tableau for Presentations

• Tip 3: The colors indicate that the profit ratio is especially bad in Ohio and

Colorado, but your audience might want to know more. That's when the

table comes into play. The profit ratio is profit divided by sales and the table

shows both numbers so that the audience can get a better picture of the

current situation and you can avoid them asking.

• Tip 4: In order
to

avoid a printed scroll down bar, I selected the bottom 20

states only. If the topic is loss leaders, it is not very likely that you will need

to show all the states that do really well.

I hope this example gave you some ideas
on

how
to

prepare your dashboard for a

print! If a print happens more frequently, I would advise you to add a page
to

your

interactive dashboard on Tableau Server such that you always have it ready to
go

if asked for. If you are interested in replicating the hexmap, go ahead and check the

following article: https://www.tableau.com/about/blog/2017/1/viz-whiz-hex-tile

maps-64713.

Next,
we

will look at another example, this time an automation for a weekly

PowerPoint presentation.

Semi-automating a PowerPoint presentation

The previous exercises (Creating a template and Creating a dashboard for print)

demonstrated two methods for generating a template for PowerPoint presentation

and gave you some tips on how to adjust your dashboard for printing and/or

PowerPoint presentations. Usually, however, your Tableau dashboard isn't static,

and the data will change for the next time when you need it. You can, of course,

export a new PowerPoint file with the updated data, but you might have other slides

as well that you don't want to lose. The following steps will help you a bit with a

semi-automated way of updating your PowerPoint presentation:

1. Open the dashboard created previously entitled Superstore Loss Leaders.

2. Click on Dashboard | Export Image…:

[462]

Chapter 10

Figure 10.17: Export Image

3. Click
OK

and, in the resulting dialog box, choose to save the image as

SuperstoreLossLeaders.png.

4. Open the PowerPoint presentation. Open a slide.

5. Select the Insert ribbon and choose Pictures | Picture from File:

Figure 10.18: Inserting a picture into PowerPoint

[463]

Tableau for Presentations

6. Navigate to the PNG image you just exported.

7. In the Insert dialog box, choose the drop-down selector next
to

Insert and

select Insert and Link for Windows, or select Options | Link to File | Insert

for Mac. Note that this step is important because it will allow pictures to be

swapped out easily, as will be demonstrated:

Figure 10.19: Link to File

8. Save the PowerPoint presentation
as

AutoUpdate.pptx.

9. Close PowerPoint. In Tableau, modify the dashboard; for example, remove a

state from the table.

10. Overwrite the previously exported SuperstoreLossLeaders.png image via

Dashboard | Export Image ….

11. Open AutoUpdate.pptx and note that the new image of the dashboard

displays.

Something I come across frequently when I teach in Tableau classes is that I

encounter people who are responsible for providing PowerPoint presentations

on a weekly or monthly basis. These presentations include charts and graphs that

are updated, but the overall layout remains unchanged. The technique covered

in the preceding exercise can make that process much quicker. Although Tableau

Desktop only allows the author
to

update one image at a time, Tableau Server can
be

configured to export multiple images simultaneously, thereby making the process

even more efficient. Exporting images from Tableau Server is discussed in Chapter 14,

Interacting with Tableau Server/Online.

Wouldn't it be even nicer if we could present our web browser, Tableau Server,

directly on a slide, including all the interactivity? The next section will cover this

while sharing some thoughts on doing so.

Embedding Tableau in PowerPoint

It is possible to embed Tableau directly in a PowerPoint presentation or,
to be

more

accurate, it's possible to embed a web browser through which an instance of Tableau

Server may be accessed. There are various methods for accomplishing this, including

the Web Viewer app, a third-party add-in called LiveWeb, and VBA code.

[464]

Chapter 10

The Web Viewer app is available at https://appsource.microsoft.com/en-us/

product/office/WA104295828?tab=Overview. Although it works well for Tableau

Public, the default Tableau Server settings disallow access via Web View. LiveWeb

(available at http://skp.mvps.org/liveweb.htm) works well, but requires an

additional installation. You have to download the installation from the URL

provided and start PowerPoint. You will then be able to add another add-in to your

PowerPoint ribbon, which, in return, allows you to add a Tableau Server URL that

will be displayed directly in Tableau. Detailed instructions can
be

found on the

website too.

The third method mentioned previously, using VBA, is perhaps the most workable

method and will be discussed next. The following steps utilize PowerPoint 2016.

Other versions of PowerPoint may require a slightly different approach, but any

differences should be relatively easy to figure out. Also, the exercise assumes that

the Developer toolbar is activated. If the Developer toolbar is not activated for your

instance of PowerPoint, instructions to enable it can be found here: https://support.

microsoft.com/en-us/office/show-the-developer-tab-e1192344-5e56-4d45-931b

e5fd9bea2d45.

The following exercise currently only works on Windows

due to the fact that PowerPoint for Mac does not provide a

developer add-in.

Perform the following steps:

1. Open PowerPoint. If it's not already enabled, enable the Developer tab in

the Excel ribbon by selecting File | Options | Customize Ribbon and then,

under Main Tabs, add Developer.

2. Create a new single blank slide.

3. Select the Developer tab in the ribbon and click on the Command Button

icon located in the Controls group:

Figure 10.20: Command button

[465]

Tableau for Presentations

4. In the lower-left hand portion of the slide, create a command button
by

clicking and dragging:

Figure 10.21: Creating a command button

5. Right-click on the command button just created and select Property Sheet.

[466]

Chapter 10

6. Within Property Sheet, locate Caption and set the text
to
Launch Workbook:

Figure 10.22: Properties

The command button should now be labeled Launch Workbook.

7. Within the Controls group in the Developer ribbon, select More Controls.

[467]

Tableau for Presentations

8. Within the resulting dialog box, choose Microsoft Web Browser and then

click OK:

Figure 10.23: More Controls

9. If this process works and you do not get an error message at this point,

skip to Step 16. However, if a warning dialog box displays stating that The

ActiveX control cannot be inserted, continue reading the next few steps.

Note that the following steps provide instructions

regarding the adjustment of registry settings. Adjusting

registry settings can be a tricky business and can cause

problems on your machine if done incorrectly. Proceed at

your own risk!

[468]

Chapter 10

10. Save the file and close PowerPoint.

11. Press the Windows button + R to open the Run dialog box. Within the Run

dialog box, type Regedit.

12. In the Registry Editor, locate the following class ID: 8856F961-340A-11D0-

A96B-00C04FD705A2. This class ID will be located differently based on the

different installation methods for Office. The following three locations are

likely candidates:

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\15.0\Common\COM

Compatibility\

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\15.0\Click ToRun\

REGISTRY\MACHINE\Software\Wow6432Node\Microsoft\Office\15.0\

Common\COM Compatibility\

• HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Office\15.0\

Common\COM Compatibility

13. Click on the class ID and note the type REG_DWORD in the right-hand panel.

Right-click on REG_DWORD and then select Modify.

14. Change the textbox labeled Value data
to

0 and then click OK:

Figure 10.24: Registry editor

15. Start PowerPoint and open the file saved previously. Now you should be

able to add the Microsoft Web Browser control as instructed in Step 8.

[469]

Tableau for Presentations

16. Draw a marquee over most of the slide, allowing only enough room for the

Launch Workbook command button created previously:

Figure 10.25: Marquee of more controls

17. Right-click on the Launch Workbook command button and then select View

Code.

18. Within the Visual Basic for Applications (VBA) console that appears, delete

any existing code and enter the following code:

Private Sub CommandButton1_Click()

'Begin Comment: The above line of code gives instructions

regarding what action to take when clicking on the command

button. End Comment.

WebBrowser1.Navigate ("https://public.tableau.com/

profile/vizpainter#!/vizhome/TheChangingShapeofHistory/

FromColoniestoUS")

'Begin Comment: WebBrowser1 is the name of the Microsoft

WebBrowser control that the command button controls. End

Comment. 'Begin Comment: The URL can be replaced with a URL of

your choosing. End Comment.

'Begin Comment: '"Navigate" is the Property/Method that accepts

the URL. End Comment.

End Sub

[470]

Chapter 10

19. Close the VBA console.

20. Press F5 and click the Launch Workbook command button. An instance of a

Tableau workbook should now display in PowerPoint:

Figure 10.26: Web browser in PowerPoint

Note that the preceding VBA code includes comments. The

statements Begin Comment and End Comment are included

for clarity, but are not required. For this example, I used a link

to a very well-designed Tableau Public dashboard by Joshua N.

Milligan, a Tableau Zen Master.

Robert Mundigl explores various techniques for embedding Tableau in PowerPoint

similar
to

the preceding example on his blog, clearlyandsimply.com. Perform a

search on the blog for PowerPoint to explore these methods. Robert's creative ideas

include a technique for accessing multiple workbooks on a single PowerPoint slide

and a technique for embedding the Tableau Desktop authoring environment in

PowerPoint for on-the-fly authoring without leaving the presentation interface.

In this section, you have learned how you can embed a web browser in a PowerPoint

presentation. Next, we will discuss ways to bring animation to Tableau that can

support your data storytelling.

[471]

Tableau for Presentations

Animating Tableau

Including animation in a presentation can
be

very effective for engaging an audience.

Hans Rosling accomplishes this admirably with his popular YouTube video 200

Countries, 200 Years, 4 Minutes (https://youtu.be/jbkSRLYSojo). In this video,

Rosling uses data visualization to track wealth and life expectancy over time. His

combination of data visualization with insightful commentary and a passion for

his message makes Rosling's video a must-see for anyone interested in making

appealing presentations using data.

Animations are easy
to

implement and are available via Tableau Reader as well

as Tableau Server (since the 2020.1 release).
At

the time of writing, I have only

encountered one drawback; worksheets with animation that are uploaded to Tableau

Server will provide a single-speed level, whereas Tableau Desktop will show three.

But as you can see, nothing too pressing.

The following exercise tracks ACT testing scores from 1991 to 2015. Complete the

exercise to learn how to create an animation in Tableau and also discover whether

standardized testing results in the United States have improved over time.

Perform the following steps:

1. Open the workbook associated with this chapter and navigate to the

worksheet entitled ACT 1991–2015.

2. Select the ACT data source.

3. Rename the sheet ACT scores.

4. Place Year on the Columns shelf, Score Value on the Rows shelf, and Score

Type on Color in the Marks card.

5. Right-click on Score Value axis and select Edit Axis... In the resulting dialog

box, deselect Include zero.

[472]

Chapter 10

6. Place Year on the Pages shelf. Your view should look like the following:

Figure 10.27: ACT scores – 1991

[473]

Tableau for Presentations

7. In the Current Page panel that appears on the worksheet, check Show

history. Click on the arrow to open the dropdown and align all parameters as

shown in the following screenshot:

Figure 10.28: Aligning parameters

8. In the Marks card, click on the drop-down menu to change the view type

from Automatic to Circle.

9. Click on the Show history drop-down menu again and note that both the

Show options and the Trails options are now available. Under Show, select

Both.

10. Click on the Format drop-down menu under Trails and then select the

dashed line option:

[474]

Chapter 10

Figure 10.29: Dashed line

Sometimes, the question "How can I create a dashed line

in Tableau?" arises. One method is demonstrated in the

preceding steps. By setting the view type to Circle and

adjusting the Show history options, a dashed line was

created. If a dashed line without animation is required,

simply hide the page panel.

To briefly extend the theme of creating dashed lines in

Tableau, to discover how to create multiple lines with

varying dash types, check out https://boraberan.

wordpress.com/2015/11/22/quick-tip-creating

your-own-dashed-line-styles-in-tableau/, where

Bora Beran has pioneered a method using calculated fields

to insert null values
to

achieve differing line effects.

[475]

Tableau for Presentations

11. Now, click on the play button and see how Tableau walks through each year,

one at a time:

Figure 10.30: Animation

Even though this functionality is not a good use case for thorough analytics, it does

help when visualizing change over time, for example, while giving a presentation

or for any other kind of storytelling. I most recently used it to show how product

clusters changed over time, with the conclusion that clusters should not remain

static. I then continued to search for early identification of such change in clusters in

order to adjust pricing and marketing accordingly.

To conclude, animations are possible in Tableau using a functionality called pages.

I hope you will find many use cases for this feature. Next, we will use the animation

features in a different way, by showing you how
to

export multiple images with it.

[476]

Chapter 10

Using an animation to export many images

There are at least two reasons why it may
be

necessary
to

export many images from

a timeline. First, it may be analytically advantageous to see separate images for each

time snapshot; for example, a separate image for each day in a month. Second, it may

be necessary
to

create an animation outside of Tableau, perhaps in PowerPoint.

The next two exercises (Using an animation to export many images and Using
an

animation in Tableau to create an animation in PowerPoint), cover both scenarios:

Note that the following steps assume that the previous exercise

was completed.

1. Open the workbook associated with this chapter and navigate to the

worksheet entitled ACT scores:

Figure 10.31: ACT scores final

[477]

Tableau for Presentations

2. Select File | Page Setup.... At the bottom of the resulting dialog box, under

Pages Shelf, select Show all pages:

Figure 10.32: Show all pages

3. Select File | Print to PDF. Mac users should select File | Print.

4. In the resulting dialog box, set Range to Active Sheet. Also set the

orientation to Landscape.

5. Click OK and save the PDF as Animation.pdf to a location of your choice.

6. Navigate to https://www.pdftoppt.com/. Upload Animation.pdf and convert

it to PowerPoint. An email will be sent a few minutes after conversion.

7. Download the file via the link provided in the email and open it in

PowerPoint.

8. Within PowerPoint, select File | Save As. Within the Save As type drop

down menu, select *.png:

Figure 10.33: Animation.png

9. When prompted, choose to export All Slides:

Figure 10.34: All Slides

[478]

Chapter 10

10. Save the PowerPoint presentation. Note that when PowerPoint finishes

saving, a dialog box will display stating that each slide in the presentation

has been saved as a separate file:

Figure 10.35: All slides saved

11. Open and inspect the saved PNG files as desired:

Figure 10.36: Last slide as.png

[479]

Tableau for Presentations

By following all the preceding steps, you should have been able to save multiple

images at once. This is hopefully a time saver for you, and even though it might not

happen too often, it will benefit you knowing about this option.

Using an animation in Tableau to create an

animation in PowerPoint

This exercise will show you how to create
an

animation from the mass of images we

saved in the preceding exercise. Hence, we will use the files created previously
to

animate in PowerPoint:

1. Access the PowerPoint presentation downloaded from

https://www.pdftoppt.com/ in the previous exercise.

2. In the View ribbon, select Slide Sorter under the Presentation Views group.

3. Select All slides in the PowerPoint presentation except for the last one.

4. On the Transition ribbon under Timing group, set to advance the slide after

0.1 seconds:

Figure 10.37: Advancing the slide

5. Press F5 to see the animation.

Isn't this cool? You can see a similar simulation to what you would see in Tableau

using Pages! To further improve the animation in PowerPoint, consider the following

additional steps:

• Upload the initial PDF to https://pdfresizer.com/crop and crop the size as

desired.

• If the animation is too slow in PowerPoint, it is likely that all the text and

drawing elements are maintained. For example, the background grid is made

up of individual lines. Rendering all text and drawing elements is resource

intensive. Consider creating a separate PowerPoint presentation using the

PNG images created in the Using an animation to export many images exercise.

This will lead
to

a quicker, smoother running animation.

[480]

Chapter 10

I hope that this section has given you some ideas on how you can improve and

impress with PowerPoint. Using these newly acquired techniques, you might not

even need Prezi after all. However, this chapter wouldn't
be

complete without

mentioning story points, a feature that will bring you a long way if you don't want

PowerPoint at all.

Story points and dashboards for

presentations

Story points are Tableau's answer to PowerPoint. As such, both share

fundamental similarities. A PowerPoint presentation provides a linear approach
to

communication. So do story points in Tableau. A PowerPoint presentation provides

slides, each of which is a blank canvas that provides a user with infinite possibilities

to communicate ideas. A story in Tableau provides story points for the same

purpose.

Although there are fundamental similarities, it is important to understand that

Tableau story points and PowerPoint presentations often do not fulfill the same

role. Each has advantages over the other, and so a list of pros and cons should
be

considered.

We can view the pros and cons of PowerPoint and Tableau story points in the

following table:

PowerPoint Tableau story points

Pros Cons Pros Cons

Can be quick and

easy to create

Automatically

updates as

underlying data

changes

Can be more difficult

to create

Difficult to

automate based

on changes to

underlying data

Difficult to create

a presentation

that allows for

departure from

linear thought

Easily fits different

resolutions

Easily allows

nonlinear exploration

in the middle of a

presentation

Requires forethought

regarding resolution

size

[481]

Tableau for Presentations

So how do you decide between using PowerPoint and Tableau when making

presentations? Perhaps the following list will help:

When to Use PowerPoint When to Use Tableau story points

A presentation where the audience has

little opportunity for immediate feedback

A presentation where immediate feedback

is likely and exploratory questions may be

asked

A reusable presentation with updates mostly

based on changes to underlying data

A one-time presentation comprising

clearly delineated points

A presentation where the monitor

resolution size may not be known in

advance

A presentation where the monitor resolution

size is known or assumed

The basics of creating and using story points are straightforward, nor, at the time

of writing, is there much beyond the basics. Since the focus of this book is on more

advanced Tableau ideas and concepts, those basics will not be considered here. If

you need to quickly understand story point basics, I recommend reading through the

following pages: https://help.tableau.com/current/pro/desktop/en-us/stories.

html.

I like story points and I like to use them especially when my audience has its own

version of Tableau open in front of them and can follow along with their own

actions. It is a great way
to

give people a deeper understanding because it allows you

to show more complexity than a static screenshot. If you are looking to improve your

presentation skills in general, continue reading the next section.

Presentation resources

Using story points effectively in Tableau is perhaps more of an artistic consideration

than a technical one. Although this book attempts to consistently consider best

practices for data visualization and to encourage attractive and user-friendly

worksheets and dashboards, a discussion
of

effective presentation techniques is

beyond its scope.

If you would like to improve your ability to create effective presentations, consider

the following resources:

• Presentation Zen: Garr Reynolds is a bestselling author and a repeat

speaker at Tableau conferences. His books and website (https://www.

presentationzen.com/) provide provocative ideas for effective presentations.

[482]

Chapter 10

• Tableau Public: Learning by example is invaluable. Fine examples of story

points can be found on Tableau. To learn from one of the most engaging,

navigate to https://help.tableau.com/current/pro/desktop/en-us/story_

example.htm.

• Blogs: One of the more interesting posts discussing Tableau story points in

combination with good presentation methodology can be found on Matt

Frances' blog, wannabedatarockstar.blogspot.com. The post is entitled Five

Tips for Better Tableau Story Points.

Even though these presentation skills are beyond the scope of this chapter, I hope

that the preceding resources have given you food for thought.

Summary

We began this chapter by exploring various screen capture tools as well as Tableau's

native export capabilities. Next,
we

turned our consideration
to

PowerPoint,

where
we

explored various methods for creating PowerPoint presentations from

Tableau workbooks, and even explored how to embed a live instance of Tableau in

PowerPoint. Next, we considered Tableau animation. Lastly, we explored how to

use story points and dashboards for presentations. In Chapter 11, Visualization Best

Practices and Dashboard Design, we will turn our attention to dashboarding, where we

will push beyond the normal boundaries
of

the typical dashboard, but not lose focus

of the practical applications.

[483]

11
Visualization Best Practices

and Dashboard Design

This chapter was particularly influenced by some giants in data visualization and

dashboard design—Edward Tufte and Stephen Few. I would also like to draw

attention to Alberto Cairo, who has been providing new insights in more recent

years. Each of these authors should be considered a must-read for anyone working in

data visualization.

This chapter has been written with the intent of empowering you with design

knowledge and Tableau-centric techniques for creating effective dashboards.

In this chapter, we will cover the following topics:

• Visualization design theory

• Formatting rules

• Color rules

• Visualization type rules

• Compromises

• Keeping visualizations simple

• Dashboard design

• Dashboard best practices for user experience

[485]

Visualization Best Practices and Dashboard Design

Now that
we

have discussed the topics of this chapter, let's dive into design theory,

which will provide you with rules that can
be

applied to every single dashboard you

are going to build.

Visualization design theory

Any discussion about designing dashboards should begin with information about

constructing well-designed content. The quality of the dashboard's layout, and the

utilization of technical tips and tricks, do not matter if the content is subpar. In other

words, we should first consider the worksheets displayed on dashboards and ensure

that those worksheets are well-designed. Therefore, our discussion will begin with

a consideration of visualization design principles. Regarding these principles, it's

tempting to declare a set of rules, such as the following:

• To plot change over time, use a line graph.

• To show breakdowns of the whole, use a treemap.

• To compare discrete elements, use a bar chart.

• To visualize correlations, use a scatter plot.

But of course, even a cursory review of this list brings to mind many variations and

alternatives! Thus, in the next section, Formatting rules,
we

will consider various

rules, while keeping in mind that once you're comfortable with the basics, rules can

be broken to serve a purpose.

Formatting rules

The following formatting rules encompass fonts, lines, and bands. Fonts are, of

course, an obvious formatting consideration. Lines and bands, however, may not

be something you typically think of when formatting—especially when considering

formatting from the perspective of Microsoft Word. But if we broaden formatting

considerations to think of Adobe Illustrator, InDesign, and other graphic design

tools, lines and bands should certainly be considered. This illustrates that data

visualization is closely related
to

graphic design and that formatting considers much

more than just textual layout.

Keep the font choice simple

Typically, using one or two fonts on a dashboard is advisable. More fonts can create a

confusing environment and interfere with readability.

[486]

Chapter 11

Fonts chosen for titles should be thick and solid, while body fonts should be easy to

read. In Tableau, choosing appropriate fonts is simple because of the new Tableau

font family. Select Format | Font to display the Format Font window
to

see and

choose these new fonts.

Assuming your dashboard is primarily intended for the screen, sans-serif fonts are

best. On the rare occasion that a dashboard is primarily intended for print, you may

consider serif fonts, particularly if the print resolution is high.

Use lines in order of visibility

We tend to order line visibility in the following order: trend line, chart line, reference

line, drop line, and grid line. For example, trend-line visibility should be greater than

fever-line visibility. Visibility is usually enhanced
by

increasing line thickness, but

may be enhanced via color saturation or by choosing a dotted or dashed line over a

solid line. Let's look at each of the line types, in order of decreasing visibility:

• Trend lines: The trend line, if present, is usually the most visible line on the

graph. Trend lines are displayed via the Analytics pane and can be adjusted

via Format | Lines.

• Chart lines: The chart line (for example, the line used on a time-series chart)

should not be so heavy as
to

obscure twists and turns in the data. Although a

chart line may be displayed as dotted or dashed by utilizing the Pages shelf,

this is usually not advisable because it may obscure visibility. The thickness

of a chart line can be adjusted by clicking on the Size shelf in the Marks

remove bold area.

• Reference lines: Usually less prevalent than fever or trend lines and can be

formatted via Format | Reference lines.

• Drop lines: Not frequently used. To deploy drop lines, right-click in a blank

portion of your view and select Drop lines | Show drop lines. Next, click a

point in the view to display a drop line. To format drop lines, select Format |

Drop Lines. Drop lines are relevant only if at least one axis is utilized in the

visualization.

• Zero lines: These are sometimes referred to as base lines, and only display if

zero or negative values are included in the view, or positive numerical values

are relatively close to zero. Format zero lines via Format | Lines.

• Grid lines: These should be the most muted lines on the view and may be

dispensed with altogether. Format grid lines via Format | Lines.

[487]

Visualization Best Practices and Dashboard Design

Use bands in groups of three to five

Visualizations composed of a tall table of text or horizontal bars should segment

dimension members in groups of three to five.

Please follow along with the steps to experience an efficient use of bands in Tableau:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Navigate to the Banding worksheet.

3. Select the Superstore data source
and

place Product Name on the Rows

shelf.

4. Double-click on Discount, Profit, Quantity, and Sales. Note that after

completing this step, Tableau defaulted
to

banding every other row. This

default formatting is fine for a short table but is quite busy for a tall table.

5. Navigate to Format | Shading and set Band Size under Row Banding so

that three to five lines of text are encompassed by each band. Be sure to set an

appropriate color for both Pane and Header:

Figure 11.1: Format Shading

[488]

Chapter 11

The Band in Groups of Three to Five rule is influenced by Dona W. Wong, who, in

her book The Wall Street Journal Guide to Information Graphics, recommends separating

long tables or bar charts with thin rules to separate the bars in groups of three
to

five

to help readers read across.

Color rules

It seems slightly ironic to discuss color rules in a book that will be printed in

black and white (of course, that may not be true if you are reading this book on an

electronic device). Nevertheless, even in a monochromatic setting, a discussion of

color is relevant. For example, exclusive use of black text communicates something

different than using variations of gray. The following survey of color rules should
be

helpful for ensuring that you use colors effectively in a variety of settings.

Keep colors simple and limited

Stick to the basic hues and provide only a few (perhaps three to five) hue

variations. In his book, The Functional Art: An Introduction to Information Graphics and

Visualization, Alberto Cairo provides insight as to why this is important:

"The limited capacity
of

our visual working memory helps explain why it's not

advisable to use more than four or five colors or pictograms to identify different

phenomena
on

maps and charts."

Respect the psychological implications of

colors

There is a color vocabulary in every region of the world so pervasive that it's second

nature. Red is often used for love or danger; in some Asian countries, it can also

mean fortune and is common for wedding dresses. Green can mean luck, whereas

in Mexico, green represents independence. Green traffic signals tell us to go, red

to stop. Similarly, colors on dashboards are often used with purpose. Reds and

oranges are usually associated with negative performance, while blues and greens

are associated with positive performance. Using colors counterintuitively can cause

confusion, so be aware of color usage and of your audience and their interpretation.

[489]

Visualization Best Practices and Dashboard Design

Be colorblind-friendly

Colorblindness is usually manifested as an inability to distinguish red and green,

or blue and yellow. Red/green and blue/yellow are on opposite sides of the color

wheel.

Consequently, the challenges these color combinations present for colorblind

individuals can be easily recreated with image editing software such as Photoshop.

If you are not colorblind, convert an image with these color combinations into

grayscale and observe. The challenge presented to the 8.0% of men and 0.5% of

women who are colorblind becomes immediately obvious! Or, use the following

website to upload an image of your dashboard and experience how your user might

see the colors used: https://www.color-blindness.com/coblis-color-blindness

simulator/.

Use pure colors sparingly

The resulting colors from the following exercise should be a very vibrant red, green,

and blue. Depending on the monitor, you may even find it difficult to stare directly

at the colors. These are known as pure colors and should be used sparingly, perhaps

only
to

highlight particularly important items.

Please follow these steps:

1. Open the workbook associated with this chapter and navigate to the Pure

Colors worksheet.

2. Select the Superstore data source
and

place Category on both the Rows shelf

and the Color shelf.

3. Set Fit to Entire View.

4. Click on the Color shelf and choose Edit Colors....

5. In the Edit Colors dialog box, select one after the other member; that is,

Furniture, Office Supplies, and Technology, and select blue, green, and red,

respectively:

[490]

Chapter 11

Figure 11.2: Colors

See for yourself how you experience looking at those pure colors and select three

other, less vibrant, colors to compare. Too vibrant colors can be very heavy on your

eye and make it hard to focus. Colors that are too similar, however, make it hard to

distinguish. Finding a good balance is key.

Choose color variations over symbol variation

Deciphering different symbols takes more mental energy for the end user than

distinguishing color. Therefore, color variation should be used over symbol

variation. This rule can actually be observed in Tableau defaults. Create a scatter plot

and place a dimension with many members on the Color shelf and the Shape shelf,

respectively. Note that, by default, the view will display 20 unique colors but only 10

unique shapes. Older versions of Tableau (such as Tableau 9.0) display warnings that

include text such as "the recommended maximum for this shelf is 10."

[491]

Visualization Best Practices and Dashboard Design

See the following diagram for an example
of

symbol variation:

Figure 11.3: Color versus shape

To sum up, keep your color palette simple and be aware of your regional, cultural

meanings of color. Also, take into account that people in your audience might
be

color-blind or have a color deficiency; tools can help you choose colors wisely and

Tableau also offers a colorblind palette. Lastly, use pure colors sparingly, since

too many highlight colors will make it hard for the audience to focus on the most

important items. Also don't use too many shapes; instead, use color to distinguish

between values.

Visualization type rules

Since there's a chapter dedicated to visualization types, Chapter 8, Beyond the Basic

Chart Types, and since much of this book explores various visualizations, we won't

take the time here to delve into a lengthy list of visualization type rules.

If you want to get additional information on this topic, I

highly recommend checking out the Visual Vocabulary

that Andy Kriebel created, and which was inspired

by the Financial Times (https://ft-interactive.

github.io/visual-vocabulary/), available on Tableau

Public: https://public.tableau.com/profile/

andy.kriebel#!/vizhome/VisualVocabulary/

VisualVocabulary.

However, it does seem appropriate to review at least a couple of rules. Here,
we

will

consider keeping shapes simple and effectively using pie charts.

[492]

Chapter 11

Keep shapes simple

Too many shape details impede comprehension. This is because shape details draw

the user's focus away from the data. Consider the following exercise using two

different shopping cart images.

Let's look at the following exercise steps:

1. Open the workbook associated with this chapter and navigate to the Simple

Shopping Cart worksheet. Note that the visualization is a scatter plot that

shows the top-10-selling sub-categories in terms of total sales and profits.

2. Navigate to the Shapes directory located in the My Tableau repository. On

my computer, the path is C:\Users\Marleen Meier\Documents\My Tableau

Repository\Shapes.

3. Within the Shapes directory, create a folder named My Shapes.

4. Reference the link included in the comment section of the worksheet to

download assets associated with this chapter. In the downloaded material,

find the images entitled Shopping_Cart and Shopping_Cart_3D, and then

copy those images into the My Shapes directory.

5. In Tableau, access the Simple Shopping Cart worksheet.

6. Click on the Shape shelf and then select More Shapes.

7. Within the Edit Shape dialog box, click the Reload Shapes button:

Figure 11.4: Reload Shapes

[493]

Visualization Best Practices and Dashboard Design

8. Select the My Shapes palette and set the shape to Simple Shopping Cart.

9. After closing the dialog box, click
on

the Size shelf and adjust as desired.

Also, adjust other aspects of the visualization as desired.

10. Navigate to the 3D Shopping Cart worksheet and then repeat Steps 8-11

above. Instead of using Simple Shopping Cart, use 3D Shopping Cart. See

the following screenshot for a comparison of the simple and 3D shopping

carts:

Figure 11.5: 2D versus 3D

[494]

Chapter 11

Compare the two visualizations. Which version of the shopping cart is more

attractive? It's likely that the cart with the
3D

look was your choice. So, why

not choose the more attractive image? Making visualizations attractive is only a

secondary concern. The primary goal is to display the data as clearly and efficiently

as possible. A simple shape is grasped more quickly and intuitively than a complex

shape. Besides, the cuteness of the 3D image will quickly wear off.

Use pie charts sparingly

Edward Tufte makes an acrid comment against the use of pie charts in his book The

Visual Display
of

Quantitative Information, saying that a table is always better than a

pie chart, because
we

humans fail to interpret the visual dimension of pie charts.

The present sentiment in data visualization circles is largely sympathetic to Tufte's

criticism. There may, however, be some exceptions; that is, some circumstances

where a pie chart is optimal. Consider the following visualization:

Figure 11.6: Comparing visualizations

Which of the four visualizations best demonstrates that A accounts for 25% of the

whole? Clearly, it's the pie chart! Therefore, perhaps it is fairer to refer to pie charts

as limited and to use them sparingly, as opposed to considering them inherently

undesirable.

