Spring 5.0

Build seven web development projects with Spring MVC, Angular 6,
JHipster, WebFlux, and Spring Boot 2

‘ www.packt.com
Nilang Patel

Spring 5.0 Projects

Build seven web development projects with Spring MVC,
Angular 6, JHipster, WebFlux, and Spring Boot 2

Nilang Patel

BIRMINGHAM - MUMBAI

Spring 5.0 Projects

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar

Acquisition Editor: Denim Pinto

Content Development Editor: Anugraha Arunagiri
Technical Editor: Abin Sebastian

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali

Proofreader: Safis Editing

Indexer: Mariammal Chettiyar

Graphics: Tom Scaria

Production Coordinator: Aparna Bhagat

First published: February 2019
Production reference: 1280219
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-041-5

www.packtpub.com

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Nilang Patel has over 15 years of core IT experience in leading projects, software design
and development, and supporting enterprise applications using enterprise Java
technologies. He is highly skilled in core Java/J2EE-based applications, and has experience
in the healthcare, human resource, taxation, intranet applications, energy, and risk
management domains. He contributes to different communities through various forums
and his personal blog. He is also the author of Java 9 Dependency Injection, and acquired
Liferay 6.1 Developer Certification in 2013, Brainbench Java 6 certification in 2012, and
became a Sun Certified Programmer for the Java 2 Platform 1.5 (SCJP) in 2007.

About the reviewer

Krunal Patel has been working at Liferay Portal for over six years and has over ten years'
experience in enterprise application development using Java and Java EE technologies. He
has worked in various domains, including healthcare, hospitality, and enterprise intranet.
He was awarded an ITIL Foundation certificate in IT Service Management in 2015, Liferay
6.1 Developer Certification in 2013, and was awarded a MongoDB for Java Developers
certificate in 2013. He is the co author of Java 9 Dependency Injection book and also reviewed
Mastering Apache Solr 7.x by Packt Publishing.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1

Chapter 1: Creating an Application to List World Countries with their
GDP 6
Technical requirements 7
Introduction to the application 7
Understanding the database structure 7

Understanding the World Bank API 8
Designing the wireframes of application screens 10
Country listing page 10
Country detail page 11
Country edit page 12
Add a new city and language 13
Creating an empty application 13
Defining the model classes 15
Using Hibernate Validator to add validations 18
Defining the data access layer — Spring JDBC Template 19
Defining the JDBC connection properties 21
Setting up the test environment 23
Defining the RowMapper 25
Designing the CountryDAO 27
Designing the CityDAO 32
Designing the CountryLanguageDAO 35
Designing the client for World Bank API 37
Defining the API controllers 38
Enabling Web MVC using @EnableWebMvc 38
Configuration to deploy to Tomcat without web.xml 39
Defining the RESTful API controller for country resource 41
Defining the RESTful API controller for city resource 43
Defining the RESTful API controller for country language resource 44
Deploying to Tomcat 44
Defining the view controller 47
Defining the view templates 49
Configuring a Thymeleaf template engine 50
Managing static resources 51
Creating the base template 52
Logging configuration 53
Running the application 54

Summary 58

Table of Contents

Chapter 2: Building a Reactive Web Application
Technical requirements
Reactive system
Reactive Programming
Basics of Reactive Programming
Backpressure
Benefits of Reactive Programming
Reactive Programming techniques
Reactive Programming in Java
Reactive Streams
Reactive Streams specifications
Publisher rules
Subscriber rules
Subscription rules
Processor rules
Reactive Streams TCK
RxJava
Anatomy of RxJava
Observer event calls
Observable for iterators
Custom Observers
Observable types
Cold Observable
Hot Observable
Other ways to get Observable
Operators
Project Reactor
Reactor features
Handling data stream with high volume
Push-pull mechanism
Handling concurrency independently
Operators
Reactor sub-projects
Reactor types
Reactor in action
Types of subscribers
Custom subscribers
Reactor lifecycle methods
Ratpack
Akka stream
Vert.x
Reactive support in Spring Framework
Spring WebFlux
Spring MVC versus Spring WebFlux
Reactive span across Spring modules
Spring WebFlux application
MongoDB installation
MongoDB data structure
Creating a Spring Data repository

[ii]

Table of Contents

WebFlux programming models 105
Annotated controller 106
Functional endpoint 109

Artifacts required in functional-style Reactive Programming 109

Prerequisite for a functional approach in Spring WebFlux 110

Defining routers and handlers 111

Combining handler and router 113

Composite routers 114
WebSocket support 116
Summary 118
Chapter 3: Blogpress - A Simple Blog Management System 119
Technical requirements 120
Application overview 120
Project skeleton with Spring Boot 121
Configuring IDE Spring Tool Suite 122
Spring Model-View-Controller web flow 124
Presentation layer with Thymeleaf 125

How Thymeleaf works 126

Dialects, processors, and expression objects 126

Why Thymeleaf is a natural template 128

Making the application secure with Spring Security 131
Excluding auto-configuration 133
Substituting auto-configuration 133

Storing data with Elasticsearch 139

Artifacts 140
Documents 140
Indexes 140
Clusters and nodes 141
Shards and replicas 141

Interacting with Elasticsearch 142

Installation 142

Elasticsearch RESTful API 143
Creating an index — students 143
Creating a document type — student 144
Adding a document (student data) 146
Reading a document (student data) 146
Updating a document (student data) 147
Deleting a document (student data) 148
Searching a query 148

Creating index and document types for Blogpress 149

Elasticsearch integration with Spring Data 150
Spring Data Elasticsearch model class 152
Connecting Elasticsearch with Spring Data 154
CRUD operations in Elasticsearch with Spring Data 154

Adding blog data 155
Reading blog data 156
Searching blog data 156

[iii]

Table of Contents

Adding comment data with Elasticsearch aggregation
Reading comment data with Elasticsearch aggregation
Updating and deleting comment data with Elasticsearch

Displaying data with RESTful web services in Spring
Building a Ul with the Mustache template
Summary

Chapter 4: Building a Central Authentication Server
Technical requirements
LDAP
What is LDAP?
Configuring Apache DS as an LDAP server
Example DIT structures
Apache DS partitions
The LDAP structure
Spring Security integration with LDAP
Creating a web application with Spring Boot
Managing LDAP users with Spring Data
Spring Data models
The Spring Data repository for LDAP
Performing CRUD operations with LdapTemplate
Initializing LdapTemplate
Using LdapTemplate to perform CRUD operations
LDAP authorization with Spring Security
Creating roles in the LDAP server
Importing role information to perform authorization
OAuth
OAuth roles
Grant types
Authorization code
Implicit
Resource Owner Password Credentials
Client Credentials
Which grant type should be used?
Spring Security integration with OAuth
Application registration
Changes in the Spring Boot application
The default OAuth configuration
OAuth with a custom login page
Dual authentication with OAuth and LDAP
OAuth authorization with a custom authorization server
Authorization server configuration
Resource server configuration
Method-level resource permissions
Summary

Chapter 5: An Application to View Countries and their GDP using

JHipster

157
162
167
168
169

175

177
178
178
179
181
183
185
187
189
190
195
195
197
200
201
201
206
207
208
210
211
213
213
215
216
217
218
218
219
220
221
223
225
229
230
233
239
241

243

[iv]

Table of Contents

Technical requirements
Introducing JHipster
Installing JHipster
Creating an application
Project structure
Entity creation
Adding an entity with the CLI
Modeling the entity
Modeling with UML

Modeling with JHipster Domain Language studio
Generating an entity using a model

Showing the national gross domestic product
Application and entity creation

Handling enumeration data with a database in JHipster
Filter provision in service, persistence, and the REST controller layer

The persistence layer
The service layer
The REST controller layer
Adding a filter option to existing entities
Developing custom screens
The search country screen
Creating an Angular service
Creating the Angular router
Angular modules
Creating an Angular component to show the country list
Angular template to show the country list
Showing the GDP screen
An Angular component to show country GDP
Angular template to show country GDP
Hooking the GDP module into AppModule
Updating navigation
Other JHipster features
IDE support
Setting screens out of the box
Home and login screens
Account management
Administration
User management
Metrics
Health
Configuration
Audit
Logs
API
Maintaining code quality
Microservice support
Docker support
Profile management
Live reload

244
244
246
247
250
253
254
258
259
261
265
266
266
269
274
274
274
276
278
279
279
280
281
282
283
285
287
288
290
291
292
293
293
294
294
295
295
296
296
296
296
297
297
297
297
298
298
299
299

[v]

Table of Contents

Testing support
Upgrading JHipster
Continuous integration support
Community support and documentation
The JHipster Marketplace

Summary

Chapter 6: Creating an Online Bookstore
Technical requirements
Microservices introduction
Microservice architecture
Microservice principles
High cohesion with a single responsibility
Service autonomy
Loose coupling
Hide implementation through encapsulation
Domain-driven design
Microservice characteristics
Microservices with Spring Cloud
Configuration management
Service discovery
Circuit breakers
Routing
Spring Cloud Security
Distributed tracing service
Spring Cloud Stream
Developing an online bookstore application
Application architecture
Database design
Single monolithic database for all microservices
Separate service to handle database interaction
Each microservice has its own database
User schema
Order schema
Catalog schema
Inventory schema
Creating microservices with Spring Boot
Adding microservice-specific capabilities
Develop a service discovery server
Designing an API gateway
Setting up Zuul as an API gateway
Designing the Ul
Monolithic front
Micro front
Composite front
Other Spring Cloud and Netflix OSS components
Dynamic configuration in Spring Cloud
Step 1 — creating a Spring Boot service for the configuration server
Step 2 — configuring Spring Cloud Config with a Git repository

[vi]

300
300
301
302
302
303

304
305
305
307
310
311
311
311
312
312
312
313
313
313
314
314
314
315
315
315
315
316
317
318
319
320
320
321
321
322
323
324
329
329
330
331
332
333
335
335

336
336

Table of Contents

Step 3 — making each microservice Spring Cloud Config-aware using the Spring

Cloud Config Client component 338

Making RESTful calls across microservices with Feign 340

Load balancing with Ribbon 342
Configuring Ribbon without Eureka 342

Configuring Ribbon with Eureka 345

Load balancing using RestTemplate 346
Configuring the API gateway 347
Securing an application 350
Summary 356
Chapter 7: Task Management System Using Spring and Kotlin 358
Technical requirements 359
Introducing Kotlin 359
Interoperability 359
Concise yet powerful 360
Safety feature 361
IDE Support 361
Kotlin features 362
The concept of a function 362
Function as an expression 363

Default function arguments 363
Extension functions 364
Lambda expression or function literal 366

Passing lambda to another function 367

Returning a function from another function 369

Null safety 372
Data classes 374
Interoperability 376
Calling the Kotlin code from Java 377

Calling Java code from Kotlin 377

Smart casts 378
Operator overloading 379
Kotlin versus Java 380
Spring supports for Kotlin 381
Developing an application — Task Management System 381
Creating a Spring Boot project with Kotlin 382
DB design 384
Entity classes 385

Users 385

Role 386

Task 387

Comments 388

Spring Security 388
Query approach 390
UserDetailsService approach 391
Defining the Spring MVC controller 395
Showing the control page 397
Showing the login page 397

[vii]

Table of Contents

Showing the add new task page 398

Showing the edit task page 398

Adding a new task 400

Updating a task 400

Adding a task comment 401

Getting all users 402

Showing a task list 403

Viewing a task 405

Deleting a task 407

REST call in Kotlin 407
Validation 409

User registration 410
Summary 411
Other Books You May Enjoy 412
Index 415

[wiii]

Preface

Spring makes it simple to create RESTful applications, interact with social service,
communicate with modern databases, secure your system, and make your code modular
and easy to test. This book will show you how to build various projects in Spring 5.0, using
its various features, as well as third-party tools.

