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1 Introduction

If you can't explain it simply, you don't understand it well enough.
Albert Einstein

Digital image processing is an area characterized by the need for extensive experimental work to 
establish the viability of proposed solutions to a given problem. In this chapter, we outline how a solid 
theoretical foundation and state-of-the-art software can be integrated into a prototyping environment 
whose objective is to provide a set of well-supported tools for the solution of a broad class of problems 
in digital image processing and related areas.

1.1	 BACKGROUND

An important characteristic underlying the design of image processing systems is 
the significant level of testing and experimentation that normally is required before 
arriving at an acceptable solution. This characteristic implies that the ability to 
formulate approaches and quickly prototype candidate solutions generally plays a 
major role in reducing the cost and time required to arrive at a viable system imple-
mentation. 

Relatively little has been written in the way of instructional material to bridge 
the gap between theory and application in a well-supported software environment 
for image processing. As with earlier editions, the main objective of this revi-
sion is to integrate under one cover a broad base of theoretical concepts with the 
knowledge required to implement those concepts using state-of-the-art image 
processing software tools. As before, our focus is on presenting fundamental con-
cepts thoroughly—as simply and clearly as possible.

The theoretical foundation of the material in the following chapters is from 
the 4th edition of the leading textbook in the field—Digital Image Processing by 
Gonzalez and Woods [2018]. The software code and supporting tools are from the 
leading software in the field—MATLAB ® and the Image Processing Toolbox,™ 
from MathWorks. We also take a look at a few selected functions from the MAT-
LAB Computer Vision, Deep Learning, Signal Processing, and Wavelet Toolboxes™. 
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The material in the book shares the same design, notation, and style of presentation 
as the Gonzalez-Woods text, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, a reader should have 
introductory preparation in digital image processing, either by having taken a for-
mal course of study on the subject at the senior or first-year graduate level, or by 
acquiring the necessary background in a program of self-study. Some familiarity with 
MATLAB and rudimentary knowledge of computer programming are assumed also. 
Because MATLAB is a matrix-oriented language, basic knowledge of matrix analy-
sis is helpful. 

The book is based on principles. It is organized and presented in a textbook format, 
not as a manual. Thus, basic ideas of both theory and software are explained prior to 
the development of any new programming concepts. The material is illustrated and 
clarified further by numerous examples ranging from medicine and industrial inspec-
tion to remote sensing and astronomy. This approach allows orderly progression 
from simple concepts to sophisticated implementation of image processing algo-
rithms. Readers already familiar with MATLAB, the Image Processing Toolbox, and 
image processing fundamentals, can proceed directly to specific topics of interest, 
in which case the functions in the book can be used as extensions of the family of 
Toolbox functions. All new functions developed in the book are fully documented 
and the code for each is included either in the book or in the DIPUM3E Support 
Package (see Section 1.8). In this edition, we also include for the first time MATLAB 
projects at the end of every chapter. In total, 130 new projects are part of this edition. 
Partial project solutions for students and full solutions for instructors are  included 
in the Support Package.

Over 200 custom functions are developed in the chapters that follow. These 
functions extend by approximately 40% the set of about 500 functions in the Image 
Processing Toolbox. In addition to addressing specific applications, the new functions 
are good examples of how to combine existing MATLAB and Toolbox functions 
with new code to develop prototype solutions to a broad spectrum of problems 
in digital image processing. The custom functions run in all the environments that 
MATLAB does.

1.2	WHAT IS DIGITAL IMAGE PROCESSING, AND WHY IS IT  
IMPORTANT?

An image may be defined as a two-dimensional function, f x y( , ), where x and y are 
spatial coordinates, and the amplitude of f at any pair of coordinates ( , )x y  is called 
the intensity or gray level of the image at that point. When x, y, and the amplitude 
values of f are all finite, discrete quantities, we call the image a digital image. The field 
of digital image processing refers to processing digital images by means of a digital 
computer. Note that a digital image is composed of a finite number of elements, 
each of which has a particular location and value. These elements are referred to as 
picture elements, image elements, pels, and pixels. Pixels is the term used most widely 
to denote the elements of a digital image. We consider these definitions formally in 
Chapter 2. 

We will use the term 
Toolbox throughout the 
book to refer specifically 
to the Image Processing 
Toolbox.

See Section 1.6 for an 
explanation of blue italic 
text and other special 
notation used in the 
book.

We use the term custom 
function to denote a 
function developed in 
the book, as opposed to a 
“standard” MATLAB or 
Toolbox function.
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Vision is the most advanced of our senses, so it is not surprising that images 
play the single most important role in human perception. However, unlike humans, 
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging 
machines can cover the entire EM spectrum, ranging from gamma to radio waves. 
They can operate also on images generated by sources that humans do not cus-
tomarily associate with images. These include ultrasound, electron microscopy, and 
computer-generated images. Thus, digital image processing encompasses a broad 
and varied field of applications. 

There are two principal factors underlying the current widespread interest in 
digital image processing. One factor is the unprecedented growth in the worldwide 
generation of digital data. It has not been too long since we used to measure large 
amounts of digital data in terabytes (one trillion or 1012 bytes). Now, we talk in units 
of zettabytes (1 trillion gigabytes or 1021 bytes). It has been estimated that 90% of all 
the data in the world today has been generated in the past two years, reaching a rate 
of one zettabyte/year at the time of this writing, and expected to more than double 
every year for the foreseeable future. The second factor, which brings digital image 
processing into the mix, is an old established estimate that close to 90% of the infor-
mation received by the human brain is visual. You may disagree with the overall 
accuracy of these estimates, but the fact is undeniable that data is growing at a rate 
that is making it harder and harder for humans to process it—and the rate of growth 
is accelerating. Image processing is playing an increasingly important role in helping 
us process, understand, and extract value from this ever increasing stream of digital 
data. In the chapters that follow, you will learn the foundation of the techniques that 
make this possible.  

There is no general agreement among authors regarding where image processing 
stops and other related areas, such as image analysis and computer vision, begin. 
Sometimes a distinction is made by defining image processing as a discipline in which 
both the input and output of a process are images. We believe this to be a limiting 
and somewhat artificial boundary. For example, under this definition, even the trivial 
task of computing the average intensity of an image would not be considered an 
image processing operation. On the other hand, there are fields, such as computer 
vision, whose ultimate goal is to use computers to emulate human vision, including 
learning and being able to make inferences and take actions based on visual inputs. 
This area itself is a branch of artificial intelligence (AI), whose objective is to emulate 
human intelligence. Despite some impressive recent breakthroughs, especially in the 
field of deep learning (the topic of Chapter 14), the field of AI is still in its infancy in 
terms of practical applications, with progress having been much slower than origi-
nally anticipated. The area of image analysis (also called image understanding) is in 
between the scopes of image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at 
one end to computer vision at the other. However, a useful paradigm is to consider 
three types of computerized processes in this continuum: low-, mid-, and high-level 
processes. Low-level processes involve primitive operations, such as image prepro-
cessing to reduce noise, contrast enhancement, and image sharpening. A low-level 
process is characterized by the fact that both its inputs and outputs typically are 
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images. Mid-level processes on images involve tasks such as segmentation (partition-
ing an image into regions or objects), description of those objects to reduce them 
to a form suitable for computer processing, and classification (recognition) of indi-
vidual objects. A mid-level process is characterized by the fact that its inputs gener-
ally are images, but its outputs are attributes extracted from those images, such as  
edges, regions, and the identity of individual objects. Finally, high-level processing  
involves “making sense” of an ensemble of recognized objects, as in image analysis, 
and, at the far end of the continuum, performing the cognitive functions normally 
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between 
image processing and image analysis is the area of recognition of individual regions 
or objects in an image. Thus, what we call in this book digital image processing 
encompasses processes whose inputs and outputs are images and, in addition 
processes that extract attributes from images, up to and including the recognition 
of individual objects. As a simple illustration to clarify these concepts, consider the 
area of automated analysis of text. The processes of acquiring an image of a region 
containing the text, preprocessing that image, extracting (segmenting) the individual 
characters, describing the characters in a form suitable for computer processing, 
and recognizing those individual characters, are in the scope of what we call digital 
image processing in this book. Making sense of the content of the text as a whole 
may be viewed as being in the domain of image analysis and even computer vision, 
depending on the level of complexity implied by the statement “making sense of.” 
Digital image processing, as we have defined it, is used successfully in a broad range 
of areas of exceptional social and economic value.

1.3	BACKGROUND ON MATLAB, THE IMAGE PROCESSING  
TOOLBOX, AND OTHER RELATED TOOLBOXES

MATLAB is a high-performance language for technical computing. It integrates 
computation, visualization, and programming in an easy-to-use environment where 
problems and solutions are expressed in familiar mathematical notation. Typical 
uses include the following:

•	 Math and computation
•	 Algorithm development
•	 Data acquisition
•	 Modeling, simulation, and prototyping
•	 Data analysis, exploration, and visualization
•	 Scientific and engineering graphics
•	 Application development, including app building
•	 Deployment of algorithms in production systems

MATLAB is an interactive system whose basic data element is a matrix. This allows 
formulating solutions to many technical computing problems, especially those 
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involving matrix representations, in a fraction of the time it would take to write a 
program in a scalar non-interactive language.

The name MATLAB stands for Matrix Laboratory. MATLAB was written origi-
nally to provide easy access to matrix and linear algebra software that previously 
required writing FORTRAN programs to use. Today, MATLAB incorporates state-
of-the-art numerical computation software that is highly optimized for modern pro-
cessors and memory architectures.

In university environments, MATLAB is the standard computational tool for 
introductory and advanced courses in mathematics, engineering, and science. In 
industry, MATLAB is the computational tool of choice for research, development, 
analysis, and deployment. MATLAB is complemented by a family of application-
specific solutions called toolboxes. The Image Processing Toolbox is a collection of 
MATLAB functions that extend the capability of the MATLAB environment for 
the solution of digital image processing problems. Other toolboxes that sometimes 
are used in conjunction with the Image Processing Toolbox are the Computer Vision, 
Signal Processing, Deep Learning, Fuzzy Logic, and Wavelet Toolboxes. 

The MATLAB and Simulink Student Suite is a low-priced bundle that includes 
full-featured MATLAB, Simulink, Image Processing Toolbox, and several other 
add-on products that are most commonly used in engineering and scientific courses. 
The Computer Vision, Deep Learning, Wavelet, and Fuzzy Logic Toolboxes can be 
added to the bundle for a small extra cost. The bundle can be purchased directly 
from the MathWorks web site (www.mathworks.com). In addition, many universi-
ties and research institutions have campus-wide or site-wide licenses for general use.

1.4	THE MATLAB DESKTOP

The MATLAB Desktop is the main working environment. It is a set of graphics tools 
for tasks such as running MATLAB commands, viewing output, editing and manag-
ing files and variables, and viewing session histories. Figure 1.1 shows the MATLAB 
Desktop in a typical configuration.

The Command Window is where a user types MATLAB commands at the 
prompt (>>). For example, a user calls a MATLAB function, or assigns a value to a 
variable in the Command Window. The set of variables created in a session is called 
the Workspace, and their values and properties can be viewed in the Workspace 
Browser.

 The window on the left in Fig. 1.1 shows the contents of the Current Folder, 
which contains the folders and files with which a user is working at a given time. The 
path to the Current Folder is displayed in the Current Folder Field. 

The Command History Window displays a list of MATLAB statements executed 
in the Command Window. The list includes both current and previous sessions. In 
the Command History Window a user can right-click on previous statements to copy 
them, re-execute them, or save them to a file. These features are useful for experi-
menting with various commands in a work session, or for reproducing work from 
previous sessions.

As we will discuss in 
more detail in Chapter 2, 
images may be treated 
as matrices, thus making 
MATLAB software a 
natural choice for image 
processing applications.

See Section 1.6 for an 
explanation of bold black 
text, blue italics, and 
other special notation 
used in the book.
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During a typical MATLAB session for image processing, images and graphs are 
displayed to visualize the results of an operation. Each image is displayed in a sepa-
rate Figure Window. A Figure Window has pull-down menus that can be used to 
edit and save figures in several file formats. Figure Windows are not docked and can 
be moved anywhere in your display screen(s). Most of the other windows shown in 
Fig. 1.1, can be undocked and similarly moved.

MATLAB uses a Search Path to find files. Any file run in MATLAB must reside 
in the Current Folder or in a folder that is on the Search Path. By default, the files 
supplied with MATLAB and MathWorks toolboxes are included in the Search 
Path. The easiest way to see which folders and files are on the Search Path, or to 
add or modify a Search Path, is to use the Set Path icon in the HOME tab in the 
Toolstrip. It is good practice to add commonly used folders to the Search Path to 
avoid repeatedly having to browse to the locations of these folders.

Command History

Figure Window

Current Folder Browser

Current Folder Field Workspace BrowserMATLAB Desktop Toolstrip

Command WindowLive Editor

FIGURE 1.1 The MATLAB Desktop showing its components in a typical configuration.
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TABLE 1.1
MATLAB 
Desktop tools.

Tool Description

Array Editor View and edit array contents.

Command History Window View a log of statements entered in the Command Window; 
search for previously executed statements, copy them, and 
re-execute them.

Command Window Run MATLAB statements.

Current Folder Browser View and manipulate files in the current folder.

Current Folder Field Shows the path leading to the current folder.

Editors Editor/Debugger and Live Editor (explained in the text).

Figure Windows Display, modify, annotate, and print MATLAB graphics.

File Comparisons View detailed differences between two files.

Help Browser View and search product documentation.

Profiler Measure execution time of MATLAB functions and lines; 
count how many times code lines are executed.

Start Button Run product tools and access product documentation.

Workspace Browser View and modify contents of the workspace.

Table 1.1 shows all the available Desktop tools. The MATLAB Desktop can be 
configured to show one, several, or all of these tools. Favorite Desktop layouts can 
be saved for future use.

USING THE EDITOR/DEBUGGER

The MATLAB Editor/Debugger (or just the Editor) is one of the most important 
and versatile of the Desktop tools. Its primary purpose is to create and edit MATLAB 
script, function, and class files. The Editor highlights different MATLAB code ele-
ments in color and  analyzes code to offer improvement suggestions. With the Editor, 
a user can also analyze executing code by setting debugging breakpoints, inspecting 
variables during code execution, and executing code in small, discrete steps. The user 
can also include code output, graphics output, formatted text, equations, and images 
in code files, and these files can be exported to PDF, HTML, LaTeX, and Word. To 
open the Editor, type edit at the prompt in the Command Window, or press New 
or Open in the Toolstrip. Type edit filename at the prompt to open the code file 
with the specified name. If a code file with that name is not in the Current Folder or 
on the Search Path, MATLAB will offer to create it for you in the Current Folder.

LIVE SCRIPTS AND THE LIVE EDITOR

Live scripts are program files that contain your code, output, and formatted text 
together in a single interactive environment called the Live Editor. In live scripts, 
you can write your code and view the generated output and graphics along with the 
code that produced it. You can add formatted text, images, hyperlinks, and equations 

Throughout the book,  
code elements are shown 
in the color they would 
appear in the MATLAB 
Editor or Live Editor. 
See Section 1.6 for more 
details on the notation 
used in the book.
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to create an interactive narrative that you can share with others. The editor shown in 
Fig. 1.1 is an open session in the Live Editor.

GETTING HELP

The principal way to get help is to use the MATLAB Help Browser, opened as a 
separate window either by clicking on the question mark symbol (?) in the Toolstrip, 
or by typing doc (one word) at the prompt in the Command Window. The Help 
Browser consists of two panes, the help navigator pane, used to find information, 
and the display pane, used to view the information. It is good practice to open the 
Help Browser at the beginning of a MATLAB session to have help readily available 
during code development and other MATLAB tasks. 

Another way to obtain help for a specific function is by typing doc followed by the 
function name at the command prompt. For example, typing doc fileName displays 
the reference page for the function called fileName in the display pane of the Help 
Browser. This command opens the browser if it is not open already. The doc func-
tion works also for user-written  code files that contain help text. See Section 2.9 for 
details on how to include help text in a function.

When we introduce MATLAB and Image Processing Toolbox functions in the 
following chapters, we often give only representative syntax forms and descriptions. 
This is necessary either because of space limitations or to avoid deviating from a 
particular discussion more than is absolutely necessary. In these cases we simply 
introduce the syntax required to execute the function in the form required at that 
point in the discussion. By being comfortable with MATLAB documentation tools, 
you can then explore a function of interest in more detail with little effort. 

Finally, the MathWorks web site (www.mathworks.com) contains a large database 
of help material, examples, contributed functions, and other resources that should 
be utilized when the local documentation contains insufficient information about a 
desired topic. Consult the book website (see Section 1.7) for additional MATLAB 
support resources.

SAVING AND RETRIEVING A MATLAB SESSION

There are several ways to save or load an entire work session (the contents of 
the Workspace Browser) or selected Workspace variables in MATLAB. The sim-
plest is to save the entire Workspace by right-clicking on any blank area in the 
Workspace Browser window and selecting Save Workspace As from the menu 
that appears. This opens a directory window that allows you to name the file 
and select any folder in which to save it. Then click Save. To save a selected vari-
able from the Workspace, select the variable with a left click and right-click on 
the highlighted area. Then select Save Selection As from the menu that appears. 
This opens a window from which a folder can be selected to save the variable. 
To select multiple variables, use shift-click or control-click in the familiar man-
ner, and then use the procedure just described for a single variable. All files are 
saved in a binary format with the extension .mat. These saved files are referred to 
as MAT-files. For example, a session named mywork_2019_02_10 would appear as 

MATLAB code files 
have a .m extension.
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the MAT-file mywork_2019_02_10.mat when saved. Similarly, a saved image called  
final_image (which is a single variable in the workspace) will appear as 
final_image.mat when saved. 

To load saved Workspaces and/or variables, left-click on the folder icon on the 
toolbar of the Workspace Browser window. This causes a window to open from 
which a folder containing the MAT-files of interest can be selected. Double-click-
ing on a selected MAT-file or selecting Open causes the contents of the file to be 
restored in the Workspace Browser window. 

It is possible to obtain the same results described in the preceding paragraph by 
typing save and load at the prompt, with the appropriate names and path informa-
tion. This approach is not as convenient, but it is used when formats other than those 
available in the menu method are required. Functions save and load are useful also 
for writing code that saves and loads Workspace variables. As an exercise, you are 
encouraged to use the Help Browser to learn more about these two functions

1.5	AREAS OF IMAGE PROCESSING COVERED IN THE BOOK

This edition is a major revision of the book that brings it up to date in the tech-
nical areas covered and in the MATLAB software functionality. Every chapter in 
the book contains the pertinent MATLAB and Image Processing Toolbox material 
needed to implement the image processing methods discussed. When a MATLAB 
or Toolbox function does not exist to implement a specific method, a custom func-
tion is developed and documented. The source code of every new function is avail-
able, either in the book or in the DIPUM3E Support Package discussed in the next 
section. The following are short summaries of the material covered in Chapters 2 
through 14.  

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB nota-
tion, matrix indexing, programming concepts, and function potting. This material 
serves as software foundation for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter covers in 
detail how to use MATLAB and the Image Processing Toolbox to implement inten-
sity transformation functions. Linear and nonlinear spatial filters are covered and 
illustrated in detail. We also develop a set of basic functions for fuzzy intensity trans-
formations and spatial filtering.

Chapter 4: Filtering in the Frequency Domain. The material in this chapter shows 
how to use Toolbox functions for computing the forward and inverse 2-D fast Fourier 
transform (FFT), how to visualize the Fourier spectrum and filter transfer functions, 
and how to implement filtering in the frequency domain. Included also is a method 
for generating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration and Reconstruction. A suite of linear and nonlinear 
filters for image denoising are developed and illustrated. We also discuss traditional 
linear restoration methods, such as the Wiener filter, and extend the discussion to 
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iterative, nonlinear methods, such as the Richardson-Lucy method and maximum-
likelihood estimation for blind deconvolution. We also derive from basic principles 
the foundational algorithms for image reconstruction from projections and how 
they are used in computed tomography.

Chapter 6: Geometric Transformations and Image Registration. This chapter dis-
cusses basic forms and implementation techniques for geometric image transfor-
mations, such as affine and projective transformations. Interpolation methods are 
presented also. Different image registration techniques are discussed and several 
examples of transformation, registration, image stitching, and visualization are given. 

Chapter 7: Color Image Processing. This chapter deals with pseudocolor and full-
color image processing. Color models applicable to digital image processing are dis-
cussed and Image Processing Toolbox functionality in color processing is extended 
with additional color models. The chapter also covers applications of color to filter-
ing, edge detection, and region segmentation. 

Chapter 8: Wavelet and Other Image Transforms. We discuss a set of linear trans-
forms that decompose functions into weighted sums of orthogonal basis functions, 
including the discrete cosine, Walsh-Hadamard, and Haar transforms. In addition, 
we develop a set of self-contained wavelet functions that are compatible with the 
MATLAB Wavelet Toolbox and extend its capabilities. We also apply and illustrate 
how to use these transforms in image processing.

Chapter 9: Image Compression. The Image Processing Toolbox does not have any 
data compression functions. In this chapter, we develop and illustrate a set of func-
tions that can be used for this purpose.

Chapter 10: Morphological Image Processing. The extensive set of functions avail-
able in the Toolbox for morphological image processing are explained and illus-
trated in this chapter using both binary and grayscale images. 

Chapter 11: Image Segmentation I: Edge Detection, Thresholding, and Region 
Detection. In this chapter we cover a wide range of image segmentation methods, 
ranging from edge detection, thresholding, and region growing to Gabor filters, clus-
tering, superpixels, and graph cuts. We also discuss image segmentation using mor-
phological watersheds.

Chapter 12: Image Segmentation II—Active Contours: Snakes and Level Sets. In 
this chapter we discuss image segmentation using active contours. We develop and 
illustrate a family of custom segmentation functions for both snakes and level sets. 

Chapter 13: Feature Extraction. We develop and illustrate several functions for fea-
ture detection and description, including chain-codes, polygonal approximations, 
Fourier descriptors, texture, moment invariants, and principal components. These 
functions complement an extensive set of region property functions available in the 
Image Processing Toolbox. We also discuss whole-image features such as corners, 
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maximally-stable extremal regions, and keypoint features using methods such as 
FAST, SURF, and BRISK.

Chapter 14: Classical and Deep Learning Methods for Image Pattern Classification. 
We conclude our coverage of digital image processing with a discussion of methods 
for image pattern classification. We cover and develop functions for classical 
classification methods that include minimum-distance and optimal statistical clas-
sifiers. A significant portion of the chapter is devoted to deep learning techniques, 
which have experienced significant growth since the last edition of the book. The 
focus of our coverage in this field is first to derive and implement the fundamental 
equations for fully-connected and convolutional neural networks. The objective is 
that, when you master this material, you will understand the underpinnings of these 
important concepts and also be able to program them in MATLAB. We conclude 
the chapter with a brief illustration of the capabilities of the MATLAB Deep Learn-
ing Toolbox for implementing large-scale deep learning systems.

1.6	NOTATION AND ICONS USED IN THE BOOK

Equations in the book are typeset using familiar italic and Greek symbols such as 
f x y A x y( , ) sin( )= u v+  and f( , ) tan ( , ) ( , ) .u v u v u v= [ ]−1 I R  All MATLAB func-
tion names, symbols, and text are typeset in monospace font,; for example, fft2(f), 
logical(A), and roipoly(f,c,r). Note that monospace text is set in a light shade 
of gray to help it stand out from normal text.

When a MATLAB function is first defined, we use the following icon:

f = matlabFunction(g)

Similarly, the first occurrence of an Image Processing Toolbox function is coupled 
with the following icon;

f = toolboxFunction(g)

Occasionally, we will work with functions from other MATLAB toolboxes. The first 
occurrence of those is denoted by the following icon:

f = otherToolboxFunction(g)

Finally, we use the following icon when a custom function is mentioned for the first 
time:

f = customFunction(g)

Occasionally, we will use the same icons more than once when a function is used 
in different ways. You can find all the important occurrences of any function in the 
Index. Custom functions are additionally listed in the Appendix.

matlabFunction

toolboxFunction

otherToolboxF..

customFunction
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All words that are included in the Index—or are related to Index entries—are 
shown in blue italics in the text to make them easier to find. For example:  “. . . when 
x, y, and the amplitude values of f are all finite, discrete quantities, we call the image 
a digital image.” When emphasizing words not relevant to the Index, we use normal 
italics.  For example:  “. . . where xmax  denotes the maximum coordinate value.”

We use bold letters when referring to keyboard keys such as Return and Tab, and 
also when referring to items on a computer screen or menu, such as File and Edit. 
We use the acronym DIPUM3E, meaning Digital Image Processing, 3rd ed., through-
out the book and in the book website. 

We display all MATLAB code words using the same colors that you will see in 
the MATLAB editors. For example, for and end are shown in blue, strings such 
as 'fileNames' are shown in purple, and comments are shown in green, preceded 
by the symbol %, as in % This is a comment. All remaining code word themselves 
are shown in gray in the book to help differentiate them from normal text, as in the 
line of code f = zeros(10). All MATLAB code words are displayed using the same 
standard monospace font.

1.7	THE BOOK WEBSITE

An important feature of the book is the support contained in the book website, 
whose address is

www.ImageProcessingPlace.com

The site provides support for the book in the following areas:

•	 MATLAB source code.
•	 Tutorials on a wide range of topics relevant to the material in the book.
•	 Teaching materials.
•	 Image databases.
•	 Errata sheets.
•	 Publications in the field of image processing and related areas.

The same site supports all recent editions of the Gonzalez-Woods book and thus pro-
vides complementary materials. The site also hosts the support package explained 
in the next section.

1.8	 THE DIPUM3E SUPPORT PACKAGE

For this edition of the book, we created the DIPUM3E Support Package for students 
and faculty. The Package comes in two versions that contain the support materials 
available for the new edition, organized into one easy download. 

The DIPUM3E Student Support Package contains:

•	 Access to the source code for all the functions developed in the book.
•	 All the original images in the book.
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•	 Detailed answers to selected projects at the end of every chapter.

The DIPUM3E Faculty Support Package contains:

•	 Access to the source code for all the functions developed in the book.
•	 All the original images in the book.
•	 Detailed answers to all projects in the book.
•	 PowerPoint slides that contain all the art in the book and are ideally suited 

for building classroom presentations.

The names of all custom functions in the Package are listed in the Index and in the 
Appendix.

One Support Package comes free of charge with every new book. Applications 
for the Package for students and faculty are submitted in the book web site.

1.9	 HOW REFERENCES ARE ORGANIZED IN THE BOOK

All references in the book are listed in the Bibliography by author and date as, for 
example, Sejnowski [2018]. Most of the background references for the theoretical 
content of the book are from Gonzalez and Woods [2018]. In cases where this is 
not true, the appropriate new references are identified at the point in the discussion 
where they are needed. Reference details are included in the Bibliography.

Summary
In addition to a brief introduction to notation and basic MATLAB tools, the material in this chapter 
emphasizes the importance of a comprehensive prototyping environment in the solution of digital image 
processing problems. In the following chapter, we begin to lay the foundation needed to understand 
Image Processing Toolbox functions and introduce a set of fundamental programming concepts that are 
used throughout the book. The material in Chapters 3 through 14 spans a wide cross section of topics 
that are in the mainstream of digital image processing. Although the topics covered are varied, the dis-
cussion of those topics follows the same basic theme of demonstrating how combining MATLAB and 
Toolbox functions with new code can be used in a wide range of digital image processing applications.
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2 Fundamentals

As we mentioned in the previous chapter, the power that MATLAB brings to digital image processing is 
an extensive set of functions for processing multidimensional arrays, of which images (two-dimensional 
numerical arrays) are a special case. The Image Processing Toolbox is a collection of functions that extends 
the capability of the MATLAB numeric computing environment. These functions and the expressiveness 
of the MATLAB language make image-processing operations easy to write in a compact, clear manner, 
thus providing an ideal software prototyping environment for the solution of image processing prob-
lems. In this chapter, we introduce the basics of MATLAB notation, discuss a number of fundamental 
Toolbox properties and functions, and begin a discussion of programming concepts. Thus, the material in 
this chapter is the foundation for most of the software-related discussions in the remainder of the book.

Functions Developed in this Chapter:
imblend this is the first custom function pre-
sented in the book. It is a simple function 
designed to illustrate the principal compo-
nents of a MATLAB function.

average is a function that illustrates condi-
tional branching and the use of dot notation.

subim is a function that extracts a subimage 
from a larger image. This function is designed 
to illustrate the use of for loops and the 
importance of memory allocation.

sinfunX—a series of three functions for 
X = 1, 2, and 3 designed to illustrate function 
timing, function handles, memory prealloca-
tion, for loops, and code vectorization.

twodsinX—also a series of three functions 
for X = 1, 2, and 3 designed to illustrate image 
generation using for loops and code vector-
ization using the function meshgrid.

imageStatsX—a series of five functions for 
X = 1,  2, 3, 4, and 5 used to illustrate program-
ming with cell arrays and structures.

interactive is a function that illustrates 
interactive I/O using a keyboard and mouse 
for data entry.

By failing to prepare you are preparing to fail.
 Benjamin Franklin
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2.1	DIGITAL IMAGE REPRESENTATION 

An image may be defined as a two-dimensional function, f x y( , ), where x and y are 
spatial (plane) coordinates and the amplitude of f at any pair of coordinates, ( , ),x y  
is called the intensity of the image at that point. The term gray level is used often to 
refer to the intensity of monochrome (grayscale) images. Color images are formed 
by a combination of individual images. For example, in the RGB color system a color 
image consists of three individual monochrome images, referred to as the red (R), 
green (G), and blue (B) primary (or component) images. 

An image may be continuous with respect to x and y and also in amplitude. 
Converting such an image to digital form requires that the coordinates and the 
amplitude be digitized. Digitizing the coordinates is called sampling; digitizing the 
amplitude is called quantization. Thus, when x, y, and the amplitude values of f are 
all finite, discrete quantities, we call the image a digital image. The elements of a 
digital image are called pixels.

COORDINATE CONVENTIONS

The result of sampling and quantization is a matrix of real numbers. We use two 
principal ways in the book to represent digital images. Assume that an image f x y( , ) 
is sampled uniformly so that the resulting image has M rows and N columns. We 
say that the image is of size M N*  pixels. The values of the coordinates generally 
are equally-spaced, discrete quantities. For notational clarity and convenience, we 
use integer values for these discrete coordinates. In many image processing books, 
the image origin is defined to be at ( , ) ( , )x y = 0 0 . The next coordinate values along 
the first row of the image are ( , ) ( , )x y = 0 1 . The notation ( , )0 1  is used to denote the 
second sample (starting from 0) along the first row. It does not mean that these are 
the actual values of physical coordinates when the image was sampled. Figure 2.1(a) 
shows this coordinate convention. Note that x ranges from 0 to M - 1 and y from 0 
to N - 1 in integer increments.

The coordinate convention used in the Image Processing Toolbox is different 
from the preceding paragraph in two ways. First, instead of using ( , )x y , the toolbox 
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FIGURE 2.1
Coordinate 
conventions used 
(a) in many image 
processing books, 
and (b) in the 
Image  
Processing 
Toolbox. The dots 
are image pixels.
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uses the notation ( , )r c  to indicate rows and columns. The order of the coordinates 
is the same as above, in the sense that the first element of a coordinate tuple, ( , )a b , 
refers to a row and the second to a column. The other difference is that the origin of 
the coordinate system is at ( , ) ( , )r c = 1 1 ; thus, r ranges from 1 to M and c from 1 to N, 
in integer increments. Figure 2.1(b) illustrates this coordinate convention.

The Image Processing Toolbox documentation refers to the coordinates in 
Fig. 2.1(b) as pixel indices or (less frequently) intrinsic coordinates. In some cases, 
MATLAB and the Toolbox employ another coordinate convention, called spatial 
coordinates, that uses x to refer to columns and y to refers to rows. This is the opposite 
of our use of variables x and y and can be a source of confusion because you will 
encounter it in Toolbox and MATLAB documentation. Be aware that MATLAB 
itself is not always consistent in the meaning it assigns to a tuple ( , ).a b  For instance, 
when referring to matrices (and by implication images), MATLAB assumes that 
the first element refers to rows and the second to columns. In other contexts (e.g., in 
plotting functions), the reverse is true. We will generally mention it whenever this 
reversal occurs in our discussions.

IMAGES AS MATRICES

The coordinate system in Fig.  2.1(a) and the preceding discussion lead to the 
following representation for a digital image:
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The right side of this equation is a digital image by definition and each of its ele-
ments is a pixel.

A digital image can be represented as a MATLAB matrix:
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where f(1,1) = f ( , )0 0  (note the use of a monospace font to denote MATLAB 
quantities) and f is any valid MATLAB variable name†. Clearly, the two 
representations are equivalent, except for the notational shift in the origin. Typically, 
we use the letters M and N, respectively, to denote the number of rows and columns 

†  A valid MATLAB variable name starts with a letter and is followed by letters, digits, or underscores (no spaces 
are allowed). MATLAB is case sensitive. The maximum length of a variable name is the value returned when 
you type namelengthmax in your version of MATLAB.

MATLAB and Toolbox  
documentation uses 
the terms matrix and 
array  interchangeably. 
However, keep in mind 
that a matrix is two- 
dimensional, whereas an 
array can have any finite 
dimension.

namelengthmax



18    Chapter 2  Fundamentals

in a matrix. A 1 × N  matrix is a row vector, an M × 1 matrix is a column vector, and a 
1 1×  matrix is a scalar.

Matrices in MATLAB are stored in variables with names such as A, a, RGB, 
realArray, and so on. As noted earlier, all MATLAB quantities in this book are 
written using monospace characters. We use conventional Roman, italic notation, 
such as f x y( , ), for mathematical expressions.

2.2	READING IMAGES

Images are read into the MATLAB environment using function imread, whose 
basic syntax is

imread('filename')

where 'filename' is a string containing the complete name of the image file (includ-
ing any applicable extension). For example, the statement

>> f = imread('chestXray.jpg');

reads the image from the file 'chestXray.jpg' into image array f in the MATLAB 
Workspace. Single quotes (') delimit the string filename. A semicolon at the end of 
a statement is used to suppress output. If a semicolon is not included, MATLAB 
displays on the screen the results of the operation(s) specified in that line. The 
prompt symbol (>>) designates the beginning of a command line.

When no path information is included in 'filename', imread reads the file from 
the Current Folder and, if that fails, it tries to find the file in the MATLAB Search 
Path (see Section 1.7). To read an image from a specified folder, include a full or 
relative path to that folder of 'filename'. For example,

>> f = imread('D:\myimages\chestXray.jpg');

reads the image from a folder called myimages in the D: drive, whereas

>> f = imread('.\myimages\chestXray.jpg');

reads the image from the myimages subfolder contained in the Current Folder.  
Table 2.1 lists some of the image/graphics formats supported by imread and imwrite 
(we discuss the latter function in Section 2.4).

Typing size(f) at the prompt gives the row and column dimensions of f:

>> size(f)

ans =
    1024   1024

More generally, for an array A having an arbitrary number of dimensions, a statement 
of the form

>> [D1,D2,...,DK] = size(A)

Recall from Section 1.6 
that we use margin icons 
to highlight the first use 
of a MATLAB, Toolbox, 
or Custom function. 
Sometimes, we also use 
icons to denote other 
important MATLAB 
elements such as “;” and 
“>>”.

imread

semicolon(;)

prompt(>>)

MathWorks recently 
adopted standard  
Windows and Mac 
terminology by using the 
term “folder” instead 
of “directory,” but you 
will still encounter the 
latter in some MATLAB 
documentation.

The MATLAB Desktop 
displays the path to the 
Current Folder on the 
toolbar, which provides 
an easy way to change it.

size
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TABLE 2.1
Some of the  
image/graphics 
formats  
supported by 
imread and 
imwrite, starting 
with MATLAB 
7.6. Earlier  
versions support 
a subset of these 
formats. See the 
MATLAB  
documentation 
for a complete 
list of supported 
formats.

Format Name Description File Extensions

BMP Windows Bitmap .bmp

CUR† Windows Cursor Resources .cur
FITS† Flexible Image Transport System .fts, .fits
GIF Graphics Interchange Format .gif
HDF Hierarchical Data Format .hdf
ICO† Windows Icon Resources .ico
JPEG Joint Photographic Experts Group .jpg, .jpeg
JPEG 2000 Joint Photographic Experts Group .jp2, .jpf, 

.jpx, j2c, j2k
PBM Portable Bitmap .pbm
PGM Portable Graymap .pgm
PNG Portable Network Graphics .png
PNM Portable Any Map .pnm
RAS Sun Raster .ras
TIFF Tagged Image File Format .tif, .tiff
XWD X Window Dump .xwd

†Supported by imread, but not by imwrite.

returns the size of A as if it were a K-dimensional array. The sizes of any dimensions 
larger than K are folded into DK. This function is particularly useful in programming 
to determine automatically the size of an image:

>> [M,N] = size(f); % For grayscale images, dim = 2;
>> [M,N,K] = size(g); % For RGB images, dim = 3;

Typing, 

>> M = size(f,1);

gives the size of f along its first (vertical) dimension; that is, the number of rows of 
f. The second dimension is in the horizontal direction, so the statement size(f,2) 
gives the number of columns in f. For an RGB image, K = size(f,3) gives 3 because 
an RGB image consists of three  grayscale images stacked in the third dimension. A 
singleton dimension is any dimension, dim, for which size(A,dim) = 1. 

The whos function displays additional information about an array. For instance, if 
f is the 'chestXray.jpg' image, the statement

>> whos f

gives

    Name      Size        Bytes     Class     Attributes
     f      1024x1024    1048576    uint8

whos
Although not applicable 
in this example,  
attributes that might  
appear under  
Attributes include 
terms such as global, 
complex, and sparse. 
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The Workspace Browser in the MATLAB Desktop displays similar information. The 
uint8 entry shown above refers to one of several MATLAB data classes discussed 
in Section 2.4. A semicolon at the end of a whos line has no effect, so normally one is 
not used. Table 2.2 lists two other MATLAB functions that you will find quite useful. 
It is time well spent getting to know these functions.

2.3	DISPLAYING IMAGES

Images are displayed on the MATLAB Desktop using function imshow, which has 
the basic syntax:

imshow(f)

where f is an image. Using the syntax

imshow(f,[low high])

displays as black all values less than or equal to low and as white all values greater 
than or equal to high. The values in between are displayed as intermediate intensity 
values. Finally, the so-called auto-range syntax

imshow(f,[ ])

sets variable low to the minimum value of f and high to its maximum value. This 
form of imshow is useful for displaying images that have a low dynamic range or 
that have positive and negative values. These last two syntax forms do not work for 
RGB images.

EXAMPLE 2.1 : 	 Reading and displaying images.

The following statements read from the Current Folder an image called 
'rose512.tif', extract information about the image, and display it using imshow:

>> f = imread('rose512.tif');
>> whos f
 Name        Size              Bytes   Class    Attributes
  f         512x512            262144  uint8

imshow
Function imshow has a 
number of other syntax 
forms for performing 
tasks such as controlling 
image magnification. 
Consult the help page 
for imshow for additional 
details.

TABLE 2.2
Some additional MATLAB functions that are used routinely when working in the MATLAB Desktop.

Function name Symtax Explanation

which which item Locates functions and files.

lookfor lookfor keyword Searches for the specified keyword in the first comment line (the H1 
line) of the help text in all MATLAB program files found on the search 
path.
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>> imshow(f)

Figure 2.2 shows what the output looks like on the screen. The figure number appears 
on the top, left of the window. The various pull-down menus and utility buttons 
are used for tasks such as scaling, saving, and exporting the contents of the display 
window. The Edit menu has functions for editing and formatting the contents before 
they are printed or saved to disk.

If another image, g, is displayed using imshow, MATLAB replaces the image in 
the figure window with the new image. To keep the first image and display a second 
image in a new window, use the function figure, as follows:

>> figure, imshow(g)

Using the statement

>> imshow(f), figure, imshow(g)

displays both images. Note that more than one command can be written on a line, 
provided that different commands are delimited by commas or semicolons, as 
appropriate. As mentioned earlier, a semicolon is used whenever it is desired to 
suppress screen outputs from a command line.

Finally, suppose that we are working with an image, h, and find that using 
imshow(h) displays the image in Fig. 2.3(a). This image has a low dynamic range, 
which can usually be remedied for display purposes using the auto range syntax in 
imshow:

>> figure, imshow(h,[])

Figure 2.3(b) shows the result. The improvement is apparent.

figure
When used without an  
argument, as shown here, 
function figure creates 
a new figure window. 
Typing figure(n) (or 
clicking on its window) 
forces figure number n to 
become visible.

FIGURE 2.2
Screen capture 
showing how an 
image appears 
on the MATLAB 
Desktop. Note the 
figure number on 
the top, left of the 
window. In most 
of the examples 
throughout the 
book, we show  
images without 
the display 
window. 
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ba

FIGURE 2.3
(a) An image, h, 
with low dynamic 
range, displayed 
using imshow(h).  
(b) Result of using 
imshow(h,[]). 
(Original image 
courtesy of Dr. 
David R. Pickens, 
Vanderbilt Univ.  
Medical Center.)

Although imshow is the image display function used most frequently, the Toolbox 
provides an Image Viewer app that contains a number of utilities (called tools) useful 
for interactive image exploration, as detailed in Table 2.3. To start the Image Viewer, 
we type imtool at the prompt:

>> f = imread('lunar-shadows.tif');
>> imtool(f)

Figure 2.4 shows some of the windows available when using the Image Viewer. 
The large, central window (titled Image Tool) is the main view that opens when 
you type imtool(f) at the prompt. The main view is showing the image at 200% 
magnification. The status text at the bottom, left of the main window shows the 
column/row location (244, 375) and value (101) of the pixel lying under the mouse 
cursor (the origin of the image is at the top, left). The straight line between the two 
large black regions in the main window is the result of selecting Measure Distance 
from the Tools pull-down menu; it shows a distance of 242.32 pixels. If the physical 
scale of the image is known, the actual distance can be obtained by multiplying 

An app in MATLAB is 
an interactive  
application written to 
perform computing tasks. 
In addition to the Image 
Viewer app, the Toolbox 
has several other apps, 
some of which we discuss 
later in the book. 

imtool

TABLE 2.3
Functions  
comprising the 
Image Viewer app.  
Also, the tools 
listed can be run 
as independent  
functions.