[495]

Visualization Best Practices and Dashboard Design

Compromises

In this section,
we

will transition from more or less strict rules to compromises.

Often, building visualizations is a balancing act. It's not uncommon
to

encounter

contradictory direction from books, blogs, consultants, and within organizations.

One person may insist on utilizing every pixel of space while another advocates

simplicity and whitespace. One counsels a guided approach, while another

recommends building wide-open dashboards that allow end users to discover their

own path. Avant-garde types may crave esoteric visualizations, while those of a

more conservative bent prefer to stay with convention. Let's explore a few of the

more common competing requests and then suggest compromises.

Making the dashboard simple and robust

Recently, a colleague showed me a complex dashboard he had just completed.

Although
he

was pleased that he had managed to get it working well,
he

felt the

need to apologize by saying, I know it's dense and complex, but it's what the

client wanted. Occam's Razor encourages the simplest possible solution for any

problem. For my colleague's dashboard, the simplest solution was rather complex.

This is OK! Complexity in Tableau dashboarding need not be shunned. But a clear

understanding of some basic guidelines can help the author intelligently determine

how to compromise between demands for simplicity and demands for robustness:

• More frequent data updates necessitate simpler design: Some Tableau dashboards

may be near real-time. Third-party technology may be utilized to force a

browser that displays a dashboard via Tableau Server to refresh every few

minutes, to ensure the latest data is displayed. In such cases, the design

should be quite simple. The end user must
be

able to see, at a glance, all

pertinent data and should not use that dashboard for extensive analysis.

Conversely, a dashboard that is refreshed monthly can support high

complexity and thus may be used for deep exploration.

• Greater end user expertise supports greater dashboard complexity: Know thy users.

If they want easy, at-a-glance visualizations, keep the dashboards simple. If

they like deep dives, design accordingly.

[496]

Chapter 11

• Smaller audiences require more precise design: If only a few people monitor

a given dashboard, it may require a highly customized approach. In such

cases, specifications may be detailed, which are complex and difficult to

execute and maintain. This is because the small user base has expectations

that may not be natively easy to produce in Tableau.

• Screen resolution and visualization complexity are proportional: Users with low

resolution devices will need to interact fairly simply with a dashboard. Thus,

the design of such a dashboard will likely
be

correspondingly uncomplicated.

Conversely, high-resolution devices support greater complexity.

• Greater distance from the screen requires larger dashboard elements: If the

dashboard is designed for conference room viewing, the elements on the

dashboard may need
to be

fairly large to meet the viewing needs of those

far from the screen. Thus, the dashboard will likely be relatively simple.

Conversely, a dashboard to be viewed primarily on end users' desktops can

be more complex.

Although these points are all about simple versus complex, do not equate simple

with easy. A simple and elegantly designed dashboard can
be

more difficult
to

create

than a complex dashboard.

As Steve Jobs said, simplicity can be harder than complexity; however, simplicity can

move mountains.

Presenting dense information

Normally, a line graph should have a max of four or five lines. However, there are

times when you may wish to display many lines. A compromise can be achieved
by

presenting many lines and empowering the end user to highlight as desired. The

following line graph displays the percentage of internet usage by country from 2000

2012. The user can select a country and compare it to the rest.

[497]

Visualization Best Practices and Dashboard Design

We can see this example in the following screenshot:

Figure 11.7: A many-line chart

When using line charts versus many line-charts, it should not be important how a

line performs compared to a specific other line, but rather how one line behaves in a

lake of other lines.

Telling a story

In his excellent book, The Functional Art: An Introduction to Information Graphics and

Visualization, Alberto Cairo includes a section where
he

interviews prominent data

visualization and information graphics professionals. Two of these interviews are

remarkable for their opposing views. Jim Grimwade mentions that visualization

designers should not try to make editors out of users; expecting them
to
make

up
a

story on their own is not the approach he likes.
On

the contrary, Moritz Stefaner is

fascinated
by

being able to explore key insights on big datasets on his own.

[498]

Chapter 11

Fortunately, the compromise position can
be

found in the Jim Grimwade interview,

where
he

states that the New York Times lets you explore complex datasets, but that

beforehand, they give the reader some context.

Although the scenarios considered here are likely quite different from the Tableau

work you are involved in, the underlying principles remain the same. You can

choose to tell a story or build a platform that allows the discovery of numerous

stories. Your choice will differ, depending on the given dataset and audience. If you

choose to create a platform for story discovery, be sure to take the New York Times

approach suggested
by

Grimwade. Provide hints, pointers, and good documentation

to lead your end user
to

successfully interact with the story you wish to tell or
to

successfully discover their own story.

Maximizing documentation on a dashboard

In the Telling a story section,
we

considered the suggestion of providing hints,

pointers, and good documentation, but there's an issue. These things take
up

space.

Dashboard space is precious. Often, Tableau authors are asked to squeeze more

and more stuff on a dashboard and are hence looking for ways to conserve space.

Here are some suggestions for maximizing documentation on a dashboard while

minimally impacting screen real estate:

• Craft titles for clear communication: Titles are expected. Not just a title for

a dashboard and worksheets on the dashboard, but also titles for legends,

filters, and other objects. These titles can be used for effective and efficient

documentation. For instance, a filter should not just read Market. Instead,

it should say something such as Select a Market. Notice the imperative

statement. The user is being told to do something and this is a helpful hint.

Adding a couple of words to a title will usually not impact dashboard space.

• Use subtitles to relay instructions: A subtitle will take up some extra

space, but it does not have to be much. A small, italicized font immediately

underneath a title is an obvious place a user will look for guidance. Consider

an example: Red represents loss. This short sentence could be used as a

subtitle that may eliminate the need for a legend and thus actually save space.

• Use intuitive icons: Consider a use case of navigating from one dashboard to

another. Of course, you could associate an action with some hyperlinked text

that states Screentext style to navigate
to

another dashboard. But this seems

unnecessary when an action can be associated with a small, innocuous arrow,

such as is natively used in PowerPoint, to communicate the same thing.

[499]

Visualization Best Practices and Dashboard Design

• Store more extensive documentation in a tooltip associated with a help

icon: A small question mark in the upper-right corner of an application is

common. Currently, I'm composing this chapter in Word 2013, which has

such a question mark. This clearly communicates where to
go

if additional

help is required. As shown in the following exercise, it's easy to create a

similar feature on a Tableau dashboard.

Follow these steps to create an informative tooltip to help users:

1. Open the workbook associated with this chapter and navigate to the Help

worksheet.

2. Hover over the light bulb on the worksheet and note the text that appears:

Figure 11.8: Lorem ipsum

Note that the Lorem ipsum... text shown in the preceding screenshot

is commonly used by web designers, who borrowed it from

typesetters, who have been using this Latin text as a placeholder

for centuries. Visit www.loremipsum.io to learn more.

The text in this worksheet was deployed via Worksheet | Tooltip. This worksheet

could be thoughtfully placed on a dashboard (for example, in the upper-right corner)

to give very detailed documentation that minimally impacts space.

[500]

Chapter 11

Keeping visualizations simple

Some people tire of seeing the same chart types over and over. This leads to requests

such as, can we spice up the dashboard a bit? Normally, such sentiments should

be resisted. As stated at the beginning of this chapter, introducing variety for its

own sake is counterproductive. Nevertheless, there are times when a less common

visualization type may be a better choice than a more popular type. When are those

times?

Use less common chart types in the following scenarios:

• The chart is used to catch the end user's attention.

• The chart type presents the data more effectively.

Sometimes, a less common chart type can
be

effectively used
to

catch the end user's

attention for some particular goal, such as humor, making a salient point, or making

the visualization more memorable. One such example can be found on the Tableau

404 error page. Navigate to http://www.tableau.com/asdf and observe Sasquatch in

a packed bubble chart. Note that this page changes from time
to

time, so you may see

Elvis, aliens, or some other visualization.

An example of the second point is using a treemap over a pie chart. Both are non

Cartesian chart types (visualizations with
no

fields on the Rows or Columns shelves)

used to show parts of a whole. Pie charts are the more common of the two, but

treemaps usually present the data better. There are at least three reasons for this:

• A treemap can represent more data points.

• The rectangular nature of a treemap fits monitor space more efficiently.

• Pie slice sizes are more difficult to distinguish than sizes of treemap

segments.

Sometimes, using a less common visualization type may elicit complaints: I like pie

charts. Give me a pie chart! In such cases, a compromise may be possible. Later in this

chapter,
we

will consider sheet swapping.
As

you will learn, sheet swapping can

allow the end user
to

determine which visualization type
to

view. In the end, if a

compromise is not possible and the person responsible for your paycheck desires a

less-than-ideal chart type... well, I recommend you doing so!

[501]

Visualization Best Practices and Dashboard Design

Dashboard design

Now that
we

have completed our discussion of visualization theory, let's turn

our attention to dashboard design. We'll begin by asking the question, what is

a dashboard? This is rather difficult to answer; however, its usage in everyday

conversation in many organizations would suggest that people have a definite idea

as to what a dashboard is. Furthermore, search engine results provide
no

shortage of

definitions. But those definitions can differ significantly and even
be

contradictory.

Why is it so difficult
to

define dashboard?
In

part, it is because data visualization as a

whole, and dashboarding specifically, is an emerging field that combines many other

disciplines. These disciplines include statistical analysis, graphic and web design,

computer science, and even journalism. An emerging field with so many components

is a moving target, and as such is difficult to define.

For our purposes, we will begin with Stephen Few's definition as it first appeared in

an issue of Intelligent Enterprise in 2004. He states that a dashboard is a visual display

of vital statistics we need to reach, and how all these details are present on a sole

screen, so that this information can be observed at first sight. Then, we'll extend and

adapt that definition for Tableau dashboards.

Although this definition is good, Tableau takes a broader approach. For instance, a

Tableau dashboard may be contained on a single screen but can be designed (and

quite effectively so) to require scrolling. More importantly, Tableau dashboards are

typically interactive, which opens up a world of exploration, analysis, and design

options. Therefore, let's attempt a Tableau-centric dashboard definition:

A Tableau dashboard is a display that contains one or more data visualizations designed to

enable a user to quickly view metrics. This display may provide interactive elements, such

as filtering, highlighting, and drill-down capabilities that enable further exploration and

analysis.

[502]

Chapter 11

Dashboard layout

The layout of a dashboard is important for the same reason that the layout of a

magazine foldout or a web page is important. Placing the right information in the

right place helps the viewer quickly and efficiently gather information and draw

conclusions. In order to appreciate this fact, consider the last time you had to hunt

through a poorly constructed web page to find important information. Your time

could have been better used actually applying that important information!

The golden ratio layout

You have probably heard of the Fibonacci sequence or the golden ratio. Since it may

have been a few years since you attended a math class, a brief reminder may prove

helpful.

The Fibonacci sequence is a series of numbers where every number is the sum of the

previous two numbers; for example, 1, 1, 2, 3, 5, 8, 13, 21.

A Golden Rectangle is achieved when the ratio of the longest side to the shortest

side of a rectangle is approximately 1.618. This ratio is known as the Golden Ratio.

Mathematically, the Golden Ratio is represented as follows:

1+ √5

������ ≈ 1.61803398874989

2

You can see the connection between the Fibonacci sequence and the Golden Ratio

when dividing each number of the Fibonacci sequence by the previous number; for

example, take the following sequence:

0,1, 1, 2, 3, 5, 8, 13, 21, 34

This leads
to

the following:

1 2 3

1

= 1,

1

= 2, = 1.5,

5

2 3

=

8 13

8

= 1.625,

21

13

1.6,1.67,

5

= = 1.615,

34

= 1.619

21

[503]

Visualization Best Practices and Dashboard Design

Now, let's consider a dashboard layout using the Golden Ratio. The layout shown

here is constructed of rectangles so that each is 1.618 times longer or taller than the

next. The spiral (known as the golden spiral) is displayed to demonstrate the order of

the rectangles:

Figure 11.9: Golden ratio

The Fibonacci sequence/Golden Rectangle/Golden Ratio appears endlessly in

nature and throughout history. Many seashells and flowers adhere to the Fibonacci

sequence. The Great Pyramid of Giza appears to have been constructed with the

Golden Ratio in mind. Phidias likely used the Golden Ratio to design his statues for

the Athenian Parthenon. Indeed, the Parthenon itself was designed with Golden

Rectangle proportions.

So, does the golden ratio, as pictured in the preceding diagram, represent the ideal

dashboard layout? Perhaps it's truer to say that this image represents one acceptable

dashboard layout. The ideal is not so much found in the abstract as it's found in the

application. Dashboard layouts may sometimes approximate the golden ratio but, as

we will see, other dashboard layouts may
be

better for different scenarios.

[504]

Chapter 11

The dashboard pictured here (which is also available in the Tableau workbook that

accompanies this chapter) utilizes the Golden Rectangle:

Figure 11.10: Golden Rectangle

Notice that this example does not attempt
to

follow the Golden Ratio through
to

smaller and smaller rectangles. There are practical limits.

The Golden Rectangle layout is particularly good for guiding the viewer from

coarser to finer granularity. In this example, the left portion of the dashboard

displays the coarsest granularity, 17 subcategories. The map is next. Finally, the

scatter plot displays the finest granularity. Creating actions that follow this path

would make a natural interaction for the end user. For example, an end user might

first click on Tables and then click on the state of Pennsylvania in order to observe

outliers in the scatter plot.

[505]

Visualization Best Practices and Dashboard Design

The quad layout

The quad layout divides a dashboard into four more or less equal quadrants. It's easy

to implement. On a blank dashboard, simply double-click on four worksheets in the

Dashboard pane. The result is a quad layout, though some small adjustments may

need to be made
to

account for legends, filters, and parameters. To observe a quad

layout, refer
to

the diagram in Figure 11.6.

The small multiple layout

A small multiple layout displays many views on a single dashboard. Like the quad

layout, a small multiple layout can
be

implemented simply by double-clicking on

each desired worksheet in the Dashboard pane. Small multiples are useful when

viewing information that utilizes the same visualization type repeatedly. Also, a

consistent theme is helpful; for example,
the

following screenshot demonstrates

a theme of profit performance per state in the USA. Attempting
to

create a small

multiple with multiple visualization types and multiple themes will likely be messy

and difficult to interact with:

Figure 11.11: Small multiples

Some layouts are essentially variations of a theme. For instance, a layout that displays

three views where one view on the dashboard covers double the real estate of each

of the other views may essentially be a variation of the quad layout. Other layouts

defy easy categorization and are unique to a given dashboard. Regardless, this will

hopefully provide some food for thought as you design dashboards in the future.

[506]

Chapter 11

The next section was already announced when
we

discussed compromises; sheet

swapping is a great feature for that. If your stakeholder asks you to build something

you know might not be as good or not following visualization best practice, you

can always add a sheet swap, making your stakeholders happy and deliver an

alternative for other users. We will walk through a sheet swapping exercise in the

next section.

Utilizing sheet swapping

Sheet selection, often referred
to

as sheet swapping, allows the Tableau author

to hide and display visualizations, as well as to move worksheets on and off the

dashboard. These techniques have been used in creative ways with some very

impressive results. For example, Tableau Zen Master Joshua Milligan has built

various games, including Tic-Tac-Toe and Blackjack, using sheet selection. For our

purposes,
we

will stick to using sheet selection to assist with creating dashboards

that adhere to the design principles we've discussed.

In the Use pie charts sparingly section,
we

discussed pie charts and treemaps, and

we noted that a treemap is a better visualization. However, people are often more

comfortable with pie charts. As a compromise, in the first exercise,
we

will review an

example that allows the end user to choose whether to see a pie chart or a treemap.

Please follow these steps:

1. Open the workbook associated with this chapter and navigate to the

Population Pie worksheet.

2. Select the World Indicators data source and note the calculated field, called

Blank. The code is composed of single quotes with a space in-between.

3. Place Blank on the Columns shelf.

4. In the view, select all pie slices via Ctrl + A or by dragging a marquee around

the entire pie. Non-Cartesian visualization types (for example, visualizations

with no fields on the Rows
or
Columns shelves) require this step for sheet

swapping to work. Otherwise, when placing the worksheet in a vertical

container on a dashboard, the worksheet will not properly stretch to fill the

width of the container.

5. Right-click on any pie slice and choose Annotate | Mark.

[507]

Visualization Best Practices and Dashboard Design

6. In the resulting dialog box, delete all the text except <Country>:

Figure 11.12: Annotation

7. Position and format the annotations as desired. Note that additional

adjustments may be required once the pie chart has been deployed on a

dashboard.

8. Create a parameter named Select Chart Type with the following settings:

Figure 11.13: Parameter

[508]

Chapter 11

9. Create a calculated field entitled Sheet Swap containing the following code:

[Select Chart Type]

10. Place Sheet Swap on the Filters shelf and select Pie Chart in the resulting

dialog box.

11. Display the parameter by right-clicking on Select Chart Type and choosing

Show Parameter Control.

12. Navigate to the Population Tree worksheet.

13. Place Blank on the Columns shelf.

14. Place Sheet Swap on the Filters shelf and select Treemap in the resulting

dialog box.

15. If Treemap does not display as a choice, make sure that the Select Chart

Type parameter is toggled to Treemap and click OK:

Figure 11.14: Filter

16. Create a new dashboard entitled Latin American Population.

17. In the Dashboard pane, double-click on Vertical to place a vertical container

on the dashboard.

18. In the Dashboard pane, double-click on Population Tree and Population Pie

in order to add them to the view.

19. Right-click on the titles Population Tree and Population Pie, then select

Hide Title for both.

[509]

Visualization Best Practices and Dashboard Design

20. Place Population Map and Population Line on our dashboard, then position

them as desired:

Figure 11.15: Dashboard

21. Shift-drag the Select Chart Type parameter over our Treemap in order
to

float the control; position it as desired.

22. Delete all legends and quick filters. Format, document, and position all

dashboard elements as desired. The user can now determine whether to view

a Treemap or a Pie Chart.

[510]

Chapter 11

The following is an example of the dashboard with a treemap:

Figure 11.16: Dashboard with treemap

[511]

Visualization Best Practices and Dashboard Design

The following is with a pie chart:

Figure 11.17: Pie chart

You can use the sheet swap feature in case some of your users prefer one

visualization over the other. Next, we will create a filter menu that can be hidden on

the dashboard. In the Maximizing documentation on a dashboard section, the point was

made that dashboard space is precious. Therefore, in the second exercise, Creating

a collapsible menu,
we

will review an example that will use sheet selection to allow

the end user to show or hide filters, and thus make more efficient use of screen real

estate.

[512]

Chapter 11

Creating a collapsible menu

Please follow these steps to learn how
to
add a collapsible filter menu to your

dashboards:

1. Duplicate the dashboard we created in the preceding exercise and rename it

Collapsible Menu. If you did not complete the preceding exercise, utilize the

dashboard included with the solution workbook provided with this chapter.

2. In the bottom portion of the Dashboard pane, select Floating:

Figure 11.18: Floating

3. Drag the Menu Icon worksheet from the dashboard pane onto the

dashboard.

4. Right-click on the title and select Hide Title.

[513]

Visualization Best Practices and Dashboard Design

5. Set the fit of the Menu Icon worksheet to Entire View:

Figure 11.19: Menu

6. Size and position the Menu Icon worksheet so that it fits in the upper-right

corner of the dashboard:

Figure 11.20: Menu II

[514]

Chapter 11

7. In the bottom portion of the Dashboard pane, select Tiled.

8. Place the Menu worksheet anywhere on the dashboard. The filters for Years

and Country should display on the right-hand side of the dashboard:

Figure 11.21: Collapsible Menu

9. Navigate to the Menu worksheet and take a moment to explore the settings

of each dimension on the Filters shelf. Note that the region filter (Latin

American Countries) is set to Context and that Country Copy is displayed

as a quick filter. Also, note that the Country (copy) quick filter is set to Show

All Values in Context. It is necessary to display the Country (copy) filter as

opposed to the Country filter because Country displays the condition (that is,

AVG([Population Total]) | 1000000) in the quick filter:

Figure 11.22: Filters

10. Return to the Collapsible Menu dashboard. Right-click on the Menu title

and select Hide Title.

[515]

Visualization Best Practices and Dashboard Design

11. Make the Menu worksheet floating
by

clicking on the arrow next to the

worksheet and selecting Floating:

Figure 11.23: Floating

12. Then, size and position with the following dimensions:

Figure 11.24: Menu position

[516]

Chapter 11

Note that the goal of this step is to make the Menu

worksheet as small
as

possible. It is necessary for the

Menu worksheet to remain on the dashboard so that the

accompanying Year and Country filters can be used.

13. On the Dashboard pane, select Floating and drag a Horizontal container

onto the view in approximately the middle of the dashboard.

14. Within the Layout pane, set the width of the Horizontal container to 400:

Figure 11.25: Horizontal widths

[517]

Visualization Best Practices and Dashboard Design

15. In the lower-right section of the dashboard, right-click the container that

houses the Country and Years filters. In the resulting pop-up menu, choose

Edit Width and set the value to 200:

Figure 11.26: Edit Width...

16. Drag the filter container selected in the previous step and place it in the

container that is floating in the center of the dashboard:

Figure 11.27: Floating filter

[518]

Chapter 11

17. From the Dashboard pane, press Shift to drag a vertical container and place it

inside the left portion of the floating horizontal container:

Figure 11.28: Vertical container

18. Right-click on the newly created vertical container and select Fix Width. The

width of the vertical container should now be 200 pixels:

Figure 11.29: Fix width

[519]

Visualization Best Practices and Dashboard Design

19. Place the Expander worksheet in the newly created vertical container by

pressing Shift and dragging.

20. The Expander worksheet contains a small, transparent image that will

be used to expand and collapse the menu we are creating. However, an

image does not have to be used; for example, text could
be

used instead. A

transparent image is sometimes used in web design to stretch tables; we will

make use of this method from web design here.

21. Set the fit for the Expander worksheet
to

Entire View.

22. Right-click on the Expander worksheet title and select Hide Title. The results

should look similar to the following screenshot:

Figure 11.30: Expander

23. Within the Layout pane, select the horizontal container that contains the

Country and Years filters and the Expander worksheet by right-clicking it

and selecting Select Container: Horizontal, or by selecting the horizontal

container from Item hierarchy under Layout:

[520]

Chapter 11

Figure 11.31: Item hierarchy

You can change the naming convention in the Item

hierarchy to create different Dashboard Zone Names and

find container and/or worksheets faster.

24. Enter the following dimensions:

Figure 11.32: Horizontal position

[521]

Visualization Best Practices and Dashboard Design

25. Select Dashboard | Actions and create the following filter action, called

Collapse/Expand:

Figure 11.33 Filter action

26. In Item hierarchy, right-click on the vertical container that is housing the

Expander worksheet and deselect Fix Width.

This step is necessary so that the Collapse/Expand action

will work properly.
It
was necessary to fix the container's

width previously to properly align the contents of the

container.

[522]

Chapter 11

27. On the dashboard, click on Menu Icon. The Expander worksheet should

appear and disappear, causing the filters to move on and off the dashboard.

When you're finished with this step, make sure that the Expander worksheet

is visible/the filters are located off the dashboard.

28. From the Dashboard pane, press Shift and drag two blank containers onto

the dashboard. Position one directly above the Expander worksheet and one

directly below. Size the blank containers so that the Expander worksheet is as

small as possible, as indicated by
the

red arrow:

Figure 11.34: Add blanks

29. Be sure to continually test the Menu action as you adjust the size so as to not

inadvertently break the collapsing functionality of the container.

30. Click the drop-down menus associated with both the Country and Years

filters, then choose Apply to Worksheets | Selected Worksheets. In

the resulting dialog boxes, choose Population Line, Population Map,

Population Pie, and Population Tree.

[523]

Visualization Best Practices and Dashboard Design

31. Adjust the formatting and positioning as desired. The Country and Years

filters can be hidden or shown by selecting the Menu button:

Figure 11.35: Collapsed Menu, which can
be

hidden
by

selecting the Menu button

In this section,
we

learned that
by

using containers and a filter, Tableau is able to

automatically resize the selected worksheet within the container. This feature can be

used to make it seem as if a worksheet can be swapped. However, Tableau basically

just minimizes one and maximizes the other, even though this is not visible to the

user's eye. Brilliant, isn't it?

After completing this exercise, you may think, OK: the filters do not technically

display on the dashboard, but they are still visible to the side. While this is true in

Tableau Desktop, if you are able
to

upload the workbook to an instance of Tableau

Server, you will note that when clicking on the menu icon, the filters appear and

disappear and do not display to the side. In the solution workbook provided with

this chapter, the Hider worksheet has been floated off the right-hand side of the

dashboard to completely hide the filters from view. Review the Hider approach if

your design needs require completely hiding material that is beyond the confines of

the dashboard.

[524]

Chapter 11

The collapsible menu is a very nice add-on and contributes to the simplicity of your

dashboard. The users can focus on the data and use the filter only if needed.

Dashboard best practices for user

experience

Visualization best practices are not limited to visual features; actions, filters, and

organizing data can be as important. A few of those features that Tableau has to offer

shall be mentioned in this section. Each of them will help you to either improve the

user experience or keep track of what you have built—since sometimes, you can get

lost when working with many different worksheets.

In total,
we

will be discussing four features, two of each category mentioned

previously. Actions (six in total) and export buttons contribute to a better user

experience, and "Used In" as well as item hierarchy are part of a better dashboard

building experience. Let's start!

Actions

Implicitly,
we

have discussed this a few times before, but let's have an explicit look

at what
we

can achieve with regards to visualization and dashboard design by using

Actions. Actions come into play if you want your user to
be

redirected by clicking

or hovering on data in a viz. This can be helpful if you have a lot of data to show

and don't want
to

put it all on the same dashboard. Neither should you, because it

is distracting and if it is hierarchical data, actions are the perfect way to implement a

drill-down technique.

The following sections will explain all the different actions you can use in Tableau

for the purpose of adding interactivity to support a clean and effective dashboard

design.

Filter actions

In this example, we will use a filter action
to
show data initially hidden. By doing so,

we will make sure to present smaller chunks of data at a time and the user can drill

down to any point of interest. Follow these steps:

[525]

Visualization Best Practices and Dashboard Design

1. Please open the worksheet Quantity by State:

Figure 11.36: Map

You can see in the preceding screenshot that each state represents the

quantity of a given product sold. But wouldn't it be nice to see more details

by clicking on a given state? In order
to
do so,

we
must set up actions.

[526]

Chapter 11

2. First,
we

need a second worksheet
we

want to use in our action. Please open

the worksheet Profit by State by Category:

Figure 11.37: Table

You can see in the preceding screenshot that every state, every category, and

the corresponding profit are shown.

3. Now, go back to the worksheet Quantity by State to enable an action that

will prompt the user to go to the Profit by State by Category worksheet, and

then filter it on the state they clicked on.

[527]

Visualization Best Practices and Dashboard Design

4. On the Quantity by State worksheet, select Worksheet | Actions; the

following window will appear. Click on the Add Action button and select

Filter...:

Figure 11.38: Filter action

5. In the next window, add a filter action called Map to table (quantity to

profit) and copy the settings, as shown in the screenshot. Then, click OK:

[528]

Chapter 11

Figure 11.39: Filter action parameter

6. If you now click on a state on the worksheet Quantity by State (Source

Sheet), Tableau will look for that same State on Target Sheet and filter

accordingly. The following is an example after clicking on Texas:

Figure 11.40: Filtered table

[529]

Visualization Best Practices and Dashboard Design

The filter action discussed in this section can be used to declutter your dashboard.

Following design principles often means less is more, and if you have lots of

datapoints to share, a drill down or filter action can help you achieve this goal.

Present high-level data first, then present a more detailed data layer behind a filter

action. You can also add a sentence for your users below the title, like "Click on a

state to see more details."

Highlight actions

Other options are, for example, a highlight action. This is more useful for worksheets

on the same page because it will simply highlight applicable fields. You can show all

data on the same dashboard, but the highlight action makes it easier for your users to

find related data points. Follow these steps:

1. Therefore, please open the dashboard Qty & Profit, which combines the two

worksheets we used previously:

Figure 11.41: Dashboard

[530]

Chapter 11

2. Click on Dashboard | Actions and this time, copy the following Highlight

Action parameters:

Figure 11.42: Highlight action

[531]

Visualization Best Practices and Dashboard Design

3. The preceding parameters mean that, on the Qty & Profit dashboard, our

source worksheet will be Quantity by State and by hovering over it, the

corresponding data on the target sheet will
be

highlighted. In this case,

the only common data is State, so the highlighter will only take State into

account. The result looks like this:

Figure 11.43: Highlight action dashboard

By hovering over California on the map, the same state will be highlighted in the

right-hand table. As you can see, implementing a highlight filter can help your users

find related data points faster. In contrast to the navigation action, this filter should

be used for worksheets on the same page
and

as visual help to find a value.

URL actions

The next action is the URL action. This one allows you to open a URL when clicking

on a data point in the dashboard. Follow these steps:

1. Go to the Quantity by State worksheet and open Worksheet | Actions.

2. Delete every action that is visible.

[532]

Chapter 11

3. Now, select Add Action and select Go to URL. Copy all the parameters, as

shown, and click on the arrow next to the Wikipedia URL. Fields from your

data source will appear, which enables you to add a field to the URL that will

automatically return a value based on the dashboard. Select State:

Figure 11.44: URL action

4. Click on a state on your map on the Quantity by State worksheet and see

how Wikipedia will open the respective web page.

URL actions are very useful when you want to show your users additional

information available on websites. You can also use latitude and longitude values

to open Google Maps, link the URL action
to
company internal websites with

regulations, or maybe a ticketing system.

[533]

Visualization Best Practices and Dashboard Design

Navigation actions

The next action used to be commonly used in combination with a button to give

the user a more interactive experience. Instead of clicking on tabs
to

go from one to

another page, you will add buttons with an action to go to a specific sheet:

1. Go to the Qty & Profit dashboard
and

create a calculated field called String

with the code "Go back to […]". This will serve as our button shortly.

2. Open a new worksheet and call it Button.

3. Place the calculated field String by dragging and dropping Details as well as

Label on it.

4. Select Shape from the Marks card dropdown and select any shape (and

color) of

5. Hide the title and disable Tooltip.

6. Click on Label and select Bottom-Centre Alignment. The result will look as

follows:

your choice.

Figure 11.45: Button

[534]

Chapter 11

7. Go back to the Qty & Profit dashboard, select Floating, and drag the Button

worksheet onto the dashboard; for example, into the bottom-left corner:

Figure 11.46: Button on the dashboard

8. Click on Dashboard | Actions and copy the following parameter:

Figure 11.47: Go to Sheet action

[535]

Visualization Best Practices and Dashboard Design

9. Click
OK

and click on the Button worksheet on the Qty & Profit dashboard.

It will now take you back to the Latin American Population dashboard! Nowadays,

this action is less used since the release of a specific navigation object, but it is useful

to know about it for the sake of completeness.

Parameter actions

The next one in line is Parameter Action. This one is used to change a parameter by

clicking on a data point in the dashboard rather than using the parameter control.