Who this book is for

This book is for competent Spring developers who wish to understand how to develop
complex yet flexible applications with Spring. You must have a good knowledge of Java
programming and be familiar with the basics of Spring.

What this book covers

Chapter 1, Creating an Application to List World Countries with their GDP, is about kick-
starting your Spring-based web application development. We will focus on creating a web
application using Spring MVC, Spring Data, and the World Bank API for some statistics on
different countries, and a MySQL database. The core data for the application will be from
the sample world database that comes with MySQL. The UI for this application will be
powered by Angular.js. We will follow the WAR model for application deployment and
will deploy on the latest version of Tomcat.

Chapter 2, Building a Reactive Web Application, is about building a RESTful web services
application purely using Spring's new WebFlux framework. Spring WebFlux is a new
framework that helps create reactive applications in a functional way.

Chapter 3, Blogpress — A Simple Blog Management System, is about creating a simple Spring
Boot-based blog management system that uses Elasticsearch as the data store. We will also
implement user roles management, authentication, and authorization using Spring
Security.

Chapter 4, Building a Central Authentication Server, is about building an application that will
act as an authentication and authorization server. We will make use of the OAuth2 protocol
and LDAP to build a central application that supports authentication and authorization.

Preface

Chapter 5, Application to View Countries and Their GDP Using JHipster, revisits the
application we developed in chapter 1, Creating an Application to List World Countries with
their GDP, and we'll develop the same application using JHipster. JHipster helps with the
development of Spring Boot and Angular.js production-ready applications, and we will
explore the platform and learn about its features and functionality.

Chapter 6, Creating an Online Bookstore, is about creating an online store that sells books by
developing a web application in a layered fashion.

Chapter 7, Task Management System Using Spring and Kotlin, looks at building a task
management system using Spring Framework and Kotlin.

To get the most out of this book

A good understanding of Java, Git, and Spring Framework is necessary before reading this
book. A deep knowledge of OOP is desired, although some key concepts are reviewed in
the first two chapters.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[2]

Preface

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Spring 5.0 Projects.hlcasethenisanwlpdate
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.
packtpub.com/sites/default/files/downloads/9781788390415_ColorImages.pdf.

Code in Action

Visit the following link to check out videos of the code being run: http://bit.ly/2ED57Ss

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The preceding line has to be added between the <Host></Host> tags."

A block of code is set as follows:

<depedency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<depedency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter—-security</artifactId>
</dependency>

Any command-line input or output is written as follows:

$ mvn package

[3]

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Download STS, unzip it in your local folder, and open the . exe file to start the STS. Once
started, create a new Spring Starter Project of the Spring Boot type with the following
attributes."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub. com.

[4]

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]

Creating an Application to List
World Countries with their GDP

Spring is an ecosystem that facilitates the development of JVM-based enterprise
applications. And this is achieved using various modules provided by Spring. One of them,
called Spring-core, is the heart of the framework in the Spring ecosystem, which provides
support for dependency injection, web application, data access, transaction management,
testing, and others.

In this chapter, we will start from scratch and use Spring Framework to develop a simple
application. Familiarity with Spring Framework is not required and we will see to it that by
the end of the chapter you should be confident enough to use Spring Framework.

The following are the topics covered in this chapter:

e Introduction to the application

Understanding the database structure
Understanding the World Bank API
¢ Designing the wireframes

Creating an empty application
Defining the model classes

Defining the data access layer

Defining the API controllers

Deploying to Tomcat

Defining the view controllers

Defining the views

Creating an Application to List World Countries with their GDP Chapter 1

Technical requirements

All the code used in this chapter can be downloaded from the following GitHub link:
https://github.com/PacktPublishing/Spring-5.0-Projects/tree/master/chapter01l.
The code can be executed on any operating system, although it has only been tested on
Windows.

Introduction to the application

We will develop an application to show the GDP information of various countries. We will
make use of the sample World DB (https://dev.mysql.com/doc/world-setup/en/world-
setup-installation.html) available with MySQL to list the countries and get a detailed
view to display the country information and its GDP information obtained from the World
Bank API (https ://datahelpdesk.worldbank.org/knowledgebase/articles/898599-api-

indicator-queries).

The listing will make use of the countries data available in the World DB. In the detail view,
we will make use of data available in the World DB to list cities and languages, and make
use of the World Bank API to get additional information and the GDP information about
the country.

We will also support editing basic details of the country entry, adding and deleting cities
from the country entry, and adding and deleting languages from the country entry. We will
use the following tools and technologies in this application:

e Spring MVC framework for implementing the MVC pattern

The interaction with the MySQL DB will be done using the Spring JDBC template
The interaction with the World Bank API will be done using RestTemplate

The views will be created using a templating framework called Thymeleaf

The frontend will be driven by jQuery and Bootstrap

Understanding the database structure

If you don't have MySQL installed, head over to the MySQL link (https://dev.mysql.com/
downloads/installer) to install it and populate it with the world database, if it is not

already available. The appendix will also guide you on how to run the queries using
MySQL Workbench and MySQL command-line tool.

[7]

Creating an Application to List World Countries with their GDP

Chapter 1

The world database schema is depicted in the following diagram:

_ldty v
ID INT(11)
Name CHAR(35)
¥ CountryCode CHAR(3)
District CHAR(20)
Population INT(11)
v
PRIMARY
CountryCode

_ country v

Code CHAR(3)

Name CHAR(52)

Continent ENUM(...)

Region CHAR(26)
SurfaceArea FLOAT(10,2)
IndepYear SMALLINT (6)
Population INT(11)
LifeExpectancy FLOAT(3,1)
GNP FLOAT(10,2)

GNPOId RLOAT(10,2)
LocaName CHAR(45)
GovernmentForm CHAR(45)
HeadOfState CHAR(60)
Capita INT(11)

Code2 CHAR(2)

‘ PRIMARY

_] countrylanguage ¥

! CountryCode CHAR(3)
Language CHAR(30)
IsOfficial ENUM(T', 'F")
Percentage ALOAT(4,1)

v
PRIMARY
CountryCode

The database schema is simple, containing three tables as follows:

e city: List of cities mapped to the three character country coded in the country

table.

e country: List of countries where the primary key is the three character country
code. There is a column that has the ISO country code.
¢ countrylanguage: List of languages mapped to the country with one of the
languages of the country marked as official.

Understanding the World Bank API

There are a lot of APIs exposed by the World Bank (http://www.worldbank.org/) and the
API documentation can be found here (https://datahelpdesk.worldbank.org/
knowledgebase/articles/88938 6—developer—information—overview). Out of the available
APIs, we will use the Indicator APIs (https://datahelpdesk.worldbank.org/
knowledgebase/articles/898599-api-indicator—queries), which represent information
such as total population, GDP, GNI, energy use, and much more.

[8]

Creating an Application to List World Countries with their GDP Chapter 1

Using the Indicator API, we will fetch the GDP information for the countries available in
the database for the last 10 years. Let's look at the API's REST URL and the data returned by
the API, as follows:

GET
http://api.worldbank.org/countries/BR/indicators/NY.GDP.MKTP.CD?format=json
&date=2007:2017

The BR is a country code (Brazil) in this URL. The NY.GDP .MKTP.CD is the flag used by the
Word Bank API internally to call Indicator APIL. The request parameter, date, indicates the
duration of which the GDP information is required.

The excerpt from the response you will get for the preceding API is as follows:

[

"page": 1,
"pages": 1,
"per_page": "50",
"total": 11

....// Other country data
{

"indicator": {
"id": "NY.GDP.MKTP.CD",
"value": "GDP (current USS)"
}I
"country": {
"id": "BR",
"value": "Brazil"
}I
"value": "1796186586414.45",
"decimal": "O",

"date": "2016"

]

The preceding response shows the GDP indicator in US$ for Brazil for the year 2016.

[9]

Creating an Application to List World Countries with their GDP Chapter 1

Designing the wireframes of application
screens

A wireframe is the basic skeleton of an application or website. It gives an idea about how
the final application looks. It basically helps to decide navigation flows, understand
functionality, design the user interface, and helps in setting the expectation before the
application even exists. This process greatly helps developers, designers, product owners,
and clients to work in a synchronous manner to avoid any gap in between. We will follow
the same model and we will design various wireframes of the application as follows.