Function Description

imtool Starts the Image Viewer app.

imageinfo Image Information tool.

imcontrast Adjust Contrast tool.

imdisplayrange Display Range tool.

imdistline Distance tool.

impixelinfo Pixel Information tool.

impixelinfoval Pixel Information tool without text label.

impixelregion Pixel Region tool.

immagbox Magnification box for scroll panel.

imoverview Overview tool for image displayed in scroll panel.
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EXAMPLE 2.17 :   Wireframe plotting.

Using the function lpfilter from Chapter 4, we generate a matrix H of size 500 500×  elements that 
are values of a 2-D Gaussian (ignore the details of lpfilter for now—we are interested only in H in 
this example). Figure 2.14(a) shows the result of the commands

>> H = fftshift(lpfilter('Gaussian',500,500,50));
>> wf = mesh(H(1:10:500,1:10:500)); % Plot every tenth point.
>> wf.EdgeColor = [0 106 78]/255;
>> axis tight % Fig. 2.14(a).
>> axis off 
>> grid off % Fig. 2.14(b).
>> view(-25,30) % Fig. 2.14(c).

>> view(-25,0) % Fig. 2.14(d).

We use 3-D plotting is various parts of the book, especially in Chapter 4.

Surface Plots

Sometimes it is desirable to plot a function as a surface instead of as a wireframe. 
Function surf does this. Its basic syntax is

surf(H)

This function generates plots that are identical to mesh, except that the quadrilat-
erals in the mesh are filled with colors by default (this is called facet shading). To 
convert the colors to gray we use the command

surf

ba
dc

FIGURE 2.14
(a) Plot obtained 
using function 
mesh and  
displayed in its 
default colors.  
(b) Axes and grid 
removed and  
colors changed to 
a single color.  
(c) A different 
view. (d) Another 
view.

50

0.2

0.4

40 50

0.6

30 40

0.8

3020
2010 10



103

3 Intensity Transformations 
and Spatial Filtering

The term spatial domain refers to the image plane itself and methods in this category are based on direct 
manipulation of pixels in an image. In this chapter we focus attention on two categories of spatial domain 
processing: intensity (gray-level) transformations and spatial filtering. The latter approach sometimes is 
referred to as neighborhood processing or spatial convolution. In the following sections we develop and 
illustrate MATLAB formulations representative of processing techniques in these two categories. We 
also introduce fuzzy sets and develop several functions for their implementation in image processing. In 
order to carry a consistent theme, most of the examples in this chapter are related to image enhance-
ment. This is a good way to introduce spatial processing because enhancement is highly intuitive and 
appealing, especially to beginners in the field. However, as you will see throughout the book, these 
techniques are general in scope and have uses in numerous other aspects of digital image processing.

Functions Developed in this Chapter:
intensityTransformations performs gray-
scale intensity transformations.

intensityScaling scales the intensities of 
an image to the full [0, 1] range.

fun2hist converts a discrete function into a 
histogram.

manualhist is used for interactive histogram 
specification.

triangmf implements one of eight member-
ship functions used for fuzzy image processing.

lambdafcns outputs functions for computing 
rule strength.

implfcns computes implication functions.

aggfcn computes an aggregation function.

defuzzify is a defuzzification function.

fuzzysysfcn implements a complete fuzzy 
system.

approxfcn approximates the output of func-
tion fuzzysysfcn.

fuzzyfilt performs fuzzy edge detection.

makefuzzyedgesys is a script that supports 
function fuzzyfilt.

When you look at the world with knowledge, you realize that things are 
unchangeable and at the same time are constantly being transformed.

 Yukio Mishima
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3.1	BACKGROUND 

As noted in the introduction, spatial domain techniques operate directly on the 
pixels of an image. Most of the spatial domain processes discussed in this chapter 
are denoted by the expression

	 g x y T f x y( , ) ( , )= [ ] 	 (3-1)

where f x y( , ) is the input image, g x y( , ) is the output (processed) image and T  is an 
operator on f defined over a specified neighborhood about point ( , ).x y  In addition, 
T  can operate on a set of images, such as performing the addition of K images for 
noise reduction.

The principal approach for defining spatial neighborhoods about a point ( , )x y0 0  is 
to use a square or rectangular region centered at ( , ),x y0 0  as Fig. 3.1 shows. The region 
is moved from pixel to pixel starting, say, at the top, left corner and, as it moves, it 
encompasses different neighborhoods. Operator T is applied at each location ( , )x y  to 
yield the output, g, at that location. Only the pixels in the neighborhood centered at 
( , )x y  are used in computing the value of g at ( , ).x y  

3.2	INTENSITY TRANSFORMATION FUNCTIONS 

The simplest form of the transformation T is when the neighborhood in Fig. 3.1 is 
of size 1 1×  (a single pixel). In this case, the value of g at ( , )x y  depends only on the 
intensity of f at that point and T becomes an intensity transformation function. 

Because the output of an intensity transformation function depends only on the 
intensity value at a point and not on a neighborhood of points, they are frequently 
written in simplified form as

	 s T r= ( ) 	 (3-2)

where r denotes the intensity of f  and s the intensity of g, both at the same coordinates 
( , )x y  in the input and output images.

When working with 
grayscale (monochrome) 
images, intensity 
transformation functions 
are often referred to as 
gray-level transformation 
functions.

Origin

Image f

Spatial domain

y 

x

x0

y0

of point x0, y0)(
3 3 neighborhood×

Center pixel 
 

FIGURE 3.1
A neighborhood of 
size 3 3×  centered at 
a point ( , )x y0 0  in a 
digital image. 
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FUNCTIONS imadjust AND stretchlim
Function imadjust is the basic Toolbox function for intensity transformations. It 
has the general syntax

g = imadjust(f,[lowIn highIn],[lowOut highOut],gamma)

As Fig. 3.2 illustrates, this function maps the intensity values in image f to new values 
in g, such that values between lowIn and highIn map to values between lowOut 
and highOut. Values below lowIn and above highIn are clipped; that is, all values 
below lowIn map to lowOut and those above highIn map to highOut. The output 
image has the same class as the input. All inputs to function imadjust, other than f 
and gamma, are specified as values between 0 and 1, independently of the class of f. If, 
for example, f is of class uint8, imadjust multiplies its values by 255 to determine 
the actual values to use. Using the empty matrix ([]) for [lowIn highIn] or for 
[lowOut highOut] results in the default values [0  1]. If highOut is less than lowOut, 
the output intensities are reversed.

Parameter gamma specifies the shape of the transformation curve that maps the 
intensity values from f to g. If gamma is less than 1, the mapping is weighted toward 
higher (brighter) output values, as shown Fig. 3.2(a). If gamma is greater than 1, the 
mapping is weighted toward lower (darker) output values, as Fig. 3.2(c) shows. If it is 
not specified, gamma defaults to 1, which is the linear mapping in Fig. 3.2(b).

EXAMPLE 3.1 :   Using function imadjust.

Figure 3.3(a) is a digital mammogram image, f, showing a small lesion. We obtained 
Fig. 3.3(b) using the commands

>> f = imread('breastXray.tif');
>> g1 = imadjust(f,[0 1],[1 0]);
>> figure, imshow(g1) % Fig. 3.3(b).

This process, which is the digital equivalent of obtaining a photographic negative, 
is particularly useful for enhancing white or gray detail embedded in a large, 
predominantly dark region. Note, for example, how much easier it is to analyze the 
breast tissue in Fig. 3.3(b). The negative of an image can be obtained also using the 
Toolbox function imcomplement:

imadjust

Recall from the  
discussion in Section 2.7 
that function mat2gray 
can be used for  
converting an image to 
class double and scaling 
its intensities to the 
range [0, 1],  
independently of the 
class of the input image.

lowIn highIn

lowOut

highOut

lowIn highInlowIn highIn

gamma � 1 gamma � 1 gamma � 1

ba c

FIGURE 3.2
The mappings  
available in  
function  
imadjust.
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ba c
ed f

FIGURE 3.3
(a) Original digital 
mammogram.  
(b) Negative 
image. (c) Result 
of expanding 
the intensities in 
the range [0.5, 
0.75]. (d) Result 
of enhancing 
the image with 
gamma = 2.  
(e) and (f) Results 
of using function 
stretchlim as an 
automatic input 
into function  
imadjust.  
(Original image 
courtesy of G. E. 
Medical  
Systems.)

g = imcomplement(f);

We obtained Fig. 3.3(c) using the command

>> g2 = imadjust(f,[0.5 0.75],[0 1]);

which expands the gray scale interval between 0.5 and 0.75 to the full [0,  1] range. 
This type of processing is useful for highlighting an intensity band of interest. Finally, 
using the command

>> g3 = imadjust(f,[],[],2);

produced a result similar to (but with more gray tones than) Fig. 3.3(c) by compressing 
the low end and expanding the high end of the gray scale [see Fig. 3.3(d)].

Sometimes, it is of interest to be able to use function imadjust “automatically,” 
without having to deal with the low and high parameters discussed above. Function  
stretchlim can be used for this purpose; its basic syntax is

LowHigh = stretchlim(f)

where LowHigh is a two-element vector of a lower and upper limit that can be used 
to achieve contrast stretching (see the following section for a definition of this term). 

imcomplement

stretchlim
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Function narginchk can be used in the body of a function to check if the correct 
number of arguments was passed. The syntax is

msg = narginchk(minargs,maxargs)

This function returns the message Not enough input arguments if the number of 
input arguments is less than minargs or Too many input arguments if the number 
is greater than maxargs. Program execution stops in either of these two cases. If the 
number is between minargs and maxargs (inclusive), narginchk does nothing. 

It is useful to be able to write functions in which the number of input and/or 
output arguments is variable. For this, we use varargin and varargout. For example,

function [varagout] = myFunction(varargin)

accepts a variable number of inputs into myFunction and returns a variable number 
of outputs. This type of formulation is useful when the number of inputs depends on 
parameters chosen by the user and in which the number of outputs depends on the 
inputs provided for a given set of choices. For example, a function that computes 
various features of a region would require different inputs for different features and 
the outputs would depend on which features were specified. The following custom 
function illustrates the advantages of being able to provide a variable number of 
inputs. Variable outputs are treated in a similar manner. 

A Custom Function for Intensity Transformations

In this section we write a function that computes the following transformation 
functions: negative, log, gamma, and contrast stretching. The function can also perform 
user-specified transformations. These transformations were selected because we will 
need them later and also to illustrate several of the concepts discussed thus far in the 
book. In writing this function we used function tofloat, introduced in Section 2.8. 

Observe our use of several local functions in the body of the custom function 
intensityTransformations. Note also how the various input options are formatted 
in the Help section of the code, how a variable number of inputs is handled, how 
error checking is interleaved in the code, and how the class of the output image 
is matched to the class of the input. Keep in mind when studying this code that 
varargin is a cell array, so its elements are selected by using curly braces.

function g = intensityTransformations(f,method,varargin)
%intensityTransformations Grayscale image intensity transformations.
%   G = intensityTransformations(F,'neg') computes the negative of the
%   input image F.
% 
%   G = intensityTransformations(F,'log',C,CLASS) computes C*log(1 + F)
%   and multiplies the result by (positive) constant C. If the last
%   parameters is omitted, C defaults to 1. Because the log is used
%   frequently to display Fourier spectra, parameter CLASS offers the
%   option to specify the class of the output as 'uint8' or 'uint16'. If
%   parameter CLASS is omitted, the output is of the same class as the
%   input.

narginchk

Both varargin and  
varargout are cell 
arrays.

varargout

varargin

intensityTran...
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EXAMPLE 3.4 :   Computing and plotting image histograms.

We discussed in Section 2.10 the four principal ways to plot histograms in MATLAB:

•	 Default plot by typing imhist at the prompt.
•	 Bar plot of h using function bar.
•	 Stem plot of h using function stem.
•	 Plot of h using function plot.

Figures 3.7(b)–(f) illustrate these four manners of plotting a histogram for the image in Fig. 3.7(a). 
Figure 3.7(c) is a copy of the code we used to generate Fig. 3.7(d). You will recognize the form of these 
commands as those we used to generate Fig. 2.12(b), but using a different color scheme. The details of 
how we generated the other plots in Fig. 3.7 are explained in the discussion of Fig. 2.12.

HISTOGRAM EQUALIZATION

Histogram equalization is one of the most effective intensity transformations for 
image enhancement. In histogram equalization, we think of intensities and their 
histograms as discrete random variables and their discrete probability distributions, 
respectively. The histogram equalization transformation of a specific random 
intensity value rk  into a corresponding random intensity value sk  is defined as a 
scaling constant, K, times the cumulative distribution function (CDF) of the random 
variable r, evaluated at rk :

	 s K CDF rk k= ⋅ ( ) 	 (3-8)

We know from basic probability that 

	 CDF r p rk j
j

k

( ) ( )=
=
∑

0

	 (3-9)

Therefore, with reference to Eq. (3-2), we have that histogram equalization is imple-
mented using the transformation function

	 s T r K p rk k j
j

k

= =
=
∑( ) ( )

0

	 (3-10)

Constant K scales the output to the intensity scale of the input. When r is floating 
point in the range r ∈[ , ],0 1  we set K = 1. When r represents integer-valued intensities, 
its values are in the range r L∈ −[ , ]0 1  and we set K L= − 1, where L is the number 
of intensity levels (e.g., 256 for an uint8 image).

When s and r are continuous random variables, it is not difficult to show that using 
integration instead of a sum in Eq. (3-10) results in an output intensity distribution 
that is perfectly uniform, regardless of the intensity distribution of the input [see 
Gonzalez and Woods [2018]). A uniform distribution is flat over the full intensity 
scale. This means that all intensities in the output image would be equally likely 
to occur. This implies in turn that the output intensities would have a much wider 
dynamic range. In an image, this translates into increased contrast and usually an 
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FIGURE 3.7 (a) A transmission electron microscope image of liver cells. (b) Default histogram obtained by typing 
imhist(f) at the prompt. (c) Code used to generate the bar graph on the right. (d) Bar graph obtained using the 
code on the left. (e) Stem plot. (f) Result of plotting h directly using function plot. (Image courtesy of NIH.)

f = imread('liver-cells-gray.tif');
h = imhist(f,30)/numel(f);
horz = linspace(0,255,30);
figure, bar(horz,h,...
     'FaceColor',[0 106 78]/255,...
     'EdgeColor', [0 212 156]/255,...
     'LineWidth',0.75)
ax = gca;
ax.Color = [190 228 223]/255;
ax.YTick = 0:max(h(:))/4:max(h(:));
ax.FontName = 'Times Ten';
ax.FontSize = 8;
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f = imread('liver-cells-gray.tif');
h = imhist(f,30)/numel(f);
horz = linspace(0,255,30);
figure, bar(horz,h,...
     'FaceColor',[0 106 78]/255,...
     'EdgeColor', [0 212 156]/255,...
     'LineWidth',0.75)
ax = gca;
ax.Color = [190 228 223]/255;
ax.YTick = 0:max(h(:))/4:max(h(:));
ax.FontName = 'Times Ten';
ax.FontSize = 8;
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f = imread('liver-cells-gray.tif');
h = imhist(f,30)/numel(f);
horz = linspace(0,255,30);
figure, bar(horz,h,...
     'FaceColor',[0 106 78]/255,...
     'EdgeColor', [0 212 156]/255,...
     'LineWidth',0.75)
ax = gca;
ax.Color = [190 228 223]/255;
ax.YTick = 0:max(h(:))/4:max(h(:));
ax.FontName = 'Times Ten';
ax.FontSize = 8;
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enhancement of details hidden in dark regions of the image. Because this result is 
independent of the intensity distribution of the input, histogram equalization is an 
automatic enhancement tool. When the intensities are discrete, we can no longer 
guarantee that the output histogram will be uniform. However, as the next example 
shows, even an approximation can yield dramatic improvements in the appearance of 
an image. The fact that histogram equalization depends only on the input histogram, 
which is simple to compute, makes equalization a widely-used tool in digital image 
processing.

The Toolbox function that implements histogram equalization is histeq:

g = histeq(f,n)

where f is the input image and n is the number of intensity levels specified for the 
output image. If n is equal to L, then histeq implements histogram equalization 
directly. If n is less than L, then histeq attempts to distribute the levels so that 
they will approximate a flat histogram. Unlike function imhist, the default value in 
histeq is n = 64. For the most part, we use the maximum possible number of levels 
for n because this produces a true implementation of the histogram-equalization 
method just discussed.

EXAMPLE 3.5 : 	 Histogram equalization.

The image in Fig. 3.8(a) is a partial view of the NASA Phoenix Lander craft on 
the surface of Mars. The dark appearance of this image was caused by the camera 
adjusting itself to compensate for strong reflections from the sun. The distribution of 
intensities is toward the dark shades of gray, so the image histogram in Fig. 3.8(c) is 
biased toward the lower end of the intensity scale. This type of histogram tells us that 
the image is a candidate for histogram equalization, which will spread the histogram 
over the full range of intensities, thus increasing visible detail:

>> f = imread('phoenix-lander.tif');
>> figure, imshow(f); % Fig. 3.8(a).
>> g = histeq(f,256);
>> figure, imshow(g) % Fig. 3.8(b).
>> figure, imhist(f) % Fig. 3.8(c).
>> figure, imhist(g) % Fig. 3.8(d).

The result of histogram equalization in Fig. 3.8(b) confirms the statement made 
earlier that histogram equalization often brings out detail not visible in the original 
image. Visible detail in this image is much improved over the original. As expected, 
the histogram of this image [see Fig. 3.8(d)] spans the full intensity scale. Although 
this histogram is far from flat, the discrete histogram equalization method did an 
excellent job of enhancing visible detail.

As noted in Eqs. (3-8) and (3-10), the histogram equalization transformation 
function is the cumulative sum of the probability distribution. We compute the 
cumulative sum using function cumsum:

>> hnorm = imhist(f)/numel(f); % Normalized histogram.

histeq
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FIGURE 3.10
(a) A dark chest 
X-ray image.  
(b) Golden  
histogram retrieved 
from storage. 
(c) Image processed 
to match the golden 
histogram. 
 (d) Actual  
histogram of the 
image in (c). 
(Original image 
courtesy of Dr. 
Thomas R. Gest, 
University of  
Michigan Medical 
School.)

The following custom functions allow you to generate histograms that can be 
used with function histeq in the manner described in the preceding example. You 
can find these functions in your Support Package.

function h = fun2hist(fun,S)

This function converts a discrete function contained in vector fun, to a histogram, h. 
The function 

function h = manualhist(c,nb,np,plotmode)

allows the user to specify a shape interactively and then generates a histogram, h, 
from the specified shape.

The Toolbox provides another function for adjusting the histogram of an image to 
match the histogram of a reference image. The basic syntax is 

g = imhistmatch(f,refim,nbins)

where f is the input image, refim is the reference image, and nbins is such that the 
output image has no more than nbins discrete levels.

EXAMPLE 3.7 : 	 Using function imhistmatch.

Figure 3.11(a) is the same as Fig. 3.10(a). In this example, we work with function imhistmatch to 
enhance this image using the histogram of the reference image in Fig. 3.11(b), which is from a different 
subject. Observe that the histogram of the reference image has a much better intensity distribution. We 
obtained the results in Fig. 3.11 using the following commands:

>> f = imread('chestXray-dark.tif');

fun2hist

manualhist

imhistmatch
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>> figure, imshow(f) % Fig. 3.11(a).
>> refim = imread('chestXray2-cropped.tif');
>> figure, imshow(refim) % Fig. 3.11(b).
>> g = imhistmatch(f,refim,256);
>> figure, imshow(g) % Fig. 3.11(c).
>> figure, imhist(f) % Fig. 3.11(d).
>> figure, imhist(refim)% Fig. 3.11(e).
>> figure, imhist(g) % Fig. 3.11(f).

As Fig. 3.11(c) shows, the quality of the enhancement is not quite as good as the result we obtained in 
Fig. 3.10(c), but it is a considerable improvement over the original, dark image, considering that the 
reference image is from a subject with a totally different anatomy. The histograms in the second row 
of the figure show that function imhistmatch transformed the original histogram so that its shape was 
biased toward the light end of the intensity scale, which is the dominant characteristic of the histogram 
of the reference image. 

ADAPTIVE HISTOGRAM EQUALIZATION

Image Processing Toolbox function adapthisteq performs contrast-limited adaptive 
histogram equalization. Unlike the methods discussed in the previous two sections, 

0 50 100 150 200 250 0 50 100 150 200 2500 50 100 150 200 250
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FIGURE 3.11 (a) Dark chest X-ray image. (b) Reference image from a different subject. (c) Result of using function 
imhistmatch. (d)–(f) Histograms of the images in the first row. (Image (a) courtesy of Dr. Thomas R. Gest, 
University of Michigan Medical School. Image (b) courtesy of Dr. David R. Pickens, Vanderbilt University.) 
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>> cdf = cumsum(hnorm);
>> r = linspace(0,1,256); % 256 values in the range [0,1].
>> figure, plot(r,cdf); % Fig. 3.9.

Because we normalized the histogram, we used K = 1 in Eq. (3-10). The 
transformation function in Fig. 3.9 shows that the intensities in the lower end of the 
intensity scale for the input image were spread out, while the intensities in the higher 
end were compressed to a much narrower range. This agrees with the shape of the 
resulting histogram in Fig. 3.8 (d).

HISTOGRAM MATCHING

There are applications that require that images be processed so that their histograms 
match a target shape. For example, a security imaging system may be calibrated 
for a specified level of ambient illumination. Images acquired during periods when 
the illumination changes often can be enhanced by processing them so that their 
histograms match a specified base histogram. This type of processing is helpful for 
image comparison. Another application often requiring this type of processing is 
medical imaging, in which an imaging system is calibrated based on a “golden” image 

cumsum
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FIGURE 3.8
(a) Image from 
the Phoenix 
Lander. (b) Result 
of histogram 
equalization.  
(c) Histogram  
of (a). 
(d) Histogram  
of (b). (The colors 
in (c) and (d) 
were  
generated using 
the approach  
discussed in 
Section 2.10.  
Interest here  
is on the  
histogram shapes, 
so we do not show 
the bin height 
values. 
(Original image 
courtesy of 
NASA.)
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FIGURE 3.12
(a) Original image. 
(b) Result of  
histogram  
equalization. 
(c) Result of  
adaptive histogram 
equalization.

3.4	LINEAR SPATIAL FILTERING

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood processing con-
sists of: (1) selecting a point ( , )x y  in the image; (2) performing an operation that 
involves only the pixels in a predefined neighborhood about ( , );x y  (3) letting the 
result of that operation be the “response” of the process at that point; and (4) repeat-
ing the process for every point in the image. Moving the neighborhood with respect 
to its center point creates new neighborhoods, one for each pixel in the input image. 
The two principal terms used to identify this operation are neighborhood processing 
and spatial filtering, with the second term being more prevalent. As explained in the 
following section, if the computations performed on the pixels of the neighborhoods 
are linear, the operation is called linear spatial filtering; otherwise it is called non-
linear spatial filtering. We discuss linear spatial filtering in this section and nonlinear 
spatial filtering in Sections 3.5 and 5.3.

Linear filtering has its roots in the use of the Fourier transform for signal 
processing in the frequency domain, the topic of Chapter 4. In the present chapter, 
we are interested in filtering operations that are performed directly on the pixels of 
an image. Use of the term linear spatial filtering differentiates this type of process 
from frequency domain filtering. The linear operations of interest in this section 
consist of multiplying each pixel in a neighborhood by a numerical coefficient and 
summing the results to obtain the response at each point ( , ).x y  If the neighborhood 
is of size m n× , then mn coefficients are required. The coefficients are arranged as 
a matrix, called a kernel, mask, template, or window, with the term kernel being the 
most prevalent. For reasons that will become obvious shortly, the terms convolution 
filter and convolution kernel also are used.

Figure  3.13 illustrates the mechanics of linear spatial filtering. The process 
consists of moving the center of the filter kernel w,  from point to point in an 
image, f. The response of the filter at a point ( , )x y  is the sum of products of the 
filter kernel coefficients and the corresponding neighborhood pixels of ( , )x y  in the 
region spanned by the kernel. For a kernel of size m n× , we assume typically that 
m a= 2 1+  and n b= 2 1+  where a and b are nonnegative integers. All this says 
is that our principal focus is on kernels of odd sizes. Although it certainly is not a 
requirement, working with odd-size kernels is more intuitive because they have an 
unambiguous center point that has integer coordinates. 
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Fourier transform of the filtered frequency-domain function. The result will be a 
blurred spatial domain function.

Because of the duality between the spatial and frequency domains, we can obtain 
the same result in the spatial domain by convolving the equivalent spatial domain 
filter kernel with the input spatial function. The equivalent spatial filter kernel is the 
inverse Fourier transform of the frequency-domain filter transfer function. Figure 
3.16(b) shows the spatial filter kernel corresponding to the frequency domain filter 
transfer function in Fig. 3.16(a). The ringing characteristics of the kernel are evident 
in the figure. A central theme of digital filter design theory is obtaining faithful (and 
practical) approximations to the sharp cut off of ideal frequency domain filters while 
reducing their ringing characteristics in the spatial domain.

Highpass, Bandreject, and Bandpass Filters

Spatial and frequency domain linear filters are classified into four broad categories: 
lowpass, highpass, bandreject, and bandpass filters. We introduced lowpass filters in 
the previous section. Here, we focus on the other three categories, which, as it turns 
out, are all derivable from lowpass filters. 

Figure 3.17(a) is the same as Fig. 3.16(a); it shows the transfer function of a 1-D 
ideal lowpass filter in the frequency domain. We know that lowpass filters attenuate 
or delete high frequencies while passing low frequencies. A highpass filter behaves 
in exactly the opposite manner. As Fig. 3.17(b) shows, a highpass filter transfer 
function deletes or attenuates all frequencies below a cut-off value, u0, and passes all 
frequencies above this value. From Figs. 3.17(a) and (b), we see that a highpass filter 
function can be obtained by subtracting a lowpass function from 1. This operation is 
in the frequency domain. As mentioned earlier, a constant in the frequency domain 
is an impulse in the spatial domain. Thus, we obtain a highpass filter kernel in the 
spatial domain by subtracting a lowpass filter kernel from a unit impulse with the 
same center as the kernel. An image filtered with this kernel is the same as an image 
obtained by subtracting a lowpass-filtered image from the original image.

Figure 3.17(c) shows a bandreject filter transfer function. This function can be 
constructed from the sum of a lowpass and a highpass filter function with different 
cut-off frequencies. The bandpass filter transfer function in Fig. 3.17(d) can be 
obtained by subtracting the bandreject function from 1, which, as you know, is a unit 
impulse in the spatial domain. Sometimes bandreject filters are referred to as notch 
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FIGURE 3.16
(a) 1-D ideal low-
pass filter transfer 
function in the 
frequency domain. 
(b) Corresponding 
filter kernel in the 
spatial domain.
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>> f8 = im2uint8(f);
>> g8r = imfilter(f8,w,'replicate');
>> figure, imshow(g8r,[])

Figure 3.18(f) shows the result of these operations. Here, when the output was converted to the class 
of the input (uint8) by imfilter, clipping caused some data loss. The reason is that the coefficients of 
the kernel did not sum to the range [0, 1], resulting in filtered values outside the [0, 255] range. Thus, to 
avoid this difficulty, we have the option of normalizing the coefficients so that their sum is in the range 
[0, 1] (in the present case we would divide the coefficients by 312 so the sum would be 1), or converting 
the image to floating point. However, even if the second option were used, the data usually would still 
have to be normalized to a valid image format at some point (e.g., for storage). Either approach is valid; 
the key point is that data ranges have to be kept in mind to avoid unexpected filtering results.

FILTER KERNELS

The result of spatial convolution or correlation depends on the kernel size and the 
nature of its elements. In this section we discuss several properties of filter kernels 
and list the standard kernels supported by the Toolbox.

How Spatial Filter Kernels Are Constructed

There are three basic approaches for constructing spatial filter kernels. 

1.	 Formulate a kernel based on mathematical properties. For example, an 
image-blurring kernel can be based on computing the average of pixels in 
neighborhoods of an image. Computing an average is analogous to integration. 
Conversely, a kernel based on computing the local (neighborhood) derivatives 
of an image sharpens the image. 

2.	 Sample a 1-D spatial function that has a desired property and then generate 
a 2-D circularly-symmetric kernel by rotating the function about its center. 
Analogously, we can sample a 2-D spatial function whose shape has a desired 
property and set the 2-D kernel equal to the samples. 

3.	 Design a spatial filter with a specified frequency response. This approach 
falls in the area of digital filter design. A 1-D spatial filter with the desired 
response is obtained (typically using filter design software). The 1-D filter 
values can be expressed as a vector, v, and a 2-D separable kernel can then 
be obtained using the methods discussed in the following section. Alterna-
tively, the 1-D filter function can be rotated about its origin to generate a 2-D 
kernel that approximates a circularly-symmetric function. 

Separable Filter Kernels 

A 2-D function G x y( , ) is said to be separable if it can be written as the product of 
two 1-D functions: G x y G x G y( , ) ( ) ( ).= 1 2  A spatial filter kernel is a matrix and a 
separable kernel is a matrix that can be expressed as the outer product of two vectors. 
For example, the 2 3×  kernel
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>> r = ceil(6*sig)
r =
    62
>> r = r − 1;
>> w2 = fspecial('gaussian',r,sig);
>> g2 = imfilter(f,w2,'replicate');
>> figure, imshow(g2) % Fig. 3.19(c).

As Fig. 3.19(c) shows, setting sig to 1% of the image height resulted in significant blurring, but all 
objects are still recognizable. Finally, we try

>> sig = 0.05*M;
r = ceil(6*sig)
r =
    308
>> r = r − 1;
>> w3 = fspecial('gaussian',r,sig);
>> g3 = imfilter(f,w3,'replicate');
>> figure, imshow(g3) % Fig. 3.19(d).

As Fig. 3.19(d) shows, a kernel of 0.5% of the image height resulted in extreme blurring. Mild blurring 
is used routinely for noise reduction, while extreme blurring (typically combined with thresholding) is 
used to extract dominant regions of an image.

EXAMPLE 3.11 :   Using functions fspecial and imfilter for image sharpening.

We illustrate the use of functions fspecial and imfilter for image sharpening by enhancing an 
image with a Laplacian filter kernel. We also discuss some important aspects of using imfilter with 
integer-class images.

Figure 3.20(a) is a mildly blurred image of the North Pole of the moon. Enhancement in this case 
consists of sharpening the image, while preserving as much of its gray tonality as possible. We use 
function fspecial to obtain a Laplacian kernel:

ba c d

FIGURE 3.19 (a) Test pattern of size 1024 1024×  pixels. (b)–(d) Results of using functions fspecial and imfilter to 
lowpass filter the image in (a) with Gaussian kernels of various sizes, as explained in the text.
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>> w = fspecial('laplacian',0)
w =
    0.0000   1.0000   0.0000 
    1.0000  −4.0000   1.0000
    0.0000   1.0000   0.0000

Note that this kernel is of class double.
Next we apply w to the input image, [Fig 3.20(a)], which is of class uint8:

>> f = imread('moon-blurry.tif');
>> figure, imshow(f) % Fig. 3.20(a).
>> g1 = imfilter(f,w,'replicate'); 
>> imshow(g1,[]) % Fig. 3.20(b).

Figure 3.20(b) shows the resulting image. This result looks reasonable, but it has a problem: all its pixels 
are positive. Because the coefficients of the kernel sum to zero, we know, as mentioned earlier, that 
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FIGURE 3.20
(a) Image of the 
North Pole of the 
moon.  
(b) Laplacian 
filtered image 
obtained with an 
input image of 
class uint8.  
(c) Laplacian 
filtered image 
obtained using 
a floating point 
input image.  
(d) Enhanced 
result obtained 
by subtracting (c) 
from (a).  
(Original  
image courtesy of 
NASA.)
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is the same as filtering with an impulse minus filtering with a lowpass kernel. But 
filtering with an impulse yields the image itself, so the net result is the image minus 
a lowpass-filtered version of that image. 

Unsharp Masking Filters

We discussed in Examples 3.11 and 3.12 how to use the Laplacian for image 
sharpening. A process for the same purpose that has been used since the 1930s 
by the printing and publishing industry to sharpen images is based on subtracting 
an unsharp (smoothed) version of an image from the original image. This process, 
called unsharp masking, consists of the following steps:

1.	 Blur a copy of the original image.
2.	 Subtract the blurred image from the original (the resulting difference is 

called the mask.)
3.	Add the mask to the original.

As indicated in Table 3.3, subtracting a lowpass kernel from an impulse yields a 
highpass kernel. This implies that filtering an image with a lowpass kernel and 
subtracting the result from the original is equivalent to highpass filtering, which 
sharpens an image (but reduces gray-level tonality). Thus, the mask in Step 2 above 
is just a sharpened (highpass-filtered) image. Adding the mask to the original image 
(Step 3) recovers the tonality lost by highpass filtering.

In earlier releases of MATLAB, the Toolbox function fspecial had an option for 
performing unsharp masking. This option has been replaced in favor of a separate 
function called imsharpen, which has the following syntax:

g = imsharpen(f,Name1,Value1,Name2,Value2,...) 

In case you are  
wondering why a high-
pass (sharpened) image 
is constructed from a 
blurred image, recall 
that unsharp masking 
originated in the analog 
photography field, which 
had no easy way to  
sharpen an image  
directly. 

imsharpen

ba c

FIGURE 3.24 (a) Zone plate image. (b) Result of highpass filtering with kernel w1HP2D (observe the slight distortion 
of the concentric rings). (c) Result of highpass filtering with kernel w2HP2D.



3.5  Nonlinear Spatial Filtering    155

This result is not appreciably different from the original. The reason is that increasing the Threshold 
parameter allowed significantly fewer pixels to be enhanced. This parameter can be used to exclude 
intensities in an image from being sharpened. An example where this could be helpful is in images with 
large dark noisy areas, which would otherwise be sharpened and potentially could become more visible. 

3.5	NONLINEAR SPATIAL FILTERING

Nonlinear spatial filtering is based on neighborhood operations also and the 
mechanics of sliding the center point of an m n×  rectangle through an image 
are the same as discussed in the previous section for linear filtering. However, 

‑whereas linear spatial filtering is based on computing the sum of products (which 
is a linear operation), nonlinear spatial filtering is based, as the name implies, on 

‑nonlinear operations involving the pixels in a neighborhood being processed. For 
example, letting the response at a point be equal to the maximum pixel value in 
its neighborhood is a nonlinear filtering operation. Another difference is that the 
concept of a kernel is not as prevalent in nonlinear processing. The idea of filtering 
carries over, but the filter should be visualized as a nonlinear function that operates 
on the pixels of a neighborhood and whose response constitutes the result of the 
nonlinear operation.
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FIGURE 3.25 (a) Original, soft-tone image of size 496 600×  pixels. (b) Result of using function imsharpen with its 
default values. (c) Result using a Radius equal to 5. (d) Result using a Radius of 5 and an Amount of 1.5. (e) Same 
as (d) but with an Amount of 2. (f) Same as (e), but with a Threshold of 0.5.
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>> g = colfilt(f,[m n],'sliding',maxfilt);

Note that we called maxfilt without @ because maxfilt had already been defined 
as a function handle. If, instead, maxfilt had been a regular function, we would have 
used @maxfilt as the rightmost input argument in colfilt. Also, keep in mind that 
A always has mn rows, but the number of columns is variable. Therefore maxfilt (or 
any other function handle passed to colfilt) has to be able to cope with a variable 
number of columns. The syntax max(A,[],1) does precisely this.

The filtering process in this case consists of computing the maximum of all pixels 
in every m n×  neighborhood. As noted earlier, the key requirements are that the 
function operate on the columns of A, no matter how many there are, and return a 
row vector containing the result for all individual columns (our function maxfilt 
does this because of the syntax we used in function max). Function colfilt then 
takes those results and rearranges them to produce the output image, g.

Finally, we remove the padding we inserted using padarray (as noted earlier, 
colfilt removes its own padding before outputting g):

>> [M,N] = size(f); % Size of padded f.
>> g = g(1:M − 2*m,1:N − 2*n);

so that g is of the same size as f.
The following code illustrates the concepts in the preceding discussion, using an 

image corrupted by pepper noise:

>> % Read uint8 dental Xray image corrupted by pepper noise.
>> f = imread('dentalXray-pepper-noise.tif');
>> figure, imshow(f) % Fig. 3.26(a).

>> % Construct the max filter. 
>> maxfilt = @(A) max(A,[],1);

>> % Neighborhood size.
>> m = 3; n = 3;

>> % Manually pad the input image.
>> fp = padarray(f,[m n],'replicate');

>> % Apply the max filter to the padded image.
>> g = colfilt(fp,[m n],'sliding', maxfilt);

See the margin note 
in the next section 
indicating that max 
filters implemented 
using morphology (the 
topic of Chapter 10) run 
much faster and use less 
memory.

We discuss pepper noise 
and other noise models 
in Section 5.2.

ba

FIGURE 3.26
(a) Image  
corrupted by  
pepper noise. 
(b) Result of 
performing max 
filtering using 
function colfilt.
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EXAMPLE 3.19 :   Using fuzzy functions to implement fuzzy contrast enhancement.

Figure 3.36(a) shows an image, f, whose intensities span a narrow range of the gray scale, as the histogram 
in Fig. 3.37(a) (obtained using imhist) shows. The net result is an image with low contrast. 

Figure  3.36(b) is the result of using histogram equalization to increase image contrast. As the 
histogram in Fig. 3.37(b) shows, the entire gray scale was spread out but, in this case, the spread was 
excessive in the sense that contrast was increased, but the result is an image with an “over exposed” 
appearance. For example, the details in Professor Einstein’s forehead and hair are mostly lost. 

Figure 3.36(c) shows the result of the following fuzzy operations:

>> % Specify the input membership functions.
>> udark = @(z) 1 − sigmamf(z,0.35,0.5);
>> ugray = @(z) triangmf(z,0.35,0.5,0.65);
>> ubright = @(z) sigmamf(z,0.5,0.65);

>> % Plot the input membership functions. See Fig. 3.35(a).
>> fplot(udark,[0 1],20)
>> hold on

ba c

FIGURE 3.36
(a) Low-contrast 
image.  
(b) Result of  
histogram  
equalization.  
(c) Result of 
fuzzy, rule-based 
contrast  
enhancement.
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FIGURE 3.37 Histograms of the images in Fig. 3.36(a), (b), and (c), respectively.
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FIGURE 3.41 (a) Image from a CT scan of a human head. (b) Result of fuzzy spatial filtering using the membership 
functions in Fig. 3.39 and the rules in Fig. 3.40. (c) Result after intensity scaling. The thin black picture borders in 
(b) and (c) were added for clarity; they are not part of the data. (Original image courtesy of Dr. David R. Pickens, 
Vanderbilt University.)

Summary
The material in this chapter is a foundation for numerous topics that you will encounter in subsequent 
chapters. For example, we use spatial processing in Chapter 5 in connection with image restoration, 
where we also take a closer look at noise reduction and noise generating functions in MATLAB. Some 
of the spatial kernels that were mentioned briefly here are used extensively in Chapter 11 for edge 
detection in segmentation applications. The concepts of convolution and correlation are explained again 
in Chapter 4 from the perspective of the frequency domain. Conceptually, neighborhood processing 
and the implementation of spatial filters will surface in various discussions throughout the book. In the 
process, we will extend many of the discussions we began here and introduce additional aspects of how 
spatial filters can be implemented efficiently in MATLAB.

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

3.1	 Read the image spillway.tif and enhance it to bring out details in the coastal road that are barely vis-
ible in the original image. Try enhancement techniques based on the following intensity transformations:

(a) *	log.

(b)	 gamma.

(c)	 stretch.

(d)	 Your specified transformation function.
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4 Filtering in the 
Frequency Domain

For the most part, this chapter parallels the filtering topics discussed in Chapter 3, but with all filtering done in 
the frequency domain using the discrete Fourier transform. In addition to being a cornerstone of linear filtering, 
the Fourier transform offers considerable flexibility in the design and implementation of filtering solutions in 
areas such as image enhancement, image restoration, image data compression, and a host of other applications 
of practical interest. In this chapter, the focus is on the foundation of how to perform frequency domain filtering 
using MATLAB. As we did in Chapter 3, we illustrate filtering in the frequency domain using examples of 
image enhancement, including lowpass filtering for image smoothing, highpass and high-frequency emphasis 
filtering for image sharpening, and selective filtering for the removal of periodic interference. Although most 
of the examples in this chapter deal with image enhancement, the concepts and techniques developed in the fol-
lowing sections are quite general, as illustrated by other applications of this material in Chapters 5, 9, 11, and 13.

Functions Developed in this Chapter:
paddedsize determines the minimum  
padding sizes needed for filtering in the fre-
quency domain.

dftfilt performs filtering in the frequency 
domain.

dftuv generates a meshgrid array for com-
puting distances used in forming filter trans-
fer functions.

lpfilter generates lowpass filter transfer 
functions. 

hpfilter generates highpass filter transfer 
functions.

bandfilter generates bandpass and band-
reject filter transfer functions.

cnotch implements notchpass and notch-
reject filter transfer functions. 

recnotch implements rectangular pass and 
reject filter transfer functions.

iseven determines which elements of an 
array are even numbers.

isodd determines which elements of an array 
are odd numbers.

If you want to find the secrets of the universe, think  
in terms of energy, frequency and vibration.

