Controlling Blowing and Drifting Snow with Snow Fences and Road Design

FINAL REPORT

Prepared for
National Cooperative Highway Research Program
Transportation Research Board of the National Academies

Ronald D. Tabler
Tabler and Associates
Niwot, Colorado

August 2003

August 2003

Key words:
Blowing snow
Drifting snow
Ice
Snow fences
Road design
Snow control
Snowdrifts
Wind
Highway safety
Visibility
Highway maintenance

ACKNOWLEDGEMENT OF SPONSORSHIP

This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted through the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER
This copy is an uncorrected draft as submitted by the research agency. The opinions and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the Transportation Research Board, the National Academies, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program.

The National Academies, the American Association of State Highway and Transportation Officials, its member states, and the United States Government have an irrevocable, royalty-free, non-exclusive license throughout the world to reproduce, disseminate, publish, sell, prepare derivative works or otherwise utilize, including the right to authorize others to do so, all portions of this work as produced in conjunction with the Strategic Highway Research Program and the National Cooperative Highway Research Program.

Copyright © 2003 by Ronald D. Tabler. All rights reserved. (303)-652-3921

Acknowledgements

This document is an updated version of the Strategic Highway Research Program Report SHRP-H-381, first published in 1994. The author is indebted to the Winter Maintenance Policy Coordinating Committee of the American Association of State Highway and Transportation Officials for making possible the preparation of this current version. The author also thanks members of the National Cooperative Highway Research Program (NCHRP) Advisory Panel SP20-07, Task 147 (Edward Fink, L. David Minsk, and Leland D. Smithson); Mr. Frank N. Lisle, TRB liaison representative; and Dr. Amir N. Hanna, NCHRP Senior Program Officer; for their counsel and direction. Organizations contributing material for this report include the Alaska Department of Transportation, the Minnesota Department of Transportation, the University of Minnesota Extension Service, the New York State Department of Transportation, the Wisconsin Department of Transportation, and the Wyoming Department of Transportation.

Much of the research leading to the 1994 publication, and to this updated report, was conducted while the author was employed as a research hydrologist with the Rocky Mountain Forest and Range Experiment Station, a research division of the U. S. Forest Service. The author is indebted to all of his fellow scientists and technicians who served on the Forest Service blowing snow research project from 1959 to 1985: H. W. Berndt (Project Leader who initiated the research), Ken Bird, Robert L. Jairell, Dr. Kendall L. Johnson, Dr. R. A. Schmidt, David L. Sturges, and C. James Winter. Special gratitude is expressed for Bob Jairell's 30 years of superlative technical support; and for R. A. Schmidt's invaluable scientific contributions, ideas, and encouragement. The author also thanks Dr. Masao Takeuchi and the Civil Engineering Research Institute, Hokkaido Development Bureau, for the opportunity to learn about snow control technology in Japan.

The Wyoming Department of Transportation sponsored much of the research on drift control over the last 32 years, and played a key role by testing and adopting most of the guidelines presented here.

Contents

Acknowledgements iii
Contents iv
List of Figures xi
List of Tables xxix
Abbreviations and Symbols xxxii
Abstract xxxviii
1 Introduction. 1
1.1 Who Should Read This Report? 1
1.2 Purpose. 2
1.3 Content and Organization 2
1.4 References 3
2 Effectiveness of Measures to Control Blowing Snow 4
2.1 Highlights. 4
2.2 Importance of Drift Control 5
2.3 Why Drift Control Has Been Overlooked 6
2.3.1 Historical Use of Snow Fences 6
2.3.2 Why the Use of Drift Control Measures Declined. 8
2.4 A Case Study in Wyoming 8
2.5 Effect of Snow Fences on Ice and Slush 14
2.6 Other Examples. 16
2.7 Benefit-to-Cost Analyses for Snow Fences 17
2.8 Benefits from Road Design. 19
2.9 Conclusion 20
2.10 References 20
3 How Snow Moves and Forms Drifts 23
3.1 Scope. 23
3.2 Highlights. 23
3.3 Snow Particle Characteristics 25
3.4 Snow Transport 25
3.4.1 Definition. 25
3.4.2 Modes of Snow Transport. 25
3.4.3 Wind Profile 29
3.4.4 Snow Transport Rate and Vertical Distribution 30
3.4.5 Visibility in Blowing Snow 32
3.4.6 Evaporation of Blowing Snow 34
3.4.7 Snow Transport Versus Fetch and Relocated Snow 36
3.4.8 Snow Surface Features 38
3.5 Snow Erosion and Deposition Processes 40
3.5.1 Erosion 40
3.5.2 Deposition 40
3.5.3 Inter-particle Bonding 41
3.5.4 Snow Densification 41
3.6 Snow Deposition and Retention by Vegetation 42
3.7 Deposition in Topographic Depressions and Road Cuts 43
3.7.1 How Drifts Grow 43
3.7.2 Equilibrium Slope 44
3.7.3 Trapping Efficiency 45
3.8 Deposition at Snow Fences 46
3.8.1 Fence Height, Porosity, and Bottom Gap Defined 46
3.8.2 Effect of Porous Fences on Wind and Blowing Snow Particles 46
3.8.3 Stages of Drift Growth at Porous Fences 48
3.8.4 Drift Growth at Solid Fences 51
3.8.5 Equilibrium Drifts 52
3.8.5.1 Importance 52
3.8.5.2 Factors that affect the shape of equilibrium drifts 52
3.8.5.2.1 Fence Height 53
3.8.5.2.2 Fence Length and End Effect 55
3.8.5.2.3 Bottom Gap 58
3.8.5.2.4 Fence Porosity 59
3.8.5.2.5 Inclination Angle 61
3.8.5.2.6 Wind Direction 61
3.8.5.2.7 Wind Speed. 62
3.8.5.2.8 Effect of Topography 62
3.8.5.3 Equilibrium Drifts Formed by Various Fence Types 64
3.8.5.3.1 General Characteristics of Most Common Types of Fences 64
3.8.5.3.2 Equilibrium Drift Profiles in Relation to Porosity 66
3.8.6 Trapping Efficiency of Porous Fences 68
3.8.6.1 Definitions 68
3.8.6.2 Trapping Efficiency in Relation to Fence Height and Wind Speed 69
3.8.6.3 Other Factors Affecting Trapping Efficiency 70
3.8.6.4 How Trapping Efficiency Changes with Time 70
3.9 References 72
4 Quantifying the Blowing Snow Problem 77
4.1 Scope 77
4.2 Highlights 77
4.3 Identifying the Problem 78
4.4 Analyzing the Problem 79
4.4.1 Problem Components 79
4.4.2 Specifying the Problem and Effects 80
4.4.3 Source of Blowing Snow 80
4.4.4 Problem Causes 81
4.5 Identifying Possible Solutions 83
4.6 Assembling Data and Information 83
4.6.1 Winter Field Measurements and Observations 83
4.6.1.1 Determining Specific Location 83
4.6.1.2 Quantifying and Documenting the Drift Problem 84
4.6.1.3 Measuring Prevailing Transport Direction 84
4.6.1.3.1 Field Wind Measurements 85
4.6.1.3.2 Field Snowdrift Measurements 85
4.6.1.3.3 Other Indicators of Snow Transport Direction 85
4.6.1.4 Measuring Snow Depth over the Fetch 86
4.6.2 Aerial Photography 86
4.6.3 Assembling Climatic Data 87
4.6.3.1 Sources of Climatic Data 87
4.6.3.2 Historical Wind Records 89
4.6.3.3 Mean Monthly Temperatures 89
4.6.3.4 Snowfall and Winter Precipitation 90
4.6.4 Topographic Information 90
4.6.5 Road Geometry 91
4.6.5.1 Plan and Profile 91
4.6.5.2 Typical Road Cross-sections at Site 91
4.6.6 Other Information 92
4.6.6.1 Vegetation over the Fetch. 92
4.6.6.2 Land Use 92
4.6.6.3 Soils 92
4.7 Estimating the Mean Annual Snow Transport 92
4.7.1 Outline of Procedure 92
4.7.2 Determining Dates of the Snow Accumulation Season 94
4.7.3 Calculating Potential Snow Transport from Wind Speed Records 99
4.7.3.1 Calculating Qupot by Wind Direction 99
4.7.3.2 Determining Relevant Snow Transport and Prevailing Direction 102
4.7.4 Determining Potential Transport Based on Snowfall $\left(\mathrm{Q}_{\text {spot }}\right)$ 103
4.7.4.1 Estimating Average Snowfall Water-Equivalent. 103
4.7.4.2 Calculating Potential Snow Transport Based on Snowfall 104
4.7.5 Determining Potential Snow Transport for Infinite Fetch 105
4.7.6 Estimating Mean Annual Snow Transport 106
4.7.6.1 Transport Equation 106
4.7.6.2 Determining the Fetch 106
4.7.6.3 Snow Transport Classification 107
4.8 Determining Design Transport 107
4.8.1 Probability Distribution for Annual Snow Transport 108
4.8.2 How Snow Removal Cost Varies with the Design Modulus 109
4.8.3 Benefit-to-Cost Criterion for Design Modulus 111
4.9 Design Data Summary Sheet 114
4.10 References 115
5 An Overview of Mitigation Measure Design 118
5.1 Scope 118
5.2 Step 1: Prepare for Site Visit 118
5.3 Step 2: Visit Site 118
5.4 Step 3: Collect Additional Data 119
5.5 Step 4: Determine Wind Direction(s) Associated with Problem 119
5.6 Step 5: Determine Measures to Minimize Snow Relocation within Right-of-Way 119
5.7 Step 6: Estimate Snow Transport Originating Upwind of Right-of-Way 120
5.8 Step 7: Select Mitigation Measure(s) 121
5.8.1 Cross-Section Modification 121
5.8.1.1 Cut Sections. 122
5.8.1.2 Fill Sections 124
5.8.1.3 Safety Barrier. 125
5.8.2 Snow Fences 126
5.9 Step 8: Determine Required Height of Snow Fence 126
5.10 Step 9: Determine Fence Alignment 127
5.11 Step 10: Determine Required Setback 127
5.11.1 Spacing between Tandem Rows 128
5.12 Step 11: Lay out Tentative Location of Fences on Topographic Map 128
5.12.1 Determine Location of Fence Ends 128
5.12.2 Design Required Openings 130
5.13 Step 12: Finalize Fence Locations 130
5.14 Step 13: Select Fencing Material 131
5.14.1 Structural Permanent Fences 131
5.14.2 Living Snow Fences 133
5.14.3 Seasonal Fences 137
5.15 The Minnesota Web Site for Snow Fence Design 138
5.16 References 138
6 Design and Placement of Structural Snow Fences 139
6.1 Scope 139
6.2 Highlights 139
6.3 Design of Collector Fences for "Far" Snow 142
6.3.1 Snow Storage Capacity 142
6.3.2 Specifying Fence Height 142
6.3.2.1 Calculating Required Structural Fence Height, $H_{s, \text { req }}$ 142
6.3.2.2 Advantages of Tall Fences 144
6.3.3 Calculating Number of Rows 145
6.3.4 Selecting Porosity 145
6.3.4.1 Non-Porous Fences $(P=0)$ 146
6.3.5 Specifying a Bottom Gap 148
6.3.6 Permanent Surface-Mounted Fences 148
6.3.6.1 Wyoming Snow Fence 148
6.3.6.1.1 Standard Plans 150
6.3.6.1.2 Economy Model 152
6.3.6.1.3 Anchors 154
6.3.6.1.4 Specifications 158
6.3.6.1.5 Service Life 159
6.3.6.2 Buck-and-Pole Fence 160
6.3.6.3 "Swedish" (or "Norwegian") Fence 160
6.3.6.4 Pole Crib Fences 161
6.3.7 Materials for Pole-Supported Fences 162
6.3.7.1 Wooden Slats and Rails 162
6.3.7.2 Lath Fencing 163
6.3.7.3 Synthetic Fencing Materials 164
6.3.7.3.1 Properties and Specifications 165
6.3.7.3.2 Design Requirements 166
6.3.7.3.3 Installation Requirements 167
6.3.7.3.4 Composite Polymer/Wire Rail 169
6.3.7.3.5 Composite Polymer/Fiber Fencing 175
6.3.8 Supports for Pole-Supported Fences 176
6.3.9 Temporary Fences 178
6.3.9.1 Conventional T-Post-Supported Fences 178
6.3.9.2 The Tensar ${ }^{\circledR}$ Portable Fence 180
6.3.10 Specifying Fence Type 186
6.3.11 Wind Loads on Snow Fence 187
6.3.11.1 Basic Equation 187
6.3.11.2 Air Density 187
6.3.11.3 Drag Coefficient 187
6.3.11.4 Wind speed 189
6.3.11.5 Selecting a design wind speed 189
6.3.11.6 Procedure for Calculating Wind Loads 192
6.4 Deflector Snow Fences 193
6.4.1 Jet Roofs and Blower Fences 193
6.4.2 Long Solid Deflectors 196
6.4.3 Lateral Deflectors 196
6.5 Fence Placement 197
6.5.1 Orientation 197
6.5.1.1 Importance of Orientation 198
6.5.1.2 Basic Rule 198
6.5.1.3 Parallel Versus Oblique Fences 198
6.5.1.4 Other Considerations 199
6.5.2 Setback from Road. 200
6.5.2.1 Minimum Setback for Parallel Fences 200
6.5.2.2 Minimum Setback for Oblique Fences 201
6.5.2.3 Reducing Setback by Over-Designing Height. 202
6.5.2.4 Topographic Considerations 203
6.5.2.5 Maximum Setback 204
6.5.3 Spacing Between Tandem Rows 204
6.5.4 Fence Length and Overlap Criteria 206
6.5.4.1 Overlap of Protection Limits 206
6.5.4.2 Overlap and Spacing of Staggered Oblique Fences 207
6.5.4.3 Openings in Fence Lines 207
6.5.4.4 Preventing Dangerous Transitions 209
6.5.5 Snow Fence Layout on Digital Topographic Maps 211
6.5.6 Computer-Aided Snow Fence Design (SNOWMAN) 213
6.5.7 The Minnesota Web Site for Snow Fence Design 214
6.6 References 215
7 Living Snow fences 219
7.1 Scope 219
7.2 Highlights 219
7.3 Comparison with Snow Fence Guidelines 221
7.4 Basic Strategies 222
7.5 Species 222
7.6 Effectiveness 223
7.6.1 Requirements 223
7.6.2 Factors That Affect the Effectiveness of Living Fences 224
7.6.3 Computer Simulation 225
7.6.4 Conclusions from Simulation 227
7.6.5 Openings 228
7.7 Required Height of Living Fences 229
7.8 Setback for Living Fences 230
7.8.1 Computer Simulation of Downwind Drift Length 231
7.8.2 Setback Guidelines 232
7.9 Planting Patterns for Living Fences 235
7.9.1 Deciduous Trees 236
7.9.2 "Snowbreak" Forests 237
7.9.3 Methods of Protecting Grade Separations 237
7.9.4 Plantings for Snow Retention 238
7.10 Planting Stock 241
7.11 Site Preparation and Planting 242
7.11.1 Seedlings 242
7.11.2 Larger Transplants 243
7.12 Post-planting Care 244
7.13 Pruning 244
7.14 Cost 245
7.15 Advantages and Disadvantages of Living Snow Fences 246
7.16 Standing Corn 247
7.17 References 248
8 Designing Drift-Free Roads 250
8.1 Scope 250
8.2 Highlights 250
8.3 Road Design as a Solution to Drifting Problems 252
8.4 History 252
8.5 Factors Contributing to Drifting Problems 253
8.6 Predicting Snowdrift Profiles 253
8.6.1 Basic Algorithm and Application for Generating Profiles 253
8.6.2 Required Data 256
8.6.3 Limitations and Applications 257
8.7 Guidelines for Route Location and Alignment 257
8.7.1 Procedure 257
8.7.2 Guidelines for Route Location 258
8.8 Guidelines for Cross-Sections 261
8.8.1 Embankments (Fill Sections) 261
8.8.1.1 Minimum Height above Grade 261
8.8.1.2 Fill Sections with Height > $2 \mathrm{~m}(6.6 \mathrm{ft})$ 263
8.8.2 Cut Sections 266
8.8.2.1 Types of Snowdrifts Forming in Cut Sections 266
8.8.2.2 Basis for Recommended Guidelines 267
8.8.2.3 Guidelines for Sidehill Cuts (Not Rock) 270
8.8.2.4 Guidelines for Sidehill Cuts in Rock 272
8.8.2.5 Guidelines for Through-Cuts 274
8.8.3 Superelevated Curves 274
8.8.4 Divided Highways. 275
8.8.5 Safety Barrier Requirements 276
8.9 Guidelines for Structures and Appurtenances Inside Right-of-Way 276
8.9.1 Safety Barrier 276
8.9.1.1 Concrete Barrier. 276
8.9.1.2 W-Beam versus Box Beam and Cable Barrier 277
8.9.1.3 Safety Barrier Terminations 279
8.9.2 Abutments for Overhead Structures 279
8.10 References 280
Appendix A: Problem Evaluation Checklist 283
Appendix B: Wyoming Department of Transportation Standard Plans for 3.0- and 3.6-m-tall (10- and 12 ft) Snow Fences 287
Glossary 296
Index 303

List of Figures

Figure 2.1. The snowdrift on this curve reduced sight distance and prevented evasive maneuvers that might have prevented this fatal crash.

Figure 2.2. Snowdrifts can contribute to road damage by obstructing drainage and providing a source of water that can infiltrate under the pavement (left photo from Tabler 1994). .6

Figure 2.3. Rock Snow fences protecting railroad cut in southeast Wyoming were probably built in 1868 (Tabler 1986). .7

Figure 2.4 Photograph in 1901 by J.E. Stimson shows snow fence protecting Union Pacific Railroad about 25 km (16 miles) southeast of Laramie, Wyoming (Tabler 1986). Photo courtesy Wyoming State Museum.

Figure 2.5 Snow fences on the White Pass and Yukon Railroad, approximately 25 km (16 miles) north of Skagway, Alaska (Tabler 1994). Built in 1900, they were 4 m tall (13.5 ft).

Figure 2.6. Location of Wyoming I-80 case study (Tabler 2002). © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$.

Figure 2.7. Snow accumulation at Wyoming I-80 Mile 280.8 before snow fencing (left), and conditions as they have appeared throughout the 31 years after building snow fences (upper right). Aerial view shows the fence system at this location. (From Tabler 1973a)............ 10

Figure 2.8. Snow accumulation at Wyoming I-80 Mile 274.9 in 1970 before fencing (above), compared with conditions typical of the 31 years since fences have been in place (upper right). At the time of the lower photo, the drift formed by the $3.8-\mathrm{m}$-tall (12.4 ft) fence at this site was $6 \mathrm{~m}(20 \mathrm{ft})$ deep and contained about 80 metric tons per meter of fence length (27 tons/ft). (From Tabler 1973a). 11

Figure 2.9. Snow accumulation at Wyoming I-80 Mile 269.5 in 1970 before fencing (upper left), compared with conditions typical of the 31 years since fences have been installed (right). The lower view shows a $3.8-\mathrm{m}$ (12.4-ft) Wyoming fence with snow accumulation on the same date at another location. (From Tabler 1973a).

Figure 2.10. Very little blowing snow is seen escaping the two $3.8-\mathrm{m}$ (12.4-ft) fences at Mile 263.0, Wyoming I-80 (Tabler 1973a). At the time of this photo, the lead fence was about 60\% full. Photo by Robert L. Jairell.

Figure 2.11. This transition from frozen slush to wet pavement corresponds to the beginning of the area protected by a $3.8-\mathrm{m}$-tall ($12.4-\mathrm{ft}$) snow fence located about $150 \mathrm{~m}(500 \mathrm{ft})$ upwind. The upper corner of the fence, which extends to the left but is hidden behind the drift, is visible near the center of the picture. The area on the right side of the transition is unfenced (Mile 247.6, Wyoming I-80). (From Tabler and Furnish 1982).

Figure 2.12. Improved visibility downwind of a $3.8-\mathrm{m}$ (12.4-ft) snow fence during moderate drifting. The left photo was taken $60 \mathrm{~m}(200 \mathrm{ft})$ outside of the protected area. The right
photo was taken a few minutes later, standing at the boundary of the protected area. Photos by Keith Rounds, Wyoming Department of Transportation. (From Tabler 1973a). 13

Figure 2.13. This photo taken from the center of the protected area shows the improved visibility downwind of $3.8-\mathrm{m}(12-\mathrm{ft})$ fences, located outside of the field of view to the right (arrow indicates wind direction). The end of the fence system coincides with the abrupt change in conditions just beyond the information sign (Mile 254, Wyoming I-80). (From Tabler 1986).

Figure 2.14. Accident rate in blowing snow conditions on Wyoming I-80 from Mile 235 to 295, in relation to snow fence protection. To account for yearly variations in snowfall, accident rate is expressed per meter of snowfall over the period October 1 to April 30 (Updated from Tabler and Furnish 1982)

Figure 2.15. Pavement temperatures on Wyoming I-80 service road on March 19, 2002, show effects of snow fences (Tabler 2002). The location of the transition in road surface conditions shown in Figure 2.15 is indicated by the yellow arrow. Fence locations, shown by the checkered boxes, are relative to the average wind direction during the measurements.

Figure 2.16. Bare pavement is downwind of snow fences (\#8-10) at the time the data in Figure 2.15 were taken (Tabler 2002). The 7 - to $8^{\circ} \mathrm{C}\left(12-\right.$ to $\left.15^{\circ} \mathrm{F}\right)$ temperature change at the bare pavement/ice transition is indicated by the arrow in Figure 2.15. 15

Figure 2.17. Conditions at Wainwright on Alaska's North Slope before (above) and after (right) a 4.6-m (15-ft) snow fence was built in 1982 (upper photo by Robert L. Jairell, U.S. Forest Service Research; photo right by Dr. Carl S. Benson, Geophysical Institute, University of Alaska -- Fairbanks). (From Tabler 1994)

Figure 2.18. This aerial view downwind shows that the effect of a snow fence can extend for great distances downwind (Tabler 1994). A 3.8-m (12-ft-tall) fence in the foreground is trapping most of the incoming snow. The increased eroding capability of the wind has scoured out snow for nearly a kilometer downwind. The shorter fence in the snow-free area was used to measure the snow trapping efficiency of the main fence. U.S. Forest Service Photo by A. Loren Ward. 17

Figure 2.19. Closure time on Wyoming I-80 between Walcott Junction and Laramie, 1970-1985, in relation to number of ground blizzard crashes.

Figure 2.20. Benefit-to-cost ratios for permanent snow fences in relation to seasonal snow transport and costs for mechanical snow removal.19

Figure 3.1. Blowing snow particles collected $1 \mathrm{~m}(3.3 \mathrm{ft})$ above the snow surface (Tabler 1986). Grid scale is 2 mm (0.08 in.). Photo by Dr. R.A. Schmidt. ... 25

Figure 3.2. Migrating snow waves moving about $5 \mathrm{~m} / \mathrm{h}(16 \mathrm{ft} / \mathrm{h})$ with a wind speed of $40 \mathrm{~km} / \mathrm{h}$ (25 miles $/ \mathrm{h}$). View is facing wind. (Tabler 1986).

Figure 3.3. Saltating snow particles without snowfall. Field is 25 cm (10 in.). Wind speeds are at $1 \mathrm{~m}(3.3 \mathrm{ft})$. Photos by Dr. Daiji Kobayashi (1972). .. 26

Figure 3.4. Chain reaction of saltating snow particles downwind from where tractor treads broke the snow crust (arrow indicates wind direction). Such disturbances act as sources of blowing snow that can persist over long distances downwind (Tabler 1986).

Figure 3.5. Snow stream downwind of a source of blowing snow. The boundaries of this stream were uniform for at least 3 km (1.9 miles)(Tabler 1986). .27

Figure 3.6. Snow stream coinciding with a drainage channel (facing wind) (Tabler 1986). 28
Figure 3.7. Snow shadow formed by a cylindrical shelter $1.2 \mathrm{~m}(4 \mathrm{ft})$ in diameter and $2.1 \mathrm{~m}(7$ $\mathrm{ft})$ tall (Tabler 1986). This view is from a point $150 \mathrm{~m}(500 \mathrm{ft})$ directly downwind. U. S. Forest Service photo by Robert L. Jairell. .28

Figure 3.8. Turbulent diffusion of snow particles (wind from right) (Tabler 1994). .29

Figure 3.9. Snow transport in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the ground, as a function of wind speed at $10 \mathrm{~m}(16 \mathrm{ft})$ height (Tabler 1991b). ... 31

Figure 3.10.Visual demonstration of how the vertical distribution of blowing snow changes with wind speed U. This array of anemometers, spaced 30 cm (12 in .) apart, was set in a field of wood posts $1.2 \mathrm{~m}(4 \mathrm{ft})$ tall (Tabler 1986).

Figure 3.11. Vertical distribution of blowing snow when wind speed averaged $90 \mathrm{~km} / \mathrm{h}$ (55
miles $/ \mathrm{h}$)(Tabler 1994). ... 33
Figure 3.12.Condensation of water vapor above a column of blowing snow. Maximum temperature for the day was $-5.6^{\circ} \mathrm{C}\left(+22^{\circ} \mathrm{F}\right)$ (Tabler 1986).

Figure 3.13. Diagram of the transport distance concept used to estimate evaporation loss from wind-transported snow (Tabler 1975a). .35

Figure 3.14. This valley is an example of an upwind boundary that defines the fetch distance for downwind locations (wind left to right)(Tabler 1986). 36

Figure 3.15. Evaporation of relocated snow as a function of the fetch (Tabler 1994). 37
Figure 3.16. Snow transport as a function of fetch distance and relocated snow water-equivalent, as calculated from Equation (3.9), using $T=3000 \mathrm{~m}(10,000 \mathrm{ft})($ Tabler 1994). 37

Figure 3.17. How snow transport increases with fetch distance, as given by Equation (3.10) assuming $\mathrm{T}=3000 \mathrm{~m}(10,000 \mathrm{ft})($ Tabler 1994). ... 38

Figure 3.18. Crescent-shaped snow dune (wind from left) (Tabler 1986). 38
Figure 3.19. Snow waves (facing wind). The snow fences are $3.8 \mathrm{~m}(12.4 \mathrm{ft})$ tall (Tabler 1986). ... 39

Figure 3.20. A sastrug, with $12-\mathrm{x} 20-\mathrm{cm}$ field book for scale (wind from left)(Tabler 1994). . 39

Figure 3.21. Change in the strength of bonds among deposited snow particles with time, as indexed by work of disaggregation (after Jellinek 1957).

Figure 3.22. Density of wind-deposited snow as a function of depth, before the onset of melt (Tabler 1985).

Figure 3.23. Snow retained in a field of posts 130 mm (5 in.) in diameter, $1.2 \mathrm{~m}(4 \mathrm{ft})$ tall at different spacings illustrates how the geometry of surface roughness controls snow deposition (Tabler 1994).

Figure 3.24. Wind profile changes over a curved surface, and the formation of an eddy area caused by separation of the airflow. $\mathrm{du} / \mathrm{dz}$ is the vertical gradient of the wind speed. (Tabler 1994).

Figure 3.25. Stages of drift growth in a topographic deposition area (Tabler 1975b). 44
Figure 3.26. Snow waves migrating over surface of snowdrift downwind of a $3.8-\mathrm{m}$ (12-ft) snow fence indicate an equilibrium surface (Tabler 1994). .. 45

Figure 3.27. Initial trapping efficiency of downwind-facing steps in relation to approach slope and step height, as determined by Schmidt and Randolph (1981)

Figure 3.28. Turbulent mixing diagram, showing zones defined by Tabler and Schmidt (1986). .46

Figure 3.29. Wind speed profiles at different distances (X) downwind from a 50% porous snow fence, compared to profile (dashed line) far upwind from fence. Z is height above ground and H is fence height. (Tabler 1994) .47

Figure 3.30. Wind speed reduction contours on the lee side of a 50% porous snow fence with height H (Tabler 1986). Contour values are percent of ambient (undisturbed) wind speed at an equivalent height. .48

Figure 3.31. Slip-face and circulation region formed by a 50%-porous snow fence during the
intermediate stages of growth (Tabler and Jairell 1993).

Figure 3.32. Slip face and cornice behind a $3.8-\mathrm{m}$ (12.4-ft) snow fence (Tabler 1994). Drift is approximately 3.7 m deep at the cornice. .49

Figure 3.33. Cross-section of snowdrift formed by a $3.8-\mathrm{m}$ (12.4-ft) 50% porous horizontalboard fence on seven dates (Tabler 1986).

Figure 3.34. The dimensions of an equilibrium drift formed by a 50%-porosity snow fence (Tabler 1989).

Figure 3.35. Changes in the length of the leeward drift as a 50%-porous snow fence fills with snow (Tabler 1980a).

Figure 3.36. Changes in the maximum depth of the leeward drift as a 50% - porous snow fence fills with snow (Tabler 1980a).

Figure 3.37. Stages in drift growth at a solid (non-porous) fence (Tabler 1994).
Figure 3.38. The vortex on the upwind side of this solid barrier prevents deposition immediately upwind of the fence until the snow depth reaches about 0.6 H (Tabler 1994).52

Figure 3.39. The surface of an equilibrium drift follows the lower boundary of the main mixing region (region 3, Figure 3.28) behind a porous fence (Tabler 1994)53

Figure 3.40. Equilibrium drift formed by a $6-\mathrm{cm}(2.4-\mathrm{in}$.) reduced-scale model of a $1.8-\mathrm{m}(6-\mathrm{ft})$ fence (left) is proportional to that formed by a $3.8-\mathrm{m}(12.4 \mathrm{ft})$ fence (Tabler 1986).54

Figure 3.41. Drift dimensions depend on effective fence height H which may be less than the structural fence height H_{s} (Tabler 1994).54

Figure 3.42. Rounding of drift ends, as shown by this $3.8-\mathrm{m}-\mathrm{tall}$ (12.4-ft) Wyoming fence, reduces storage capacity and trapping efficiency (Tabler 1986).56

Figure 3.43. Extent of the three-dimensional rounding of drift ends that constitutes the end effect (Tabler 1986).56

Figure 3.44. Length of an equilibrium downwind drift as a function of distance from the end of a 50%-porous fence on flat ground (Tabler 1980a)57

Figure 3.45. Cross-sectional area of equilibrium lee drifts as a function of distance from the end of a 50%-porous fence on flat ground (Tabler 1980a). 57

Figure 3.46. Total snow storage capacity as a function of fence length (Tabler 1994).............. 58
Figure 3.47. Comparison of drifts formed by two $3.8-\mathrm{m}$ (12.4-ft) Wyoming fences that have 30 and $90-\mathrm{cm}$ (12- and 36-in.) bottom gaps, respectively (Tabler 1986)................................. 58

Figure 3.48. Effect of bottom gap on snow storage, as determined from field studies (Tabler 1994)

Figure 3.49. Comparison of drifts formed by 50%-porous and solid fences (Tabler 1994)....... 59
Figure 3.50. Length of the downwind drift as a function of fence porosity (Tabler 1994)........ 59
Figure 3.51. Snow storage capacity of the downwind drift as a function of fence porosity (Tabler 1994).

Figure 3.52. Horizontal slats reduce the tendency for snow deposition near the fence (Tabler 1986).

Figure 3.53. Cross-sectional area of drift versus wind attack angle (Tabler 1986).................... 62
Figure 3.54. Effects of ground slope on the shape of equilibrium drifts (Tabler 1986). 63

Figure 3.56. Snow storage in upwind and downwind drifts formed by Wyoming snow fences as
a function of fence height (Tabler 1986). ... 66
Figure 3.57. Effect of snow fence porosity on shape of drifts on flat terrain, as given by Equation 3.17 and the values in Table 3.4.67
Figure 3.58. How initial trapping efficiency varies with fence height and wind speed (Tabler and Jairell 1993) 69
Figure 3.59. How initial absolute trapping efficiency varies with effective fence height (Tabler 1994) 69

Figure 3.60. Snow particles jetting over the top of a solid barrier $1.2 \mathrm{~m}(4 \mathrm{ft})$ tall illustrate why the trapping efficiency declines after the upwind drift reaches the top of the fence (Tabler 1994).

Figure 3.61. Decline in trapping efficiency as a 50\%-porous snow fence fills with snow,
assuming $\quad E_{0}=0.95$ (Tabler and Jairell 1993).. 71
Figure 3.62. Average trapping efficiency as a function of snow transport relative to capacity
(Tabler and Jairell 1993).. 72
Figure 4.1 Correlation of icy road condition crashes with ground blizzard crashes on a 10-mile section of Wyoming I-80 suggests that blowing snow is the primary cause of icy road conditions (Tabler 2002). .78

Figure 4.2. Distribution of crashes associated with winter condition crashes and ground blizzard conditions on Wyoming I-80, by half-mile locations (Tabler 2002)79

Figure 4.3. Distinction between "near snow" and "far snow." ... 81
Figure 4.4. A board fence, 2.4-m (8 ft) tall, that caused a drift on the road. Wind was from left. Structures and vegetation on the downwind side of the road are sometimes overlooked during summertime field reviews (Tabler 1994).82

Figure 4.5. This tall billboard is causing a snowdrift on the road even though it is $30 \mathrm{~m}(100 \mathrm{ft})$ from the shoulder (Tabler 1994). Plow drivers had not realized that the sign was causing this drift.82
Figure 4.6. The orientation of streamlined drifts formed by bushes and trees can be used to determine the prevailing direction of the snow transport (Tabler 1994). 85
Figure 4.7. Abrasion pattern on posts indicates prevailing direction of snow transport (Tabler 1986). 86
Figure 4.8. An aerial photo at a scale of 1:12000 shows alignment of drifts behind large shrubs and terrain features (Tabler 1986). 87
Figure 4.9. Flow chart of the procedure for estimating mean annual snow transport, $\mathrm{Q}_{\mathrm{t}, \mathrm{ave}}$ (Tabler1993).94

Figure 4.10. How the dates of the snow accumulation season vary with elevation in Wyoming, as derived by using the coefficients in Table 4.1 and latitude and longitude at the center of the State (Tabler 1988).
Figure 4.11. Directional distribution of wind and potential snow transport $\left(\mathrm{Q}_{\text {upot }}\right)$ at Charlottetown, Prince Edward Island (Tabler 1994). 102
Figure 4.12. Long-term reduction in snow transport as a function of design year (Tabler and Jairell 1993). 110
Figure 4.13. Benefit-to-cost ratio for snow fences, as a function of average annual snow transport, $\mathrm{Q}_{\mathrm{t}, \mathrm{ave}}$, and cost of mechanical snow removal (Modified from Tabler 1994) 112
Figure 4.14. Benefit-to-cost ratio for snow fences, as a function of design modulus K , assuming $\$ 5 / \mathrm{t}$ cost for mechanical snow removal and $60 \mathrm{t} / \mathrm{m}$ mean annual snow transport (Tabler 1994). 112
Figure 5.1. Shrub plantings are best way to stabilize snow on embankments. 120
Figure 5.2. Median fences should be spaced 10 times their maximum height (Tabler 1994).. 120
Figure 5.3. Snow transport in relation to fetch and relocated snowfall over the snow accumulation season, using Equation (5.2). 121
Figure 5.4. Types of drifts that form in cut sections (Tabler 1994) 122
Figure 5.5. Comparison of the traditional and recommended strategies for designing cuts to prevent snowdrift encroachment (Tabler 1994) 122
Figure 5.6. Proposed section for cuts to prevent drift encroachment where upwind terrain is flat or slopes downward toward the road (Modified from Tabler 1994). Dimensions are in meters. 123
Figure 5.7. Proposed guidelines for through-cuts (Modified from Tabler 1994). 123
Figure 5.8. Snow storage versus height of cut for cross- section in Figure 5.5 (Tabler 1994). 123
Figure 5.9. Guidelines for rock cuts in steep terrain (Tabler and Cavagnaro 1993). 123
Figure 5.10. Roadside snowbanks create severe drifting and visibility hazards (figure on right from Tabler 1994) 124
Figure 5.11. Guidelines for minimum fill height (Tabler 1994) 124
Figure 5.12. Recommended treatment for high fill sections. 124
Figure 5.13. Safety barrier causes snowdrifts. Left view shows W-beam rail, right view is concrete median barrier (Tabler 1994). Arrows indicate wind direction. 125
Figure 5.14. Safety barrier can create severe visibility problems. Photo courtesy Craig Shelton,Alaska Department of Transportation and Public Facilities.. 125

Figure 5.15. Safety barrier prevents removal of roadside snowbanks...................................... 125
Figure 5.16. This 1:30-scale outdoors model shows that box-beam guardrail (foreground) causes less snow accumulation than W-beam rail (background)(Tabler and Jairell 1980). Both models include a curb. 126

Figure 5.17. Snowdrift profiles formed by fences with porosities of $0-, 25-, 37.5$ and $50 \% \ldots 126$

Figure 5.18. Required height of 50\%-porous snow fences versus design snow transport (Tabler
\qquad
Figure 5.19. Setback for parallel fences on flat terrain (Tabler 1994). 127
Figure 5.20. Setback distance can be reduced by using a fence taller than required for storage of the design transport (Tabler 1993).. 128

Figure 5.21. The best location for a snow fence may be farther from the protected area than the
minimum setback. ... 128
Figure 5.22. Fences should overlap the protected area by 30° on either side of prevailing direction (Tabler 1994).

129
Figure 5.23. Guidelines for overlapping staggered oblique fences (Tabler 1994). 129
Figure 5.24. Example illustrating preliminary snow fence layout using DeLorme software. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$...................... 129

Figure 5.25. Guidelines for openings in fence lines (Tabler 1994). ... 130
Figure 5.26. This visibility transition is at the end of a system of $3.8-\mathrm{m}$-tall ($12.4-\mathrm{ft}$) snow fences on Wyoming I-80. The left view shows the abrupt change in conditions at end of the fence system coinciding with the far side of a machinery underpass. The right view shows conditions within the protected area at the same time, looking in the opposite direction. (Tabler 1994).

Figure 5.27. The strip of blowing snow across the road coincides with the unfenced corridor between the fence system in the background, and brush growing along a watercourse (Tabler 1994).

Figure 5.28. 3.0-m (10-ft) Wyoming snow fence. .. 132
Figure 5.30. In-line winch tensioner and slotted aluminum post with brackets. Photos courtesy of Perma-Rail ${ }^{\circledR}$ International. ... 133

Figure 5.31. Changes in snowdrift shape and snow storage as a living fence grows................ 134
Figure 5.32. Minimum setback for moderate to severe snow transport, and placement of
structural fence if required... 134
Figure 5.33. Shrub rows should be planted beteen trees and road for long setbacks. 134

Figure 5.34. Gaps in living snow fences with insufficient setback cause deep drifts on the road.

Figure 5.35. Pruning lower branches of roadside trees can mitigate snow drifting problems.. 135
Figure 5.36. Shrubs or coniferous trees should be planted upwind of deciduous windbreaks to
close off the open space under the canopy. .. 136
Figure 5.37. The "Minnesota snow trap" is an effective planting scheme for protecting grade
separations with oblique winds (left from Tabler 1994)... 136
Figure 5.38. This planting was reported to be successful in reducing drifts. 136
Figure 5.39. Foam pipe insulation slipped over a steel T-post provides a better grip on fencing than wooden lath (Tabler 1994)... 137

Figure 5.40. Design for seasonal fences $2.0 \mathrm{~m}(6.5 \mathrm{ft})$ and $2.4 \mathrm{~m}(8.0 \mathrm{ft})$ tall (left Tabler 1994).
137
Figure 6.1. Fence construction cost per unit of snow storage, as a function of fence height, for
two large projects in Wyoming (Tabler 1989).. 144
Figure 6.2. Equilibrium drift profiles for selected fence porosities... 145
Figure 6.3. Solid barrier near Nakayama Pass, Hokkaido, Japan, causes snow to be deposited on the slope below the road, diffuses snow vertically, and retards deposition on the road (Tabler 1994). Right photo courtesy of Tetsuya Uchiya, Hokkaido Development Bureau.
\qquad
Figure 6.4. Design of the solid barrier on Nakayama Pass shown in Figure 6.3 (Tabler 1994). 147
Figure 6.5. Dust levee constructed to protect railways in eastern Colorado, induces deposition of saltating particles on upwind side, and entrains smaller particles in the higher speed airstream over the crest (Tabler 1994).

Figure 6.6. Wyoming snow fence (lower right from Tabler, 1994). 149
Figure 6.7. Aluminum Wyoming-type snow fence developed by the Arizona Department of Transportation. Photo courtesy Arizona Department of Transportation. 149
Figure 6.8. Generic plan for the Wyoming snow fence. Dimensions are given in Table 6.2. Revised from Tabler (1994) 150

Figure 6.9. Knee braces are required to prevent long braces from being damaged by snow settlement pressure, as occurred behind this $3.6-\mathrm{m}$-tall ($12-\mathrm{ft}$) fence of an earlier design. 152
Figure 6.10. Steps in building a 4.3-m-tall (14-ft) Wyoming snow fence, starting with precut, predrilled and treated lumber. 153
Figure 6.11. U-clip used to attach Wyoming fence to rebar anchor (dimensions in millimeters)(Tabler 1994). 154

Figure 6.12. It is imperative to tighten the U-clip to prevent slippage. Right view shows rebar that has nearly rasped entirely through bolt and U-clip. 154

Figure 6.13. Steel angle can be used for anchor attachment, but rebar must be welded to angle to avoid failure after wood dries and shrinks. Vibration has led to failure of the light tack weld in the photo on the right. Left photo from Tabler (1994). 155

Figure 6.14. Crossed and wired rebar should not be used to anchor Wyoming fences (Tabler 1994). 155

Figure 6.15. Earth anchor for soils with low bearing strength. .. 156
Figure 6.16. Seasonal freezing and thawing has jacked out the rebar anchoring this 4. 3-m-tall (14-ft) fence near Nome, Alaska. 156

Figure 6.17. Anchor attachment for permafrost soils allows fence to move vertically in response to thawing and freezing of active layer. Dimensions are in millimeters. 157

Figure 6.18. Panels should be overlapped to eliminate spaces between panels that greatly reduce trapping efficiency and snow storage capacity (Tabler 1994) 159

Figure 6.19. Vertical slats attached to buck-and-pole supports (Tabler 1986b)....................... 160
Figure 6.20. A Swedish (or Norwegian) snow fence. This 2-m (6.5-ft)-tall fence was about 45 years old at the time this picture was taken (Tabler 1986b).

Figure 6.21. Pole crib fence near La Veta Pass, Colorado (Tabler 1986b). 161
Figure 6.22. Aerial view shows zigzag design catches less snow than the standard Wyoming fence with which it was paired for comparison (Tabler 1986b). Fence height is $3.8 \mathrm{~m}(12.5$ $\mathrm{ft})$. Photo by Robert L. Jairell. From Tabler (1994). 161

Figure 6.23. The smaller the aperture, the greater the tendency for snow to deposit in the immediate vicinity of the fence. The blue material has a physical porosity approximately the same as that of the orange fencing but was the first to become buried by the drift..... 162

Figure 6.24. Rails supported by poles were used for this 3.3-m-tall (10-ft) fence (Tabler 1994).

Figure 6.25. Vertical slats supported by horizontal stringers between vertical supports were used for this $4.6-\mathrm{m}$-tall (15 ft) fence at Wainwright, Alaska (Tabler 1994). Photo by George Clagett, U.S. Soil Conservation Service. 163

Figure 6.26. Lath fencing is unsuited for tall permanent fences because the slats fall out of the wire loops after several years of service (Tabler 1994).

Figure 6.27. Combination of lath fencing and horizontal boards. ... 164
Figure 6.28. Extruded high-density polyethylene DuPont ${ }^{\circledR}$ Vexar $^{\circledR}$ snow fence (current product number L77)(Tabler 1994).

