
UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on theUNIX†
operating system. It includes:
• basics needed for day-to-day use of the system — typing commands, correcting typing mistakes, logging in and

out, mail, inter-terminal communication, the file system, printing files, redirecting I/O, pipes, and the shell.
• document preparation — a brief discussion of the major formatting programs and macro packages, hints on

preparing documents, and capsule descriptions of some supporting software.
• UNIX programming — using the editor, programming the shell, programming in C, other languages and tools.
• An annotatedUNIX bibliography.

November 2, 1997

†UNIX is a Trademark of Bell Laboratories.

-- --

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION
From the user’s point of view, theUNIX operating

system is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard,
however, for the beginner to know where to start, and
how to make the best use of the facilities available.
The purpose of this introduction is to help new users
get used to the main ideas of theUNIX system and start
making effective use of it quickly.

You should have a couple of other documents with
you for easy reference as you read this one. The most
important is The UNIX Programmer’s Manual; it’s
often easier to tell you to read about something in the
manual than to repeat its contents here. The other use-
ful document isA Tutorial Introduction to theUNIX
Te xt Editor,which will tell you how to use the editor to
get text — programs, data, documents — into the com-
puter.

A word of warning: theUNIX system has become
quite popular, and there are several major variants in
widespread use. Of course details also change with
time. So although the basic structure ofUNIX and how
to use it is common to all versions, there will certainly
be a few things which are different on your system
from what is described here. We hav e tried to mini-
mize the problem, but be aware of it. In cases of doubt,
this paper describes Version 7UNIX.

This paper has five sections:
1. Getting Started: How to log in, how to type, what

to do about mistakes in typing, how to log out.
Some of this is dependent on which system you
log into (phone numbers, for example) and what
terminal you use, so this section must necessarily
be supplemented by local information.

2. Day-to-day Use: Things you need every day to use
the system effectively: generally useful com-
mands; the file system.

3. Document Preparation: Preparing manuscripts is
one of the most common uses forUNIX systems.
This section contains advice, but not extensive
instructions on any of the formatting tools.

4. Writing Programs:UNIX is an excellent system for
developing programs. This section talks about
some of the tools, but again is not a tutorial in any
of the programming languages provided by the
system.

5. A UNIX Reading List. An annotated bibliography
of documents that new users should be aware of.

I. GETTING STARTED

Logging In
You must have aUNIX login name, which you can

get from whoever administers your system. You also
need to know the phone number, unless your system
uses permanently connected terminals. TheUNIX sys-
tem is capable of dealing with a wide variety of termi-
nals: Terminet 300’s; Execuport, TI and similar porta-
bles; video (CRT) terminals like the HP2640, etc.;
high-priced graphics terminals like the Tektronix 4014;
plotting terminals like those from GSI and DASI; and
ev en the venerable Teletype in its various forms. But
note: UNIX is strongly oriented towards devices with
lower case.If your terminal produces only upper case
(e.g., model 33 Teletype, some video and portable ter-
minals), life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on your
device. Switches that might need to be adjusted
include the speed, upper/lower case mode, full duplex,
ev en parity, and any others that local wisdom advises.
Establish a connection using whatever magic is needed
for your terminal; this may involve dialing a telephone
call or merely flipping a switch. In either case,UNIX
should type ‘‘login:’’ at you. If it types garbage, you
may be at the wrong speed; check the switches. If that
fails, push the ‘‘break’’ or ‘‘interrupt’’ key a few times,
slowly. If that fails to produce a login message, consult
a guru.

When you get alogin: message, type your login
namein lower case.Follow it by a RETURN; the sys-
tem will not do anything until you type aRETURN. If a
password is required, you will be asked for it, and (if
possible) printing will be turned off while you type it.
Don’t forgetRETURN.

The culmination of your login efforts is a ‘‘prompt
character,’’ a single character that indicates that the sys-
tem is ready to accept commands from you. The
prompt character is usually a dollar sign$ or a percent
sign % . (You may also get a message of the day just
before the prompt character, or a notification that you
have mail.)

-- --

- 2 -

Typing Commands
Once you’ve seen the prompt character, you can

type commands, which are requests that the system do
something. Try typing

date

followed byRETURN. You should get back something
like

Mon Jan 16 14:17:10 EST 1978

Don’t forget theRETURN after the command, or noth-
ing will happen. If you think you’re being ignored,
type aRETURN; something should happen.RETURN
won’t be mentioned again, but don’t forget it — it has
to be there at the end of each line.

Another command you might try iswho, which
tells you everyone who is currently logged in:

who

gives something like

mb tty01 Jan 16 09:11
ski tty05 Jan 16 09:33
gam tty11 Jan 16 13:07

The time is when the user logged in; ‘‘ttyxx’’ is the sys-
tem’s idea of what terminal the user is on.

If you make a mistake typing the command name,
and refer to a non-existent command, you will be told.
For example, if you type

whom

you will be told

whom: not found

Of course, if you inadvertently type the name of some
other command, it will run, with more or less mysteri-
ous results.

