
1

1 Introduction

If you can't explain it simply, you don't understand it well enough.
Albert Einstein

Digital image processing is an area characterized by the need for extensive experimental work to
establish the viability of proposed solutions to a given problem. In this chapter, we outline how a solid
theoretical foundation and state-of-the-art software can be integrated into a prototyping environment
whose objective is to provide a set of well-supported tools for the solution of a broad class of problems
in digital image processing and related areas.

1.1	 BACKGROUND

An important characteristic underlying the design of image processing systems is
the significant level of testing and experimentation that normally is required before
arriving at an acceptable solution. This characteristic implies that the ability to
formulate approaches and quickly prototype candidate solutions generally plays a
major role in reducing the cost and time required to arrive at a viable system imple-
mentation.

Relatively little has been written in the way of instructional material to bridge
the gap between theory and application in a well-supported software environment
for image processing. As with earlier editions, the main objective of this revi-
sion is to integrate under one cover a broad base of theoretical concepts with the
knowledge required to implement those concepts using state-of-the-art image
processing software tools. As before, our focus is on presenting fundamental con-
cepts thoroughly—as simply and clearly as possible.

The theoretical foundation of the material in the following chapters is from
the 4th edition of the leading textbook in the field—Digital Image Processing by
Gonzalez and Woods [2018]. The software code and supporting tools are from the
leading software in the field—MATLAB ® and the Image Processing Toolbox,™
from MathWorks. We also take a look at a few selected functions from the MAT-
LAB Computer Vision, Deep Learning, Signal Processing, and Wavelet Toolboxes™.

2 Chapter 1 Introduction

The material in the book shares the same design, notation, and style of presentation
as the Gonzalez-Woods text, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, a reader should have
introductory preparation in digital image processing, either by having taken a for-
mal course of study on the subject at the senior or first-year graduate level, or by
acquiring the necessary background in a program of self-study. Some familiarity with
MATLAB and rudimentary knowledge of computer programming are assumed also.
Because MATLAB is a matrix-oriented language, basic knowledge of matrix analy-
sis is helpful.

The book is based on principles. It is organized and presented in a textbook format,
not as a manual. Thus, basic ideas of both theory and software are explained prior to
the development of any new programming concepts. The material is illustrated and
clarified further by numerous examples ranging from medicine and industrial inspec-
tion to remote sensing and astronomy. This approach allows orderly progression
from simple concepts to sophisticated implementation of image processing algo-
rithms. Readers already familiar with MATLAB, the Image Processing Toolbox, and
image processing fundamentals, can proceed directly to specific topics of interest,
in which case the functions in the book can be used as extensions of the family of
Toolbox functions. All new functions developed in the book are fully documented
and the code for each is included either in the book or in the DIPUM3E Support
Package (see Section 1.8). In this edition, we also include for the first time MATLAB
projects at the end of every chapter. In total, 130 new projects are part of this edition.
Partial project solutions for students and full solutions for instructors are included
in the Support Package.

Over 200 custom functions are developed in the chapters that follow. These
functions extend by approximately 40% the set of about 500 functions in the Image
Processing Toolbox. In addition to addressing specific applications, the new functions
are good examples of how to combine existing MATLAB and Toolbox functions
with new code to develop prototype solutions to a broad spectrum of problems
in digital image processing. The custom functions run in all the environments that
MATLAB does.

1.2	WHAT IS DIGITAL IMAGE PROCESSING, AND WHY IS IT
IMPORTANT?

An image may be defined as a two-dimensional function, f x y(,), where x and y are
spatial coordinates, and the amplitude of f at any pair of coordinates (,)x y is called
the intensity or gray level of the image at that point. When x, y, and the amplitude
values of f are all finite, discrete quantities, we call the image a digital image. The field
of digital image processing refers to processing digital images by means of a digital
computer. Note that a digital image is composed of a finite number of elements,
each of which has a particular location and value. These elements are referred to as
picture elements, image elements, pels, and pixels. Pixels is the term used most widely
to denote the elements of a digital image. We consider these definitions formally in
Chapter 2.

We will use the term
Toolbox throughout the
book to refer specifically
to the Image Processing
Toolbox.

See Section 1.6 for an
explanation of blue italic
text and other special
notation used in the
book.

We use the term custom
function to denote a
function developed in
the book, as opposed to a
“standard” MATLAB or
Toolbox function.

1.2 What is Digital Image Processing, and Why is it Important? 3

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike humans,
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging
machines can cover the entire EM spectrum, ranging from gamma to radio waves.
They can operate also on images generated by sources that humans do not cus-
tomarily associate with images. These include ultrasound, electron microscopy, and
computer-generated images. Thus, digital image processing encompasses a broad
and varied field of applications.

There are two principal factors underlying the current widespread interest in
digital image processing. One factor is the unprecedented growth in the worldwide
generation of digital data. It has not been too long since we used to measure large
amounts of digital data in terabytes (one trillion or 1012 bytes). Now, we talk in units
of zettabytes (1 trillion gigabytes or 1021 bytes). It has been estimated that 90% of all
the data in the world today has been generated in the past two years, reaching a rate
of one zettabyte/year at the time of this writing, and expected to more than double
every year for the foreseeable future. The second factor, which brings digital image
processing into the mix, is an old established estimate that close to 90% of the infor-
mation received by the human brain is visual. You may disagree with the overall
accuracy of these estimates, but the fact is undeniable that data is growing at a rate
that is making it harder and harder for humans to process it—and the rate of growth
is accelerating. Image processing is playing an increasingly important role in helping
us process, understand, and extract value from this ever increasing stream of digital
data. In the chapters that follow, you will learn the foundation of the techniques that
make this possible.

There is no general agreement among authors regarding where image processing
stops and other related areas, such as image analysis and computer vision, begin.
Sometimes a distinction is made by defining image processing as a discipline in which
both the input and output of a process are images. We believe this to be a limiting
and somewhat artificial boundary. For example, under this definition, even the trivial
task of computing the average intensity of an image would not be considered an
image processing operation. On the other hand, there are fields, such as computer
vision, whose ultimate goal is to use computers to emulate human vision, including
learning and being able to make inferences and take actions based on visual inputs.
This area itself is a branch of artificial intelligence (AI), whose objective is to emulate
human intelligence. Despite some impressive recent breakthroughs, especially in the
field of deep learning (the topic of Chapter 14), the field of AI is still in its infancy in
terms of practical applications, with progress having been much slower than origi-
nally anticipated. The area of image analysis (also called image understanding) is in
between the scopes of image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at
one end to computer vision at the other. However, a useful paradigm is to consider
three types of computerized processes in this continuum: low-, mid-, and high-level
processes. Low-level processes involve primitive operations, such as image prepro-
cessing to reduce noise, contrast enhancement, and image sharpening. A low-level
process is characterized by the fact that both its inputs and outputs typically are

4 Chapter 1 Introduction

images. Mid-level processes on images involve tasks such as segmentation (partition-
ing an image into regions or objects), description of those objects to reduce them
to a form suitable for computer processing, and classification (recognition) of indi-
vidual objects. A mid-level process is characterized by the fact that its inputs gener-
ally are images, but its outputs are attributes extracted from those images, such as
edges, regions, and the identity of individual objects. Finally, high-level processing
involves “making sense” of an ensemble of recognized objects, as in image analysis,
and, at the far end of the continuum, performing the cognitive functions normally
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between
image processing and image analysis is the area of recognition of individual regions
or objects in an image. Thus, what we call in this book digital image processing
encompasses processes whose inputs and outputs are images and, in addition
processes that extract attributes from images, up to and including the recognition
of individual objects. As a simple illustration to clarify these concepts, consider the
area of automated analysis of text. The processes of acquiring an image of a region
containing the text, preprocessing that image, extracting (segmenting) the individual
characters, describing the characters in a form suitable for computer processing,
and recognizing those individual characters, are in the scope of what we call digital
image processing in this book. Making sense of the content of the text as a whole
may be viewed as being in the domain of image analysis and even computer vision,
depending on the level of complexity implied by the statement “making sense of.”
Digital image processing, as we have defined it, is used successfully in a broad range
of areas of exceptional social and economic value.

1.3	BACKGROUND ON MATLAB, THE IMAGE PROCESSING
TOOLBOX, AND OTHER RELATED TOOLBOXES

MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment where
problems and solutions are expressed in familiar mathematical notation. Typical
uses include the following:

•	 Math and computation
•	 Algorithm development
•	 Data acquisition
•	 Modeling, simulation, and prototyping
•	 Data analysis, exploration, and visualization
•	 Scientific and engineering graphics
•	 Application development, including app building
•	 Deployment of algorithms in production systems

MATLAB is an interactive system whose basic data element is a matrix. This allows
formulating solutions to many technical computing problems, especially those

1.4 The MATLAB Desktop 5

involving matrix representations, in a fraction of the time it would take to write a
program in a scalar non-interactive language.

The name MATLAB stands for Matrix Laboratory. MATLAB was written origi-
nally to provide easy access to matrix and linear algebra software that previously
required writing FORTRAN programs to use. Today, MATLAB incorporates state-
of-the-art numerical computation software that is highly optimized for modern pro-
cessors and memory architectures.

In university environments, MATLAB is the standard computational tool for
introductory and advanced courses in mathematics, engineering, and science. In
industry, MATLAB is the computational tool of choice for research, development,
analysis, and deployment. MATLAB is complemented by a family of application-
specific solutions called toolboxes. The Image Processing Toolbox is a collection of
MATLAB functions that extend the capability of the MATLAB environment for
the solution of digital image processing problems. Other toolboxes that sometimes
are used in conjunction with the Image Processing Toolbox are the Computer Vision,
Signal Processing, Deep Learning, Fuzzy Logic, and Wavelet Toolboxes.

The MATLAB and Simulink Student Suite is a low-priced bundle that includes
full-featured MATLAB, Simulink, Image Processing Toolbox, and several other
add-on products that are most commonly used in engineering and scientific courses.
The Computer Vision, Deep Learning, Wavelet, and Fuzzy Logic Toolboxes can be
added to the bundle for a small extra cost. The bundle can be purchased directly
from the MathWorks web site (www.mathworks.com). In addition, many universi-
ties and research institutions have campus-wide or site-wide licenses for general use.

1.4	THE MATLAB DESKTOP

The MATLAB Desktop is the main working environment. It is a set of graphics tools
for tasks such as running MATLAB commands, viewing output, editing and manag-
ing files and variables, and viewing session histories. Figure 1.1 shows the MATLAB
Desktop in a typical configuration.

The Command Window is where a user types MATLAB commands at the
prompt (>>). For example, a user calls a MATLAB function, or assigns a value to a
variable in the Command Window. The set of variables created in a session is called
the Workspace, and their values and properties can be viewed in the Workspace
Browser.

 The window on the left in Fig. 1.1 shows the contents of the Current Folder,
which contains the folders and files with which a user is working at a given time. The
path to the Current Folder is displayed in the Current Folder Field.

The Command History Window displays a list of MATLAB statements executed
in the Command Window. The list includes both current and previous sessions. In
the Command History Window a user can right-click on previous statements to copy
them, re-execute them, or save them to a file. These features are useful for experi-
menting with various commands in a work session, or for reproducing work from
previous sessions.

As we will discuss in
more detail in Chapter 2,
images may be treated
as matrices, thus making
MATLAB software a
natural choice for image
processing applications.

See Section 1.6 for an
explanation of bold black
text, blue italics, and
other special notation
used in the book.

6 Chapter 1 Introduction

During a typical MATLAB session for image processing, images and graphs are
displayed to visualize the results of an operation. Each image is displayed in a sepa-
rate Figure Window. A Figure Window has pull-down menus that can be used to
edit and save figures in several file formats. Figure Windows are not docked and can
be moved anywhere in your display screen(s). Most of the other windows shown in
Fig. 1.1, can be undocked and similarly moved.

MATLAB uses a Search Path to find files. Any file run in MATLAB must reside
in the Current Folder or in a folder that is on the Search Path. By default, the files
supplied with MATLAB and MathWorks toolboxes are included in the Search
Path. The easiest way to see which folders and files are on the Search Path, or to
add or modify a Search Path, is to use the Set Path icon in the HOME tab in the
Toolstrip. It is good practice to add commonly used folders to the Search Path to
avoid repeatedly having to browse to the locations of these folders.

Command History

Figure Window

Current Folder Browser

Current Folder Field Workspace BrowserMATLAB Desktop Toolstrip

Command WindowLive Editor

FIGURE 1.1 The MATLAB Desktop showing its components in a typical configuration.

1.4 The MATLAB Desktop 7

TABLE 1.1
MATLAB
Desktop tools.

Tool Description

Array Editor View and edit array contents.

Command History Window View a log of statements entered in the Command Window;
search for previously executed statements, copy them, and
re-execute them.

Command Window Run MATLAB statements.

Current Folder Browser View and manipulate files in the current folder.

Current Folder Field Shows the path leading to the current folder.

Editors Editor/Debugger and Live Editor (explained in the text).

Figure Windows Display, modify, annotate, and print MATLAB graphics.

File Comparisons View detailed differences between two files.

Help Browser View and search product documentation.

Profiler Measure execution time of MATLAB functions and lines;
count how many times code lines are executed.

Start Button Run product tools and access product documentation.

Workspace Browser View and modify contents of the workspace.

Table 1.1 shows all the available Desktop tools. The MATLAB Desktop can be
configured to show one, several, or all of these tools. Favorite Desktop layouts can
be saved for future use.

USING THE EDITOR/DEBUGGER

The MATLAB Editor/Debugger (or just the Editor) is one of the most important
and versatile of the Desktop tools. Its primary purpose is to create and edit MATLAB
script, function, and class files. The Editor highlights different MATLAB code ele-
ments in color and analyzes code to offer improvement suggestions. With the Editor,
a user can also analyze executing code by setting debugging breakpoints, inspecting
variables during code execution, and executing code in small, discrete steps. The user
can also include code output, graphics output, formatted text, equations, and images
in code files, and these files can be exported to PDF, HTML, LaTeX, and Word. To
open the Editor, type edit at the prompt in the Command Window, or press New
or Open in the Toolstrip. Type edit filename at the prompt to open the code file
with the specified name. If a code file with that name is not in the Current Folder or
on the Search Path, MATLAB will offer to create it for you in the Current Folder.

LIVE SCRIPTS AND THE LIVE EDITOR

Live scripts are program files that contain your code, output, and formatted text
together in a single interactive environment called the Live Editor. In live scripts,
you can write your code and view the generated output and graphics along with the
code that produced it. You can add formatted text, images, hyperlinks, and equations

Throughout the book,
code elements are shown
in the color they would
appear in the MATLAB
Editor or Live Editor.
See Section 1.6 for more
details on the notation
used in the book.

8 Chapter 1 Introduction

to create an interactive narrative that you can share with others. The editor shown in
Fig. 1.1 is an open session in the Live Editor.

GETTING HELP

The principal way to get help is to use the MATLAB Help Browser, opened as a
separate window either by clicking on the question mark symbol (?) in the Toolstrip,
or by typing doc (one word) at the prompt in the Command Window. The Help
Browser consists of two panes, the help navigator pane, used to find information,
and the display pane, used to view the information. It is good practice to open the
Help Browser at the beginning of a MATLAB session to have help readily available
during code development and other MATLAB tasks.

Another way to obtain help for a specific function is by typing doc followed by the
function name at the command prompt. For example, typing doc fileName displays
the reference page for the function called fileName in the display pane of the Help
Browser. This command opens the browser if it is not open already. The doc func-
tion works also for user-written code files that contain help text. See Section 2.9 for
details on how to include help text in a function.

When we introduce MATLAB and Image Processing Toolbox functions in the
following chapters, we often give only representative syntax forms and descriptions.
This is necessary either because of space limitations or to avoid deviating from a
particular discussion more than is absolutely necessary. In these cases we simply
introduce the syntax required to execute the function in the form required at that
point in the discussion. By being comfortable with MATLAB documentation tools,
you can then explore a function of interest in more detail with little effort.

Finally, the MathWorks web site (www.mathworks.com) contains a large database
of help material, examples, contributed functions, and other resources that should
be utilized when the local documentation contains insufficient information about a
desired topic. Consult the book website (see Section 1.7) for additional MATLAB
support resources.

SAVING AND RETRIEVING A MATLAB SESSION

There are several ways to save or load an entire work session (the contents of
the Workspace Browser) or selected Workspace variables in MATLAB. The sim-
plest is to save the entire Workspace by right-clicking on any blank area in the
Workspace Browser window and selecting Save Workspace As from the menu
that appears. This opens a directory window that allows you to name the file
and select any folder in which to save it. Then click Save. To save a selected vari-
able from the Workspace, select the variable with a left click and right-click on
the highlighted area. Then select Save Selection As from the menu that appears.
This opens a window from which a folder can be selected to save the variable.
To select multiple variables, use shift-click or control-click in the familiar man-
ner, and then use the procedure just described for a single variable. All files are
saved in a binary format with the extension .mat. These saved files are referred to
as MAT-files. For example, a session named mywork_2019_02_10 would appear as

MATLAB code files
have a .m extension.

1.5 Areas of Image Processing Covered in the Book 9

the MAT-file mywork_2019_02_10.mat when saved. Similarly, a saved image called
final_image (which is a single variable in the workspace) will appear as
final_image.mat when saved.

To load saved Workspaces and/or variables, left-click on the folder icon on the
toolbar of the Workspace Browser window. This causes a window to open from
which a folder containing the MAT-files of interest can be selected. Double-click-
ing on a selected MAT-file or selecting Open causes the contents of the file to be
restored in the Workspace Browser window.

It is possible to obtain the same results described in the preceding paragraph by
typing save and load at the prompt, with the appropriate names and path informa-
tion. This approach is not as convenient, but it is used when formats other than those
available in the menu method are required. Functions save and load are useful also
for writing code that saves and loads Workspace variables. As an exercise, you are
encouraged to use the Help Browser to learn more about these two functions

1.5	AREAS OF IMAGE PROCESSING COVERED IN THE BOOK

This edition is a major revision of the book that brings it up to date in the tech-
nical areas covered and in the MATLAB software functionality. Every chapter in
the book contains the pertinent MATLAB and Image Processing Toolbox material
needed to implement the image processing methods discussed. When a MATLAB
or Toolbox function does not exist to implement a specific method, a custom func-
tion is developed and documented. The source code of every new function is avail-
able, either in the book or in the DIPUM3E Support Package discussed in the next
section. The following are short summaries of the material covered in Chapters 2
through 14.

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB nota-
tion, matrix indexing, programming concepts, and function potting. This material
serves as software foundation for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter covers in
detail how to use MATLAB and the Image Processing Toolbox to implement inten-
sity transformation functions. Linear and nonlinear spatial filters are covered and
illustrated in detail. We also develop a set of basic functions for fuzzy intensity trans-
formations and spatial filtering.

Chapter 4: Filtering in the Frequency Domain. The material in this chapter shows
how to use Toolbox functions for computing the forward and inverse 2-D fast Fourier
transform (FFT), how to visualize the Fourier spectrum and filter transfer functions,
and how to implement filtering in the frequency domain. Included also is a method
for generating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration and Reconstruction. A suite of linear and nonlinear
filters for image denoising are developed and illustrated. We also discuss traditional
linear restoration methods, such as the Wiener filter, and extend the discussion to

10 Chapter 1 Introduction

iterative, nonlinear methods, such as the Richardson-Lucy method and maximum-
likelihood estimation for blind deconvolution. We also derive from basic principles
the foundational algorithms for image reconstruction from projections and how
they are used in computed tomography.

Chapter 6: Geometric Transformations and Image Registration. This chapter dis-
cusses basic forms and implementation techniques for geometric image transfor-
mations, such as affine and projective transformations. Interpolation methods are
presented also. Different image registration techniques are discussed and several
examples of transformation, registration, image stitching, and visualization are given.

Chapter 7: Color Image Processing. This chapter deals with pseudocolor and full-
color image processing. Color models applicable to digital image processing are dis-
cussed and Image Processing Toolbox functionality in color processing is extended
with additional color models. The chapter also covers applications of color to filter-
ing, edge detection, and region segmentation.

Chapter 8: Wavelet and Other Image Transforms. We discuss a set of linear trans-
forms that decompose functions into weighted sums of orthogonal basis functions,
including the discrete cosine, Walsh-Hadamard, and Haar transforms. In addition,
we develop a set of self-contained wavelet functions that are compatible with the
MATLAB Wavelet Toolbox and extend its capabilities. We also apply and illustrate
how to use these transforms in image processing.

Chapter 9: Image Compression. The Image Processing Toolbox does not have any
data compression functions. In this chapter, we develop and illustrate a set of func-
tions that can be used for this purpose.

Chapter 10: Morphological Image Processing. The extensive set of functions avail-
able in the Toolbox for morphological image processing are explained and illus-
trated in this chapter using both binary and grayscale images.

Chapter 11: Image Segmentation I: Edge Detection, Thresholding, and Region
Detection. In this chapter we cover a wide range of image segmentation methods,
ranging from edge detection, thresholding, and region growing to Gabor filters, clus-
tering, superpixels, and graph cuts. We also discuss image segmentation using mor-
phological watersheds.

Chapter 12: Image Segmentation II—Active Contours: Snakes and Level Sets. In
this chapter we discuss image segmentation using active contours. We develop and
illustrate a family of custom segmentation functions for both snakes and level sets.

Chapter 13: Feature Extraction. We develop and illustrate several functions for fea-
ture detection and description, including chain-codes, polygonal approximations,
Fourier descriptors, texture, moment invariants, and principal components. These
functions complement an extensive set of region property functions available in the
Image Processing Toolbox. We also discuss whole-image features such as corners,

1.6 Notation and Icons Used in the Book 11

maximally-stable extremal regions, and keypoint features using methods such as
FAST, SURF, and BRISK.

Chapter 14: Classical and Deep Learning Methods for Image Pattern Classification.
We conclude our coverage of digital image processing with a discussion of methods
for image pattern classification. We cover and develop functions for classical
classification methods that include minimum-distance and optimal statistical clas-
sifiers. A significant portion of the chapter is devoted to deep learning techniques,
which have experienced significant growth since the last edition of the book. The
focus of our coverage in this field is first to derive and implement the fundamental
equations for fully-connected and convolutional neural networks. The objective is
that, when you master this material, you will understand the underpinnings of these
important concepts and also be able to program them in MATLAB. We conclude
the chapter with a brief illustration of the capabilities of the MATLAB Deep Learn-
ing Toolbox for implementing large-scale deep learning systems.

1.6	NOTATION AND ICONS USED IN THE BOOK

Equations in the book are typeset using familiar italic and Greek symbols such as
f x y A x y(,) sin()= u v+ and f(,) tan (,) (,) .u v u v u v= []−1 I R All MATLAB func-
tion names, symbols, and text are typeset in monospace font,; for example, fft2(f),
logical(A), and roipoly(f,c,r). Note that monospace text is set in a light shade
of gray to help it stand out from normal text.

When a MATLAB function is first defined, we use the following icon:

f = matlabFunction(g)

Similarly, the first occurrence of an Image Processing Toolbox function is coupled
with the following icon;

f = toolboxFunction(g)

Occasionally, we will work with functions from other MATLAB toolboxes. The first
occurrence of those is denoted by the following icon:

f = otherToolboxFunction(g)

Finally, we use the following icon when a custom function is mentioned for the first
time:

f = customFunction(g)

Occasionally, we will use the same icons more than once when a function is used
in different ways. You can find all the important occurrences of any function in the
Index. Custom functions are additionally listed in the Appendix.

matlabFunction

toolboxFunction

otherToolboxF..

customFunction

12 Chapter 1 Introduction

All words that are included in the Index—or are related to Index entries—are
shown in blue italics in the text to make them easier to find. For example:  “. . . when
x, y, and the amplitude values of f are all finite, discrete quantities, we call the image
a digital image.” When emphasizing words not relevant to the Index, we use normal
italics. For example:  “. . . where xmax denotes the maximum coordinate value.”

We use bold letters when referring to keyboard keys such as Return and Tab, and
also when referring to items on a computer screen or menu, such as File and Edit.
We use the acronym DIPUM3E, meaning Digital Image Processing, 3rd ed., through-
out the book and in the book website.

We display all MATLAB code words using the same colors that you will see in
the MATLAB editors. For example, for and end are shown in blue, strings such
as 'fileNames' are shown in purple, and comments are shown in green, preceded
by the symbol %, as in % This is a comment. All remaining code word themselves
are shown in gray in the book to help differentiate them from normal text, as in the
line of code f = zeros(10). All MATLAB code words are displayed using the same
standard monospace font.

1.7	THE BOOK WEBSITE

An important feature of the book is the support contained in the book website,
whose address is

www.ImageProcessingPlace.com

The site provides support for the book in the following areas:

•	 MATLAB source code.
•	 Tutorials on a wide range of topics relevant to the material in the book.
•	 Teaching materials.
•	 Image databases.
•	 Errata sheets.
•	 Publications in the field of image processing and related areas.

The same site supports all recent editions of the Gonzalez-Woods book and thus pro-
vides complementary materials. The site also hosts the support package explained
in the next section.

1.8	 THE DIPUM3E SUPPORT PACKAGE

For this edition of the book, we created the DIPUM3E Support Package for students
and faculty. The Package comes in two versions that contain the support materials
available for the new edition, organized into one easy download.

The DIPUM3E Student Support Package contains:

•	 Access to the source code for all the functions developed in the book.
•	 All the original images in the book.

1.9 How References are Organized in the Book 13

•	 Detailed answers to selected projects at the end of every chapter.

The DIPUM3E Faculty Support Package contains:

•	 Access to the source code for all the functions developed in the book.
•	 All the original images in the book.
•	 Detailed answers to all projects in the book.
•	 PowerPoint slides that contain all the art in the book and are ideally suited

for building classroom presentations.

The names of all custom functions in the Package are listed in the Index and in the
Appendix.

One Support Package comes free of charge with every new book. Applications
for the Package for students and faculty are submitted in the book web site.

1.9	 HOW REFERENCES ARE ORGANIZED IN THE BOOK

All references in the book are listed in the Bibliography by author and date as, for
example, Sejnowski [2018]. Most of the background references for the theoretical
content of the book are from Gonzalez and Woods [2018]. In cases where this is
not true, the appropriate new references are identified at the point in the discussion
where they are needed. Reference details are included in the Bibliography.

Summary
In addition to a brief introduction to notation and basic MATLAB tools, the material in this chapter
emphasizes the importance of a comprehensive prototyping environment in the solution of digital image
processing problems. In the following chapter, we begin to lay the foundation needed to understand
Image Processing Toolbox functions and introduce a set of fundamental programming concepts that are
used throughout the book. The material in Chapters 3 through 14 spans a wide cross section of topics
that are in the mainstream of digital image processing. Although the topics covered are varied, the dis-
cussion of those topics follows the same basic theme of demonstrating how combining MATLAB and
Toolbox functions with new code can be used in a wide range of digital image processing applications.

15

2 Fundamentals

As we mentioned in the previous chapter, the power that MATLAB brings to digital image processing is
an extensive set of functions for processing multidimensional arrays, of which images (two-dimensional
numerical arrays) are a special case. The Image Processing Toolbox is a collection of functions that extends
the capability of the MATLAB numeric computing environment. These functions and the expressiveness
of the MATLAB language make image-processing operations easy to write in a compact, clear manner,
thus providing an ideal software prototyping environment for the solution of image processing prob-
lems. In this chapter, we introduce the basics of MATLAB notation, discuss a number of fundamental
Toolbox properties and functions, and begin a discussion of programming concepts. Thus, the material in
this chapter is the foundation for most of the software-related discussions in the remainder of the book.

Functions Developed in this Chapter:
imblend this is the first custom function pre-
sented in the book. It is a simple function
designed to illustrate the principal compo-
nents of a MATLAB function.

average is a function that illustrates condi-
tional branching and the use of dot notation.

subim is a function that extracts a subimage
from a larger image. This function is designed
to illustrate the use of for loops and the
importance of memory allocation.

sinfunX—a series of three functions for
X = 1, 2, and 3 designed to illustrate function
timing, function handles, memory prealloca-
tion, for loops, and code vectorization.

twodsinX—also a series of three functions
for X = 1, 2, and 3 designed to illustrate image
generation using for loops and code vector-
ization using the function meshgrid.

imageStatsX—a series of five functions for
X = 1,  2, 3, 4, and 5 used to illustrate program-
ming with cell arrays and structures.

interactive is a function that illustrates
interactive I/O using a keyboard and mouse
for data entry.

By failing to prepare you are preparing to fail.
 Benjamin Franklin

16 Chapter 2 Fundamentals

2.1	DIGITAL IMAGE REPRESENTATION

An image may be defined as a two-dimensional function, f x y(,), where x and y are
spatial (plane) coordinates and the amplitude of f at any pair of coordinates, (,),x y
is called the intensity of the image at that point. The term gray level is used often to
refer to the intensity of monochrome (grayscale) images. Color images are formed
by a combination of individual images. For example, in the RGB color system a color
image consists of three individual monochrome images, referred to as the red (R),
green (G), and blue (B) primary (or component) images.

An image may be continuous with respect to x and y and also in amplitude.
Converting such an image to digital form requires that the coordinates and the
amplitude be digitized. Digitizing the coordinates is called sampling; digitizing the
amplitude is called quantization. Thus, when x, y, and the amplitude values of f are
all finite, discrete quantities, we call the image a digital image. The elements of a
digital image are called pixels.

COORDINATE CONVENTIONS

The result of sampling and quantization is a matrix of real numbers. We use two
principal ways in the book to represent digital images. Assume that an image f x y(,)
is sampled uniformly so that the resulting image has M rows and N columns. We
say that the image is of size M N* pixels. The values of the coordinates generally
are equally-spaced, discrete quantities. For notational clarity and convenience, we
use integer values for these discrete coordinates. In many image processing books,
the image origin is defined to be at (,) (,)x y = 0 0 . The next coordinate values along
the first row of the image are (,) (,)x y = 0 1 . The notation (,)0 1 is used to denote the
second sample (starting from 0) along the first row. It does not mean that these are
the actual values of physical coordinates when the image was sampled. Figure 2.1(a)
shows this coordinate convention. Note that x ranges from 0 to M - 1 and y from 0
to N - 1 in integer increments.

The coordinate convention used in the Image Processing Toolbox is different
from the preceding paragraph in two ways. First, instead of using (,)x y , the toolbox

y
0

0
1
2
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
M � 1

1 2 N � 1

x

c
1

1
2
3

M

2 3 N

r

Pixel at the origin Origin

mx

ny

Pixel at location (,)m nx y
mr

nc

Pixel at location (,)m nr c

Image (,)f x y Image f(r,c)

ba

FIGURE 2.1
Coordinate
conventions used
(a) in many image
processing books,
and (b) in the
Image
Processing
Toolbox. The dots
are image pixels.

2.1 Digital Image Representation 17

uses the notation (,)r c to indicate rows and columns. The order of the coordinates
is the same as above, in the sense that the first element of a coordinate tuple, (,)a b ,
refers to a row and the second to a column. The other difference is that the origin of
the coordinate system is at (,) (,)r c = 1 1 ; thus, r ranges from 1 to M and c from 1 to N,
in integer increments. Figure 2.1(b) illustrates this coordinate convention.

The Image Processing Toolbox documentation refers to the coordinates in
Fig. 2.1(b) as pixel indices or (less frequently) intrinsic coordinates. In some cases,
MATLAB and the Toolbox employ another coordinate convention, called spatial
coordinates, that uses x to refer to columns and y to refers to rows. This is the opposite
of our use of variables x and y and can be a source of confusion because you will
encounter it in Toolbox and MATLAB documentation. Be aware that MATLAB
itself is not always consistent in the meaning it assigns to a tuple (,).a b For instance,
when referring to matrices (and by implication images), MATLAB assumes that
the first element refers to rows and the second to columns. In other contexts (e.g., in
plotting functions), the reverse is true. We will generally mention it whenever this
reversal occurs in our discussions.

IMAGES AS MATRICES

The coordinate system in Fig. 2.1(a) and the preceding discussion lead to the
following representation for a digital image:

	 f x y

f f f N

f f f N

f M

(,)

(,) (,) (,)

(,) (,) (,)

(,

=

0 0 0 1 0 1

1 0 1 1 1 1

1

�
�

� � �

-

-

- 00 1 1 1 1) (,) (,)f M f M N- - -�



















	 (2-1)

The right side of this equation is a digital image by definition and each of its ele-
ments is a pixel.

A digital image can be represented as a MATLAB matrix:

	 f

f(1,1) f(1,2) f(1,N)
f(2,1) f(2,2) f(2,N)

f(M,1) f(M,2) f(

=

�
�

� � �
� MM,N)



















	 (2-2)

where f(1,1) = f (,)0 0 (note the use of a monospace font to denote MATLAB
quantities) and f is any valid MATLAB variable name†. Clearly, the two
representations are equivalent, except for the notational shift in the origin. Typically,
we use the letters M and N, respectively, to denote the number of rows and columns

†  A valid MATLAB variable name starts with a letter and is followed by letters, digits, or underscores (no spaces
are allowed). MATLAB is case sensitive. The maximum length of a variable name is the value returned when
you type namelengthmax in your version of MATLAB.

MATLAB and Toolbox
documentation uses
the terms matrix and
array interchangeably.
However, keep in mind
that a matrix is two-
dimensional, whereas an
array can have any finite
dimension.

namelengthmax

18 Chapter 2 Fundamentals

in a matrix. A 1 × N matrix is a row vector, an M × 1 matrix is a column vector, and a
1 1× matrix is a scalar.

Matrices in MATLAB are stored in variables with names such as A, a, RGB,
realArray, and so on. As noted earlier, all MATLAB quantities in this book are
written using monospace characters. We use conventional Roman, italic notation,
such as f x y(,), for mathematical expressions.

2.2	READING IMAGES

Images are read into the MATLAB environment using function imread, whose
basic syntax is

imread('filename')

where 'filename' is a string containing the complete name of the image file (includ-
ing any applicable extension). For example, the statement

>> f = imread('chestXray.jpg');

reads the image from the file 'chestXray.jpg' into image array f in the MATLAB
Workspace. Single quotes (') delimit the string filename. A semicolon at the end of
a statement is used to suppress output. If a semicolon is not included, MATLAB
displays on the screen the results of the operation(s) specified in that line. The
prompt symbol (>>) designates the beginning of a command line.

When no path information is included in 'filename', imread reads the file from
the Current Folder and, if that fails, it tries to find the file in the MATLAB Search
Path (see Section 1.7). To read an image from a specified folder, include a full or
relative path to that folder of 'filename'. For example,

>> f = imread('D:\myimages\chestXray.jpg');

reads the image from a folder called myimages in the D: drive, whereas

>> f = imread('.\myimages\chestXray.jpg');

reads the image from the myimages subfolder contained in the Current Folder.
Table 2.1 lists some of the image/graphics formats supported by imread and imwrite
(we discuss the latter function in Section 2.4).

Typing size(f) at the prompt gives the row and column dimensions of f:

>> size(f)

ans =
 1024 1024

More generally, for an array A having an arbitrary number of dimensions, a statement
of the form

>> [D1,D2,...,DK] = size(A)

Recall from Section 1.6
that we use margin icons
to highlight the first use
of a MATLAB, Toolbox,
or Custom function.
Sometimes, we also use
icons to denote other
important MATLAB
elements such as “;” and
“>>”.

imread

semicolon(;)

prompt(>>)

MathWorks recently
adopted standard
Windows and Mac
terminology by using the
term “folder” instead
of “directory,” but you
will still encounter the
latter in some MATLAB
documentation.

The MATLAB Desktop
displays the path to the
Current Folder on the
toolbar, which provides
an easy way to change it.

size

2.2 Reading Images 19

TABLE 2.1
Some of the
image/graphics
formats
supported by
imread and
imwrite, starting
with MATLAB
7.6. Earlier
versions support
a subset of these
formats. See the
MATLAB
documentation
for a complete
list of supported
formats.

Format Name Description File Extensions

BMP Windows Bitmap .bmp

CUR† Windows Cursor Resources .cur
FITS† Flexible Image Transport System .fts, .fits
GIF Graphics Interchange Format .gif
HDF Hierarchical Data Format .hdf
ICO† Windows Icon Resources .ico
JPEG Joint Photographic Experts Group .jpg, .jpeg
JPEG 2000 Joint Photographic Experts Group .jp2, .jpf,

.jpx, j2c, j2k
PBM Portable Bitmap .pbm
PGM Portable Graymap .pgm
PNG Portable Network Graphics .png
PNM Portable Any Map .pnm
RAS Sun Raster .ras
TIFF Tagged Image File Format .tif, .tiff
XWD X Window Dump .xwd

†Supported by imread, but not by imwrite.

returns the size of A as if it were a K-dimensional array. The sizes of any dimensions
larger than K are folded into DK. This function is particularly useful in programming
to determine automatically the size of an image:

>> [M,N] = size(f); % For grayscale images, dim = 2;
>> [M,N,K] = size(g); % For RGB images, dim = 3;

Typing,

>> M = size(f,1);

gives the size of f along its first (vertical) dimension; that is, the number of rows of
f. The second dimension is in the horizontal direction, so the statement size(f,2)
gives the number of columns in f. For an RGB image, K = size(f,3) gives 3 because
an RGB image consists of three grayscale images stacked in the third dimension. A
singleton dimension is any dimension, dim, for which size(A,dim) = 1.

The whos function displays additional information about an array. For instance, if
f is the 'chestXray.jpg' image, the statement

>> whos f

gives

 Name Size Bytes Class Attributes
 f 1024x1024 1048576 uint8

whos
Although not applicable
in this example,
attributes that might
appear under
Attributes include
terms such as global,
complex, and sparse.

20 Chapter 2 Fundamentals

The Workspace Browser in the MATLAB Desktop displays similar information. The
uint8 entry shown above refers to one of several MATLAB data classes discussed
in Section 2.4. A semicolon at the end of a whos line has no effect, so normally one is
not used. Table 2.2 lists two other MATLAB functions that you will find quite useful.
It is time well spent getting to know these functions.

2.3	DISPLAYING IMAGES

Images are displayed on the MATLAB Desktop using function imshow, which has
the basic syntax:

imshow(f)

where f is an image. Using the syntax

imshow(f,[low high])

displays as black all values less than or equal to low and as white all values greater
than or equal to high. The values in between are displayed as intermediate intensity
values. Finally, the so-called auto-range syntax

imshow(f,[])

sets variable low to the minimum value of f and high to its maximum value. This
form of imshow is useful for displaying images that have a low dynamic range or
that have positive and negative values. These last two syntax forms do not work for
RGB images.

EXAMPLE 2.1 : 	 Reading and displaying images.

The following statements read from the Current Folder an image called
'rose512.tif', extract information about the image, and display it using imshow:

>> f = imread('rose512.tif');
>> whos f
 Name Size Bytes Class Attributes
 f 512x512 262144 uint8

imshow
Function imshow has a
number of other syntax
forms for performing
tasks such as controlling
image magnification.
Consult the help page
for imshow for additional
details.

TABLE 2.2
Some additional MATLAB functions that are used routinely when working in the MATLAB Desktop.

Function name Symtax Explanation

which which item Locates functions and files.

lookfor lookfor keyword Searches for the specified keyword in the first comment line (the H1
line) of the help text in all MATLAB program files found on the search
path.

2.3 Displaying Images 21

>> imshow(f)

Figure 2.2 shows what the output looks like on the screen. The figure number appears
on the top, left of the window. The various pull-down menus and utility buttons
are used for tasks such as scaling, saving, and exporting the contents of the display
window. The Edit menu has functions for editing and formatting the contents before
they are printed or saved to disk.

If another image, g, is displayed using imshow, MATLAB replaces the image in
the figure window with the new image. To keep the first image and display a second
image in a new window, use the function figure, as follows:

>> figure, imshow(g)

Using the statement

>> imshow(f), figure, imshow(g)

displays both images. Note that more than one command can be written on a line,
provided that different commands are delimited by commas or semicolons, as
appropriate. As mentioned earlier, a semicolon is used whenever it is desired to
suppress screen outputs from a command line.

Finally, suppose that we are working with an image, h, and find that using
imshow(h) displays the image in Fig. 2.3(a). This image has a low dynamic range,
which can usually be remedied for display purposes using the auto range syntax in
imshow:

>> figure, imshow(h,[])

Figure 2.3(b) shows the result. The improvement is apparent.

figure
When used without an
argument, as shown here,
function figure creates
a new figure window.
Typing figure(n) (or
clicking on its window)
forces figure number n to
become visible.

FIGURE 2.2
Screen capture
showing how an
image appears
on the MATLAB
Desktop. Note the
figure number on
the top, left of the
window. In most
of the examples
throughout the
book, we show
images without
the display
window.

22 Chapter 2 Fundamentals

ba

FIGURE 2.3
(a) An image, h,
with low dynamic
range, displayed
using imshow(h).
(b) Result of using
imshow(h,[]).
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt Univ.
Medical Center.)

Although imshow is the image display function used most frequently, the Toolbox
provides an Image Viewer app that contains a number of utilities (called tools) useful
for interactive image exploration, as detailed in Table 2.3. To start the Image Viewer,
we type imtool at the prompt:

>> f = imread('lunar-shadows.tif');
>> imtool(f)

Figure 2.4 shows some of the windows available when using the Image Viewer.
The large, central window (titled Image Tool) is the main view that opens when
you type imtool(f) at the prompt. The main view is showing the image at 200%
magnification. The status text at the bottom, left of the main window shows the
column/row location (244, 375) and value (101) of the pixel lying under the mouse
cursor (the origin of the image is at the top, left). The straight line between the two
large black regions in the main window is the result of selecting Measure Distance
from the Tools pull-down menu; it shows a distance of 242.32 pixels. If the physical
scale of the image is known, the actual distance can be obtained by multiplying

An app in MATLAB is
an interactive
application written to
perform computing tasks.
In addition to the Image
Viewer app, the Toolbox
has several other apps,
some of which we discuss
later in the book.

imtool

TABLE 2.3
Functions
comprising the
Image Viewer app.
Also, the tools
listed can be run
as independent
functions.

Function Description

imtool Starts the Image Viewer app.

imageinfo Image Information tool.

imcontrast Adjust Contrast tool.

imdisplayrange Display Range tool.

imdistline Distance tool.

impixelinfo Pixel Information tool.

impixelinfoval Pixel Information tool without text label.

impixelregion Pixel Region tool.

immagbox Magnification box for scroll panel.

imoverview Overview tool for image displayed in scroll panel.

2.10 Plotting 91

EXAMPLE 2.17 : Wireframe plotting.

Using the function lpfilter from Chapter 4, we generate a matrix H of size 500 500× elements that
are values of a 2-D Gaussian (ignore the details of lpfilter for now—we are interested only in H in
this example). Figure 2.14(a) shows the result of the commands

>> H = fftshift(lpfilter('Gaussian',500,500,50));
>> wf = mesh(H(1:10:500,1:10:500)); % Plot every tenth point.
>> wf.EdgeColor = [0 106 78]/255;
>> axis tight % Fig. 2.14(a).
>> axis off
>> grid off % Fig. 2.14(b).
>> view(-25,30) % Fig. 2.14(c).