165

> Figure 6.29 . Punched and drawn high-density polyethylene "All Purpose Fence" manufactured by Conwed Plastics, Inc. (Tabler 1994).. 165
Figure 6.30. Snow fences $4.6 \mathrm{~m}(15 \mathrm{ft})$ tall at Prudhoe Bay, Alaska, utilize UX3100 high-density polyethylene snow fencing manufactured by the Tensar Corporation (Tabler 1994) 166
Figure 6.31. Sandwiching fencing between two strips of EPDM helps grip the plastic, and compensates for expansion and contraction of the batten (Tabler 1994). 166
Figure 6.32. End supports must be braced longitudinally for tensioning synthetic materials (Tabler 1994). Tensar ${ }^{\circledR}$ UX3100 material was used for this 5-m (16-ft) tall snow fence at Summitville, Colorado 167
Figure 6.33. Methods for accommodating slope changes when using synthetic fencing materials (Tabler 1994). 167
Figure 6.34. Synthetic fencing must be tensioned sufficiently to minimize sagging and damage caused by snow settlement 168
Figure 6.35. A method of tensioning multi-tiered plastic fencing (Tensar ${ }^{\circledR}$ UX3100 snow fence)(Tabler 1994). 168
Figure 6.36. Composite Centaur HTP ${ }^{\circledR}$ polymer/wire rail (left) was used for the $4-\mathrm{m}$ ($13-\mathrm{ft}$) fence under construction (right from Tabler 1994). The new $15-\mathrm{cm}$-wide (6-in.) Perma- Rail ${ }^{\circledR}$ strap is shown on the right. 169
Figure 6.37. Composite polymer/wire rail was used to phase out wind protection over the last 90$\mathrm{m}(300 \mathrm{ft})$ of this fence to prevent an abrupt transition from protected to unprotectedconditions.170
Figure 6.38. Left: Ratchet winch permanently attached to end of fence line facilitates installation and maintenance. Right: Method of attaching "dead" end to post 170
Figure 6.39. Method for attaching winches and terminations to vertical supports in steep terrain allows take-up spool to be perpendicular to the rail (Tabler 1994). 171
Figure 6.40. Perma-Rail ${ }^{\circledR}$ in-line winch can be installed at any desired location and significantly reduces fence construction cost. Photos courtesy of Perma-Rail International 171
Figure 6.41. "C" channel post with adjustable brackets 172
Figure 6.42. Heavy-duty post and bracket manufactured by Perma-Rail International facilitates construction of tall fences 172
Figure 6.43. Perma-Rail ${ }^{\circledR}$ adjustable winches (left) and post-and-sleeve construction (right) allow adjustment of bottom gap in uneven terrain. Photo left courtesy Perma-Rail International 172
Figure 6.44. Perma-Rail ${ }^{\circledR}$ slotted aluminum post and bracket system. Note use of guys in place of braces. Photos courtesy of Perma-Rail International. 173

Figure 6.45. Composite rail accommodates irregular terrain, but posts at low spots must be properly anchored to resist the upward force generated by the tensioned rails.

Figure 6.46. Vertical oscillation can lead to failure of composite rail. Rails within the first 1.5 m

 (5 ft) above the ground are most vulnerable. 174Figure 6.47. In areas with strong winds, stays or vibration dampeners should be used to limit
unsupported spans to $1.5 \mathrm{~m}(5 \mathrm{ft})$.

Figure 6.48. PARAWEB ${ }^{\circledR}$ fencing consists of polyester fibers encased in a polymer sheath. A cross section is shown between the top web and the ruler, and the right ends of the webbing have been shaved to show white fibers.
Figure 6.49. Paraweb ${ }^{\circledR}$ fencing with channel clamp brackets. Photo courtesy Linear Composites Ltd. 176
Figure 6.50. Paraweb ${ }^{\circledR}$ fencing with cable suspension between support posts. Photo courtesy Linear Composites Ltd 176

Figure 6.51. Guidelines for supporting 1.2-m (4-ft) synthetic fencing materials using steel Tposts (Tabler 1994). Lath woven through openings provides a secure attachment for the ends of the fencing material

Figure 6.52. Foam pipe insulation slipped over a steel T-post provides a better grip on fencing
than wooden lath (Tabler 1994) 179

Figure 6.53. The 2.0- and 2.4-m-tall (6.5- and 8-ft) patented portable fence design uses a wooden framework to support the Tensar ${ }^{\circledR}$ fencing material (left from Tabler 1994). The $2.4-\mathrm{m}$ version is shown in these views.

Figure 6.54. Panels are connected using the U-clips shown in Figure 6.11, with rebar pins. The $2.0-\mathrm{m}(6.5-\mathrm{ft})$ version is shown on the left (Tabler 1994). 181

Figure 6.55. Standard Plan for the 2.4-m (8-ft) portable fence, Sheet 1 of 2. Figure courtesy of
the New York State Department of Transportation. .. 182
Figure 6.56. Standard Plan for the $2.4-\mathrm{m}(8-\mathrm{ft})$ portable fence, Sheet 2 of 2. Figure courtesy of the New York State Department of Transportation. 183

Figure 6.57. Standard Plan for the $2.0-\mathrm{m}(6.5-\mathrm{ft})$ portable fence, Sheet 1 of 2. Figure courtesy of the New York State Department of Transportation. 184

Figure 6.58. Standard Plan for the $2.0-\mathrm{m}$ (6.5-ft) portable fence, Sheet 2 of 2. Figure courtesy of the New York State Department of Transportation. 185

Figure 6.59. Independent drag coefficient as a function of barrier porosity (Tabler 1986b). .. 189
Figure 6.60. 50-year peak gust wind speed map (Peterka, J. A. and S. Shahid 1998. Design gust wind speeds in the United States. Journal of Structural Engineering 124 (2): 207-214).
©Copyright 1998 ASCE (www.pubs.asce.org). Reproduced with permission of publisher.

Figure 6.61. Jet roofs and Kolktafeln (turbulence generators) prevent the formation of snow cornices in avalanche starting zones 194

Figure 6.62. Jet roof in Switzerland. Photograph courtesy of Dr. M. "Pete" Martinelli. 194
Figure 6.63. The effectiveness of blower fences in reducing snow depths in cuts can be seen in this photograph by Tetsuya Uchiya, Hokkaido Development Bureau 195

Figure 6.64. The effect of this large deflector on snow deposition is shown in the sketch redrawn from Hokkaido Development Bureau 1974, page 19 (Tabler 1994). Photo by Tetsuya Uchiya, Hokkaido Development Agency.

Figure 6.65. Smoke was used to show the airflow behind typical blower fence used in Japan to reduce snow blowing off roadside snow banks at windshield level, with wind from right (Tabler 1986b). Photograph courtesy Tetsuya Uchiya, Hokkaido Development Bureau. 195

Figure 6.66. Blowing snow is deflected around three-dimensional objects, resulting in relatively snow-free air in the wake region (Tabler 1984). This view is looking upwind toward a trailer 2.4 m tall, 2.2 m wide, and 5 m long ($8 \times 7 \times 16 \mathrm{ft}$).

Figure 6.67. Aerial view of drift pattern around livestock shelter (left, photo by R. L. Jairell). A 1:30 scale model of this shelter (right) illustrates the effectiveness of lateral deflectors in preventing snow deposition on the downwind side, and the wing-shaped drifts that form along the side of the wake (Tabler 1986b)

Figure 6.68. Fences should be aligned parallel to the road if the attack angle is 55° or more (Tabler 1994).

Figure 6.69. Fences should be aligned perpendicular to the prevailing wind if the angle between the road and the wind is less than 55° (Tabler 1994).

Figure 6.70. Swept-back herringbone fences to be used where winds are aligned with the road centerline (Tabler 1994)

Figure 6.71. Stepping down the fence height allows oblique fences to be placed closer to the road.

Figure 6.72.Setback distance can be reduced by using a fence taller than required for storage of the design transport (Tabler 1993).

Figure 6.73. Taking into account the additional snow storage in this cut section reduced the required setback distance to 18 H .

Figure 6.74. The best location for a snow fence may be farther away from the protected area than the minimum setback distance. Topography should also be considered in determining setback.

Figure 6.75. Fences on embankment slopes should be spaced as shown in this illustration (Tabler 1994).

Figure 6.76. The reduction in snow transport is determined by the distance between fence and road, and fetch. This model assumes a 100% trapping efficiency for the fence, but that all snow between the fence and the road is relocated. (Tabler 1994).

Figure 6.77. Wind blowing up-hill toward a $1.8-\mathrm{m}$-tall ($6-\mathrm{ft}$) fence caused a "super-drift" that buried the second 3-m-tall (10 ft) fence located $55 \mathrm{~m}(180 \mathrm{ft})$ downwind. The drift contained four times as much snow as a 1.8-m-tall fence on flat terrain (Tabler 1986b). 205

Figure 6.78. Damage to the buried fence shown in Figure 6.74 (Tabler 1986b)...................... 205
Figure 6.79. Median fences should be spaced 10 times their greatest height (right from Tabler 1994).

Figure 6.80. Parallel fences should overlap the protected area sufficiently to intercept winds from 30° on either side of the prevailing transport direction (Tabler 1994).

Figure 6.81. Minimum length $\left(\mathrm{L}_{\mathrm{f}}\right)$ of staggered fences in relation to wind attack angle, , providing 30° overlap angle (Tabler 1994).

Figure 6.82. Model of a $1.8-\mathrm{m}$-tall ($6-\mathrm{ft}$) Wyoming fence with $15-\mathrm{cm}-$ wide (6 in .) boards on $30-$ cm (12 in .) centers (facing wind). Note how leaving $15-\mathrm{cm}$ ($6-\mathrm{in}$.) gaps between panels reduces fence effectiveness .208

Figure 6.83. Access openings in fence lines. .208

Figure 6.84. Opening in fence similar to Type A in Figure 6.83. Fence height is $3.8 \mathrm{~m}(12.4 \mathrm{ft})$.209

Figure 6.85. Opening in fence suitable for year-round off-road access (Type B, Figure 6.83). Fence height is $4.3 \mathrm{~m}(14 \mathrm{ft})$. 209

Figure 6.86. This visibility transition is at the end of a system of $3-8-\mathrm{m}$-tall $(12.4 \mathrm{ft})$ snow fences on Wyoming I-80. The left view shows the abrupt change in conditions at end of the fence system coinciding with the far side of a machinery underpass. Faintly visible amber lights mark a working accident. The right view shows conditions within the protected area at the same time, looking in the opposite direction.

Figure 6.87. The strip of blowing snow across the road, just above center of the photograph, coincides with the unfenced corridor between the fence system in the background, and brush growing along a watercourse, at the same location as Figure 6.86 (Tabler 1994). . 210

Figure 6.88. Crash incidence in ground blizzard conditions in relation to location on Wyoming I-80, January 1, 1991 to December 31, 2001. Note largest number of crashes has occurred at the location of Figures 6.85 and 6.86 .

Figure 6.89. Example illustrates preliminary layout of a snow fence system using DeLorme software. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$. [1 $\mathrm{m}=3.28 \mathrm{ft}]$

Figure 6.90. Coordinates of snow fences can be displayed and annotated by clicking on the points. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$. ... 212

Figure 6.91. Computer "print screen" image showing how 10 -meter satellite imagery can be used in conjunction with XMap ${ }^{\circledR}$ and 3-D TopoQuads ${ }^{\circledR}$ to determine fetch distance for the example in Figure 6.89. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5,3$-D TopoQuads ${ }^{\mathbb{}} 1.0$, and Sat 10 Satellite Imagery. .213

Figure 6.92. Snowdrift profiles predicted with the SNOWMAN drift generation routine, compared with measured drift profile at a site on Wyoming I-80.214

Figure 7.1. Changes in snowdrift shape and snow storage as a living fence grows. 224
Figure 7.2. Scale model (1:30) comparison of structural and vegetative snow fences 3.8 m (12 $\mathrm{ft})$ tall. Inset is Figure 3.50. .225

Figure 7.3. Model of living snow fence (spruce trees) used for computer simulation of porosity, snow-trapping efficiency, and drift length in relation to tree height, spacing, and snow transport (Tabler 1994).

Figure 7.4. Changes in the porosity of the model shown in Figure 7.3 in relation to changes in spacing, height, and age of trees (Tabler 1994). .226

Figure 7.5. Change in snow-trapping efficiency with spacing, height, and age of trees using the model shown in Figure 7.3 (Tabler 1994).

Figure 7.6. Snow trapping efficiency in relation to snow transport, tree height, and age for a plant spacing of $2.44 \mathrm{~m}(8 \mathrm{ft})$, using the model shown in Figure 7.3 (Tabler 1994)......... 228

Figure 7.7. Severe drifting problems were caused by an opening in this dense spruce planting. .228

Figure 7.8. Required height of trees and structural fences in relation to snow transport (Tabler 1994). .229

Figure 7.9. Shrubs planted at the top of a cut can be used in place of taller barriers placed farther upwind. Snow transport must be accurately determined, however, if the risk of drift encroachment is to be acceptable. (Drawing from Tabler 1994).

Figure 7.10. "Snowbreak" forests used in Japan utilize the principle that dense plantings act as solid barriers to induce snow deposition on the upwind side.
.230
Figure 7.11. Length of downwind drift formed by the tree model shown in Figure 7.3, as a function of tree height, age, and snow transport (Tabler 1994). Tree spacing is $2.4 \mathrm{~m}(8 \mathrm{ft})$.

Figure 7.12. Maximum length of downwind drift formed by tree model shown in Figure 7.3, as a function of snow transport and tree spacing (Tabler 1994). $\mathrm{H}_{\text {req }}$ is the height of structural fence required to store the indicated snow transport.
.232
Figure 7.13. Recommended placement of temporary snow fence with storage capacity equal to
design transport, and minimum setback of living snow fence... 233
Figure 7.14. Wrapping a planting around a road cut causes large drifts on the road at the ends of the trees
.233

Figure 7.15. Deep drift on road resulted from needle loss of mature spruce trees planted 30 m
(100 ft) from road edge.
.234

Figure 7.16. Shrub rows planted between the road and tree rows improves snow control during the years before the trees become fully effective. .234

Figure 7.17. Recommended planting pattern for shrubs on steep slopes. 235
Figure 7.18. Two rows of deciduous trees with branching habits similar to the Russian olive shown here provide a satisfactory porosity ratio for efficient snow trapping (Tabler 1994).
\qquad
Figure 7.19. Coniferous trees or shrubs are required to seal off open area under tall deciduous trees .236

Figure 7.20. Typical snowdrift problem associated with grade separations............................. 237
Figure7.21. "Minnesota Snowtrap" used to reduce drifting at grade separations (Left from Tabler 1994)
Figure 7.22. A combination of trees and shrubs can reduce blowing snow problems at grade separations (Tabler 1994). 238
Figure 7.23. This planting was reported to be successful in reducing drifts at this grade separation. 238
Figure 7.24. Pattern for mass shrub plantings. 239

Figure 7.25. Example of plans for tree and shrub planting for site with snow transport directions shown upper right (Drawing courtesy of Wisconsin Department of Transportation; designed by Martin B. Villaca). .240

Figure 7.26. Herbaceous vegetation within the right-of-way should be managed for maximum snow retention. .241

Figure 7.27. Leaving strips of grass perpendicular to the wind can be an effective method to retain "near" snow. Photo courtesy Minnesota Department of Transportation. 241

Figure 7.28. Fabric weed barrier is a cost-effective way to control weeds and conserve moisture (right, Tabler 1994). .243Figure 7.29. Planting guidelines for large transplants.244
Figure 7.30. Pruning lower branches of roadside trees can mitigate snowdrifts. Pruning the trees in the upper right view would prevent the snowdrift at this location. Arrows indicate wind direction. ... 245

Figure 7.31. Standing corn makes an effective and economical snow fence (Tabler 1994). ... 247
Figure 7.32. Guidelines for standing corn, assuming effective height of corn to be 1.8-m (6$\mathrm{ft})($ Tabler 1994).

Figure 8.1. Illustration of slopes and distances used in Equation (8.1) (Tabler 1994)............. 254
Figure 8.2. One of the larger topographic accumulation areas used to derive Equation (8.1)(Tabler 1994). .254

Figure 8.3. Example of distances and slopes used in Equation (8.1) to estimate the slope of the next snow profile increment (Tabler 1994).

Figure 8.4. Illustration of how Equation (8.1) is used to generate a snowdrift profile (Tabler 1994).

Figure 8.5. Ground profile data required to estimate the snowdrift profile in the region of interest (Tabler 1994).

Figure 8.6. Comparison of blowing snow conditions on alternate routes shows importance of selecting sheltered locations. Yellow arrow indicates wind direction. Map © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$.259

Figure 8.7. Guidelines for locating roads in irregular terrain to minimize blowing snow problems (Tabler 1993).260

Figure 8.8. Road alignment and clearing width in wooded areas should minimize exposure to wind (Tabler 1993).

Figure 8.9. Transitions from wooded to open areas should be located to minimize exposure to blowing snow (Tabler 1994).

Figure 8.10. Examples of good (upper left) and poor (upper right) layout for grade separations. Arrows indicate wind directions. Recommended conceptual design (right, from Tabler 1994) allows snow fences to be installed to protect structure. .261

Figure 8.11. Snow accumulations alongside roads cause poor visibility by increasing particle concentration at windshield level (drawing from Tabler 1994).262

Figure 8.12. Guidelines for minimum height above grade (Equation 8.3) (Tabler 1994)........ 262
Figure 8.13. "Separation" of airflow at the top of an embankment causes the eddy area where blowing snow is deposited. dU/dZ is the vertical velocity gradient. Upper left view uses
smoke for flow visualization in a wind tunnel (courtesy University of Wyoming). Lower right view shows 1:30 scale model of dam.. 263

Figure 8.14. The tendency for snow to be deposited on the top of an embankment is proportional to the height of the eddy area, shown here as a function of embankment slope. .264
Figure 8.15. Snow depth increases with slope steepness. The effect shown here may be exacerbated by the unmowed vegetation on the steeper slope. 264
Figure 8.16. Safety barrier on embankments cause serious snow drifting problems. Photo courtesy Craig Shelton, Northern Region, Alaska Department of Transportation and Public Facilities 265
Figure 8.17. Suggested barn-roof section for high fill embankments. 265
Figure 8.18. Types of drifts that form in cut sections (Tabler 1994) 266
Figure 8.19. Upwind drift in cut sections is caused by flow divergence as wind approaches a downwind obstacle. View on right is a wind tunnel smoke simulation, photo courtesy of the University of Wyoming. 266
Figure 8.20. Upwind terrain affects the profile of snowdrifts in cuts (Tabler 1994) 267
Figure 8.21. This successful cross-section modification, designed using the snowdrift prediction model, illustrates how geometry on the downwind side of centerline must sometimes be modified to eliminate the drifting problem (Tabler 1975) 267
Figure 8.22. Comparison of the traditional and recommended strategies for designing cuts to prevent snowdrift encroachment (Tabler 1994) 268
Figure 8.23. Guidelines recommended in Figure 8.22 maximize snow storage in cut and reduce possibility that drift will encroach on roadway. 268
Figure 8.24. Proposed section for cuts to prevent drift encroachment where upwind terrain is flat or slopes downward toward the road (Tabler 1993). 270
Figure 8.25. Snow storage versus cut height for 4H:1V backslopes, using cross- section in Figure 8.24 270
Figure 8.26. Proposed section for cuts where approaching terrain slopes upward toward the road. 271
Figure 8.27. Terraced cuts reduce excavation, but store less snow (Tabler 1994). 271
Figure 8.28. Example of cuts designed according to the recommendations in section 8.8.2.3.272
Figure 8.29. Proposed section for rock cuts to facilitate snow removal operations (Tabler and Cavagnero 1993). Dimensions are in meters (feet/3.281). 272
Figure 8.30. The recommended minimum $3.7-\mathrm{m}$ ditch width provides space for snow sloughing and temporary snow storage. These examples on the Klondike Highway illustrate snow problems associated with a narrow ditch. .273
Figure 8.31. A wide bench outside of guardrail promotes snow accumulation 274
Figure 8.32. Proposed section for through-cuts (Modified from Tabler 1994). 274
Figure 8.33. Effect of superelevation on snow deposition, and interaction with downwind geometry drawing from Tabler 1994). The photo illustrates the exacerbating effect of an upwind drift in a cut. 275
Figure 8.34. Proposed guideline for relative elevations of divided lanes (Tabler 1994) 276
Figure 8.35. Snow blowing over the top of concrete barrier can impair motorist visibility (Tabler and Jairell 1980) 277
Figure 8.36. Snowdrift caused by concrete barrier blocked Interstate Highway 25 in Colorado, during the Christmas Blizzard of 1982 (Tabler 1994) 277
Figure 8.37. W-beam beam safety barrier causes snowdrifts and obstructs plow cast (left from Tabler 1994) 277
Figure 8.38. Small-scale (1:30) models show difference in snowdrifts formed by W-beam (top) and box-beam (bottom) barrier (Tabler and Jairell 1980). Photo by Robert L. Jairell. 278
Figure 8.39. Box-beam rail with temporary curb (Tabler 1994). Temporary curbs should be used in preference to permanent curbs under rail 278
Figure 8.40. Shirttail drifts form at the ends of safety barrier. 279
Figure 8.41. Pattern of equilibrium drifts formed by abutments at grade separations (Tabler 1994) 279

List of Tables

Table 3.1. Vertical distribution of snow transport as function of wind speed. Values are $\mathrm{Q}_{0-z} / \mathrm{Q}_{0-}$ 5. The snow transport within the first $5 \mathrm{~m}(16 \mathrm{ft})$, in $(\mathrm{g} / \mathrm{m} \exists \mathrm{s})$, is shown in parentheses (Tabler 1991b).32
Table 3.2. Visibility versus $10-\mathrm{m}$ wind speed for unlimited snow on the ground and without precipitation, assuming a 40\% gust factor (Tabler 1994). 33
Table 3.3. Dimensions of equilibrium snowdrifts formed by different types of fences (Tabler 1986). 65
Table 3.4. Coefficients for polynomial equations describing equilibrium drifts formed by snow fences $1.8 \mathrm{~m}(6 \mathrm{ft})$ tall or more. Letters correspond to terms in Equation (3.17). 67

> Table 3.5. Snowdrift depth versus distance from a snow fence, for an equilibrium drift formed by a snow fence that is 50% porous and $1.8 \mathrm{~m}(6 \mathrm{ft})$ tall or more, on flat ground, as given by Equation (3.17) and coefficients in Table 3.4 . All values are multiples of the effective fence height, $H^{*} . ~$.

Table 3.6. Instantaneous (E) and average ($\mathrm{E}_{\text {ave }}$) snow trapping efficiency of 50% porous snow
fences, as a function of the relative cross-sectional area of the drift $\left(\mathrm{A} / \mathrm{A}_{\mathrm{e}}\right)$, as given by
Equations (3.30) and (3.31) with initial trapping efficiency E_{o} equal to 0.95 .

Table 4.1. Values of coefficients in the equation $0^{\circ} \mathrm{C}$ Date $=\mathrm{A}^{\prime \prime}+\mathrm{B}^{\prime \prime}($ Elev $)+\mathrm{C}^{\prime \prime}($ Lat $)+$
$\mathrm{D}^{\prime \prime}$ (Long), where elevation is in meters, for selected states. Number of stations used in
analysis is shown in parentheses after state name. R^{2} is the coefficient of multiple
determination (from Tabler 1988). 97
Table 4.2. Wind speed at $6.1 \mathrm{~m}(20 \mathrm{ft})$ versus direction at Buffalo, New York, December 1965- 74. 100
Table 4.3. Potential snow transport versus direction at Buffalo, New York, December 8-31. 101
Table 4.4. Potential snow transport versus direction at Buffalo, New York, December 8-March 14. 101
Table 4.5. Severity classification for mean annual snow transport ($1 \mathrm{t} / \mathrm{m}=0.3357$ tons $/ \mathrm{ft}$) (Tabler 1994). 107
Table 4.6. Probabilities of larger values for annual snow transport, expressed as modular coefficient K. Values are $1-F(K)$, where $F(K)$ is given by Eqn. (4.15) with $s^{2}=0.0964$ (Modified from Tabler 1982). 109
Table 6.1. Required fence heights for the snow transport severity classes. 143
Table 6.2. Dimensions (mm) of structural members of the "Wyoming" snow fence shown inFigure 6.8. S and G dimensions are parallel to front vertical truss member. Lumber size forall truss members is $50 \times 150 \mathrm{~mm}$, except $50 \times 200 \mathrm{~mm}$ is used for the long brace (MemberNumber 3) for the $4.3-\mathrm{m}$ height.151
Table 6.3. Butt circumference (Circum.) and embedment depth (Embed.) required to support indicated heights of 50% porosity snow fence in $160 \mathrm{~km} / \mathrm{h}(100 \mathrm{miles} / \mathrm{h})$ winds, for pole spacing S_{p}. Values are for Douglas fir poles, soil with average bearing strength $(120 \mathrm{kPa}=$ $2500 \mathrm{lbf} / \mathrm{ft}^{2}$), compacted backfill, air temperature $-20^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right)$, at sea level (Tabler 1986b). 178
Table 6.4. Guidelines for fences supported by T-posts. 178
Table 6.5. Drag coefficients for snow fences. 188
Table 6.6. Wind pressures, $\mathrm{P}_{\mathrm{w}, 0}$, on snow fences that have porosity ratios of $0.5\left(\mathrm{C}_{\mathrm{d}}=1.05\right)$ atsea level and $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, as computed by numerical integration to determine the mean
squared wind speed over fence height H , taking $\mathrm{Z}_{\mathrm{o}}=0.02 \mathrm{~cm} . \mathrm{Z}_{\mathrm{f}}$ is height of resultant force, or moment arm (Tabler 1986a).

Table 6.7.Correction factors $\mathrm{C}_{\mathrm{E}, \mathrm{T}}$ for adjusting wind pressures in Table 6.6 for different elevations and temperatures, using Equation (6.14). Example: To determine the wind load at 2200 m and $-10^{\circ} \mathrm{C}$, multiply value in Table 6.6 by 0.85 (Tabler 1986a). 191

Table 6.8.Correction factor C_{P} for adjusting wind loads in Table 6.6 for different fence porosities using Equation (6.10) to estimate the drag coefficient, C_{d} (Tabler 1986a).191

Table 7.1. Trees and shrubs commonly used for living snow fence plantings. Heights and widths are at maturity ($*$ indicates sensitivity to salt spray and/or soil salt).223

Table 7.2. Height and age required for full effectiveness in relation to snow transport, for the model shown in Figure 6.1 with $2.4-\mathrm{m}$ ($8-\mathrm{ft}$) spacing (Tabler 1994).

Table 7.3. Installation costs in 1983 for living snow fence and Wyoming snow fence 4.3 m (14 ft) tall (Powell et al. 1992). "Effective installation cost" is the value of the initial installation cost at 5.25% interest compounded annually, at the time the snow fence becomes fully effective.

Abbreviations and Symbols

a	Slope angle measured from horizontal
A	Cross-sectional area of snowdrift
A^{\prime}	Empirical coefficient for polynomial equation approximating profile of equilibrium snow fence drift (Eqn. 3.17)
$A^{\prime \prime}$	Empirical coefficient in snow accumulation season date calculation (Equation 4.9 and Table 4.1)
AASHTO	American Association of State Highway and Transportation Officials
A_{e}	Cross-sectional area of equilibrium snowdrift
A_{f}	Cross-sectional area of snow fence drift at end of season
$a_{i t}$	Annual capital charge per dollar of fixed investment for interest i and amortization period t
$A_{\text {max }}$	Cross-sectional area of snow fence drift at location unaffected by end-effect
A_{90}	Cross-sectional area of drift formed by fence perpendicular to wind
B	Emprical coefficient in "law of the wake" (Eqn. 3.16)
B'	Empirical coefficient for X term in polynomial equation approximating profile of equilibrium snow fence drift (Eqn. 3.17)
$B^{\prime \prime}$	Empirical coefficient for elevation term in snow accumulation season date calculation (Equation 4.9 and Table 4.1)
$B_{s r}$	Annual snow removal benefit
C	Construction cost per unit of snow storage
cm	Centimeter
C^{\prime}	Empirical coefficient for X^{2} term in polynomial equation approximating profile of equilibrium snow fence drift (Eqn. 3.17)
$C^{\prime \prime}$	Empirical coefficient for latitude term in snow accumulation season date calculation (Equation 4.9 and Table 4.1)
C_{d}	Drag coefficient
$C D$	Compact disc
CD-ROM	Compact disc - read only memory
$C_{e, T}$	Correction factor for adjusting wind pressure for elevation (Eqn. 6.14)
Circ	Circumference of posts
C_{p}	Correction factor for adjusting wind load for fence porosity
$C_{\text {red }}$	Percent reduction in snow on road
$C_{s f}$	Average annual cost of snow fence system
$C_{s r}$	Unit cost for mechanical snow removal
C_{u}	Factor for correcting wind speed at height Z to wind speed at 10 m height
${ }^{\circ} \mathrm{C}$	Degrees Celsius
$d K$	Differential of K
$d U / d Z$	Derivative of U with respect to Z

D	Setback distance from edge of pavement or other specified point
D^{\prime}	Empirical coefficient for X^{3} term in polynomial equation approximating profile of equilibrium snow fence drift (Eqn. 3.17)
D"	Empirical coefficient for longitude term in snow accumulation season date calculation (Equation 4.9 and Table 4.1)
DVD	Digital Video Disc
e	Base of natural logarithms (2.71828...)
E	Snow trapping efficiency expressed as a fraction
E'	Empirical coefficient for X^{4} term in polynomial equation approximating profile of equilibrium snow fence drift (Eqn. 3.17)
$E_{\text {ave }}$	Average snow trapping efficiency of a snow fence to the time drift has reached equilibrium
E_{L}	Elevation above mean sea level
E_{o}	Initial snow trapping efficiency of a snow fence (before any substantial drift has formed)
Embed	Embedment depth of posts
EPDM	Elastomeric roofing membrane
$\exp ()$	$\mathrm{e}^{()}$
F	Fetch distance
F^{\prime}	Empirical coefficient for X^{5} term in polynomial equation approximating profile of equilibrium snow fence drift (Eqn. 3.17)
f_{i}	Frequency of observations within the u_{i} wind speed class
Fig.	Figure
$f_{i, j}$	Frequency of observations within the i th wind speed class and j th direction class
$F(K)$	Frequency of the modulus K
$f t$	Foot
F_{w}	Wind force
${ }^{\circ} \mathrm{F}$	Degrees Fahrenheit
$G A$.	Gauge
$G P S$	Global positioning satellite
h	Hour
H	Effective height of snow fence, total tree height, and height of downwind-facing step
H_{c}	Height of cut above shoulder. Also height of canopy closure
H_{e}	Minimum height of road of road surface above grade
H_{L}	Height of canopy silhouette intersection
H_{m}	Mature height of shrubs or trees
$H_{\text {req }}$	Height of fence required to store a specified volume of snow
H_{s}	Structural height of snow fence
$H_{s, \text { req }}$	Structural height of snow fence required to store a specified volume of snow
H:V	Horizontal to vertical distance

i	Interest rate (\%)
in.	Inch
I	Fixed capital investment
I-80	Interstate Highway 80
kg	Kilogram
km	Kilometer
kN	Kilonewton
K	Design modulus, defined as $\mathrm{Q}_{\text {des }} / \mathrm{Q}_{\mathrm{t}, \mathrm{ave}}$
ln	Natural logarithm (to the base 2.71828...)
L	Length of snowdrift
L_{f}	Minimum length of staggered fences
$l b$	Pound
$l b f$	Pounds of force
$L_{\text {max }}$	Length of snow fence drift at location unaffected by end-effect
L_{90}	Length of drift formed by fence perpendicular to wind
m	Meter
M	Residual mass of a snow particle after relocation over a specified distance downwind
mi.	Mile
mm	Millimeter
M_{0}	Initial mass of a snow particle before relocation downwind
MPa	Megapascals
n	Number of days in month in the snow accumulation season
N	Newton
$N C D C$	National Climatic Data Center
NOAA	National Oceanic and Atmospheric Administration
NRCS	Natural Resources Conservation Service
O	Annual maintenance expense
P	Porosity of snow fence, defined as ratio of open area to total frontal area, excluding bottom gap
$P a$	Pascal
P_{f}	Capital investment cost per square meter of fence frontal area
PI	Point of intersection
$P_{w, o}$	Wind pressure on a fence with 0.50 porosity ratio at sea level and $20^{\circ} \mathrm{C}$
Q	Total snow transport per unit width across the wind
Q_{c}	Snow storage capacity of snow fence
$Q_{c, i n f}$	Snow storage capacity, per unit width across the wind, at a location unaffected by the end effect
$Q_{\text {des }}$	Snow transport used for designing snow mitigation measures
Q_{e}	Total snow storage per unit length of fence at equilibrium
$Q_{\text {evap }}$	Evaporation loss from blowing snow per unit width across the wind
q_{j}	Total snow transport for the jth direction class

$Q_{p o t}$	Potential snow transport downwind from a fetch of infinite extent with an unlimited snow cover
Q_{t}	Total snow transport over a given year
$Q_{t, a v e}$	Average annual snow transport
$Q_{\text {upot }}$	Potential snow transport calculated from snowfall data
$Q_{\text {upot }}$	Potential snow transport calculated from wind speed data
Q_{0-5}	Snow transport within the lowest 5 m above the ground
Q_{0-z}	Snow transport from the surface to height z
R	Radius of tree or shrub canopy
R	Number of rows of snow fence of height H needed to store a specified volume of snow
s	Second (unit of time)
s	Standard deviation
S	Mean annual snowfall
S	Spacing between trees
SICOP	Snow and Ice Pooled Fund Cooperative Program
\sin	Sine
$\sin ^{-1}()$	Angle whose sine is ()
S_{p}	Span between vertical supports
$S_{\text {we }}$	Snowfall water-equivalent
$S_{\text {rwe }}$	Relocated snow water-equivalent
t	Metric ton
t	Amortization period (years)
T	Maximum transport distance, defined as the distance that the average sized particle can travel before completely evaporating
t_{a}	Air temperature
tan	Tangent
typ	Typical
T/W	Traveled way
T_{+}	Temperature of the warmer month (for interpolating $0^{\circ} \mathrm{C}$ date)
T -	Temperature of the colder month (for interpolating $0^{\circ} \mathrm{C}$ date)
U	Wind speed
UBC	Uniform Building Code
u_{i}	Midpoint of the ith wind speed class
$U_{m}{ }^{2}$	Mean squared velocity over fence height H
U. S.	United States
USGS	United State Geological Service
U_{z}	Wind speed at height z above ground
U_{10}	Wind speed at 10 meters above ground
U_{*}	Shear velocity (defined as the square root of the surface shear stress divided by the air density)
V	Visual range at eye-level
W	Width of median

$W_{\text {top }}$	Horizontal width of cut (shoulder point of intersection to top of cut)
WYDOT	Wyoming Department of Transportation
X	Distance, measured parallel to wind or perpendicular to snow fence
X_{o}	Distance from fence to beginning of leeward drift, measured parallel to wind
X_{1}	Average ground slope (\%) over a distance 45 meters upwind of a given location
X_{2}	Average ground slope (\%) over a distance 15 meters downwind of a given location
X_{3}	Average ground slope (\%) over a distance 15- to 30 meters downwind of a given location
X_{4}	Average ground slope (\%) over a distance 30- to 45 meters downwind of a given location
X_{e}	Longitudinal distance from end of snow fence
$y r$	Year
Y	Snow depth
$Y_{\text {max }}$	Maximum depth of snow fence drift
$\mathrm{Y}_{\text {s }}$	Slope of snow surface
Z	Height above ground
Z_{f}	Height of resultant wind force on snow fence
Z_{o}	Aerodynamic roughness height (i.e., the height at which wind speed is zero)
α	Wind attack angle relative to fence or road ($90^{\circ}=$ perpendicular)
θ	Relocation coefficient (defined as the fraction of snowfall relocated by the wind)
λ	Aerodynamic mixing length
Ø	Diameter
π	The constant 3.1416...
ρ_{a}	Air density
ρ_{s}	Average snow density over depth Y
τ_{o}	Surface shear stress
\%	Percent
quantity	Absolute value of quantity
∞	Infinity
$=$	Equals
\approx	Approximately equals
\sim	Proportional to
>	Greater than
$<$	Less than
\geq	Greater than or equal to
\leq	Less than or equal to
\pm	Plus or minus
\int	Integral of

$$
\begin{array}{ll}
\int_{-\infty}^{K} & \text { Integral between limits }-\infty \text { and } K \\
\sum & \text { Sum }
\end{array}
$$

Abstract

Snowdrifts can add significantly to the cost of winter maintenance, and also create serious safety hazards by causing loss of vehicle control, reducing sight distance on curves and at intersections, obscuring signs, promoting ice formation, reducing effective road width, and rendering safety barriers ineffective. Drifts contribute directly to pavement damage by blocking ditches, drains and culverts, and serving as a source of water infiltrating under pavement. The effects of blowing snow on road ice and reduced visibility are of even greater consequence. Blowing snow is the primary cause of icy roads in wind-exposed areas-melting extracts diurnal solar radiant heat stored in the pavement and substratum, and the quantity of snow blowing across a road can be hundreds of times greater than direct snowfall. Studies on Interstate Highway 80 in Wyoming indicate that over the last 10 years, up to 25% of all crashes occur during blowing snow in areas without snow fences, compared to 11% in areas protected by fences.

This report documents the effectiveness of properly engineered mitigation measures, describes in detail the processes involved in snow transport and deposition, provides specific guidelines for designing structural and living snow fences, and presents recommendations for designing driftfree roads.

1 Introduction

Snowdrifts can add significantly to the cost of winter maintenance, and create serious safety hazards by causing loss of vehicle control, reducing sight distance on curves and at intersections, obscuring signs, promoting ice formation, reducing effective road width, and rendering safety barriers ineffective. Drifts contribute directly to pavement damage by blocking ditches, drains and culverts, and serving as a source of water infiltrating under pavement. The effects of blowing snow on road ice and reduced visibility are of even greater consequence. Blowing snow is the primary cause of icy roads in wind-exposed areas - melting extracts diurnal solar radiant heat stored in the pavement and substratum, and the quantity of snow blowing across a road can be hundreds of times greater than direct snowfall. Studies on Interstate Highway 80 in Wyoming indicate that over the last 10 years, up to 25% of all crashes occur during blowing snow in areas without snow fences, compared to 11% in areas protected by fences (Tabler 2002).

This report provides compelling evidence of the effectiveness of properly engineered control measures, describes in detail the processes involved in snow transport and deposition, provides specific guidelines for designing structural and living snow fences, and presents recommendations for designing drift-free roads.

Much of the basic material presented here was previously published in the Strategic Highway Research Report (SHRP-H-381) Design Guidelines for the Control of Blowing and Drifting Snow (Tabler 1994). This report provides an updated version incorporating advances in research and technology over the last 10 years.

1.1 Who Should Read This Report?

Snow control is technically complex, and mitigation measures must be carefully designed if they are to be successful. Although the material in this report is presented with the technical detail required by engineers, the author's intent is to make the information understandable and usable by anyone, regardless of background. To this end, the report contains over two hundred illustrations of the most important concepts and guidelines, and "highlights" presented at the beginning of each chapter simplify detailed mathematical guidelines. Chapter 5 summarizes the more important guidelines for both snow fences and road design in twenty-one pages.

Simplified guidelines for snow fences have been summarized previously in the Snow Fence Guide (Tabler 1991) that is available at the Snow and Ice Pooled Fund Cooperative Program (SICOP) Internet site: http://www.sicop.net/; however, some of the recommendations contained in that publication have been superceded by those in this report.

1.2 Purpose

Although the primary purpose of this report is to make available proven, effective guidelines for drifting snow mitigation, it is hoped that providing detailed material will stimulate additional research and facilitate the development of computer-assisted snow control technology. Much of the material presented is in process of being incorporated in computer applications that simplify the process of designing mitigation measures for blowing snow, and this report provides the documentation for much of the logic and many of the algorithms. An example is the SNOWMAN computer-based expert system being developed for the New York State Department of Transportation (NYSDOT) by the State University of New York-Buffalo, and Brookhaven National Laboratory as an outgrowth of the PASCON system developed by Kaminski and Mohan (1991). The program, which has been under development since 1998, will be announced on the NYSDOT Internet site (http://www.dot.state.ny.us/).

This report also describes the rationale for the guidelines that have been incorporated into interactive Internet sites developed by the Minnesota Department of Transportation and the University of Minnesota:

http://climate.umn.edu/snow fence/Components/Design/locationb.asp
 http://www.livingsnowfence.dot.state.mn.us/index.html

These sites provide a valuable resource by simplifying calculations and illustrating their application.

1.3 Content and Organization

Chapter 2, "Effectiveness of Measures to Control Blowing Snow," describes the importance of drift control and the benefits to be derived from properly designed control measures. A brief history explains why past drift control efforts were often disappointing. Case studies illustrate both the effectiveness and benefits of properly designed control measures. Economic analyses demonstrate the high benefit-to-cost ratios and rapid amortization that provide a compelling mandate for implementing mitigation measures.

Chapter 3, "How Snow Moves and Forms Drifts", describes the characteristics of blowing and drifting snow that must be considered if mitigation measures are to be successful. In addition to providing the basis for guidelines, this information helps in evaluating drifting problems and devising innovative solutions.

In chapter 4, "Quantifying the Blowing Snow Problem," procedures are described for evaluating problems, and for collecting and analyzing data needed to design control measures.
Computational methods for estimating the quantity and directional distribution of seasonal snow transport are presented. Familiarity with the information in chapters 2, 3, and 4 is essential before proceeding to the chapters presenting specific design guidelines.

Chapter 5, "An Overview of Mitigation Measure Design," presents a simplified guide to designing mitigation measures for blowing and drifting snow, summarizing the detailed presentations in chapters 6-8 in a thirteen-step procedure for solving a blowing snow problem. Because the presentation omits important details, it is not intended to replace the chapters that follow, but rather to provide both an overview and a review of the design process.

More detailed guidelines for specific control measures are presented in chapter 6: "Design and Placement of Structural Snow Fences", chapter 7: "Living Snow Fences," and chapter 8: "Designing Drift-Free Roads".

Highlights at the beginning of each chapter summarize the most important points, and provide the reader with an idea of what material is covered. References at the end of each chapter describe sources of additional information on specific subjects. Terms likely to be unfamiliar to the reader are defined where first introduced, and are compiled in a Glossary at the end of the report.

Although this report focuses on mitigating blowing snow on roads and highways, the information is equally applicable for protecting railroads, airports, residential developments and industrial facilities.

1.4 References

Kaminski, D. F. and S. Mohan. 1991. PASCON: An expert system for passive snow control on highways. Transportation Research Record 1304: 193-201.

Tabler, R.D. 1991. Snow fence guide. Strategic Highway Research Program, National Research Council, Report No. SHRP-H-320. Washington, D.C.
—_. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.
__ 2002. Safety Improvement Study: Interstate-80 Mile 325-335. Final Report, Agreement No. 54839, prepared for the Transportation Commission of Wyoming.

2 Effectiveness of Measures to Control Blowing Snow

This chapter identifies the problems caused by blowing snow, describes the potential benefits that can be derived from properly engineered mitigation measures, and provides economic justification for control measures.

2.1 Highlights

$>$ The quantity of snow that blows onto a road can be hundreds of times greater than the precipitation that falls directly on the road. This adds significantly to snow removal costs and safety hazards.
$>$ Snowdrifts create serious safety hazards, including loss of vehicle control, reduced sight distance on curves and at intersections, reduced effectiveness of safety barriers, and reduced effective road width.
$>$ Blowing snow reduces visibility and causes slush and ice formation.
$>$ Snowdrifts contribute to pavement damage by promoting the infiltration of water under pavement. Snow removal equipment can also damage road surfaces.
$>$ Drift control has been overlooked because improved snow removal equipment favored mechanical removal, effective guidelines for drift control did not exist before 1970, and the effectiveness of control measures is not always appreciated.
$>$ Snow fences can eliminate snowdrifts, improve visibility, and dramatically reduce ice formation. Snow fences reduce the mass of snow reaching the roadway, allowing heat from solar radiation to accumulate in the pavement and base course instead of being lost to melting snow.
$>$ A 15-year study on Interstate Highway 80 in Wyoming showed that snow fences reduced snow removal expenditures by one-third to one-half. At current traffic volume, the fences are reducing crashes in blowing snow conditions by over 60%. The annual savings in property damage, injuries, and reduced delay time is approximately equal to the initial cost of the fences. These benefits alone suggest a benefit-to-cost ratio greater than 3:1.
$>$ Benefit-to-cost ratios for permanent snow fences, based only on reduced costs for snow removal typically range from 50 - to $100: 1$ depending on the quantity of blowing snow.
$>$ The beneficial effects of a snow fence can extend for great distances downwind.

2.2 Importance of Drift Control

Snow and Ice Removal In exposed windy locations, snow blowing onto a road adds greatly to the cost of snow and ice control. Although costs vary widely, mechanical snow removal typically costs about $\$ 3$ per metric ton $(2,205 \mathrm{lb})$. For comparison, a snow fence $1.2 \mathrm{~m}(4 \mathrm{ft})$ tall can retain 12.5 metric tons per meter of length (4.2 tons $/ \mathrm{ft}$).