Country listing page

We will make it simple. The home page shows the country list with pagination, and

allow searching by country name and filtering by continent/region. The following would be
the home page of our application:

WORLD IN NUMBERS

Countries
Search by Name Search
Continent Region
Al V| Al Y|
Code Name Continent Region Area

[10]

Creating an Application to List World Countries with their GDP Chapter 1

Country detail page

This screen will show details of the country such as cities, languages, and the GDP
information obtained from the World Bank API. The GDP data will be visible in a graphical
view. The page looks as follows:

WORLD IN NUMBERS

Countries / Brazil

Brazil (BRA/BR) ¢ Edit
Capital : Local Name :
Continent : Independence :
FLAG Region : Surface Area :
Head of State : Population :
Government : Life Expentancy :
Cities |+ New | | Languages | +| | GDP

[x]|[x]|[X]|[X]
[(x]|[x]|X]|[X]

T T T T T T T T.7T

P

T T T T
2007 2008 2010 2012

[11]

Creating an Application to List World Countries with their GDP

Chapter 1

Country edit page

In country listing page, there will be one button called Edit. On clicking it, the system will
show the country in edit mode, enabling the update of the basic details of the country. The
following is the view structure for editing the basic detail of a country:

WORLD IN NUMBERS

Edit Brazil

Name Local Name Capital

I | | | | Vv |

Continent Region

| V]| | V]

Head of State Government

| V]| | V|

Independence Surface Area

| |

Population Life Expectancy

| | |
X Cancel + Save

[12]

Creating an Application to List World Countries with their GDP

Chapter 1

Add a new city and language

In the country detail page, two modal views, one for adding a new city and another for
adding a new language, are available by clicking on the New button. The following is the
view for the two modal dialogs used to add a new country and language. They will be

opened individually:
New City X New Language X
Name Language
| | | |
District [Is Official
‘ ‘ Percentage
Population ‘ ‘
| |

Creating an empty application

We will use Maven to generate an empty application with the structure required for Java-
based web applications. If you do not have Maven installed, please follow the instructions
here (https://maven.apache.org/install.html) to install Maven. Once installed, run the
following command to create an empty application:

mvn archetype:generate -DgroupId=com.nilangpatel.worldgdp -
DartifactId=worldgdp -Dversion=0.0.1-SNAPSHOT -DarchetypeArtifactId=maven-

archetype-webapp

Running the preceding command will show the command-line argument values for
confirmation as shown in the following screenshot:

[13]

Creating an Application to List World Countries with their GDP Chapter 1

Downloading from central: https://repo.maven.apache.org/maven2/org/apache/maven/maven-parent/4/maven-p
Downloaded from central: https://repo.maven.apache.org/maven2/org/apache/maven/maven-parent/4/maven-pa
Downloading from central: https://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-arche
Downloaded from central: https://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archet
kB at 11 kB/s)

[] Using property: groupId = com.nilangpatel.worldgdp

[] Using property: artifactId = worldgdp

[] Using property: version = 0.0.1-SNAPSHOT

[] Using property: package = com.nilangpatel.worldgdp
Confirm properties configuration:

groupId: com.nilangpatel.worldgdp

artifactId: worldgdp

version: 0.0.1-SNAPSHOT

package: com.nilangpatel.worldgdp

\72 S

You would have to type in Y in the Command Prompt shown in the previous screenshot to
complete the empty project creation. Now you can import this project into an IDE of your
choice and continue with the development activity. For the sake of simplicity, we will use
Eclipse, as it is among the most popular IDEs used by the Java community today.

On successful creation of the application, you will see the folder structure, as shown in the
following screenshot:

v %= worldgdp
Deployment Descriptor: Archetype Created Web Application
&2 Java Resources
=) JavaScript Resources
L® Deployed Resources
v [src
v [main
(= resources
v (= webapp
v (= WEB-INF
X web.xml
=l indexsp
= target
M pom.xml

You will see index. jsp added by default while creating the default
project structure. You must delete it as, in this application, we will use
Thymeleaf—another template engine to develop the landing page.

[14]

Creating an Application to List World Countries with their GDP Chapter 1

Defining the model classes

Now, let's create Java classes to model the data in the database and also the data coming
from the World Bank API. Our approach is simple. We will have one Java class for each
table in our database and the columns of the database will become the properties of the

Java class.

In the generated application, the java folder is missing under the main directory. We will
manually create the java folder and package the com.nilangpatel.worldgdp, which
will be the root package for the application. Let's go ahead and implement the approach we
decided on. But before that, let's see an interesting project called Project Lombok.

Project Lombok provides annotations for generating your getters, setters, default, and
overloaded constructors, and other boilerplate code. More details on how to integrate with
your IDE can be found on their project website (https://projectlombok.org/).

We need to update our pom. xml to include a dependency on Project Lombok. The
following are the parts of pom.xml you need to copy and add to relevant locations in the
XML:

<properties>
<java.version>1.8</java.version>
<lombok.version>1.16.18</lombok.version>

</properties>

<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
<version>${lombok.version}</version>

</dependency>

All the model classes that we are going to create next belong to the
com.nilangpatel.worldgdp.model package. The model class to represent Country data

is given in the following code:

@ata

@Setter

@Getter

public class Country {
private String code;
private String name;
private String continent;
private String region;
private Double surfaceArea;
private Short indepYear;

[15]

Creating an Application to List World Countries with their GDP

Chapter 1

private
private
private
private
private
private
private
private

}

The city class is not created yet, let's go ahead and create it as follows:

@Data
@Setter
@Getter

public class City {

private
private
private
private
private

}

Long population;

Double
Double
String
String
String

lifeExpectancy;
gnp;

localName;
governmentForm;
headOfState;

City capital;

String

code?2;

Long id;

String

name;

Country country;

String

district;

Long population;

Next is to model the CountryLanguage class, which is the language spoken in a country,

as follows:

@Data
@Setter
@QGetter

public class CountryLanguage {

private
private
private
private

}

Country country;

String
String

language;
isOfficial;

Double percentage;

We also need a model class to map the GDP information obtained from the World Bank

API. Let's go ahead and create a Count ryGDP class as shown in the following code:

@Data
@Setter
@Getter

public class CountryGDP {
private Short year;
private Double value;

[16]

Creating an Application to List World Countries with their GDP Chapter 1

At this moment, everything works perfectly fine. But when you start calling getter and
setter of these model classes into some other class, you may get a compilation error. This is
because we need to do one more step to configure Lombok. After you defined the Maven
dependency, you will see the JAR reference from IDE. Just right-click on it and select

the Run As | Java Application option. Alternatively, you can execute the following
command from terminal at the location where the Lombok JAR file is kept, as follows:

java —-jar lombok-1.16.18.jar

Here, lombok-1.16.18. jar is the name of JAR file. You will see a separate window pop
up as follows:

= Project Lombok v1.16.18 - Installer — X

Javac (and tools that invoke javac such as antand maver)

Lombok works "out of the box' with javac.
Just make sure the lombok.jar is in your classpath when you compile.

Example: javac -cp lombok.jar MyCode.java

IDEs

Lombok can update your Eclipse or eclipse-based IDE to fully support all Lombok features.
Select IDE installations below and hit 'Install/Update'.

Specify location... Install / Update

Show me what this installer will do to my IDE installation.

Uninstall lombok from selected IDE installations.

https://projectlombok.org v1.16.18 View full changelog Quit Installer

Select the location of your IDE by clicking on the Specify location... button. Once selected,
click on the Install / Update button to install it. You will get a success message. Just restart
the IDE and rebuild the project and you will see that just by defining @Setter and
@Getter, the actual setters and getters are available to other classes. You are no longer
required to add them explicitly.

[17]

Creating an Application to List World Countries with their GDP Chapter 1

Using Hibernate Validator to add validations

There are a few checks we need to add to our model classes so that the data being sent from
the Ul is not invalid. For this, we will make use of Hibernate Validator. You are required to
add the Hibernate dependency as follows:

<properties>
<java.version>1.8</java.version>
<lombok.version>1.16.18</lombok.version>
<hibernate.validator.version>6.0.2.Final</hibernate.validator.version>
</properties>
<dependency>
<groupId>org.hibernate.validator</groupId>
<artifactId>hibernate-validator</artifactId>
<version>${hibernate.validator.version}</version>
</dependency>

Now go back to com.nilangpatel.worldgdp.model.Country and update it with the
following:

@Data public class Country {

@NotNull @Size(max = 3, min = 3) private String code;
@NotNull @Size(max = 52) private String name;
@NotNull private String continent;
@NotNull @Size(max = 26) private String region;
@NotNull private Double surfaceArea;
private Short indepYear;
@NotNull private Long population;
private Double lifeExpectancy;
private Double gnp;
@NotNull private String localName;
@NotNull private String governmentForm;
private String headOfState;
private City capital;
@NotNull private String code2;
}

Next is to update the com.nilangpatel.worldgdp.model.City class in a similar way, as
follows:

@Data public class City {
@NotNull private Long 1id;
@NotNull @Size (max = 35) private String name;
@NotNull @Size(max = 3, min = 3) private String countryCode;
private Country country;
@NotNull @Size (max = 20) private String district;

[18]

Creating an Application to List World Countries with their GDP Chapter 1

@NotNull private Long population;
}

And finally, update com.nilangpatel.worldgdp.model.CountryLanguage class as
well, as follows:

@Data
public class CountryLanguage {
private Country country;
@NotNull private String countryCode;
@NotNull @Size (max = 30) private String language;
@NotNull @Size(max = 1, min = 1) private String isOfficial;
@NotNull private Double percentage;

Defining the data access layer — Spring
JDBC Template

We have the model classes that reflect the structure of the data in the database that we
obtained from the World Bank API. Now we need to develop a data access layer that
interacts with our MySQL and populates the data stored in the database into instances of
the model classes. We will use the Spring JDBC Template to achieve the required
interaction with the database.

First, we need the JDBC driver to connect any Java application with MySQL. This can be
obtained by adding the following dependency and version property to our pom. xm1:

<properties>
<java.version>1.8</java.version>
<lombok.version>1.16.18</lombok.version>
<hibernate.validator.version>6.0.2.Final</hibernate.validator.version>
<mysqgl.jdbc.driver.version>5.1.44</mysqgl.jdbc.driver.version>
</properties>
<dependency>
<groupld>mysqgl</groupId>
<artifactId>mysgl-connector-java</artifactId>
<version>${mysqgl.jdbc.driver.version}</version>
</dependency>

[19]

Creating an Application to List World Countries with their GDP Chapter 1

Wherever you see
<something.version>1.5.6</something.version>, it should go
within the <properties></properties> tag. Will not mention this
repeatedly. This is for keeping the versions of libraries used in one place,
making it easy to maintain and look up.

Anything that comes as <dependency></dependency> goes within the
<dependencies></dependencies> list.

Now we need to add a dependency to the Spring core APIs, as well as the Spring JDBC
APIs (which contain the JDBC Template) to our pom. xml. A brief intro about these two
dependencies is as follows:

1. Spring core APISs: It provides us with core Spring features such as dependency
injection and configuration model

2. Spring JDBC APIs: It provides us with the APIs required to create
the DataSource instance and interact with the database

Since this is a sample application, we aren't using Hibernate or other ORM
libraries because they provide lots of functionalities apart from basic
CRUD operations. Instead, we will write SQL queries and use them with
JDBC Template to make things simpler.