Follow these steps:

1. Place the Categories worksheet on the Qty & Profit dashboard; for example,

in the top-right corner:

Figure 11.48: Parameter action

[536]

Chapter 11

2. Click on Dashboard | Actions and copy the following parameters:

Figure 11.49: Parameter action setup

3. Create a calculated field called Cat Param with the following code:

If [Parameter Action] = [Category]

Then [Category]

Else ""

END

[537]

Visualization Best Practices and Dashboard Design

4. Place Cat Param on the Filter shelf on the worksheet Profit by State by

Category and select the empty value and enable Exclude, as shown here,

before selecting OK:

Figure 11.50: Category filter

5. If you now hover over any Category at the top, the following table will adjust

accordingly:

Figure 11.51: Category filtered dashboard

[538]

Chapter 11

Set actions

The last action that we will discuss is the set action. A set splits your data in two,

In or Out. If you were to create a set called animals based on the following list: [cat,

tree, dog, leopard, house, car], you would mark cat, dog, and leopard as In and tree,

house, and car as Out. You can then use the set as a new field for your dashboard.

Follow these steps:

1. Go to the Qty & Profit dashboard
and

select the western states California,

Oregon, and Washington. Note that the pop-up window shows two rings

in the top-right part. Using this icon is one way to create a set; go ahead and

click on it:

Figure 11.52: Set action

2. The following window will open; click OK:

Figure 11.53: Set

[539]

Visualization Best Practices and Dashboard Design

In the data pane, a new field has been created—a set called West Coast.

3. See how it works by changing the Profit by State
by

Category worksheet as

follows, removing State from Rows, and adding West Coast instead (you can

remove Cat Param from the filter shelf or leave it; both will work):

Figure 11.54: Setting field states

The profit in the Out band takes into account all states except for California,

Oregon, and Washington, whereas the In band shows numbers relative to

those three mentioned states.

[540]

Chapter 11

4. Go back to the Qty & Profit dashboard and select Dashboard | Actions to

copy the following parameter into a Set Action:

Figure 11.55: Set action parameter

[541]

Visualization Best Practices and Dashboard Design

5. If you now click on any one or multiple states, all selected states will be the

In group of your set. Therefore, the profit numbers will show the profit of

your selection against the rest, like so:

Figure 11.56: Set action dashboard

6. You can also rename the In and
Out

values by clicking and selecting Edit

Alias… :

Figure 11.57: Edit Alias...

[542]

Chapter 11

Those were the six Tableau actions; with
the

Filter and Highlight actions, you can

make it easier for your users to find more detailed information by drilling down.

The Go to Sheet and Go to URL actions can be seen as interactive buttons that will

redirect your user
to

additional information, either on the web or on another sheet.

And lastly, the Change Parameter and Change Set actions can be used
to

adjust a

predefined value or multiple values, which will allow your users
to

interact with and

analyze the data from different angles.

Export Dashboard Button

Next to actions, another item that's part of the user experience is a built-in download

button. Adding such a button
to

your dashboard will allow your users
to

share

an image or a screenshot, if they like, with others, use it for documentation, or for

presentation purposes. Adding a button is super easy, just follow the steps:

1. Open the dashboard Golden Rectangle, select Floating in the bottom-left

corner, and drag Download to the top-right corner:

Figure 11.58: Download button

[543]

Visualization Best Practices and Dashboard Design

2. Click on the newly added button; a Print to PDF popup will appear:

Figure 11.59: Print to PDF

3. Click OK, after which you can open the dashboard as a PDF from your

desktop.

That's it! In only one simple step, you can make many users that like to have a

printout very happy. A Tableau workbook as well as Tableau dashboards can

become very overwhelming, depending on how many worksheets are being used

to create them. Luckily, Tableau helps
us

with organizational features like Item

hierarchy and Used In.

Item hierarchy

As we briefly mentioned in the Creating a collapsible menu section, if you open the

Latin American Population dashboard, you will notice Item hierarchy at the bottom

left of the Layout pane. By clicking on the arrow next to the word Tiled, you will be

able to see all the different part of the dashboards and the worksheets used in each

container. You can also spot containers in containers and the structure of your layout:

[544]

Chapter 11

Figure 11.60: Item hierarchy extended

Try
to

keep a logical order within your item hierarchy. This will make it easier for

you to make changes
to

your dashboard later on. Which logic you choose is up

to you; one I use often is high-level to more detailed, or most important to least

important, or from spacious worksheets
to

smaller ones. A nice article on keeping

your dashboard clean can
be

found here: https://www.thedataschool.co.uk/joe

beaven/layout-containers-how-to-get-your-item-hierarchy-under-control.

Used In

The Used In feature shows you on which dashboards a certain worksheet is used.

Just right-click on a worksheet and select Used In:

Figure 11.61: Used In

This feature is especially useful if you want to make changes to a worksheet. Before

execution, you can check which dashboards will
be

affected, and the risk of breaking

an existing dashboard will decrease tremendously.

[545]

Visualization Best Practices and Dashboard Design

Summary

We began this chapter by considering visualization design theory. We looked at

formatting rules, color rules, and rules about which visualization types to use and which

we need to avoid. We also explored how to compromise when contradictory design

goals are expressed by end users. Then, we discussed dashboard design principles. We

covered three popular layouts: the Golden Rectangle, quad, and small multiple.

Afterward,
we

looked at how to use sheet selection techniques as an ally in good

design. Specifically,
we

explored how to allow the end user to choose which

visualization type to view, and how to hide and display filters so as to make the best

use of screen real estate. Finally, we discussed actions and download buttons for a

better user experience, as well as item hierarchies and the Used In feature, which is

very handy for organizing your dashboard. This, in turn, will help to improve the

layout design.

In the next chapter,
we

will focus on use cases. Going from a dataset to a product

will be the theme, and
we

will practice doing this with a World Index dataset and a

couple of geospatial ones. The knowledge you gained from the previous chapters

will be very useful!

[546]

12
Advanced Analytics

This chapter focuses on advanced self-service analytics. Self-service analytics can be

seen as a form of business intelligence, where people in a business are encouraged

to execute queries on datasets themselves, instead of placing requests for queries in

a backlog with an IT team. Then, query analysis can be done, which should lead to

more insights and data-driven decision-making. But how do you start creating useful

self-service dashboards if it's your first time doing so? How do you
go

from a dataset

to a product? Have you ever asked yourself how other people start working on a

dashboard, how they clean data, and how they come up with a dashboard design? If

so, this is the right chapter for you! I want
to

share three use cases with you, written

as a train of thought in order
to

give you an idea about how I work. Please note that

this is just my personal experience; there are many different ways that can lead you

to your goal.

We will cover the following topics:

• Visualizing world indices correlations

• Geo-spatial analytics with Chicago traffic violations

• Extending geo-spatial analytics with distance measures

Now that
we

have had this introduction,
we

are good
to go

and can start with the

first use case.

[547]

Advanced Analytics

Visualizing world indices correlations

Imagine you are working on the world indices dataset and your line manager gives

you the following task:

Create a dashboard for me in which I can easily spot all correlated world indices and

their distribution. I need it
by

tomorrow morning.

Now, take a few minutes before you continue reading and think about how you

would tackle this task. The dataset contains 67 columns with various indices, like

birth registrations or emission values, exports and imports, and forest areas, divided

into 188 rows, where each row represents one country.

Write down your planned steps, open the workbook related
to

this chapter from

https://public.tableau.com/profile/marleen.meier, and follow your steps; time it

in order to get a better feel for time estimates when working with Tableau. This way,

you can make sure that you can deliver on time and manage expectations if you are

ever asked how long it will take to build a certain dashboard.

Plotting a scattergraph

And now, I will illustrate one way I could imagine solving this task:

1. First, I open the world-indices file in Tableau Prep Builder in order
to

get

more details on the dataset itself; this will help
us to

describe the data but

also to spot obvious data flaws like null values, duplicate entries, and so on:

Figure 12.1: Tableau Prep Builder

[548]

Chapter 12

With this dataset, I actually didn't spot any obvious data quality issues in

Prep Builder, nor a need to further prepare the data. It's 1 row per country—which you can see in the evenly distributed bars in the Id column—and 65

columns for the different indices per country. Since no data preparation is

needed, I decide to continue directly with Tableau Desktop. I close Tableau

Prep Builder and open Tableau Desktop.

2. My next thought is, how can I visualize all correlations at once, yet not have

it be too much information? I do have 65 different columns, which makes for

4,225 possible combinations. No, I decide that displaying everything won't

work. The task is very generic; therefore, I decide to go for a two-parameter

approach, which will enable my end user to select each of the index

combinations themselves. I start sketching what the dashboard might look

like and come up with the following:

Figure 12.2: Sketch

3. In order to execute my plan, I first create two parameters, which I name

X-Axis and Y-Axis, which will be used to define the respective axes x and y.

[549]

Advanced Analytics

4. I define both parameters as String and paste all field names from the

clipboard into both of the parameters. To do this, I open the input file in

Excel, transpose the header row to a column, and press Ctrl + C. The data can

now be pasted into the parameter via the Paste from Clipboard option. This

saves time and is less error-prone:

Figure 12.3: Paste to parameter

5. I also want the parameters to be visible on the dashboard, so I select Show

Parameter:

Figure 12.4: Show Parameter

[550]

Chapter 12

6. If you were
to

test the parameter now, nothing would happen. We need

a calculated field that defines that if a selection from the parameter has

been made, Tableau will select the appropriate field. I create the following

calculated field to achieve this (this field has been made part of the Starter

and Solution workbook to make your life easier):

Figure 12.5: Calculated field

7. Now we will do the same thing for the Y-Axis parameter.

In order to create the calculated field for Y-Axis quicker,

copy and paste the X-Axis calculated field into Excel

and find and replace [Parameters].[X-Axis] with

[Parameters].[Y-Axis].

8. Drag the X-Axis calculated field to Columns and Y-Axis to Rows. Also, put

the ID field on the Detail shelf.

[551]

Advanced Analytics

9. In order to see the correlation analytics from Tableau, drag Trend Line onto

the sheet:

Figure 12.6: Trend Line

The sheet with the trend line looks as follows. When hovering over the trend

line, you will see the equation of the line, the R-Squared value, and the value

for P-value:

Figure 12.7: Trend line values

[552]

Chapter 12

The Y-Axis equation means that, for each point on the x-axis, the y-axis value

will increase by 17.9717, starting at point 0 on the x-axis and point -4.33685 on

the y-axis. Thus, overall the y-term increases faster than the (also increasing)

x-term. The R-Squared value explains how much variance is explained
by

the trend line (80.81%), and lastly P-value explains the significance of the

model. A P-value value smaller than 0.05 is considered significant and means

there is a 5% chance that the data is following the trend line randomly. The

trend line in the preceding figure has a P-value of less than 0.01%. We can

safely assume, therefore, that there is a real relationship between the two

variables.

10. In order to see more coefficients, right-click on the line and select Describe

Trend Line…:

Figure 12.8: Describe Trend Line…

The following window will appear:

Figure 12.9: Trend line information

[553]

Advanced Analytics

Alternatively, you can select the Describe Trend Model… option and you

will see this:

Figure 12.10: Trend model information

If you want to learn more about interpreting trend lines,

you can read the following article: https://onlinehelp.

tableau.com/current/pro/desktop/en-us/

trendlines_add.htm.

11. I get a bit distracted by the grid lines, so I decide to remove them by right

clicking on the screen and selecting Format…:

[554]

Chapter 12

Figure 12.11: Formatting

12. I select the fifth option in the Format window, the lines, and remove the Grid

Lines value:

Figure 12.12: Removing grid lines

13. I also change Marks from Automatic to Circle and change the color to black.

[555]

Advanced Analytics

14. Now, I think it would be helpful to show on the scatterplot which country

each point represents, so I change the ID field from Detail to Label in the

Marks card; however, this looks a bit too chaotic:

Figure 12.13: ID to text

[556]

Chapter 12

15. I click on the undo arrow and I add a highlighter function by right-clicking

on ID and selecting Show Highlighter. Now, the end user will be able to

search a country and that point will be highlighted in the scatterplot:

Figure 12.14: Show Highlighter

[557]

Advanced Analytics

16. I also want the country name to show clearly and in red when hovering over

any points, and I achieve this
by

changing the ID color in Edit Tooltip to red

and increase the size:

Figure 12.15: Tooltip

[558]

Chapter 12

The result looks as follows:

Figure 12.16: Hovering over a point

17. I have already added the trend line, and I now want to show the Pearson

R, also called R-Squared, value in the view such that the user knows if two

indices are correlated; however, it
is

not possible to set the Describe Trend

Line or Describe Trend Model option
to

always be shown. Hence, I will

calculate the value myself in a new field; I use the CORR() function to do this:

Figure 12.17: Pearson R

[559]

Advanced Analytics

18. But I want to show some text that indicates if two variables are correlated or

not instead of the value itself, because I want to make my dashboard clear .

Therefore, I create another calculated field called Correlation yes or no

with the following code:

IF [Pearson R] > 0.7 then ' The two indices < ' + [Parameters] .

[X - Axis] + ' > and < ' + [Parameters] . [Y- Axis] + ' > have a very

strong positive correlation of : + STR ([Pearson R])

ELSEIF [Pearson R] < 0.7 and [Pearson R] > 0.4 then ' The two

indices < ' + [Parameters] . [X - Axis] + ' > and < ' + [Parameters] .

[Y - Axis] + ' > have a strong positive correlation of : ' +

STR ([Pearson R])

ELSEIF [Pearson R] < 0.4 and [Pearson R] > 0.2 then ' The two

indices < ' + [Parameters] : [X -Axis] + ' > and < ' + [Parameters] .

[Y - Axis] + ' > have a moderate positive correlation of : ' +

STR ([Pearson R])

ELSEIF [Pearson R] < 0.2 and [Pearson R] > -0.2 then ' The two

indices < ' + [Parameters] . [X - Axis] + ' > and < ' + [Parameters] .

[Y - Axis] + ' > have no or a weak correlation of : ' + STR ([Pearson

R])

ELSEIF [Pearson R] < -0.2 and [Pearson R] > -0.4 then ' The two

indices < ' + [Parameters] : [X -Axis] + ' > and < ' + [Parameters] .

[Y -Axis] + ' > have a moderate negative correlation of : ' +

STR ([Pearson R])

ELSEIF [Pearson R] < -0.4 and [Pearson R] > -0.7 then ' The two

indices < ' + [Parameters] . [X - Axis] + ' > and < ' + [Parameters] .

[Y - Axis] + ' > have a strong negative correlation of : ' +

STR ([Pearson R])

ELSEIF [Pearson R] < -0.7 THEN ' The two indices < '

[Parameters] . [X -Axis] + ' > and < ' + [Parameters] • [Y - Axis] + ' >

have a very strong negative correlation of : ' + STR ([Pearson R])

END

+

19. This being done, I create a new sheet and place Correlation yes or no on the

Text shelf. The sheet looks very simple, as you can see :

Marks

0 Automatic

Colour

ooo

Detail Tooltip

AGG (Correlatio ..

The two variables <Human Development Index HDI -2014> and <Mean years of schooling

- Years have a very strong positive correlation of: 0.899

Figure 12.18 : Correlation on text

20. I right-click on the title and choose Hide Title.

[560]

Chapter 12

Finally, almost everything is ready to build the dashboard from the sketch at the

beginning of this section. Only the distributions for each of the two axes are still

missing.

Adding axis distributions

We have made a start, but now I want to add the distribution plots for the x- and

y-axes next to the scatterplot. I take the following steps:

1. I start with the x-axis, open another worksheet, and drag ID to Columns and

X-Axis to Rows and change the color to gray in the Marks card. I also select

Entire View at the top of the page.

2. The x-axis distribution should be aligned to the scatterplot; therefore, I want

the bars
to

form from top to bottom. I achieve this
by

clicking on the x-axis

and selecting Reversed for Scale:

Figure 12.19: Edit Axis [X-Axis]

3. After I close the Edit Axis [X-Axis] window, I right-click on X-Axis and

deselect Show Header to not show the header anymore.

[561]

Advanced Analytics

4. The values should also be sorted from smallest to biggest, just like in the

scatterplot. I click on ID in Columns and select Field for Sort By, as shown in

the dialog box below:

Figure 12.20: Sort
by

field

5. I continue with Y-Axis on another new worksheet and drag Y-Axis to

Columns and ID to Rows and change the color to gray in the Marks card. I

also select Entire View at the top of the page.

6. Just like in step 2, the y-axis distribution should be aligned to the scatterplot;

therefore, I want the bars to form from right
to

left. I achieve this by clicking

on the y-axis and selecting Reversed for Scale.

[562]

Chapter 12

7. After I close the Edit Axis [Y-Axis] window, I right-click on Y-Axis and

deselect Show Header to not show the header anymore.

8. The values should also be sorted from biggest
to

smallest, just like in the

scatterplot. I click on ID in Columns and select Field for Sort By, as shown in

the next figure:

Figure 12.21: Sorting
by

field

[563]

Advanced Analytics

9. In order to put everything together, I open a dashboard page and call it

Distribution 1, then I put the scatterplot worksheet at the bottom of the page

and the correlation text worksheet
at

the top of the dashboard canvas:

Figure 12.22: Dashboard

10. I add the distribution worksheet to the related site of the scatterplot (Y to the

y-axis and X
to

the x-axis).

[564]

Chapter 12

11. Then I add a blank in the lower left-hand corner to align the distribution with

the scatterplot edges:

Objects

Horizontal Blank

Vertical Navigation

Download

Image Extension

Web Page

Text

Figure 12.23: Adding a blank

The final layout looks like this:

Figure 12.24: Final layout

[565]

Advanced Analytics

12. I want to give the distribution more meaning and add an action that will

highlight the country in both distribution plots. I do this so the user can see

where a country is located in the range of all countries within one index

because it can be hard to see in the scatterplot sometimes. The scatterplot,

on the other hand, can be used
to

get more insights into the relationship

between the two indices. For the Highlight action, I need to set the

parameters as follows:

Figure 12.25: Highlighter

Look at the following screenshot: I hovered over the dot that represents

the Netherlands. I can see that the Netherlands is quite high in both

selected indices and that it is close to the trend line, but I can also see in the

distribution bar chart that in the y-index Mean years of schooling, quite

a few countries score higher than the Netherlands, whereas in the x-index

Public health expenditure percentage of GDP 2013, there is only one more

country that scores higher:

[566]

Chapter 12

Figure 12.26: Final layout II

13. Another idea is to change the distribution plots to a count of values per

bin. A bin is a range of values, which is more likely what you will see when

people talk about distribution plots. This would basically show which bin

contains the most countries, and if the plot is normally distributed or maybe

another distribution such as Poisson, Log-Normal, or Student's t-distribution.

I think that in this context either factor would add value; therefore, I will add

them both and present both
to
my boss, so there are two options

to
choose

from.

14. I duplicate the two worksheets that contain the distribution plot by clicking

on the tabs and selecting Duplicate.

[567]

Advanced Analytics

15. I click on X-Axis | Create | Bins…, leave the settings as they are, and click

OK. A new X-Axis (bin) field will
be

created:

Figure 12.27: Create bins

16. I repeat the previous step for Y-Axis.

[568]

Chapter 12

17. Next, for the Y-Axis, I add Count of Y-Axis to Columns, Y-Axis (bin) to

Rows, and ID to Detail in the Marks card. Sort Y-Axis (bin) in descending

order:

Figure 12.28: Layout

18. For X-Axis, I add Count of X-Axis to Rows, X-Axis (bin) to Columns, and

the ID field to Detail in the Marks card. Sort X-Axis (bin) in ascending order.

[569]

Advanced Analytics

19. I duplicate the previously created dashboard Distribution 1
by

clicking

on the tab and clicking Duplicate.
In

this new version, I replace the former

distributions with the new ones with the bins. The result looks as follows:

Figure 12.29: Final layout III

Adding a correlation matrix

After clicking through the dashboard and testing the functionality, I realize that it's

hard to remember which combinations I have already tried, and also I wish I could

filter on highly correlated combinations. To address this, I want to add one more

dashboard to this workbook: a correlation matrix with all combinations, color-coded

and with an option to filter:

1. First, I go back to my data source tab and add the same dataset again, but

with a new name: World Indices Correlation Matrix. And I even add it twice

because I need every index correlated against every other index:

[570]

Chapter 12

Figure 12.30: World Indices Correlation Matrix

2. The key used is ID:

Figure 12.31: ID as a key

[571]

Advanced Analytics

3. Then, I need
to

pivot both tables because instead of having one column per

index, I need one column with all index names and a second column with all

values in order
to

create a table with each of them. I select all fields except ID

and use Pivot:

Figure 12.32: Pivoting

4. This results in three columns, I rename Pivot Field Values as Value Index A

and Pivot Field Names as Index A:

Figure 12.33: Renaming columns

[572]

Chapter 12

5. Now I do this again with the second table and rename the columns Index B

and Value Index B.

6. I open a new worksheet and place Index B on Columns, and Index A on

Rows. I create a calculated field named Pearson R with the code CORR([Value

Index B], [Value Index A]) and place it on Filters, Colour, and Text. After

right-clicking on Pearson R in the Filters shelf, I select Show Filter:

Figure 12.34: Correlation matrix

The colors can be adjusted as you like; I chose a 5-stepped color scheme from

red to black, indicating that red fields are negatively correlated and black

ones positively.

[573]

Advanced Analytics

7. I open a new dashboard tab and place the worksheet on it. Try adjusting the

filter such that you only see the highly correlated range 0.89–0.99, just
to

have

a smaller dataset to work with for now:

Figure 12.35: Filter correlation matrix

This section helped us to create a heatmap of all possible combinations, and
we

color-coded the correlation value and added a filter to it in order to focus on points

of interest. In the preceding screenshot, you can see the highly correlated indices.

Finalizing the dashboard

To avoid any confusion, I want to explain the Pearson R filter for the user and

finalize the dashboard:

1. I start by adding a text field to the dashboard. With more time, I could make

it a drop-down parameter just like the X-Axis and Y-Axis fields:

[574]

Chapter 12

Figure 12.36: Adding text about Pearson R

2. To finalize everything, three actions are needed. First, two Parameter actions

are needed to enable a click in the correlation matrix to change the values for

the X-Axis and Y-Axis parameters, the first of which should be customized as

follows:

Figure 12.37: Parameter action 1

[575]

Advanced Analytics

The action in the preceding screenshot will change the X-Axis parameter to

the value from Index A.

3. Now, I edit the second parameter action as follows:

Figure 12.38: Parameter action 2

The action in the preceding figure will change the Y-Axis parameter to the

value from Index B.

4. Lastly, I add a Sheet Navigation action called GoToScatterplot that allows

the user to change the dashboard after selecting an index combination:

[576]

Chapter 12

Figure 12.39: Sheet navigation action

5. The preceding action will show a menu to go to the trend line dashboard.

6. The user can now select a value and click on it. In the background, the

parameters X-Axis and Y-Axis will be adjusted
to

the two indices that relate

to that same field. For example, for Mean years
of

schooling and Human

Development Index, a hyperlink appears:

Figure 12.40: Menu

[577]

Advanced Analytics

7. The user will be redirected to the dashboard with a trend line that is now

prefiltered and shows the same two indices: Mean years of schooling and

Human Development Index:

Figure 12.41: Filtered visualization

From this, we can see that the two selected indices are positively correlated by 89.9%.

We can also see the distribution per index
on

the x- and y-axes.

This was a lengthy exercise, but I wanted to present you with my full thought

process and look at dashboard creation. With more time, I would definitely add

some more insights; for instance:

• Add an explanation for each index

• Add a more thorough explanation for the correlation

• Add the p-value or other coefficients to the analysis and change the text

accordingly

[578]

Chapter 12

And don't forget
to

get feedback and check with your stakeholders if you are on the

right track. Some people use sketches, then work on a draft, and then ask for feedback

again, until the product is finalized. I tend
to

ask my stakeholders questions to better

understand what they need and let them walk me through the process they want

to replace or change with the Tableau dashboard. Then I present a full version or

intermediate version, depending on complexity and timelines. It should be avoided

that you spend hours or days on something that is not what the stakeholder wants.

But now, let us have a look at a second short use case that incorporates geo-spatial

data.

Geo-spatial analytics with Chicago traffic

violations

It's Wednesday morning; your manager comes into your office wanting to check the

red-light violations of the last year in Chicago. They ask if you can build a dashboard

for that purpose. In particular, you're asked
to

highlight where the most violations

happen and whether there is an overall trend in Chicago traffic light violations over

the last few years. You are given two datasets, one with the camera locations and

one with the violations, and told that the dashboard is needed within the next hour.

What do you do?

Before you continue reading, think about how you would approach this problem.

Take five minutes, think about the steps you would take, and sketch a dashboard

design.

The following is an overview of how I would do it:

1. Open the datasets in Tableau Prep Builder

2. Join the two datasets

3. Clean the data if needed

4. Open the output in Tableau

5. Use a map to visualize the locations of cameras, if possible

6. Add the number of violations per camera

7. Establish whether there is a monthly trend

[579]

Advanced Analytics

What follows is a rough sketch of how I would design the dashboard:

Figure 12.42: Sketch

Up next is a step-by-step description of what I would do. The corresponding Tableau

dashboard can be downloaded from Tableau Public, the Tableau Prep Builder

file is available on GitHub (https://github.com/PacktPublishing/Mastering

Tableau-2021), and the dataset itself is publicly available here: https://data.

cityofchicago.org/Transportation/Red-Light-Camera-Violations/spqx-js37.

Preparing the data

After loading both files into Tableau Prep Builder, I see that a join on Longitude and

Latitude doesn't get me anywhere, because almost all records are mismatches:

Figure 12.43: Join I

[580]

Chapter 12

I try a different approach: a join on the intersections. This results, again, in 0 joined

rows, but this time I see why. In one dataset, the Intersection values are separated

with a dash (-) and in the other dataset it's AND; also, one uses capital letters, and

the other one doesn't:

Figure 12.44: Join II

[581]

Advanced Analytics

I could add a cleaning step to make all the letters uppercase and split the

intersections into two parts. I can execute Custom Split… on - as well as on AND:

Figure 12.45: Data prepping

Then, I notice that the intersection order is different; for example, Ashland-71st and

71ST AND ASHLAND. I might consider restructuring the datasets and creating a

loop that would put the two streets in alphabetical order in the two splits, but I don't

have time for this now.

Another solution is to first join split 1 and split 1
as

well
as

split 2 and split 2. In a

second join, I could join split 1 and split 2 as well
as

split 2 and split 1. Afterward, I

could union the two joins and create an output file (or directly load the Prep Builder

dataset into Tableau Desktop). With this approach, I would still not include all the data,

but I would have 380,000 rows out of 444,000. This could
be

enough to get a rough idea

of patterns.
If

I have any time left, I can continue mapping the remaining mismatches.

[582]

Chapter 12

However, I instead decide to drop the locations dataset altogether and just use the

violations dataset, because it has the location of every violation and therefore the

location dataset is not even needed.

Building a map of intersections

I continue by opening the violations dataset in Tableau:

1. Longitude and latitude values are not automatically recognized, so I have
to

change both to Number (decimal)
by

clicking on the data type icon:

Figure 12.46: Change data type

2. Then, I change the Longitude and Latitude fields to Measure
by

clicking on

the drop-down arrow on the field
as

shown in the preceding figure and select

Convert to Measure.

[583]

Advanced Analytics

3. Now I can click on the data type icon again and change the two fields to

Latitude and Longitude:

Figure 12.47: Changing the geographic role

4. By dragging Longitude to Columns, Latitude to Rows, and Intersection to

the Text shelf, I visualize the red-light locations—at least the ones that have

ever had a violation:

[584]

Chapter 12

Figure 12.48: Intersections Chicago

5. The name of the worksheet will be Intersection, and since I am looking at

violations, I change the color in the Marks card
to

red. Lastly, I don't need to

see the intersection name, so I change Intersection from Text to Detail.

[585]

Advanced Analytics

6. Next, I like the map better when it shows a few more details, so I use Map

Layers… to select some more options:

Figure 12.49: Map Layers…

Select all the layers you want
to

see on the map:

Figure 12.50: Map of Chicago

Another nice functionality of Tableau is that you can add Data Layer to

your view. You can see the option
in

the bottom-left corner of the preceding

screenshot.

[586]

Chapter 12

7. I use the Population layer
by

Census Tract, as I hope it will give me some

details on whether more or fewer violations happen in densely populated

areas:

Figure 12.51: Data layers

In the following screenshot, you can see how it looks—note that the darker

the red, the denser the area is populated:

Figure 12.52: Intersection vizualization

[587]

Advanced Analytics

8. I add MONTH(Violation Date) to Pages; this way, my boss can play through

the months and see where and when the amount of violations changes:

Figure 12.53: Pages

9. Of course, I need to add the Violations field to make Pages work properly. I

decide
to

use the density feature of Tableau, using red as the color:

Figure 12.54: Density visualization

[588]

Chapter 12

Adding a corresponding heatmap worksheet

After clicking on the Pages play button, I notice a pattern in some months. I want to

take a closer look, so I open a new worksheet:

1. I call the new worksheet Heatmap and place MONTH(Violation Date) on

Columns and YEAR(Violation Date) on Rows. Then, I drag Violations
to

the Colour shelf and select red-gold
to

get the following:

Figure 12.55: Heatmap

There are definitely more red-light violations in the summertime, and 2016

and 2020 show the most violations.

[589]

Advanced Analytics

2. Last but not least, I add a new worksheet called Trend?. I drag

MONTH(Violation Date) and drop it on the Columns shelf. The Violations

field should be placed on Rows. I make sure that both measures are

continuous (green). From the Analytics pane, I drag the linear Trend Line

onto the worksheet. Next, I drag Forecast:

Figure 12.56: Line chart

In the preceding figure, you can see that the overall trend of red-light

violations increases slightly over
the

years. The forecast shows us that the

seasonality of there being more red-light violations in the summertime will

probably continue in 2021.

Feel free to check by the end of 2021 how good Tableau's forecast

model was! The City of Chicago datasets are continuously

refreshed.

[590]

Chapter 12

Finalizing the dashboard

The hour is almost over and I am just placing the three worksheets onto a dashboard,

calling it Red-Light Violations, and formatting it a bit; it looks as follows:

Figure 12.57: Final dashboard

You can find the final dashboard in the Tableau workbook associated with this

chapter on Tableau Public, here: https://public.tableau.com/profile/marleen.

meier/.

Can the dashboard
be

improved? Yes, it always can. But after this first iteration, my

boss can let me know if anything needs to
be

adjusted and I can do so. I am sure that

I could spend many more hours improving it, but most of the time dashboarding is

more about delivering promptly. And a full production model is a different story

than an ad hoc question or a one-off exercise, especially if you work in an agile

manner, split your work into deliverables, get feedback, and continue working on it.

[591]

Advanced Analytics

Extending geo-spatial analytics with

distance measures

Our last use case is also geo-spatial analysis on the same Chicago traffic dataset, but

this time,
we

will
be

adding another component. We will be looking to rent a new

place but with the requirement that there
are

no more than n intersections in a radius

of x and Navy Pier should
be

at most y miles away. The variables n, x, and y should

be interactive in order for us
to
make changes and have a very flexible dashboard

experience. The questions to ask about this task are:

• How can
we

add any given location in Chicago to our dataset? It is currently

only showing intersections and violations.

• How can we make the n, x, and y variables?

• How can we add a radius indicator to any given point on the map?

• How can we measure the distance between two variable points?

All those questions will
be

answered in the following steps:

1. Go back to the workbook related to this chapter.

2. Right-click on the worksheet called Intersection and click on Duplicate.

3. Rename the new worksheet Rental.

[592]

Chapter 12

4. Remove MONTH(Violation Date) from Pages and SUM(Violations) from

the Colour shelf and the red text (sub-heading) from the title, to make the

worksheet look like this:

Figure 12.58: Intersections

[593]

Advanced Analytics

5. Change the Marks type to Map.

6. Click on Map | Map Layer and change Data Layer to
No

Data Layer:

Figure 12.59: Map layer

[594]

Chapter 12

7. Place Violation Date on the Filters shelf and select the year 2020.

8. Drag Violations on the Colour shelf and select the Red color palette:

Figure 12.60: Edit colors

We now have a map of Chicago in front of us, on which each point represents an

intersection at which violations have happened in 2020. The darker the dot, the more

violations there are that were registered at that intersection.