Strange Terminal Behavior
Sometimes you can get into a state where your ter-

minal acts strangely. For example, each letter may be
typed twice, or theRETURN may not cause a line feed
or a return to the left margin. You can often fix this by
logging out and logging back in. Or you can read the
description of the commandstty in section I of the
manual. To get intelligent treatment of tab characters
(which are much used inUNIX) if your terminal doesn’t
have tabs, type the command

stty −tabs

and the system will convert each tab into the right num-
ber of blanks for you. If your terminal does have com-
puter-settable tabs, the commandtabs will set the stops
correctly for you.

Mistakes in Typing
If you make a typing mistake, and see it before

RETURNhas been typed, there are two ways to recover.
The sharp-character# erases the last character typed; in
fact successive uses of# erase characters back to the
beginning of the line (but not beyond). So if you type
badly, you can correct as you go:

dd#atte##e

is the same asdate.
The at-sign@ erases all of the characters typed so

far on the current input line, so if the line is irretriev-
ably fouled up, type an@ and start the line over.

What if you must enter a sharp or at-sign as part of
the text? If you precede either# or @ by a backslash\,
it loses its erase meaning. So to enter a sharp or at-sign
in something, type\# or \@. The system will always
echo a newline at you after your at-sign, even if pre-
ceded by a backslash. Don’t worry — the at-sign has
been recorded.

To erase a backslash, you have to type two sharps
or two at-signs, as in\##. The backslash is used exten-
sively in UNIX to indicate that the following character
is in some way special.

Read-ahead
UNIX has full read-ahead, which means that you

can type as fast as you want, whenever you want, even
when some command is typing at you. If you type dur-
ing output, your input characters will appear intermixed
with the output characters, but they will be stored away
and interpreted in the correct order. So you can type
several commands one after another without waiting for
the first to finish or even begin.

Stopping a Program
You can stop most programs by typing the charac-

ter ‘‘DEL’’ (perhaps called ‘‘delete’’ or ‘‘rubout’’ on
your terminal). The ‘‘interrupt’’ or ‘‘break’’ key found
on most terminals can also be used. In a few programs,
like the text editor,DEL stops whatever the program is
doing but leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out
The easiest way to log out is to hang up the phone.

You can also type

login

and let someone else use the terminal you were on. It
is usually not sufficient just to turn off the terminal.
Most UNIX systems do not use a time-out mechanism,
so you’ll be there forever unless you hang up.

Mail
When you log in, you may sometimes get the mes-

sage

You hav e mail.

−− −−

- 3 -

UNIX provides a postal system so you can communi-
cate with other users of the system. To read your mail,
type the command

mail

Your mail will be printed, one message at a time, most
recent message first. After each message,mail waits
for you to say what to do with it. The two basic
responses ared, which deletes the message, and
RETURN, which does not (so it will still be there the
next time you read your mailbox). Other responses are
described in the manual. (Earlier versions ofmail do
not process one message at a time, but are otherwise
similar.)

How do you send mail to someone else? Suppose
it is to go to ‘‘joe’’ (assuming ‘‘joe’’ is someone’s login
name). The easiest way is this:

mail joe
now type in the text of the letter
on as many lines as you like ...
After the last line of the letter
type the character ‘‘control−d’’,
that is, hold down ‘‘control’’ and type
a letter ‘‘d’’.

And that’s it. The ‘‘control-d’’ sequence, often called
‘‘EOF’’ for end-of-file, is used throughout the system to
mark the end of input from a terminal, so you might as
well get used to it.

For practice, send mail to yourself. (This isn’t as
strange as it might sound — mail to oneself is a handy
reminder mechanism.)

There are other ways to send mail — you can send
a previously prepared letter, and you can mail to a num-
ber of people all at once. For more details seemail(1).
(The notationmail(1) means the commandmail in sec-
tion 1 of theUNIX Programmer’s Manual.)

Writing to other users
At some point, out of the blue will come a mes-

sage like

Message from joe tty07...

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit action
you won’t be able to talk back. To respond, type the
command

write joe

This establishes a two-way communication path. Now
whatever Joe types on his terminal will appear on yours
and vice versa. The path is slow, rather like talking to
the moon. (If you are in the middle of something, you
have to get to a state where you can type a command.
Normally, whatever program you are running has to ter-
minate or be terminated. If you’re editing, you can
escape temporarily from the editor — read the editor
tutorial.)

A protocol is needed to keep what you type from
getting garbled up with what Joe types. Typically it’s
like this:

Joe typeswrite smith and waits.
Smith typeswrite joe and waits.
Joe now types his message (as many lines as he
likes). When he’s ready for a reply, he signals
it by typing(o), which stands for ‘‘over’’.
Now Smith types a reply, also terminated by
(o).
This cycle repeats until someone gets tired; he
then signals his intent to quit with(oo), for
‘‘over and out’’.
To terminate the conversation, each side must
type a ‘‘control-d’’ character alone on a line.
(‘‘Delete’’ also works.) When the other person
types his ‘‘control-d’’, you will get the message
EOF on your terminal.

If you write to someone who isn’t logged in, or
who doesn’t want to be disturbed, you’ll be told. If the
target is logged in but doesn’t answer after a decent
interval, simply type ‘‘control-d’’.