The following code shows the dependency information for the two libraries:

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>${spring.version}</version>

</dependency>

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-jdbc</artifactId>
<version>${spring.version}</version>

</dependency>

Along with the preceding two dependencies, we need to add a few more Spring
dependencies to assist us in setting up Java-based configurations using annotations (such
as @bean, @Service, @Configuration, @ComponentScan, and so on) and dependency
injection using annotations (@Aut owired). For this, we will be adding further dependencies
as follows:

<dependency>
<groupld>org.springframework</groupId>

[20]

Creating an Application to List World Countries with their GDP Chapter 1

<artifactId>spring-beans</artifactId>
<version>${spring.version}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${spring.version}</version>
</dependency>

Defining the JDBC connection properties

We will define the JDBC connection properties in an application.properties file and
placeitin src/main/resources. The properties we define are as follows:

dataSourceClassName=com.mysqgl. jdbc.Driver
jdbcUrl=jdbc:mysqgl://localhost:3306/worldgdp
dataSource.user=root
dataSource.password=test

The preceding properties are with the assumptions that MySQL is running on

port 3306 and the database username and password are root and test respectively. You
can change these properties as per your local configuration. The next step is to define a
properties resolver that will be able to resolve the properties when used from within the
code. We will use the @PropertySource annotation, along with an instance of
PropertySourcesPlaceholderConfigurer, as shown in the following code:

@Configuration
@PropertySource ("classpath:application.properties")
public class PropertiesWithJavaConfig {

@Bean
public static PropertySourcesPlaceholderConfigurer
propertySourcesPlaceholderConfigurer () {
return new PropertySourcesPlaceholderConfigurer();

We will follow the convention of placing all our configuration classes in
com.nilangpatel.worldgdp.configand any root configuration will
go in the com.nilangpatel.worldgdp package.

[21]

Creating an Application to List World Countries with their GDP Chapter 1

This class reads all the properties from the application.properties file stored in
classpath (src/main/resources). Next up is to configure a javax.sgl.DataSource
object that will connect to the database using the properties defined in

the application.properties file. We will use the HikariCP connection pooling library
for creating our DataSource instance. This DataSource instance is then used to
instantiate NamedParameterJdbcTemplate. We will use NamedParameterJdbcTemplate
to execute all our SQL queries. At this point, we need to add a necessary dependency for
the HikariCP library as follows:

<dependency>
<groupld>com.zaxxer</groupld>
<artifactId>HikariCP</artifactId>
<version>${hikari.version}</version>
</dependency>

The DBConfiguration data source configuration class should look as follows:

@Configuration
public class DBConfiguration {
@value ("${jdbcUrl}") String jdbcUrl;

@Value ("${dataSource.user}") String username;
@Value ("${dataSource.password}") String password;
@vValue ("${dataSourceClassName}") String className;
@Bean

public DataSource getDataSource () {

HikariDataSource ds = new HikariDataSource () ;
ds.setJdbcUrl (jdbcUrl) ;
ds.setUsername (username) ;
ds.setPassword (password) ;
ds.setDriverClassName (className) ;
return ds;

}

@Bean

public NamedParameterJdbcTemplate namedParamJdbcTemplate () {
NamedParameterJdbcTemplate namedParamJdbcTemplate =

new NamedParameterJdbcTemplate (getDataSource());

return namedParamJdbcTemplate;

[22]

Creating an Application to List World Countries with their GDP Chapter 1

Let's have a quick introduction to a few new things used in this code:

e @Configuration: This is to indicate to Spring Framework that this class creates
Java objects that contain some configuration

e @Bean: This is method-level annotation, used to indicate to Spring Framework
that the method returns Java objects whose life cycle is managed by Spring
Framework and injected into places where its dependency is declared

e @Value: This is used to refer to the properties defined in the
application.properties, which are resolved by
the PropertySourcesPlaceholderConfigurer bean defined in
the PropertiesWithJavaConfig class

It is always good practice to write unit test cases in JUnit. We will write test cases for our
application. For that, we need to create the corresponding configuration classes for running
our JUnit tests. In the next section, we will look at setting up the test environment.

Setting up the test environment

Let's adopt a test first approach here. So, before going into writing the queries and DAO
classes, let's set up the environment for our unit testing. If you don't find

the src/test/java and src/test/resources folders, then please go ahead and create
them either from your IDE or from your OS file explorer.

The src/test/java folder will contain all the Java code and src/test/resources will
contain the required property files and other resources required for test cases. After
creating the required folders, the project structure looks something like that shown in the
following screenshot:

S
q

0
]

f# Package Explorer 2 5 Project Explorer S-S
v %= worldgdp

2 src/main/java

% src/main/resources

src/test/java

(* src/test/resources

=\ JRE System Library [J2SE-1.5]

=\ Maven Dependencies

a=> SIC

(= target

M pom.xml

[23]

Creating an Application to List World Countries with their GDP Chapter 1

We will use the H2 database as a source of data for our testing environment. For that, we
will update our Maven dependencies to add H2 and JUnit dependencies. H2 is one of the
most popular embedded databases. The following is the dependency information that you
need to add in your pom. xm1:

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>${spring.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.assertj</groupId>
<artifactId>assertj-core</artifactId>
<version>${assertj.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>${h2.version}</version>

</dependency>

We already have a property for spring.version, but we need version properties for the
other two, as given in the following code:

<junit.version>4.12</junit.version>
<assertj.version>3.12.0</assert]j.version>
<h2.version>1.4.198</h2.version>

The World DB schema available in MySQL will not be compatible to run with H2, but don't
worry. The compatible World DB schema for H2 is available in the source code of this
chapter, you can download from GitHub (https://github.com/PacktPublishing/Spring-
5.0-Projects/tree/master/chapter01). Itis keptin the src/test/resources folder in
the project. The file name is h2_world. sql. We will use this file to bootstrap our H2
database with the required tables and data that will then be available in our tests.

[24]

Creating an Application to List World Countries with their GDP Chapter 1

Next up is to configure H2 and one of the things we configure is the name of the SQL script
file that contains the schema and data. This SQL script file should be available on the
classpath. The following is the configuration class created in the
com.nilangpatel.worldgdp.test.config package under src/test/java folder:

@Configuration
public class TestDBConfiguration {
@Bean
public DataSource dataSource () {
return new EmbeddedDatabaseBuilder ()
.generateUniqueName (true)
.setType (EmbeddedDatabaseType.H2)
.setScriptEncoding ("UTF-8")
.ignoreFailedDrops (true)
.addScript ("h2_world.sgl")
Jbuild();
¥
@Bean ("testTemplate")
public NamedParameterJdbcTemplate namedParamJdbcTemplate () {
NamedParameterJdbcTemplate namedParamJdbcTemplate =
new NamedParameterJdbcTemplate (dataSource());
return namedParamJdbcTemplate;

}

Along with the H2 configuration, we are initializing NamedParameterJdbcTemplate by
providing it with the H2 datasource built in the other method.

We have added few other dependencies specific to JUnit. You can refer to
them by downloading the source code.

Defining the RowMapper

As we are using the JDBC Template, we need a way to map the rows of data from a
database to a Java object. This can be achieved by implementing a RowMapper interface. We
will define mapper classes for all the three entities. For Country, the raw mapper class
looks as follows:

public class CountryRowMapper implements RowMapper<Country>{

public Country mapRow (ResultSet rs, int rowNum)
throws SQLException {
Country country = new Country();

[25]

Creating an Application to List World Countries with their GDP

Chapter 1

}

country.setCode (rs.getString ("code"));

country.setName (rs.getString ("name"));
country.setContinent (rs.getString("continent"));
country.setRegion (rs.getString ("region"));
country.setSurfaceArea (rs.getDouble ("surface_area"));
country.setIndepYear (rs.getShort ("indep_year"));
country.setPopulation (rs.getLong ("population"));

country.setLifeExpectancy (rs.getDouble ("life_expectancy"));

country.setGnp(rs.getDouble ("gnp"));
country.setLocalName (rs.getString("local_name"));

country.setGovernmentForm(rs.getString("government_form"));

country.setHeadOfState (rs.getString ("head_of_state"));

country.setCode2 (rs.getString ("code2"));

if (Long.valueOf (rs.getLong("capital”™)) != null) {
City city = new City();
city.setId(rs.getLong("capital"™));
city.setName (rs.getString ("capital_name"));
country.setCapital (city);

t

return country;

Then we define the mapper class for City as follows:

public class CityRowMapper implements RowMapper<City>{

}

public City mapRow (ResultSet rs, int rowNum)

throws SQLException {
City city = new City();
city.setCountryCode (rs.getString ("country_code"));
city.setDistrict (rs.getString ("district"));
city.setId(rs.getLong ("id"));
city.setName (rs.getString ("name"));
city.setPopulation(rs.getLong ("population"));
return city;

And finally, we define Count ryLanguage as follows:

public class CountryLanguageRowMapper implements

RowMapper<CountryLanguage> {

public CountrylLanguage mapRow (ResultSet rs, int rowNum)

throws SQLException {

CountrylLanguage countrylLng = new CountrylLanguage();
countrylLng.setCountryCode (rs.getString ("countrycode")) ;
countryLng.setIsOfficial (rs.getString("isofficial"));

countryLng.setlLanguage (rs.getString ("language")) ;

[26]

Creating an Application to List World Countries with their GDP Chapter 1

countrylLng.setPercentage (rs.getDouble ("percentage"));
return countryLng;

Designing the CountryDAO

Let's go ahead and define the Count ryDAO class in the

com.nilangpatel.worldgdp.dao package along with the required methods, starting
with the getCount ries method. This method will fetch the details of countries to show
them in the listing page. This method is also called while filtering the country list. Based on
listing, filtering, and paginating, we have broken up the query used in this method into the
following parts:

1. Select clause:

private static final String SELECT_CLAUSE = "SELECT "
+ " c.Code, "
+ " c.Name, "
+ " c.Continent, "
+ " c.region, "
+ " c.SurfaceArea surface_area, "
+ " c.IndepYear indep_year, "
+ " c.Population, "
+ " c.LifeExpectancy life_expectancy, "
+ " c.GNP, "
+ " c.LocalName local_name, "
+ " c.GovernmentForm government_form, "
+ " c.HeadOfState head_of_state, "
+ " c.code2 ,"
+ " c.capital ,"
+ " cy.name capital_name "
+ " FROM country c"
+ " LEFT OUTER JOIN city cy ON cy.id = c.capital ";

2. Search where clause:

private static final String SEARCH_WHERE_CLAUSE = " AND (
LOWER (c.name) "
+ " LIKE CONCAT('%', LOWER(:search), 's')) ";

3. Continent filter where clause:

private static final String CONTINENT_WHERE_CLAUSE =
" AND c.continent = :continent ";

[27]

Creating an Application to List World Countries with their GDP Chapter 1

4. Region filter where clause:

private static final String REGION_WHERE_CLAUSE =
" AND c.region = :region ";

5. Pagination clause:

private static final String PAGINATION_CLAUSE = " ORDER BY c.code "
+ " LIMIT :size OFFSET :o0ffset ";

The placeholders defined by : <<variableName>> are replaced by the values provided in
the Map to the NamedParameterJdbcTemplate. This way we can avoid concatenating the
values into the SQL query, thereby avoiding chances of SQL injection.