Adding measure points to the map

Next,
we

have
to
add functionality that will allow us to set a mark on the map and

start measuring from there. This can be achieved
by

creating longitude and latitude

parameters and using them in a calculated field:

[595]

Advanced Analytics

1. Create the following parameters, Lat and Long:

Figure 12.61: Parameters

2. Right-click each of the parameters and select Show Parameter.

[596]

Chapter 12

3. Create a calculated field called Address manual:

MAKEPOINT([Lat], [Long])

4. Drag Address manual onto the map, on top of the Add a Marks Layer pop

up:

Figure 12.62: Add a layer

5. Change the Marks type of the new layer to Map.

[597]

Advanced Analytics

6. After these steps, we have a map with intersections and color-coded amounts

of violations and a point that
we

can change by using the Lat and Long

parameters. The user can use, for example, Google Maps to find the latitude

and longitude; simply select a point on Google Maps that represents a rental

home location:

Figure 12.63: Google Maps

7. The latitude and longitude will show in the URL and at the bottom of the

page. Type them into the Lat and Long parameters and the same points will

appear on our Tableau map:

[598]

Chapter 12

Figure 12.64: Latitude and longitude

Adding the distance line

In the next steps,
we

will add a radius and a distance line starting at Navy Pier:

1. Create another parameter called Radius in miles as follows:

Figure 12.65: Radius

2. Right-click on the Radius in miles parameter and select Show Parameter

[599]

Advanced Analytics

3. Create a calculated field called Buffer that will be used as our radius around

the Address manual point:

BUFFER([Address manual],[Radius in miles], 'miles')

4. Drag the Buffer field onto the map just like we did with the Address manual

field, on top of the Add a Marks Layer popup.

5. Change the Marks type of this new layer
to
Map.

6. Click on Colour, change the opacity to 50%, and choose a gray color:

Figure 12.66: Map with radius

The Navy Pier coordinates are shown in the URL in the following figure:

[600]

Chapter 12

Figure 12.67: Navy Pier

7
.

Create a calculated field as follows:

MAKEPOINT(41.892133, -87.604045)

8. Drag the Navy Pier field on the map on top of the Add a Marks Layer

popup.

9. Change the Marks type to Map.

10. In order to connect Navy Pier to our Address manual point and measure the

distance, create another calculated field called Line:

MAKELINE([Address manual], [Navy Pier])

11. To measure the distance between the two, create a Distance field with the

following code:

DISTANCE([Address manual], [Navy Pier], 'miles')

[601]

Advanced Analytics

12. Place the Line field on the map on top of the Add a Marks Layer popup.

13. Change the Marks type in the new layer to Map.

14. Place Distance on the Label shelf, change the measure to Average, and click

on Label to add the text miles:

Figure 12.68: Edit label

Our dashboard now looks as follows:

Figure 12.69: Final dashboard

And this makes it complete. The radius clearly shows how many intersections

are within a certain distance; you can see the amount of intersection violations by

hovering over the points. The line from Navy Pier to our current location Address

Manual tells us how far away those two points are from each other.

[602]

Chapter 12

To answer our questions from the beginning:

• How can we add any given location in Chicago to our dataset? It is currently only

showing intersections and violations. By using the Makepoint() function in a

calculated field.

• How can we make the n, x, and y variables? By using parameters.

• How can we add a radius to any given point
on

the map? By using the Buffer()

function.

• How can we measure the distance between two variable points? By using the

Distance() function;
by

adding the MakeLine() function, a line will be drawn.

This use case can be recreated for the number of supermarkets in an area, schools,

public transport points, and so on. Be creative and feel free to upload your

dashboards to Tableau Public, and don't forget to add the #MasteringTableau tag!

If you work a lot with spatial data, I would also recommend that

you check out these links:

• https://www.tableau.com/about/blog/2019/6/

geospatial-analysis-made-easy-two-new-spatial-

functions-makepoint-and-makeline

• https://www.tableau.com/about/blog/2020/3/

seeing-and-understanding-proximity-made-easy-

buffer-calculations

Summary

In this chapter, we looked at three use cases of self-service analytics. One was about

world indices, one was about traffic-light violations, and the last one used distance

measures to find the radius within which a house could be located given some key

variables. Our main takeaway was that you should always start by planning your

work, then get
to
know the data, use descriptive statistics, and adjust your plan

according to your intermediate results.

A dashboard is never really finished: you can always change things; your audience

might change; stakeholder wishes might differ. Deliver a working visualization with

basic functionality and continue
to

develop after you get feedback. Depending on

your backlog or other circumstances, the basics might
be

enough.

The next chapter will
be

all about improving performance. With more and more

data, performance is key and could mean the difference between success and failure.

[603]

13
Improving Performance

Recently, while teaching a Tableau Desktop class, a gentleman approached me

regarding a dashboard
he

had built that was performing inadequately. He stated

that his dashboard probably flouted several best practices regarding performance.

He was correct! The dashboard had close to a dozen filters, most of which were set

to show only relevant values. Also, the dashboard was full of worksheets, some of

which included thousands of marks. Although
we

did not look at the underlying

data sources, based on our conversation, some of those data sources likely included

complex joins. I was amazed that the dashboard performed as well as it did! This

underscores a truth that many Tableau authors have experienced: Tableau can

perform abysmally if best practices are not followed.

This chapter will address various aspects
of

performance with the intent of

empowering you with techniques to create workbooks that load quickly and respond

snappily to end user interaction.

In this chapter, we will discuss the following topics:

• Understanding the performance-recording dashboard

• Hardware and on-the-fly techniques

• Connecting to data sources

• Working with extracts

[605]

Improving Performance

• Using filters wisely

• Efficient calculations

• Other ways to improve performance

As you can see, there are many topics
we

have to cover with regard to performance

improvement. Therefore, let's not lose any time and dive right in. Our first topic

will be performance recording, which is the first thing you should look at when

experiencing a drop in performance because it helps you identify the source of all the

slowness.

Understanding the performance

recording dashboard

Tableau includes a performance-recording feature as part of the installation package

and ships as a dashboard named PerformanceRecording.twb. The dashboard gives

the Tableau author an easy way to understand and troubleshoot performance

problems. The following exercises and associated discussion points will review

various aspects of the performance-recording dashboard, including how to generate

it, how to use it
to

improve performance, and how it's constructed.

Perform the following steps:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Navigate to the Types
of

Events worksheet.

3. Select Help | Settings and Performance | Start Performance Recording.

4. Press F5 on Windows or Command + R on macOS to refresh the view.

5. Select Help | Settings and Performance | Stop Performance Recording. A

new dashboard will open:

[606]

Chapter 13

Figure 13.1: Performance summary

There are four main parts
to be

looked at:

a. Performance Summary shows the amount of time the dashboard

needed to execute all the steps that happened between step 3 (start

performance recording) and step 5 (stop performance recording). The

slider can be used to filter.

b. Timeline shows which step happened when and how long it took.

The steps are also color-coded and can be found in the Event bar

chart as well.

d. Query will only show details when clicking on any event in (B) or

(C).

c.

[607]

Improving Performance

1. Drag the Events timeline slider in (A) to the far left to show all events.

2. Within Events Sorted by Time (C), click on any green bar entitled Executing

Query. Note that the Query section is now populated by the VizQL

belonging to the highlighted bar:

Figure 13.2: Events

3. To see the query in its entirety, navigate to the Query worksheet and set the

fit to Entire View (by Query, Tableau is referring to a VizQL query). Note

that an especially long query may not be recorded in its entirety. In order to

see every line of such a query, reference the log files located in My Tableau

Repository.

The preceding steps were intended to provide you with an initial look at what the

performance-recording dashboard can be used for. I usually use it to check whether a

particular query took significantly longer than others. I then look at the query on the

Query tab and check which part is affected
by

reading the fields used, try to change it,

and then run the performance dashboard again. Now, let's look at some more details.

If you access the Events worksheet from the performance-recording dashboard, you

will see the different events. We will now discuss those events and their impact on

performance in more detail:

Event type Performance considerations

Connecting to Data

Source

Poor performance when connecting to the data source could

indicate network latency or database issues, or even outdated

drivers.

[608]

Chapter 13

Generating Extract

Aggregating data before you extract can increase performance

because it will decrease the total row count.

Compile Query performance problems could indicate database

issues.

Compile Query

Executing Query

If a query takes too long, you can improve performance by

filtering data you don't need or hiding fields you don't use.

Refer to the Using filters wisely section in this chapter for more

information.

Sorting Data

Geocoding

Blending Data

Performance issues related to sorting issues may indicate too

many marks in the view. This sorting issue can also be caused by

table calculations that depend on sorting data in the view.

Geocoding performance issues may indicate too many marks

in the view, internet latency issues, poor hardware, or a poor

graphics card.

Blending Data performance may be improved by reducing the

amount of underlying data or by filtering.

Since table calculations are typically performed locally, complex

calculations may tax the end user's computer.

The Computing Totals performance may be improved by reducing

the amount of underlying data or by filtering.

Computing Layout performance issues may be indicative of a

dashboard with too many worksheets or elements such as images.

Computing Table

Calculations

Computing Totals

Computing Layout

After this overview, which you can always come back to, we will dive a little deeper

and research what happens when performance recording is activated. Note that

the following assumes that the author is working on Tableau Desktop, and not

Tableau Server. In Chapter 14, Interacting with Tableau Server/Online, we will cover the

performance recording on Tableau Server.

When recording performance, Tableau initially creates a file in My Tableau

Repository\Logs, named performance_[timestamp].tab. Additionally, there is a file

named PerformanceRecording_new.twb located in the Tableau program directory,

for example, C:\Program Files\Tableau\Tableau.[version]\Performance. That file

is automatically opened once the recording stops, thereby allowing the author
to

peruse the results.

[609]

Improving Performance

Hardware and on-the-fly techniques

The number-one performance inhibitor for Tableau Desktop that I have observed

while training in many different companies is underpowered machines. Developers

almost invariably have excellent computers. Analysts and other business users,

regrettably, often do not. In many cases, a few modest upgrades can make a

significant improvement. Unfortunately, upgrading a computer may be impossible

at many organizations due
to

a variety of factors, and procuring a new machine

may also be quite difficult. Therefore, in this section,
we

will consider both: optimal

computer specifications and techniques for working with Tableau on underpowered

machines.

The currently published minimum requirements for Tableau Desktop are as follows:

Windows Mac

Microsoft Windows 7 or newer (64-bit) iMac/MacBook computers 2009 or newer

macOS High Sierra 10.13, macOS Mojave

10.14, and macOS Catalina 10.15

Microsoft Server 2008 R2 or newer

Intel or AMD 64-bit processor or newer 1.5 GB minimum free disk space

2 GB memory

1.5 GB minimum free disk space

The specifications listed for macOS are adequate assuming sufficient RAM (a

minimum of 8 GB). Those for Windows, however, are insufficient for many use cases.

Instead, consider the following recommendations:

Recommended

Specifications for

Windows Computers

Notes

Microsoft Windows 7

or newer

Note that most Windows performance reviews report, at best,

modest gains when upgrading. Therefore, don't expect Tableau

to run noticeably faster if upgrading beyond Windows 7.

Performance improvement expected by upgrading: Moderate.

The i5 processor works fine with Tableau, but the larger

cache and faster processing of the i7 processor enables better

multitasking and improves performance overall.Intel i7 processor

Performance improvement expected by upgrading: Moderate.

[610]

Chapter 13

RAM is a major performance factor.
In

short, the more the

better. 8 GB will suffice for most purposes, but 4
GB

is often

unsatisfactory, especially if running multiple instances of

Tableau.

8
GB

memory or more

More RAM is particularly important when using a TDE file as a

data source, since a TDE file is typically loaded in RAM.

Performance improvement expected by upgrading: High.

An SSD outperforms an HDD by a wide margin. Part of the

reason is simply better I/O (input/output) performance. Also,

over time, an HDD will fragment, that is, data is scattered

throughout the drive and performance consequently suffers.

Fragmentation is irrelevant for an SSD due to its technical

specifications.

SSD (solid-state drive)

Performance improvement expected by upgrading: High.

Rendering performance can be improved via OpenGL. OpenGL

enables the Accelerated Graphics option within Tableau. This, in

turn, allows Tableau to utilize a GPU (graphic processing unit)

instead of a CPU (central processing unit) for some rendering

operations. Accelerated Graphics requires a graphics card.

NVIDIA is recommended here because, according to Dan Cory,

a technical advisor to the Tableau Development leadership

team, Tableau Software (the company) predominately uses

NVIDIA graphics cards.

NVIDIA graphics card

Other graphics cards include ATI and Intel HD Graphics 2000,

4000, and 5000. Note that the Intel HD Graphics 4000 card might

require updated video drivers. You can update video drivers

via the device manager located in the Windows Control Panel.

Accelerated Graphics is activated in Tableau via Help |

Settings and Performance | Enable Accelerated Graphics.

Performance improvement expected by upgrading: Moderate.

You may have noticed that the preceding table mostly does not address specific

brands, nor are there considerations of different brands of RAM or hard drives.

Despite the proliferation of computer and component types (or perhaps as a result

of this proliferation), computers and components have become commodities. In

short, any brand name equipment should work fine. In fact, off-brand equipment

will often perform just as well, although
the

relatively small price savings may not

justify additional risks. A little research combined with common sense should lead

to satisfactory results when considering which brand of computer or component to

purchase.

[611]

Improving Performance

Perhaps, as a result of the preceding section, you have ordered a new, more optimal

computer. Or, more likely, you may keep it in mind should you have the opportunity

to obtain a new machine in the near future, but for now, you have to make do with

what you have. This section discusses tips that will help the Tableau author work

more efficiently irrespective of the equipment used.

Configuring auto updates

Auto updates can be accessed either via the icon located on the toolbar, via

Worksheet | Auto Updates, or
by

using
the

shortcut key F10 on Windows or

Option + Command + 0 on Mac. Auto updates give the author the option of pausing/

resuming auto updates for the worksheet and/or for filters, and can come in very

handy if you want to make multiple changes to your layout but want to avoid

Tableau loading after every change. You
can

simply pause the update, make your

changes, and then run the update once.

The following exercise demonstrates how this works:

1. Open the workbook associated with this chapter and navigate to the Auto

Updates worksheet.

2. In the Data pane, select the Superstore dataset.

3. Place State on the Rows shelf.

4. Deselect Auto Update Worksheet via the toolbar:

Figure 13.3: Auto Update Worksheet

5. Place City on the Rows shelf to the right of State. Note that the view does not

update.

6. Enable Auto Update Worksheet via the toolbar. The view now updates.

7. Right-click on State on the Rows shelf and select Show Filter.

8. Right-click on City on the Rows shelf and select Show Filter.

[612]

Chapter 13

9. On the City filter, click the drop-down menu and select Multiple Values

(list) and Only Relevant Values:

Figure 13.4: Only Relevant Values

10. Deselect Auto Update Filters as shown in Figure 13.3.

11. In the State filter, select only Alabama. Note that the City filter does not

update.

12. Enable the Auto Update Filters via the toolbar. The City filter now updates.

Auto updates can be very helpful. The author may pause auto updates, make

multiple changes, and then resume auto updates, thereby saving time and increasing

performance indirectly.

[613]

Improving Performance

As a sidenote, cascading filters such as Only Relevant Values or

All Values in Context may not populate when using the pause

button or auto updates as they are reliant on a query being passed

first.

The Run Update feature

The Run Update icon
to

the right of the pause/resume auto updates is meant to

refresh once, while the user can keep the disabled Auto Update feature in place. The

following brief example should help clarify this option:

1. Duplicate the previous worksheet called Auto Updates and name the

duplicate Run Updates.

2. Pause all updates
by

clicking on the Pause Auto Updates icon.

3. Select several states at random in the State filter.

4. Click on the Run Update icon as shown in Figure 13.5 and select either

Update Dashboard or Update Worksheet. The shortcut key for running an

update is F9 on Windows. The shortcut on macOS is Shift + Command + 0:

Figure 13.5: Running an update

5. Select several more states at random in the State filter. Note that auto

updating is still paused.

To repeat, Run Update allows the Tableau author to intermittently refresh the

view while still keeping auto updates paused. The two update features that we

just discussed will make your life as a dashboard developer easier, but if you want

to tackle performance issues at their core, you need some more tools at hand. The

following section will introduce extracts, a really good feature for speeding up

calculations and rendering in general.

[614]

Chapter 13

Small extracts

Although extracts will be discussed in more detail in the Working with extracts

section, it seems fitting to mention extracts in the context of performance

considerations while authoring. Even under optimal conditions, working with large

data sources can
be

slow. If constant access to the entire dataset while authoring

is not necessary, consider creating a small, local extract. Author as much of the

workbook as possible and then when all the underlying data is truly needed, point to

the original data source.

The following steps show a brief example
of

this technique in action:

1. In the workbook associated with this chapter, navigate to the Small Local

Extract worksheet.

2. Select Data | New Data Source to choose a desired data source. This exercise

assumes Sample - Superstore.xls, which installs with Tableau, but you can

take any dataset you like.

3. Drag any field to the Text shelf. In
my

example, I used Number of Records.

4. Right-click on the data source (for me: Superstore) and select Extract Data…:

Figure 13.6: Extracting data

[615]

Improving Performance

5. At the bottom of the Extract Data… dialog box, select Top, your data source,

and choose 1000. In the following figure, Orders has been chosen, which is

one of the two parts of the superstore join:

Figure 13.7: Top rows

6. Click the Extract button and note that Number of Records now displays 1000

rows.

7. In the Data pane, right-click on Superstore and deselect Use Extract. Note

that Number
of

Records has reverted to its original value.

By creating a small, local extract, the Tableau author alleviates two

performance inhibitors: network latency and dataset size.

[616]

Chapter 13

This section gave you the knowledge of how to reduce your dataset temporarily

and the option to get back
to

the original size, both without leaving the Tableau

interface. This is a great way to speed up your dashboard building process and avoid

long waits. In the next section,
we

will talk about how to connect to data sources
to

achieve the best possible performance.

Connecting to data sources

One of the beauties of Tableau is the ease with which you can connect to many

different data sources in various ways. As mentioned earlier
in

this book, there are

many connectors defined
in

Tableau for interfacing with a variety of data sources.

Furthermore, this flexibility extends beyond simply connecting to single tables or files.

Although Tableau makes it easy to connect to various data sources,

it should be stressed that Tableau is not an Extract, Transform, and

Load (ETL) tool. If complex joins and complex data blending are

required to generate useful results, it may be advisable to perform

ETL work outside of Tableau, for example, in Tableau Prep Builder

(see Chapter 3, Tableau Prep Builder, for more information on this

service). ETL work will ideally lead to better data modeling and

thus easier authoring and quicker performance in Tableau.

The four ways in which Tableau connects to data are as follows:

• Tableau may connect to a single table. This is ideal as it allows the most

functionality and easiest troubleshooting, while enabling Tableau to send

the simplest queries and thus perform optimally. However, it is not always

possible to connect to a single table and, although ideal, it is not reasonable

to have such a strict limitation. The relationship between data sources and

reporting tools is constantly changing. A reporting tool that is inflexible in

the way it can connect to data will likely not
be

successful, no matter how

elegant and beautiful the end results.

• The second option is relationships, a newer, more flexible way
to

combine

two or more datasets. The level of detail will be defined per worksheet rather

than in the data source tab, which makes this feature very powerful.

• The third way in which Tableau may connect to data is via joining. One table

may not supply all the necessary data, but
by

joining two or more tables,

all the needed data may be accessible. As the joins become more and more

complex, performance may be impacted, and troubleshooting may become

difficult. Fortunately, Tableau can assume referential integrity and thus work

quite efficiently with even complex joins.

[617]

Improving Performance

• Finally, Tableau may utilize data blending. Data blending often performs

admirably, provided no more than one of the blended data sources is large

and dimensions that are used for blending have relatively few members.

Relationships should
be

chosen over joining and joining should be chosen instead

of blending whenever possible. When blending multiple, large data sources,

performance can be seriously impacted. The problem is further compounded

when blending on high-cardinality dimensions. Also, data blending limits some

functionality, such as the ability to use dimensions, row-level calculations, or LOD

expressions, from a secondary data source.

However, there are exceptions, two of which are discussed here:

• First, data blending is advantageous (and usually necessary) when there is
no

common key shared between two tables.

• Secondly, in some instances, cross-joining will not work, and a data blend is

required. For example, use data blending when you work with two datasets

that have different granularities and relationships are not possible, or when

a cross-database join is not possible (for example,
to

cubes or extract only

connections), or when you have big datasets for which a blend will improve

performance.

More info can be found here: https://help.tableau.com/

current/pro/desktop/en-us/multiple_connections.htm.

For these reasons, consider as a guideline that data blending should normally be

avoided if a joining option exists.

Chapter 4, All About Data – Joins, Blends, and Data Structures, provides detailed

information about joining and blending. For the purposes of this chapter, joining and

blending discussions will be limited
to

performance considerations.

Working efficiently with large data sources

This section will cover some basics of database tuning and ways to work efficiently

with large data sources. Since the topic is more focused on data sources than on

Tableau, no exercises are included.

If you are connecting to large data sources and are experiencing performance

problems, a conversation with a database administrator (DBA) may be beneficial.

[618]

Chapter 13

Clear communication coupled with a small amount of database work could

dramatically improve performance. The conversation should include database

tuning points, such as explicitly defining primary and foreign keys, defining columns

as not null, and indexing. Each point will be discussed here.

Defining primary and foreign keys

Primary and foreign keys are essential for joining tables. A primary key is composed

of one or more columns in a table. The primary key should be unique for every row.

Joining on a non-unique, row-level key may lead to erroneous results, as explored

in Chapter 4, All About Data – Joins, Blends, and Data Structures. Explicitly defining

primary keys in the database helps
to

ensure that each key value is unique:

Figure 13.8: Database keys

A foreign key is composed of one or more columns in a table that uniquely identify

rows in another table. This unique identification occurs as a result of the foreign key

in one table referencing the primary key in another table. Explicitly defining foreign

keys in the database enables Tableau to bypass many integrity checks, thereby

improving performance.

Defining columns as NOT NULL

Tableau has published multiple white papers on performance improvement tips and

tricks (https://help.tableau.com/current/pro/desktop/en-us/performance_tips.

htm) that state that programmers and Tableau Desktop do not like NULL data. Define

each column in your tables with an explicit NOT NULL if possible.

In practice, database admins debate when it is and isn't appropriate to define

columns as NOT NULL; however, two things are clear:

• A primary or foreign key should be defined as NOT NULL. This is self-evident

since primary and foreign keys must
be

unique by definition.

• Also, any column that is to be indexed should be defined as NOT NULL since

otherwise an index may be unusable.

[619]

Improving Performance

Indexing is discussed more fully in the next section.

Indexing

Let's consider the following two questions regarding indexing:

• What is an index?

• What should be indexed?

The first of our two questions may be easily answered by a DBA, but is likely

uncharted waters for the Tableau author. So, to clarify, an index is a copy of selected

columns in a database table that has been optimized for efficient searching. Since

these copied columns include pointers to the original columns, they can be accessed

to quickly find given rows and return the required data.

A small example may prove helpful. According
to

The Boeing Company, the 787

Dreamliner has about 2.3 million parts. Imagine a table that lists all of these parts

in the Part_Name column. Your task is to search this column for every part starting

with the "fuse" string. On a non-indexed column, this would require the examination

of every row of data in the database. Such a search could be quite slow. Fortunately,

indexes can be used to reduce the number of rows searched, thus making the process

much faster. One type of structured data used for indexing is B-tree. A B-tree data

structure is sorted. Thus, when accessing an index using a B-tree data structure to

search for all parts starting with fuse, not every row has to be considered. Instead, the

database can skip straight
to

fs and quickly return the desired rows.

Now let's move on to the second question
on

indexing. What should be indexed?

This question can be answered fairly succinctly: ideally, all columns used for joining

or filtering should be indexed in the data source.

Although there are some basic performance considerations for creating more efficient

joins in Tableau (for example, avoid an outer join when a left join will suffice), join

performance is largely determined outside of Tableau. Therefore, it is typically more

important to index columns used in joins than those used for filtering.

To continue with our discussion of manipulating data sources, the next section will

cover how Tableau can
be

used to create summarized datasets through extracting.

[620]

Chapter 13

Working with extracts

This section will discuss what a Tableau data extract is as well as how to efficiently

construct an extract. A colleague of mine recently consulted with a relatively small

mobile phone service provider. Even though the company was small, the volume

could be in excess of 1,000,000 calls per day. Management at the company insisted

on the ability to interface with detailed visualizations of individual calls in Tableau

workbooks. The performance of the workbooks was, understandably, a problem.

Was such low-level detail necessary? Might less detail and snappier workbooks have

led to better business decisions?

In order to balance business needs with practical performance requirements,

businesses often need to ascertain what level of detail is genuinely helpful for

reporting. Often, detailed granularity is
not

necessary. When such is the case,

a summary table may provide sufficient business insight while enabling quick

performance. In the case of the mobile phone service provider, a daily snapshot

of call volumes may have sufficed. Even an hourly snapshot would have greatly

reduced the table size and improved Tableau's performance.

To address this common business need, an extract is a proprietary compressed

data source created by Tableau Desktop. Since its release, the file extension for an

extract changed from .tde to the .hyper format. Thus, the new format makes use of

the Hyper engine, which was discussed in Chapter 1, Getting Up to Speed – A Review

of the Basics. An extract can be stored locally and accessed
by

Tableau to render

visualizations.

Consider the following points that make an extract file an excellent choice for

improved performance:

• Extracts can be quickly generated
at
an aggregate level

• Extracts are a columnar store, which records as sequences of columns

• Relational databases typically store data using a Row Store methodology

In the following example, note that Row Store is excellent for returning individual

rows, whereas Column Store is much better for returning aggregated data.

[621]

Improving Performance

Here is an example table:

Table

Instrument Store Price

Row 1 Selmer Trumpet North $3,500

Row 2 Conn French Horn East $4,500

Row 3 Getzen Trombone South $2,500

Row 4 Miraphone Tuba West $9,000

Here is a Row Store table in a database:

Row 1 Selmer Trumpet

North

$3,500

Row 2 Conn French Horn

East

$4,500

Row 3 Getzen Trombone

South

$2,500

Row 4 Miraphone Tuba

West

$9,000

[622]

Chapter 13

Here is a Column Store table in a database:

Instrument Selmer Trumpet

Conn French Horn

Getzen Trombone

Miraphone Tuba

NorthStore

East

South

West

Price $3,500

$4,500

$2,500

$9,000

I hope you could see that in a column store table, each n row of a certain attribute

makes
up

for the first row. For example, the first row of Instrument, the first row of

Store, and the first row of Price all relate to one entry, whereas in a row store table,

all rows that belong to the same entry are in consecutive order.

To sum
up

what we have learned so far in this section, extracts use compression

techniques to reduce file size while maintaining performance, and utilize RAM and

hard drive space for optimal performance. Neither of those two points are given

when using a live connection to a database—therefore, extracts can improve the

performance of your dashboard whenever the database can't.

Constructing an extract

This section will discuss extracts from a performance aspect. Other aspects of

extracts, such as scheduling and incremental refreshes, will not be considered here:

[623]

Improving Performance

As we discussed in the Small extracts section earlier, an extract is created via Data

| [Data Source] | Extract Data. From the resulting dialog box,
we

can take the

following actions:

• Filter the extract as needed: Sometimes, an extract that precisely reflects a

data source is warranted, but often filtering various fields will still populate

the extract with the required data while shrinking the size and improving

performance. To add a filter, simply click Add... to access a dialog box

identical to the filter dialog box used within a worksheet:

Figure 13.9: Filter extract

• Aggregate to the level
of

granularity represented in the view: Aggregation

not only reduces the file size, but can also be helpful from a security

standpoint. Without aggregation,
an

extract is constructed using row-level

data. Therefore, the Tableau author should note that if the extract is built

without choosing to aggregate, any sensitive row-level data is accessible:

Figure 13.10: Aggregation

• Reduce the number of rows: As shown in the Small extracts section, reducing

the number of rows can allow the author to create a small, local extract

for quick workbook building, after which the original data source can be

accessed for complete analysis:

[624]

Chapter 13

Figure 13.11: Reducing rows

• Hide all unused fields: This option excludes all columns that are not used in

the workbook from the extract. This can significantly reduce the extract size

and increase performance:

Figure 13.12: Hiding fields

By taking these four measures, your performance should improve immediately. Feel

free to test it yourself
by

using the performance-recording tool and creating different

extracts of the same data source. Using aggregation and performance-recording

actions will be discussed next.

Aggregation

The following exercise will use two aggregates from a single data source, one at the

State level and the other at the City level. These aggregated data sources will
be

used

to create two worksheets. Each of these worksheets will be placed on a dashboard

along with a third worksheet with row-level information. Finally, filter actions will

be created to tie the three worksheets together. The purpose of the exercise is
to

demonstrate how small extracts might be used in conjunction with a larger dataset
to

create a more performant dashboard:

1. Open the workbook associated with this chapter and navigate to the State

Agg worksheet.

2. In the Data pane, select the SS - State Agg data source.

3. Create a filled map using state by placing State on the Detail shelf and

selecting Filled Map from the Marks card.

4. Right-click on the SS - State Agg data source and select Extract Data.

5. Note that Tableau displays an error stating that it cannot find the referenced

file. You can either point
to

the instance of Sample - Superstore that ships

with Tableau or you can use the instance provided via the GitHub link:

https://github.com/PacktPublishing/Mastering-Tableau-2021.

[625]

Improving Performance

6. After connecting
to

the data source, Tableau will display the Extract

Data dialog box. Within the dialog box, select Aggregate data for visible

dimensions and All rows. Click the Hide All Unused Fields button and then

click on Extract:

Figure 13.13: Extracting data

Note that the resulting extract only contains State. Also note that the data has

been aggregated so that no underlying data is available.

7. Navigate to the City Agg worksheet.

8. In the Data pane, select the SS - City Agg data source. Note that this data

source has already been extracted and so only contains State, City, and Sales.

Also note that the data has been aggregated so that
no

underlying data is

available.

[626]

Chapter 13

9. Place City on the Rows shelf, Sales on the Text shelf, and State on the Detail

shelf. Don't forget to include State even though it does not display on the

view. It must be used so that the dashboard created at the end of the exercise

works correctly.

10. Navigate to the Row Detail worksheet and select the Superstore dataset.

11. Create a crosstab view that displays Customer Name, Order ID, Row ID,

Profit, and Sales. One quick way
to

create this view is to double-click on each

field.

12. Navigate to the Agg Dash dashboard and place each of the three worksheets

on the dashboard.

13. Create the following actions via Dashboard | Actions | Add Action | Filter:

Figure 13.14: Adding City to Detail action

[627]

Improving Performance

Figure 13.15: Adding State to City action

14. After creating these two actions, in the dashboard, click on the State field.

15. Then, click on the City field.

16. Click on a blank portion of the City Agg worksheet
to

exclude all values on

Row Detail.

17. Click on a blank portion of the State Agg worksheet to exclude all values on

City Agg.

18. Format the dashboard as desired:

Figure 13.16: Action on dashboard

[628]

Chapter 13

Having completed this exercise, note that
the

resulting dashboard is quite

performant:

• When the user first opens the dashboard, only State Agg displays. This is

performant for two reasons. First, displaying a single worksheet as opposed

to every worksheet when opening the dashboard causes fewer initial queries

and less rendering. Second, accessing a small extract is quicker than accessing

a larger data source.