Safety Hazards Snowdrifts can cause loss of vehicle control, reduce sight distance on curves and at intersections (Figure 2.1), obscure signs, cause ice formation, reduce effective road width, and render safety barriers ineffective. Blowing snow is the primary cause of icy roads in windexposed areas - melting extracts diurnal solar radiant heat stored in the pavement and substratum, and the quantity of snow blowing across a road can be hundreds of times greater than direct snowfall. Studies on Interstate Highway 80 in Wyoming indicate that over the last 10 years, up to 25% of all crashes occur during blowing snow in areas without snow fences, compared to 11% in areas protected by fences (Tabler 2002).
Effects on Pavement Life Drifts contribute directly to pavement damage by blocking ditches, drains and culverts, and serving as a source of water infiltrating under pavement (Figure 2.2). Snow removal equipment can also damage road surfaces.

Figure 2.1. The snowdrift on this curve reduced sight distance and prevented evasive maneuvers that might have prevented this fatal crash.

Figure 2.2. Snowdrifts can contribute to road damage by obstructing drainage and providing a source of water that can infiltrate under the pavement (left photo from Tabler 1994).

2.3 Why Drift Control Has Been Overlooked

2.3.1 Historical Use of Snow Fences

The earliest known written reference to snow fences was by the Norwegian G. D. B. Johnson in 1852. Widespread use of snow fences probably began with the railroads, because confining vehicles to rails eliminated the option of detouring around snowdrifts. Some of the first snow fences in the U.S. were rows of stone blocks placed on the upwind side of cuts during construction of the first transcontinental railroad in 1868-69 (Figure 2.3). By 1880, a tourist guidebook reported "innumerable" wooden snow fences along the Union Pacific Railroad in Wyoming (Crofutt 1880). These early wooden fences (Figure 2.4) were $2 \mathrm{~m}(6.5 \mathrm{ft})$ tall. The same basic design was used by the Union Pacific Railroad and the Wyoming Department of Transportation as late as 1971, and many of these are still in place.

The picket snow fence, made of vertical wood slats held together by wire, has also been in use since the early 1900s. Taller fences were first built in 1900 on the White Pass and Yukon Railroad between Skagway, Alaska, and Whitehorse, Yukon Territory (Figure 2.5).

After automobiles came into general use, the construction of snow fences expanded rapidly. In 1930, the 7th Biennial Report of the Wyoming Highway Commission reported 101 km (63 miles) of fence along Wyoming's highways, and commented: "Intelligent use of snow fences in windy districts accomplishes more per dollar expended than any other feature in maintaining the highways free from snow" (Wyoming Highway Commission 1930). Just two years later, the length of snow fence along Wyoming roads had grown to 169 km (105 miles) (Wyoming Highway Commission 1932).

In the United States, research on snow fences and drift control methods also began in the 1930s with F.A. Finney's wind tunnel experiments at Michigan State College (Finney 1934). His two
publications provided some of the first guidelines for using snow fences and road design to prevent snowdrifts.

Figure 2.3. Rock Snow fences protecting railroad cut in southeast Wyoming were probably built in 1868 (Tabler 1986).

Figure 2.4 Photograph in 1901 by J.E. Stimson shows snow fence protecting Union Pacific Railroad about 25 km ($\mathbf{1 6}$ miles) southeast of Laramie, Wyoming (Tabler 1986). Photo courtesy Wyoming State Museum.

Figure 2.5 Snow fences on the White Pass and Yukon Railroad, approximately 25 km (16 miles) north of Skagway, Alaska (Tabler 1994). Built in 1900, they were 4 m tall (13.5 ft).

2.3.2 Why the Use of Drift Control Measures Declined

Replacement with Brute Force Despite the enthusiasm for snow fences in the 1930s, drift control progressed little over the next half century because improvements in trucks, locomotives, and snow plows, in addition to inexpensive fuel and manpower, favored a brute force approach to snow control. With little incentive to improve passive drift control measures, research came to a standstill, and much of the experience with snow fences was lost through changes in personnel.

Lack of Effective Guidelines In the past, drift control measures often provided disappointing results because guidelines were misleading or lacking. The placement of snow fences recommended in a 1908 railway-engineering textbook, for example, would clearly result in the snowdrift burying the track (Tratman 1908). This error apparently arose from the mistaken belief that snow is only deposited on the upwind side of a porous snow fence, when in fact most of the snow is deposited on the downwind side.

The disparity among guidelines in the past arose because early snow control technicians were unable to predict the shape of snow fence drifts, or how much snow a fence would hold. Finally, although snow fences must have sufficient snow storage capacity to be effective, no such guidelines existed until they were introduced by Russian scientists in the 1950s (Komarov 1954).

Institutional Memory Loss After a blowing snow problem is eliminated by using a snow fence or modifying a road cross-section, there may be little evidence that a problem ever existed in the first place. When the maintenance workers who remember the original problem and its solution move or retire, their replacements often have no basis for judging the effectiveness of existing control measures. This attrition of appreciation weakens support for additional drift control work and leads to deferred maintenance of existing snow fences. Institutional failing memory is inevitable if experiential learning is not passed down to new generations.

2.4 A Case Study in Wyoming

Current drift control technology is based primarily on research conducted by the U.S. Forest Service in the 1960s and 1970s (Martinelli, Schmidt, and Tabler 1982). Results from that research were used to solve a severe drifting problem on a newly completed section of I-80 in Wyoming the year after it was first opened to traffic in 1970.

The I-80 application provides the only documented quantitative evaluation of the effectiveness of snow control measures. The background and results of the I-80 study are summarized here as a case study that can justify snow control projects on other highways. More detailed information can be found in references listed at the end of this chapter.

The route selected for I-80 closely followed U.S. 30 across southern Wyoming. Between Laramie and Walcott Junction, however, a new location was selected along the foot of the Medicine Bow Mountains to save nearly 24 km (15 miles) (Figure 2.6).

Figure 2.6. Location of Wyoming I-80 case study (Tabler 2002). © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$.

No snow fences were in place when this new 124-km (77-mile) section of I-80 was first opened to traffic in October 1970. Three months later, snowdrifts up to $5 \mathrm{~m}(16 \mathrm{ft})$ deep encroached on traffic lanes at 27 different locations, and six bulldozers were working around the clock, seven days a week, to remove these drifts. Winds averaged more than $50 \mathrm{~km} / \mathrm{h}$ ($30 \mathrm{miles} / \mathrm{h}$) for days at a time, and the road had to be closed for a total of 10 days because of poor visibility and accidents. Because of this first winter's experience, snow fences were designed to protect all of the locations where drifts reached the road, using the progenitors of the guidelines presented in this report. The initial contract consisted of 18.3 km (11.4 miles) of snow fence ranging in height from 1.8 to 3.8 m (6 to 12.4 ft) and constructed at a cost of $\$ 480,000$.

Careful monitoring of these first fence systems during the 1971-72 winter proved their effectiveness in preventing drifts (Figures 2.7 to 2.9), but the improved visibility and road surface conditions in fence-protected areas (Figures 2.10 to 2.13) were even more impressive because these ancillary benefits were unexpected.

The dramatic effectiveness of those first fences led to many more being installed over the next 18 years. As of 2001, the system on this same section of I-80 consisted of 63.6 km (39.5 miles) of fence protecting about 64 km (40 miles) of highway, built at a total cost of approximately $\$ 2,260,000$. Ten years after the first fences were constructed, a study was undertaken to quantify their effectiveness (Tabler and Furnish 1982). The results of that original study, updated to incorporate an additional five years of data, are reported here.

Although an economic assessment of winter maintenance operations was complicated by changes in staffing, equipment, and maintenance standards over the period, expenditures were reduced by at least one- third to one-half. More importantly, the gradual increase in fence protection afforded a unique opportunity to quantify the reduction in crashes (Figure 2.14). In a winter with average snowfall and 1980 traffic volume, the original study concluded that the fencing in place in 1980 prevented 54 accidents and 35 injuries. Incorporating an additional five years of data, and adjusting for 2001 traffic and current average injury rate, it is projected that the fences now in place are preventing 78 crashes and 36 injuries over a winter with average snowfall. In section 2.7 it will be shown that the savings in injuries and property damage alone could amortize the capital expenditure for this fence system within two years. With the added savings accruing from reduced road closure time and the savings in snow removal costs, it seems clear that the cost of replacing these snow fences could be recovered within a year's time.

Figure 2.10. Very little blowing snow is seen escaping the two 3.8-m (12.4-ft) fences at Mile 263.0, Wyoming I-80 (Tabler 1973a). At the time of this photo, the lead fence was about $\mathbf{6 0 \%}$ full. Photo by Robert L. Jairell.

Figure 2.11. This transition from frozen slush to wet pavement corresponds to the beginning of the area protected by a $3.8-\mathrm{m}$-tall ($12.4-\mathrm{ft}$) snow fence located about 150 m (500 ft) upwind. The upper corner of the fence, which extends to the left but is hidden behind the drift, is visible near the center of the picture. The area on the right side of the transition is unfenced (Mile 247.6, Wyoming I-80). (From Tabler and Furnish 1982).

Figure 2.12. Improved visibility downwind of a 3.8-m (12.4-ft) snow fence during moderate drifting. The left photo was taken $60 \mathrm{~m}(200 \mathrm{ft})$ outside of the protected area. The right photo was taken a few minutes later, standing at the boundary of the protected area. Photos by Keith Rounds, Wyoming Department of Transportation. (From Tabler 1973a).

Figure 2.13. This photo taken from the center of the protected area shows the improved visibility downwind of $3.8-\mathrm{m}$ (12-ft) fences, located outside of the field of view to the right (arrow indicates wind direction). The end of the fence system coincides with the abrupt change in conditions just beyond the information sign (Mile 254, Wyoming I-80). (From Tabler 1986).

Figure 2.14. Accident rate in blowing snow conditions on Wyoming I-80 from Mile 235 to 295 , in relation to snow fence protection. To account for yearly variations in snowfall, accident rate is expressed per meter of snowfall over the period October 1 to April 30 (Updated from Tabler and Furnish 1982).

2.5 Effect of Snow Fences on Ice and Slush

As illustrated in Figure 2.11, snow fences can dramatically reduce the formation of slush and ice. By reducing the mass of snow reaching the roadway, diurnal solar radiant heat can accumulate in the pavement and substratum instead of being lost to melting snow that blows onto the pavement. It is common to observe surface temperature differences as great as $8{ }^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{F}\right)$ in areas protected by snow fences compared to adjacent areas with active blowing snow. This is illustrated by the pavement temperature measurements shown in Figure 2.15, obtained with a vehicle-mounted infrared sensor. The abrupt changes in surface temperature coincide with transitions in blowing snow conditions downwind of the ends of snow fences or downwind of missing fence panels. The photographs in Figure 2.16, taken at the time of the temperature measurements, show one such transition from icy to dry road conditions. Pavement temperatures in the eastbound lane are colder than the westbound lane because more blowing snow has melted in the eastbound lane, which is on the upwind side of the road.

Figure 2.15. Pavement temperatures on Wyoming I-80 service road on March 19, 2002, show effects of snow fences (Tabler 2002). The location of the transition in road surface conditions shown in Figure 2.15 is indicated by the yellow arrow. Fence locations, shown by the checkered boxes, are relative to the average wind direction during the measurements.

Figure 2.16. Bare pavement is downwind of snow fences ($\# 8-10$) at the time the data in Figure 2.15 were taken (Tabler 2002). The 7 - to $8^{\circ} \mathrm{C}$ (12- to $15{ }^{\circ} \mathrm{F}$) temperature change at the bare pavement/ice transition is indicated by the arrow in Figure 2.15.

2.6 Other Examples

Many other successful projects have proven that properly engineered snow fences are effective (Tabler 1992). One example is the village of Wainwright, Alaska, where 4.6-m-tall (15 ft) snow fences, $800 \mathrm{~m}(2600 \mathrm{ft})$ in length, eliminated drifts that previously damaged buildings and made streets impassable to conventional wheeled vehicles (Figure 2.17).

The examples presented here demonstrate that the benefits of snow fences can extend for considerable distances downwind. This is in part attributable to the pressure gradient from the wake region to the outer undisturbed flow, which retards the influx of snow into the wake. As a result, the boundaries between protected and unprotected areas may be visible for great distances downwind. The deposition of blowing snow behind a fence increases the eroding capability of the wind, resulting in a tendency for snow to be scoured out downwind of the fence. The advance of this snow erosion "front" extends the effect of the fence downwind (Figure 2.18).

Figure 2.17. Conditions at Wainwright on Alaska's North Slope before (above) and after (right) a $4.6-\mathrm{m}$ (15-ft) snow fence was built in 1982 (upper photo by Robert L. Jairell, U.S. Forest Service Research; photo right by Dr. Carl S. Benson, Geophysical Institute, University of Alaska -- Fairbanks). (From Tabler 1994).

Figure 2.18. This aerial view downwind shows that the effect of a snow fence can extend for great distances downwind (Tabler 1994). A 3.8-m (12-ft-tall) fence in the foreground is trapping most of the incoming snow. The increased eroding capability of the wind has scoured out snow for nearly a kilometer downwind. The shorter fence in the snow-free area was used to measure the snow trapping efficiency of the main fence. U.S. Forest Service Photo by A. Loren Ward.

2.7 Benefit-to-Cost Analyses for Snow Fences

The above examples show that snow fences can be effective in preventing snowdrifts, improving visibility, and reducing slush and ice. Benefits include reductions in
$>$ Snow and ice removal costs
$>$ Vehicle crashes
$>$ Road closures
> Pavement maintenance costs
Using information presented in chapter 4 it is possible to determine benefit/cost ratios for snow fence projects. For the 60 -mile study section of Wyoming I-80 described in section 2.4 , it is projected that with current traffic volume, the fences now in place are preventing 78 crashes and 36 injuries over a winter with average snowfall. According to the report Economic Impact of Motor Vehicle Crashes 2000 (Blincoe et al. 2002), the unit cost of "property damage only" crashes is $\$ 2,532$, and the comprehensive unit cost of the average injury crash (including fatalities) is $\$ 46,422$. This implies an average annual return of $\$ 1,778,000$ on the original capital investment of $\$ 1,910,000$. If the fences were replaced at current prices, and traffic volume remained constant, the benefits accruing from the reduced injuries and property damage alone would yield a benefit-to-cost ratio of 4.2:1. This calculation is based on the following conservative assumptions:
$>$ Cost of replacing fences at current prices: $\$ 4,182,000$
$>$ Interest rate: 7\%
$>$ Physical project life: 35 years
$>$ Annual maintenance cost: 5% of initial capital investment $(\$ 209,100)$
Another important benefit of snow fences can be reduced traffic delays. In Wyoming, mandatory road closures are imposed when warranted by crash blockages or severe weather conditions. Because numerous factors affect road closures, including administrative changes in closure criteria, the relationship between road closure time and fence protection for the I-80 study is not statistically significant with the limited years of data. The effect of the fences on road closure can be inferred, however, from the statistically significant relationship that exists between annual road closure time and ground blizzard crash rate. Figure 2.19 suggests that reducing ground blizzard crashes by 61% will reduce closure time by 16.2 hours, providing an economic benefit of $\$ 168,000$ per year ${ }^{1}$.

Figure 2.19. Closure time on Wyoming I-80 between Walcott Junction and Laramie, 1970-1985, in relation to number of ground blizzard crashes.

The economic benefits of fences on winter maintenance operations include savings in overtime, contract equipment and services, operating costs for rotary plows and loaders, and sand and chemical usage for ice control. Although potential savings for a specific location must be determined from historical accounting records, their magnitude can be illustrated by considering
 snow removal savings to be proportional to the reduction in the quantity of blowing snow arriving at the road. Figure 2.20 shows how the benefit-to-cost ratio for snow fences varies with the cost of mechanical snow removal, and with the seasonal snow transport--the quantity of blowing snow that is transported

[^0]by the wind in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the ground, per unit of width across the wind. The following assumptions were made for this analysis:
$>$ Total cost for snow fence equal to $\$ 15$ per m${ }^{2}$ of fence frontal area $\left(\$ 1.39 / \mathrm{ft}^{2}\right)$,
>35-year amortization,
$>7 \%$ interest rate,
$>$ Annual cost of fence maintenance equal to 5% of initial capital investment,
$>$ Design capacity equal to the quantity of blowing snow expected over an average winter.
Because costs for easements or right-of-way acquisition vary, these are not included in this analysis ${ }^{2}$. Although costs for mechanical removal vary widely, $\$ 3$ to $\$ 5 /$ ton is typical, and similar to costs for earth excavation and wasting.

Figure 2.20. Benefit-to-cost ratios for permanent snow fences in relation to seasonal snow transport and costs for mechanical snow removal.

2.8 Benefits from Road Design

It has long been recognized that proper road design can be effective in preventing snowdrifts (Finney 1939; Fowler 1930; Schultz 1930). However, this method of drift control cannot be expected to improve visibility and road surface conditions to the extent possible with fences. Although roads should be designed for drift-free conditions to the extent possible, this control method should not be construed as eliminating the need for snow fences. Snow fences are invariably a less expensive and more effective solution to snow drifting problems than reconstruction to change the cross-section of an existing road.

[^1]
2.9 Conclusion

The potential for eliminating drifts, improving visibility, and reducing slush and ice, are compelling reasons for controlling drifting snow. The evidence of how effective fences can be is irrefutable, and it is incumbent on public officials to apply this technology to improve the safety and convenience of the public. Proper application requires attention to engineering detail, as summarized in this guide.

2.10 References

Blincoe, L. J., A. Seay, E. Zaloshnja, T. Miller, E. Romano, S. Luchter, R. Spicer. 2002. The Economic Impact of Motor Vehicle Crashes 2000. U. S. Department of Transportation, National Highway Traffic Safety Administration, Report No. DOT HS 809446.

Brown, Robert Harold. 1983. Snow fences then and now. Journal of Cultural Geography 4(1): 87-98.

Burton, V.R. 1925. Snow drift prevention and control on highways. Engineering News Record 95(19): 752-754.
——. 1928. Some economic considerations in using snow fences. Engineering News Record 100: 100-120.

Crofutt, George A. 1880. Crofutt's New Overland Tourist and Pacific Coast Guide. Overland Publishing Co., Omaha.

Dodge, Grenville M. 1910. How we built the Union Pacific Railway. 61st Congress, 2nd Session. Senate Document 447. Government Printing Office, Washington, DC.

Dunn, S.O. 1909. Snow control. Railway Age Gazette 46(12):623.
Ehrenberger, James L. and Francis G. Gschwind. 1973. Sherman Hill. E\&G Publications, Callaway, Nebraska.

Farmwald, J.A. and J.A. Crum. 1986. Developing a community water system for Shishmaref, Alaska. In Fourth International Conference on Cold Regions Engineering (Feb. 24-26, 1986; Anchorage, Alaska) Proceedings, pp. 597- 608.

Finney, E.A. 1934. Snow control on the highways. Michigan Engineering Experiment Station, Michigan State College, Bulletin 57.
——. 1939. Snow drift control by highway design. Michigan Engineering Experiment Station, Michigan State College, Bulletin 86.

Homsher, Lola M. 1965. The history of Albany County, Wyoming, to 1880. Lola M. Homsher, Lusk, Wyoming.

Johnson, G.D.B. 1852. Nogle Ord om Snedeev, Snefog og Snefonner. Universitetet i Trondheim - Norges tekniske høgskole. (in Norwegian).

Komarov, A.A. 1954. Nektorye zakonomernosti perenosa i otlozheniya snega v raionakh zapadnoi Sibiri i ikh Ispol'zovanie v snegozadershanii i snegobor'be (Some rules on the migration and deposition of snow in western Siberia and their application to control measures). Trudy Transportno-Energicheskogo Instituta, Tom 4, p. 89-97 (in Russian). National Research Council of Canada Technical Translation 1094 (1963), Ottawa, Ontario, Canada.

Martinelli, M. Jr., R. A. Schmidt, and R. D. Tabler. 1982. Technology transfer in snow control engineering. Journal of Technology Transfer 6(2): 27-37.

Pugh, H.L.D. 1950. Snow fences. Great Britain Road Research Laboratory. Road Research Technical Paper No. 19.

Schneider, T.R. 1959. Schneeverwehungen und Winterglatte. Interner Bericht des Eidg. Institutes fur Schnee- und Lawinenforschung, Nr. 302. English translation: Canadian National Research Council. Technical Translation 1038, 1962.

Tabler, R. D. 1973a. New snow fence design controls drifts, improves visibility, reduces road ice. In: 46th Annual Transportation Engineering Conference (University of Colorado; Denver; February 22-23, 1973) Proceedings: 16-27.
———. 1973b. Snow fences improve highway safety. Public Works 104(8): 74-75.
—_. 1974. New engineering criteria for snow fence systems. Transportation Research Board, Transportation Research Record 506: 65-78.
——. 1986. Snow fence handbook (Release 1.0). Tabler and Associates, Laramie, Wyoming.
—_. 1989. Snow fence technology: State of the art. In First International Conference on Snow Engineering (Santa Barbara, Calif., July 10-15, 1988). U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 89-6. pp. 297-306.
—_. 1991. Snow fence guide. Strategic Highway Research Program, Report SHRP-H-320, National Research Council, Washington, D.C.
——. 1992. What's new in fencing for snow, wind and sand. In: Proceedings of the 97th Annual Conference, American Railway Bridge and Building Association (September 2123, 1992; Chicago, IL) pp. 188-194.
1994. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.
___ 2002. Safety Improvement Study: Interstate-80 Mile 325-335. Final Report, Agreement No. 54839, prepared for the Transportation Commission of Wyoming.

Tabler, R. D. and R. P. Furnish. 1982. Benefits and costs of snow fences on Wyoming Interstate-80. Transportation Research Record 860: 13-20.
——. 1982. In-depth study of snow fences. Public Works 113(8): 42-44.
Tratman, E.E. Russell. 1908. Railway track and track work. 3rd Ed. The Engineering News Publishing Company, New York.

Wyoming Highway Commission. 1930. Seventh biennial report of the State Highway Commission of the State of Wyoming. For the period beginning October 1, 1928, ending September 30, 1930.
——. 1932. Eighth biennial report of the State Highway Commission of the State of Wyoming. For the period beginning October 1, 1930, ending September 30, 1932.

3 How Snow Moves and Forms Drifts

$3.1 \quad$ Scope

This chapter describes the characteristics of drifting snow that are the basis for the guidelines presented in this book.

3.2 Highlights

$>$ Blowing snow particles have major axes (diameters) on the order of 100 to $200 \mu \mathrm{~m}$.
> Snow moves by creeping, saltation, and turbulent diffusion. Creeping particles roll along the surface and form dunes and snow waves. Saltating particles appear to jump along the surface. Most saltation occurs within the first 10 cm or so (4in.) above the surface. Turbulent diffusion refers to the process whereby smaller particles are carried to greater heights by turbulent eddies.
$>$ Although wind-transported snow can be present at great heights above the surface, the concentration above $5 \mathrm{~m}(16 \mathrm{ft})$ is negligible for purposes of drift control.
$>$ The concentration of snow particles at a given height above the surface increases with wind speed. At wind speeds of $100 \mathrm{~km} / \mathrm{h}$ ($62 \mathrm{miles} / \mathrm{h}$), for example, 50% of the total blowing snow is more than $1 \mathrm{~m}(3.28 \mathrm{ft})$ above the surface, and 30% is above $2 \mathrm{~m}(6.56$ $\mathrm{ft})$. The vertical distribution of blowing snow has important implications for optimum height of snow fences.
$>$ Total transport in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above surface varies as the 3.8 power of the wind speed at $10 \mathrm{~m}(33 \mathrm{ft})$.
$>$ Visibility in blowing snow varies inversely with the fifth power of wind speed at 10 m (33 ft) above the surface.
$>$ Blowing snow particles evaporate whenever relative humidity is less than 100%. This phenomenon occurs even at temperatures well below freezing.
$>$ Evaporation from wind-transported snow particles can be significant because of the large ratio of surface area to mass, and the exposure of the particles. More than half of the relocated snow evaporates over a transport distance of 3 km (1.9 miles). Quantifying the evaporation of blowing snow provides the basis for estimating snow transport, and hence the required storage capacity of snow fences.
$>$ Subtracting evaporation loss from total relocated precipitation provides an estimate for total seasonal snow transport.
$>$ Snow is deposited where surface shear stress decreases with distance downwind, and erosion occurs where shear stress increases.
$>$ Wind-deposited particles freeze together on contact. The bond strength increases with time, and approximately doubles in 24 hours.
> The density of wind-deposited snow increases with snow depth.
$>$ Snow is deposited in a topographic feature until the snow surface achieves a balance between erosion and deposition. By the end of the winter, snow surfaces represent shapes formed at lower wind speeds because inter-particle bonding resists erosion by stronger winds.
$>$ A snow fence reduces wind speeds and changes the shape of the wind profile. These changes cause creeping and saltating particles to come to rest. As the drift behind the fence grows, its shape changes.
$>$ There is a limit to how much snow a fence can hold. When the drift reaches equilibrium with existing wind conditions, no more snow is caught by the fence. The dimensions of equilibrium drifts are proportional to fence height, and the cross-sectional area is proportional to the square of the fence height. Snow storage capacity is proportional to fence height raised to the 2.2 power because of the relationship between snow depth and snow density.
$>$ Dimensions of snow fence drifts vary with the porosity of the fence. Fences that have 50% porosity have the largest snow storage capacity.
$>$ For the case of a fence with porosity ratio of 0.5 , about 85% of the snow is deposited on the downwind side of the fence. When such a fence on flat terrain is filled to capacity, the length of the downwind drift may approach 35 times the fence height.
$>$ For non-porous barriers, snow accumulates on the upwind side first. Deposition on the downwind side begins when the upwind drift reaches the top of the fence. Solid fences trap only about 35% as much snow as fences with a porosity ratio of 0.5 .
$>$ The terrain surrounding a fence can have an overriding influence on drift shape.
$>$ The trapping efficiency of a snow fence is the proportion of incoming snow over the height of the barrier that is permanently retained by the fence. Trapping efficiency at the beginning of the season is on the order of 90 to 95%. Efficiency declines as a fence fills with snow, reaching 80% when the fence is half full, and 60% when the fence is 80% full.

3.3 Snow Particle Characteristics

Blowing snow particles resemble tiny grains of sand, and range in size from infinitesimally small to 0.5 mm (0.02 in .) (Figure 3.1). Particle size decreases with height above the surface, with the mean ranging from about $0.2 \mathrm{~mm}(0.008 \mathrm{in}$.) at a height of $5 \mathrm{~cm}(2 \mathrm{in}$.), to about half this size at $1 \mathrm{~m}(3.3 \mathrm{ft})$. There is little entrapped air in the ice, and the specific gravity of the particles is typically about 0.9 .

Snow particles derived from freshly fallen snow are smaller than particles originating from a snow cover that has remained undisturbed for a few days. As snow particles are transported by the wind, they become progressively smaller and more rounded from fragmentation, abrasion, and evaporation. As described in section 3.4.6, evaporation of wind-transported snow particles can be appreciable even at temperatures well below freezing.

Figure 3.1. Blowing snow particles collected 1 m (3.3 ft) above the snow surface (Tabler 1986). Grid scale is 2 mm (0.08 in.). Photo by Dr. R.A. Schmidt.

3.4 Snow Transport

3.4.1 Definition

Snow transport is the mass of snow transported by the wind over a specified time and width across the wind. Although blowing snow particles can be found thousands of meters above the surface, their concentration above $5 \mathrm{~m}(16 \mathrm{ft})$ or so is negligible from the standpoint of drift control. Unless otherwise specified, snow transport, as used in this report, refers to the total within the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the surface, per unit of width across the wind.

3.4.2 Modes of Snow Transport

There are three types of snow movement: creep, saltation, and turbulent diffusion (Mellor 1965). Particles that are too large to be lifted off the surface under existing wind conditions roll or creep along the surface, forming snow waves or dunes that migrate downwind (Figure 3.2). Snow waves disappear when average wind speeds exceed $55 \mathrm{~km} / \mathrm{h}$ ($35 \mathrm{miles} / \mathrm{h}$) or so (Tabler, 1986). Creeping particles, which comprise up to one-quarter of total transport at low wind speeds, are easily trapped by a snow fence or topographic feature.

Figure 3.2. Migrating snow waves moving about $5 \mathrm{~m} / \mathrm{h}(16 \mathrm{ft} / \mathrm{h})$ with a wind speed of $40 \mathrm{~km} / \mathrm{h}(25$ miles/h). View is facing wind. (Tabler 1986).

Lighter particles may saltate, appearing to jump along the surface, but such particles are still too heavy to remain suspended in the air. Although
 trajectories of saltating particles vary with particle size, wind speed, and surface conditions, a typical "jump" is a parabolic arc 1 cm (0.5 in .) high and 25 cm (10 in.) long. Most saltating particles are contained within 5 cm (2 in.) of the surface (Figure 3.3). Saltating particles dislodge other particles on the surface, especially those that have frozen to adjacent particles (Figure 3.4).

Figure 3.3. Saltating snow particles without snowfall. Field is $\mathbf{2 5} \mathbf{~ c m ~ (1 0 ~ i n .) . ~}$ Wind speeds are at $1 \mathbf{m}$ (3.3 ft). Photos by Dr. Daiji Kobayashi (1972).

Figure 3.4. Chain reaction of saltating snow particles downwind from where tractor treads broke the snow crust (arrow indicates wind direction). Such disturbances act as sources of blowing snow that can persist over long distances downwind (Tabler 1986).

After winds remove snow from most of a landscape, remaining snow patches provide sources for streams of saltating snow particles that can extend downwind for several kilometers (Figure 3.5). Snow streams can coincide with drainages (Figure 3.6) because more snow tends to accumulate in topographic depressions than on surrounding uplands, and winds can be channeled by topography.

Snow shadows, the opposite of snow streams, are regions downwind from features that disrupt the flow of saltant particles by deflection or deposition (Figure 3.7). Saltating particles are easily trapped by a snow fence. Removing the saltant particles from the airstream can disrupt the erosion of the snow surface and reduce transport for great distances downwind. This is one reason why snow fences can be so effective.

Figure 3.5. Snow stream downwind of a source of blowing snow. The boundaries of this stream were uniform for at least 3 km (1.9 miles)(Tabler 1986).

Figure 3.6. Snow stream coinciding with a drainage channel (facing wind) (Tabler 1986).

Figure 3.7. Snow shadow formed by a cylindrical shelter 1.2 $m(4 \mathrm{ft})$ in diameter and $2.1 \mathrm{~m}(7 \mathrm{ft})$ tall (Tabler 1986). This view is from a point 150 m (500 ft) directly downwind. U.S. Forest Service photo by Robert L. Jairell.

The existence of snow
streams and snow shadows
suggests that local variations in snow transport should be considered when planning the location and capacity of measures to control drifting snow.

Turbulent diffusion refers to the mechanism by which particles are suspended in the airstream without the periodic surface contact that typifies saltation (Figure 3.8). A snow particle becomes suspended in the airstream when the gravitational force on the particle is less than the average lift force caused by the drag of the upward-moving air. Turbulent diffusion favors smaller particles than those that move by saltation. As the suspended particles become smaller through evaporation, they tend to be carried higher above the surface. This sorting process causes particle size to decrease with increasing height above the surface.

Figure 3.8. Turbulent diffusion of snow particles (wind from right) (Tabler 1994).

Recent research suggests that most blowing snow is transported in the turbulent diffusion mode, but the greatest portion of the total suspended
 particle mass is contained $1 \mathrm{~m}(3.3 \mathrm{ft})$ or so above the surface (Pomeroy 1988, 1989). For suspended particles to be caught by a snow fence, they must settle to the surface in a region sufficiently sheltered to prevent subsequent dislodgement.

3.4.3 Wind Profile

Wind speed increases with height due to the diminishing drag of the earth's surface. This vertical distribution of wind speed must be known in order to calculate wind loads on snow fences. In general, snow surfaces are aerodynamically rough (no laminar sublayer), and airflow is fully turbulent for all wind speeds above the threshold for blowing snow. On flat, unobstructed surfaces the wind profile is reasonably well described by
$\mathrm{U}=(2.5 \mathrm{U} *) \ln \left(\mathrm{Z} / \mathrm{Z}_{0}\right)$
where $U=$ wind speed at height Z above the surface,
$U_{*}=$ shear velocity, defined as the square root of the surface shear stress divided by the air density,
$Z_{0}=$ aerodynamic roughness height (i.e., the height at which wind speed is zero),
$l n=$ natural logarithm (to the base 2.71828...).
For blowing snow conditions on snow-covered flat terrain, over the range of wind speeds most often encountered, U_{*} is typically about 4% of the $10-\mathrm{m}(33-\mathrm{ft})$ wind speed. The value of Z_{0} depends on the nature of the surface, ranging from 0.001 cm (0.0004 in .) over smooth ice, to 30 cm (12 in.) for forest vegetation (Budd, Dingle, and Radok 1966; Liljequist 1957; Tabler 1980b). Z_{0} increases with wind speed due to roughness contributed by the saltating particles (Owen 1964). Although this relationship varies with surface roughness, the following approximation is sufficient for engineering applications:
$\mathrm{Z}_{0}=\mathrm{U}_{*}{ }^{2} / 31250$
where velocities are in centimeters per second, and heights are in centimeters (Tabler and Schmidt 1986). The presence of blowing snow therefore has a significant effect on the wind speed profile.

The wind speed profile in the form of Equation (3.2) is used to estimate wind loads on fences. Conservative estimates are provided by assuming the existence of a snow cover without blowing snow, for which $Z_{0}=0.02 \mathrm{~cm}$ (0.008 in .). To estimate wind speeds at heights other than the height of measurement when snow cover conditions are unknown, it is standard practice to assume that the wind speed at height Z is related to the wind speed at a height of 10 meters according to
$\mathrm{U}_{\mathrm{Z}} / \mathrm{U}_{10}=(\mathrm{Z} / 10)^{1 / 7}$
Throughout this report, "wind speed" refers to that at the standard height of $10 \mathrm{~m}(33 \mathrm{ft})$, and is denoted by U_{10}. As estimated from Equation (3.3), the wind speed at this standard height is 28% greater than at $1.8 \mathrm{~m}(5.9 \mathrm{ft})$.

3.4.4 Snow Transport Rate and Vertical Distribution

The wind speed at which snow particles start to move depends on the condition of the snow cover and density of the air. Fluffy snow will begin to move when the wind speed reaches about $20 \mathrm{~km} / \mathrm{h}$ ($13 \mathrm{miles} / \mathrm{h}$), while a snow surface hardened by wind and sun can resist erosion at speeds in excess of $85 \mathrm{~km} / \mathrm{h}(53 \mathrm{mph})$. Snow typically ceases to blow when wind speed falls below about $24 \mathrm{~km} / \mathrm{h}$ (15 miles $/ \mathrm{h}$)(Schmidt 1981; Tabler, Pomeroy, and Santana 1990).

Although blowing snow particles can be transported thousands of meters above the surface, most of the snow transport takes place relatively close to the surface. For purposes of drift control, transport above $5 \mathrm{~m}(16 \mathrm{ft})$ can be ignored. Snow transport in the first 5 m above the surface varies with wind speed according to
$\mathrm{Q}_{0-5}=\mathrm{U}_{10}{ }^{3.8} / 233847$
where Q_{0-5} is snow transport in kg / s per meter of width across the wind, and U_{10} is wind speed in meters per second (Tabler 1991b). This relationship was derived from a regression equation relating mass flux to wind speed and height above the surface (Mellor and Fellers 1986). The rate of snow transport is therefore very sensitive to wind speed--doubling the wind speed results in almost a 14 -fold increase in snow transport (Figure 3.9). This explains why snow fences can be so effective-reducing wind speed by 50% would reduce snow transport rate by 94%. In reality, however, the aerodynamic effects of fences on transport and deposition are much more complex.

Although most of the snow transport occurs within $1 \mathrm{~m}(3.3 \mathrm{ft})$ or so above the surface, the vertical distribution of blowing snow in the first 5 m (16 ft) has important implications for blowing snow control. Because most of the blowing snow passing over the top of a snow fence is not caught by the fence, the vertical distribution of blowing snow is an important factor in deciding how tall a fence should be. As shown graphically in Figure 3.10 and quantitatively in

Table 3.1, the vertical distribution of blowing snow becomes more uniform as wind speed increases. Less than 10% of the snow is transported at heights above $1.5 \mathrm{~m}(5 \mathrm{ft})$ with a wind speed of $35 \mathrm{~km} / \mathrm{h}(22 \mathrm{miles} / \mathrm{h})$. At $108 \mathrm{~km} / \mathrm{h}$ ($67 \mathrm{miles} / \mathrm{h}$), however, about 38% of the snow is transported above this height. Other things being equal, then, the effectiveness of a fence increases with its height.

Throughout this book, the total seasonal transport Q_{t} is assumed equal to Q_{0-5}-the snow transport in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the ground.

Figure 3.9. Snow transport in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the ground, as a function of wind speed at 10 m ($\mathbf{1 6} \mathbf{~ f t)}$ height (Tabler 1991b).

Figure 3.10.Visual demonstration of how the vertical distribution of blowing snow changes with wind speed U. This array of anemometers, spaced 30 cm (12 in.) apart, was set in a field of wood posts 1.2 m (4 ft) tall (Tabler 1986).

Table 3.1. Vertical distribution of snow transport as function of wind speed. Values are Q_{0-z} / Q_{0-5}. The snow transport within the first 5 m (16 $\mathrm{ft})$, in ($\mathrm{g} / \mathrm{m} \exists \mathrm{s}$), is shown in parentheses (Tabler 1991b).

Height Z (m)	10	15	Wind speed (m/s)		
20			30		
0.1			0.251	0.126	0.056
0.2			0.365	0.239	0.160
0.3		0.628	0.431	0.312	0.233
0.4		0.661	0.480	0.366	0.290
0.5	0.885	0.687	0.519	0.411	0.338
1.0	0.909	0.768	0.645	0.563	0.505
1.5	0.925	0.818	0.725	0.662	0.616
2.0	0.938	0.857	0.786	0.737	0.701
2.5	0.950	0.888	0.834	0.797	0.770
3.0	0.961	0.915	0.876	0.849	0.828
3.5	0.971	0.940	0.912	0.893	0.879
4.0	0.981	0.961	0.944	0.933	0.924
4.5	0.991	0.981	0.973	0.968	0.964
5.0	1.000	1.000	1.000	1.000	1.000
	(32.3)	(114.9)	(375.0)	(902.0)	(1711.8)

$1.0 \mathrm{~m} / \mathrm{s}=0.447 \mathrm{miles} / \mathrm{h}$

3.4.5 Visibility in Blowing Snow

The vertical distribution of blowing snow illustrates the advantage of tall delineator markers, and explains why truck drivers have better visibility than motorists in passenger cars during blowing snow conditions (Figure 3.11).

Knowing how visibility in blowing snow varies with wind speed can be useful for quantifying "whiteout" problems to justify construction of snow fences. This information also allows better interpretation of wind forecasts in relation to maintenance operations and highway safety.

When the ground is completely snow covered, a motorist's visibility varies with wind speed in a predictable way. Visibility in blowing snow conditions is inversely proportional to the fifth power of wind speed, and is therefore even more sensitive to wind speed than is mass transport. Although the coefficient of proportionality in Equation (3.5) varies with snow availability, for unlimited snow on the ground this relationship is approximated by
$\mathrm{V}=1.1 \exists 10^{8} / \mathrm{U}_{10}{ }^{5}$
where V is visibility in meters, and wind speed is in meters per second (Tabler 1979, 1984). Table 3.2 shows values for visibility at selected wind speeds, in the absence of concurrent snowfall. Because visibility is so sensitive to wind speed, fluctuations in wind speed make driving in blowing snow hazardous. Over a period of 10 minutes or so, wind speed typically
varies 30 to 50% from the average, which causes extreme variations in visibility. For example, if wind speed averages $60 \mathrm{~km} / \mathrm{h}$ ($37 \mathrm{miles} / \mathrm{h}$) with a variation of $\pm 40 \%$, visibility could vary from $1100 \mathrm{~m}(3609 \mathrm{ft})$, to $16 \mathrm{~m}(52 \mathrm{ft})$.

Table 3.2. Visibility versus $10-\mathrm{m}$ wind speed for unlimited snow on the ground and without precipitation, assuming a $\mathbf{4 0 \%}$ gust factor (Tabler 1994).

Wind speed $(\mathrm{km} / \mathrm{h})$	Motorist visibility (meters) Minimum Maximum		
30	509	35200	2737
40	121	8353	650
50	40	2737	213
60	16	1100	86
70	7	509	40
80	4	261	20
90	2	145	11
100	1	86	7
110	0.8	53	4
120	0.5	34	3
130	0.3	23	2
140	0.2	16	1
150	0.2	11	0.9
160	0.1	8	0.6
170	0.1	6	0.5
$\mathrm{~km}=$ miles $\cdot 1.61 ; \mathrm{m}=\mathrm{ft} \cdot 3.281$			

Figure 3.11. Vertical distribution of blowing snow when wind speed averaged 90 km/h (55 miles/h)(Tabler 1994).

3.4.6 Evaporation of Blowing Snow

The common experience that ice cubes evaporate during sub-freezing storage, and the large ratio of surface area to mass presented by blowing snow, leads to an intuition that evaporation of blowing snow particles is significant. This idea was first proposed by Dyunin (1954, 1956, 1959) and Komarov (1954). Evaporation of wind-transported snow has been substantiated by process-based energy-balance models (Schmidt 1972; Lee 1975; Pomeroy 1988), analysis of atmospheric conditions during drifting (Schmidt 1982b), hydrologic evidence (Tabler and Johnson 1971), and mass balance studies (Benson 1982; Tabler 1975a). Graphic evidence for evaporation at subfreezing temperatures is shown by the condensation of water vapor above a column of blowing snow in Figure 3.12. According to Schmidt (1972), relative humidity is the dominant factor affecting evaporation. At a temperature of $-15^{\circ} \mathrm{C}\left(+5^{\circ} \mathrm{F}\right)$ and a wind speed of $88 \mathrm{~km} / \mathrm{h}$ ($55 \mathrm{miles} / \mathrm{h}$), for example, the evaporation rate is more than 5 times greater at 40% relative humidity than at 90%. Other things being equal, therefore, locations where humidity is relatively high, such as areas prone to lake effect snowstorms, have more blowing snow because less is lost to evaporation.

Other significant factors that determine evaporation from individual particles are particle size, atmospheric pressure, solar radiation, and air temperature. The evaporation rate approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature (Schmidt 1972).

Figure 3.12.Condensation of water vapor above a column of blowing snow. Maximum temperature for the day was $-5.6{ }^{\circ} \mathrm{C}\left(+22{ }^{\circ} \mathrm{F}\right)$ (Tabler 1986).

Although evaporation cools the air and increases humidity, the turbulent diffusion of heat and water vapor keeps the process from being self-limiting. The increase in turbulent diffusion with wind speed implies that the rate of evaporation may also increase with wind speed.

These mathematical models provide the necessary insight to develop a simplified method for estimating total evaporation over a winter. Subtracting that amount from the precipitation gives an estimate of snow transport needed to design the capacity of snow control measures. A conceptual model (Tabler 1975a) that

relates evaporation from a typical size distribution of snow particles to the distance the particles are transported by the wind shows that over a travel distance F, the ratio of residual mass M to initial mass M_{0} is closely approximated by
$\mathrm{M} / \mathrm{Mo}=\mathrm{e}^{-2(\mathrm{~F} / \mathrm{T})} \approx 0.14^{(\mathrm{F} / \mathrm{T})}$
where T is the maximum transport distance -- the distance that the average sized particle can travel before completely evaporating. F is the fetch that contributes blowing snow to a downwind location (Figure 3.13).

Figure 3.13. Diagram of the transport distance concept used to estimate
evaporation loss from wind-transported snow (Tabler 1975a).