The getCountries () definition would now be as follows:

public List<Country> getCountries (Map<String, Object> params) {
int pageNo = 1;
if (params.containsKey ("pageNo")) {
pageNo = Integer.parselnt (params.get ("pageNo") .toString());
}
Integer offset = (pageNo - 1) * PAGE_SIZE;
params.put ("offset", offset);
params.put ("size", PAGE_SIZE);
return namedParamJdbcTemplate.query (SELECT_CLAUSE
+ " WHERE 1 =1 "
+ (!StringUtils.isEmpty ((String)params.get ("search"))
? SEARCH_WHERE_CLAUSE : "")
+ (!StringUtils.isEmpty ((String)params.get ("continent"))
? CONTINENT_WHERE_CLAUSE : "")
+ (!StringUtils.isEmpty ((String)params.get ("region"))
? REGION_WHERE_CLAUSE : "")
+ PAGINATION_CLAUSE,
params, new CountryRowMapper());

}

Next is to implement the getCount riesCount method, which is similar to getCountries,
except that it returns the count of entries matching the WHERE clause without the pagination
applied. The implementation is as shown in the following code:

public int getCountriesCount (Map<String, Object> params) {
return namedParamJdbcTemplate.queryForObject (
"SELECT COUNT (*) FROM country c"

+ " WHERE 1 =1 "

+ (!StringUtils.isEmpty ((String)params.get ("search"))
? SEARCH_WHERE_CLAUSE : "")

+ (!StringUtils.isEmpty ((String)params.get ("continent"))
? CONTINENT_WHERE_CLAUSE : "")

[28]

Creating an Application to List World Countries with their GDP Chapter 1

+ (!StringUtils.isEmpty ((String)params.get ("region"))
? REGION_WHERE_CLAUSE : ""),
params, Integer.class);

}

Then we implement the get CountryDetail method to get the detail of the country, given
its code, as follows:

public Country getCountryDetail (String code) {
Map<String, String> params = new HashMap<String, String>();
params.put ("code", code);
return namedParamJdbcTemplate.queryForObject (SELECT_CLAUSE
+" WHERE c.code = :code", params,
new CountryRowMapper ());

In all of the previous DAO method implementations, we have made use of
the CountryRowMapper we defined in the Defining the RowMapper section.

Finally, we define the method to allow editing the country information, as shown in the
following code:

public void editCountryDetail (String code, Country country) {
namedParamJdbcTemplate.update (" UPDATE country SET "

+ " name = :name, "

+ " localname = :localName, "

+ " capital = :capital, "

+ " continent = :continent, "

+ " region = :region, "

+ " HeadOfState = :headOfState, "

+ " GovernmentForm = :governmentForm, "
+ " IndepYear = :indepYear, "

+ " SurfaceArea = :surfaceArea, "

+ " population = :population, "

+ " LifeExpectancy = :lifeExpectancy "
+ "WHERE Code = :code ",

getCountryAsMap (code, country));
}

The previous method uses a helper method that builds a Map object, by using the data
present in the Country object. We need the map, as we'll be using it as a parameter source
for our namedParamJdbcTemplate.

[29]

Creating an Application to List World Countries with their GDP

Chapter 1

The helper method has a simple implementation, as shown in the following code:

private Map<String,

}

Map<String,
countryMap
countryMap
countryMap
countryMap.
countryMap
countryMap
countryMap
countryMap
countryMap.
countryMap
countryMap
countryMap

Object> ge

return countryMap;

tCountryAsMap (String code, Country country) {

Object> countryMap = new HashMap<String, Object>();
.put ("name", country.getName());
.put ("localName", country.getLocalName());
.put ("capital", country.getCapital().getId());
put ("continent", country.getContinent());
.put ("region", country.getRegion());
.put ("headOfState", country.getHeadOfState());
.put ("governmentForm", country.getGovernmentForm());
.put ("indepYear", country.getIndepYear());
put ("surfaceArea", country.getSurfaceAreal());
.put ("population”, country.getPopulation());
.put ("lifeExpectancy", country.getLifeExpectancy());
.put ("code", code);

Let's write our JUnit test for the Count ryDAO class, which we haven't created yet.
Create CountryDAOTest class into the com.nilangpatel.worldgdp.test.dao package
as follows:

QRunWith (SpringRunner.class)
@SpringJdUnitConfig(

TestDBConfiguration.class,

classes

public class CountryDAOTest {

{
CountryDAO.class})

@Autowired CountryDAO countryDao;

@Autowired @Qualifier ("testTemplate")
NamedParameterJdbcTemplate namedParamJdbcTemplate;
@Before
public void setup() {
countryDao.setNamedParamJdbcTemplate (namedParamJdbcTemplate) ;

}

@Test

public void testGetCountries () {
List<Country> countries = countryDao.getCountries (new HashMap<>());
//AssertJ assertions
//Paginated List, so should have 20 entries
assertThat (countries) .hasSize (20);

}

@Test

public void testGetCountries_searchByName () {
Map<String, Object> params = new HashMap<>();

params.put ("search",
List<Country> countries

"Aruba");

countryDao.getCountries (params) ;

assertThat (countries) .hasSize (1);

[30]

Creating an Application to List World Countries with their GDP

Chapter 1

}
@Test
public void testGetCountries_searchByContinent () {
Map<String, Object> params = new HashMap<>();
params.put ("continent", "Asia");
List<Country> countries = countryDao.getCountries (params);
assertThat (countries) .hasSize (20);
}
@Test
public void testGetCountryDetail () |
Country c = countryDao.getCountryDetail ("IND");
assertThat (c) .isNotNull () ;

assertThat (c.toString()) .isEqualTo ("Country (code=IND, name=India,

n

+ "continent=Asia, region=Southern and Central Asia,

+ "surfaceArea=3287263.0, indepYear=1947, population=1013662000, "
+ "lifeExpectancy=62.5, gnp=447114.0, localName=Bharat/India, "
+ "governmentForm=Federal Republic, headOfState=Kocheril Raman

Narayanan, "

+ "capital=City (id=1109, name=New Delhi, countryCode=null,

+ "country=null, district=null, population=null), code2=IN)");

}
@Test public void testEditCountryDetail () A
Country c = countryDao.getCountryDetail ("IND");
c.setHeadOfState ("Ram Nath Kovind");
c.setPopulation (13241713541);
countryDao.editCountryDetail ("IND", c);
c = countryDao.getCountryDetail ("IND");
assertThat (c.getHeadOfState()) .isEqualTo ("Ram Nath Kovind");
assertThat (c.getPopulation()) .isEqualTo (13241713541);
}
@Test public void testGetCountriesCount () {

Integer count = countryDao.getCountriesCount (Collections.EMPTY_MAP);

assertThat (count) .isEqualTo (239);

}

There are a few things to note about configuring JUnit tests using the Spring test

framework from the following test, including the following:

e QRunWith is used to replace the JUnit's test runner with a custom test runner,
which in this case, is Spring's SpringRunner. Spring's test runner helps in
integrating JUnit with the Spring test framework.

® @SpringJdUnitConfig is used to provide the list of classes that contain the
required configuration to satisfy the dependencies for running the test.

[31]

Creating an Application to List World Countries with their GDP Chapter 1

Many people who choose ORM frameworks may feel that writing
complicated SQL queries like this is awkward. However, from the next
chapter onward, we'll start using the Spring Data framework to make an
interaction with various data sources; the database is one of those
accessed with the Spring Data JPA. Here, we wanted to show how the
Spring JDBC offering interacts with the database.

Designing the CityDAO

The following are some of the important operations to be supported by
com.nilangpatel.worldgdp.dao.CityDAO class:

e Get cities for a country

e Get city details for given ID

¢ Add anew city to a country

e Delete the given city from the country

Let's go ahead and implement each one of these functionalities starting with
the getCities, as follows:

public List<City> getCities(String countryCode, Integer pageNo) {
Map<String, Object> params = new HashMap<String, Object>();

params.put ("code", countryCode);
if (pageNo != null) {
Integer offset = (pageNo - 1) * PAGE_SIZE;

params.put ("offset", offset);
params.put ("size", PAGE_SIZE);

}
return namedParamJdbcTemplate.query ("SELECT "

+ " id, name, countrycode country_code, district, population "
+ " FROM city WHERE countrycode = :code"

+ " ORDER BY Population DESC"

+ ((pageNo != null) ? " LIMIT :offset , :size " : ""),

params, new CityRowMapper());

}

We are using a paginated query to get a list of cities for a country. We will also need
another overloaded version of this method where we return all the cities of a country and
we will use this query to fetch all the cities while editing the country to select its capital.
The overloaded version is as follows:

public List<City> getCities(String countryCode) {
return getCities (countryCode, null);

}

[32]

Creating an Application to List World Countries with their GDP Chapter 1

Next is to implement the method to get the city details, as shown in the following code:

public City getCityDetail (Long cityId) {
Map<String, Object> params = new HashMap<String, Object>();
params.put ("id", cityId);
return namedParamJdbcTemplate.queryForObject ("SELECT id, "
+ " name, countrycode country_code, "
+ " district, population "
+ " FROM city WHERE id = :id",
params, new CityRowMapper());

}

Then we implement the method to add a city as follows:

public Long addCity (String countryCode, City city) {
SglParameterSource paramSource = new MapSqglParameterSource (
getMapForCity (countryCode, city));
KeyHolder keyHolder = new GeneratedKeyHolder();
namedParamJdbcTemplate.update ("INSERT INTO city ("
+ " name, countrycode, "
+ " district, population) "
+ " VALUES (:name, :country_code, "
+ " :district, :population)",
paramSource, keyHolder);
return keyHolder.getKey () .longValue();
}

As we saw with adding a country, this will also make use of a helper method to return
a Map from the City data, as follows:

private Map<String, Object> getMapForCity (String countryCode, City city) {
Map<String, Object> map = new HashMap<String, Object>();
map.put ("name", city.getName());
map.put ("country_code", countryCode);
map.put ("district", city.getDistrict());
map.put ("population", city.getPopulation());
return map;

}

An important thing to notice in addCity is the use
of KeyHolder and GeneratedKeyHolder to return the generated (due to auto increment)
primary key that is the cityId, as follows:

KeyHolder keyHolder = new GeneratedKeyHolder();
//other code
return keyHolder.getKey () .longValue();

[33]

Creating an Application to List World Countries with their GDP Chapter 1

And finally, we implement the method to delete a city from the country as shown in the
following code:

public void deleteCity (Long cityId) {

Map<String, Object> params = new HashMap<String, Object>();

params.put ("id", cityId);

namedParamJdbcTemplate.update ("DELETE FROM city WHERE id = :id", params);
}

Now let's add a test for CityDAO. Add the CityDAOTest classin
com.nilangpatel.worldgdp.test.dao package under src/test/java folder as
follows:

@RunWith (SpringRunner.class)
@SpringJdUnitConfig(classes = {

TestDBConfiguration.class, CityDAO.class})
public class CityDAOTest {

@Autowired CityDAO cityDaoj;
@Autowired @Qualifier ("testTemplate")
NamedParameterJdbcTemplate namedParamJdbcTemplate;
@Before
public void setup() {
cityDao.setNamedParamJdbcTemplate (namedParamJdbcTemplate) ;
}
@Test public void testGetCities() {
List<City> cities = cityDao.getCities ("IND", 1);
assertThat (cities) .hasSize (10);
}
@Test public void testGetCityDetail () {
Long cityId = 10241;
City city = cityDao.getCityDetail (cityId);
assertThat (city.toString()) .isEqualTo ("City (id=1024, name=Mumbai
(Bombay), "
+ "countryCode=IND, country=null, district=Maharashtra,
population=10500000)");
}
@Test public void testAddCity ()
String countryCode = "IND";
City city = new City();
city.setCountryCode (countryCode) ;
city.setDistrict ("District");
city.setName ("City Name");
city.setPopulation(1010101);
long cityId = cityDao.addCity (countryCode, city);
assertThat (cityId) .isNotNull () ;
City cityFromDb = cityDao.getCityDetail (cityId);
assertThat (cityFromDb) .isNotNull () ;

[34]

Creating an Application to List World Countries with their GDP Chapter 1

assertThat (cityFromDb.getName ()) .isEqualTo ("City Name");
}
@Test (expected = EmptyResultDataAccessException.class)
public void testDeleteCity () {
Long cityId = addCity();
cityDao.deleteCity (cityId);
City cityFromDb = cityDao.getCityDetail (cityId);
assertThat (cityFromDb) .isNull () ;
}
private Long addCity () {
String countryCode = "IND";
City city = new City();
city.setCountryCode (countryCode) ;
city.setDistrict ("District");
city.setName ("City Name");
city.setPopulation(1010101);
return cityDao.addCity (countryCode, city);

Designing the CountryLanguageDAO

We will need to expose the following APIs to interact with the countrylanguage table:

¢ Get list of languages for a given country code

¢ Add a new language for a country by checking that the language doesn't already
exist

¢ Delete a language for a country

For the sake of keeping it short, we will show the method implementations covering these
three scenarios. The complete code can be found in the
com.nilangpatel.worldgdp.dao.CountryLanguageDAO class available in the code
downloaded for this book. The following is the code for these method implementations:

public List<CountryLanguage> getLanguages (String countryCode, Integer
pageNo) {
Map<String, Object> params = new HashMap<String, Object>();
params.put ("code", countryCode);
Integer offset = (pageNo - 1) * PAGE_SIZE;
params.put ("offset", offset);
params.put ("size", PAGE_SIZE);
return namedParamJdbcTemplate.query ("SELECT * FROM countrylanguage"
+ " WHERE countrycode = :code"
+ " ORDER BY percentage DESC "
+ " LIMIT :size OFFSET :offset ",

[35]

Creating an Application to List World Countries with their GDP

Chapter 1

params, new CountryLanguageRowMapper());

public void addLanguage (String countryCode, CountryLanguage cl) {
namedParamJdbcTemplate.update ("INSERT INTO countrylanguage ("

+ " countrycode, language, isofficial, percentage) "
+ " VALUES (:country_code, :language, "
+ " :is_official, :percentage) ",

getAsMap (countryCode, cl));

public boolean languageExists (String countryCode, String language)
Map<String, Object> params = new HashMap<String, Object>();
params.put ("code", countryCode);
params.put ("lang", language);
Integer langCount = namedParamJdbcTemplate.queryForObject (
"SELECT COUNT (*) FROM countrylanguage"
+ " WHERE countrycode = :code "
+ " AND language = :lang", params, Integer.class);
return langCount > 0;

public void deletelanguage (String countryCode, String language) {
Map<String, Object> params = new HashMap<String, Object>();
params.put ("code", countryCode);
params.put ("lang", language);
namedParamJdbcTemplate.update ("DELETE FROM countrylanguage "
+ " WHERE countrycode = :code AND "
+ " language = :lang ", params);

{

private Map<String, Object> getAsMap (String countryCode, CountrylLanguage

cl){
Map<String, Object> map = new HashMap<String, Object>();
map.put ("country_code", countryCode);
map.put ("language", cl.getLanguage());
map.put ("is_official", cl.getIsOfficial());
map.put ("percentage", cl.getPercentage());
return map;

[36]

Creating an Application to List World Countries with their GDP Chapter 1

Designing the client for World Bank API

We need to fetch the GDP data from WorldBank API. As we discussed, it is REST end
point, where we have to send few parameters and will get the response. For this, we will
use RestTemplate to make REST call. The following is the definition for

the com.packt .external . .WorldBankApiClient class, which is used to invoke the

World Bank API and process its response to return List<Count ryGDP>:

@Service
public class WorldBankApiClient {

String GDP_URL =
"http://api.worldbank.org/countries/%s/indicators/NY.GDP.MKTP.CD?"
+ "format=json&date=2008:2018";
public List<CountryGDP> getGDP (String countryCode) throws ParseException

RestTemplate worldBankRestTmplt = new RestTemplate();
ResponseEntity<String> response
= worldBankRestTmplt.getForEntity (String.format (GDP_URL,

countryCode), String.class);

//the second element is the actual data and its an array of object

JSONParser parser = new JSONParser();

JSONArray responseData = (JSONArray) parser.parse (response.getBody());

JSONArray countryDataArr = (JSONArray) responseData.get(l);

List<CountryGDP> data = new ArrayList<CountryGDP>();

JSONObject countryDataYearWise=null;

for (int index=0; index < countryDataArr.size(); index++) {

countryDataYearWise = (JSONObject) countryDataArr.get (index);
String valueStr = "0";
if (countryDataYearWise.get ("value") !=null) {

valueStr = countryDataYearWise.get ("value") .toString();

}
String yearStr = countryDataYearWise.get ("date").toString();

CountryGDP gdp = new CountryGDP () ;
gdp.setValue (valueStr != null ? Double.valueOf (valueStr) : null);
gdp.setYear (Short.valueOf (yearStr));
data.add (gdp) ;
}

return data;

[371]

Creating an Application to List World Countries with their GDP Chapter 1

Defining the API controllers

So far, we have written code to interact with the DB. Next up is to work on the code for the
controller. We will have both types of controller—one that returns the view name
(Thymeleaf template in our case) with the data for the view populated in the model object,
and the other that exposes the RESTful APIs. We will need to add the following
dependency to pom.xml:

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>${spring.version}</version>
</dependency>

Adding spring-webmvc to the dependency will automatically include
spring-core, spring-beans, and spring-context dependencies. So
we can remove them from the pom. xm1.

Enabling Web MVC using @EnableWebMvc

To be able to make use of the Spring MVC features, we need to have one class that has been
annotated with @Configuration, to be annotated with @EnableWebMvc.

The @EnableWebMvc annotation, imports the Spring MVC configuration from

the WebMvcConfigurationSupport class present in the Spring MVC framework. If we
need to override any of the default imported configuration, we would have to implement
the WebMvcConfigurer interface present in the Spring MVC framework and override the

required methods.
We will create an AppConfiguration class with the following definition:

@EnableWebMvc

@Configuration

@ComponentScan (basePackages = "com.nilangpatel.worldgdp")
public class AppConfiguration implements WebMvcConfigurer({

@Override
public void addResourceHandlers (ResourceHandlerRegistry registry) {
registry.addResourceHandler ("/static/**") .addResourcelLocations ("/static/");

}
}

[38]

Creating an Application to List World Countries with their GDP Chapter 1

In the previous configuration, a few important things to note are as follows:

¢ @EnableWebMvc: This imports the Spring MVC related configuration.

e @ComponentScan: This is used for declaring the packages that have to be
scanned for Spring components (which can be @Configuration, @Service,
@Controller, @Component, and so on). If no package is defined, then it scans
starting from the package where the class is defined.

e WebMvcConfigurer: We are going to implement this interface to override some
of the default Spring MVC configuration seen in the previous code.

Configuration to deploy to Tomcat without
web.xml

As we will be deploying the application to Tomcat, we need to provide the servlet
configuration to the application server. We will look at how to deploy to Tomcat in a
separate section, but now we will look at the Java configuration, which is sufficient to
deploy the application to Tomcat or any application server without the need for an
additional web . xml. The Java class definition is given in the following:

public class WorldApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

@Override
protected Class<?>[] getRootConfigClasses () A
return null;

}

@Override

protected Class<?>[] getServletConfigClasses () {
return new Class|[] {AppConfiguration.class};

}

@Override

protected String[] getServletMappings () {
return new String[] { "/" };

}
}

The AbstractAnnotationConfigDispatcherServletInitializer abstract classis an
implementation of the WebApplicationInitializer interface thatis used to register
Spring's DispatcherServlet instance and uses the other @Configuration classes to
configure the DispatcherServlet.

[39]

Creating an Application to List World Countries with their GDP Chapter 1

We just need to override the getRootConfigClasses (), getServletConfigClasses (),
and getServletMappings () methods. The first two methods point to the configuration
classes that need to load into the servlet context, and the last method is used to provide the
servlet mapping for DispatcherServlet.

DispatcherServlet follows the front controller pattern, where there is a single servlet
registered to handle all the web requests. This servlet uses the RequestHandlerMapping
and invokes the corresponding implementation based on the URL mapped to the
implementation.

We need to make a small update to the Maven WAR plugin so that it doesn't fail if there is
no web . xml found. This can be done by updating the <plugins> tag in the pom. xm1 file,
as shown in the following:

<build>
<finalName>worldgdp</finalName>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<executions>
<execution>
<id>default-war</id>
<phase>prepare—-package</phase>
<configuration>
<failOnMissingWebXml>false</failOnMissingWebXml>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

Now we are all set to implement our controllers. We will show you how to deploy to
Tomcat once we have implemented all the RESTful API controllers.