>> view(-25,0) % Fig. 2.14(d).

We use 3-D plotting is various parts of the book, especially in Chapter 4.

Surface Plots

Sometimes it is desirable to plot a function as a surface instead of as a wireframe.
Function surf does this. Its basic syntax is

surf(H)

This function generates plots that are identical to mesh, except that the quadrilat-
erals in the mesh are filled with colors by default (this is called facet shading). To
convert the colors to gray we use the command

surf

ba
dc

FIGURE 2.14
(a) Plot obtained
using function
mesh and
displayed in its
default colors.
(b) Axes and grid
removed and
colors changed to
a single color.
(c) A different
view. (d) Another
view.

50

0.2

0.4

40 50

0.6

30 40

0.8

3020
2010 10

103

3 Intensity Transformations
and Spatial Filtering

The term spatial domain refers to the image plane itself and methods in this category are based on direct
manipulation of pixels in an image. In this chapter we focus attention on two categories of spatial domain
processing: intensity (gray-level) transformations and spatial filtering. The latter approach sometimes is
referred to as neighborhood processing or spatial convolution. In the following sections we develop and
illustrate MATLAB formulations representative of processing techniques in these two categories. We
also introduce fuzzy sets and develop several functions for their implementation in image processing. In
order to carry a consistent theme, most of the examples in this chapter are related to image enhance-
ment. This is a good way to introduce spatial processing because enhancement is highly intuitive and
appealing, especially to beginners in the field. However, as you will see throughout the book, these
techniques are general in scope and have uses in numerous other aspects of digital image processing.

Functions Developed in this Chapter:
intensityTransformations performs gray-
scale intensity transformations.

intensityScaling scales the intensities of
an image to the full [0, 1] range.

fun2hist converts a discrete function into a
histogram.

manualhist is used for interactive histogram
specification.

triangmf implements one of eight member-
ship functions used for fuzzy image processing.

lambdafcns outputs functions for computing
rule strength.

implfcns computes implication functions.

aggfcn computes an aggregation function.

defuzzify is a defuzzification function.

fuzzysysfcn implements a complete fuzzy
system.

approxfcn approximates the output of func-
tion fuzzysysfcn.

fuzzyfilt performs fuzzy edge detection.

makefuzzyedgesys is a script that supports
function fuzzyfilt.

When you look at the world with knowledge, you realize that things are
unchangeable and at the same time are constantly being transformed.

 Yukio Mishima

104 Chapter 3 Intensity Transformations and Spatial Filtering

3.1	BACKGROUND

As noted in the introduction, spatial domain techniques operate directly on the
pixels of an image. Most of the spatial domain processes discussed in this chapter
are denoted by the expression

	 g x y T f x y(,) (,)= [] 	 (3-1)

where f x y(,) is the input image, g x y(,) is the output (processed) image and T is an
operator on f defined over a specified neighborhood about point (,).x y In addition,
T can operate on a set of images, such as performing the addition of K images for
noise reduction.

The principal approach for defining spatial neighborhoods about a point (,)x y0 0 is
to use a square or rectangular region centered at (,),x y0 0 as Fig. 3.1 shows. The region
is moved from pixel to pixel starting, say, at the top, left corner and, as it moves, it
encompasses different neighborhoods. Operator T is applied at each location (,)x y to
yield the output, g, at that location. Only the pixels in the neighborhood centered at
(,)x y are used in computing the value of g at (,).x y

3.2	INTENSITY TRANSFORMATION FUNCTIONS

The simplest form of the transformation T is when the neighborhood in Fig. 3.1 is
of size 1 1× (a single pixel). In this case, the value of g at (,)x y depends only on the
intensity of f at that point and T becomes an intensity transformation function.

Because the output of an intensity transformation function depends only on the
intensity value at a point and not on a neighborhood of points, they are frequently
written in simplified form as

	 s T r= () 	 (3-2)

where r denotes the intensity of f  and s the intensity of g, both at the same coordinates
(,)x y in the input and output images.

When working with
grayscale (monochrome)
images, intensity
transformation functions
are often referred to as
gray-level transformation
functions.

Origin

Image f

Spatial domain

y

x

x0

y0

of point x0, y0)(
3 3 neighborhood×

Center pixel

FIGURE 3.1
A neighborhood of
size 3 3× centered at
a point (,)x y0 0 in a
digital image.

3.2 Intensity Transformation Functions 105

FUNCTIONS imadjust AND stretchlim
Function imadjust is the basic Toolbox function for intensity transformations. It
has the general syntax

g = imadjust(f,[lowIn highIn],[lowOut highOut],gamma)

As Fig. 3.2 illustrates, this function maps the intensity values in image f to new values
in g, such that values between lowIn and highIn map to values between lowOut
and highOut. Values below lowIn and above highIn are clipped; that is, all values
below lowIn map to lowOut and those above highIn map to highOut. The output
image has the same class as the input. All inputs to function imadjust, other than f
and gamma, are specified as values between 0 and 1, independently of the class of f. If,
for example, f is of class uint8, imadjust multiplies its values by 255 to determine
the actual values to use. Using the empty matrix ([]) for [lowIn highIn] or for
[lowOut highOut] results in the default values [0  1]. If highOut is less than lowOut,
the output intensities are reversed.

Parameter gamma specifies the shape of the transformation curve that maps the
intensity values from f to g. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values, as shown Fig. 3.2(a). If gamma is greater than 1, the
mapping is weighted toward lower (darker) output values, as Fig. 3.2(c) shows. If it is
not specified, gamma defaults to 1, which is the linear mapping in Fig. 3.2(b).

EXAMPLE 3.1 : Using function imadjust.

Figure 3.3(a) is a digital mammogram image, f, showing a small lesion. We obtained
Fig. 3.3(b) using the commands

>> f = imread('breastXray.tif');
>> g1 = imadjust(f,[0 1],[1 0]);
>> figure, imshow(g1) % Fig. 3.3(b).

This process, which is the digital equivalent of obtaining a photographic negative,
is particularly useful for enhancing white or gray detail embedded in a large,
predominantly dark region. Note, for example, how much easier it is to analyze the
breast tissue in Fig. 3.3(b). The negative of an image can be obtained also using the
Toolbox function imcomplement:

imadjust

Recall from the
discussion in Section 2.7
that function mat2gray
can be used for
converting an image to
class double and scaling
its intensities to the
range [0, 1],
independently of the
class of the input image.

lowIn highIn

lowOut

highOut

lowIn highInlowIn highIn

gamma � 1 gamma � 1 gamma � 1

ba c

FIGURE 3.2
The mappings
available in
function
imadjust.

106 Chapter 3 Intensity Transformations and Spatial Filtering

ba c
ed f

FIGURE 3.3
(a) Original digital
mammogram.
(b) Negative
image. (c) Result
of expanding
the intensities in
the range [0.5,
0.75]. (d) Result
of enhancing
the image with
gamma = 2.
(e) and (f) Results
of using function
stretchlim as an
automatic input
into function
imadjust.
(Original image
courtesy of G. E.
Medical
Systems.)

g = imcomplement(f);

We obtained Fig. 3.3(c) using the command

>> g2 = imadjust(f,[0.5 0.75],[0 1]);

which expands the gray scale interval between 0.5 and 0.75 to the full [0,  1] range.
This type of processing is useful for highlighting an intensity band of interest. Finally,
using the command

>> g3 = imadjust(f,[],[],2);

produced a result similar to (but with more gray tones than) Fig. 3.3(c) by compressing
the low end and expanding the high end of the gray scale [see Fig. 3.3(d)].

Sometimes, it is of interest to be able to use function imadjust “automatically,”
without having to deal with the low and high parameters discussed above. Function
stretchlim can be used for this purpose; its basic syntax is

LowHigh = stretchlim(f)

where LowHigh is a two-element vector of a lower and upper limit that can be used
to achieve contrast stretching (see the following section for a definition of this term).

imcomplement

stretchlim

3.2 Intensity Transformation Functions 111

Function narginchk can be used in the body of a function to check if the correct
number of arguments was passed. The syntax is

msg = narginchk(minargs,maxargs)

This function returns the message Not enough input arguments if the number of
input arguments is less than minargs or Too many input arguments if the number
is greater than maxargs. Program execution stops in either of these two cases. If the
number is between minargs and maxargs (inclusive), narginchk does nothing.

It is useful to be able to write functions in which the number of input and/or
output arguments is variable. For this, we use varargin and varargout. For example,

function [varagout] = myFunction(varargin)

accepts a variable number of inputs into myFunction and returns a variable number
of outputs. This type of formulation is useful when the number of inputs depends on
parameters chosen by the user and in which the number of outputs depends on the
inputs provided for a given set of choices. For example, a function that computes
various features of a region would require different inputs for different features and
the outputs would depend on which features were specified. The following custom
function illustrates the advantages of being able to provide a variable number of
inputs. Variable outputs are treated in a similar manner.

A Custom Function for Intensity Transformations

In this section we write a function that computes the following transformation
functions: negative, log, gamma, and contrast stretching. The function can also perform
user-specified transformations. These transformations were selected because we will
need them later and also to illustrate several of the concepts discussed thus far in the
book. In writing this function we used function tofloat, introduced in Section 2.8.

Observe our use of several local functions in the body of the custom function
intensityTransformations. Note also how the various input options are formatted
in the Help section of the code, how a variable number of inputs is handled, how
error checking is interleaved in the code, and how the class of the output image
is matched to the class of the input. Keep in mind when studying this code that
varargin is a cell array, so its elements are selected by using curly braces.

function g = intensityTransformations(f,method,varargin)
%intensityTransformations Grayscale image intensity transformations.
% G = intensityTransformations(F,'neg') computes the negative of the
% input image F.
%
% G = intensityTransformations(F,'log',C,CLASS) computes C*log(1 + F)
% and multiplies the result by (positive) constant C. If the last
% parameters is omitted, C defaults to 1. Because the log is used
% frequently to display Fourier spectra, parameter CLASS offers the
% option to specify the class of the output as 'uint8' or 'uint16'. If
% parameter CLASS is omitted, the output is of the same class as the
% input.

narginchk

Both varargin and
varargout are cell
arrays.

varargout

varargin

intensityTran...

118 Chapter 3 Intensity Transformations and Spatial Filtering

EXAMPLE 3.4 : Computing and plotting image histograms.

We discussed in Section 2.10 the four principal ways to plot histograms in MATLAB:

•	 Default plot by typing imhist at the prompt.
•	 Bar plot of h using function bar.
•	 Stem plot of h using function stem.
•	 Plot of h using function plot.

Figures 3.7(b)–(f) illustrate these four manners of plotting a histogram for the image in Fig. 3.7(a).
Figure 3.7(c) is a copy of the code we used to generate Fig. 3.7(d). You will recognize the form of these
commands as those we used to generate Fig. 2.12(b), but using a different color scheme. The details of
how we generated the other plots in Fig. 3.7 are explained in the discussion of Fig. 2.12.

HISTOGRAM EQUALIZATION

Histogram equalization is one of the most effective intensity transformations for
image enhancement. In histogram equalization, we think of intensities and their
histograms as discrete random variables and their discrete probability distributions,
respectively. The histogram equalization transformation of a specific random
intensity value rk into a corresponding random intensity value sk is defined as a
scaling constant, K, times the cumulative distribution function (CDF) of the random
variable r, evaluated at rk :

	 s K CDF rk k= ⋅ () 	 (3-8)

We know from basic probability that

	 CDF r p rk j
j

k

() ()=
=
∑

0

	 (3-9)

Therefore, with reference to Eq. (3-2), we have that histogram equalization is imple-
mented using the transformation function

	 s T r K p rk k j
j

k

= =
=
∑() ()

0

	 (3-10)

Constant K scales the output to the intensity scale of the input. When r is floating
point in the range r ∈[,],0 1 we set K = 1. When r represents integer-valued intensities,
its values are in the range r L∈ −[,]0 1 and we set K L= − 1, where L is the number
of intensity levels (e.g., 256 for an uint8 image).

When s and r are continuous random variables, it is not difficult to show that using
integration instead of a sum in Eq. (3-10) results in an output intensity distribution
that is perfectly uniform, regardless of the intensity distribution of the input [see
Gonzalez and Woods [2018]). A uniform distribution is flat over the full intensity
scale. This means that all intensities in the output image would be equally likely
to occur. This implies in turn that the output intensities would have a much wider
dynamic range. In an image, this translates into increased contrast and usually an

3.3 Histogram Processing 119

ba
dc
fe

FIGURE 3.7 (a) A transmission electron microscope image of liver cells. (b) Default histogram obtained by typing
imhist(f) at the prompt. (c) Code used to generate the bar graph on the right. (d) Bar graph obtained using the
code on the left. (e) Stem plot. (f) Result of plotting h directly using function plot. (Image courtesy of NIH.)

f = imread('liver-cells-gray.tif');
h = imhist(f,30)/numel(f);
horz = linspace(0,255,30);
figure, bar(horz,h,...
 'FaceColor',[0 106 78]/255,...
 'EdgeColor', [0 212 156]/255,...
 'LineWidth',0.75)
ax = gca;
ax.Color = [190 228 223]/255;
ax.YTick = 0:max(h(:))/4:max(h(:));
ax.FontName = 'Times Ten';
ax.FontSize = 8;

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

0 50 100 150 200 250

0.1481

0.1111

0.0741

0.0370

0

0 50 100 150 200 250

0.1481

0.1111

0.0741

0.0370

0M

0.1481

0.1111

0.0741

0.0370

0
0 50 100 150 200 250

f = imread('liver-cells-gray.tif');
h = imhist(f,30)/numel(f);
horz = linspace(0,255,30);
figure, bar(horz,h,...
 'FaceColor',[0 106 78]/255,...
 'EdgeColor', [0 212 156]/255,...
 'LineWidth',0.75)
ax = gca;
ax.Color = [190 228 223]/255;
ax.YTick = 0:max(h(:))/4:max(h(:));
ax.FontName = 'Times Ten';
ax.FontSize = 8;

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

0 50 100 150 200 250

0.1481

0.1111

0.0741

0.0370

0

0 50 100 150 200 250

0.1481

0.1111

0.0741

0.0370

0M

0.1481

0.1111

0.0741

0.0370

0
0 50 100 150 200 250

f = imread('liver-cells-gray.tif');
h = imhist(f,30)/numel(f);
horz = linspace(0,255,30);
figure, bar(horz,h,...
 'FaceColor',[0 106 78]/255,...
 'EdgeColor', [0 212 156]/255,...
 'LineWidth',0.75)
ax = gca;
ax.Color = [190 228 223]/255;
ax.YTick = 0:max(h(:))/4:max(h(:));
ax.FontName = 'Times Ten';
ax.FontSize = 8;

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

0 50 100 150 200 250

0.1481

0.1111

0.0741

0.0370

0

0 50 100 150 200 250

0.1481

0.1111

0.0741

0.0370

0M

0.1481

0.1111

0.0741

0.0370

0
0 50 100 150 200 250

120 Chapter 3 Intensity Transformations and Spatial Filtering

enhancement of details hidden in dark regions of the image. Because this result is
independent of the intensity distribution of the input, histogram equalization is an
automatic enhancement tool. When the intensities are discrete, we can no longer
guarantee that the output histogram will be uniform. However, as the next example
shows, even an approximation can yield dramatic improvements in the appearance of
an image. The fact that histogram equalization depends only on the input histogram,
which is simple to compute, makes equalization a widely-used tool in digital image
processing.

The Toolbox function that implements histogram equalization is histeq:

g = histeq(f,n)

where f is the input image and n is the number of intensity levels specified for the
output image. If n is equal to L, then histeq implements histogram equalization
directly. If n is less than L, then histeq attempts to distribute the levels so that
they will approximate a flat histogram. Unlike function imhist, the default value in
histeq is n = 64. For the most part, we use the maximum possible number of levels
for n because this produces a true implementation of the histogram-equalization
method just discussed.

EXAMPLE 3.5 : 	 Histogram equalization.

The image in Fig. 3.8(a) is a partial view of the NASA Phoenix Lander craft on
the surface of Mars. The dark appearance of this image was caused by the camera
adjusting itself to compensate for strong reflections from the sun. The distribution of
intensities is toward the dark shades of gray, so the image histogram in Fig. 3.8(c) is
biased toward the lower end of the intensity scale. This type of histogram tells us that
the image is a candidate for histogram equalization, which will spread the histogram
over the full range of intensities, thus increasing visible detail:

>> f = imread('phoenix-lander.tif');
>> figure, imshow(f); % Fig. 3.8(a).
>> g = histeq(f,256);
>> figure, imshow(g) % Fig. 3.8(b).
>> figure, imhist(f) % Fig. 3.8(c).
>> figure, imhist(g) % Fig. 3.8(d).

The result of histogram equalization in Fig. 3.8(b) confirms the statement made
earlier that histogram equalization often brings out detail not visible in the original
image. Visible detail in this image is much improved over the original. As expected,
the histogram of this image [see Fig. 3.8(d)] spans the full intensity scale. Although
this histogram is far from flat, the discrete histogram equalization method did an
excellent job of enhancing visible detail.

As noted in Eqs. (3-8) and (3-10), the histogram equalization transformation
function is the cumulative sum of the probability distribution. We compute the
cumulative sum using function cumsum:

>> hnorm = imhist(f)/numel(f); % Normalized histogram.

histeq

3.3 Histogram Processing 123

ba
dc

FIGURE 3.10
(a) A dark chest
X-ray image.
(b) Golden
histogram retrieved
from storage.
(c) Image processed
to match the golden
histogram.
 (d) Actual
histogram of the
image in (c).
(Original image
courtesy of Dr.
Thomas R. Gest,
University of
Michigan Medical
School.)

The following custom functions allow you to generate histograms that can be
used with function histeq in the manner described in the preceding example. You
can find these functions in your Support Package.

function h = fun2hist(fun,S)

This function converts a discrete function contained in vector fun, to a histogram, h.
The function

function h = manualhist(c,nb,np,plotmode)

allows the user to specify a shape interactively and then generates a histogram, h,
from the specified shape.

The Toolbox provides another function for adjusting the histogram of an image to
match the histogram of a reference image. The basic syntax is

g = imhistmatch(f,refim,nbins)

where f is the input image, refim is the reference image, and nbins is such that the
output image has no more than nbins discrete levels.

EXAMPLE 3.7 : 	 Using function imhistmatch.

Figure 3.11(a) is the same as Fig. 3.10(a). In this example, we work with function imhistmatch to
enhance this image using the histogram of the reference image in Fig. 3.11(b), which is from a different
subject. Observe that the histogram of the reference image has a much better intensity distribution. We
obtained the results in Fig. 3.11 using the following commands:

>> f = imread('chestXray-dark.tif');

fun2hist

manualhist

imhistmatch

124 Chapter 3 Intensity Transformations and Spatial Filtering

>> figure, imshow(f) % Fig. 3.11(a).
>> refim = imread('chestXray2-cropped.tif');
>> figure, imshow(refim) % Fig. 3.11(b).
>> g = imhistmatch(f,refim,256);
>> figure, imshow(g) % Fig. 3.11(c).
>> figure, imhist(f) % Fig. 3.11(d).
>> figure, imhist(refim)% Fig. 3.11(e).
>> figure, imhist(g) % Fig. 3.11(f).

As Fig. 3.11(c) shows, the quality of the enhancement is not quite as good as the result we obtained in
Fig. 3.10(c), but it is a considerable improvement over the original, dark image, considering that the
reference image is from a subject with a totally different anatomy. The histograms in the second row
of the figure show that function imhistmatch transformed the original histogram so that its shape was
biased toward the light end of the intensity scale, which is the dominant characteristic of the histogram
of the reference image.

ADAPTIVE HISTOGRAM EQUALIZATION

Image Processing Toolbox function adapthisteq performs contrast-limited adaptive
histogram equalization. Unlike the methods discussed in the previous two sections,

0 50 100 150 200 250 0 50 100 150 200 2500 50 100 150 200 250

ba c
ed f

FIGURE 3.11 (a) Dark chest X-ray image. (b) Reference image from a different subject. (c) Result of using function
imhistmatch. (d)–(f) Histograms of the images in the first row. (Image (a) courtesy of Dr. Thomas R. Gest,
University of Michigan Medical School. Image (b) courtesy of Dr. David R. Pickens, Vanderbilt University.)

3.3 Histogram Processing 121

>> cdf = cumsum(hnorm);
>> r = linspace(0,1,256); % 256 values in the range [0,1].
>> figure, plot(r,cdf); % Fig. 3.9.

Because we normalized the histogram, we used K = 1 in Eq. (3-10). The
transformation function in Fig. 3.9 shows that the intensities in the lower end of the
intensity scale for the input image were spread out, while the intensities in the higher
end were compressed to a much narrower range. This agrees with the shape of the
resulting histogram in Fig. 3.8 (d).

HISTOGRAM MATCHING

There are applications that require that images be processed so that their histograms
match a target shape. For example, a security imaging system may be calibrated
for a specified level of ambient illumination. Images acquired during periods when
the illumination changes often can be enhanced by processing them so that their
histograms match a specified base histogram. This type of processing is helpful for
image comparison. Another application often requiring this type of processing is
medical imaging, in which an imaging system is calibrated based on a “golden” image

cumsum

ba
dc

FIGURE 3.8
(a) Image from
the Phoenix
Lander. (b) Result
of histogram
equalization.
(c) Histogram
of (a).
(d) Histogram
of (b). (The colors
in (c) and (d)
were
generated using
the approach
discussed in
Section 2.10.
Interest here
is on the
histogram shapes,
so we do not show
the bin height
values.
(Original image
courtesy of
NASA.)

0 50 100 150 200 250 0 50 100 150 200 250

126 Chapter 3 Intensity Transformations and Spatial Filtering

ba c

FIGURE 3.12
(a) Original image.
(b) Result of
histogram
equalization.
(c) Result of
adaptive histogram
equalization.

3.4	LINEAR SPATIAL FILTERING

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood processing con-
sists of: (1) selecting a point (,)x y in the image; (2) performing an operation that
involves only the pixels in a predefined neighborhood about (,);x y (3) letting the
result of that operation be the “response” of the process at that point; and (4) repeat-
ing the process for every point in the image. Moving the neighborhood with respect
to its center point creates new neighborhoods, one for each pixel in the input image.
The two principal terms used to identify this operation are neighborhood processing
and spatial filtering, with the second term being more prevalent. As explained in the
following section, if the computations performed on the pixels of the neighborhoods
are linear, the operation is called linear spatial filtering; otherwise it is called non-
linear spatial filtering. We discuss linear spatial filtering in this section and nonlinear
spatial filtering in Sections 3.5 and 5.3.

Linear filtering has its roots in the use of the Fourier transform for signal
processing in the frequency domain, the topic of Chapter 4. In the present chapter,
we are interested in filtering operations that are performed directly on the pixels of
an image. Use of the term linear spatial filtering differentiates this type of process
from frequency domain filtering. The linear operations of interest in this section
consist of multiplying each pixel in a neighborhood by a numerical coefficient and
summing the results to obtain the response at each point (,).x y If the neighborhood
is of size m n× , then mn coefficients are required. The coefficients are arranged as
a matrix, called a kernel, mask, template, or window, with the term kernel being the
most prevalent. For reasons that will become obvious shortly, the terms convolution
filter and convolution kernel also are used.

Figure 3.13 illustrates the mechanics of linear spatial filtering. The process
consists of moving the center of the filter kernel w, from point to point in an
image, f. The response of the filter at a point (,)x y is the sum of products of the
filter kernel coefficients and the corresponding neighborhood pixels of (,)x y in the
region spanned by the kernel. For a kernel of size m n× , we assume typically that
m a= 2 1+ and n b= 2 1+ where a and b are nonnegative integers. All this says
is that our principal focus is on kernels of odd sizes. Although it certainly is not a
requirement, working with odd-size kernels is more intuitive because they have an
unambiguous center point that has integer coordinates.

3.4 Linear Spatial Filtering 133

Fourier transform of the filtered frequency-domain function. The result will be a
blurred spatial domain function.

Because of the duality between the spatial and frequency domains, we can obtain
the same result in the spatial domain by convolving the equivalent spatial domain
filter kernel with the input spatial function. The equivalent spatial filter kernel is the
inverse Fourier transform of the frequency-domain filter transfer function. Figure
3.16(b) shows the spatial filter kernel corresponding to the frequency domain filter
transfer function in Fig. 3.16(a). The ringing characteristics of the kernel are evident
in the figure. A central theme of digital filter design theory is obtaining faithful (and
practical) approximations to the sharp cut off of ideal frequency domain filters while
reducing their ringing characteristics in the spatial domain.

Highpass, Bandreject, and Bandpass Filters

Spatial and frequency domain linear filters are classified into four broad categories:
lowpass, highpass, bandreject, and bandpass filters. We introduced lowpass filters in
the previous section. Here, we focus on the other three categories, which, as it turns
out, are all derivable from lowpass filters.

Figure 3.17(a) is the same as Fig. 3.16(a); it shows the transfer function of a 1-D
ideal lowpass filter in the frequency domain. We know that lowpass filters attenuate
or delete high frequencies while passing low frequencies. A highpass filter behaves
in exactly the opposite manner. As Fig. 3.17(b) shows, a highpass filter transfer
function deletes or attenuates all frequencies below a cut-off value, u0, and passes all
frequencies above this value. From Figs. 3.17(a) and (b), we see that a highpass filter
function can be obtained by subtracting a lowpass function from 1. This operation is
in the frequency domain. As mentioned earlier, a constant in the frequency domain
is an impulse in the spatial domain. Thus, we obtain a highpass filter kernel in the
spatial domain by subtracting a lowpass filter kernel from a unit impulse with the
same center as the kernel. An image filtered with this kernel is the same as an image
obtained by subtracting a lowpass-filtered image from the original image.

Figure 3.17(c) shows a bandreject filter transfer function. This function can be
constructed from the sum of a lowpass and a highpass filter function with different
cut-off frequencies. The bandpass filter transfer function in Fig. 3.17(d) can be
obtained by subtracting the bandreject function from 1, which, as you know, is a unit
impulse in the spatial domain. Sometimes bandreject filters are referred to as notch

0u
u

Passband

frequency

Stopband

Frequency domain

1

x

Spatial domain

0uba

FIGURE 3.16
(a) 1-D ideal low-
pass filter transfer
function in the
frequency domain.
(b) Corresponding
filter kernel in the
spatial domain.

138 Chapter 3 Intensity Transformations and Spatial Filtering

>> f8 = im2uint8(f);
>> g8r = imfilter(f8,w,'replicate');
>> figure, imshow(g8r,[])

Figure 3.18(f) shows the result of these operations. Here, when the output was converted to the class
of the input (uint8) by imfilter, clipping caused some data loss. The reason is that the coefficients of
the kernel did not sum to the range [0, 1], resulting in filtered values outside the [0, 255] range. Thus, to
avoid this difficulty, we have the option of normalizing the coefficients so that their sum is in the range
[0, 1] (in the present case we would divide the coefficients by 312 so the sum would be 1), or converting
the image to floating point. However, even if the second option were used, the data usually would still
have to be normalized to a valid image format at some point (e.g., for storage). Either approach is valid;
the key point is that data ranges have to be kept in mind to avoid unexpected filtering results.

FILTER KERNELS

The result of spatial convolution or correlation depends on the kernel size and the
nature of its elements. In this section we discuss several properties of filter kernels
and list the standard kernels supported by the Toolbox.

How Spatial Filter Kernels Are Constructed

There are three basic approaches for constructing spatial filter kernels.

1.	 Formulate a kernel based on mathematical properties. For example, an
image-blurring kernel can be based on computing the average of pixels in
neighborhoods of an image. Computing an average is analogous to integration.
Conversely, a kernel based on computing the local (neighborhood) derivatives
of an image sharpens the image.

2.	 Sample a 1-D spatial function that has a desired property and then generate
a 2-D circularly-symmetric kernel by rotating the function about its center.
Analogously, we can sample a 2-D spatial function whose shape has a desired
property and set the 2-D kernel equal to the samples.

3.	 Design a spatial filter with a specified frequency response. This approach
falls in the area of digital filter design. A 1-D spatial filter with the desired
response is obtained (typically using filter design software). The 1-D filter
values can be expressed as a vector, v, and a 2-D separable kernel can then
be obtained using the methods discussed in the following section. Alterna-
tively, the 1-D filter function can be rotated about its origin to generate a 2-D
kernel that approximates a circularly-symmetric function.

Separable Filter Kernels

A 2-D function G x y(,) is said to be separable if it can be written as the product of
two 1-D functions: G x y G x G y(,) () ().= 1 2 A spatial filter kernel is a matrix and a
separable kernel is a matrix that can be expressed as the outer product of two vectors.
For example, the 2 3× kernel

3.4 Linear Spatial Filtering 147

>> r = ceil(6*sig)
r =
 62
>> r = r − 1;
>> w2 = fspecial('gaussian',r,sig);
>> g2 = imfilter(f,w2,'replicate');
>> figure, imshow(g2) % Fig. 3.19(c).

As Fig. 3.19(c) shows, setting sig to 1% of the image height resulted in significant blurring, but all
objects are still recognizable. Finally, we try

>> sig = 0.05*M;
r = ceil(6*sig)
r =
 308
>> r = r − 1;
>> w3 = fspecial('gaussian',r,sig);
>> g3 = imfilter(f,w3,'replicate');
>> figure, imshow(g3) % Fig. 3.19(d).

As Fig. 3.19(d) shows, a kernel of 0.5% of the image height resulted in extreme blurring. Mild blurring
is used routinely for noise reduction, while extreme blurring (typically combined with thresholding) is
used to extract dominant regions of an image.

EXAMPLE 3.11 : Using functions fspecial and imfilter for image sharpening.

We illustrate the use of functions fspecial and imfilter for image sharpening by enhancing an
image with a Laplacian filter kernel. We also discuss some important aspects of using imfilter with
integer-class images.

Figure 3.20(a) is a mildly blurred image of the North Pole of the moon. Enhancement in this case
consists of sharpening the image, while preserving as much of its gray tonality as possible. We use
function fspecial to obtain a Laplacian kernel:

ba c d

FIGURE 3.19 (a) Test pattern of size 1024 1024× pixels. (b)–(d) Results of using functions fspecial and imfilter to
lowpass filter the image in (a) with Gaussian kernels of various sizes, as explained in the text.

148 Chapter 3 Intensity Transformations and Spatial Filtering

>> w = fspecial('laplacian',0)
w =
 0.0000 1.0000 0.0000
 1.0000 −4.0000 1.0000
 0.0000 1.0000 0.0000

Note that this kernel is of class double.
Next we apply w to the input image, [Fig 3.20(a)], which is of class uint8:

>> f = imread('moon-blurry.tif');
>> figure, imshow(f) % Fig. 3.20(a).
>> g1 = imfilter(f,w,'replicate');
>> imshow(g1,[]) % Fig. 3.20(b).

Figure 3.20(b) shows the resulting image. This result looks reasonable, but it has a problem: all its pixels
are positive. Because the coefficients of the kernel sum to zero, we know, as mentioned earlier, that

ba
dc

FIGURE 3.20
(a) Image of the
North Pole of the
moon.
(b) Laplacian
filtered image
obtained with an
input image of
class uint8.
(c) Laplacian
filtered image
obtained using
a floating point
input image.
(d) Enhanced
result obtained
by subtracting (c)
from (a).
(Original
image courtesy of
NASA.)

3.4 Linear Spatial Filtering 153

is the same as filtering with an impulse minus filtering with a lowpass kernel. But
filtering with an impulse yields the image itself, so the net result is the image minus
a lowpass-filtered version of that image.

Unsharp Masking Filters

We discussed in Examples 3.11 and 3.12 how to use the Laplacian for image
sharpening. A process for the same purpose that has been used since the 1930s
by the printing and publishing industry to sharpen images is based on subtracting
an unsharp (smoothed) version of an image from the original image. This process,
called unsharp masking, consists of the following steps:

1.	 Blur a copy of the original image.
2.	 Subtract the blurred image from the original (the resulting difference is

called the mask.)
3.	Add the mask to the original.

As indicated in Table 3.3, subtracting a lowpass kernel from an impulse yields a
highpass kernel. This implies that filtering an image with a lowpass kernel and
subtracting the result from the original is equivalent to highpass filtering, which
sharpens an image (but reduces gray-level tonality). Thus, the mask in Step 2 above
is just a sharpened (highpass-filtered) image. Adding the mask to the original image
(Step 3) recovers the tonality lost by highpass filtering.

In earlier releases of MATLAB, the Toolbox function fspecial had an option for
performing unsharp masking. This option has been replaced in favor of a separate
function called imsharpen, which has the following syntax:

g = imsharpen(f,Name1,Value1,Name2,Value2,...)

In case you are
wondering why a high-
pass (sharpened) image
is constructed from a
blurred image, recall
that unsharp masking
originated in the analog
photography field, which
had no easy way to
sharpen an image
directly.

imsharpen

ba c

FIGURE 3.24 (a) Zone plate image. (b) Result of highpass filtering with kernel w1HP2D (observe the slight distortion
of the concentric rings). (c) Result of highpass filtering with kernel w2HP2D.

3.5 Nonlinear Spatial Filtering 155

This result is not appreciably different from the original. The reason is that increasing the Threshold
parameter allowed significantly fewer pixels to be enhanced. This parameter can be used to exclude
intensities in an image from being sharpened. An example where this could be helpful is in images with
large dark noisy areas, which would otherwise be sharpened and potentially could become more visible.

3.5	NONLINEAR SPATIAL FILTERING

Nonlinear spatial filtering is based on neighborhood operations also and the
mechanics of sliding the center point of an m n× rectangle through an image
are the same as discussed in the previous section for linear filtering. However,

‑whereas linear spatial filtering is based on computing the sum of products (which
is a linear operation), nonlinear spatial filtering is based, as the name implies, on

‑nonlinear operations involving the pixels in a neighborhood being processed. For
example, letting the response at a point be equal to the maximum pixel value in
its neighborhood is a nonlinear filtering operation. Another difference is that the
concept of a kernel is not as prevalent in nonlinear processing. The idea of filtering
carries over, but the filter should be visualized as a nonlinear function that operates
on the pixels of a neighborhood and whose response constitutes the result of the
nonlinear operation.

ba c
ed f

FIGURE 3.25 (a) Original, soft-tone image of size 496 600× pixels. (b) Result of using function imsharpen with its
default values. (c) Result using a Radius equal to 5. (d) Result using a Radius of 5 and an Amount of 1.5. (e) Same
as (d) but with an Amount of 2. (f) Same as (e), but with a Threshold of 0.5.

3.5 Nonlinear Spatial Filtering 157

>> g = colfilt(f,[m n],'sliding',maxfilt);

Note that we called maxfilt without @ because maxfilt had already been defined
as a function handle. If, instead, maxfilt had been a regular function, we would have
used @maxfilt as the rightmost input argument in colfilt. Also, keep in mind that
A always has mn rows, but the number of columns is variable. Therefore maxfilt (or
any other function handle passed to colfilt) has to be able to cope with a variable
number of columns. The syntax max(A,[],1) does precisely this.

The filtering process in this case consists of computing the maximum of all pixels
in every m n× neighborhood. As noted earlier, the key requirements are that the
function operate on the columns of A, no matter how many there are, and return a
row vector containing the result for all individual columns (our function maxfilt
does this because of the syntax we used in function max). Function colfilt then
takes those results and rearranges them to produce the output image, g.

Finally, we remove the padding we inserted using padarray (as noted earlier,
colfilt removes its own padding before outputting g):

>> [M,N] = size(f); % Size of padded f.
>> g = g(1:M − 2*m,1:N − 2*n);

so that g is of the same size as f.
The following code illustrates the concepts in the preceding discussion, using an

image corrupted by pepper noise:

>> % Read uint8 dental Xray image corrupted by pepper noise.
>> f = imread('dentalXray-pepper-noise.tif');
>> figure, imshow(f) % Fig. 3.26(a).

>> % Construct the max filter.
>> maxfilt = @(A) max(A,[],1);

>> % Neighborhood size.
>> m = 3; n = 3;

>> % Manually pad the input image.
>> fp = padarray(f,[m n],'replicate');

>> % Apply the max filter to the padded image.
>> g = colfilt(fp,[m n],'sliding', maxfilt);

See the margin note
in the next section
indicating that max
filters implemented
using morphology (the
topic of Chapter 10) run
much faster and use less
memory.

We discuss pepper noise
and other noise models
in Section 5.2.

ba

FIGURE 3.26
(a) Image
corrupted by
pepper noise.
(b) Result of
performing max
filtering using
function colfilt.

3.6 Using Fuzzy Sets for Intensity Transformations and Spatial Filtering 185

EXAMPLE 3.19 : Using fuzzy functions to implement fuzzy contrast enhancement.

Figure 3.36(a) shows an image, f, whose intensities span a narrow range of the gray scale, as the histogram
in Fig. 3.37(a) (obtained using imhist) shows. The net result is an image with low contrast.

Figure 3.36(b) is the result of using histogram equalization to increase image contrast. As the
histogram in Fig. 3.37(b) shows, the entire gray scale was spread out but, in this case, the spread was
excessive in the sense that contrast was increased, but the result is an image with an “over exposed”
appearance. For example, the details in Professor Einstein’s forehead and hair are mostly lost.

Figure 3.36(c) shows the result of the following fuzzy operations:

>> % Specify the input membership functions.
>> udark = @(z) 1 − sigmamf(z,0.35,0.5);
>> ugray = @(z) triangmf(z,0.35,0.5,0.65);
>> ubright = @(z) sigmamf(z,0.5,0.65);

>> % Plot the input membership functions. See Fig. 3.35(a).
>> fplot(udark,[0 1],20)
>> hold on

ba c

FIGURE 3.36
(a) Low-contrast
image.
(b) Result of
histogram
equalization.
(c) Result of
fuzzy, rule-based
contrast
enhancement.

0 63 127 191 255

0 50 100 150 200 250
0 63 127 191 255

0 50 100 150 200 250
0 63 127 191 255

0 50 100 150 200 250

ba c

FIGURE 3.37 Histograms of the images in Fig. 3.36(a), (b), and (c), respectively.

3.6 Using Fuzzy Sets for Intensity Transformations and Spatial Filtering 191

ba c

FIGURE 3.41 (a) Image from a CT scan of a human head. (b) Result of fuzzy spatial filtering using the membership
functions in Fig. 3.39 and the rules in Fig. 3.40. (c) Result after intensity scaling. The thin black picture borders in
(b) and (c) were added for clarity; they are not part of the data. (Original image courtesy of Dr. David R. Pickens,
Vanderbilt University.)

Summary
The material in this chapter is a foundation for numerous topics that you will encounter in subsequent
chapters. For example, we use spatial processing in Chapter 5 in connection with image restoration,
where we also take a closer look at noise reduction and noise generating functions in MATLAB. Some
of the spatial kernels that were mentioned briefly here are used extensively in Chapter 11 for edge
detection in segmentation applications. The concepts of convolution and correlation are explained again
in Chapter 4 from the perspective of the frequency domain. Conceptually, neighborhood processing
and the implementation of spatial filters will surface in various discussions throughout the book. In the
process, we will extend many of the discussions we began here and introduce additional aspects of how
spatial filters can be implemented efficiently in MATLAB.

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

3.1	 Read the image spillway.tif and enhance it to bring out details in the coastal road that are barely vis-
ible in the original image. Try enhancement techniques based on the following intensity transformations:

(a) *	log.

(b)	 gamma.

(c)	 stretch.

(d)	 Your specified transformation function.

195

4 Filtering in the
Frequency Domain

For the most part, this chapter parallels the filtering topics discussed in Chapter 3, but with all filtering done in
the frequency domain using the discrete Fourier transform. In addition to being a cornerstone of linear filtering,
the Fourier transform offers considerable flexibility in the design and implementation of filtering solutions in
areas such as image enhancement, image restoration, image data compression, and a host of other applications
of practical interest. In this chapter, the focus is on the foundation of how to perform frequency domain filtering
using MATLAB. As we did in Chapter 3, we illustrate filtering in the frequency domain using examples of
image enhancement, including lowpass filtering for image smoothing, highpass and high-frequency emphasis
filtering for image sharpening, and selective filtering for the removal of periodic interference. Although most
of the examples in this chapter deal with image enhancement, the concepts and techniques developed in the fol-
lowing sections are quite general, as illustrated by other applications of this material in Chapters 5, 9, 11, and 13.

Functions Developed in this Chapter:
paddedsize determines the minimum
padding sizes needed for filtering in the fre-
quency domain.

dftfilt performs filtering in the frequency
domain.

dftuv generates a meshgrid array for com-
puting distances used in forming filter trans-
fer functions.

lpfilter generates lowpass filter transfer
functions.

hpfilter generates highpass filter transfer
functions.

bandfilter generates bandpass and band-
reject filter transfer functions.

cnotch implements notchpass and notch-
reject filter transfer functions.

recnotch implements rectangular pass and
reject filter transfer functions.

iseven determines which elements of an
array are even numbers.

isodd determines which elements of an array
are odd numbers.

If you want to find the secrets of the universe, think
in terms of energy, frequency and vibration.

 Nikola Tesla

196 Chapter 4 Filtering in the Frequency Domain

4.1 	 THE 2-D DISCRETE FOURIER TRANSFORM

Let f x y(,) for x M= −0 1 2 1, , , ,… and y N= 0 1 2 1, , , ,… - denote a digital image of
size M N× pixels. The 2-D discrete Fourier transform (DFT) of f x y(,), denoted by
F(,),u v is given by the equation

	 F f x y e j x M y N

y

N

x

M

(,) (,) ()u v u v=
==

∑∑ - +
--

2

0

1

0

1
p 	 (4-1)

for u = 0 1 2 1, , , ,… M - and v = 0 1 2 1, , , , .… N - We could expand the exponential
term into sine and cosine functions using Euler’s formula, with the variables u and
v representing sinusoidal frequencies (x and y are summed out). The frequency
domain is the coordinate system spanned by F(,)u v with u and v as frequency
variables. This is analogous to the spatial domain studied in Chapter 3, which is the
coordinate system spanned by f x y(,), with x and y as spatial variables. The M N×
rectangular region defined by u = 0 1 2 1, , , ,… M - and v = 0 1 2 1, , , ,… N - is often
referred to as the frequency rectangle. Clearly, the frequency rectangle is of the same
size as the input image.

The inverse discrete Fourier transform (IDFT) of F(,)u v is given by

	 f x y
MN

F ej x M y N
NM

(,) (,) ()=
==
∑∑1 2

0

1

0

1

u v u v

vu

p +
--

	 (4-2)

for x = 0 1 2 1, , , ,… M - and y = 0 1 2 1, , , , .… N - Thus, given F(,),u v we can get
f x y(,) back using the IDFT. The values of F(,)u v in this equation are referred to as
the coefficients of the Fourier transform.