 Nikola Tesla
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4.1 	 THE 2-D DISCRETE FOURIER TRANSFORM

Let f x y( , ) for x M= −0 1 2 1, , , ,…  and y N= 0 1 2 1, , , ,… -  denote a digital image of 
size M N×  pixels. The 2-D discrete Fourier transform (DFT) of f x y( , ), denoted by 
F( , ),u v  is given by the equation

	 F f x y e j x M y N
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for u = 0 1 2 1, , , ,… M -  and v = 0 1 2 1, , , , .… N -  We could expand the exponential 
term into sine and cosine functions using Euler’s formula, with the variables u and 
v  representing sinusoidal frequencies (x and y are summed out). The frequency 
domain is the coordinate system spanned by F( , )u v  with u and v  as frequency 
variables. This is analogous to the spatial domain studied in Chapter 3, which is the 
coordinate system spanned by f x y( , ), with x and y as spatial variables. The M N×  
rectangular region defined by u = 0 1 2 1, , , ,… M -  and v = 0 1 2 1, , , ,… N -  is often 
referred to as the frequency rectangle. Clearly, the frequency rectangle is of the same 
size as the input image. 

The inverse discrete Fourier transform (IDFT) of F( , )u v  is given by
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for x = 0 1 2 1, , , ,… M -  and y = 0 1 2 1, , , , .… N -  Thus, given F( , ),u v  we can get 
f x y( , ) back using the IDFT. The values of F( , )u v  in this equation are referred to as 
the coefficients of the Fourier transform.

In some formulations of the DFT, the 1 MN  term appears in front of 
the transform and in others it is used in front of the inverse. MATLAB’s 
implementation uses the term in front of the inverse, as shown in the preceding 
equation. Because array indices in MATLAB start at 1 rather than 0, F(1,1) and  
f(1,1) in MATLAB correspond to the mathematical quantities F( , )0 0  and f ( , )0 0  
in the transform and its inverse. In general F(i,j) = F i j( , )− −1 1  and f(i,j) = 
f i j( , ),− −1 1  for i M, , , ,i = 1 2 …  and j N, , , , .j = 1 2 …  

The value of the transform at the origin of the frequency domain, F( , ),0 0  is called 
the dc term or dc component of the Fourier transform. This terminology is from 
electrical engineering, where “dc” signifies direct current (current of zero frequency). 
It is not difficult to show that the average value of f x y( , ) is equal to F( , )0 0  divided 
by MN: 

	 f
MN

F= 1
0 0( , ) 	 (4-3)

Even if f x y( , ) is a real function, its transform, F u( , ),v  is complex in general. We 
analyze a Fourier transform visually by computing its spectrum, which is defined as

	 F R I( , ) ( , ) ( , )u v u v u v=  
2 2

1
2+ 	 (4-4)
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Figure 4.8 is a schematic of the preceding filtering steps. The preprocessing stage 
performs the tasks of computing the padding parameters, padding the input image, 
and generating a transfer function. Postprocessing typically includes cropping the 
output image and converting it to the class of the input.

The filter transfer function H( , )u v  in Fig. 4.8 multiplies both the real and imaginary 
parts of F( , ).u v  If H( , )u v  is real, then the phase of the result is not changed, as 
you can see by noting in Eq. (4-5) that if the multipliers of the real and imaginary 
parts are equal, they cancel out, leaving the phase angle unchanged. Filters with this 
property are called zero-phase-shift filters. These are the only types of linear filters 
considered in this chapter.

It is well known from linear system theory that, under certain mild conditions, 
inputting an impulse into a linear system completely characterizes the system. When 
using the techniques developed in this chapter, the response of a linear system, 
including the response to an impulse, also is finite. If the linear system is a filter, 
then we can completely determine the filter transfer function by observing the 
filter response to an impulse. A filter characterized in this manner is called a finite-
impulse-response (FIR) filter. All the linear filters in this book are FIR filters.

A FUNCTION FOR FILTERING IN THE FREQUENCY DOMAIN

The filtering steps just described are used throughout this chapter and parts of the 
next, so it will be convenient to have available a function that accepts as inputs an 
image and a filter transfer function, handles all the filtering details, and outputs 
the filtered, cropped image. The following function does this. It is assumed that the 
transfer function has been sized appropriately, as explained in Step 4 of the filtering 
procedure.

function g = dftfilt(f,H,padMethod,classOut)
%DFTFILT Performs frequency domain filtering.
%   g = DFTFILT(f,H,padMethod,classOut) filters f in the frequency
%   domain using the filter transfer function H. The output, g, is the
%   filtered image, which is of the same size as f. padMethod and

dftfilt

Frequency domain filtering operations

Input
image

Filtered
image

( , )H u v

( , ) ( , )H u F uv v( , )F u v

( , )f x y ( , )g x y

Filter
transfer
function

Fourier
transform

Inverse
Fourier

transform

Pre-
processing

Post-
processing

FIGURE 4.8
Steps for  
filtering an image 
in the frequency 
domain.



4.3  Filtering in the Frequency Domain    211

%   classOut are explained below. Any intermediate arguments that are
%   not specified should be replaced by []. For example, if classOut is
%   specified but padMethod is not, we use g = dftfilt(f,H,[],classOut).
%   Non-specified arguments are replaced by their default values.
%
%   Valid values of classOut are:
%
%   'same'      The output will be of the same class as the input. 
%              
%   'floating'  The output will be floating point of class double. This 
%               is the default.
%
%   Valid values of padMethod are: 
%
%   'zeros'     Pads the input image with 0s using the 'post' option in
%               the Toolbox function padarray. This is the default.
%   'symmetric' Pads the image using the 'symmetric' and 'post' options
%               in the Toolbox function padarray
%   'replicate' Pads the image using the 'replicate' and 'post' options 
%               in the Toolbox function padarray.
%   'circular'  Pads the image using the 'circular' and 'post' options
%               in the Toolbox function padarray.
%  
%   DFTFILT automatically pads f to be the same size as H. Both f and H
%   must be real. H must be an uncentered, symmetric filter transfer
%   function, as illustrated in Fig. 4.2(a). (You can uncenter a
%   centered transfer function using function fftshift.)
 
% Set Defaults. Note: Function padarray used below does not recognize a
% padvalue specified as 'zeros', which we use for notational consistency
% in the input to function dftfilt. A padvalue of 'zeros' is converted
% to the numerical zero (0);
 
if (nargin < 4) || isempty(classOut)
   classOut = 'floating';
end
 
if (nargin < 3) || isempty(padMethod) || isequal(padMethod,'zeros')
   padMethod = 0;
end
 
% Convert the input to floating point. Will need revertClass later.
[f,revertClass] = tofloat(f);
[M,N] = size(f);
 
% Pad f to the size of the transfer function, using the default or
% specified padmethod.
f = padarray(f, [size(H,1) - M, size(H,2) - N], padMethod, 'post');
 
% Obtain the FFT of the input image. The image was already padded to be
% of the same size as the filter transfer function.
F = fft2(f);
 
% Perform filtering. 
g = ifft2(H.*F);
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RI = D <= C0 - (W/2);   % Points of region inside the inner boundary of
                        % the reject band are labeled 1. All other 
                        % points are labeled 0.
                         
RO = D >= C0 + (W/2);   % Points of region outside the outer boundary
                        % of the reject band are labeled 1. All other
                        % points are labeled 0.
                        
H = tofloat(RO | RI);   % Ideal bandreject transfer function.
 
%----------------------------------------------------------------------%
function H = butterworthReject(D,C0,W,n)
H = 1./(1 + ((D*W)./(D.^2 - C0^2)).^(2*n));
 
%----------------------------------------------------------------------%
function H = gaussReject(D,C0,W)
H = 1 - exp(-((D.^2 - C0^2)./(D.*W + eps)).^2);

EXAMPLE 4.7 : 	 Lowpass, highpass, and band filtering.

Figure 4.20 is the same zoneplate image we used in Example 3.13, which consists of concentric annular 
regions whose frequencies increase as a function of increasing distance from the center. This test pattern 
is very useful for showing filtering techniques that affect regions of the image based on their spatial 
frequency content.

First, we show that we can get results in the frequency domain that are equivalent to the spatial 
results in Example 3.13. We obtained Fig. 4.21(a) using the following commands:

>> f = imread('zoneplate.tif');
>> [M,N] = size(f);
>> % Lowpass filter the image.
>> HLP = lpfilter('butterworth',M,N,15,3);
>> gLP = dftfilt(f,HLP,'zeros');
>> figure, imshow(gLP) % Fig. 4.21(a).

This result is almost identical to the image in Fig. 3.24(b), which we obtained using spatial filtering. The 
low frequencies were passed without modification and the high frequencies were attenuated. Here we 
used zero padding because the image border is black.

Figure 4.21(b) is the result of using function hpfilter with the same settings as above. As expected, 
the background of the filtered image is dark due to clipping of negative values by the display, as 
we explained earlier in connection with Fig. 4.16. Figure 4.21(c) is the result of using the function 
intensityScaling to scale the image intensities to the full intensity range. Observe how the low 
frequencies were attenuated and the high frequencies were passed without modification, as we expect 
from a highpass filter.

Figure 4.21(d) is the result of bandreject filtering using the commands:

>> HBR = bandfilter('butterworth','reject',M,N,30,8,3);
>> gBR = intensityScaling(dftfilt(f,HBR,'zeros'));
>> figure, imshow(gBR) % Fig. 4.21(d).

We moved the center of the filter band further out than before in order to show clearly that the mid 
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FIGURE 4.20
Zoneplate image.

ba c
ed f

FIGURE 4.21 (a) Lowpass-filtered zoneplate image. (b) Highpass filtered image. (c) Highpass filtered image after 
intensity scaling. (d) Result of bandreject filtering. (e) Result of bandpass filtering. (f) Bandpass filtered image after 
intensity scaling. Compare (a) with Fig. 3.24(c).
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5 Image Restoration and 
Reconstruction

The objective of restoration is to improve a given image in some predefined sense. Although there are 
areas of overlap between image enhancement and image restoration, the former is largely a subjective 
process, while image restoration is for the most part an objective process. Restoration attempts to 
reconstruct or recover an image that has been degraded by using a priori knowledge of the degradation 
phenomenon. Thus, restoration techniques are oriented toward modeling the degradation and applying 
the inverse process in order to recover the original image. This approach usually involves formulating a 
criterion of goodness that yields an optimal estimate of the desired result. In this chapter we explore how 
to use MATLAB and the Image Processing Toolbox to model degradation phenomena and to formulate 
restoration solutions. As in Chapters 3 and 4, some restoration techniques are best formulated in the 
spatial domain, while others are better suited for the frequency domain. Both methods are investigated 
in the sections that follow. We conclude the chapter with a discussion on the Radon transform and its 
use for image reconstruction from projections.

Functions Developed in this Chapter:
imnoise2 corrupts an image with noise of a 
specified PDF and also generates the noise 
pattern itself.

imnoise3 generates sinusoidal noise patterns 
that can be added to an image to simulate 
periodic interference.

statmoments computes an arbitrary number 
of statistical central moments of an image 
histogram.

histroi computes the intensity histogram of 
an arbitrary region of interest (ROI). 

spfilt implements spatial filtering using lin-
ear and nonlinear filters.

adpmedian performs adaptive local median 
filtering.

We are all hungry and thirsty for concrete images. Abstract art will have  
been good for one thing: To restore its exact virginity to figurative art.

Salvador Dali
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returning the row and column indices, the third form also returns the nonzero values 
of A as a column vector, v.

The first form treats the matrix A in the linear index format A(:), so idx is a 
column vector. This form is quite useful in image processing. For example, to find 
and set to 0 all pixels in an image whose values are less than 128 we write

>> idx = find(A < 128);
>> A(idx) = 0;

We can do the same operation in one line of code using logical indexing:

>> A(A < 128) = 0;

Recall that the logical statement A < 128 returns a 1 for the elements of A that satisfy 
the logical condition and 0 for those that do not. As another example, to set to 128 
all pixels in the interval [64, 192] we write

>> idx = find(A >= 64 & A <= 192);
>> A(idx) = 128;

Equivalently, we could write

>> A(A >= 64 & A <= 192) = 128;

The type of indexing just discussed is used frequently throughout the book.
Like imnoise, the following function, imnoise2, corrupts an image with noise 

of a specified PDF and, in addition, it generates a matrix, R, of the same size as the 
input image and whose elements are from a specified PDF. In other words, imnoise2 
corrupts an image with noise and also outputs the spatial noise pattern itself. The 
user specifies the desired values for the noise parameters directly. For example, a 
noise matrix resulting from salt-and-pepper noise has three values: 1 corresponding 
to salt noise, 0 corresponding to pepper noise, and 0.5 corresponding to no noise. 
This array needs to be processed further to make it useful. To corrupt an image with 
this array, we find (using function find or the logical indexing illustrated above) all 
the coordinates in R that have value 1 and set all the coordinates in the image to the 
highest possible value (255 for an 8-bit image). Similarly, we find all the coordinates 
in R that have value 0 and set the corresponding coordinates in the image to the 
smallest possible intensity value (usually 0). All other pixels are left unchanged. This 
process simulates the manner in which salt-and-pepper noise affects an image. The 
function does this automatically to the input image, but it is important that you 
understand the structure of R in case you want to use it for some other purpose.

Observe in the code for imnoise2 how the switch/case statements are kept 
simple; that is, unless case computations can be implemented with a few lines of code, 
they are delegated to individual, local functions appended at the end of the main 
program. This clarifies the logical flow of the code. The objective is to modularize the 
code as much as possible for ease of interpretation and maintenance.

See Section 2.8 regarding 
logical indexing. 

Note that function 
imnoise2 supports 
several PDFs not found 
in the Toolbox function 
imnoise, and vice versa.
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function [fn,R] = imnoise2(f,type,a,b)
%IMNOISE2 Outputs noisy image and random matrix with given PDF.
%   [Fn,R] = IMNOISE2(F,TYPE,A,B) generates a noise matrix, R, of the
%   same size as input grayscale image F, whose elements are random
%   numbers of the specified TYPE, with parameters A and B. The output
%   noisy image is formed either by adding R to it or, in the case of
%   salt and pepper, by modifying F based on the values of R, as
%   explained in Section 5.2 of DIPUM3E. The noisy image Fn is of class
%   double, scaled to the full range [0,1]. The input image can be of
%   any valid grayscale class.
%  
%   Valid values for TYPE and parameters A and B are:
% 
%     'uniform'        Uniform random numbers in the interval (a,b). The
%                      default values are (0,1).
%
%     'gaussian'       Gaussian random numbers with mean a and standard
%                      deviation b. The default values are a = 0, b = 1;
%
%     'salt & pepper'  Salt and pepper random numbers of value 1 (salt)
%                      with probability Ps = a, and value 0 (pepper)
%                      with probability Pp = b. The default values are
%                      Ps = Pp = 0.05. The noise matrix R is assigned
%                      three values: R(x,y) = 1 (white), for salt noise
%                      at coordinates (x,y); R(x,y) = 0 (black) for
%                      pepper noise at coordinates (x,y); and R(x,y) =
%                      0.5 for no noise at coordinates (x,y). Therefore,
%                      R is not simply added to an image to make it
%                      noisy. Instead, we assign to the image a value of
%                      0 or 1 at the corresponding locations in R with
%                      values of 0 or 1. The image is unchanged at the
%                      coordinates where the values of R are 0.5.
%
%     'lognormal'      Lognormal random numbers with offset a and shape
%                      parameter b. The defaults are a = 1 and b = 0.25.
%
%     'rayleigh'       Rayleigh random numbers with parameters a and b.
%                      The default values are a = 0 and b = 1.
%
%     'exponential'    Exponential random numbers with parameter a. The
%                      default is a = 1.
%
%     'erlang'         Erlang (gamma) random numbers with parameters a
%                      and b. a must be a positive integer. The defaults
%                      are a = 2 and b = 5. Erlang random numbers are
%                      approximated as the sum of b exponential random
%                      numbers.
%
%    To generate only a matrix R of size M-by-N whose elements are from
%    any of the preceding PDFs, use the syntax
%
%       [~,R] = imnoise2(ones(M,N),type,a,b)
%
%   To generate a single random number from any of the preceding PDFs,
%   use the syntax

imnoise2
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F = zeros(M,N);
 
% Insert in F the impulses and their conjugates, multiplied by the
% exponentials carrying the phase values. See Eq. (5-9).
for k = 1:K
   % Fourier transform coordinates for a given impulse.
   u1 = ucenter + C(k,1);
   v1 = vcenter + C(k,2);
   % Coordinates of the conjugate.
   u2 = ucenter - C(k,1);
   v2 = vcenter - C(k,2);
   % Form the Fourier transform.
   F(u1,v1) = 1i*M*N*(A(k)/2) * exp(-1i*2*pi*(u1*B(k,1)/M ...
                 + v1*B(k,2)/N));
   F(u2,v2) = -1i*M*N*(A(k)/2) * exp(1i*2*pi*(u2*B(k,1)/M ...
               + v2*B(k,2)/N));
end
 
% Compute the spectrum and spatial sinusoidal pattern.
S = abs(F);
r = real(ifft2(ifftshift(F)));

EXAMPLE 5.3 : 	 Using function imnoise3.

Figures 5.3(a) and (e) show the spectrum and spatial sine noise pattern generated using the following 
commands:

>> M = 512;
>> N = 512;
>> Ca = [4 4]; 
>> [ra,~,Sa] = imnoise3(M,N,Ca);
>> ra = mat2gray(ra); % Scale to the [0,1] range.
>> Sa = imdilate(Sa,ones(3)); % Dilate the single impulse dots (see Chapter 10 regarding dilation).
>> imshow(Sa) % Fig. 5.3(a).
>> figure, imshow(ra) % Fig. 5.3(e).

As mentioned in function imnoise3, the ( , )u v  coordinates of the impulses are specified with respect 
to the center of the frequency rectangle (see Section 4.2 for more details about the coordinates of this 
center point). As you can see, a pair of conjugate impulses in the frequency domain generate a pure 
sinusoidal function in the spatial domain. In Fig. 5.3(b) we added a second pair, orthogonal to the first, 
further from the origin, and with a higher value of amplitude:

>> Cb = [4 4;-12 12];
>> Ab = [1,1.5];
>> [rb,~,Sb] = imnoise3(M,N,Cb,Ab);
>> rb = mat2gray(rb); % Scale to the [0,1] range.
>> Sb = imdilate(Sb,ones(3)); % Dilate the single impulse dots (see Chapter 10 regarding dilation).
>> imshow(Sb) % Fig. 5.3(b).
>> figure, imshow(rb) % Fig. 5.3(f).

As Fig. 5.3(f) shows, we now have two sine waves. The frequency of the second sine wave is three times 
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ba dc
f he g

FIGURE 5.3 Top row: Various impulse arrangements in the frequency domain. Bottom row: Corresponding sinusoidal 
spatial patterns. We dilated the sizes of the single dots in the top row to make them easier to see. 

higher than the frequency of the first and the directions of the waves differ by 90°, facts that we could 
have ascertained by looking at the arrangement of the two impulse pairs in Fig. 5.3(b). We used slightly 
higher amplification in the second sine wave to make the figure clearer.

Similarly, the impulse pairs we used for Figs. 5.3(c) and (d) were

>> Cc = [0 32; 0 64; 16 16; 32 0; 64 0; -16 16];
>> Cd = [0 64; 0 128; 32 32; 64 0; 128 0; -32 32];

These produced eight superimposed sine waves that give the appearance of a texture pattern. The 
frequency of the second set is double that of the first, so the second spatial pattern is “tighter” than the 
first. We used the default amplitude and phases in both cases. Specifying a different phase would simply 
shift the sine waves with respect to the origin. As an exercise, you should experiment with function 
imnoise3 to gain a deeper understanding of the relationship between impulses in the frequency domain 
and the spatial patterns they generate.

ESTIMATING NOISE PARAMETERS

The parameters of periodic noise typically are estimated by analyzing the Fourier 
spectrum. Periodic noise produces frequency spikes that often can be detected 
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>> figure, imshow(fsmin) % Fig. 5.5(f).

Other solutions using spfilt are implemented in a similar manner.

ADAPTIVE SPATIAL DENOISING FILTERS

The filters discussed in the previous section are applied to an image independently 
of how image characteristics vary from one location to another. In some applications, 
results can be improved by using filters capable of adapting their behavior based on 
the characteristics of the image in the region being filtered. As an illustration of how 
to implement adaptive spatial filters in MATLAB, we consider in this section an 
adaptive median filter. As before, Sxy  denotes a neighborhood centered at location 
( , )x y  in the image being processed. The algorithm, due to Eng and Ma [2001] and 
explained in more detail in Gonzalez and Woods [2018], is as follows. Let
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The adaptive median filtering algorithm uses two processing levels at each point 
( , ),x y  denoted level A and level B:

level A:	     If z z zmin max ,< <med  go to level B 
		      Else, increase the size of Sxy  
		      If S Sxy ≤ max, repeat level A 
		      Else, output zmed

level B:	     If z z zmin max ,< <med  output zxy 
		      Else, output zmed

where Sxy  and Smax  are odd, positive integers greater than 1. Another option in the 
last step of level A is to output zxy instead of the median value zmed. This produces 
a slightly less blurred result, but can fail to detect salt (pepper) noise embedded in a 
constant background having the same value as pepper (salt) noise.

A custom function for adaptive median filtering that we call adpmedian is included 
in your Support Package. It has the syntax

f = adpmedian(g,Smax)adpmedian
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where g is the image to be filtered and, as defined above, Smax is an odd integer 
greater than 1 that specifies the maximum allowed (square) size of the adaptive 
filter window.

EXAMPLE 5.6 : 	 Adaptive median filtering.

Figure 5.6(a) shows the circuit board image corrupted by salt and pepper noise, both 
with probability 0.25:

>> f = imread('circuitboard.tif');
>> g = imnoise(f,'salt & pepper',0.25);
>> figure, imshow(g)

Figure 5.6(b) is the result of “standard” median filtering:

>> f1 = medfilt2(g,[7 7],'symmetric');

This image is reasonably free of noise, but it is blurred and distorted as illustrated, 
for example, by the connector fingers in the top middle of the image. On the other 
hand, the command

>> f2 = adpmedian(g,7);

yielded the image in Fig. 5.6(c), which is also reasonably free of noise, but is less 
distorted and less blurred than Fig.  5.6(b). For instance, the connector fingers 
mentioned above are less distorted and the feed-through holes (small white circles) 
are much sharper and brighter in Fig. 5.6(c) .

See Section 3.5 regarding 
function medfilt2.

ba c

FIGURE 5.6 (a) Image corrupted by salt-and-pepper noise with density 0.25. (b) Result obtained using a median filter 
of size 7 7× . (c) Result obtained using adaptive median filtering with Smax .= 7
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where noise is a random noise image of the same size as g, generated using one of 
the methods we discussed in Section 5.2.

EXAMPLE 5.7 : 	 Modeling a blurred noisy image.

Figure 5.7(a) shows a grayscale image of size 534 535×  pixels that we will first use to model a degradation 
caused by blurring and additive noise and then use in several of the following sections to illustrate 
various image restoration techniques.

Figures 5.7(b) resulted from using the following commands:

>> f = im2double(imread('chronometer-small.tif'));
>> figure, imshow(f) % Fig. 5.7(a).
>> % Generate an aggressive motion-blurring PSF.

ba
dc

FIGURE 5.7
(a) Original  
image of size 
534 535×  pixels. 
(b) Image blurred 
with a PSF 
obtained using 
fspecial with 
len = 50 pixels 
and theta = 45 
degrees.  
(c) Gaussian noise 
pattern, scaled for 
display.  
(d) Blurred, noisy 
image.
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is considerably better. The final result is not perfect, but considering the extensive degradation of the 
original image, the restored image contains all the principal details that were lost due to degradation.

5.7	CONSTRAINED LEAST SQUARES (REGULARIZED) FILTERING

Another approach to linear restoration is constrained least squares filtering, called 
regularized filtering in the Toolbox documentation. We know from Section 3.4 that 
the 2-D discrete convolution of two functions f and h is
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Remember, convolution 
is commutative, so the 
order of f and h does not 
matter. The form shown 
here is better suited for a 
matrix formulation.

ba
dc

FIGURE 5.8
(a) Blurred, noisy 
image.  
(b) Result of 
inverse filtering.  
(c) Result of  
Wiener filtering 
using a constant 
ratio.  
(d) Result of 
Wiener filtering 
using  
autocorrelation 
functions.
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5.10	 IMAGE RECONSTRUCTION FROM PROJECTIONS

Thus far in this chapter we have dealt with the problem of image restoration. In this 
section we focus attention on the topic of reconstructing an image from a series of 
1-D projections. This area, called computed tomography (CT), is one of the most 
successful commercial applications of image processing, particularly in medicine.

BACKGROUND

The foundation of image reconstruction from projections is straightforward and can 
be explained intuitively. Consider the image in Fig. 5.14(a). To give physical meaning 
to the following discussion, assume that this image represents a “slice” through a 
section of a human body that contains a tumor (bright, circular region) embedded 
in a homogeneous area of tissue (black background). Such a slice might be obtained, 
for example, by passing a thin, flat beam of X-rays perpendicular to the body and 
recording at the opposite end measurements proportional to the absorption of the 

Computerized Axial 
Tomography (CAT) is 
also used to refer to CT 
imaging.

Absorption profile

Beam

Detector strip Backprojection 
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FIGURE 5.14
(a) Flat region, 
parallel beam 
detector strip and 
absorption profile. 
(b) Backprojection 
of absorption  
profile.  
(c) Beam and detec-
tor strip rotated 90°. 
(d) Backprojection 
of absorption 
profile.  
(e) Sum of (b)  
and (d).  
(f) Result of adding 
another backprojec-
tion at 45°.  
(g) Result of  
adding yet another 
backprojection at 
135°.  
(h) Result of  
adding 32  
backprojections 
5.625° apart 
(observe that the 
result is blurred).
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Summary
The material in this chapter is a good overview of how MATLAB and Image Processing Toolbox functions 
can be used for image restoration and how they can be used as the basis for generating models that help 
explain the degradation to which an image has been subjected. The capabilities of the Toolbox for noise 
generation were enhanced significantly by the development in this chapter of the functions imnoise2 
and imnoise3. Similarly, the spatial filters available in function spfilt, especially the nonlinear filters, 
are also a significant extension of Toolbox capabilities in this area. These functions are perfect examples 
of how relatively simple it is to incorporate MATLAB and Toolbox functions into new code to create 
applications that enhance the capabilities of an already large set of existing tools. Our treatment of 
image reconstruction from projections covers the principal functions available in the Toolbox for deal-
ing with projection data. 

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

5.1	 Read the image testpattern512.tif and do the following:

(a) *	Fix the mean at 0.25 and add four levels of Gaussian noise to the image by varying the standard 
deviation. The four levels should be such that the noise appears: (1) mild (you can tell the noise is 
there, but it is barely perceivable); (2) intermediate (the noise is definitely present, but all the image 
features are still clearly visible); (3) heavy (the noise is objectionable, causing some of the image fea-
tures to be obscured by the noise); and (4) extra heavy (the noise dominates the image; most of the 
smaller and light features in the image are obscured by noise). For comparisons of your results to be 
meaningful, you should scale the image to the full range [0, 1], using, for example, the custom function 
intensityScaling. Show all four results and list the values of standard deviation you used. Explain 
why image details begin to disappear as the noise level increases.

(b) *	In (a), as the noise increases, the scaled images get darker. Explain the reason why this is so. 

(c)	 Repeat the four levels of noise outlined in (a) using uniform noise [the parameters to specify are a 
and b in Eq. (5-13)]. Try to make your images appear as close as possible to their Gaussian counter-
parts in (a). 

(d)	 The images in (c) will have higher contrast than their Gaussian counterparts in (a). Explain why.

5.2	 Read the image sombrero-galaxy-noisy.tif. You are told the noise that corrupted the image had zero 
mean.

(a) *	Estimate the value of the noise standard deviation in the range [0,255]. (Hint: Consider using a region 
of interest that is in a mid-gray region with a low intensity gradient across it. )

(b)	 Determine which of the PDFs in Table 5.1 is closer to the PDF of our noisy image. Explain how you 
arrived at your conclusion.

5.3	 In the following denoising experiments, use any spatial filtering method of your choice, except median 
filtering. The overall intensity of the restored image should be visually close to the original image, 
polymercell.tif, and the size of the filtering neighborhood should be as small as possible, but be ca-
pable of eliminating all the salt and/or pepper noise.

(a) *	Read the image polymercell-pepper.tif and restore it using spatial filtering.
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6 Geometric Transformations 
and Image Registration

Geometric transformations modify the spatial relationships between pixels in an image. The image 
can be made larger or smaller. It can be rotated, shifted, or otherwise stretched in a variety of ways. 
Geometric transformations are used to create thumbnail views, adapt digital video from one playback 
resolution to another, correct distortions caused by viewing geometry, and align multiple images of the 
same scene or object.

In this chapter we explore the central concepts behind the geometric transformation of images, 
including geometric coordinate mappings, image interpolation, and inverse mappings. We show how to 
apply these techniques using Image Processing Toolbox functions and we explain underlying Toolbox 
conventions. We conclude the chapter with a discussion of image registration, the process of aligning 
multiple images of the same scene or object for the purpose of visualization or quantitative comparisons. 

Functions Developed in this Chapter:
geotrans provides an easy way to make 
common transformations like rotation, scale, 
translation, reflection, and shear.

imwarp2 applies a 2-D geometric transforma-
tion to an image using a fixed output location.

The spire of a Gothic cathedral and the importance of the unbounded straight line in 
modern Geometry are both emblematic of the transformation of the modern world.

 Alfred North Whitehead



322    Chapter 6  Geometric Transformations and Image Registration

6.1	TRANSFORMING POINTS

Understanding the geometric transformation of images begins naturally with a 
discussion of the transformation of points. Suppose that ( , )w z  and ( , )x y  are two 
spatial coordinate systems called the input space and output space, respectively. A 
geometric coordinate transformation can be defined that maps input space points 
to output space points:

	 ( , ) ( , )x y T z= { }w 	 (6-1)

where T i{ }  is called a forward transformation or forward mapping. If the forward 
transformation has an inverse, then that inverse maps output space points to input 
space points:

	 ( , ) ( , )w z T x y= { }-1 	 (6-2)

where T -1 i{ }  is called the inverse transformation or inverse mapping. Figure 6.1 
illustrates the forward and inverse transformation for this simple example:

	 ( , ) ( , ) ( , )x y T z z= { } =w w 2 2 	 (6-3)

	 ( , ) ( , ) ( , )w z T x y x y= { } =-1 2 2 	 (6-4)

Geometric transformations of images are defined in terms of point transforma-
tions. Let f z( , )w  denote an image in the input space. We can define a transformed 
image in the output space, g x y( , ), in terms of f z( , )w  and T -1 i{ }  as follows: 

	 g x y f T x y( , ) ( ( , ) )= { }-1 	 (6-5)

Input space Output space

w

z

x

y

( , ) {( , )}x y T z= w

( , ) {( , )}w z T x y= -1

ba  
FIGURE 6.1 Forward and inverse transformation of a point for T z z( , ) ( , ).w w{ } = 2 2  
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The input argument, T, is the 3 3×  projective transformation matrix in Eq. (6-20). To 
transform points with a projective transformation, we use tform with the same two 
functions, transformPointsForward and transformPointsInverse, that we used 
for affine transformation objects. For example,

>> T = [ 1.8  -0.8   0.2
        -0.1   1.7  -0.2
         0.2   0.4   1.0];
>> tform = projective2d(T)

tform = 

  projective2d with properties:

                 T: [3×3 double]
    Dimensionality: 2

>> WZ = [-1 -1; 1 -1; 1 1; -1 1];
>> XY = transformPointsForward(tform, WZ)

XY =

   -1.5000   -0.5000
    1.5000   -1.5000
    1.9000    1.3000
   -2.8333    4.833

Figure 6.4 illustrates some of the geometric properties of projective transforma-
tions. The figure shows a projective transformation applied to a grid of points. As 
illustrated in the figure, sets of parallel lines transform to output-space lines that 
intersect at locations called vanishing points. All vanishing points for a projective 
transformation lie on a single line called the horizon line. Only input-space lines par-
allel to the horizon line remain parallel when transformed. All other sets of parallel 
lines transform to lines that intersect at a vanishing point on the horizon line.

CREATING COMMON TRANSFORMATIONS

The custom function geotrans, listed below, provides an easy way to make common 
transformations such as rotation, scale, translation, reflection, and shear. For example, 
geotrans('scale',2,4) creates a transformation that scales horizontally by 2 and 
vertically 4, while geotrans('rotate',45) creates a transformation that rotates 
counterclockwise by 45 degrees. The function can also compose affine and projec-
tive transformations together into a single projective transformation. 

function tform = geotrans(varargin) 
%GEOTRANS Make affine and projective geometric transformations.
%   TFORM = GEOTRANS(TYPE,P1,P2,___) makes a geometric transformation
%   with the specified type and parameters.
%
%   Valid values for TYPE and P1, P2, ..., are:
%

geotrans
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%   'scale'     Scale. If only P1 is provided, it is the scale
%               factor in both directions. If P1 and P2 are provided,
%               then P1 is the horizontal scale factor and P2 is the
%               vertical scale factor.
%
%   'rotate'    Rotation. P1 is the rotation angle, measured in
%               degrees counterclockwise from the positive horizontal
%               axis.
%
%   'translate' Translation. P1 is the horizontal translation and P2
%               is the vertical translation.
%
%   'h-reflect' Horizontal reflection.
%
%   'v-reflect' Vertical reflection.
%
%   'h-shear'   Horizontal shear. P1 is the sheer angle in degrees,
%               measured counterclockwise from the downward-pointing
%               y-axis.
%
%   'v-shear'   Vertical shear. P1 is the sheer angle in degrees,
%               measured clockwise from the horizontal axis.
%
%
%   'compose'   Composition of transformations. P1, P2, ..., are
%               affine2d and projective2d transformations.

FIGURE 6.4
Vanishing points 
and the horizon 
line for a  
projective  
transformation.

Vanishing 
point 

Vanishing 
point 

Horizon line
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A feature in the present context is any portion of an image that can potentially be 
identified and located in multiple images. Features can be points, lines, or corners, 
for example. (See Chapter 13 regarding image features.) Once selected, features 
have to be matched. That is, for a feature in one image, one must determine the cor-
responding feature in another image or sequence of images. Feature-based registra-
tion methods can be manual or automatic, depending on whether feature detection 
and matching is human-assisted or performed using an automatic algorithm.

From the set of matched-feature pairs, a geometric transformation function is 
inferred that maps features in one image onto the locations of the matching features 
in another. Usually a particular parametric transformation model is chosen based 
on the particular image capture geometry. For example, if two images are taken with 
the same viewing angle but from a different position (possibly including a rotation 
about the optical axis) and if the scene objects are far enough from the camera 
to minimize perspective effects, then an affine transformation can be used (Brown 
[1992]).

MANUAL FEATURE DETECTION AND MATCHING

The Image Processing Toolbox provides an app called the Control Point Selection 
Tool for manually selecting and matching corresponding features, also called con-
trol points, in a pair of images to be registered. The tool is launched by passing the 
filenames of the images to be aligned as input arguments to the function cpselect. 
For example:

>> cpselect('vector-gis-data.tif','aerial-photo-cropped.tif')

Alternatively, the images can be read into MATLAB variables first and then passed 
to cpselect:

>> f = imread('vector-gis-data.tif');
>> g = imread('aerial-photo-cropped.tif');
>> cpselect(f,g)

The tool helps navigate (zoom, pan, and scroll) in large images. Features can be 
selected and paired with each other by clicking on the images using the mouse.

Figure 6.22 shows the Control Point Selection Tool in action. Figure 6.22(a) is a 
binary image showing road, pond, stream, and power-line data. Figure 6.22(b) shows 
an aerial photograph covering the same region. The white rectangle in Fig. 6.22(b) 
shows the approximate location of the data in Fig. 6.22(a). Figure 6.22(c) is a screen 
shot of the Control Point Selection Tool showing six pairs of corresponding features 
selected at the intersections of several roadways.

USING fitgeotrans TO OBTAIN TRANSFORMATION PARAMETERS

Once feature pairs have been identified and matched, the next step in the regis-
tration process is to determine the geometric transformation function. The usual 
procedure is to choose a particular transformation model and then estimate the 

cpselect
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(for example, 'affine') specifying the desired type of transformation. The output 
argument is a transformation object whose type depends on the specific transforma-
tion type chosen.

EXAMPLE 6.8 : 	 Registering images using manually selected and matched features.

In this example we use fitgeotrans, imwarp, and imshowpair to register and then visualize the align-
ment of the images in Fig. 6.22(a) and (b). The first two feature-based registration steps, detecting and 
matching corresponding features, were performed manually using the Control Point Selection Tool 
(cpselect) and saved to a MAT-file in a struct called cpstruct. The following code reads the image 
data and loads the previously saved feature matching results:

>> f_fixed = imread('aerial-photo.tif');
>> f_moving = imread('vector-gis-data.tif');
>> s = load('cpselect-results');
>> cpstruct = s.cpstruct;

To perform the third step, inferring the geometric transformation, we use fitgeotrans to obtain an 
affine transformation that aligns image f_moving with reference image f_fixed:

>> tform = fitgeotrans(cpstruct.inputPoints,cpstruct.basePoints,'affine');

Finally, we call imwarp to register the moving image with the fixed image. We use the optional second 
output argument to imwarp to capture the spatial reference information for aligned image f_reg. We 
also construct the default spatial reference information for the fixed image:

>> [f_reg,f_reg_ref] = imwarp(f_moving,tform);
>> f_fixed_ref = imref2d(size(f_fixed));

To inspect the result, we pass the fixed image, the aligned image, and the spatial reference information 
to imshowpair and we use the axis function to zoom into the area of interest:

>> imshowpair(f_fixed,f_fixed_ref,f_reg,f_reg_ref)
>> axis([1600 2650 1760 2700])

Figure 6.23 shows that the GIS and aerial images were registered successfully.

AUTOMATIC FEATURE DETECTION AND MATCHING

Advances in computer vision have helped popularize a number of methods for auto-
matic feature detection and matching for growing applications such as automated 
driving. Here we will explore in more detail a feature detection method known as 
SURF (Speeded-Up Robust Features), as well as related computational and visual-
ization functions in the Computer Vision Toolbox.

SURF is really two associated methods—one for detecting feature points and 
another for computing descriptors of the intensity variation in the neighborhood 
of feature points (Bay [2008]). Feature point detection is based on computing the 
Hessian matrix at every image location and at multiple scales. The Hessian matrix 

See Section 13.6 for  
additional details on 
feature generation and 
matching in the sense 
discussed here.
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provides a measure of the local curvature of a function (see Gonzalez and Woods 
[2018]). Locations with a high Hessian matrix determinant are considered to be can-
didate feature points. At a given scale, s, and location, (x, y), the Hessian matrix is 
given by:
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L x yxx ( , , )s  is the convolution at location (x, y) of image f and the second-order 
derivative of a Gaussian function with scale s.

The SURF feature detection method can detect points at different scales (mean-
ing high local curvature in regions of varying size) by computing �  for several 
different values of s. SURF achieves fast computational speed by approximating 
the computation of �  using something called an integral image (see Gonzalez and 
Woods [2018]). Each pixel of an integral image, f x y∑ ( , ), is the sum of all the pixels 
of f in the rectangular region between the image origin and (x, y):
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Integral images can be used to speed a variety of computations because of one key 
property: we can compute a sum of intensities of f over any axis-aligned rectangular 
region bounded at the origin by adding or subtracting just three values from the 
integral image (Viola [2001]).

For each feature point, SURF computes a dominant orientation and 64 descriptor 
values. The descriptor values are based on Haar wavelet responses in a 20 20s s×  

FIGURE 6.23
Using the Control 
Point Selection 
Tool and  
functions  
fitgeotrans 
and imwarp to 
align a GIS image 
with an aerial 
photograph. The 
GIS image is 
characterized by 
roadways and  
bodies of water.
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region around the feature point. The dominant orientation is also computed from 
Haar wavelet responses, but from a 6 6s s×  region. (See Chapter 8 for a detailed 
discussion of wavelet analysis.)

The Computer Vision Toolbox has several functions related to SURF-based fea-
ture detection, description, matching, and geometric transformations. The function 
detectSURFFeatures takes a grayscale image as input and returns a set of feature 
points and the corresponding scale and dominant orientation values. The calling syn-
tax is:

points = detectSURFFeatures(f) 

After the initial set of candidate points is computed using this function, we use the 
extractFeatures function to extract feature descriptors for each feature point that 
is sufficiently far from an image boundary for the computation to be reliable. The 
feature points (valid_points) and their descriptors (features) are both returned 
as output arguments:

[features,valid_points] = extractFeatures(points) 

After computing feature points and descriptors for a pair of images, pairs of likely 
corresponding features are determined using the matchFeatures function, whose 
basic syntax is

indexPairs = matchFeatures(features1,features2) 

The output, indexPairs, is a P × 2 matrix indicating the corresponding feature 
pairs from the two sets. If [a b] is a row of indexPairs, that means that valid_
points1(a), from the first image, is a likely match for valid_points2(b), from 
the second image. Finally, given pairs of likely feature point correspondences, the 
function estimateGeometricTransform can compute a transformation that will 
register one image to the other. The syntax is:

tform = estimateGeometricTransform(matched_points1,... 
                       matched_points2,type) 

where type is the geometric transformation type, such as 'affine'.

EXAMPLE 6.9 : 	 Panorama stitching using SURF feature detection and matching.

This example illustrates the use of SURF-based feature detection and matching to 
stitch together two images to form a panorama. We will work with the two images 
shown in Figs. 6.24(a) and (b).

>> f1_rgb = imread('ah-quad-b.jpg');
>> f2_rgb = imread('ah-quad-c.jpg');
>> imshow(f1_rgb)
>> figure, imshow(f2_rgb)

Next, we convert the images to grayscale and call detectSURFFeatures:

detectSURFFe...

The Computer Vision 
Toolbox uses the terms 
features, descriptors, 
and feature descriptors 
interchangeably. 

extractFeatures

matchFeatures

estimateGeom...
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>> f1_gray = rgb2gray(f1_rgb);
>> f2_gray = rgb2gray(f2_rgb);
>> points1 = detectSURFFeatures(f1_gray);
>> points2 = detectSURFFeatures(f2_gray);

The function extractFeatures takes our candidate feature points, selects the ones 
that are not too close to an image boundary, and computes feature descriptors for 
each one:

ba
dc
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FIGURE 6.24
Automatic 
feature-based 
registration using 
SURF features. 
(a) and (b) Two 
different views of 
the same  
structure.  
(c) Strongest 
feature points 
detected in the 
left image.  
(d) Forty  
potential feature 
point matches. 
(e) Registration 
result and image 
blending used to 
form the  
panorama image.