• Since the City Agg worksheet is also accessing a small extract, when the user

clicks on a state, the City Agg worksheet will appear quickly.

• When the user clicks on City, a call is made to the data source that only

includes the information for that particular city. A relatively small amount of

data is pulled, and performance should be good for even larger datasets.

Another aspect of good performance practice, apart from using aggregate extracts,

should be considered for this exercise. The dashboard contains no quick filters.

Often, using quick filters on a dashboard is unnecessary. If the worksheets on the

dashboard can be used to filter, those worksheets can essentially do double duty.

That is to say, worksheets can provide valuable analysis while simultaneously acting

as filters for other worksheets on the dashboard. This represents a performance

improvement over using quick filters, since adding quick filters would cause

additional queries
to be

sent to the underlying data source.

In the preceding dashboard, each worksheet references a different data source.

Therefore, you may ask, how are the action filters able to function across the different

data sources? The answer can be found in the filter action dialog box. As shown

in Figure 13.14 and Figure 13.15, All Fields are considered Target Filters. Tableau

simply matches any fields of the same name across each data source. Extracts can be

optimized for even better performance results. We'll cover this in the next section.

Optimizing extracts

Optimization accelerates performance by materializing calculated fields when

possible. This means that Tableau actually generates values for calculated fields in

the extract so that those values can be looked up instead of calculated. If you were

to use table calculations, Tableau would have to calculate the values each time you

change the view.

Note that not all calculated fields are materialized. Fields that are

not materialized include table calculations, changeable or unstable

functions, such as NOW() and TODAY(), and calculated fields using

parameters.

[629]

Improving Performance

When an extract is first created, it is automatically optimized. In other words,

calculated fields are automatically materialized when possible. However, over the

course of time, calculated fields may be altered that will cause the extract
to

drop

materialized fields. At such times, open Data | [Data Source] | Extract and click on

Compute Calculations Now in order to regenerate the materialized fields:

Figure 13.17: Computing calculations

If an extract is set to refresh on Tableau Server, the extract is automatically optimized

for each refresh.

The following example demonstrates calculated fields that are materialized and

those that are not.

[630]

Chapter 13

Perform the following steps:

1. In Tableau, select File | New to create a new workbook.

2. In the new workbook, select Connect to Data in the upper-left corner and

connect to the Sample Superstore dataset located in My Tableau Repository/

Datasources or in your saved data sources.

3. Connect to the Orders worksheet.

4. Create the following parameter:

Figure 13.18: Create Parameter

The Select Sufficient Profit Ratio parameter shown in the preceding

screenshot allows us to select a value between 0.25 and 0.5 in steps of 0.01.

This configuration is just an example; you can select any range of values that

you define as a sufficient ratio.

[631]

Improving Performance

5. Create the following calculated fields:

Name Calculation

Profit Ratio SUM([Profit])/SUM([Sales])

This Year'sProfit IF [Profit Ratio] > [Select Sufficient Profit Ratio]

THEN "Sufficient Profit" END

Window Sum WINDOW_SUM(SUM([Sales]))

Profitable? [Profit] > 0

6. Right-click on the data source and select Extract Data.

7. Click the Extract button.

8. When prompted, save the resulting extract to a location of your choosing.

9. Open a new Tableau workbook, select File | Open, and then select the

extract created in the preceding step.

10. Note the following in the data source:

• Profit Ratio, an aggregate calculation, was materialized.

• This Year's Profit, which references a parameter, has a value of null

and was not materialized.

• Window Sum, a table calculation, has an "undefined" value and was

not materialized.

• Profitable?, a row-level calculation, was materialized.

This exercise demonstrated that once an extract has been created and you add new

calculated fields to your dashboard, they might not be included in your extract. Next

time you miss a field in your extract, think back
to
when you did this exercise and

remember that certain fields will not be materialized.

Finally, if you make use of parameters in your dashboard, check whether you

can eliminate those and use calculations instead to improve performance. Also,

split calculations if they can't be materialized as a whole. Put the part that can be

materialized in one calculated field and the non-materialized part in another. If

parts of the calculation can be calculated within the extract creation, you will gain

performance.

The advantage of using extracts has now been discussed in great detail, so let's move

on and see how we can make the most out of filters.

[632]

Chapter 13

Using filters wisely

Filters generally improve performance in Tableau. For example, when using a

dimension filter to view only the West region, a query is passed to the underlying

data source, resulting in information returned for just that region. By reducing the

amount of data returned, performance improves. This is because less data means

reduced network bandwidth load, reduced database processing requirements, and

reduced processing requirements for the local computer.

Filters can also negatively impact Tableau's performance. For example, using only

relevant values causes additional queries
to

be sent to the underlying data source,

thereby slowing down the response time. Also, creating quick filters from high

cardinality dimensions can impair performance.

Tableau's filters are executed in a specific order, so keep this in mind when using

them. Refer to the Tableau help pages here: https://help.tableau.com/current/

pro/desktop/en-us/order_of_operations.htm. The following flowchart, accessible

via the preceding link, along with a link to an hour-long presentation, may help:

Figure 13.19: Filtering the order of operations

The rest of this section follows, step
by

step, the order of operations. By the end of it,

you will be able to know which filters to use in which situation so as to achieve the

best performance for your dashboard.

[633]

Improving Performance

Extract filters

Extract filters remove data from the extracted data source. Simply put, the data

isn't there. Thus, performance is enhanced by reducing the overall amount of data.

Performance may also
be

improved since extracted data uses Tableau's proprietary,

columnar dataset.

Furthermore, extracts are always flattened, which will have performance advantages

over connecting to datasets using joins. To create an extract filter, begin by selecting

Data | [Data Source] | Extract Data. In the resulting dialog box, choose
to
add a

filter.

Data source filters

Data source filters are applied throughout the workbook. For example, if you create

a data source filter that removes all members of the Country dimension except the

USA, the Country dimension will only include the USA for all worksheets in the

workbook.

Data source filters improve performance in the same way as dimension and measure

filters; that is, data source filters cause Tableau
to

generate a query to the underlying

data source, which will limit the data that
is

returned. Less returned data generally

results in quicker processing and rendering. A further advantage that data source

filters offer is ease of authoring. For example, if the Tableau author knows in advance

that an entire workbook is going to be USA-centric, creating a data source filter saves

you the trouble of applying a dimension filter to every worksheet in the workbook

using that data source.

Also note that data source filters occur quite early in the process flow. All

calculations (including calculations using fixed LOD expressions that are rendered

before dimension and measure filters are triggered) respect data source filters.

To create a data source filter, click the Data Source tab located in the bottom-left

corner of Tableau Desktop. Then, click on the Add link located in the top-right

corner of the page:

[634]

Chapter 13

Figure 13.20: Adding filters

Context filters

A context filter is created simply by right-clicking on a field in the Filter shelf and

selecting Add to Context:

Figure 13.21: Context filters

[635]

Improving Performance

Dimension and measure filters are independent. Each filter queries the data source

independently and returns results. A context filter, on the other hand, will force

dimension and measure filters to depend
on

it. This behavior can
be

helpful (and

necessary) for getting the right answer in some circumstances. For instance, if a

Tableau author accesses the Superstore dataset and uses a filter on Product Names

to return the top-10 selling product names in a single category, it will
be

necessary

that Category is defined as a context filter. Otherwise, the Product Names filter will

return the top 10 overall. Because of this, context filters improve performance.

Dimension and measure filters

Dimension and measure filters can improve performance. Since either a dimension

filter or a measure filter will cause Tableau to generate a query to the underlying

data source, which will limit the data that
is

returned, performance is improved.

Simply put, the smaller the returned dataset, the better the performance.

However, dimension and measure filters
can

degrade performance. Since Tableau

not only generates queries to the underlying data source in order to display

visualizations, but also generates queries to display filters, more displayed filters will

slow performance. Furthermore, displayed filters on high-cardinality dimensions

can inhibit performance. (A dimension with many members is referred to as having

high cardinality.) Consider the example of a filter that displays every customer in a

dataset. Performance for such a filter might
be

slow because every customer in the

underlying dataset must be located and returned, and then Tableau has
to

render

and display each of these customers in the filter.

When using two or more dimension or measure filters on a view, a relevant filter

may be used
to

limit the choices that display. For example, if a view includes a filter

for city and postal code, the latter might be set to show Only relevant values:

[636]

Chapter 13

Figure 13.22: Only relevant values

This is advantageous to the end user in that it adjusts the number of postal codes that

display to reflect only those pertinent to the cities selected in the first filter. However,

using relative filters will cause additional queries to be sent
to

the data source and

thus may degrade performance.

[637]

Improving Performance

Table calculation filters

Using table calculations as filters does not have the same corresponding performance

enhancements as dimension or measure filters. As discussed above, dimension and

measure filters reduce the returned dataset, while table calculation filters do not. In

the Tableau process flow, table calculations are not rendered until after the data is

returned from the data source. This means that table calculations cannot be used to

generate queries
to

limit returned data. Or, to put it another way, table calculation

filters cause all data related to a given dimension or measure to be returned, after

which Tableau executes the filter on the returned dataset.

To demonstrate this, perform the following steps:

1. Open the workbook associated with this chapter and navigate to the Late

Filter worksheet.

2. In the Data pane, select the Superstore data source.

3. Create a calculated field named Cust Name Tbl Calc with the following

code:

LOOKUP(MAX([Customer Name]),0)

4. Place Customer Name on the Rows shelf.

5. Place Cust Name Tbl Calc on the Filters shelf and constrain to show only

Aaron Bergman.

6. Place Sales on the Text shelf.

7. Right-click on Sales and select Quick Table Calculation | Rank.

In this exercise, the entire list of customers is returned to Tableau, after which

Tableau deploys the filter. Essentially, using Cust Name Tbl Calc as a filter merely

hides the underlying data. This is useful because the rank returned for Aaron

Bergman is correct. Merely filtering on Customer Name would return a rank of 1

for Aaron Bergman. Unfortunately, the correct results come with a performance

hit. Running the performance recorder on this exercise will show that the table

calculation negatively impacts performance.

Fortunately, with the advent of LOD calculations, using table calculations as filters

is often not necessary. LODs are calculated fields that include or exclude data

independent of the current view. For more information, please refer to Chapter 5,

Table Calculations.

[638]

Chapter 13

Using actions instead of filters

Another way to improve performance might
be to

use actions instead of filters. You

can develop a dashboard that shows a high-level overview first and goes into detail

only once the user selects something. The mechanics are similar
to

the ones we

showed in the Aggregation section; however, aggregation happens per worksheet and

not on the data source itself. By selecting a mark in the high-level overview, an action

will be triggered. The user can dive deeper into details, but the level of detail will

only
be

increased step
by

step. Hence, less data has to be loaded at once.

A very nice presentation regarding this topic can be found at

https://youtu.be/veLlZ1btoms.

The next topic we will be discussing involves calculations. How can we write a

calculation in the most efficient and performant way?

Efficient calculations

Calculations may be constructed differently and yet accomplish the same thing.

Look, for instance, at the following example, which shows that an IF statement can

be replaced by simpler code:

Scenario I Scenario II

Create a calculated field with the following

code:
Create a calculated field with the following

code:
SUM (Profit) > 0

IF SUM (Profit) > 0 THEN

'Profitable' ELSE 'Unprofitable' END

Place the calculated field on the Colour

shelf.

Place the calculated field on the Colour

shelf.

Right-click on True and False in the

resulting legend and rename to Profitable

and Unprofitable.

Since either of these scenarios will return the desired results, which should be used?

The deciding factor is performance. This section will explore what to do and what to

avoid when creating calculated fields in order
to

maximize performance.

[639]

Improving Performance

Prioritizing code values

Calculations that use Boolean values or numbers are more performant than those that

use dates. Calculations that use dates, in turn, are more performant than those using

strings. This is not only true of Tableau, but also in computer science as a whole.

Based on this information, Scenario II listed in the preceding table is more

performant than Scenario I. Scenario I causes Tableau to create a query that requires

the data source engine to handle strings for reporting profitability, whereas Scenario

II sends only 1s and 0s
to

determine profitability. The third step for Scenario II

(that is, aliasing True and False to Profitable and Unprofitable) is merely a labeling

change that happens after the aggregate dataset is returned from the data source,

which is quick and easy for Tableau.

Level-of-detail calculation or table

calculations

In some instances, an LOD calculation might be faster than a table calculation and

vice versa. If you are not sure, try both to see which one performs better. Also, if

they're not really needed, use neither. Refer to the following diagram, which explains

when to choose which:

Figure 13.23: Choosing a calculation type

[640]

Chapter 13

This diagram, along with more advice about selecting a calculation type, can be

accessed at https://www.tableau.com/about/blog/2016/4/guide-choosing-right

calculation-your-question-53667.

Other ways to improve performance

To conclude this chapter, let's consider a few other possibilities for improving

performance.

Avoid overcrowding a dashboard

Often, end users want
to

see everything at once on a dashboard. Although this may

be perceived as beneficial, it often is not. Consider the inclusion of a large crosstab on

a dashboard. Does scrolling through pages of details add to the analytical value of

the dashboard? Perhaps the answer is "noo." Furthermore, an excess of information

on a dashboard may obscure important insights. Diplomatically arguing for leaner

dashboards may lead to better decision making as well as better performance.

Fixing dashboard sizing

Dashboards can be set to an exact size or to Range or Automatic. Exact size results

in quicker performance because once Tableau Server has rendered a view for one

end user, that render stays in cache and can be reused for the next end user that

accesses that dashboard. Automatic and Range, on the other hand, cause Tableau

Server to attempt to determine the resolution size used by each end user and

render the dashboard accordingly. This means that Tableau Server does not use the

instance of the dashboard stored in cache for the next end user. This, in turn, impacts

performance.

Setting expectations

If an end user is expecting near-instantaneous performance, then, of course, anything

less is disappointing. Explaining in advance that a complicated, detailed-oriented

dashboard may not be performant can help in at least two ways. First, upon

explaining the likely performance problems, a compromise may be reached that

results in the creation of a less complicated dashboard that still delivers valuable

information. Second, if it is absolutely necessary for the dashboard
to be

complicated

and detail-oriented, at least the end user
has

been warned that patience may be

needed when interfacing it.

[641]

Improving Performance

Summary

We began this chapter with a discussion of the performance-recording dashboard.

This was important because many of the subsequent exercises utilized the

performance-recording dashboard to examine underlying queries. Next, we

discussed hardware and on-the-fly techniques, where the intent was to communicate

hardware considerations for good Tableau performance and, in the absence of

optimal hardware, techniques for squeezing the best possible performance out of any

computer.

Then we covered working with data sources, including joining, blending, and

efficiently working with data sources. This was followed by a discussion on

generating and using extracts as efficiently as possible. By focusing on data sources

for these three sections,
we

learned best practices and what
to

avoid when working

with either remote datasets or extracts. The next sections explored performance

implications for various types of filters and calculations. Lastly, we looked at

additional performance considerations, where
we

explored a few more thoughts

regarding dashboard performance as well
as

setting expectations.

In the next chapter,
we

will turn our attention
to

Tableau Server. Tableau Server is

a dense topic worthy of a book. Thus, our exploration will be truncated to focus on

Tableau Server from the desktop author's perspective.

[642]

14
Interacting with Tableau

Server/Online

Tableau Server/Online is an online solution for sharing, distributing, and

collaborating on content created in Tableau Desktop. Its benefits include providing

an environment where end users can securely view and explore data visualizations

that are constantly updated from underlying data sources so that content is always

fresh. The main difference between Tableau Server and Tableau Online is that

Tableau Server needs
to

be maintained by you, while Tableau Online is fully hosted

in the cloud by Tableau and backed up by Amazon Web Services infrastructure. For

the ease of reading, we will further refer to both as Tableau Server.

The scope of this chapter is limited to the Tableau Desktop author's interaction

with Tableau Server. Topics such as installation and upgrades, authentication and

access, security configuration, and command-line utilities are not directly related

to the Tableau Desktop author's interaction with Tableau Server and are thus are

not included in this chapter. However, the help documentation is quite good. Also

consider watching some videos from Tableau Software about Tableau Server (for

example, https://www.youtube.com/c/tableausoftware/search?query=Tableau%20

Server). If you have questions related to any of the topics listed here or regarding

any other Tableau Server topics, be sure to visit the online help site at https://www.

tableau.com/support/help.

[643]

Interacting with Tableau Server/ Online

This chapter will explore the following topics:

• Publishing a data source to Tableau Server

• Web authoring

• Maintaining workbooks on Tableau Server

• More Tableau Server settings and features

Tableau Server is a great way to take your company's Tableau adoption to the next

level. The most important question on your mind is probably, how can you bring

Tableau dashboards from Desktop to Server? That is exactly what we are going to

show you in the first section.

Publishing a data source to Tableau

Server

So, you purchased Tableau Desktop, became a pro dashboard developer, and now

you want to share your work with your colleagues. Do they all need a Tableau

Desktop license and installation
to

see your vizzes? Luckily, the answer is: NO!

The best way to share Tableau dashboards is on Tableau Server. This way your

colleagues only need a Tableau Server viewing license, which is much cheaper than

the developer license you purchased, and they can fully interact with the dashboard

you built and uploaded
to

Server. But how do you upload your dashboard from

Desktop to Server?

Note: This chapter assumes the reader has access to Tableau Server

with sufficient privileges to publish data sources and edit in the

web authoring environment.
If
you do not have access to Tableau

Server but would like to work through the exercises in this chapter,

consider downloading the trial version that, as of the time of

writing, provides full functionality for two weeks. If you would

like a longer trial, consider joining the Tableau beta program at

http://www.tableau.com/getbeta, which will give you access

to each beta release in which you participate.

[644]

Chapter 14

Let's take a look at the following steps
to

see how we can publish a data source to

Tableau Server:

1. Navigate to https://public.tableau.com/profile/marleen.meier to locate

and download the workbook associated with this chapter.

2. Navigate to the Publish worksheet.

3. Make sure the data source is My Superstore.

4. If you have not already done so, log in
to

your instance of Tableau Server by

clicking on Server | Sign In…:

Figure 14.1: Server—Sign in

5. In the Data pane, select the My Superstore data source.

6. Select Server | Publish Data Source | My Superstore:

Figure 14.2: Server—Publish Data Source

[645]

Interacting with Tableau Server/ Online

7. In the resulting dialog box, input your desired settings:

Figure 14.3: Server—Publish Data Source settings

If you have different projects on your Tableau Server, you can choose which project

to publish the data source to. You can also change the name if you like or add a

description, which comes in handy especially if you have lots of different data

sources and you want to allow your users
to

look for the one they need. By adding

tags, you will add a metadata layer that will allow your Tableau Server users to

search for a given data source based on tags. You can also change the permissions.

Your setup might
be

that different users are in different groups, so here you can

select which group is allowed which permissions. And lastly, you can immediately

upload the workbook with the data source such that both are available on Tableau

Server.

[646]

Chapter 14

Tableau file types

We will continue our discussion of Tableau Server
by

considering the various

Tableau file types. This may seem a surprising place to continue but as you read, you

will discover that a clear understanding of file types provides the Tableau Desktop

author with foundational knowledge for efficiently and effectively interacting with

Tableau Server.

The file types discussed previously that are relevant for understanding how to

interact with Tableau Server are considered in some depth. The file types that are

not relevant for understanding Tableau Server are considered only briefly. Some file

types (for example, those associated with license activation) are not considered.

Tableau data source

Let's now look at the various data sources available in Tableau. Take a look at the

following Tableau data file:

• File format type: XML.

• What it contains: Metadata.

• Why it's useful: The .tds file is important because it allows the Tableau

author to define default formatting and aggregation, calculated fields, data

types, field types, and more. Furthermore, the .tds file can be published to

Tableau Server and thus accessed
by

other authors in the environment. This

effectively makes a .tds file a playbook, which ensures consistency across

the organization. This important feature will be explored more fully in the

Tableau Server architecture section.

• How it's generated: A .tds file can be generated by right-clicking on a

data source in the Data pane and selecting Add to Saved Data Sources...,

followed by selecting Tableau Data Source in the resulting dialog box. A

.tds file can also be generated when publishing to Tableau Server via Server

| Publish Data Source | [data source]. The Publishing a data source to Tableau

Server section demonstrates how to publish a .tds file and also a .tdsx file.

• How to access it: The .tds file type is usually accessed in one of two places.

First, it can be stored in My Tableau Repository | Datasources. When stored

in this directory, a .tds file will display in the left portion of the Start Page

under the Saved Data Sources section. The second place a .tds file is often

stored is on Tableau Server. Navigating to Data | New Data Source and

choosing Tableau Server allows
the

Tableau author to point to the .tds and

.tdsx files that have been published to Tableau Server.

[647]

Interacting with Tableau Server/ Online

Tableau packaged data source

Take a look at the following Tableau data file details:

• File format type: Compressed.

• What it contains: Metadata and a data extract.

• Why it's useful: The .tdsx file is useful because it can be accessed for

both metadata and data. Tableau authors can access a .tdsx file located on

Tableau Server as a data source, thus eliminating the need for a workbook

to connect directly
to

an external data source. A published .tdsx file can be

placed on a schedule so that it is regularly updated from the underlying data

source.

• How it's generated: A .tdsx file can be generated by right-clicking on a

data source in the Data pane and selecting Add to Saved Data Sources...,

followed by selecting Tableau Packaged Data Source in the resulting dialog

box. Like the .tds file, the .tdsx file can also be generated when publishing

to Tableau Server via Server | Publish Data Source | [data source]. See the

next exercise section for more details.

• How to access it: A .tdsx file is accessed the same way a .tds file is. First,

it can be stored in My Tableau Repository | Datasources. When stored in

this directory, a .tdsx file will display in the left portion of the Start Page

under the Saved Data Sources section. The second place a .tdsx file is often

stored is on Tableau Server. Selecting Data | New Data Source and choosing

Tableau Server allows the Tableau author
to

point to the .tds and .tdsx files

that have been published to a given instance of Tableau Server.

Tableau workbook

Next to data sources we have Tableau workbooks. Take a look at the following

Tableau data file details:

• File format type: XML.

• What it contains: Metadata and schema. The schema defines the

visualizations in the workbook. Note that schema, in this context, refers to

the XML that defines the visual components of the workbook, including the

visualizations displayed on worksheets as well as the layout of dashboards

and stories.

• Why it's useful: The .twb file type
is

the file type most often used by the

Tableau author. It is necessary for creating visualizations that point to a live

dataset. Thus, real-time solutions will utilize this file type.

[648]

Chapter 14

• How it's generated: A .twb file is created via File | Save As, then selecting

the .twb file type in the resulting dialog box.

• How to access it: A .twb file can be opened via Tableau Desktop or accessed

via a browser that points to an instance of Tableau Server. Since a .twb file is

XML, it can be opened, viewed, and updated via a text editor.

Tableau packaged workbook

Take a look at the following Tableau data file details:

• File format type: Compressed.

• What it contains: Metadata, schema, and optionally, one or more data

extracts.

• Why it's useful: The .twbx file type is required for use with Tableau Reader.

It can also be effectively used with Tableau Server when accessing data

sources to which Tableau Server does not directly connect, such as flat files,

and Microsoft Excel and Access files. Drawbacks to the .twbx files will be

discussed next.

• How it's generated: A .twbx file is created via File | Save As, then selecting

the .twbx file type in the resulting dialog box.

• How to access it: A .twbx file can
be

opened via Tableau Desktop or accessed

via a browser that points to an instance of Tableau Server. Since a .twbx file

is a compressed file, it can also be unzipped via a compression utility, such as

WinZip or 7-Zip.

Other file types

The remaining file types you should be familiar with are not particularly relevant

for Tableau Server and will thus only be briefly discussed here. There might be

some issues with the compatibility of Tableau Desktop extracts and Tableau Server

versions. A full list of compatibility scenarios can
be

found at https://help.tableau.

com/current/desktopdeploy/en-us/desktop_deploy_compatibility.htm.

Let's take a look at the following other file types:

• Hyper: To know more about Hyper, you can refer to https://www.tableau.

com/support/hyper-resources.

[649]

Interacting with Tableau Server/ Online

• Tableau Data Extract: The .tde file can
be

generated via the following: if a

.twb file is opened in Tableau Desktop, a .tde file can be created by right

clicking on a data source in the Data pane and selecting Extract Data. After

selecting the desired options, Tableau will provide a dialog box for the

author to save the .tde file in a given location. The extract file can be used to

create a local snapshot of a data source for a quicker authoring experience.

That same local snapshot is also portable and can thus be used offline. Often

the data extracts compressed inside the .twbx and .tdsx files are in the

.tde/.hyper format. An important clarification should be made here: often

Tableau authors will refer to publishing an extract to Tableau Server. The

extract that is published is not a .tde or .hyper file. Rather, it is a .tdsx file.

Refer to Chapter 13, Improving Performance, for additional information about

the extract file format.

• Tableau Bookmark: The .tbm file can be generated via Window | Bookmark

| Create Bookmark. It can be useful for duplicating worksheets across

multiple workbooks and also for sharing formatting across multiple

workbooks.

• Tableau Map Source: The .tms file is discussed in detail in Chapter 9,

Mapping.

• Tableau Preferences Source: The .tps file can be used to create custom color

palettes. This can be helpful when
an

organization wishes to use its color

scheme within Tableau workbooks. The .tps file that Tableau utilizes is

called Preferences.tps and is located in the My Tableau Repository. Since

it's
an
XML format, it can be altered via a text editor. Matt Francis has posted

a helpful blog
at

https://wannabedatarockstar.blogspot.com/ that clearly

communicates how to adjust this file. You can also reference the Tableau help

page.

Now that we've discussed the different file types, you will be able to recognize them

as
we

move on to the next big technical subsection, the server architecture.

Tableau Server architecture

Now that
we

have reviewed the various Tableau file types, we can use that

information to understand different ways
to

architect a Tableau Server environment.

Since this is not a book dedicated to Tableau Server, this architecture discussion

is presented on a high level. The intent is to help the Tableau Desktop author

understand how to interact with Tableau Server so that the workbooks best serve the

end user. Take a look at the following diagram:

[650]

Chapter 14

Figure 14.4: Server architecture

The preceding diagram visually represents the contents of the four previously

discussed file types that are most relevant when considering how the Tableau

Desktop author should interface with Tableau Server. To be clear, the previous

sections of this chapter provided descriptions of the various file types. Each of

these descriptions included the line What it contains, which is visually represented

in the preceding diagram. Each of the four file types listed in the graphic includes

metadata; two include data and two include schema.

Let's consider four approaches
to

the Tableau Server architecture and how each

presents its own advantages and disadvantages that the Tableau Desktop author

should be aware of. The first two approaches presented should generally be avoided.

The second two approaches should generally be adopted. Of course, these four

approaches do not encompass every possible approach. They do, however, provide a

basic framework.

Approaches to avoid

If the following Tableau Server architecture approaches should be avoided, why

mention them at all? Because they are often utilized! An administrator who

hasn't had the opportunity
to go

to Tableau Server training may default to these

approaches and may even build out a large infrastructure before realizing that it's

difficult to maintain and scale.

[651]

Interacting with Tableau Server/ Online

TWB-centric

Take a look at the following diagram depicting the Tableau Server architecture:

Figure 14.5: TWB-centric server architecture

The preceding diagram shows the .twb files that have been published to Tableau

Server. The diagram also communicates that, since the .twb files do not include

any data, each workbook must access an external data source in order to display a

visualization. Furthermore, this access will cause Tableau to return data in real time,

that is, the latest data available in the external data source.

The TWB-centric approach to the Tableau Server architecture results in the following

advantages:

• Small footprint: The small-footprint advantage stems from the small file size;

the .twb files are rarely larger than a few MB. Small file size leads to fewer

issues for revision history.

• Easy revision history: This is in contrast to the .twbx files, which can become

quite large and thus unexpectedly overload a hard drive when storing many

copies via revision history.

• Real time: The real-time advantage is as a result of .twb files always pointing

to an external data source. As the data source updates, the workbook that

is based on a .twb file updates. Of course, real time in this case should not

be mistaken for something like a stock ticker; that is, updated results do not

display in a worksheet unless the
end

user performs a manual refresh. Even

when manually refreshed, a worksheet may be regenerated from the cache as

opposed to making a call
to

the data source. This will depend on the settings

in Tableau Server.

• Added security: In order to open a .twb file with a database connection, the

user needs database credentials to do so.

[652]

Chapter 14

The following are the disadvantages of taking a TWB-centric approach:

• Difficult to maintain: From one perspective, maintenance is fairly easy; that

is, a .twb file can be quickly downloaded, edited, and then re-uploaded.

From another perspective, the TWB-centric approach can
be

quite a chore.

Consider a change to a single foreign key in a data source that breaks every

workbook in production. Editing dozens of workbooks (or more) to rectify

the issue would not be trivial.

• Potentially poor performance: Another disadvantage of the TWB-centric

architecture is potentially poor performance. This is because it requires

the .twb files
to

point to external data sources. Network latency and slow

database servers will negatively impact workbook performance. It should

be noted, however, that some data source engines (such as the massively

parallel processing (MPP) systems discussed in Chapter 6, All About Data

– Data Densification, Cubes, and Big Data) can potentially outperform the

following architecture options.

To sum up, avoid the TWB-centric architecture. A TDS-centric architecture maintains

all the advantages of a TWB-centric architecture and mitigates the maintenance

difficulties
we

just discussed.

TWBX-centric

Let's take a look at the following diagram, which depicts the TWBX-centric

architecture:

Figure 14.6: TWBX-centric server architecture

The preceding diagram shows .twbx files that have been published to Tableau

Server. Assuming that the .twbx files contain extracts for each required data source,

no call is necessary to external data
to

display a visualization.

[653]

Interacting with Tableau Server/ Online

The TWBX-centric approach to the Tableau Server architecture has a strong

advantage:

• Typically performant: The TWBX-centric approach has at least one

advantage: performance. Since a .twbx file can include data extracts,
no

calls
to

external data sources are required. This circumvents problems

with network latency and slow database servers, thus enabling quick

performance. Note that a .twbx file can be scheduled for refreshes thus

ensuring that the data is never stale.

However, the following are the various TWBX-centric disadvantages:

• Large footprint: Unfortunately, the TWBX-centric approach has major

drawbacks. The large-footprint disadvantage costs a lot of storage space and

can occur as a result of large .twbx files.

• Very difficult to maintain: These files can be as large as several GB. Such

large files are very difficult to maintain and can lead to potential problems

with revision history. Large .twbx files can be difficult and time-consuming

to download, update, and re-upload.

• Potential problems with revision history: Also, as mentioned previously,

revision history on large .twbx files may unexpectedly overload a hard drive.

• Not real time: Furthermore, the TWBX-centric solution is not real time.

For most Tableau Server implementations, the TWBX-centric solution should be

avoided. The Tableau Server administrator who observes a .twbx file in excess of

500 MB should likely contact the author
who

uploaded the file in order to seek a

better solution. This is not to say that the .twbx files should never be used on Tableau

Server. If a Tableau author uses a local spreadsheet as a data source, a .twbx file will

almost certainly be used in order for the workbook to function on Tableau Server.

However, this will typically not lead to large .twbx files. Thus the disadvantages
we

just listed would not apply.

To sum up, avoid the TWBX-centric architecture. A TDSX-centric architecture

maintains all the advantages of a TWBX-centric architecture and mitigates most of

the difficulties we just discussed.

Approaches to adopt

Previously, we considered two approaches
to

Tableau Server architecture to avoid.

Now let's consider two approaches to adopt.