In some formulations of the DFT, the 1 MN term appears in front of
the transform and in others it is used in front of the inverse. MATLAB’s
implementation uses the term in front of the inverse, as shown in the preceding
equation. Because array indices in MATLAB start at 1 rather than 0, F(1,1) and
f(1,1) in MATLAB correspond to the mathematical quantities F(,)0 0 and f (,)0 0
in the transform and its inverse. In general F(i,j) = F i j(,)− −1 1 and f(i,j) =
f i j(,),− −1 1 for i M, , , ,i = 1 2 … and j N, , , , .j = 1 2 …

The value of the transform at the origin of the frequency domain, F(,),0 0 is called
the dc term or dc component of the Fourier transform. This terminology is from
electrical engineering, where “dc” signifies direct current (current of zero frequency).
It is not difficult to show that the average value of f x y(,) is equal to F(,)0 0 divided
by MN:

	 f
MN

F= 1
0 0(,) 	 (4-3)

Even if f x y(,) is a real function, its transform, F u(,),v is complex in general. We
analyze a Fourier transform visually by computing its spectrum, which is defined as

	 F R I(,) (,) (,)u v u v u v=  
2 2

1
2+ 	 (4-4)

210 Chapter 4 Filtering in the Frequency Domain

Figure 4.8 is a schematic of the preceding filtering steps. The preprocessing stage
performs the tasks of computing the padding parameters, padding the input image,
and generating a transfer function. Postprocessing typically includes cropping the
output image and converting it to the class of the input.

The filter transfer function H(,)u v in Fig. 4.8 multiplies both the real and imaginary
parts of F(,).u v If H(,)u v is real, then the phase of the result is not changed, as
you can see by noting in Eq. (4-5) that if the multipliers of the real and imaginary
parts are equal, they cancel out, leaving the phase angle unchanged. Filters with this
property are called zero-phase-shift filters. These are the only types of linear filters
considered in this chapter.

It is well known from linear system theory that, under certain mild conditions,
inputting an impulse into a linear system completely characterizes the system. When
using the techniques developed in this chapter, the response of a linear system,
including the response to an impulse, also is finite. If the linear system is a filter,
then we can completely determine the filter transfer function by observing the
filter response to an impulse. A filter characterized in this manner is called a finite-
impulse-response (FIR) filter. All the linear filters in this book are FIR filters.

A FUNCTION FOR FILTERING IN THE FREQUENCY DOMAIN

The filtering steps just described are used throughout this chapter and parts of the
next, so it will be convenient to have available a function that accepts as inputs an
image and a filter transfer function, handles all the filtering details, and outputs
the filtered, cropped image. The following function does this. It is assumed that the
transfer function has been sized appropriately, as explained in Step 4 of the filtering
procedure.

function g = dftfilt(f,H,padMethod,classOut)
%DFTFILT Performs frequency domain filtering.
% g = DFTFILT(f,H,padMethod,classOut) filters f in the frequency
% domain using the filter transfer function H. The output, g, is the
% filtered image, which is of the same size as f. padMethod and

dftfilt

Frequency domain filtering operations

Input
image

Filtered
image

(,)H u v

(,) (,)H u F uv v(,)F u v

(,)f x y (,)g x y

Filter
transfer
function

Fourier
transform

Inverse
Fourier

transform

Pre-
processing

Post-
processing

FIGURE 4.8
Steps for
filtering an image
in the frequency
domain.

4.3 Filtering in the Frequency Domain 211

% classOut are explained below. Any intermediate arguments that are
% not specified should be replaced by []. For example, if classOut is
% specified but padMethod is not, we use g = dftfilt(f,H,[],classOut).
% Non-specified arguments are replaced by their default values.
%
% Valid values of classOut are:
%
% 'same' The output will be of the same class as the input.
%
% 'floating' The output will be floating point of class double. This
% is the default.
%
% Valid values of padMethod are:
%
% 'zeros' Pads the input image with 0s using the 'post' option in
% the Toolbox function padarray. This is the default.
% 'symmetric' Pads the image using the 'symmetric' and 'post' options
% in the Toolbox function padarray
% 'replicate' Pads the image using the 'replicate' and 'post' options
% in the Toolbox function padarray.
% 'circular' Pads the image using the 'circular' and 'post' options
% in the Toolbox function padarray.
%
% DFTFILT automatically pads f to be the same size as H. Both f and H
% must be real. H must be an uncentered, symmetric filter transfer
% function, as illustrated in Fig. 4.2(a). (You can uncenter a
% centered transfer function using function fftshift.)

% Set Defaults. Note: Function padarray used below does not recognize a
% padvalue specified as 'zeros', which we use for notational consistency
% in the input to function dftfilt. A padvalue of 'zeros' is converted
% to the numerical zero (0);

if (nargin < 4) || isempty(classOut)
 classOut = 'floating';
end

if (nargin < 3) || isempty(padMethod) || isequal(padMethod,'zeros')
 padMethod = 0;
end

% Convert the input to floating point. Will need revertClass later.
[f,revertClass] = tofloat(f);
[M,N] = size(f);

% Pad f to the size of the transfer function, using the default or
% specified padmethod.
f = padarray(f, [size(H,1) - M, size(H,2) - N], padMethod, 'post');

% Obtain the FFT of the input image. The image was already padded to be
% of the same size as the filter transfer function.
F = fft2(f);

% Perform filtering.
g = ifft2(H.*F);

232 Chapter 4 Filtering in the Frequency Domain

RI = D <= C0 - (W/2); % Points of region inside the inner boundary of
 % the reject band are labeled 1. All other
 % points are labeled 0.

RO = D >= C0 + (W/2); % Points of region outside the outer boundary
 % of the reject band are labeled 1. All other
 % points are labeled 0.

H = tofloat(RO | RI); % Ideal bandreject transfer function.

%--%
function H = butterworthReject(D,C0,W,n)
H = 1./(1 + ((D*W)./(D.^2 - C0^2)).^(2*n));

%--%
function H = gaussReject(D,C0,W)
H = 1 - exp(-((D.^2 - C0^2)./(D.*W + eps)).^2);

EXAMPLE 4.7 : 	 Lowpass, highpass, and band filtering.

Figure 4.20 is the same zoneplate image we used in Example 3.13, which consists of concentric annular
regions whose frequencies increase as a function of increasing distance from the center. This test pattern
is very useful for showing filtering techniques that affect regions of the image based on their spatial
frequency content.

First, we show that we can get results in the frequency domain that are equivalent to the spatial
results in Example 3.13. We obtained Fig. 4.21(a) using the following commands:

>> f = imread('zoneplate.tif');
>> [M,N] = size(f);
>> % Lowpass filter the image.
>> HLP = lpfilter('butterworth',M,N,15,3);
>> gLP = dftfilt(f,HLP,'zeros');
>> figure, imshow(gLP) % Fig. 4.21(a).

This result is almost identical to the image in Fig. 3.24(b), which we obtained using spatial filtering. The
low frequencies were passed without modification and the high frequencies were attenuated. Here we
used zero padding because the image border is black.

Figure 4.21(b) is the result of using function hpfilter with the same settings as above. As expected,
the background of the filtered image is dark due to clipping of negative values by the display, as
we explained earlier in connection with Fig. 4.16. Figure 4.21(c) is the result of using the function
intensityScaling to scale the image intensities to the full intensity range. Observe how the low
frequencies were attenuated and the high frequencies were passed without modification, as we expect
from a highpass filter.

Figure 4.21(d) is the result of bandreject filtering using the commands:

>> HBR = bandfilter('butterworth','reject',M,N,30,8,3);
>> gBR = intensityScaling(dftfilt(f,HBR,'zeros'));
>> figure, imshow(gBR) % Fig. 4.21(d).

We moved the center of the filter band further out than before in order to show clearly that the mid

4.7 Bandreject, Bandpass, Notchreject, and Notchpass Filtering 233

FIGURE 4.20
Zoneplate image.

ba c
ed f

FIGURE 4.21 (a) Lowpass-filtered zoneplate image. (b) Highpass filtered image. (c) Highpass filtered image after
intensity scaling. (d) Result of bandreject filtering. (e) Result of bandpass filtering. (f) Bandpass filtered image after
intensity scaling. Compare (a) with Fig. 3.24(c).

247

5 Image Restoration and
Reconstruction

The objective of restoration is to improve a given image in some predefined sense. Although there are
areas of overlap between image enhancement and image restoration, the former is largely a subjective
process, while image restoration is for the most part an objective process. Restoration attempts to
reconstruct or recover an image that has been degraded by using a priori knowledge of the degradation
phenomenon. Thus, restoration techniques are oriented toward modeling the degradation and applying
the inverse process in order to recover the original image. This approach usually involves formulating a
criterion of goodness that yields an optimal estimate of the desired result. In this chapter we explore how
to use MATLAB and the Image Processing Toolbox to model degradation phenomena and to formulate
restoration solutions. As in Chapters 3 and 4, some restoration techniques are best formulated in the
spatial domain, while others are better suited for the frequency domain. Both methods are investigated
in the sections that follow. We conclude the chapter with a discussion on the Radon transform and its
use for image reconstruction from projections.

Functions Developed in this Chapter:
imnoise2 corrupts an image with noise of a
specified PDF and also generates the noise
pattern itself.

imnoise3 generates sinusoidal noise patterns
that can be added to an image to simulate
periodic interference.

statmoments computes an arbitrary number
of statistical central moments of an image
histogram.

histroi computes the intensity histogram of
an arbitrary region of interest (ROI).

spfilt implements spatial filtering using lin-
ear and nonlinear filters.

adpmedian performs adaptive local median
filtering.

We are all hungry and thirsty for concrete images. Abstract art will have
been good for one thing: To restore its exact virginity to figurative art.

Salvador Dali

254 Chapter 5 Image Restoration and Reconstruction

returning the row and column indices, the third form also returns the nonzero values
of A as a column vector, v.

The first form treats the matrix A in the linear index format A(:), so idx is a
column vector. This form is quite useful in image processing. For example, to find
and set to 0 all pixels in an image whose values are less than 128 we write

>> idx = find(A < 128);
>> A(idx) = 0;

We can do the same operation in one line of code using logical indexing:

>> A(A < 128) = 0;

Recall that the logical statement A < 128 returns a 1 for the elements of A that satisfy
the logical condition and 0 for those that do not. As another example, to set to 128
all pixels in the interval [64, 192] we write

>> idx = find(A >= 64 & A <= 192);
>> A(idx) = 128;

Equivalently, we could write

>> A(A >= 64 & A <= 192) = 128;

The type of indexing just discussed is used frequently throughout the book.
Like imnoise, the following function, imnoise2, corrupts an image with noise

of a specified PDF and, in addition, it generates a matrix, R, of the same size as the
input image and whose elements are from a specified PDF. In other words, imnoise2
corrupts an image with noise and also outputs the spatial noise pattern itself. The
user specifies the desired values for the noise parameters directly. For example, a
noise matrix resulting from salt-and-pepper noise has three values: 1 corresponding
to salt noise, 0 corresponding to pepper noise, and 0.5 corresponding to no noise.
This array needs to be processed further to make it useful. To corrupt an image with
this array, we find (using function find or the logical indexing illustrated above) all
the coordinates in R that have value 1 and set all the coordinates in the image to the
highest possible value (255 for an 8-bit image). Similarly, we find all the coordinates
in R that have value 0 and set the corresponding coordinates in the image to the
smallest possible intensity value (usually 0). All other pixels are left unchanged. This
process simulates the manner in which salt-and-pepper noise affects an image. The
function does this automatically to the input image, but it is important that you
understand the structure of R in case you want to use it for some other purpose.

Observe in the code for imnoise2 how the switch/case statements are kept
simple; that is, unless case computations can be implemented with a few lines of code,
they are delegated to individual, local functions appended at the end of the main
program. This clarifies the logical flow of the code. The objective is to modularize the
code as much as possible for ease of interpretation and maintenance.

See Section 2.8 regarding
logical indexing.

Note that function
imnoise2 supports
several PDFs not found
in the Toolbox function
imnoise, and vice versa.

5.2 Noise Models 255

function [fn,R] = imnoise2(f,type,a,b)
%IMNOISE2 Outputs noisy image and random matrix with given PDF.
% [Fn,R] = IMNOISE2(F,TYPE,A,B) generates a noise matrix, R, of the
% same size as input grayscale image F, whose elements are random
% numbers of the specified TYPE, with parameters A and B. The output
% noisy image is formed either by adding R to it or, in the case of
% salt and pepper, by modifying F based on the values of R, as
% explained in Section 5.2 of DIPUM3E. The noisy image Fn is of class
% double, scaled to the full range [0,1]. The input image can be of
% any valid grayscale class.
%
% Valid values for TYPE and parameters A and B are:
%
% 'uniform' Uniform random numbers in the interval (a,b). The
% default values are (0,1).
%
% 'gaussian' Gaussian random numbers with mean a and standard
% deviation b. The default values are a = 0, b = 1;
%
% 'salt & pepper' Salt and pepper random numbers of value 1 (salt)
% with probability Ps = a, and value 0 (pepper)
% with probability Pp = b. The default values are
% Ps = Pp = 0.05. The noise matrix R is assigned
% three values: R(x,y) = 1 (white), for salt noise
% at coordinates (x,y); R(x,y) = 0 (black) for
% pepper noise at coordinates (x,y); and R(x,y) =
% 0.5 for no noise at coordinates (x,y). Therefore,
% R is not simply added to an image to make it
% noisy. Instead, we assign to the image a value of
% 0 or 1 at the corresponding locations in R with
% values of 0 or 1. The image is unchanged at the
% coordinates where the values of R are 0.5.
%
% 'lognormal' Lognormal random numbers with offset a and shape
% parameter b. The defaults are a = 1 and b = 0.25.
%
% 'rayleigh' Rayleigh random numbers with parameters a and b.
% The default values are a = 0 and b = 1.
%
% 'exponential' Exponential random numbers with parameter a. The
% default is a = 1.
%
% 'erlang' Erlang (gamma) random numbers with parameters a
% and b. a must be a positive integer. The defaults
% are a = 2 and b = 5. Erlang random numbers are
% approximated as the sum of b exponential random
% numbers.
%
% To generate only a matrix R of size M-by-N whose elements are from
% any of the preceding PDFs, use the syntax
%
% [~,R] = imnoise2(ones(M,N),type,a,b)
%
% To generate a single random number from any of the preceding PDFs,
% use the syntax

imnoise2

5.2 Noise Models 261

F = zeros(M,N);

% Insert in F the impulses and their conjugates, multiplied by the
% exponentials carrying the phase values. See Eq. (5-9).
for k = 1:K
 % Fourier transform coordinates for a given impulse.
 u1 = ucenter + C(k,1);
 v1 = vcenter + C(k,2);
 % Coordinates of the conjugate.
 u2 = ucenter - C(k,1);
 v2 = vcenter - C(k,2);
 % Form the Fourier transform.
 F(u1,v1) = 1i*M*N*(A(k)/2) * exp(-1i*2*pi*(u1*B(k,1)/M ...
 + v1*B(k,2)/N));
 F(u2,v2) = -1i*M*N*(A(k)/2) * exp(1i*2*pi*(u2*B(k,1)/M ...
 + v2*B(k,2)/N));
end

% Compute the spectrum and spatial sinusoidal pattern.
S = abs(F);
r = real(ifft2(ifftshift(F)));

EXAMPLE 5.3 : 	 Using function imnoise3.

Figures 5.3(a) and (e) show the spectrum and spatial sine noise pattern generated using the following
commands:

>> M = 512;
>> N = 512;
>> Ca = [4 4];
>> [ra,~,Sa] = imnoise3(M,N,Ca);
>> ra = mat2gray(ra); % Scale to the [0,1] range.
>> Sa = imdilate(Sa,ones(3)); % Dilate the single impulse dots (see Chapter 10 regarding dilation).
>> imshow(Sa) % Fig. 5.3(a).
>> figure, imshow(ra) % Fig. 5.3(e).

As mentioned in function imnoise3, the (,)u v coordinates of the impulses are specified with respect
to the center of the frequency rectangle (see Section 4.2 for more details about the coordinates of this
center point). As you can see, a pair of conjugate impulses in the frequency domain generate a pure
sinusoidal function in the spatial domain. In Fig. 5.3(b) we added a second pair, orthogonal to the first,
further from the origin, and with a higher value of amplitude:

>> Cb = [4 4;-12 12];
>> Ab = [1,1.5];
>> [rb,~,Sb] = imnoise3(M,N,Cb,Ab);
>> rb = mat2gray(rb); % Scale to the [0,1] range.
>> Sb = imdilate(Sb,ones(3)); % Dilate the single impulse dots (see Chapter 10 regarding dilation).
>> imshow(Sb) % Fig. 5.3(b).
>> figure, imshow(rb) % Fig. 5.3(f).

As Fig. 5.3(f) shows, we now have two sine waves. The frequency of the second sine wave is three times

262 Chapter 5 Image Restoration and Reconstruction

ba dc
f he g

FIGURE 5.3 Top row: Various impulse arrangements in the frequency domain. Bottom row: Corresponding sinusoidal
spatial patterns. We dilated the sizes of the single dots in the top row to make them easier to see.

higher than the frequency of the first and the directions of the waves differ by 90°, facts that we could
have ascertained by looking at the arrangement of the two impulse pairs in Fig. 5.3(b). We used slightly
higher amplification in the second sine wave to make the figure clearer.

Similarly, the impulse pairs we used for Figs. 5.3(c) and (d) were

>> Cc = [0 32; 0 64; 16 16; 32 0; 64 0; -16 16];
>> Cd = [0 64; 0 128; 32 32; 64 0; 128 0; -32 32];

These produced eight superimposed sine waves that give the appearance of a texture pattern. The
frequency of the second set is double that of the first, so the second spatial pattern is “tighter” than the
first. We used the default amplitude and phases in both cases. Specifying a different phase would simply
shift the sine waves with respect to the origin. As an exercise, you should experiment with function
imnoise3 to gain a deeper understanding of the relationship between impulses in the frequency domain
and the spatial patterns they generate.

ESTIMATING NOISE PARAMETERS

The parameters of periodic noise typically are estimated by analyzing the Fourier
spectrum. Periodic noise produces frequency spikes that often can be detected

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 273

>> figure, imshow(fsmin) % Fig. 5.5(f).

Other solutions using spfilt are implemented in a similar manner.

ADAPTIVE SPATIAL DENOISING FILTERS

The filters discussed in the previous section are applied to an image independently
of how image characteristics vary from one location to another. In some applications,
results can be improved by using filters capable of adapting their behavior based on
the characteristics of the image in the region being filtered. As an illustration of how
to implement adaptive spatial filters in MATLAB, we consider in this section an
adaptive median filter. As before, Sxy denotes a neighborhood centered at location
(,)x y in the image being processed. The algorithm, due to Eng and Ma [2001] and
explained in more detail in Gonzalez and Woods [2018], is as follows. Let

	

z S

z
xymin

max

=

=

minimum intensity value in

maximum intensity value inn

median of the intensity values in

intensity valu
med

S

z S

z

xy

xy

xy

=

= ee at coordinates

maximum allowed size of

(,)

max

x y

S Sxy=

The adaptive median filtering algorithm uses two processing levels at each point
(,),x y denoted level A and level B:

level A:	   If z z zmin max ,< <med go to level B
		    Else, increase the size of Sxy
		   If S Sxy ≤ max, repeat level A
		   Else, output zmed

level B:	   If z z zmin max ,< <med output zxy
		   Else, output zmed

where Sxy and Smax are odd, positive integers greater than 1. Another option in the
last step of level A is to output zxy instead of the median value zmed. This produces
a slightly less blurred result, but can fail to detect salt (pepper) noise embedded in a
constant background having the same value as pepper (salt) noise.

A custom function for adaptive median filtering that we call adpmedian is included
in your Support Package. It has the syntax

f = adpmedian(g,Smax)adpmedian

274 Chapter 5 Image Restoration and Reconstruction

where g is the image to be filtered and, as defined above, Smax is an odd integer
greater than 1 that specifies the maximum allowed (square) size of the adaptive
filter window.

EXAMPLE 5.6 : 	 Adaptive median filtering.

Figure 5.6(a) shows the circuit board image corrupted by salt and pepper noise, both
with probability 0.25:

>> f = imread('circuitboard.tif');
>> g = imnoise(f,'salt & pepper',0.25);
>> figure, imshow(g)

Figure 5.6(b) is the result of “standard” median filtering:

>> f1 = medfilt2(g,[7 7],'symmetric');

This image is reasonably free of noise, but it is blurred and distorted as illustrated,
for example, by the connector fingers in the top middle of the image. On the other
hand, the command

>> f2 = adpmedian(g,7);

yielded the image in Fig. 5.6(c), which is also reasonably free of noise, but is less
distorted and less blurred than Fig. 5.6(b). For instance, the connector fingers
mentioned above are less distorted and the feed-through holes (small white circles)
are much sharper and brighter in Fig. 5.6(c) .

See Section 3.5 regarding
function medfilt2.

ba c

FIGURE 5.6 (a) Image corrupted by salt-and-pepper noise with density 0.25. (b) Result obtained using a median filter
of size 7 7× . (c) Result obtained using adaptive median filtering with Smax .= 7

276 Chapter 5 Image Restoration and Reconstruction

where noise is a random noise image of the same size as g, generated using one of
the methods we discussed in Section 5.2.

EXAMPLE 5.7 : 	 Modeling a blurred noisy image.

Figure 5.7(a) shows a grayscale image of size 534 535× pixels that we will first use to model a degradation
caused by blurring and additive noise and then use in several of the following sections to illustrate
various image restoration techniques.

Figures 5.7(b) resulted from using the following commands:

>> f = im2double(imread('chronometer-small.tif'));
>> figure, imshow(f) % Fig. 5.7(a).
>> % Generate an aggressive motion-blurring PSF.

ba
dc

FIGURE 5.7
(a) Original
image of size
534 535× pixels.
(b) Image blurred
with a PSF
obtained using
fspecial with
len = 50 pixels
and theta = 45
degrees.
(c) Gaussian noise
pattern, scaled for
display.
(d) Blurred, noisy
image.

5.7 Constrained Least Squares (Regularized) Filtering 281

is considerably better. The final result is not perfect, but considering the extensive degradation of the
original image, the restored image contains all the principal details that were lost due to degradation.

5.7	CONSTRAINED LEAST SQUARES (REGULARIZED) FILTERING

Another approach to linear restoration is constrained least squares filtering, called
regularized filtering in the Toolbox documentation. We know from Section 3.4 that
the 2-D discrete convolution of two functions f and h is

	 ((,) (,))(,)f f m n h x m y nh x y
n

N

m

M

� =
=

−

=

−

∑∑ - -
0

1

0

1

	 (5-22)

Remember, convolution
is commutative, so the
order of f and h does not
matter. The form shown
here is better suited for a
matrix formulation.

ba
dc

FIGURE 5.8
(a) Blurred, noisy
image.
(b) Result of
inverse filtering.
(c) Result of
Wiener filtering
using a constant
ratio.
(d) Result of
Wiener filtering
using
autocorrelation
functions.

292 Chapter 5 Image Restoration and Reconstruction

5.10	 IMAGE RECONSTRUCTION FROM PROJECTIONS

Thus far in this chapter we have dealt with the problem of image restoration. In this
section we focus attention on the topic of reconstructing an image from a series of
1-D projections. This area, called computed tomography (CT), is one of the most
successful commercial applications of image processing, particularly in medicine.

BACKGROUND

The foundation of image reconstruction from projections is straightforward and can
be explained intuitively. Consider the image in Fig. 5.14(a). To give physical meaning
to the following discussion, assume that this image represents a “slice” through a
section of a human body that contains a tumor (bright, circular region) embedded
in a homogeneous area of tissue (black background). Such a slice might be obtained,
for example, by passing a thin, flat beam of X-rays perpendicular to the body and
recording at the opposite end measurements proportional to the absorption of the

Computerized Axial
Tomography (CAT) is
also used to refer to CT
imaging.

Absorption profile

Beam

Detector strip Backprojection

ba
c
f g

d
h
e

FIGURE 5.14
(a) Flat region,
parallel beam
detector strip and
absorption profile.
(b) Backprojection
of absorption
profile.
(c) Beam and detec-
tor strip rotated 90°.
(d) Backprojection
of absorption
profile.
(e) Sum of (b)
and (d).
(f) Result of adding
another backprojec-
tion at 45°.
(g) Result of
adding yet another
backprojection at
135°.
(h) Result of
adding 32
backprojections
5.625° apart
(observe that the
result is blurred).

316 Chapter 5 Image Restoration and Reconstruction

Summary
The material in this chapter is a good overview of how MATLAB and Image Processing Toolbox functions
can be used for image restoration and how they can be used as the basis for generating models that help
explain the degradation to which an image has been subjected. The capabilities of the Toolbox for noise
generation were enhanced significantly by the development in this chapter of the functions imnoise2
and imnoise3. Similarly, the spatial filters available in function spfilt, especially the nonlinear filters,
are also a significant extension of Toolbox capabilities in this area. These functions are perfect examples
of how relatively simple it is to incorporate MATLAB and Toolbox functions into new code to create
applications that enhance the capabilities of an already large set of existing tools. Our treatment of
image reconstruction from projections covers the principal functions available in the Toolbox for deal-
ing with projection data.

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

5.1	 Read the image testpattern512.tif and do the following:

(a) *	Fix the mean at 0.25 and add four levels of Gaussian noise to the image by varying the standard
deviation. The four levels should be such that the noise appears: (1) mild (you can tell the noise is
there, but it is barely perceivable); (2) intermediate (the noise is definitely present, but all the image
features are still clearly visible); (3) heavy (the noise is objectionable, causing some of the image fea-
tures to be obscured by the noise); and (4) extra heavy (the noise dominates the image; most of the
smaller and light features in the image are obscured by noise). For comparisons of your results to be
meaningful, you should scale the image to the full range [0, 1], using, for example, the custom function
intensityScaling. Show all four results and list the values of standard deviation you used. Explain
why image details begin to disappear as the noise level increases.

(b) *	In (a), as the noise increases, the scaled images get darker. Explain the reason why this is so.

(c)	 Repeat the four levels of noise outlined in (a) using uniform noise [the parameters to specify are a
and b in Eq. (5-13)]. Try to make your images appear as close as possible to their Gaussian counter-
parts in (a).

(d)	 The images in (c) will have higher contrast than their Gaussian counterparts in (a). Explain why.

5.2	 Read the image sombrero-galaxy-noisy.tif. You are told the noise that corrupted the image had zero
mean.

(a) *	Estimate the value of the noise standard deviation in the range [0,255]. (Hint: Consider using a region
of interest that is in a mid-gray region with a low intensity gradient across it.)

(b)	 Determine which of the PDFs in Table 5.1 is closer to the PDF of our noisy image. Explain how you
arrived at your conclusion.

5.3	 In the following denoising experiments, use any spatial filtering method of your choice, except median
filtering. The overall intensity of the restored image should be visually close to the original image,
polymercell.tif, and the size of the filtering neighborhood should be as small as possible, but be ca-
pable of eliminating all the salt and/or pepper noise.

(a) *	Read the image polymercell-pepper.tif and restore it using spatial filtering.

321

6 Geometric Transformations
and Image Registration

Geometric transformations modify the spatial relationships between pixels in an image. The image
can be made larger or smaller. It can be rotated, shifted, or otherwise stretched in a variety of ways.
Geometric transformations are used to create thumbnail views, adapt digital video from one playback
resolution to another, correct distortions caused by viewing geometry, and align multiple images of the
same scene or object.

In this chapter we explore the central concepts behind the geometric transformation of images,
including geometric coordinate mappings, image interpolation, and inverse mappings. We show how to
apply these techniques using Image Processing Toolbox functions and we explain underlying Toolbox
conventions. We conclude the chapter with a discussion of image registration, the process of aligning
multiple images of the same scene or object for the purpose of visualization or quantitative comparisons.

Functions Developed in this Chapter:
geotrans provides an easy way to make
common transformations like rotation, scale,
translation, reflection, and shear.

imwarp2 applies a 2-D geometric transforma-
tion to an image using a fixed output location.

The spire of a Gothic cathedral and the importance of the unbounded straight line in
modern Geometry are both emblematic of the transformation of the modern world.

 Alfred North Whitehead

322 Chapter 6 Geometric Transformations and Image Registration

6.1	TRANSFORMING POINTS

Understanding the geometric transformation of images begins naturally with a
discussion of the transformation of points. Suppose that (,)w z and (,)x y are two
spatial coordinate systems called the input space and output space, respectively. A
geometric coordinate transformation can be defined that maps input space points
to output space points:

	 (,) (,)x y T z= { }w 	 (6-1)

where T i{ } is called a forward transformation or forward mapping. If the forward
transformation has an inverse, then that inverse maps output space points to input
space points:

	 (,) (,)w z T x y= { }-1 	 (6-2)

where T -1 i{ } is called the inverse transformation or inverse mapping. Figure 6.1
illustrates the forward and inverse transformation for this simple example:

	 (,) (,) (,)x y T z z= { } =w w 2 2 	 (6-3)

	 (,) (,) (,)w z T x y x y= { } =-1 2 2 	 (6-4)

Geometric transformations of images are defined in terms of point transforma-
tions. Let f z(,)w denote an image in the input space. We can define a transformed
image in the output space, g x y(,), in terms of f z(,)w and T -1 i{ } as follows:

	 g x y f T x y(,) ((,))= { }-1 	 (6-5)

Input space Output space

w

z

x

y

(,) {(,)}x y T z= w

(,) {(,)}w z T x y= -1

ba
FIGURE 6.1 Forward and inverse transformation of a point for T z z(,) (,).w w{ } = 2 2

330 Chapter 6 Geometric Transformations and Image Registration

The input argument, T, is the 3 3× projective transformation matrix in Eq. (6-20). To
transform points with a projective transformation, we use tform with the same two
functions, transformPointsForward and transformPointsInverse, that we used
for affine transformation objects. For example,

>> T = [1.8 -0.8 0.2
 -0.1 1.7 -0.2
 0.2 0.4 1.0];
>> tform = projective2d(T)

tform =

 projective2d with properties:

 T: [3×3 double]
 Dimensionality: 2

>> WZ = [-1 -1; 1 -1; 1 1; -1 1];
>> XY = transformPointsForward(tform, WZ)

XY =

 -1.5000 -0.5000
 1.5000 -1.5000
 1.9000 1.3000
 -2.8333 4.833

Figure 6.4 illustrates some of the geometric properties of projective transforma-
tions. The figure shows a projective transformation applied to a grid of points. As
illustrated in the figure, sets of parallel lines transform to output-space lines that
intersect at locations called vanishing points. All vanishing points for a projective
transformation lie on a single line called the horizon line. Only input-space lines par-
allel to the horizon line remain parallel when transformed. All other sets of parallel
lines transform to lines that intersect at a vanishing point on the horizon line.

CREATING COMMON TRANSFORMATIONS

The custom function geotrans, listed below, provides an easy way to make common
transformations such as rotation, scale, translation, reflection, and shear. For example,
geotrans('scale',2,4) creates a transformation that scales horizontally by 2 and
vertically 4, while geotrans('rotate',45) creates a transformation that rotates
counterclockwise by 45 degrees. The function can also compose affine and projec-
tive transformations together into a single projective transformation.

function tform = geotrans(varargin)
%GEOTRANS Make affine and projective geometric transformations.
% TFORM = GEOTRANS(TYPE,P1,P2,___) makes a geometric transformation
% with the specified type and parameters.
%
% Valid values for TYPE and P1, P2, ..., are:
%

geotrans

6.1 Transforming Points 331

% 'scale' Scale. If only P1 is provided, it is the scale
% factor in both directions. If P1 and P2 are provided,
% then P1 is the horizontal scale factor and P2 is the
% vertical scale factor.
%
% 'rotate' Rotation. P1 is the rotation angle, measured in
% degrees counterclockwise from the positive horizontal
% axis.
%
% 'translate' Translation. P1 is the horizontal translation and P2
% is the vertical translation.
%
% 'h-reflect' Horizontal reflection.
%
% 'v-reflect' Vertical reflection.
%
% 'h-shear' Horizontal shear. P1 is the sheer angle in degrees,
% measured counterclockwise from the downward-pointing
% y-axis.
%
% 'v-shear' Vertical shear. P1 is the sheer angle in degrees,
% measured clockwise from the horizontal axis.
%
%
% 'compose' Composition of transformations. P1, P2, ..., are
% affine2d and projective2d transformations.

FIGURE 6.4
Vanishing points
and the horizon
line for a
projective
transformation.

Vanishing
point

Vanishing
point

Horizon line

6.4 Image Registration 363

A feature in the present context is any portion of an image that can potentially be
identified and located in multiple images. Features can be points, lines, or corners,
for example. (See Chapter 13 regarding image features.) Once selected, features
have to be matched. That is, for a feature in one image, one must determine the cor-
responding feature in another image or sequence of images. Feature-based registra-
tion methods can be manual or automatic, depending on whether feature detection
and matching is human-assisted or performed using an automatic algorithm.

From the set of matched-feature pairs, a geometric transformation function is
inferred that maps features in one image onto the locations of the matching features
in another. Usually a particular parametric transformation model is chosen based
on the particular image capture geometry. For example, if two images are taken with
the same viewing angle but from a different position (possibly including a rotation
about the optical axis) and if the scene objects are far enough from the camera
to minimize perspective effects, then an affine transformation can be used (Brown
[1992]).

MANUAL FEATURE DETECTION AND MATCHING

The Image Processing Toolbox provides an app called the Control Point Selection
Tool for manually selecting and matching corresponding features, also called con-
trol points, in a pair of images to be registered. The tool is launched by passing the
filenames of the images to be aligned as input arguments to the function cpselect.
For example:

>> cpselect('vector-gis-data.tif','aerial-photo-cropped.tif')

Alternatively, the images can be read into MATLAB variables first and then passed
to cpselect:

>> f = imread('vector-gis-data.tif');
>> g = imread('aerial-photo-cropped.tif');
>> cpselect(f,g)

The tool helps navigate (zoom, pan, and scroll) in large images. Features can be
selected and paired with each other by clicking on the images using the mouse.

Figure 6.22 shows the Control Point Selection Tool in action. Figure 6.22(a) is a
binary image showing road, pond, stream, and power-line data. Figure 6.22(b) shows
an aerial photograph covering the same region. The white rectangle in Fig. 6.22(b)
shows the approximate location of the data in Fig. 6.22(a). Figure 6.22(c) is a screen
shot of the Control Point Selection Tool showing six pairs of corresponding features
selected at the intersections of several roadways.

USING fitgeotrans TO OBTAIN TRANSFORMATION PARAMETERS

Once feature pairs have been identified and matched, the next step in the regis-
tration process is to determine the geometric transformation function. The usual
procedure is to choose a particular transformation model and then estimate the

cpselect

6.4 Image Registration 365

(for example, 'affine') specifying the desired type of transformation. The output
argument is a transformation object whose type depends on the specific transforma-
tion type chosen.

EXAMPLE 6.8 : 	 Registering images using manually selected and matched features.

In this example we use fitgeotrans, imwarp, and imshowpair to register and then visualize the align-
ment of the images in Fig. 6.22(a) and (b). The first two feature-based registration steps, detecting and
matching corresponding features, were performed manually using the Control Point Selection Tool
(cpselect) and saved to a MAT-file in a struct called cpstruct. The following code reads the image
data and loads the previously saved feature matching results:

>> f_fixed = imread('aerial-photo.tif');
>> f_moving = imread('vector-gis-data.tif');
>> s = load('cpselect-results');
>> cpstruct = s.cpstruct;

To perform the third step, inferring the geometric transformation, we use fitgeotrans to obtain an
affine transformation that aligns image f_moving with reference image f_fixed:

>> tform = fitgeotrans(cpstruct.inputPoints,cpstruct.basePoints,'affine');

Finally, we call imwarp to register the moving image with the fixed image. We use the optional second
output argument to imwarp to capture the spatial reference information for aligned image f_reg. We
also construct the default spatial reference information for the fixed image:

>> [f_reg,f_reg_ref] = imwarp(f_moving,tform);
>> f_fixed_ref = imref2d(size(f_fixed));

To inspect the result, we pass the fixed image, the aligned image, and the spatial reference information
to imshowpair and we use the axis function to zoom into the area of interest:

>> imshowpair(f_fixed,f_fixed_ref,f_reg,f_reg_ref)
>> axis([1600 2650 1760 2700])

Figure 6.23 shows that the GIS and aerial images were registered successfully.

AUTOMATIC FEATURE DETECTION AND MATCHING

Advances in computer vision have helped popularize a number of methods for auto-
matic feature detection and matching for growing applications such as automated
driving. Here we will explore in more detail a feature detection method known as
SURF (Speeded-Up Robust Features), as well as related computational and visual-
ization functions in the Computer Vision Toolbox.

SURF is really two associated methods—one for detecting feature points and
another for computing descriptors of the intensity variation in the neighborhood
of feature points (Bay [2008]). Feature point detection is based on computing the
Hessian matrix at every image location and at multiple scales. The Hessian matrix

See Section 13.6 for
additional details on
feature generation and
matching in the sense
discussed here.

366 Chapter 6 Geometric Transformations and Image Registration

provides a measure of the local curvature of a function (see Gonzalez and Woods
[2018]). Locations with a high Hessian matrix determinant are considered to be can-
didate feature points. At a given scale, s, and location, (x, y), the Hessian matrix is
given by:

	 �(, ,)
(, ,) (, ,)

(, ,) (, ,)
x y

L x y L x y

L x y L x y
xx xy

xx yy
s

s s

s s
=









 	 (6-30)

L x yxx (, ,)s is the convolution at location (x, y) of image f and the second-order
derivative of a Gaussian function with scale s.

The SURF feature detection method can detect points at different scales (mean-
ing high local curvature in regions of varying size) by computing � for several
different values of s. SURF achieves fast computational speed by approximating
the computation of � using something called an integral image (see Gonzalez and
Woods [2018]). Each pixel of an integral image, f x y∑ (,), is the sum of all the pixels
of f in the rectangular region between the image origin and (x, y):

	 f x y f u v
v

y

u

x

∑ =
==
∑∑(,) (,)

00

	 (6-31)

Integral images can be used to speed a variety of computations because of one key
property: we can compute a sum of intensities of f over any axis-aligned rectangular
region bounded at the origin by adding or subtracting just three values from the
integral image (Viola [2001]).

For each feature point, SURF computes a dominant orientation and 64 descriptor
values. The descriptor values are based on Haar wavelet responses in a 20 20s s×

FIGURE 6.23
Using the Control
Point Selection
Tool and
functions
fitgeotrans
and imwarp to
align a GIS image
with an aerial
photograph. The
GIS image is
characterized by
roadways and
bodies of water.

6.4 Image Registration 367

region around the feature point. The dominant orientation is also computed from
Haar wavelet responses, but from a 6 6s s× region. (See Chapter 8 for a detailed
discussion of wavelet analysis.)

The Computer Vision Toolbox has several functions related to SURF-based fea-
ture detection, description, matching, and geometric transformations. The function
detectSURFFeatures takes a grayscale image as input and returns a set of feature
points and the corresponding scale and dominant orientation values. The calling syn-
tax is:

points = detectSURFFeatures(f)

After the initial set of candidate points is computed using this function, we use the
extractFeatures function to extract feature descriptors for each feature point that
is sufficiently far from an image boundary for the computation to be reliable. The
feature points (valid_points) and their descriptors (features) are both returned
as output arguments:

[features,valid_points] = extractFeatures(points)

After computing feature points and descriptors for a pair of images, pairs of likely
corresponding features are determined using the matchFeatures function, whose
basic syntax is

indexPairs = matchFeatures(features1,features2)

The output, indexPairs, is a P × 2 matrix indicating the corresponding feature
pairs from the two sets. If [a b] is a row of indexPairs, that means that valid_
points1(a), from the first image, is a likely match for valid_points2(b), from
the second image. Finally, given pairs of likely feature point correspondences, the
function estimateGeometricTransform can compute a transformation that will
register one image to the other. The syntax is:

tform = estimateGeometricTransform(matched_points1,...
 matched_points2,type)

where type is the geometric transformation type, such as 'affine'.

EXAMPLE 6.9 : 	 Panorama stitching using SURF feature detection and matching.

This example illustrates the use of SURF-based feature detection and matching to
stitch together two images to form a panorama. We will work with the two images
shown in Figs. 6.24(a) and (b).

>> f1_rgb = imread('ah-quad-b.jpg');
>> f2_rgb = imread('ah-quad-c.jpg');
>> imshow(f1_rgb)
>> figure, imshow(f2_rgb)

Next, we convert the images to grayscale and call detectSURFFeatures:

detectSURFFe...

The Computer Vision
Toolbox uses the terms
features, descriptors,
and feature descriptors
interchangeably.

extractFeatures

matchFeatures

estimateGeom...

368 Chapter 6 Geometric Transformations and Image Registration

>> f1_gray = rgb2gray(f1_rgb);
>> f2_gray = rgb2gray(f2_rgb);
>> points1 = detectSURFFeatures(f1_gray);
>> points2 = detectSURFFeatures(f2_gray);

The function extractFeatures takes our candidate feature points, selects the ones
that are not too close to an image boundary, and computes feature descriptors for
each one:

ba
dc

e

FIGURE 6.24
Automatic
feature-based
registration using
SURF features.
(a) and (b) Two
different views of
the same
structure.
(c) Strongest
feature points
detected in the
left image.
(d) Forty
potential feature
point matches.
(e) Registration
result and image
blending used to
form the
panorama image.

377

7 Color Image Processing

The use of color in image processing is motivated by two principal factors. First, color is a powerful
descriptor that often simplifies object identification and extraction from a scene. Second, humans can
discern over a million shades of color, compared to only a few dozen shades of gray. The latter factor is
particularly important in manual image analysis. In this chapter we discuss fundamentals of color image
processing using the Image Processing Toolbox and extend some of its functionality by developing
additional color generation and transformation functions. The discussion in this chapter assumes
familiarity on the part of the reader with the principles and terminology of the physics of color at an
introductory level.

Functions Developed in this Chapter:
colormatchingFunctions returns a table
defining the CIE 1931 Standard Observer.

lambda2xyz converts spectral wavelengths to
tristimulus values.

rspd2xyz converts a relative power spec-
tral density function to CIE 1931 tristimulus
values.

chromaticityDiagram plots a chromaticity
diagram.

xyz2xyy converts XYZ tristimulus values to
chromaticity coordinates.

xyy2xyz converts chromaticity coordinates
to XYZ tristimulus values.

colorSwatches displays a set of colors as
square regions.

rgb2hsi converts an RGB image to HSI.

hsi2rgb converts an HSI image to RGB.

rgbcube displays an RGB cube.

ice implements an Interactive Color Editor
for RGB and other color model images.

colorgrad computes color gradients of RGB
images.

colorseg segments an RGB image.

spectrumBar adds a visible light spectrum
bar to a line plot.

spectrumColors generates RGB colors in
the visible light spectrum.

I often think that the night is more alive and more richly colored than the day.
 Vincent Van Gogh

378 Chapter 7 Color Image Processing

7.1	 COLOR FUNDAMENTALS

The color we perceive an object to be is the result of complex interactions between
the light of an illuminating source, what happens to that light when it hits and is
reflected from the object, and the human visual system. The illuminating source, or
illuminant, might be the noon sun, a cloudy sky, or an LED light bulb. The object
may reflect, absorb, or transmit some of the light. When reflected light from the
object arrives at the eyes, it stimulates light-sensitive retinal cells that then transmit
signals to the visual processing centers of the brain. To at least some degree, these
interactions can be modeled and analyzed to understand and predict the human
response to color.