[40]

Creating an Application to List World Countries with their GDP Chapter 1

Defining the RESTful API controller for country
resource

Let's define the RESTful API controller for the country resource. The following is the
template for the controller:

@RestController
@RequestMapping ("/api/countries™)
@S1f4]
public class CountryAPIController {
@Autowired CountryDAO countryDao;
@Autowired WorldBankApiClient worldBankApiClient;

@GetMapping

public ResponseEntity<?> getCountries (
@RequestParam (name="search", required = false) String searchTerm,
@RequestParam (name="continent", required = false) String continent,
@RequestParam(name="region", required = false) String region,
@RequestParam (name="pageNo", required = false) Integer pageNo

)4
//logic to fetch contries from CountryDAO

return ResponseEntity.ok();

}
@PostMapping (value = "/{countryCode}",
consumes = {MediaType.APPLICATION_JSON_VALUE})

public ResponseEntity<?> editCountry (
@PathVariable String countryCode, @Valid @RequestBody Country country

) £
//logic to edit existing country

return ResponseEntity.ok();

}
@GetMapping ("/{countryCode}/gdp")
public ResponseEntity<?> getGDP (@PathVariable String countryCode) {

//logic to get GDP by using external client
return ResponseEntity.ok();

}
The following are a few things to note from the previous code:

e @RestController: Thisis used to annotate a class as a controller with each of
the RESTful methods returning the data in the response body.

® QRequestMapping: This is for assigning the root URL for accessing the
resources.

[41]

Creating an Application to List World Countries with their GDP Chapter 1

® @GetMapping and @PostMapping: These are used to assign the HTTP verbs that
will be used to invoke the resources. The URL for the resources are passed within
the annotation, along with other request headers that consume and produce
information.

Let's implement each of the methods in order, starting with getCountries (), as shown in
the following code:

@GetMapping
public ResponseEntity<?> getCountries (
@RequestParam (name="search", required = false) String searchTerm,

@RequestParam(name="continent", required = false) String continent,
@RequestParam (name="region", required = false) String region,
@RequestParam (name="pageNo", required = false) Integer pageNo

) £
try {

Map<String, Object> params = new HashMap<String, Object>();
params.put ("search", searchTerm);
params.put ("continent", continent);
params.put ("region", region);
if (pageNo != null) {
params.put ("pageNo", pageNo.toString());
}
List<Country> countries = countryDao.getCountries (params);
Map<String, Object> response = new HashMap<String, Object>();
response.put ("list", countries);
response.put ("count", countryDao.getCountriesCount (params));
return ResponseEntity.ok (response);
}catch (Exception ex) {
log.error ("Error while getting countries", ex);
return ResponseEntity.status (HttpStatus.INTERNAL_SERVER_ERROR)
.body ("Error while getting countries");

}
The following are some of the things to note from the previous code:

e QRequestParam: This annotation is used to declare request parameters accepted
by the controller endpoint. The parameters can be provided with a default value
and can also be made mandatory.

e ResponseEntity: This class is used to return the response body, along with
other response parameters such as status, headers, and so on.

[42]

Creating an Application to List World Countries with their GDP Chapter 1

Next up is the API for editing country details, as follows:

@PostMapping ("/{countryCode}")
public ResponseEntity<?> editCountry (
@PathVariable String countryCode, @Valid @RequestBody Country country) {

try A
countryDao.editCountryDetail (countryCode, country);
Country countryFromDb = countryDao.getCountryDetail (countryCode) ;

return ResponseEntity.ok (countryFromDDb) ;
}catch (Exception ex) {
log.error ("Error while editing the country: {} with data: {}",
countryCode, country, ex);
return ResponseEntity.status (HttpStatus.INTERNAL_SERVER_ERROR)
.body ("Error while editing the country");

}
The following are a few things to note from the previous code implementation:

e @PathVariable: This is used to declare any variable that needs to be part of the
URL path of the controller endpoint. In our case, we want the country code to be
part of the URL. So the URL will be of the /api/countries/IND form.

e @valid: This triggers the Bean Validation API to check for the restrictions on

each of the class properties. If the data from the client is not valid, it returns a
400.

e @RequestBody: This is used to capture the data sent in the request body and the
Jackson library is used to convert the JSON data in the request body to the
corresponding Java object.

The rest of the API implementation can be found in the CountryAPIController class. The
tests for the API controller can be found in the CountryAPIControllerTest class, which
is available in the source code of this book.

Defining the RESTful API controller for city
resource

For the city resource we would need the following APISs:

e Get cities for a given country
¢ Add a new city to the country
¢ Delete the city from the country

[43]

Creating an Application to List World Countries with their GDP Chapter 1

The code for this controller can be found in the CityAPIController class and the tests for
the API controller can be found in the CityAPIControllerTest class, which is available
in the source code of this book.

Defining the RESTful API controller for country
language resource

For the CountryLanguage resource we need the following APIs:

¢ Get languages for a country
¢ Add alanguage for a country
¢ Delete a language from the country

The code for this controller can be found in the CountryLanguageAPIController class
and the tests for the API controller can be found in the
CountryLanguageAPIControllerTest class, which is available in the source code of this
book.

Deploying to Tomcat

Before we proceed with View and Controller for handling views, we will deploy the app
developed so far to Tomcat. You can download Tomcat 8.5 from here (https://tomcat.
apache.org/download-80.cgi). Installation is as simple as extracting the ZIP/TAR file onto
your file system.

Let's create a user admin and manager—gui role in Tomcat. To do this, have to
edit apache-tomcat-8.5.23/conf/tomcat-users.xml and add the following line:

<role rolename="manager-gui" />
<user username="admin" password="admin" roles="manager-gui" />

Starting up Tomcat is simple, as follows:

1. Navigate to apache-tomcat-8.5.23/bin
2. Run startup.bat

[44]

Creating an Application to List World Countries with their GDP Chapter 1

Navigate to http://localhost:8080/manager/html and enter admin, and admin for
username and password respectively, to be able to view Tomcat's manager console. The
initial part of the page will list the applications deployed in the current instance, and
toward the later part of the page you will find an option to upload a WAR file to deploy the
application, as shown in the following screenshot:

Deploy
Deploy directory or WAR file located on server

Context Path (required):

XML Configuration file URL:

WAR or Directory URL:
Deploy

WAR file to deploy

Select WAR file to upload | Choose File | No file chosen

Deploy

We can either upload the WAR file generated after running mvn package or update the
server.xml of the Tomcat instance to refer to the target directory of the project to be able
to deploy automatically. The latter approach can be used for development, while the former
that is WAR deployment can be used for production.

In a production system, you can have a continuous deployment server generate a WAR file
and deploy to a remote Tomcat instance. In this scenario, we will use the latter approach of
updating the Tomcat's configuration. You have to add the following line of code in the
Tomcat's server.xml file, located at TOMCAT_HOME/conf/server.xml:

<Context path="/world" docBase="<<Directory path where you keep WAR file>>"
reloadable="true" />

The preceding line has to be added between the <Host></Host> tags. Alternatively, you
can configure Tomcat in your IDE (for example, Eclipse), which is more convenient for
development purposes. We will build the project with Maven, but before that, please add
following configuration to the <properties></properties> section of pom.xml:

<maven.compiler.target>1.8</maven.compiler.target>
<maven.compiler.source>1.8</maven.compiler.source>

[45]

Creating an Application to List World Countries with their GDP Chapter 1

This will make sure to choose the correct Java compiler version while building (packaging)
the application with Maven from the command line. Next is to build the project using

the mvn package and run Tomcat using TOMCAT_HOME /bin/startup.bat, and once the
server is UP, you can visit the APl http://localhost:8080/worldgdp/api/countries
in the browser to see the following input:

{
"count™: 239,
"list": [
{-}
{ }J
{
"code": "AGO",
“"name™: "Angola",
"continent™: "Africa",
"region”: "Central Africa”,

"surfaceArea”: 1246700,

"indepYear": 1975,

"population™: 12878000,
"lifeExpectancy"”: 38.29999923706055,

"gnp": 6648,
"localName™: "Angola",
"governmentForm": "Republic™”,
"headOfState": "JosA® Eduardo dos Santos",
"capital”: {

"id": 56,

"name™: "Luanda",

"countryCode™: null,
"country”: null,
"district": null,

"population™: null

¥s
"code2": "AQ"
¥
1
"code™: "AIA",
“"name": "Anguilla",
"continent”: "North America”,

[46]

Creating an Application to List World Countries with their GDP Chapter 1

Defining the view controller

We will have one view controller, ViewController. java defined in

the com.nilangpatel.worldgdp.controller.view. The view controller will be
responsible for populating the data required for the view templates and also mapping
URLs to corresponding view templates.

We will be using Thymeleaf (www.thymeleaf.org) as the server-side template engine and
Mustache.js (https://github.com/janl/mustache. js) as our client-side template engine.
The advantage of using a client-side template engine is that any data loaded
asynchronously in the form of JSON can easily be added to the DOM by generating HTML
using the client-side templates. We will explore more about Thymeleaf and Mustache.js in
Chapter 3, Blogpress — A simple blog management system.

There are much better ways to do this by using frameworks such as Vue.js, React.js,
Angular.js, and so on. We will look at the view template in the next section. Let's continue
our discussion about the view controller. The view controller should map the right view
template and the data for the following scenarios:

e Listing of countries
¢ Viewing country detail
¢ Editing country detail

Let's look at the following skeletal structural definition of the ViewController class:

@Controller
@RequestMapping ("/")
public class ViewController {
@Autowired CountryDAO countryDao;
@Autowired LookupDAO lookupDao;
@Autowired CityDAO cityDao;
@GetMapping ({"/countries", "/"})
public String countries (Model model,
@RequestParam Map<String, Object> params
) A
//logic to fetch country list
return "countries";
}
@GetMapping ("/countries/{code}")
public String countryDetail (@PathVariable String code, Model model) {
//Logic to Populate the country detail in model
return "country";
}
@GetMapping ("/countries/{code}/form")
public String editCountry(@PathVariable String code,

[47]

Creating an Application to List World Countries with their GDP Chapter 1

Model model) {
//Logic to call CountryDAO to update the country

return "country-form";
}
}

The following are a few important things from the previous code:

e @Controller: This annotation is used to declare a controller that can return
view template names to be able to render the view, as well as returning
JSON/XML data in the response body.

¢ @ResponseBody: This annotation when present on the method of the controller
indicates that the method is going to return the data in the response body, and
hence, Spring will not use the view resolver to resolve the view to be rendered.
The @RestController annotation by default adds this annotation to all its

methods.
e Model: This instance is used to pass on the data required for building the view.

In case of the listing of countries, the complete HTML is rendered at the server using the
Thymeleaf template engine, so we need to obtain the request parameters, if any are present
in the URL, and obtain a filtered and paginated list of the countries. We also need to
populate the lookups that is the data for the <select> controls, which will be used for
filtering the data. Let's look at its implementation as follows:

@GetMapping ({"/countries", "/"})
public String countries (Model model,
@RequestParam Map<String, Object> params

) Ao
model.addAttribute ("continents", lookupDao.getContinents());

model.addAttribute ("regions", lookupDao.getRegions());
model.addAttribute ("countries", countryDao.getCountries (params));
model.addAttribute ("count", countryDao.getCountriesCount (params));
return "countries";

}

The previous code is pretty straightforward. We are making use of the DAO classes to
populate the required data into the Model instance and then returning the view name,
which in this case is countries. Similarly, the rest of the method implementation can be

found in the ViewController controller class.