The differential equations utilizing Equation (3.6) allow evaporation to be computed over increments of fetch having different snow retention characteristics. For a fetch having uniform conditions
$\mathrm{Q}_{\text {evap }}=1000 \mathrm{~S}_{\text {rwe }} \mathrm{F}-500 \mathrm{~T} \mathrm{~S}_{\text {rwe }}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right)$
where $Q_{\text {evap }}=$ evaporation loss (kg per meter of width across the wind),
$S_{r w e}=$ relocated snow water-equivalent (meters),
$F=$ fetch distance (m), and
$T=$ maximum transport distance (m).
The relocated snow, $S_{\text {rwe }}$, is that portion of the winter's snowfall relocated by the wind, and excludes snow retained by vegetation and topographic features, or snow that hardens or melts in place. The relocation coefficient, θ, is therefore defined as the proportion of winter snowfall water-equivalent, $S_{\text {we }}$, relocated by the wind:
$\theta=S_{\text {rwe }} / S_{\text {we }}$
Studies in Siberia and Wyoming show that even on flat areas with low-growing vegetation θ seldom exceeds 0.7 over a winter. In the northeastern United States, θ typically ranges from 0.2 to 0.3 .

The upwind end of the fetch is any boundary across which there is no snow transport, such as forest margins, deep gullies or stream channels, rows of trees, and shorelines of unfrozen bodies of water (Figure 3.14).

Figure 3.14. This valley is an example of an upwind boundary that defines the fetch distance for downwind locations (wind left to right)(Tabler 1986).

The maximum transport distance varies greatly from one storm to the next (depending on relative humidity, air temperature, and wind speed), but season-long averages appear to be relatively stable. Studies in Wyoming show that the maximum transport distance averages about 3000 m $(10,000 \mathrm{ft})$. Although it is expected that the seasonal average would vary with location, other compensating factors make the $3000-\mathrm{m}$ value generally applicable. For example, a similar value seems to apply in arctic Alaska where lower relative humidity may compensate for the colder temperatures.

The evaporation rate varies greatly from storm to storm, but the net loss over a winter is much less variable. Equation (3.7) with $T=3000 \mathrm{~m}$ provides a reasonable approximation. For continental climates, evaporation loss increases with fetch as shown in Figure 3.15, with about 57% of the relocated snow evaporating over a distance of 3 km (1.9 miles) and 85% over a fetch of 10 km (6.2 miles).

3.4.7 Snow Transport Versus Fetch and Relocated Snow

Subtracting the evaporation loss from the total relocated precipitation provides an estimate for the total seasonal transport $Q_{\mathrm{t}}(\mathrm{kg} / \mathrm{m})$. Again, assuming uniform snow retention over the fetch
$\mathrm{Q}_{\mathrm{t}}=500 \mathrm{~T} \mathrm{~S}_{\text {rwe }}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right)$
where $S_{r w e}$ is in meters water-equivalent, and distances are in meters. When a long-term mean value is used for $S_{r w e}, Q_{t}$ is replaced with $Q_{t, a v e}$ to denote mean annual snow transport. Figure 3.16 illustrates the functional relationship represented by this equation.

Figure 3.15. Evaporation of relocated snow as a function of the fetch (Tabler 1994).

Figure 3.16. Snow transport as a function of fetch distance and relocated snow waterequivalent, as calculated from Equation (3.9), using $T=3000 \mathrm{~m}$ ($\mathbf{1 0 , 0 0 0} \mathrm{ft}$)(Tabler 1994).

Equation (3.9), with a value of $T=$ $3000 \mathrm{~m}(10,000 \mathrm{ft})$, has been used to design many successful snowdrift control projects, and provides an
 excellent first approximation for general engineering use. If future experience in new locations indicated a discrepancy between predicted and measured transport, however, Equation (3.9) could be calibrated by using a different value for the maximum transport distance, T.
Equation (3.9) can also be written as
$\mathrm{Q}_{\mathrm{t}}=\mathrm{Q}_{\text {inff }}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right)$
where $Q_{\text {inf }}$ represents the snow transport that would occur downwind of an infinitely long fetch, and the terms in the parentheses constitute a correction for fetch distance. Figure 3.17 shows the general relationship between fetch and the snow transport that uses the usual assumption that $T=$ $3000 \mathrm{~m}(10,000 \mathrm{ft})$.

If the relocated snowfall water-equivalent is known,
$\mathrm{Q}_{\text {inf }}=500 \mathrm{~T} \mathrm{~S}_{\text {rwe }}$
where $S_{r w e}$ is in meters. Usually, however, it is necessary to estimate $Q_{i n f}$ from wind speed records using Equation (3.4), as described in section 4.7.

Figure 3.17. How snow transport increases with fetch distance, as given by Equation (3.10) assuming $T=3000 \mathrm{~m}$ (10,000 ft)(Tabler 1994).

3.4.8 Snow Surface Features

Features caused by erosion and deposition range from ripples and pits measurable in centimeters, to

V-shaped dunes having dimensions on the order of meters. Familiarity with the larger features can be useful for determining wind directions from aerial photos. The presence of dunes on a snowdrift also indicates that the drift surface is at equilibrium for the existing winds.

Snow dunes resemble their sand counterparts. The most common ones are V-shaped or crescent-shaped, are 10 to 30 cm (4 to 12 in .) high, and have horns that are several meters long, with the apex pointing into the wind (Figure 3.18). Snow waves, dunes that resemble rounded water waves, typically attain heights of 20 to 40 cm (8 to 16 in .), lengths up to 10 meters (33 ft) or more, and are oriented perpendicular to the wind direction (Figure 3.19). Because dunes and waves both require the presence of relatively large snow particles creeping along the surface, they develop best at lower wind speeds, and from older snow that provides a source of larger ice fragments.

Figure 3.18. Crescentshaped snow dune (wind from left) (Tabler 1986).

Figure 3.19. Snow waves (facing wind). The snow fences are $3.8 \mathrm{~m}(12.4 \mathrm{ft})$ tall (Tabler 1986).

Dunes and waves migrate downwind at a rate proportional to the wind speed. Those shown in Figure 3.2 were moving about $5 \mathrm{~m} / \mathrm{h}(16 \mathrm{ft} / \mathrm{h})$ under
 a wind speed averaging 40 $\mathrm{km} / \mathrm{h}(25 \mathrm{miles} / \mathrm{h})$. The rate of snow transport by these waves was $45 \mathrm{~kg} / \mathrm{h}$ per meter of width across the wind ($30 \mathrm{lb} / \mathrm{h} \exists \mathrm{ft}$), or about 30% of the transport in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the surface, as given by Equation (3.4). Snow waves are often a conspicuous feature on aerial photographs, and can be used to determine the wind direction because these features are oriented across the wind.

Sastrugi (singular sastrug, from the Russian zastrug), can refer to a number of different snow surface features, but Mellor (1965) states that sastrugi are "generally regarded as being the sharp-edged longitudinal ridges" that form on the surface of a wind-swept snowfield. Wind erosion exposing soft snow beneath a harder surface forms tongue-shaped features 25 to 40 cm (10 to 16 in.) tall that face into the wind (Figure 3.20). Although sastrugi are often difficult to see on aerial photos, their orientation can provide an indication of wind direction for field observations.

Figure 3.20. A sastrug, with $12-\times 20-\mathrm{cm}$ field book for scale (wind from left)(Tabler 1994).

3.5 Snow Erosion and Deposition Processes

3.5.1 Erosion

The erosion and transport of snow particles is driven by the shear stress, τ_{o}, exerted on the snow surface by the wind. For the turbulent flow conditions associated with blowing snow,
$\tau_{0}=\rho_{\mathrm{a}}|\mathrm{du} / \mathrm{dz}|^{2} \lambda^{2}$
where $\rho_{a}=$ air density, $d u / d z=$ vertical gradient of wind speed, and $l=$ mixing length.

This relationship shows that the shape of the wind profile is a determining factor in the erosion, transport, and deposition of snow.
Snow begins to blow when the surface shear stress becomes strong enough to dislodge a few of the snow particles. As these particles saltate, they dislodge more particles. This chain reaction continues until the force of the wind drops below that required to sustain the process (Figure 3.5).

Distances of 150 to 300 m (490 to 980 ft) are required for transport rates to reach equilibrium, and about $500 \mathrm{~m}(1600 \mathrm{ft})$ are required for a fully developed blowing snow profile in the first 5 $\mathrm{m}(16 \mathrm{ft})$ above the surface (Takeuchi 1980). This implies that there is a tendency for the snow surface to erode over this distance downwind of any boundary that initiates a fetch, including a snow fence.

For blowing snow to fully develop to a height of $5 \mathrm{~m}(16 \mathrm{~m})$ or so over a flat surface, the surface erosion rate should equal the evaporation rate, if the transport rate is in balance with momentum transfer into the drifting layer. Although transport rates fluctuate and corresponding erosion and deposition patterns develop, on a uniform extensive surface the average depletion of snow cover balances the total evaporation from the blowing snow particles and from the snow surface.

3.5.2 Deposition

Deposition occurs if the rate of momentum transfer to the saltation layer decreases to a value less than that to which the transport rate has adjusted. If a barrier or change in topography causes the wind speed to decrease, some of the transported snow will be deposited. Where the wind accelerates, more particles will be picked up, causing erosion. This is a dynamic balance because the energy level of the wind is constantly fluctuating due to natural turbulence. Averaged over time, however, deposition occurs where surface shear stress decreases in a downstream direction, and erosion occurs where shear stress increases.

3.5.3 Inter-particle Bonding

Wind-deposited snow particles freeze together upon contact. These bonds grow and strengthen through sintering. The rate at which these bonds strengthen increases the work required for disaggregation, which doubles within 1 day and triples within 3 days (Figure 3.21). Because wind-deposited snow can become quite resistant to subsequent erosion within only a few hours of deposition, there is a tendency for drift shape to reflect the maximum attainable profile associated with lower wind speeds.

Figure 3.21. Change in the strength of bonds among deposited snow particles with time, as indexed by work of disaggregation (after Jellinek 1957).

3.5.4 Snow Densification

The density of newly fallen snow averages about $100 \mathrm{~kg} / \mathrm{m}^{3}\left(6.2 \mathrm{lb} / \mathrm{ft}^{3}\right)$. The density of the snowpack increases with time due to the compaction of overlying snow, and the changes that result from vapor movement within the snowpack.

Drifted snow is usually denser than undisturbed snow because the particles are initially smaller and more compact. Density of newly deposited snow varies with weather conditions, however, and concurrent snowfall is a dominant factor. The density of a newly deposited layer of blowing snow can be as low as $100 \mathrm{~kg} / \mathrm{m}^{3}\left(6.2 \mathrm{lb} / \mathrm{ft}^{3}\right)$ in the presence of snowfall, or as high as $300 \mathrm{~kg} / \mathrm{m}^{3}$ ($18.7 \mathrm{lb} / \mathrm{ft}^{3}$) in its absence.

The pressure of overlying snow compacts and rearranges snow particles by plastic yielding, particle fracture, and sliding. Before the onset of melt, the density of drifted snow (ρ_{s}, expressed in $\mathrm{kg} / \mathrm{m}^{3}$) is approximated by
$\rho_{\mathrm{s}}=522-(304 / 1.485 \mathrm{Y})\left(1-\mathrm{e}^{-1.485 \mathrm{Y}}\right)$
where Y is snow depth in meters and e is the base of natural logarithms (2.71828...)(Tabler 1985). The $522 \mathrm{~kg} / \mathrm{m}^{3}$ asymptote in the equation, determined by least-squares analysis, reflects some plateau in the densification process, such as the closest possible packing attainable by compressive loading with limited metamorphism. The maximum density that can be attained experimentally by packing alone is about $550 \mathrm{~kg} / \mathrm{m}^{3}$ (Benson 1962), corresponding to the critical
density where densification rate abruptly decreases. The functional relationship given by Equation (3.13) is shown graphically in Figure 3.22.

Excluding the basal ice layer typical under melting drifts, density of actively melting snowdrifts on well-drained sites is essentially independent of snow depth, averaging about $600 \mathrm{~kg} / \mathrm{m}^{3}$ (Tabler 1985).

Figure 3.22. Density of wind-deposited snow as a function of depth, before the onset of melt (Tabler 1985).

3.6 Snow Deposition and Retention by Vegetation

Because blowing snow is deposited so as to reduce the aerodynamic drag of the surface, drifts fill in surface depressions, streamline objects protruding from the surface, and fill in spaces between surface roughness features such as vegetation (Figure 3.23). Snow is retained by lowgrowing vegetation because vegetation protruding above the snow surface reduces the shear stress on the intervening surface.

In areas that have sufficient wind to relocate all of the snowfall, snow transport is inversely related to the height and cover density of vegetation over the fetch. In such areas, information on the vegetative cover can be used to estimate relocated snowfall as required to estimate snow transport from Equations (3.9), (3.10) and (3.11).

In some instances, blowing snow problems can be reduced by rows of standing corn or by stubble (Tabler 1991a).

As indicated by Equation (3.12), any factor that changes the velocity gradient will affect surface shear stress. Wind passing over a curved surface, such as that shown in Figure 3.24, is slowed by the adverse pressure gradient, promoting the deposition of blowing snow in the region where the flow is decelerating. If the curvature change is great enough, the airflow "separates" from the surface and forms an eddy in which the wind near the surface moves in a direction opposite to that of the approaching wind. This condition, which also occurs over the wing of an aircraft when the stall angle is reached, greatly increases the resistance to the airflow and promotes deposition upwind of the eddy area, which in turn contributes to the growth of the circulation region. In this way, relatively small changes in surface curvature can create large drifts.

In areas where the terrain drops suddenly, such as a road cut, the rapid change in the vertical gradient of velocity triggers the deposition of blowing snow. Because most of the snow is transported near the surface, there is a preferential deposition near the slope break where the velocity first changes. Snow continues to be deposited at this point until the snow surface reaches an elevation where the surface shear stress is the same as that immediately upwind. As
this condition is approached, deposition shifts downwind so that the drift elongates with little increase in depth upwind (Figure 3.25)(Tabler 1975b). The abrupt change in the slope of the snow surface marks the top of the slip face, so named because of its resemblance to the leeward slope of sand dunes where deposited sand slips to an angle of repose. The run-to-rise ratio of the steeper upper part of the slip face typically ranges from 1:1 to 1.5:1.

The flow separates at the top of the slip face, with the formation of a vortex immediately downwind. This circulation zone extends downwind for a distance equal to 6 to 7 times the height of the slip face from the ground surface. Most snow particles settling in this region are sufficiently protected from the wind that they are not carried downwind.

Figure 3.24. Wind profile changes over a curved surface, and the formation of an eddy area caused by separation of the airflow. $d u / d z$ is the vertical gradient of the wind speed. (Tabler 1994).

Figure 3.25. Stages of drift growth in a topographic deposition area (Tabler 1975b).

WIND

3.7.2 Equilibrium Slope

It is reasonable to suppose that for a given wind speed and direction, a particular terrain feature has a maximum snow retention capacity that cannot be exceeded regardless of the quantity of blowing snow. The snow surface corresponding to this maximum drift is referred to as the equilibrium slope (Figure 3.25). If the development of a snowdrift follows the so-called law of natural growth, so that at any given time the growth rate is inversely proportional to the total snow accumulation up to that time, then the snow-trapping efficiency of the terrain feature would decline in some manner as it fills with snow. The true equilibrium profile then may be approached as a limit, but may not be attained with a finite quantity of snow transport. There is no way to be certain that true equilibrium has been attained for any given terrain feature observed in the field, because snow transport is always limited in nature. The migration of snow waves over a surface, however, implies that the surface is at equilibrium for the extant wind speed (Figure 3.26), because if equilibrium were not attained, the snow waves would cease to move. The greater the snow storage capacity of a terrain feature, the greater the potential
disparity between the apparent and true equilibrium profiles. For engineering applications, however, it can be assumed that the difference between the two is insignificant.

Figure 3.26. Snow waves migrating over surface of snowdrift downwind of a $3.8-\mathrm{m}$ (12-ft) snow fence indicate an equilibrium surface (Tabler 1994).

Because wind velocity fluctuates, there are periods when snow is deposited, and other
 periods when snow is eroded away. Although no quantitative relationship is available, the equilibrium slope increases somewhat with wind speed; that is, the stronger the wind the steeper the slope. The ice bonds that form among newly deposited particles helps to stabilize previously deposited snow, however, with a resulting tendency for snow surfaces to represent lighter wind conditions. The angle of the equilibrium slope is always less than the critical angle required for separation of the airflow -- that is, the angle required to form a region of circulating airflow immediately above the surface. This critical angle varies from 10° to 12° although the equilibrium slopes might be steeper in areas such as steep mountainous terrain where background turbulence is greater.

3.7.3 Trapping Efficiency

The trapping efficiency of a topographic feature is the proportion of the incoming snow, within the first 5 meters (16 ft) above the ground, that is permanently retained by the feature. A major factor that affects trapping efficiency is the slope of the surface immediately upwind of the slip face. Figure 3.27 shows how snow-trapping efficiency varies with approach slope for two heights of step-like terrain configurations analyzed by computer simulation (Schmidt and Randolph 1981). The trapping efficiency increases rapidly as this slope steepens and at an angle of about 10°, trapping efficiency is at a maximum. This angle is approximately the same as the equilibrium snow surface. Figure 3.27 also shows that the height of the slip face above the ground has little effect on trapping efficiency.

Figure 3.27. Initial trapping efficiency of downwind-facing steps in relation to approach slope and step height, as determined by Schmidt and Randolph (1981).

3.8 Deposition at Snow Fences

3.8.1 Fence Height, Porosity, and Bottom Gap Defined

Fence height is the vertical distance from the ground to the top of the fence, and is represented by H. Distances and heights referenced from a barrier are often expressed as multiples of fence height. A distance equal to 5 times the fence height, for example, is written as 5 H .

The bottom gap is a space between the ground and the bottom of the snow fence that serves to reduce snow accumulation at the fence and thereby maintain a higher trapping efficiency.

The porosity, P, of a fence is the ratio or percentage of open area to the total frontal area excluding the bottom gap. Fences that are 40 to 50% porous store the most snow.

3.8.2 Effect of Porous Fences on Wind and Blowing Snow Particles

A snow fence reduces wind speeds and changes the wind profile. A typical profile near the fence consists of the following regions, shown in Figure 3.28 (Tabler and Schmidt 1986):

Figure 3.28. Turbulent mixing diagram, showing zones defined by Tabler and Schmidt (1986).

Region 1 is where wind speeds are retarded by the aerodynamic resistance of the surface, with the velocity distribution given by Equation 3.1. The height of this developing boundary layer increases with downstream distance.

Region 2 is a zone of nearly uniform wind speed that constitutes the core of retarded flow immediately behind the fence.

Region 3 is where the retarded flow behind the fence mixes with the faster-moving flow that passes over the top of the fence. The upper boundary of this region coincides with the center of the accelerated flow over the top of the fence, the height of which increases as the square root of the distance from the fence. This region widens linearly with increasing distance downwind until the lower edge of the mixing region reaches the lower boundary of Region 2. Thereafter, the widening continues in a non-linear fashion.

Region 4 is a zone of turbulent mixing between the accelerated flow over the top of the fence and the outer undisturbed flow (Region 5). This region is readily apparent in wind profiles taken within 5 times the height of the fence, but at greater distance, this region becomes indistinguishable from Region 3.

Wind speeds near the surface decelerate over a distance downwind from the fence equal to about seven times the fence height (Figure 3.29), which reduces surface shear stress and allows creeping and saltating particles to come to rest. Some of these particles are deposited upwind from the fence as approaching surface winds decelerate. A significant number of the suspended particles passing through a snow fence do not reach the ground before they are carried beyond the sheltered area.

Figure 3.29. Wind speed profiles at different distances (X) downwind from a 50\% porous snow fence, compared to profile (dashed line) far upwind from fence. Z is height above ground and H is fence height. (Tabler 1994)

Wind speed reduction is approximately scaled with height (Tabler and Jairell 1993),
 so that the representation in
Figure 3.30 is a reasonable approximation for all heights and ambient wind speeds.
When snow first begins to accumulate, the aerodynamic effect of the fence controls the deposition of snow entering the sheltered region. As the snowdrift develops, however, it exerts an additional influence on the airflow that changes as the drift shape grows and changes.

Figure 3.30. Wind speed reduction contours on the lee side of a $\mathbf{5 0 \%}$ porous snow fence with height \boldsymbol{H} (Tabler 1986). Contour values are percent of ambient (undisturbed) wind speed at an equivalent height.

3.8.3 Stages of Drift Growth at Porous Fences

The stages of drift growth are described by Tabler (1986, 1988a, 1988b). In the initial stages of drift growth, snow particles passing through a porous barrier encounter a zone of greatly diminished winds and decreasing surface shear stress. This zone extends downwind for a distance equal to 7 H (Figures 3.29 and 3.30). Most particles that reach the ground within this region come to rest and form a lens-shaped drift that becomes thicker in the middle as deposition continues.

This initial lens-shaped deposit thickens until the airflow cannot follow its curvature. At this stage, the flow separates from the surface, as shown in Figure 3.24. The resulting eddy area extends the effective sheltered region to 12 to 15 H downwind. This is where most of the snow is deposited until the fence is about 75% full. The formation of the slip face and circulation zone (Figures 3.31 and 3.32) characterizes the second stage of drift growth. The circulation zone extends downwind for a distance equal to six to seven times the height of the slip face. The run-to-rise ratio of the slope of the upper portion of the slip face typically ranges from 1:1 to 1.5:1.

Figure 3.31. Slip-face and circulation region formed by a 50% porous snow fence during the intermediate stages of growth (Tabler and Jairell 1993).

Figure 3.32. Slip face and cornice behind a $3.8-\mathrm{m}$ (12.4-ft) snow fence (Tabler 1994). Drift is approximately 3.7 m deep at the cornice.

During this second stage of development, the flow separation aft of the drift adds
 significant resistance to the approaching wind. This promotes snow deposition on the nose of the drift and reduces surface winds within the circulation zone to a minimum. As a result, with light to moderate winds, trapping efficiency can be greater than the initial trapping efficiency at the onset of accumulation. Strong winds, however, can cause particles to be carried beyond the circulation region before reaching the ground.

If the snow cover contains newly fallen snow, or if it is snowing while the wind is blowing, the electrostatic charge on the particles causes them to adhere to the surface and form a snow cornice at the top of the slip face. This enhances the trapping efficiency. The second stage is characterized by an increase in drift depth, with little elongation, and is represented by measurements 1 through 3 in Figure 3.33.

Figure 3.33. Cross-section of snowdrift formed by a $3.8-\mathrm{m}$ (12.4ft) $\mathbf{5 0 \%}$ porous horizontal-board fence on seven dates (Tabler 1986).

As the depth of the downwind drift approaches its maximum, which for 50% - porous fences is 1.0 to 1.2 times the height of the fence, the third stage of growth begins. This stage is characterized by snow filling the circulation zone as the drift lengthens downwind, and is represented by measurements 4 through 6 in Figure 3.33. As long as a slip face is present, however, trapping efficiency remains relatively high.

The fourth stage of growth begins when the drift surface assumes a smooth profile without a slip face or a circulation zone. At this time the drift is about $20 H$ in length, as indicated by measurement 6 in Figure 3.33 where only a trace of the slip face remains. At this stage trapping efficiency declines rapidly, and deposition is limited primarily to creeping and saltating particles.

Subsequent growth is therefore relatively slow as the drift reaches its ultimate length of 30 to $35 H$, as represented by measurement 7 in Figure 3.33.

The fourth stage ends when the drift ceases to grow despite the continued influx of blowing snow. The drift at this stage is at equilibrium for the existing wind conditions, but erosion or deposition could result from a change in wind speed or direction. After equilibrium is achieved, trapping efficiency remains at zero.

Equilibrium drifts are always streamlined so that their shape offers a low resistance to the airflow, and porous fences form airfoil-shaped drifts. As will be described in section 3.8.5.2.1, the dimensions of equilibrium drifts are scaled with fence height, as shown in Figure 3.34 for 50%-porous fences.

Figure 3.34. The dimensions of an equilibrium drift formed by a 50%-porosity snow fence (Tabler 1989).

Figures 3.35 and 3.36 show how the length and depth of a drift change as a 50% porous fence fills with snow. Length of the downwind drift changes with
 snow accumulation according to
$\mathrm{L} / \mathrm{H}=10.5+6.6\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)+17.2\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{2}$
where $L=$ Length of the downwind drift,
$H=$ Fence height,
$A=$ Cross-sectional area of the downwind drift at a given time during the winter, and
$A_{e}=$ Cross-sectional area of the equilibrium drift.
The maximum depth of the downwind drift, $Y_{\max }$, changes according to
$\mathrm{Y}_{\max } / \mathrm{H}=6.3\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)-13.3\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{2}+12.1\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{3}-3.9\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{4}$
These estimates of drift dimensions prior to equilibrium will be used in chapters 5 and 6 , and are useful for estimating how much snow a fence contains without cross-sectioning the drift.

Figure 3.35. Changes in the length of the leeward drift as a 50\%-porous snow fence fills with snow (Tabler 1980a).

Figure 3.36. Changes in the maximum depth of the leeward drift as a 50% - porous snow fence fills with snow (Tabler 1980a).

3.8.4 Drift Growth at Solid Fences

In the case of a solid (non-porous) fence, most of the snow is deposited
 on the upwind side until the upwind drift reaches the top of the fence (Figure 3.37)(Tabler, 1986). The first stage of growth is typified by the presence of a cavity between the drift and the upwind side of the fence, caused by a vortex that retards deposition near the fence (Figure 3.38). After the snow surface immediately upwind of this vortex reaches an elevation above the stagnation point on the fence (about 0.6 H), the second stage begins. The vortex weakens sufficiently to allow snow to fill in the cavity.
During these first two stages, the downwind drift is comprised primarily of snowfall that is swept toward the fence by the circulating airflow. After the upwind drift reaches the top of the fence, it stops growing and the downwind drift develops rapidly, filling in the circulating region behind the fence. As shown in Figure 3.37, the equilibrium drifts on both sides of the fence are concave, and extend about 10 to 12 H on either side of the fence.

Figure 3.38. The vortex on the upwind side of this solid barrier prevents deposition immediately upwind of the fence until the snow depth reaches about 0.6 H (Tabler 1994).

3.8.5 Equilibrium Drifts

3.8.5.1 Importance

The shape of equilibrium drifts is important because many of the guidelines for snow fence systems are based on these characteristics. For example, the length of the downwind drift determines the required setback distance, and the overall profile determines the storage capacity of the fence.

3.8.5.2 Factors that affect the shape of equilibrium drifts

At equilibrium, the combined wind resistance of the fence and drift is at a minimum, and the drift is shaped so that the surface shear stress is uniform along the path of the wind. The mechanism allowing this uniformity is the turbulent mixing that takes place between regions of airflow having different velocities. Drift shape is determined by the rate at which the main mixing region (Region 3, Figure 3.28) expands downwind from a barrier, which in turn is related to the initial difference in velocities behind and above the barrier. As a result, the surface of the equilibrium drift follows the lower boundary of the mixing region (Figure 3.39) so that the snowdrift is shaped like the wind profile that formed it. The nose of the drift resembles the logarithmic profile of the developing wall boundary layer (Equation 3.1), the tail of the drift is shaped like the wind profile in the mixing layer, and the crest of the drift is where the two flow regimes first come together.

Figure 3.39. The surface of an equilibrium drift follows the lower boundary of the main mixing region (region 3, Figure 3.28) behind a porous fence (Tabler 1994).

As a result, the overall shape of the downwind drift is reasonably well represented by an equation analogous to the "law of the wake" (Coles 1956) for vertical wind profiles:
$\mathrm{Y} / \mathrm{H}=\mathrm{B} \ln \left(\mathrm{X} / \mathrm{X}_{0}\right)\left\{1-\sin ^{2}(0.5 \pi \mathrm{X} / \mathrm{L})\right\}$
Where $Y=$ Snow depth,
$X=$ Distance from the fence,
$X_{o}=$ Distance from the fence to the upwind edge of the drift,
$L=$ Length of the lee drift,
$B=$ Coefficient of proportionality.
With $B=0.29, X_{o}=0.1 H$, and $L=34 H$, Equation (3.16) closely approximates the equilibrium downwind drift formed by 50%-porous fences.

The shape of the equilibrium drift therefore depends on fence height and on other fence attributes that affect the rate of turbulent mixing behind the fence such as fence length, porosity, and bottom gap. In addition, the topography of the surrounding terrain can be influential.

For any particular fence, the shape of the equilibrium drift also varies with the speed and orientation of the wind, and with snow cover conditions. Therefore, the shape of the equilibrium drift formed by a particular snow fence varies from year to year.

Because the complexity of these interacting factors has precluded specifying drift shape based on theory, field measurements of drifts provide the primary source of information on this subject.

3.8.5.2.1 Fence Height

Other factors being equal, dimensions of equilibrium drifts are approximately proportional to fence height (Tabler 1980a). This means, for example, that a drift behind a fence $2 \mathrm{~m}(6.6 \mathrm{ft})$ tall will be approximately twice as long, and twice as deep, as a drift behind a fence $1 \mathrm{~m}(3.3 \mathrm{ft})$ tall. Although some exceptions will be noted later, this approximation is sufficient for most engineering applications, and greatly simplifies the guidelines for snow fence design. Figure 3.40 shows the drift formed by a $6-\mathrm{cm}(2.5-\mathrm{in}$.) fence to be geometrically similar to that behind a $3.8-\mathrm{m}(12.4-\mathrm{ft})$ fence. This similarity allows researchers to use reduced-scale models outdoors to study snow drifting problems (Tabler 1980b; Tabler and Jairell 1980).

Figure 3.40. Equilibrium drift formed by a $6-\mathrm{cm}(2.4-\mathrm{in}$.) reduced-scale model of a $1.8-\mathrm{m}(6-\mathrm{ft})$ fence (left) is proportional to that formed by a $3.8-\mathrm{m}(12.4 \mathrm{ft})$ fence (Tabler 1986).

The geometric scaling of equilibrium drifts allows their size to be expressed in dimensionless terms. Drift lengths and depths can be expressed as multiples of fence height, H. It is important, however, to distinguish between the structural height of a fence, denoted in this guide as H_{s}, and the effective height - the height of the fence above the surrounding snow cover - denoted by H. As shown in Figure 3.41, drift shape and snow storage change greatly as the effective height decreases.

Figure 3.41. Drift dimensions depend on effective fence height H which may be less than the structural fence height H_{s} (Tabler 1994).

Drift shape can be approximated with a fifth order polynomial of the form

$\mathrm{Y} / \mathrm{H}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}(\mathrm{X} / \mathrm{H})+\mathrm{C}^{\prime}(\mathrm{X} / \mathrm{H})^{2}+\mathrm{D}^{\prime}(\mathrm{X} / \mathrm{H})^{3}+\mathrm{E}^{\prime}(\mathrm{X} / \mathrm{H})^{4}+\mathrm{F}^{\prime}(\mathrm{X} / \mathrm{H})^{5}$
where $Y=$ Snow depth,
$X=$ Distance from the fence,
$H=$ Effective fence height,
$A^{\prime}=$ Empirical constant, and
$B^{\prime} \ldots F^{\prime}=$ Empirical coefficients.

Values for $A^{\prime} \ldots . F^{\prime}$ are different for various kinds of fences, and are determined empirically by regression analyses of measured drift profile.

There is one important exception to the scaling law for snow fence drifts:
The maximum depth of drifts formed by fences less than about 1.5 m (4.5 ft) tall is approximately equal to the height of the fence.

Although this difference suggests that the airflow over the shorter fences may not be deflected to the same degree as that over the taller structures, it should be kept in mind that short fences are usually partially buried by the time equilibrium is attained, which reduces their effective height. The anomalous behavior of the shorter fences can be ignored for most practical purposes. The lengths of equilibrium drifts are proportional to fence height (Tabler 1980a):
$\mathrm{L} \propto \mathrm{H}$
If a fence is half-buried, drift lengths may be shorter than if the fence were fully exposed (Figure 3.41). However, the length of drifts behind partially buried fences depends on the sequence of deposition. If equilibrium is attained before the fence starts to become buried, drifts can actually elongate to about 50 times the structural fence height. This is because the pre-burial equilibrium drift forms a downward sloping surface that interacts with the airflow behind the partially buried fence.
Because the depth and length of snowdrifts are proportional to effective fence height, and because the basic shapes of equilibrium drifts can be approximated by right triangles, it is apparent that the cross-sectional area of the equilibrium drift is approximately proportional to the square of the effective fence height:
$\mathrm{A}_{\mathrm{e}} \propto \mathrm{H}^{2}$
where A_{e} is cross-sectional area of the equilibrium drift (Tabler 1980a). This implies that a 2.4-$\mathrm{m}(8-\mathrm{ft})$ fence would hold four times as much snow as a $1.2-\mathrm{m}(4-\mathrm{ft})$ fence; however, as shown in the following section, the taller fence will actually store 4.6 times as much snow as the $1.2-\mathrm{m}$ fence on a weight basis, because snow density increases with depth (section 3.4.1.4). For example, from Equation 3.13 or Figure 3.22, the density of snow 1.2 m deep (4 ft) is $380 \mathrm{~kg} / \mathrm{m}^{3}$ $\left(23.7 \mathrm{lb} / \mathrm{ft}^{3}\right)$, compared to $467 \mathrm{~kg} / \mathrm{m}^{3}\left(29.3 \mathrm{lb} / \mathrm{ft}^{3}\right)$ for a $3.7 \mathrm{~m}(12 \mathrm{ft})$ depth. Using Equations (3.13) and (3.15), it can be shown that the storage capacity of fences is therefore related to effective fence height H according to (Tabler 1980a)
$\mathrm{Q}_{\mathrm{e}} \propto \mathrm{H}^{2.2}$

3.8.5.2.2 Fence Length and End Effect

The dimensions described in the previous section apply only to the center of long fences--that is, fences that are $25 H$ or longer. Drifts formed by fences that have shorter lengths are reduced by the rounding that extends inward about 12 H from the fence ends (Figures 3.42 and 3.43)(Tabler 1980a).

This characteristic of drifts, called the "end effect", dictates how far fences should extend beyond the area to be protected. In addition, the fact that drifts are shorter near fence ends can be considered in specifying the minimum setback distance of fences placed at an oblique angle to the road. The end effect therefore has important implications for fence system design. Fences should be as long as possible, and gaps or openings should be avoided.

As shown in Figure 3.44, the length of the downwind drift varies with distance from the fence end X_{e} according to

$$
\begin{equation*}
\mathrm{L} / \mathrm{L}_{\max }=\left\{1-0.01\left[\left(X_{\mathrm{e}} / H\right)-9\right]^{2}\right\}^{0.5}, \quad-1 \leq \mathrm{X}_{\mathrm{e}} / \mathrm{H} \leq 9 \tag{3.21}
\end{equation*}
$$

Figure 3.42. Rounding of drift ends, as shown by this 3.8-m-tall (12.4-ft) Wyoming fence, reduces storage capacity and trapping efficiency (Tabler 1986).

Figure 3.43. Extent of the three-dimensional rounding of drift ends that constitutes the end effect (Tabler 1986).

Figure 3.44. Length of an equilibrium downwind drift as a function of distance from the end of a 50%-porous fence on flat ground (Tabler 1980a).

The end-effect also reduces storage capacity and trapping efficiency over the affected portion of the drift. As shown in Figure 3.45, the crosssectional area of the drift, A, varies with the distance from the fence
 end, according to
$\mathrm{A} / \mathrm{A}_{\text {inf }}=0.23+\left(\mathrm{X}_{\mathrm{e}} / \mathrm{H}\right) / 5.2-\left(\mathrm{X}_{\mathrm{e}} / \mathrm{H}\right)^{2} / 59.5+\left(\mathrm{X}_{\mathrm{e}} / \mathrm{H}\right)^{3} / 1961, \quad \mathrm{X}_{\mathrm{e}} / \mathrm{H} \leq 12$
where $A_{\text {inf }}$ is the cross-sectional area of the drift at a location unaffected by the end effect (Tabler 1980a). The capacity at $5 H$ from the fence end, for example, is about 84% of that in the center of a very long fence.

Figure 3.45. Cross-sectional area of equilibrium lee drifts as a function of distance from the end of a 50%-porous fence on flat ground (Tabler 1980a).

When fence lengths are shorter than 20 to 25 H , the effects of the two ends overlap, further reducing drift size and storage capacity. The relationship between total storage capacity and fence length (Figure 3.46) is approximated by

$\mathrm{Q}_{\mathrm{d}} / \mathrm{Q}_{\mathrm{c}, \mathrm{inf}}=0.288+0.039\left(\mathrm{~L}_{\mathrm{f}} / \mathrm{H}\right)-0.0009\left(\mathrm{~L}_{\mathrm{f}} / \mathrm{H}\right)^{2}+\left(\mathrm{L}_{\mathrm{f}} / \mathrm{H}\right)^{3} / 133333 ; \quad 5 \leq \mathrm{L}_{\mathrm{f}} / \mathrm{H}<50$
where $Q_{c, \text { inf }}$ is the snow storage capacity of an infinitely long fence, and L_{f} is fence length (Tabler and Schmidt 1986).

Figure 3.46. Total snow storage capacity as a function of fence length (Tabler 1994).

3.8.5.2.3 Bottom Gap

A space between the ground and the bottom of the fence minimizes snow deposition close to the fence, and keeps the saltating particles near the ground where they can be more easily trapped. Fences that are partially or totally buried are not as
 effective in trapping blowing snow, are often damaged by snow settlement, and can develop abnormally long drifts. The optimum bottom gap is equal to $10-15 \%$ of the total fence height. If the bottom gap is increased beyond this limit, the nose of the downwind drift is displaced farther downwind, drift depth decreases, drift length remains unchanged, and storage capacity is reduced (Figures 3.47 and 3.48). The depth of the upwind drift also decreases as the bottom gap increases.

The effect of bottom gap varies with wind speed. In a location with strong winds, a fence with a gap equal to about 25% of the height caught about 30% less snow than a fence with a gap equal to 10% of the height. At a location where wind speeds averaged 8 to $16 \mathrm{~km} / \mathrm{h}(5$ to $10 \mathrm{miles} / \mathrm{h})$ less, the difference was only about 10%.

Figure 3.47. Comparison of drifts formed by two $3.8-\mathrm{m}$ (12.4-ft) Wyoming fences that have 30 - and $90-\mathrm{cm}$ (12- and 36-in.) bottom gaps, respectively (Tabler 1986).

Figure 3.48. Effect of bottom gap on snow storage, as determined from field studies (Tabler 1994).

3.8.5.2.4 Fence Porosity

Fences that have a porosity of 0.4 to 0.5 form the largest drifts. Solid fences $(P=0)$ form larger drifts on their upwind sides, but smaller drifts on the downwind sides. Solid fences have significantly lower storage capacities than 50%-porous fences (Figure 3.49). As shown in Figures 3.50 and 3.51 , snow storage capacity and the length of the downwind drift vary with porosity according to
$\mathrm{L} / \mathrm{H}=12+49 \mathrm{P}+7 \mathrm{P}^{2}-37 \mathrm{P}^{3}$
$\mathrm{Q}_{\mathrm{c}}=\left(3+4 \mathrm{P}+44 \mathrm{P}^{2}-60 \mathrm{P}^{3}\right) \mathrm{H}^{2.2}$
The effect of porosity on the shape of the equilibrium drift will be described in section 3.8.5.3.

Figure 3.49. Comparison of drifts formed by 50%-porous and solid fences (Tabler 1994).

Figure 3.50. Length of the downwind drift as a function of fence porosity (Tabler 1994).

Figure 3.51. Snow storage capacity of the downwind drift as a function of fence porosity (Tabler 1994).

A barrier's effect on the wind, and therefore its effect on snow deposition, is determined by its resistance to airflow. Porosity is thus important because it determines airflow resistance. Air flowing through an opening forms a jet with a cross-
 sectional area smaller than the opening itself. As a result, wind resistance increases as the size of the openings decreases, even if porosity remains constant. The resistance of a plastic fence with $5-\mathrm{cm}(2-\mathrm{in}$.$) circular openings and P=0.5$, for example, is greater than that of a wooden slat fence with rails 15 cm wide (6 in .) separated by spaces of the same width.

Over the range of opening sizes typical of snow fence materials, there appears to be little difference in the equilibrium drifts formed by fences with the same porosity but different shapes and sizes of openings, if the bottom gap remains free of snow (Tabler 1986, 1988b). The tendency for snow to deposit close to the fence and block the bottom gap, however, is affected by the size, shape, and orientation of the openings. The small openings typical of most plastic fencing materials favor deposition close to the fence, which can eventually block the bottom gap and bury the fence. The tendency for snow to deposit close to the fence is much lower with horizontal rails (Figure 3.52), and even if the bottom gap is buried, the spaces between the rails serve as bottom gaps to retard the rate of burial.

Figure 3.52. Horizontal slats reduce the tendency for snow deposition near the fence (Tabler 1986).

Although the optimum width of vertical slats or horizontal rails is uncertain, there is some evidence that rails as wide as 30 cm (12 in.) are less effective than those half that width. This may be due to the
 relationship between the width of the slats and the scale of turbulence they generate. Vortices form on the downwind side of solid
members, and these eddies are periodically shed and carried downstream. Because the size of these vortices is proportional to the width of the member, the wider boards promote suspension of the snow particles and increase surface shear stress downwind of the barrier.

3.8.5.2.5 Inclination Angle

Inclining the top of a fence into the wind forces more wind through the bottom gap, displacing the nose of the leeward drift downwind, and reducing drift depth and storage capacity. Inclining the top of the fence downwind reduces the flow under the fence, with opposite effects. As a result, the loss in vertical height of inclined fences is compensated by a larger drift. For a fence with a porosity of 0.5 , a downwind inclination angle up to 15° has little net effect on trapping efficiency or snow storage capacity (Tabler 1986). The 15° layback used for the standard Wyoming snow fence provides stability during construction, and makes it easier for maintenance workers to climb the fence.

3.8.5.2.6 Wind Direction

The attack angle is the angle of the wind relative to the longitudinal alignment of the fence. A 90° angle is perpendicular to the fence, and 0° is parallel. How the attack angle affects drift geometry depends in part on the geometry of the fence. For a structure with transverse brace members, such as the Wyoming fence, the wind resistance increases as the attack angle decreases because a greater area of the braces is exposed to the wind. In the same way, the aerodynamic porosity of a vertical-slat fence decreases as the wind becomes more oblique to the fence. Empirical studies have shown, however, that for attack angles between 90° and 45°, the profile of a drift, as measured parallel to the wind, is independent of the attack angle (Figure 3.53) (Tabler 1980a). This means that the length and cross-sectional area of the downwind drift, as measured perpendicular to the fence, would decrease in proportion to the sine of the attack angle, α :
$\mathrm{L}=\mathrm{L}_{90}(\sin \alpha)$
$\mathrm{A}=\mathrm{A}_{90}(\sin \alpha)$
where the subscript ${ }_{90}$ refers to dimensions of drifts formed when fences are perpendicular to the wind.

The airflow deflects laterally when it encounters a barrier aligned obliquely to the prevailing flow direction. This causes the wind to follow a sinuous course as it passes through such a barrier. This results in a cross-flow velocity component, which is manifested as an axial component of the circulation vortex present during the second and third stages of drift growth. The result is an auger-like action that transports snow downwind. It eventually empties the snow into the slipstream around the downwind end of the fence, which reduces trapping efficiency. Although this effect has not been measured, it is probably insignificant for long fences with attack angles greater than 45°.

Figure 3.53. Cross-sectional area of drift versus wind attack angle (Tabler 1986).

Because the equilibrium shape of a drift, as measured perpendicular to the fence, varies with wind direction, any change in wind direction will tend to change the shape of the drift. An increase in the attack angle, for example, might erode the nose of the
 downwind drift, deposit snow on the tail, and displace the maximum drift depth downwind. Because not all of the eroded snow is deposited, changes in wind direction reduce trapping efficiency and can cause episodes when snow can be seen blowing out of fences.

3.8.5.2.7 Wind Speed

Although it seems reasonable to expect that the shape of equilibrium drifts would vary with wind speed, the differences must be subtle because equilibrium drifts are similar from year to year, and in different locations. One reason for this is that the range of natural wind speeds is not very great. The threshold for blowing snow is about $20 \mathrm{~km} / \mathrm{h}$ ($12 \mathrm{miles} / \mathrm{h}$), and sustained winds above $100 \mathrm{~km} / \mathrm{h}(62 \mathrm{miles} / \mathrm{h})$ are uncommon. Another explanation for the apparent insensitivity of drift shape to wind speed is the particle bonding described in section 3.5.3. The equilibrium drift shape attained over a winter therefore tends to reflect the maximum attainable profile.

Although quantitative data are lacking, it seems likely that equilibrium drifts formed under strong winds would not be as deep as those formed by lighter winds. An increase in wind speed could therefore cause erosion of a previously deposited drift if the snow particle bonds had not had time to strengthen sufficiently.