LIGHT

Sir Isaac Newton was the first to observe (in 1666) that when a beam of sunlight
passes through a glass prism, the emerging light, rather than being white, consists
instead of a continuous spectrum of colors ranging from violet at one end to red
at the other. The perceived colors in this spectrum include violet, blue, green, yel-
low, orange, and red. As Fig. 7.1 shows, no color in the spectrum ends abruptly;
rather, each color blends smoothly into the next. This visible light spectrum is elec-
tromagnetic radiation in a specific range of wavelengths: Blue and violet hues are at
wavelengths below 480 nm; green hues range from 480 to 560 nm; yellow hues are
between 560 and 590 nm; orange from 590 to 630; and red hues are located above
630 nm (Berns [2000]). Ultraviolet light, which is filtered out by some sunglasses to
protect your eyes, is in the range just below 400 nm. Infrared light, which is detected
by night-vision equipment, is in the range just above 700 nm.

You can generate Fig. 1 using the custom functions

[rgb,lambda] = spectrumColors

and colorSwatches. The function listing for spectrumColors is in your Support
Package. We will discuss colorSwatches later, in the “Standard RGB Model” sec-
tion.

Different kinds of light sources contain different mixes of visible electromagnetic
radiation. The particular mix of a specific light source is characterized by the spectral
power distribution curve of the source. Figure 7.2(a) shows the relative spectral power
distribution curve for average midday open-air light. By convention, relative spectral
power distribution curves for illuminants are normalized so that the spectral power
at 560 nm is 1.0 (Berns [2000]). This average daylight curve, called D65, is a standard

spectrumColors

FIGURE 7.1
Visible light
spectrum.

400 450 500 550 600 650 700 750
Wavelength (nm)

7.1 Color Fundamentals 379

reference curve created by the International Commission on Illumination, usually
written as CIE (for the French name, Commission Internationale de l’Éclairage).
Figures 7.2(b) and (c) show the curves for two other illuminants. D50 is the average
daylight for sunrise or sunset and F7 is a fluorescent light often used to simulate D65
(CIE [2004], Berns [2000]). The plots with spectrum bars appearing in Fig. 7.2 and
other figures in this chapter were created using the custom function

cb_out = spectrumBar(ax)

This function adds a visible spectrum light bar on the specified axis; the listing is in
your Support Package.

OBJECT REFLECTANCE

Light that strikes an object may be reflected, absorbed, or transmitted. In general,
the relative amount of light reflected by an object varies with the wavelength of the
light. It is this wavelength-dependent variation, interacting with the illumination and
with the human visual system, that gives rise to a specific color being perceived.

Figure 7.3(a) shows the colors of three different materials. The leftmost square
is the color of a sample of azurite, a copper carbonate mineral. The center square is
the color of a green roofing material made of fiberglass. And the rightmost square
is manganese violet, a paint pigment. Figure 7.3(b) shows the relative reflectance
curves for each of these three materials (Kokaly et al. [2017]). The azurite reflec-
tance curve peaks at about 453 nm, which is in the blue region of the visible light
spectrum. The fiberglass roofing tiles reflect the most light at about 505 nm, in the
green region of the spectrum. Unlike the other two materials, the reflectance curve
for the paint pigment has two distinct peaks, one in the blue part of the spectrum and
the other in the red. The resulting purple hue is not one of the colors of the visible
light spectrum; it is made by mixing blue and red hues.

spectrumBar

ba c

FIGURE 7.2 Relative spectral power densities for several standard illuminants. (a) D65—average mid-daylight.
(b) D50—average sunrise or sunset light. (c) F7—a fluorescent light used to simulate D65.

R
el

at
iv

e
sp

ec
tr

al
 p

ow
er

0

0.5

1

1.5

Illuminant D65

400 500 600 700

Wavelength (nm)

0

0.5

1

1.5

Illuminant D50

400 500 600 700

Wavelength (nm)

0

0.5

1

1.5

Illuminant F7

400 500 600 700

Wavelength (nm)

380 Chapter 7 Color Image Processing

HOW THE EYE SENSES COLOR

When light from one or more sources is reflected from an object, arrives at the
eye, and is focused by the lens onto the retina, it stimulates several types of light-
sensitive receptor cells in the retina. The cells known as rods are active only in low-
light situations and their contribution to color perception is insignificant. The cells
known as cones, which activate at higher light levels, send color information to the
brain.

There are three types of cones, distinguished primarily by how they respond
to light at different wavelengths in the visible light spectrum. The cone types are
labeled L, M, and S, based on whether they respond best to long, medium, or short
wavelengths, respectively. Figure 7.4 shows the relative sensitivity curves for each of
the three cone types (Stockman and Sharpe [2000]). These curves represent average
responses for humans with normal color vision. Individual responses will vary and
the responses of people with color-vision deficiencies can vary significantly from
these curves.

Figure 7.5 illustrates how illumination, object reflectance, and cone sensitivity
interact to form a color signal sent to the brain. The curve in Fig. 7.5(a) is the product
of the D65 relative spectral power distribution curve in Fig. 7.2(a) with the relative
reflectance curve of manganese violet in Fig. 7.3(d). This product curve represents
the mix of light transmitted to the three types of retinal cones. Figures 7.5(b)–(d)
show the product of the Fig. 7.5(a) curve with the relative sensitivity curves for the
L, M, and S cone types. The strength of the signal that each cone type sends to the
brain is then proportional to the area under the corresponding curve.

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
re

fl
ec

ta
nc

e

Violet paintAzurite Green roof tiles

400 450 500 550 600 650 700 750

Wavelength (nm)

b
a

FIGURE 7.3
Colors and
reflectance curves.
(a) Colors of
three different
materials: azurite
(a mineral),
green fiberglass
roof tiles, and
manganese violet
paint. (b) Relative
reflectance curves
of the three
materials.

382 Chapter 7 Color Image Processing

7.2	COLOR-SPACE MODELS

This section discusses several different ways to represent colors as points in a
multidimensional space (typically, a three-dimensional space). Representing colors
in this way, as opposed to spectral density or reflectance curves, facilitates the design
and operation of most color display and sensing devices, as well as the application of
image processing operations to color imagery as described later in this chapter. Of
the large number of existing color-space models, we will focus our attention on those
created for the following applications:

1.	 Perceptual color matching (the CIE standard observer)
2.	 Color displays (RGB models)
3.	 Color printing (CMY and CMYK models)
4.	 Brightness-color separation (HSV, HSI, and L*a*b* models)

THE CIE COLOR MATCHING MODEL

The CIE system of measuring and representing color is based on perceptual color
matching experiments performed independently by Wright [1929], [1930] and by
Guild and Petavel [1931]. In these experiments, three independent light sources
(called primaries) were added together in varying ratios until the result matched a
test stimulus perceptually.

Figure 7.6 illustrates the experiment. A test stimulus, with a known spectral
power density curve P(),l is projected onto Area 1. Area 2 displays the combined
projections of the three monochromatic primaries, ˆ ,R ˆ ,G and ˆ .B The wavelengths
of these primaries are 700 nm (red), 546.1 nm (green), and 435.8 nm (blue). The

FIGURE 7.6
CIE color
matching
experiment.
The objective is
for an observer
to adjust the
monochromatic
primaries until
Area 2 is judged by
the observer to be
visually the same
as Area 1.

Tristimulus values

Primary matching stimuli

Area 2

R G B

Test stimulus

Area 1

P(l) R̂ Ĝ B̂
Monochromatic
primaries

7.2 Color-Space Models 391

For example,

>> XYZ = [0.9505 1.0000 1.0888];
>> xyy = xyz2xyy(XYZ)

xyy =
 0.3127 0.3290 1.0000

>> xyy2xyz(xyy)
ans =
 0.9505 1.0000 1.0888

THE STANDARD RGB MODEL

In the RGB color model, a color is described by three numbers, R, G, and B. These
values indicate the intensities of red, green, and blue light sources, respectively. The
light sources are called RGB primaries and it is a convention in color-space formulas
and computations to express them using values in the range [0,  1]. When all three
primaries are at full strength, the resulting stimulus is perceived as white.

The RGB color space is frequently shown graphically as the RGB color cube in
Fig. 7.9. The vertices of the cube are the primary (red, green, and blue) and second-
ary (cyan, magenta, and yellow) colors of light.

To view the color cube from any perspective, we use custom function rgbcube.
Typing rgbcube(vx,vy,vz) at the prompt produces an RGB cube viewed from
point (vx,vy,vz) on the MATLAB desktop. The resulting image can be saved to
disk using function print, discussed in Section 2.4. The code for function rgbcube is:

function rgbcube(vx,vy,vz)
%RGBCUBE Displays an RGB cube on the MATLAB desktop.
% RGBCUBE(VX,VY,VZ) displays an RGB color cube, viewed from point
% (VX,VY,VZ). With no input arguments, RGBCUBE uses (10,10,4) as the
% default viewing coordinates. To view individual color planes, use

rgbcube

ba

FIGURE 7.9
(a) Schematic of
the RGB color
cube showing
the primary and
secondary colors
of light at the ver-
tices. Points along
the main diagonal
have gray values
from black at the
origin to white
at point (1, 1, 1).
(b) The RGB
color cube.

(0, 1, 0)(1, 0, 0)

(0, 0, 1)

B

R
Green

Cyan

White

Blue

Magenta

Red

Black

Yellow

G

Gray
scale

402 Chapter 7 Color Image Processing

DEVICE MODELS AND ICC COLOR PROFILES

ICC Color Profiles

Document colors can have one appearance on a computer monitor and quite a
different appearance when printed. Or the colors in a document may appear different
when printed on different printers. In order to obtain high-quality, consistent color
reproduction between different display and printing devices, it is necessary to create
a transform to map colors from one device to another. In general, a separate color
transform would be needed between every pair of devices. Other transforms would
be needed to account for factors such as different printing conditions and device
quality settings. Each of the many needed transforms would have to be developed
using carefully-controlled experiments. Clearly such an approach would prove
impractical for all but the most expensive, high-end systems.

The International Color Consortium (ICC), an industry group founded in 1993, has
standardized a different approach: Each device has just two transforms associated
with it, regardless of the number of other devices that may be present in the system.
One of the transforms converts device colors to a standard, device-independent
color space called the profile connection space (PCS). The other transform is the
inverse of the first; it converts PCS colors back to device colors. (The PCS can be
either XYZ or L*a*b*.) Together, the two transforms make up the ICC color profile
for the device.

One of the primary goals of the ICC has been to create, standardize, maintain,
and promote the ICC color profile standard (ICC [2004]). The Image Processing
Toolbox function iccread reads profile files. Its syntax is:

p = iccread(filename)

The output, p, is a structure containing file header information and the numerical
coefficients and tables necessary to compute the color space conversions between
device and PCS colors.

Converting colors using ICC profiles is done using the Toolbox functions
makecform and applycform. The syntax of both functions is explained below. The
ICC color profile standard includes mechanisms for handling a critical color con-
version step called gamut mapping. A color gamut is a volume in color space that
defines the range of colors that a device can reproduce (CIE [2004]). Color gamuts
differ from device to device. For example, a typical monitor can display some colors
that cannot be reproduced using a printer. Therefore, it is necessary to take different
gamuts into account when mapping colors from one device to another. Gamut map-
ping is the process of compensating for differences between source and destination
gamuts is called (ISO [2004]).

There are many different methods used for gamut mapping (Morovic [2008]),
some better suited for specific purposes than others. The ICC color profile standard
defines four “purposes” (called rendering intents) for gamut mapping. These
rendering intents are listed in Table 7.2. The makecform syntax for specifying
rendering intents is:

We discuss the L*a*b*
color space later in this
section.

iccread

7.2 Color-Space Models 405

Hue describes (i.e., gives a name to) a pure color, such as red or blue. Saturation is
a measure of color purity—to how much gray there is in a color. Value is a measure
of how light or dark a color is. Intensity refers to the brightness of a color; in the HSI
model it is defined as the average of the R, G, and B values. Lightness is sometimes
defined as [max(, ,) min(, ,)] ,R G B R G B+ 2 but this is only one of the many defini-
tions found in the color sciences.

The HSV color space is formulated by looking at the RGB color cube along its
gray axis (the axis joining the black and white vertices). The result is the hexagonally
shaped color palette shown in Fig. 7.13(a). As we move along the gray axis in
Fig. 7.13(b), the size of the hexagonal plane that is perpendicular to the axis changes,
yielding the volume depicted in the figure. Hue is expressed as an angle around a
color hexagon, typically using the red axis as the reference (0°) axis. The value com-
ponent is measured along the gray axis of the cone. The V = 0 end of the axis is black.
The V = 1 end of the axis is white, which lies in the center of the full color hexagon
in Fig. 7.13(a). Thus, this axis represents all shades of gray. Saturation (purity of the
color) is measured as the distance from the V axis, with maximum saturation being
achieved at the maximum value of V, which represents white. Because of its geom-
etry, this model is referred to as a single hexagon model.

Converting from RGB to HSV entails developing the equations to map RGB
values (which are in Cartesian coordinates) to cylindrical coordinates. This topic
is treated in detail in most texts on computer graphics (e.g., see Rogers [1997]), so
we do not develop the equations here. In the following section we do develop the
equations of the HSI model, which are similar.

The Toolbox function for converting from RGB to HSV is rgb2hsv, whose syntax
is

hsv_image = rgb2hsv(rgb_image)rgb2hsv

ba

FIGURE 7.13
(a) The HSV
color hexagon.
(b) The HSV
single hexagonal
cone.

120�
Green

Blue
240�

0�
RedCyan

Black

1

V

S
H

0

Yellow

White

Magenta

Gray axis

412 Chapter 7 Color Image Processing

% Implement the conversion equations.
R = zeros(size(hsi,1),size(hsi,2));
G = zeros(size(hsi,1),size(hsi,2));
B = zeros(size(hsi,1),size(hsi,2));

% RG sector (0 <= H < 2*pi/3).
idx = find((0 <= H) & (H < 2*pi/3));
B(idx) = I(idx).*(1 - S(idx));
R(idx) = I(idx).*(1 + S(idx).*cos(H(idx))./...
 cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx));

% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find((2*pi/3 <= H) & (H < 4*pi/3));
R(idx) = I(idx).*(1 - S(idx));
G(idx) = I(idx).*(1 + S(idx).*cos(H(idx) - 2*pi/3)./...
 cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx));

% BR sector.
idx = find((4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx).*(1 - S(idx));
B(idx) = I(idx).*(1 + S(idx).*cos(H(idx) - 4*pi/3)./...
 cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx));

% Combine all three results into an RGB image. Clip to [0,1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3,R,G,B);
rgb = max(min(rgb,1),0);

EXAMPLE 7.3 : 	 Converting from RGB to HSI.

Figure 7.17(a) shows an RGB image and Figs. 7.17(b)–(d) are its hue, saturation, and intensity components.
They were obtained using the following commands:

>> f = imread('firebreather-midres.tif');
>> figure, imshow(f) % Fig. 7.17(a).
>> g = rgb2hsi(f);
>> figure, imshow(g(:,:,1)) % Fig. 7.17(b).
>> figure, imshow(g(:,:,2)) % Fig. 7.17(c).
>> figure, imshow(g(:,:,3)) % Fig. 7.17(d).

The hue image in Fig. 7.17(b) shows dark values in the region of the flames. The values of this image
are angles measured with respect to the red axis. The flames have reddish yellow tones which are low
angle values when measured with respect to this axis. In contrast, the flame colors are highly saturated,
so the saturation image in Fig. 7.17(c) shows high values in that region. The intensity image looks like
you would expect. It is a grayscale image containing the gray tones of the intensity component of the
HSI image. The key importance of the intensity image in this example is that it shows the intensity
completely decoupled from the color content of the image. Thus, we can use any of the many grayscale
processing methods from earlier chapters without affecting the color tonality of the image.

7.2 Color-Space Models 413

Figure 7.17(e) shows the result of histogram-equalizing the intensity image:

>> grayeq = histeq(g(:,:,3));
>> figure, imshow(grayeq) % Fig. 7.17(e).

We construct the enhanced RGB image using the histogram-equalized image in place of the intensity
image in function hsi2rgb:

>> hsi = cat(3,g(:,:,1),g(:,:,2),grayeq);
>> rgbeq = hsi2rgb(hsi);
>> figure, imshow(rgbeq) % Fig. 7.17(f).

The histogram equalized RGB image shown in Fig. 7.17(f) retained the original colors, but they are
considerably more vibrant. The difference in visible detail between the original and enhanced color
images is significant. For example on the far right you see spectators’ faces much more clearly. You can
even see green trees past the right corner of the building. These details were barely visible or not vis-
ible at all in Fig. 7.17(a). You can also see additional details, such as the clothing adornments and the
flowers on the left window, in the enhanced image. The equalized color image has a slight overexposed
appearance, a condition caused by histogram equalization spreading the intensities to the full scale. A
method like histogram matching would be capable of producing a more balanced intensity appearance.

ba c
ed f

FIGURE 7.17 (a) RGB image. (b) Hue image. (c) Saturation image. (d) Intensity image. All three images were obtained
using function rgb2hsi. (e) Histogram-equalized intensity image. (f) RGB image obtained using function hsi2rgb.
(Original image credit: Luc Viatour, https://lucnix.be/.)

457

8 Wavelet and Other
Image Transforms

The discrete Fourier transform is a member of an important class of linear transforms that decompose
functions into weighted sums of orthogonal basis functions. It and many other transforms, including the
discrete cosine, Walsh-Hadamard, and Haar transforms, can be studied using the tools of linear algebra
and implemented via matrix operations, which are ideally suited for MATLAB. In this chapter, we pres-
ent a general framework for both the computation and use of orthogonal image transforms and devote
particular attention to the discrete wavelet transform, which places constraints beyond orthogonality on
the decomposition functions employed. We introduce the Wavelet Toolbox, a collection of MathWorks
functions designed for wavelet analysis but not included in the Image Processing Toolbox, and develop
a compatible set of routines that allow wavelet-based processing using the Image Processing Toolbox
alone. These custom functions, in combination with Image Processing Toolbox functions, provide the
tools needed to implement the concepts discussed in Chapter 6 of Digital Image Processing by Gonzalez
and Woods [2018]. They are applied in much the same way—and provide a similar range of capabili-
ties—as MATLAB functions fft2 and ifft2.

Functions Developed in this Chapter:
basisImage displays the basis images of a 2D
matrix-based transform.

whtmtx generates the sequency-ordered
transformation matrix of a matrix-based
Walsh-Hadamard transform.

wavefilter returns the wavelet decomposi-
tion and reconstruction filters used in a fast
wavelet transform.

wavefast computes the fast wavelet trans-
form of a matrix using the decomposition
filters provided by function wavefilter. The
output of wavefast is a wavelet decomposi-
tion structure.

Functions wavework, wavecut, wavecopy,
and wavepaste are used to modify wavelet
decomposition structures.

wavedisplay displays the coefficients of a
wavelet decomposition structure as they are
commonly encountered in the literature.

waveback computes the inverse FWT of a
wavelet decomposition structure.

wavezero zeroes the detail coefficients of a
wavelet decomposition structure at a speci-
fied decomposition level.

I take pleasure in my transformations. I look quiet and consistent,
but few know how many women there are inside of me.

 Anais Nin

458 Chapter 8 Wavelet and Other Image Transforms

8.1	MATRIX-BASED ORTHOGONAL TRANSFORMS

Consider a discrete function f x() of spatial variable x N= 0 1 1, , ,… − with general-
ized discrete forward transform

	 T u f r x u
x

N

() () (,)=
=

∑ x
0

1−

	 (8-1)

where transform domain variable u N= 0 1 1, , ,… − and r x u(,) is called a forward
transformation kernel. Function f x() can be recovered from T u() using the inverse
transform

	 f x T s x u
u

N

() () (,)=
=
∑ u

0

1−

	 (8-2)

where x N= 0 1 1, , ,… − and s x u(,) is the transform's inverse transformation kernel.
Equations (8-1) and (8-2) form a 1-D transform pair whose nature, computational
complexity, and usefulness depend on the properties of r x u(,) and s x u(,). Their 2-D
equivalent for square images f x y(,) of size N N* can be similarly defined as

	 T f x y r x y u
y

N

x

N

(,) (,) (, , ,)u v v=
==

∑∑
0

1

0

1 −−

	 (8-3)

and

	 f x y T s x y u
N

u

N

(,) (,) (, , ,)=
==
∑∑ u v v
v 0

1

0

1 −−

	 (8-4)

where both u and v are transform domain variables and r x y(, , ,)u v and s x y(, , ,)u v
are tranformation kernels. If the transformation kernels are separable and symmetric,

	
r x y u r x u r y

s x y u s x u s y

(, , ,) (,) (,)

(, , ,) (,) (,)

v v

v v

=
=

	 (8-5)

then the corresponding 2-D transforms [i.e., Eqs. (8-3) and (8-4)] can be computed
by applying their 1-D counterparts [i.e., Eqs. (8-1) and (8-2)] in a row and column
manner.

The right side of Eq. (8-2) can be viewed as a series expansion of f x() around a set
of expansion functions, s x u(,) for u N= 0 1 1, , , ,… − and expansion coefficients T u().
If the expansion functions are represented as N-dimensional column vectors

	 su

s u

s u

s N u

u N=



















=

(,)

(,)

(,)

, , ,

0

1

1

0 1 1
�

…

−

− for 	 (8-6)

For a more detailed
explanation of the con-
cepts presented in this
section, see Chapter 6 of
Gonzalez and
Woods [2018].

466 Chapter 8 Wavelet and Other Image Transforms

 basisImages(x:x+N-1, y:y+N-1) = S;
 end
 end
 basisImages = mat2gray(basisImages);

 % Add borders and space between basis images.
 for i = 1:1:N
 for j = 1:1:N
 display(C*(i-1)+1:C*(i-1)+N+2, C*(j-1)+1:C*(j-1)+N+2) ...
 = border;
 display(C*(i-1)+2:C*(i-1)+N+1, C*(j-1)+2:C*(j-1)+N+1) ...
 = basisImages(N*i-N+1:N*i, N*j-N+1:N*j);
 end
 end

 imshow(display,[]);
end

EXAMPLE 8.2 : 	 Basis images and correlation.

Custom function basisImages was used to generate the two 8 8× arrays of 8 8× DFT basis images in
Figs. 8.3(a) and (b). To separate the basis images from one another and display them with a black border,
we let

>> A = (1/sqrt(8))*dftmtx(8);
>> basisImages(A,0,2);

where parameters gray and space of function basisImage were set to 0 and 2, respectively. Because
the basis images of the DFT are complex-valued functions, the real and imaginary parts are displayed
separately; a single DFT basis image is formed from one subimage of Fig. 8.3(a) and the corresponding
subimage of Fig. 8.3(b). Thus, for example, the complex 8 8× basis subimage in the first row and and
second column of Figs. 8.3(a) and (b) are the real and imaginary components of the DFT basis image
with horizontal frequency and vertical frequencies 0 and 2 1 8 4p p() = radians/s, respectively. Row and
column indices u and v determine the horizontal (i.e., along a row) and vertical (i.e., along a column)
frequencies of each basis subimage. Note that the basis image of maximum frequency occurs when
u=v=4. As u and v increase above 4 (to 5, 6, and 7), the effective frequency decreases due to aliasing
and produces conjugate symmetry.

Figure 8.3(c) shows a 512 512× image that combines a horizontal and vertical sinusoid of differing
frequencies. Because DFT coefficients measure the similarity of their single-frequency, complex expo-
nential basis functions and the image being transformed, they can be used to determine the frequencies
of the image’s constituent sinusoids:

>> A = (1/sqrt(512))*dftmtx(512);
>> F = load('sinusoids.mat'); F = F.F; imshow(F);
>> T = A*F*transpose(A);
>> figure; imshow(im2uint8(mat2gray(log(1 + abs(512*fftshift(T))))),[]);
>> [row, col] = find(abs(imag(T))>1e-9 | abs(real(T))>1e-9)

row =

 23

8.2 Orthogonal Basis Functions and Their Properties 467

 491
 1
 1

col =

 1
 1
 22
 492

Note that the find function was used to locate the four nonzero values that are clearly present in
Fig. 8.3(d). We simply search for transform coefficients with magnitudes greater than 10 9− . They occur
at row and col coordinates (23, 1), (491, 1), (1, 22), and (1, 492), which correspond to frequency indices
[i.e., (,)u y pairs] (22, 0), (490, 0), (0, 21), and (0, 491). The image in Fig. 8.3(c) is therefore composed
of a vertical sinusoid of angular frequency 2 22 512()p rad/s, which corresponds to indices (22, 0) and
(490, 0), and a horizontal sinusoid of frequency 2 21 512()p rad/s, which corresponds to indices (0, 21)
and (0, 492). Note that half the coordinate pairs that are returned by the find function are a conse-
quence of the DFT's conjugate symmetry.

TRANSFORMATION MATRICES

MATLAB provides several built-in functions for the computation of orthogonal
transformation matrices. As noted in Example 8.1, for example, dftmtx(N) gener-
ates a scaled DFT transformation matrix that can be multiplied by 1 N for use
with the matrix equations in row 2 of Table 8.1. Of the remaining transforms in
Fig. 8.2, MATLAB provides built-in functions for two: (1) the discrete cosine trans-
form (DCT) and (2) the Walsh-Hadamard transform (WHT). DCT transformation
matrices are computed using

A = dctmtx(N)dctmtx

ba c d

FIGURE 8.3 (a) The real part of the DFT basis images for N = 8; (b) the imaginary part of the basis images; (c) an image
composed of two sinusoids; and (d) the log scaled and centered spectrum of the image. The white pixels in (d) were
enlarged to make them visible in print.

u

y

u

y

x

y

u

y

8.2 Orthogonal Basis Functions and Their Properties 471

where f denotes frequency and H f() is the Fourier transform of h t(). Then the
energy† of basis function h, as illustrated in Fig. 8.4(a), is concentrated at (,)m mt f
on the time-frequency plane. The majority of the energy falls in a rectangular
region, called a Heisenberg box or cell, of area 4s st f such that

	 s s
p

t f
2 2

2

1

16
Ú 	 (8-25)

Since the support of a function can be defined as the set of points where the function
is nonzero, Heisenberg’s uncertainty principle tells us that it is impossible for a func-
tion to have finite support in both time and frequency. Equation (8-25), called the
Heisenberg-Gabor inequaltiy, places a lower bound on the area of the Heisenberg

† The energy of continuous function h t() is
-



2 h t dt() .2

The constant on the right
side of Eq. (8-25) is ¼ if
stated in terms of angular
frequency v. Equality is
possible, but only with a
Gaussian basis function,
whose transform is also a
Gaussian function.

+

f

t

Time-frequency Plane

2s f

2st

m f

mt

p fH ()

p th()

SpectrumBasis Function

Time-Frequency Plane
0.6

-0.6
0.6

-0.6

0.4

-0.4

-0.4

0.6

0

2

0

0

3

4

0

2

0

0

0

0 t

f

t

t

t

f

f

f

b
a

FIGURE 8.4
(a) Basis function
localization in the
time-frequency
plane and (b) the
time and fre-
quency localiza-
tion of 128-point
Daubechies basis
functions.

474 Chapter 8 Wavelet and Other Image Transforms

controls their height or amplitude. Note that the associated expansion
functions are binary scalings and integer translates of mother wavelet
c c() (),x x= 0 0 and scaling function w w() ().,x x= 0 0

2.	 Multiresolution Compatibility. The 1-D scaling function just introduced satis-
fies the following requirements of multiresolution analysis:

(a)	 w j k,  is orthogonal to its integer translates.
(b)	 The set of functions that can be represented as a series expansion of w j k,

at low scales or resolutions (i.e., small j) is contained within those that
can be represented at higher scales.

(c)	 The only function that can be represented at every scale is f x() .= 0
(d)	Any function can be represented with arbitrary precision as j: q.

When these conditions are met, there is a companion wavelet c j k, that,
together with its integer translates and binary scalings, spans—that is, can
represent—the difference between any two sets of w j k, -representable func-
tions at adjacent scales.

3.	 Orthogonality. The expansion functions 3 5 64i.e., w j k x, () form an orthonormal
or biorthogonal basis for the set of 1-D measurable, square-integrable func-
tions. For a biorthogonal wavelet transform with scaling and wavelet func-
tions w j k x, () and c j k x, (), the duals are denoted w

'
j k x, () and c

'

j k x, () respec-
tively.

8.4	THE FAST WAVELET TRANSFORM

An important consequence of the above properties is that both w()x and c()x can be
expressed as linear combinations of double-resolution copies of themselves—that is,
via the series expansions

	 w ww() () ()x h n x n
n

= ∑ 2 2 - 	 (8-33)

	 c wc() () ()x h n x n
n

= ∑ 2 2 - 	 (8-34)

where hw and hc—the expansion coefficients—are called scaling and wavelet vectors,
respectively. They are the filter coefficients of the fast wavelet transform (FWT), an
iterative computational approach to the DWT shown in Fig. 8.5. The W j m nw(, ,)
and W j m n i H V Di

c(, ,) , , for ={ } outputs in this figure are the DWT coefficients
at scale j. Blocks containing time-reversed scaling and wavelet vectors—the h nw()−
and h mc()− —are lowpass and highpass decomposition filters, respectively. Finally,
blocks containing a 2 and a down arrow represent downsampling—extracting every
other point from a sequence of points. Mathematically, the series of filtering and
downsampling operations used to compute W j m nH

c (, ,) in Fig. 8.5 is, for example,

	 W j m n h m h n W j m nH
n k k m k kc c w w(, ,) () () (, ,) , ,= = ≥ = ≥- - +� �C @ D @1 2 0 2 0 	 (8-35)

8.4 The Fast Wavelet Transform 475

where � denotes convolution. Evaluating convolutions at nonnegative, even indices
is equivalent to filtering and downsampling by 2.

The input to the filter bank in Fig. 8.5 is decomposed into four lower resolution (or
lower scale) components. The Ww coefficients are created via two lowpass filters (i.e,
hw-based) and are thus called approximation coefficients; W i H V Di

c for ={ }, , are
horizontal, vertical, and diagonal detail coefficients, respectively. Output W j m nw(, ,)
can be used as a subsequent input, W j m nw(, ,),+ 1 to the block diagram for creating
even lower resolution components; f x y(,) is the highest resolution representation
available and serves as the input for the first iteration. Note that the operations
in Fig. 8.5 use neither wavelets nor scaling functions—only their associated wave-
let and scaling vectors are used. In addition, three transform domain variables are
involved—scale j and horizontal and vertical translation, n and m. These variables
correspond to u v, , p in the first two equations of Section 8.1.

�FAST WAVELET TRANSFORMS USING THE WAVELET TOOLBOX

In this section, we use the Wavelet Toolbox to compute the FWT of a 4 4* test
image. In the next section, we will develop custom functions to do this without the
Wavelet Toolbox (i.e., using the Image Processing Toolbox alone). The material here
lays the groundwork for their development.

The Wavelet Toolbox provides decomposition filters for a wide variety of fast
wavelet transforms. The filters associated with a specific transform are accessed via
the function wfilters, which has the following general syntax:

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname)

Here, input parameter wname determines the returned filter coefficients in accor-
dance with Table 8.3; outputs Lo_D, Hi_D, Lo_R, and Hi_R are row vectors that contain
the lowpass decomposition, highpass decomposition, lowpass reconstruction, and

We denote MATLAB
toolbox functions that
are not part of the Image
Processing Toolbox in
brown.

wfilters

Columns
(along n)

Columns

Rows
(along m)

Rows

Rows

Rows

Wc(j, m, n)
D

Wc(j, m, n)
V

Wc(j, m, n)
H

Ww(j, m, n)

Ww(j � 1, m, n)

� hw(�m)

� hw(�m)

� hw(�n)

� hc(�n)

� hc(�m)

� hc(�m)

2 T

2 T

2 T

2 T

2 T

2 T

FIGURE 8.5
The 2-D fast
wavelet trans-
form (FWT) filter
bank. Each pass
generates one
DWT scale. In
the first iteration,
W j m nw (, ,)+ =1
f x y(,).

500 Chapter 8 Wavelet and Other Image Transforms

The compositing just described takes place within the only for loop in wave-
display. After checking the inputs for consistency, wavecut is called to remove
the approximation coefficients from decomposition vector c. These coefficients are
then scaled for later display using mat2gray. Modified decomposition vector cd (i.e.,
c without the approximation coefficients) is then similarly scaled. For positive val-
ues of input scale, the detail coefficients are scaled so that a coefficient value of 0
appears as middle gray; all necessary padding is performed with a fill value of 0.5
(mid-gray). If scale is negative, the absolute values of the detail coefficients are
displayed with a value of 0 corresponding to black and the pad fill value is set to 0.
After the approximation and detail coefficients have been scaled for display, the first
iteration of the for loop extracts the last decomposition step’s detail coefficients
from cd and appends them to w (after padding to make the dimensions of the four
subimages match and insertion of a one-pixel white border) via the w = [w h; v d]
statement. This process is then repeated for each scale in c. Note the use of wave-
copy to extract the various detail coefficients needed to form w.

EXAMPLE 8.8 : 	 Transform coefficient display using wavedisplay.

The following sequence of commands computes the two-scale DWT of the image in Fig. 8.7 with respect
to fourth-order Daubechies’ wavelets and displays the resulting coefficients:

>> f = imread('vase.tif');
>> [c,s] = wavefast(f,2,'db4');
>> wavedisplay(c,s);
>> figure; wavedisplay(c,s,8);
>> figure; wavedisplay(c,s,−8);

The images generated by the final three commands are shown in Figs. 8.8(a) through (c), respectively.
Without additional scaling, the detail coefficient differences in Fig. 8.8(a) are barely visible. In Fig. 8.8(b),
the differences are accentuated by multiplying the coefficients by 8. Note the mid-gray padding along
the borders of the level 1 coefficient subimages; it was inserted to reconcile dimensional variations
between transform coefficient subimages. Figure 8.8(c) shows the effect of taking the absolute values of
the details. Here, all padding is done in black.

8.6	THE INVERSE FAST WAVELET TRANSFORM

Like its forward counterpart, the inverse fast wavelet transform can be computed
iteratively using digital filters. Figure 8.9 shows the required synthesis or reconstruc-
tion filter bank, which reverses the process of the analysis or decomposition filter
bank of Fig. 8.5. At each iteration, four scale j approximation and detail subimages
are upsampled (by inserting zeroes between their elements) and convolved with two
one-dimension filters—one operating on the subimages’ columns and the other on
its rows. Adding the results yields the scale j + 1 approximation, and the process is
repeated until the original image is reconstructed. The filters used in the convolu-
tions are a function of the wavelets employed in the forward transform. Recall that

8.6 The Inverse Fast Wavelet transform 501

they can be obtained from the wfilters and wavefilter functions of Section 8.4
with input parameter type set to 'r' for “reconstruction.”

When using the Wavelet Toolbox, function waverec2 is employed to compute the
inverse FWT of wavelet decomposition structure [C,S]. It is invoked using

g = waverec2(C,S,wname)

where g is the resulting reconstructed two-dimensional image (of class double). The
required reconstruction filters can be alternately supplied using the syntax

g = waverec2(C,S,Lo_R,Hi_R)

The following custom function, which we call waveback, can be used when the Wave-
let Toolbox is unavailable. It is the final function needed to complete our wavelet-
based package for processing images in conjunction with the Image Processing Tool-
box (and without the Wavelet Toolbox).

waverec2

b
a

c

FIGURE 8.8
Displaying a
two-scale wavelet
transform of the
image in Fig. 8.7:
(a) Automatic
scaling;
(b) additional
scaling by 8; and
(c) absolute val-
ues scaled by 8.

502 Chapter 8 Wavelet and Other Image Transforms

function [varargout] = waveback(c,s,varargin)
%WAVEBACK Computes inverse FWTs for multi-level decomposition [C,S].
% [VARARGOUT] = WAVEBACK(C,S,VARARGIN) performs a 2D N-level partial
% or complete wavelet reconstruction of decomposition structure [C,S].
%
% SYNTAX:
% Y = WAVEBACK(C,S,'WNAME','EXTMODE'); Output inverse FWT matrix Y
% Y = WAVEBACK(C,S,LR,HR,'EXTMODE'); using lowpass and highpass
% reconstruction filters (LR and
% HR) or filters obtained by
% calling WAVEFILTER with 'WNAME'.
%
% [NC,NS] = WAVEBACK(C,S,'WNAME','EXTMODE',N); Output the wavelet
% [NC,NS] = WAVEBACK(C,S,LR,HR,'EXTMODE',N); decomposition structure
% {NC, NS] after N step
% reconstruction.
%
% See also WAVEFAST and WAVEFILTER.

% Check the input and output arguments for reasonableness.
if (~ismatrix(c)) || (size(c,1) ~= 1)
 error('C must be a row vector.');
end

if (~ismatrix(s)) || ~isreal(s) || ~isnumeric(s) || ...
 ((size(s, 2) ~= 2) && (size(s,2) ~= 3))
 error('S must be a real, numeric two- or three-column array.');
end

elements = prod(s,2);
if (length(c) < elements(end)) || ...
 ~(elements(1) + 3 * sum(elements(2:end - 1)) >= elements(end))
 error(['[C S] must be a standard wavelet ' ...
 'decomposition structure.']);

waveback

Columns
(along n)

Rows
(along m)

Rows

Rows

Rows

Columns

Wc(j, m, n)
D

Wc(j, m, n)
V

Wc(j, m, n)
H

Ww(j, m, n)

Ww(j � 1, m, n)�

�

�

� hw(m)

� hw(n)

� hw(m)

� hc(m)

� hc(m)

� hc(n)2 c

2 c

2 c

2 c

2 c

2 c

FIGURE 8.9
The 2-D FWT–1
filter bank. The
boxes with the up
arrow represent
upsampling by
inserting zeroes
between every
element.

8.7 Wavelets in Image Processing 507

3.	 Compute the inverse transform.

Because scale in the wavelet domain is analogous to frequency in the Fourier
domain, most of the Fourier-based filtering techniques of Chapter 4 have an equiv-
alent “wavelet domain” counterpart. In this section, we use the preceding three-
step procedure to give several examples of the use of wavelets in image processing.
Attention is restricted to the functions developed earlier in the chapter; the Wavelet
Toolbox is not needed to implement the examples given here—nor the examples in
Chapter 6 of Digital Image Processing (Gonzalez and Woods [2018]).

EXAMPLE 8.10 : 	Wavelet directionality and edge detection.

Consider the 512 512* test image in Fig. 8.10(a). We used this image in Chapter 4 to illustrate smoothing
and sharpening in the frequency domain. Here, we use it to demonstrate the directional sensitivity of the
2-D wavelet transform and its usefulness in edge detection:

>> f = imread('testpattern512.tif');
>> imshow(f);
>> [c,s] = wavefast(f,1,'sym4');
>> figure; wavedisplay(c,s,−6);
>> [nc,y] = wavecut('a',c,s);
>> figure; wavedisplay(nc,s,−6);
>> edges = abs(waveback(nc,s,'sym4'));
>> figure; imshow(mat2gray(edges));

The horizontal, vertical, and diagonal directionality of the single-scale wavelet transform of Fig. 8.10(a)
with respect to 'sym4' wavelets is clearly visible in Fig. 8.10(b). Note, for example, that the horizontal
edges of the original image are present in the horizontal detail coefficients of the upper-right quadrant
of Fig. 8.10(b). The vertical edges of the image can be similarly identified in the vertical detail coeffi-
cients of the lower-left quadrant. To combine this information into a single edge image, we simply zero
the approximation coefficients of the generated transform, compute its inverse, and take the absolute
value. The modified transform and resulting edge image are shown in Figs. 8.10(c) and (d), respectively.
A similar procedure can be used to isolate the vertical or horizontal edges alone.

EXAMPLE 8.11 : 	Wavelet-based image smoothing or blurring.

Wavelets, like their Fourier counterparts, are effective instruments for smoothing or
blurring images. Consider again the test image of Fig. 8.10(a), which is repeated in
Fig. 8.11(a). Its wavelet transform with respect to fourth-order symlets is shown in
Fig. 8.11(b), where it is clear that a four-scale decomposition has been performed. To
streamline the smoothing process, we employ the following utility function:

function [nc,g8] = wavezero(c,s,l,wname)
%WAVEZERO Zeroes wavelet transform detail coefficients.
% [NC,G8] = WAVEZERO(C,S,L,WNAME) zeroes the level L detail
% coefficients in wavelet decomposition structure [C,S] and computes
% the resulting inverse transform with respect to WNAME wavelets.

Symlets, short for “sym-
metrical wavelets”, have
minimal assymetry for a
given compact support.

wavezero

508 Chapter 8 Wavelet and Other Image Transforms

[nc,~] = wavecut('h',c,s,l);
[nc,~] = wavecut('v',nc,s,l);
[nc,~] = wavecut('d',nc,s,l);
i = waveback(nc,s,wname);
g8 = im2uint8(mat2gray(i));
figure; imshow(g8);

A series of increasingly smoothed versions of Fig. 8.11(a) can be generated using
function wavezero:

>> f = imread('testpattern512.tif');
>> [c,s] = wavefast(f,4,'sym4');
>> wavedisplay(c,s,20);
>> [c,g8] = wavezero(c,s,1,'sym4');
>> [c,g8] = wavezero(c,s,2,'sym4');
>> [c,g8] = wavezero(c,s,3,'sym4');
>> [c,g8] = wavezero(c,s,4,'sym4');

Note that the smoothed image in Fig. 8.11(c) is only slightly blurred, as it was

ba
dc

FIGURE 8.10
Wavelets in edge
detection:
(a) A simple test
image;
(b) its single-scale
wavelet trans-
form;
(c) the transform
modified by zero-
ing all approxima-
tion coefficients;
and
(d) the edge
image resulting
from computing
the absolute value
of the inverse
transform.

517

9 Image Compression

Image compression addresses the problem of reducing the amount of data required to represent a digi-
tal image. Because the Image Processing Toolbox does not include functions for image compression, the
goal of this chapter is to provide practical ways of exploring compression techniques within the context
of MATLAB. For instance, we develop a MATLAB callable C function that illustrates how to manipu-
late variable-length data representations at the bit level. Variable-length coding is a mainstay of image
compression, but MATLAB is best at processing matrices of uniform (i.e., fixed length) data. During the
development of the function, we assume that the reader has a working knowledge of the C language and
focus our discussion on how to make MATLAB interact with programs (both C and Fortran) external
to the MATLAB environment. This is an important skill when there is a need to interface MATLAB
functions to preexisting C or Fortran programs, and when vectorized functions need to be speeded up
(e.g., when a for loop can not be adequately vectorized). The range of compression functions devel-
oped in this chapter, together with MATLAB’s ability to treat C and Fortran programs as though they
were conventional MATLAB files or built-in functions, is another illustration of the fact mentioned in
Chapter 1 that MATLAB is an effective tool for prototyping image compression systems and algorithms.