On-line Manual
The UNIX Programmer’s Manualis typically kept

on-line. If you get stuck on something, and can’t find
an expert to assist you, you can print on your terminal
some manual section that might help. This is also use-
ful for getting the most up-to-date information on a
command. To print a manual section, type ‘‘man com-
mand-name’’. Thus to read up on thewho command,
type

man who

and, of course,

man man

tells all about theman command.

Computer Aided Instruction
Your UNIX system may have available a program

called learn, which provides computer aided instruc-
tion on the file system and basic commands, the editor,
document preparation, and even C programming. Try
typing the command

learn

If learn exists on your system, it will tell you what to
do from there.

II. DAY -TO-DAY USE

Creating Files — The Editor
If you have to type a paper or a letter or a pro-

gram, how do you get the information stored in the
machine? Most of these tasks are done with theUNIX
‘‘text editor’’ ed. Sinceed is thoroughly documented
in ed(1) and explained inA Tutorial Introduction to the

-- --

- 4 -

UNIX Text Editor, we won’t spend any time here
describing how to use it. All we want it for right now is
to make somefiles. (A file is just a collection of infor-
mation stored in the machine, a simplistic but adequate
definition.)

To create a file calledjunk with some text in it, do
the following:

ed junk (invokes the text editor)
a (command to ‘‘ed’’, to add text)
now type in
whatever text you want ...
. (signals the end of adding text)

The ‘‘.’’ that signals the end of adding text must be at
the beginning of a line by itself. Don’t forget it, for
until it is typed, no othered commands will be recog-
nized — everything you type will be treated as text to
be added.

At this point you can do various editing operations
on the text you typed in, such as correcting spelling
mistakes, rearranging paragraphs and the like. Finally,
you must write the information you have typed into a
file with the editor commandw:

w

ed will respond with the number of characters it wrote
into the filejunk .

Until the w command, nothing is stored perma-
nently, so if you hang up and go home the information
But afterw the information is there permanently;
you can re-access it any time by typing

ed junk

Type aq command to quit the editor. (If you try to
quit without writing, ed will print a ? to remind
you. A secondq gets you out regardless.)

Now create a second file calledtemp in the
same manner. You should now hav e two files,
junk andtemp.

What files are out there?
The ls (for ‘‘list’’) command lists the names

(not contents) of any of the files thatUNIX knows
about. If you type

ls

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order automati-
cally,
is lost.†

† This is not strictly true — if you hang up while
editing, the data you were working on is saved in a
file calleded.hup, which you can continue with at
your next session.

but other variations are possible. For example, the
command

ls −t

causes the files to be listed in the order in which
they were last changed, most recent first. The−l
option gives a ‘‘long’’ listing:

ls −l

will produce something like

−rw−rw−rw− 1 bwk 41 Jul 22 2:56 junk
−rw−rw−rw− 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file.
The 41 and 78 are the number of characters (which
should agree with the numbers you got fromed).
bwk is the owner of the file, that is, the person
who created it. The−rw−rw−rw− tells who has
permission to read and write the file, in this case
ev eryone.

Options can be combined:ls −lt gives the
same thing asls −l, but sorted into time order. You
can also name the files you’re interested in, andls
will list the information about them only. More
details can be found inls(1).

The use of optional arguments that begin with
a minus sign, like−t and−lt , is a common conven-
tion for UNIX programs. In general, if a program
accepts such optional arguments, they precede any
filename arguments. It is also vital that you sepa-
rate the various arguments with spaces:ls−l is not
the same asls −l.

Printing Files
Now that you’ve got a file of text, how do you

print it so people can look at it? There are a host
of programs that do that, probably more than are
needed.

One simple thing is to use the editor, since
printing is often done just before making changes
anyway. You can say

ed junk
1,$p

ed will reply with the count of the characters in
junk and then print all the lines in the file. After
you learn how to use the editor, you can be selec-
tive about the parts you print.

There are times when it’s not feasible to use
the editor for printing. For example, there is a
limit on how big a fileed can handle (several thou-
sand lines). Secondly, it will only print one file at
a time, and sometimes you want to print several,
one after another. So here are a couple of alterna-
tives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk

−− −−

- 5 -

prints one file, and

cat junk temp

prints two. The files are simply concatenated
(hence the name ‘‘cat’’) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list. The
difference is that it produces headings with date,
time, page number and file name at the top of each
page, and extra lines to skip over the fold in the
paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and printtemp neatly.

pr can also produce multi-column output:

pr −3 junk

prints junk in 3-column format. You can use any
reasonable number in place of ‘‘3’’ andpr will do
its best. pr has other capabilities as well; see
pr (1).

It should be noted thatpr is not a formatting
program in the sense of shuffling lines around and
justifying margins. The true formatters arenroff
and troff , which we will get to in the section on
document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr andlpr . Which to use depends on what equip-
ment is attached to your machine.

Shuffling Files About
Now that you have some files in the file sys-

tem and some experience in printing them, you can
try bigger things. For example, you can move a
file from one place to another (which amounts to
giving it a new name), like this:

mv junk precious

This means that what used to be ‘‘junk’’ is now
‘‘precious’’. If you do an ls command now, you
will get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost
forever.

If you want to make acopyof a file (that is, to
have two versions of something), you can use the
cp command:

cp precious temp1

makes a duplicate copy ofprecious in temp1.
Finally, when you get tired of creating and

moving files, there is a command to remove files
from the file system, calledrm .

rm temp temp1

will remove both of the files named.
You will get a warning message if one of the

named files wasn’t there, but otherwiserm , like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but expe-
rienced users find it desirable.