3.8.5.2.8 Effect of Topography

The topography surrounding a fence can influence drift shape more than any factor described above. Although the problem is three-dimensional, for simplification the discussion here is limited to the effects of upwind and downwind terrain, and therefore assumes uniform conditions in the direction across the wind.

Topography, both upwind and downwind of a fence, influences drift shape. Although terrain far upwind can influence the snow transport at a site, nearby terrain features affect the airflow at the fence and influence the shape of equilibrium drifts.

In general, the influence exerted by a topographic feature varies with its proximity to the fence relative to the scale of the feature, and the height of the fence. Because the possible combinations are essentially limitless, the discussion here is limited to generalizations that can be readily interpreted for practical application. Algorithms for estimating the shape of drifts in irregular terrain have been developed for a computerized snow fence design program described in chapter 6, but are too complex to include here. The following outline describes the relationships illustrated in Figures 3.54 and 3.55. Slope direction is given in reference to the wind direction; upward slope means that the wind is blowing up the slope.

Figure 3.54. Effects of ground slope on the shape of equilibrium drifts (Tabler 1986).

Upward slopes:

On long, uniform slopes of about 15% or less, drift shape is the same as on level ground.

On steeper or shorter slopes, such as fills and embankments, the drift is shaped as though the
 wind were horizontal rather than parallel to the slope. The drift is shorter and shallower than on level ground. In addition, the drift on the upwind side of the fence is very short and shallow, if it exists at all.

Downward slopes:

On long, uniform slopes of about 15% or less, the shape of the drift is the same as on level ground.

Fences located where snow tends to accumulate naturally will become buried.
Long, uniform slopes steeper than about 18% favor deposition on the upwind side of the fence, which buries the fence. The drift on the downwind side of the fence is also longer.

Hillcrests:

A fence on a ridge or hillcrest has a poorly developed or nonexistent drift on the upwind side, whereas the drift on the downwind side is much deeper and longer than on level ground. The surface of the equilibrium drift represents the maximum rate at which the wind can adjust to follow the change in topography. As a result, a fence on a ridge forms a much larger downwind drift than a fence of identical height on level terrain. As a rough guide, effective fence height increases about $0.15 \mathrm{~m}(0.5 \mathrm{ft})$ for each degree of upward approach slope.

Figure 3.55. Effects of topographic irregularities on the shape of equilibrium drifts (Tabler 1986).

Upward slope on the downwind side of the fence:
Snow storage capacity is reduced by upward slopes and hills on the downwind side of a fence because they truncate the downwind drift. The closer a fence
 is to the toe of a slope, the deeper the upwind drift becomes.

Irregularities under drift:

The surface of a drift is not affected by topographic irregularities underneath the drift. Depressions, such as stream channels, can greatly augment snow storage capacity, whereas mounds or hills reduce storage capacity.

3.8.5.3 Equilibrium Drifts Formed by Various Fence Types

3.8.5.3.1 General Characteristics of Most Common Types of Fences

As indicated by the description of drift growth stages, not all streamlined drifts are at equilibrium. Equilibrium drifts are therefore difficult to identify without the benefit of repeated measurements to verify that growth has stopped. This difficulty in identifying drifts that are truly at equilibrium has undoubtedly contributed to the diversity of opinion in the literature about drift dimensions. The characteristics described here are the best available estimates, and are based on more than 30 years of field measurements of many different kinds of fences from 0.6 to $4.9 \mathrm{~m}(2$ to 16 ft$)$ tall (Tabler 1980a, 1986, 1989).

Dimensions, cross-sectional areas, and snow storage capacities for selected fence types are presented in Table 3.3. The dimensions and shapes presented here are representative of flat terrain, and cross-sections not influenced by the end effect, located 12 H or more from the ends of a fence.

Table 3.3. Dimensions of equilibrium snowdrifts formed by different types of fences (Tabler 1986).

	---- Upwind drift-----			--- Downwind drift----				----- Total drift------		
Fence type	$\mathrm{A} / \mathrm{H}^{2}$	$\mathrm{Q}_{\mathrm{J}} / \mathrm{H}^{2.2}$	$\mathrm{~L} / \mathrm{H}$	$\mathrm{A} / \mathrm{H}^{2}$	$\mathrm{Q}_{\mathrm{c}} / \mathrm{H}^{2.2}$	$\mathrm{~L} / \mathrm{H}$	$\mathrm{A} / \mathrm{H}^{2}$	$\mathrm{Q}_{\mathrm{d}} / \mathrm{H}^{2.2}$	$\mathrm{~L} / \mathrm{H}$	
Wyoming	3.6	1.0	16	21.5	7.5	34	25.1	8.5	50	
Slat-and-wire	5.1	1.5	18	18.3	6.2	34	23.4	7.7	52	
Solid	5.0	1.4	15	5.0	1.6	12	10.0	2.9	27	

$A=$ cross-sectional area $\left(\mathrm{m}^{2}\right), Q_{c}=$ snow storage capacity $(\mathrm{t} / \mathrm{m}), L=\operatorname{drift}$ length $(\mathrm{m}), H=$ effective fence height (m).

Drift shapes for the various fence types can be summarized as follows:
Solid fences: The dimensions of the upwind and downwind drifts are similar. Both drifts have a length of $12-15 H$, and a maximum depth equal to H. Total storage capacity is about 35% that of a 50% porous Wyoming fence (Figure 3.49).

Vertical slat-and-wire ($\boldsymbol{H}<\mathbf{2} \mathbf{~ m}$): The upwind drift is triangular in cross-section with a length of about 18 H , a maximum depth of 0.6 H at the fence, and a cross-sectional area of about $5.1 \mathrm{H}^{2}$. The downwind drift has a length of about 34 H , a maximum depth of 1.03 H at a distance 4.6 H from the fence, and a cross-sectional area of $18.3 H^{2}$. Total snow storage capacity is
$\mathrm{Q}_{\mathrm{c}}=7.9 \mathrm{H}^{2.2}, \quad \mathrm{H} \mu 2 \mathrm{~m}$
where H is in meters, and Q_{c} is in t / m.
Synthetic fencing: Tests of many different kinds of snow fence materials indicate little difference in snow storage or drift length for fences of the same height and porosity ratio, if the bottom gap remains open. However, the small openings typical of most synthetic fencing materials usually result in deposition and blockage of the bottom gap early in the winter. This leads to a rapid increase in snow depth at the fence, and eventually to burial. The equilibrium drift shape in this case is less predictable, and snow storage may be more or less than, the capacity of the unburied fence.

For engineering purposes, it is reasonable to assume the same snow storage capacity and drift length for all fences of the same height and porosity ratio.

Wyoming Fence: The upwind drift is roughly triangular in cross-section, with a length of about 16 H , a maximum depth of about 0.5 H at the fence, and a cross-sectional area of about $3.6 \mathrm{H}^{2}$ (Figure 3.33). The downwind drift has a length of about 34 H , a maximum depth of about 1.2 H at a distance $6.1 H$ from the fence, and a cross-sectional area of $21.5 H^{2}$. Total snow storage capacity, Q_{c}, is given by
$\mathrm{Q}_{\mathrm{c}}=8.5 \mathrm{H}^{2.2}$
where H is in meters, and Q_{c} is in tons per meter. For engineering purposes, the drift characteristics for the Wyoming fence can be considered applicable for all fences with a 0.50 porosity ratio, height $\mu 1.8 \mathrm{~m}$, and situated on flat terrain.

Snow storage capacity as a function of fence height is shown in Figure 3.56.

Figure 3.56. Snow storage in upwind and downwind drifts formed by Wyoming snow fences as a function of fence height (Tabler 1986).

3.8.5.3.2 Equilibrium Drift Profiles in Relation to Porosity

The profile of both equilibrium drifts on both the upwind and downwind sides of snow fences can be approximated by the polynomial Equation (3.17):

$$
\mathrm{Y} / \mathrm{H}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}(\mathrm{X} / \mathrm{H})+\mathrm{C}^{\prime}(\mathrm{X} / \mathrm{H})^{2}+\mathrm{D}^{\prime}(\mathrm{X} / \mathrm{H})^{3}+\mathrm{E}^{\prime}(\mathrm{X} / \mathrm{H})^{4}+\mathrm{F}^{\prime}(\mathrm{X} / \mathrm{H})^{5}
$$

The coefficients for fences with porosities of $0-$, $25-, 37.5$ - and 50% are listed in Table 3.4, and the resultant profiles are compared in Figure 3.57. The values for the 50%-porosity fence have been changed slightly from previously published values (Tabler 1994 et al.) to force a zero snow depth at the end of the drift, referred to as the " X / H Limit" in Table 3.4. Drift depths at various distances from a 50%-porous fence are given in Table 3.5.

Table 3.4. Coefficients for polynomial equations describing equilibrium drifts formed by snow fences 1.8 m (6 ft) tall or more. Letters correspond to terms in Equation (3.17).

Porosity $(\%)$	A^{\prime}	B'	C^{\prime}	D^{\prime}	E^{\prime}	F^{\prime}	X/H Limit	
Upwind Drift								
0	$9.13 \mathrm{E}-01$	$-3.610 \mathrm{E}-01$	$1.0050 \mathrm{E}-01$	$-1.8790 \mathrm{E}-02$	$1.7830 \mathrm{E}-03$	$-6.4000 \mathrm{E}-05$	<10	
25	$6.30 \mathrm{E}-01$	$-1.450 \mathrm{E}-01$	$1.9240 \mathrm{E}-02$	$-1.2975 \mathrm{E}-03$	$7.5800 \mathrm{E}-06$	$1.8028 \mathrm{E}-06$	<12	
37.5	$5.75 \mathrm{E}-01$	$-7.600 \mathrm{E}-02$	$4.4025 \mathrm{E}-04$	$6.8276 \mathrm{E}-04$	$-5.9656 \mathrm{E}-05$	$1.5934 \mathrm{E}-06$	<15	
50	$5.20 \mathrm{E}-01$	$-5.540 \mathrm{E}-03$	$-2.1701 \mathrm{E}-02$	$3.5524 \mathrm{E}-03$	$-2.2153 \mathrm{E}-04$	$4.8560 \mathrm{E}-06$	<16	
Downwind Drift								
0	$1.00 \mathrm{E}+00$	$-8.100 \mathrm{E}-02$	$-3.2520 \mathrm{E}-02$	$5.8280 \mathrm{E}-03$	$-3.2840 \mathrm{E}-04$	$5.7400 \mathrm{E}-06$	<13.2	
25	$5.80 \mathrm{E}-01$	$2.218 \mathrm{E}-01$	$-2.9048 \mathrm{E}-02$	$1.0150 \mathrm{E}-03$	$-1.4489 \mathrm{E}-06$	$-3.4199 \mathrm{E}-07$	<24	
37.5	$5.02 \mathrm{E}-01$	$2.689 \mathrm{E}-01$	$-3.7588 \mathrm{E}-02$	$1.9275 \mathrm{E}-03$	$-4.4983 \mathrm{E}-05$	$3.9880 \mathrm{E}-07$	<31.6	
50	$4.30 \mathrm{E}-01$	$3.016 \mathrm{E}-01$	$-4.1203 \mathrm{E}-02$	$2.1930 \mathrm{E}-03$	$-5.4209 \mathrm{E}-05$	$5.1050 \mathrm{E}-07$	<34	

Figure 3.57. Effect of snow fence porosity on shape of drifts on flat terrain, as given by Equation 3.17 and the values in Table 3.4.

Table 3.5. Snowdrift depth versus distance from a snow fence, for an equilibrium drift formed by a snow fence that is 50% porous and 1.8 m (6 ft) tall or more, on flat ground, as given by Equation (3.17) and coefficients in Table 3.4. All values are multiples of the effective fence height, \boldsymbol{H}^{*}.

-----Upwind drift----		-------------------Downwind drift-----------------			
Distance	Depth	Distance	Depth	Distance	Depth
0	0.52	0	0.43	18	0.60
1	0.50	1	0.69	19	0.55
2	0.45	2	0.89	20	0.51
3	0.39	3	1.02	21	0.47
4	0.34	4	1.11	22	0.44
5	0.28	5	1.16	23	0.40
6	0.24	6	1.17	24	0.37
7	0.20	7	1.16	25	0.33
8	0.18	8	1.13	26	0.29
9	0.16	9	1.09	27	0.26
10	0.14	10	1.04	28	0.22
11	0.13	11	0.99	29	0.18
12	0.11	12	0.93	30	0.14
13	0.09	13	0.87	31	0.11
14	0.07	14	0.81	32	0.08
15	0.05	15	0.75	33	0.06
		16	0.70	34	0.05
		17	0.65		
*Example for a fence $2 \mathrm{~m}(6.6 \mathrm{ft})$ tall: At a distance of $7 H(14 \mathrm{~m}$, or 46 ft) downwind of the fence, the drift depth would be 1.16 H (2.32 m , or 7.6 ft).					

3.8.6 Trapping Efficiency of Porous Fences

The following discussion of snow trapping efficiency is from the references by Tabler (1974, 1986) and Tabler and Jairell (1993).

3.8.6.1 Definitions

Trapping efficiency, E, of a snow fence is the proportion of incoming wind- transported snow, moving at or below the height of the barrier, that is permanently retained by the fence. Absolute trapping efficiency is the proportion of incoming wind-transported snow to $5 \mathrm{~m}(16 \mathrm{ft})$ height that is permanently retained by a barrier. The initial trapping efficiency, E_{o}, is the efficiency at the time of the first drifting event when there is no appreciable accumulation of snow in the fence.

3.8.6.2 Trapping Efficiency in Relation to Fence Height and Wind Speed

By using the vertical size distribution and fall velocity of snow particles, and the general characteristics of the airflow field behind a fence, it is possible to trace the trajectories of particles to determine how far they travel before reaching the ground. If this distance exceeds the region of decreasing surface shear stress behind the barrier, the particles are not trapped. Although quantitative data are lacking on the airflow field behind developing drifts, the distribution of wind speeds behind fences shown in Figure 3.29 provides the basis for evaluating how initial trapping efficiency varies with wind speed and fence height. The relationship in Figure 3.58, derived from simulation modeling, shows that initial trapping efficiency decreases somewhat as fence height increases. This is attributable to the decrease in particle size (and hence fall velocity) with increase in height. The $10-\mathrm{m}$ ambient wind speed has a much more pronounced effect on efficiency, however. For a 2-m-tall fence, for example, E_{o} varies from 99% at $U_{10}=35 \mathrm{~km} / \mathrm{h}(22 \mathrm{miles} / \mathrm{h})$, to 68% at $U_{10}=108 \mathrm{~km} / \mathrm{h}(67 \mathrm{miles} / \mathrm{h})$.

Absolute trapping efficiency increases with fence height as shown in Figure 3.59, demonstrating an advantage of tall fences.

Figure 3.58. How initial trapping efficiency varies with fence height and wind speed (Tabler and Jairell 1993).

Figure 3.59. How initial absolute trapping efficiency varies with effective fence height (Tabler 1994).

3.8.6.3 Other Factors Affecting Trapping Efficiency

In addition to the effect of wind speed previously described, trapping efficiency also varies with wind direction relative to fence orientation, stage of drift growth, and the chronology of changes in wind speed or direction as this affects the erodibility of previously deposited snow.

Fence characteristics that affect trapping efficiency are length, height, bottom gap, and porosity. As a first approximation, it can be assumed that trapping efficiency is proportional to snow storage capacity; that is, trapping efficiency varies with fence length, bottom gap, and porosity, as shown in Figures 3.46, 3.48, and 3.51. Solid fences are an exception to this rule, however, because they are relatively efficient in trapping snow during the early stages of growth before the upwind drift reaches equilibrium. Efficiency drops rapidly thereafter, which reflects the entrainment of snow particles in the accelerated flow over the top of the fence (Figure 3.60).

Figure 3.60. Snow particles jetting over the top of a solid barrier $1.2 \mathrm{~m}(4 \mathrm{ft})$ tall illustrate why the trapping efficiency declines after the upwind drift reaches the top of the fence (Tabler 1994).

3.8.6.4 How Trapping Efficiency Changes with Time

The effects of a snowdrift on trapping efficiency can be surmised from the discussion of snow deposition in topographic depressions (section 3.7.3). From the description of how snow is deposited behind a fence it is apparent that the angle of approach to the crest of the slip face changes as the drift grows, being positive (uphill) as the drift deepens during the second stage, and
 negative (downhill) as the drift lengthens during the third stage (Figure 3.33). Through much of the third stage, the approach angle remains relatively constant, averaging about 3°, consistent with a relatively high efficiency of 70% or so (Figure 3.27). Trapping efficiency changes in a complex way as a drift grows, and there may be intervals--especially during stage 2--when trapping efficiency increases with time.

An engineering approximation for how trapping efficiency changes with time, based on field measurements, is
$\mathrm{E} \not \subset \mathrm{E}_{\mathrm{o}}\left[1-\left(\mathrm{A} / \mathrm{A}_{\mathrm{e}}\right)^{2}\right]^{0.5}$
where E is trapping efficiency expressed as a fraction, E_{o} is initial trapping efficiency when the fence is empty, A is the cross-sectional area of the drift, and A_{e} is the cross-sectional area of the equilibrium drift when the fence is filled to capacity (Figure 3.61). Field measurements, and the results from the computer-based modeling presented in Figure 3.58, indicate that an appropriate value for E_{o} is 0.95 . This also seems reasonable considering the simplistic view that snow transport is proportional to the 3.8 power of wind speed. A 50% reduction in wind speed would therefore reduce transport potential by $93 \%\left(0.5^{3.8}=0.07\right)$.

Figure 3.61. Decline in trapping efficiency as a 50%-porous snow fence fills with snow, assuming $E_{o}=0.95$ (Tabler and Jairell 1993).

The average efficiency, $E_{\text {ave }}$, over a winter having snow transport, Q_{t}, equal to or less than the capacity of the fence, Q_{c}, is estimated by integrating the area
 under the curve represented by Equation (3.30) from $A=0$ to A_{f}, the value at the end of the season:
$\mathrm{E}_{\text {ave }}=\left[1 /\left(\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)\right]\left(\mathrm{E}_{\mathrm{o}}\right)\left\{0.5\left(\mathrm{~A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)\left[1-\left(\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)^{2}\right]^{0.5}+0.5 \sin ^{-1}\left(\mathrm{~A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)\right\}, \quad \mathrm{Q}_{\mathrm{t}} \leq \mathrm{Q}_{\mathrm{c}}$
Instantaneous and average trapping efficiencies of porous fences $(P=0.5)$ are presented in Table 3.6.

Table 3.6. Instantaneous (E) and average ($E_{\text {ave }}$) snow trapping efficiency of 50% porous snow fences, as a function of the relative cross-sectional area of the drift (A / A_{e}), as given by Equations (3.30) and (3.31) with initial trapping efficiency E_{0} equal to 0.95 .

$\mathrm{A} / \mathrm{A}_{\mathrm{e}}$	E	$\mathrm{E}_{\text {ave }}$		$\mathrm{A} / \mathrm{A}_{\mathrm{e}}$	E	$\mathrm{E}_{\text {ave }}$
0.0	0.95	---		0.55	0.79	0.90
0.05	0.95	0.95		0.60	0.76	0.89
0.10	0.95	0.95		0.65	0.72	0.88
0.15	0.94	0.95		0.70	0.68	0.87
0.20	0.93	0.94		0.75	0.63	0.85
0.25	0.92	0.94		0.80	0.57	0.84
0.30	0.91	0.94		0.85	0.50	0.82
0.35	0.89	0.93		0.90	0.41	0.80
0.40	0.87	0.92		0.95	0.30	0.77
0.45	0.85	0.92		1.00	0.00	0.75
0.50	0.82	0.91				

For the case where transport was just sufficient to fill the fence, the average trapping efficiency given by Equation 3.31 is $0.79 E_{o}$. For years when snow transport is greater than the capacity of the fence,

$$
\begin{equation*}
\mathrm{E}_{\text {ave }}=\mathrm{E}_{\mathrm{o}}(0.79)\left(\mathrm{Q}_{\mathrm{c}} / \mathrm{Q}_{\mathrm{t}}\right), \quad \mathrm{Q}_{\mathrm{t}}>\mathrm{Q}_{\mathrm{c}} \tag{3.32}
\end{equation*}
$$

The plot of average efficiency as given by Equations (3.31) and (3.32), and Figure 3.62, indicates that fences provide considerable benefits even in years when snow transport exceeds the design storage capacity of the fence.

Figure 3.62. Average trapping efficiency as a function of snow transport relative to capacity (Tabler and Jairell 1993).

3.9 References

Bagnold, R.A. 1941. The physics of blown sand and desert dunes. Methuen \& Co. Ltd., London.

Benson, C.S. 1962. Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. U.S. Army Cold Regions Research and Engineering Laboratory Research Report 70.

Benson, C.S. 1982. Reassessment of winter precipitation on Alaska's North Slope and measurements on the flux of wind-blown snow. University of Alaska, Fairbanks, Geophysical Institute Report UAG R-288.

Budd, W.R., R. Dingle, and U. Radok. 1966. The Byrd snowdrift project: Outline and basic results. In Studies in Antarctic Meteorology, American Geophysical Union, Antarctic Research Series 9: 71-134.

Colbeck, S.C. (Ed.). 1980. Dynamics of snow and ice masses. Academic Press, New York.

Coles, D. E. 1956. The law of the wake in the turbulent boundary layers. Journal of Fluid Mechanics 1: 191-126.

Dyunin, A. K. 1954. Tverdyi rashkod snegovetrovogo potoka (Soild flux of snow-bearing airflow). Trudy Transportno Energisheskogo Instituta, vol 4, 1954: 71-88. National Research Council of Canada, Technical Translation 1102 (1963), Ottawa, Ontario, Canada.
——. 1959. Osnovy teorii metelei (Fundamentals of the theory of snow drifting). Izvest. Sibirsk. Otdel. Akad. Nauk SSSR (12): 11-24, 1959. (In Russian). National Research Council of Canada Technical Translation 952 (1961), Ottawa, Ontario, Canada.

Finney, E.A. 1934. Snow control on the highways. Michigan Engineering Experiment Station, Michigan State College, Bulletin 57.

Gray, D.M. and D.H. Male (Ed.). 1981. Handbook of snow. Pergamon Press, Toronto, Ontario, Canada.

Greeley, R. and J. D. Iversen. 1985. Wind as a geological process on Earth, Mars, and Titan. Cambridge University Press, England.

Jellinek, H.H.G. 1957. Compressive strength properties of snow. U.S. Army Snow Ice and Permafrost Establishment, Research Report 34.

Kind, R.J. 1981. Snow drifting. In Handbook of snow. D.M. Gray and D.H. Male, eds. Pergamon Press, Toronto, Ontario, Canada. pp. 338-359.

Kobayashi, S. 1971. Development and movement of wavy features on the snow surface during snow drifting. Contributions from the Institute of Low Temperature Science, Series A, Physical Sciences, Number 29. pp. 81-92.

Kobayashi, D. 1972. Studies of snow transport in low-level drifting snow. Contributions from the Institute of Low Temperature Science, Series A, Physical Sciences, Number 24. pp. 1-58.

Komarov, A.A. 1954. Nektorye zakonomernosti perenosa i otlozheniya snega v raionakh zapadnoi Sibiri i ikh Ispol'zovanie v snegozadershanii i snegobor'be (Some rules on the migration and deposition of snow in western Siberia and their application to control measures). Trudy Transportno-Energicheskogo Instituta, Tom 4, p. 89-97 (in Russian). National Research Council of Canada Technical Translation 1094 (1963), Ottawa, Ontario, Canada.

Kuroiwa, D. 1962. A study of ice sintering. U. S. Army Corps of Engineeers, Cold Regions Research and Engineering Laboratory, Report 86.

Lee, L.W. 1975. Sublimation of snow in turbulent atmosphere. Ph.D. dissertation, University of Wyoming, Laramie.

Liljequist, G.H. 1957. Energy exchange of an Antarctic snowfield. Norwegian-British-Swedish Antarctic Expedition, 1949-52, Norsk Polarinstitutt, Oslo, Scientific Results, Volume II, Part 1C. pp. 188-233.

Male, D. 1980. The seasonal snow cover. In: Dynamics of snow and ice masses. S. Colbeck, ed. Academic Press, New York.

Mellor, M. 1965. Blowing snow. CRREL monograph, Part III, Section A3c, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH.

Mellor, M. and G. Fellers. 1986. Concentration and flux of wind-blown snow. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 86-11.

Owen, P. R. 1964. Saltation of uniform grains in air. Journal of Fluid Mechanics, vol 20, Part 2: 225-242.

Plate, E. J. 1971. The aerodynamics of shelterbelts. Agricultural Meteorology 8: 203-222.
Pomeroy, J.W. 1988. Wind transport of snow. Ph.D. dissertation, University of Saskatchewan, Saskatoon, Canada.
—_. 1989. A process-based model of snowdrifting. Annals of Glaciology, vol. 13. pp. 237240.

Pomeroy, J.W. and D.M. Gray. 1990. Saltation of snow. Water Resources Research 26(7):1583-1594.

Radok, U. Snow drift. Journal of Glaciology 19 (81): 123-129.
Schmidt, R.A. 1972. Sublimation of wind-transported snow--a model. U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station, Research Paper RM-90.
—_ 1981. Estimates of threshold windspeed from particle sizes in blowing snow. Cold Regions Science and Engineering 4: 187-193.
——. 1982a. Properties of blowing snow. Reviews of Geophysics and Space Physics 20: 3944.
——. 1982b. Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Boundary Layer Meteorology 23: 223-246.
1986. Transport rate of drifting snow and the mean wind speed profile. Boundary Layer Meteorology 34: 213-241.

Schmidt, R.A. and K.L. Randolph. 1981. Predicting deposition of blowing snow in trenches from particle trajectories. In: Western Snow Conference (St. George, UT; April 14- 16, 1981) Proceedings 49: 34-42.

Tabler, R. D. 1974. New engineering criteria for snow fence systems. Transportation Research Record 506: 65-78.
—_. 1975a. Estimating the transport and evaporation of blowing snow. In: Symposium on Snow Management on the Great Plains (Bismarck, ND; July 1975) Proceedings, Great Plains Agricultural Council Publication 73: 85-104.
——. 1975b. Predicting profiles of snowdrifts in topographic catchments. In: Western Snow Conference (Coronado, CA; April 23-25, 1975) Proceedings 43: 87-97.
—_ 1979. Visibility in blowing snow and applications in traffic operations. In: Snow Removal and Ice Control Research, Transportation Research Board Special Report 185 (Proceedings, 2nd International Symposium, Hanover, NH; May 15-19, 1978). pp. 208214.
——. 1980a. Geometry and density of drifts formed by snow fences. Journal of Glaciology 26(94): 405-419.
—_. 1980b. Self-similarity of wind profiles in blowing snow allows outdoor modeling. Journal of Glaciology 26(94): 421-434.
1984. Using visual range data for highway operations in blowing snow. Optical Engineering 23(1): 055-061
—_ 1985. Ablation rates of snow fence drifts at 2300-meters elevation in Wyoming. In: Western Snow Conference (Boulder, CO; April 16-18, 1985) Proceedings 53: 1-12.
—_ 1986. Snow fence handbook, Release 1.0. Tabler \& Associates, Laramie, WY.
——. 1989. Snow fence technology: State of the art. In: First International Conference on Snow Engineering (Santa Barbara, California; July 10-15, 1988), U. S. Army Corps of Engineers, Cold Regions Research Laboratory, Special Report 89-6: 297-306.
. 1991a. Snow fence guide. Strategic Highway Research Program, Report SHRP-H-320, National Research Council, Washington, D.C.
. 1991b. Snow transport as a function of wind speed and height. In: Cold Regions Engineering. Proceedings, Cold Regions Sixth International Specialty Conference TCCP/ASCE (Feb. 26-28, 1991; West Lebanon, NH), pp. 729-738.
—_. 1994. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.
2002. Safety Improvement Study: Interstate-80 Mile 325-335. Final Report, Agreement No. 54839, prepared for the Transportation Commission of Wyoming.

Tabler, R. D. and R. L. Jairell. 1980. Studying snowdrifting problems with small-scale models outdoors. In: Western Snow Conference (Laramie, Wyo.; April 15-17, 1980) Proceedings 48: 1-13.
——. 1993. Trapping efficiency of snow fences and implications for system design. Transportation Research Record No. 1387, Snow Removal and Ice Control Technology (Papers presented at a Symposium Sept. 14-18, 1992, Minneapolis, MN). Transportation Research Board, National Research Council, National Academy Press, Washington, DC, pp. 108-114.

Tabler, R. D. and K. L. Johnson. 1971. Snow fences for watershed management. In: Symposium on Snow and Ice in Relation to Wildlife and Recreation (Ames, IA; February 11-12, 1971) Proceedings, 116-121.

Tabler, R. D. and R. A. Schmidt, Jr. 1972. Weather conditions that determine snow transport distances at a site in Wyoming. UNESCO / WMO Symposia on the Role of Snow and Ice in Hydrology (Banff, Alberta, Canada; September 6-13, 1972) Proceedings, 118-127.
——. 1986. Snow erosion, transport, and deposition in relation to agriculture. Pages 11-58 In Proceedings, Symposium on Snow in Agriculture Symposium (Swift Current, Saskatchewan, Canada; July 9-11, 1985), H. Steppuhn and W. Nicholaichuk, ed. Great Plains Agricultural Council Publication No. 120. pp. 11-58.

Tabler, R.D., C.S. Benson, B.W. Santana, and P. Ganguly. 1990. Estimating snow transport from wind speed records; Estimates versus measurements at Prudhoe Bay, Alaska. In: Western Snow Conference (Sacramento, CA, 17-19 April 1990) Proceedings 58: 61-72.

Tabler, R.D., J. W. Pomeroy, and B.W. Santana. 1990. Drifting snow. In: Cold Regions Hydrology and Hydraulics, ASCE Technical Council on Cold Regions Engineering Monograph, pp. 95-145.

Takeuchi, M. 1980. Vertical profile and horizontal increase of drift-snow transport. Journal of Glaciology 26(94): 481-492.

Takeuchi, M. 1989. Snow collection mechanisms and the capacities of snow fences. Annals of Glaciology 13:248-251.

4 Quantifying the Blowing Snow Problem

4.1 Scope

This chapter recommends a procedure for analyzing snow drifting problems, and describes the information, data, and analyses required for quantifying wind-transported snow at a site.

The steps required before specific snow control measures can be designed are:

1. Identify problem
2. Analyze problem
3. Identify possible solutions
4. Assemble data
5. Estimate mean annual snow transport and direction
6. Determine snow storage capacity required for control measures

4.2 Highlights

$>$ Identify the problem: Drift encroachment on the road? Poor visibility for drivers? Slush and ice formation?
$>$ Determine the source of the problem. Evaluate factors such as cross-section geometry, alignment, safety barriers, roadside structures and vegetation, development of snow berms.
> Identify possible solutions to determine required data, information, and analyses.
$>$ Data and information to be collected include:

- Location of problem limits;
- Winter field measurements of wind direction and snow accumulation;
- Wintertime aerial photos for large projects;
- Climatic data (snowfall, temperature, and wind speed and direction);
- Topographic maps and orthophoto quadrangles;
- Plans that show road geometry.
$>$ Quantification of the blowing snow problem at a site involves a series of step-by-step calculations to estimate:
- Snow accumulation season;
- Potential snow transport, $Q_{u p o t}$, based on wind records;
- Potential snow transport, $Q_{\text {spot }}$, based on snowfall and evaporation;
- Prevailing transport direction(s);
- Fetch distance (F);
- Mean annual transport, $Q_{t, \text { ave }}$, for site;
- Design transport, $Q_{\text {des }}$, for snow control measures.
$>$ The snow storage capacity for which control measures must be designed, $Q_{d e s}$, is determined by the desired exceedance probability or benefit-to-cost ratio.
$>$ When benefits are equal to the reduction in snow removal costs, designing the capacity of snow fences and other control measures for the mean annual snow transport provides the maximum benefit-to-cost ratio.

4.3 Identifying the Problem

Although maintenance crews and law enforcement officers are most familiar with drifting problems within their jurisdiction, they are usually unaware of the potential for solving the problems. Managers and engineers who have maintenance responsibilities must take the lead in identifying and prioritizing drifting problems.

Although blowing snow problems can best be identified through discussions with maintenance personnel, historical crash data can also provide an indication, especially when crash report forms include information on road and weather conditions. A "blowing snow" or "ground blizzard" category for weather conditions at the time of the incident provides an unambiguous indication as to the need for mitigation measures at specific locations. The analysis of crashes on a 20 -mile section of Wyoming Interstate-80 (Figures 4.1 and 4.2) illustrates the correlation between icy road conditions and ground blizzard crashes, and the locations where mitigation measures are required.

Figure 4.1 Correlation of icy road condition crashes with ground blizzard crashes on a 10-mile section of Wyoming I-80 suggests that blowing snow is the primary cause of icy road conditions (Tabler 2002).

Figure 4.2. Distribution of crashes associated with winter condition crashes and ground blizzard conditions on Wyoming I-80, by halfmile locations (Tabler 2002).

4.4 Analyzing the Problem

After a problem has been identified, the next step is for the blowing snow specialist to
 visit the site and obtain information from maintenance personnel most familiar with the problem. This section is intended to serve as a guide to some of the observations and information required for an accurate understanding of the causes and importance of the problem. To avoid compromising control measures before the design begins, existing right-of-way should not be considered as a constraint during the data collection and analysis stages.

4.4.1 Problem Components

Every blowing snow problem has four aspects:

1. Type of Problem (snowdrift, poor visibility, slush or ice)
2. Effect (crashes, excessive snow removal costs, pavement repair costs)
3. Source of blowing snow (within right-of-way, adjacent open field, frozen lake)
4. Cause of Problem (cross-section geometry, horizontal or vertical alignment, delineation, safety barrier, roadside vegetation or structure, snow removal practices, traffic)

4.4.2 Specifying the Problem and Effects

The following questions should be answered as part of every problem analysis:
$>$ Is the problem drift encroachment, poor visibility, road icing, or a combination?
$>$ If the problem is related to snow deposition, what is the safety hazard? (restricted site distance, poor visibility caused by snow blowing off the drift at windshield level, loss of vehicle control)
$>$ What is the crash history at this location?
$>$ Does a drift block roadside drainage or otherwise contribute to water infiltration? If so, what pavement damage is evident?
> What impact does the blowing snow have on crew requirements, duty cycle, and overtime?
$>$ What is the year-to-year variability in problem occurrence and severity?
$>$ What specific benefits would be derived from solving this problem? Would it improve safety for public or maintenance workers? Reduce overtime? Free equipment for use at other locations?

Answers to these questions help justify and prioritize the problem, and help to identify appropriate mitigation measures. Much of this information must come from on-site meetings with the field maintenance personnel who are most familiar with the problem, and from wintertime field reviews by the snow control specialist. Other useful information sources are law enforcement personnel, local residents, and crash history.

4.4.3 Source of Blowing Snow

The initial problem analysis should identify the source of blowing snow, and hence the approximate direction of the problem-causing winds. Only relative quantification is required at this preliminary stage: Is the snow transport high, medium, or low? It is particularly important to differentiate between "near snow" and "far snow," as defined conceptually in Figure 4.3. Although total seasonal transport is low where the fetch is restricted to the right-of-way or short distances upwind, the quantity of blowing snow can nevertheless be a dominant cause of icy roads and high crash incidence, and this is particularly true on high embankments exposed to the wind and lacking trees and shrubs.

Figure 4.3. Distinction between "near snow" and "far snow."

4.4.4 Problem Causes

The causes of a problem can be difficult to determine, but are important for specifying a solution or designing control measures. From the outset, it is important for the snow control specialist to be objective in order to avoid overlooking options. A preoccupation with designing drift-free cross-sections, for example, can preclude the possibility of improving visibility or reducing road icing by using snow fences.

The following factors can be contributing causes to a blowing or drifting snow problem:
$>$ Cross-section geometry: Drifts that form in cuts can encroach on the road surface; insufficient fill height above grade can make the road surface lower than the snow cover or plow berm; high embankments with steep slopes exacerbate blowing snow conditions and safety barriers induce snowdrifts; and a shallow and narrow ditch cross-section can result in roadside accumulation of plowed snow.
> Horizontal alignment: Alignment parallel to wind prevents drift encroachment in cut sections, but can result in visibility and road icing problems because of the increase in snow transport with fetch distance.
> Vertical alignment: Because plow cast distance varies with truck speed, plow berms are higher and closer to the road where uphill grades cause lower truck speeds.
$>$ Roadside structures: Roadside fences (Figure 4.4), signs (Figure 4.5), buildings, bridge abutments, and improperly placed snow fences can form drifts encroaching on the road.
$>$ Roadside vegetation: Trees, shrubs, and unmowed vegetation can cause drifts.
$>$ Safety barriers: W-beam guardrails and concrete safety barriers cause deposition of blowing snow. Equally important, they promote the accumulation of a plow berm by obstructing snowplow cast.
$>$ Snow removal operations: Snow removal procedures that promote the growth of plow berms include casting snow into the wind and driving too slowly while plowing. Rotary plows minimize plow berm formation, and are preferable to displacement plows for some operations.
> Inadequate delineation contributes to accidents in blowing snow conditions. Delineator posts should be spaced no farther apart than $60 \mathrm{~m}(200 \mathrm{ft})$, and should extend at least 1.5 $\mathrm{m}(5 \mathrm{ft})$ above the snow cover or plow berm.
> Safety hazards associated with limited visual range increase with traffic volume.
> Maintenance standards contribute directly to blowing snow problems. Light blowing snow conditions can create significant maintenance problems in areas having a "bare pavement" policy, whereas the same conditions would require no maintenance action if standards were less rigorous.

Figure 4.4. A board fence, 2.4-m (8 ft) tall, that caused a drift on the road. Wind was from left. Structures and vegetation on the downwind side of the road are sometimes overlooked during summertime field reviews (Tabler 1994).

Figure 4.5. This tall billboard is causing a snowdrift on the road even though it is $\mathbf{3 0} \mathbf{~ m}$ (100 ft) from the shoulder (Tabler 1994). Plow drivers had not realized that the sign was causing this drift.

4.5 Identifying Possible Solutions

The information collected for the problem analysis allows the snow control specialist to identify possible solutions, and indicates the need for additional data and analyses. Not all blowing snow problems can be solved, but mitigating a problem at one location indirectly benefits other locations as well because the savings in time and other expenditures can then be shifted to locations where drift control measures may not be feasible. This concept of indirect benefits applies on a district- or statewide basis, as well as for a particular route.

All possible solutions should be considered at the outset:
$>$ Structural snow fences
$>$ "Living" snow fences
$>$ Cross-section modification
$>$ Changes in snow removal operations
$>$ Safety barrier modification
$>$ Management of roadside vegetation
$>$ Delineation improvement
$>$ Warning signs
Although measures that are obviously inapplicable or inappropriate should be rejected early in the review process, care should be exercised to avoid preconceptions about right-of-way constraints, cost, or the "best" solution among remaining options. Specific measures should not be recommended until after the data have been analyzed, as described in section 4.7.

4.6 Assembling Data and Information

This section describes the information required for designing mitigation measures, and procedures for obtaining the data.

4.6.1 Winter Field Measurements and Observations

This section describes the most important information to be collected during an on-site review of a particular problem. Suggested forms for a Problem Evaluation Checklist are presented in the Appendix.

4.6.1.1 Determining Specific Location

The milepost or engineering station that marks the beginning and end of each problem should be identified by winter field measurements. Although these observations should be made with the input of the local maintenance foreman or superintendent, the snow control specialist should make an independent assessment to interpret maintenance input based on the information contained in this guide.

Locations should be identified to within 5 m or so (16 ft) and marked on topographic maps or plan sheets at the time of observation. For large-scale projects, aerial photos taken during the winter are useful for documenting problem boundaries, and provide information on wind directions. Guidelines for aerial photographs are described in section 4.6.2.

A convenient source of digital topographic maps is the 3-D TopoQuads ${ }^{\text {TM }}$ Software 3 available from DeLorme (www.delorme.com) (telephone 207-846-7000), which provides seamless USGS (United States Geological Survey) topographic coverage on CD-ROMs (CDs) or DVDs. An optional global positioning satellite (GPS) receiver allows users to locate and mark their positions on the map, obviating the need for distance measurements during the field review. This software is also extremely useful for laying out snow fence systems, as described in chapter 6. Other sources of maps are presented in section 4.6.4.

4.6.1.2 Quantifying and Documenting the Drift Problem

Documentation of problem conditions is useful for prioritizing, designing, and evaluating mitigation measures. In addition to photos and video recordings showing pre-existing snow, visibility, and road ice conditions, measurements of snow depths at the edge of pavement and in cut sections can provide a basis for demonstrating the effectiveness of mitigation measures. This information often proves valuable in obtaining support for mitigation efforts at other locations, as well as providing evidence as to the importance of maintaining the mitigation measures in the future.

4.6.1.3 Measuring Prevailing Transport Direction

Although snowplow operators are an important source of information about the general wind direction associated with drifting problems, and particularly about "problem storm" directions, a more rigorous determination of the prevailing transport direction(s) is required for designing drift control measures. It is important to remember that the actual wind direction can differ appreciably from that perceived by maintenance personnel because: 1) the direction of the wind in cuts can be markedly different from that of the approaching wind, and 2) the driver's perception of wind direction is distorted by variable horizontal road alignment.

[^2]Wind direction can be determined in the field by using a compass to measure:
$>$ Wind direction at the time of a site visit (by facing into the wind);
$>$ Alignment of longitudinal drift features in the field;
$>$ Alignment of wind-sculpted vegetation, such as flagged or bent trees;
$>$ Orientation of snow-caused abrasion on wood poles or posts.

4.6.1.3.1 Field Wind Measurements

Wind direction can be measured with a hand-held compass while facing into the wind, but it is important to select a location where wind direction is not influenced by the road itself. Wind direction in a cut, for example, can differ from that of the approaching wind by 45° or more. If wind measurements are to be meaningful, they must be taken during typical weather conditions with strong winds, and must be repeated several times throughout the winter.

4.6.1.3.2 Field Snowdrift Measurements

A hand-held compass also can be used to measure the alignment of drifts behind shrubs, trees, or other objects. The streamlined shapes of drifts (Figure 4.6) provide readily identifiable indicators for wind direction. The alignment of large drifts, measured late in the winter, represents the average direction of drifting. If only small drifts are available, measurements must be repeated several times over a winter to obtain a meaningful average. Because road geometry can affect the wind, it is important not to use drifts in road cuts or other locations where the wind direction is not representative of that where the fences would be placed.

Figure 4.6. The orientation of streamlined drifts formed by bushes and trees can be used to determine the prevailing direction of the snow transport (Tabler 1994).

4.6.1.3.3 Other Indicators of Snow Transport Direction

Blowing snow can affect the shape of exposed plants. The primary mechanism by which blowing snow alters vegetative growth is by wearing away the protective layer of wax covering buds, desiccating exposed plant tissue. Growing points that face downwind or that are otherwise protected are spared, resulting in the flagged and hedged appearance of trees and shrubs in exposed locations. The orientation of wind-sculpted vegetation, or the abrasion pattern on wood
posts or poles, can provide a reasonable estimate of the prevailing direction of blowing snow (Figure 4.7), even during summer months.

Figure 4.7. Abrasion pattern on posts indicates prevailing direction of snow transport (Tabler 1986).

4.6.1.4 Measuring Snow Depth over the Fetch

If possible, the depth of the snow that remains on the fetch at the end of the winter should be measured. The best date for such a measurement is a week or so before the end of the snow accumulation season, as described in section 4.7.2.

4.6.2 Aerial Photography

For larger projects, wintertime aerial photographs facilitate measurements of prevailing transport directions and locations of problem areas. As shown in Figure 4.8, the alignment of drifts formed by solitary objects is readily discernible at scales up to $1: 12,000$ if the following requirements are met: 1) black-and-white film is preferable (color film often does not provide sufficient contrast); 2) photographs must be taken on bright, sunny days at low sun angles; 3) flights should be scheduled after major drifting events with typical winds, but not after a recent snowfall that can cover up drift features; 4) photographs must be taken before significant melting takes place, and preferably near the time of peak snow accumulation; and 5) there must be objects that form drifts protruding above the snow cover.

Aerial photography can also be used to identify and delineate problem locations, determine fetch distance, and facilitate preliminary fence layout by providing more detailed and recent information than is typically available on topographic maps. The cost of aerial photographs is easily repaid by the time saved in field measurements, design, and preparation of location maps. For major projects, two or even three photography flights during a winter would be justifiable to ensure reliable estimates.