[654]

Chapter 14

TDS-centric

Let's take a look at the following diagram, which depicts the TDS-centric

architecture:

Figure 14.7: TDS-centric server architecture

The preceding diagram shows the .twb files that have been published to Tableau

Server. The .twb files point
to

a .tds file as a data source. The .tds file points to the

database.

The TDS-centric approach to Tableau Server architecture results in various

advantages:

• Small footprint: Like the TWB-centric approach, the TDS-centric approach

has the advantage of a small footprint, which stems from the small size of the

.tds and .twb files.

• Easy revision history: These small file sizes result in fewer issues for the

revision history.

• Easy to maintain: By using .twb files with their corresponding small

footprints, maintenance is relatively easy since .twb files can be quickly

downloaded, updated, and then re-uploaded. Furthermore, pointing to a

.tds file has an additional maintenance advantage. If changes are made to

the metadata in the .tds file (for example, a calculated field is updated),

those changes will trickle down to every .twb file that points to the .tds

file, thus allowing for an update in a single location to impact multiple

workbooks. Previously in this chapter,
we

considered a scenario in which

a change
to

a single foreign key broke every workbook in production. By

utilizing the TDS-centric approach, updating the metadata in a .tds file to

account for the change
to

the foreign key could instantly fix the problem for

every .twb file that points to the .tds file.

[655]

Interacting with Tableau Server/ Online

• Real time: As with the TWB-centric approach, the TDS-centric approach

provides a real-time advantage.

The following is the TWB-centric disadvantage:

• Potentially poor performance: Lastly, the TDS-centric architecture has a

disadvantage: potentially poor performance. This is because a .tds file must

point to external data sources that could, in turn, introduce network latency

and slow database engines that negatively impact workbook performance.

To sum up, consider adopting the TDS-centric approach, especially when a real-time

solution is required. The TDS-centric architecture maintains all the advantages of a

TWB-centric architecture while providing easier maintenance.

TDSX-centric

Let's take a look at the following diagram, which depicts the TDSX-centric

architecture:

Figure 14.8: TDSX server architecture

The preceding diagram shows the .twb files that have been published to Tableau

Server. The .twb files point
to

a .tdsx file
as

a data source. The .tdsx file can be

scheduled to refresh regularly so that the data does not become stale. The TDSX

centric approach to the Tableau Server architecture results in various advantages:

• Typically quick performance: The TDSX-centric approach allows for

typically quick performance. Since the .twb files point to a .tdsx file that

resides on Tableau Server, problems with network latency and slow database

servers are circumvented.

[656]

Chapter 14

• User-friendly: The ability to add additional calculations, structures, and

folders to a data source leads to a better user experience.

• Relatively small footprint: By using the .twb files with their corresponding

small footprints, maintenance is relatively easy since the .twb files can be

quickly downloaded, updated, and then re-uploaded. However, the .tdsx

size is relative as the .tdsx files can become quite large even though the .twb

files remain small.

• Easy to maintain: Furthermore, pointing
to

a .tdsx file has an additional

maintenance advantage. If changes are made
to

the metadata in the .tdsx file

(for example, a calculated field is updated), those changes will trickle down

to every .twb file that points
to

the .tdsx file, thus allowing for an update in a

single location to impact multiple workbooks.

• Revision history-friendly: This is revision history-friendly in that the user

can always restore an older version of the workbook.

The following is the TDSX-centric disadvantage:

• Not real-time: Not real-time. However, this can be mitigated with frequent

updates.

To sum up, in most environments, a TDSX-centric architecture should be the

approach you use. Even the one disadvantage, not real-time, can
be

mitigated with

frequent updates. That said, a TDS-centric approach should be used when a real

time solution is required or when accessing a data source engine that outperforms

Tableau extracts.

As previously stated, this discussion of Tableau Server architecture is at a high level.

Different environments require different approaches. Thus, some combination of

these two approaches may often
be

appropriate. Also, there may be special cases that

utilize one of the approaches to be avoided. For example, it may be advantageous in

some environments
to

programmatically generate a .twbx file for different end users,

thus allowing those end users to download the .twbx files that contain only their

data.

Now that we know about the different Tableau Server setups, we will move on

to the next section. Tableau Server allows you to alter dashboards even after they

have been published and without using Tableau Desktop. This feature is called web

authoring and will be discussed next.

[657]

Interacting with Tableau Server/ Online

Web authoring

After you have published a dashboard to Tableau Server, how do you imagine

editing it? Well, Tableau offers two options. In the first option, both you and

everyone else who has access and the rights to download the dashboard can

download it, edit it in Tableau Desktop, and overwrite the latest version on Tableau

Server with a new upload. The other option is to edit the dashboard live on Server.

This feature is called web authoring. Web authoring is a Tableau Server feature that

provides an interface for authoring that is similar to Tableau Desktop. Originally, the

web authoring interface was pretty limited, but more features are introduced with

each version. Thus, the capability gap between the Tableau Server web authoring

environment and Tableau Desktop has shrunk. The web authoring environment

provides robust capabilities for creating and applying table calculations and also

provides capabilities for creating dashboards.

As of the time of writing, some features are still missing altogether in the Tableau

Server web authoring environment, but the following Tableau Public dashboard

will give you a complete overview of what is out there, comparing Tableau Desktop

and Tableau Server web authoring functionality and even allowing you to select

the versions. Thanks to Andrew Pick for creating this very helpful dashboard:

https://public.tableau.com/views/TableauDesktopvTableauWebEditing/DesktopvsWebEdit?_fsi=yR9nQtlX&:showVizHome=no.

The following two very brief exercises demonstrate how to access the authoring

environment within Tableau Server. Keep in mind that the Tableau Server admin

needs to grant access to users
to
do so.

Editing an existing workbook with web

authoring

Let's perform the following steps
to

edit an existing workbook on Tableau Server:

1. Log in to an instance of Tableau Server.

2. Select the My Superstore data source that
we

uploaded in the Publishing a

data source to Tableau Server section.

3. Select New Workbook to create a workbook based on the published data

source:

[658]

Chapter 14

Figure 14.9: Published data source

4. Drag Category on to Columns and Profit on to Rows.

5. Now click on File | Save and in the popup, choose a name for the workbook,

(I called mine Test) and hit Save.

6. If you go back now to the overview of Tableau Server you will see an

additional workbook called Test, next to the My Superstore published data

source:

Figure 14.10: Workbook view

[659]

Interacting with Tableau Server/ Online

7. If you want to continue editing the Test workbook, simply open it on

Tableau Server and select the Edit button at the top right:

Figure 14.11: Web authoring

This is as easy as it gets.

So far,
we

have published a dataset, built a workbook from that dataset on Tableau

Server, and maybe you edited the workbook as well. If not, we will do so in the next

exercise.

Understanding the Tableau Server web

authoring environment

Let's perform the following steps
to

understand the Tableau Server web authoring

environment:

1. Access the workbook associated with this chapter and note the Sales &

Quota worksheet:

[660]

Chapter 14

Figure 14.12: Web authoring II

2. Publish the worksheet to an instance of Tableau Server by clicking on Server |

Publish Workbook. In the window that appears, rename the workbook to Sales

& Quota and make sure that only the Sales & Quota worksheet will be uploaded:

Figure 14.13: Publish workbook

[661]

Interacting with Tableau Server/ Online

3. The following popup will appear:

Figure 14.14: Publish workbook II

4. Open the worksheet on Tableau Server by clicking on the Sales & Quota

published view, and click on Edit to access web authoring:

Figure 14.15: Accessing web authoring

5. From here you should see an interface similar to the one you are used to from

Tableau Desktop. This is what web authoring is all about—you have most of

the Tableau Desktop functionality online and you don't even need to open

Tableau Desktop as long as your workbook has been published
to

Tableau

Server. Let's try it!

6. The first thing you might notice is that even though
we

didn't publish the

Publish sheet, it is visible in the web authoring view. You can right-click on

it and press Publish Sheet to make this worksheet accessible for Tableau

Server users that don't have access to web authoring:

[662]

Chapter 14

Figure 14.16: Web authoring

7. Press the Ctrl (Windows) or Command (macOS) button on your keyboard and

while doing so, drag the Quota Met? field to the Rows shelf:

Figure 14.17: Web authoring II

[663]

Interacting with Tableau Server/ Online

8. You will see that crosses and checkmarks appear in the view. This shows us

that we can not only use a color to indicate whether we met a quota, but also

a mark in the view. Feel free to try out the other operations you are used to

handling with ease in Tableau Desktop, including the following:

• Creating a calculated field

• Adding a filter

• Adjusting the tooltip

• Creating a new worksheet

• Creating a dashboard

After you are done with editing, you simply click on the cross in the upper-right

corner and hit Save. Make sure you have
the

rights to save and thereby overwrite the

dashboard in web authoring mode:

Figure 14.18: Save the workbook

You will see that the original worksheet has been changed
to

whatever you did in the

web authoring mode.

[664]

Chapter 14

Comparing Tableau Desktop and web

authoring

By now we know that editing published dashboards can be done by downloading

from Tableau Server, editing in Tableau Desktop, and then uploading again, as

well as leveraging the web authoring feature that ships with Tableau Server. Web

authoring is advantageous for small changes and a real time-saver because there is

no need
to
download and upload a dashboard.

Bigger changes however are more easily executed in Tableau Desktop and some

changes are not even possible in web authoring. Therefore sometimes it's unclear

which individuals in an organization require a Tableau Desktop license and which

only need a Tableau Server user license. For example, a technologically oriented

executive with limited time to learn new software could go either way.
On

the one

hand, they may want to delve into the details of the data, but on the other, they may

not be able
to

invest the time necessary to learn enough about Tableau Desktop to

warrant the price of an additional license. When the web authoring environment

was released the features were fairly rudimentary. The busy executive may have

been best served with a Tableau Desktop license. Since that time, more and more

capabilities have been introduced. Today, that same executive may
be

reasonably

content with using the web authoring environment.

The rights regarding whether you are allowed
to

use web authoring and
to

what

extent are often related
to

your licensing model. For more information please read

the following Tableau help article: https://onlinehelp.tableau.com/current/pro/

desktop/en-us/server_desktop_web_edit_differences.htm.

Starting from Tableau 2020.4, it is also possible to use the web

authoring functionality for Tableau Prep Builder.
If
you have a

flow published to your Tableau Server, check it out!

To create a new Prep Builder project in your browser, you can

select New | Flow on the Start, Explorer, or Data Source pages.

More information can be found here: https://www.tableau.

com/blog/2020/12/tableau-prep-builder-now-available-

browser.

[665]

Interacting with Tableau Server/ Online

Maintaining workbooks on Tableau

Server

We have now learned about the dashboard editing options, but we have not yet

discussed how
we

can keep track of changes and make sure that we don't lose

important information in the process of producing new information. This section

will provide help on how to maintain workbooks on Tableau Server, starting with

revision history.

Revision history

You, as a Tableau dashboard developer or maybe even a Tableau Server admin,

want to make sure that your users are always looking at the right data. But then it

happens: you edit a dashboard and after your edit, the dashboard displays faulty

information. A user calls you and wants the old dashboard back immediately. What

do you do? Use revision history!

Tableau Server ships with a revision history that ensures that the past 25 versions

of each workbook and data source are retrievable. This setting can be enabled or

disabled by the Tableau Server admin. In Tableau Desktop, if you attempt to upload

a workbook or data source with the same name as a previously uploaded file,

Tableau Desktop will display a warning such as Data source name is already in use:

Figure 14.19: Overwriting data source

Publishing will overwrite the existing data source. If you proceed with the upload,

revision control will be activated, and the previous version of the file will remain

accessible as a revision. To access the revision history for individual workbooks

and data sources in Tableau Server, simply select any data source or workbook

you uploaded and click on the three dots
at

the bottom right. In the popup, select

Revision History...:

[666]

Chapter 14

Figure 14.20: Revision History

This will open a dialog box where you can choose which previous version
to

restore:

Figure 14.21: Revision History
II

If you'd like to peek beneath the hood of Tableau Server to begin to understand how

revision history works,
do

the following: on a computer with Tableau Server installed,

go to the directory for revision history.
By

default, this is located at C:\ProgramData\

Tableau\Tableau Server\data\tabsvc\dataengine\revision. In the revision

directory, there are files with alphanumeric names. Simply rename one of those files

by adding the appropriate extension (for example, .twbx) to open the file in Tableau

Desktop. Renaming with an existing file name will replace the earlier version.

[667]

Interacting with Tableau Server/ Online

Revision histories are so helpful! I hope you will not have to use them often but it's

always good to have options. The next question many organizations have is, how can

I make sure that users only see what they are supposed to see and not just everything

that has been published to Tableau Server? One solution is user filters. We will

discuss this topic next!

User filters

Students often ask me something along the lines of the following question: I have

sales managers over various territories. It's important that the sales managers see

only their metrics; that is, not the metrics of the other sales managers. In order to

accomplish this, do I have to create separate workbooks for each sales manager?

Fortunately, the answer is no. Tableau provides user filters that allow the Tableau

author to make sure that each of those sales managers sees only the information for

which they have clearance. To demonstrate this, take the following steps:

1. This exercise needs more than one user on Tableau Server. Therefore, go

ahead and create at least one additional user on Tableau Server
by

clicking

on Users | Add Users. I used a second email address that I own to do so:

Figure 14.22: Add user

[668]

Chapter 14

2. As an optional step, you can change an account's display name. In order to

change the display name of an account, log in
to

https://www.tableau.com/,

click on User | Edit Account, and make the desired changes
to

the first and

last name entries. I renamed my two accounts Marleen and MarleenTestto make it easier for you
to

distinguish the two accounts in the following

screenshots:

Figure 14.23: Add user II

Replace my accounts in the following steps with your own

account names!

3. As a second optional step, instead
of

assigning single users
to

a filter, you can

also assign groups of users. In order
to
do so, you can create different groups

as follows:

Figure 14.24: Add group

[669]

Interacting with Tableau Server/ Online

4. You can then split the users on your Tableau Server instance into Central

Region and East Region by selecting a user and then Group Membership

under Actions:

Figure 14.25: Add group
II

5. Now, access the workbook associated with this chapter and navigate
to

the

View Level User Filter worksheet. Note that the view is a field map of the

USA with State on the Detail shelf, Region on the Color shelf, and Sales on

the Label shelf.

6. Log in to an instance of Tableau Server via Server | Sign In.

7. Select Server | Create User Filter | Region...:

Figure 14.26: User filter

[670]

Chapter 14

8. In the resulting User Filter dialog box, you can now assign either a single

user or a group to a region. I will select Marleen and check the Central

region. Also, I will select MarleenTest and check the East region. Name the

user filter Sales Region and click on OK:

Figure 14.27: User filter II

9. Note that Sales Region is now actually added
to

the Sets portion of the data

pane:

Figure 14.28: Set added

[671]

Interacting with Tableau Server/ Online

10. Place the Sales Region on the Filters shelf.

11. In the right portion of the status bar, click on the dropdown to access the user

filter:

Figure 14.29: Switch between filter

[672]

Chapter 14

12. Choose a different user and note that the results display only the region that

the given user has access to:

Figure 14.30: Switch between filter II

Once the workbook is published to Tableau Server, users who access the workbook

will only see the information the filter allows. This can also be applied to saved data

sources (published TDSX files) at the data source level.

[673]

Interacting with Tableau Server/ Online

One important thing to note is, as opposed to simply adding a dimension filter to the

Filters shelf, you might want
to

consider adding the Sales Region to the Data Source

filter. This is important because any user with web authoring permission can simply

remove a filter from the Filters shelf. In the case of this exercise, the user would

then be able to see metrics for every region. Data source filters, however, cannot be

removed via the web authoring environment and are thus more secure. Furthermore,

a data source filter is workbook-wide, which further secures the data. However, if

you don't have web authoring enabled, the Filters shelf serves its purpose.

For more details on filters and Tableau's order of operation, please

check Chapter 13, Improving Performance.

Performance-recording dashboard

In Chapter 13, Improving Performance, we explored the Performance Recording

dashboard. Sometimes a workbook may perform satisfactorily on Tableau Desktop

but, mysteriously, may perform poorly when published
to

Tableau Server. In such

cases, accessing the Performance Recording dashboard on Tableau Server can be

very helpful.

Note: This does not work on Tableau Online.

The following exercise provides step-by-step instructions for doing so:

1. Navigate to an instance of Tableau Server.

2. On the toolbar, click on Settings.

3. On the resulting page, locate the Workbook Performance Metrics section

and select Record Workbook Performance Metrics.

[674]

Chapter 14

4. Click on Save.

5. Navigate to a workbook of your choosing and open a view. Note that the

ending portion of the URL is :iid=<n>.

6. Type :record_performance=yes& immediately before :iid=<n>. For example,

http://localhost:8000/#/views/Finance/Taleof100Start-ups?:record_

performance=yes&:iid=5.

7. Note that the toolbar now includes a Performance link:

Figure 14.31: Performance recording on Tableau Server

8. Click the Refresh icon on the toolbar. Click on Performance and observe the

resulting performance-recording dashboard that is displayed, just like the

one you already know from Chapter 13, Improving Performance.

We are getting closer to the end of this chapter and last but not least,
we

want to

mention the small settings and features that Tableau Server offers that can really

improve the user experience. The next section will be all about alerts, subscriptions,

comments, and other cool stuff. Let's dive right in!

More Tableau Server settings and

features

Once a dashboard has been published, users can set alerts, certify data sources,

subscribe, add comments to a dashboard, and more, depending on their permissions.

This section will address the different functionalities in two different places:

on a worksheet and on a view. Next to those, Tableau Server has many more

functionalities, especially settings for site admins, which are—unfortunately—out of

the scope of this book.

[675]

Interacting with Tableau Server/ Online

Features on the worksheet level

By features on the worksheet level, I mean the settings that are available to you after

selecting a project and a certain worksheet like so:

Figure 14.32: Tableau Server

On this level, we see six different tabs, which we will discuss over the next few

pages.

Views: Views show a thumbnail of all the worksheets or dashboards that have been

published within one workbook. When uploading a workbook
to

Tableau Server,

you can select all the views that should show here:

[676]

Chapter 14

Figure 14.33: Publish workbook

[677]

Interacting with Tableau Server/ Online

By clicking on the three dots next
to

a view, more options will show, as can be seen

in the following screenshot:

Figure 14.34: Options

The different options are self-explanatory: you can edit the view (also referred
to

as web authoring, which we've discussed earlier in the chapter), and you can share

the view with other users, where Tableau will send an email with an image and a

hyperlink to the user you shared the view with. You can also add tags that will help

other users find the view, you can check which user or group has permission to open

the view and who has seen this view, and lastly, you can delete it. Which of those

options will display is a matter of the configuration in Tableau Server, so your admin

can enable or disable the different features
to
show or else they might

be
grayed out.

[678]

Chapter 14

Data Sources: The next tab is Data Sources. It will give you an overview of the data

sources used to create this workbook:

Figure 14.35: Data Sources

You will be able to see which type of data sources were used; for example, with an

extract of live connections,
by

clicking on
the

three dots by each source, you will

again be able to see more settings, depending on the settings of your Tableau Server:

Figure 14.36: Data Sources II

[679]

Interacting with Tableau Server/ Online

Connected Metrics: Next in line are the connected metrics. This is a relatively new

feature. In order
to

see metrics, you first have to set them up in a view. We will get

to this in the second part of this section, but basically, it allows you to select pieces of

different dashboards and views and combine those data points as metrics to monitor

your data. Metrics make use of a specific data mark in your view. Therefore, you

might need
to

adjust your view to show the one mark you want to use.

For example, if you have a dashboard with daily profits over the past year but

your metrics should show only the last profit data point, you will have
to

create a

new view in order to use the explicit last profit in a metric, even though the data is

already part of the initial view. However, a big advantage is that you don't need to

connect to different data sources, as the connections that are already set up in the

different workbooks will be leveraged.

More details regarding metrics can be found here: https://www.

tableau.com/about/blog/2020/5/introducing-metrics

headlines-your-data.

Extract Refreshes: When using extracts as
the

data source, you can define a refresh

schedule while uploading the workbook to Tableau Server or even after you

published the workbook. The different schedules can be set by your server admin. If

you set the extract refresh
to

run at 7 AM every day, for example, Tableau Server will

access the data source, perhaps a SQL database, at 7 AM, and load the data, and you

will in return see the latest data in your Tableau dashboard. Using extracts tends to

perform better than a live connection, depending on the amount of data and the type

of data source, but be aware that the data in the dashboard will always
be

as old as

your latest extract.

Subscriptions: Subscriptions can be set on a view level; we will get
to

it in the next

section. But on a workbook level, you will
be

able to see all subscriptions that are

active for a certain workbook.

Lineage: Lineage is another rather new feature on Tableau Server. It is only available

through the Data Management add-on, at additional cost, and will show you the

dependencies of a data source.

[680]

Chapter 14

For more information on Lineage, please check: https://help.

tableau.com/current/server/en-us/dm_lineage.htm.

Lastly, please note the three dots on a workbook page, which contain more options

as well as options we have seen before:

Figure 14.37: Options

Again, which ones you will be able to use is dependent on the permissions the

Tableau Server admins gave you.

[681]

Interacting with Tableau Server/ Online

The available options look a little bit different when the selection is based on a

published data source, like the My Superstore data source that
we

published
to

Tableau Server at the beginning of this chapter:

Figure 14.38: Options II

Most of the items are self-explanatory, but I want
to

point out Quality Warning…,

which is available at an additional cost within the Data Management add-on.

This feature will allow you to alert every user of the data or any workbook based

on the data to be extra careful when using it. Depending on the settings, Tableau

Server will show warnings of various types, such as Deprecated, Stale data, Under

maintenance, and Sensitive data, which are selectable from a dropdown.

You can also decide whether you want to show the type on the data source only or

also on the related workbooks. The following is an example on the data source only:

[682]

Chapter 14

Figure 14.39: Data quality warning

And here is an example of how the warning looks on the workbook level:

Figure 14.40: Data quality warning II

And even when opening the view:

Figure 14.41: Data quality warning III

[683]

Interacting with Tableau Server/ Online

This is a very powerful feature and shows how Tableau matures more and more

with each release. Data quality is the focal point for many data strategies and the

base of all analytics. Tableau Server adapted to it and provides you with features that

will grow along with your data strategy and quality measures.

Ask Data: The last item before we continue with the view level is Ask Data, which is

only available for Tableau Server. To access Ask Data, select a published data source

and click on the first tab. Now the fun part starts where Tableau Server will help you

build vizzes based on Natural Language Processing (NLP):

Figure 14.42: Ask Data

[684]

Chapter 14

On the left-hand side, you see all available fields and, in the middle, you can either

select one of the suggested questions that were created based on a smart algorithm,

or start typing in your own question:

Figure 14.43: Ask Data II

You can see that I typed how many customers per region and Tableau offers me two

options, translated into Tableau language, that I can choose from. I select the first one

and hit Enter. See what happens now:

Figure 14.44: Ask Data III

[685]

Interacting with Tableau Server/ Online

Tableau Server created a view. The dropdown on the right allows me
to

change the

view and at the top I can use the swap axis feature, known from Tableau Desktop,

or save the view, or share the link to this view. Next, I hover over Customer ID in

the left panel with all the fields and click on the pen that appears next to the name.

This allows me to add a synonym to the field because I know that some other

departments refer to customers as clients, therefore I add Clients:

Figure 14.45: Ask Data IV

Now I am testing whether Tableau Server will pick
up

my synonym.
My

inquiry

looks as follows:

Figure 14.46: Ask Data V

[686]

Chapter 14

I click on the first option and Tableau Server creates the following graph:

Figure 14.47: Ask Data VI

Starting from Tableau 2021.1 your Tableau Server admin will also

be able to improve the Ask Data suggestions, change the indexing,

and analyze the string sequences entered by Tableau users. More

information on how to do this can be found here: https://

help.tableau.com/current/pro/desktop/en-us/ask_data_

optimize.htm.

How cool is Ask Data? In my opinion, this feature is especially powerful, because

even though Tableau is very intuitive, many people are not as data-savvy as you are.

Providing a high-quality dataset and publishing it to Tableau Server will allow even

more people to become data-driven and perform quick analysis themselves. This

will help you to focus on more complex dashboards, while ad hoc questions can be

answered using this feature.

[687]

Interacting with Tableau Server/ Online

Features on the view level

We have covered all settings on the workbook level, so now we will take a closer

look at a lower level, the view. The view looks something like this, and the settings in

the red frame are of interest for this section:

Figure 14.48: View-level features

Data Details: The Data Details tab will show more details regarding the data source

used in the view. This feature is available at an additional cost within the Data

Management add-on. The popup that will appear on the right side has three different

sections: Views of this sheet, Data Sources, and Fields in Use:

[688]

Chapter 14

Figure 14.49: Data details

[689]

Interacting with Tableau Server/ Online

In the last section, you will have the option to open each field individually. If it is a

calculated field, the calculation will show, while if it is a field from the original data

source, the data type and description will
be

visible (if a description has been added):

Figure 14.50: Data details II

[690]

Chapter 14

View: The View tab allows you to add a view other than the default and save it. The

next time you open the dashboard you can select the view you created
by

clicking

on this tab and the saved settings will be applied all at once. Your view may contain,

for example, a specific filter selection, a different parameter selection than the default

view, and maybe a set that is most important to you. Instead of having to change

filters, parameters, and sets every time you open the view, you can use the View tab:

Figure 14.51: Custom views

Alerts: As of the time of writing, an alert can be set on a continuous numerical axis

only. However, there are ideas being discussed on the Tableau forum that will

increase the flexibility with setting alerts.

[691]

Interacting with Tableau Server/ Online

In the Tableau Ideas forum, users can write down what ideas they

have for future releases and the community can vote for them.

Ideas with high votes are likely to be picked up soon. You can find

the forum here: https://community.tableau.com/community/

ideas.

Click on the Alerts button and text on the right side will show:

Figure 14.52: Alerts

After selecting a numeric axis (here: Sales), a new popup will appear in which a

condition and a threshold can
be

entered. Also, the frequency of the threshold check

can be specified:

[692]

Chapter 14

Figure 14.53: Alerts II

If an alert is set, all users and groups specified in that alert will receive an email once

the threshold has been breached. The email will contain a static image and a link to

the interactive version on Tableau Server.

[693]

Interacting with Tableau Server/ Online

Metrics: As mentioned before, this is a relatively new feature. In order
to

create a

metric, select a mark in any view and click on the Metrics tab. The following screen

opens on the right side of the view:

Figure 14.54: Metrics

[694]

Chapter 14

As you can see, the metric will add a value on top of the line chart, which has a date

field as the x axis. Especially for line plots with time on the x axis, metrics can add

value because the metric will print the change over a given period, here from day to

day. The Metrics feature is also very well integrated with Tableau Mobile and hence

can be used
to
show key performance indicators to anyone, wherever they are. After

clicking Create, the metric view can be accessed from the project it has been saved to

and looks as follows:

Figure 14.55: Metrics II

The longest blue line with a date at the top (right side of the line chart) can be moved

by hovering over the data points. As you move your cursor, the value and change

(percentage and absolute) will automatically adjust. Metrics make use of a specific

data point in your view. Therefore, you might need to adjust your view to show

the metric you desire. However, a big advantage is that you don't need to connect

to different data sources, as the connections that are already set up from different

workbooks will be leveraged. If on that dashboard a metric has been created before,

you will see it appear immediately on the right-hand side of the screen after clicking

Metric.

[695]

Interacting with Tableau Server/ Online

Subscribe: Subscriptions can
be

found on Tableau Server in the upper-right corner:

Figure 14.56: Subscribe

They work in a similar way
to

alerts; people or groups can be subscribed and will

receive an email with an overview of the relevant dashboard at a set time. The

scheduling can
be

predefined by the administrator, for example, every morning at 7

AM.

[696]

Chapter 14

Edit: You know this one already. Edit allows you to enter the web authoring

environment on Tableau Server.

Share: By clicking on Share, a popup opens that allows you to share the URL to the

view with anyone that is known to Tableau Server. That person will receive an email

with the link. Make sure that that user has access
to

the project or else they will fail to

open the view:

Figure 14.57: Share view

[697]

Interacting with Tableau Server/ Online

Download: Tableau Server also offers a download functionality. Depending on the

configuration done by your admin, you can select between different formats for

downloading purposes:

Figure 14.58: Download

[698]

Chapter 14

Comments: Last but not least, you can comment on views—original or edited, both

are possible. To do so, click on the Comments button in the upper-right corner:

Figure 14.59: Comments

You can mention a colleague in the comment with @colleaguesname, and they will

receive an email with your comment in it. It is also possible to add screenshots to

your comment.

[699]

Interacting with Tableau Server/ Online

Summary

We began this chapter by considering the various Tableau file types—in particular,

the .tds, .tdsx, .twb, and .twbx file types. This provided us with a foundation to

understand different ways
to

architect a Tableau Server deployment. We considered

four basic architecture scenarios and the advantages and disadvantages of each.

Next,
we

looked at Tableau Server revision history, where we learned that version

control features can provide a safety net against inadvertently overwriting files. This

was followed by a section on the Tableau Server web authoring environment, which

compared and contrasted that environment with Tableau Desktop. The primary

purpose of this section was to establish a knowledge base for determining which

personnel should have Tableau Desktop licenses and for whom the web authoring

capabilities of Tableau Server should suffice.

Then we discussed user filters and the Performance Recording dashboard. User

filters enable the Tableau author to ensure that users are only able to access data for

which they have clearance. Although the Performance Recording dashboard was

covered in Chapter 13, Improving Performance, in this chapter
we

learned how to access

it with Tableau Server. And finally,
we

looked at some handy features, such as alerts,

subscriptions, commenting, and others.

In the next and final chapter, we will branch out from the Tableau world, and will

consider how to integrate it with R and Python. Knowledge of the programming

integration will help the Tableau author accomplish analytics tasks that are beyond

the capabilities of Tableau itself, while still using Tableau to visualize the results.

[700]

15
Programming Tool Integration

After 14 chapters full of Tableau functionality and exercises, what are
we

still

missing? Well,
we

won't really know until
we

come across an issue. But wouldn't it

be nice to know that even if we encounter a problem that can't be solved
by

Tableau's

native capabilities, that we will still be able to write our own functions? The good

news is, we can! Because we can always fall back on programming integrations. Two

of them to be precise: R and Python.

Imagine the following scenario, you want to add a pricing formula to your Tableau

dashboard. You look up the formula and see that you have all the required variables,

like strike price, stock price, and volatility, but you also need a probability density

function, which you can't find in Tableau.
In

this case, you can fall back to the

programming integration and run the calculation in R
or

Python and send back the

output—great, isn't it? Now imagine a second scenario: You're working on a sentiment

analysis project. You could calculate the sentiment in Python outside of Tableau and

then use the output
as

input for your model, but wouldn't it be great
if
you could have

it all in Tableau? Well, you can by using the programming tool integration.

In this chapter, we will cover the following topics:

• Integrating programming languages

• R installation and integration

• Implementing R functionality

[701]

Programming Tool Integration

• Python installation and integration

• Implementing Python functionality

Integrating programming languages

How does integration empower Tableau? It happens through calculated fields.

Tableau dynamically interfaces with Rserve or TabPy to pass values and receive

results. And Tableau Prep Builder also has R and Python integration as
we

saw in

Chapter 3, Tableau Prep Builder! So let's not waste any time and jump right in.

Basic Tableau-to-R and Tableau-to-Python integration is quite simple: The view

shows data based on a calculated field, with the help of which Tableau pushes data

to Rserve or TabPy respectively and then retrieves the results via a table calculation:

Figure 15.1: Tableau external services

[702]

Chapter 15

Naturally, whether you are viewing a workbook on Tableau

Desktop or via Tableau Server, if you wish to run R and Python

calculations, then Rserve or TabPy must be accessible.