What’s in a Filename
So far we have used filenames without ever

saying what’s a leg al name, so it’s time for a cou-
ple of rules. First, filenames are limited to 14 char-
acters, which is enough to be descriptive. Second,
although you can use almost any character in a
filename, common sense says you should stick to
ones that are visible, and that you should probably
avoid characters that might be used with other
meanings. We hav e already seen, for example, that
in the ls command,ls −t means to list in time
order. So if you had a file whose name was−t,
you would have a tough time listing it by name.
Besides the minus sign, there are other characters
which have special meaning. To avoid pitfalls, you
would do well to use only letters, numbers and the
period until you’re familiar with the situation.

On to some more positive suggestions. Sup-
pose you’re typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, fored will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file for
each chapter, called

chap1
chap2
etc...

Or, if each chapter were broken into several files,
you might have

chap1.1
chap1.2
chap1.3
...
chap2.1
chap2.2
...

You can now tell at a glance where a particular file
fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the whole
book? You could say

pr chap1.1 chap1.2 chap1.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately, there is
a shortcut. You can say

-- --

- 6 -

pr chap*

The * means ‘‘anything at all,’’ so this translates
into ‘‘print all files whose names begin with
chap’’, listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide, a
service of the program that interprets commands
(the ‘‘shell,’’ sh(1)). Using that fact, you can see
how to list the names of the files in the book:

ls chap*

produces

chap1.1
chap1.2
chap1.3
...

The * is not limited to the last position in a file-
name — it can be anywhere and can occur several
times. Thus

rm *junk* *temp*

removes all files that containjunk or temp as any
part of their name. As a special case,* by itself
matches every filename, so

pr *

prints all your files (alphabetical order), and

rm *

removesall files. (You had better bevery sure
that’s what you wanted to say!)

The* is not the only pattern-matching feature
available. Suppose you want to print only chapters
1 through 4 and 9. Then you can say

pr chap[12349]*

The [...] means to match any of the characters
inside the brackets. A range of consecutive letters
or digits can be abbreviated, so you can also do
this with

pr chap[1−49]*

Letters can also be used within brackets:[a−z]
matches any character in the rangea throughz.

The? pattern matches any single character, so

ls ?

lists all files which have single-character names,
and

ls −l chap?.1

lists information about the first file of each chapter
(chap1.1, chap2.1, etc.).

Of these niceties,* is certainly the most use-
ful, and you should get used to it. The others are
frills, but worth knowing.

If you should ever hav e to turn off the special
meaning of* , ?, etc., enclose the entire argument

in single quotes, as in

ls ′?′

We’ll see some more examples of this shortly.

What’s in a Filename, Continued
When you first made that file calledjunk ,

how did the system know that there wasn’t another
junk somewhere else, especially since the person
in the next office is also reading this tutorial? The
answer is that generally each user has a private
directory, which contains only the files that belong
to him. When you log in, you are ‘‘in’’ your direc-
tory. Unless you take special action, when you
create a new file, it is made in the directory that
you are currently in; this is most often your own
directory, and thus the file is unrelated to any other
file of the same name that might exist in someone
else’s directory.

The set of all files is organized into a (usually
big) tree, with your files located several branches
into the tree. It is possible for you to ‘‘walk’’
around this tree, and to find any file in the system,
by starting at the root of the tree and walking along
the proper set of branches. Conversely, you can
start where you are and walk toward the root.

Let’s try the latter first. The basic tools is the
commandpwd (‘‘print working directory’’), which
prints the name of the directory you are currently
in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory/usr,
which is in turn in the root directory called by con-
vention just/. (Even if it’s not called/usr on your
system, you will get something analogous. Make
the corresponding changes and read on.)

If you now type

ls /usr/your-name

you should get exactly the same list of file names
as you get from a plainls: with no arguments,ls
lists the contents of the current directory; given the
name of a directory, it lists the contents of that
directory.

Next, try

ls /usr

This should print a long series of names, among
which is your own login nameyour-name. On
many systems,usr is a directory that contains the
directories of all the normal users of the system,
like you.

The next step is to try

ls /

−− −−

- 7 -

You should get a response something like this
(although again the details may be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root of
the tree.

Now try

cat /usr/your-name/junk

(if junk is still around in your directory). The
name

/usr/your-name/junk

is called thepathname of the file that you nor-
mally think of as ‘‘junk’’. ‘‘Pathname’’ has an
obvious meaning: it represents the full name of the
path you have to follow from the root through the
tree of directories to get to a particular file. It is a
universal rule in theUNIX system that anywhere
you can use an ordinary filename, you can use a
pathname.

Here is a picture which may make this
clearer:

(root)
/ | \
/ | \
/ | \

bin etc usr dev tmp
/ | \ / | \ / | \ / | \ / | \

/ | \
/ | \

adam eve mary
/ / \ \

/ \ junk
junk temp

Notice that Mary’sjunk is unrelated to Eve’s.
This isn’t too exciting if all the files of inter-

est are in your own directory, but if you work with
someone else or on several projects concurrently, it
becomes handy indeed. For example, your friends
can print your book by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neigh-
bor has by saying

ls /usr/neighbor-name

or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be
arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
ev eryone else, which can be set to control access.