Figure 4.8. An aerial photo at a scale of $\mathbf{1 : 1 2 0 0 0}$ shows alignment of drifts behind large shrubs and terrain features (Tabler 1986).

4.6.3 Assembling Climatic Data

This section describes data sources and specific variables to be determined.

4.6.3.1 Sources of Climatic Data

The principal source for climatic data is the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). Current data sets can be viewed and ordered at http://lwf.ncdc.noaa.gov/oa/ncdc.html. Although new compilations are frequent, the following current products on compact disc (CD) are useful:
$>$ Climatography of the United States No. 81. Monthly Station Normals of Temperature, Precipitation, and Heating and Cooling Degree Days 1971-2000. This NCDC data set is on a single CD, and contains data for 7937 stations. This set does not include measured snowfall, but only snowfall water-equivalent.
> Integrated Surface Hourly Observations 1995-1999. This NCDC data set on multiple CDs provides hourly values of wind speed and direction, in addition to information on many other weather parameters including air temperature, sky condition, precipitation form, blowing snow, and others. Data are available for approximately 10,000 stations worldwide on twelve CDs, four of which contain data for the United States.
$>$ United States Snow Climatology, Version 1.0, October 1998. This NCDC product contains daily, monthly, and seasonal snowfall and snow depth, in addition to normals for

1961-1990 and numerous other computed statistics such as frequencies, return periods, extremes, etc.
> Solar and Meteorological Surface Observation Network 1961-1990. This NCDC product is a 3 -volume CD collection of 237 National Weather Service stations, containing hourly data with essentially the same parameters as the Integrated Surface Hourly Observations described above.

Digital compilations by EarthInfo, Inc. (www.earthinfo.com) are especially convenient because all years of record are included, the software allows data to be sorted or filtered according to user-specified conditions, and data can be easily exported. Data sets useful for blowing snow evaluations are:
$>$ EarthInfo, Inc., NCDC Summary of the Day (TD-3200), 1867 - 2001. Data for 19,355 stations in the U.S. are contained on four regional disks. Data elements are daily values of maximum and minimum temperature, precipitation, snowfall, and evaporation.
$>$ EarthInfo, Inc., NCDC First Order Summary of the Day (TD-3210), 1881-2001. Data for 1,240 stations in the U.S. are contained on twelve regional disks. Data elements include daily maximum, minimum, and mean temperature; average dew point temperature; maximum and minimum relative humidity; precipitation; snowfall; snow depth; wind direction; and wind speed.
$>$ EarthInfo, Inc., NCDC Surface Airways (TD-3280), 1948-2001. Hourly observations for 529 stations in the U.S. are contained on twelve regional CDs. Data elements include wind speed and direction, air temperature, dew point temperature, relative humidity, and present weather classifications (including form of precipitation, blowing snow, etc.). The value of this product is that the directional distribution of wind speed can be determined for user-specified weather conditions such as snowfall, blowing snow, air temperature, etc.

Wind data for stations not included in the above data sets can be obtained from the six regional climate centers established as part of the U.S. National Climate Program (www.ncdc.noaa.gov/oa/climate/regionalclimatecenters.html). Archived data from weather stations operated as part of road weather information systems (RWIS) provide another source of wind and temperature data, but not snowfall.

A mesoscale wind model that combines geographical and climatic data has been used to develop average wind speed and direction data on a 1-km grid. The data have been compiled for New York state by TrueWind Solutions,LLC (telephone 518-437-8650), and can be accessed at the Internet Web site (www.truewind.com). The accuracy of these results is uncertain, but results appear promising from a preliminary evaluation in Wyoming. Although the data are only available for 16-compass point direction classes (N, NNE, NE, ENE, etc.), this limitation is insignificant compared to the value of being able to estimate wind direction at locations remote from stations with historical data.

Snowfall and snow depth probabilities for the northeastern United States and southeastern Canada have been compiled in an atlas by Cember and Wilks (1993). Digital data are also available (Cember, Eggleston and Wilks 1993).

As discussed in section 4.6.3.4, snowfall and precipitation data are often subject to significant under-measurement because of wind effects. The most reliable snow data are measurements by the Natural Resources Conservation Service (NRCS) taken for water supply forecasting. These data are available for Alaska, Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, South Dakota, Utah, and Washington. The permanent locations where these measurements are made are typically in small mountain meadows protected from the wind. The peak annual snow water-equivalent over the winter is a reasonable approximation of snowfall water-equivalent over the snow accumulation season. Historical records are available at www.wce.nres.usda.gov.

Climatic parameters required to quantify blowing snow conditions have been compiled for Minnesota (http://www.climate.umn.edu/) and Wyoming (Tabler 1997). A compilation for New York State (Tabler 2000) will be available as part of the SNOWMAN program for computer assisted design of passive snow control measures.

4.6.3.2 Historical Wind Records

Historical wind records can be used to estimate snow transport and to determine its directional distribution. The form of data required for such an analysis is a tabular presentation for each month showing the frequency of observations by wind speed and direction classes, as shown in Table 4.2. Tabulation should be by 10° azimuth increments, or in the case of older data, 16 compass point direction classes in the narrowest wind speed classes available. Three-knot (or 6 km / h) class widths are optimum, but the standard classes used in Airport Climatological Summaries will suffice (in knots, $0-3,4-6,7-10,11-16,17-21, \ldots,>40$). Ideally, "percent frequency of observations" should be calculated to 0.01 resolution; a 0.1 resolution will provide usable but less accurate approximations of total snow transport.

Finally, the height of the anemometer must be determined so that the wind speeds can be adjusted to those at $10-\mathrm{m}$ height $\left(\mathrm{U}_{10}\right)$. This information is provided in the Local Climatological Data available from the NCDC at the aforementioned Internet Web site, in addition to the compilation by Changery (1978).

4.6.3.3 Mean Monthly Temperatures

Mean monthly air temperatures are used to calculate the snow accumulation season, and can be obtained for nearby weather stations from the datasets described in section 4.6.3.1. If the elevation at the weather station is much different from the problem location, reported temperatures can be adjusted using the normal or standard lapse rate of temperature in the atmosphere:
Temperature decrease with increase in elevation $=0.65^{\circ} \mathrm{C} / 100 \mathrm{~m}\left(3.5^{\circ} \mathrm{F} / 1000 \mathrm{ft}\right)$

4.6.3.4 Snowfall and Winter Precipitation

Winter snowfall water-equivalent, $S_{\text {we }}$, is used to estimate snow transport. Mean monthly snowfall water-equivalent should be estimated for the problem location from records for nearby reporting stations. A reasonable estimate for water-equivalent is
$\mathrm{S}_{\mathrm{we}}=($ snowfall depth $) / 10$
If essentially all of the winter precipitation is in the form of snow, snowfall water-equivalent can also be assumed equal to the precipitation received during the snow accumulation season.

All precipitation gages and exposed snow boards (boards used to provide a reference surface for snow depth measurements) underestimate the actual precipitation received when wind is blowing. At windy sites where the gage is not equipped with a wind shield, true precipitation can be as much as twice that caught in the gage (Tabler et al. 1990). A statewide study in Wyoming found that unshielded precipitation gauges caught only about one-third of the actual snowfall, compared to 50% for gauges equipped with a wind shield (Tabler 1997). Most precipitation gages in the National Weather Service Cooperative Observer Network are in exposed locations (such as airports), and not all are equipped with wind shields. When using precipitation data, it is advisable to visit the weather stations involved to determine whether some allowance should be made for gage-catch error.

The best estimate for winter precipitation is provided by peak snowpack water-equivalent as measured on snow courses operated by the U.S. Natural Resources Conservation Service. Because these snow courses are usually located in sheltered forest openings, the snowpack water-equivalent provides a very good measure of precipitation. It is possible to use regional snow course data from the mountains to develop a precipitation/elevation relationship that can be extrapolated to lower elevations as an alternative to using precipitation or snowfall data reported by the National Climatic Data Center.

Where data are not available for a problem location, various regression or contouring techniques can be used to estimate precipitation using data from other stations. In locations where precipitation increases with elevation, for example, a regression relating snowfall to elevation can be used for estimates at the problem location.

4.6.4 Topographic Information

Topographic maps are used to a) determine the fetch, b) identify topographic or man-made features that affect snow fence placement, and c) determine magnetic declination needed to correct compass readings to true north. The most recent editions of $7.5-$ minute quadrangles (scale $1: 24,000$) that show trees and brush should be used. Printed maps and scanned digital images (Digital Raster Graphics) can be ordered from the USGS (http://edc.usgs.gov/products/map.html) (telephone 303-236-7477).

Topographic maps are also available on the Microsoft ${ }^{\circledR}$ TerraServer-USA Internet Web site http://terraserver-usa.com--one of the world's largest online databases providing free public
access to maps and orthophoto quadrangles ("orthoquads") that are orthorectified to enable accurate measurements of ground distance. A 1-meter resolution orthoquad covers 3.75 minutes latitude by 3.75 minutes longitude.

As described in section 4.6.1.1, another source for digital USGS maps is the 3-D TopoQuads ${ }^{\mathrm{TM}}$ software available from DeLorme (www.delorme.com) (telephone 207-846-7000). In addition to seamless coverage, this software provides selective zoom, 3-dimensional views, drawing capability, GPS interconnectivity, and precise determination of latitude and longitude at any point. Seamless topographic maps and related software are also available from the National Geographic Society (www.nationalgeographic.com/topo).

4.6.5 Road Geometry

4.6.5.1 Plan and Profile

The following information can be obtained from plan and profile sheets or from a field survey, if required:
$>$ Engineering stations of problem limits
$>$ Elevation
$>$ True bearing of the road
$>$ Right-of-way widths
> Land ownership adjacent to right-of-way
$>$ Vertical gradient

4.6.5.2 Typical Road Cross-sections at Site

Typical as-built cross-sections are used to determine the cause of snow drifting problems, to estimate the snow storage capacity in the existing section, and to determine what earthwork would be required to eliminate drift encroachment. Cross-sections are also used to determine fence placement (chapter 6).

Because the topography both upwind and downwind of the road section influences the equilibrium snow deposit at the road section, cross-section data should begin at least 60 m (200 ft) upwind of the right-of-way and extend for at least 60 m beyond the downwind shoulder. Elevations and distances should be measured to the nearest $0.1 \mathrm{~m}(0.3 \mathrm{ft})$. Along each crosssection, elevations should be measured at 3-m (10 ft) intervals, with intermediate stations at slope breaks.

4.6.6 Other Information

4.6.6.1 Vegetation over the Fetch

Vegetation influences how much snow is retained on the fetch. The average plant height can provide a basis for estimating snow retention in areas where total snowfall is the primary factor limiting snow transport (that is, locations periodically swept bare by the wind).

4.6.6.2 Land Use

Land use can also be a consideration in determining the type of control measure appropriate for a site. It may be preferable to use tree plantings instead of structural snow fences in areas where appearances are important, and temporary fences may be necessary on cultivated farmland.

4.6.6.3 Soils

Soils information is necessary for specifying supports for structural snow fences, and for determining the feasibility of, and species required for, living snow fences. Specific information should include:
$>$ Geologic parent material;
$>$ Depth to bedrock;
$>$ Texture (e.g., sandy clay loam);
$>$ Drainage (e.g., wet, well-drained);
$>$ Salinity problem, if any;
$>$ Qualitative bearing strength (poor, average, good).

4.7 Estimating the Mean Annual Snow Transport

4.7.1 Outline of Procedure

As described in chapter 3, snow transport is the mass of blowing snow in the first $5 \mathrm{~m}(16 \mathrm{ft})$ above the ground, per meter of width across the wind, over a specified time. This information is needed to specify the snow storage capacity of fences, vegetative plantings, or cut sections. This section describes the procedure for estimating mean annual snow transport from climatic data.

Potential snow transport is the maximum quantity of blowing snow expected at a site, disregarding fetch, and is represented by $Q_{i n f}$, the subscript indicating an infinite fetch. $Q_{\text {spot }}$ is the potential snow transport calculated from the standard snow transport equation (Equation
(3.9)). For snowfall water- equivalent, $S_{\text {we }}$, in millimeters, and F and T in meters,
$\mathrm{Q}_{\mathrm{t}}=0.5 \mathrm{~T} \mathrm{~S}_{\mathrm{rwe}}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right)$
where mean annual snow transport, $Q_{t, a v e}$, is in kilograms per meter.
$Q_{\text {spot }}$ is the transport that would result if all winter snowfall were relocated $\left(S_{r w e}=S_{w e}\right)$ over an unlimited fetch, so that Equation (4.3) becomes
$\mathrm{Q}_{\text {spot }}=0.5 \mathrm{~T} \mathrm{~S}_{\mathrm{we}}$
If wind is the factor that limits snow transport, as would be the case if an erodible snow cover persisted throughout the winter, then snow transport would be determined by the wind, and potential transport would be calculated from wind records using Equation (3.3):
$\mathrm{Q}_{0-5}=\mathrm{U}_{10}{ }^{3.8} / 233847$
where Q_{0-5} is in kg / s per meter of width across the wind, and U_{10} is in m / s. Potential transport calculated in this manner is designated $Q_{u p o t}$ and is calculated as
$\mathrm{Q}_{\text {upot }}=\sum \mathrm{q}$
where q is the contribution of each wind speed/direction cell in a tabulation of the frequency distribution of wind speed and direction, over the range of wind directions relevant to designing snow control measures at a particular site.

If $Q_{u p o t}$ is less than $Q_{s p o t}$, then wind is the factor limiting transport, and $Q_{i n f}$ is taken as being equal to $Q_{u p o t}$. If $Q_{\text {spot }}$ is less than $Q_{u p o t}$, then snowfall controls snow transport, and $Q_{i n f}$ is calculated as $0.5 T S_{r w e}$ (Equation (4.4)).

Finally, the mean annual snow transport is calculated by correcting $Q_{i n f}$ for the actual fetch at the site, using Equation (3.10):

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{t}, \mathrm{ave}}=\mathrm{Q}_{\mathrm{inf}}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right) \tag{4.7}
\end{equation*}
$$

Estimating snow transport therefore requires a step-by-step procedure as shown in Figure 4.9. The remainder of section 4.7 describes this procedure in detail.

Figure 4.9. Flow chart of the procedure for estimating mean annual snow transport, $Q_{t, a v e}$ (Tabler 1993).

4.7.2 Determining Dates of the Snow Accumulation Season

The snow accumulation season is the period of drift growth beginning with the first blowing snow event that causes drifts persisting through the winter, and ending when snowdrifts reach maximum volume for the winter (Tabler 1988). Calendar dates of the average snow accumulation season must be estimated as the first step in estimating snow transport.

Although the NCDC datasets listed in section 4.6.3.1 report "snow on ground" for some stations, it is usually not possible to use this information to determine the snow accumulation season. "Snow on ground" is typically measured in locations exposed to the wind. And even at sheltered locations, it is difficult to determine the date of peak water-equivalent from snow depth data because water-equivalent can increase while snow depth decreases due to densification.

Snow survey data, such as reported by the NRCS, can be used to estimate snow accumulation dates at "SNOTEL" locations equipped with recording equipment. Most historical data consist of manual measurements that commence in mid-winter and repeated at monthly or biweekly intervals. The result is that the fall date cannot be estimated, and the resolution of the spring date is poor.

The snow accumulation season is delimited by the dates when average air temperature reaches $0^{\circ} \mathrm{C}$, as computed from mean monthly temperatures (Tabler 1988). This latter qualification, imposed because monthly mean values are readily available and convenient to use, assumes that the monthly mean applies to the middle of the month. $0^{\circ} \mathrm{C}$ dates are therefore computed by interpolation between consecutive months having mean temperatures above and below $0^{\circ} \mathrm{C}$. This interpolation procedure is represented by equation,
$\mathrm{n}=30\left(\mathrm{~T}_{+}\right) /\left(\mathrm{T}_{+}-\mathrm{T}_{-}\right)$
where n is the number of days from the middle of the warmer month to the $0^{\circ} \mathrm{C}$ date (n is added to the mid-date of the warmer month in the fall, and subtracted from the mid-date of the warmer month in the spring). T_{+}and T_{-}are the mean temperatures $\left({ }^{\circ} \mathrm{C}\right)$ of the warmer and colder months, respectively.

For locations where representative climatic data are available, $0^{\circ} \mathrm{C}$ dates are computed directly from Equation 4.8, as shown by the following example.

Example (Buffalo, New York):

Given:
Mean monthly temperatures

	Nov	Dec	Jan	Feb	Mar	Apr
${ }^{\circ} \mathrm{F}$	40.0	29.6	24.7	24.6	32.5	43.6
${ }^{\circ} \mathrm{C}$	4.4	-1.3	-4.1	-4.1	0.3	6.4

Required: Calculate dates of snow accumulation season:
Solution: Equation (4.8):
Fall date: $\mathrm{n}=30(4.4) /(4.4+1.3)=23$; Nov $15+23$ days $=$ Dec 8
Spring Date: $n=30(0.3) /(0.3+4.1)=2 ;$ Mar 15.5-2 days $=$ Mar 14

Examples of $0^{\circ} \mathrm{C}$ dates calculated from 10- to 30 -year mean temperatures are:

Ames, Iowa:	November 27-March 10
Barrow, Alaska:	September 8 - June 13
Boise, Idaho:	December 16-January 29
Buffalo, New York:	December 8 - March 14
Denver, Colorado:	December 22 - February 6
Flagstaff, Arizona:	December 5 - February 26
Kalispell, Montana:	November 12 - March 19
Laramie, Wyoming:	November 11 - March 29
Lincoln, Nebraska:	December 3 - February 28
Madison, Wisconsin:	November 21 - March 19
Mansfield, Ohio:	December 12 - February 22
Salt Lake City, Utah:	December 10 - February 6
Charlottetown,	
Prince Edward Island:	November 28 - April 2

At locations where temperature data are not available, $0^{\circ} \mathrm{C}$ dates can be estimated from regression equations relating $0^{\circ} \mathrm{C}$ dates at other stations to elevation, latitude, and longitude, because the geographic variation of air temperature is reasonably well described by these three variables:

Date $=\mathrm{A} "+\mathrm{B}^{\prime \prime}($ Elevation $)+\mathrm{C}^{\prime \prime}($ Latitude $)+\mathrm{D}$ "(Longitude $)$
where Date is day of the year, elevation is in meters, and latitude and longitude are in degrees. Values for $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, and $D^{\prime \prime}$ can be determined for a particular area by statistical regression analysis of data from surrounding stations. Once the coefficients in Equation (4.9) are determined, dates can be estimated for locations where data are lacking. Areas with relatively few climatic stations may require utilization of regional or statewide data. Table 4.1 presents values for $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, and $D^{\prime \prime}$, for selected states, as determined from regression analyses of $10-$ to 30 -year means for monthly temperatures reported in the publications described in section 4.6.3.1, and by Wernstedt (1972).

Table 4.1. Values of coefficients in the equation $0^{\circ} \mathrm{C}$ Date $=\mathrm{A}^{\prime \prime}+\mathrm{B}^{\prime \prime}($ Elev $)+$ $C^{\prime \prime}($ Lat $)+\mathbf{D}^{\prime \prime}($ Long $)$, where elevation is in meters, for selected states. Number of stations used in analysis is shown in parentheses after state name. R^{2} is the coefficient of multiple determination (from Tabler 1988).

State	---------------------Fall date-----------------					----------------Spring date----------------				
	A"	B"	C"	D"	R^{2}	A"	B"	C"	D'	R^{2}
Alaska (64)	+784	-0.0419	-5.35	-1.02	0.90	-391	+0.0189	+4.63	+1.38	0.91
Arizona (19)	+255	-0.0339	-4.74	+3.01	0.40	-46	+0.0505	+3.86	-1.41	0.65
California (13)	+652	-0.0308	-6.36	$+0.00$	0.37	-2	+0.0484	-0.57	0.00	0.85
Colorado (80)	+713	-0.0236	-5.05	-1.32	0.70	-270	+0.0389	+7.54	-0.34	0.85
Idaho (85)	+521	-0.0333	-3.37	0.00	0.82	-217	+0.0487	+4.95	0.00	0.88
Illinois (51)	+661	-0.0536	-7.50	0.00	0.81	-341	+0.0604	+9.39	0.00	0.85
Indiana (49)	+738	-0.0607	-9.29	0.00	0.77	-440	+0.0736	+11.68	0.00	0.84
Iowa (86)	+600	-0.0144	-6.25	0.00	0.94	-242	+0.0119	+7.28	0.00	0.94
Kansas (54)	+895	-0.0138	-13.64	0.00	0.83	-466	+0.0042	+12.81	0.00	0.79
Maine (20)	+508	-0.0345	-3.93	0.00	0.86	-114	+0.0331	+4.31	0.00	0.92
Maryland (5)	+589	-0.0541	-10.05	+2.42	0.80	-383	+0.0579	+14.67	-2.31	0.70
Michigan (72)	+494	-0.0469	-4.04	+0.33	0.92	-104	+0.0214	+6.55	-1.31	0.94
Minnesota (80)	+452	-0.0166	-2.86	0.00	0.90	-78	+0.0148	+3.44	0.00	0.93
Missouri (38)	+881	-0.0012	-13.36	0.00	0.80	-501	+0.0015	+13.79	0.00	0.73
Montana (106)	+431	-0.0200	-5.26	+1.45	0.40	+2	+0.0318	+7.14	-2.68	0.75
Nebraska (53)	+552	+0.0004	-5.21	0.00	0.77	-290	-0.0036	+8.56	0.00	0.80
Nevada (34)	+222	-0.0057	-6.65	+3.41	0.59	-4	+0.0360	+8.24	-2.91	0.82
New England* (67)	+690	-0.0292	-8.07	0.00	0.76	-285	+0.0313	+8.15	0.00	0.86
New Jersey (20)	Same as Pennsylvania					Same as Pennsylvania				
New Mexico (33)	+1073	-0.0413	-7.43	-3.55	0.59	-615	+0.0606	+9.60	+1.77	0.78
New York (61)	+519	-0.0329	-5.80	+0.99	0.89	-204	+0.0329	+7.00	-0.41	0.88
North Dakota (71)	+373	-0.0115	-3.35	+1.03	0.86	+36	+0.0171	+3.81	-1.37	0.88
Ohio (52)	+952	-0.0572	-9.65	-2.36	0.75	-693	+0.0511	+13.45	+2.22	0.83
Oregon (52)	+235	-0.0400	-3.62	+2.61	0.63	-158	+0.0563	+7.67	-1.63	0.75
Pennsylvania (60)	+631	-0.0449	-7.87	+0.65	0.71	-249	+0.0454	+9.93	-1.45	0.83
South Dakota (84)	+367	-0.0131	-5.65	+2.15	0.75	+10	+0.0153	+5.42	-1.83	0.76
Utah (72)	+361	-0.0252	-4.03	+1.57	0.56	-141	+0.0436	+7.38	-1.53	0.75
Virginia (2)	Same as Maryland					Same as Maryland				
Washington (57)	+1021	-0.0252	-11.73	-0.94	0.80	-772	+0.0408	+10.77	+2.41	0.89
West Virginia ${ }^{3}$ (13)	Same as Maryland					Same as Maryland				
Wisconsin (88)	+571	-0.0289	-3.04	-1.16	0.90	-112	+0.0177	+4.52	-0.15	0.91
Wyoming (76)	+667	-0.0185	-3.47	-1.55	0.64	-216	+0.0341	$+5.70$	-0.06	0.76

* New England states: Vermont, New Hampshire, Massachusetts, Rhode Island, and Connecticut.

Although the statewide equations only approximate snow accumulation dates at a particular location, the coefficients in Table 4.1 illustrate how dates vary with elevation, latitude, and longitude within a particular state. As an example, values for the elevation coefficient B were used to develop the diagram of snow accumulation season versus elevation in Wyoming (Figure 4.10).

On average for the United States, dates of the snow accumulation season vary at the average rate of 2.5 days per 100 meters (328 ft) of altitude, 5.5 days per degree of latitude, and 1 day per degree of longitude, earlier northward, eastward, and upward in the fall, and the reverse in the spring (Tabler 1988).

Example (Buffalo, New York):
Given: Table 4.1
Latitude $=42^{\circ} 56^{\prime} \mathrm{N}$, Longitude $=78^{\circ} 44^{\prime} \mathrm{W}$, Elevation $=215 \mathrm{~m}(705 \mathrm{ft})$

Required: Calculate dates of the snow accumulation season for Buffalo, New York.
Solution: Equation (4.9):
Fall Date: $\quad 519-0.0329(215)-5.80(42.93)+0.99(78.73)=341=$ Dec 7 Spring Date: $-204+0.0329(215)+7.00(42.93)-0.41(78.73)=71=$ Mar 12

Figure 4.10. How the dates of the snow accumulation season vary with elevation in Wyoming, as derived by using the coefficients in Table 4.1 and latitude and longitude at the center of the State (Tabler 1988).

4.7.3 Calculating Potential Snow Transport from Wind Speed Records

4.7.3.1 Calculating $\mathrm{Q}_{\text {upot }}$ by Wind Direction

The following procedure is used to calculate potential transport for each month within the snow accumulation season, using the tabulation of wind direction/wind speed frequencies described in section 4.6.3.2.

Because anemometers are often installed at some height other than the standard $10 \mathrm{~m}(33 \mathrm{ft})$, the first step is to calculate a correction factor to adjust wind speed to 10 -meter height using the wind profile described in section 3.3.3. From Equation (3.3), the ratio of U_{10} to U_{z}, the wind speed at height Z, is
$\mathrm{U}_{10} / \mathrm{U}_{\mathrm{z}}=(10 / \mathrm{Z})^{1 / 7}=\mathrm{C}_{\mathrm{u}}$
where C_{u} is the factor used to correct recorded wind speeds at anemometer height Z to $10-\mathrm{m}$ (33 ft) height.

The threshold wind speed for blowing snow varies with snow conditions, elevation, and temperature. For estimating potential transport, however, the lowest threshold speed should be used - about $20 \mathrm{~km} / \mathrm{h}(12 \mathrm{miles} / \mathrm{h})$. For all wind speed classes equal to or greater than this value, total transport to $5 \mathrm{~m}(16 \mathrm{ft})$ for the j th direction class, $q_{i, j}(\mathrm{~kg} / \mathrm{m})$, is calculated as
$\mathrm{q}_{\mathrm{i}, \mathrm{j}}=\left(\mathrm{f}_{\mathrm{i}, \mathrm{j}}\right)(\mathrm{D})(86400)\left[\left(\mathrm{C}_{\mathrm{u}} \mathrm{U}_{\mathrm{i}, \mathrm{j}}\right)^{3.8}\right] / 233847$
where $f_{i, j}$ is the frequency of observations in the i th speed class and j th direction class, D is the number of days in the month that fall within the snow accumulation season as calculated in section 4.7.2, and $U_{i, j}$ is the mid- class wind speed in m / s. Total monthly potential transport for each wind direction class, $\left(Q_{u p o t}\right)_{j}$, can then be computed as the sum of q_{i} for each direction. Snow transport estimated in this manner has been shown to approximate closely snow accumulation measured behind tall snow fences at Prudhoe Bay, Alaska (Tabler et al. 1990).

Example (Buffalo, New York):

Given:
a) Snow accumulation season $=$ December 8 - March 13
b) Wind data for December as shown in Table 4.2
c) Anemometer height $=6.1 \mathrm{~m}(20 \mathrm{ft})$

Required: Calculate potential snow transport from the north in December, 11-16-knot wind speed class, and total potential transport from the north for the snow accumulation season.

Solution:
a) Mean wind speed for this class $=0.5(10.5+16.5)=13.5$ knots
b) $\mathrm{C}_{\mathrm{u}}=(10 / 6.1)^{1 / 7}=1.073$
c) Factor to convert knots to $\mathrm{m} / \mathrm{s}=0.5145$
d) $\mathrm{D}=24$ (days in December in snow accumulation season)
e) Therefore, from Equation (4.11):

$$
\mathrm{q}_{11-16, \mathrm{~N}}=(0.011)(24)(86400)[(1.073)(0.5145)(13.5)]^{3.8} / 233847=201 \mathrm{~kg} / \mathrm{m}(135 \mathrm{lbs} / \mathrm{ft})
$$

Total potential transport from north = sum of transport over all wind speed classes and all months $=903+497=1400 \mathrm{~kg} / \mathrm{m}$ (941 lbs/ft)(Table 4.4)

Table 4.2. Wind speed at $6.1 \mathrm{~m}(20 \mathrm{ft})$ versus direction at Buffalo, New York, December 1965-74.

Wind azimuth	Direction										
		0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	>40	Total
(Degrees, true north)											
348.75-011.25	N	0.4	1.3	1.9	1.1	0.2	0	0	0	0	4.9
011.25-033.75	NNE	0.1	0.5	0.8	0.6	0	0	0	0	0	2
033.75-056.25	NE	0.2	1.5	1.1	0.6	0.2	0	0	0	0	3.6
056.25-078.75	ENE	0.3	1.3	1.5	1.1	0.3	0.1	0	0	0	4.6
078.75-101.25	E	0.4	1.9	2.9	3.3	0.2	0.05	0	0	0	8.75
101.25-123.75	ESE	0.1	1.2	1.6	0.2	0	0	0	0	0	3.1
123.75-146.25	SE	0.4	0.8	1.5	0.2	0	0	0	0	0	2.9
146.25-168.75	SSE	0.4	1.0	2.1	0.5	0.05	0	0	0	0	4.05
168.75-191.25	S	0.4	2.6	2.7	2.0	0.4	0	0.05	0	0	8.15
191.25-213.75	SSW	0.3	1.3	1.8	2.8	1.0	0.2	0	0	0	7.4
213.75-236.25	SW	0.1	1.1	1.4	2.5	1.0	0.4	0.1	0.05	0	6.65
236.25-258.75	WSW	0.1	0.8	2.3	2.7	1.7	1.2	0.3	0.05	0	9.15
258.75-281.25	W	0.1	1.5	4.4	7.1	3.2	0.9	0	0	0	17.2
281.25-303.75	WNW	0.2	1.0	2.5	2.7	0.8	0.2	0	0	0	7.4
303.75-326.25	NW	0	0.6	1.5	1.2	0.3	0	0	0	0	3.6
326.25-348.75	NNW	0.1	0.8	1.4	1.6	0.6	0.05	0	0	0	4.55
000.00-360.00		3.60	19.20	31.40	30.20	9.95	3.10	0.45	0.10	0.00	98.00

Table 4.3. Potential snow transport versus direction at Buffalo, New York, December 8-31.

Wind azimuth	Direction	---------------------------------Wind speed class---------------------------------10-1									
		0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	>40	Total
(Degrees, true north)											
348.75-011.25	N	0	0	0	201	134	0	0	0	0	336
011.25-033.75	NNE	0	0	0	110	0	0	0	0	0	110
033.75-056.25	NE	0	0	0	110	134	0	0	0	0	244
056.25-078.75	ENE	0	0	0	201	201	176	0	0	0	579
078.75-101.25	E	0	0	0	604	134	88	0	0	0	827
101.25-123.75	ESE	0	0	0	37	0	0	0	0	0	37
123.75-146.25	SE	0	0	0	37	0	0	0	0	0	37
146.25-168.75	SSE	0	0	0	92	34	0	0	0	0	125
168.75-191.25	S	0	0	0	366	268	0	203	0	0	838
191.25-213.75	SSW	0	0	0	513	671	353	0	0	0	1537
213.75-236.25	SW	0	0	0	458	671	705	405	422	0	2662
236.25-258.75	WSW	0	0	0	495	1141	2116	1216	422	0	5391
258.75-281.25	W	0	0	0	1300	2148	1587	0	0	0	5036
281.25-303.75	WNW	0	0	0	495	537	353	0	0	0	1384
303.75-326.25	NW	0	0	0	220	201	0	0	0	0	421
326.25-348.75	NNW	0	0	0	293	403	88	0	0	0	764
000.00-360.00		0	0	0	5532	6678	5467	1824	845	0	20347

Table 4.4. Potential snow transport versus direction at Buffalo, New York, December 8March 14.

Wind azimuth	Direction										
		0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	>40	Total
(Degrees, true north)											
348.75-011.25	N	0	0	0	903	497	0	0	0	0	1400
011.25-033.75	NNE	0	0	0	616	39	0	0	0	0	635
033.75-056.25	NE	0	0	0	499	339	0	0	0	0	838
056.25-078.75	ENE	0	0	0	1027	571	496	0	0	0	2094
078.75-101.25	E	0	0	0	1626	913	316	0	0	0	2855
101.25-123.75	ESE	0	0	0	236	126	0	118	0	0	481
123.75-146.25	SE	0	0	0	170	20	0	0	0	0	189
146.25-168.75	SSE	0	0	0	382	93	0	0	0	0	474
168.75-191.25	S	0	0	0	990	1112	662	465	0	0	3229
191.25-213.75	SSW	0	0	0	1784	2106	1677	0	0	0	5567
213.75-236.25	SW	0	0	0	1996	4524	3768	1525	1514	960	14287
236.25-258.75	WSW	0	0	0	3344	8911	12287	6453	2011	1054	34061
258.75-281.25	W	0	0	0	5587	9944	10600	2762	1091	0	29985
281.25-303.75	WNW	0	0	0	2099	3508	1740	737	0	0	8083
303.75-326.25	NW	0	0	0	939	759	259	0	0	0	1957
326.25-348.75	NNW	0	0	0	768	864	410	0	0	0	2061
000.00-360.00		0	0	0	22965	34347	32215	12060	4616	2014	108217

4.7.3.2 Determining Relevant Snow Transport and Prevailing Direction

Knowing the orientation of the road at the problem site, the directions contributing significant transport are readily apparent from the tabulation of transport by direction, as given for the example in Table 4.4. The transport is then summed over the directions of interest, and a mean drifting direction is calculated, as illustrated in the following example.

Example (Buffalo, New York):
Given: a) Table 4.4
b) Road orientation north/south

Required: a) Relevant directions of snow transport,
b) Total transport for relevant directions,
c) Prevailing transport direction.

Solution: a) Directions of interest would be SSW through WNW.
b) Total transport for relevant directions $=$

$$
Q_{\text {upot }}=5567+14287+\ldots+2061=91983 \mathrm{~kg} / \mathrm{m}(61,817 \mathrm{lb} / \mathrm{ft})
$$

c) Prevailing transport direction: $[(202.5)(5567)+(225)(14287)+\ldots+(292.5)(8083)] / 91983=253^{\circ}$ azimuth.

Comparing Tables 4.2 and 4.3 demonstrates that the directional distribution of snow transport is often significantly different from the prevailing wind direction. The prevailing wind direction at Buffalo in December is seen to be approximately due west, but the transport direction is about 253°. Another example is shown by the wind records for Charlottetown, Prince Edward Island, where analysis of $Q_{\text {upot }}$ indicates that about half of the total snow transport is associated with northerly winds, and half with westerlies (Figure 4.11). This nearly equal bimodal distribution is not readily apparent from the wind distribution itself. This example underscores the importance of analyzing wind data based on potential snow transport, rather than using the wind distribution itself. It must also be recognized that in cases where the "problem storm" is always associated with snowfall, the direction may not be evident from the potential transport analysis. Results from the quantitative analysis recommended here should always be checked for consistency with the reports of field maintenance personnel.

Figure 4.11. Directional distribution of wind and potential snow transport ($Q_{u p o t}$) at Charlottetown, Prince Edward Island (Tabler 1994).

For maximum effectiveness, drift control measures such as snow fences must provide protection for a range of wind directions. The directional distribution exemplified by Table 4.4 provides the quantitative information necessary to specify how far fences should overlap the protection limits.

4.7.4 Determining Potential Transport Based on Snowfall $\left(Q_{\text {spot }}\right)$

In especially windy areas such as occur in Montana and Wyoming, potential transport calculated from wind records, $Q_{u p o t}$, is much greater than actual transport because there are frequent periods in the winter when no snow is available for relocation by the wind. One method to determine if snowfall, rather than wind, is the limiting factor is to use Equation (4.4) to calculate the transport, assuming that all snowfall is relocated by the wind over an unlimited fetch.

4.7.4.1 Estimating Average Snowfall Water-Equivalent

The recommended method of estimating snowfall water-equivalent, $S_{w e}$, is to calculate the total snowfall received during the snow accumulation season, and divide this value by 10 to obtain water-equivalent (Equation (4.2)). Snowfall over the accumulation season is estimated by assuming the contributions of the first and last months to be in proportion to the number of days in the month that fall in the snow accumulation season.

Snowfall water-equivalent can also be estimated from precipitation data for locations where all of the winter precipitation is in the form of snow; however, the following example illustrates that precipitation data should not be used to estimate $S_{\text {we }}$ in locations where rain occurs during the snow accumulation season.

Example (Buffalo, New York):

Given: a) Snow accumulation season = December 8 to March 14 (section 4.7.2)
b) Climatic data:

Mean monthly snowfall					Mean monthly precipitation				
	Dec	Jan	Feb	Mar		Dec	Jan	Feb	Mar
cm	m 58	63	45	29	mm	86	76	61	74
in.	- 23	25	18	11	in.	3.4	3.0	2.4	2.9

Required: Snowfall water-equivalent ($S_{\text {we }}$) over snow accumulation season from
a) Snowfall data
b) Precipitation data
c) Best estimate of S_{we} for designing control measures

Solution: a) From snowfall data and Equation (4.2):

$$
\begin{aligned}
& \text { Snowfall for season }=(24 / 31)(58)+63+45+(14 / 31)(29)]=166 \mathrm{~cm}=(65 \mathrm{in} .) \\
& S_{\mathrm{we}}=166 / 10=16.6 \mathrm{~cm}=166 \mathrm{~mm}(6.5 \mathrm{in} .)
\end{aligned}
$$

b) From precipitation data:

$$
S_{\mathrm{we}}=(24 / 31)(86)+76+61+(14 / 31)(74)=237 \mathrm{~mm}(9.3 \mathrm{in} .)
$$

c) Rain occurs during winter; therefore best estimate of $S_{\mathrm{we}}=166 \mathrm{~mm}$ (6.5 in .)

4.7.4.2 Calculating Potential Snow Transport Based on Snowfall

The potential transport based on snowfall data, $Q_{s p o t}$, is calculated from Equation (4.4) where $S_{\text {we }}$ is in millimeters, T is in meters, and $Q_{s p o t}$ is in kg / m :
$\mathrm{Q}_{\text {spot }}=0.5 \mathrm{~T} \mathrm{~S}_{\mathrm{we}}$
Standard practice is to assume that the maximum transport distance, T, is equal to 3000 m (section 3.4.6). It is kept as a distinct variable throughout this guide, however, to allow other values to be used if indicated by future research.

Example (Buffalo, New York):
Given: a) Snowfall water-equivalent $\left(S_{\text {we }}\right)=166 \mathrm{~mm}$ (6.5 in.)
b) Assume $\mathrm{T}=3000 \mathrm{~m}(10,000 \mathrm{ft})$

Required: Potential snow transport from snowfall data $\left(Q_{s p o t}\right)$.
Solution: Equation (4.4):
$Q_{\text {spot }}=0.5 T S_{\text {we }}=(0.5)(3000)(166)=249000 \mathrm{~kg} / \mathrm{m}(167,340 \mathrm{lbs} / \mathrm{ft})$

4.7.5 Determining Potential Snow Transport for Infinite Fetch

If potential transport calculated from the snowfall data $\left(Q_{s p o t}\right)$ is greater than that calculated from wind data $\left(Q_{\text {upot }}\right)$, then wind is the primary factor limiting transport and

If $\mathrm{Q}_{\text {spot }}>\mathrm{Q}_{\text {upot }}: \quad \mathrm{Q}_{\text {inf }}=\mathrm{Q}_{\text {upot }}$
If $Q_{s p o t}<Q_{u p o t}$, then potential transport is given by Equation (3.11). For $Q_{i n f} \mathrm{in} \mathrm{kg} / \mathrm{m}, \mathrm{T}$ in meters, and $S_{\text {rwe }}$ in millimeters,

If $\mathrm{Q}_{\text {spot }}<\mathrm{Q}_{\text {upot }}: \quad \mathrm{Q}_{\text {inf }}=0.5 \mathrm{~T} \mathrm{~S}_{\text {rwe }}$
This calculation requires an estimate for the relocated snow water-equivalent, $S_{r w e}$. Studies have shown that even in the windiest areas, only 70% of the winter snowfall is relocated by the wind (section 3.4.6), and this proportion can be assumed if a conservative design is desirable or acceptable. The alternative is to estimate the water-equivalent of the snow cover at the end of the snow accumulation season by actual snow measurements over the fetch, or by assuming that the depth of snow retention will equal the height of the vegetation on the fetch. As a rough approximation, it can be assumed that the density of the retained snow will average $250 \mathrm{~kg} / \mathrm{m}^{3}$ $\left(15.6 \mathrm{lbs} / \mathrm{ft}^{3}\right)$ before melting begins.

Example (Buffalo, New York):

Given: a) Road oriented north/south
b) Relevant $Q_{\text {upot }}=91983 \mathrm{~kg} / \mathrm{m}(61,817 \mathrm{lb} / \mathrm{ft})$ (section 4.7.3.2)
c) $Q_{\text {spot }}=249000(167,340 \mathrm{lb} / \mathrm{ft}) \quad$ (section 4.7.4.2)
d) Snowfall water-equivalent $\left(S_{\mathrm{we}}\right)=166 \mathrm{~mm}=16.6 \mathrm{~cm}$ (6.5 in.) (section 4.7.4.1)
e) Average height of vegetation over fetch $=30 \mathrm{~cm}$ (12 in.)

Required: Potential snow transport for infinite fetch ($Q_{i n f}$)
Solution: Equation (4.12):
$Q_{\text {spot }}>Q_{\text {upot }}$ therefore, $Q_{\text {inf }}=Q_{\text {upot }}=91983 \mathrm{~kg} / \mathrm{m}(61,817 \mathrm{lb} / \mathrm{ft})$
If $Q_{s p o t}$ had not been greater than $Q_{u p o t}$, then
Assume snow density $=250 \mathrm{~kg} / \mathrm{m} 3$ (specific gravity $=0.25$)
Then relocated snowfall $S_{r w e}=166-0.25(300)=91 \mathrm{~mm}$ (3.6 in .)
From Equation (4.13):

$$
Q_{\mathrm{inf}}=(0.5)(3000)(91)=136500 \mathrm{~kg} / \mathrm{m}(91,734 \mathrm{lb} / \mathrm{ft})
$$

4.7.6 Estimating Mean Annual Snow Transport

4.7.6.1 Transport Equation

The mean annual snow transport, $Q_{t, \text { ave }}$, at the problem location is estimated using Equation (4.7):

$$
\mathrm{Q}_{\mathrm{t}, \mathrm{ave}}=\mathrm{Q}_{\mathrm{inf}}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right)
$$

where the parenthetical term corrects for fetch, $F . T$ is customarily taken as $3000 \mathrm{~m}(10,000 \mathrm{ft})$, and F is determined as described in the following section.

4.7.6.2 Determining the Fetch

Depending on the proximity of the weather station to the problem area, and the effects of local topography on wind direction, the prevailing snow transport direction determined from the potential snow transport analysis may not be representative of the problem location. The prevailing transport direction as calculated in section 4.7.3.2 should therefore be confirmed by field observations as described in section 4.6.1.3.

After the prevailing transport direction has been verified, the fetch can be measured from aerial photographs, satellite imagery, topographic maps, or in the field. The fetch is measured from the location to be protected to the nearest upwind boundary that defines the limits of snow transport. As described in chapter 3, examples of boundaries include forest margins, stream channels or other depressions where large drifts form, tall brush, or shorelines of open bodies of water. Where the fetch is extensive and has no well-defined boundary, F is assumed infinite and the quantity $0.14^{F / 3000}$ becomes zero.

An extremely useful resource for determining fetch distance are the digital orthophoto quadrangles available on the TerraServer-USA Internet Web site described in section 4.6.4 (http://terraserver-usa.com). Fetch can also be determined from satellite imagery. DeLorme has available Sat 10 Satellite Imagery software that can be used in conjunction with XMap ${ }^{\circledR}$ and 3-D TopoQuads ${ }^{\circledR}$ to identify topographic and vegetative features that define the fetch. An example is provided in section 6.5.5, Figure 6.91.