[48]

Creating an Application to List World Countries with their GDP Chapter 1

Defining the view templates

We will be using the Thymeleaf template engine for handling server-side templates.
Thymeleaf provides various dialects and conditional blocks for rendering the dynamic
content within the static HTML. Let's look at some simple syntactical element of Thymeleaf,
as follows:

<!—- Dynamic content in HTML tag —-—>
<div class="alert alert-info">[[${country.name}]]</div>

<!-- Dynamic attributes -->
<span th:class="|alert ${error ? 'alert-danger':
_}I">[[${errorMsg}]]

<!-- Looping —-->

<li th:each="c¢ : ${countries}">

[[${c.name}]]

</1li>

<!-— Conditionals -->
<div class="alert alert-warning" th:if="${count == 0}">No results
found</div>
<!—— Custom attributes -->

<div th:attr="data-count=${count}"></div>

<!-- Form element value ——>
<input type="text" th:value="${country.name}" name="name" />

From the previous examples, we can observe that the items to be evaluated by Thymeleaf
are prefixed with th: and any content to be rendered between the tags can be done either
using th:text or [[${variable}]]. The latter syntax has been introduced in Thymeleaf
3. This was a very short primer, as going in to depth on Thymeleaf is out of the scope of this
book. A beautiful guide explaining different parts of the template can be found at http://
www.thymeleaf.org/doc/tutorials/3.0/usingthymeleaf.html.

[49]

Creating an Application to List World Countries with their GDP Chapter 1

Configuring a Thymeleaf template engine

In order to use the Thymeleaf template engine with Spring MVC, we need to do some
configuration wherein we set up the Thymeleaf template engine and update Spring's view
resolver to use the template engine to resolve any views. Before moving further, we need to
define required dependencies in pom. xm1 as follows:

<dependency>
<groupld>org.thymeleaf</groupId>
<artifactId>thymeleaf-spring5</artifactId>
<version>${thymeleaf.version}</version>

</dependency>

<dependency>
<groupld>nz.net.ultraqg.thymeleaf</groupId>
<artifactId>thymeleaf-layout-dialect</artifactId>
<version>${thymeleaf-layout-dialect.version}</version>

</dependency>

Let's define the configuration view resolver in order, starting with setting up the template
resolver as follows:

@Bean

public ClassLoaderTemplateResolver templateResolver () {
ClassLoaderTemplateResolver templateResolver

= new ClassLoaderTemplateResolver();

templateResolver.setPrefix ("templates/");
templateResolver.setSuffix (".html");
templateResolver.setTemplateMode (TemplateMode.HTML) ;
templateResolver.setCacheable (false);
return templateResolver;

}

The previous configuration sets the template location that the template engine will use to
resolve the template files. Next is to define the template engine, which will make use of
SpringTemplateEngine and the template resolver defined earlier, as follows:

@Bean

public SpringTemplateEngine templateEngine () {
SpringTemplateEngine templateEngine = new SpringTemplateEngine();
templateEngine.setTemplateResolver (templateResolver ());
templateEngine.addDialect (new LayoutDialect ());
return templateEngine;

[50]

Creating an Application to List World Countries with their GDP Chapter 1

In the previous configuration, we make use of the Thymeleaf Layout Dialect (https://
github.com/ultraq/thymeleaf-layout-dialect) created by Emanuel Rabina. This layout
dialect helps us in creating a view decorator framework wherein all the templates will be
decorated with a base template and the decorated templates just provide the necessary
content to complete the page. So all the headers, footers, CSS, scripts, and other common
HTML can be placed in the base template. This prevents redundancy to a great extent. In
our sample app, the base.html file present in
worldgdp/src/main/resources/templates is the base template that is used by other
templates.

Next is to define a Thymeleaf view resolver that will override Spring's default view
resolver, as follows:

@Bean

public ViewResolver viewResolver () {
ThymeleafViewResolver viewResolver = new ThymeleafViewResolver ();
viewResolver.setTemplateEngine (templateEngine());

viewResolver.setCharacterEncoding ("UTF-8");
return viewResolver;

}

The previous configuration is available in the com.packt .config.ViewConfiguration
class.

Managing static resources

If you look back at the com.nilangpatel.worldgdp.AppConfiguration class, you will
see that we have overridden the addResourceHandlers method of WebMvcConfigurer
interface. In the method implementation shown in the following code, we have mapped the
static resources prefix URL /static/** to the static resources location /static/ in the
webapp directory:

@Override
public void addResourceHandlers (ResourceHandlerRegistry registry) {
registry.addResourceHandler ("/static/**")
.addResourcelLocations ("/static/");

We have added a few static resources (both CSS and JavaScript) in the
/src/main/webapp/static folder of the project. Please download the
code of this chapter and refer to them side by side.

[51]

Creating an Application to List World Countries with their GDP Chapter 1

Creating the base template

We mentioned before that we will be using the Thymeleaf Layout Dialect to create a base
template and use the base template to decorate all other templates. The base template will
contain all the CSS links, JavaScript source file links, the header, and the footer, as shown in
the following code:

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:th="http://www.thymeleaf.org"
xmlns:layout="http://www.ultrag.net.nz/thymeleaf/layout">

<head>
<title layout:title-pattern="S$SCONTENT_TITLE - S$LAYOUT_TITLE">World In
Numbers</title>
<meta name="description" content=""/>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<!-- Include all the CSS links —-—>
</head>
<body>

<nav class="navbar navbar-expand-lg navbar-dark bg-primary">
WORLD IN NUMBERS
<div class="collapse navbar-collapse" id="navbarColor01">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">
Countries
</1li>

</div>
</nav>
<div class="container">
<div class="content">
<div layout:fragment="page_content">
<!-- Placeholder for content —-->
</div>
</div>
</div>
<div class="modal" id="worldModal" >
</div>
<footer id="footer"></footer>
<!-- /.container --—>
<!--= Include all the Javascript source files -->
<th:block layout:fragment="scripts">
<!-- Placeholder for page related javascript -->
</th:block>
</body>
</html>

[52]

Creating an Application to List World Countries with their GDP Chapter 1

The two main important parts of the following template are as follows:

e <div layout:fragment="page_content"></div>: The other templates that
use the base template as decorator provide their HTML within this section.
Thymeleaf Layout Dialect at runtime decorates this HTML with the content from
the base template.

e <th:block layout:fragment="scripts"></th:block>: Similar to the
HTML previous content, any page-specific JavaScript or links to any specific
JavaScript source files can be added within this section. This helps in isolating
page-specific JavaScript in their own pages.

Any template that wants to use the base template as the decorator will declare this
attribute, layout :decorate="~{base}", in the <html> tag. We will not go into the
content of individual templates as it's mostly HTML. All the templates can be found at the
location worldgdp/src/main/resources/templates. We have three templates:

e countries.html: This is for showing the countries' list with filtering and
pagination

e country-form.html: This is for editing a country's detail

e country.html: This is for showing a country's detail

Logging configuration

Before we jump into the rest of the steps to develop an application, it is good practice to
define a log level and format. It is, however, optional but good practice to print the logs in a
desired format, along with various logging levels. For this, add an XML file

called 1ogback.xml with following content in it:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<appender name="STDOUT" class="ch.qgos.logback.core.ConsoleAppender">
<layout class="ch.qgos.logback.classic.PatternLayout">
<Pattern>
$d{yyyy-MM-dd HH:mm:ss} [%$thread] %-5level %logger{36} - %msg%n
</Pattern>
</layout>
</appender>
<logger name="com.nilangpatel.worldgdp" level="debug" additivity="false">
<appender—-ref ref="STDOUT" />
</logger>
<root level="debug">
<appender-ref ref="STDOUT" />

[531]

Creating an Application to List World Countries with their GDP Chapter 1

</root>
</configuration>

Logback was developed as a successor to the popular Log4j project, and is used as a
logging framework for Java applications. This configuration defines the pattern, along with
the logging level. To enable logback in your application, you need to add following
dependencies to pom. xm1:

<dependency>
<groupId>ch.gos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>

</dependency>

<dependency>
<groupId>ch.gos.logback</groupId>
<artifactId>logback—-core</artifactId>
<version>${logback.version}</version>

</dependency>

Running the application

As we have already configured the deployment to Tomcat, you should have the application
running now. You can always download the source code for this book; find the source code
under the worldgdp folder. After downloading, you have to build it using Maven, as
follows:

$ mvn package

The preceding command will run the tests as well. The WAR file worldgdp.war, present in
the target, can be uploaded to Tomcat through the Manager app or copied to
the TOMCAT_HOME /webapps folder. Tomcat will then explode the archive and deploy the

app.

[54]

Creating an Application to List World Countries with their GDP Chapter 1

The following are some of the screenshots of the application in action, starting with the
listing page:

WORLD IN NUMBERS Countries

Search by name

Continent Region

Asia v Southern and Central Asia v
Code Name Continent Region Area
AFG Afghanistan Asia Southern and Central Asia 652090.0
BGD Bangladesh Asia Southern and Central Asia 143998.0
BTN Bhutan Asia Southern and Central Asia 47000.0
IND India Asia Southern and Central Asia 3287263.0

[551]

Creating an Application to List World Countries with their GDP Chapter 1

Next is the page that displays the country details:

Countries / India

India(IND / IN)

Capital New Delhi Local Name Bharat/India
Continent Asia Independence 1947
Region Southern and Central Asia Surface Area 3287263.0
Head of State Kocheril Raman Population 1013662000

Narayanan Life Expectancy 62.5
Government Federal Republic

Cities EX Llanguages & GDP

Mumbai (Bombay) Hindi # x
x
Bengali [8.20% B 3
Delhi 2,600.0000... — eoe
(7206704 B3 Telugu x e
Calcutta [Kolkata] Marathi x 2,200,000.0...
x g
Tamil [630% R 4 =
Chennai (Madras) § 1,800.000.0...
x Urdu x ?‘E;‘
o
Hyderabad Gujarati [4.80% R 3 1.400.0000...
x
Kannada x
Ahmedabad 1,000.000.0...

[56]

Creating an Application to List World Countries with their GDP Chapter 1

The form that is used to edit the country details is shown in the following screenshot:

Independence

1947

Population

1013662000

Countries / India / Editing India(IND / IN)
Name Local Name Capita
India Bharat/India New Delhi v
ontinent Region
Asia v Southern and Central Asia v
Government
Kocheril Raman Narayanan Federal Republic M

Surface Area

3287263.0

[ecoms [55

Then we have popups that are used to add a new city to the country, as shown in the

following screenshot:

City

District

Population

Close

[571]