Functions Developed in this Chapter:
imratio computes the ratio of the number of
bytes in two images.

compare computes the error between two
matrices and optionally displays it.

ntrop computes the entropy of a matrix.

huffman computes a Huffman code.

mat2huff and huff2mat perform Huffman
encoding and decoding, respectively. C func-
tion unravel is used by huff2mat.

mat2lpc and lpc2mat compresses a matrix
using linear predictive coding and decodes an
encoded matrix, respectively.

quantize quantizes a matrix.

im2jpeg and jpeg2im compress and decom-
press a matrix using an approximation of the
JPEG compression standard.

im2jpeg2k and jpeg2k2im compress and
decompress a matrix using an approximation
of the JPEG2000 compression standard.

tifs2cv and cv2tifs compress and decom-
press a multi-frame TIFF image sequence.

showmo displays the motion vectors for selected
frames of a tif2cv compressed image sequence.

The greatest artist is the simplifier.
 Donald M. Murray

518 Chapter 9 Image Compression

9.1	BACKGROUND

As Fig. 9.1 shows, image compression systems are composed of two distinct struc-
tural blocks: an encoder and a decoder. Image f x y(,) is fed into the encoder, which
creates a set of symbols from the input data and uses them to represent the image.
If we let n1 and n2 denote the number of information carrying units (usually bits) in
the original and encoded images, respectively, the compression that is achieved can
be quantified numerically via the compression ratio

	 C
n
nR = 1

2

	 (9-1)

A compression ratio like 10 (or 10 1:) indicates that the original image has 10 infor-
mation carrying units (e.g., bits) for every 1 unit in the compressed data set. In
MATLAB, the ratio of the number of bits used in the representation of two image
files and/or variables can be computed using the following custom function:

function cr = imratio(f1,f2)
%IMRATIO Computes the ratio of the bytes in two images/variables.
% CR = IMRATIO(F1,F2) returns the ratio of the number of bytes in
% variables/files F1 and F2. If F1 and F2 are an original and
% compressed image, respectively, CR is the compression ratio.

narginchk(2,2); % Check input arguments
cr = bytes(f1)/bytes(f2); % Compute the ratio

%--%
function b = bytes(f)
% Return the number of bytes in input f. If f is a string, assume
% that it is an image filename; if not, it is an image variable.

if ischar(f)
 info = dir(f); b = info.bytes;
elseif isstruct(f)
 % MATLAB's whos function reports an extra 124 bytes of memory per
 % structure field because of the way MATLAB stores structures in

In video compression
systems, f x y(,) would
be replaced by f x y t(, ,)
and frames would be
sequentially fed into the
block diagram of Fig. 9.1.

imratio

dir

Compressed data
for storage
and transmission

ENCODER

or

or
f(x, y)

f(x, y, t)

ˆ(,)f x y

ˆ(, ,)f x y t

Quantizer
Symbol
coderMapper

Symbol
decoder

Inverse
mapper

DECODER

FIGURE 9.1
A general image
compression
system block
diagram.

9.1 Background 519

 % memory. Don't count this extra memory; instead, add up the memory
 % associated with each field.
 b = 0;
 fields = fieldnames(f);
 for k = 1:numel(f)
 for q = 1:length(fields)
 b = b + bytes(f(k).(fields{q}));
 end
 end
else
 info = whos('f'); b = info.bytes;
end

For example, the compression of the JPEG encoded image in Fig. 2.5(c) of Chapter 2
can be computed via

>> r = imratio(imread('bubbles25.jpg'),'bubbles25.jpg')
r =
 37.0945

Note that in function imratio, local function b = bytes(f) is designed to
return the number of bytes in (1) a file, (2) a structure variable, and/or (3) a non-
structure variable. If f is a nonstructure variable, function whos, introduced in
Section 2.2, is used to get its size in bytes. If f is a file name, function dir performs a
similar service. In the syntax employed, dir returns a structure (see Section 2.10 for
more on structures) with fields name, date, bytes, and isdir. They contain the file’s
name, modification date, size in bytes, and whether or not it is a directory (isdir is
1 if it is and is 0 otherwise), respectively. Finally, if f is a structure, bytes calls itself
recursively to sum the number of bytes allocated to each field of the structure. This
eliminates the overhead associated with the structure variable itself (124 bytes per
field), returning only the number of bytes needed for the data in the fields. Function
fieldnames is used to retrieve a list of the fields in f, and the statements

for k = 1:length(fields)
 b = b + bytes(f(k).(fields{q}));

perform the recursions. Note the use of dynamic structure fieldnames in the recur-
sive calls to bytes. If S is a structure and F is a string variable containing a field name,
the statements

S.(F) = foo;
field = S.(F);

employ the dynamic structure fieldname syntax to set and/or get the contents of
structure field F, respectively.

To view and/or use a compressed (i.e., encoded) image, it must be fed into a
decoder (see Fig. 9.1), where a reconstructed output image, ˆ(,)f x y is generated.
In general, ˆ(,)f x y may or may not be an exact representation of f x y(,). If it is, the
system is called error free, information preserving, or lossless; if not, some level of

fieldnames

542 Chapter 9 Image Compression

EXAMPLE 9.4 : Decoding with huff2mat.

The Huffman encoded image of Example 9.3 can be decoded using the following
sequence of commands:

>> load squeeze-tracy;
>> g = huff2mat(c);
>> f = imread('tracy.tif');
>> rmse = compare(f, g)
rmse =
 0

Note that the overall encoding-decoding process is information preserving; the
root-mean-square error between the original and decompressed images is 0.
Because such a large part of the decoding job is done in C MEX-file unravel,
huff2mat is slightly faster than its encoding counterpart, mat2huff. Note the use of
the load function to retrieve the MAT-file encoded output from Example 9.2.

9.3	SPATIAL REDUNDANCY

Consider the images shown in Figs. 9.7(a) and (c). As Figs. 9.7(b) and (d) show, they
have virtually identical histograms. Note also that the histograms are trimodal, indi-
cating the presence of three dominant ranges of gray-level values. Because the gray
levels of the images are not equally probable, variable-length coding can be used to
reduce the coding redundancy that would result from a natural binary coding of the
pixel values:

>> f1 = imread('matches-random.tif');
>> c1 = mat2huff(f1);
>> ntrop(f1)
ans =
 7.4253
>> imratio(f1, c1)
ans =
 1.0704
>> f2 = imread('matches-ordered.tif');
>> c2 = mat2huff(f2);
>> ntrop(f2)
ans =
 7.3505
>> imratio(f2, c2)
ans =
 1.0821

Note that the first-order entropy estimates of the two images are about the
same (7.4253 and 7.3505 bits/pixel); they are compressed similarly by mat2huff
(with compression ratios of 1.0704 versus 1.0821). These observations high-
light the fact that variable-length coding is not designed to take advantage of

load

Function load reads
MATLAB variables
from a file and loads
them into the workspace.
The variable names are
maintained through a
save/load sequence.

9.3 Spatial Redundancy 543

MATLAB file unravel.m

Help text for C MEX-file unravel:

Contains text that is displayed in response to
 >> help unravel

C function mexFunction

C function unravel

MEX-file computational routine:

 void unravel(
 uint16_T *hx
 double *link, double *x,
 double xsz, int hxsz)

which contains the C code for decoding hx based on
link and putting the result in x.

C MEX-file unravel.c

MATLAB file huff2mat

In MATLAB file huff2mat,
the statement

 x = unravel(y, ...
 link, m * n)

tells MATLAB to pass y,
link, and m * n to C MEX-
file function unravel.

On return, plhs(0) is
assigned to x.

MATLAB passes y, link, and m * n
to the C MEX file:

 prhs [0] 5 y
 prhs [1] 5 link
 prhs [2] 5 m * n
 nrhs 5 3
 nlhs 5 1

Parameters nlhs and nrhs are integers
indicating the number of left- and right-
hand arguments, and prhs is a vector
containing pointers to MATLAB arrays
y, link, and m * n.

MATLAB passes MEX-file output
plhs[0] to M-file huff2mat.

MEX-file gateway routine:

 void mexFunction(
 int nlhs, mxArray *plhs[],
 int nrhs, const mxArray
 *prhs[])

where integers nlhs and nrhs indicate the number of
left- and right-hand arguments and vectors plhs and
prhs contain pointers to input and output arguments of
type mxArray. The mxArray type is MATLAB's
internal array representation.

 The MATLAB API provides routines to handle the
data types it supports. Here, we

 1. Use mxGetM, mxGetN, mxIsDouble,
 mxIsComplex, and mexErrMsgIdAndTxt to
 check the input and output arguments.

 2. Use mxGetUint16s and mxGetDoubles to get
 pointers to the data in prhs[0] (the Huffman
 code), and prhs[1] (the decoding table) and
 save as C pointers hx and link, respectively.

 3. Use mxGetScalar to get the output array size
 from prhs[2] and save as xsz.

 4. Use mxGetM to get the number of elements in
 prhs[0] (the Huffman code) and save as hxsz.

 5. Use mxCreateDoubleMatrix and
 mxGetDoubles to make a decode output array
 pointer and assign it to plhs[0].

 6. Call computational routine unravel, passing the
 arguments formed in Steps 2-5.

In C MEX-file unravel, execution begins and ends in
gateway routine mexFunction, which calls C
computational routine unravel. To declare the entry point
and interface routines, use #include "mex.h"

FIGURE 9.6 The interaction of function huff2mat and MATLAB callable C function unravel. Note that MEX-file
unravel contains two functions: gateway routine mexFunction and computational routine unravel. Help text for
MEX-file unravel is contained in the separate MATLAB file, also named unravel.

544 Chapter 9 Image Compression

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

ba
dc

FIGURE 9.7
Two images and
their gray-level
histograms.

the obvious structural relationships between the aligned matches in Fig. 9.7(c).
Although the pixel-to-pixel correlations are more evident in that image, they are
present also in Fig. 9.7(a). Because the values of the pixels in either image can be
reasonably predicted from the values of their neighbors, the information carried by
individual pixels is relatively small. Much of the visual contribution of a single pixel
to an image is redundant; it could have been guessed on the basis of the values of
its neighbors. These correlations are the underlying basis of interpixel redundancy.

In order to reduce interpixel redundancies, the 2-D pixel array normally used
for human viewing and interpretation must be transformed into a more efficient
(but normally “nonvisual”) format. For example, the differences between adjacent
pixels can be used to represent an image. Transformations of this type (that is, those
that remove interpixel redundancy) are referred to as mappings. They are called
reversible mappings if the original image elements can be reconstructed from the
transformed data set.

A simple mapping procedure is illustrated in Fig. 9.8. The approach, called lossless
predictive coding, eliminates the interpixel redundancies of closely spaced pixels by
extracting and coding only the new information in each pixel. The new information

9.5 JPEG Compression 551

sequence of commands combines IGS quantization, lossless predictive coding, and Huffman coding to
compress the image of Fig. 9.10(a) to less than a quarter of its original size:

>> f = imread('brushes.tif');
>> q = quantize(f,4,'igs');
>> qs = double(q)/16;
>> e = mat2lpc(qs);
>> c = mat2huff(e);
>> imratio(f,c)
ans =
 4.1420

Encoded result c can be decompressed by the inverse sequence of operations (without “inverse quan-
tization”):

>> ne = huff2mat(c);
>> nqs = lpc2mat(ne);
>> nq = 16*nqs;
>> compare(q,nq)
ans =
 0
>> compare(f,nq)
ans =
 6.8382

Note that the root-mean-square error of the decompressed image is about 7 gray levels—and that this
error results from the quantization step alone.

9.5	JPEG COMPRESSION

The techniques of the previous sections operate directly on the pixels of an image
and thus are spatial domain methods. In this section, we consider a family of popular
compression standards that are based on modifying the transform of an image. Our
objectives in this section are to introduce the use of 2-D transforms in image com-
pression, to provide additional examples of how to reduce the image redundancies
discussed in Sections 9.2 through 9.4, and to give the reader a feel for the state of
the art in image compression. The standards presented (although we consider only
approximations of them) are designed to handle a wide range of image types and
compression requirements.

In transform coding, a reversible, linear transform like the DFT of Chapter 4 or
the discrete cosine transform (DCT) of Chapter 8 is used to map an image into a
set of transform coefficients, which are then quantized and coded. For most natural
images, a significant number of the coefficients have small magnitudes and can be
coarsely quantized (or discarded entirely) with little loss of visual image quality.

JPEG

One of the most popular and comprehensive continuous tone, still frame compres-
sion standards is the JPEG (for Joint Photographic Experts Group) standard. In
the JPEG baseline coding standard, which is based on the discrete cosine transform
and is adequate for most compression applications, the input and output images are
limited to 8 bits, while the quantized DCT coefficient values are restricted to 11 bits.

9.5 JPEG Compression 557

m = double(y.quality)/100*m; % Get encoding quality.
xb = double(y.numblocks); % Get x blocks.
sz = double(y.size);
xn = sz(2); % Get x columns.
xm = sz(1); % Get x rows.
x = huff2mat(y.huffman); % Huffman decode.
eob = max(x(:)); % Get end-of-block symbol

z = zeros(64,xb); k = 1; % Form block columns by copying
for j = 1:xb % successive values from x into
 for i = 1:64 % columns of z, while changing
 if x(k) == eob % to the next column whenever
 k = k + 1; break; % an EOB symbol is found.
 else
 z(i,j) = x(k);
 k = k + 1;
 end
 end
end

z = z(rev,:); % Restore order
x = col2im(z,[8 8],[xm xn],'distinct'); % Form matrix blocks

fun = @(block_struct)denorm(block_struct.data,m);
x = blockproc(x,[8 8],fun); % Denormalize DCT
t = dctmtx(8); % Get 8 x 8 DCT matrix
fun = @(block_struct)iblkdct(block_struct.data,t);
x = blockproc(x,[8 8],fun); % Compute block DCT-1
x = x + double(2^(y.bits - 1)); % Level shift
if y.bits <= 8
 x = uint8(x);
else
 x = uint16(x);
end

% Inverse DCT matrix multiplications
function y = iblkdct(x,a)
y = a'*x*a;

% Denormalize DCT
function y = denorm(x,m)
y = x.*m;

EXAMPLE 9.8 : JPEG compression.

Figures 9.13(a) and (b) show two JPEG coded and decoded approximations of the monochrome image
in Fig. 9.4(a). The first result, which has a compression ratio of about 18 to 1, was obtained by direct
application of the normalization array in Fig. 9.12(a). The second, which compresses the original image
by a ratio of 42 to 1, was generated by multiplying (scaling) the normalization array by 4.

The differences between the original image of Fig. 9.4(a) and the reconstructed images of Figs. 9.13(a)
and (b) are shown in Figs. 9.13(c) and (d) respectively. Both images were scaled to make the errors more
visible. The corresponding rms errors are 2.4 and 4.4 gray levels. The effect of these errors on picture

558 Chapter 9 Image Compression

ba
dc
fe

FIGURE 9.13
Left column:
Approximations
of Fig. 9.4 using
the DCT and
normalization
array of
Fig. 9.12(a). Right
column: Similar
results with the
normalization
array scaled by a
factor of 4.

9.5 JPEG Compression 559

quality is more visible in the zoomed images of Figs. 9.13(e) and (f). These images show a magnified sec-
tion of Figs. 9.13(a) and (b), respectively, and allow a better assessment of the subtle differences between
the reconstructed images. [Figure 9.4(b) shows the zoomed original.] Note the blocking artifact that is
present in both zoomed approximations.

We generated the images in Fig. 9.13 and the numerical results just discussed were generated with the
following sequence of commands:

>> f = imread('tracy.tif');
>> c1 = im2jpeg(f);
>> f1 = jpeg2im(c1);
>> imshow(f1);
>> imratio(f,c1)
ans =
 18.4116
>> compare(f,f1,3)
ans =
 2.4329
>> c4 = im2jpeg(f,4);
>> f4 = jpeg2im(c4);
>> figure; imshow(f4);
>> imratio(f,c4)
ans =
 43.3153
>> compare(f,f4,3)
ans =
 4.4052

These results differ from those that would be obtained in a real JPEG baseline coding environment
because im2jpeg approximates the JPEG standard’s Huffman encoding process. Two principal differ-
ences are noteworthy: (1) In the standard, all runs of coefficient zeros are Huffman coded, while im2jpeg
only encodes the terminating run of each block; and (2) the encoder and decoder of the standard are
based on a known (default) Huffman code, while im2jpeg carries the information needed to reconstruct
the encoding Huffman code words on an image to image basis. Using the standard, the compressions
ratios noted above would be approximately doubled.

JPEG 2000

Like the initial JPEG release of the previous section, JPEG 2000 is based on the idea
that the coefficients of a transform that decorrelates the pixels of an image can be
coded more efficiently than the original pixels themselves. If the transform’s basis
functions—wavelets in the JPEG 2000 case—pack most of the important visual
information into a small number of coefficients, the remaining coefficients can be
quantized coarsely or truncated to zero with little loss of image quality.

Figure 9.14 shows a simplified JPEG 2000 coding system (absent several optional
operations). The first step of the encoding process, as in the original JPEG standard,
is to level shift the pixels of the image by subtracting 2 1m- , where 2m is the number of
gray levels in the image. The one-dimensional discrete wavelet transform of the rows
and the columns of the image are then be computed. For error-free compression,
the transform used is biorthogonal, with a 5-3 coefficient scaling and wavelet vector.

9.5 JPEG Compression 565

for j = 1:length(zi)
 c = [c r(i:zi(j) - 1) zeros(1,runs(r(zi(j) + 1)))];
 i = zi(j) + 2;
end

zi = find(r == eoc); % Undo terminating zero run
if length(zi) == 1 % or last non-zero run.
 c = [c r(i:zi - 1)];
 c = [c zeros(1,cl - length(c))];
else
 c = [c r(i:end)];
end

% Denormalize the coefficients.
c = c + (c > 0) - (c < 0);
for k = 1:n
 qi = 3*k - 2;
 c = wavepaste('h',c,s,k,wavecopy('h',c,s,k)*q(qi));
 c = wavepaste('v',c,s,k,wavecopy('v',c,s,k)*q(qi + 1));
 c = wavepaste('d',c,s,k,wavecopy('d',c,s,k)*q(qi + 2));
end
c = wavepaste('a',c,s,k,wavecopy('a',c,s,k)*q(qi + 3));

% Compute the inverse wavelet transform and level shift.
x = waveback(c,s,'jpeg9.7',n);
x = uint8(x + 128);

The principal difference between the wavelet-based JPEG 2000 system of Fig. 9.14
and the DCT-based JPEG system of Fig. 9.11 is the omission of the latter’s subimage
processing stages. Because wavelet transforms are both computationally efficient
and inherently local (i.e., their basis functions are limited in duration), subdivision
of the image into blocks is unnecessary. As you will see in the following example, the
removal of the subdivision step eliminates the blocking artifact that characterizes
DCT-based approximations at high compression ratios.

EXAMPLE 9.9 : JPEG 2000 compression.

Figure 9.16 shows two JPEG 2000 approximations of the monochrome image in Figure 9.4(a). Fig-
ure 9.16(a) was reconstructed from an encoding that compressed the original image by 42 1: . Fig. 9.16(b)
was generated from an 88 1: encoding. The two results were obtained using a five-scale transform and
implicit quantization with m0 8= and e0 8 5= . and 7, respectively. Because im2jpeg2k only approxi-
mates the JPEG 2000’s bit-plane–oriented arithmetic coding, the compression rates just noted differ
from those that would be obtained by a true JPEG 2000 encoder. In fact, the actual rates would increase
by approximately a factor of 2.

Because the 42 1: compression of the results in the left column of Fig. 9.16 is identical to the compres-
sion achieved for the images in the right column of Fig. 9.13 (Example 9.8), Figs. 9.16(a), (c), and (e) can
be compared—both qualitatively and quantitatively—to the JPEG results of Figs. 9.13(b), (d), and (f). A
visual comparison reveals a noticeable decrease of error in the wavelet-based JPEG 2000 images. In fact,
the rms error of the JPEG 2000–based result in Fig. 9.16(a) is 3.6 gray levels, as opposed to 4.4 gray lev-
els for the corresponding transform-based JPEG result in Fig. 9.13(b). Besides decreasing reconstruc-

566 Chapter 9 Image Compression

ba
dc
fe

FIGURE 9.16
Left column:
JPEG 2000
approximations of
Fig. 9.4 using five
scales and implicit
quantization
with m0 8= and
e0 8 5= . . Right
column: Similar
results with e0 7= .

568 Chapter 9 Image Compression

9.6	VIDEO COMPRESSION

A video is a sequence of images, called video frames, in which each frame is a mono-
chrome or full-color image. As might be expected, the redundancies introduced in
Sections 9.2 though 9.4 are present in most video frames—and the compression
methods previously examined, as well as the compression standards presented in
Section 9.5, can be used to process the frames independently. In this section, we
introduce a redundancy that can be exploited to increase the compression that indi-
vidual frame processing would yield. Called temporal redundancy, it is caused by the
correlations between pixels in adjacent frames.

In the material that follows, we present both the fundamentals of video compres-
sion and the principal Image Processing Toolbox functions that are used for the pro-
cessing of image sequences—whether the sequences are time-based video sequences
or spatial-based sequences like those generated in magnetic resonance imaging.
Before continuing, however, we note that the uncompressed video sequences that
are used in our examples are stored in multiframe TIFF files. A multiframe TIFF can
hold a sequence of images that may be read one at a time using the following imread
syntax

imread('filename.tif',idx)

where idx is the integer index of the frame in the sequence to be read. To write
uncompressed frames to a multiframe TIFF file, the corresponding imwrite syntax
is

imwrite(f,'filename','Compression','none','WriteMode',mode)

where mode is set to 'overwrite' when writing the initial frame and to
'append' when writing all other frames. Note that unlike imread, imwrite does not
provide random access to the frames in a multiframe TIFF; frames must be written
in the time order in which they occur.

REPRESENTING VIDEO IN MATLAB

There are two standard ways to represent video data in the MATLAB workspace.
In the first, which is also the simplest, each frame of video is concatenated along
the fourth dimension of a four dimensional array. The resulting array is called a
MATLAB image sequence and its first two dimensions are the row and column
dimensions of the concatenated frames. The third dimension is 1 for monochrone
(or indexed) images and 3 for full-color images; the fourth dimension is the number
of frames in the image sequence. Thus, the following commands read the first and
last frames of the 16-frame multiframe TIFF, 'shuttle.tif', and build a simple
two-frame 256 480 1 2* * * monochrome image sequence s1:

>> i = imread('shuttle.tif',1);
>> frames = size(imfinfo('shuttle.tif'),1);
>> s1 = uint8(zeros([size(i) 1 2]));

9.6 Video Compression 571

seq2tifs(s,'filename.tif')

where s is a MATLAB image sequence and 'filename.tif' is a multiframe TIFF
file. To perform similar conversions with MATLAB movies, use

m = tifs2movie('filename.tif')

and

movie2tifs(m,'filename.tif')

where m is MATLAB movie. Finally, to convert a multiframe TIFF to an
Advanced Video Interleave (AVI) file for use with the Windows Media Player app,
use tifs2movie in conjunction with MATLAB's VideoWriter function:

v = VideoWriter('filename.avi');
open(v);
writeVideo(v,tifs2movie('filename.tif'));
close(v);

where 'filename.tif' is a multiframe TIFF and 'filename.avi' is the name of
the generated AVI file. To view a multiframe TIFF on the toolbox movie player,
combine tifs2movie with function implay:

implay(tifs2movie('filename.tif'))

TEMPORAL REDUNDANCY AND MOTION COMPENSATION

Like spatial redundancies, which result from correlations between pixels that are
near to one another in space, temporal redundancies are the result of correlations
between pixels that are close to one another in time. As you will see in the fol-
lowing example, which parallels Example 9.5 of Section 9.3, both redundancies are
addressed in much the same way.

EXAMPLE 9.10 : Temporal redundancy.

Figure 9.19(a) shows the second frame of the multiframe TIFF whose first and last frames are depicted
in Fig. 9.18. As was noted in Sections 9.2 and 9.3, the spatial and coding redundancies that are present
in a conventional 8-bit representation of the frame can be removed through the use of Huffman and
linear predictive coding:

>> f2 = imread('shuttle.tif',2);
>> ntrop(f2)

seq2tifs

tifs2movie

movie2tifs

VideoWriter

For more information on
the parameters used in
VideoWriter, type
>> help VideoWriter.

572 Chapter 9 Image Compression

FIGURE 9.18
A montage of
two video frames.
(Original images
courtesy of
NASA.)

-1 -0.5 0 0.5 1
× 105

0

1

2

3

4

5

6

7

8 × 104

ba

FIGURE 9.19 (a) The second frame of a 16-frame video of the space shuttle in orbit around the Earth. The first and last
frames are shown in Fig. 9.18. (b) The histogram of the prediction error resulting from the previous frame prediction
in Example 9.9. (Original image courtesy of NASA.)

580 Chapter 9 Image Compression

ans =
 6.3368
>> compare(imread('shuttle.tif',8),imread('ss2.tif',8))
ans =
 11.8650
>> compare(imread('shuttle.tif',16),imread('ss2.tif',16))
ans =
 14.2251

Note that cv2tifs (the decompression function) is almost 9 times faster than tifs2cv (the compres-
sion function)—only 0.6175 seconds as opposed to 4.8599 seconds. This is as should be expected, because
the encoder not only performs an exhaustive search for the best motion vectors, (the decoder merely
uses those vectors to generate predictions), but decodes the encoded prediction residuals as well. Note
also that the rms errors of the reconstructed frames increase from only 6 gray levels for the first frame
to almost 15 gray levels for the final frame. Figures 9.22(b) and (c) show an original and reconstructed
frame in the middle of the video (i.e., at frame 8). With an rms error of about 12 gray levels, the loss of
detail—particularly in the clouds in the upper left and the rivers on the right side of the landmass,—is
clearly evident. Finally, we note that with a compression of 16 67 1. : , the motion compensated video uses
only 6% of the memory required to store the original uncompressed multiframe TIFF.

Summary
The material in this chapter introduces the fundamentals of digital image compression through the
removal of coding redundancy, spatial redundancy, temporal redundancy, and irrelevant information.
MATLAB routines that attack each of these redundancies—and extend the Image Processing Tool-
box—are developed. Both still frame and video coding considered. Finally, an overview of the popular
JPEG and JPEG 2000 image compression standards is given. For additional information on the removal
of image redundancies—both techniques that are not covered here and standards that address specific
image subsets (like binary images)—see Chapter 8 of the fourth edition of Digital Image Processing by
Gonzalez and Woods [2018].

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

9.1	 If n1 and n2 denote the number of bits in two representations of the same image, the relative data
redundacy, R, of the representation with n1 bits is

R
n n

n
= 1 2

1

−

and can be computed using the compression ratio defined by Eq. (9-1) and returned by function imratio
of Section 9.1. In the context of digital image compression, n1 is normally the number of bits needed to
represent an image as a 2-D array of intensity values.

(a)	 Write a function r=redundancy(i1,i2) that calls function cr=imratio(i1,i2) and uses the re-
turned value, cr, to compute the relative data redundancy, r, of i1 with respect to i2.

585

10 Morphological Image
Processing

The word morphology commonly denotes a branch of biology that deals with the form and structure
of animals and plants. We use the same word here in the context of mathematical morphology as a tool
for extracting image components that are useful in the representation and description of region shape,
such as boundaries, skeletons, and the convex hull of a region. We are interested also in morphological
techniques for pre- or postprocessing, such as morphological filtering, thinning, and pruning.

The material in this chapter begins a transition from image processing methods, whose inputs and
outputs are images, to image analysis methods, whose outputs attempt to describe the contents of an
input image. Morphology is a cornerstone of the mathematical set of tools underlying the development
of techniques that extract “meaning” from an image. Other approaches are developed and applied in
the remaining chapters of the book.

Function Developed in this Chapter:
conwaylaws applies Conway’s genetic laws to
a single pixel and its 3 3× neighborhood. The
function is based on Conway’s Game of Life.

Morphology: relating to or concerned with form and structure.
 Merriam-Webster Dictionary

586 Chapter 10 Morphological Image Processing

10.1	 PRELIMINARIES

In this section we introduce some basic concepts from set theory and discuss the
application of MATLAB’s logical operators to binary images.

SOME BASIC CONCEPTS FROM SET THEORY

Let Z be the set of real integers. The sampling process used to generate digital images
may be viewed as partitioning the xy-plane into a grid with the coordinates of the
center of each grid being a pair of elements from the Cartesian product, Z2 .† In the
terminology of set theory, a function f x y(,) is said to be a digital image if the image
coordinates, (,),x y are integers from Z2 and f is a mapping that assigns an intensity
value (that is, a real number from the set of real numbers, R) to each distinct pair
of coordinates. If the elements of R are integers also (as is usually the case in this
book), a digital image then becomes a two-dimensional function whose coordinates
and amplitude (i.e., intensity) values are integers.

Let A be a set in Z2 , the elements of which are pixel coordinates (,)x y . We denote
the condition that w = (,)x y is an element of A using the notation

	 w H A 	 (10-1)

Similarly, if w is not an element of A, we write

	 w x A 	 (10-2)

A set B of pixel coordinates that satisfies a particular condition is written as

	 B = { }w condition 	 (10-3)

For example, the set of all pixel coordinates that do not belong to set A, denoted Ac ,
is given by

	 A Ac = { }w w x 	 (10-4)

This set is called the complement of A (see Fig. 10.1).
The union of two sets, A and B, denoted by

	 C A B= ´ 	 (10-5)

is the set of all elements that belong to A, to B, or to both. Similarly, the intersection
of sets A and B, denoted by

	 C A B= ¨ 	 (10-6)

is the set of all elements that belong to both A and B.

† The Cartesian product of a set of integers, Z, is the set of all ordered pairs of elements (,)z zi j with zi and zj being
integers from Z. It is customary to denote the Cartesian product by Z2.

10.2 Dilation and Erosion 589

10.2	DILATION AND EROSION

The operations of dilation and erosion are fundamental in morphological image pro-
cessing. Many of the algorithms presented later in this chapter are based on these
two operations.

DILATION

Dilation is an operation that “grows” or “thickens” objects in an image. The spe-
cific manner and extent of this thickening is controlled by a shape referred to as a
structuring element (SE). Figure 10.4 illustrates how dilation works. Figure 10.4(a)
shows a binary image containing a rectangular object. Figure 10.4(b) is a structuring
element—a five-pixel-long diagonal line in this case. Graphically, SEs can be repre-
sented either by a matrix of 0s and 1s or as a set of foreground (1-valued) pixels, as in
Fig. 10.4(b). We use both representations interchangeably in this chapter. Regardless
of the representation, the origin of the structuring element must be clearly identified.

ba c
ed f

FIGURE 10.3 (a) Binary image A. (b) Binary image B. (c) Complement Ac . (d) Union A B´ . (e) Intersection A B¨ .
(f) Set difference A B− .

590 Chapter 10 Morphological Image Processing

Figure 10.4(b) indicates the origin of the structuring element using a black box. Fig-
ure 10.4(c) depicts dilation as a process that translates the origin of the structuring
element throughout the domain of the image and checks to see where the element
overlaps 1-valued pixels. The output image [Fig. 10.4(d)] is 1 at each location of the
origin of the structuring element such that the structuring element overlaps at least
one 1-valued pixel in the input image.

The location of the
origin in a structuring
element is important.
Changing the location
of the defined origin
generally changes the
result of a morphological
operation.

a
c
d

b

FIGURE 10.4
Illustration of
dilation.
(a) Original image
with rectangular
object.
(b) Structuring
element with five
pixels arranged
in a diagonal line.
The origin, or
center, of the
structuring
element is shown
with a dark
border.
(c) Structuring
element
translated to
several locations
in the image.
(d) Output
image. The green
region shows the
1-valued elements
of the resulting
dilation. The gray
region shows the
location of 1s in
the original image.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1
1

1
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The structuring element translated to
these locations does not overlap any
1-valued pixels in the original image.

1 1 1 1 1 1 1
1 1 1 11 1 1
1 1 1 11 1 1 When the origin is

translated to the
“ ” locations, the
structuring element
overlaps some 1-valued
pixels in the original
image.

Origin

10.3 Combining Dilation and Erosion 599

>> E15 = imerode(A,se);
>> imshow(E15)

As Fig. 10.8(b) shows, these commands successfully removed the thin wires in the
mask. Figure 10.8(c) shows what happens if we choose a structuring element that is
too small:

>> se = strel('disk',5);
>> E5 = imerode(A,se);
>> imshow(E5)

Some of the wire leads were not removed in this case. Figure 10.8(d) shows what
happens if we choose a structuring element that is too large:

>> E35 = imerode(A,strel('disk',35));
>> imshow(E35)

The wire leads were removed, but so were the border leads.

10.3	COMBINING DILATION AND EROSION

In image-processing applications, dilation and erosion are used most often in various
combinations. In this section we consider three of the most common: opening, clos-
ing, and the hit-or-miss transformation. We also introduce lookup table operations.

OPENING AND CLOSING

The morphological opening of A by B, denoted A B� , is defined as the erosion of A
by B, followed by the dilation of the result by B:

	 A B A B B� = ()| { 	 (10-18)

An equivalent formulation of opening is

	 A B B B Az z� = ´ 8E1 2 @ 1 2 F 	 (10-19)

where ´ { }⋅ denotes the union of all sets inside the braces. This formulation has a
simple geometric interpretation: A B� is the union of all translations of B that fit
entirely within A. Figure 10.9 illustrates this interpretation. Figure 10.9(a) shows
a set A and disk-shaped structuring element B. Figure 10.9(b) shows some of the
translations of B that fit entirely within A. The union of all such translations results
in the two shaded regions in Fig. 10.9(c); these two regions are the complete opening.
The white regions in this figure are areas where the structuring element could not
fit completely within A and are therefore not part of the opening. Morphological

imerode

600 Chapter 10 Morphological Image Processing

opening removes completely regions of an object that cannot contain the structuring
element, smooths object contours, breaks thin connections [as in Fig. 10.9(c)], and
removes thin protrusions.

The morphological closing of A by B, denoted A B� , is a dilation followed by an
erosion:

	 A B A B B� = (){ | 	 (10-20)

Geometrically, A B� is the complement of the union of all translations of B that do
not overlap A. Figure 10.9(d) illustrates several translations of B that do not overlap
A. By taking the complement of the union of all such translations, we obtain the
shaded region if Fig. 10.9(e), which is the complete closing. Like opening, morpho-
logical closing tends to smooth the contours of objects. Unlike opening, however,
closing generally joins narrow breaks, fills long thin gulfs, and fills holes smaller than
the structuring element.

Opening and closing are implemented by Toolbox functions imopen and imclose.
These functions have the syntax forms

C = imopen(A,B)

and

C = imclose(A,B)

where, for now, A is a binary image and B is a matrix of 0s and 1s that specifies the
structuring element. A strel object from Table 10.2 can be used instead of B.

imopen

imclose

A

B Translates of B inside A

Translates of B
outside A

A B

A B

ba c
ed

FIGURE 10.9 Opening and closing as unions of translated structuring elements. (a) Set A and structuring element B.
(b) Translations of B that fit entirely within set A. (c) The complete opening (shaded). (d) Translations of B outside
the border of A. (e) The complete closing (shaded).

614 Chapter 10 Morphological Image Processing

Finally, we use logical indexing to eliminate the dilated pixels not belonging to the original binary image:

>> L3 = L2;
>> L3(~f) = 0;
>> g3 = label2rgb(L3,'jet',[.7 .7 .7],'shuffle');
>> figure, imshow(g3)

In Figure 10.19(e), the three object clusters have been identified and shown in three distinct colors.

10.5	MORPHOLOGICAL RECONSTRUCTION

Reconstruction is a morphological transformation involving two images and a struc-
turing element, instead of a single image and structuring element. One image, the
marker, is the starting point for the transformation. The other image, the mask, con-
strains the transformation. The SE used defines connectivity. In this section we use
8-connectivity (the default), which implies that B in the following discussion is a
3 3* matrix of 1s with the center defined at coordinates (2, 2). In this section we work
with binary images and wait until Section 10.6 to discuss grayscale reconstruction.

If G is a mask and F is a marker, the reconstruction of G from F, denoted R FG (),
is defined by the following iterative procedure:

1.	 Initialize h1 to be the marker image, F.
2.	 Create a structuring element using B = ones(3).
3.	 Repeat
	 h h B Gk k+

{ ¨1 = () 	 (10-22)

until h hk k+1 = .
4.	 Let R F hG k() =

+1.

Marker F must be a subset of G—that is,

	 F G8 	

Figure 10.20 illustrates the preceding iterative procedure. Although this iterative
formulation is useful conceptually, much faster computational algorithms exist.
Toolbox function imreconstruct uses the “fast hybrid reconstruction” algorithm
described in Vincent [1993]. The calling syntax for imreconstruct is

out = imreconstruct(marker,mask,conn)

where marker and mask are as defined above and conn specifies the connectivity,
which, in this book, is either 4 or 8 (the default) .

OPENING BY RECONSTRUCTION

In morphological opening, erosion typically removes small objects and the subse-
quent dilation tends to restore the shape of the objects that remain. However, the

This definition of
reconstruction is based
on dilation. It is possible
to define a similar
operation using erosion.
The results are duals of
each other with respect
to set complementation.
These concepts are
developed in detail in
Gonzalez and Woods
[2018].

imreconstruct

10.5 Reconstruction 615

accuracy of this restoration depends on the similarity between the shapes and the
structuring element. The method discussed in this section, opening by reconstruction,
restores the original shapes of the objects that remain after erosion. The opening by
reconstruction of an image G using structuring element B is defined as R G BG().|
In words, we see that opening by reconstruction uses the original image as a mask
and the eroded image as a marker. Thus, for an image G with white objects on a
black background, we perform opening by reconstruction with function imrecon-
struct using the command

>> or = imreconstruct(imerode(G,B),G)

where the erosion is carried out until only the white regions of interest remain.
The closing by reconstruction of an image G using structuring element B is the

dual of opening by reconstruction in the sense that we perform the same opera-
tions as we do for opening by reconstruction (using the complement of G) and then

ba c
ed f

FIGURE 10.20 Morphological reconstruction. (a) Original image (the mask). (b) Marker image. (c)–(e) Intermediate
results after 100, 200, and 300 iterations, respectively. (f) Final result. (The outlines of the objects in the mask image
are superimposed on (b)–(e) as visual references.)

628 Chapter 10 Morphological Image Processing

image in a reconstruction. The original image is used as the mask. Figure 10.28(a)
shows an example of opening-by-reconstruction, obtained using the commands

>> f = imread('dowels.tif');
>> imshow(f)
>> se = strel('disk',5);
>> fe = imerode(f,se);
>> fobr = imreconstruct(fe,f);

Reconstruction can be used to clean up an image further by applying to it a clos-
ing-by-reconstruction. The technique is implemented by complementing an image,
computing its opening-by-reconstruction, and then complementing the result. For
example,

>> fobrc = imcomplement(fobr);
>> fobrce = imerode(fobrc,se);
>> fobrcbr = imcomplement(imreconstruct(fobrce, fobrc));
>> figure, imshow(fobrcbr)

Figure 10.28(b) shows the result of opening-by-reconstruction followed by closing-
by-reconstruction. Compare it with the open-close filter and alternating sequential
filter results in Fig. 10.24.

EXAMPLE 10.12 : Using grayscale reconstruction to remove a complex background.

Our concluding example uses grayscale reconstruction in several steps. The objective is to isolate the
text out of the image of calculator keys shown in Fig. 10.29(a). The first step is to suppress the horizontal
reflections on the top of each key. To accomplish this, we use the fact that these reflections are wider
than any single text character in the image. We perform opening-by-reconstruction using a structuring
element that is a long horizontal line:

>> f = imread('calculator.tif');
>> f_obr = imreconstruct(imerode(f, ones(1,71)),f);
>> f_o = imopen(f,ones(1,71)); % For comparison.

ba

FIGURE 10.28
(a) Opening-by-
reconstruction.
(b) Opening-by-
reconstruction
followed by
closing-by-
reconstruction.

10.6 Grayscale Morphology 629

ba c
ed f

hg

FIGURE 10.29 An application of grayscale reconstruction. (a) Original image. (b) Opening-by-reconstruction.
(c) Opening. (d) Tophat-by-reconstruction. (e) Tophat. (f) Opening-by-reconstruction of (d) using a horizontal line.
(g) Dilation of (f) using a horizontal line. (h) Final reconstruction result.

The opening-by-reconstruction (f_obr) is shown in Fig. 10.29(b). For comparison, Fig. 10.29(c) shows
the standard opening (f_o). Opening-by-reconstruction did a better job of extracting the background
between horizontally adjacent keys. Subtracting the opening-by-reconstruction from the original image
is called tophat-by-reconstruction and is shown in Fig. 10.29(d):

>> f_thr = f − f_obr;
>> f_th = f − f_o; % Or imtophat(f,ones(1,71))

Figure 10.29(e) shows the standard tophat computation (i.e., f_th).

630 Chapter 10 Morphological Image Processing

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

10.1	 You are asked to design a system that performs erosion of binary images using rectangular structuring
elements composed of all 1s. You are told that the system is to be implemented in a specialized processor
whose only fast sliding neighborhood capability is ultra-fast 2D convolutions. The system can also perform
other arithmetic and logical operations, but not on sliding neighborhoods.

(a)	 Use MATLAB’s function conv2 to write a custom function, imerodeconv, that simulates the system
by using convolution to perform binary erosion. The inputs to your function are a binary image and
an odd-sized rectangular structuring element of all 1s. The output should be the eroded image. For
simplicity in your simulation, you may assume that the input image contains a single object. You may
also ignore border effects.

(b) *	Read image letterA.tif and use a 9 9× structuring element of 1s to erode it both with your func-
tion and with Toolbox function imerode. Compare the two results visually and numerically. They
should be identical. (Hint: Note that the object in the image letterA.tif is black, whereas we expect
it to be white for our definition of erosion to apply.)

Next, we suppress the vertical reflections on the right edges of the keys in Fig. 10.29(d). This is done
by performing opening-by-reconstruction with a small horizontal line:

>> g_obr = imreconstruct(imerode(f_thr,ones(1,11)),f_thr);

In the result in Fig. 10.29(f), the vertical reflections are gone, but so are the thin, vertical-stroke char-
acters, such as the slash on the percent symbol and the “I” in ASIN. We make use of the fact that the
characters that have been suppressed in error are very close spatially to other characters still present by
first performing a dilation [Fig. 10.29(g)],

>> g_obrd = imdilate(g_obr,ones(1,21));

followed by a final reconstruction with f_thr as the mask and min(g_obrd,f_thr) as the marker:

>> f2 = imreconstruct(min(g_obrd,f_thr),f_thr);

Figure 10.29(h) shows the final result. Note that the shading and reflections on the background and keys
were removed successfully.

Summary
The morphological concepts and techniques introduced in this chapter constitute a powerful set of tools
for extracting features from an image. The basic operators of erosion, dilation, and reconstruction—
defined for both binary and grayscale image processing—can be used in combination to perform a wide
variety of tasks. As shown in the following chapter, morphological techniques can be used for image
segmentation. Moreover, they play an important role in algorithms for image description, as discussed
in Chapter 13.