Example (Buffalo, New York)

Given: a) $Q_{i n f}=91983 \mathrm{~kg} / \mathrm{m}(61,817 \mathrm{lbs} / \mathrm{ft})($ section 4.7.5)
b) Use standard assumption that $T=3000 \mathrm{~m}(10,000 \mathrm{ft})$

Required: Calculate average annual transport $Q_{t, \text { ave }}$ for:
a) Fetch $=500 \mathrm{~m}(1640 \mathrm{ft})$
b) Fetch $=$ infinite

Solution: Equation (4.7): $Q_{t, \text { ave }}=Q_{i n f}\left(1-0.14^{\mathrm{F} / \mathrm{T}}\right)$
a) For $F=500 \mathrm{~m}, Q_{t, \text { ave }}=91983\left(1-0.14^{500 / 3000}\right)=91983\left(1-0.14^{0.1667}\right)$

$$
=91983(1-0.7206)=25700 \mathrm{~kg} / \mathrm{m}(17,272 \mathrm{lb} / \mathrm{ft})
$$

b) For $F=$ infinite, $Q_{t, \text { ave }}=91983(1-0)=91983 \mathrm{~kg} / \mathrm{m}(61,817 \mathrm{lb} / \mathrm{ft})$

4.7.6.3 Snow Transport Classification

Table 4.5 presents a severity classification for blowing snow, based on a logarithmic scale of snow transport. This classification places the blowing snow problem in perspective, and provides a framework for generalizing the control measure guidelines in subsequent chapters.

For the Buffalo, New York, example, a site with a $500-\mathrm{m}$ fetch would be ranked in Class 3: Light-to-Moderate. The site with an unlimited fetch would be ranked in Class 5: Moderately severe.

Table 4.5. Severity classification for mean annual snow transport ($\mathbf{1} \mathbf{t} / \mathrm{m}=0.3357$ tons/ft) (Tabler 1994).

Class	Snnw Transnort $(\mathrm{t} / \mathrm{m})$	Descrintion
1	<10	Verv light
2	$10-20$	Light
3	$20-40$	Light-to-moderate
4	$40-80$	Moderate
5	$80-160$	Moderatelv severe
6	$160-320$	Severe
7	>320	Extreme

4.8 Determining Design Transport

Having estimated the mean annual snow transport, $Q_{t, \text { ave }}$, the next question is "What is the optimum design year?" Should the storage capacity provide complete control during a winter that has above-average transport? If so, what is the best design year--one that occurs 2 years out of 10 ? One year out of 10 ? This same question is addressed when sizing culverts and other hydraulic structures. In the case of snow control measures, however, the problem is complicated by the fact that even though transport may exceed the design capacity in some years, irrevocable
benefits still accrue up to the time the capacity is exceeded. In addition, exceeding the design year does not have catastrophic consequences - it simply means that benefits from the mitigation measures stop accruing.

The ratio of "design year" snow transport to the average snow transport is called the "design modulus," and is represented in this guide as K. Multiplying the average annual transport, $Q_{t, \text { ave }}$, by the design modulus gives the design transport, $Q_{\text {des }}$:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{des}}=\mathrm{K} \mathrm{Q}_{\mathrm{t}, \mathrm{ave}} \tag{4.14}
\end{equation*}
$$

If $K=1$, for example, the storage capacity of the system is exactly equal to the average annual snow transport. If $K=0.5$, storage capacity would be half of the mean annual snow transport. The discussion here is intended to help the designer select an appropriate design modulus for snow control projects.

4.8.1 Probability Distribution for Annual Snow Transport

Until more information becomes available, the following working hypothesis is proposed (Tabler 1997; Tabler 1982):

The modular coefficients of annual snow transport are normally distributed with mean 1.0 and variance 0.0964.

This distribution has been shown to apply to a variety of hydrologic variables, including annual streamflow (Markovic 1965), peak annual snow accumulation throughout Wyoming (Tabler 1982), and snow transport for the easterly winds at Prudhoe Bay, Alaska (Tabler, Benson et al. 1990). The probability distribution for annual snow transport is therefore given by
$F(K)=\left[s(2 \pi)^{0.5}\right]_{-\equiv}^{-1} \quad O^{K} \exp \left\{-(\mathrm{K}-1)^{2} / 2 s^{2}\right\} d K$
where $K=$ design modulus ($Q_{\text {des }} / Q_{t, a v e}$),
$F(K)=$ frequency (F not to be confused with fetch), and $s^{2}=$ variance.
Exceedance probabilities calculated from Equation (4.15) are presented in Table 4.6. To illustrate interpretation of this table, snow transport 50% greater than the long-term average ($K=$ 1.50) would be expected to occur 5 years out of 100 . The design coefficient, K, can be taken directly from this table for any desired return period. In the following section, the design coefficient will be related to the benefit-to-cost ratio.

Table 4.6. Probabilities of larger values for annual snow transport, expressed as modular coefficient K. Values are $1-F(K)$, where $F(K)$ is given by Eqn. (4.15) with $s^{2}=0.0964$ (Modified from Tabler 1982).

K	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.9994	0.9993	0.9992	0.9991	0.9990	0.9989	0.9988	0.9986	0.9985	0.9983
0.1	0.9981	0.9979	0.9977	0.9975	0.9972	0.9969	0.9966	0.9962	0.9959	0.9955
0.2	0.9950	0.9945	0.9940	0.9934	0.9928	0.9921	0.9914	0.9906	0.9898	0.9889
0.3	0.9879	0.9869	0.9857	0.9845	0.9832	0.9818	0.9804	0.9788	0.9771	0.9753
0.4	0.9733	0.9713	0.9691	0.9668	0.9644	0.9618	0.9590	0.9561	0.9530	0.9498
0.5	0.9463	0.9427	0.9389	0.9350	0.9308	0.9264	0.9218	0.9170	0.9119	0.9067
0.6	0.9012	0.8955	0.8895	0.8833	0.8769	0.8702	0.8633	0.8561	0.8486	0.8410
0.7	0.8330	0.8249	0.8164	0.8077	0.7988	0.7896	0.7802	0.7706	0.7607	0.7506
0.8	0.7403	0.7297	0.7190	0.7080	0.6968	0.6855	0.6740	0.6623	0.6504	0.6384
0.9	0.6263	0.6140	0.6017	0.5892	0.5766	0.5640	0.5513	0.5385	0.5257	0.5128
1.0	0.5000	0.4872	0.4743	0.4615	0.4487	0.4360	0.4234	0.4108	0.3983	0.3860
1.1	0.3737	0.3616	0.3496	0.3377	0.3260	0.3145	0.3032	0.2920	0.2810	0.2703
1.2	0.2597	0.2494	0.2393	0.2294	0.2198	0.2104	0.2012	0.1923	0.1836	0.1751
1.3	0.1670	0.1590	0.1514	0.1439	0.1367	0.1298	0.1231	0.1167	0.1105	0.1045
1.4	0.0988	0.0933	0.0881	0.0830	0.0782	0.0736	0.0692	0.0650	0.0611	0.0573
1.5	0.0537	0.0502	0.0470	0.0439	0.0410	0.0382	0.0356	0.0332	0.0309	0.0287
1.6	0.0267	0.0247	0.0229	0.0212	0.0196	0.0182	0.0168	0.0155	0.0143	0.0131
1.7	0.0121	0.0111	0.0102	0.0094	0.0086	0.0079	0.0072	0.0066	0.0060	0.0055
1.8	0.0050	0.0045	0.0041	0.0038	0.0034	0.0031	0.0028	0.0025	0.0023	0.0021
1.9	0.0019	0.0017	0.0015	0.0014	0.0012	0.0011	0.0010	0.0009	0.0008	0.0007
2.0	0.0006	0.0006	0.0005	0.0005	0.0004	0.0004	0.0003	0.0003	0.0003	0.0002

4.8.2 How Snow Removal Cost Varies with the Design Modulus

The probability distribution described in section 4.8.1 allows an economic analysis to determine how benefit-to-cost ratio varies with design year. If benefits are derived solely from the savings in expenditures for mechanical snow removal, benefits will be proportional to the snow-trapping efficiency of the control measures.

Figure 4.12 shows the long-term reduction in snow removal costs in relation to design modulus and exceedance probability, obtained by computing the average trapping efficiency for all
possible snow transport amounts weighted by their probability of occurrence using the frequency distribution in section 4.8.1. Because of the extremely small exceedance probabilities associated with $K>2$, the only range of practical interest is $K \square 2$. Over this range, the long-term reduction in snow removal costs, $C_{\text {red }}$, is approximated by
$\mathrm{C}_{\mathrm{red}}=142.9 \mathrm{~K}-76.28 \mathrm{~K}^{2}+13.91 \mathrm{~K}^{3} ; \quad \mathrm{K} \leq 2$
Using the average winter as the design year (capacity exceeded in 50 years out of 100) reduces snow removal costs by about 80%. Doubling the storage capacity reduces costs by only another 11%.

Figure 4.12 can be used to select a design coefficient yielding a specified reduction in costs.

Figure 4.12. Long-term reduction in snow transport as a function of design year (Tabler and Jairell 1993).

Example: Buffalo New York:

Given: a) Fetch $F=500 \mathrm{~m}$ (1640 ft)
b) Average annual snow transport $Q_{t, \text { ave }}=25700 \mathrm{~kg} / \mathrm{m}=25.7 \mathrm{t} / \mathrm{m}(8.6$ tons $/ \mathrm{ft})$

Required: a) Design transport $Q_{\text {des }}$ for average year,
b) Design transport $Q_{\text {des }}$ for exceedance in 1 year out of 10
c) Design transport $Q_{\text {des }}$ required to reduce snow removal costs 90%.

Solution: Equation (4.14): $Q_{\text {des }}=K Q_{t, \text { des }}$
a) For average year, probability of exceedance $=0.5$. From Table $4.6, \mathrm{~K}=1.0$. Therefore, $Q_{\text {des }}=(1.0) Q_{t, \text { ave }}=25.7 \mathrm{t} / \mathrm{m}$ (8.6 tons $/ \mathrm{ft}$)
b) For exceedance 1 year in 10, probability $=0.1000$. From Table 4.6, $\mathrm{K} \approx 1.40$.

Therefore, $Q_{\text {des }}=(1.40) \mathrm{Q}_{t, \text { ave }}=(1.40)(25.7)=36.0 \mathrm{t} / \mathrm{m}$ (12.1 tons/ft)
c) For 90% reduction in snow removal costs, $K=1.6$ (from Figure 4.9) therefore, $Q_{\text {des }}=(1.6) Q_{t, \text { ave }}=(1.6)(25.7)=41.1 \mathrm{t} / \mathrm{m}(13.8$ tons $/ \mathrm{ft})$

4.8.3 Benefit-to-Cost Criterion for Design Modulus

Considering only benefits from reduced snow removal expenditures, the expected annual snow removal benefit, $B_{s r}$, from a snow fence system is given by
$\mathrm{B}_{\text {sr }}=\mathrm{C}_{\mathrm{sr}} \mathrm{C}_{\mathrm{red}} \mathrm{KQ}_{\mathrm{t}, \mathrm{ave}} / 100$
where $C_{s r}$ is the unit cost for mechanical snow removal, and $C_{\text {red }}$ is the percent reduction in snow deposited on the road. If, without the snow fence, all of the blowing snow would be deposited on the road, then $C_{\text {red }}$ is equal to the long-term trapping efficiency of the fence. Although hardly realistic, this simplifying assumption provides a valid basis for determining the optimum design modulus.

As described in chapter 3, the storage capacity of 50% porous snow fence varies with the effective fence height H (in meters), according to
$\mathrm{Q}_{\mathrm{c}}=8.5 \mathrm{H}^{2.2}$
where Q_{c} is in metric tons per meter of fence length. As will be presented in section 6.3.2.1, the design transport is the required snow storage capacity of the snow fence, so that
$\mathrm{Q}_{\mathrm{c}}=\mathrm{Q}_{\mathrm{des}}=\mathrm{KQ}_{\mathrm{t}, \mathrm{ave}}$
Because snow fence construction cost increases linearly with height (to a reasonable approximation), average annual cost of a snow fence system is related to the design modulus and average annual snow transport according to
$\mathrm{C}_{\mathrm{sf}}=\mathrm{O}+\mathrm{a}_{\mathrm{it}} \mathrm{I}=\mathrm{O}+\mathrm{a}_{\mathrm{it}} \mathrm{P}_{\mathrm{f}} \mathrm{H}_{\mathrm{req}}=\mathrm{O}+\mathrm{a}_{\mathrm{it}} \mathrm{P}_{\mathrm{f}}\left(\mathrm{KQ}_{\mathrm{t}, \mathrm{ave}} / 8.5\right)^{1 / 2.2}$
where $C_{s f}=$ average annual cost of snow fence system,
$O=$ annual maintenance expense,
$A_{i t}=$ annual capital charge per dollar of fixed investment for interest i and amortization period t,
$I=$ fixed capital investment for snow fence,
$H_{\text {req }}=$ fence height required to store design transport,
$P_{f}=$ capital investment cost per square meter of fence frontal area (cost per meter of length divided by height).

The annual capital charge per dollar of fixed investment, $a_{i t}$, is given by
$a_{i t}=i /\left[1-(1+i)^{-t}\right]$
where i and t are interest rate and amortization period, respectively (Burington 1948).
Figure 4.13 shows how the benefit-to-cost ratio varies with average annual snow transport $Q_{t, \text { ave }}$ and cost of mechanical snow removal, for the following typical conditions:
$i=7 \%$
$t=25$ years
$\mathrm{P}_{\mathrm{f}}=\$ 15$ per square meter
$Q_{c}=Q_{t, a v e}$
$O=5 \%$ of initial capital investment

Figure 4.13. Benefit-to-cost ratio for snow fences, as a function of average annual snow transport, $\boldsymbol{Q}_{\mathrm{t}, \text { ave }}$, and cost of mechanical snow removal (Modified from Tabler 1994).

Figure 4.14 shows how benefit/cost ratio varies with design modulus K, if:
$i=7 \%$
$t=25$ years
$P_{f}=\$ 15$ per meter of height
$Q_{t, a v e}=60$ tons per meter
$O=5 \%$ of initial capital investment
$C_{s r}=\$ 5$ per ton

Figure 4.14. Benefit-to-cost ratio for snow fences, as a function of design modulus K, assuming $\$ 5 / \mathrm{t}$ cost for mechanical snow removal and 60 t/m mean annual snow transport (Tabler 1994).

For all values of $Q_{t, a v e}, O, P_{f}, i$, and t, the benefit-to-cost ratio reaches a maximum at approximately $K=0.90$; that is, when storage capacity equals 90% of mean annual snow transport.

If the snow control objective is solely to reduce expenditures for mechanical snow removal, designing snow fence capacity equal to mean annual snow transport ($K=1$) is economically reasonable, and a value of 1.0 should be used in the absence of other criteria. However, a more stringent criterion might be warranted for those projects where safety improvement was an objective.

Example: Buffalo New York:

Given: a) Fetch $F=500 \mathrm{~m}$ (1640 ft)
b) Average annual snow transport $Q_{t, \text { ave }}=25700 \mathrm{~kg} / \mathrm{m}=25.7 \mathrm{t} / \mathrm{m}(8.6$ tons $/ \mathrm{ft})$
c) Design modulus $K=1.0 ; Q_{\text {des }}=25.7 \mathrm{t} / \mathrm{m}(8.6 \mathrm{t} / \mathrm{ft})$
d) Fence height required $\left(H_{\text {req }}\right): 1.65 \mathrm{~m}(5.4 \mathrm{ft})$
e) Cost for mechanical snow removal $C_{s r}=\$ 2.50 / \mathrm{t}$ ($\$ 2.75 /$ ton)
f) Cost for snow fence and easement $P_{f}=\$ 21.50 / \mathrm{m}^{2}\left(\$ 2.00 / \mathrm{ft}^{2}\right)$
g) Annual maintenance cost $O=5 \%$ of investment $=\$ 1.075 / \mathrm{m}^{2}\left(\$ 0.10 / \mathrm{ft}^{2}\right)$
h) Service life $t=25$ years
i) Interest rate $i=6 \%$

Required: a) Ratio of snow removal benefits to fence costs, assuming all blowing snow is deposited on road.

Solution: a) From Equation (4.20): $a_{i t}=0.07823$
b) Reduction in snow removal cost $=C_{\text {red }}=81 \%$ (from Figure 4.9)
c) Snow removal benefits B_{sr}, from Equation (4.17):

$$
B_{s r}=C_{s r} C_{r e d} Q_{d e s} / 100=(2.50)(81)(25.8) / 100=\$ 52.24 / \mathrm{m}
$$

d) Snow fence costs $C_{s f}$, from Equation (4.19):

$$
\begin{aligned}
C_{s f}= & O+a_{i t} P_{f} H_{\text {req }} \\
& =(1.075)(1.65)+(.07823)(21.50)(1.65)=4.55 \$ / \mathrm{m}
\end{aligned}
$$

e) Snow removal benefits $/$ fence costs $=\$ 52.24 / 4.55=11.5: 1$

4.9 Design Data Summary Sheet

The following form provides a convenient format for summarizing the design parameters calculated in this Chapter.

Drift Control Design Data

Site Name / Location: \qquad
Site I.D.: \qquad

Snow Accumulation Season: \qquad
Snowfall (S): \qquad
Snowfall Water-Equivalent $\left(S_{w e}\right)$: \qquad
Seasonal Precipitation: \qquad
Snow Relocation Coefficient (θ): \qquad
Relocated Snowfall Water-Equivalent $\left(S_{r w e}\right)$: \qquad
Potential Snow Transport from Wind Records ($Q_{u p o t}$): \qquad
Potential Snow Transport from Evaporation Eqn. $\left(Q_{s p o t}\right)$: \qquad
Relevant Potential Transport ($Q_{i n f}$): \qquad
Fetch (F): \qquad
Mean Annual Snow Transport ($Q_{t, a v e}$): \qquad
Design Modulus (K): \qquad
Design Snow Transport: \qquad
Exceedance Probability: \qquad
Relevant Transport Direction: \qquad
Mean Drifting Direction(s): \qquad
Other Wind Directions Causing Problems: \qquad
Wind Speed Used for Structural Design: \qquad

4.10 REFERENCES

Burington, R. S. 1948. Handbook of mathematical tables and formulas. Handbook Publishers, Inc., Sandusky, OH.

Cember, R.P and D.S. Wilks. 1993. Climatological atlas of snowfall and snow depth for the northeastern United States and southeastern Canada. Northeast Regional Climate Center, Research Publication RR93-1 (Cornell University, Ithaca, NY).

Cember, R.P K.L. Eggleston, and D.S. Wilks. 1993. Digital snowfall and snow depth probabilities for the northeastern United States and southeastern Canada. Northeast Regional Climate Center, Digital Data Set Series, Data Set No. DS93-1 (Cornell University, Ithaca, NY).

Changery, Michael J. 1978. National Wind Data Index Final Report (Number HCO/T1041, $U C-60$), prepared for the U.S. Department of Energy, Division of Solar Technology.

Kaminski, D. F. and S. Mohan 1991. PASCON: An expert system for passive snow control on highways. Transportation Research Record 1304: 193-201.

Markovic, Radmilo D. 1965. Probability functions of best fit to distributions of annual precipitation and runoff. Colorado State University, Hydrology Paper No. 8.

Tabler, R. D. 1968. Physical and economic design criteria for induced snow accumulation projects. Water Resources Research 4(3): 513-519.
——. New engineering criteria for snow fence systems. Transportation Research Record 506: 65-78.
_- 1975. Estimating the transport and evaporation of blowing snow. In: Symposium on Snow Management on the Great Plains (Bismarck, N. Dak.; July 1975) Proceedings, Great Plains Agricultural Council Publication 73: 85-104.
-_ 1982. Frequency distribution of annual peak water-equivalent on Wyoming snow courses. In: Western Snow Conference (Reno, Nev.; April 20- 23, 1982) Proceedings 50: 139-148. Also Eastern Snow Conference Proceedings 50: 139-148.
—_. 1986. Snow fence handbook (Release 1.0). Tabler and Associates, Laramie, Wyoming.
——. 1987. Slide rule for snow fence design. In: Western Snow Conference (Vancouver, B.C.; April 14-16, 1987) Proceedings 55:162-165.
. 1988. Estimating dates of the snow accumulation season. In: Western Snow Conference (Kalispell, Montana; April 19-21, 1988) Proceedings 56:35-42.

1991a. Snow transport as a function of wind speed and height. In: Cold Regions Engineering. Proceedings, Cold Regions Sixth International Specialty Conference TCCP/ASCE (Feb. 26-28, 1991; West Lebanon, New Hampshire): pp. 729-738.

1991b. Snow fence guide. Strategic Highway Research Program, Report SHRP-H-320, National Research Council, Washington, D.C.
—_. 1993. New guidelines for blowing snow control. In: Proceedings of International Workshop on Winter Road Management (IWWRM) (January 26- 29, 1993; Sapporo, Japan). pp. 69-81.
_-. 1994. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.
1997. Computer-aided design of drift control measures. Final Report: Research Agreement \# 47608, Research Project \# FHWA-WY-97/02, prepared for the Wyoming Department of Transportation.
——. 2000. Climatologic Analysis for Snow Mitigation in New York State. Final Report Prepared for Brookhaven National Laboratory Associated Universities Inc., Upton, NY.

Tabler, R. D., C. S. Benson, B. W. Santana, and P. Ganguly. 1990. Estimating snow transport from wind speed records: Estimates versus measurements at Prudhoe Bay, Alaska. Western Snow Conference Proceedings 58: 61-72.

Tabler, R. D., N. H. Berg, D. Trabant, H. Santeford, and P. A. Rechard. 1990. Measurement and evaluation of winter precipitation. Cold Regions Hydrology and Hydraulics, ASCE Technical Council on Cold Regions Engineering Monograph. pp. 9-38.

Tabler, R. D. and R. L. Jairell. 1971. A recording gage for blowing snow. USDA Forest Service Research Note RM-193.
——. 1993. Trapping efficiency of snow fences and implications for system design. Transportation Research Record 1387: 108-114.

Tabler, R. D., J. W. Pomeroy, and B. W. Santana. 1990. Drifting snow. In: Cold Regions Hydrology and Hydraulics, ASCE Technical Council on Cold Regions Engineering Monograph. pp. 95-145

Tabler, R. D. and R. A. Schmidt, Jr. 1972. Weather conditions that determine snow transport distances at a site in Wyoming. In: UNESCO / WMO Symposia on the Role of Snow and Ice in Hydrology (Banff, Alberta; September 6- 13, 1972) Proceedings: 118-127.
1986. Snow erosion, transport, and deposition in relation to agriculture. In: Proceedings, Symposium on Snow in Agriculture Symposium (Swift Current, Sask.; July 9-11, 1985), H. Steppuhn and W. Nicholaichuk, ed. Great Plains Agricultural Council Publication No. 120. pp. 11-58.

Wernstedt, F.L. 1972. World climatic data. Climatic Data Press.
Yevjevich, Vujica. 1972. Probability and statistics in hydrology. Water Resources Publications, Fort Collins, CO.

5 An Overview of Mitigation Measure Design

5.1 Scope

This chapter presents a simplified guide to designing mitigation measures for blowing and drifting snow, summarizing the detailed presentations in chapters 6-8. Because the presentation omits important details, it is not intended to replace the chapters that follow, but rather to provide both an overview and a review of the design process. Familiarity with the information in preceding chapters is assumed. The suggested stepwise procedure is for a technician assigned to solve a blowing snow problem with which he or she is personally unfamiliar.

5.2 Step 1: Prepare for Site Visit

A site visit is essential, preferably during winter. In preparation, topographic maps and aerial photos of the problem should be procured. A good source for both quadrangle maps and orthoquad photos is the "TerraServer" Internet site http://terraserver-usa.com. Seamless topographic maps on CD-ROM (DeLorme 3-D TopoQuads ${ }^{\circledR}$ software (www.DeLorme.com)) are advantageous because they can be used with a Global Positioning Satellite (GPS) receiver. Used in conjunction with DeLorme XMap3. 5^{\circledR} software, the DeLorme TopoQuads ${ }^{\circledR}$ maps greatly facilitate snow fence layout.

5.3 Step 2: Visit Site

> Interview maintenance personnel or others familiar with the problem to determine:

- Exact location of problem by milepost or engineering station
- Type of problem (snowdrift encroachment, road ice, visibility)
- Weather conditions associated with problem
- Severity and priority for mitigation
- Recommendations or ideas for solution.
$>$ Measure orientation of drift features or abrasion patterns on wooden posts and other objects.
$>$ Note road geometry and other features affecting problem (safety barrier, bridge abutments, trees and other vegetation).
$>$ Determine if problem is limited to relocation of snow within the right-of-way, or if source of blowing snow is farther upwind.
> Make preliminary determination as to feasibility of earthwork modifications and use of plant materials (including "living snow fences") to mitigate problem.
$>$ Obtain information on use and ownership of adjacent land.

5.4 Step 3: Collect Additional Data

$>$ Historical wind data for determining the directional distribution of potential snow transport
> Historical snowfall data
$>$ Crash history
> Plans for reconstruction

5.5 Step 4: Determine Wind Direction(s) Associated with Problem

Based on analysis of weather data and field observations, the directional distribution of blowing snow should be determined as precisely as possible.

5.6 Step 5: Determine Measures to Minimize Snow Relocation within Right-of-Way

Any blowing snow mitigation effort should consider the need to reduce blowing snow originating within the right-of-way. Because of space limitations, solutions typically consist of tree or shrub plantings or changes in mowing practices.

It is best to leave as much vegetation as possible within the right-of-way to help hold snow in place. Generally, roadside mowing should be limited to within $6 \mathrm{~m}(20 \mathrm{ft})$ from the edge of pavement, or ten times the vegetation height, whichever is greater.

Relocation of snow on embankments is one of the most common problems. Shrub plantings are the best solution, with staggered rows spaced according to
$\mathrm{S}=\mathrm{H}_{\mathrm{m}} / \tan \alpha$
where S is horizontal spacing (m), H_{m} is the anticipated shrub height at maturity and α is the slope angle measured from the horizontal (Figure 5.1). Within rows, the spacing between plants should be equal to the spread anticipated at maturity. Structural fences can also be used to retain snow on slopes using the same spacing with fence height substituted for shrub height.

In flatter areas within the right-of-way, mass plantings of shrubs spaced 2- to 3 m (6- to 10 ft) can be used to stabilize snow, but care must be taken to avoid causing drifts on the roadway.

Figure 5.1. Shrub plantings are best way to stabilize snow on embankments.

Tree and shrub plantings can
be used to mitigate drifting at grade separations. Snowdrifts on roads passing underneath divided highways with wide medians aligned with the wind can be mitigated with structural fences where conditions are unsuitable for shrubs (Figure 5.2).

Figure 5.2. Median fences should be spaced 10 times their maximum height (Tabler 1994).

5.7 Step 6: Estimate Snow Transport Originating Upwind of Right-of-Way

$>$ Determine fetch distance over average direction of snow transport based on topographic maps, aerial photos, or field observations.
$>$ Select the design year. Designing mitigation measures for the average year usually provides the most cost-effective solution.
$>$ Calculate dates of the snow accumulation season.
> Determine snow water-equivalent over the snow accumulation season, typically estimated equal to (snowfall/10).
$>$ Estimate the snow relocation coefficient θ. This ranges from a maximum of 0.75 in cold windy locations with short vegetation, to 0.15 or so in the northeastern states. If unknown, use 0.50 .
$>$ Estimate snow transport for the average year using the equation

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{t}, \mathrm{ave}}=1500 \theta \mathrm{~S}_{\mathrm{we}}\left(1-0.14^{\mathrm{F} / 3000}\right) \tag{5.2}
\end{equation*}
$$

where $Q_{t, a v e}$ is total transport $(\mathrm{t} / \mathrm{m})$ for the average year, $S_{w e}$ is average snow waterequivalent (m) over the snow accumulation season, and F is fetch (m). A graphical solution is presented in Figure 5.3.

where K is taken from Table 4.6. For the average year, $K=1.0$.

5.8 Step 7: Select Mitigation Measure(s)

At this point, it is possible to tentatively select the mitigation measure best suited to solve the blowing snow problem. If the snow originating upwind of the right-of-way is negligible, then the focus is on vegetation management and plantings, and further information is provided in chapter 7.

5.8.1 Cross-Section Modification

If "far" snow is significant and cross-section modification seems like a possible choice, it is important to realize that cross-section modifications such as "laying back" slopes may be effective in preventing snowdrift encroachment, but earthwork alone cannot solve road icing and most visibility problems. The recommended strategy for modifying cuts is to provide as much snow storage as possible so that the cut serves the same purpose as a snow fence. However, the storage capacity of cuts is typically less than the quantity of blowing snow, and this is always
true at transitions from cut to fill. Consequently, cross-section modification does not obviate the need for snow fences.

5.8.1.1 Cut Sections

The types of drifts associated with road cut sections are illustrated in Figure 5.4. The tendency for a drift to form on the upwind side of a cut is frequently overlooked, but is important to consider in cross-section modifications.

Figure 5.4. Types of drifts that form in cut sections (Tabler 1994).

The recommended strategy for cut modification is to store as much snow as possible in cuts, and in the process allow the snowdrift to form whatever equilibrium slope is dictated by the upwind terrain and vegetation (Figure 5.5). This replaces the familiar rule-of-thumb to "lay back slopes to a $6 \mathrm{H}: 1 \mathrm{~V}$." The recommendation made here
 also results in a wider ditch, which increases storage space for plowed snow. Quantitative guidelines are given in Figures 5.6 and 5.7. As previously defined, α is the attack angle of the wind (angle between wind direction and a perpendicular to road). The snow storage capacity of cuts with the geometry in Figure 5.6 is shown in Figure 5.8. The recommendations for rock cuts in steep terrain (Figure 5.9) reduce snow removal costs.

Figure 5.5. Comparison of the traditional and recommended strategies for designing cuts to prevent snowdrift encroachment (Tabler 1994).

RECOMMENDED SOLUTION

Figure 5.6. Proposed section for cuts to prevent drift encroachment where upwind terrain is flat or slopes downward toward the road (Modified from Tabler 1994). Dimensions are in meters.

Wind

Figure 5.7. Proposed guidelines for through-cuts (Modified from Tabler 1994).

Figure 5.8. Snow storage versus height of cut for crosssection in Figure 5.5 (Tabler 1994).

Figure 5.9. Guidelines for rock cuts in steep terrain (Tabler and Cavagnaro 1993).

5.8.1.2 Fill Sections

Roadside snowbanks can cause extremely hazardous visibility conditions in blowing snow (Figure 5.10). The method for preventing this problem is to elevate the road above surrounding grade using the guidelines in Figure 5.11.

For high fills, a "barn roof " section reduces the depth of the snowdrift that forms near the road (Figure 5.12). Wherever feasible, the cross-section should be designed to eliminate the need for safety barrier.

Figure 5.10. Roadside snowbanks create severe drifting and visibility hazards (figure on right from Tabler 1994).

Figure 5.11. Guidelines for minimum fill height (Tabler 1994).

Figure 5.12. Recommended treatment for high fill sections.

5.8.1.3 Safety Barrier

Safety barrier forms snowdrifts (Figure 5.13), creates visibility hazards (Figure 5.14), obstructs snowplow cast, and prevents removal of roadside snowbanks (Figure 5.15). For blowing snow mitigation, the single most important guideline for road design is to minimize safety barrier by meeting clear zone requirements. Using box-beam or cable rail reduces the severity of the drifting problem (Figure 5.16), but does not always eliminate it.

Figure 5.13. Safety barrier causes snowdrifts. Left view shows W-beam rail, right view is concrete median barrier (Tabler 1994). Arrows indicate wind direction.

Figure 5.14. Safety barrier can create severe visibility problems. Photo courtesy Craig Shelton, Alaska Department of Transportation and Public Facilities.

Figure 5.15. Safety barrier prevents removal of roadside snowbanks.

Figure 5.16. This 1:30-scale outdoors model shows that boxbeam guardrail (foreground) causes less snow accumulation than W-beam rail (background)(Tabler and Jairell 1980). Both models include a curb.

5.8.2 Snow Fences

If snow fences are part of the mitigation plan, the next step is to determine design requirements for the desired type of fence. Most of the requirements for setback and placement of structural fences apply to living snow fences as well, and the differences will be described at the end of this chapter. A porosity of 50% is most commonly used because this porosity provides the greatest storage capacity for a given height of fence. The reason for using denser fences is that the shorter drift length (Figure 5.17) reduces setback, which may be necessitated by right-of-way constraints.

(DISTANCE FROM FENCE) / HEIGHT

Figure 5.17. Snowdrift profiles formed by fences with porosities of $\mathbf{0}$-, 25-, 37.5 and 50%.

5.9 Step 8: Determine Required Height of Snow Fence

The height required, $H_{\text {req }}$ (meters), is given by
$\mathrm{H}_{\mathrm{req}}=\left[\mathrm{Q}_{\text {des }} /\left(3+4 \mathrm{P}+44 \mathrm{P}^{2}-60 \mathrm{P}^{3}\right)\right]^{0.455}$
where $Q_{d e s}$ is in tons per meter and P is porosity ratio. For the usual case where $\mathrm{P}=0.5$,
$\mathrm{H}_{\mathrm{req}}=\left(\mathrm{Q}_{\text {des }} / 8.5\right)^{0.455}$

A graphical solution of Equation (5.5) is given in Figure 5.18.

Figure 5.18. Required height of $\mathbf{5 0 \%}$ porous snow fences versus design snow transport (Tabler 1994).

5.10 Step 9: Determine Fence Alignment

In the absence of other constraints, fences should be aligned parallel to the roadway
 ("parallel" fences) for wind attack angles between $55-$ and 90°. For more oblique attack angles, fences should be aligned within 10° or so of perpendicular to the wind direction. These are referred to as "oblique" fences.

5.11 Step 10: Determine Required Setback

Although fence setback should allow the end of the drift to tail out before reaching the protected area, it can be argued that some drift encroachment might be acceptable as long as it were less than the drift depth that existed without the fence. For no deposition on the road, the setback must equal the maximum drift length when the fence is filled to capacity; i.e., $\mathbf{3 5 H} H_{\text {req }}$ for a $\mathbf{5 0 \%}$ porous fence on flat terrain. This distance is that measured parallel to the prevailing wind direction, and is not necessarily perpendicular to the road (Figure 5.19). The required setback may be farther or closer, depending on terrain considerations discussed in section 6.5.2.1.

Figure 5.19. Setback for parallel fences on flat terrain (Tabler 1994).

If design transport is twice the average transport (i.e., $\mathrm{K}=2.0$), then the setback can be reduced to $18 H_{\text {req }}$ (Figure 5.20). This is the closest setback allowed for a 50%-porous fence. Setback should be adjusted so that the snow fence is not located in an area where a
snowdrift forms naturally which would damage the fence and reduce effective height (Figure 5.21)

Figure 5.20. Setback distance can be reduced by using a fence taller than required for storage of the design transport (Tabler 1993).

Figure 5.21. The best location for a snow fence may be farther from the protected area than the minimum setback.

In the case of oblique fences, the minimum setback as determined above applies to the fence end nearest the road. As described in chapter 6, however, the required setback can be reduced if the end-effect is taken into account.

5.11.1 Spacing between Tandem Rows

A single tall fence traps more snow and is more cost effective than multiple rows of shorter fence. Where multiple rows are necessary, spacing between rows should be 30H on flat or gently sloping terrain. Fences should be spaced more closely on terrain sloping upward in the direction of the wind and farther apart on downward-sloping terrain.

5.12 Step 11: Lay out Tentative Location of Fences on Topographic Map

This step is facilitated using DeLorme 3-D TopoQuads ${ }^{\circledR}$ and DeLorme Xmap3.5 ${ }^{\circledR}$.

5.12.1 Determine Location of Fence Ends

Snow fences must overlap the area to be protected by 30° on either side of the prevailing transport direction to account for variation in wind direction, and the reduced snow trapping efficiency near fence ends (Figure 5.22). For the same reasons, staggered oblique fences must also be overlapped as shown in Figure 5.23. The procedure for laying out fences on topographic maps is illustrated in Figure 5.24.

Figure 5.22. Fences should overlap the protected area by 30° on either side of prevailing direction (Tabler 1994).

Figure 5.23. Guidelines for overlapping staggered oblique fences (Tabler 1994).

Figure 5.24.
Example
illustrating preliminary snow fence layout using
DeLorme
software. © 2002
DeLorme (www.delorme.co m) XMap ${ }^{\circledR} 3.5$ and 3-D
TopoQuads ${ }^{\circledR}$ 1.0.
[$\mathrm{m}=3.281$ *ft]

5.12.2 Design Required Openings

Because of the end-effect described in section 3.8.5.2.2, fence length should be at least 30 H , and openings in fences should be avoided whenever possible. Even a small opening can significantly reduce the storage capacity and trapping efficiency. Guidelines for openings are presented in Figure 5.25. Type C assumes wind is parallel to access road.

Figure 5.25. Guidelines for openings in fence lines (Tabler 1994).

TYPE B: YEAR-ROUND OFF-ROAD ACCESS

5.13 Step 12: Finalize Fence Locations

After the preliminary map layout has
 been completed, the suitability of proposed fence locations must be verified in the field. Typically, the preliminary plan requires changes to accommodate terrain and physical features not shown on the topographic maps. Locating the proposed fence locations in the field is facilitated by connecting a GPS receiver to a portable computer running the mapping software.

Final field review should verify that the ends of snow fence systems would not create abrupt transitions in visibility or ice conditions. As demonstrated in chapter 2, fences can be extremely effective in improving visibility and reducing the formation of slush and ice. Consequently, the snow fence designer can inadvertently create a serious hazard by creating an abrupt transition from protected to unprotected conditions. This is illustrated by the transition of visibility at the end of a snow fence system (Figures 5.26). Figure (5.27) shows the transition in ice conditions at this same location on another date caused by a stream of blowing snow passing through the unprotected gap between the $3.8-\mathrm{m}$-tall ($12.4-\mathrm{ft}$) snow fence, and tall bushes growing along a watercourse. The fences should have been extended to eliminate such a gap.

The following mitigation strategies can be employed to avoid creating dangerous transitions at the ends of a fence system:
$>$ Tying in fences with natural features, such as trees and brush, that reduce blowing snow
$>$ Filling in gaps between fence systems
$>$ Tapering out protection by reducing the fence height, or increasing fence porosity, near fence ends

Figure 5.26. This visibility transition is at the end of a system of 3.8-m-tall (12.4ft) snow fences on Wyoming I-80. The left view shows the abrupt change in conditions at end of the fence system coinciding with the far side of a machinery underpass. The right view shows conditions within the protected area at the same time, looking in the opposite direction. (Tabler 1994).

Figure 5.27. The strip of blowing snow across the road coincides with the unfenced corridor between the fence system in the background, and brush growing along a watercourse (Tabler 1994).

5.14 Step 13: Select Fencing Material

5.14.1 Structural Permanent Fences

Of the numerous fencing materials described in chapter 6, the two most commonly used for tall fences are wood and composite synthetics. The Wyoming snow fence (Figure 5.28) consists of $2.5-\mathrm{x} 15-\mathrm{cm}$ ($1-\mathrm{x} 6-\mathrm{in}$.) boards fastened to wooden truss frames. Individual panels are 3.7 m (12 ft) long, anchored with $1.5-\mathrm{m}(5-\mathrm{ft})$ long reinforcing bars (rebar) driven into the ground. Fence heights range from 1.8 - to 4.3 m (6 - to 14 ft), for which generic plans are provided in chapter 6 . Detailed standard plans for 3.0 and $3.6-\mathrm{m}$ fence heights ($10-$ and 12 ft) are presented in Appendix B. The Wyoming fence is the least costly to construct, but requires considerable maintenance over it's physical life of 25 years or more. It can withstand strong winds and snow burial on flat terrain, but can be damaged by snow creep and glide forces if buried on sloping terrain.

Figure 5.28. 3.0-m (10-ft) Wyoming snow fence.

The synthetic material most extensively used for tall fences is a composite high-density polyethylene strap with embedded stranded cables that comes in $100-\mathrm{m}$ ($360-\mathrm{ft}$) rolls. Centaur HTP ${ }^{\circledR}$ strap (www.centaurhtp.com) contains three stranded wires and is 13 cm (5
 in.) wide (Figure 5.29). A more flexible 15-cm-wide (6-in.) strap with four 7×7 stranded wires has recently been introduced by Perma-Rail International (www.snowfence.com), which also offers a complete line of posts and hardware for attachment and tensioning (Figure 5.30).

Advantages of the synthetic rail include neat and unobtrusive appearance, durability, low maintenance, and resistance to damage from snow creep and glide. Where right-of-way width is sufficient, the material can be used for the dual purposes of access control and blowing snow protection. Although the initial installed cost is higher than for the Wyoming fence, the reduced maintenance more than compensates for the difference.

Figure 5.29. Composite polyethylene / stranded steel wire fencing material (Centaur HTP ${ }^{\circledR}$). Lower right photo courtesy of PermaRail ${ }^{\circledR}$ International. (Upper left from Tabler 1994).

Figure 5.30. In-line winch tensioner and slotted aluminum post with brackets. Photos courtesy of Perma-Rail ${ }^{\circledR}$ International.

5.14.2 Living Snow Fences

Living barriers can be as effective as structural fences if properly designed. Key requirements include adequate storage capacity, absence of gaps, and sufficient setback to prevent the downwind drift from encroaching on the road at any stage of development. Under favorable growing conditions, living fences are less costly than structural fences. Where conditions are less favorable, the combined direct and indirect costs for the two types of fences are comparable.

Trees and shrubs suitable for drift control should have relatively dense foliage that extends to ground level. Self-pruning species should be avoided. Tolerance to aerial salt spray and soil salt is often a requirement. An excellent source of information for many species appropriate for the Midwest and Northeast is the CD-ROM "Woody \& Herbaceous Plants for Minnesota Landscapes \& Roadsides," prepared by the Minnesota Department of Transportation (1999).

Guidelines for structural fences also apply to living barriers, but modifications are necessary to take into account the changes in height and porosity as the plants grow. The length of the downwind drift changes with time, and depends on the storage capacity relative to seasonal snow transport (Figure 5.31). As the barrier becomes denser, more snow is stored in the upwind drift and the downwind drift becomes shorter. Two or more staggered rows of mature coniferous trees function as a solid barrier.

For light to moderate snow transport conditions, the required setback distance is equal to $(\sin \alpha)\left(35 H_{\text {req }}\right)$, where $H_{\text {req }}$ is the required height of structural fence at that location. Where snow transport is greater than light-moderate, tree plantings for living snow fences should be set back at least $60 \mathrm{~m}(200 \mathrm{ft})$ from edge of pavement. The setback can be reduced by using a temporary snow fence to prevent drift encroachment until the trees reach their fully effective
height. Such a fence should have sufficient capacity to store all of the design transport, and should be placed at least twenty times its height upwind of the tree planting (Figure 5.32).

Where setback exceeds $90 \mathrm{~m}(300 \mathrm{ft})$, two or more rows of shrubs should be planted between the trees and the area to be protected (Figure 5.33).

WIND

Figure 5.33. Shrub rows should be planted beteen trees and road for long setbacks.

Openings in living fences can cause deep drifts to form downwind and should be avoided (Figure 5.34). Gaps caused by tree mortality should be sealed off with non-porous structural fence until replacement vegetation is established.

Where the required fence height is less than $3 \mathrm{~m}(10 \mathrm{ft})$, consideration should be given to using shrubs instead of taller trees. Shrubs have the advantage of faster growth, denser branching habits, and lower initial cost than trees. Two staggered rows of most shrubs spaced $1.2 \mathrm{~m}(4 \mathrm{ft})$ apart, with the same in-row spacing, provides an effective snow fence.

Pruning the lower branches of trees reduces the size of the upwind drift, and increases the volume and length of the downwind drift. Although pruning of living snow fences is therefore not recommended, pruning the lower branches of roadside trees can mitigate snowdrift problems (Figure 5.35). Shrubs or coniferous trees should be planted upwind of tall deciduous windbreaks to close off the space under the canopy (Figure 5.36).

Figure 5.34. Gaps in living snow fences with insufficient setback cause deep drifts on the road.

Figure 5.35. Pruning lower branches of roadside trees can mitigate snow drifting problems.

Figure 5.36. Shrubs or coniferous trees should be planted upwind of deciduous windbreaks to close off the open space under the canopy.

Vegetation plantings are effective for mitigating drifts caused at grade separations. For oblique wind angles, the "Minnesota snow trap" (Figure 5.37) is an effective planting pattern. For winds parallel to the overhead roadway, a combination of trees and shrubs provides some protection for lighter drifting events (Figure 5.38), but can be overwhelmed in more severe storms.

Figure 5.38. This planting was reported to be successful in reducing drifts.