For a proper understanding of the integration, let's also look at the Tableau/R

workflow as an example. Terms used in the following diagram, which you may be

unfamiliar with, will be explained throughout this chapter:

Figure 15.2: Tableau/R workflow

The preceding screenshot can be used likewise for Python. Let's begin with R since it

was the first available integration.

R installation and integration

In order to adequately understand how Tableau and R work together, it's important

to grasp the big picture. To facilitate that understanding, we'll cover high-level

concepts and information in this section before delving into calculated fields and R

scripting details.

Installing R is typically not difficult, but it does involve more than simply double

clicking on an executable. In order to successfully connect Tableau with R, you will

need to make sure that permissions are correctly set and that various components—some required and some just nice to have—are correctly implemented. We will cover

the basics, review a couple of the typical challenges faced during installation, and

provide troubleshooting guidance.

[703]

Programming Tool Integration

Perform the following steps to install R:

1. Download R by visiting http://www.r-project.org/ and choosing a CRAN

mirror. Note that R works best in a Linux or UNIX environment; however,

in order to learn R and to begin working with Tableau/R functionality
to

complete the exercises in this chapter, installing the Windows version is

adequate.

2. Install R
by

double-clicking on the download executable.

3. Open R.

Various issues may arise when installing
R.

For example, you may experience

problems due
to

insufficient permissions for the R working directory. This issue may

first become evident when attempting to install R packages. To rectify the problem,

determine the working directory in R with the getwd() function. Next, either change

the working directory via setwd() or, at the operating-system level—whichever you

feel more comfortable with—set the appropriate read and execute permissions for

the working directory.

Issues can also arise due to firewall and port-configuration problems. By default,

Tableau will connect to Rserve via port 6311. Alternatively, within Tableau, you can

specify a different port when connecting
to R.

The documentation at http://www.r-project.org/ provides

detailed information regarding overcoming a variety of installation

challenges.

Although not required, RStudio Desktop provides a better user interface than the

default RGui that installs with R. RStudio includes a console that features intelligent

code completion (that is, IntelliSense), a workspace browser that provides easy

access to files, packages, and help, a data viewer, and much more all within a single,

unified environment:

[704]

Chapter 15

Figure 15.3: RStudio

The open source edition of RStudio is sufficient for many uses. You can download

the application via www.rstudio.com. Just choose for yourself which one you like

better out of the Desktop and RGui versions.

[705]

Programming Tool Integration

To start R within a Windows environment, navigate
to

Start | Programs | R x64

4.0.3. (Of course, your version of R may differ from mine.) This will open the RGui:

Figure 15.4: RGui

In order to establish a connection with Tableau, you will need to start Rserve.

Technically, Rserve is a separate package; however, by default, it is installed with R:

[706]

Chapter 15

• In order to make sure that the Rserve package is installed, within
R,

enter the

following command:

rownames(installed.packages())

• Several packages should be listed including RServe. If for some reason the

Rserve package did not install with your instance of
R,

you can do so via

install.packages("Rserve").• To start Rserve, enter library(Rserve); Rserve().

The semicolon (;) represents a new line of code in R.

Now that you have successfully installed R and started Rserve, you are ready to

connect Tableau to R. Within Tableau, select Help | Settings and Performance |

Manage Analytics Extension Connection:

Figure 15.5: Analytics Extension

[707]

Programming Tool Integration

The default settings in the following screenshot will work for most local installations:

Figure 15.6: Analytics Extension Connection

While integrating Tableau with R doesn't require any interaction with an R interface,

you will probably want to try out your R code in a GUI, such as RGui or RStudio,

before embedding the code in Tableau. This will allow you to take advantage of

useful accompanying features relevant to the R language, such as help, examples,

and sample datasets tailored
to R.

Note that the calculated field editor in Tableau

simply acts as a pass-through for R code and does not provide any support.

Implementing R functionality

Now that we have successfully connected Tableau with R, let's write some code in

Tableau to invoke R. Within Tableau, open the Calculated Field Editor. Notice the

class of functions beginning with SCRIPT_,
as
shown in the following screenshot:

[708]

Chapter 15

Figure 15.7: SCRIPT functions

The SCRIPT functions are used by Tableau
to

invoke
R.

The function names

communicate the data type of the returned results; SCRIPT_REAL returns float

values, SCRIPT_BOOL returns true or false values, and so forth.

The syntax of a SCRIPT function is represented in the following diagram:

Figure 15.8: R script syntax

The preceding example code calculates the average profit, but we will get to more

examples in the next sections. Let's start by reproducing Tableau functionality using

the R integration and hence prove that R is working properly.

[709]

Programming Tool Integration

Reproducing native Tableau functionality in R

For our first exercise, we will use the AVG, MEDIAN, and STDEV functions in Tableau and

compare the results with the mean, median,
and

sd R functions. This will allow you to

practice the SCRIPT_ functions, begin to understand R syntax, and compare results

generated by Tableau with those generated by R.

Perform the following steps:

1. Navigate to https://public.tableau.com/profile/marleen.meier/
to

locate

and download the workbook associated with this chapter.

2. Navigate to the median | mean |
sd

worksheet.

3. Select the Sample - Superstore data source.

4. Create the following Tableau-centric calculations:

• Tab Avg: WINDOW_AVG(SUM(Sales))

• Tab Median: WINDOW_MEDIAN(SUM(Sales))

• Tab Stdev: WINDOW_STDEV(SUM(Sales))

5. Place the Region dimension on the Rows shelf and Sales on the Text shelf.

6. Double-click on Tab Avg, Tab Median, and Tab Stdev. They will now

appear on the Measures Values shelf:

Figure 15.9: Testing R

[710]

Chapter 15

7. Make sure R is installed, connected, and running as per the instructions in

the R installation and integration section.

8. If you haven't installed the Rserve package yet, type install.

packages("Rserve") into your R interface
to

install the Rserve package and

select a CRAN mirror close to your current location:

Figure 15.10: CRAN mirror

9. Next, type library(Rserve); Rserve() into the R interface. You may see the

following error:

Fatal error: you must specify '--save', '--no-save' or

'--vanilla'

[711]

Programming Tool Integration

In this case, typing Rserve(args = "--no-save"). R requires you to make

a choice of saving, not saving, or a combination (vanilla) after your session

ends (not saving is my preferred option but the other two will work too):

Figure 15.11: Start Rserve

10. Connect R to Tableau as demonstrated in the R installation and integration

section. After you have done so, return to Tableau and click the Test

Connection button to see if it works:

[712]

Chapter 15

Figure 15.12: Testing R connection

11. Click OK to close the windows.

12. Create the following R-centric calculations in Tableau. Note that R functions

(such as mean) are case-sensitive:

• R - mean: SCRIPT_INT("mean(.arg1)", SUM(Sales))

• R - median: SCRIPT_INT("median(.arg1)", SUM(Sales))

• R - sd: SCRIPT_INT("sd(.arg1)", SUM(Sales))

[713]

Programming Tool Integration

13. Place each of the R calculated fields on the Measure Values shelf and

arrange them in a way that the same type of calculations are next to each

other but alternating Tableau and R-centric; for example Tab Avg then R –

mean then Tab Median then R – median and so on. Since SCRIPT functions

are categorized as table calculations (more on that later), be sure that each

instance of the R calculated fields as well as the Tableau calculated fields use

Compute Using set
to

Table (down):

Figure 15.13: Tableau versus R output

14. Observe that, other than a slight rounding difference between Tab Median

and R - median, the results of the Tableau and R functions are identical.

15. To address the rounding difference, adjust the code for R - Median as

follows:

SCRIPT_REAL("median(.arg1)", SUM([Sales]))

Note that INT has now been replaced with REAL, demonstrating that, as the names

suggest, SCRIPT_REAL works with float values and SCRIPT_INT works with integers.

This was our very first exercise with R integration—easy, right? The purpose of

this exercise was mainly to show you that the R calculation works and therefore
we

compared three of the same calculations, each one calculated by Tableau as well as R.

Or in other words, replicating Tableau functionality to prove that the R integration

works as expected. The next exercise will
be

something that
we

can't do with

Tableau's built-in functionality (as of the time of writing). We are going
to

calculate a

regression analysis with more than two variables.

[714]

Chapter 15

Using R for regression calculations

Succinctly stated, regression analysis is a technique for estimating variable

relationships. There are various types of regression analyses, the most popular

of which is linear regression. As demonstrated in the following screenshot, linear

regression estimates a line that best fits the data and is a built-in function in Tableau.

You only need two measures on Rows and Columns as well as a dimension to

partition the points in your view. Then you
go

to Analysis and drag the Trend Line

onto your screen and select Linear:

Figure 15.14: Scatterplot

Notice that this screenshot is from Tableau. You can access it by clicking on the

Scatterplot worksheet in the workbook associated with this chapter. It's a simple

scatterplot with trend lines turned on. Trend lines, in Tableau, default to linear but

also include logarithmic, exponential, and polynomial, which are all examples of

regression analysis. By accessing Worksheet | Export | Data on a visualization

utilizing a trend line, you can generate an Access database with predictions and

residuals for marks on the view. But this is a tedious process and does not give a

robust, dynamic solution for implementing more vigorous uses of linear regression.

Using R provides much more flexibility.

[715]

Programming Tool Integration

Linear regression may use single or multiple variables. Single-variable equations are

great for learning, but multiple-variable equations are typically necessary for real

world application. The following exercise includes multiple-variable equations. Our

goal for this exercise is to determine how closely a linear regression model of Profit

fits COUNT(Quantity), SUM(Sales), and AVG(Discount):

1. Navigate to the Regression worksheet.

2. Select the Superstore data source.

3. Build the basic layout by placing Profit on the Columns shelf, State on the

Rows shelf, and filtering to Top 10 by Sum of Profit
by

placing State on the

Filters shelf as well:

Figure 15.15: Filter top 10

4. Create a calculated field entitled Profit_Expected utilizing the following

code:

SCRIPT_REAL("

x <- lm(.arg1 ~ .arg2 + .arg3 + .arg4)

x$fitted",

SUM(Profit), COUNT(Quantity), SUM(Sales), AVG(Discount)

)

The details of this function will be explained shortly.

[716]

Chapter 15

5. Create a calculated field entitled % Diff that calculates the percent difference

between Sum(Profit) and Profit_Expected:

SUM(Profit)/Profit_Expected - 1

6. Create a calculated field entitled Profit_Expected (residuals) to return the

difference between Sum(Profit) and Profit_Expected in terms of dollars:

SCRIPT_REAL("

x <- lm(.arg1 ~ .arg2 + .arg3 + .arg4)

x$residuals",

SUM(Profit),COUNT(Quantity), SUM(Sales), AVG(Discount))

7. Double-click Profit_Expected.

8. Move the instance of Measure Names from the Rows shelf and place it on

the Colour shelf. Also, take an instance of Measure Names from the Data

pane and place it on the Size shelf.

9. From the menu, select Analysis | Stack Marks | Off.

10. Drag the calculated fields % Diff and Profit_Expected to the Label shelf:

Figure 15.16: Expected profits

[717]

Programming Tool Integration

The preceding visualization shows a comparison of the actual profit, the expected

profit, and the difference between the two. This calculation is especially helpful in

retail markets but also in financial planning for any company.

Now that we've completed the exercise, let's take a moment to consider some of the

code we used in this exercise:

SCRIPT_REAL

"x <- lm(.arg1 ~ .arg2

+.arg3+.arg4); x$residuals"

This Tableau function calls the R engine and returns a

float value.

This is an R expression that houses a variable, a

function, and an argument, and then returns predicted

values.

This is the variable to be populated by the subsequent R

function.

This R function is used to fit linear models. It can be

used to return regression based on variables provided

by the argument.

x <

lm(.arg1 ~ .arg2 + .arg3

+.arg4)

The information within the parentheses is referred to as

an argument and is used to fit the model. Specifically,

the response is to the left of the tilde (~), and the

model is to the right. Thus, this is a multi-variable

linear regression where .arg1 = SUM(Profit), .arg2

= COUNT(Quantity), .arg3 = SUM(Sales), and

.arg4 = AVG(Discount). In English, the argument

could be read as SUM(Profit), and is modeled as the

combined terms of COUNT(Quantity), SUM(Sales),

and AVG(Discount).

The lm function returns many values as part of its

model object, including coefficients, residuals, rank, and

fitted values. x$fitted is referencing the fitted values

generated as a result of passing data to the model.

x$fitted

", SUM(Profit),

These are the parameters used to populate the .arg#

COUNT(Quantity), SUM(Sales)

, AVG(Discount))

variables. Note that the double-quote (") designates

the end of the code passed to R, and the comma (,)

designates the second half of the Tableau function, that

is, the expression.

After having successfully implemented the regression, we will now look into a

different statistical method that is often used to differentiate between subsets within

a dataset, called clustering.

[718]

Chapter 15

Clustering in Tableau using R

Clustering is used
to

select smaller subsets of data with members sharing similar

characteristics from a larger dataset. As an example, consider a marketing

scenario. You have a large customer base to which you plan to send advertising

material; however, cost prohibits you from sending material to every customer.

Performing clustering on the dataset will return groupings of customers with similar

characteristics. You can then survey the results and choose a target group.

Major methods for clustering include hierarchical and k-means. Hierarchical

clustering is more thorough and thus more time-consuming. It generates a series of

models that range from 1, which includes all data points, to n, where each data point

is an individual model. k-means clustering is a quicker method in which the user or

another function defines the number of clusters. For example, a user may choose
to

create four clusters from a dataset of a thousand members.

Clustering capabilities are included with Tableau. You can find this functionality

under the Analytics tab. The clustering implementation in Tableau is based on four

pillars:

• Solid methodology

• Repeatable results

• A quick processing time

• Ease of use

By utilizing the Howard-Harris method and the Calinski-Harabasz index within a

k-means framework, the team succeeded on all accounts. Be sure
to

check out more

details (https://help.tableau.com/current/pro/desktop/en-us/clustering.htm).

There are numerous ways the Tableau development team could have approached

clustering. R, for instance, provides many different clustering packages that use

different approaches. A Tableau author may have good reason to choose one of these

different approaches. For example, clustering results are always identical when using

the native Tableau clustering capabilities. But they do not have to be. By using R for

clustering, the underlying data and the view may remain unchanged, yet clustering

could differ with each refresh because the function will stop at the best result (local

minima) before it has seen the whole dataset. The trade-off between using a so-called

local minima versus a global minima for performance has been proven to be worth

it. But depending on the order of numbers, the local minima can differ each time you

run the function. This could
be

advantageous
to

you, looking for edge cases where

marks may switch between clusters. The following example explores such a case.

[719]

Programming Tool Integration

Our goal in this exercise is
to

create four clusters out of the countries of the world

based on birth rate and infant mortality rate:

1. Navigate to the Cluster worksheet.

2. Select the World Indicators data source (this dataset ships with Tableau and

can be found under Saved Data Sources).

3. Build the initial view by placing Infant Mortality Rate on the Columns shelf,

Birth Rate on the Rows shelf, and Country/Region on the Details shelf.

4. Right-click on each axis and select Logarithmic and deselect Include Zero.

This will spread the data points more uniformly and will help make the

visualization more aesthetically pleasing and easier to read:

Figure 15.17: Clustering

5. Create a calculated field named Cluster with the following code:

SCRIPT_INT("

m <- cbind(.arg1, .arg2);

kmeans(m,4,nstart=5)$cluster",

AVG([Life Expectancy Female]), AVG([Life Expectancy Male]))

[720]

Chapter 15

The details of this code will be explained at the end of this exercise.

6. Drag the Cluster field you just created to the Shape and the Colour shelves.

Note that the Rserve engine throws an error:

Figure 15.18: Error handling

This is because nulls exist in the underlying dataset. For example, the data

does not include an Infant Mortality Rate for Puerto Rico.

7. To rectify the error, drag an instance of Infant Mortality Rate onto the Filters

shelf. Within the Filter dialog box, select the values as shown
to

remove all

values below 0.01:

Figure 15.19: Filter

8. Make sure that you set Cluster
to
Compute Using | Country/Region.

[721]

Programming Tool Integration

9. The resulting view should look similar to the following screenshot:

Figure 15.20: Clustering

10. Press F5 and observe that the clustering changes with each refresh.

Now that we've completed the exercise, let's take a moment to consider some of the

code we saw:

SCRIPT_REAL

This Tableau functions calls the R engine and returns a

float value.

"m <- cbind(.arg1, .arg2);

kmeans(m,4,nstart=1)$cluster"

This is the R expression that houses a variable, a

function, and an argument, and then returns clusters.

m <

This is the variable to be populated by the subsequent

R function.

cbind

This R function combines the following.arg#

variables into columns.

[722]

Chapter 15

The variables within the parentheses are referred

to as an argument. Each variable contains vector

information. Specifically,
(.arg1, .arg2)

.arg1 = AVG([Infant Mortality Rate]) and

.arg2 = AVG([Birth Rate]).

kmeans declares the method of clustering. m contains

kmeans(m,4,nstart=1)$cluster"

the vector created by the cbind argument. The 4

integer declares the number of clusters. nstart

declares the number of random sets.

", AVG([Infant Mortality

Rate]), AVG([Birth Rate]))

These are the parameters used to populate the .arg#

variables. Note that the double-quote (") designates

the end of the code passed to R, and the comma (,)

designates the second half of the Tableau function,

that is, the expression.

What did
we

achieve? Well,
we

were able
to

categorize the countries in our dataset

into four subgroups, based on life expectancy. We show the results of the clustering

on a scatterplot with the two measures, infant mortality and birth rate. This way
we

can indirectly analyze four measures at the same time, which in this case are Infant

Mortality Rate, Birth Rate, Country/Region, and Life Expectancy. The R clustering

is based on a k-means approach, which differs from the Tableau default clustering

and can be adjusted
to

any approach that it is possible
to

execute in R.

Next,
we

are going to check out the world
of

quantiles.

Introducing quantiles

Quantiles are often considered to be synonymous with quartiles. They are not.

Quantiles are the sets that make up an evenly divided population of values. A

quartile is a type of quantile—as is a quintile, a tercile, and a decile, for example. To

understand how quantiles evenly divide a population of values, imagine multiplying

a population by 1/4, 2/4, 3/4, and 4/4, and you get 4 quartiles. In order to get

quintiles, you multiply the population by 1/5, 2/5, 3/5, 4/5, 5/5, and so forth.

[723]

Programming Tool Integration

Tableau allows you to view quantiles via right-clicking on an axis and choosing Add

Reference Line | Distribution | Computation | Quantiles:

Figure 15.21: Terciles

But you can also change the number of tiles to 4,5, or any other number to create

quartiles, quintiles, and so on. The functionality of quantiles thus accessed, however,

is quite limited. Primarily this is because reference lines do not generate measures

that can be placed on shelves. This limits visualization options. Generating quantiles

via R greatly expands those options.

Our goal for this exercise is to create n quantiles through R in order to view customer

distribution by sales. We will further expand the exercise
by

creating parameters

that restrict the number of members in the total dataset to a given percentile range.

Finally,
we

will fine-tune the visualization by adding jittering.

[724]

Chapter 15

Let's have a look at the following steps:

1. Navigate to the Quantiles worksheet.

2. Select the Superstore data source.

3. Change the view type to Shape on the Marks card.

4. Drag Sales to the Rows shelf, Customer Name to the Details shelf, and

Region to the Colour shelf:

Figure 15.22: Quantiles

[725]

Programming Tool Integration

5. Create and display a parameter entitled Number
of

quantiles with the

following settings:

Figure 15.23: Quantile parameter

6. Right-click on the created parameter and select Show Parameter.

7. Create a calculated field entitled Quantiles with the following code:

SCRIPT_REAL("

x <- .arg1;

y <- .arg2[1];

m <- c(1:y)/y;

n <- length(x);

z <- c(1:n); for (i in c(1:n)) z[i] <- 0;

for (j in c(1:y)) for (i in c(1:n)) z[i] <- if (x[i] <=

quantile(x,m)[j] && z[i] == 0) j else z[i];

z;"

, SUM(Sales), [Number of quantiles])

The details of this code will be explained at the end of this exercise.

8. Right-click on the newly created calculated field Quantiles and select

Convert to Discrete.

[726]

Chapter 15

9. Create and display two parameters, Select Percentile Bottom Range and

Select Percentile Top Range. Use
the

following settings for both:

Figure 15.24: Percentile parameter

10. Right-click on both newly created parameters and select Show Parameter.

11. Create a calculated field entitled Percentile with the following code:

RANK_PERCENTILE(SUM([Sales])) < [Select Percentile Top Range]

AND

RANK_PERCENTILE(SUM([Sales])) > [Select Percentile Bottom Range]

12. Drag Quantiles to the Columns shelf and set Compute Using
to

Customer

Name.

13. Drag Percentile
to

the Filters shelf, click OK, then set Compute Using to

Customer Name. Open the filter again and select the value True.

So, let's recapture what we have done so far. We plotted the sales values per region,

then
we

added an R script that creates quantiles out of the sales dot cloud. We also

created a parameter that lets us select how many quantiles we want
to

see in the

view since we learned that quantiles don't always have to be quartiles but could also

be terciles or quintiles, or more.

[727]

Programming Tool Integration

Next up we will see this view in action, and we will add jittering:

14. You may wish
to
add these additional steps

to
further enhance the

visualization. To utilize jittering, create an index calculated field, Index(),

and place that field on the Columns shelf. Set Compute Using to Customer

Name. Be sure to deselect Show Header so Index does not display in the

view.

15. Right-click on each axis and select Logarithmic and deselect Include Zero.

You should see the following on your screen:

Figure 15.25: Quantiles dashboard

In the preceding figure, you can see that we decided to show four quantiles (utilizing

the Number
of

quantiles parameter), which as such are called quartiles. By adding

the Index() function to columns, we were able to divide the quantiles of each of the

four components. One conclusion from this dashboard could be that, in each of the

four quantiles, the West region has the highest sales figures, and the South region has

the lowest. However, the Central and South regions come very close to each other

in the third quantile. Based on this information, we could do some further analysis

on what is going on in those regions specifically and why the Central region's sales

decrease in that quantile compared
to

the other regions.

[728]

Chapter 15

Now that we've completed the exercise, let's take a moment to consider some of the

code we looked at in this exercise:

SCRIPT_REAL

This Tableau function calls the R engine and returns a

float value.

x <- .arg1;

x is the variable on which we'll create quantiles. The

variable, in this case, is [Sales].

y <- .arg2[1];

This variable sets the quantile count. [1] forces a single

number to be set and not a vector.

m <- c(1:y)/y; m distributes probabilities evenly from 1:y.

n <- length(x);

This sets the size of the loops. The loops are discussed

below.

z <- c(1:n); for (i in

c(1:n)) z[i] = 0;

z sets the initial response vector by setting everything

to 0.

for (j in c(1:y)) for (i

in c(1:n)) z[i] = if (x[i] <=quantile(x,m)[j] && z[i] == 0) j else z[i];

For each quantile, we go through the z vector, and for

each entry, we test whether the value of x is less than

the upper limit of that quantile. If x has previously been

set, we leave it. Otherwise, z[i] = that quantile (j).

In this exercise, you saw that by using
R,

a Tableau default functionality such as

clustering can be extended and will give your dashboard users more freedom
to

answer new questions that come
up

while using the dashboard because it will be

possible for them to change, for example, parameters and see the visualization

changing. Now that we've learned about a few possible R use cases, it is time to

discuss something worth your attention,
the

performance challenges that come along

by using programming integrations with Tableau.

Performance challenges

R scripts are table calculations. Like all table calculations, this means that you can

only utilize fields that are on your view. Also, it's important that you set partitioning

and addressing correctly otherwise you may receive unexpected results.

In the Introducing quantiles section, you may have noticed that the greater the number

of quantiles set with the Number of quantiles parameter, the longer it takes the

results to display. This is because R runs the loops in the Quantile calculated field

one iteration for each quantile. For example, if the Number of quantiles parameter is

set to 1, the loop is instigated only once. If
it

is set to 2, it runs twice, and so forth. The

rule of thumb is that R code is executed once for every partition. The more partitions,

the slower the performance. Therefore, when using R code, reduce the number of

partitions whenever possible.

[729]

Programming Tool Integration

This was the R part of this chapter. I hope you enjoyed it and that it has given you

the inspiration to come up with your own ideas to extend the functionality
we

have

shared so far. We will now continue with the other very well-known programming

language: Python. Lucky us, Tableau also has an integration layer with Python.

Python installation and integration

Python is an interpreted programming language and is very well known for its

readability. The first release was in 1991, so quite some time ago (longer than

most people would guess), and it was developed
by

Guido van Rossum. TabPy

is an external service that will allow you to connect Python and Tableau—similarto Rserve. By using TabPy, you will be able
to

parse fields from your Tableau

dashboard to Python, execute a calculation, and send back the result as a new

calculated field to Tableau. Or you can also call functions that you implemented in

Python, again in a calculated field. A more extensive article on TabPy can
be

found

here: https://tableaumagic.com/tableau-and-python-an-introduction.

Installing Python is typically not difficult,
but

it does involve more than simply

double-clicking on an executable. In order to successfully connect Tableau with

Python, you might have to install some libraries and execute comments on the

command line. The following paragraphs will guide you through this process.

The easiest way to install Python is by performing the following steps:

1. Download, for example, Anaconda with the Python 3.7 version:

https://www.anaconda.com. Any other Python interpreter will work too.

In order to integrate Python and Tableau, some additional steps are needed:

2. Open, for example, Jupyter Notebook within Anaconda and write:

!pip install tabpy

Alternatively, execute the following command on the command line or

Terminal (for Mac) in your Python directory:

pip install tabpy

3. Navigate to the directory where TabPy has been installed via the command

line or Terminal (for Mac) and type tabpy into the command line or Terminal

interface:

[730]

Chapter 15

Figure 15.26: Starting TabPy

4. You will most likely see a popup window. Click Allow:

Figure 15.27: Allow a network connection

5.

6.

You are now connected to the tabpy server, which has to remain open while

running Tableau and Python combined.

You might get error messages due
to

version incompatibility similar
to

the

following: module 'tornado.web' has no attribute 'asynchronous'. In my

case, I had a newer version of Tornado installed, therefore I had to uninstall

Tornado and pip and install the proper version (4.2), which works just fine

with TabPy. If you encounter any other issues with TabPy, a quick Google

search will go a long way.

[731]

Programming Tool Integration

7. Open Tableau, select Help | Settings and Performance | Manage Analytics

Extension Connection, and select localhost for Server and enter 9004 for

Port:

Figure 15.28: Analytics Extension Connection

8. As you can see in the previous screenshot, it is possible
to

set up usernames

and passwords and SSL if you have any security concerns or for a bigger

enterprise-wide rollout.

9. Click on Test Connection and you should see the following popup:

Figure 15.29: Testing analytics extension

[732]

Chapter 15

The full documentation on how
to

get TabPy up and running can be found at

https://github.com/tableau/TabPy. If you don't want to or can't install TabPy

on your machine, Tableau also offers a Docker container that will install the latest

version of TabPy. You can find more information here: https://hub.docker.com/r/

emhemh/TabPy/.

Implementing Python functionality

Just like R, TabPy makes use of the script functions in Tableau. In the next sections,

we will practice working with TabPy and will look at multiple use cases. Tableau

calculations using TabPy look very similar to R's. For TabPy, it is important
to
add a

return statement in the calculated field and notice that arguments are noted with an

underscore instead of a dot:

Figure 15.30: Python TabPy syntax

This will be manifested in the next exercises; we will first look into random number

generators.

[733]

Programming Tool Integration

Random and random normal

Many calculations are easily accessible via the calculated fields, others via the

table calculations—and then there are some hidden functions. If you tried
to

find

the function Random for example, you wouldn't. But you can still use the Random()

function as can be seen here:

Figure 15.31: Random

Another option is, using TabPy to get the Random function. We will look at random

as well as random normal with the variables mu and sigma. This will allow us to

draw random numbers from a distribution, a method often used in statistics and

quantitative modeling as well as other areas to simulate, reproduce, or calculate

probabilities. mu and sigma are the mean and standard deviation defining the

distribution.

Generating random numbers

Perform the following steps to create a dot cloud of random variables with a specific

underlying distribution, defined by the mean and standard deviation:

[734]

Chapter 15

1. Create an Excel sheet with one Index column and rows with the numbers

1-1,000. This is needed to have an initial dataset with the number of rows we

want to use for the random number generator:

Figure 15.32: Excel sheet 1-1,000

2. Save the file and connect Tableau to this Excel sheet. You should see one

imported measure called Index (just like the header in your Excel file).

3. Connect Tableau to Python as described in Python installation and integration.

4. Create a calculated field called Random, which should look as follows:

SCRIPT_REAL("

from numpy import random as rd

return rd.random(_arg1[0]).tolist()",

SIZE()

)

[735]

Programming Tool Integration

5. Drag Index
to
Rows and Random

to
Columns.

6. Disable Aggregate Measures on the Analysis tab.

7. Change the Marks type to Density:

Figure 15.33: Random visualized

In the preceding screenshot, you can see the 1,000 random data points. Let's consider

some of the code used in this exercise that allowed us to generate this visualization:

SCRIPT_REAL

"from numpy import

random as rd

This Tableau function calls the Python engine and returns a

float value.

In
this part of the code, we need the Python library numpy, and

from that library, we need the module random, which we will

load with the shorter name rd.

This command is simply needed to return a value.return

[736]

Chapter 15

rd.random(_arg1[0]).

tolist()"

In
this step, we call the module rd that we imported before.

From the rd module, we retrieve the random function. The

_arg1[0] is needed to activate the function given a certain

value. And lastly, we put all the retrieved values in a list of

values by adding .tolist().

This is the value that will be replacing _arg1 and _arg1 is

required by the random function. We use SIZE() to fulfill the

requirement because it will return the number of rows in the

partition and is sufficient to get a random number back from

the function.

SIZE()

We were able to get exactly 1,000 numbers because our initial Excel sheet had 1,000

rows. By using calculated fields, you can add columns to a data frame but
no

rows.

Therefore,
we

need a data source that will provide
us

with the data schema. In the

next section,
we

will learn how
to

specify a random number drawn from a normal

distribution.

Random normal

Now, let's reproduce a random variable with a normal distribution. This technique

is often used in statistical modeling to calculate probabilities. The random normal

values can be used instead of or in addition to observations you already collected.

Once
we

know how
to

use a normal distribution, you can extend this knowledge and

create other distributions in Tableau as well:

1. Reuse the workbook from the previous exercise.

2. Create a Random Normal calculated field:

SCRIPT_REAL("

from numpy import random as rd

mu, sigma = 0, 1

return (rd.normal(mu, sigma, _arg1[0])).tolist()

",

SIZE()

)

3. Place Random Normal on Columns and Index on Rows.

4. Disable Aggregate Measures on the Analysis tab.

[737]

Programming Tool Integration

5. Select a Marks type of Density. You can now see a plot with the 1,000 data

points normally distributed:

Figure 15.34: Normal distribution visualized

To give your users more flexibility, you can also add parameters to your view

that interact with the Python integration. For example, create the following two

parameters:

[738]

Chapter 15

Figure 15.35: Parameters mu and sigma

[739]

Programming Tool Integration

Then change the Random Normal calculated field as shown here:

SCRIPT_REAL("

from numpy import random as rd

mu, sigma = _arg2, _arg3

return (rd.normal(mu, sigma, _arg1[0])).tolist()

",

SIZE(), [mu], [sigma]

)

Add the parameter control
to

your view and your users can decide which variables

they want to pass
to

Python:

Figure 15.36: Final normal distribution worksheet

[740]

Chapter 15

Compared
to

our prior visualization with the normal distribution, you can see in the

preceding screenshot that by changing the
mu

parameter to 10, we change the mean
to

10 and thus can move the whole dot cloud in any direction. With the random number

being available in Tableau, you can, for example, visualize a Monte Carlo simulation.