377

7 Color Image Processing

The use of color in image processing is motivated by two principal factors. First, color is a powerful 
descriptor that often simplifies object identification and extraction from a scene. Second, humans can 
discern over a million shades of color, compared to only a few dozen shades of gray. The latter factor is 
particularly important in manual image analysis. In this chapter we discuss fundamentals of color image 
processing using the Image Processing Toolbox and extend some of its functionality by developing 
additional color generation and transformation functions. The discussion in this chapter assumes 
familiarity on the part of the reader with the principles and terminology of the physics of color at an 
introductory level.

Functions Developed in this Chapter:
colormatchingFunctions returns a table 
defining the CIE 1931 Standard Observer.

lambda2xyz converts spectral wavelengths to 
tristimulus values.

rspd2xyz converts a relative power spec-
tral density function to CIE 1931 tristimulus 
values.

chromaticityDiagram plots a chromaticity 
diagram.

xyz2xyy converts XYZ tristimulus values to 
chromaticity coordinates.

xyy2xyz converts chromaticity coordinates 
to XYZ tristimulus values.

colorSwatches displays a set of colors as 
square regions.

rgb2hsi converts an RGB image to HSI.

hsi2rgb converts an HSI image to RGB.

rgbcube displays an RGB cube.

ice implements an Interactive Color Editor 
for RGB and other color model images.

colorgrad computes color gradients of RGB 
images.

colorseg segments an RGB image.

spectrumBar adds a visible light spectrum 
bar to a line plot.

spectrumColors generates RGB colors in 
the visible light spectrum.

I often think that the night is more alive and more richly colored than the day.
 Vincent Van Gogh
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7.1	 COLOR FUNDAMENTALS

The color we perceive an object to be is the result of complex interactions between 
the light of an illuminating source, what happens to that light when it hits and is 
reflected from the object, and the human visual system. The illuminating source, or 
illuminant, might be the noon sun, a cloudy sky, or an LED light bulb. The object 
may reflect, absorb, or transmit some of the light. When reflected light from the 
object arrives at the eyes, it stimulates light-sensitive retinal cells that then transmit 
signals to the visual processing centers of the brain. To at least some degree, these 
interactions can be modeled and analyzed to understand and predict the human 
response to color.

LIGHT

Sir Isaac Newton was the first to observe (in 1666) that when a beam of sunlight 
passes through a glass prism, the emerging light, rather than being white, consists 
instead of a continuous spectrum of colors ranging from violet at one end to red 
at the other. The perceived colors in this spectrum include violet, blue, green, yel-
low, orange, and red. As Fig.  7.1 shows, no color in the spectrum ends abruptly; 
rather, each color blends smoothly into the next. This visible light spectrum is elec-
tromagnetic radiation in a specific range of wavelengths: Blue and violet hues are at 
wavelengths below 480 nm; green hues range from 480 to 560 nm; yellow hues are 
between 560 and 590 nm; orange from 590 to 630; and red hues are located above 
630 nm (Berns [2000]). Ultraviolet light, which is filtered out by some sunglasses to 
protect your eyes, is in the range just below 400 nm. Infrared light, which is detected 
by night-vision equipment, is in the range just above 700 nm.

You can generate Fig. 1 using the custom functions 

[rgb,lambda] = spectrumColors

and colorSwatches. The function listing for spectrumColors is in your Support 
Package. We will discuss colorSwatches later, in the “Standard RGB Model” sec-
tion.

Different kinds of light sources contain different mixes of visible electromagnetic 
radiation. The particular mix of a specific light source is characterized by the spectral 
power distribution curve of the source. Figure 7.2(a) shows the relative spectral power 
distribution curve for average midday open-air light. By convention, relative spectral 
power distribution curves for illuminants are normalized so that the spectral power 
at 560 nm is 1.0 (Berns [2000]). This average daylight curve, called D65, is a standard 

spectrumColors

FIGURE 7.1
Visible light  
spectrum.

400 450 500 550 600 650 700 750
Wavelength (nm)
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reference curve created by the International Commission on Illumination, usually 
written as CIE (for the French name, Commission Internationale de l’Éclairage). 
Figures 7.2(b) and (c) show the curves for two other illuminants. D50 is the average 
daylight for sunrise or sunset and F7 is a fluorescent light often used to simulate D65 
(CIE [2004], Berns [2000]). The plots with spectrum bars appearing in Fig. 7.2 and 
other figures in this chapter were created using the custom function 

cb_out = spectrumBar(ax)

This function adds a visible spectrum light bar on the specified axis; the listing is in 
your Support Package.

OBJECT REFLECTANCE

Light that strikes an object may be reflected, absorbed, or transmitted. In general, 
the relative amount of light reflected by an object varies with the wavelength of the 
light. It is this wavelength-dependent variation, interacting with the illumination and 
with the human visual system, that gives rise to a specific color being perceived.

Figure 7.3(a) shows the colors of three different materials. The leftmost square 
is the color of a sample of azurite, a copper carbonate mineral. The center square is 
the color of a green roofing material made of fiberglass. And the rightmost square 
is manganese violet, a paint pigment. Figure 7.3(b) shows the relative reflectance 
curves for each of these three materials (Kokaly et al. [2017]). The azurite reflec-
tance curve peaks at about 453 nm, which is in the blue region of the visible light 
spectrum. The fiberglass roofing tiles reflect the most light at about 505 nm, in the 
green region of the spectrum. Unlike the other two materials, the reflectance curve 
for the paint pigment has two distinct peaks, one in the blue part of the spectrum and 
the other in the red. The resulting purple hue is not one of the colors of the visible 
light spectrum; it is made by mixing blue and red hues.

spectrumBar

ba c

FIGURE 7.2  Relative spectral power densities for several standard illuminants. (a) D65—average mid-daylight.  
(b) D50—average sunrise or sunset light. (c) F7—a fluorescent light used to simulate D65.
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HOW THE EYE SENSES COLOR

When light from one or more sources is reflected from an object, arrives at the 
eye, and is focused by the lens onto the retina, it stimulates several types of light-
sensitive receptor cells in the retina. The cells known as rods are active only in low-
light situations and their contribution to color perception is insignificant. The cells 
known as cones, which activate at higher light levels, send color information to the 
brain.

There are three types of cones, distinguished primarily by how they respond 
to light at different wavelengths in the visible light spectrum. The cone types are 
labeled L, M, and S, based on whether they respond best to long, medium, or short 
wavelengths, respectively. Figure 7.4 shows the relative sensitivity curves for each of 
the three cone types (Stockman and Sharpe [2000]). These curves represent average 
responses for humans with normal color vision. Individual responses will vary and 
the responses of people with color-vision deficiencies can vary significantly from 
these curves.

Figure  7.5 illustrates how illumination, object reflectance, and cone sensitivity 
interact to form a color signal sent to the brain. The curve in Fig. 7.5(a) is the product 
of the D65 relative spectral power distribution curve in Fig. 7.2(a) with the relative 
reflectance curve of manganese violet in Fig. 7.3(d). This product curve represents 
the mix of light transmitted to the three types of retinal cones. Figures 7.5(b)–(d) 
show the product of the Fig. 7.5(a) curve with the relative sensitivity curves for the 
L, M, and S cone types. The strength of the signal that each cone type sends to the 
brain is then proportional to the area under the corresponding curve.
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FIGURE 7.3
Colors and 
reflectance curves. 
(a) Colors of 
three different 
materials: azurite 
(a mineral), 
green fiberglass 
roof tiles, and 
manganese violet 
paint. (b) Relative 
reflectance curves 
of the three 
materials.
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7.2	COLOR-SPACE MODELS

This section discusses several different ways to represent colors as points in a 
multidimensional space (typically, a three-dimensional space). Representing colors 
in this way, as opposed to spectral density or reflectance curves, facilitates the design 
and operation of most color display and sensing devices, as well as the application of 
image processing operations to color imagery as described later in this chapter. Of 
the large number of existing color-space models, we will focus our attention on those 
created for the following applications:

1.	 Perceptual color matching (the CIE standard observer)
2.	 Color displays (RGB models)
3.	 Color printing (CMY and CMYK models)
4.	 Brightness-color separation (HSV, HSI, and L*a*b* models)

THE CIE COLOR MATCHING MODEL

The CIE system of measuring and representing color is based on perceptual color 
matching experiments performed independently by Wright [1929], [1930] and by 
Guild and Petavel [1931]. In these experiments, three independent light sources 
(called primaries) were added together in varying ratios until the result matched a 
test stimulus perceptually.

Figure  7.6 illustrates the experiment. A test stimulus, with a known spectral 
power density curve P( ),l  is projected onto Area 1. Area 2 displays the combined 
projections of the three monochromatic primaries, ˆ ,R  ˆ ,G  and ˆ .B  The wavelengths 
of these primaries are 700 nm (red), 546.1 nm (green), and 435.8 nm (blue). The 

FIGURE 7.6
CIE color  
matching  
experiment.  
The objective is 
for an observer 
to adjust the 
monochromatic 
primaries until 
Area 2 is judged by 
the observer to be 
visually the same 
as Area 1.

Tristimulus values

Primary matching stimuli

Area 2

R G B

Test stimulus

Area 1

P(l) R̂ Ĝ B̂
Monochromatic
primaries
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For example,

>> XYZ = [0.9505 1.0000 1.0888];
>> xyy = xyz2xyy(XYZ)

xyy =
    0.3127    0.3290    1.0000

>> xyy2xyz(xyy)
ans =
    0.9505    1.0000    1.0888

THE STANDARD RGB MODEL

In the RGB color model, a color is described by three numbers, R, G, and B. These 
values indicate the intensities of red, green, and blue light sources, respectively. The 
light sources are called RGB primaries and it is a convention in color-space formulas 
and computations to express them using values in the range [0,  1]. When all three 
primaries are at full strength, the resulting stimulus is perceived as white.

The RGB color space is frequently shown graphically as the RGB color cube in 
Fig. 7.9. The vertices of the cube are the primary (red, green, and blue) and second-
ary (cyan, magenta, and yellow) colors of light.

To view the color cube from any perspective, we use custom function rgbcube. 
Typing rgbcube(vx,vy,vz) at the prompt produces an RGB cube viewed from 
point (vx,vy,vz) on the MATLAB desktop. The resulting image can be saved to 
disk using function print, discussed in Section 2.4. The code for function rgbcube is:

function rgbcube(vx,vy,vz)
%RGBCUBE Displays an RGB cube on the MATLAB desktop.
%   RGBCUBE(VX,VY,VZ) displays an RGB color cube, viewed from point
%   (VX,VY,VZ). With no input arguments, RGBCUBE uses (10,10,4) as the
%   default viewing coordinates. To view individual color planes, use

rgbcube

ba

FIGURE 7.9
(a) Schematic of 
the RGB color 
cube showing 
the primary and 
secondary colors 
of light at the ver-
tices. Points along 
the main diagonal 
have gray values 
from black at the 
origin to white 
at point (1, 1, 1). 
(b) The RGB 
color cube.
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DEVICE MODELS AND ICC COLOR PROFILES

ICC Color Profiles

Document colors can have one appearance on a computer monitor and quite a 
different appearance when printed. Or the colors in a document may appear different 
when printed on different printers. In order to obtain high-quality, consistent color 
reproduction between different display and printing devices, it is necessary to create 
a transform to map colors from one device to another. In general, a separate color 
transform would be needed between every pair of devices. Other transforms would 
be needed to account for factors such as different printing conditions and device 
quality settings. Each of the many needed transforms would have to be developed 
using carefully-controlled experiments. Clearly such an approach would prove 
impractical for all but the most expensive, high-end systems.

The International Color Consortium (ICC), an industry group founded in 1993, has 
standardized a different approach: Each device has just two transforms associated 
with it, regardless of the number of other devices that may be present in the system. 
One of the transforms converts device colors to a standard, device-independent 
color space called the profile connection space (PCS). The other transform is the 
inverse of the first; it converts PCS colors back to device colors. (The PCS can be 
either XYZ or L*a*b*.) Together, the two transforms make up the ICC color profile 
for the device.

One of the primary goals of the ICC has been to create, standardize, maintain, 
and promote the ICC color profile standard (ICC [2004]). The Image Processing 
Toolbox function iccread reads profile files. Its syntax is:

p = iccread(filename)

The output, p, is a structure containing file header information and the numerical 
coefficients and tables necessary to compute the color space conversions between 
device and PCS colors.

Converting colors using ICC profiles is done using the Toolbox functions 
makecform and applycform. The syntax of both functions is explained below. The 
ICC color profile standard includes mechanisms for handling a critical color con-
version step called gamut mapping. A color gamut is a volume in color space that 
defines the range of colors that a device can reproduce (CIE [2004]). Color gamuts 
differ from device to device. For example, a typical monitor can display some colors 
that cannot be reproduced using a printer. Therefore, it is necessary to take different 
gamuts into account when mapping colors from one device to another. Gamut map-
ping is the process of compensating for differences between source and destination 
gamuts is called (ISO [2004]).

There are many different methods used for gamut mapping (Morovic [2008]), 
some better suited for specific purposes than others. The ICC color profile standard 
defines four “purposes” (called rendering intents) for gamut mapping. These 
rendering intents are listed in Table  7.2. The makecform syntax for specifying 
rendering intents is:

We discuss the L*a*b* 
color space later in this 
section.

iccread
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Hue describes (i.e., gives a name to) a pure color, such as red or blue. Saturation is 
a measure of color purity—to how much gray there is in a color. Value is a measure 
of how light or dark a color is. Intensity refers to the brightness of a color; in the HSI 
model it is defined as the average of the R, G, and B values. Lightness is sometimes 
defined as [max( , , ) min( , , )] ,R G B R G B+ 2  but this is only one of the many defini-
tions found in the color sciences.

The HSV color space is formulated by looking at the RGB color cube along its 
gray axis (the axis joining the black and white vertices). The result is the hexagonally 
shaped color palette shown in Fig.  7.13(a). As we move along the gray axis in 
Fig. 7.13(b), the size of the hexagonal plane that is perpendicular to the axis changes, 
yielding the volume depicted in the figure. Hue is expressed as an angle around a 
color hexagon, typically using the red axis as the reference (0°) axis. The value com-
ponent is measured along the gray axis of the cone. The V = 0 end of the axis is black. 
The V = 1 end of the axis is white, which lies in the center of the full color hexagon 
in Fig. 7.13(a). Thus, this axis represents all shades of gray. Saturation (purity of the 
color) is measured as the distance from the V axis, with maximum saturation being 
achieved at the maximum value of V, which represents white. Because of its geom-
etry, this model is referred to as a single hexagon model.

Converting from RGB to HSV entails developing the equations to map RGB 
values (which are in Cartesian coordinates) to cylindrical coordinates. This topic 
is treated in detail in most texts on computer graphics (e.g., see Rogers [1997]), so 
we do not develop the equations here. In the following section we do develop the 
equations of the HSI model, which are similar.

The Toolbox function for converting from RGB to HSV is rgb2hsv, whose syntax 
is

hsv_image = rgb2hsv(rgb_image)rgb2hsv

ba

FIGURE 7.13
(a) The HSV 
color hexagon. 
(b) The HSV 
single hexagonal 
cone.
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% Implement the conversion equations.
R = zeros(size(hsi,1),size(hsi,2));
G = zeros(size(hsi,1),size(hsi,2));
B = zeros(size(hsi,1),size(hsi,2));
 
% RG sector (0 <= H < 2*pi/3).
idx = find( (0 <= H) & (H < 2*pi/3));
B(idx) = I(idx).*(1 - S(idx));
R(idx) = I(idx).*(1 + S(idx).*cos(H(idx))./...
                                          cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx));
 
% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );
R(idx) = I(idx).*(1 - S(idx));
G(idx) = I(idx).*(1 + S(idx).*cos(H(idx) - 2*pi/3)./...
                    cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx));
 
% BR sector.
idx = find( (4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx).*(1 - S(idx));
B(idx) = I(idx).*(1 + S(idx).*cos(H(idx) - 4*pi/3)./...
                                           cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx));
 
% Combine all three results into an RGB image. Clip to [0,1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3,R,G,B);
rgb = max(min(rgb,1),0);

EXAMPLE 7.3 : 	 Converting from RGB to HSI.

Figure 7.17(a) shows an RGB image and Figs. 7.17(b)–(d) are its hue, saturation, and intensity components. 
They were obtained using the following commands:

>> f = imread('firebreather-midres.tif');
>> figure, imshow(f) % Fig. 7.17(a).
>> g = rgb2hsi(f);
>> figure, imshow(g(:,:,1)) % Fig. 7.17(b).
>> figure, imshow(g(:,:,2)) % Fig. 7.17(c).
>> figure, imshow(g(:,:,3)) % Fig. 7.17(d).

The hue image in Fig. 7.17(b) shows dark values in the region of the flames. The values of this image 
are angles measured with respect to the red axis. The flames have reddish yellow tones which are low 
angle values when measured with respect to this axis. In contrast, the flame colors are highly saturated, 
so the saturation image in Fig. 7.17(c) shows high values in that region. The intensity image looks like 
you would expect. It is a grayscale image containing the gray tones of the intensity component of the 
HSI image. The key importance of the intensity image in this example is that it shows the intensity 
completely decoupled from the color content of the image. Thus, we can use any of the many grayscale 
processing methods from earlier chapters without affecting the color tonality of the image.
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Figure 7.17(e) shows the result of histogram-equalizing the intensity image:

>> grayeq = histeq(g(:,:,3));
>> figure, imshow(grayeq) % Fig. 7.17(e).

We construct the enhanced RGB image using the histogram-equalized image in place of the intensity 
image in function hsi2rgb:

>> hsi = cat(3,g(:,:,1),g(:,:,2),grayeq);
>> rgbeq = hsi2rgb(hsi);
>> figure, imshow(rgbeq) % Fig. 7.17(f).

The histogram equalized RGB image shown in Fig. 7.17(f) retained the original colors, but they are 
considerably more vibrant. The difference in visible detail between the original and enhanced color 
images is significant. For example on the far right you see spectators’ faces much more clearly. You can 
even see green trees past the right corner of the building. These details were barely visible or not vis-
ible at all in Fig. 7.17(a). You can also see additional details, such as the clothing adornments and the 
flowers on the left window, in the enhanced image. The equalized color image has a slight overexposed 
appearance, a condition caused by histogram equalization spreading the intensities to the full scale. A 
method like histogram matching would be capable of producing a more balanced intensity appearance. 

ba c
ed f

FIGURE 7.17 (a) RGB image. (b) Hue image. (c) Saturation image. (d) Intensity image. All three images were obtained 
using function rgb2hsi. (e) Histogram-equalized intensity image. (f) RGB image obtained using function hsi2rgb. 
(Original image credit: Luc Viatour, https://lucnix.be/.)
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8 Wavelet and Other 
Image Transforms

The discrete Fourier transform is a member of an important class of linear transforms that decompose 
functions into weighted sums of orthogonal basis functions. It and many other transforms, including the 
discrete cosine, Walsh-Hadamard, and Haar transforms, can be studied using the tools of linear algebra 
and implemented via matrix operations, which are ideally suited for MATLAB. In this chapter, we pres-
ent a general framework for both the computation and use of orthogonal image transforms and devote 
particular attention to the discrete wavelet transform, which places constraints beyond orthogonality on 
the decomposition functions employed. We introduce the Wavelet Toolbox, a collection of MathWorks 
functions designed for wavelet analysis but not included in the Image Processing Toolbox, and develop 
a compatible set of routines that allow wavelet-based processing using the Image Processing Toolbox 
alone. These custom functions, in combination with Image Processing Toolbox functions, provide the 
tools needed to implement the concepts discussed in Chapter 6 of Digital Image Processing by Gonzalez 
and Woods [2018]. They are applied in much the same way—and provide a similar range of capabili-
ties—as MATLAB functions fft2 and ifft2.

Functions Developed in this Chapter:
basisImage displays the basis images of a 2D 
matrix-based transform.

whtmtx generates the sequency-ordered  
transformation matrix of a matrix-based 
Walsh-Hadamard transform.

wavefilter returns the wavelet decomposi-
tion and reconstruction filters used in a fast 
wavelet transform.

wavefast computes the fast wavelet trans-
form of a matrix using the decomposition 
filters provided by function wavefilter. The 
output of wavefast is a wavelet decomposi-
tion structure.

Functions wavework, wavecut, wavecopy, 
and wavepaste are used to modify wavelet 
decomposition structures.

wavedisplay displays the coefficients of a 
wavelet decomposition structure as they are 
commonly encountered in the literature.

waveback computes the inverse FWT of a 
wavelet decomposition structure.

wavezero zeroes the detail coefficients of a 
wavelet decomposition structure at a speci-
fied decomposition level.

I take pleasure in my transformations. I look quiet and consistent, 
but few know how many women there are inside of me.

 Anais Nin
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8.1	MATRIX-BASED ORTHOGONAL TRANSFORMS

Consider a discrete function f x( ) of spatial variable x N= 0 1 1, , ,… −  with general-
ized discrete forward transform

	 T u f r x u
x

N

( ) ( ) ( , )=
=

∑ x
0

1−

	 (8-1)

where transform domain variable u N= 0 1 1, , ,… −  and r x u( , ) is called a forward 
transformation kernel. Function f x( ) can be recovered from T u( ) using the inverse 
transform
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where x N= 0 1 1, , ,… −  and s x u( , ) is the transform's inverse transformation kernel. 
Equations (8-1) and (8-2) form a 1-D transform pair whose nature, computational 
complexity, and usefulness depend on the properties of r x u( , ) and s x u( , ). Their 2-D 
equivalent for square images f x y( , ) of size N N*  can be similarly defined as
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where both u and v  are transform domain variables and r x y( , , , )u v  and s x y( , , , )u v  
are tranformation kernels. If the transformation kernels are separable and symmetric,
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then the corresponding 2-D transforms [i.e., Eqs. (8-3) and (8-4)] can be computed 
by applying their 1-D counterparts [i.e., Eqs. (8-1) and (8-2)] in a row and column 
manner. 

The right side of Eq. (8-2) can be viewed as a series expansion of f x( ) around a set 
of expansion functions, s x u( , ) for u N= 0 1 1, , , ,… −  and expansion coefficients T u( ).  
If the expansion functions are represented as N-dimensional column vectors
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s u
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For a more detailed 
explanation of the con-
cepts presented in this 
section, see Chapter 6 of 
Gonzalez and  
Woods [2018].
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         basisImages(x:x+N-1, y:y+N-1) = S;
      end
   end
   basisImages = mat2gray(basisImages);
 
   % Add borders and space between basis images.
   for i = 1:1:N
      for j = 1:1:N
         display(C*(i-1)+1:C*(i-1)+N+2, C*(j-1)+1:C*(j-1)+N+2) ...
            = border;
         display(C*(i-1)+2:C*(i-1)+N+1, C*(j-1)+2:C*(j-1)+N+1) ...
            = basisImages(N*i-N+1:N*i, N*j-N+1:N*j);
      end
   end

   imshow(display,[ ]);
end

EXAMPLE 8.2 : 	 Basis images and correlation.

Custom function basisImages was used to generate the two 8 8×  arrays of 8 8×  DFT basis images in 
Figs. 8.3(a) and (b). To separate the basis images from one another and display them with a black border, 
we let

>> A = (1/sqrt(8))*dftmtx(8);
>> basisImages(A,0,2);

where parameters gray and space of function basisImage were set to 0 and 2, respectively. Because 
the basis images of the DFT are complex-valued functions, the real and imaginary parts are displayed 
separately; a single DFT basis image is formed from one subimage of Fig. 8.3(a) and the corresponding 
subimage of Fig. 8.3(b). Thus, for example, the complex 8 8×  basis subimage in the first row and and 
second column of Figs. 8.3(a) and (b) are the real and imaginary components of the DFT basis image 
with horizontal frequency and vertical frequencies 0 and 2 1 8 4p p( ) =  radians/s, respectively. Row and 
column indices u and v  determine the horizontal (i.e., along a row) and vertical (i.e., along a column) 
frequencies of each basis subimage. Note that the basis image of maximum frequency occurs when 
u=v=4. As u and v  increase above 4 (to 5, 6, and 7), the effective frequency decreases due to aliasing 
and produces conjugate symmetry.

Figure 8.3(c) shows a 512 512×  image that combines a horizontal and vertical sinusoid of differing 
frequencies. Because DFT coefficients measure the similarity of their single-frequency, complex expo-
nential basis functions and the image being transformed, they can be used to determine the frequencies 
of the image’s constituent sinusoids:

>> A = (1/sqrt(512))*dftmtx(512);
>> F = load('sinusoids.mat'); F = F.F; imshow(F);
>> T = A*F*transpose(A);
>> figure; imshow(im2uint8(mat2gray(log(1 + abs(512*fftshift(T))))),[]);
>> [row, col] = find(abs(imag(T))>1e-9 | abs(real(T))>1e-9)

row =

    23
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   491
     1
     1

col =

     1
     1
    22
   492

Note that the find function was used to locate the four nonzero values that are clearly present in 
Fig. 8.3(d). We simply search for transform coefficients with magnitudes greater than 10 9− . They occur 
at row and col coordinates (23, 1), (491, 1), (1, 22), and (1, 492), which correspond to frequency indices 
[i.e., ( , )u y  pairs] (22, 0), (490, 0), (0, 21), and (0, 491). The image in Fig. 8.3(c) is therefore composed 
of a vertical sinusoid of angular frequency 2 22 512( )p  rad/s, which corresponds to indices (22, 0) and 
(490, 0), and a horizontal sinusoid of frequency 2 21 512( )p  rad/s, which corresponds to indices (0, 21) 
and (0, 492). Note that half the coordinate pairs that are returned by the find function are a conse-
quence of the DFT's conjugate symmetry.

TRANSFORMATION MATRICES

MATLAB provides several built-in functions for the computation of orthogonal 
transformation matrices. As noted in Example 8.1, for example, dftmtx(N) gener-
ates a scaled DFT transformation matrix that can be multiplied by 1 N  for use 
with the matrix equations in row 2 of Table  8.1. Of the remaining transforms in 
Fig. 8.2, MATLAB provides built-in functions for two: (1) the discrete cosine trans-
form (DCT) and (2) the Walsh-Hadamard transform (WHT). DCT transformation 
matrices are computed using

A = dctmtx(N)dctmtx

ba c d

FIGURE 8.3 (a) The real part of the DFT basis images for N = 8; (b) the imaginary part of the basis images; (c) an image 
composed of two sinusoids; and (d) the log scaled and centered spectrum of the image. The white pixels in (d) were 
enlarged to make them visible in print.
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where f denotes frequency and H f( ) is the Fourier transform of h t( ). Then the 
energy† of basis function h, as illustrated in Fig. 8.4(a), is concentrated at ( , )m mt f  
on the time-frequency plane. The majority of the energy falls in a rectangular 
region, called a Heisenberg box or cell, of area 4s st f  such that

	 s s
p

t f
2 2

2

1

16
Ú 	 (8-25)

Since the support of a function can be defined as the set of points where the function 
is nonzero, Heisenberg’s uncertainty principle tells us that it is impossible for a func-
tion to have finite support in both time and frequency. Equation (8-25), called the 
Heisenberg-Gabor inequaltiy, places a lower bound on the area of the Heisenberg 

† The energy of continuous function h t( ) is 
-



2 h t dt( ) .2

The constant on the right 
side of Eq. (8-25) is ¼ if 
stated in terms of angular 
frequency v. Equality is 
possible, but only with a 
Gaussian basis function, 
whose transform is also a 
Gaussian function.
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FIGURE 8.4
(a) Basis function 
localization in the 
time-frequency 
plane and (b) the 
time and fre-
quency localiza-
tion of 128-point 
Daubechies basis 
functions.
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controls their height or amplitude. Note that the associated expansion 
functions are binary scalings and integer translates of mother wavelet 
c c( ) ( ),x x= 0 0  and scaling function w w( ) ( ).,x x= 0 0

2.	 Multiresolution Compatibility. The 1-D scaling function just introduced satis-
fies the following requirements of multiresolution analysis:

(a)	 w j k,  is orthogonal to its integer translates.
(b)	 The set of functions that can be represented as a series expansion of w j k,  

at low scales or resolutions (i.e., small j) is contained within those that 
can be represented at higher scales.

(c)	 The only function that can be represented at every scale is f x( ) .= 0
(d)	Any function can be represented with arbitrary precision as j: q.

When these conditions are met, there is a companion wavelet c j k,  that, 
together with its integer translates and binary scalings, spans—that is, can 
represent—the difference between any two sets of w j k, -representable func-
tions at adjacent scales.

3.	 Orthogonality. The expansion functions 3 5 64i.e., w j k x, ( )  form an orthonormal 
or biorthogonal basis for the set of 1-D measurable, square-integrable func-
tions. For a biorthogonal wavelet transform with scaling and wavelet func-
tions w j k x, ( ) and c j k x, ( ), the duals are denoted w

'
j k x, ( ) and c

'

j k x, ( ) respec-
tively.

8.4	THE FAST WAVELET TRANSFORM

An important consequence of the above properties is that both w( )x  and c( )x  can be 
expressed as linear combinations of double-resolution copies of themselves—that is, 
via the series expansions

	 w ww( ) ( ) ( )x h n x n
n

= ∑ 2 2 - 	 (8-33)

	 c wc( ) ( ) ( )x h n x n
n

= ∑ 2 2 - 	 (8-34)

where hw  and hc—the expansion coefficients—are called scaling and wavelet vectors, 
respectively. They are the filter coefficients of the fast wavelet transform (FWT), an 
iterative computational approach to the DWT shown in Fig.  8.5. The W j m nw( , , ) 
and W j m n i H V Di

c( , , ) , , for ={ } outputs in this figure are the DWT coefficients 
at scale j. Blocks containing time-reversed scaling and wavelet vectors—the h nw( )−  
and h mc( )− —are lowpass and highpass decomposition filters, respectively. Finally, 
blocks containing a 2 and a down arrow represent downsampling—extracting every 
other point from a sequence of points. Mathematically, the series of filtering and 
downsampling operations used to compute W j m nH

c ( , , ) in Fig. 8.5 is, for example,

	 W j m n h m h n W j m nH
n k k m k kc c w w( , , ) ( ) ( ) ( , , ) , ,= = ≥ = ≥- - +� �C @ D @1 2 0 2 0 	 (8-35)
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where � denotes convolution. Evaluating convolutions at nonnegative, even indices 
is equivalent to filtering and downsampling by 2.

The input to the filter bank in Fig. 8.5 is decomposed into four lower resolution (or 
lower scale) components. The Ww  coefficients are created via two lowpass filters (i.e, 
hw-based) and are thus called approximation coefficients; W i H V Di

c  for ={ }, ,  are 
horizontal, vertical, and diagonal detail coefficients, respectively. Output W j m nw( , , ) 
can be used as a subsequent input, W j m nw( , , ),+ 1  to the block diagram for creating 
even lower resolution components; f x y( , ) is the highest resolution representation 
available and serves as the input for the first iteration. Note that the operations 
in Fig. 8.5 use neither wavelets nor scaling functions—only their associated wave-
let and scaling vectors are used. In addition, three transform domain variables are 
involved—scale j and horizontal and vertical translation, n and m. These variables 
correspond to u v, , p  in the first two equations of Section 8.1.

�FAST WAVELET TRANSFORMS USING THE WAVELET TOOLBOX

In this section, we use the Wavelet Toolbox to compute the FWT of a 4 4*  test 
image. In the next section, we will develop custom functions to do this without the 
Wavelet Toolbox (i.e., using the Image Processing Toolbox alone). The material here 
lays the groundwork for their development.

The Wavelet Toolbox provides decomposition filters for a wide variety of fast 
wavelet transforms. The filters associated with a specific transform are accessed via 
the function wfilters, which has the following general syntax:

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname)

Here, input parameter wname determines the returned filter coefficients in accor-
dance with Table 8.3; outputs Lo_D, Hi_D, Lo_R, and Hi_R are row vectors that contain 
the lowpass decomposition, highpass decomposition, lowpass reconstruction, and 

We denote MATLAB 
toolbox functions that 
are not part of the Image 
Processing Toolbox in 
brown.
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FIGURE 8.5
The 2-D fast 
wavelet trans-
form (FWT) filter 
bank. Each pass 
generates one 
DWT scale. In 
the first iteration, 
W j m nw ( , , )+ =1
f x y( , ).
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The compositing just described takes place within the only for loop in wave-
display. After checking the inputs for consistency, wavecut is called to remove 
the approximation coefficients from decomposition vector c. These coefficients are 
then scaled for later display using mat2gray. Modified decomposition vector cd (i.e., 
c without the approximation coefficients) is then similarly scaled. For positive val-
ues of input scale, the detail coefficients are scaled so that a coefficient value of 0 
appears as middle gray; all necessary padding is performed with a fill value of 0.5 
(mid-gray). If scale is negative, the absolute values of the detail coefficients are 
displayed with a value of 0 corresponding to black and the pad fill value is set to 0. 
After the approximation and detail coefficients have been scaled for display, the first 
iteration of the for loop extracts the last decomposition step’s detail coefficients 
from cd and appends them to w (after padding to make the dimensions of the four 
subimages match and insertion of a one-pixel white border) via the w = [w h; v d] 
statement. This process is then repeated for each scale in c. Note the use of wave-
copy to extract the various detail coefficients needed to form w.

EXAMPLE 8.8 : 	 Transform coefficient display using wavedisplay.

The following sequence of commands computes the two-scale DWT of the image in Fig. 8.7 with respect 
to fourth-order Daubechies’ wavelets and displays the resulting coefficients:

>> f = imread('vase.tif');
>> [c,s] = wavefast(f,2,'db4');
>> wavedisplay(c,s);
>> figure; wavedisplay(c,s,8);
>> figure; wavedisplay(c,s,−8);

The images generated by the final three commands are shown in Figs. 8.8(a) through (c), respectively. 
Without additional scaling, the detail coefficient differences in Fig. 8.8(a) are barely visible. In Fig. 8.8(b), 
the differences are accentuated by multiplying the coefficients by 8. Note the mid-gray padding along 
the borders of the level 1 coefficient subimages; it was inserted to reconcile dimensional variations 
between transform coefficient subimages. Figure 8.8(c) shows the effect of taking the absolute values of 
the details. Here, all padding is done in black.

8.6	THE INVERSE FAST WAVELET TRANSFORM

Like its forward counterpart, the inverse fast wavelet transform can be computed 
iteratively using digital filters. Figure 8.9 shows the required synthesis or reconstruc-
tion filter bank, which reverses the process of the analysis or decomposition filter 
bank of Fig. 8.5. At each iteration, four scale j approximation and detail subimages 
are upsampled (by inserting zeroes between their elements) and convolved with two 
one-dimension filters—one operating on the subimages’ columns and the other on 
its rows. Adding the results yields the scale j + 1 approximation, and the process is 
repeated until the original image is reconstructed. The filters used in the convolu-
tions are a function of the wavelets employed in the forward transform. Recall that 
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they can be obtained from the wfilters and wavefilter functions of Section 8.4 
with input parameter type set to 'r' for “reconstruction.”

When using the Wavelet Toolbox, function waverec2 is employed to compute the 
inverse FWT of wavelet decomposition structure [C,S]. It is invoked using

g = waverec2(C,S,wname)

where g is the resulting reconstructed two-dimensional image (of class double). The 
required reconstruction filters can be alternately supplied using the syntax

g = waverec2(C,S,Lo_R,Hi_R)

The following custom function, which we call waveback, can be used when the Wave-
let Toolbox is unavailable. It is the final function needed to complete our wavelet-
based package for processing images in conjunction with the Image Processing Tool-
box (and without the Wavelet Toolbox).

waverec2

b
a

c

FIGURE 8.8
Displaying a 
two-scale wavelet 
transform of the 
image in Fig. 8.7: 
(a) Automatic 
scaling;  
(b) additional 
scaling by 8; and 
(c) absolute val-
ues scaled by 8.
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function [varargout] = waveback(c,s,varargin) 
%WAVEBACK Computes inverse FWTs for multi-level decomposition [C,S].
%   [VARARGOUT] = WAVEBACK(C,S,VARARGIN) performs a 2D N-level partial
%   or complete wavelet reconstruction of decomposition structure [C,S].
%
%   SYNTAX:
%   Y = WAVEBACK(C,S,'WNAME','EXTMODE');  Output inverse FWT matrix Y 
%   Y = WAVEBACK(C,S,LR,HR,'EXTMODE');    using lowpass and highpass 
%                                         reconstruction filters (LR and
%                                         HR) or filters obtained by
%                                         calling WAVEFILTER with 'WNAME'.
%
%   [NC,NS] = WAVEBACK(C,S,'WNAME','EXTMODE',N);  Output the wavelet 
%   [NC,NS] = WAVEBACK(C,S,LR,HR,'EXTMODE',N);    decomposition structure
%                                                 {NC, NS] after N step
%                                                 reconstruction.
%
%   See also WAVEFAST and WAVEFILTER.

% Check the input and output arguments for reasonableness.
if (~ismatrix(c)) || (size(c,1) ~= 1)
   error('C must be a row vector.');
end

if (~ismatrix(s)) || ~isreal(s) || ~isnumeric(s) || ...
        ((size(s, 2) ~= 2) && (size(s,2) ~= 3))
   error('S must be a real, numeric two- or three-column array.');
end

elements = prod(s,2);
if (length(c) < elements(end)) || ...
      ~(elements(1) + 3 * sum(elements(2:end - 1)) >= elements(end))
   error(['[C S] must be a standard wavelet ' ...
         'decomposition structure.']);
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3.	 Compute the inverse transform.

Because scale in the wavelet domain is analogous to frequency in the Fourier 
domain, most of the Fourier-based filtering techniques of Chapter 4 have an equiv-
alent “wavelet domain” counterpart. In this section, we use the preceding three-
step procedure to give several examples of the use of wavelets in image processing. 
Attention is restricted to the functions developed earlier in the chapter; the Wavelet 
Toolbox is not needed to implement the examples given here—nor the examples in 
Chapter 6 of Digital Image Processing (Gonzalez and Woods [2018]).

EXAMPLE 8.10 : 	Wavelet directionality and edge detection.

Consider the 512 512*  test image in Fig. 8.10(a). We used this image in Chapter 4 to illustrate smoothing 
and sharpening in the frequency domain. Here, we use it to demonstrate the directional sensitivity of the 
2-D wavelet transform and its usefulness in edge detection:

>> f = imread('testpattern512.tif');
>> imshow(f);
>> [c,s] = wavefast(f,1,'sym4');
>> figure; wavedisplay(c,s,−6);
>> [nc,y] = wavecut('a',c,s);
>> figure; wavedisplay(nc,s,−6);
>> edges = abs(waveback(nc,s,'sym4'));
>> figure; imshow(mat2gray(edges));

The horizontal, vertical, and diagonal directionality of the single-scale wavelet transform of Fig. 8.10(a) 
with respect to 'sym4' wavelets is clearly visible in Fig. 8.10(b). Note, for example, that the horizontal 
edges of the original image are present in the horizontal detail coefficients of the upper-right quadrant 
of Fig. 8.10(b). The vertical edges of the image can be similarly identified in the vertical detail coeffi-
cients of the lower-left quadrant. To combine this information into a single edge image, we simply zero 
the approximation coefficients of the generated transform, compute its inverse, and take the absolute 
value. The modified transform and resulting edge image are shown in Figs. 8.10(c) and (d), respectively. 
A similar procedure can be used to isolate the vertical or horizontal edges alone.

EXAMPLE 8.11 : 	Wavelet-based image smoothing or blurring.

Wavelets, like their Fourier counterparts, are effective instruments for smoothing or 
blurring images. Consider again the test image of Fig. 8.10(a), which is repeated in 
Fig. 8.11(a). Its wavelet transform with respect to fourth-order symlets is shown in 
Fig. 8.11(b), where it is clear that a four-scale decomposition has been performed. To 
streamline the smoothing process, we employ the following utility function:

function [nc,g8] = wavezero(c,s,l,wname)
%WAVEZERO Zeroes wavelet transform detail coefficients.
%   [NC,G8] = WAVEZERO(C,S,L,WNAME) zeroes the level L detail
%   coefficients in wavelet decomposition structure [C,S] and computes
%   the resulting inverse transform with respect to WNAME wavelets.

Symlets, short for “sym-
metrical wavelets”, have 
minimal assymetry for a 
given compact support.

wavezero
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[nc,~] = wavecut('h',c,s,l);
[nc,~] = wavecut('v',nc,s,l);
[nc,~] = wavecut('d',nc,s,l);
i = waveback(nc,s,wname);
g8 = im2uint8(mat2gray(i));
figure; imshow(g8);

A series of increasingly smoothed versions of Fig. 8.11(a) can be generated using 
function wavezero:

>> f = imread('testpattern512.tif');
>> [c,s] = wavefast(f,4,'sym4');
>> wavedisplay(c,s,20);
>> [c,g8] = wavezero(c,s,1,'sym4');
>> [c,g8] = wavezero(c,s,2,'sym4');
>> [c,g8] = wavezero(c,s,3,'sym4');
>> [c,g8] = wavezero(c,s,4,'sym4');

Note that the smoothed image in Fig.  8.11(c) is only slightly blurred, as it was 

ba
dc

FIGURE 8.10
Wavelets in edge 
detection:  
(a) A simple test 
image;  
(b) its single-scale 
wavelet trans-
form;  
(c) the transform 
modified by zero-
ing all approxima-
tion coefficients; 
and  
(d) the edge 
image resulting 
from computing 
the absolute value 
of the inverse 
transform.
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9 Image Compression

Image compression addresses the problem of reducing the amount of data required to represent a digi-
tal image. Because the Image Processing Toolbox does not include functions for image compression, the 
goal of this chapter is to provide practical ways of exploring compression techniques within the context 
of MATLAB. For instance, we develop a MATLAB callable C function that illustrates how to manipu-
late variable-length data representations at the bit level. Variable-length coding is a mainstay of image 
compression, but MATLAB is best at processing matrices of uniform (i.e., fixed length) data. During the 
development of the function, we assume that the reader has a working knowledge of the C language and 
focus our discussion on how to make MATLAB interact with programs (both C and Fortran) external 
to the MATLAB environment. This is an important skill when there is a need to interface MATLAB 
functions to preexisting C or Fortran programs, and when vectorized functions need to be speeded up 
(e.g., when a for loop can not be adequately vectorized). The range of compression functions devel-
oped in this chapter, together with MATLAB’s ability to treat C and Fortran programs as though they 
were conventional MATLAB files or built-in functions, is another illustration of the fact mentioned in 
Chapter 1 that MATLAB is an effective tool for prototyping image compression systems and algorithms.