633

11 Image Segmentation I
Edge Detection, Thresholding, and
Region Detection

The material in the previous chapter began a transition from image processing methods whose inputs
and outputs are images, to methods in which the inputs are images but the outputs are attributes
extracted from those images. Segmentation, the subdivision of images into regions, is the next step
in that direction. Most of the segmentation algorithms in this chapter are based on one of two basic
properties of image intensity values: discontinuity and similarity. In the first category, the approach is
to partition an image into regions based on abrupt changes in intensity, such as edges. Approaches in
the second category are based on partitioning an image into regions that are similar according to a set
of predefined criteria. Thresholding, region growing, and region splitting and merging are examples of
methods in this category. We show that improvements in segmentation performance can be achieved
by combining methods from distinct categories, such as techniques in which edge detection is combined
with thresholding. We discuss also image region segmentation using clustering and superpixels. We also
introduce graph cuts, an approach ideally suited for extracting the principal regions of an image. This is
followed by a discussion of image segmentation based on morphological watersheds, an approach that
combines several of the attributes of segmentation based on the techniques presented in the first part
of the chapter.

Functions Developed in this Chapter:
otsuthresh computes Otsu’s optimum thresh-
old directly from an image histogram.

percentile2i computes an intensity value
given a percentile.

i2percentile computes a percentile given
an intensity value.

regiongrow segments an image using region
growing.

splitmerge segments an image using a split-
and-merge algorithm.

kmeansClustering implements the “stan-
dard” k-means algorithm.

imcircle creates a binary image of a circle.

imcolorcode converts specified intensity
values in a grayscale image to RGB colors.

Divide and conquer.
Julius Caesar

634 Chapter 11 Image Segmentation I

11.1	 BACKGROUND

Segmentation subdivides an image into disjoint regions. The level to which the
subdivision is carried depends on the application. For example, in the automated
inspection of electronic assemblies interest lies in analyzing images of the assemblies
with the objective of determining the presence or absence of specific anomalies
such as missing components or broken connection paths. There is no reason to carry
segmentation past the level of detail required to identify these anomalies.

Segmentation of nontrivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure of
computerized image analysis procedures. For this reason, considerable care should
be taken to improve the probability of an accurate segmentation. In some appli-
cations such as industrial inspection, at least some measure of control over the
environment is possible at times. In others, as in remote sensing, user control over
image acquisition is limited principally to the choice of imaging sensors.

The segmentation methods discussed in this chapter are based on one of two
concepts: discontinuity and similarity. In the first category, the approach is to
partition an image based on abrupt local changes in intensity values such as edges,
that define boundaries between regions. The principal approaches in the second
category are based on partitioning an image directly into regions whose pixels are
similar according to a predefined set of criteria.

Let R represent the entire spatial region occupied by an image. We can express
segmentation mathematically as a process that partitions R into n subregions that
satisfy the following properties:

(a)	 R Ri
i

n

=
=

.
1
∪

(b)	 Ri is a connected set for i n= 0 1 2, , , , .…
(c)	 R Ri j� = ∅ for all valid values of i and j, i j≠ .

(d)	 Q Ri() = TRUE for i n= 0 1 2, , , , .…
(e)	 Q R Ri j�() = FALSE for all adjacent regions Ri and Rj .

where Q Rk() is a logical predicate defined over the points in set Rk and ∅ is the null,
or empty, set. The symbols ´ and ¨ denote set union and intersection, respectively.
Two regions Ri and Rj are said to be adjacent if their union forms a connected set.
If the set formed by the union of two regions is not connected, the regions are said
to be disjoint.

 Condition (a) indicates that the segmentation must be complete, in the sense
that every pixel must be in a region. Condition (b) requires that points in a region
be connected in some predefined sense (e.g., the points must be 8-connected).
Condition (c) says that the regions must be disjoint. Condition (d) deals with the
properties that must be satisfied by the pixels in a segmented region—for example,
Q Ri() = TRUE if all pixels in Ri have the same intensity. Finally, condition (e)
indicates that two adjacent regions Ri and Rj must be different in the sense of
predicate Q. In general, Q can be a compound predicate such as: Q Ri() = TRUE if
the average intensity of the pixels in region Ri is less than mi AND if the standard

11.2 Edge Detection 635

deviation of the intensity values in the region is greater than si , where mi and si are
specified constants. 

In the sections that follow, we cover a number of segmentation approaches that
are different in “philosophy,” but which result in segmented images that satisfy the
conditions just stated. For example, edge detection is based on intensity discontinui-
ties, but its ultimate objective is to find region boundaries. We can think of connected
edge pixels as forming disjoint regions and non-edge pixels as forming connected
background regions. Ultimately, we can view segmentation as a pixel-labeling prob-
lem in which pixels are assigned to labeled classes, the union of which constitutes an
image. Although segmentation is customarily treated as a separate topic, viewing it
as a pixel classification problem casts it as a special case of the more general object
recognition problem we will discuss in Chapter 14.

11.2	 EDGE DETECTION

The central idea of edge detection for segmentation is that objects (regions) can be
differentiated from the background by detecting their boundaries. Edge detection
is an appropriate method to use when the principal features distinguishing these
boundaries from the background are intensity discontinuities. Such discontinuities
are detected using first- and second-order derivatives. The first-order derivative of
choice in image processing is the gradient, defined in Section 3.4. We repeat the
pertinent equations here for convenience. The gradient of a 2-D function, f x y(,), is
defined as the vector

	 f =








 =

∂
∂
∂
∂



















g

g

f
x
f
y

x

y

	 (11-1)

The magnitude of this vector is

	
 f g g

f x f y

x y= =  

= ∂ ∂() ∂ ∂()





mag()f 2 2
1
2

2 2
1
2

+

+

	 (11-2)

This quantity is approximated sometimes by omitting the square-root operation:

	 f g gx y≈ 2 2
+ 	 (11-3)

or by using absolute values:

	 f g gx y≈ @ @ @ @+ 	 (11-4)

These approximations still behave as derivatives—they are zero in areas of constant
intensity and their values are proportional to the degree of intensity change in areas

We will discuss shortly
how to compute gx
and gy.

638 Chapter 11 Image Segmentation I

SOBEL EDGE DETECTOR

First-order derivatives are approximated digitally by differences. The Sobel edge
detector computes the gradient by using the following discrete differences between
rows and columns of a 3 3× neighborhood [see Fig. Fig. 11.2(a)]:

	

f g g

z z z z z z

z z z

x y=  

=  {
2 2

1
2

1 2 3 7 8 9

2

1 4 7

2 2

2

+

+ + - + +

+ + +

() ()

() -- + +()z z z3 6 9

2
1
22  }

	 (11-7)

where the center pixel in each row or column is weighted by 2 to provide smoothing
and the zs are intensities. We say that a pixel at location (,)x y is an edge pixel if
f T≥ at that location, where T is a specified threshold.

From the discussion in Section 3.4, we know that Sobel edge detection can be
implemented by using function imfilter to filter an image f with one of the kernels
in Fig. 11.2(b), filtering f again with the other kernel, squaring the values of each
filtered image, adding the two results, and computing their square root. Similar com-
ments apply to the second and third entries in Table 11.1. Function edge simply
packages the preceding operations into one function call and adds other features
such as accepting a threshold value or determining a threshold automatically. In
addition, edge contains edge detection techniques that cannot be implemented
directly using imfilter.

See Gonzalez and Woods
[2018] for an explanation
of how the center weight
of 2 provides image
smoothing.

z1 z2 z3

z4 z5 z6

z7 z8 z9

Image neighborhood Sobel

1 2 1

0 0 0

�1 �2 �1

1 0 �1

2 0 �2

1 0 �1

 gx � (z1 � 2z2 � z3)
 �(z7 � 2z8 � z9)

 gy � (z1 � 2z4 � z7)
 �(z3 � 2z6 � z9)

Prewitt

1 1 1

0 0 0

�1 �1 �1

1 0 �1

1 0 �1

1 0 �1

 gx � (z1 � z2 � z3)
 � (z7 � z8 � z9)

 gy � (z1 � z4 � z7)
 � (z3 � z6 � z9)

Roberts

1 0

0 �1

gx � z5 � z9

0 1

�1 0

gy � z6 � z8

ba
dc

FIGURE 11.2
Some of the edge
kernels used in
function edge.
The negative of
these kernels
are often used in
practice. Either
approach is
correct, provided
that it is used
and interpreted
consistently. See
Project 11.3 for
a set of kernels,
called the Kirsch
compass kernels,
that can detect
additional edge
directions.

640 Chapter 11 Image Segmentation I

others in Fig. 11.2 due in part to its limited functionality (e.g., it is not symmetric and
cannot be generalized to detect edges that are multiples of 45°). However, it still is
used in hardware implementations where simplicity and speed are dominant factors.
To prevent default edge thinning, include 'nothinning' in the function call.

LAPLACIAN OF A GAUSSIAN (LOG) DETECTOR

Consider the Gaussian function

	 G x y e
x y

(,) =
-

+
2 2

22s

where s is the standard deviation. As you know from Chapter 3, this is a smooth-
ing function that blurs an image when convolved with it. The degree of blurring is
determined by the value of s.

The Laplacian of this function (see Gonzalez and Woods [2018]) is

	

2
2

2

2

2

2 2 2

4
22
2 2

G x y
G x x

x
G x x

y

x y
e

x y

(,)
(,) (,)= ∂

∂
∂

∂

=










+

+ - -
+

s

s
ss2

	 (11-8)

For obvious reasons this function is called the Laplacian of a Gaussian (LoG).
Because the second derivative is a linear operation, convolving (filtering) an image
with 2G x y(,) is the same as convolving the image with the smoothing function first
and then computing the Laplacian of the result. This is the key concept underlying
the LoG detector. We convolve the image with 2G x y(,) knowing that it has two
effects: It smooths the image (thus reducing noise) and it computes its Laplacian,
which yields a double-edge image. Locating edges then consists of finding the zero
crossings between the double edges.

The general calling syntax for the LoG detector is

[g,t] = edge(f,'log',T,sigma)

where sigma is the standard deviation and the other parameters are as we explained
previously. The default value for sigma is 2. As before, function edge ignores
any edges weaker than T. If T is not provided (or is empty, []), edge chooses the
threshold automatically. Setting T to 0 produces edges that are closed contours, a
familiar characteristic of the LoG method.

ZERO-CROSSINGS DETECTOR

This detector is based on the same concept as the LoG method, but the convolution
is carried out using a specified kernel, h. The calling syntax is

[g,t] = edge(f,'zerocross',T,h)

The other parameters are as explained for the LoG detector.

11.2 Edge Detection 641

CANNY EDGE DETECTOR

The Canny detector (Canny [1986]) is the most powerful edge detector in function
edge. The method can be summarized as follows:

1.	 The image is smoothed using a Gaussian filter with a specified standard
deviation, s, to reduce noise.

2.	 The local gradient []g gx y
2 2 1

2+ and edge direction tan ()-1 g gy x are computed
at each point. Any of the first three techniques in Table 11.1 can be used
to compute the derivatives. An edge point is defined to be a point whose
strength is locally maximum in the direction of the gradient.

3.	 The edge points determined in (2) produce ridges in the gradient magnitude
image. The algorithm then tracks along the top of the ridges and sets to zero
all pixels that are not actually on the ridge top, giving a thin line in the output
(this process is called nonmaximal suppression). The ridge pixels are then
thresholded by hysteresis thresholding, which is based on using two thresh-
olds, T1 and T2, with T T1 2< . Ridge pixels with values greater than T2 are
said to be “strong” edge pixels; ridge pixels with values between T1 and T2
are said to be “weak” edge pixels; and ridge pixels with values less than T1
are not considered to be edge pixels.

4.	 Finally, the algorithm performs edge linking by incorporating into an edge
the weak pixels that are 8-connected to the strong pixels on that edge.

The syntax for the Canny edge detector is

[g,t] = edge(f,'canny',T,sigma)

where T = [T1,T2] is a vector containing the threshold values explained in step 3.
Both values must be in the range [0, 1]. If a scalar is specified, it is used as the high
threshold and the low threshold is computed as 0.4*high_threshold. Finally,
sigma is the standard deviation of the smoothing filter; it defaults to sqrt(2). If
t is included in the output argument, it is as a two-element vector containing the
two threshold values used by the algorithm. The rest of the syntax is as explained
for the other methods, including the automatic computation of thresholds if T is not
supplied.

APPROXIMATE CANNY EDGE DETECTOR

This is an approximate version of the Canny edge detection method that provides
faster execution time at the expense of less precise detection. The syntax is

g = edge(f,'approxcanny',T)

where T is as explained for the Canny detector. Unlike all syntax forms discussed
thus far, this syntax for edge does not output the threshold t.

11.2 Edge Detection 643

>> t1
t1 =
 0.0373

We had to increase the threshold to 0.10 to get a result in which the strong vertical edges are predominant.
We obtained Fig. 11.4(c) using the following commands:

>> gv2 = edge(f,'sobel',0.10,'vertical','nothinning');
>> figure, imshow(gv2) % Fig. 11.4(c).

Using the same value of T in the commands

>> gboth = edge(f,'sobel',0.10,,'nothinning');
>> figure, imshow(gboth) % Fig. 11.4(d).

resulted in Fig. 11.4(d), which shows predominantly vertical and horizontal edges.
Function edge does not compute Sobel edges at ± °45 . To compute such edges we use the kernels in

Fig. 11.3 and function imfilter. For example, we generated Fig. 11.4(e) using the commands

>> wpos45 = [0 1 2; -1 0 1; -2 -1 0]; % From Fig. 11.3(a).
>> gpos45 = imfilter(f,wpos45,'replicate');
>> gpos45 = gpos45 >= 0.4*max(abs(gpos45(:)));
>> figure, imshow(gpos45) % Fig. 11.4(e)

The third step thresholded the image after it was filtered. To simplify threshold selection, we used a
fraction of the maximum absolute value in the filtered image. In this case using 40% of the maximum
value extracted the edges oriented predominantly at +45°. A similar set of commands using the same
threshold and the kernel in Fig. 11.3(b) resulted in Fig. 11.4(f), whose principal edge is in the −45°
direction.

EXAMPLE 11.2 : 	Comparison of the Sobel, LoG, and Canny edge detectors.

In this example we compare the relative performance of the Sobel, LoG, and Canny edge detectors.
Our objective is to produce a clean edge map by extracting the principal edge features of the building
image in Fig. 11.4(a), while reducing “irrelevant” detail such as the fine texture in the brick walls and
tile roof. The principal features of interest in this discussion are the edges forming the building corners,
the windows, the structure framing the entrance, the entrance itself, the roof line, and the concrete band
surrounding the building about two-thirds of the distance above ground level.

The top row in Fig. 11.5 shows the edge images obtained using the default syntax for the 'sobel',
'log', and 'canny' options:

>> f = tofloat(imread('building.tif'));
>> [gSobel_default,ts] = edge(f,'sobel');
>> imshow(gSobel_default) % Fig. 11.5(a).
>> [gLoG_default,tlog] = edge(f,'log');
>> figure, imshow(gLoG_default) % Fig. 11.5(b).
>> [gCanny_default,tc] = edge(f,'canny');
>> figure, imshow(gCanny_default) % Fig. 11.5(c).

644 Chapter 11 Image Segmentation I

The defaults values of sigma for the 'log' and 'canny' options are 2.0 and sqrt(2), respectively.
The values of the thresholds in the output arguments of the preceding computations were ts = 0.074,
tlog = 0.0020, and tc = [0.019, 0.047]. None of the default results shown in the first row of Fig. 11.5,
especially the 'log' and 'canny' images, came close to meeting our objective of producing clean edge
maps.

Starting with the default values, we varied the parameters in each option interactively to bring out the
principal features mentioned earlier, while reducing irrelevant detail as much as possible. We obtained
the results in the bottom row of Fig. 11.5 using the following commands:

>> gSobel_best = edge(f,'sobel',0.05); % Fig. 11.5(d).
>> gLoG_best = edge(f,'log',0.003,2.25); % Fig. 11.5(e).
>> gCanny_best = edge(f,'canny',[0.04 0.16],1.5); % Fig. 11.5(f).

As Fig. 11.5(d) shows, the Sobel result deviated even more from our objective when we tried to detect
both edges of the concrete band and the left edge of the entrance. The LoG result in Fig. 11.5(e) is

ba c
ed f

FIGURE 11.5 Top row: Default results for the Sobel, LoG, and Canny edge detectors. Bottom row: Results obtained
interactively to bring out the principal features in the original image of Fig. 11.4(a), while reducing irrelevant detail.
The Canny edge detector produced the best result.

11.3 Thresholding 653

11.3	 THRESHOLDING

Because of its intuitive properties and simplicity, image thresholding enjoys a central
position in applications of image segmentation. We introduced basic thresholding in
Section 2.7 and we have used it in various discussions in the preceding chapters. In
this section, we discuss ways of choosing the threshold value automatically and pres-
ent a method for varying the threshold based on local image properties.

FOUNDATION

Suppose that the intensity histogram in Fig. 11.10(a) corresponds to an image, f x y(,),
composed of light objects on a dark background, in which objects and background
pixels have intensity levels grouped into two dominant modes. One obvious way to
extract the objects from the background is to select a threshold, T, that separates
these modes. Then, any image point (,)x y with the property f x y T(,) > is called
an object (or foreground) point; otherwise, the point is called a background point
(the reverse holds for dark objects on a light background). The thresholded (binary)
image, g x y(,), is defined as

	 g x y
a f x y T

b f x y T
(,)

(,)

(,)
=

>



if

if ≤
	 (11-10)

Pixels labeled a correspond to objects and pixels labeled b correspond to the back-
ground. Typically, a = 1 (white) and b = 0 (black) by convention, but any two distinct
values are acceptable, provided that you are consistent.

When T is a constant applicable over an entire image, the preceding equation
is referred to as global thresholding. When the value of T at any point (,)x y in an
image depends on properties of a neighborhood of (,)x y (e.g., the neighborhood
average intensity), we use the term variable thresholding. The terms adaptive, local,
or regional thresholding are used also to denote variable thresholding. If T depends
on the spatial coordinates themselves, variable thresholding is often referred to as
dynamic thresholding. Use of these terms is not universal and you are likely to see
them used interchangeably in the literature on image processing.

We use the terms object
points and foreground
points interchangeably.

T T1 T2

ba

FIGURE 11.10
Intensity
histograms that
can be partitioned
(a) by a single
threshold and
(b) by two
thresholds. These
are bimodal
and trimodal
histograms,
respectively.

658 Chapter 11 Image Segmentation I

Toolbox function graythresh computes Otsu’s threshold. It’s syntax is

[T,SM] = graythresh(f)

where f is the input image, T is the resulting Otsu threshold normalized to the range
[0,  1], and SM is the separability measure defined in Eq. (11-19). After the threshold
is computed, the image is segmented using function imbinarize, as explained in the
previous section.

EXAMPLE 11.6 : 	Image segmentation using Otsu’s method.

We begin by examining the performance of Otsu’s method when applied to the fin-
gerprint image from Example 11.5:

>> f = imread('fingerprint.tif');
>> [T,SM] = graythresh(f);
>> T
T =
 0.4902
>> SM
SM =
 0.9437
>> T*255
ans =
 125

This threshold has nearly the same value as the threshold obtained using the basic
global thresholding algorithm, so we would expect the same segmentation result.
The high value of SM indicates a high degree of separability of the intensity values
into two classes.

Figure 11.12(a) presents us with a more difficult segmentation task. This is an
image of polymersome cells and our objective is to segment from the background
the boundaries of the cells, which are the brightest regions in the image. The image
histogram, shown Fig. 11.12(b), is far from bimodal so we would expect the simple
algorithm from the last section to have difficulty in achieving a suitable segmentation.
The image in Fig. 11.12(c) confirms this. It was obtained using the same procedure
we used to obtain Fig. 11.11(c). The algorithm converged in one iteration and yielded
a threshold, T, equal to 169.4:

>> f = imread('polymercell.tif');
>> figure, imshow(f) % Fig. 11.12(a).
>> figure, imhist(f) % Fig. 11.12(b).
>> g = imbinarize(f,169.4/255);
>> figure, imshow(g) % Fig. 11.12(c).

As Fig. 11.12(c) shows, the segmentation was unsuccessful.
Next we segment the image using Otsu’s method:

>> [T,SM] = graythresh(f);
>> SM

graythresh

Polymersomes are cells
artificially engineered
using polymers.
Polymersomes are
invisible to the human
immune system and can
be used, for example, to
deliver medication to
targeted regions of the
body.

11.3 Thresholding 659

SM =
 0.4662
>> T*255
ans =
 181
>> g = imbinarize(f,T);
>> figure, imshow(g) % Fig. 11.12(d).

As Fig. 11.12(d) shows, the segmentation using Otsu’s method was effective. The
borders of the polymersome cells were extracted from the background with reasonable
accuracy,  despite the relatively low value of the separability measure.

All the parameters of the between-class variance are based on the image histogram.
As you will see shortly, there are applications in which it is advantageous to be able
to compute Otsu’s threshold using a given image histogram, rather than having to
compute it from the image as function graythresh does. The following custom
function computes T and SM directly from a given image histogram.

0 63 127 191 255

ba
dc

FIGURE 11.12
(a) Image
image of
polymersome
cells.
(b) Histogram
(high values were
clipped to
highlight details in
the lower values).
(c) Segmentation
result using the
basic global
algorithm.
(d) Result
obtained using
Otsu’s method.
(Original image
courtesy of
Professor Daniel
A. Hammer, the
University of
Pennsylvania.)

672 Chapter 11 Image Segmentation I

We can enhance the power of local thresholding significantly by adding logical
predicates to the method. For example, we can define local thresholding in terms of
a logical AND as follows:

	 g x y
f x y a f x y bmSxy(,)
(,) (,)

=
> >






1 if AND

0 otherwise

s
	 (11-28)

where m is either the local or the global mean. You will write and test a local thresh-
olding function based on these concepts in Project 11.6.

11.4	 REGION-BASED SEGMENTATION

In Section 11.2 we performed image segmentation based on intensity discontinui-
ties and in Section 11.3 we did it by comparing pixel values against one or more
thresholds. In this section we segment an image into regions based on properties of
the regions themselves.

REGION GROWING

As its name implies, region growing is a procedure that groups pixels or subregions
into larger regions based on predefined criteria for growth. The approach is to start
with a set of seed points and from these grow regions by appending to each seed
those neighboring pixels that have predefined properties similar to the seed, such as
specific ranges of gray level or color.

Selecting a set of one or more seed points often can be based on the nature of the
problem, as we will show later in Example 11.10. When a priori information is not
available, one procedure is to compute at every pixel the same set of properties that
ultimately will be used to assign pixels to regions during the growing process. If the
result of these computations shows clusters of values, the centroids of these clusters
can be used as seeds.

The selection of similarity criteria depends on the application. For example, the
analysis of land-use satellite imagery depends heavily on the use of multispectral
bands such as color and infrared bands. This problem would be significantly more
difficult, or even impossible, to tackle without the inherent information available in
those bands. When the images are monochrome, region analysis must be carried out
with a set of descriptors based on intensity levels (such as moments of the intensity
histogram) and spatial properties (such as connectivity). We will discuss descriptors
for region characterization in Chapter 13.

Using intensity alone can yield misleading results if connectivity (adjacency)
information is not used in the region-growing process. For example, visualize a
random spatial arrangement of pixels with only three distinct intensity values.
Grouping pixels with the same intensity level to form a “region” without taking
connectivity into consideration would yield a segmentation result that is meaningless
in the context of this discussion.

Another problem in region growing is the formulation of a stopping rule. Growing
a region should stop when no more pixels satisfy the criteria for inclusion in a region.

680 Chapter 11 Image Segmentation I

would be the best choice because it is the solid region with the most detail. An important aspect of the
method just illustrated is its ability to “capture” in function predicate information about a problem
domain that can help in segmentation. In the next chapter we will study segmentation methods that can
give an even better segmentation of Fig. 11.22(a).

REGION SEGMENTATION USING K-MEANS CLUSTERING

The objective of clustering is to partition a set, Z, of vector observations into a
specified number, k, of clusters. In k-means clustering, each observation is assigned
to the cluster whose mean is nearest. A k-means algorithm is an iterative procedure
that successively refines the means until convergence is achieved.

Let Z N= { }z z z1 2, , ,… denote a set of n-dimensional vector observations, often
called samples:

ba c
ed f

FIGURE 11.22 Image segmentation using a split-and-merge algorithm. (a) Original image of size 566 566× pixels.
(b) through (f) Results of segmentation using function splitmerge with values of mindim equal to 64, 32, 16, 8,
and 4, respectively. (Original image courtesy of NASA.)

682 Chapter 11 Image Segmentation I

This algorithm is known to converge to a local minimum in a finite number of
iterations. However, it is not guaranteed to yield the global minimum required to
minimize Eq. (11-30). The result at convergence in general depends on the initial
values chosen for mi. An approach used frequently is to specify the initial means
as k randomly chosen samples from the given sample set and to run the algo-
rithm several times, using a new random set of initial samples each time. This is
to test the “stability” of the solution. Topics related to the best way to initialize a
k-means algorithm and to reduce the number of computations are numerous, but
the “nuances” of these topics are beyond the scope of this discussion. When imple-
mented in MATLAB, the key approach to speed-up performance of a k-means algo-
rithm is to vectorize as many operations as possible, as you will learn by examining
the custom function kmeansClustering introduced below.

In general data analysis, one of the principal applications of a k-means algorithm
is to determine if a given set of observations tends to cluster about a set of clusters
that is much smaller than the total number of observations. That is, the focus is to

“discover” k. In image segmentation, k will determine the number of segmented
regions, so k typically is specified and the objective is to determine if the chosen
value results in a meaningful number of regions.

The MATLAB Statistics and Machine Learning Toolbox has a function
called kmeans that implements the algorithm just discussed, with a number of
embellishments. If you do not have that toolbox installed, you can use custom
function kmeansClustering to segment an image using k-means. The syntax is

[L,C] = kmeansClustering(Z,k,Linit,Cinit)

where Z is a matrix whose rows are the sample vectors, k is the number of desired
cluster centers, C is a matrix whose rows are the resulting cluster centers, and L is a
vector containing a cluster label for each row of Z. If Linit and Cinit are provided,
the algorithm starts with them. Otherwise, it generates k initial cluster centers by
randomly choosing k rows from Z. The code is in your Support Package.

EXAMPLE 11.12 : Image segmentation using k-means clustering.

Figure 11.23(a) is a 688 688× grayscale image and Fig. 11.23(b) resulted from the following commands:

>> f = im2double(imread('book-cover.tif'));
>> figure, imshow(f) % Fig. 11.23(a).
>> k = 3;
>> % Working only with intensities, so Z [Z = f(:)] only has one column.
>> [L,C] = kmeansClustering(f(:),k);
>> % Assign the corresponding label to each element of f to
>> % produce the segmented image.
>> fseg = zeros(size(f));
>> for i = 1:k
 fseg(L == i) = i;
end
>> % Scale the result to the full intensity scale.
>> fseg = intensityScaling(fseg);

kmeansClustering

11.4 Region-Based Segmentation 683

>> figure, imshow(fseg) % Fig. 11.23(b).

As the result in Fig. 11.23(b) shows, the image was segmented into regions with three separate intensities.
For example, all the dark tones in the original image show in white in the segmented image. Similarly,
the gray tones remained gray and the white tones are shown in black. The particular shades shown
depend on the initial cluster centers and are not important. What is important is that the original image
was partitioned into consistent and meaningful regions.

Figure 11.24(a) shows an RGB image of size 693 750 3× × from which we want to extract the regions
corresponding to the large and small red flowers. Figure 11.24(b) resulted from the following commands:

>> f = im2double(imread('flowers-red.tif'));
>> figure, imshow(f) % Fig. 11.24(a).
>> % Extract the RGB component images.
>> R = f(:,:,1);
>> G = f(:,:,2);

ba

FIGURE 11.23
(a) Grayscale
image.
(b) k-means
segmentation
using k = 3.

ba c

FIGURE 11.24 (a) RGB color image. (b) k-means segmentation using k = 3. (c) Complement of (b). The objects of
interest in this example are the two red flowers, which were segmented properly by the k-means algorithm.

684 Chapter 11 Image Segmentation I

>> B = f(:,:,3);
>> % Form Z so that each z corresponds to one RGB pixel (triplet).
>> Z = [R(:) G(:) B(:)];
>> % Interested three regions: red flowers, green vegetation, and
>> % background.
>> k = 3;
>> [L,C] = kmeansClustering(Z,k);
>> % The segmented image is gray scale. We could code each region with a different
>> % color, but do not need that here because the number of regions is small.
>> fseg = zeros(size(f,1),size(f,2));
>> % Assign the labels to the pixels.
>> for j = 1:k
 fseg(L == j) = j;
end
>> fseg = intensityScaling(fseg);
>> figure, imshow(fseg) % Fig. 11.24(b).
>> % The regions corresponding to the flowers are shown in black.
>> % We can make them more visible by using the image complement.
>> fseg = imcomplement(fseg);
>> figure, imshow(fseg) % Fig. 11.24(c).

The final result depends on the initial clusters, so you may need to run this code more than once to get
the same results we did.

REGION SEGMENTATION USING SUPERPIXELS

The idea behind superpixels is to replace the standard pixel grid by grouping pixels
into primitive regions that are more perceptually meaningful than individual pixels.
The objectives are to lessen computational load and to improve the performance of
segmentation algorithms by reducing irrelevant detail.

To illustrate the concept, Fig. 11.25(a) shows an image of size 600 800× (480,000)
pixels containing various levels of detail that could be described verbally as: “This is
an image of two large carvings in the foreground and at least three smaller carvings

ba c

FIGURE 11.25 (a) Image of size 600 800× (480,000) pixels. (b) Image composed of 3,000 superpixels. The boundaries
between superpixels (in white) are superimposed on the superpixel image for reference—the boundaries are not
part of the data. (c) Superpixel image. (Original image courtesy of the U.S. National Park Services.)

11.4 Region-Based Segmentation 691

>> % Show overlay on superpixel image.
>> mask = boundarymask(Lsp);
>> fSPO = imoverlay(fSP,mask,'w');
>> figure, imshow(fSPO) % Fig. 11.28(b).

>> % Show the superpixel image.
>> figure, imshow(fSP) % Fig. 11.28(c).

Figure 11.28(c) shows that a 100 superpixel image retained all the important regions and Fig. 11.28(b)
shows how well the flower superpixels captured the two regions of interest. All that remains is to segment
the color superpixel image using k-means clustering. We use the same approach as in Example 11.12:

>> % Apply k-means algorithm:
>> % Extract the RGB component images first.
>> R = fSP(:,:,1);
>> G = fSP(:,:,2);
>> B = fSP(:,:,3);
>> % Form Z so that each z corresponds to an RGB pixel.
>> Z = [R(:) G(:) B(:)];
>> % We are interested in three regions: red flowers, green vegetation,
>> % and background.
>> k = 3;
>> [L,C] = kmeansClustering(Z,k);
>> % The segmented image is grayscale. We could code each region with a different
>> % color but that is not needed here because the number of regions is small.
>> fSPseg = zeros(size(f,1),size(f,2));
>> % Assign the labels to the pixels.
>> for j = 1:k
 fSPseg(L == j) = j;
end

>> % Scale the intensities and show the result.
>> fSPsegS = intensityScaling(fSPseg);
>> figure, imshow(fSPsegS) % Fig. 11.28(d).

>> % Show only the segmented flowers against a black background. The
>> % flowers show white in the image, so they correspond to i = 3.
>> % (Running this experiment again could produce a different number
>> % because we start each time with a different, random set of seeds.)
>> imFlowers = fSPseg == 3;
>> figure, imshow(imFlowers) % Fig. 11.28(e).

As Fig. 11.28(e) shows, we obtained the same basic regions as in Example 11.12. The resolution in
Fig. 11.28(e) is lower because we worked with only 100 superpixels, as opposed to 519,750 pixels.

IMAGE SEGMENTATION USING GABOR FILTERS

Although image texture is a topic in Chapter 13, we discuss in this section a tex-
ture extraction approach that is used directly for region segmentation. Intuitively,
we often think of texture as periodic patterns and we know from Chapter 4 that
periodicity gives rise to distinct burst of energy in the frequency domain. Studies
of animal and human vision suggest a model of texture detection that incorporates

698 Chapter 11 Image Segmentation I

Figure 11.32 shows the results. The two images in Fig. 11.32(b) are the results corresponding to the
[wavelength, direction] pairs, [,]l u for [2, 0] (left) and [8, 0] (right). Because the orientation of the
two kernels is vertical, we expect the two results to be stronger for vertical objects. This is the case, as
you can see in Fig. 11.32(b). The result on the left is much sharper than the result on the right, indicat-
ing that a wavelength of 2 is a much better match than a wavelength of 8 for the vertical components
of this image. Another way of looking at this is that a wavelength of 2 provides better discrimination
than a wavelength of 8. This is true also in Figs. 11.32(c) and (d) for the orientations at 45° and 90°, but
looking at the three images on the left, we note that the response of the 45° kernels is much weaker
than the other two. If you think of the principal “texture” of this image as being the repetition of vertical
and horizontal edges, then the results in Fig. 11.32 show that Gabor filtering can be used to discriminate
between image regions based on their texture content. We show next how this concept can be used in
segmentation.

As we discussed in Section 11.1, segmentation assigns each pixel in an image to a
region based on the properties being used in the segmentation algorithm. Thus, the
final step in using Gabor filtering for image segmentation is to assign pixels in the
input image to regions based on the filtering results. The mechanics are the same as
those we used for k-means clustering. For example, using a filter bank of six Gabor
kernels will result in one filtered image per filter, for a total of six images. For each
spatial location (,)x y in the image we form a vector z based on Eq. (11-29), where
each of the six elements of z corresponds to the response of one of the six filters at
(,).x y The following example demonstrates the procedure using k-means clustering.

EXAMPLE 11.19 : Image segmentation using Gabor texture and k-means clustering.

In this example, we segment Fig. 11.33(a) using various combinations of parameters wavelength and
orientation. As a starting point, we used the same wavelengths as in Example 11.18:

>> f = imread('texture-bricks.tif');

k-means clustering is just
one of the many
classification methods
we could use. You will
learn many more in
Chapter 14.

ba
dc

FIGURE 11.33
Image texture
segmentation using
functions gabor,
imgaborfilt, and
kmeansCluster-
ing.

700 Chapter 11 Image Segmentation I

and then repeating the segmentation with all other parameters unchanged:

>> % Smooth.
>> for j = 1:size(gaborMag,3)
 sigma = 0.8*h(j).Wavelength;
 Q = 3;
 gaborMag(:,:,j) = imgaussfilt(gaborMag(:,:,j),Q*sigma);
end

Figure 11.33(c) shows that smoothing did improve the segmentation, but the bottom left part of the
image is not segmented properly. We can bring more “detail” to this area by increasing the wavelength,
which shortens the frequency. Figure, 11.33(d) is the result of using

>> wavelength = [8 16];

in the preceding code, including smoothing. This time the segmentation was more successful, except for
the area in the bottom middle of the figure, where part of brick region on the left was interpreted erro-
neously as being part of the brick region on the right.

When the resolution of wavelength values needs to be higher, Toolbox documentation suggests
using the following code, which is based on the work of Jain and Farrokhnia [1991] (see the function
documentation for a full reference citation):

>> wavelengthMin = 4/sqrt(2);
>> wavelengthMax = hypot(numRows,numCols);
>> n = floor(log2(wavelengthMax/wavelengthMin));
>> wavelength = 2.^(0:(n-2)) * wavelengthMin;

Similarly, finer resolution in orientation can be specified using

>> deltaTheta = a_numeric_scalar;
>> orientation = 0:deltaTheta:(180-deltaTheta);

IMAGE SEGMENTATION USING GRAPH CUTS
In image processing, a graph cut is a method based on graph theory that is used for
segmenting a digital image into foreground and background. Basically, the approach
is to construct a graph where each image pixel is a node connected to other nodes by
graph edges, each of which has an associated weight such that, the higher the prob-
ability that pixels connected by an edge are related, the higher the weight for that
edge should be. Graph cut algorithms perform segmentation by cutting along weak
edges of a graph.

Images as Graphs

A graph, G, consists of a set V of nodes (also called vertices) and a set E of edges (also
called links) connecting the nodes:

	 G V E= (,) 	 (11-38)

11.4 Region-Based Segmentation 703

After the polygon is completed, we get the positions of its vertices using the
command

>> roiPoints = handle.Position;

where roiPoints is a matrix of size nv × 2, each row of which contains the (col,row)
coordinates of one of the nv vertices.

To generate the binary ROI mask we use function poly2mask, whose syntax is

ROI = poly2mask(cv,rv,m,n)

where cv and rv are column vectors containing the (col,row) coordinates of the
polygon vertices and m and n are the row and column sizes of the ROI. Using the
preceding notation, we generate an ROI using the command

>> ROI = poly2mask(roiPoints(:,1),roiPoints(:,2),size(L,1),size(L,2));

Then, we segment the image using the command

>> fseg = grabcut(f,L,ROI);

EXAMPLE 11.20 : Image segmentation using function grabcut.

We want to use function grabcut to segment the following image:

>> f = imread('building.tif');

poly2mask

ba c
ed f

FIGURE 11.35
(a) Input image.
(b) Polygonal
boundary of
ROI, specified
interactively.
(c) ROI.
(d) Segmentation
using 500 labeled
regions.
(e) Segmentation
using 5000 labeled
regions.
(f) The image
in (e) smoothed
using a Gaussian
kernel.

706 Chapter 11 Image Segmentation I

11.5	 SEGMENTATION USING THE WATERSHED TRANSFORM

Thus far, we have discussed segmentation based on three principal concepts: edge
detection, thresholding, and region extraction. Each of these approaches was found
to have advantages (e.g., speed in the case of global thresholding) and disadvantages
(e.g., the need for edge linking in edge-based segmentation). In this section, we dis-
cuss segmentation based on the concept of morphological watersheds. Segmentation
by watersheds embodies many of the concepts of the other three approaches and
has the advantage that it often produces more stable segmentation results, including
connected segmentation boundaries. This approach also provides a simple frame-
work for incorporating knowledge-based constraints in the segmentation process, as
we will discuss at the end of this section.

In geography, a watershed is the ridge that divides areas drained by different river
systems and a catchment basin is the geographical area draining into a river. The
watershed transform applies these ideas to image processing to solve a variety of
image segmentation problems.

To understand the watershed transform think of the intensity values of an image
as a topological surface, where intensity values are interpreted as heights. For exam-
ple, we can visualize the simple image in Fig. 11.37(a) as the three-dimensional sur-
face in Fig. 11.37(b). If we imagine rain falling on this surface, it is clear that water
would collect in the two areas labeled as catchment basins. Rain falling exactly on
the watershed ridge line would be equally likely to collect in either of the two catch-
ment basins. The watershed transform finds the ridge lines and basins in an inten-
sity “relief map” of an image. In terms of image segmentation, the key concept is
to change the starting image into another image whose catchment basins are the
objects or regions we want to identify.

Methods for computing the watershed transform are discussed in Gonzalez and
Woods [2018] and in Soille [2003]. The algorithm used in the Toolbox is adapted
from Meyer [1994].

THE DISTANCE AND WATERSHED TRANSFORMS

A tool used frequently in conjunction with the watershed transform is the distance
transform, defined for a binary image as the distance from every pixel to its nearest
nonzero-valued pixel. For example, Fig. 11.38(a) shows a small binary image and

Catchment basins

Watershed ridge lineba

FIGURE 11.37
(a) Image. (b) Image
viewed as a surface,
showing two catch-
ment basins and the
watershed ridge line
between them.

11.5 Segmentation Using the Watershed Transform 711

EXAMPLE 11.22 : Watershed segmentation of a grayscale image.

Figure 11.42(a) shows a transmission electron microscope image of liver cells. The
objective of this example is to segment the cell nuclei (the dark regions) using water-
shed segmentation. We begin by computing the gradient:

>> f = im2double(imread('liver-cells-gray.tif'));
>> figure, imshow(f) % Fig. 11.42(a).
>> g = imgradient(f);
>> figure, imshow(g,[]) % Fig. 11.42(b).

Figure 11.42(b) is in a form suitable for function watershed because the regions we
want to segment are darker than the general background:

>> L = watershed(g);
>> ridges = L == 0;
>> figure, imshow(ridges) % Fig. 11.42(c).

ba c
ed f
hg i

FIGURE 11.42
(a) Input image.
(b) Magnitude of
the gradient.
(c) Watershed
segmentation
of (b) showing
oversegmentation.
(d) Smoothed
image.
(e) Magnitude of
the gradient.
(f) Watershed
segmentation
of (e)—overseg-
mentation is still
evident.
(g) Image (e)
after
processing with
function imhmin.
(h) Watershed
segmentation
boundaries.
(i) Boundaries
coded red and
superimposed on
the original image.
(Image (a)
courtesy of NIH.)

716 Chapter 11 Image Segmentation I

problem. Humans often aid segmentation and higher-level tasks in everyday vision
by using a priori knowledge, one of the most familiar being the use of context. Thus,
the fact that segmentation by watersheds offers a framework that can make effec-
tive use of this type of knowledge is a significant advantage of this method.

Summary
Image segmentation is an essential preliminary step in most automatic pictorial pattern recognition and
scene analysis problems. As indicated by the range of methods and examples presented in this chapter,
the choice of one segmentation technique over another is dictated mostly by the characteristics of the
problem being considered. The methods discussed in this chapter, although far from being exhaustive,
are representative of techniques used commonly in practice.

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

11.1	 Point detection.

(a) *	The image sphere-with-embedded-white-point.tif contains an isolated single bright point that
is almost invisible. Give a set of commands that will find this single point. (Hint: Use a Laplacian
kernel followed by thresholding.)

(b)	 Confirm that a single point was found.

11.2	 Edge detection.

(a) *	Generate a black image of size 512 512× pixels with a white square of size 256 256× at its center.
Compute and display the gradient magnitude image using the Sobel kernels. Are all the values along
the resulting perimeter the same? Explain.

(b) *	Compute the gradient angle image of the image from (a) using the Sobel kernels. Determine if all
angle values are positive and/or negative.

(c)	 You noticed in (b) that the bottom part of the angle image around the object is not showing, while the
other three parts are. Explain the reason.

(d)	 Read the image wingding-square-empty.tif and generate a new image of the same size with only
the horizontal edges detected.

11.3	 Edge detection using compass kernels.

(a)	 The Sobel and Prewitt kernels provided by the Toolbox are well suited for detecting vertical and/or
horizontal edges. It is useful sometimes to be able to find edges in other directions. The Kirsch com-
pass kernels shown in the figure below are well-suited for this purpose. To determine the strongest
edge response of a Kirsch kernel, consider a binary image. A kernel has its strongest response when
all the pixels on the left of the 5s are 0s and all the image pixels under the 5s are 1s. For example the
Kirsch kernel with the strongest response at the highlighted pixel in Fig. 11.1 would be the SE kernel,
whose edge direction is 45°.