Seels(1) andchmod(1) for details. As a matter of
observed fact, most users most of the time find
openness of more benefit than privacy.

As a final experiment with pathnames, try

ls /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the prompt
character, the system simply looks for a file of that
name. It normally looks first in your directory
(where it typically doesn’t find it), then in/bin and
finally in /usr/bin. There is nothing magic about
commands likecat or ls, except that they hav e
been collected into a couple of places to be easy to
find and administer.

What if you work regularly with someone
else on common information in his directory? You
could just log in as your friend each time you want
to, but you can also say ‘‘I want to work on his
files instead of my own’’. This is done by chang-
ing the directory that you are currently in:

cd /usr/your-friend

(On some systems,cd is spelled chdir .) Now
when you use a filename in something likecat or
pr , it refers to the file in your friend’s directory.
Changing directories doesn’t affect any permis-
sions associated with a file — if you couldn’t
access a file from your own directory, changing to
another directory won’t alter that fact. Of course,
if you forget what directory you’re in, type

pwd

to find out.
It is usually convenient to arrange your own

files so that all the files related to one thing are in a
directory separate from other projects. For exam-
ple, when you write your book, you might want to
keep all the text in a directory calledbook. So
make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now found
in (presumably)

/usr/your-name/book

To remove the directorybook, type

rm book/*
rmdir book

The first command removes all files from the
directory; the second removes the empty directory.

You can go up one level in the tree of files by
saying

cd ..

−− −−

- 8 -

‘‘ ..’’ is the name of the parent of whatever direc-
tory you are currently in. For completeness, ‘‘.’’ is
an alternate name for the directory you are in.

Using Files instead of the Terminal
Most of the commands we have seen so far

produce output on the terminal; some, like the edi-
tor, also take their input from the terminal. It is
universal inUNIX systems that the terminal can be
replaced by a file for either or both of input and
output. As one example,

ls

makes a list of files on your terminal. But if you
say

ls >filelist

a list of your files will be placed in the filefilelist
(which will be created if it doesn’t already exist, or
overwritten if it does). The symbol> means ‘‘put
the output on the following file, rather than on the
terminal.’’ Nothing is produced on the terminal.
As another example, you could combine several
files into one by capturing the output ofcat in a
file:

cat f1 f2 f3 >temp

The symbol>> operates very much like>
does, except that it means ‘‘add to the end of.’’
That is,

cat f1 f2 f3 >>temp

means to concatenatef1, f2 and f3 to the end of
whatever is already intemp, instead of overwriting
the existing contents. As with>, if temp doesn’t
exist, it will be created for you.

In a similar way, the symbol< means to take
the input for a program from the following file,
instead of from the terminal. Thus, you could
make up a script of commonly used editing com-
mands and put them into a file calledscript. Then
you can run the script on a file by saying

ed file <script

As another example, you can useed to prepare a
letter in filelet, then send it to several people with

mail adam eve mary joe <let

Pipes
One of the novel contributions of theUNIX

system is the idea of apipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes — a pipeline.

For example,

pr f g h

will print the filesf, g, andh, beginning each on a

new page. Suppose you want them run together
instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what
we want is to take the output ofcat and connect it
to the input ofpr . So let us use a pipe:

cat f g h | pr

The vertical bar| means to take the output from
cat, which would normally have gone to the termi-
nal, and put it intopr to be neatly formatted.

There are many other examples of pipes. For
example,

ls | pr −3

prints a list of your files in three columns. The
programwc counts the number of lines, words and
characters in its input, and as we saw earlier,who
prints a list of currently-logged on people, one per
line. Thus

who | wc

tells how many people are logged on. And of
course

ls | wc

counts your files.
Any program that reads from the terminal can

read from a pipe instead; any program that writes
on the terminal can drive a pipe. You can have as
many elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given; if no arguments are given
they will read from the terminal, and thus can be
used in pipelines.pr is one example:

pr −3 a b c

prints filesa, b and c in order in three columns.
But in

cat a b c | pr −3

pr prints the information coming down the
pipeline, still in three columns.

The Shell
We hav e already mentioned once or twice the

mysterious ‘‘shell,’’ which is in factsh(1). The
shell is the program that interprets what you type
as commands and arguments. It also looks after
translating* , etc., into lists of filenames, and<, >,
and| into changes of input and output streams.

The shell has other capabilities too. For
example, you can run two programs with one com-
mand line by separating the commands with a
semicolon; the shell recognizes the semicolon and

-- --

- 9 -

breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
runningsimultaneouslyif you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and you don’t
want to wait around for the results before starting
something else, you can say

ed file <script &

The ampersand at the end of a command line says
‘‘start this command running, then take further
commands from the terminal immediately,’’ that is,
don’t wait for it to complete. Thus the script will
begin, but you can do something else at the same
time. Of course, to keep the output from interfer-
ing with what you’re doing on the terminal, it
would be better to say

ed file <script >script.out &

which saves the output lines in a file called
script.out.