Functions Developed in this Chapter:
imratio computes the ratio of the number of 
bytes in two images.

compare computes the error between two 
matrices and optionally displays it.

ntrop computes the entropy of a matrix.

huffman computes a Huffman code.

mat2huff and huff2mat perform Huffman 
encoding and decoding, respectively. C func-
tion unravel is used by huff2mat.

mat2lpc and lpc2mat compresses a matrix 
using linear predictive coding and decodes an 
encoded matrix, respectively.

quantize quantizes a matrix.

im2jpeg and jpeg2im compress and decom-
press a matrix using an approximation of the 
JPEG compression standard.

im2jpeg2k and jpeg2k2im compress and 
decompress a matrix using an approximation 
of the JPEG2000 compression standard.

tifs2cv and cv2tifs compress and decom-
press a multi-frame TIFF image sequence.

showmo displays the motion vectors for selected 
frames of a tif2cv compressed image sequence.

The greatest artist is the simplifier.
 Donald M. Murray
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9.1	BACKGROUND

As Fig. 9.1 shows, image compression systems are composed of two distinct struc-
tural blocks: an encoder and a decoder. Image f x y( , ) is fed into the encoder, which 
creates a set of symbols from the input data and uses them to represent the image. 
If we let n1 and n2 denote the number of information carrying units (usually bits) in 
the original and encoded images, respectively, the compression that is achieved can 
be quantified numerically via the compression ratio

	 C
n
nR = 1

2

	 (9-1)

A compression ratio like 10 (or 10 1: ) indicates that the original image has 10 infor-
mation carrying units (e.g., bits) for every 1 unit in the compressed data set. In  
MATLAB, the ratio of the number of bits used in the representation of two image 
files and/or variables can be computed using the following custom function:

function cr = imratio(f1,f2)
%IMRATIO Computes the ratio of the bytes in two images/variables.
%   CR = IMRATIO(F1,F2) returns the ratio of the number of bytes in
%   variables/files F1 and F2. If F1 and F2 are an original and
%   compressed image, respectively, CR is the compression ratio. 

narginchk(2,2);                       % Check input arguments
cr = bytes(f1)/bytes(f2);             % Compute the ratio

%----------------------------------------------------------------------%
function b = bytes(f)  
% Return the number of bytes in input f. If f is a string, assume
% that it is an image filename; if not, it is an image variable.
 
if ischar(f)
   info = dir(f);        b = info.bytes;
elseif isstruct(f)
   % MATLAB's whos function reports an extra 124 bytes of memory per
   % structure field because of the way MATLAB stores structures in

In video compression 
systems, f x y( , ) would 
be replaced by f x y t( , , ) 
and frames would be 
sequentially fed into the 
block diagram of Fig. 9.1.
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A general image 
compression 
system block 
diagram.
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   % memory. Don't count this extra memory; instead, add up the memory
   % associated with each field.
   b = 0;
   fields = fieldnames(f);
   for k = 1:numel(f)
      for q = 1:length(fields)
          b = b + bytes(f(k).(fields{q}));
      end
   end
else
   info = whos('f');     b = info.bytes;
end

For example, the compression of the JPEG encoded image in Fig. 2.5(c) of Chapter 2  
can be computed via

>> r = imratio(imread('bubbles25.jpg'),'bubbles25.jpg')
r =
    37.0945

Note that in function imratio, local function b = bytes(f) is designed to 
return the number of bytes in (1) a file, (2) a structure variable, and/or (3) a non-
structure variable. If f is a nonstructure variable, function whos, introduced in  
Section 2.2, is used to get its size in bytes. If f is a file name, function dir performs a 
similar service. In the syntax employed, dir returns a structure (see Section 2.10 for 
more on structures) with fields name, date, bytes, and isdir. They contain the file’s 
name, modification date, size in bytes, and whether or not it is a directory (isdir is 
1 if it is and is 0 otherwise), respectively. Finally, if f is a structure, bytes calls itself 
recursively to sum the number of bytes allocated to each field of the structure. This 
eliminates the overhead associated with the structure variable itself (124 bytes per 
field), returning only the number of bytes needed for the data in the fields. Function 
fieldnames is used to retrieve a list of the fields in f, and the statements

for k = 1:length(fields)
    b = b + bytes(f(k).(fields{q}));

perform the recursions. Note the use of dynamic structure fieldnames in the recur-
sive calls to bytes. If S is a structure and F is a string variable containing a field name, 
the statements

S.(F) = foo;
field = S.(F);

employ the dynamic structure fieldname syntax to set and/or get the contents of 
structure field F, respectively.

To view and/or use a compressed (i.e., encoded) image, it must be fed into a 
decoder (see Fig.  9.1), where a reconstructed output image, ˆ( , )f x y  is generated.  
In general, ˆ( , )f x y  may or may not be an exact representation of f x y( , ). If it is, the 
system is called error free, information preserving, or lossless; if not, some level of 

fieldnames
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EXAMPLE 9.4 :  Decoding with huff2mat.

The Huffman encoded image of Example 9.3 can be decoded using the following 
sequence of commands:

>> load squeeze-tracy;
>> g = huff2mat(c);
>> f = imread('tracy.tif');
>> rmse = compare(f, g)
rmse = 
     0

Note that the overall encoding-decoding process is information preserving; the 
root-mean-square error between the original and decompressed images is  0. 
Because such a large part of the decoding job is done in C MEX-file unravel,  
huff2mat is slightly faster than its encoding counterpart, mat2huff. Note the use of 
the load function to retrieve the MAT-file encoded output from Example 9.2.

9.3	SPATIAL REDUNDANCY

Consider the images shown in Figs. 9.7(a) and (c). As Figs. 9.7(b) and (d) show, they 
have virtually identical histograms. Note also that the histograms are trimodal, indi-
cating the presence of three dominant ranges of gray-level values. Because the gray 
levels of the images are not equally probable, variable-length coding can be used to 
reduce the coding redundancy that would result from a natural binary coding of the 
pixel values:

>> f1 = imread('matches-random.tif');
>> c1 = mat2huff(f1);
>> ntrop(f1)
ans =
    7.4253
>> imratio(f1, c1)
ans =
    1.0704
>> f2 = imread('matches-ordered.tif');
>> c2 = mat2huff(f2);
>> ntrop(f2)
ans = 
    7.3505
>> imratio(f2, c2)
ans =
    1.0821

Note that the first-order entropy estimates of the two images are about the 
same (7.4253 and 7.3505 bits/pixel); they are compressed similarly by mat2huff 
(with compression ratios of 1.0704 versus 1.0821). These observations high-
light the fact that variable-length coding is not designed to take advantage of 

load

Function load reads 
MATLAB variables 
from a file and loads 
them into the workspace. 
The variable names are 
maintained through a 
save/load sequence.
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MATLAB file unravel.m

Help text for C MEX-file unravel:

Contains text that is displayed in response to
 >> help unravel

C function mexFunction

C function unravel

MEX-file computational routine:

 void unravel(
  uint16_T *hx
  double *link, double *x,
  double xsz, int hxsz)

which contains the C code for decoding hx based on 
link and putting the result in x.

C MEX-file unravel.c

MATLAB file huff2mat

In MATLAB file huff2mat, 
the statement

 x = unravel(y, ...
     link, m * n)

tells MATLAB to pass y,
link, and m * n to C MEX-
file function unravel.

On return, plhs(0) is
assigned to x.

MATLAB passes y, link, and m * n
to the C MEX file:

 prhs [0] 5 y
 prhs [1] 5 link
 prhs [2] 5 m * n
 nrhs 5 3
 nlhs 5 1

Parameters nlhs and nrhs are integers
indicating the number of left- and right-
hand arguments, and prhs is a vector
containing pointers to MATLAB arrays
y, link, and m * n.

MATLAB passes MEX-file output
plhs[0] to M-file huff2mat.

MEX-file gateway routine:

  void mexFunction(
  int nlhs, mxArray *plhs[],
  int nrhs, const mxArray
   *prhs[])

where integers nlhs and nrhs indicate the number of 
left- and right-hand arguments and vectors plhs and 
prhs contain pointers to input and output arguments of 
type mxArray. The mxArray type is MATLAB's 
internal array representation.
 
  The MATLAB API provides routines to handle the 
data types it supports. Here, we

 1. Use mxGetM, mxGetN, mxIsDouble,
  mxIsComplex, and mexErrMsgIdAndTxt to 
  check the input and output arguments.

 2. Use mxGetUint16s and mxGetDoubles to get  
  pointers to the data in prhs[0] (the Huffman 
  code), and prhs[1] (the decoding table) and  
  save as C pointers hx and link, respectively.

 3. Use mxGetScalar to get the output array size 
  from prhs[2] and save as xsz.

 4. Use mxGetM to get the number of elements in 
  prhs[0] (the Huffman code) and save as hxsz.

 5. Use mxCreateDoubleMatrix and 
  mxGetDoubles to make a decode output array  
  pointer and assign it to plhs[0].

 6. Call computational routine unravel, passing the 
  arguments formed in Steps 2-5.

In C MEX-file unravel, execution begins and ends in 
gateway routine mexFunction, which calls C 
computational routine unravel. To declare the entry point 
and interface routines, use #include "mex.h"

FIGURE 9.6  The interaction of function huff2mat and MATLAB callable C function unravel. Note that MEX-file 
unravel contains two functions: gateway routine mexFunction and computational routine unravel. Help text for 
MEX-file unravel is contained in the separate MATLAB file, also named unravel.
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FIGURE 9.7
Two images and 
their gray-level 
histograms.

the obvious structural relationships between the aligned matches in Fig.  9.7(c).  
Although the pixel-to-pixel correlations are more evident in that image, they are 
present also in Fig. 9.7(a). Because the values of the pixels in either image can be 
reasonably predicted from the values of their neighbors, the information carried by 
individual pixels is relatively small. Much of the visual contribution of a single pixel 
to an image is redundant; it could have been guessed on the basis of the values of 
its neighbors. These correlations are the underlying basis of interpixel redundancy.

In order to reduce interpixel redundancies, the 2-D pixel array normally used 
for human viewing and interpretation must be transformed into a more efficient 
(but normally “nonvisual”) format. For example, the differences between adjacent 
pixels can be used to represent an image. Transformations of this type (that is, those 
that remove interpixel redundancy) are referred to as mappings. They are called 
reversible mappings if the original image elements can be reconstructed from the 
transformed data set.

A simple mapping procedure is illustrated in Fig. 9.8. The approach, called lossless 
predictive coding, eliminates the interpixel redundancies of closely spaced pixels by 
extracting and coding only the new information in each pixel. The new information 
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sequence of commands combines IGS quantization, lossless predictive coding, and Huffman coding to 
compress the image of Fig. 9.10(a) to less than a quarter of its original size:

>> f = imread('brushes.tif');
>> q = quantize(f,4,'igs');
>> qs = double(q)/16;
>> e = mat2lpc(qs);
>> c = mat2huff(e);
>> imratio(f,c)
ans =
    4.1420

Encoded result c can be decompressed by the inverse sequence of operations (without “inverse quan-
tization”):

>> ne = huff2mat(c);
>> nqs = lpc2mat(ne);
>> nq = 16*nqs;
>> compare(q,nq)
ans =
    0
>> compare(f,nq)
ans =
    6.8382

Note that the root-mean-square error of the decompressed image is about 7 gray levels—and that this 
error results from the quantization step alone.

9.5	JPEG COMPRESSION

The techniques of the previous sections operate directly on the pixels of an image 
and thus are spatial domain methods. In this section, we consider a family of popular 
compression standards that are based on modifying the transform of an image. Our 
objectives in this section are to introduce the use of 2-D transforms in image com-
pression, to provide additional examples of how to reduce the image redundancies 
discussed in Sections 9.2 through 9.4, and to give the reader a feel for the state of 
the art in image compression. The standards presented (although we consider only 
approximations of them) are designed to handle a wide range of image types and 
compression requirements.

In transform coding, a reversible, linear transform like the DFT of Chapter 4 or 
the discrete cosine transform (DCT) of Chapter 8 is used to map an image into a 
set of transform coefficients, which are then quantized and coded. For most natural 
images, a significant number of the coefficients have small magnitudes and can be 
coarsely quantized (or discarded entirely) with little loss of visual image quality.

JPEG

One of the most popular and comprehensive continuous tone, still frame compres-
sion standards is the JPEG (for Joint Photographic Experts Group) standard. In 
the JPEG baseline coding standard, which is based on the discrete cosine transform 
and is adequate for most compression applications, the input and output images are 
limited to 8 bits, while the quantized DCT coefficient values are restricted to 11 bits. 
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m = double(y.quality)/100*m;          % Get encoding quality.
xb = double(y.numblocks);             % Get x blocks.
sz = double(y.size);
xn = sz(2);                           % Get x columns.
xm = sz(1);                           % Get x rows.
x = huff2mat(y.huffman);              % Huffman decode.
eob = max(x(:));                      % Get end-of-block symbol

z = zeros(64,xb);   k = 1;            % Form block columns by copying
for j = 1:xb                          % successive values from x into
   for i = 1:64                       % columns of z, while changing
      if x(k) == eob                  % to the next column whenever
         k = k + 1;   break;          % an EOB symbol is found.
      else
         z(i,j) = x(k);
         k = k + 1;
      end
   end
end

z = z(rev,:);                                  % Restore order
x = col2im(z,[8 8],[xm xn],'distinct');        % Form matrix blocks

fun = @(block_struct)denorm(block_struct.data,m);
x = blockproc(x,[8 8],fun);                    % Denormalize DCT
t = dctmtx(8);                                 % Get 8 x 8 DCT matrix
fun = @(block_struct)iblkdct(block_struct.data,t);
x = blockproc(x,[8 8],fun);                    % Compute block DCT-1
x = x + double(2^(y.bits - 1));                % Level shift
if y.bits <= 8
    x = uint8(x);
else
    x = uint16(x);
end

% Inverse DCT matrix multiplications
function y = iblkdct(x,a)
y = a'*x*a;
 
% Denormalize DCT
function y = denorm(x,m)
y = x.*m;

EXAMPLE 9.8 :  JPEG compression.

Figures 9.13(a) and (b) show two JPEG coded and decoded approximations of the monochrome image 
in Fig. 9.4(a). The first result, which has a compression ratio of about 18 to 1, was obtained by direct 
application of the normalization array in Fig. 9.12(a). The second, which compresses the original image 
by a ratio of 42 to 1, was generated by multiplying (scaling) the normalization array by 4.

The differences between the original image of Fig. 9.4(a) and the reconstructed images of Figs. 9.13(a) 
and (b) are shown in Figs. 9.13(c) and (d) respectively. Both images were scaled to make the errors more 
visible. The corresponding rms errors are 2.4 and 4.4 gray levels. The effect of these errors on picture 
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FIGURE 9.13
Left column:  
Approximations 
of Fig. 9.4 using 
the DCT and 
normalization  
array of 
Fig. 9.12(a). Right 
column: Similar 
results with the 
normalization 
array scaled by a 
factor of 4.
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quality is more visible in the zoomed images of Figs. 9.13(e) and (f). These images show a magnified sec-
tion of Figs. 9.13(a) and (b), respectively, and allow a better assessment of the subtle differences between 
the reconstructed images. [Figure 9.4(b) shows the zoomed original.] Note the blocking artifact that is 
present in both zoomed approximations.

We generated the images in Fig. 9.13 and the numerical results just discussed were generated with the 
following sequence of commands:

>> f = imread('tracy.tif');
>> c1 = im2jpeg(f);
>> f1 = jpeg2im(c1);
>> imshow(f1);
>> imratio(f,c1)
ans =
    18.4116
>> compare(f,f1,3)
ans =
    2.4329
>> c4 = im2jpeg(f,4);
>> f4 = jpeg2im(c4);
>> figure; imshow(f4);
>> imratio(f,c4)
ans =
    43.3153
>> compare(f,f4,3)
ans =
    4.4052

These results differ from those that would be obtained in a real JPEG baseline coding environment 
because im2jpeg approximates the JPEG standard’s Huffman encoding process. Two principal differ-
ences are noteworthy: (1) In the standard, all runs of coefficient zeros are Huffman coded, while im2jpeg 
only encodes the terminating run of each block; and (2) the encoder and decoder of the standard are 
based on a known (default) Huffman code, while im2jpeg carries the information needed to reconstruct 
the encoding Huffman code words on an image to image basis. Using the standard, the compressions 
ratios noted above would be approximately doubled.

JPEG 2000

Like the initial JPEG release of the previous section, JPEG 2000 is based on the idea 
that the coefficients of a transform that decorrelates the pixels of an image can be 
coded more efficiently than the original pixels themselves. If the transform’s basis 
functions—wavelets in the JPEG 2000 case—pack most of the important visual 
information into a small number of coefficients, the remaining coefficients can be 
quantized coarsely or truncated to zero with little loss of image quality.

Figure 9.14 shows a simplified JPEG 2000 coding system (absent several optional 
operations). The first step of the encoding process, as in the original JPEG standard, 
is to level shift the pixels of the image by subtracting 2 1m- , where 2m is the number of 
gray levels in the image. The one-dimensional discrete wavelet transform of the rows 
and the columns of the image are then be computed. For error-free compression, 
the transform used is biorthogonal, with a 5-3 coefficient scaling and wavelet vector. 
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for j = 1:length(zi)
   c = [c r(i:zi(j) - 1) zeros(1,runs(r(zi(j) + 1)))];
   i = zi(j) + 2;
end

zi = find(r == eoc);                % Undo terminating zero run
if length(zi) == 1                  % or last non-zero run.
   c = [c r(i:zi - 1)];
   c = [c zeros(1,cl - length(c))];
else
   c = [c r(i:end)];
end

% Denormalize the coefficients.
c = c + (c > 0) - (c < 0);
for k = 1:n
   qi = 3*k - 2;
   c = wavepaste('h',c,s,k,wavecopy('h',c,s,k)*q(qi));
   c = wavepaste('v',c,s,k,wavecopy('v',c,s,k)*q(qi + 1));
   c = wavepaste('d',c,s,k,wavecopy('d',c,s,k)*q(qi + 2));
end
c = wavepaste('a',c,s,k,wavecopy('a',c,s,k)*q(qi + 3));

% Compute the inverse wavelet transform and level shift.
x = waveback(c,s,'jpeg9.7',n);
x = uint8(x + 128);

The principal difference between the wavelet-based JPEG 2000 system of Fig. 9.14 
and the DCT-based JPEG system of Fig. 9.11 is the omission of the latter’s subimage 
processing stages. Because wavelet transforms are both computationally efficient 
and inherently local (i.e., their basis functions are limited in duration), subdivision 
of the image into blocks is unnecessary. As you will see in the following example, the 
removal of the subdivision step eliminates the blocking artifact that characterizes 
DCT-based approximations at high compression ratios.

EXAMPLE 9.9 :  JPEG 2000 compression.

Figure  9.16 shows two JPEG 2000 approximations of the monochrome image in Figure  9.4(a). Fig-
ure 9.16(a) was reconstructed from an encoding that compressed the original image by 42 1: . Fig. 9.16(b) 
was generated from an 88 1:  encoding. The two results were obtained using a five-scale transform and 
implicit quantization with m0 8=  and e0 8 5= .  and 7, respectively. Because im2jpeg2k only approxi-
mates the JPEG 2000’s bit-plane–oriented arithmetic coding, the compression rates just noted differ 
from those that would be obtained by a true JPEG 2000 encoder. In fact, the actual rates would increase 
by approximately a factor of 2.

Because the 42 1:  compression of the results in the left column of Fig. 9.16 is identical to the compres-
sion achieved for the images in the right column of Fig. 9.13 (Example 9.8), Figs. 9.16(a), (c), and (e) can 
be compared—both qualitatively and quantitatively—to the JPEG results of Figs. 9.13(b), (d), and (f). A 
visual comparison reveals a noticeable decrease of error in the wavelet-based JPEG 2000 images. In fact, 
the rms error of the JPEG 2000–based result in Fig. 9.16(a) is 3.6 gray levels, as opposed to 4.4 gray lev-
els for the corresponding transform-based JPEG result in Fig. 9.13(b). Besides decreasing reconstruc-
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FIGURE 9.16
Left column:  
JPEG 2000  
approximations of  
Fig. 9.4 using five 
scales and implicit 
quantization 
with m0 8=  and 
e0 8 5= . . Right 
column: Similar  
results with e0 7= .
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9.6	VIDEO COMPRESSION

A video is a sequence of images, called video frames, in which each frame is a mono-
chrome or full-color image. As might be expected, the redundancies introduced in 
Sections  9.2 though 9.4 are present in most video frames—and the compression 
methods previously examined, as well as the compression standards presented in 
Section  9.5, can be used to process the frames independently. In this section, we 
introduce a redundancy that can be exploited to increase the compression that indi-
vidual frame processing would yield. Called temporal redundancy, it is caused by the 
correlations between pixels in adjacent frames.

In the material that follows, we present both the fundamentals of video compres-
sion and the principal Image Processing Toolbox functions that are used for the pro-
cessing of image sequences—whether the sequences are time-based video sequences 
or spatial-based sequences like those generated in magnetic resonance imaging. 
Before continuing, however, we note that the uncompressed video sequences that 
are used in our examples are stored in multiframe TIFF files. A multiframe TIFF can 
hold a sequence of images that may be read one at a time using the following imread 
syntax

imread('filename.tif',idx)

where idx is the integer index of the frame in the sequence to be read. To write 
uncompressed frames to a multiframe TIFF file, the corresponding imwrite syntax 
is

imwrite(f,'filename','Compression','none','WriteMode',mode)

where mode is set to 'overwrite' when writing the initial frame and to  
'append' when writing all other frames. Note that unlike imread, imwrite does not 
provide random access to the frames in a multiframe TIFF; frames must be written 
in the time order in which they occur.

REPRESENTING VIDEO IN MATLAB

There are two standard ways to represent video data in the MATLAB workspace. 
In the first, which is also the simplest, each frame of video is concatenated along 
the fourth dimension of a four dimensional array. The resulting array is called a 
MATLAB image sequence and its first two dimensions are the row and column 
dimensions of the concatenated frames. The third dimension is 1 for monochrone 
(or indexed) images and 3 for full-color images; the fourth dimension is the number 
of frames in the image sequence. Thus, the following commands read the first and 
last frames of the 16-frame multiframe TIFF, 'shuttle.tif', and build a simple 
two-frame 256 480 1 2* * *  monochrome image sequence s1:

>> i = imread('shuttle.tif',1);
>> frames = size(imfinfo('shuttle.tif'),1);
>> s1 = uint8(zeros([size(i) 1 2]));
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seq2tifs(s,'filename.tif')

where s is a MATLAB image sequence and 'filename.tif' is a multiframe TIFF 
file. To perform similar conversions with MATLAB movies, use

m = tifs2movie('filename.tif')

and

movie2tifs(m,'filename.tif')

where m is MATLAB movie. Finally, to convert a multiframe TIFF to an  
Advanced Video Interleave (AVI) file for use with the Windows Media Player app, 
use tifs2movie in conjunction with MATLAB's VideoWriter function:

v = VideoWriter('filename.avi');
open(v);
writeVideo(v,tifs2movie('filename.tif'));
close(v);

where 'filename.tif' is a multiframe TIFF and 'filename.avi' is the name of 
the generated AVI file. To view a multiframe TIFF on the toolbox movie player, 
combine tifs2movie with function implay:

implay(tifs2movie('filename.tif'))

TEMPORAL REDUNDANCY AND MOTION COMPENSATION

Like spatial redundancies, which result from correlations between pixels that are 
near to one another in space, temporal redundancies are the result of correlations 
between pixels that are close to one another in time. As you will see in the fol-
lowing example, which parallels Example 9.5 of Section 9.3, both redundancies are 
addressed in much the same way.

EXAMPLE 9.10 :  Temporal redundancy.

Figure 9.19(a) shows the second frame of the multiframe TIFF whose first and last frames are depicted 
in Fig. 9.18. As was noted in Sections 9.2 and 9.3, the spatial and coding redundancies that are present 
in a conventional 8-bit representation of the frame can be removed through the use of Huffman and 
linear predictive coding:

>> f2 = imread('shuttle.tif',2);
>> ntrop(f2)

seq2tifs

tifs2movie

movie2tifs

VideoWriter

For more information on 
the parameters used in 
VideoWriter, type  
>> help VideoWriter.
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FIGURE 9.18
A montage of 
two video frames. 
(Original images  
courtesy of 
NASA.)
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FIGURE 9.19 (a) The second frame of a 16-frame video of the space shuttle in orbit around the Earth. The first and last 
frames are shown in Fig. 9.18. (b) The histogram of the prediction error resulting from the previous frame prediction 
in Example 9.9. (Original image courtesy of NASA.)
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ans =
    6.3368
>> compare(imread('shuttle.tif',8),imread('ss2.tif',8))
ans =
   11.8650
>> compare(imread('shuttle.tif',16),imread('ss2.tif',16))
ans =
   14.2251

Note that cv2tifs (the decompression function) is almost 9 times faster than tifs2cv (the compres-
sion function)—only 0.6175 seconds as opposed to 4.8599 seconds. This is as should be expected, because 
the encoder not only performs an exhaustive search for the best motion vectors, (the decoder merely 
uses those vectors to generate predictions), but decodes the encoded prediction residuals as well. Note 
also that the rms errors of the reconstructed frames increase from only 6 gray levels for the first frame 
to almost 15 gray levels for the final frame. Figures 9.22(b) and (c) show an original and reconstructed 
frame in the middle of the video (i.e., at frame 8). With an rms error of about 12 gray levels, the loss of 
detail—particularly in the clouds in the upper left and the rivers on the right side of the landmass,—is 
clearly evident. Finally, we note that with a compression of 16 67 1. : , the motion compensated video uses 
only 6% of the memory required to store the original uncompressed multiframe TIFF.

Summary
The material in this chapter introduces the fundamentals of digital image compression through the 
removal of coding redundancy, spatial redundancy, temporal redundancy, and irrelevant information. 
MATLAB routines that attack each of these redundancies—and extend the Image Processing Tool-
box—are developed. Both still frame and video  coding considered. Finally, an overview of the popular 
JPEG and JPEG 2000 image compression standards is given. For additional information on the removal 
of image redundancies—both techniques that are not covered here and standards that address specific 
image subsets (like binary images)—see Chapter 8 of the fourth edition of Digital Image Processing by 
Gonzalez and Woods [2018].

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

9.1	 If n1 and n2 denote the number of bits in two representations of the same image, the relative data  
redundacy, R, of the representation with n1 bits is

R
n n

n
= 1 2

1

−

and can be computed using the compression ratio defined by Eq. (9-1) and returned by function imratio 
of Section 9.1. In the context of digital image compression, n1 is normally the number of bits needed to 
represent an image as a 2-D array of intensity values.

(a)	 Write a function r=redundancy(i1,i2) that calls function cr=imratio(i1,i2) and uses the re-
turned value, cr, to compute the relative data redundancy, r, of i1 with respect to i2.
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10 Morphological Image 
Processing

The word morphology commonly denotes a branch of biology that deals with the form and structure 
of animals and plants. We use the same word here in the context of mathematical morphology as a tool 
for extracting image components that are useful in the representation and description of region shape, 
such as boundaries, skeletons, and the convex hull of a region. We are interested also in morphological 
techniques for pre- or postprocessing, such as morphological filtering, thinning, and pruning.

The material in this chapter begins a transition from image processing methods, whose inputs and 
outputs are images, to image analysis methods, whose outputs attempt to describe the contents of an 
input image. Morphology is a cornerstone of the mathematical set of tools underlying the development 
of techniques that extract “meaning” from an image. Other approaches are developed and applied in 
the remaining chapters of the book.

Function Developed in this Chapter:
conwaylaws applies Conway’s genetic laws to 
a single pixel and its 3 3×  neighborhood. The 
function is based on Conway’s Game of Life.

Morphology: relating to or concerned with form and structure.
 Merriam-Webster Dictionary
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10.1	 PRELIMINARIES

In this section we introduce some basic concepts from set theory and discuss the 
application of MATLAB’s logical operators to binary images.

SOME BASIC CONCEPTS FROM SET THEORY

Let Z be the set of real integers. The sampling process used to generate digital images 
may be viewed as partitioning the xy-plane into a grid with the coordinates of the 
center of each grid being a pair of elements from the Cartesian product, Z2 .† In the 
terminology of set theory, a function f x y( , ) is said to be a digital image if the image 
coordinates, ( , ),x y  are integers from Z2 and f is a mapping that assigns an intensity 
value (that is, a real number from the set of real numbers, R) to each distinct pair 
of coordinates. If the elements of R are integers also (as is usually the case in this 
book), a digital image then becomes a two-dimensional function whose coordinates 
and amplitude (i.e., intensity) values are integers.

Let A be a set in Z2 , the elements of which are pixel coordinates ( , )x y . We denote 
the condition that w = ( , )x y  is an element of A using the notation

	 w H A 	 (10-1)

Similarly, if w is not an element of A, we write

	 w x A 	 (10-2)

A set B of pixel coordinates that satisfies a particular condition is written as

	 B = { }w condition 	 (10-3)

For example, the set of all pixel coordinates that do not belong to set A, denoted Ac , 
is given by

	 A Ac = { }w w x 	 (10-4)

This set is called the complement of A (see Fig. 10.1).
The union of two sets, A and B, denoted by

	 C A B= ´ 	 (10-5)

is the set of all elements that belong to A, to B, or to both. Similarly, the intersection 
of sets A and B, denoted by

	 C A B= ¨ 	 (10-6)

is the set of all elements that belong to both A and B.

† The Cartesian product of a set of integers, Z, is the set of all ordered pairs of elements ( , )z zi j  with zi and zj being 
integers from Z. It is customary to denote the Cartesian product by Z2.
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10.2	DILATION AND EROSION

The operations of dilation and erosion are fundamental in morphological image pro-
cessing. Many of the algorithms presented later in this chapter are based on these 
two operations.

DILATION

Dilation is an operation that “grows” or “thickens” objects in an image. The spe-
cific manner and extent of this thickening is controlled by a shape referred to as a  
structuring element (SE). Figure 10.4 illustrates how dilation works. Figure 10.4(a) 
shows a binary image containing a rectangular object. Figure 10.4(b) is a structuring 
element—a five-pixel-long diagonal line in this case. Graphically, SEs can be repre-
sented either by a matrix of 0s and 1s or as a set of foreground (1-valued) pixels, as in 
Fig. 10.4(b). We use both representations interchangeably in this chapter. Regardless 
of the representation, the origin of the structuring element must be clearly identified. 

ba c
ed f

FIGURE 10.3 (a) Binary image A. (b) Binary image B. (c) Complement Ac .  (d) Union A B´ . (e) Intersection A B¨ .
(f) Set difference A B− .
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Figure 10.4(b) indicates the origin of the structuring element using a black box. Fig-
ure 10.4(c) depicts dilation as a process that translates the origin of the structuring 
element throughout the domain of the image and checks to see where the element 
overlaps 1-valued pixels. The output image [Fig. 10.4(d)] is 1 at each location of the 
origin of the structuring element such that the structuring element overlaps at least 
one 1-valued pixel in the input image.

The location of the 
origin in a structuring 
element is important. 
Changing the location 
of the defined origin 
generally changes the 
result of a morphological 
operation.

a
c
d

b

FIGURE 10.4
Illustration of 
dilation.  
(a) Original image 
with rectangular 
object.  
(b) Structuring 
element with five 
pixels arranged 
in a diagonal line. 
The origin, or  
center, of the 
structuring  
element is shown 
with a dark  
border.  
(c) Structuring 
element  
translated to 
several locations 
in the image.  
(d) Output 
image. The green 
region shows the 
1-valued elements 
of the resulting 
dilation. The gray 
region shows the 
location of 1s in 
the original image.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1
1

1
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The structuring element translated to
these locations does not overlap any
1-valued pixels in the original image.

1 1 1 1 1 1 1
1 1 1 11 1 1
1 1 1 11 1 1 When the origin is

translated to the
“  ” locations, the
structuring element
overlaps some 1-valued
pixels in the original
image.

Origin
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>> E15 = imerode(A,se);
>> imshow(E15)

As Fig. 10.8(b) shows, these commands successfully removed the thin wires in the 
mask. Figure 10.8(c) shows what happens if we choose a structuring element that is 
too small:

>> se = strel('disk',5);
>> E5 = imerode(A,se);
>> imshow(E5)

Some of the wire leads were not removed in this case. Figure 10.8(d) shows what 
happens if we choose a structuring element that is too large:

>> E35 = imerode(A,strel('disk',35));
>> imshow(E35)

The wire leads were removed, but so were the border leads.

10.3	COMBINING DILATION AND EROSION

In image-processing applications, dilation and erosion are used most often in various 
combinations. In this section we consider three of the most common: opening, clos-
ing, and the hit-or-miss transformation. We also introduce lookup table operations.

OPENING AND CLOSING

The morphological opening of A by B, denoted A B� , is defined as the erosion of A 
by B, followed by the dilation of the result by B:

	 A B A B B� = ( )| { 	 (10-18)

An equivalent formulation of opening is

	 A B B B Az z� = ´ 8E1 2 @ 1 2 F 	 (10-19)

where ´ { }⋅  denotes the union of all sets inside the braces. This formulation has a 
simple geometric interpretation: A B�  is the union of all translations of B that fit 
entirely within A. Figure  10.9 illustrates this interpretation. Figure  10.9(a) shows 
a set A and disk-shaped structuring element B. Figure 10.9(b) shows some of the 
translations of B that fit entirely within A. The union of all such translations results 
in the two shaded regions in Fig. 10.9(c); these two regions are the complete opening. 
The white regions in this figure are areas where the structuring element could not 
fit completely within A and are therefore not part of the opening. Morphological 

imerode
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opening removes completely regions of an object that cannot contain the structuring 
element, smooths object contours, breaks thin connections [as in Fig. 10.9(c)], and 
removes thin protrusions.

The morphological closing of A by B, denoted A B� , is a dilation followed by an 
erosion:

	 A B A B B� = ( ){ | 	 (10-20)

Geometrically, A B�  is the complement of the union of all translations of B that do 
not overlap A. Figure 10.9(d) illustrates several translations of B that do not overlap 
A. By taking the complement of the union of all such translations, we obtain the 
shaded region if Fig. 10.9(e), which is the complete closing. Like opening, morpho-
logical closing tends to smooth the contours of objects. Unlike opening, however, 
closing generally joins narrow breaks, fills long thin gulfs, and fills holes smaller than 
the structuring element.

Opening and closing are implemented by Toolbox functions imopen and imclose. 
These functions have the syntax forms

C = imopen(A,B)

and

C = imclose(A,B)

where, for now, A is a binary image and B is a matrix of 0s and 1s that specifies the 
structuring element. A strel object from Table 10.2 can be used instead of B.

imopen

imclose

A

B Translates of B inside A

Translates of B
outside A

A B

A B

ba c
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FIGURE 10.9 Opening and closing as unions of translated structuring elements. (a) Set A and structuring element B. 
(b) Translations of B that fit entirely within set A. (c) The complete opening (shaded). (d) Translations of B outside 
the border of A. (e) The complete closing (shaded).
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Finally, we use logical indexing to eliminate the dilated pixels not belonging to the original binary image:

>> L3 = L2;
>> L3(~f) = 0;
>> g3 = label2rgb(L3,'jet',[.7 .7 .7],'shuffle');
>> figure, imshow(g3)

In Figure 10.19(e), the three object clusters have been identified and shown in three distinct colors.

10.5	MORPHOLOGICAL RECONSTRUCTION

Reconstruction is a morphological transformation involving two images and a struc-
turing element, instead of a single image and structuring element. One image, the 
marker, is the starting point for the transformation. The other image, the mask, con-
strains the transformation. The SE used defines connectivity. In this section we use 
8-connectivity (the default), which implies that B in the following discussion is a 
3 3*  matrix of 1s with the center defined at coordinates (2, 2). In this section we work 
with binary images and wait until Section 10.6 to discuss grayscale reconstruction.

If G is a mask and F is a marker, the reconstruction of G from F, denoted R FG ( ), 
is defined by the following iterative procedure:

1.	 Initialize h1 to be the marker image, F.
2.	 Create a structuring element using B = ones(3).
3.	 Repeat
	 h h B Gk k+

{ ¨1 = ( ) 	 (10-22)

until h hk k+1 = .
4.	 Let R F hG k( ) =

+1.

Marker F must be a subset of G—that is,

	 F G8 	

Figure  10.20 illustrates the preceding iterative procedure. Although this iterative 
formulation is useful conceptually, much faster computational algorithms exist. 
Toolbox function imreconstruct uses the “fast hybrid reconstruction” algorithm 
described in Vincent [1993]. The calling syntax for imreconstruct is

out = imreconstruct(marker,mask,conn)

where marker and mask are as defined above and conn specifies the connectivity, 
which, in this book, is either 4 or 8 (the default) .

OPENING BY RECONSTRUCTION

In morphological opening, erosion typically removes small objects and the subse-
quent dilation tends to restore the shape of the objects that remain. However, the 

This definition of  
reconstruction is based 
on dilation. It is possible 
to define a similar  
operation using erosion. 
The results are duals of 
each other with respect 
to set complementation.  
These concepts are 
developed in detail in 
Gonzalez and Woods 
[2018].

imreconstruct
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accuracy of this restoration depends on the similarity between the shapes and the 
structuring element. The method discussed in this section, opening by reconstruction, 
restores the original shapes of the objects that remain after erosion. The opening by 
reconstruction of an image G using structuring element B is defined as R G BG( ).|  
In words, we see that opening by reconstruction uses the original image as a mask 
and the eroded image as a marker. Thus, for an image G with white objects on a 
black background, we perform opening by reconstruction with function imrecon-
struct using the command

>> or = imreconstruct(imerode(G,B),G)

where the erosion is carried out until only the white regions of interest remain.
The closing by reconstruction of an image G using structuring element B is the 

dual of opening by reconstruction in the sense that we perform the same opera-
tions as we do for opening by reconstruction (using the complement of G) and then 
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FIGURE 10.20  Morphological reconstruction. (a) Original image (the mask). (b) Marker image. (c)–(e) Intermediate 
results after 100, 200, and 300 iterations, respectively. (f) Final result. (The outlines of the objects in the mask image 
are superimposed on (b)–(e) as visual references.)



628    Chapter 10  Morphological Image Processing

image in a reconstruction. The original image is used as the mask. Figure 10.28(a) 
shows an example of opening-by-reconstruction, obtained using the commands

>> f = imread('dowels.tif');
>> imshow(f)
>> se = strel('disk',5);
>> fe = imerode(f,se);
>> fobr = imreconstruct(fe,f);

Reconstruction can be used to clean up an image further by applying to it a clos-
ing-by-reconstruction. The technique is implemented by complementing an image, 
computing its opening-by-reconstruction, and then complementing the result. For 
example,

>> fobrc = imcomplement(fobr);
>> fobrce = imerode(fobrc,se);
>> fobrcbr = imcomplement(imreconstruct(fobrce, fobrc));
>> figure, imshow(fobrcbr)

Figure 10.28(b) shows the result of opening-by-reconstruction followed by closing-
by-reconstruction. Compare it with the open-close filter and alternating sequential 
filter results in Fig. 10.24.

EXAMPLE 10.12 :  Using grayscale reconstruction to remove a complex background.

Our concluding example uses grayscale reconstruction in several steps. The objective is to isolate the 
text out of the image of calculator keys shown in Fig. 10.29(a). The first step is to suppress the horizontal 
reflections on the top of each key. To accomplish this, we use the fact that these reflections are wider 
than any single text character in the image. We perform opening-by-reconstruction using a structuring 
element that is a long horizontal line:

>> f = imread('calculator.tif');
>> f_obr = imreconstruct(imerode(f, ones(1,71)),f);
>> f_o = imopen(f,ones(1,71)); % For comparison.

ba

FIGURE 10.28
(a) Opening-by-
reconstruction. 
(b) Opening-by-
reconstruction 
followed by 
closing-by- 
reconstruction.
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FIGURE 10.29  An application of grayscale reconstruction. (a)  Original image. (b)  Opening-by-reconstruction. 
(c) Opening. (d) Tophat-by-reconstruction. (e) Tophat. (f) Opening-by-reconstruction of (d) using a horizontal line. 
(g) Dilation of (f) using a horizontal line. (h) Final reconstruction result.

The opening-by-reconstruction (f_obr) is shown in Fig. 10.29(b). For comparison, Fig. 10.29(c) shows 
the standard opening (f_o). Opening-by-reconstruction did a better job of extracting the background 
between horizontally adjacent keys. Subtracting the opening-by-reconstruction from the original image 
is called tophat-by-reconstruction and is shown in Fig. 10.29(d):

>> f_thr = f − f_obr;
>> f_th = f − f_o;        % Or imtophat(f,ones(1,71))

Figure 10.29(e) shows the standard tophat computation (i.e., f_th).
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MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

10.1	 You are asked to design a system that performs erosion of binary images using rectangular structuring 
elements composed of all 1s. You are told that the system is to be implemented in a specialized processor 
whose only fast sliding neighborhood capability is ultra-fast 2D convolutions. The system can also perform 
other arithmetic and logical operations, but not on sliding neighborhoods.

(a)	 Use MATLAB’s function conv2 to write a custom function, imerodeconv, that simulates the system 
by using convolution to perform binary erosion. The inputs to your function are a binary image and 
an odd-sized rectangular structuring element of all 1s. The output should be the eroded image. For 
simplicity in your simulation, you may assume that the input image contains a single object. You may 
also ignore border effects.