More information on how to calculate a Monte Carlo simulation

can be found here: https://jacksontwo.com/exploring

python-tableau.

Before moving on, let's again consider some of the key lines of code that were used in

this exercise:

SCRIPT_REAL

This Tableau function calls the Python engine and returns a

float value.

"from numpy import

random as rd

In this part of the code, we need the Python library numpy,

and from that library, we need the module random, which we

will load with the shorter name rd.

mu, sigma = _arg2,_arg3

This part defines that we will refer to mu and sigma with

_arg2 and _arg3.

return This command is simply needed to return a value.

rd.normal(mu, sigma,

_arg1[0])).tolist()

In this step, we call the module rd that we imported before.

From the rd module, we retrieve the random function. The

_arg1[0] is needed to activate the function given a certain

value. Optional values are mu and sigma. This time, we will

use those two as well. And lastly, we put all the retrieved

values in a list of values by adding .tolist().

This is the value that will be replacing _arg1, _arg2, and _

arg3. Just like before, we use SIZE() to activate the function.

The optional values mu and sigma will be pointing to the

parameter we created before.

SIZE(), [mu], [sigma]

After finishing the first two exercises with TabPy,
we

learned how
we

can use

a random number in Tableau
by

using the TabPy connector. Next, we changed

the random number to a random number drawn from a normal distribution and

added parameters to the dashboard such that the user can change mu and sigma of

the normal distribution. Of course, you can change the function in TabPy to other

distributions as well.

[741]

Programming Tool Integration

The next topic is more advanced. We will use TabPy to execute a sentiment analysis

on the words that were used in Lord of the Rings.

Calculating sentiment analysis

Alongside machine learning and artificial intelligence, another term is being used

more and more: Natural Language Processing (NLP). This is the process of machines

understanding words and their meaning. Sentiment analysis falls into this category;

the technique has different flavors but one of them is to measure polarity, that is,

whether the speaker has a positive or negative opinion. Use cases are, for example,

datasets of reviews, tweets, comments, plots, lyrics, and so on. Let's have a look!

This exercise is based on the idea of Brit Cava, who used the Makeover Monday data

from the top 100 song lyrics in order to try out the Tableau-Python integration. You

can find the blog post here: https://www.tableau.com/about/blog/2016/12/using

python-sentiment-analysis-tableau-63606. Let's reproduce it with another dataset:

1. Navigate to the Sentiment tab in the workbook associated with the chapter.

2. Connect to the Lord of the Rings data source.

3. Connect Tableau to Python.

4. Create a Sentiment Score calculated field. The formatting, for example,

indented text, is important:

SCRIPT_REAL("

from nltk.sentiment import SentimentIntensityAnalyzer

text = _arg1

scores = []

sid = SentimentIntensityAnalyzer()

for word in text:

ss = sid.polarity_scores(word)scores.append(ss['compound'])

return scores "

,ATTR([Dialog]))

5. Create a Color Coding calculated field:

IIF ([Sentiment Scores] >= 0, 'Positivity', 'Negativity')

6. Place Character on the Filter shelf
and

filter the top 20 characters by Count of

Dialog:

[742]

Chapter 15

Figure 15.37: Filter character

7. Put Character on Rows and Dialog on the Detail shelf. Change the Marks

type to Bar.

8. Add Sentiment Score to Columns and Color Coding to the Colour shelf.

Lastly, drag an average line from the analytics pane on the view (per cell):

Figure 15.38: Sentiment score

[743]

Programming Tool Integration

This will result in the following visualization:

Figure 15.39: Worksheet

So far,
we

have loaded the dataset and created a Python calculation that

uses a pre-trained sentiment analyzer that tells us if a person's dialog in

Lord of the Rings is negative or positive. In the preceding figure, we brought

everything together and you can see how much of the total dialog of any

given character from those movies is positive and how much is negative. We

also added an average to clearly indicate the overall sentiment for each role.

9. Rename the worksheet to Sentiment Analysis per Character by right

clicking on the worksheet tab and selecting Rename.

10. Make the Character filter applicable to all sheets that use this data source:

[744]

Chapter 15

Figure 15.40: Apply filter to worksheets

11. Create a second sheet by right-clicking on the worksheet tab and selecting

Duplicate.

12. Name the new worksheet Sentiment Analysis per Movie and replace

Character with Movie on the Rows shelf:

Figure 15.41: Sentiment analysis per movie

[745]

Programming Tool Integration

13. Create a dashboard with the Movie worksheet at the top and the Character

worksheet at the bottom, then activate the Use as Filter function of the two

sheets:

Figure 15.42: Enable filter

14. Et voilà, you created a Sentiment Analysis of the three Lord of the Rings

movies based on their tendency to use a greater number of positive or

negative words:

Figure 15.43: Final dashboard

[746]

Chapter 15

In this exercise, we were able to show that Tableau can analyze text data for its

sentiment, something
we

have not seen before. In order to do so, we needed to

connect Tableau with Python, which is possible by using the external service TabPy.

Python can make use of libraries such as nltk.sentiment—which we used in this

case. A thorough description of this package can be found here: https://www.nltk.

org/api/nltk.sentiment.html. There are many other libraries for sentiment analysis

but nltk is used a lot for demonstration purposes and learning. Feel free to try other

libraries as well!

Let's demystify some of the new code instances we included in this exercise:

SCRIPT_REAL

This Tableau function calls the Python engine and

returns a float value.

from nltk.sentiment import

SentimentIntensityAnalyzer

In
this part of the code,

we
need the Python library

nltk, and from that library, we need the module

sentiment from which we will load the function

SentimentIntensityAnalyzer.

text = _arg1

scores = [] This part defines that our_arg1 will be called

sid =

text, scores will be an empty list (and

SentimentIntensityAnalyzer()

filled later in the code), sid will refer to the

SentimentIntensityAnalyzer function and lastly,

ss will be the reference to the scores per

ss = sid.polarity_

scores(word) word.

scores.append(ss['compound'])

the polarity scores.

In
this step, we will fill the empty scores table with

return scores

Here,
we

are returning the now filled scores table as

output
to

Tableau.

ATTR([Dialog])

Our _arg1 is specified as the field Dialog from the

Tableau workbook.

We have seen embedded Python code now; you create a calculated field and use

fields from your dataset as input. But what if you wanted to use a large model with

many lines of code and many different variables, or upfront training of your model?

Would this exceed TabPy's capabilities? No! Because next to embedded code, we are

also able to write Python scripts outside of Tableau.

[747]

Programming Tool Integration

Deploying models with TabPy

At times, your script will just be too long to be used in a calculated field, or you'll

need upfront training on a different dataset or an extended dataset rather than the

one you have in Tableau. In this case,
we

can use TabPy in a slightly different way.

You can write a model outside of Tableau—in Python and deploy it to Tableau such

that you can call it from within the desktop.

In the upcoming example, we will build a recommender system that predicts the

likelihood of a Pima woman having diabetes when inputting 7 parameters (age,

BMI, pregnancies, blood pressure, glucose, insulin, and skin thickness). The dataset

is from a 1988 study by J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, and

R.S. Johannes, accessible via the following link: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2245318/.

We will begin with the code in the Jupyter notebook. Please follow along with the

next steps:

1. We start the code
by

importing the client, which we need
to
make a Python

Tableau connection:

from tabpy.tabpy_tools.client import Client

client = Client('http://localhost:9004/')

2. Then we import all the libraries we will need, and the data, and make sure to

replace the dataset name with the full path of the file location (for example,

H:/Documents/Diabetes.csv):

import numpy as np

import pandas as pd

from sklearn import ensemble

from sklearn.model_selection import train_test_split

df = pd.read_csv("Diabetes.csv", sep = ',')

df = df[['Pregnancies', 'Glucose', 'BloodPressure',

'SkinThickness', 'Insulin', 'BMI', 'Age', 'Outcome']]

3. Now we split the dataset in four; two test datasets that will help us check

how accurate our model is, as well as an X_train dataset and a Y_train

dataset:

X_train, X_test, y_train, y_test = train_test_split(df.

drop(['Outcome'], axis = 'columns'),df['Outcome'], test_size =

0.2)

[748]

Chapter 15

If you are interested in more detail and the math behind

this code, please check: https://scikit-learn.org/

stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html.

4. Next,
we

will load the GradientBoosting model from sklearn and fit our

data, then we can immediately visualize the score, which can be interpreted

as the percentage of the total that
our

model predicted the correct value for:

gb = ensemble.GradientBoostingClassifier()

gb.fit(X_train, y_train)

gbscore = gb.score(X_test, y_test)

print('gradient boost: ' + str(round(gbscore*100,2)))

5. And this is the full code in Jupyter:

Figure 15.44: Python script

To conclude this first phase, our model predicted the right outcome in

79.87% of cases, either having diabetes or not having diabetes. This is a

pretty good result. In order to further improve it, we could add more data

(in terms of rows), extend our input variables (in terms of columns), or

create new features like ratios between variables (hidden information could

be emphasized this way). But for now, we can continue working with the

model, because eventually,
we

want to predict a likelihood as a percentage of

someone having diabetes. Let's switch over to Tableau:

[749]

Programming Tool Integration

6. We won't need a dataset for this exercise because all of our data lives in the

Jupyter notebook. In Tableau, you can just select one randomly, as
we

won't

use it. In a new Tableau worksheet called Diabetes, create the following

seven parameters:

Figure 15.45: Age parameter

Figure 15.46: BloodPressure parameter

[750]

Chapter 15

Figure 15.47: BMI parameter

Figure 15.48: Insulin parameter

[751]

Programming Tool Integration

Figure 15.49: SkinThickness parameter

Figure 15.50: Glucose parameter

[752]

Chapter 15

Figure 15.51: Pregnancies parameter

7. After you have created all seven parameters, select all of them and click

Show Parameter:

Figure 15.52: Show Parameter

[753]

Programming Tool Integration

8. Please
go

back
to

Jupyter now and execute the two last missing pieces of

code that will create a function to call our model:

def diabetes_predictor(_arg1, _arg2, _arg3, _arg4, _arg5,_arg6,

_arg7):

import pandas as pd

row = {'Pregnancies': _arg1, 'Glucose': _arg2, 'BloodPressure':

_arg3, 'SkinThickness': _arg4, 'Insulin': _arg5, 'BMI':

_arg6, 'Age': _arg7

}

test_data = pd.DataFrame(data = row,index=[0])

predprob_diabetes = gb.predict_proba(test_data)

return [probability[1] for probability in predprob_diabetes]

9. And lastly, the line that will deploy the function to TabPy:

client.deploy('diabetes_predictor', diabetes_predictor,'Predicts

the chances of a Pima female having diabetes', override = True)

10. This looks as follows in Jupyter:

Figure 15.53: Deploying the function

11. In order to check if your model has been deployed, type https://

localhost:9004/endpoints in your browser. This will list all the models that

have been deployed to TabPy on your machine:

{"diabetes_predictor":{"description": "Predicts the chances of

a Pima female having diabetes", "type": "model", "version": 2,

"dependencies:[], "target": null, "creation_time": 1608445088,

"last_modified_time": 1608445680, "schema": null, "docstring

found in query function –"}}

12. Go back to Tableau and double-check if the connection to TabPy is still

active.

[754]

Chapter 15

13. Create a calculated field called Diabetes predictor like so:

SCRIPT_REAL("

return tabpy.query('diabetes_predictor',_arg1,_arg2,_arg3,_

arg4,_arg5,_arg6,

_arg7)['response']",

[Pregnancies], [Glucose], [BloodPressure], [SkinThickness],

[Insulin],

[BMI],[Age]

)

You can see here that since we did all the coding in Python, we only tell

Tableau to return a TabPy query called diabetes_predictor, then add all the

n references to variables that are required for the function, and lastly add

['response'] at the end.

14. Now place the field Diabetes predictor on the Text shelf and observe the

outcome:

Figure 15.54: Interactive TabPy Diabetes worksheet

By sliding the parameters to the left and right, you will see that the likelihood of

diabetes changes. The calculated field sends the data of the parameters via TabPy to

Python where your data will be fitted to the model. And the result will be sent back,

and you can see it. Of course, you can build a whole dashboard around it. Examples

can be found on the Tableau website: https://www.tableau.com/about/blog/2017/1/

building-advanced-analytics-applications-tabpy-64916.

[755]

Programming Tool Integration

If you want to learn more about the Python language itself, a good source of

information is, for example, https://www.w3schools.com/python/default.asp. The

web page will, step by step, guide you through the Python syntax. But Tableau

makes it even easier because a set of functions have already been written for you.

Predeployed TabPy functions

Not everyone likes to program outside of Tableau and that's why Tableau came up

with a set of widely used, predeployed functions you can use out of the box. You will

still need to execute one line of code, once! But that is all you need to do in Python

itself. The available functions are Anova, T-test, Sentiment Analysis, and PCA but

Tableau has mentioned on multiple occasions that more functions might be coming

soon. You can find the documentation here: https://tableau.github.io/TabPy/

docs/tabpy-tools.html.

But let's walk through the steps:

1. In your Jupyter notebook, execute tabpy-deploy-models and see that the four

functions will be installed:

Figure 15.55: Deploying TabPy default models

2. You can double-check this by typing http://localhost:9004/endpoints in

your browser, where you should see all deployed models.

And that's it, calling the function in a calculated field in Tableau is now as easy as the

following (using ttest as an example function being called):

tabpy.query('ttest', _arg1, _arg2)['response']

[756]

Chapter 15

From Python, you can connect directly to, for example:

• DataRobot (https://www.tableau.com/solutions/datarobot)

• Dataiku (https://www.dataiku.com/partners/tableau/)

• MATLAB (https://www.mathworks.com/products/reference-architectures/

tableau.html)

These are all paid third-party tools that help make your data analysis easier. And

if you can make a connection from Python to another external tool, you can also

leverage that capability back to Tableau via TabPy. If you are interested in this type

of connection or if you want to refresh the topic of deploying functions, you can

check out this video: https://youtu.be/0BN_Y2CxdYY, in which Nathan Mannheimer,

a product manager for advanced analytics at Tableau, explains everything
we

have

discussed as well.

What are your personal goals with a programming integration? If you have a great

idea, feel free to share it with the Tableau community.

Summary

This chapter just scratched the surface regarding the options of working with R and

Python. After finishing this chapter, you should now be able to connect to Python

and R from Tableau and recognize and write the basic syntax for both programming

languages in Tableau. Most importantly, you are now skilled to leverage the power

of R and Python functions in Tableau from a simple mean calculation,
to

regressions,

all the way to implementing your own machine learning model. Although we

covered installation, integration, and workflow, as well as some of the more popular

functions and use cases, there is much more
to

explore. In fact, the possibilities of

Tableau's programming integration remain largely uncharted territory in the BI

community. The intrepid in data visualization are pushing the envelope, but there's

much to be done. For those readers looking to enhance their career options, expertise

in both packages could offer great advantages!

Now we've reached the end of the book, consider our journey, which started with

loading data into Tableau, creating our first visualizations and executing our first

functions. Wemoved on by familiarizing ourselves with level of detail and table

calculations, learning about Tableau Prep Builder, Tableau Server, and general

visualization best practices before our final round, in which we learned about advanced

analytics and leveraging the power of Tableau programming tool integration.

[757]

Programming Tool Integration

This leaves
me

with just one question: What will
be

your next Tableau project? Feel free

to share
it
on Tableau Public and don't forget to add the tag #MasteringTableau. I want

to congratulate you all for participating and engaging in this learning process! Whether

you have more questions, remarks or feedback, feel free to reach out to me or to the

Tableau community. I wish you a lot of success with your personal Tableau career.

Happy Tableau'ing!

Share your experience

Thank you for taking the time to read this book.
If
you enjoyed this book, help

others to find it. Leave a review at https://www.amazon.com/dp/1800561644.

[758]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,

as well as industry leading tools
to

help you plan your personal development and

advance your career. For more information, please visit our website.

Why subscribe?

• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals

• Learn better with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.Packt.com, you can also read a collection of free technical articles, sign
up

for

a range of free newsletters, and receive exclusive discounts and offers on Packt books

and eBooks.

[759]

Another Book

You May Enjoy

If you enjoyed this book, you may be interested in this another book by Packt:

Learning Tableau 2020 - Fourth edition

Joshua N. Milligan

ISBN: 978-1-80020-036-4

• Develop stunning visualizations to explain complex data with clarity

• Explore exciting new Data Model capabilities

• Connect to various data sources to bring all your data together

• Leverage Tableau Prep Builder's amazing capabilities for data cleaning

and structuring

• Create and use calculations
to

solve problems and enrich the analytics

• Master advanced topics such as sets, LOD calculations, and much more

• Enable smart decisions with data clustering, distribution, and forecasting

• Share your data stories to build a culture of trust and action

[761]

Index

A

Actions

filter action 525-530

highlight action 530-532

navigation action 534-536

Parameter Action 536-538

set action 539-543

URL action 532, 533

using 525

AdventureWorks 270

aggregate-level calculations 36-38

artifacts 451

axis distributions

adding 561-570

B

Chart line 487

chess game

analyzing, in Tableau 371

visualizing 385-389

collapsible menu

creating 513-525

color rules 489-491

complex dashboard

simplifying 496, 497

complex join 136

context filters 635, 636

continuous 39-42

Core-Based Statistical Areas (CBSA) 413

correlation matrix

adding 570-574

Cross Industry Standard Process for Data

Mining (CRISP-DM) 58

phases 59-61

crosstab

domain completion, activating 246-250

cubes

data, blending for aliasing 274-277

data, blending for continuous

months 270-274

data, blending for grouping 274-277

data, blending for hierarchies 274-277

working with 270

Customer Relationship Management

(CRM) 401

custom maps

using, with Web Map Service (WMS) 438-441

custom polygons

creating 359-414

bands

using 488, 489

big data 277

blending 150

blog 483

BMP 451

bullet graphs 330

issues, solutions 333-336

using 330-333

C

calculated joins

reference link 145

calculations 639

code values, prioritizing 640

[763]

D

dashboard

best practices, for user experience 525

creating 2, 14-18

documentation, maximizing on 499, 500

interactivity, adding 18-21

dashboard, best practices for user experience

Actions 525

Dashboard Button, exporting 543, 544

Item hierarchy 544, 545

Used In feature 545

Dashboard Button

exporting 543, 544

dashboard design 502

collapsible menu, creating 513-525

sheet swapping, utilizing 507-512

dashboard layout 503

golden ratio layout 503-505

quad layout 506

small multiple layout 506, 507

dashboard, performance

expectations, setting 641

overcrowd, avoiding 641

size, fixing 641

data

blending 150

cleaning 71-76

connecting to 84-86

densification 245

dumps 81

exporting, to mobile phone 43, 44

exporting, to other devices 43

extracting 77-81

extrapolating 66-70

mining 57

null values, establishing 62-66

preparation, focusing 61

surveying 61

Tableau, connecting to 22

database administrator (DBA) 618

Dataiku

reference link 756

DataRobot

reference link 756

dataset

generating, with grid 384, 385

data source filters 634

data sources

columns, defining as NOT NULL 619

connecting to 617, 618

foreign keys, defining 619

indexing 620

primary keys, defining 619

publishing, to Tableau Server 644-646

working with 618, 619

data structures 175

adjusting 176-183

data, Tableau Prep Builder

aggregating 107-111

joins, adding 104-106

pivoting 111-115

scripting 116-120

unions, adding 98-103

default behavior, Tableau

nested sorting 9-11

sorting 9-11

dense information

presenting 497

Department of Health and Human Services

(HSS) 71

dimension 35, 36

dimension and measure filters 636

directional table calculations 188-190

discrete 39-42

distance line

adding 599-602

distance measures

used, for extending geo-spatial

analytics 592-595

documentation

maximizing, on dashboard 499, 500

domain completion 245

activating, in crosstab 246-250

deploying 246

need for 251

nulls, labeling 252, 253

through, view types 250, 251

unwanted marks, removing 253-258

[764]

domain padding 245, 260

deploying 260-263

issues 266

issues, example 266-269

need for 263

using, to fill date gaps 263-265

drop lines 487

dual axes

using 422-426

dynamic mapping 406

functions, application

addressing, with one dimension 212, 213

addressing, with three dimensions 224-238

addressing, with two dimensions 214-224

partitioning, with one dimension 212, 213

partitioning, with three dimensions 224-238

partitioning, with two dimensions 214-224

playground, building 210, 211

functions 187, 188

application 208-210

GE

Einstein Discovery 401, 402

Einstein Discovery, Salesforce license

reference link 402

Excel's row limitation

addressing 278-280

EXCLUDE LOD 286, 299-304

workbook, setting up 287-294

extract filters 634

extracts 615-617

aggregation 625-629

constructing 623-625

optimizing 629-632

working with 621-623

Extract, Transform, and Load (ETL) 617

geo-spatial analytics

extending, with distance measures 592-595

geo-spatial analytics, Chicago traffic

violations 579, 580

corresponding heatmap worksheet,

adding 589, 590

dashboard, finalizing 591

data, preparing 580-583

map of intersections, building 583-588

golden ratio layout 503-505

Google BigQuery

reference link 282

visualization, building with 281-283

grab 450

greenshot 450

URL 450F

grid

creating 372-383

using, to generate dataset 384, 385

grid lines 487

H

file

connecting to 23, 24

filter action 525-530

filters

using 633

FIRST function 198, 199

FIXED LOD 286, 294-296

table-scoped expressions 297

workbook, setting up 287-294

fonts

using 486, 487

formatting rules 486

bands, using 488, 489

fonts, using 486, 487

lines, using 487

heatmaps 420, 421

hexagon map (hexmap) 461

highlight action 530-532

Hyper

about 50

reference link 649

Tableau data-handling engine 50-52

takeaways 57

Hyper engine

reference link 51

[765]

MI

INCLUDE LOD 309-316

workbook, setting up 309, 310

INDEX function 200, 201

informative tooltip

creating 500

interactive bookshelf

creating, with polygons 363-371

interpreting trend lines

reference link 554

Item hierarchy 544, 545

J

join calculations 144

join culling 137-142

joins 136

JPEG 451

L

Mapbox

exploring 441-444

URL 441

map layers

adding 426-437

maps

swapping 444-448

massively parallel processing

(MPP) 280, 281, 653

materialized view 144

MATLAB

reference link 756

measure 35, 36

Measure Names 28-30

shortcuts 31-34

measure points

adding, to map 595-598

Measure Values 28-30

shortcuts 31-34

messy data

cleaning 71

metadata 26

Metropolitan Statistical Areas (MSA) 413

Microsoft Analysis Services 270

Microsoft Office OneNote 450

mobile phone

data, exporting to 43, 44

Moore's Law

reference link 50

Multidimensional Expressions (MDX) 270

LAST function 198, 199

Level of Detail (LOD) calculations 286, 298,

340, 406, 640

EXCLUDE, first playgrounds 286

EXCLUDE, using 323-327

FIXED, first playgrounds 286

FIXED, using 317-321

INCLUDE, second playground 309

INCLUDE, using 321-323

practical applications, building with 317

Lineage

reference link 681

lines

Chart line 487

drop lines 487

grid lines 487

reference lines 487

trend line 487

types 487

using 487

zero lines 487

LiveWeb

reference link 465

LOOKUP function 191, 192

N

native Tableau functionality

reproducing, in R 710-714

Natural Language Processing (NLP) 684, 742

navigation actions 534-536

nested sorting 9-11

nodes 280

noise 451

non-directional table calculations 188-190

noodle 134

NOT NULL

columns, defining as 619

Null Island

square, drawing around 359-363

[766]

O practical applications, building with LOD

calculations

LOD calculation EXCLUDE, using 323-327

LOD calculation FIXED, using 317-321

LOD calculation INCLUDE, using 321-323

Prep Builder project

reference link 665

Presentation Zen

URL 482

PREVIOUS_VALUE function 193

Prezi 451

URL 451

primary and foreign keys

defining 619

process models

knowledge discovery 57

survey 58

programming languages

integrating 702, 703

Python

installing 730-733

integrating 730-733

Python functionality

implementing 733

models, deploying with TabPy 748-755

Random function 734

random normal 734

sentiment analysis, calculating 742-747

TabPy functions, predeployed 756, 757

Q

quad layout 506

quantiles 723-729

R

R

OData connector

using 242-244

Online Analytical Processing (OLAP) 51

Online Beyond Relational Processing

(OBRP) 51

Online Transaction Processing (OLTP) 51

operations

order 151-160

P

Parameter Action 536-538

Pareto charts 346-359

using 346-352

partition 190

performance-recording dashboard 606-674

physical and logical layers, Tableau data

model

reference link 132

pie and donut charts 337

issues, addressing while adding additional

functionality 340-346

on maps 337-340

pie charts

using, sparingly 495

polygons

creating, on background image 389-396

for Texas 415-419

used, for creating interactive

bookshelf 363-371

using, reference link 363

PowerPoint 451, 452

animation, using in Tableau to create

animation in 480

dashboard, creating for print 460-462

need for 482

pros and cons 481

template, creating 453-460

PowerPoint presentation

dashboards 481, 482

resources 482

semi-automating 462-464

Tableau, embedding in 464-471

download link 704

installing 703-708

integrating 703-708

native Tableau functionality,

reproducing 710-714

performance challenges 729, 730

used, for clustering in Tableau 719-723

using, for regression calculations 715-718

[767]

random normal 737-741

random numbers

generating 734-737

RANK function 202-204

raster images 450

reference lines 487

regexpal

URL 80

regression calculations

R, using for 715-718

Relational Database Management System

(RDBMS) 277

relationships 132-135

revision history 666-668

R functionality

implementing 708, 709

R functions

mean 713

median 713

sd 713

row-level calculations 36-39

Running function 194, 195

Run Update feature 614

S

snowflaking 142, 143

sorting 9-11

sparse data 245

spatial data

references 603

spatial files, Tableau

reference link 146

spatial joins 145

SQL tutorial, W3School

reference link 136

square

drawing, around Null Island 359-363

star schema 136

story

telling 498

story points 481, 482

SVG file

creating, in Tableau 371

opening in Inkscape, URL 383

T

saved data sources

connecting to 26-28

scaffolding 164

using 164-175

scattergraph

plotting 548-560

secondary dimensions

adding 160-163

sentiment analysis

calculating 742-747

set action 539-543

shapes 493-495

sheet swapping

utilizing 507-512

Show Me 12, 13

Show me More

using 397-401

simple join 136

SIZE function 204-208

small multiple layout 506, 507

Snipping Tool 450

Tableau 277

animating 472-476

animation, using to create animation in

PowerPoint 480

animation, using to export many

images 477-480

best images, obtaining out of 450

chess game, analyzing 371

connecting, to data 22

connecting, to file 23, 24

connecting, to saved data sources 26-28

connecting, to Tableau Server 24-26

Data Extract 650

data file 647

data source 647

embedding, in PowerPoint

presentation 464-471

file types 647

help article, reference link 665

mapping, extending with technology 438

Map Source 650

native capabilities, exporting 450, 451

order of operations 305-308

packaged data source 648

packaged workbook 649

[768]

Preferences Source 650

providing, default behavior 6-9

R, used for clustering in 719-723

SVG file, creating 371

Tableau beta program

reference link 644

Tableau Bookmark 650

Tableau, concepts
34

aggregate-level calculations 36-38

continuous 39-42

dimension 35, 36

discrete 39-42

measure 35, 36

row-level calculations 36-39

table-level calculations 36-39

Tableau data-handling engine 50-52

field attribution, modifying 52-55

table calculations 55-57

Tableau Desktop

versus web authoring 665

Tableau Extensions API 396

Einstein Discovery 401, 402

Show
me

More, using 397-401

Tableau Mobile 45, 46

Tableau, on underpowered machines

auto updates, configuring 612, 613

extracts 615-617

hardware techniques 610-612

on-the-fly techniques 610-612

Run Update feature 614

Tableau Prep Builder

data, cleaning 94-97

data, exporting 127-129

data, prepping 93

GUI 86-90

obtaining 91, 93

options 121

Tableau Prep Builder, options

incremental refresh 123-126

insert flow 121-123

Tableau Prep Conductor 127

Tableau Prep Conductor 127

Tableau Public 483

URL 2

Tableau Query Language (TQL) 52

Tableau Server

connecting to 24-26

data source, publishing to 644-646

features 675

features on view level 688-699

features on worksheet level 676-687

settings 675

workbooks, maintaining 666

Tableau Server architecture 650, 651

Tableau Server architecture, approaches

to adopt

TDS-centric 655

TDSX-centric 656

TWBX-centric 654

Tableau Server architecture, approaches to

avoid 651

TWB-centric 652

TWBX-centric 653

Tableau Server web authoring

environment 660-664

Tableau's mapping capabilities

extending, without leaving Tableau 406-412

Tableau story points

need for 482

pros and cons 481

Tableau workbook 648, 649

table calculation filters 638

table calculation function

exploring 191

FIRST function 198, 199

INDEX function 200, 201

LAST function 198, 199

LOOKUP function 191, 192

PREVIOUS_VALUE function 193

RANK function 202-204

Running functions 194, 195

SIZE function 204-208

TOTAL function 191, 192

WINDOW function 196-198

table-level calculations 36-39

TabPy

models, deploying with 748-755

TabPy functions

predeployed 756, 757

reference link 756

[769]

WTDS-centric approach 655

advantages 655

disadvantage 656

TDSX-centric approach 656

advantages 656, 657

disadvantage 657

Texas

polygons for 415-419

tile grid map 345

TOTAL function 191, 192

trend line 487

TWB-centric approach 652

advantages 652

disadvantages 653

TWBX-centric approach 653

advantages 654

disadvantages 654

web authoring 658

versus Tableau Desktop 665

workbook, editing 658-660

Web Map Service (WMS) 438

custom maps, using with 438-441

Web Viewer app

reference link 465

WINDOW function 196-198

workbooks 2

maintaining, on Tableau Server 666

worksheets

creating 2,3

world indices correlations

axis distributions, adding 561-570

correlation matrix, adding 570-574

dashboard, finalizing 574-579

scattergraph, plotting 548-560

visualizing 548

U

Z

unions 146-149

creating 146-148

unpivot 175

URL actions 532, 533

Used In feature 545

user filters 668-673

V

zero lines 487

Visual Basic for Applications (VBA) 470

visualization

building, with Google BigQuery 281-283

creating 3-6

visualization design

principles 486

visualizations 337

improving 330

keeping, simple 501

visualization types

rules 492-495

VizQL's table calculations

using 55-57

[770]

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Up to Speed – A Review of the Basics
	Chapter 2: All About Data – Getting Your Data Ready
	Chapter 3: Tableau Prep Builder
	Chapter 4: All About Data – Joins, Blends, and Data Structures
	Chapter 5: Table Calculations
	Chapter 6: All About Data – Data Densification, Cubes, and Big Data
	Chapter 7: Level of Detail Calculations
	Chapter 8: Beyond the Basic Chart Types
	Chapter 9: Mapping
	Chapter 10: Tableau for Presentations
	Chapter 11: Visualization Best Practices and Dashboard Design
	Chapter 12: Advanced Analytics
	Chapter 13: Improving Performance
	Chapter 14: Interacting with Tableau Server/Online
	Chapter 15: Programming Tool Integration
	Other Books You May Enjoy
	Index