When you initiate a command with& , the
system replies with a number called the process
number, which identifies the command in case you
later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the commandps
will tell you about everything you have running.
(If you are desperate,kill 0 will kill all your pro-
cesses.) And if you’re curious about other people,
ps a will tell you aboutall programs that are cur-
rently running.

You can say

(command-1; command-2; command-3) &

to start three commands in the background, or you
can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some similar
program to take its input from a file instead of
from the terminal, you can tell the shell to read a
file to get commands. (Why not? The shell, after
all, is just a program, albeit a clever one.) For
instance, suppose you want to set tabs on your ter-
minal, and find out the date and who’s on the sys-
tem every time you log in. Then you can put the
three necessary commands (tabs, date, who) into a
file, let’s call itstartup, and then run it with

sh startup

This says to run the shell with the filestartup as
input. The effect is as if you had typed the con-
tents ofstartup on the terminal.

If this is to be a regular thing, you can elimi-
nate the need to typesh: simply type, once only,
the command

chmod +x startup

and thereafter you need only say

startup

to run the sequence of commands. Thechmod(1)
command marks the file executable; the shell rec-
ognizes this and runs it as a sequence of com-
mands.

If you want startup to run automatically
ev ery time you log in, create a file in your login
directory called.profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the.profile file and does
whatever commands it finds in it. We’ll get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION
UNIX systems are used extensively for docu-

ment preparation. There are two major formatting
programs, that is, programs that produce a text
with justified right margins, automatic page num-
bering and titling, automatic hyphenation, and the
like. nroff is designed to produce output on termi-
nals and line-printers.troff (pronounced ‘‘tee-
roff’’) instead drives a phototypesetter, which pro-
duces very high quality output on photographic
paper. This paper was formatted withtroff .

Formatting Packages
The basic idea ofnroff and troff is that the

text to be formatted contains within it ‘‘formatting
commands’’ that indicate in detail how the format-
ted text is to look. For example, there might be
commands that specify how long lines are, whether
to use single or double spacing, and what running
titles to use on each page.

Becausenroff and troff are relatively hard to
learn to use effectively, sev eral ‘‘packages’’ of
canned formatting requests are available to let you
specify paragraphs, running titles, footnotes, multi-
column output, and so on, with little effort and
without having to learnnroff and troff . These
packages take a modest effort to learn, but the
rewards for using them are so great that it is time
well spent.

In this section, we will provide a hasty look at
the ‘‘manuscript’’ package known as−ms. For-
matting requests typically consist of a period and
two upper-case letters, such as.TL , which is used
to introduce a title, or.PP to begin a new para-
graph.

A document is typed so it looks something
like this:

.TL

−− −−

- 10 -

title of document
.AU
author name
.SH
section heading
.PP
paragraph ...
.PP
another paragraph ...
.SH
another section heading
.PP
etc.

The lines that begin with a period are the format-
ting requests. For example,.PP calls for starting a
new paragraph. The precise meaning of.PP
depends on what output device is being used (type-
setter or terminal, for instance), and on what publi-
cation the document will appear in. For example,
−ms normally assumes that a paragraph is pre-
ceded by a space (one line innroff , 1⁄2 line in
troff), and the first word is indented. These rules
can be changed if you like, but they are changed by
changing the interpretation of.PP, not by re-typing
the document.

To actually produce a document in standard
format using−ms, use the command

troff −ms files ...

for the typesetter, and

nroff −ms files ...

for a terminal. The−ms argument tellstroff and
nroff to use the manuscript package of formatting
requests.

There are several similar packages; check
with a local expert to determine which ones are in
common use on your machine.

Supporting Tools
In addition to the basic formatters, there is a

host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through the
manual and check with people around you for
other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-to-learn lan-
guage that closely resembles the way you would
speak it aloud. For example, theeqn input

sum from i=0 to n x sub i ˜=˜ pi over 2

produces the output
n

i=0
Σ xi =

π
2

The programtbl provides an analogous ser-
vice for preparing tabular material; it does all the
computations necessary to align complicated

columns with elements of varying widths.
refer prepares bibliographic citations from a

data base, in whatever style is defined by the for-
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author’s initials
and the journal name right, and so on.

spell and typo detect possible spelling mis-
takes in a document.spell works by comparing
the words in your document to a dictionary, print-
ing those that are not in the dictionary. It knows
enough about English spelling to detect plurals and
the like, so it does a very good job.typo looks for
words which are ‘‘unusual’’, and prints those.
Spelling mistakes tend to be more unusual, and
thus show up early when the most unusual words
are printed first.

grep looks through a set of files for lines that
contain a particular text pattern (rather like the edi-
tor’s context search does, but on a bunch of files).
For example,

grep ′ing$′ chap*

will find all lines that end with the lettersing in the
files chap*. (It is almost always a good practice to
put single quotes around the pattern you’re search-
ing for, in case it contains characters like* or $
that have a special meaning to the shell.)grep is
often useful for finding out in which of a set of
files the misspelled words detected byspell are
actually located.

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand).

wc counts the words, lines and characters in a
set of files. tr translates characters into other char-
acters; for example it will convert upper to lower
case and vice versa. This translates upper into
lower:

tr A−Z a−z <input >output

sort sorts files in a variety of ways;cref
makes cross-references;ptx makes a permuted
index (keyword-in-context listing).sed provides
many of the editing facilities ofed, but can apply
them to arbitrarily long inputs.awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to docu-
ment preparation. Put them on your list of things
to learn about.