(b) *	Read image letterA.tif and use a 9 9×  structuring element of 1s to erode it both with your func-
tion and with Toolbox function imerode. Compare the two results visually and numerically. They 
should be identical. (Hint: Note that the object in the image letterA.tif is black, whereas we expect 
it to be white for our definition of erosion to apply.)

Next, we suppress the vertical reflections on the right edges of the keys in Fig. 10.29(d). This is done 
by performing opening-by-reconstruction with a small horizontal line:

>> g_obr = imreconstruct(imerode(f_thr,ones(1,11)),f_thr);

In the result in Fig. 10.29(f), the vertical reflections are gone, but so are the thin, vertical-stroke char-
acters, such as the slash on the percent symbol and the “I” in ASIN. We make use of the fact that the 
characters that have been suppressed in error are very close spatially to other characters still present by 
first performing a dilation [Fig. 10.29(g)],

>> g_obrd = imdilate(g_obr,ones(1,21));

followed by a final reconstruction with f_thr as the mask and min(g_obrd,f_thr) as the marker:

>> f2 = imreconstruct(min(g_obrd,f_thr),f_thr);

Figure 10.29(h) shows the final result. Note that the shading and reflections on the background and keys 
were removed successfully.

Summary
The morphological concepts and techniques introduced in this chapter constitute a powerful set of tools 
for extracting features from an image. The basic operators of erosion, dilation, and reconstruction—
defined for both binary and grayscale image processing—can be used in combination to perform a wide 
variety of tasks. As shown in the following chapter, morphological techniques can be used for image 
segmentation. Moreover, they play an important role in algorithms for image description, as discussed 
in Chapter 13.
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11 Image Segmentation I
Edge Detection, Thresholding, and  
Region Detection

The material in the previous chapter began a transition from image processing methods whose inputs 
and outputs are images, to methods in which the inputs are images but the outputs are attributes 
extracted from those images. Segmentation, the subdivision of images into regions, is the next step 
in that direction. Most of the segmentation algorithms in this chapter are based on one of two basic 
properties of image intensity values: discontinuity and similarity. In the first category, the approach is 
to partition an image into regions based on abrupt changes in intensity, such as edges. Approaches in 
the second category are based on partitioning an image into regions that are similar according to a set 
of predefined criteria. Thresholding, region growing, and region splitting and merging are examples of 
methods in this category. We show that improvements in segmentation performance can be achieved 
by combining methods from distinct categories, such as techniques in which edge detection is combined 
with thresholding. We discuss also image region segmentation using clustering and superpixels. We also 
introduce graph cuts, an approach ideally suited for extracting the principal regions of an image. This is 
followed by a discussion of image segmentation based on morphological watersheds, an approach that 
combines several of the attributes of segmentation based on the techniques presented in the first part 
of the chapter.

Functions Developed in this Chapter:
otsuthresh computes Otsu’s optimum thresh-
old directly from an image histogram.

percentile2i computes an intensity value 
given a percentile.

i2percentile computes a percentile given 
an intensity value.

regiongrow segments an image using region 
growing. 

splitmerge segments an image using a split-
and-merge algorithm.

kmeansClustering implements the “stan-
dard” k-means algorithm.

imcircle creates a binary image of a circle.

imcolorcode converts specified intensity 
values in a grayscale image to RGB colors.

Divide and conquer.
Julius Caesar
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11.1	 BACKGROUND

Segmentation subdivides an image into disjoint regions. The level to which the 
subdivision is carried depends on the application. For example, in the automated 
inspection of electronic assemblies interest lies in analyzing images of the assemblies 
with the objective of determining the presence or absence of specific anomalies 
such as missing components or broken connection paths. There is no reason to carry 
segmentation past the level of detail required to identify these anomalies.

Segmentation of nontrivial images is one of the most difficult tasks in image 
processing. Segmentation accuracy determines the eventual success or failure of 
computerized image analysis procedures. For this reason, considerable care should 
be taken to improve the probability of an accurate segmentation. In some appli-
cations such as industrial inspection, at least some measure of control over the 
environment is possible at times. In others, as in remote sensing, user control over 
image acquisition is limited principally to the choice of imaging sensors.

The segmentation methods discussed in this chapter are based on one of two 
concepts: discontinuity and similarity. In the first category, the approach is to 
partition an image based on abrupt local changes in intensity values such as edges, 
that define boundaries between regions. The principal approaches in the second 
category are based on partitioning an image directly into regions whose pixels are 
similar according to a predefined set of criteria. 

Let R represent the entire spatial region occupied by an image. We can express 
segmentation mathematically as a process that partitions R into n subregions that 
satisfy the following properties:

(a)	 R Ri
i

n

=
=

.
1
∪

(b)	 Ri  is a connected set for i n= 0 1 2, , , , .…
(c)	 R Ri j� = ∅ for all valid values of i and j, i j≠ .

(d)	 Q Ri( ) = TRUE for i n= 0 1 2, , , , .…
(e)	 Q R Ri j�( ) = FALSE for all adjacent regions Ri  and Rj .

where Q Rk( ) is a logical predicate defined over the points in set Rk  and ∅  is the null, 
or empty, set. The symbols ´  and ¨  denote set union and intersection, respectively. 
Two regions Ri  and Rj  are said to be adjacent if their union forms a connected set. 
If the set formed by the union of two regions is not connected, the regions are said 
to be disjoint.

 Condition (a) indicates that the segmentation must be complete, in the sense 
that every pixel must be in a region. Condition (b) requires that points in a region 
be connected in some predefined sense (e.g., the points must be 8-connected). 
Condition (c) says that the regions must be disjoint. Condition (d) deals with the 
properties that must be satisfied by the pixels in a segmented region—for example, 
Q Ri( ) = TRUE if all pixels in Ri  have the same intensity. Finally, condition (e) 
indicates that two adjacent regions Ri  and Rj  must be different in the sense of 
predicate Q. In general, Q can be a compound predicate such as: Q Ri( ) = TRUE if 
the average intensity of the pixels in region Ri  is less than mi  AND if the standard 
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deviation of the intensity values in the region is greater than si , where mi  and si  are 
specified constants. 

In the sections that follow, we cover a number of segmentation approaches that 
are different in “philosophy,” but which result in segmented images that satisfy the 
conditions just stated. For example, edge detection is based on intensity discontinui-
ties, but its ultimate objective is to find region boundaries. We can think of connected 
edge pixels as forming disjoint regions and non-edge pixels as forming connected 
background regions. Ultimately, we can view segmentation as a pixel-labeling prob-
lem in which pixels are assigned to labeled classes, the union of which constitutes an 
image. Although segmentation is customarily treated as a separate topic, viewing it 
as a pixel classification problem casts it as a special case of the more general object 
recognition problem we will discuss in Chapter 14.

11.2	 EDGE DETECTION

The central idea of edge detection for segmentation is that objects (regions) can be 
differentiated from the background by detecting their boundaries. Edge detection 
is an appropriate method to use when the principal features distinguishing these 
boundaries from the background are intensity discontinuities. Such discontinuities 
are detected using first- and second-order derivatives. The first-order derivative of 
choice in image processing is the gradient, defined in Section 3.4. We repeat the 
pertinent equations here for convenience. The gradient of a 2-D function, f x y( , ), is 
defined as the vector
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The magnitude of this vector is
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This quantity is approximated sometimes by omitting the square-root operation:

	 f g gx y≈ 2 2
+ 	 (11-3)

or by using absolute values:

	 f g gx y≈ @ @ @ @+ 	 (11-4)

These approximations still behave as derivatives—they are zero in areas of constant 
intensity and their values are proportional to the degree of intensity change in areas 

We will discuss shortly 
how to compute gx  
and gy.
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SOBEL EDGE DETECTOR

First-order derivatives are approximated digitally by differences. The Sobel edge 
detector computes the gradient by using the following discrete differences between 
rows and columns of a 3 3×  neighborhood [see Fig. Fig. 11.2(a)]: 
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where the center pixel in each row or column is weighted by 2 to provide smoothing 
and the zs are intensities. We say that a pixel at location ( , )x y  is an edge pixel if 
f T≥  at that location, where T is a specified threshold.

From the discussion in Section 3.4, we know that Sobel edge detection can be 
implemented by using function imfilter to filter an image f with one of the kernels 
in Fig. 11.2(b), filtering f again with the other kernel, squaring the values of each 
filtered image, adding the two results, and computing their square root. Similar com-
ments apply to the second and third entries in Table 11.1. Function edge simply 
packages the preceding operations into one function call and adds other features 
such as accepting a threshold value or determining a threshold automatically. In 
addition, edge contains edge detection techniques that cannot be implemented 
directly using imfilter.

See Gonzalez and Woods 
[2018] for an explanation 
of how the center weight 
of 2 provides image 
smoothing. 
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FIGURE 11.2
Some of the edge 
kernels used in 
function edge. 
The negative of 
these kernels 
are often used in 
practice. Either 
approach is 
correct, provided 
that it is used 
and interpreted 
consistently. See 
Project 11.3 for 
a set of kernels, 
called the Kirsch 
compass kernels, 
that can detect 
additional edge 
directions.
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others in Fig. 11.2 due in part to its limited functionality (e.g., it is not symmetric and 
cannot be generalized to detect edges that are multiples of 45°). However, it still is 
used in hardware implementations where simplicity and speed are dominant factors. 
To prevent default edge thinning, include 'nothinning' in the function call. 

LAPLACIAN OF A GAUSSIAN (LOG) DETECTOR

Consider the Gaussian function

	 G x y e
x y

( , ) =
-

+
2 2

22s

where s  is the standard deviation. As you know from Chapter 3, this is a smooth-
ing function that blurs an image when convolved with it. The degree of blurring is 
determined by the value of s. 

The Laplacian of this function (see Gonzalez and Woods [2018]) is
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For obvious reasons this function is called the Laplacian of a Gaussian (LoG). 
Because the second derivative is a linear operation, convolving (filtering) an image 
with 2G x y( , ) is the same as convolving the image with the smoothing function first 
and then computing the Laplacian of the result. This is the key concept underlying 
the LoG detector. We convolve the image with 2G x y( , ) knowing that it has two 
effects: It smooths the image (thus reducing noise) and it computes its Laplacian, 
which yields a double-edge image. Locating edges then consists of finding the zero 
crossings between the double edges.

The general calling syntax for the LoG detector is

[g,t] = edge(f,'log',T,sigma)

where sigma is the standard deviation and the other parameters are as we explained 
previously. The default value for sigma is 2. As before, function edge ignores 
any edges weaker than T. If T is not provided (or is empty, []), edge chooses the 
threshold automatically. Setting T to 0 produces edges that are closed contours, a 
familiar characteristic of the LoG method.

ZERO-CROSSINGS DETECTOR

This detector is based on the same concept as the LoG method, but the convolution 
is carried out using a specified kernel, h. The calling syntax is

[g,t] = edge(f,'zerocross',T,h)

The other parameters are as explained for the LoG detector.



11.2  Edge Detection    641

CANNY EDGE DETECTOR

The Canny detector (Canny [1986]) is the most powerful edge detector in function 
edge. The method can be summarized as follows:

1.	 The image is smoothed using a Gaussian filter with a specified standard 
deviation, s, to reduce noise.

2.	 The local gradient [ ]g gx y
2 2 1

2+  and edge direction tan ( )-1 g gy x  are computed 
at each point. Any of the first three techniques in Table 11.1 can be used 
to compute the derivatives. An edge point is defined to be a point whose 
strength is locally maximum in the direction of the gradient.

3.	 The edge points determined in (2) produce ridges in the gradient magnitude 
image. The algorithm then tracks along the top of the ridges and sets to zero 
all pixels that are not actually on the ridge top, giving a thin line in the output 
(this process is called nonmaximal suppression). The ridge pixels are then 
thresholded by hysteresis thresholding, which is based on using two thresh-
olds, T1  and T2,  with T T1 2< .  Ridge pixels with values greater than T2  are 
said to be “strong” edge pixels; ridge pixels with values between T1  and T2  
are said to be “weak” edge pixels; and ridge pixels with values less than T1  
are not considered to be edge pixels.

4.	 Finally, the algorithm performs edge linking by incorporating into an edge 
the weak pixels that are 8-connected to the strong pixels on that edge.

The syntax for the Canny edge detector is

[g,t] = edge(f,'canny',T,sigma)

where T = [T1,T2] is a vector containing the threshold values explained in step 3. 
Both values must be in the range [0, 1]. If a scalar is specified, it is used as the high 
threshold and the low threshold is computed as 0.4*high_threshold. Finally, 
sigma is the standard deviation of the smoothing filter; it defaults to sqrt(2). If 
t is included in the output argument, it is as a two-element vector containing the 
two threshold values used by the algorithm. The rest of the syntax is as explained 
for the other methods, including the automatic computation of thresholds if T is not 
supplied.

APPROXIMATE CANNY EDGE DETECTOR

This is an approximate version of the Canny edge detection method that provides 
faster execution time at the expense of less precise detection. The syntax is

g = edge(f,'approxcanny',T)

where T is as explained for the Canny detector. Unlike all syntax forms discussed 
thus far, this syntax for edge does not output the threshold t. 
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>> t1
t1 =
    0.0373

We had to increase the threshold to 0.10 to get a result in which the strong vertical edges are predominant. 
We obtained Fig. 11.4(c) using the following commands:

>> gv2 = edge(f,'sobel',0.10,'vertical','nothinning');
>> figure, imshow(gv2) % Fig. 11.4(c).

Using the same value of T in the commands

>> gboth = edge(f,'sobel',0.10,,'nothinning');
>> figure, imshow(gboth) % Fig. 11.4(d).

resulted in Fig. 11.4(d), which shows predominantly vertical and horizontal edges.
Function edge does not compute Sobel edges at ± °45 . To compute such edges we use the kernels in 

Fig. 11.3 and function imfilter. For example, we generated Fig. 11.4(e) using the commands

>> wpos45 = [0 1 2; -1 0 1; -2 -1 0]; % From Fig. 11.3(a).
>> gpos45 = imfilter(f,wpos45,'replicate');
>> gpos45 = gpos45 >= 0.4*max(abs(gpos45(:)));
>> figure, imshow(gpos45) % Fig. 11.4(e)

The third step thresholded the image after it was filtered. To simplify threshold selection, we used a 
fraction of the maximum absolute value in the filtered image. In this case using 40% of the maximum 
value extracted the edges oriented predominantly at +45°. A similar set of commands using the same 
threshold and the kernel in Fig. 11.3(b) resulted in Fig. 11.4(f), whose principal edge is in the −45° 
direction.

EXAMPLE 11.2 : 	Comparison of the Sobel, LoG, and Canny edge detectors.

In this example we compare the relative performance of the Sobel, LoG, and Canny edge detectors. 
Our objective is to produce a clean edge map by extracting the principal edge features of the building 
image in Fig. 11.4(a), while reducing “irrelevant” detail such as the fine texture in the brick walls and 
tile roof. The principal features of interest in this discussion are the edges forming the building corners, 
the windows, the structure framing the entrance, the entrance itself, the roof line, and the concrete band 
surrounding the building about two-thirds of the distance above ground level.

The top row in Fig. 11.5 shows the edge images obtained using the default syntax for the 'sobel', 
'log', and 'canny' options: 

>> f = tofloat(imread('building.tif'));
>> [gSobel_default,ts] = edge(f,'sobel');
>> imshow(gSobel_default) % Fig. 11.5(a).
>> [gLoG_default,tlog] = edge(f,'log');  
>> figure, imshow(gLoG_default) % Fig. 11.5(b).
>> [gCanny_default,tc] = edge(f,'canny');
>> figure, imshow(gCanny_default) % Fig. 11.5(c).
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The defaults values of sigma for the 'log' and 'canny' options are 2.0 and sqrt(2), respectively. 
The values of the thresholds in the output arguments of the preceding computations were ts = 0.074, 
tlog = 0.0020, and tc = [0.019, 0.047]. None of the default results shown in the first row of Fig. 11.5, 
especially the 'log' and 'canny' images, came close to meeting our objective of producing clean edge 
maps.

Starting with the default values, we varied the parameters in each option interactively to bring out the 
principal features mentioned earlier, while reducing irrelevant detail as much as possible. We obtained 
the results in the bottom row of Fig. 11.5 using the following commands:

>> gSobel_best = edge(f,'sobel',0.05); % Fig. 11.5(d).  
>> gLoG_best = edge(f,'log',0.003,2.25); % Fig. 11.5(e).
>> gCanny_best = edge(f,'canny',[0.04 0.16],1.5); % Fig. 11.5(f).

As Fig. 11.5(d) shows, the Sobel result deviated even more from our objective when we tried to detect 
both edges of the concrete band and the left edge of the entrance. The LoG result in Fig. 11.5(e) is 

ba c
ed f  

FIGURE 11.5 Top row: Default results for the Sobel, LoG, and Canny edge detectors. Bottom row: Results obtained  
interactively to bring out the principal features in the original image of Fig. 11.4(a), while reducing  irrelevant detail. 
The Canny edge detector produced the best result.
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11.3	 THRESHOLDING

Because of its intuitive properties and simplicity, image thresholding enjoys a central 
position in applications of image segmentation. We introduced basic thresholding in 
Section 2.7 and we have used it in various discussions in the preceding chapters. In 
this section, we discuss ways of choosing the threshold value automatically and pres-
ent a method for varying the threshold based on local image properties.

FOUNDATION

Suppose that the intensity histogram in Fig. 11.10(a) corresponds to an image, f x y( , ), 
composed of light objects on a dark background, in which objects and background 
pixels have intensity levels grouped into two dominant modes. One obvious way to 
extract the objects from the background is to select a threshold, T, that separates 
these modes. Then, any image point ( , )x y  with the property f x y T( , ) >  is called 
an object (or foreground) point; otherwise, the point is called a background point 
(the reverse holds for dark objects on a light background). The thresholded (binary) 
image, g x y( , ), is defined as

	 g x y
a f x y T

b f x y T
( , )

( , )

( , )
=

>



if 

if ≤
	 (11-10)

Pixels labeled a correspond to objects and pixels labeled b correspond to the back-
ground. Typically, a = 1 (white) and b = 0 (black) by convention, but any two distinct 
values are acceptable, provided that you are consistent.

When T is a constant applicable over an entire image, the preceding equation 
is referred to as global thresholding. When the value of T at any point ( , )x y  in an 
image depends on properties of a neighborhood of ( , )x y  (e.g., the neighborhood 
average intensity), we use the term variable thresholding. The terms adaptive, local, 
or regional thresholding are used also to denote variable thresholding. If T depends 
on the spatial coordinates themselves, variable thresholding is often referred to as 
dynamic thresholding. Use of these terms is not universal and you are likely to see 
them used interchangeably in the literature on image processing.

We use the terms object 
points and foreground 
points interchangeably.

T T1 T2

ba

FIGURE 11.10
Intensity  
histograms that 
can be partitioned 
(a) by a single 
threshold and  
(b) by two 
thresholds. These 
are bimodal 
and trimodal 
histograms, 
respectively.
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Toolbox function graythresh computes Otsu’s threshold. It’s syntax is

[T,SM] = graythresh(f)

where f is the input image, T is the resulting Otsu threshold normalized to the range 
[0,  1], and SM is the separability measure defined in Eq. (11-19). After the threshold 
is computed, the image is segmented using function imbinarize, as explained in the 
previous section.

EXAMPLE 11.6 : 	Image segmentation using Otsu’s method.

We begin by examining the performance of Otsu’s method when applied to the fin-
gerprint image from Example 11.5:

>> f = imread('fingerprint.tif');
>> [T,SM] = graythresh(f);
>> T
T =
    0.4902
>> SM
SM =
    0.9437
>> T*255
ans =
    125

This threshold has nearly the same value as the threshold obtained using the basic 
global thresholding algorithm, so we would expect the same segmentation result. 
The high value of SM indicates a high degree of separability of the intensity values 
into two classes.

Figure 11.12(a) presents us with a more difficult segmentation task. This is an 
image of polymersome cells and our objective is to segment from the background 
the boundaries of the cells, which are the brightest regions in the image. The image 
histogram, shown Fig. 11.12(b), is far from bimodal so we would expect the simple 
algorithm from the last section to have difficulty in achieving a suitable segmentation. 
The image in Fig. 11.12(c) confirms this. It was obtained using the same procedure 
we used to obtain Fig. 11.11(c). The algorithm converged in one iteration and yielded 
a threshold, T, equal to 169.4:

>> f = imread('polymercell.tif');
>> figure, imshow(f) % Fig. 11.12(a).
>> figure, imhist(f) % Fig. 11.12(b).
>> g = imbinarize(f,169.4/255);
>> figure, imshow(g) % Fig. 11.12(c).

As Fig. 11.12(c) shows, the segmentation was unsuccessful.
Next we segment the image using Otsu’s method:

>> [T,SM] = graythresh(f);
>> SM

graythresh

Polymersomes are cells 
artificially engineered 
using polymers.  
Polymersomes are 
invisible to the human 
immune system and can 
be used, for example, to 
deliver medication to 
targeted regions of the 
body.
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SM =
    0.4662
>> T*255
ans =
   181
>> g = imbinarize(f,T);
>> figure, imshow(g) % Fig. 11.12(d).

As Fig. 11.12(d) shows, the segmentation using Otsu’s method was effective. The 
borders of the polymersome cells were extracted from the background with reasonable 
accuracy,  despite the relatively low value of the separability measure.

All the parameters of the between-class variance are based on the image histogram. 
As you will see shortly, there are applications in which it is advantageous to be able 
to compute Otsu’s threshold using a given image histogram, rather than having to 
compute it from the image as function graythresh does. The following custom 
function computes T and SM directly from a given image histogram.

0 63 127 191 255
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FIGURE 11.12
(a) Image  
image of  
polymersome 
cells.  
(b) Histogram 
(high values were 
clipped to  
highlight details in 
the lower values).  
(c) Segmentation 
result using the 
basic global  
algorithm.  
(d) Result 
obtained using 
Otsu’s method. 
(Original image  
courtesy of 
Professor Daniel 
A. Hammer,  the 
University of 
Pennsylvania.)
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We can enhance the power of local thresholding significantly by adding logical 
predicates to the method. For example, we can define local thresholding in terms of 
a logical AND as follows:

	 g x y
f x y a f x y bmSxy( , )
( , ) ( , )

=
> >






1 if  AND  

0 otherwise

s
	 (11-28)

where m is either the local or the global mean. You will write and test a local thresh-
olding function based on these concepts in Project 11.6.

11.4	 REGION-BASED SEGMENTATION

In Section 11.2 we performed image segmentation based on intensity discontinui-
ties and in Section 11.3 we did it by comparing pixel values against one or more 
thresholds. In this section we segment an image into regions based on properties of 
the regions themselves. 

REGION GROWING

As its name implies, region growing is a procedure that groups pixels or subregions 
into larger regions based on predefined criteria for growth. The approach is to start 
with a set of seed points and from these grow regions by appending to each seed 
those neighboring pixels that have predefined properties similar to the seed, such as 
specific ranges of gray level or color.

Selecting a set of one or more seed points often can be based on the nature of the 
problem, as we will show later in Example 11.10. When a priori information is not 
available, one procedure is to compute at every pixel the same set of properties that 
ultimately will be used to assign pixels to regions during the growing process. If the 
result of these computations shows clusters of values, the centroids of these clusters 
can be used as seeds.

The selection of similarity criteria depends on the application. For example, the 
analysis of land-use satellite imagery depends heavily on the use of multispectral 
bands such as color and infrared bands. This problem would be significantly more 
difficult, or even impossible, to tackle without the inherent information available in 
those bands. When the images are monochrome, region analysis must be carried out 
with a set of descriptors based on intensity levels (such as moments of the intensity 
histogram) and spatial properties (such as connectivity). We will discuss descriptors 
for region characterization in Chapter 13.

Using intensity alone can yield misleading results if connectivity (adjacency) 
information is not used in the region-growing process. For example, visualize a 
random spatial arrangement of pixels with only three distinct intensity values. 
Grouping pixels with the same intensity level to form a “region” without taking 
connectivity into consideration would yield a segmentation result that is meaningless 
in the context of this discussion.

Another problem in region growing is the formulation of a stopping rule. Growing 
a region should stop when no more pixels satisfy the criteria for inclusion in a region. 
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would be the best choice because it is the solid region with the most detail. An important aspect of the 
method just illustrated is its ability to “capture” in function predicate information about a problem 
domain that can help in segmentation. In the next chapter we will study segmentation methods that can 
give an even better segmentation of Fig. 11.22(a). 

REGION SEGMENTATION USING K-MEANS CLUSTERING

The objective of clustering is to partition a set, Z, of vector observations into a 
specified number, k, of clusters. In k-means clustering, each observation is assigned 
to the cluster whose mean is nearest. A k-means algorithm is an iterative procedure 
that successively refines the means until convergence is achieved.

Let Z N= { }z z z1 2, , ,…  denote a set of n-dimensional vector observations, often 
called samples:

ba c
ed f

FIGURE 11.22 Image segmentation using a split-and-merge algorithm. (a) Original image of size 566 566×  pixels.  
(b) through (f) Results of segmentation using function splitmerge with values of mindim equal to 64, 32, 16, 8,  
and 4, respectively. (Original image courtesy of NASA.)
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This algorithm is known to converge to a local minimum in a finite number of 
iterations. However, it is not guaranteed to yield the global minimum required to 
minimize Eq. (11-30). The result at convergence in general depends on the initial 
values chosen for mi. An approach used frequently is to specify the initial means 
as k randomly chosen samples from the given sample set and to run the algo-
rithm several times, using a new random set of initial samples each time. This is 
to test the “stability” of the solution. Topics related to the best way to initialize a 
k-means algorithm and to reduce the number of computations are numerous, but 
the “nuances” of these topics are beyond the scope of this discussion. When imple-
mented in MATLAB, the key approach to speed-up performance of a k-means algo-
rithm is to vectorize as many operations as possible, as you will learn by examining 
the custom function kmeansClustering introduced below.

In general data analysis, one of the principal applications of a k-means algorithm 
is to determine if a given set of observations tends to cluster about a set of clusters 
that is much smaller than the total number of observations. That is, the focus is to 

“discover” k. In image segmentation, k will determine the number of segmented 
regions, so k typically is specified and the objective is to determine if the chosen 
value results in a meaningful number of regions.

The MATLAB Statistics and Machine Learning Toolbox has a function 
called kmeans that implements the algorithm just discussed, with a number of 
embellishments. If you do not have that toolbox installed, you can use custom 
function kmeansClustering to segment an image using k-means. The syntax is

[L,C] = kmeansClustering(Z,k,Linit,Cinit)

where Z is a matrix whose rows are the sample vectors, k is the number of desired 
cluster centers, C is a matrix whose rows are the resulting cluster centers, and L is a 
vector containing a cluster label for each row of Z. If Linit and Cinit are provided, 
the algorithm starts with them. Otherwise, it generates k initial cluster centers by 
randomly choosing k rows from Z. The code is in your Support Package. 

EXAMPLE 11.12 : Image segmentation using k-means clustering.

Figure 11.23(a) is a 688 688×  grayscale image and Fig. 11.23(b) resulted from the following commands:

>> f = im2double(imread('book-cover.tif'));
>> figure, imshow(f) % Fig. 11.23(a).
>> k = 3;
>> % Working only with intensities, so Z [Z = f(:)] only has one column.
>> [L,C] = kmeansClustering(f(:),k);
>> % Assign the corresponding label to each element of f to 
>> % produce the segmented image.
>> fseg = zeros(size(f));
>> for i = 1:k
    fseg(L == i) = i;
end
>> % Scale the result to the full intensity scale.
>> fseg = intensityScaling(fseg);

kmeansClustering
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>> figure, imshow(fseg) % Fig. 11.23(b).

As the result in Fig. 11.23(b) shows, the image was segmented into regions with three separate intensities. 
For example, all the dark tones in the original image show in white in the segmented image. Similarly, 
the gray tones remained gray and the white tones are shown in black. The particular shades shown 
depend on the initial cluster centers and are not important. What is important is that the original image 
was partitioned into consistent and meaningful regions.

Figure 11.24(a) shows an RGB image of size 693 750 3× ×  from which we want to extract the regions 
corresponding to the large and small red flowers. Figure 11.24(b) resulted from the following commands:

>> f = im2double(imread('flowers-red.tif'));
>> figure, imshow(f) % Fig. 11.24(a).
>> % Extract the RGB component images. 
>> R = f(:,:,1);
>> G = f(:,:,2);

ba

FIGURE 11.23
(a) Grayscale 
image.  
(b) k-means  
segmentation 
using k = 3.

ba c

FIGURE 11.24  (a) RGB color image. (b) k-means segmentation using k = 3. (c) Complement of (b). The objects of 
interest in this example are the two red flowers, which were segmented properly by the k-means algorithm. 
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>> B = f(:,:,3);
>> % Form Z so that each z corresponds to one RGB pixel (triplet).
>> Z = [R(:) G(:) B(:)];
>> % Interested three regions: red flowers, green vegetation, and
>> % background.
>> k = 3;
>> [L,C] = kmeansClustering(Z,k);
>> % The segmented image is gray scale. We could code each region with a different
>> % color, but do not need that here because the number of regions is small.
>> fseg = zeros(size(f,1),size(f,2));
>> % Assign the labels to the pixels.
>> for j = 1:k
     fseg(L == j) = j;
end
>> fseg = intensityScaling(fseg);
>> figure, imshow(fseg) % Fig. 11.24(b).
>> % The regions corresponding to the flowers are shown in black. 
>> % We can make them more visible by using the image complement.
>> fseg = imcomplement(fseg);
>> figure, imshow(fseg) % Fig. 11.24(c).

The final result depends on the initial clusters, so you may need to run this code more than once to get 
the same results we did.

REGION SEGMENTATION USING SUPERPIXELS

The idea behind superpixels is to replace the standard pixel grid by grouping pixels 
into primitive regions that are more perceptually meaningful than individual pixels. 
The objectives are to lessen computational load and to improve the performance of 
segmentation algorithms by reducing irrelevant detail. 

To illustrate the concept, Fig. 11.25(a) shows an image of size 600 800×  (480,000) 
pixels containing various levels of detail that could be described verbally as: “This is 
an image of two large carvings in the foreground and at least three smaller carvings 

ba c

FIGURE 11.25 (a) Image of size 600 800×  (480,000) pixels. (b) Image composed of 3,000 superpixels. The boundaries 
between superpixels (in white) are superimposed on the superpixel image for reference—the boundaries are not 
part of the data. (c) Superpixel image. (Original image courtesy of the U.S. National Park Services.) 
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>> % Show overlay on superpixel image.
>> mask = boundarymask(Lsp);
>> fSPO = imoverlay(fSP,mask,'w'); 
>> figure, imshow(fSPO) % Fig. 11.28(b).

>> % Show the superpixel image.
>> figure, imshow(fSP) % Fig. 11.28(c).

Figure 11.28(c) shows that a 100 superpixel image retained all the important regions and Fig. 11.28(b) 
shows how well the flower superpixels captured the two regions of interest. All that remains is to segment 
the color superpixel image using k-means clustering. We use the same approach as in Example 11.12:

>> % Apply k-means algorithm:
>> % Extract the RGB component images first. 
>> R = fSP(:,:,1);
>> G = fSP(:,:,2);
>> B = fSP(:,:,3);
>> % Form Z so that each z corresponds to an RGB pixel.
>> Z = [R(:) G(:) B(:)];
>> % We are interested in three regions: red flowers, green vegetation,
>> % and background.
>> k = 3;
>> [L,C] = kmeansClustering(Z,k);
>> % The segmented image is grayscale. We could code each region with a different
>> % color but that is not needed here because the number of regions is small.
>> fSPseg = zeros(size(f,1),size(f,2));
>> % Assign the labels to the pixels.
>> for j = 1:k
      fSPseg(L == j) = j;
end
 
>> % Scale the intensities and show the result.
>> fSPsegS = intensityScaling(fSPseg);
>> figure, imshow(fSPsegS) % Fig. 11.28(d).
 
>> % Show only the segmented flowers against a black background. The
>> % flowers show white in the image, so they correspond to i = 3.
>> % (Running this experiment again could produce a different number
>> % because we start each time with a different, random set of seeds.)
>> imFlowers = fSPseg == 3;
>> figure, imshow(imFlowers) % Fig. 11.28(e).

As Fig. 11.28(e) shows, we obtained the same basic regions as in Example 11.12. The resolution in 
Fig. 11.28(e) is lower because we worked with only 100 superpixels, as opposed to 519,750 pixels. 

IMAGE SEGMENTATION USING GABOR FILTERS

Although image texture is a topic in Chapter 13, we discuss in this section a tex-
ture extraction approach that is used directly for region segmentation. Intuitively, 
we often think of texture as periodic patterns and we know from Chapter 4 that 
periodicity gives rise to distinct burst of energy in the frequency domain. Studies 
of animal and human vision suggest a model of texture detection that incorporates 
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Figure 11.32 shows the results. The two images in Fig. 11.32(b) are the results corresponding to the 
[wavelength, direction] pairs, [ , ]l u  for [2, 0] (left) and [8, 0] (right). Because the orientation of the 
two kernels is vertical, we expect the two results to be stronger for vertical objects. This is the case, as 
you can see in Fig. 11.32(b). The result on the left is much sharper than the result on the right, indicat-
ing that a wavelength of 2 is a much better match than a wavelength of 8 for the vertical components 
of this image. Another way of looking at this is that a wavelength of 2 provides better discrimination 
than a wavelength of 8. This is true also in Figs. 11.32(c) and (d) for the orientations at 45°  and 90°, but 
looking at the three images on the left, we note that the response of the 45°  kernels is much weaker 
than the other two. If you think of the principal “texture” of this image as being the repetition of vertical 
and horizontal edges, then the results in Fig. 11.32 show that Gabor filtering can be used to discriminate 
between image regions based on their texture content. We show next how this concept can be used in 
segmentation.

As we discussed in Section 11.1, segmentation assigns each pixel in an image to a 
region based on the properties being used in the segmentation algorithm. Thus, the 
final step in using Gabor filtering for image segmentation is to assign pixels in the 
input image to regions based on the filtering results. The mechanics are the same as 
those we used for k-means clustering. For example, using a filter bank of six Gabor 
kernels will result in one filtered image per filter, for a total of six images. For each 
spatial location ( , )x y  in the image we form a vector z based on Eq. (11-29), where 
each of the six elements of z corresponds to the response of one of the six filters at 
( , ).x y  The following example demonstrates the procedure using k-means clustering.

EXAMPLE 11.19 :  Image segmentation using Gabor texture and k-means clustering.

In this example, we segment Fig. 11.33(a) using various combinations of parameters wavelength and 
orientation. As a starting point, we used the same wavelengths as in Example 11.18:

>> f = imread('texture-bricks.tif');

k-means clustering is just 
one of the many  
classification methods 
we could use. You will 
learn many more in 
Chapter 14.

ba
dc

FIGURE 11.33
Image texture  
segmentation using 
functions gabor,  
imgaborfilt, and 
kmeansCluster-
ing.
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and then repeating the segmentation with all other parameters unchanged:

>> % Smooth.
>> for j = 1:size(gaborMag,3)
     sigma = 0.8*h(j).Wavelength;
     Q = 3;
     gaborMag(:,:,j) = imgaussfilt(gaborMag(:,:,j),Q*sigma); 
end

Figure 11.33(c) shows that smoothing did improve the segmentation, but the bottom left part of the 
image is not segmented properly. We can bring more “detail” to this area by increasing the wavelength, 
which shortens the frequency. Figure, 11.33(d) is the result of using

>> wavelength = [8 16];

in the preceding code, including smoothing. This time the segmentation was more successful, except for 
the area in the bottom middle of the figure, where part of brick region on the left was interpreted erro-
neously as being part of the brick region on the right. 

When the resolution of wavelength values needs to be higher, Toolbox documentation suggests 
using the following code, which is based on the work of Jain and Farrokhnia [1991] (see the function 
documentation for a full reference citation):

>> wavelengthMin = 4/sqrt(2);
>> wavelengthMax = hypot(numRows,numCols);
>> n = floor(log2(wavelengthMax/wavelengthMin));
>> wavelength = 2.^(0:(n-2)) * wavelengthMin;

Similarly, finer resolution in orientation can be specified using

>> deltaTheta = a_numeric_scalar;
>> orientation = 0:deltaTheta:(180-deltaTheta);

IMAGE SEGMENTATION USING GRAPH CUTS
In image processing, a graph cut is a method based on graph theory that is used for 
segmenting a digital image into foreground and background. Basically, the approach 
is to construct a graph where each image pixel is a node connected to other nodes by 
graph edges, each of which has an associated weight such that, the higher the prob-
ability that pixels connected by an edge are related, the higher the weight for that 
edge should be. Graph cut algorithms perform segmentation by cutting along weak 
edges of a graph.

Images as Graphs

A graph, G, consists of a set V of nodes (also called vertices) and a set E of edges (also 
called links) connecting the nodes:

	 G V E= ( , ) 	 (11-38)
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After the polygon is completed, we get the positions of its vertices using the 
command

>> roiPoints = handle.Position;

where roiPoints is a matrix of size nv × 2, each row of which contains the (col,row) 
coordinates of one of the nv  vertices. 

To generate the binary ROI mask we use function poly2mask, whose syntax is

ROI = poly2mask(cv,rv,m,n)

where cv and rv are column vectors containing the (col,row) coordinates of the 
polygon vertices and m and n are the row and column sizes of the ROI. Using the 
preceding notation, we generate an ROI using the command

>> ROI = poly2mask(roiPoints(:,1),roiPoints(:,2),size(L,1),size(L,2));

Then, we segment the image using the command

>> fseg = grabcut(f,L,ROI);

EXAMPLE 11.20 :  Image segmentation using function grabcut.

We want to use function grabcut to segment the following image:

>> f = imread('building.tif');

poly2mask
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FIGURE 11.35
(a) Input image. 
(b) Polygonal 
boundary of 
ROI, specified 
interactively.  
(c) ROI.  
(d) Segmentation 
using 500 labeled 
regions.  
(e) Segmentation 
using 5000 labeled 
regions.  
(f) The image  
in (e) smoothed 
using a Gaussian 
kernel.
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11.5	 SEGMENTATION USING THE WATERSHED TRANSFORM

Thus far, we have discussed segmentation based on three principal concepts: edge 
detection, thresholding, and region extraction. Each of these approaches was found 
to have advantages (e.g., speed in the case of global thresholding) and disadvantages 
(e.g., the need for edge linking in edge-based segmentation). In this section, we dis-
cuss segmentation based on the concept of morphological watersheds. Segmentation 
by watersheds embodies many of the concepts of the other three approaches and 
has the advantage that it often produces more stable segmentation results, including 
connected segmentation boundaries. This approach also provides a simple frame-
work for incorporating knowledge-based constraints in the segmentation process, as 
we will discuss at the end of this section.

In geography, a watershed is the ridge that divides areas drained by different river 
systems and a catchment basin is the geographical area draining into a river. The 
watershed transform applies these ideas to image processing to solve a variety of 
image segmentation problems.

To understand the watershed transform think of the intensity values of an image 
as a topological surface, where intensity values are interpreted as heights. For exam-
ple, we can visualize the simple image in Fig. 11.37(a) as the three-dimensional sur-
face in Fig. 11.37(b). If we imagine rain falling on this surface, it is clear that water 
would collect in the two areas labeled as catchment basins. Rain falling exactly on 
the watershed ridge line would be equally likely to collect in either of the two catch-
ment basins. The watershed transform finds the ridge lines and basins in an inten-
sity “relief map” of an image. In terms of image segmentation, the key concept is 
to change the starting image into another image whose catchment basins are the 
objects or regions we want to identify.

Methods for computing the watershed transform are discussed in Gonzalez and 
Woods [2018] and in Soille [2003]. The algorithm used in the Toolbox is adapted 
from Meyer [1994].

THE DISTANCE AND WATERSHED TRANSFORMS

A tool used frequently in conjunction with the watershed transform is the distance 
transform, defined for a binary image as the distance from every pixel to its nearest 
nonzero-valued pixel. For example, Fig. 11.38(a) shows a small binary image and 

Catchment basins

Watershed ridge lineba

FIGURE 11.37
(a) Image. (b) Image 
viewed as a surface, 
showing two catch-
ment basins and the 
watershed ridge line 
between them.
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EXAMPLE 11.22 :  Watershed segmentation of a grayscale image.

Figure 11.42(a) shows a transmission electron microscope image of liver cells. The 
objective of this example is to segment the cell nuclei (the dark regions) using water-
shed segmentation. We begin by computing the gradient:

>> f = im2double(imread('liver-cells-gray.tif'));
>> figure, imshow(f) % Fig. 11.42(a).
>> g = imgradient(f);
>> figure, imshow(g,[]) % Fig. 11.42(b).

Figure 11.42(b) is in a form suitable for function watershed because the regions we 
want to segment are darker than the general background:

>> L = watershed(g);
>> ridges = L == 0;
>> figure, imshow(ridges) % Fig. 11.42(c).

ba c
ed f
hg i

FIGURE 11.42
(a) Input image. 
(b) Magnitude of 
the gradient.  
(c) Watershed 
segmentation 
of (b) showing 
oversegmentation.  
(d) Smoothed 
image.  
(e) Magnitude of 
the gradient.  
(f) Watershed 
segmentation 
of (e)—overseg-
mentation is still 
evident.  
(g) Image (e) 
after  
processing with 
function imhmin. 
(h) Watershed 
segmentation 
boundaries.  
(i) Boundaries 
coded red and  
superimposed on 
the original image. 
(Image (a)  
courtesy of NIH.)
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problem. Humans often aid segmentation and higher-level tasks in everyday vision 
by using a priori knowledge, one of the most familiar being the use of context. Thus, 
the fact that segmentation by watersheds offers a framework that can make effec-
tive use of this type of knowledge is a significant advantage of this method.

Summary
Image segmentation is an essential preliminary step in most automatic pictorial pattern recognition and 
scene analysis problems. As indicated by the range of methods and examples presented in this chapter, 
the choice of one segmentation technique over another is dictated mostly by the characteristics of the 
problem being considered. The methods discussed in this chapter, although far from being exhaustive, 
are representative of techniques used commonly in practice.