723

12 Image Segmentation II 
Active Contours: Snakes and Level Sets

In this chapter, we develop the foundation for image segmentation using active contours, which are
deformable models confined to the image plane. We discuss two types of active contours—snakes and
level sets. Snakes are active contours based on explicit (e.g., parametric) representations of segmenta-
tion curves; they derive their name from the way the curves appear to “slither” on the plane in the
process of seeking region boundaries. Level sets are based on implicit representation of curves, which
are techniques for representing active contours as the intersection of a 3-D surface with a plane. We
will discuss in the following sections the fundamental equations of both approaches starting from basic
principles, write code to implement all function needed for each method, and give numerous examples
that illustrate the strengths and limitations of each approach.

Functions Developed in this Chapter:
snakeIterate implements a snake iterative
solution.

snakeMap computes an edge map for use in
the snake iterative solution.

snakeForce implements a variety of snake
forces.

snakeRespace respaces the coordinates of an
evolving snake.

levelsetIterate implements a level set
iterative solution.

levelsetCurvature computes the curvature
during level set interface evolution.

levelsetFunction generates a signed dis-
tance function for use as a level set function.

levelsetReset resets the level set function
during iteration so that it remains a signed
distance function.

levelsetForce implements a variety of level
set forces.

levelsetHeaviside implements the Heavi-
side equation and its derivative.

Four snakes gliding up and down a hollow for no purpose that
 I could see—not to eat, not for love, but only gliding.

 Ralph Waldo Emerson

726 Chapter 12 Image Segmentation II 

It is useful to think of a snake as a thin, closed, flexible body lying on a planar
surface and surrounding a solid planar region. If we think of the planar surface
as the plane of an image, the planar region as an image object, and the snake as
a flexible contour, our interest is on the dynamics of what it would take to push
that contour so that it adheres to the perimeter of the region and thus becomes a
segmentation boundary.

Accomplishing this objective requires knowledge about the mechanical properties
of the contour and the type of external energy field that would push it toward the
perimeter of a region. The two most important mechanical properties in this case are
the elasticity and stiffness of the snake. The first property describes the ability of the
snake, c(),s to stretch and shrink along it length while the second is a property that
makes the snake stiff enough so that it can be manipulated by the force field.

We know from basic mechanics that elastic energy is proportional to the first
derivative squared of c with respect to s. Stiffness is proportional to bending energy,
which we know from mechanics to be proportional to the second derivative squared
of c with respect to s. Conceptually, we can imagine an energy field acting on a body
whose properties can be described in the terms of the mechanical energy needed to
deform it. The objective is to have the internal and external energies act on the snake
so that the total energy is minimized with respect to c, the idea being that the curve
yielding the minimum energy will correspond to a suitable segmentation contour
(i.e., a snake adhering to the boundary of a region). Mathematically, this becomes
an optimization problem that is solved using variational calculus. The details of the
solution are addressed in Gonzalez and Woods [2018]. Here, our focus is on imple-
menting the results in MATLAB.

The solution to our energy minimization problem is

	 a bc c F c () () ()s s s− + () = 0	 (12-5)

This equation indicates that finding a snake contour can be interpreted as a process
of balancing internal (elastic and bending) forces against an external force. The
double and quadruple quotes indicate the second and fourth derivatives of c with
respect to s. We started with internal snake energies as first and second derivatives.
The higher-order derivatives in Eq. (12-5) resulted from the solution of the problem.
Also, note that the last term is an external force instead of external energy. This is
because the negative derivative of energy is a force.

Equation (12-5) is the fundamental snake equation that we must solve to find
the optimum segmentation contour. Unfortunately, this equation cannot be solved
analytically because c (which is what we are looking for) must be known before we
can compute the force. Thus, we must resort to numerical methods to find a solution,
as we will discuss in the following section.

ITERATIVE SOLUTION OF THE SNAKE EQUATION
We begin by making the snake dynamic, in the sense of adding an artificial time
variable t and restating the snake equation as

732 Chapter 12 Image Segmentation II 

Implementation of the Snake Iterative Solution

Implementing the iterative matrix formulation of the snake in Eq. (12-7) is straight-
forward. We use MATLAB function interp2 for the interpolation required to
obtain the force vectors fx and fy from the 2-D arrays F x yx(,) and F x yy(,). As noted
earlier, interpolation is required because the coordinates of F x yx(,) and F x yy(,) are
integers, whereas the coordinates of the snake during iteration generally are not.
The interp2 syntax of interest in this section is

fx = interp2(Fx,y,x,'linear',0)

where x and y are the coordinates of the snake (note the order in which they are
input). To obtain vector fy, we use Fy intead of Fx in the function call. Although
interp2 is capable of more advanced interpolation modes, linear interpolation is
faster and generally is sufficient for snake work. The 0 is used to suppress NaNs in
areas where there are not enough points for interpolation.

function [xs,ys] = snakeIterate(alpha,beta,gamma,x,y,NI,Fx,Fy)
%snakeIterate Iterative solution of the snake equation.
% [XS,YS] = SNAKEITERATE(ALPHA,BETA,GAMMA,X,Y,NI,Fx,Fy) computes the
% [XS,YS] coordinates of a segmentation snake using the iterative
% solution in Eq.(12-7) of DIPUM3E. Vectors X and Y are the initial
% coordinates of the snake (provided in sequential order). These
% vectors are updated during iteration. ALPHA, BETA, and GAMMA are
% parameters in Eq. (12-7) and (12-8), and Fx, Fy are the 2D force
% arrays obtained, for example, using DIPUM3E function snakeForce.
%
% This function is normally run within an outer loop with snake-point
% respacing after each execution of the loop. NI controls the number
% of iterations of Eq. (12-7) before the snake points are respaced. A
% common value of NI is 1, indicating one execution of point respacing
% after each iteration of Eq. (12-7).

% PRELIMINARIES.
K = numel(x);
% Multiply the forces by gamma.
Fx = gamma*Fx;
Fy = gamma*Fy;

% CONSTRUCT MATRIX A IN EQ. (12-8) FOR USE IN EQ. (12-7).
% First construct matrix D2 in Eq. (12-9).
a = -2*ones(K,1);
b = 1*ones(K-1,1);
D2 = diag(a) + diag(b,-1) + diag(b,1);
D2(1,K) = 1;
D2(K,1) = 1;
% Next construct D4 in Eq. (12-10).
a = 6*ones(K,1);
b = -4*ones(K-1,1);
c = 1*ones(K-2,1);
D4 = diag(a) + diag(b,-1) + diag(b,1) + diag(c,-2) + diag(c,2);

interp2

snakeIterate

748 Chapter 12 Image Segmentation II 

EXAMPLE 12.5 : 	Snake segmentation of the rose image.

In this example, we consider an image with a more complex boundary. Figure 12.8(a) shows the familiar
rose image and a 150-point initial snake. Figure 12.8(b) is the edge map obtained using a Gaussian
lowpass kernel with the parameters indicated in the figure caption. As before, we used smoothing on
the image and also on the edge map. We thresholded the smoothed map at 0.005. Figure 12.8(c) shows
a MOG field superimposed on the edge map. Figure 12.8(d) is the result after 300 iterations of function
snakeIterate using the parameters listed in the figure caption. Similarly, Figs. 12.8(e) and (f) show the
results after 600 and 900 iterations. The latter image shows a nearly-perfect segmentation snake. The
code for this example is similar to what we have used in previous examples, so we leave it as an exercise
for you to duplicate the results in Fig. 12.8 (see Project 12.5).

Figure 12.8 illustrates several important factors of segmentation using snakes. The most important
factor is to start with a clean, continuous edge map of the boundary we want to find—we will show later
in Example 12.14 what can happen when the edge of the boundary has breaks in it. Another factor is
that at least part of the initial snake should lie in the region of influence of the force field. In fact, you
can see by comparing Figs. 12.8(a) and (d) that the first part of the snake that converged to the boundary
was the segment of the initial snake closest to the boundary. As part of a snake adheres to a boundary,
it brings other of its parts closer to the force field. It makes sense that a snake starting far away from
the influence of the force field will take longer to converge, or simply not converge at all. As we showed
earlier and as you will see again in Project 12.5, the main reason for using a GVF field is that its region
of influence is typically larger than for a MOG field. Yet another important factor to keep in mind when
specifying the parameters for use in function snakeIterate is our discussion of Eq. (12-5), where we
indicated that snake behavior during iteration is affected by the balance between internal forces (con-
trolled by parameters a and b) and external forces (controlled by g). Because the edge map and force

ba c
ed f

FIGURE 12.8 (a) A
1024 1024× image
and 150-point
initial snake.
(b) Edge map
using the 'both'
option in snake-
Map, a Gaussian
kernel with s = 11,
and a threshold of
0.005. (c) MOG
force field.
(d) Snake after 300
iterations using
a = 0 05. , b = 0 5. ,
and g = 5.
(e) and (f) Snake
after 600 and 900
iterations, respec-
tively.

12.2 Image Segmentation Using Snakes 749

fields are independent of the starting snake, it often helps to use them as guides to specify the initial
snake configuration.

EXAMPLE 12.6 : 	Snake segmentation of a region in a more complex image.

In all examples thus far, we have specified initial contours outside the object of interest, in which the
snakes evolved inwardly. However, snakes can also evolve outwardly, or in a combination of both
motions, implying that the initial snake can straddle the boundary of the region to be segmented.
Figure 12.9 illustrates this behavior. Figure 12.9(a) is an MRI image of a human breast showing a par-
tially collapsed breast implant (the ellipse shown is the initial snake). We are interested in obtaining the
boundary of the implant. As motivation for this type of processing, imagine that you were conducting a
study of a historical medical database containing thousands of images of breast implants. An important
aspect of such a study might be to analyze the shape of the implants in order to quantify abnormalities

ba c
ed f

FIGURE 12.9 (a) 586 600× MRI image of a human breast and a 64-point initial snake. (b) Edge map obtained using an
11 11s s× lowpass kernel with s = 5 and a threshold of 0.01. (c) GVF force field superimposed on the edge map.
(d) Result of 25 iterations using a = 0 05. , b = 0 5. , and g = 2 5. . (e) Result of 50 iterations using the same parameters.
(f) Result of 100 iterations. (Original image courtesy of NIH/National Library of Medicine.)

750 Chapter 12 Image Segmentation II 

(e.g., collapsed implants) as a percentage of normal implants. Even if total automation is not accept-
able—a typical constraint in medical image processing—a semi-automated technique in which a human
expert initiates the process by pointing to a starting location in the implants and lets a computer extract
and quantify the boundary, often is acceptable. Such an approach can save many hours of effort and
yield more accurate measurements than manual estimates.

To generate the results in Fig. 12.9, we used the parameters listed in the figure caption. For the GVF
force field we used m = 0 25. and 100 iterations, which are the same settings we used in Example 12.4.
The results in Figs. 12.9(a) and (d) through (f) show how the snake evolved from an initial position
straddling the boundary of the implant, to an almost perfect segmentation of that region. You are asked
in Project 12.6 to duplicate the results in Fig. 12.9. You will also experiment with snakes starting inside
and outside a region of interest.

12.3	IMAGE SEGMENTATION USING LEVEL SETS

As we mentioned in Section 12.1, level sets in the context of image segmentation
are sets of points of a 2-D curve formed by the intersection of a plane and a 3-D
surface. Unlike the parametric representation used for snakes, level sets are based
on implicit representations. An important aspect of this approach is that it can
adapt to changing topology, such as the emergence of new regions, during curve
evolution. Inherently, parametric curves do not have this capability. However, as we
will illustrate later in this section, each approach has strengths that make it an appro-
priate choice in a given application. As noted in Section 12.1, level sets were used
initially to describe the propagation of interfaces between fluids. In the terminology
of image segmentation, “fluids” represent image regions and “interfaces” become
segmentation contours that separate one region from another.

IMPLICIT REPRESENTATION OF ACTIVE CONTOURS

The representation of snakes discussed in Section 12.2 is explicit, in the sense that
an active contour is represented by an equation written in Cartesian or, more fre-
quently, parametric form. An alternate representation of a 2-D contour is to define it
implicitly as the intersection of a plane and a 3-D surface. To illustrate, consider the
explicit equation of a circle centered at point (,)x y0 0 in the xy-plane:

	 () ()x x y y r− + − =0
2

0
2 2

Figure 12.10(a) shows a generic plot of this function. We can write this equation
equivalently as

	 () ()x x y y r− + − − =0
2

0
2 2 0

Suppose that we define the following scalar function of two variables:

	 f(,) () ()x y x x y y r= − + − −0
2

0
2 2

Remember, a scalar
function outputs a scalar
value, independently
of the number of scalar
variables on which it
depends.

754 Chapter 12 Image Segmentation II 

a f that satisfies Eq. (12-22); and (4) extract the segmentation contour as the zero
level set of f. As with snakes, the choice of F plays a central role in the effectiveness
of segmentation algorithms based on level sets. In the formulations to be discussed
shortly, F will depend in general on both image data (e.g., edges) and the level set
function itself (e.g., the curvature of f). Level set algorithms operate using scalar
fields, unlike snakes which work with vector fields.

ITERATIVE SOLUTION OF THE LEVEL SET EQUATION

As noted earlier, Eq. (12-22) cannot be solved directly because the evolution of F
and f can seldom be expressed analytically, except in simple cases. So, as we did
with snakes, we resort to numerical techniques by discretizing the level set equation.
This consists of discretizing the temporal (i.e., time) derivative and also the spatial
derivatives needed to compute the norm of the gradient vector.

As before, we approximate the time derivative using finite differences:

	
∂

∂
= + −f f f(, ,) (, ,) (, ,)x y t

t
x y t t x y t

t



	 (12-23)

The result of discretizing t is the following iterative equation:

	 f f f fn n n nt F+ = − { }1  () � � 	 (12-24)

where

	 f fn x y n t= (, ,) 	 (12-25)

is the value of f after n iterative steps.
We still have to discretize Eq. (12-24) with respect to x and y. This means discretiz-

ing the computation of the term F n n()f f� � in Eq. (12-24). As with snakes, the
process for doing this is not difficult, but it is tedious and outside the scope of this
discussion (see Gonzalez and Woods [2018] for the derivations). The result is

	 f f f fn n n nt F F+ + −
= − +{ }1 0 0  max(,) min(,) 	 (12-26)

where the terms are explained in the next paragraph. This is the complete iterative
solution of the level set equation given in Eq. (12-22). Equation (12-26) is said to
have converged if f fn n+ =1 within a tolerance bound. If f fn n+ ≠1 within that
tolerance bound, we update the right side of Eq. (12-26) using fn+1, increase n by 1,
and compute the next iteration using that equation. The final contour is obtained
as the zero-level set of the final f. When the increments of x and y are unity (as
with digital images), the so-called Courant-Friedreichs-Lewy (CLF) condition from

768 Chapter 12 Image Segmentation II 

where G x y f x ys(,) (,)� denotes smoothing by performing spatial convolution of
f x y(,) with a Gaussian lowpass kernel, Gs , of a specified size and standard devia-
tion, s. This is force (2) in Table 12.1. As the following example shows, even this
simple force can produce quite effective segmentation results.

EXAMPLE 12.10 : Level set segmentation of a grayscale image using a force based on the image gradient.

Figure 12.17(a) is the same image we used in Example 12.6. As before, we are interested in obtaining
the boundary of the collapsed breast implant. We obtained the image in Fig. 12.17(a) using the following
commands:

>> f = im2double(imread('breast-implant.tif'));
>> [M,N] = size(f);

>> % Smooth the image.
>> n = 15;
>> sig = 5;
>> G = fspecial('gaussian',n,sig);
>> fsmooth = imfilter(f,G,'replicate');

>> % Initial level set function.
>> x0 = 370;
>> y0 = 350;
>> r = 18;
>> phi0 = levelsetFunction('circular',M,N,x0,y0,r);

ba c
ed f

FIGURE 12.17 Level
set segmentation
of a grayscale
image using a
gradient force.
(a) 586 600×
MRI image of a
human breast and
initial zero level
set function.(b)
Thresholded gra-
dient force. (c)–(f)
Results of 50, 100,
200, and 400 itera-
tions, respectively.
(Original image
courtesy of NIH/
National Library
of Medicine.)

780 Chapter 12 Image Segmentation II 

Summary
The material in this chapter is a comprehensive foundation for many of the approaches you are likely
to encounter using active contours for image segmentation. In particular, a good understanding of the
mechanics of the snake and level set equations are essential when it becomes necessary to develop new
techniques based on the concepts discussed in the preceding sections. In the process of programming all
the various details of these two important segmentation approaches, you learned how to handle itera-
tive equations and the subtleties of what it takes to achieve convergence when using active contours for
image segmentation.

ba c
ed f

FIGURE 12.28
First row: Initial
contours.
Second row:
Results of
segmentation
using
(d) snakes with a
GVF force,
(e) level sets with
a geodesic force,
and
(f) level sets with
a Chan-Vese
force.

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

12.1	 Do the following:

(a)	 Write a function ellipticalCurve for generating and optionally superimposing an ellipse on an
image. Your function should have the syntax [x,y] = ellipticalCurve(param) where [x,y] are
the (row,  col)coordinates of the ellipse and param is a structure whose fields specify: (1) the number
of points in the ellipse; (2) the coordinates of the center of the ellipse; (3) the orientation of the el-
lipse as the angle (in degrees) of its major axis with respect to the image x-axis (see Section 2.1 for a
discussion of the image coordinate system); (4) the lengths of the ellipse semimajor and semiminor
axes; and (5) a display option that optionally displays it superimposed on a white image of specified
size. The default is not to display the ellipse.

785

13 Feature Extraction

After an image has been segmented into regions or their boundaries using methods such as those in
Chapters 11 and 12, the resulting sets of segmented pixels usually have to be converted into a form
suitable for further computer processing. In most applications, the step after segmentation is feature
extraction, which consists of feature detection and feature description. Feature detection refers to finding
features in an image, region, or boundary. Feature description assigns quantitative or qualitative attri-
butes to the detected features. Some of the methods discussed in this chapter are capable of extracting
features directly from an image, thus combining segmentation and feature extraction into one step.

Functions Developed in this Chapter:
bound2im converts a boundary to a binary
image.

uppermostLeftmost finds the uppermost,
leftmost foreground point in a binary image.

bound2eight converts a boundary to an
8-connected path.

bound2four converts a boundary to a 4-con-
nected path.

bsubsamp  subsamples a boundary.

connectpoly connects polygon vertices.

intline constructs a digital line.

freemanChainCode generates the Freeman
chain code of a boundary.

im2minperpoly finds a minimum-perimeter
polygon enclosing a region.

boundarydir determines the direction of a
set of boundary points.

signature computes the signature of a
boundary.

diameter generates the diameter, major axes,
and basic rectangle of a boundary or region.

frdescp and ifrdescp compute forward and
inverse Fourier descriptors, respectively.

statxture generates statistical texture.

specxture generates spectral texture.

invmoments computes 2-D moment invari-
ants.

imstack2vectors converts a stack of images
to vectors.

covmatrix computes the covariance matrix
of a set of vector samples.

principalComponents obtains the principal
components of a set of vector samples.

A great product isn’t just a collection of features. It’s how it all works together.
 Marco Arment

13.2 Region and Boundary Preprocessing 787

	 x =
















x

x

x

1

2

3

in which x1 is the intensity value of the red image at a point and the other components
are the intensity values of the green and blue images at the same point. If color
is used as a feature, then a region in an RGB image would be represented as a
set of feature vectors (points) in 3-D space. When n descriptors are used, feature
vectors become n-dimensional and the space containing them is referred to as an
n-dimensional feature space.

In this chapter, we group features into three principal categories: boundary, region,
and whole image features. This subdivision is not based on the applicability of the
methods we are about to discuss; rather, it is based on the fact that some categories
of features make more sense than others when considered in the context of what
is being described. Many of the features in the following sections are applicable to
boundaries and regions, and some apply to whole images as well.

We will be working with numeric and logical images. As explained in Chapter 2,
numeric images are principally images of the familiar uint8 and double classes. A
binary image is a bivalued numeric image with values generally equal to 0 and 255
for uint8 images and 0 and 1 for double images. Pixels in logical images are logical
constants: 0 (FALSE) and 1 (TRUE). We mention this again because some of the
functions in this chapter require logical inputs and sometimes output logical results.
Generally, we will use lowercase letters such as f and g to denote numeric (includ-
ing binary) images and upper case such BW for logical images. When input and/or
output images can be logical or numeric, we will generally use lowercase letters to
denote both.

13.2	REGION AND BOUNDARY PREPROCESSING

Most of the segmentation methods discussed in the last two chapters yield raw data
in the form of pixels along a boundary or pixels contained in a region. It is standard
practice to preprocess raw segmented data into forms that ultimately help improve
feature uniqueness and invariance. In this section, we discuss various preprocessing
approaches suitable for this purpose.

DEFINITIONS

Let S represent a subset of foreground pixels in an image. Two pixels p and q are said
to be connected in S if there exists a path between them consisting entirely of pixels
from S. For any pixel p in S, the set of pixels connected to it in S is called a connected
component. If it only has one connected component, S is called a connected set. A
subset, R, of pixels in an image is called a region of the image if R is a connected set.

The boundary (also called the border or contour) of a region is defined as a set
of pixels in the region that have one or more neighbors that are not in the region.
Initially we are interested in binary images, so foreground pixels are represented by

For convenience, we
repeat here some
definitions given in
Chapters 2 and 10.

In image processing
applications, connected
components typically
only have one
component, so use of the
term connected
component generally
refers to a region.

13.3 Representing Regions and Boundaries 801

concave vertices (black dots) in the outer wall. A little thought will reveal that only
convex vertices of the inner wall and mirrored concave vertices of the outer wall can
be vertices of the MPP. Thus, our algorithm needs to focus attention only on those
vertices.

An Algorithm for Finding MPPs

The set of cells enclosing a boundary is called a cellular complex. We assume that the
boundaries under consideration are not self intersecting, a condition that leads to
simply connected cellular complexes. Based on these assumptions and letting white
(W) and black (B) denote convex and mirrored concave vertices, respectively, we
state the following observations:

1.	 The MPP bounded by a simply connected cellular complex is not self
intersecting.

2.	 Every convex vertex of the MPP is a W vertex, but not every W vertex of a
boundary is a vertex of the MPP.

ba c

FIGURE 13.5
(a) An object
boundary.
(b) Boundary
enclosed by cells.
(c) Minimum-
perimeter polygon
created when the
boundary shrinks.
The vertices are
created by the
corners of the
inner and outer
walls.

ba c

FIGURE 13.6
(a) Region (green)
defined by the inner
wall. (b) Convex
(white) and concave
(black) vertices
obtained by follow-
ing the boundary
counterclockwise.
(c) Concave vertices
displaced diagonally
to the outer wall.
The MPP is shown
for reference.

13.4 Boundary Features 813

>> BW = imbinarize(fs);
>> figure, imshow(BW) % Fig. 13.13(c).

The result in Fig. 13.13(c) is a clean binary image containing a single object. We find its skeleton using
function bwskel:

>> S = bwskel(BW);
>> figure, imshow(S) % Fig. 13.13(d).

The result, shown in Fig. 13.13(d), is a skeleton that captures the essence of the object: four elongated
arms connected in the center. In earlier versions of the Toolbox, skeletonization was done using func-
tion bwmorph, which is based on morphological thinning. As you will learn in Project 13.3(f), function
bwmorph can yield results that are not consistent with the definition of the medial axis transformation.

13.4	BOUNDARY FEATURES

In this section we discuss a number of features that are useful when working with
region boundaries. Many of these descriptors are applicable to regions also and
the grouping of descriptors in the Toolbox does not make a distinction regarding
their applicability. Therefore, some of the concepts introduced here are repeated in
Section 13.5 when we discuss regional features.

SOME BASIC BOUNDARY FEATURES

We extract the boundary of objects contained in image f using function bwperim,
introduced in Section 13.2:

BW = bwperim(f,conn)The output of function
bwperim is an image.

ba c d

FIGURE 13.13 (a) Noisy chromosome. (b) Image smoothed using a 67 67× Gaussian kernel with s = 11. (c) Thresholded
image. (d) Skeleton.

818 Chapter 13 Feature Extraction

% length(Z)-by-2 containing the coordinates of a closed boundary.
%
% See function FRDESCP for computing the descriptors.

% Preliminaries.
np = length(z);
% Check inputs.
if nargin == 1
 nd = np;
end
if np/2 ~= round(np/2)
 error('length(z) must be an even integer.')
elseif nd/2 ~= round(nd/2)
 error('nd must be an even integer.')
end

% Create an alternating sequence of 1s and -1s for use in centering the
% transform (see Gonzalez and Woods [2018]).
x = 0:(np - 1);
m = ((-1) .^ x)';

% Use only nd descriptors in the inverse. Because the descriptors are
% centered, (np - nd)/2 terms from each end of the sequence are set to
% 0.
d = (np - nd)/2;
z(1:d) = 0;
z(np - d + 1:np) = 0;

% Compute the inverse and convert back to obtain the boundary
% coordinates.
zz = ifft(z);
s(:,1) = real(zz);
s(:,2) = imag(zz);

% Multiply by alternating 1 and -1s to undo the centering done in
% function frdescp.
s(:,1) = m.*s(:,1);
s(:,2) = m.*s(:,2);

EXAMPLE 13.7 : 	Using Fourier descriptors.

Figure 13.16(a) is the same as Fig. 13.13(c) and Fig. 13.16(b) is the boundary of the chromosome extracted
using function bwboundaries:

>> f = imread('chromosome.tif');
>> figure, imshow(f) % Fig. 13.16(a)
>> % Obtain the boundary and display it as an image.
>> B = bwboundaries(f);
>> b = B{1}; % There is only one boundary in this case. Its length is 2688 points.
>> disp(length(b))
 2688
>> bim = bound2im(b,size(f,1),size(f,2));
>> figure, imshow(bim) % Fig. 13.16(b).

13.5 Regional Features 827

EXAMPLE 13.8 : 	Working with function regionprops.

We will use Fig. 13.21(a) to explore the capabilities of function regionprops. The first step in using this
function is to convert the input to a logical image. Figure 13.21(b) is the result of binarizing the input
image:

>> f = rgb2gray(imread('liver-cells.tif'));
>> figure,imshow(f) % Fig. 13.21(a).
>> fb = imbinarize(f);
>> figure, imshow(fb) % Fig. 13.21(b).

As you can see, the thresholded image contains a large number of small irrelevant regions. We could
clean up this image using morphological techniques or by using regionprops to obtain all regions and
then deleting the “small” ones. However, in this case it is more effective to smooth the image first, before
thresholding it:

>> fs = imgaussfilt(f,3,'FilterSize',19); % Filter size: odd integer ~ 6 x sigma (see Section 3.4 for
 					 % an explanation of why we chose 6 x sigma).
>> figure, imshow(fs) % Fig. 13.21(c).
>> BW = imcomplement(imbinarize(fs));
>> figure, imshow(BW) % Fig. 13.21(d).

The result in Fig. 13.21(d) is in the form required by regionprops, in the sense that the image is a logical
array and the regions are white on a black background.

We begin by computing all the features:

>> fdvalues = regionprops(BW,'all');
>> disp(fdvalues)

 7×1 struct array with fields:

 Area			 MinorAxisLength		 ConvexArea	 Extrema		 PixelList
 Centroid		 Eccentricity		 Image		 EquivDiameter	 Perimeter
 BoundingBox		 Orientation		 FilledImage	 Solidity		 PerimeterOld
 SubarrayIdx		 ConvexHull		 FilledArea	 Extent
 MajorAxisLength	 ConvexImage		 EulerNumber	 PixelIdxList

ba c d

FIGURE 13.21 (a) Image of liver cells. (b) Thresholded image.(c) Smoothed image. (d) Thresholded result. (Image (a)
courtesy of NIH.)

830 Chapter 13 Feature Extraction

useful when the same features are used in various sections of code, or when calling regionprops from
within another function.

TEXTURE

Texture is an important feature for differentiating between regions. While no formal
definition of texture exists, we intuitively think of texture features descriptors as
quantifiers of properties such as smoothness, coarseness, and regularity. We already
introduced the concept of texture features in Section 11.4, where we discussed using
Gabor filters for segmentation based on periodic patterns. In this section, we discuss
statistical and spectral approaches for describing the texture of a region. Statistical
approaches yield spatial descriptions of textures such as smooth, coarse, grainy, and
so on. Spectral techniques are based on properties of the Fourier spectrum and are
used primarily to detect global periodicity in an image by identifying narrow peaks
of high energy in its spectrum.

Statistical Approaches

In this section we discuss two approaches for generating texture descriptors: statisti-
cal moments and co-occurrence matrices.

Statistical Moments

One of the simplest approaches for describing texture is to use statistical moments of
the intensity histogram of an image or region. Let z be a random variable denoting
intensity and let p z i Li() = −, , , , , ,0 1 2 1… be the corresponding normalized histo
gram components, where L is the number of distinct intensity levels. From Eq. (5-10),
the nth moment of z about the mean is

	 mn i
i

L
n

iz z m p z() = −() ()
=
∑

0

1–

	 (13-12)

where

	 m z p zi i
i

L

=
=
∑ ()

0

1-

	 (13-13)

is the mean (average) value of z. These moments can be computed using function
statmoments discussed in Section 5.2. Table 13.4 lists some common descriptors
based on statistical moments and also on uniformity and entropy. Remember that
the second moment, m2, is the variance, s2.

Custom function statxture (see your Support Package for the code) computes
the texture descriptors in Table 13.4. Its syntax is

t = statxture(f,scale)statxture

13.5 Regional Features 837

>> energy2 = fdvalues2.Energy;
>> hom2 = fdvalues2.Homogeneity;
>> for k = 1:size(G2n,1)
 sumcols(k) = sum(−G2n(k,1:end).*log2(G2n(k,1:end) + eps));
end
>> entropy2 = sum(sumcols);

The values of these features are listed in the G2 2n row of Table 13.7. The other two rows were generated
using the same procedure with the other two images. The entries in this table agree with what one would
expect from looking at the images in Fig. 13.27. For example, consider the Maximum Probability column
in Table 13.7. The highest probability corresponds to the third co-occurrence matrix, which tells us that
this matrix has the highest number of counts (largest number of pixel pairs occurring in the image
relative to the positions in O) than the other two matrices. Examining Fig. 13.27(c) we see that there are
large areas characterized by low variability in intensities in the horizontal direction, so we would expect
the counts in G3 to be high.

The third column indicates that the highest correlation corresponds to G2. This tells us that the inten-
sities in the second image are highly correlated. The repetitiveness of the periodic pattern in Fig. 13.27(b)

b
a

c

FIGURE 13.27
Images whose
pixels exhibit
(a) random,
(b) periodic, and
(c) mixed texture
patterns.
All images are
of size 263 800×
pixels.

TABLE 13.7
Texture feature descriptor values for the images in Fig. 13.27 based on individual co-occurrence matrices.

Normalized
Co-occurrence

Matrix

Feature Name

Max
Probability Correlation Contrast Energy Homogeneity Entropy

G1 1n 0.00006 −0.0005 10838 0.00002 0.0366 15.75

G2 2n 0.01500 0.9650 570 0.01230 0.0824 6.43

G3 3n 0.05894 0.9043 1044 0.00360 0.2005 13.63

842 Chapter 13 Feature Extraction

13.6	WHOLE-IMAGE FEATURES

As we mentioned in Section 13.1, it is useful to categorize features as being principally
applicable to boundaries, regions, or whole images. These are not mutually-exclusive
categories. Rather, they are rough guidelines that help us organize our discussion
into categories where these features are generally most applicable.

MOMENT INVARIANTS

We defined the statistical moments of a single random variable in Chapters 3 and 5,
and have since used them in various parts of the book. Two-dimensional moments
can similarly be defined and used as features. In addition, as we will show in this sec-
tion, they can be normalized for invariance to translation, scale change, mirroring
(within a minus sign), and rotation. As you learned at the beginning of this chapter,
these are desirable characteristics of features in general.

The 2-D moment of order ()p q+ of an M N× digital image, f x y(,), is defined as

	 m x y f x ypq
p q

y

N

x

M

= ()
==

∑∑
0

1

0

1 ––

, 	 (13-26)

where p and q are nonnegative integers. The corresponding central moment of order
(),p q+ denoted mpq, is defined as

	 mpq
y

N

x

M p q
x x y y f x y= () () ()

==
∑∑ – – ,

––

0

1

0

1

	 (13-27)

where

	 x
m
m

y
m
m

= =10

00

01

00

and 	 (13-28)

The normalized central moment of order (),p q+ denoted hpq, is defined as

	 h
m

m
gpq
pq=
00

	 (13-29)

where

	 g = + +p q
2

1 	 (13-30)

for p q+ = 2 3, , .…
The set of seven, 2-D moment invariants in Table 13.8 can be derived from the

second and third normalized central moments. We can attach physical meaning to

Derivation of the seven
moment invariants
requires concepts that
are beyond the scope of
this discussion. See
Gonzalez and Woods
[2018] for sources
containing derivations,
and also generalizations
to orders higher than
seven, and dimensions
greater than two.

13.6 Whole-Image Features 853

>> % Display the image that gave the maximum difference.
>> idx = find(maxdiff == max(maxdiff(:)));
>> figure, imshow(diff{idx(1)}) % Fig. 13.36(a)-A black image.

We can view the tiny values in the difference image by expanding its values to the [0, 1] range.
Figure 13.36(b) shows the result:

>> % Scale the difference image to see the intensity differences.
>> diffscaled = intensityScaling(diff{idx});
>> figure, imshow(diffscaled) % Fig. 13.36(b).

This figure shows that the differences are distributed over the entire image field.

ba c
ed f

FIGURE 13.35
Multispectral
images
reconstructed
using only the two
principal-
component
images with the
largest
eigenvalues.
Compare these
images with
the originals in
Fig. 13.33.

ba

FIGURE 13.36
(a) Difference
between the
images in
Figs. 13.33(a)
and 13.35(a). The
maximum value
of this image is
7.7716 e–16.
(b) Difference
image scaled to
the range [0, 1].

13.6 Whole-Image Features 861

so many times before in the book. Values in the corner map that are local extrema
are potential corners. As noted earlier, the metric for the Harris function is R from
Eq. (13-52) and for the eigenvalue detector it is Eq. (13-53). The MinQuality param-
eter is a threshold normalized to the range [0, 1] that “passes” corner values in the
map whose metric values exceed this threshold, while rejecting those that do not.
The selectStrongest function selects a specified number of higher-value corners
from the set that passed the MinQuality threshold. Finally, the selectUniform
function returns a more uniform spatial spread of corners throughout the image; this
prevents “bunching” of the features in one area of the image that could bias further
computations, especially when it comes to applications such as image registration.
Finally, because corners is a cornerPoints object, its properties are the three
properties we listed earlier when discussing cornerPoints.

EXAMPLE 13.15 : Corner detection.

Figure 13.39(a) shows an image with numerous corners and Fig. 13.39(b) shows the output of function
detectHarrisFeatures obtained using the following commands:

>> f = imread('national-archives-bld.tif');

Function Explanation

plot Plot corner points.

isempty Determine if no corners were found.

length Number of stored corner points.
selectStrongest Select a specified number of the strongest corner points stored.

size The number of corner points found.

selectUniform Select uniformly distributed subset of corner points.

gather Retrieve corner points information from the GPU (not used in this book).

TABLE 13.11
Functions associated with object corner.Points for extracting information about the corners stored in the object.

Name Value

'MinQuality' A scalar in the range [,]0 1 representing the minimum acceptable quality of the cor-
ners. The default is 0.01.

'FilterSize' The square dimension of a Gaussian filter kernel used to smooth the input image.
Acceptable values are odd integers in the range [3,min(size(f))]. The default is
5. The standard deviation is chosen automatically as FilterSize/3.

'ROI' Rectangular region of interest over which corners are computed. Specified as a
vector [col,row,width,height] where (col,row) are the coordinates of the
upper-left corner of the rectangle.

TABLE 13.12
Name/Value pairs for function detectHarrisFeatures. Multiple pairs can be specified simultaneously.

862 Chapter 13 Feature Extraction

>> figure, imshow(f) % Fig. 13.39(a).
>> % Use default values for all parameters.
>> corners = detectHarrisFeatures(f);
>> % Plot the corners superimposed on the image.
>> figure, imshow(f)
>> hold on
>> plot(corners) % Fig. 13.39(b).
>> hold off

As Fig. 13.39(a) shows, the number of corners detected is large. To find the exact number we type

>> size(corners)
ans =
	 2768 1

Whether these are too many corners depends on the application. If we were looking for urban structures
in an image, 2768 corners would be a clue that the image may contain a large building. In general, the
default settings generate too many false corners, as is evident in the “corners” that were found in the
trees, the street and the sidewalk in Fig. 13.39(b).

The other parameters available in function detectHarrisFeatures are designed to refine the results
of this function. For example, we can increase the minimum quality of acceptable corners and smooth
the image with a larger smoothing kernel. Both actions will invariably result in fewer corners:

>> corners2 = detectHarrisFeatures(f,'MinQuality',0.1,'FilterSize',91);

ba
dc

FIGURE 13.39
(a) Image with
numerous corners.
(b) Corners
detected by
function
detectHarris-
Features with its
default settings.
(c) Result of
increasing the
value of parameter
MinQuality by a
factor of ten and
increasing the size
of the smoothing
kernel to 91 91× .
(d) Further refine-
ment by selecting
the 50 strongest
corners. (Image
courtesy of the
U. S. National
Archives.)

13.6 Whole-Image Features 863

>> figure, imshow(f)
>> hold on
>> plot(corners2) % Fig. 13.39(c).
>> hold off
>> size(corners2)
ans =
	 615 1

As Fig. 13.39(c) shows, the tighter parameters indeed resulted in fewer corners. The majority are on the
building, but there are still some false corners in the trees. We could continue to experiment with quality
and filtering to further reduce the number of corners, but an alternative to reducing the number of cor-
ners is to accept only a specified number of the strongest corners. For example, the following commands
selected and displayed the fifty strongest corners in object corners2:

>> figure, imshow(f)
>> hold on
>> plot(corners2.selectStrongest(50)) % Fig. 13.39(d).
>> hold off

The result in Fig. 13.39(d) is considerably more informative, in the sense that all corners that passed the
strength test are part of the building and thus are true corners in the context of this example.

MAXIMALLY STABLE EXTREMAL REGIONS (MSERs)

The Harris-Stephens (HS) corner detector discussed in the previous section is
useful in applications characterized by sharp transitions of intensities, such as
the intersection of straight edges that result in corner-like features in an image.
Conversely, the maximally stable extremal regions (MSERs), introduced by Matas
et al. [2002] and discussed in detail below, are more “blob” oriented. As with the HS
corner detector, MSERs are intended to yield whole image features for the purpose
of establishing correspondence between two or more images.

A grayscale image can be viewed as a topographic map, with the xy-axes repre-
senting spatial coordinates and the z-axis representing intensities. Imagine that we
start thresholding an 8-bit grayscale image one intensity level at a time. The result
of each thresholding is a binary image in which we show the pixels at or above the
threshold in white and the pixels below the threshold in black. When the threshold,
T, is 0, the result is a white image because all pixel values are at or above 0. As we
start increasing T in increments of one intensity level, we will begin to see black
components in the resulting binary images. These correspond to local minima in
the topographic map view of the image. These black regions may begin to grow and
merge, but they will never get smaller from one image to the next. Finally, when we
exceed T = 255, the resulting image will be black—there are no pixel values above
this level. Because each stage of thresholding results in a binary image, there will be
one or more connected components of white pixels in each image. The set of all such
components resulting from all thresholding operations is the set of extremal regions.
Extremal regions that do not change size (number of pixels) appreciably over a
range of threshold values are called maximally stable extremal regions.

13.6 Whole-Image Features 869

>> disp(regions)
 499×1 MSERRegions array with properties:
 Count: 499
 Location: [499×2 single]
 Axes: [499×2 single]
 Orientation: [499×1 single]
 PixelList: {499×1 cell}

The total number of MSER regions detected was 499, many of which were very small. Note that the
default settings failed to detect the white region (a cross section of the skull) enclosing the brain.

Suppose next that we want to extract the skull region and exclude all other regions in the image. We
know from Table 13.15 that the default area range is [,].30 14000 The white region was not detected
because its area is greater than this. We can try a new range: [,]14001 28000 and see if the area of the
region is in that range:

>> [regions,cc] = detectMSERFeatures(f,'RegionAreaRange',[14001 28000]);

ba c

FIGURE 13.41 (a) Image from a CT scan of a human head. (b) The 499 MSER regions detected using the defaults of
function detectMSERFeatures. (c) Region detected with parameter 'RegionAreaRange' set to [14000 28000].
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Fields Explanation

Connectivity Connectivity of the MSER regions. The default is 8.

ImageSize Size of image f.

NumObjects Number of MSER regions in f.

PixelIdxList 1-by-NumObjects cell array containing NumObjects vectors. Each vector contains
the linear indices of the pixels in the element’s corresponding MSER region.

TABLE 13.16
Fields of the structure cc output by the function detectMSERfeatures.

872 Chapter 13 Feature Extraction

KEYPOINT FEATURES

Keypoints are spatial image points that are characteristic of on image or class of
images, in the sense that no matter how the image(s) is (are) transformed (e.g., by
rotation, shrinking, expanding, translation, and changes in intensity and view point)
you should be able to find the same keypoints that you found in the original image(s).
When coupled with descriptors, keypoints are referred to as keypoint features.
Corners are an example of keypoint features if we couple them with descriptors
such as the dominant direction of the gradients computed in a neighborhood of each
corner point.

Keypoint features based on corners and MSERs are suitable for applications in
which variability between images is limited. However, in the presence of variables
such as those mentioned in the previous paragraph, we are forced to look at more
comprehensive techniques designed to achieve invariance to as many of those
variables as possible, thus yielding so-called robust keypoint features. Because
methods for extracting keypoint features are complex, computational speed is a
fundamental requirement. Central to the usefulness of any keypoint-feature-based
scheme is repeatability; that is, the ability to find the same keypoints across images
obtained under different viewing conditions.

Among the many uses of keypoints in image processing are image registration,
camera calibration, image stitching to generate panoramic views, object recognition,
image retrieval, and map-based autonomous navigation. We demonstrated the use
of keypoints for image registration in Chapter 6. In this section, we summarize some
of the fundamental aspects of keypoint feature extraction and discuss several func-
tions for implementing and using keypoint features. As with earlier methods in this
section, keypoint detection and description functions are from the Computer Vision
Toolbox.

ba

FIGURE 13.43
The
(a) smallest, and
(b) largest MSERs
in the range
[14001,...
 0.5*imarea].
The MSERs are
shown in cyan.