Most of these programs are either indepen-
dently documented (likeeqn andtbl), or are suffi-
ciently simple that the description in theUNIX Pro-
grammer’s Manualis adequate explanation.

-- --

- 11 -

Hints for Preparing Documents
Most documents go through several versions

(always more than you expected) before they are
finally finished. Accordingly, you should do what-
ev er possible to make the job of changing them
easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent edit-
ing will be easy. Start each sentence on a new line.
Make lines short, and break lines at natural places,
such as after commas and semicolons, rather than
randomly. Since most people change documents
by rewriting phrases and adding, deleting and rear-
ranging sentences, these precautions simplify any
editing you have to do later.

Keep the individual files of a document down
to modest size, perhaps ten to fifteen thousand
characters. Larger files edit more slowly, and of
course if you make a dumb mistake it’s better to
have clobbered a small file than a big one. Split
into files at natural boundaries in the document, for
the same reasons that you start each sentence on a
new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack-
ages like−ms is that they permit you to delay deci-
sions to the last possible moment. Indeed, until a
document is printed, it is not even decided whether
it will be typeset or put on a line printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set
of requests like.PP, and then define them appro-
priately, either by using one of the canned pack-
ages (the better way) or by defining your own
nroff and troff commands. As long as you have
entered the text in some systematic way, it can
always be cleaned up and re-formatted by a judi-
cious combination of editing commands and
request definitions.

IV. PROGRAMMING
There will be no attempt made to teach any of

the programming languages available but a few
words of advice are in order. One of the reasons
why theUNIX system is a productive programming
environment is that there is already a rich set of
tools available, and facilities like pipes, I/O redi-
rection, and the capabilities of the shell often make
it possible to do a job by pasting together programs
that already exist instead of writing from scratch.

The Shell
The pipe mechanism lets you fabricate quite

complicated operations out of spare parts that
already exist. For example, the first draft of the
spellprogram was (roughly)

cat ... collect the files
| tr ... put each word on a new line

| tr ... delete punctuation, etc.
| sort into dictionary order
| uniq discard duplicates
| comm print words in text

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on other
systems. For example, to list the first and last lines
of each of a set of files, such as a book, you could
laboriously type

ed
e chap1.1
1p
$p
e chap1.2
1p
$p
etc.

But you can do the job much more easily. One
way is to type

ls chap* >temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing
commands (using the global commands ofed), and
write it intoscript. Now the command

ed <script

will produce the same output as the laborious hand
typing. Alternately (and more easily), you can use
the fact that the shell will perform loops, repeating
a set of commands over and over again for a set of
arguments:

for i in chap*
do
ed $i <script
done

This sets the shell variablei to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for later
execution.

Programming the Shell
An option often overlooked by newcomers is

that the shell is itself a programming language,
with variables, control flow (if-else, while, for ,
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely by
piecing together some of the building blocks with
shell command files.

We will not go into any details here; examples
and rules can be found inAn Introduction to the
UNIX Shell, by S. R. Bourne.

-- --

- 12 -

Programming in C
If you are undertaking anything substantial, C

is the only reasonable choice of programming lan-
guage: everything in theUNIX system is tuned to
it. The system itself is written in C, as are most of
the programs that run on it. It is also a easy lan-
guage to use once you get started. C is introduced
and fully described inThe C Programming Lan-
guage by B. W. Kernighan and D. M. Ritchie
(Prentice-Hall, 1978). Several sections of the
manual describe the system interfaces, that is, how
you do I/O and similar functions. ReadUNIX Pro-
grammingfor more complicated things.

Most input and output in C is best handled
with the standard I/O library, which provides a set
of I/O functions that exist in compatible form on
most machines that have C compilers. In general,
it’s wisest to confine the system interactions in a
program to the facilities provided by this library.

C programs that don’t depend too much on
special features ofUNIX (such as pipes) can be
moved to other computers that have C compilers.
The list of such machines grows daily; in addition
to the originalPDP-11, it currently includes at least
Honeywell 6000, IBM 370, Interdata 8/32, Data
General Nova and Eclipse, HP 2100, Harris /7,
VAX 11/780, SEL 86, and Zilog Z80. Calls to the
standard I/O library will work on all of these
machines.

There are a number of supporting programs
that go with C. lint checks C programs for poten-
tial portability problems, and detects errors such as
mismatched argument types and uninitialized vari-
ables.

For larger programs (anything whose source
is on more than one file)make allows you to spec-
ify the dependencies among the source files and
the processing steps needed to make a new ver-
sion; it then checks the times that the pieces were
last changed and does the minimal amount of
recompiling to create a consistent updated version.

The debuggeradb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instrumen-
tation service, so you can find out where programs
spend their time and what parts are worth optimiz-
ing. Compile the routines with the−p option; after
the test run, useprof to print an execution profile.
The commandtime will give you the gross run-
time statistics of a program, but they are not super
accurate or reproducible.