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

11.1	 Point detection.

(a) *	The image sphere-with-embedded-white-point.tif contains an isolated single bright point that 
is almost invisible. Give a set of commands that will find this single point. (Hint: Use a Laplacian 
kernel followed by thresholding.) 

(b)	 Confirm that a single point was found.

11.2	 Edge detection.

(a) *	Generate a black image of size 512 512×  pixels with a white square of size 256 256×  at its center. 
Compute and display the gradient magnitude image using the Sobel kernels. Are all the values along 
the resulting perimeter the same? Explain.

(b) *	Compute the gradient angle image of the image from (a) using the Sobel kernels. Determine if all 
angle values are positive and/or negative.

(c)	 You noticed in (b) that the bottom part of the angle image around the object is not showing, while the 
other three parts are. Explain the reason.

(d)	 Read the image wingding-square-empty.tif and generate a new image of the same size with only 
the horizontal edges detected.

11.3	 Edge detection using compass kernels.

(a)	 The Sobel and Prewitt kernels provided by the Toolbox are well suited for detecting vertical and/or 
horizontal edges. It is useful sometimes to be able to find edges in other directions. The Kirsch com-
pass kernels shown in the figure below are well-suited for this purpose. To determine the strongest 
edge response of a Kirsch kernel, consider a binary image. A kernel has its strongest response when 
all the pixels on the left of the 5s are 0s and all the image pixels under the 5s are 1s. For example the 
Kirsch kernel with the strongest response at the highlighted pixel in Fig. 11.1 would be the SE kernel, 
whose edge direction is 45°.
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12 Image Segmentation II 
Active Contours: Snakes and Level Sets

In this chapter, we develop the foundation for image segmentation using active contours, which are 
deformable models confined to the image plane. We discuss two types of active contours—snakes and 
level sets. Snakes are active contours based on explicit (e.g., parametric) representations of segmenta-
tion curves; they derive their name from the way the curves appear to “slither” on the plane in the 
process of seeking region boundaries. Level sets are based on implicit representation of curves, which 
are techniques for representing active contours as the intersection of a 3-D surface with a plane. We 
will discuss in the following sections the fundamental equations of both approaches starting from basic 
principles, write code to implement all function needed for each method, and give numerous examples 
that illustrate the strengths and limitations of each approach.

Functions Developed in this Chapter:
snakeIterate implements a snake iterative 
solution.

snakeMap computes an edge map for use in 
the snake iterative solution.

snakeForce implements a variety of snake 
forces.

snakeRespace respaces the coordinates of an 
evolving snake.

levelsetIterate implements a level set 
iterative solution.

levelsetCurvature computes the curvature 
during level set interface evolution. 

levelsetFunction generates a signed dis-
tance function for use as a level set function.

levelsetReset resets the level set function 
during iteration so that it remains a signed 
distance function.

levelsetForce implements a variety of level 
set forces. 

levelsetHeaviside implements the Heavi-
side equation and its derivative.

Four snakes gliding up and down a hollow for no purpose that
 I could see—not to eat, not for love, but only gliding.

 Ralph Waldo Emerson



726    Chapter 12  Image Segmentation II 

It is useful to think of a snake as a thin, closed, flexible body lying on a planar 
surface and surrounding a solid planar region. If we think of the planar surface 
as the plane of an image, the planar region as an image object, and the snake as 
a flexible contour, our interest is on the dynamics of what it would take to push 
that contour so that it adheres to the perimeter of the region and thus becomes a 
segmentation boundary. 

Accomplishing this objective requires knowledge about the mechanical properties 
of the contour and the type of external energy field that would push it toward the 
perimeter of a region. The two most important mechanical properties in this case are 
the elasticity and stiffness of the snake. The first property describes the ability of the 
snake, c( ),s  to stretch and shrink along it length while the second is a property that 
makes the snake stiff enough so that it can be manipulated by the force field. 

We know from basic mechanics that elastic energy is proportional to the first 
derivative squared of c with respect to s. Stiffness is proportional to bending energy, 
which we know from mechanics to be proportional to the second derivative squared 
of c with respect to s. Conceptually, we can imagine an energy field acting on a body 
whose properties can be described in the terms of the mechanical energy needed to 
deform it. The objective is to have the internal and external energies act on the snake 
so that the total energy is minimized with respect to c, the idea being that the curve 
yielding the minimum energy will correspond to a suitable segmentation contour 
(i.e., a snake adhering to the boundary of a region). Mathematically, this becomes 
an optimization problem that is solved using variational calculus. The details of the 
solution are addressed in Gonzalez and Woods [2018]. Here, our focus is on imple-
menting the results in MATLAB.

The solution to our energy minimization problem is

	 a bc c F c ( ) ( ) ( )s s s− + ( ) = 0	 (12-5)

This equation indicates that finding a snake contour can be interpreted as a process 
of balancing internal (elastic and bending) forces against an external force. The 
double and quadruple quotes indicate the second and fourth derivatives of c with 
respect to s. We started with internal snake energies as first and second derivatives. 
The higher-order derivatives in Eq. (12-5) resulted from the solution of the problem. 
Also, note that the last term is an external force instead of external energy. This is 
because the negative derivative of energy is a force. 

Equation (12-5) is the fundamental snake equation that we must solve to find 
the optimum segmentation contour. Unfortunately, this equation cannot be solved 
analytically because c (which is what we are looking for) must be known before we 
can compute the force. Thus, we must resort to numerical methods to find a solution, 
as we will discuss in the following section.

ITERATIVE SOLUTION OF THE SNAKE EQUATION
We begin by making the snake dynamic, in the sense of adding an artificial time 
variable t and restating the snake equation as
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Implementation of the Snake Iterative Solution

Implementing the iterative matrix formulation of the snake in Eq. (12-7) is straight-
forward. We use MATLAB function interp2 for the interpolation required to 
obtain the force vectors fx and fy from the 2-D arrays F x yx( , ) and F x yy( , ). As noted 
earlier, interpolation is required because the coordinates of F x yx( , ) and F x yy( , ) are 
integers, whereas the coordinates of the snake during iteration generally are not. 
The interp2 syntax of interest in this section is

fx = interp2(Fx,y,x,'linear',0)  

where x and y are the coordinates of the snake (note the order in which they are 
input). To obtain vector fy, we use Fy intead of Fx in the function call. Although 
interp2 is capable of more advanced interpolation modes, linear interpolation is 
faster and generally is sufficient for snake work. The 0 is used to suppress NaNs in 
areas where there are not enough points for interpolation.

function [xs,ys] = snakeIterate(alpha,beta,gamma,x,y,NI,Fx,Fy)
%snakeIterate Iterative solution of the snake equation.
%   [XS,YS] = SNAKEITERATE(ALPHA,BETA,GAMMA,X,Y,NI,Fx,Fy) computes the
%   [XS,YS] coordinates of a segmentation snake using the iterative
%   solution in Eq.(12-7) of DIPUM3E. Vectors X and Y are the initial
%   coordinates of the snake (provided in sequential order). These
%   vectors are updated during iteration. ALPHA, BETA, and GAMMA are
%   parameters in Eq. (12-7) and (12-8), and Fx, Fy are the 2D force
%   arrays obtained, for example, using DIPUM3E function snakeForce.
%
%   This function is normally run within an outer loop with snake-point
%   respacing after each execution of the loop. NI controls the number
%   of iterations of Eq. (12-7) before the snake points are respaced. A
%   common value of NI is 1, indicating one execution of point respacing
%   after each iteration of Eq. (12-7).

 
% PRELIMINARIES.
K = numel(x);
% Multiply the forces by gamma.
Fx = gamma*Fx;
Fy = gamma*Fy;
 
% CONSTRUCT MATRIX A IN EQ. (12-8) FOR USE IN EQ. (12-7).
% First construct matrix D2 in Eq. (12-9).
a = -2*ones(K,1);
b = 1*ones(K-1,1);
D2 = diag(a) + diag(b,-1) + diag(b,1);
D2(1,K) = 1;
D2(K,1) = 1;
% Next construct D4 in Eq. (12-10).
a = 6*ones(K,1);
b = -4*ones(K-1,1);
c = 1*ones(K-2,1);
D4 = diag(a) + diag(b,-1) + diag(b,1) + diag(c,-2) + diag(c,2);

interp2

snakeIterate
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EXAMPLE 12.5 : 	Snake segmentation of the rose image.

In this example, we consider an image with a more complex boundary. Figure 12.8(a) shows the familiar 
rose image and a 150-point initial snake. Figure 12.8(b) is the edge map obtained using a Gaussian 
lowpass kernel with the parameters indicated in the figure caption. As before, we used smoothing on 
the image and also on the edge map. We thresholded the smoothed map at 0.005. Figure 12.8(c) shows 
a MOG field superimposed on the edge map. Figure 12.8(d) is the result after 300 iterations of function 
snakeIterate using the parameters listed in the figure caption. Similarly, Figs. 12.8(e) and (f) show the 
results after 600 and 900 iterations. The latter image shows a nearly-perfect segmentation snake. The 
code for this example is similar to what we have used in previous examples, so we leave it as an exercise 
for you to duplicate the results in Fig. 12.8 (see Project 12.5).

Figure 12.8 illustrates several important factors of segmentation using snakes. The most important 
factor is to start with a clean, continuous edge map of the boundary we want to find—we will show later 
in Example 12.14 what can happen when the edge of the boundary has breaks in it. Another factor is 
that at least part of the initial snake should lie in the region of influence of the force field. In fact, you 
can see by comparing Figs. 12.8(a) and (d) that the first part of the snake that converged to the boundary 
was the segment of the initial snake closest to the boundary. As part of a snake adheres to a boundary, 
it brings other of its parts closer to the force field. It makes sense that a snake starting far away from 
the influence of the force field will take longer to converge, or simply not converge at all. As we showed 
earlier and as you will see again in Project 12.5, the main reason for using a GVF field is that its region 
of influence is typically larger than for a MOG field. Yet another important factor to keep in mind when 
specifying the parameters for use in function snakeIterate is our discussion of Eq. (12-5), where we 
indicated that snake behavior during iteration is affected by the balance between internal forces (con-
trolled by parameters a  and b) and external forces (controlled by g). Because the edge map and force 
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FIGURE 12.8 (a) A 
1024 1024×  image 
and 150-point 
initial snake.  
(b) Edge map 
using the 'both' 
option in snake-
Map, a Gaussian 
kernel with s = 11, 
and a threshold of 
0.005. (c) MOG 
force field.  
(d) Snake after 300 
iterations using 
a = 0 05. ,  b = 0 5. , 
and g = 5.  
(e) and (f) Snake 
after 600 and 900 
iterations, respec-
tively.
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fields are independent of the starting snake, it often helps to use them as guides to specify the initial 
snake configuration.

EXAMPLE 12.6 :  	Snake segmentation of a region in a more complex image.

In all examples thus far, we have specified initial contours outside the object of interest, in which the 
snakes evolved inwardly. However, snakes can also evolve outwardly, or in a combination of both 
motions, implying that the initial snake can straddle the boundary of the region to be segmented. 
Figure 12.9 illustrates this behavior. Figure 12.9(a) is an MRI image of a human breast showing a par-
tially collapsed breast implant (the ellipse shown is the initial snake). We are interested in obtaining the 
boundary of the implant. As motivation for this type of processing, imagine that you were conducting a 
study of a historical medical database containing thousands of images of breast implants. An important 
aspect of such a study might be to analyze the shape of the implants in order to quantify abnormalities 
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FIGURE 12.9  (a) 586 600×  MRI image of a human breast and a 64-point initial snake. (b) Edge map obtained using an 
11 11s s×  lowpass kernel with s = 5 and a threshold of 0.01. (c) GVF force field superimposed on the edge map.  
(d) Result of 25 iterations using a = 0 05. ,  b = 0 5. , and g = 2 5. . (e) Result of 50 iterations using the same parameters. 
(f) Result of 100 iterations. (Original image courtesy of NIH/National Library of Medicine.)
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(e.g., collapsed implants) as a percentage of normal implants. Even if total automation is not accept-
able—a typical constraint in medical image processing—a semi-automated technique in which a human 
expert initiates the process by pointing to a starting location in the implants and lets a computer extract 
and quantify the boundary, often is acceptable. Such an approach can save many hours of effort and 
yield more accurate measurements than manual estimates.

To generate the results in Fig. 12.9, we used the parameters listed in the figure caption. For the GVF 
force field we used m = 0 25.  and 100 iterations, which are the same settings we used in Example 12.4. 
The results in Figs. 12.9(a) and (d) through (f) show how the snake evolved from an initial position 
straddling the boundary of the implant, to an almost perfect segmentation of that region. You are asked 
in Project 12.6 to duplicate the results in Fig. 12.9. You will also experiment with snakes starting inside 
and outside a region of interest.

12.3	IMAGE SEGMENTATION USING LEVEL SETS 

As we mentioned in Section 12.1, level sets in the context of image segmentation 
are sets of points of a 2-D curve formed by the intersection of a plane and a 3-D 
surface. Unlike the parametric representation used for snakes, level sets are based 
on implicit representations. An important aspect of this approach is that it can 
adapt to changing topology, such as the emergence of new regions, during curve 
evolution. Inherently, parametric curves do not have this capability. However, as we 
will illustrate later in this section, each approach has strengths that make it an appro-
priate choice in a given application. As noted in Section 12.1, level sets were used 
initially to describe the propagation of interfaces between fluids. In the terminology 
of image segmentation, “fluids” represent image regions and “interfaces” become 
segmentation contours that separate one region from another.

IMPLICIT REPRESENTATION OF ACTIVE CONTOURS

The representation of snakes discussed in Section 12.2 is explicit, in the sense that 
an active contour is represented by an equation written in Cartesian or, more fre-
quently, parametric form. An alternate representation of a 2-D contour is to define it 
implicitly as the intersection of a plane and a 3-D surface. To illustrate, consider the 
explicit equation of a circle centered at point ( , )x y0 0  in the xy-plane:

	 ( ) ( )x x y y r− + − =0
2

0
2 2

Figure 12.10(a) shows a generic plot of this function. We can write this equation 
equivalently as

	 ( ) ( )x x y y r− + − − =0
2

0
2 2 0

Suppose that we define the following scalar function of two variables:

	 f( , ) ( ) ( )x y x x y y r= − + − −0
2

0
2 2

Remember, a scalar 
function outputs a scalar 
value, independently 
of the number of scalar 
variables on which it 
depends.
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a f that satisfies Eq. (12-22); and (4) extract the segmentation contour as the zero 
level set of f. As with snakes, the choice of F plays a central role in the effectiveness 
of segmentation algorithms based on level sets. In the formulations to be discussed 
shortly, F will depend in general on both image data (e.g., edges) and the level set 
function itself (e.g., the curvature of f). Level set algorithms operate using scalar 
fields, unlike snakes which work with vector fields.

ITERATIVE SOLUTION OF THE LEVEL SET EQUATION

As noted earlier, Eq. (12-22) cannot be solved directly because the evolution of F 
and f can seldom be expressed analytically, except in simple cases. So, as we did 
with snakes, we resort to numerical techniques by discretizing the level set equation. 
This consists of discretizing the temporal (i.e., time) derivative and also the spatial 
derivatives needed to compute the norm of the gradient vector.

As before, we approximate the time derivative using finite differences:

	
∂

∂
= + −f f f( , , ) ( , , ) ( , , )x y t

t
x y t t x y t

t



	 (12-23)

The result of discretizing t is the following iterative equation: 

	 f f f fn n n nt F+ = − { }1  ( ) � � 	 (12-24)

where 

	 f fn x y n t= ( , , ) 	 (12-25)

is the value of f after n iterative steps.
We still have to discretize Eq. (12-24) with respect to x and y. This means discretiz-

ing the computation of the term F n n( )f f� �  in Eq. (12-24). As with snakes, the 
process for doing this is not difficult, but it is tedious and outside the scope of this 
discussion (see Gonzalez and Woods [2018] for the derivations). The result is

	 f f f fn n n nt F F+ + −
= − +{ }1 0 0  max( , ) min( , ) 	 (12-26)

where the terms are explained in the next paragraph. This is the complete iterative 
solution of the level set equation given in Eq. (12-22). Equation (12-26) is said to 
have converged if f fn n+ =1  within a tolerance bound. If f fn n+ ≠1  within that 
tolerance bound, we update the right side of Eq. (12-26) using fn+1, increase n by 1, 
and compute the next iteration using that equation. The final contour is obtained 
as the zero-level set of the final f. When the increments of x and y are unity (as 
with digital images), the so-called Courant-Friedreichs-Lewy (CLF) condition from 
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where G x y f x ys( , ) ( , )�  denotes smoothing by performing spatial convolution of 
f x y( , ) with a Gaussian lowpass kernel, Gs , of a specified size and standard devia-
tion, s. This is force (2) in Table 12.1. As the following example shows, even this 
simple force can produce quite effective segmentation results. 

EXAMPLE 12.10 :  Level set segmentation of a grayscale image using a force based on the image gradient.

Figure 12.17(a) is the same image we used in Example 12.6. As before, we are interested in obtaining 
the boundary of the collapsed breast implant. We obtained the image in Fig. 12.17(a) using the following 
commands:

>> f = im2double(imread('breast-implant.tif'));
>> [M,N] = size(f);

>> % Smooth the image.
>> n = 15;
>> sig = 5;
>> G = fspecial('gaussian',n,sig);
>> fsmooth = imfilter(f,G,'replicate');

>> % Initial level set function.
>> x0 = 370;
>> y0 = 350;
>> r = 18;
>> phi0 = levelsetFunction('circular',M,N,x0,y0,r);
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FIGURE 12.17 Level 
set segmentation 
of a grayscale 
image using a 
gradient force. 
(a) 586 600×  
MRI image of a 
human breast and 
initial zero level 
set function.(b) 
Thresholded gra-
dient force. (c)–(f) 
Results of 50, 100, 
200, and 400 itera-
tions, respectively. 
(Original image 
courtesy of NIH/
National Library 
of Medicine.)
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Summary
The material in this chapter is a comprehensive foundation for many of the approaches you are likely 
to encounter using active contours for image segmentation. In particular, a good understanding of the 
mechanics of the snake and level set equations are essential when it becomes necessary to develop new 
techniques based on the concepts discussed in the preceding sections. In the process of programming all 
the various details of these two important segmentation approaches, you learned how to handle itera-
tive equations and the subtleties of what it takes to achieve convergence when using active contours for 
image segmentation. 
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FIGURE 12.28
First row: Initial 
contours.  
Second row: 
Results of  
segmentation 
using 
(d) snakes with a 
GVF force,  
(e) level sets with 
a geodesic force, 
and  
(f) level sets with 
a Chan-Vese 
force.

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

12.1	 Do the following:

(a)	 Write a function ellipticalCurve for generating and optionally superimposing an ellipse on an 
image. Your function should have the syntax [x,y] = ellipticalCurve(param) where [x,y] are 
the (row,  col)coordinates of the ellipse and param is a structure whose fields specify: (1) the number 
of points in the ellipse; (2) the coordinates of the center of the ellipse; (3) the orientation of the el-
lipse as the angle (in degrees) of its major axis with respect to the image x-axis (see Section 2.1 for a 
discussion of the image coordinate system); (4) the lengths of the ellipse semimajor and semiminor 
axes; and (5) a display option that optionally displays it superimposed on a white image of specified 
size. The default is not to display the ellipse.
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13 Feature Extraction

After an image has been segmented into regions or their boundaries using methods such as those in 
Chapters 11 and 12, the resulting sets of segmented pixels usually have to be converted into a form 
suitable for further computer processing. In most applications, the step after segmentation is feature 
extraction, which consists of feature detection and feature description. Feature detection refers to finding 
features in an image, region, or boundary. Feature description assigns quantitative or qualitative attri-
butes to the detected features. Some of the methods discussed in this chapter are capable of extracting 
features directly from an image, thus combining segmentation and feature extraction into one step.

Functions Developed in this Chapter:
bound2im converts a boundary to a binary 
image.

uppermostLeftmost finds the uppermost, 
leftmost foreground point in a binary image.

bound2eight converts a boundary to an 
8-connected path.

bound2four converts a boundary to a 4-con-
nected path. 

bsubsamp  subsamples a boundary.

connectpoly connects polygon vertices.

intline constructs a digital line. 

freemanChainCode generates the Freeman 
chain code of a boundary.

im2minperpoly finds a minimum-perimeter 
polygon enclosing a region.

boundarydir determines the direction of a 
set of boundary points.

signature computes the signature of a 
boundary.

diameter generates the diameter, major axes, 
and basic rectangle of a boundary or region.

frdescp and ifrdescp compute forward and 
inverse Fourier descriptors, respectively.

statxture generates statistical texture.

specxture generates spectral texture.

invmoments computes 2-D moment invari-
ants.

imstack2vectors converts a stack of images 
to vectors.

covmatrix computes the covariance matrix 
of a set of vector samples.

principalComponents obtains the principal 
components of a set of vector samples.

A great product isn’t just a collection of features. It’s how it all works together.
 Marco Arment
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in which x1 is the intensity value of the red image at a point and the other components 
are the intensity values of the green and blue images at the same point. If color 
is used as a feature, then a region in an RGB image would be represented as a 
set of feature vectors (points) in 3-D space. When n descriptors are used, feature 
vectors become n-dimensional and the space containing them is referred to as an 
n-dimensional feature space.

In this chapter, we group features into three principal categories: boundary, region, 
and whole image features. This subdivision is not based on the applicability of the 
methods we are about to discuss; rather, it is based on the fact that some categories 
of features make more sense than others when considered in the context of what 
is being described. Many of the features in the following sections are applicable to 
boundaries and regions, and some apply to whole images as well.

We will be working with numeric and logical images. As explained in Chapter 2, 
numeric images are principally images of the familiar uint8 and double classes. A 
binary image is a bivalued numeric image with values generally equal to 0 and 255 
for uint8 images and 0 and 1 for double images. Pixels in logical images are logical 
constants: 0 (FALSE) and 1 (TRUE). We mention this again because some of the 
functions in this chapter require logical inputs and sometimes output logical results. 
Generally, we will use lowercase letters such as f and g to denote numeric (includ-
ing binary) images and upper case such BW for logical images. When input and/or 
output images can be logical or numeric, we will generally use lowercase letters to 
denote both.

13.2	REGION AND BOUNDARY PREPROCESSING

Most of the segmentation methods discussed in the last two chapters yield raw data 
in the form of pixels along a boundary or pixels contained in a region. It is standard 
practice to preprocess raw segmented data into forms that ultimately help improve 
feature uniqueness and invariance. In this section, we discuss various preprocessing 
approaches suitable for this purpose. 

DEFINITIONS

Let S represent a subset of foreground pixels in an image. Two pixels p and q are said 
to be connected in S if there exists a path between them consisting entirely of pixels 
from S. For any pixel p in S, the set of pixels connected to it in S is called a connected 
component. If it only has one connected component, S is called a connected set. A 
subset, R, of pixels in an image is called a region of the image if R is a connected set.

The boundary (also called the border or contour) of a region is defined as a set 
of pixels in the region that have one or more neighbors that are not in the region. 
Initially we are interested in binary images, so foreground pixels are represented by 

For convenience, we 
repeat here some 
definitions given in 
Chapters 2 and 10.

In image processing 
applications, connected 
components typically 
only have one  
component, so use of the 
term connected  
component generally 
refers to a region.
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concave vertices (black dots) in the outer wall. A little thought will reveal that only 
convex vertices of the inner wall and mirrored concave vertices of the outer wall can 
be vertices of the MPP. Thus, our algorithm needs to focus attention only on those 
vertices.

An Algorithm for Finding MPPs

The set of cells enclosing a boundary is called a cellular complex. We assume that the 
boundaries under consideration are not self intersecting, a condition that leads to 
simply connected cellular complexes. Based on these assumptions and letting white 
(W) and black (B) denote convex and mirrored concave vertices, respectively, we 
state the following observations:

1.	 The MPP bounded by a simply connected cellular complex is not self 
intersecting.

2.	 Every convex vertex of the MPP is a W vertex, but not every W vertex of a 
boundary is a vertex of the MPP.

ba c

FIGURE 13.5
(a) An object 
boundary.  
(b) Boundary 
enclosed by cells. 
(c) Minimum-
perimeter polygon 
created when the 
boundary shrinks. 
The vertices are 
created by the 
corners of the 
inner and outer 
walls.

ba c

FIGURE 13.6
(a) Region (green) 
defined by the inner 
wall. (b) Convex 
(white) and concave 
(black) vertices 
obtained by follow-
ing the boundary 
counterclockwise. 
(c) Concave vertices 
displaced diagonally 
to the outer wall. 
The MPP is shown 
for reference.
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>> BW = imbinarize(fs); 
>> figure, imshow(BW) % Fig. 13.13(c).

The result in Fig. 13.13(c) is a clean binary image containing a single object. We find its skeleton using 
function bwskel:

>> S = bwskel(BW);
>> figure, imshow(S) % Fig. 13.13(d).

The result, shown in Fig. 13.13(d), is a skeleton that captures the essence of the object: four elongated 
arms connected in the center. In earlier versions of the Toolbox, skeletonization was done using func-
tion bwmorph, which is based on morphological thinning. As you will learn in Project 13.3(f), function 
bwmorph can yield results that are not consistent with the definition of the medial axis transformation.

13.4	BOUNDARY FEATURES

In this section we discuss a number of features that are useful when working with 
region boundaries. Many of these descriptors are applicable to regions also and 
the grouping of descriptors in the Toolbox does not make a distinction regarding 
their applicability. Therefore, some of the concepts introduced here are repeated in 
Section 13.5 when we discuss regional features. 

SOME BASIC BOUNDARY FEATURES

We extract the boundary of objects contained in image f using function bwperim, 
introduced in Section 13.2:

BW = bwperim(f,conn)The output of function 
bwperim is an image.

ba c d

FIGURE 13.13  (a) Noisy chromosome. (b) Image smoothed using a 67 67×  Gaussian kernel with s = 11.  (c) Thresholded 
image. (d) Skeleton.
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%   length(Z)-by-2 containing the coordinates of a closed boundary.
%
%  See function FRDESCP for computing the descriptors.
 
% Preliminaries.
np = length(z);
% Check inputs.
if nargin == 1 
   nd = np; 
end
if np/2 ~= round(np/2)
   error('length(z) must be an even integer.')
elseif nd/2 ~= round(nd/2)
   error('nd must be an even integer.')
end
 
% Create an alternating sequence of 1s and -1s for use in centering the
% transform (see Gonzalez and Woods [2018]).
x = 0:(np - 1);
m = ((-1) .^ x)';
 
% Use only nd descriptors in the inverse.  Because the descriptors are
% centered, (np - nd)/2 terms from each end of the sequence are set to
% 0.
d = (np - nd)/2; 
z(1:d) = 0;
z(np - d + 1:np) = 0;
 
% Compute the inverse and convert back to obtain the boundary 
% coordinates.
zz = ifft(z);
s(:,1) = real(zz);
s(:,2) = imag(zz);
 
% Multiply by alternating 1 and -1s to undo the centering done in 
% function frdescp.
s(:,1) = m.*s(:,1);
s(:,2) = m.*s(:,2);

EXAMPLE 13.7 :  	Using Fourier descriptors.

Figure 13.16(a) is the same as Fig. 13.13(c) and Fig. 13.16(b) is the boundary of the chromosome extracted 
using function bwboundaries:

>> f = imread('chromosome.tif');
>> figure, imshow(f) % Fig. 13.16(a)
>> % Obtain the boundary and display it as an image.
>> B = bwboundaries(f);
>> b = B{1}; % There is only one boundary in this case. Its length is 2688 points.
>> disp(length(b))
      2688
>> bim = bound2im(b,size(f,1),size(f,2));
>> figure, imshow(bim) % Fig. 13.16(b).
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EXAMPLE 13.8 : 	Working with function regionprops.

We will use Fig. 13.21(a) to explore the capabilities of function regionprops. The first step in using this 
function is to convert the input to a logical image. Figure 13.21(b) is the result of binarizing the input 
image:

>> f = rgb2gray(imread('liver-cells.tif'));
>> figure,imshow(f) % Fig. 13.21(a).
>> fb = imbinarize(f);
>> figure, imshow(fb) % Fig. 13.21(b).

As you can see, the thresholded image contains a large number of small irrelevant regions. We could 
clean up this image using morphological techniques or by using regionprops to obtain all regions and 
then deleting the “small” ones. However, in this case it is more effective to smooth the image first, before 
thresholding it:

>> fs = imgaussfilt(f,3,'FilterSize',19); % Filter size: odd integer ~ 6 x sigma (see Section 3.4 for
 					      % an explanation of why we chose 6 x sigma).
>> figure, imshow(fs) % Fig. 13.21(c).
>> BW = imcomplement(imbinarize(fs));
>> figure, imshow(BW) % Fig. 13.21(d). 

The result in Fig. 13.21(d) is in the form required by regionprops, in the sense that the image is a logical 
array and the regions are white on a black background.

We begin by computing all the features:

>> fdvalues = regionprops(BW,'all');
>> disp(fdvalues)

    7×1 struct array with fields:

    Area			  MinorAxisLength		  ConvexArea	 Extrema		 PixelList
    Centroid		  Eccentricity		  Image		  EquivDiameter	 Perimeter
    BoundingBox		  Orientation		  FilledImage	 Solidity		 PerimeterOld
    SubarrayIdx		  ConvexHull		  FilledArea	 Extent
    MajorAxisLength	 ConvexImage		  EulerNumber	 PixelIdxList    

ba c d

FIGURE 13.21 (a) Image of liver cells. (b) Thresholded image.(c) Smoothed image. (d) Thresholded result. (Image (a) 
courtesy of NIH.)
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useful when the same features are used in various sections of code, or when calling regionprops from 
within another function.

TEXTURE

Texture is an important feature for differentiating between regions. While no formal 
definition of texture exists, we intuitively think of texture features descriptors as 
quantifiers of properties such as smoothness, coarseness, and regularity. We already 
introduced the concept of texture features in Section 11.4, where we discussed using 
Gabor filters for segmentation based on periodic patterns. In this section, we discuss 
statistical and spectral approaches for describing the texture of a region. Statistical 
approaches yield spatial descriptions of textures such as smooth, coarse, grainy, and 
so on. Spectral techniques are based on properties of the Fourier spectrum and are 
used primarily to detect global periodicity in an image by identifying narrow peaks 
of high energy in its spectrum.

Statistical Approaches

In this section we discuss two approaches for generating texture descriptors: statisti-
cal moments and co-occurrence matrices. 

Statistical Moments

One of the simplest approaches for describing texture is to use statistical moments of 
the intensity histogram of an image or region. Let z be a random variable denoting 
intensity and let p z i Li( ) = −, , , , , ,0 1 2 1…  be the corresponding normalized histo 
gram components, where L is the number of distinct intensity levels. From Eq. (5-10), 
the nth moment of z about the mean is
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is the mean (average) value of z. These moments can be computed using function 
statmoments discussed in Section 5.2. Table 13.4 lists some common descriptors 
based on statistical moments and also on uniformity and entropy. Remember that 
the second moment, m2, is the variance, s2.

Custom function statxture (see your Support Package for the code) computes 
the texture descriptors in Table 13.4. Its syntax is

t = statxture(f,scale)statxture
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>> energy2 = fdvalues2.Energy;
>> hom2 = fdvalues2.Homogeneity;
>> for k = 1:size(G2n,1)
    sumcols(k) = sum(−G2n(k,1:end).*log2(G2n(k,1:end) + eps));
end
>> entropy2 = sum(sumcols);

The values of these features are listed in the G2 2n  row of Table 13.7. The other two rows were generated 
using the same procedure with the other two images. The entries in this table agree with what one would 
expect from looking at the images in Fig. 13.27. For example, consider the Maximum Probability column 
in Table 13.7. The highest probability corresponds to the third co-occurrence matrix, which tells us that 
this matrix has the highest number of counts (largest number of pixel pairs occurring in the image 
relative to the positions in O) than the other two matrices. Examining Fig. 13.27(c) we see that there are 
large areas characterized by low variability in intensities in the horizontal direction, so we would expect 
the counts in G3 to be high.

The third column indicates that the highest correlation corresponds to G2. This tells us that the inten-
sities in the second image are highly correlated. The repetitiveness of the periodic pattern in Fig. 13.27(b) 

b
a

c

FIGURE 13.27
Images whose  
pixels exhibit  
(a) random,  
(b) periodic, and 
(c) mixed texture 
patterns.  
All images are 
of size 263 800×  
pixels.

TABLE 13.7
Texture feature descriptor values for the images in Fig. 13.27 based on individual co-occurrence matrices.

Normalized 
Co-occurrence 

Matrix

Feature Name

Max 
Probability Correlation Contrast Energy Homogeneity Entropy

G1 1n 0.00006 −0.0005 10838 0.00002 0.0366 15.75

G2 2n 0.01500 0.9650 570 0.01230 0.0824 6.43

G3 3n 0.05894 0.9043 1044 0.00360 0.2005 13.63
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13.6	WHOLE-IMAGE FEATURES

As we mentioned in Section 13.1, it is useful to categorize features as being principally 
applicable to boundaries, regions, or whole images. These are not mutually-exclusive 
categories. Rather, they are rough guidelines that help us organize our discussion 
into categories where these features are generally most applicable.

MOMENT INVARIANTS

We defined the statistical moments of a single random variable in Chapters 3 and 5, 
and have since used them in various parts of the book. Two-dimensional moments 
can similarly be defined and used as features. In addition, as we will show in this sec-
tion, they can be normalized for invariance to translation, scale change, mirroring 
(within a minus sign), and rotation. As you learned at the beginning of this chapter, 
these are desirable characteristics of features in general.

The 2-D moment of order ( )p q+  of an M N×  digital image, f x y( , ), is defined as
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where p and q are nonnegative integers. The corresponding central moment of order 
( ),p q+  denoted mpq, is defined as 
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The normalized central moment of order ( ),p q+  denoted hpq, is defined as
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where

	 g = + +p q
2

1 	 (13-30)

for p q+ = 2 3, , .…
The set of seven, 2-D moment invariants in Table 13.8 can be derived from the 

second and third normalized central moments. We can attach physical meaning to 

Derivation of the seven 
moment invariants 
requires concepts that 
are beyond the scope of 
this discussion. See  
Gonzalez and Woods 
[2018] for sources  
containing derivations, 
and also generalizations 
to orders higher than 
seven, and dimensions 
greater than two.
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>> % Display the image that gave the maximum difference.
>> idx = find(maxdiff == max(maxdiff(:)));  
>> figure, imshow(diff{idx(1)}) % Fig. 13.36(a)-A black image.

We can view the tiny values in the difference image by expanding its values to the [0, 1] range. 
Figure 13.36(b) shows the result:

>> % Scale the difference image to see the intensity differences.
>> diffscaled = intensityScaling(diff{idx});
>> figure, imshow(diffscaled) % Fig. 13.36(b).

This figure shows that the differences are distributed over the entire image field.
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FIGURE 13.35   
Multispectral 
images  
reconstructed 
using only the two 
principal- 
component 
images with the 
largest  
eigenvalues.  
Compare these 
images with 
the originals in 
Fig. 13.33.

ba

FIGURE 13.36
(a) Difference  
between the 
images in 
Figs. 13.33(a) 
and 13.35(a). The 
maximum value 
of this image is  
7.7716 e–16. 
(b) Difference  
image scaled to 
the range [0, 1]. 
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so many times before in the book. Values in the corner map that are local extrema 
are potential corners. As noted earlier, the metric for the Harris function is R from 
Eq. (13-52) and for the eigenvalue detector it is Eq. (13-53). The MinQuality param-
eter is a threshold normalized to the range [0, 1] that “passes” corner values in the 
map whose metric values exceed this threshold, while rejecting those that do not. 
The selectStrongest function selects a specified number of higher-value corners 
from the set that passed the MinQuality threshold. Finally, the selectUniform 
function returns a more uniform spatial spread of corners throughout the image; this 
prevents “bunching” of the features in one area of the image that could bias further 
computations, especially when it comes to applications such as image registration. 
Finally, because corners is a cornerPoints object, its properties are the three 
properties we listed earlier when discussing cornerPoints. 

EXAMPLE 13.15 :  Corner detection.

Figure 13.39(a) shows an image with numerous corners and Fig. 13.39(b) shows the output of function 
detectHarrisFeatures obtained using the following commands:

>> f = imread('national-archives-bld.tif');

Function Explanation

plot Plot corner points.

isempty Determine if no corners were found.

length Number of stored corner points.
selectStrongest Select a specified number of the strongest corner points stored.

size The number of corner points found.

selectUniform Select uniformly distributed subset of corner points.

gather Retrieve corner points information from the GPU (not used in this book).

TABLE 13.11
Functions associated with object corner.Points for extracting information about the corners stored in the object.

Name Value

'MinQuality' A scalar in the range [ , ]0 1  representing the minimum acceptable quality of the cor-
ners. The default is 0.01.

'FilterSize' The square dimension of a Gaussian filter kernel used to smooth the input image. 
Acceptable values are odd integers in the range [3,min(size(f))]. The default is 
5. The standard deviation is chosen automatically as FilterSize/3.

'ROI' Rectangular region of interest over which corners are computed. Specified as a 
vector [col,row,width,height] where (col,row) are the coordinates of the 
upper-left corner of the rectangle.

TABLE 13.12
Name/Value pairs for function detectHarrisFeatures. Multiple pairs can be specified simultaneously.
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>> figure, imshow(f) % Fig. 13.39(a).
>> % Use default values for all parameters.
>> corners = detectHarrisFeatures(f);
>> % Plot the corners superimposed on the image.
>> figure, imshow(f)
>> hold on
>> plot(corners) % Fig. 13.39(b).
>> hold off

As Fig. 13.39(a) shows, the number of corners detected is large. To find the exact number we type

>> size(corners)
ans = 
	 2768  1

Whether these are too many corners depends on the application. If we were looking for urban structures 
in an image, 2768 corners would be a clue that the image may contain a large building. In general, the 
default settings generate too many false corners, as is evident in the “corners” that were found in the 
trees, the street and the sidewalk in Fig. 13.39(b). 

The other parameters available in function detectHarrisFeatures are designed to refine the results 
of this function. For example, we can increase the minimum quality of acceptable corners and smooth 
the image with a larger smoothing kernel. Both actions will invariably result in fewer corners:

>> corners2 = detectHarrisFeatures(f,'MinQuality',0.1,'FilterSize',91);

ba
dc  

FIGURE 13.39
(a) Image with 
numerous corners. 
(b) Corners 
detected by  
function  
detectHarris-
Features with its 
default settings.  
(c) Result of 
increasing the 
value of parameter 
MinQuality by a 
factor of ten and 
increasing the size 
of the smoothing 
kernel to 91 91× . 
(d) Further refine-
ment by selecting 
the 50 strongest 
corners. (Image 
courtesy of the 
U. S. National 
Archives.)
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>> figure, imshow(f)
>> hold on
>> plot(corners2) % Fig. 13.39(c).
>> hold off
>> size(corners2)
ans =
	 615  1

As Fig. 13.39(c) shows, the tighter parameters indeed resulted in fewer corners. The majority are on the 
building, but there are still some false corners in the trees. We could continue to experiment with quality 
and filtering to further reduce the number of corners, but an alternative to reducing the number of cor-
ners is to accept only a specified number of the strongest corners. For example, the following commands 
selected and displayed the fifty strongest corners in object corners2:

>> figure, imshow(f)
>> hold on
>> plot(corners2.selectStrongest(50)) % Fig. 13.39(d).
>> hold off

The result in Fig. 13.39(d) is considerably more informative, in the sense that all corners that passed the 
strength test are part of the building and thus are true corners in the context of this example. 

MAXIMALLY STABLE EXTREMAL REGIONS (MSERs)

The Harris-Stephens (HS) corner detector discussed in the previous section is 
useful in applications characterized by sharp transitions of intensities, such as 
the intersection of straight edges that result in corner-like features in an image. 
Conversely, the maximally stable extremal regions (MSERs), introduced by Matas 
et al. [2002] and discussed in detail below, are more “blob” oriented. As with the HS 
corner detector, MSERs are intended to yield whole image features for the purpose 
of establishing correspondence between two or more images. 

A grayscale image can be viewed as a topographic map, with the xy-axes repre-
senting spatial coordinates and the z-axis representing intensities. Imagine that we 
start thresholding an 8-bit grayscale image one intensity level at a time. The result 
of each thresholding is a binary image in which we show the pixels at or above the 
threshold in white and the pixels below the threshold in black. When the threshold, 
T, is 0, the result is a white image because all pixel values are at or above 0. As we 
start increasing T in increments of one intensity level, we will begin to see black 
components in the resulting binary images. These correspond to local minima in 
the topographic map view of the image. These black regions may begin to grow and 
merge, but they will never get smaller from one image to the next. Finally, when we 
exceed T = 255, the resulting image will be black—there are no pixel values above 
this level. Because each stage of thresholding results in a binary image, there will be 
one or more connected components of white pixels in each image. The set of all such 
components resulting from all thresholding operations is the set of extremal regions. 
Extremal regions that do not change size (number of pixels) appreciably over a 
range of threshold values are called maximally stable extremal regions.
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>> disp(regions)
  499×1 MSERRegions array with properties:
          Count: 499
       Location: [499×2 single]
           Axes: [499×2 single]
    Orientation: [499×1 single]
      PixelList: {499×1 cell}

The total number of MSER regions detected was 499, many of which were very small. Note that the 
default settings failed to detect the white region (a cross section of the skull) enclosing the brain. 

Suppose next that we want to extract the skull region and exclude all other regions in the image. We 
know from Table 13.15 that the default area range is [ , ].30 14000  The white region was not detected 
because its area is greater than this. We can try a new range: [ , ]14001 28000  and see if the area of the 
region is in that range:

>> [regions,cc] = detectMSERFeatures(f,'RegionAreaRange',[14001 28000]);

ba c

FIGURE 13.41 (a) Image from a CT scan of a human head. (b) The 499 MSER regions detected using the defaults of 
function  detectMSERFeatures. (c) Region detected with parameter 'RegionAreaRange' set to [14000 28000]. 
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Fields Explanation

Connectivity Connectivity of the MSER regions. The default is 8.

ImageSize Size of image f.

NumObjects Number of MSER regions in f.