13.6 Whole-Image Features 881

>> matchedPoints1 = valpoints1(indexPairs(:,1),:);
>> matchedPoints2 = valpoints2(indexPairs(:,2),:);

We can investigate the contents of these results as follows:

>> disp(matchedPoints1)
 11×1 cornerPoints array with properties:
 Location: [11×2 single]
 Metric: [11×1 single]
 Count: 11

Thus, we see that there are 11 matched features whose coordinates are contained in the 11 2× matrix
matchedPoints1.Location. To display the matches we type

>> figure, showMatchedFeatures(f1,f2,matchedPoints1,matchedPoints2) % Fig. 13.50(a)

As Fig. 13.50(a) shows, the 11 keypoint matches found are between points that are clearly corresponding.
In particular, two matches were found in the high-contrast white protrusions mentioned earlier. The rest
of Fig. 13.50 shows results with the keypoint features listed in the figure caption, using commands very
similar to those we used to obtain Fig. 13.50(a). The result in (b) is also based on corners and it found
three matches between the protrusions. However, this method produced a matching error between the
points shown joined by the long line. The BRISK result in (c) produced more correct matches than the
previous two methods. This is not surprising, considering that the BRISK method is based on multi-
level detection, while the corner methods just work on the image plane. SURF keypoint features gave
the “richest” matching result. It has a significant number of correct matches with few errors. In general
numerous correct keypoint matches imply a higher probability that any two images being compared are
of the same object or scene. The KAZE result is useless for all practical purposes, as you can see by the
randomness of the matches and the lengths of the lines connecting them. The diffusion model on which
KAZE is based is not applicable in this case. Finally, MSER keypoint features found several correct
matches, but failed to find correspondence between the white protrusions mentioned earlier.

ba c
ed f

FIGURE 13.50
Matches found
between the two
images in
Fig. 13.49 using:
(a) FAST,
(b) Harris,
(c) BRISK,
(d) SURF,
(e) KAZE, and
(f) MSER
keypoint features.

882 Chapter 13 Feature Extraction

Summary
Feature extraction is a fundamental process in the operation of most automated image processing
applications. As indicated by the range of feature detection and description techniques covered in this
chapter, the choice of one method over another is determined by the problem under consideration. The
objective is to choose features that “capture” essential differences between objects, or classes of objects,
while maintaining as much independence as possible to changes in variables such as location, scale,
orientation, illumination, and viewpoint.

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

13.1	 In the following, selecting regions, holes, or boundaries by inspection is not acceptable. All answers must
be based on computations.

(a) *	Read the image multiple-regions.tif and extract the boundary of the smallest hole. Display the
boundary as an image.

(b)	 Extract all the pixels comprising the smallest hole and display them as an image. Boundary pixels are
not considered part of the hole, so they should not appear in your image.

(c)	 Extract the boundary of each of the regions with no holes and display it as an image.

(d)	 Extract only the outer boundaries of the regions in the image and show them superimposed on the
regions, using a different color for each boundary.

13.2	 Do the following:

(a) *	Start with the small image I1 = zeros(11) and I1(5:7,4:7) = 1. Then form I2 as I2 = I1' (i.e., I1
rotated by 90°). Process each image with function freemanChainCode to obtain structures c1 and
c2. Explain the following: (1) Why are the integers of minimum magnitude c1.mm and c2.mm differ-
ent? (2) Why are c1.diff and c2.diff different? (3) Why are the integers of minimum magnitude
c1.diffmm and c2.diffmm equal?

(b) *	Write a function to determine if a given Freeman chain code corresponds to a closed curve or not. The
function specifications are as follows:

function oc = isCodeClosed(fcc,conn)
%isCodeClosed Determines if a Freeman chain code is of a closed curve.
% OC = isCodeClosed(FCC,CONN) determines if Freeman chain code FCC
% corresponds to a closed curve with connectivity CONN (4 or 8, the
% latter being the default). Output OC is 1 if the curve is closed
% and 0 otherwise.
%
% The following table lists the changes in deltax and deltay to
% transition from a point in the direction of the code symbol. The
% origin is based on our image coordinate system, with the origin on
% the top, left (see Fig. 2.1). The index is used in the body of the
% function to determine the appropriate deltax and deltay to use from
% one element of the code to the next.
%
% --

889

14 Classical and Deep Learning Methods
for Image Pattern Classification

We conclude our coverage of digital image processing with an introduction to techniques for image
pattern classification.  The approaches developed in this chapter are divided into three principal
categories: classification using prototype matching, classification based on an optimal statistical
formulation, and classification based on neural networks. The first two approaches are used extensively
in applications in which the nature of the data is well understood, leading to an effective pairing of fea-
tures and classifier design. These approaches often rely on a great deal of engineering to define features
and elements of a classifier. Approaches based on neural networks rely less on such knowledge and lend
themselves well to applications in which pattern class characteristics (e.g., features) are learned by the
system from massive databases, rather than being specified a priori by a human designer. The focus in
this chapter is on principles and how to write functions for implementing classification methods using
MATLAB and the Image Processing Toolbox. We also use a few functions from the MATLAB Deep
Learning and Computer Vision Toolboxes.

Functions Developed in this Chapter:
mahalanobis implements a highly vectorized
computation of the Mahalanobis distance.

minDistanceClassifier implements a min-
imum distance classifier.

bayesgauss implements a Bayes classifier
for Gaussian pattern classes.

strsimilarity computes measures of simi-
larity between pattern strings.

randvertex randomizes the location of poly-
gon vertices.

polyangles computes the interior angles of a
set of polygon vertices.

perceptronTrain implements the percep-
tron training algorithm.

patternShuffle shuffles the order of pat-
tern vectors.

fcnn Functions is a suite of custom functions
for training fully-connected neural networks
and for using them for pattern vector classi-
fication.

cnn Functions is a suite of custom functions
for training convolutional neural networks
and for using them for image pattern classi-
fication.

Art is the imposing of a pattern on experience, and our aesthetic
enjoyment is recognition of the pattern.

 Alfred North Whitehead

14.3 Pattern Matching Classifiers 893

% input data can be real or complex. The outputs are real quantities.
%
% D = MAHALANOBIS(Y,CX,MX) computes the Mahalanobis distance between
% each vector in Y and the given mean vector, MX. The results are
% output in vector D, whose length is size(Y, 1). The vectors in Y are
% assumed to be organized as the rows of this array. The input data
% can be real or complex. The outputs are real quantities. In addition
% to the mean vector MX, the covariance matrix CX of a population of
% vectors X must be provided also. Uses custom function COVMATRIX.

% Preliminaries.
param = varargin;
Y = param{1}; % param is a cell array.
if length(param) == 2
 X = param{2};
 % Compute the mean vector and covariance matrix of the vectors in X
 % using DIPUM3E custom function covmatrix.
 [Cx,mx] = covmatrix(X);
elseif length(param) == 3 % Cov. matrix and mean vector provided.
 Cx = param{2};
 mx = param{3};
else
 error('Wrong number of inputs.')
end

% Make sure that mx is a row vector for the next step.
mx = mx(:)';

% Subtract the mean vector from each vector in Y.
Yc = Y - mx;

% Compute the Mahalanobis distances.
D = real(sum(Yc/Cx.*conj(Yc),2));

The call to real in the last line of code is to remove “numeric noise” arising from
complex-number computations in earlier versions of MATLAB. If the data are
known to be real, the code can be simplified by removing functions real and conj.

14.3	PATTERN MATCHING CLASSIFIERS

In this section we discuss two of the earliest approaches to image pattern classifi-
cation, both of which are based on matching an unknown pattern against two or
more prototypes whose classes are known. The first, generally referred to as a mini-
mum-distance, or nearest neighbor, classifier works with pattern vectors. The second,
referred to as an image correlation classifier, works with images directly.

MINIMUM-DISTANCE CLASSIFIER

Suppose that we have Nc pattern classes, c c cNc1 2, , , ,… of vectors and we characterize
each class by a single prototype vector, which we can set equal to the mean vector of
the population:

The MATLAB matrix
operation A/B is more
accurate (and generally
faster) than the
operation A*inv(B).
Similarly, A\B is
preferred to inv(A)*B.
See Table 2.8.

14.3 Pattern Matching Classifiers 899

The number of elements in all three cases is 100, so the entire training set was classified correctly. Later
in this chapter you will learn more elegant ways to determine classification accuracy.

The preceding data set can be made more realistic by rotating the objects in random directions and
scaling their sizes. Also, we normally work with a training set to learn the system parameters (mean
vectors in this example) and an independent test set to determine system performance with patterns it
has never “seen” before. You will work with these additional requirements in Project 14.1.

The matching of keypoint features discussed in the previous chapter also utilizes
the concept of minimum-distance classification of feature vectors, but often using
simplifications to gain speed. See Example 13.17 for an illustration of keypoint
matching.

2-D IMAGE MATCHING USING CORRELATION

We introduced the basic idea of spatial correlation and convolution in Section 3.4 and
used these concepts extensively in Chapter 3 for spatial filtering. From Eq. (3-12) we
know that correlation of a kernel w with an image f x y(,) is given by

	 (w w(� f x y s t f x s y t
ts

)(,) ,) (,)= + +∑∑ 	 (14-14)

where the limits of summation are taken over the region shared by w and f . This
equation is evaluated for all values of the displacement variables x and y so that
all elements of w visit every pixel of f . Correlation has its highest value(s) in the
region(s) where w and f are equal. In other words, Eq. (14-14) finds locations where
w matches a region of f . But this equation has the drawback that the result is sensi-
tive to changes in the amplitude of either function. In order to normalize correlation
to amplitude changes in one or both functions, we perform matching using the cor-
relation coefficient instead:

	 g(,)
(,) (,)

(,) (,

x y
s t f x s y t f

s t f x s y

xy
ts=

[] + + − 

−[] + +

∑∑ w w

w w

-

2
tt fxy

tsts

) − 








∑∑∑∑
2

1
2

	 (14-15)

where the limits of summation are taken over the region shared by w and f , w is
the average value of the kernel (computed only once), and fxy is the average value
of f in the region coincident with w. In image correlation work, w is often referred
to as a template and correlation is referred to as template matching.

It can be shown (Gonzalez and Woods [2018]) that g(,)x y has values in the range
[,]−1 1 and is thus normalized to changes in the amplitudes of w and f . The maximum
value of g occurs when the normalized w and the corresponding normalized region
in f are identical. This indicates maximum correlation (the best possible match). The
minimum occurs when the two normalized functions exhibit the least similarity in
the sense of Eq. (14-15). Although this equation is normalized to provide invariance

To be formal, we should
refer to correlation
(and the correlation
coefficient) as cross-
correlation when the
functions are different
and as autocorrelation
when they are the same.
However, it is customary
to use the generic
term correlation and
correlation coefficient,
unless the distinction is
important—as in
deriving equations where
it makes a difference
which is being applied.

Templates are also
referred to as prototypes
or subimages.

14.3 Pattern Matching Classifiers 901

>> figure, imshow(f) % Fig. 14.4(a).
>> figure, imshow(w) % Fig. 14.4(b).

>> % Compute the correlation coefficient.
>> g = abs(normxcorr2(w,f));
>> figure, imshow(g,[]) % Fig. 14.4(c).

>> % Find all the max values.
>> gT = g == max(g(:)); % gT is a logical array.
>> % Find out how many peaks there are.
>> idx = find(gT == 1); % We use idx again later in this example.
>> disp(numel(idx))
	 1

>> % A single point is hard to see. Increase its size using dilation.
>> gT = imdilate(gT,ones(7));
>> figure, imshow(gT) % Fig. 14.4(d).

The blurring in the correlation image in Fig. 14.4(c) should not be a surprise because the template in
Fig. 14.4 (b) has two dominant, nearly constant regions and thus behaves like a lowpass filter kernel.

ba
dc

FIGURE 14.4
(a) Image of
Hurricane
Andrew.
(b) Template.
(c) Correlation
of image and
template.
(d) Location of
the best match.
(Original image
courtesy of
NOAA.)

928 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

14.5	FEEDFORWARD FULLY-CONNECTED NEURAL NETWORKS

In this section we discuss the architecture and operation of fully-connected neural
networks (FCNNs) in which the propagation of an input pattern to the output of
the network occurs in a feedforward direction. This is as apposed to recurrent neural
networks (RNNs), which can have internal loops. RNNs are outside the scope of the
present discussion. The term fully-connected means that the output of each node in a
layer of the network feeds into the input of every node in the next layer.

MODEL OF AN ARTIFICIAL NEURON

FCNNs are interconnected perceptron-like computing elements called artificial
neurons. These neurons perform the same computations as the perceptron, but they
differ from the latter in how they process the result of the sum-of-products computa-
tion, which we denoted by z in Eq. (14-23). As illustrated in Fig. 14.7, the perceptron
uses a “hard” thresholding function that outputs two values, such as +1 and −1, to
perform classification. A hard threshold can have large swings between its limits for
infinitesimally-small changes in the input to the thresholder. Because FCNNs are
formed by layering computing units, the output of one unit affects the behavior of all
units following it. The perceptron’s sensitivity to the sign of small signals can cause
serious stability problems in an interconnected system, making perceptrons unsuit-
able for layered architectures.

The solution is to change the hard-limiter to a smooth function. Instead of being
binary, the output of an artificial neuron is a function, h z(), of the sum-of-products
computation, z. We denote the output value of the ith neuron in layer � of a net-
work by a h zi i() () .� �= [] As before, we refer to h as an activation function and call
the output value of a neuron its activation value. Figure 14.13 is a schematic of an
artificial based on this notation. Comparing it with Fig. 14.7, we see that the form of
the computation is the same, with the exception of more complex subscripted nota-
tion—to be explained shortly—and the fact that we now denote the bias term, wn+1,
by b instead. The inputs to the ith neuron in layer � are denoted by ak(),� − 1 for
k n= −1 2 1, , , ,… � where n�−1 is the number of neurons in layer � − 1. The ith neuron in
layer � has a single output, ai().� The most important thing to note for now is that

1

..... ()ib+ �

1

1

() () (1)
n

i ij j
j

z a
−

=
= −∑

�

� � �w

2(1)a −�

1(1)a −�

1
(1)na

−
−

�
�

h

()() ()i ia h z=� �

2()i �w
1()i �w

1
()in −�
�w

()ib �
Neuron i in layer �

FIGURE 14.13
Model of an
artificial neuron,
showing all the
operations it
performs. The
“�” denotes a
particular layer in
a layered
network. The “i”
denotes the ith
neuron.

930 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

node in the figure, all the nodes in the network are artificial neurons of the form
shown in Fig. 14.13, except for the input layer, whose nodes are the components of
an input pattern vector x. Therefore, the outputs (activation values) of the first layer
are the values of the elements of x. The outputs of all other nodes are the activa-
tion values of neurons in a particular layer. Each layer in the network can have a

x1

x2

x3

xn

Layer 1
(Input)

Layer L
(Output)

Hidden Layers
(The number of nodes in
the hidden layers can be

different from layer to layer)

Neuron in hidden layer i �

layer �

()ia �
Output () goes to all neurons in layer 1ia +� �

1

.....

.....
()ib+ �

1

1

() () (1)
n

i ij j
j

z a
−

=
= −∑

�

� � �w

2(1)a −�

1(1)a −�

(1)ja −�

1
(1)na

−
−

�
�

h

()() ()i ia h z=� �

Direction of data flow

FIGURE 14.15
Model of a
feedforward, fully
connected neural
net. The neurons
are the same as in
Fig. 14.13. Note
how the output of
each neuron goes
to the inputs of
all neurons in the
following layer,
hence the name
fully connected
for this type of
architecture.

14.5 Feedforward Fully-Connected Neural Networks 939

USING BACKPROPAGATION TO TRAIN FCNNS

An FCNN is defined completely by its weights and (typically) one specified
activation function used by all neurons. Training of such a network refers to using
one or more sets of training patterns to estimate the weights. During training, we
know the desired response of every neuron in the output layer, but we have no
way of knowing what the outputs of the hidden neurons should be. In this section
we discuss and implement the method of backpropagation. As we mentioned previ-
ously, backpropagation was the breakthrough in 1986 that established a procedure
for training an FCNN so that it learns all its weights by cycling through training data.

Backpropagation consists of : (1) a feedforward pass to classify all the patterns of the
training set and compute the classification error; (2) a backward (backpropagation)
pass that feeds the output error back through the network to compute the changes
required to update the weights; and (3) the updating all the weights in the network.
These steps are repeated until the classification error reaches an acceptable level.

The Equations of Backpropagation

Given a set of training patterns and a multilayer feedforward neural network archi-
tecture, the approach in the following discussion is to find the network weights that
minimize an error (also called a cost or objective) function.

For an input pattern, the activation value of neuron j in the output layer of an
FCNN is a Lj(). We define the error of that neuron as

	 E r a Lj j j= −()1
2

2
() 	 (14-48)

for j nL= 1 2, , , ,… where, as we defined when discussion perceptrons, rj is the desired
response of output neuron a Lj() for a given input pattern x. The output error with
respect to a single x is the sum of the errors of all output neurons with respect to
that vector:

	
E E r a L

L

j
j

n

j j
j

nL L

= = −()

= −

= =
∑ ∑

1

2

1

2

1
2

1
2

()

()� �r a

	 (14-49)

where the second line follows from the definition of the Euclidean vector norm.
The total network output error over all training patterns is defined as the sum of
the errors of the individual patterns. We want to find the weights that minimize this
total error. As we did for the LMSE perceptron, we find the solution using gradient
descent. This implies an expression of the form in Eq. (14-32) that gives the gradi-
ent of the error with respect to the weights and biases as a function of observable
responses. However, the only quantities we can observe in an FCNN are the activa-
tion values of the input and output neurons, so we cannot compute the gradients
for the neurons of the hidden layers. Backpropagation gives us way to obtain these

As noted earlier, when
we refer generically to
“weights,” we mean both
weights and biases.

If you want to skip the
details, the results of this
section are summarized
in Table 14.8

The desired response
of an FCNN is for
the output neuron
corresponding to the
class of the input to have
the highest activation
value.

In this formulation,
r is an Nc × 1 class
membership column
vector whose kth
element is 1 if the pattern
it represents belongs
to class ck . All other
elements of r are 0. The
fact that we are now
dealing with more than
two classes requires this
change from the way we
defined r for perceptrons.
As before, Nc denotes
the number of classes.

14.5 Feedforward Fully-Connected Neural Networks 943

classifieroutput = fcnnclassify(fcnn,X,R)

where fcnn is a trained FCNN and classifieroutput is a structure explained in
the help section of fcnninfo.

The FCNN functions we have discussed thus far are the core of training and clas-
sification. They work in conjunction with the other functions listed in Table 14.9 to
form a set of FCNN functions that is included in your Support Package. The follow-
ing example illustrates how to use these functions.

EXAMPLE 14.9 : 	Using the FCNN functions for multispectral data classification.

In this example we use an FCNN to solve the multispectral data classification prob-
lem we solved in Example 14.3 using a Bayes classifier. In that example, training
consisted of using training data to estimate the covariance matrix and mean vectors
of three pattern classes. In this example, we train an FCNN directly using the same
training set. The following commands read and format the data:

>> % As in Example 14.3 read the images and masks, stack the images, and extract
>> % the vectors of the training and test sets:
>> fileNames = {'washDC-band1-blue.tif','washDC-band2-green.tif',...
 'washDC-band3-red.tif','washDC-band4-nrinfrared.tif'};
>> maskNames = {'washDC-mask-water.tif','washDC-mask-urban.tif',...
 'washDC-mask-veg.tif'};
>> % Class 1 = water, class 2 = urban, class 3 = vegetation.
>> Nc = 3;
>> for k = 1:length(fileNames)
 f{k} = im2double(imread(fileNames{k})); % Fig. 14.17.
end
>> for k = 1:length(maskNames)
 mask{k} = im2double(imread(maskNames{k}));
end
>> % Form the image stack.
>> imstack = cat(3,f{1},f{2},f{3},f{4});

fcnnclassify

TABLE 14.9
FCNN custom functions included in the DIPUM3E Support Package.

Function Name Explanation

fcnninfo Contains information about variables and constants used in the following functions.

fcnninit Initializes an FCNN.

fcnnff Implements feedforward.

fcnnbp Implements backpropagation.

fcnnactivate Computes neuron activation values.

fcnntrain Trains an FCNN.

fcnnupdateweights Updates the weights during training.

fcnnclassify Classifies unknown pattern vectors.

944 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

>> % Extract training and test pattern sets.
>> for k = 1:Nc
 [X{k},~] = imstack2vectors(imstack,mask{k});
 % Training patterns.
 trainX{k} = X{k}(1:2:end,:)';
 % Number training patterns for each class.
 ntrain{k} = size(trainX{k},2);
 % Test patterns.
 testX{k} = X{k}(2:2:end,:)';
 % Number test patterns for each class.
 ntest{k} = size(testX{k},2);
end
>> % Number of training and test patterns.
>> nptrain = sum([ntrain{:}]);
>> nptest = sum([ntest{:}]);

>> % Form the pattern matrices.
>> % Training patterns.
>> Xtrain = cat(2,trainX{1},trainX{2},trainX{3});
>> nptrain = size(Xtrain,2); % Number of patterns.
>> % Test patterns.
>> Xtest = cat(2,testX{1},testX{2},testX{3});
>> nptest = size(Xtest,2); % Number of patterns.

>> % Construct membership matrices.
>> % Training patterns.
>> Rtrain = zeros(Nc,nptrain);
>> Rtrain(1,1:ntrain{1}) = 1;

Images in spectral bands 1 4 and binary mask used to extract training samples–

Approach used to extract pattern vectors

Spectral band 41

2

3

4

x

x

x

x

 
 
 =  
 
  

x
Spectral band 3

Spectral band 2

Spectral band 1

ba

FIGURE 14.17 (a) Starting with the leftmost image: blue, green, red, near infrared, and binary mask images. In the mask,
the lower region is for water, the center region is for the urban area, and the left mask corresponds to vegetation. All
images are of size 512 512× pixels. (b) Approach used for generating 4-D pattern vectors from a stack of the four
multispectral images. (Multispectral images courtesy of NASA.)

14.6 Convolutional Neural Networks 947

14.6	CONVOLUTIONAL NEURAL NETWORKS

Thus far, we have worked with feature (pattern) vectors. The form of those features
has been specified a priori (i.e., “engineered” by a human designer) and extracted
from images prior to being input to a neural network. But, as you will see shortly,
one of the strengths of neural networks is that they are capable of learning pattern
features on their own—directly from training data. The approach is to input a set
of training images into a neural network and have the network learn the necessary
features during training. A significant advantage of this approach over vector repre-
sentations is that it exploits spatial relationships that may exist between pixels in an
image, such as pixel arrangements into corners, the presence of edge segments, and
other features that may help differentiate one image from another. In this section,
we present a class of neural networks called deep convolutional neural networks
(CNNs or ConvNets for short) that accept images as inputs and interface with an
FCNN whose function is to determine the class membership of each input image.

Figure 14.20 shows a model of the CNN/FCNN architecture used in this section
for image classification. That is, this system accepts image inputs and outputs a label
for each input image. You can think of the CNN as being a feature extractor and the
FCNN as being the pattern classifier. The reason for using convolution is that con-
volution produces filtered images that exhibit features such as edges and smoothed
regions. You will see shortly that CNNs are capable of exactly this type behavior. We
discussed the operation of FCNNs in the previous section, so we focus initially on
the operation of the components to the left of the Interface in Fig. 14.20. The inputs
and outputs of a CNN are two-dimensional. As you can see from the figure, the out-
puts of the last layer of the CNN are converted to vectors of the form required for
input into an FCNN.

All layers of our CNN model have the same basic architecture. Figure 14.21 shows
the components of one layer of our model. The inputs and outputs are referred to
as maps implying that they are two-dimensional. A registered stack of such maps is
called a maps volume. The input maps volume to the first layer is the set of component
images of a multispectral image (e.g., the three components of an RGB image). The
input maps to all subsequent layers are the output maps of the previous layer. The
computational processes in a layer are shown in purple and the data components are
shown in green. Thus, we see that input maps are processed by convolution to which
we add a bias. The results are then passed through an activation function identical to
the ones we discussed in the previous section. Additional processing might consist
of computations such as data normalization. The resulting activation values form so-
called feature maps, for reasons that will be obvious when you see an example later
in this section. The components of each feature map over a small neighborhood are
pooled (e.g., by averaging their values) to create a feature map of lower resolution
called a pooled feature map, or pooled map for short. These pooled maps are the
outputs of each CNN layer and become the inputs to the next layer. We refer to the
processes and feature maps volume in a layer of the CNN as a convolutional layer,
but this terminology varies widely in the literature on CNNs.

The data that propagate through a CNN are two dimensional, so the nature
of the computation in each layer is not evident in the “flat” diagram in Fig. 14.21.

948 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

Figure 14.22 shows the same flow of operations and data in 3-D perspective. All
computations shown are for one spatial location, (,).x y For simplicity, we excluded
any additional processing stages.

A multispectral input image is first decomposed into its component images, the
set of which we call an input maps volume, whose depth is equal to the number of

A CNN volume is a set of
registered 2-D data maps,
accessed across the depth
of the volume.

= Data

= Processing

One CNN layer

⇒⇒

C
on

vo
lu

ti
on

B
ia

s

⇒

A
ct

iv
at

io
n

⇒

In
pu

t M
ap

s
V

ol
um

e
(F

ro
m

 P
re

vi
ou

s
L

ay
er

)

Po
ol

in
g

⇒ ⇒

Fe
at

ur
e

M
ap

s
V

ol
um

e

Po
ol

ed
 M

ap
s

V
ol

um
e

(T
o

N
ex

t L
ay

er
)

 A
dd

it
io

na
l

P
ro

cc
es

si
ng

⇒

FIGURE 14.21
Data and
processing
components in
one layer of a
multilayer CNN.

Component images (input maps to Layer 1)

Multilayer CNN

FCNN

C
l
a
s
s

L
a
b
e
l
s

Interface between the CNN
and FCNN (vectorization)

n-dimensional output vector

Layer 1

Layer 2

cL

Layer

1
cL
−

Layer

RGB image

FIGURE 14.20 General model of the CNN/FCNN architecture we use in this chapter for image classification.

14.6 Convolutional Neural Networks 953

map. The output values of the neurons in the pooled feature maps are generated by pooling the output
values of the neurons in the feature maps. The outputs of the neurons in the pooled maps (or feature
maps when no pooling is used) become the neurons of the input to the next stage. Because feature maps
are the result of spatial convolution, we know from Chapter 3 that they are simply filtered images. It then
follows that pooled feature maps are filtered images of lower resolution. Also, as noted earlier, filtered
images exhibit behavior that we have learned to associate with image features, such as edges and blurred
regions. Directional edge detection learned by the CNN from training data certainly is a key feature in
this example.

The second row in Fig. 14.24 illustrates visually how feature maps and pooled maps look based on
the input image shown in the figure. The kernel shown is as described in the previous paragraph and
its weights (shown as intensity values) were learned from sample images during training of the CNN
described later in Example 14.13. Therefore, the nature of the learned features is determined by the
learned kernel coefficients. Note that the contents of the feature maps are specific features detected by
convolution. For example, some of the features emphasize edges in the character. As mentioned above,
the pooled features are lower-resolution versions of this effect.

Figure 14.24 also shows that in a CNN the into every neuron in a feature map a single value, deter-
mined by the convolution over a spatial neighborhood in the previous layer. This is unlike an FCNN, in
which we feed the output of every neuron in a layer directly into the input of every neuron in the next
layer. Therefore, CNNs are not fully connected in the sense defined in the last section.

EXAMPLE 14.11 : Computational example showing the types of features that can be extracted by a CNN.

Figure 14.25 illustrates the types of features that volume convolution is able to extract. The input to the
CNN stage is an RGB image of size 277 277× pixels. Its three component images form an input volume
of depth three. We used the image of a human subject as the input so that the resulting feature maps
would be easier to interpret visually.

The feature maps volume in this case contained 96 feature maps, each obtained by filtering the maps
of the input volume with a different kernel volume of size 11 11 3× × . Thus, there are 96 kernel volumes
of depth three, composed of 3 96 288× = 2-D convolution kernels of size 11 11× , for a total of 34,848
kernel weights. These weights came from AlexNet, a CNN trained using more than 1 million images
belonging to 1,000 object categories (see Krizhevsky, Sutskever, and Hinton [2012]). The system had
never “seen” the image we used in this example.

The 96 feature maps resulting from the input image are shown as an 8 12× montage of 2-D images
in the upper right of Figure 14.25. Several feature maps are shown zoomed, numbered, and grouped
to illustrate the variety of complementary features that can result from volume convolution. The first
group shows three feature maps. Two of them (4 and 35) emphasize edge content and the third (23) is a
blurred version of the input. The second group has two maps (10 and 16) that capture complementary
shades of gray (note the difference in the hair intensity, for example). In the third group, feature map 39
emphasizes the subject’s eyes and dress, both of which are blue in the input RGB image. Map 45 empha-
sizes blue too, but it also emphasizes areas that correspond to red tones in the RGB image, such as the
subject’s lips, hair, and skin. These two feature maps are more sensitive to color content than the maps
in the other two groups. Here you see again the fact that convolution resulted in filtered images with
features that are distinctive. In subsequent examples later in this section, we will illustrate how feature
maps appear as they propagate through other stages of a CNN.

954 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

One
pooled map

To next stage

Feature maps vol

Pooled maps vol
RGB
image

All 96 feature maps

One feature map
RGB channels

Input maps vol

= One kernel volume
 (96 such kernel
 volumes were used).

All 96 pooled maps

96 Feature maps

10 16233504

04 10
16 23

35

4539
4539

FIGURE 14.25 Detailed view of the first stage of a CNN, showing the feature maps as images. The highlighted, num-
bered feature maps shown zoomed at the top, illustrate the types of features extracted by the 96 kernel volumes.
The operations performed at the point of the color bullets are explained in Fig. 14.22.

964 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

EXAMPLE 14.12 : Illustration of how to train a CNN and use it for image classification.

Figure 14.26 shows the simplest possible form of the general model in Fig. 14.20. The CNN has a single
2-D kernel, so it can only process grayscale images, and the FCNN has no hidden layers, which makes
it a linear classifier. In this example, we train this system using 150 images, fifty each of the three types
of noisy stars shown in Fig. 14.27. The images we used are of size 454 454× but we subsampled them
to size 32 32× for consistency with the size of the images we will use throughout the remainder of this
section (we upsampled the small images to size 300 300× when displaying them in a figure). We trained
and tested three systems with the architecture shown in Fig. 14.26. First, we used images corrupted with
additive Gaussian noise of zero mean and standard deviation of 0.01, which is equivalent to 0.1 intensity
levels on the [0, 1] intensity scale of the images. We trained the other two systems using images corrupted
by noise of 0.32 and 0.5 intensity levels, respectively. The images in Fig. 14.27 are samples of the training
sets we used. After training each system, we tested it using 900 noisy images, 300 each of the three types
of stars. The trained systems had never “seen” these images before.

We trained and tested the system with the first dataset using the following commands.

>> %% READ THE IMAGES, REDUCE THEM TO SIZE 32-BY-32, AND CONSTRUCT THE MEMBERSHIP MATRIX.
>> I0 = [];
>> fileNames = {'wingding-star-3pt.tif','wingding-star-5pt.tif','wingding-star-8pt.tif'};
>> for k = 1:length(fileNames)
 I0(:,:,k) = mat2gray(imresize(im2double(imread(fileNames{k})),[32 32]));
end

>> % Number of images.
>> NI = size(I0,3);

>> % Membership matrix for the images in I0.
>> R0 = [
 1 0 0
 0 1 0
 0 0 1
];

>> %% CREATE A NOISY TRAINING SET.

>> % Create a group of images by concatenating I0 NT times. The resulting

Input image Feature map Pooled
map

Pooling
Convolution + Bias + Activation

V
ec

to
ri

za
ti

on

2-layer
FCNN

FIGURE 14.26
CNN/FCNN used
to classify the
images in
Fig. 14.27. This is
the simplest form
of the general
system in
Fig. 14.20—it uses
a single 2-D
kernel and an
FCNN with no
hidden layers.

14.6 Convolutional Neural Networks 965

>> % group will contain NT*size(I0,3) images.

>> % Number of groups of images.
>> NT = 50;
>> IG = [];

>> % Generate the groups of images.
>> for j = 1:NT
 IG = cat(3,IG,I0);
end

>> % Concatenate R NT times to correspond with the number of images in IG.
>> R = [];
>> for j = 1:NT
 R = cat(2,R,R0);
end

>> % Add Gaussian noise to each image in IG. This will be our training set.
>> % Image intensities have to be in the range [0,1].
>> rng('shuffle'); % Random start seed each time.
>> mean = 0;
>> var = 0.25;
>> IGn = imnoise(IG,'gaussian',mean,var);
>> IGn = mat2gray(IGn);

>> % Upsample and show one image from each class.
>> im1 = imresize(IGn(:,:,1),[300 300]);

ba c
ed f
hg i

FIGURE 14.27
Row 1: Images
corrupted by
additive
Gaussian noise
of zero mean and
variance of 0.01
(.)s = 0 1 intensity
levels on a [,]0 1
intensity scale.
Row 2: Images
corrupted by noise
with a variance
of 0.1 s(.)= 0 32
intensity levels.
Row 3: Images
corrupted by noise
with a variance
of 0.25 (.)s = 0 5
intensity levels.

14.6 Convolutional Neural Networks 967

>> ylim([0, ceil(max(cnndataout.SmoothMSE)*10)*.1])

%% CLASSIFY.

>> classdataout = cnnclassify(cnndataout.cnn,cnndataout.fcnn,cnndatain.Images,cnndatain.R);
>> disp('Performance (correct classification rate in %) of training images:')
>> disp(classdataout.ClassificationRate)
	 100

The plots of MSE and SmoothedMSE in Figs. 14.28(a) and (d) show quick convergence to zero, so we
expect the classification results of the training set close 100% accurate. To create a test data set of 900
noisy images, we changed NT to 300 and repeated the second block of code. We input this set of images
directly into function cnnclassify. The result was again 100% accurate, indicating that the system had
not overfit in training. Overfitting is a condition in which the training set is recognized with high accu-
racy, but an independent test set of the same type of data is not. The plots in Fig. 14.28 also show that
MSE curves can be quite variable, thus highlighting the need for smoothing in order to reveal the most
important feature of an error curve—the rate at which it decreases as a function of epoch.

Several things are noteworthy in the preceding experiment. First, you should pay close attention to
how the CNN functions were set up and used. We used the default settings for most network parameters,

0.3

0.2

0.1

0

(NumImages/MiniBatchSize) (NumEpochs)×

100 200 300 400 5000

0.3

0.2

0.1

0

(NumImages/MiniBatchSize) (NumEpochs)×

100 200 300 400 5000

0.3

0.1

0

Sm
oo

th
ed

 M
SE 0.2

(NumImages/MiniBatchSize) (NumEpochs)×

100 200 300 400 5000

(NumImages/MiniBatchSize) (NumEpochs)×

100 200 300 400 5000

M
SE

0.3

0.2

0.1

0

M
SE

0

0.1

0.2

0.3

0.4

0.5

(NumImages/MiniBatchSize) (NumEpochs)×

100 200 300 400 5000

0.3

0.2

0.1

0

(NumImages/MiniBatchSize) (NumEpochs)×

100 200 300 400 5000

0.50=s0.32=s0.1=s

ba c
ed f

FIGURE 14.28 Top row: MSE curves corresponding to the images in Fig. 14.27 for the values of s shown. Bottom row:
Smoothed MSE curves. Compare the variability of the curves against the images in Fig. 14.27.

968 Chapter 14 Classical and Deep Learning Methods for Image Pattern Classification

but actually specified the default values to help you gain familiarity with the notation. The one excep-
tion was the size of the kernel. The default setting was erratic and took longer to converge than larger
kernels. A kernel of size 9 9× performed satisfactorily, but larger values worked also. Independently of
kernel size, the number of epochs required for convergence increased as the level of noise increased.
You can see this phenomenon at play in Fig. 14.28.

We conducted similar experiments with images at the other two noise levels. Convergence took lon-
ger to achieve, but the classification results of the training and test sets were again 100%. Considering
the level of distortion evident in the third row in Fig. 14.27, these are impressive results for the simplest
possible CNN/FCNN. It is evident from these results that deep learning is able to extract meaningful
features in the presence of high levels of noise. Observing the images in Fig. 14.27 at a distance will
demonstrate immediately that the important distinguishing features of each star, although severely dis-
torted, are still present in the noisy data. That is all the system needed to be able to extract those features.

Although the results in this example are indeed impressive, keep in mind that noise was the only
source of image variability . The objects did not change position or undergo any other type of trans-
formation found in practice, such as rotation and scale change. The way deep learning handles such
variables is by requiring massive databases of training images that contain as many instances of these
transformations as possible. As you will see in the following examples, using large data bases can yield
accurate results using systems that are not particularly complex.

EXAMPLE 14.13 : Using a large database to train a CNN/FCNN to recognize handwritten numerals.

In this example, we look at a more practical application using a database containing
60,000 training and 10,000 test images of handwritten numeric characters. The con-
tent of this database, called the MNIST database, is similar to a database from NIST
(National Institute of Standards and Technology). The former is a “cleaned up” ver-
sion of the latter, in which the characters have been semi centered and formatted
into grayscale images of size 28 28× pixels. Both databases, including instructions
and the names of the individuals and organizations responsible for their creation,
are available online. The samples shown in Fig. 14.29 are typical of the numeric char-
acters available in the two databases. As you can see, there is significant variability
between characters of the same class.

The CNN/FCNN needed to classify the MNIST database with high accuracy is
slightly more complex than the system in the previous example. As Fig. 14.30 shows,
the system consists of a two-layer CNN followed by a two-layer FCNN that, because
it has no hidden layers, is a linear classifier. The input images are grayscale, so the
kernels in layer one have a depth of 1. We used 6 features maps in the first layer and
twelve in the second. The sizes of the kernel volumes, feature and pooled maps, and
the vector input into the FCNN are shown in the figure. The latter has ten output
neurons because we are dealing with 10 pattern classes. See Fig. 14.24 for details on
how to determine the sizes of the 2-D data and vectors shown in Fig. 14.30.

The MNIST data is in your Support Package under the name mnist_uint8.mat.
To unpack it in a format ready for use with the CNN functions, we use the custom
function getMNISTimages, whose help section contains detailed descriptions of all
parameters (the function is in your Support Package also). In this example, we work
with a subset of the database—500 training images from each of the ten classes for

14.6 Convolutional Neural Networks 969

FIGURE 14.29
Samples
similar to those
available in the
NIST and MNIST
databases. Each
character
subimage is
of size 28 28×
pixels.(Individual
images courtesy
of NIST.)

FIGURE 14.30 CNN/FCNN trained to recognize the ten digits in the MNIST database. The system was trained with
60,000 numerical character images and tested with 10,000 images.

Input image of
size 28 × 28

Pooling

6 feature maps
of size 24 × 24

6 pooled
maps of

size 12 × 12

Pooling

12 pooled
maps of
size 4 × 4

Convolution

+
Activation

Bias
+

Convolution + Bias + Activation

2-layer
FCNN

192 input neurons

5 × 5
5 × 5 × 6

12 feature
maps of
size 8 × 8

V
ec

to
ri

za
ti

on

10 output neurons

a total of 5,000 images, starting with the first image in the dataset. Results with the
entire database are discussed at the end of the example and in Project 14.9.

>> %% LOAD THE TRAINING IMAGES AND CORRESPONDING MEMBERSHIP MATRIX.

>> [I,R] = getMNISTimages(500,'training',1);
>> cnndatain.Images = I;
>> cnndatain.R = R;

We specify the parameters of the network in Fig. 14.30 as follows. As is usually the
case, we determined the values of these parameters experimentally:

getMNISTimages

14.6 Convolutional Neural Networks 973

Airplanes

Automobiles

Birds

Cats

Deer

Dogs

Frogs

Horses

Ships

Trucks

1

2

3

4

5

6

7

8

9

10

FIGURE 14.34
Samples of mini
images from
the CIFAR-10
database, which
consists of a set
of 50,000 training
and 10,000 test
RGB images of
size 32 32 3× × .
The images are
from the ten
categories shown
in the figure. The
classes are
mutually
exclusive—nei-
ther the Automo-
biles nor Trucks
classes include
pickup trucks.
The numbers
on the right are
class numbers
used to construct
the membership
matrix. (Credit:
Alex Krizhevsky,
University of
Toronto.)

EXAMPLE 14.14 : Working with a large database of RGB images.

In this example we start with the CNN/FCNN in Fig. 14.30 and adapt it as necessary
to be able to train it using all 50,000 training images in the CIFAR-10 image data-
base, examples of which are shown in Fig. 14.34. These are RGB images, so we need
to modify several parameters from the previous example:

>> % Modify the depth of the image size to be able to process RGB images.
>> cnnparam.ImageSize = [32,32,3];
>> % Also, based on several quick trials, we modified the values of the learning
>> % rate constants:
>> cnnparam.Alpha = 1.0;
>> cnnparam.fcnnAlpha = 0.01;

>> % We used the parameters from the previous example, including the changes just
>> % discussed, to initialize the cnn/fcnn:
>> [cnn,fcnn] = cnninit(cnnparam);

Next, we extracted all the training images from the CIFAR-10 image database using
custom function getCIFAR10images, a listing of which is in your Support Package:

14.6 Convolutional Neural Networks 979

Summary
The material presented in the previous sections of this chapter cover the spectrum of methods used
today for image pattern classification. The classical techniques presented early in the chapter are used
when knowledge about an application allows features to be defined or engineered with enough preci-
sion to be truly representative of the objects to be classified. The key MATLAB concept underlying
minimum-distance and Bayes classifiers is the vectorization of distance computations we developed
early in the chapter. The concept of pattern classification using a single perceptron is of little use today,
other than as an important historical footnote. However, the interconnection of perceptron-like units,
which we referred to as artificial neurons, is the foundation of deep neural networks, and the current
importance of this topic is without question. The emphasis of our approach in the last two sections was
to give a solid foundation of the equations that govern the behavior of both fully-connected and convo-
lutional neural networks, with an emphasis on the concept of backpropagation. We also showed in detail
the fundamentals of how to approach MATLAB programming of deep neural networks at a basic level
by developing all the functions necessary for learning and classification. As you surely noticed, convo-
lutional neural nets are computationally intensive, requiring concepts of parallelization that are beyond
the scope of our discussion. Ultimately, the design of complex deep neural networks capable of working
with large data sets is an evolving experimental “art.”

intervals. Stochastic gradient descent with momentum is another important training
refinement. These approaches were partially instrumental in the improvement in
classification accuracy in Example 14.15 over the results in Example 14.14.

The topics just discussed are representative of the many issues one encounters
when designing and training large-scale, deep neural networks. A paper by LeCun
et al. [2012] is an excellent overview of the types of considerations introduced in the
preceding discussion. In fact, the scope spanned by these topics is extensive enough
to be the subject of an entire book (see Montavon et al. [2012]). The neural net
architectures we discussed were by necessity limited. You can get a good idea of the
requirements of implementing practical networks by reading a paper by Krizhevsky,
Sutskever, and Hinton [2012], which summarizes the design and implementation of a
large-scale, deep convolutional neural network. There are a multitude of designs that
have been implemented over the past decade. A quick internet search will list a large
number of experiments with different architectures. The book by Sejnowski [2018]
is also of interest.

MATLAB Projects

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site).
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough
detail for a user to be able to run it. Test the functionality of all your code thoroughly.

14.1	 Minimum-distance classification.

(a) *	The Mahalanobis distance defined in Eq. (14-5) can be used for minimum-distance classification.
Explain how you would use custom function mahalanobis to write a minimum-distance classifier
instead of the method we used in function minDistanceClassifier. You do not have to implement
a function, but be specific as to how you would do it.