Other Languages
If you haveto use Fortran, there are two pos-

sibilities. You might consider Ratfor, which gives
you the decent control structures and free-form
input that characterize C, yet lets you write code
that is still portable to other environments. Bear in
mind thatUNIX Fortran tends to produce large and
relatively slow-running programs. Furthermore,
supporting software likeadb, prof , etc., are all vir-
tually useless with Fortran programs. There may
also be a Fortran 77 compiler on your system. If
so, this is a viable alternative to Ratfor, and has the
non-trivial advantage that it is compatible with C
and related programs. (The Ratfor processor and
C tools can be used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language,
you are in effect building a compiler, though prob-
ably a small one. In that case, you should be using
the yacc compiler-compiler, which helps you
develop a compiler quickly. Thelex lexical ana-
lyzer generator does the same job for the simpler
languages that can be expressed as regular expres-
sions. It can be used by itself, or as a front end to
recognize inputs for ayacc-based program. Both
yacc and lex require some sophistication to use,
but the initial effort of learning them can be repaid
many times over in programs that are easy to
change later on.

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Lisp,
Pascal, and Snobol. Whether these are useful
depends largely on the local environment: if some-
one cares about the language and has worked on it,
it may be in good shape. If not, the odds are
strong that it will be more trouble than it’s worth.

V. UNIX READING LIST

General:
K. L. Thompson and D. M. Ritchie,TheUNIX Pro-
grammer’s Manual,Bell Laboratories, 1978. Lists
commands, system routines and interfaces, file for-
mats, and some of the maintenance procedures.
You can’t liv e without this, although you will prob-
ably only need to read section 1.
Documents for Use with theUNIX Time-sharing
System.Volume 2 of the Programmer’s Manual.
This contains more extensive descriptions of major
commands, and tutorials and reference manuals.
All of the papers listed below are in it, as are
descriptions of most of the programs mentioned
above.
D. M. Ritchie and K. L. Thompson, ‘‘TheUNIX
Time-sharing System,’’ CACM, July 1974. An
overview of the system, for people interested in
operating systems. Worth reading by anyone who
programs. Contains a remarkable number of one-
sentence observations on how to do things right.

-- --

- 13 -

The Bell System Technical Journal (BSTJ) Special
Issue onUNIX, July/August, 1978, contains many
papers describing recent developments, and some
retrospective material.
The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer’s
Workbench (PWB) version ofUNIX.

Document Preparation:
B. W. Kernighan, ‘‘A Tutorial Introduction to the
UNIX Te xt Editor’’ and ‘‘Advanced Editing on
UNIX,’’ Bell Laboratories, 1978. Beginners need
the introduction; the advanced material will help
you get the most out of the editor.
M. E. Lesk, ‘‘Typing Documents onUNIX,’’ Bell
Laboratories, 1978. Describes the−ms macro
package, which isolates the novice from the
vagaries ofnroff andtroff , and takes care of most
formatting situations. If this specific package isn’t
available on your system, something similar proba-
bly is. The most likely alternative is the
PWB/UNIX macro package−mm; see your local
guru if you usePWB/UNIX.
B. W. Kernighan and L. L. Cherry, ‘‘A System for
Typesetting Mathematics,’’ Bell Laboratories
Computing Science Tech. Rep. 17.
M. E. Lesk, ‘‘Tbl — A Program to Format
Tables,’’ Bell Laboratories CSTR 49, 1976.
J. F. Ossanna, Jr., ‘‘NROFF/TROFF User’s Man-
ual,’’ Bell Laboratories CSTR 54, 1976.troff is
the basic formatter used by−ms, eqn andtbl . The
reference manual is indispensable if you are going
to write or maintain these or similar programs.
But start with:
B. W. Kernighan, ‘‘A TROFF Tutorial,’’ Bell Labo-
ratories, 1976. An attempt to unravel the intrica-
cies oftroff .

Programming:
B. W. Kernighan and D. M. Ritchie,The C Pro-
gramming Language,Prentice-Hall, 1978. Con-
tains a tutorial introduction, complete discussions
of all language features, and the reference manual.
B. W. Kernighan and D. M. Ritchie, ‘‘UNIX Pro-
gramming,’’ Bell Laboratories, 1978. Describes
how to interface with the system from C programs:
I/O calls, signals, processes.
S. R. Bourne, ‘‘An Introduction to theUNIX
Shell,’’ Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make effective
use of the programming power of this shell.
S. C. Johnson, ‘‘Yacc — Yet Another Compiler-
Compiler,’’ Bell Laboratories CSTR 32, 1978.
M. E. Lesk, ‘‘Lex — A Lexical Analyzer Genera-
tor,’’ Bell Laboratories CSTR 39, 1975.
S. C. Johnson, ‘‘Lint, a C Program Checker,’’ Bell
Laboratories CSTR 65, 1977.

S. I. Feldman, ‘‘MAKE — A Program for Main-
taining Computer Programs,’’ Bell Laboratories
CSTR 57, 1977.
J. F. Maranzano and S. R. Bourne, ‘‘A Tutorial
Introduction to ADB,’’ Bell Laboratories CSTR
62, 1977. An introduction to a powerful but com-
plex debugging tool.
S. I. Feldman and P. J. Weinberger, ‘‘A Portable
Fortran 77 Compiler,’’ Bell Laboratories, 1978. A
full Fortran 77 forUNIX systems.