PixelIdxList 1-by-NumObjects cell array containing NumObjects vectors. Each vector contains 
the linear indices of the pixels in the element’s corresponding MSER region.

TABLE 13.16
Fields of the structure cc output by the function detectMSERfeatures.
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KEYPOINT FEATURES

Keypoints are spatial image points that are characteristic of on image or class of 
images, in the sense that no matter how the image(s) is (are) transformed (e.g., by 
rotation, shrinking, expanding, translation, and changes in intensity and view point) 
you should be able to find the same keypoints that you found in the original image(s). 
When coupled with descriptors, keypoints are referred to as keypoint features. 
Corners are an example of keypoint features if we couple them with descriptors 
such as the dominant direction of the gradients computed in a neighborhood of each 
corner point.

Keypoint features based on corners and MSERs are suitable for applications in 
which variability between images is limited. However, in the presence of variables 
such as those mentioned in the previous paragraph, we are forced to look at more 
comprehensive techniques designed to achieve invariance to as many of those 
variables as possible, thus yielding so-called robust keypoint features. Because 
methods for extracting keypoint features are complex, computational speed is a 
fundamental requirement. Central to the usefulness of any keypoint-feature-based 
scheme is repeatability; that is, the ability to find the same keypoints across images 
obtained under different viewing conditions.

Among the many uses of keypoints in image processing are image registration, 
camera calibration, image stitching to generate panoramic views, object recognition, 
image retrieval, and map-based autonomous navigation. We demonstrated the use 
of keypoints for image registration in Chapter 6. In this section, we summarize some 
of the fundamental aspects of keypoint feature extraction and discuss several func-
tions for implementing and using keypoint features. As with earlier methods in this 
section, keypoint detection and description functions are from the Computer Vision  
Toolbox.

ba

FIGURE 13.43
The  
(a) smallest, and 
(b) largest MSERs 
in the range 
[14001,... 
  0.5*imarea]. 
The MSERs are 
shown in cyan.
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>> matchedPoints1 = valpoints1(indexPairs(:,1),:);
>> matchedPoints2 = valpoints2(indexPairs(:,2),:);

We can investigate the contents of these results as follows:

>> disp(matchedPoints1)
  11×1 cornerPoints array with properties:
    Location: [11×2 single]
      Metric: [11×1 single]
       Count: 11

Thus, we see that there are 11 matched features whose coordinates are contained in the 11 2×  matrix 
matchedPoints1.Location. To display the matches we type

>> figure, showMatchedFeatures(f1,f2,matchedPoints1,matchedPoints2) % Fig. 13.50(a)

As Fig. 13.50(a) shows, the 11 keypoint matches found are between points that are clearly corresponding. 
In particular, two matches were found in the high-contrast white protrusions mentioned earlier. The rest 
of Fig. 13.50 shows results with the keypoint features listed in the figure caption, using commands very 
similar to those we used to obtain Fig. 13.50(a). The result in (b) is also based on corners and it found 
three matches between the protrusions. However, this method produced a matching error between the 
points shown joined by the long line. The BRISK result in (c) produced more correct matches than the 
previous two methods. This is not surprising, considering that the BRISK method is based on multi-
level detection, while the corner methods just work on the image plane. SURF keypoint features gave 
the “richest” matching result. It has a significant number of correct matches with few errors. In general 
numerous correct keypoint matches imply a higher probability that any two images being compared are 
of the same object or scene. The KAZE result is useless for all practical purposes, as you can see by the 
randomness of the matches and the lengths of the lines connecting them. The diffusion model on which 
KAZE is based is not applicable in this case. Finally, MSER keypoint features found several correct 
matches, but failed to find correspondence between the white protrusions mentioned earlier. 

ba c
ed f

FIGURE 13.50  
Matches found 
between the two 
images in  
Fig. 13.49 using: 
(a) FAST,  
(b) Harris,  
(c) BRISK,  
(d) SURF,  
(e) KAZE, and  
(f) MSER  
keypoint features.
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Summary
Feature extraction is a fundamental process in the operation of most automated image processing 
applications. As indicated by the range of feature detection and description techniques covered in this 
chapter, the choice of one method over another is determined by the problem under consideration. The 
objective is to choose features that “capture” essential differences between objects, or classes of objects, 
while maintaining as much independence as possible to changes in variables such as location, scale, 
orientation, illumination, and viewpoint.

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

13.1	 In the following, selecting regions, holes, or boundaries by inspection is not acceptable. All answers must 
be based on computations.

(a) *	Read the image multiple-regions.tif and extract the boundary of the smallest hole. Display the 
boundary as an image.

(b)	 Extract all the pixels comprising the smallest hole and display them as an image. Boundary pixels are 
not considered part of the hole, so they should not appear in your image.

(c)	 Extract the boundary of each of the regions with no holes and display it as an image.

(d)	 Extract only the outer boundaries of the regions in the image and show them superimposed on the 
regions, using a different color for each boundary.

13.2	 Do the following:

(a) *	Start with the small image I1 = zeros(11) and I1(5:7,4:7) = 1. Then form I2 as I2 = I1' (i.e., I1 
rotated by 90°).  Process each image with function freemanChainCode to obtain structures c1 and 
c2. Explain the following: (1) Why are the integers of minimum magnitude c1.mm and c2.mm differ-
ent? (2) Why are c1.diff and c2.diff different? (3) Why are the integers of minimum magnitude 
c1.diffmm and c2.diffmm equal?

(b) *	Write a function to determine if a given Freeman chain code corresponds to a closed curve or not. The 
function specifications are as follows:

function oc = isCodeClosed(fcc,conn)
%isCodeClosed Determines if a Freeman chain code is of a closed curve. 
%   OC = isCodeClosed(FCC,CONN) determines if Freeman chain code FCC
%   corresponds to a closed curve with connectivity CONN (4 or 8, the
%   latter being the default). Output OC is 1 if the curve is closed
%   and 0 otherwise. 
%
%   The following table lists the changes in deltax and deltay to
%   transition from a point in the direction of the code symbol. The
%   origin is based on our image coordinate system, with the origin on
%   the top, left (see Fig. 2.1). The index is used in the body of the
%   function to determine the appropriate deltax and deltay to use from
%   one element of the code to the next.
%
%           ----------------------------------------------
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14 Classical and Deep Learning Methods 
for Image Pattern Classification

We conclude our coverage of digital image processing with an introduction to techniques for image 
pattern classification.  The approaches developed in this chapter are divided into three principal 
categories: classification using prototype matching, classification based on an optimal statistical 
formulation, and classification based on neural networks. The first two approaches are used extensively 
in applications in which the nature of the data is well understood, leading to an effective pairing of fea-
tures and classifier design. These approaches often rely on a great deal of engineering to define features 
and elements of a classifier. Approaches based on neural networks rely less on such knowledge and lend 
themselves well to applications in which pattern class characteristics (e.g., features) are learned by the 
system from massive databases, rather than being specified a priori by a human designer. The focus in 
this chapter is on principles and how to write functions for implementing classification methods using 
MATLAB and the Image Processing Toolbox. We also use a few functions from the MATLAB Deep 
Learning and Computer Vision Toolboxes.

Functions Developed in this Chapter:
mahalanobis implements a highly vectorized 
computation of the Mahalanobis distance.

minDistanceClassifier implements a min-
imum distance classifier.

bayesgauss implements a Bayes classifier 
for Gaussian pattern classes.

strsimilarity computes measures of simi-
larity between pattern strings.

randvertex randomizes the location of poly-
gon vertices.

polyangles computes the interior angles of a 
set of polygon vertices. 

perceptronTrain implements the percep-
tron training algorithm.

patternShuffle shuffles the order of pat-
tern vectors.

fcnn Functions is a suite of custom functions 
for training fully-connected neural networks 
and for using them for pattern vector classi-
fication.

cnn Functions is a suite of custom functions 
for training convolutional neural networks 
and for using them for image pattern classi-
fication.

Art is the imposing of a pattern on experience, and our aesthetic  
enjoyment is recognition of the pattern.

 Alfred North Whitehead
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%   input data can be real or complex. The outputs are real quantities.
%
%   D = MAHALANOBIS(Y,CX,MX) computes the Mahalanobis distance between
%   each vector in Y and the given mean vector, MX. The results are
%   output in vector D, whose length is size(Y, 1). The vectors in Y are
%   assumed to be organized as the rows of this array. The input data
%   can be real or complex. The outputs are real quantities. In addition
%   to the mean vector MX, the covariance matrix CX of a population of
%   vectors X must be provided also. Uses custom function COVMATRIX.
 
% Preliminaries.
param = varargin; 
Y = param{1}; % param is a cell array.
if length(param) == 2
   X = param{2};
   % Compute the mean vector and covariance matrix of the vectors in X
   % using DIPUM3E custom function covmatrix.
   [Cx,mx] = covmatrix(X);
elseif length(param) == 3 % Cov. matrix and mean vector provided.
   Cx = param{2};
   mx = param{3};
else 
   error('Wrong number of inputs.')
end
 
% Make sure that mx is a row vector for the next step.
mx = mx(:)';
 
% Subtract the mean vector from each vector in Y.
Yc = Y - mx;  
 
% Compute the Mahalanobis distances.
D = real(sum(Yc/Cx.*conj(Yc),2));

The call to real in the last line of code is to remove “numeric noise” arising from 
complex-number computations in earlier versions of MATLAB. If the data are 
known to be real, the code can be simplified by removing functions real and conj.

14.3	PATTERN MATCHING CLASSIFIERS

In this section we discuss two of the earliest approaches to image pattern classifi-
cation, both of which are based on matching an unknown pattern against two or 
more prototypes whose classes are known. The first, generally referred to as a mini-
mum-distance, or nearest neighbor, classifier works with pattern vectors. The second, 
referred to as an image correlation classifier, works with images directly.

MINIMUM-DISTANCE CLASSIFIER 

Suppose that we have Nc  pattern classes, c c cNc1 2, , , ,…  of vectors and we characterize 
each class by a single prototype vector, which we can set equal to the mean vector of 
the population:

The MATLAB matrix 
operation A/B is more 
accurate (and generally 
faster) than the  
operation A*inv(B).  
Similarly, A\B is  
preferred to inv(A)*B.
See Table 2.8.
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The number of elements in all three cases is 100, so the entire training set was classified correctly. Later 
in this chapter you will learn more elegant ways to determine classification accuracy.

The preceding data set can be made more realistic by rotating the objects in random directions and 
scaling their sizes. Also, we normally work with a training set to learn the system parameters (mean 
vectors in this example) and an independent test set to determine system performance with patterns it 
has never “seen” before. You will work with these additional requirements in Project 14.1.

The matching of keypoint features discussed in the previous chapter also utilizes 
the concept of minimum-distance classification of feature vectors, but often using 
simplifications to gain speed. See Example 13.17 for an illustration of keypoint 
matching.

2-D IMAGE MATCHING USING CORRELATION

We introduced the basic idea of spatial correlation and convolution in Section 3.4 and 
used these concepts extensively in Chapter 3 for spatial filtering. From Eq. (3-12) we 
know that correlation of a kernel w  with an image f x y( , ) is given by

	 (w w(� f x y s t f x s y t
ts

)( , ) , ) ( , )= + +∑∑ 	 (14-14)

where the limits of summation are taken over the region shared by w  and f . This 
equation is evaluated for all values of the displacement variables x and y so that 
all elements of w  visit every pixel of f . Correlation has its highest value(s) in the 
region(s) where w  and f  are equal. In other words, Eq. (14-14) finds locations where 
w  matches a region of f . But this equation has the drawback that the result is sensi-
tive to changes in the amplitude of either function. In order to normalize correlation 
to amplitude changes in one or both functions, we perform matching using the cor-
relation coefficient instead:
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where the limits of summation are taken over the region shared by w  and f , w  is 
the average value of the kernel (computed only once), and fxy  is the average value 
of f  in the region coincident with w.  In image correlation work, w  is often referred 
to as a template and correlation is referred to as template matching. 

It can be shown (Gonzalez and Woods [2018]) that g( , )x y  has values in the range 
[ , ]−1 1  and is thus normalized to changes in the amplitudes of w  and f . The maximum 
value of g occurs when the normalized w  and the corresponding normalized region 
in f  are identical. This indicates maximum correlation (the best possible match). The 
minimum occurs when the two normalized functions exhibit the least similarity in 
the sense of Eq. (14-15). Although this equation is normalized to provide invariance 

To be formal, we should 
refer to correlation 
(and the correlation 
coefficient) as cross-
correlation when the 
functions are different 
and as autocorrelation 
when they are the same. 
However, it is customary 
to use the generic 
term correlation and 
correlation coefficient, 
unless the distinction is 
important—as in  
deriving equations where 
it makes a difference 
which is being applied.

Templates are also 
referred to as prototypes 
or subimages.
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>> figure, imshow(f)  % Fig. 14.4(a).
>> figure, imshow(w)  % Fig. 14.4(b).

>> % Compute the correlation coefficient.
>> g = abs(normxcorr2(w,f));
>> figure, imshow(g,[]) % Fig. 14.4(c).

>> % Find all the max values.
>> gT = g == max(g(:)); % gT is a logical array.
>> % Find out how many peaks there are.
>> idx = find(gT == 1); % We use idx again later in this example.
>> disp(numel(idx))
	 1

>> % A single point is hard to see. Increase its size using dilation.
>> gT = imdilate(gT,ones(7));
>> figure, imshow(gT) % Fig. 14.4(d).

The blurring in the correlation image in Fig. 14.4(c) should not be a surprise because the template in 
Fig. 14.4 (b) has two dominant, nearly constant regions and thus behaves like a lowpass filter kernel. 

ba
dc

FIGURE 14.4
(a) Image of  
Hurricane  
Andrew.  
(b) Template.  
(c) Correlation 
of image and 
template.  
(d) Location of 
the best match. 
(Original image 
courtesy of 
NOAA.)
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14.5	FEEDFORWARD FULLY-CONNECTED NEURAL NETWORKS

In this section we discuss the architecture and operation of fully-connected neural 
networks (FCNNs) in which the propagation of an input pattern to the output of 
the network occurs in a feedforward direction. This is as apposed to recurrent neural 
networks (RNNs), which can have internal loops. RNNs are outside the scope of the 
present discussion. The term fully-connected means that the output of each node in a 
layer of the network feeds into the input of every node in the next layer.

MODEL OF AN ARTIFICIAL NEURON

FCNNs are interconnected perceptron-like computing elements called artificial 
neurons. These neurons perform the same computations as the perceptron, but they 
differ from the latter in how they process the result of the sum-of-products computa-
tion, which we denoted by z in Eq. (14-23). As illustrated in Fig. 14.7, the perceptron 
uses a “hard” thresholding function that outputs two values, such as +1 and −1, to 
perform classification. A hard threshold can have large swings between its limits for 
infinitesimally-small changes in the input to the thresholder. Because FCNNs are 
formed by layering computing units, the output of one unit affects the behavior of all 
units following it. The perceptron’s sensitivity to the sign of small signals can cause 
serious stability problems in an interconnected system, making perceptrons unsuit-
able for layered architectures.

The solution is to change the hard-limiter to a smooth function. Instead of being 
binary, the output of an artificial neuron is a function, h z( ), of the sum-of-products 
computation, z. We denote the output value of the ith neuron in layer �  of a net-
work by a h zi i( ) ( ) .� �= [ ]  As before, we refer to h as an activation function and call 
the output value of a neuron its activation value. Figure 14.13 is a schematic of an 
artificial based on this notation. Comparing it with Fig. 14.7, we see that the form of 
the computation is the same, with the exception of more complex subscripted nota-
tion—to be explained shortly—and the fact that we now denote the bias term, wn+1,  
by b instead. The inputs to the ith neuron in layer �  are denoted by ak( ),� − 1  for 
k n= −1 2 1, , , ,… �  where n�−1 is the number of neurons in layer � − 1.  The ith neuron in 
layer �  has a single output, ai( ).�  The most important thing to note for now is that 
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FIGURE 14.13
Model of an 
artificial neuron, 
showing all the 
operations it 
performs. The  
“�” denotes a  
particular layer in 
a layered  
network. The “i” 
denotes the ith 
neuron.
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node in the figure, all the nodes in the network are artificial neurons of the form 
shown in Fig. 14.13, except for the input layer, whose nodes are the components of 
an input pattern vector x. Therefore, the outputs (activation values) of the first layer 
are the values of the elements of x. The outputs of all other nodes are the activa-
tion values of neurons in a particular layer. Each layer in the network can have a 
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(The number of nodes in 
the hidden layers can be 
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FIGURE 14.15
Model of a 
feedforward, fully 
connected neural 
net. The neurons 
are the same as in  
Fig. 14.13. Note 
how the output of 
each neuron goes 
to the inputs of 
all neurons in the 
following layer, 
hence the name 
fully connected 
for this type of 
architecture.
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USING BACKPROPAGATION TO TRAIN FCNNS

An FCNN is defined completely by its weights and (typically) one specified 
activation function used by all neurons. Training of such a network refers to using 
one or more sets of training patterns to estimate the weights. During training, we 
know the desired response of every neuron in the output layer, but we have no 
way of knowing what the outputs of the hidden neurons should be. In this section 
we discuss and implement the method of backpropagation. As we mentioned previ-
ously, backpropagation was the breakthrough in 1986 that established a procedure 
for training an FCNN so that it learns all its weights by cycling through training data.

Backpropagation consists of : (1) a feedforward pass to classify all the patterns of the 
training set and compute the classification error; (2) a backward (backpropagation) 
pass that feeds the output error back through the network to compute the changes 
required to update the weights; and (3) the updating all the weights in the network. 
These steps are repeated until the classification error reaches an acceptable level.

The Equations of Backpropagation

Given a set of training patterns and a multilayer feedforward neural network archi-
tecture, the approach in the following discussion is to find the network weights that 
minimize an error (also called a cost or objective) function. 

For an input pattern, the activation value of neuron j in the output layer of an 
FCNN is a Lj( ). We define the error of that neuron as

	 E r a Lj j j= −( )1
2

2
( ) 	 (14-48)

for j nL= 1 2, , , ,…  where, as we defined when discussion perceptrons, rj  is the desired 
response of output neuron a Lj( ) for a given input pattern x. The output error with 
respect to a single x is the sum of the errors of all output neurons with respect to 
that vector:
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where the second line follows from the definition of the Euclidean vector norm. 
The total network output error over all training patterns is defined as the sum of 
the errors of the individual patterns. We want to find the weights that minimize this 
total error. As we did for the LMSE perceptron, we find the solution using gradient 
descent. This implies an expression of the form in Eq. (14-32) that gives the gradi-
ent of the error with respect to the weights and biases as a function of observable 
responses. However, the only quantities we can observe in an FCNN are the activa-
tion values of the input and output neurons, so we cannot compute the gradients 
for the neurons of the hidden layers. Backpropagation gives us way to obtain these 

As noted earlier, when 
we refer generically to 
“weights,” we mean both 
weights and biases.

If you want to skip the 
details, the results of this 
section are summarized 
in Table 14.8

The desired response 
of an FCNN is for 
the output neuron 
corresponding to the 
class of the input to have 
the highest activation 
value.

In this formulation, 
r is an Nc × 1 class 
membership column 
vector whose kth 
element is 1 if the pattern 
it represents belongs 
to class ck .  All other 
elements of r are 0. The 
fact that we are now 
dealing with more than 
two classes requires this 
change from the way we 
defined r for perceptrons.  
As before, Nc  denotes 
the number of classes.
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classifieroutput = fcnnclassify(fcnn,X,R)

where fcnn is a trained FCNN and classifieroutput is a structure explained in 
the help section of fcnninfo.

The FCNN functions we have discussed thus far are the core of training and clas-
sification. They work in conjunction with the other functions listed in Table 14.9 to 
form a set of FCNN functions that is included in your Support Package. The follow-
ing example illustrates how to use these functions. 

EXAMPLE 14.9 : 	Using the FCNN functions for multispectral data classification.

In this example we use an FCNN to solve the multispectral data classification prob-
lem we solved in Example 14.3 using a Bayes classifier. In that example, training 
consisted of using training data to estimate the covariance matrix and mean vectors 
of three pattern classes. In this example, we train an FCNN directly using the same 
training set. The following commands read and format the data:

>> % As in Example 14.3 read the images and masks, stack the images, and extract 
>> % the vectors of the training and test sets:
>> fileNames = {'washDC-band1-blue.tif','washDC-band2-green.tif',...
                           'washDC-band3-red.tif','washDC-band4-nrinfrared.tif'};
>> maskNames = {'washDC-mask-water.tif','washDC-mask-urban.tif',...
                                                          'washDC-mask-veg.tif'};
>> % Class 1 = water, class 2 = urban, class 3 = vegetation.
>> Nc = 3;
>> for k = 1:length(fileNames)
      f{k} = im2double(imread(fileNames{k})); % Fig. 14.17.
end
>> for k = 1:length(maskNames)
   mask{k} = im2double(imread(maskNames{k}));
end
>> % Form the image stack.
>> imstack = cat(3,f{1},f{2},f{3},f{4});

fcnnclassify

TABLE 14.9
FCNN custom functions included in the DIPUM3E Support Package.

Function Name Explanation

fcnninfo Contains information about variables and constants used in the following functions.

fcnninit Initializes an FCNN.

fcnnff Implements feedforward.

fcnnbp Implements backpropagation.

fcnnactivate Computes neuron activation values.

fcnntrain Trains an FCNN. 

fcnnupdateweights Updates the weights during training.

fcnnclassify Classifies unknown pattern vectors.
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>> % Extract training and test pattern sets.
>> for k = 1:Nc
      [X{k},~] = imstack2vectors(imstack,mask{k});
      % Training patterns.
      trainX{k} = X{k}(1:2:end,:)';
      % Number training patterns for each class.
      ntrain{k} = size(trainX{k},2);
      % Test patterns.
      testX{k} = X{k}(2:2:end,:)';
      % Number test patterns for each class.
      ntest{k} = size(testX{k},2);
end
>> % Number of training and test patterns.
>> nptrain = sum([ntrain{:}]);
>> nptest = sum([ntest{:}]);
 
>> % Form the pattern matrices.
>> % Training patterns.
>> Xtrain = cat(2,trainX{1},trainX{2},trainX{3});
>> nptrain = size(Xtrain,2); % Number of patterns.
>> % Test patterns.
>> Xtest = cat(2,testX{1},testX{2},testX{3});
>> nptest = size(Xtest,2); % Number of patterns.
 
>> % Construct membership matrices.
>> % Training patterns.
>> Rtrain = zeros(Nc,nptrain);  
>> Rtrain(1,1:ntrain{1}) = 1;
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FIGURE 14.17 (a) Starting with the leftmost image: blue, green, red, near infrared, and binary mask images. In the mask, 
the lower region is for water, the center region is for the urban area, and the left mask corresponds to vegetation. All 
images are of size 512 512×  pixels. (b) Approach used for generating 4-D pattern vectors from a stack of the four 
multispectral images. (Multispectral images courtesy of NASA.)
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14.6	CONVOLUTIONAL NEURAL NETWORKS

Thus far, we have worked with feature (pattern) vectors. The form of those features 
has been specified a priori (i.e., “engineered” by a human designer) and extracted 
from images prior to being input to a neural network. But, as you will see shortly, 
one of the strengths of neural networks is that they are capable of learning pattern 
features on their own—directly from training data. The approach is to input a set 
of training images into a neural network and have the network learn the necessary 
features during training. A significant advantage of this approach over vector repre-
sentations is that it exploits spatial relationships that may exist between pixels in an 
image, such as pixel arrangements into corners, the presence of edge segments, and 
other features that may help differentiate one image from another. In this section, 
we present a class of neural networks called deep convolutional neural networks 
(CNNs or ConvNets for short) that accept images as inputs and interface with an 
FCNN whose function is to determine the class membership of each input image.

Figure 14.20 shows a model of the CNN/FCNN architecture used in this section 
for image classification. That is, this system accepts image inputs and outputs a label 
for each input image. You can think of the CNN as being a feature extractor and the 
FCNN as being the pattern classifier. The reason for using convolution is that con-
volution produces filtered images that exhibit features such as edges and smoothed 
regions. You will see shortly that CNNs are capable of exactly this type behavior. We 
discussed the operation of FCNNs in the previous section, so we focus initially on 
the operation of the components to the left of the Interface in Fig. 14.20. The inputs 
and outputs of a CNN are two-dimensional. As you can see from the figure, the out-
puts of the last layer of the CNN are converted to vectors of the form required for 
input into an FCNN.

All layers of our CNN model have the same basic architecture. Figure 14.21 shows 
the components of one layer of our model. The inputs and outputs are referred to 
as maps implying that they are two-dimensional. A registered stack of such maps is 
called a maps volume. The input maps volume to the first layer is the set of component 
images of a multispectral image (e.g., the three components of an RGB image). The 
input maps to all subsequent layers are the output maps of the previous layer. The 
computational processes in a layer are shown in purple and the data components are 
shown in green. Thus, we see that input maps are processed by convolution to which 
we add a bias. The results are then passed through an activation function identical to 
the ones we discussed in the previous section. Additional processing might consist 
of computations such as data normalization. The resulting activation values form so-
called feature maps, for reasons that will be obvious when you see an example later 
in this section. The components of each feature map over a small neighborhood are 
pooled (e.g., by averaging their values) to create a feature map of lower resolution 
called a pooled feature map, or pooled map for short. These pooled maps are the 
outputs of each CNN layer and become the inputs to the next layer. We refer to the 
processes and feature maps volume in a layer of the CNN as a convolutional layer, 
but this terminology varies widely in the literature on CNNs.

The data that propagate through a CNN are two dimensional, so the nature 
of the computation in each layer is not evident in the “flat” diagram in Fig. 14.21. 
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Figure 14.22 shows the same flow of operations and data in 3-D perspective. All 
computations shown are for one spatial location, ( , ).x y  For simplicity, we excluded 
any additional processing stages.

A multispectral input image is first decomposed into its component images, the 
set of which we call an input maps volume, whose depth is equal to the number of 
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FIGURE 14.20  General model of the CNN/FCNN architecture we use in this chapter for image classification.
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map. The output values of the neurons in the pooled feature maps are generated by pooling the output 
values of the neurons in the feature maps. The outputs of the neurons in the pooled maps (or feature 
maps when no pooling is used) become the neurons of the input to the next stage. Because feature maps 
are the result of spatial convolution, we know from Chapter 3 that they are simply filtered images. It then 
follows that pooled feature maps are filtered images of lower resolution. Also, as noted earlier, filtered 
images exhibit behavior that we have learned to associate with image features, such as edges and blurred 
regions. Directional edge detection learned by the CNN from training data certainly is a key feature in 
this example.

The second row in Fig. 14.24 illustrates visually how feature maps and pooled maps look based on 
the input image shown in the figure. The kernel shown is as described in the previous paragraph and 
its weights (shown as intensity values) were learned from sample images during training of the CNN 
described later in Example 14.13. Therefore, the nature of the learned features is determined by the 
learned kernel coefficients. Note that the contents of the feature maps are specific features detected by 
convolution. For example, some of the features emphasize edges in the character. As mentioned above, 
the pooled features are lower-resolution versions of this effect.

Figure 14.24 also shows that in a CNN the into every neuron in a feature map a single value, deter-
mined by the convolution over a spatial neighborhood in the previous layer. This is unlike an FCNN, in 
which we feed the output of every neuron in a layer directly into the input of every neuron in the next 
layer. Therefore, CNNs are not fully connected in the sense defined in the last section.

EXAMPLE 14.11 : Computational example showing the types of features that can be extracted by a CNN.

Figure 14.25 illustrates the types of features that volume convolution is able to extract. The input to the 
CNN stage is an RGB image of size 277 277×  pixels. Its three component images form an input volume 
of depth three. We used the image of a human subject as the input so that the resulting feature maps 
would be easier to interpret visually.

The feature maps volume in this case contained 96 feature maps, each obtained by filtering the maps 
of the input volume with a different kernel volume of size 11 11 3× × . Thus, there are 96 kernel volumes 
of depth three, composed of 3 96 288× =  2-D convolution kernels of size 11 11× , for a total of 34,848 
kernel weights. These weights came from AlexNet, a CNN trained using more than 1 million images 
belonging to 1,000 object categories (see Krizhevsky, Sutskever, and Hinton [2012]). The system had 
never “seen” the image we used in this example. 

The 96 feature maps resulting from the input image are shown as an 8 12×  montage of 2-D images 
in the upper right of Figure 14.25. Several feature maps are shown zoomed, numbered, and grouped 
to illustrate the variety of complementary features that can result from volume convolution. The first 
group shows three feature maps. Two of them (4 and 35) emphasize edge content and the third (23) is a 
blurred version of the input. The second group has two maps (10 and 16) that capture complementary 
shades of gray (note the difference in the hair intensity, for example). In the third group, feature map 39 
emphasizes the subject’s eyes and dress, both of which are blue in the input RGB image. Map 45 empha-
sizes blue too, but it also emphasizes areas that correspond to red tones in the RGB image, such as the 
subject’s lips, hair, and skin. These two feature maps are more sensitive to color content than the maps 
in the other two groups. Here you see again the fact that convolution resulted in filtered images with 
features that are distinctive. In subsequent examples later in this section, we will illustrate how feature 
maps appear as they propagate through other stages of a CNN.
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FIGURE 14.25 Detailed view of the first stage of a CNN, showing the feature maps as images. The highlighted, num-
bered feature maps shown zoomed at the top, illustrate the types of features extracted by the 96 kernel volumes. 
The operations performed at the point of the color bullets are explained in Fig. 14.22.
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EXAMPLE 14.12 : Illustration of how to train a CNN and use it for image classification.

Figure 14.26 shows the simplest possible form of the general model in Fig. 14.20. The CNN has a single 
2-D kernel, so it can only process grayscale images, and the FCNN has no hidden layers, which makes 
it a linear classifier. In this example, we train this system using 150 images, fifty each of the three types 
of noisy stars shown in Fig. 14.27. The images we used are of size 454 454×  but we subsampled them 
to size 32 32×  for consistency with the size of the images we will use throughout the remainder of this 
section (we upsampled the small images to size 300 300×  when displaying them in a figure). We trained 
and tested three systems with the architecture shown in Fig. 14.26. First, we used images corrupted with 
additive Gaussian noise of zero mean and standard deviation of 0.01, which is equivalent to 0.1 intensity 
levels on the [0, 1] intensity scale of the images. We trained the other two systems using images corrupted 
by noise of 0.32 and 0.5 intensity levels, respectively. The images in Fig. 14.27 are samples of the training 
sets we used. After training each system, we tested it using 900 noisy images, 300 each of the three types 
of stars. The trained systems had never “seen” these images before.

We trained and tested the system with the first dataset using the following commands.

>> %% READ THE IMAGES, REDUCE THEM TO SIZE 32-BY-32, AND CONSTRUCT THE MEMBERSHIP MATRIX.
>> I0 = [];
>> fileNames = {'wingding-star-3pt.tif','wingding-star-5pt.tif','wingding-star-8pt.tif'};
>> for k = 1:length(fileNames)
      I0(:,:,k) = mat2gray(imresize(im2double(imread(fileNames{k})),[32 32]));
end
 
>> % Number of images.
>> NI = size(I0,3);
 
>> % Membership matrix for the images in I0.
>> R0 = [
        1 0 0
        0 1 0
        0 0 1
        ];

>> %% CREATE A NOISY TRAINING SET.
 
>> % Create a group of images by concatenating I0 NT times. The resulting
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FIGURE 14.26
CNN/FCNN used 
to classify the 
images in  
Fig. 14.27. This is 
the simplest form 
of the general  
system in  
Fig. 14.20—it uses 
a single 2-D  
kernel and an 
FCNN with no 
hidden layers. 
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>> % group will contain NT*size(I0,3) images.
 
>> % Number of groups of images.
>> NT = 50;
>> IG = [];
 
>> % Generate the groups of images.
>> for j = 1:NT
      IG = cat(3,IG,I0);
end
 
>> % Concatenate R NT times to correspond with the number of images in IG.
>> R = [];
>> for j = 1:NT
      R = cat(2,R,R0);
end
 
>> % Add Gaussian noise to each image in IG. This will be our training set. 
>> % Image intensities have to be in the range [0,1].
>> rng('shuffle'); % Random start seed each time.
>> mean = 0;
>> var = 0.25;
>> IGn = imnoise(IG,'gaussian',mean,var);
>> IGn = mat2gray(IGn);

>> % Upsample and show one image from each class.
>> im1 = imresize(IGn(:,:,1),[300 300]);
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FIGURE 14.27
Row 1: Images 
corrupted by  
additive  
Gaussian noise 
of zero mean and 
variance of 0.01 
( . )s = 0 1  intensity 
levels on a [ , ]0 1  
intensity scale. 
Row 2: Images 
corrupted by noise 
with a variance  
of 0.1 s( . )= 0 32   
intensity levels.  
Row 3: Images 
corrupted by noise 
with a variance 
of 0.25 ( . )s = 0 5  
intensity levels.
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>> ylim([0, ceil(max(cnndataout.SmoothMSE)*10)*.1])

%% CLASSIFY.

>> classdataout = cnnclassify(cnndataout.cnn,cnndataout.fcnn,cnndatain.Images,cnndatain.R);
>> disp('Performance (correct classification rate in %) of training images:')
>> disp(classdataout.ClassificationRate)
	 100

The plots of MSE and SmoothedMSE in Figs. 14.28(a) and (d) show quick convergence to zero, so we 
expect the classification results of the training set close 100% accurate. To create a test data set of 900 
noisy images, we changed NT to 300 and repeated the second block of code. We input this set of images 
directly into function cnnclassify. The result was again 100% accurate, indicating that the system had 
not overfit in training. Overfitting is a condition in which the training set is recognized with high accu-
racy, but an independent test set of the same type of data is not. The plots in Fig. 14.28 also show that 
MSE curves can be quite variable, thus highlighting the need for smoothing in order to reveal the most 
important feature of an error curve—the rate at which it decreases as a function of epoch. 

Several things are noteworthy in the preceding experiment. First, you should pay close attention to 
how the CNN functions were set up and used. We used the default settings for most network parameters, 
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FIGURE 14.28  Top row: MSE curves corresponding to the images in Fig. 14.27 for the values of s shown. Bottom row: 
Smoothed MSE curves. Compare the variability of the curves against the images in Fig. 14.27.
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but actually specified the default values to help you gain familiarity with the notation. The one excep-
tion was the size of the kernel. The default setting was erratic and took longer to converge than larger 
kernels. A kernel of size 9 9×  performed satisfactorily, but larger values worked also. Independently of 
kernel size, the number of epochs required for convergence increased as the level of noise increased. 
You can see this phenomenon at play in Fig. 14.28.

We conducted similar experiments with images at the other two noise levels. Convergence took lon-
ger to achieve, but the classification results of the training and test sets were again 100%. Considering 
the level of distortion evident in the third row in Fig. 14.27, these are impressive results for the simplest 
possible CNN/FCNN. It is evident from these results that deep learning is able to extract meaningful 
features in the presence of high levels of noise. Observing the images in Fig. 14.27 at a distance will 
demonstrate immediately that the important distinguishing features of each star, although severely dis-
torted, are still present in the noisy data. That is all the system needed to be able to extract those features.

Although the results in this example are indeed impressive, keep in mind that noise was the only 
source of image variability . The objects did not change position or undergo any other type of trans-
formation found in practice, such as rotation and scale change. The way deep learning handles such 
variables is by requiring massive databases of training images that contain as many instances of these 
transformations as possible. As you will see in the following examples, using large data bases can yield 
accurate results using systems that are not particularly complex.

EXAMPLE 14.13 : Using a large database to train a CNN/FCNN to recognize handwritten numerals.

In this example, we look at a more practical application using a database containing 
60,000 training and 10,000 test images of handwritten numeric characters. The con-
tent of this database, called the MNIST database, is similar to a database from NIST 
(National Institute of Standards and Technology). The former is a “cleaned up” ver-
sion of the latter, in which the characters have been semi centered and formatted 
into grayscale images of size 28 28×  pixels. Both databases, including instructions 
and the names of the individuals and organizations responsible for their creation, 
are available online. The samples shown in Fig. 14.29 are typical of the numeric char-
acters available in the two databases. As you can see, there is significant variability 
between characters of the same class. 

The CNN/FCNN needed to classify the MNIST database with high accuracy is 
slightly more complex than the system in the previous example. As Fig. 14.30 shows, 
the system consists of a two-layer CNN followed by a two-layer FCNN that, because 
it has no hidden layers, is a linear classifier. The input images are grayscale, so the 
kernels in layer one have a depth of 1. We used 6 features maps in the first layer and 
twelve in the second. The sizes of the kernel volumes, feature and pooled maps, and 
the vector input into the FCNN are shown in the figure. The latter has ten output 
neurons because we are dealing with 10 pattern classes. See Fig. 14.24 for details on 
how to determine the sizes of the 2-D data and vectors shown in Fig. 14.30.

The MNIST data is in your Support Package under the name mnist_uint8.mat. 
To unpack it in a format ready for use with the CNN functions, we use the custom 
function getMNISTimages, whose help section contains detailed descriptions of all 
parameters (the function is in your Support Package also). In this example, we work 
with a subset of the database—500 training images from each of the ten classes for 
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FIGURE 14.29
Samples  
similar to those 
available in the 
NIST and MNIST  
databases. Each 
character  
subimage is 
of size 28 28×  
pixels.(Individual 
images courtesy 
of NIST.)

FIGURE 14.30  CNN/FCNN trained to recognize the ten digits in the MNIST database. The system was trained with 
60,000 numerical character images and tested with 10,000 images.
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a total of 5,000 images, starting with the first image in the dataset. Results with the 
entire database are discussed at the end of the example and in Project 14.9. 

>> %% LOAD THE TRAINING IMAGES AND CORRESPONDING MEMBERSHIP MATRIX.

>> [I,R] = getMNISTimages(500,'training',1);
>> cnndatain.Images = I;
>> cnndatain.R = R;

We specify the parameters of the network in Fig. 14.30 as follows. As is usually the 
case, we determined the values of these parameters experimentally:

getMNISTimages
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FIGURE 14.34
Samples of mini 
images from 
the CIFAR-10 
database, which 
consists of a set 
of 50,000 training 
and 10,000 test 
RGB images of 
size 32 32 3× × . 
The images are 
from the ten 
categories shown 
in the figure. The 
classes are  
mutually  
exclusive—nei-
ther the Automo-
biles nor Trucks 
classes include 
pickup trucks. 
The numbers 
on the right are 
class numbers 
used to construct 
the membership 
matrix. (Credit: 
Alex Krizhevsky, 
University of 
Toronto.)

EXAMPLE 14.14 : Working with a large database of RGB images.

In this example we start with the CNN/FCNN in Fig. 14.30 and adapt it as necessary 
to be able to train it using all 50,000 training images in the CIFAR-10 image data-
base, examples of which are shown in Fig. 14.34. These are RGB images, so we need 
to modify several parameters from the previous example: 

>> % Modify the depth of the image size to be able to process RGB images.
>> cnnparam.ImageSize = [32,32,3];
>> % Also, based on several quick trials, we modified the values of the learning
>> % rate constants:
>> cnnparam.Alpha = 1.0;
>> cnnparam.fcnnAlpha = 0.01;

>> % We used the parameters from the previous example, including the changes just
>> % discussed, to initialize the cnn/fcnn:
>> [cnn,fcnn] = cnninit(cnnparam);

Next, we extracted all the training images from the CIFAR-10 image database using 
custom function getCIFAR10images, a listing of which is in your Support Package: 



14.6  Convolutional Neural Networks    979

Summary
The material presented in the previous sections of this chapter cover the spectrum of methods used 
today for image pattern classification. The classical techniques presented early in the chapter are used 
when knowledge about an application allows features to be defined or engineered with enough preci-
sion to be truly representative of the objects to be classified. The key MATLAB concept underlying 
minimum-distance and Bayes classifiers is the vectorization of distance computations we developed 
early in the chapter. The concept of pattern classification using a single perceptron is of little use today, 
other than as an important historical footnote. However, the interconnection of perceptron-like units, 
which we referred to as artificial neurons, is the foundation of deep neural networks, and the current 
importance of this topic is without question. The emphasis of our approach in the last two sections was 
to give a solid foundation of the equations that govern the behavior of both fully-connected and convo-
lutional neural networks, with an emphasis on the concept of backpropagation. We also showed in detail 
the fundamentals of how to approach MATLAB programming of deep neural networks at a basic level 
by developing all the functions necessary for learning and classification. As you surely noticed, convo-
lutional neural nets are computationally intensive, requiring concepts of parallelization that are beyond 
the scope of our discussion. Ultimately, the design of complex deep neural networks capable of working 
with large data sets is an evolving experimental “art.”

intervals. Stochastic gradient descent with momentum is another important training 
refinement. These approaches were partially instrumental in the improvement in 
classification accuracy in Example 14.15 over the results in Example 14.14.

The topics just discussed are representative of the many issues one encounters 
when designing and training large-scale, deep neural networks. A paper by LeCun 
et al. [2012] is an excellent overview of the types of considerations introduced in the 
preceding discussion. In fact, the scope spanned by these topics is extensive enough 
to be the subject of an entire book (see Montavon et al. [2012]). The neural net 
architectures we discussed were by necessity limited. You can get a good idea of the 
requirements of implementing practical networks by reading a paper by Krizhevsky, 
Sutskever, and Hinton [2012], which summarizes the design and implementation of a 
large-scale, deep convolutional neural network. There are a multitude of designs that 
have been implemented over the past decade. A quick internet search will list a large 
number of experiments with different architectures. The book by Sejnowski [2018] 
is also of interest.

MATLAB Projects  

Solutions to the projects marked with an asterisk * are in the DIPUM3E Student Support Package (consult the book web site). 
All your code must be documented so that typing help at the prompt, followed by the script or function name, gives enough 
detail for a user to be able to run it. Test the functionality of all your code thoroughly. 

14.1	 Minimum-distance classification.

(a) *	The Mahalanobis distance defined in Eq. (14-5) can be used for minimum-distance classification. 
Explain how you would use custom function mahalanobis to write a minimum-distance classifier 
instead of the method we used in function minDistanceClassifier. You do not have to implement 
a function, but be specific as to how you would do it. 