5.14.3 Seasonal Fences

The most common seasonal fence consists of $1.2-\mathrm{m}$-wide ($4-\mathrm{ft}$) wooden slat or plastic fencing installed on steel T-posts. To be most effective and durable, posts should be spaced on $2.4-\mathrm{m}$ (8ft) centers, with the fencing stretched tautly and firmly attached to the vertical supports. The proper tension for most synthetic fencing materials is attained when the material is stretched to 1% elongation after pulling out slack. The attachment to vertical supports should immobilize the fencing material to prevent abrasion. An effective method is to sandwich the fencing between a length of foam pipe insulation slipped over the post, and a $50-\mathrm{x} 50-\mathrm{mm}$ ($2-\mathrm{x} 2-\mathrm{in}$.) wooden batten (Figure 5.39). Leaving a $15-\mathrm{cm}$ ($6-\mathrm{in}$.) bottom gap under the fencing increases snow storage capacity by about 25% and reduces the tendency for the drift to bury the fence.

Detailed plans for the taller seasonal fences shown in Figure 5.40 are given in chapter 6 .

Figure 5.39. Foam pipe insulation slipped over a steel T-post provides a better grip on fencing than wooden lath (Tabler 1994).

Figure 5.40. Design for seasonal fences 2.0 m (6.5 ft) and $2.4 \mathrm{~m}(8.0 \mathrm{ft})$ tall (left Tabler 1994).

5.15 The Minnesota Web Site for Snow Fence Design

The University of Minnesota Internet site http://climate/umn.edu/snow fence/Components/Design/introduction.htm allows the user to determine the required height, setback, and overlap of snow fence systems for any location in Minnesota, and can be used to design fences for places outside the state by finding a Minnesota location with similar snowfall and snow relocation coefficient. The Web site is an excellent tutorial for the guidelines presented in this report.

5.16 References

References are provided at the ends of chapters 6,7 and 8.

6 Design and Placement of Structural Snow Fences

6.1 Scope

This chapter provides specific guidelines for designing and placing snow fences, based on the characteristics of snow transport and deposition described in chapter 3. The presentation assumes that the designer is familiar with the information in chapter 3 , and has completed the basic calculations described in chapter 4.

There are two types of snow fences-those that trap snow upwind of the area to be protected (collectors), and those that deflect snow around the protected area (deflectors). Collector-type fences are emphasized here, although some of the applications and design criteria for deflectortypes are described in section 6.4.

6.2 Highlights

$>$ Snow storage capacity of collector fences should be equal to the design transport, $Q_{\text {des }}$. This is the most important requirement for successful fences.
$>$ The trapping efficiency of a snow fence, and therefore its effectiveness, increases with its height.
$>$ A single row of tall fence is more economical than multiple rows of shorter fence with the same total capacity. Required fence height is a function of fence porosity and the desired storage capacity.
$>$ Fences that have a porosity ratio of 0.5 are the most efficient and hold the most snow, but less porous fences can reduce the required setback distance.
> Solid fences can be used to confine snow deposition to the upwind side of the barrier, reducing required setback.
$>$ A gap equal to about $H / 10$ should be left under porous fence to improve snow-trapping efficiency and prevent damage from snow settlement.
$>$ Fences can be surface mounted, as the Wyoming fence is, or pole supported. Surfacemounted fences are usually the least expensive to build, but pole-supported fences are better able to resist snow creep on slopes. Less land area is occupied by pole-supported fences, and this type of construction is preferable for permafrost soils.
$>$ The Wyoming fence consists of $15-\mathrm{cm}$-wide ($6-\mathrm{in}$.) horizontal boards spaced on 25 - to $30-\mathrm{cm}$ centers ($10-$ to $12-\mathrm{in}$.) fastened to three wood trusses per panel. Fence heights range from 1.8 to $4.3 \mathrm{~m}(6$ to 14 ft$)$. The top of the fence is inclined 15° downwind, and the bottom gap is equal to about $H / 8$. Individual panels are $3.66 \mathrm{~m}(12 \mathrm{ft})$ long and are anchored with a system of reinforcing bar and U-shaped clips. A generic plan for five
heights is presented in this chapter, and detailed standard plans for 3.0 and $3.6-\mathrm{m}$ heights ($10-$ and 12 ft) are provided in Appendix B.
> It is essential that U-clips grip the rebar tightly. Any movement of the fence will lead to failure of the anchor system.
$>$ Service life for the Wyoming fence is at least 30 years in dry climates, but annual maintenance is required to minimize total maintenance expenditure.
$>$ An experienced crew can complete about one panel of 3.6-m-tall (12-ft) Wyoming fence per person-hour. The current total installed cost for large projects is approximately $\$ 14.20$ per square meter of frontal area $\left(\$ 1.32 / \mathrm{ft}^{2}\right)$.
$>$ Most synthetic fencing materials will provide economical service if they are properly installed. Plastic fencing is susceptible to abrasion and shear, so it must be properly tensioned (typically to a 1% elongation) and immobilized at vertical supports. Black plastics are most resistant to degradation by ultraviolet light because carbon black is an effective UV inhibitor.
$>$ Composite flexible rail, 120 - to 150 mm wide (4.75 to 6.0 in .) and made from a polyolefin polymer with embedded wires, can be used to build snow fences of any desired height and porosity. Important advantages include ease of construction, conformability to terrain irregularities, resistance to damage caused by snow settlement, and low maintenance requirements. Material, brackets and posts are available from Perma-Rail International (www.snowfence.com).
$>$ Transverse guys and braces should not be used to support snow fences because snow settlement and can impose damaging loads. Vertical supports should therefore be freestanding except for end posts, which may be guyed longitudinally.
> Wind loads on snow fences, tabulated according to fence height and wind speed, can be adjusted for fence porosity and environmental conditions using a simplified system of correction factors.
$>$ Fences $2 \mathrm{~m}(6.6 \mathrm{ft})$ or taller should be used where summer land use requires temporary ("seasonal") snow fences. A patented system for fences 2.0 - and $2.4-\mathrm{m}$-tall ($6.5-$ and 8 $\mathrm{ft})$ consists of panels $2.4 \mathrm{~m}(8 \mathrm{ft})$ long made by tensioning plastic fencing across a wood frame. Individual panels are connected together with a system of U-clips and reinforcement bar pins. Detailed plans for both heights are reproduced in this report.
> Deflector fences such as the jet roof and Kolktafeln can be used to accelerate wind and generate turbulence that prevents cornices from forming at the top of cut slopes.
$>$ Blower fences are used in Japan to reduce snow deposition and improve visibility. These structures, which consist of multiple vanes to deflect the wind downward, must be placed close to the road because their effectiveness is limited to a downwind distance of about 1.5 times their height.
> A lateral deflector, such as a solid V-shaped fence pointing into the wind, creates a long, narrow, snow-free area downwind, with snowdrifts along the sides. Although useful for
livestock shelters and to protect isolated structures, lateral deflectors have few applications for drift control on roads.
$>$ Generally, fences should be oriented parallel to the road if the prevailing wind direction is within 35° of being perpendicular to the road (i.e., $\alpha \mu 55^{\circ}$). For winds that are more oblique, fences should be aligned perpendicular to the prevailing direction. Attack angles less than 55° are acceptable if necessary to avoid adverse terrain, or to take advantage of favorable topography. The orientation of a fence is much less important than its proper extension on both sides of the area to be protected.
$>$ Fences should be far enough from the road that the downwind drift does not extend onto the road. On flat terrain, this distance is about thirty-five times the fence height (35 H) for a fence with a porosity ratio of 0.5 , and 25 H and 12 H for porosity ratios of 0.25 and 0.0 , respectively.
$>$ Setback distance can be reduced by using a taller fence than is required for snow storage. In general, the required setback for a fence with storage capacity equal to twice the mean annual snow transport is eighteen times its height (18H). With this guideline, the probability of drift encroachment is approximately 1 year out of 100 .
$>$ For fences aligned at an angle to the road, stepping down the height at the end of a fence allows placement closer to the road.
$>$ Fences should extend far enough beyond the protected area to intercept blowing snow from 30° on both sides of the prevailing transport direction.
$>$ Protection of high fill sections should include a fence upwind of the toe of the embankment to collect "far" snow, if present, and shrubs or a closely spaced series of fences should be used to hold snow in place on the slope. Spacing between fences on embankments should be equal to $H / \tan a$, where a is the slope angle measured from horizontal.
$>$ Even small gaps between fence panels should be avoided. A space as little as 15 cm (6 in.) between Wyoming fence panels causes significant drift erosion and reduces storage capacity.
$>$ Care should be taken to avoid creating dangerous transitions from protected to unprotected conditions at the ends of a fence system. Mitigation measures include: 1) tying in fences with natural features that reduce blowing snow, such as trees and brush; 2) filling in gaps between fence systems; and 3) phasing out protection by stepping down fence height, or increasing fence porosity, at fence ends.
$>$ Digital topographic maps and mapping software greatly facilitate snow fence layout. The 3-D TopoQuads ${ }^{\circledR}$ and XMap ${ }^{\circledR} 3.5$ software available from DeLorme (www.delorme.com) allows the user to draw lines of precise length and orientation on digital topographic maps, and to zoom in to any desired level of magnification.
$>$ The New York State Department of Transportation has supported the development of a computer system for automatically designing snow mitigation measures, including both
road design and snow fences, using the guidelines, equations and algorithms presented in this report. This system, named SNOWMAN, utilizes a MicroStation ${ }^{\circledR}$ platform for generating terrain cross-sections parallel to the prevailing snow transport direction from digital terrain model files. A snowdrift profile generator optimizes cross-section modification or snow fence placement by iteration.

6.3 Design of Collector Fences for "Far" Snow

The type of fence used depends on many factors, including the required snow storage capacity, fence height and porosity, permanency, terrain, soil conditions, wind loads, available materials, and construction costs. This section is organized to help the designer select the best type of fence for a particular application.

Placement requirements described in section 6.5 must be considered as part of the design process, and several iterations may be required before a design can be finalized. Because both fence porosity and height determine snow storage capacity and minimum setback distance, alternative combinations may have to be compared before the optimum design can be specified.

6.3.1 Snow Storage Capacity

The snow storage capacity of a snow fence system is the maximum quantity of snow that a fence system is designed to retain, and should be equal to the design transport, $Q_{\text {des }}$, calculated as described in chapter 4. Adequate storage capacity is the most important requirement for a snow fence system, just as it is for hydraulic structures. Sizing a snow fence is similar to determining the required capacity for a culvert, detention pond, or storm drain. After estimating how much blowing snow arrives at the prospective fence site, it is possible to specify the height and number of rows of fencing required to store this quantity of snow. As will be shown in section 6.3.2, a single row of tall fence is more economical than multiple rows of shorter fence that have the same storage capacity. Therefore, the usual approach is to calculate the required height of a single row of fence.

6.3.2 Specifying Fence Height

6.3.2.1 Calculating Required Structural Fence Height, $\boldsymbol{H}_{\boldsymbol{s}, \boldsymbol{r e q}}$

Because both fence height and porosity affect snow storage capacity, the determination of required fence height may be an iterative process if placement constraints demand a specific equilibrium drift length. The usual procedure, however, is to begin by determining the required height for a porosity ratio of 0.5 . For maximum efficiency, porosity should be in the range of 0.45 to 0.5 .

Snow storage capacity varies with fence height and porosity ratio, P, as indicated by Equation (3.25):
$\mathrm{Q}_{\mathrm{c}}=\left(3+4 \mathrm{P}+44 \mathrm{P}^{2}-60 \mathrm{P}^{3}\right) \mathrm{H}^{2.2}$
where H is in meters, and Q_{c} is in tons per meter. Substituting $Q_{d e s}$ for Q_{c} and solving for required effective fence height, $H_{\text {req }}$,
$H_{\text {req }}=\left[Q_{\text {des }} /\left(3+4 \mathrm{P}+44 \mathrm{P}^{2}-60 \mathrm{P}^{3}\right)\right]^{0.455}$
For the usual case where $P=0.5$,
$\mathrm{H}_{\mathrm{req}}=\left(\mathrm{Q}_{\mathrm{des}} / 8.5\right)^{0.455}$
Maintaining the distinction between the structural and effective heights, the required structural fence height, $H_{s, \text { req }}$, is given by
$\mathrm{H}_{\mathrm{s}, \text { req }}=\mathrm{H}+$ ambient snow depth
Required fence heights for different snow transport severity classes are shown in Table 6.1.

Table 6.1. Required fence heights for the snow transport severity classes.

Class	Snow Transport $(\mathrm{t} / \mathrm{m})$	Fence Height (m)
1	<10	1.1
2	$10-20$	1.5
3	$20-40$	2.0
4	$40-80$	2.8
5	$80-160$	3.8
6	$160-320$	5.2
7	>320	>5.2

Example:

Given: Design transport $Q_{d e s}=50 \mathrm{t} / \mathrm{m}$
Porosity ratio $P=0.5$
Required: Fence height required to store design transport
Solution: Equations (6.2), (6.3): $H_{\text {req }}=[(50) / 8.5]^{0.455}=2.24 \mathrm{~m}(7.3 \mathrm{ft})$

6.3.2.2 Advantages of Tall Fences

The effectiveness of a snow fence increases with height not only because storage capacity is proportional to $H^{2.2}$, but also because the mechanics of snow deposition are such that most of the snow passing over the top of a fence escapes downwind. As shown in chapter 3, there is appreciable blowing snow at heights above $1 \mathrm{~m}(3.3 \mathrm{ft})$; more than one-third of the transport is above this height when wind speed reaches $88 \mathrm{~km} / \mathrm{h}(55 \mathrm{mile} / \mathrm{h})$. The percentage of total transport intercepted by a fence therefore increases with fence height.

In general, it is more economical to build a single row of tall fence than multiple rows of shorter fence having the same total storage capacity. This is because over the range of heights commonly used, the cost of building a fence is approximately proportional to fence height, whereas storage capacity increases as $H^{2.2}$. Former snow fence projects in Wyoming support this generalization. As shown in Figure 6.1, a 3.66-m (12-ft) fence costs less than one-third as much as an equivalent system consisting of four rows of $1.8-\mathrm{m}(6-\mathrm{ft})$ fence, and one row of $1.2-\mathrm{m}(4-\mathrm{ft})$ fence.

Figure 6.1. Fence construction cost per unit of snow storage, as a function of fence height, for two large projects in Wyoming (Tabler 1989).

Costs for easements or land acquisition are usually less for a single tall fence than for multiple rows of shorter fence because less land area is occupied. For example, a single $3.7-\mathrm{m}$ ($12-\mathrm{ft}$) fence would typically be placed about $35 H$, or $130 \mathrm{~m}(427 \mathrm{ft})$,
 from the shoulder of the road. Because the recommended spacing between multiple rows of fence is $30 H$ (section 6.5.3), if four rows of $1.8-\mathrm{m}$ fence were used, the fence furthest upwind would have to be placed ($3 \times 1.8 \times 30$) $+(35 \times$ $1.8)=225 \mathrm{~m}(738 \mathrm{ft})$ from the shoulder.

Other advantages of using a single tall fence include a slower rate of snowmelt runoff (because of the differences in surface area/volume ratios), and reduced visual impact because of fewer fence lines and placement farther from the road.

On agricultural land, snowdrifts can delay planting in the spring. The time required for a drift to melt is directly proportional to its depth, and thus to fence height. The melt-out date for drifts can be estimated from climatic data using the relationship (Tabler 1985)

Melt rate of snowdrifts: 1 cm depth $/{ }^{\circ} \mathrm{C}$-day

6.3.3 Calculating Number of Rows

If it is necessary to use several rows of shorter fence rather than a single taller fence, the number of rows, R, of fencing needed to provide the required storage capacity can be calculated from
$\mathrm{R}=\left(\mathrm{H}_{\mathrm{req}} / \mathrm{H}\right)^{2.2}$
where $H_{r e q}$ is required height of a single row of fence, as given by Equation (6.2), and H is the height of fence to be used.

Example:

Given: Design transport $Q_{d e s}=50 \mathrm{t} / \mathrm{m}$
$H_{\text {req }}=2.24 \mathrm{~m}(7.3 \mathrm{ft})$
Fence height to be used $=1.37 \mathrm{~m}(4.5 \mathrm{ft})$
Required: Number of rows of fence $1.37-\mathrm{m}(4.5-\mathrm{ft})$ required to store design transport
Solution: Equation (6.6): $R=(2.24 / 1.37)^{2.2}=2.9$ v 3 rows required

6.3.4 Selecting Porosity

Although snow storage capacity is greatest with fences having a porosity ratio of approximately 0.5 , there are times when a different porosity may be preferable due to setback constraints. Figure 6.2 shows the effect of fence porosity on drift length and total snow storage.

Figure 6.2. Equilibrium drift profiles for selected fence porosities.

Where constraints on setback distance require a shorter equilibrium drift, Equation 3.24 can be used to calculate the required porosity, keeping in mind that the required fence height also changes with porosity (Equation 6.2).
$\mathrm{L} / \mathrm{H} \not \subset 12+49 \mathrm{P}+7 \mathrm{P}^{2}-37 \mathrm{P}^{3}$
The bottom gap should be excluded in porosity calculations.

6.3.4.1 Non-Porous Fences $(\boldsymbol{P}=0)$

The snow storage capacity of a non-porous barrier is only one-third that of a 50% porous fence of equal height. However, solid fences have two advantages: 1) snow is initially deposited on the upwind side (until the upwind drift approaches equilibrium); and 2) much of the blowing snow passing over the top of a solid barrier is injected into the high speed airstream (Figure 3.60) where it is diffused by turbulence and transported downwind.

Solid barriers can therefore be used to eliminate blowing snow problems on steep embankments where porous collector fences would be relatively inefficient. The solid structure shown in Figures 6.3 and 6.4 protects Highway 230 near Nakayama Pass southwest of Sapporo, Japan. Most of the blowing snow is deposited on the slope below the fence, and many of the remaining particles are diffused vertically by the turbulent airflow over the top of the barrier. The structure is sufficiently strong to support snow removal equipment. According to the designer, Tetsuya Uchiya of the Hokkaido Development Bureau, solid barriers such as this should be installed perpendicular to the slope; the fence at Nakayama pass was inclined to avoid obscuring the scenic view.

Figure 6.3. Solid barrier near Nakayama Pass, Hokkaido, Japan, causes snow to be deposited on the slope below the road, diffuses snow vertically, and retards deposition on the road (Tabler 1994). Right photo courtesy of Tetsuya Uchiya, Hokkaido Development Bureau.

Figure 6.4. Design of the solid barrier on Nakayama Pass shown in Figure 6.3 (Tabler 1994).

Embankments are another type of solid
 barrier used for snow control. Figure 6.5 shows a typical dust levee built to protect railroads from blowing topsoil on the eastern plains of Colorado. Although these structures also provide protection against blowing snow, the cost of constructing an earthen embankment far exceeds that for a porous snow fence. The structure illustrated in Figure 6.5 would store as much snow as a $2.2-\mathrm{m}$-tall (7.2 ft) snow fence that had a porosity ratio of 0.5 .

Snow embankments are sometimes constructed to protect villages and facilities in the Arctic from blowing snow, with one notable example being Baker Lake in Canada's Northwest Territories. An effective method for temporary fences is to install a 1.2-m (4-ft) tall fence on a snow embankment of sufficient height to provide the required snow storage capacity.

Figure 6.5. Dust levee constructed to protect railways in eastern Colorado, induces deposition of saltating particles on upwind side, and entrains smaller particles in the higher speed airstream over the crest (Tabler 1994).

As will be described in chapter 8, dense tree barriers also function as solid barriers.

6.3.5 Specifying a Bottom Gap

The primary purpose of leaving a gap between the ground and the bottom of the fence is to reduce snow deposition in the immediate vicinity of the fence, thereby maintaining maximum effective height and preventing damage that might otherwise occur from settlement or creep of the deposited snow.

The gap between the soil surface and the bottom of a porous fence generally should not be less than $H_{s} / 10$, regardless of topography or vegetation. The optimum gap is approximately $H_{s} / 10$ above the average vegetation height. Larger gaps may be warranted on ground sloping downward in the direction of the wind, or other locations prone to snow deposition.

6.3.6 Permanent Surface-Mounted Fences

6.3.6.1 Wyoming Snow Fence

The Wyoming fence is a horizontal-board snow fence that has been used since 1971 by the Wyoming Department of Transportation (WYDOT). Since it was first described (Tabler 1974), the design has undergone numerous revisions in a continuing effort to maximize effectiveness, and to minimize construction and maintenance costs. The current version consists of panels 3.66 $\mathrm{m}(12 \mathrm{ft})$ long comprised of $25 \times 150-\mathrm{mm}$ ($1 \times 6-\mathrm{in}$.) horizontal boards on $280-\mathrm{mm}$ ($11-\mathrm{in}$.) centers fastened to wooden truss frames (Figure 6.6). Each panel is anchored with $1.5-\mathrm{m}$-long ($5-\mathrm{ft}$), $19-\mathrm{mm}$ (0.75 in .) reinforcing bars (rebar) that are driven into the ground at the ends of sill members. Although there are presently only two standard heights used by WYDOT, 3.0- and 3.7 m (10 and 12 ft), heights used in the past have ranged from 1.8 to 4.3 m (6 to 14 ft), which includes a bottom gap equal to approximately 12% of total height. The top of the fence is inclined 15° downwind to provide stability during construction, and to facilitate repairs by providing a more convenient platform for workers. Although there is some evidence in the literature that inclination up to 15° can increase snow storage capacity, the author's studies indicate that such an increase is less than 10%.

Since 1971, hundreds of kilometers of this fence have been installed along highways in Wyoming, and significant lengths are in place in Montana, Arizona, and Alaska.

Metal versions of this fence have also been produced. The Arizona Department of Transportation designed an aluminum fence that allows panels to be lowered during the summer to reduce scenic impact (Figure 6.7). Subsequent experience has shown public acceptance of keeping the fences up year-round.

Figure 6.6. Wyoming snow fence (lower right from Tabler, 1994).

Figure 6.7. Aluminum Wyoming-type snow fence developed by the Arizona Department of Transportation. Photo courtesy Arizona Department of Transportation.

6.3.6.1.1 Standard Plans

Dimensions of structural members shown in Figure 6.8 are listed in Table 6.2 for five fence heights. Detailed standard plans for 3.0 and $3.6-\mathrm{m}$-tall ($10-$ and 12 ft) are provided in Appendix B, in both English and metric dimensions. These plans assume full-dimension rough-sawn lumber. In 1988, lumber grading rules were changed to reflect the use of new precision planers. The new rules specify a minimum rough size $1 / 8^{\prime \prime}(3.175 \mathrm{~mm})$ wider and thicker than the standard surfaced size (Western Wood Products Association 1988), but subsequent modifications in the design have compensated for the different dimensions. The use of finished lumber is not recommended.

Nylon-insert locking nuts are specified for all bolted connections because experience has shown that non-locking nuts loosen and vibrate completely off the bolts.

Figure 6.8. Generic plan for the Wyoming snow fence. Dimensions are given in Table 6.2. Revised from Tabler (1994).

Table 6.2. Dimensions (mm) of structural members of the "Wyoming" snow fence shown in Figure 6.8. S and G dimensions are parallel to front vertical truss member. Lumber size for all truss members is $50 \times 150 \mathrm{~mm}$, except $50 \times 200 \mathrm{~mm}$ is used for the long brace (Member Number 3) for the 4.3-m height.

Bolt length at anchor attachments $=150 \mathrm{~mm}$; all others $=125 \mathrm{~mm} . \mathrm{NR}=$ not required, $\mathrm{NA}=$ not applicable.

The designs presented here are able to withstand wind gusts in excess of $160 \mathrm{~km} / \mathrm{h}(100 \mathrm{miles} / \mathrm{h})$, snow settlement pressures associated with complete burial, and forces imposed by livestock. The importance of the knee brace for fences taller than $3.0 \mathrm{~m}(10 \mathrm{ft})$ is illustrated by the damage resulting from snow settlement one year when the fences were nearly buried (Figure 6.9). The knee braces also prevent livestock from rubbing on the long braces.

Figure 6.9. Knee braces are required to prevent long braces from being damaged by snow settlement pressure, as occurred behind this 3.6-m-tall (12-ft) fence of an earlier design.

Lumber for the Wyoming fence can be purchased precut, predrilled, and treated with wood preservative.
Buckingham Lumber Company (307-
 684-2231) in Buffalo, Wyoming, is the principal manufacturer, and ships materials (including hardware) nationwide. Although the front panels of 1.8 and $2.4-\mathrm{m}$-tall ($6-$ and $8-\mathrm{ft}$) fences could be fabricated off-site, experience has shown that panels for taller fences are so susceptible to damage during loading and unloading that all assembly is best done in the field, as illustrated in Figure 6.10. An experienced crew can complete about one panel of $3.6-\mathrm{m}$-tall ($12-\mathrm{ft}$) fence per person-hour. The current total installed cost for large projects in Wyoming is approximately $\$ 14.20$ per square meter of frontal area (\$1.32/ft²).

6.3.6.1.2 Economy Model

The sill member that rests on the ground (Member Number 2), fixes the vertical inclination and provides rigidity to the frame. Because the sill must contact the ground over its entire length, however, it is usually necessary to smooth the ground under each sill. This seating process is often a laborious time-consuming operation on rocky or brush-covered sites, and adds significantly to construction cost. The sill member can be eliminated for fence heights up to 2.4 $\mathrm{m}(8 \mathrm{ft})$ or so without unduly compromising structural strength. The angle cuts on the lower end of the frame members can also be eliminated. These modifications significantly reduce construction cost, and provide flexibility in setting the inclination angle, and hence the vertical height. This latter advantage can become a disadvantage, however, if construction is not supervised adequately to insure that the panels are installed at the correct angle.

6.3.6.1.3 Anchors

Reinforcing bar (rebar) provides an inexpensive anchor with excellent extraction resistance in most soils. Number 19 (metric) ($3 / 4 \mathrm{in}$.) bar provides adequate extraction resistance, has adequate rigidity for driving, and is sufficiently flexible to allow deflection around stones in the soil. Fence panels are attached to the rebar using U-shaped clips (Figure 6.11) at both ends of each sill. These U-clips are efficient and inexpensive, but the only commercial source known to the author is Buckingham Lumber Company (section 6.3.6.1.1).

It is imperative that the bolts be tightened sufficiently that the U-clip grips the rebar tightly to prevent slippage. Figure 6.12 shows the consequences of loose connections-a rebar has nearly rasped through both the clip and the 16 mm bolt.

Figure 6.11. U-clip used to attach Wyoming fence to rebar anchor (dimensions in millimeters)(Tabler 1994).

$$
R=11
$$

DIMENSION TABLE		
DIMENSION	BOLT SIZE	
	$13 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$	
	$16 \mathrm{~mm}\left(5 / 8^{\prime \prime}\right)$	
D	27	
\varnothing	14	

FLAT PLATE BEFORE BENDING

U-CLIP FOR NO. 6 RE-BAR ($\varnothing=19 \mathrm{~mm}$)

Figure 6.12. It is imperative to tighten the U-clip to prevent slippage. Right view shows rebar that has nearly rasped entirely through bolt and U-clip.

On dry mineral soils, $75-\mathrm{cm}$ (30-in.) rebar penetration is adequate to anchor fences $2.4 \mathrm{~m}(8 \mathrm{ft})$ tall, and $120-\mathrm{cm}(4 \mathrm{ft})$ embedment is sufficient for the $4.2-\mathrm{m}(14-\mathrm{ft})$ height. Longer rebar, or a different type of anchor, must be used on wet or boggy soils. Rebar must be driven at an angle from vertical of $45^{\circ} \pm 5^{\circ}$ (Figure 6.8) to achieve adequate extraction resistance.

Steel angle can also be used as an anchor attachment, but the rebar must be welded to the angle to avoid failure after drying and shrinking of the wood loosens the connection. Welded connections must be strong enough to resist vibration-induced weld failure (Figure 6.13). Most failures of driven anchors are caused by improper attachment of sills to the rebar. Crossed-andwired rebar should not be used (Figure 6.14).

Figure 6.13. Steel angle can be used for anchor attachment, but rebar must be welded to angle to avoid failure after wood dries and shrinks. Vibration has led to failure of the light tack weld in the photo on the right. Left photo from Tabler (1994).

Figure 6.14. Crossed and wired rebar should not be used to anchor Wyoming fences (Tabler 1994).

The earth anchor shown in Figure 6.15 can be used to secure surface-mounted fences on soils with low bearing strength, as occur in boggy areas or wet meadows. After driving the anchor to the desired depth with a bar inserted in the hollow end, pulling the cable causes the anchor to rotate into a position roughly perpendicular to the direction of pull. The hydraulic anchorlocking device has a gauge that allows the anchor to be proof-loaded to the required extraction resistance. Different sizes and shapes of these anchors are manufactured by Foresight ${ }^{\circledR}$ Products LLC (telephone 1-800-325-5360), and can be viewed at the Internet Web site http://www.earthanchor.com. Some models have threaded rods instead of cables to simplify attachment.

Figure 6.15. Earth anchor for soils with low bearing strength.

On permafrost soils, seasonal cycles of freezing and thawing of the active layer jacks rebar out of the ground at a rate up to 100 - to $200-\mathrm{mm}$ ($4-$ to 8 in .) per year,
 lifting the fences (Figure 6.16).
Preliminary observations suggest that driving the rebar at an angle from vertical of 55° or greater may reduce frost jacking. The attachment shown in Figure 6.17 might allow the rebar to move independently, and to be re-driven every few years.

Figure 6.16. Seasonal freezing and thawing has jacked out the rebar anchoring this 4. 3-m-tall (14-ft) fence near Nome, Alaska.

DETAIL (A): ANCHOR ATTACHMENT ASSEMBLY

ANCHOR ATTACHMENT: WINDWARD END OF SILL

Figure 6.17. Anchor attachment for permafrost soils allows fence to move vertically in response to thawing and freezing of active layer. Dimensions are in millimeters.

6.3.6.1.4 Specifications

The following specifications for the Wyoming fence materials and construction indicate some of the provisions that experience has shown to be important. Modifications may be necessary to conform to a particular agency's standards.

6.3.6.1.4.1 Lumber Grades and Specifications

Lumber shall be lodgepole pine, ponderosa pine, Engelmann spruce, Douglas fir, hemlock, western larch, or other pre-approved species. All lumber is to be rough sawn to within $1 / 8^{\prime \prime}$ $(3.175 \mathrm{~mm})$ of the sizes specified. Boards $25-\mathrm{mm}(1 \mathrm{in}$.) shall be WWPA No. 3 or better. All $50-\mathrm{mm}$ (2-in.) dimensional lumber shall be WWPA No. 2 or better. Lumber $50-\mathrm{mm}$ (2-in.) shall be treated with wood preservative for all applications. Unless otherwise specified because of dry climatic conditions, $25-\mathrm{mm}(1-\mathrm{in}$.) boards shall also be preservative treated. Cutting and boring shall be completed prior to pressure treatment. If cutting and boring is permitted and performed after treatment, such cuts and holes shall be swabbed, sprayed, or brushed with two coats of the preservative initially used. Treatment shall conform to the requirements of the American Wood Preservers Association (AWPA) Standard C1 and C14. Where regulations permit, chromated copper arsenate is the recommended preservative. Handling and care shall conform to AWPA Standard M4.

6.3.6.1.4.2 Hardware

Unless otherwise specified, nails shall be plated or coated in accordance with ASTM A615. Bolts, nuts, and washers shall meet the requirements of ASTM A307, A563, and F436, respectively. All bolts shall be supplied with one nylon-insert locknut. U-clips do not need to be plated or painted, unless otherwise specified. Holes in U-clips shall have a diameter $1 \mathrm{~mm}(1 / 16$ in.) larger than the specified bolt, and may be punched. All other U-clip dimensions shall be within 3 mm ($1 / 8 \mathrm{in}$.) of those specified in Figure 6.11. Ring shank or screw shank nails shall be used for extraction resistance.

Reinforcing steel (rebar) used for anchors shall be Metric No. 19 (3/4- in. diameter) Grade 60, meeting the requirements of ASTM A615.

The basis for acceptance for all materials shall be the manufacturer's certification that the requirements of the appropriate specifications have been met.

6.3.6.1.4.3 Construction

The location of all cuts and borings shall be within $6 \mathrm{~mm}(1 / 4 \mathrm{in}$.) of the dimensions shown. Bolt-holes shall be drilled to a diameter $1 \mathrm{~mm}(1 / 16 \mathrm{in}$.) larger than that of the specified bolt.

All defective, split, and broken lumber shall be replaced after erection.
Panels shall be placed within 25 mm (1 in .) of the marked fence line.

The panels shall be placed so that the weight of each panel is equally distributed to the uprights, and so that all sills are in contact with the ground over 90% of their length. This will require grading the site prior to construction, or hand shoveling under each sill. The contractor shall perform such clearing and grubbing as may be necessary to construct the fence to the required grade and alignment, not to exceed $3 \mathrm{~m}(10 \mathrm{ft})$ from the fence line. If permitted, grading shall be performed where necessary to provide a neat appearance and to maintain the specified bottom gap.

Panels will be placed to leave no more than 25 mm (1 in .) between panels at the widest point. In irregular terrain, this may require some overlapping of the ends of the panels (Figure 6.18).
Overlapped panels shall be installed with a maximum transverse displacement from the surveyed fence line of 50 mm (2 in .).

Figure 6.18. Panels should be overlapped to eliminate spaces between panels that greatly reduce trapping efficiency and snow storage capacity (Tabler 1994).

Driven rebar anchors shall be placed as

THE WRONG WAY
 shown on the plans, and driven to full embedment depth at an angle of $45^{\circ}!5^{\circ}$ from vertical in the direction perpendicular to the fence line. Where anchors cannot be driven due to bedrock, the rebar shall be cemented with a bonding resin into a hole 22 mm ($7 / 8 \mathrm{in}$.) in diameter drilled at least 15 cm (6 in .) into competent rock. The bolts at the ends of the sills shall be tightened so that the U-clips grip the rebar firmly, thereby immobilizing the fence with respect to the anchors.

6.3.6.1.5 Service Life

Properly installed Wyoming fences are able to withstand winds of $160 \mathrm{k} / \mathrm{h}$ ($100 \mathrm{miles} / \mathrm{h}$), snow settlement pressures associated with complete burial on level terrain, and forces imposed by livestock. When built according to specifications, properly anchored, and properly maintained, the Wyoming fence is durable for at least 30 years in dry climates. Annual preventive maintenance is essential, however, to minimize total maintenance expenditure over the life span of the fence. Assiduous maintenance is especially important during the first two years following construction, when the initial drying of the lumber can loosen bolted connections.

6.3.6.2 Buck-and-Pole Fence

This fence consists of a buck-and-pole framework to which vertical slats are attached, often using log slabs discarded by sawmills (Figure 6.19). Various heights and porosities have been used. Slabs are only required on the upwind side of the fence.

Figure 6.19. Vertical slats attached to buck-and-pole supports (Tabler 1986b).

6.3.6.3 "Swedish" (or "Norwegian") Fence

The Swedish or Norwegian fence is 2 m (6.5 ft) tall and is made from nine, $15-\mathrm{cm}$ wide (6-in.) horizontal boards separated by
 6.4 cm (2.5 in .) spaces. The boards are fastened to trusses designed so that the top third of the fence slants into the wind (Figure 6.20). The reason for this reverse inclination is unknown. This type of fence has been used in the United States since at least 1885 with no substantial changes in design, and was the standard snow fence used by the Wyoming Department of Transportation until 1971. Many miles of this fence are still in service, particularly along railroads throughout the western United States.

Because the porosity factor is about 35%, the snow storage capacity of the Swedish fence is approximately 70% that of the same height of Wyoming fence, and the length of the downwind drift is $24 H$ (compared to $34 H$ for the Wyoming fence). The rationale for inclining the top of the fence into the wind is unknown.

Figure 6.20. A Swedish (or Norwegian) snow fence. This 2-m (6.5-ft)-tall fence was about 45 years old at the time this picture was taken (Tabler 1986b).

6.3.6.4 Pole Crib Fences

Pole crib snow fences were built with round logs or poles stacked to form a barrier. The zigzag design shown in Figure 6.21 offered a convenient way to construct freestanding fences from trees cleared during construction of roads or railways. Many such fences still in existence date back to the 1920s and 1930s. Pole fences were typically constructed with spaces between the horizontal members.

This type of fence may be useful where a rustic appearance is desired, but the design is not as efficient for trapping snow. The zigzag plan reduces the snow-trapping efficiency, however, by causing the wind to accelerate as it is deflected by the Vs pointing upwind (Figure 6.22). Modern versions should strive for the widest acceptable angle.

Figure 6.21. Pole crib fence near La Veta Pass, Colorado (Tabler 1986b).

Figure 6.22. Aerial view shows zigzag design catches less snow than the standard Wyoming fence with which it was paired for comparison (Tabler 1986b). Fence height is 3.8 m (12.5 ft). Photo by Robert L. Jairell. From Tabler (1994).

6.3.7 Materials for Pole-Supported Fences

Horizontal rails greatly reduce the tendency for snow to be deposited close to the fence. Even if the bottom gap is plugged, the spaces between the rails serve as gaps to slow the rate of burial (Figure 3.52). The small openings typical of most plastic fencing materials favor deposition near the fence and make burial more likely (Figure 6.23). If the bottom gap remains open, however, there is little difference in snow storage capacity among materials having 40 to 55% porosity.

Wood, metal, plastic, and woven fabrics can be used. If properly installed and maintained, all these materials will provide economical service lives.

Figure 6.23. The smaller the aperture, the greater the tendency for snow to deposit in the immediate vicinity of the fence. The blue material has a physical porosity approximately the same as that of the orange fencing but was the first to become buried by the drift.

6.3.7.1 Wooden Slats and Rails

Boards oriented vertically (slats) or horizontally (rails) can be used as fencing material for polesupported fences. If rails are used (Figure 6.24), the supports must be adequate to resist loads imposed by wind, snow settlement, and livestock contact. Maximum unsupported spans for horizontal boards are: 2.4 m for $25-\mathrm{x} 150-\mathrm{mm}, 3.7 \mathrm{~m}$ for $50-\mathrm{x} 150-\mathrm{mm}$, and 4.3 m for $50-\mathrm{x}$ $200-\mathrm{mm}$ (8 ft for $1-\mathrm{x} 6-\mathrm{in}$., 12 ft for $2-\mathrm{x} 6-\mathrm{in}$., and 14 ft for $2-\mathrm{x} 8-\mathrm{in}$.). Spaces between boards determine the desired porosity. Rails wider than about 25 cm (10 in.) are not as effective as narrower ones because the larger vortices shed by such wide elements tend to keep snow particles entrained instead of allowing them to fall to the surface.

Figure 6.24. Rails supported by poles were used for this 3.3-m-tall (10 -ft) fence (Tabler 1994).

Nails are loosened by changes in wood moisture content, alternating wind directions, and repetitious deflection. Extraction-resistant fasteners should therefore be used, such as ring-shank nails or screws.
 Rails can also be held in place with $50 \times 100-\mathrm{mm}$ (2×4-in.) battens fastened to each support with bolts or steel banding. Slats can be oriented vertically by attaching them to horizontal stringers between vertical supports (Figure 6.25). Because it allows for greater spacing between posts, this design can be less costly for some applications.

Figure 6.25. Vertical slats supported by horizontal stringers between vertical supports were used for this 4.6-m-tall (15 ft) fence at Wainwright, Alaska (Tabler 1994). Photo by George Clagett, U.S. Soil Conservation Service.

6.3.7.2 Lath Fencing

The familiar lath snow fence, also referred to as cribbing or picket fencing, consists of slats 40 mm (1.5 in .) wide and 13 mm (0.5 in .) thick, held together with twisted wires. Although the most common height is $1.2 \mathrm{~m}(4.0 \mathrm{ft})$, some $1.8-\mathrm{m}(6-\mathrm{ft})$-wide material has been manufactured in the past. This material, available in 25 - or $50-\mathrm{ft}$ lengths, has a 10% lower snow storage capacity than horizontal rail fences of the same height, apparently because the slats are spaced farther apart than is optimum. Although slat spacing varies from roll to roll and increases with repeated stretching, the porosity ratio is typically about 0.6 .

If a bottom gap is provided under this type of material for a permanent installation, the top of the fencing should be wired to a horizontal wood stringer $50 \times 100 \mathrm{~mm}(2 \times 4 \mathrm{in}$.) in size. Even then, the individual slats gradually slip downward through the wire loops under the influence of gravity. For this same reason, lath fencing is not recommended when multiple tiers of material are required for taller fences (Figure 6.26). Horizontal rails can be used to extend the height of the fence (Figure 6.27).

For temporary installations, lath fencing can be installed easily with a minimum of support if the bottom gap is eliminated. The weight and bulk of the material, however, are disadvantages for transporting, handling and storage.

Figure 6.26. Lath fencing is unsuited for tall permanent fences because the slats fall out of the wire loops after several years of service (Tabler 1994).

Figure 6.27. Combination of lath fencing and horizontal boards.

6.3.7.3 Synthetic Fencing Materials

Numerous types of synthetic fencing materials are available, ranging from woven fabrics to extruded plastic nets, "punched sheet drawn grids", and polymer rails. Advantages of synthetic materials include:
$>$ Horizontal supports are not required
$>$ No slats to fall out
$>$ Compact, facilitating storage and handling
$>$ Lighter than lumber, so easier to handle and install
$>$ Rot resistant
$>$ Generally, lower cost per unit area than lumber

Woven or knitted material is easily damaged by abrasion if not firmly attached to vertical supports, sags significantly when partially buried, and is damaged by snow settlement. These disadvantages suggest that this material should only be used for temporary fences.

6.3.7.3.1 Properties and Specifications

The two basic types of plastic fencing are those extruded into their final configuration (extruded plastic nets; Figure 6.28), and those that are formed by punching holes in sheets of plastic and then stretched to their final shape (punched sheet drawn grids (Figure 6.29). This latter process causes molecular orientation that results in high tensile strength (Wrigley 1987). Most plastic fencing materials currently available are made from polyethylene or co-polymers.

Figure 6.28. Extruded highdensity polyethylene DuPont ${ }^{\circledR}$ Vexar $^{\circledR}$ snow fence (current product number L77)(Tabler 1994).

Figure 6.29. Punched and drawn highdensity polyethylene "All Purpose Fence" manufactured by Conwed Plastics, Inc. (Tabler 1994).

Manufacturers of extruded snow fencing include DuPont ${ }^{\circledR}$ (www.dupont.com) and Tenax ${ }^{\circledR}$ (www.tenaxus.com). Producers of punched-and-drawn sheet fencing include ADPI Enterprises, Inc. (800-621-0275), Conwed Plastics (www.conwedplastics.com), Tenax ${ }^{\circledR}$, and The Tensar Corporation (http://www.tensarcorp.com/).

Although ultraviolet light (UV) from solar radiation can cause rapid deterioration of plastics, fencing products are made resistant to UV degradation by chemical additives and by optimizing of the thickness of the material. Carbon black is an effective additive for this purpose, and black fencing materials have the greatest UV resistance. Laboratory tests indicate life expectancies in excess of 10 to 15 years. Field installations show no apparent change in the properties of the premium materials after 8 years of exposure at $2400 \mathrm{~m}(7875 \mathrm{ft})$ elevation.

According to Coker (1986), most plastic fencing materials are unaffected by temperatures from -50 to $+95^{\circ} \mathrm{C}\left(-58\right.$ to $\left.203{ }^{\circ} \mathrm{F}\right)$. Plastic materials have been used for snow fences 4 - to 5 m tall (13 to 16 ft) at Prudhoe Bay, Alaska, since 1988, and have been installed at temperatures as low as $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ with no significant changes in handling characteristics (Figure 6.30).

Figure 6.30. Snow fences 4.6 m (15 ft) tall at Prudhoe Bay, Alaska, utilize UX3100 highdensity polyethylene snow fencing manufactured by the Tensar Corporation (Tabler 1994).

Desirable specifications for snow fence materials include:

$>$ Fully ultraviolet stabilized, including 2\% carbon black, well-dispersed;
$>$ High tensile strength in both the longitudinal and transverse directions (strength in the vertical direction is important to prevent damage caused by snow settlement);
$>$ Aperture size no less than 25 mm (1 in .) in any direction (to reduce snow deposition at the fence);
$>$ Elongation less than $200 \mathrm{~mm}(7.9 \mathrm{in}$.$) at 2.2-\mathrm{kN}(500-\mathrm{lb}$.$) tension on a width 1.2 \mathrm{~m}(4 \mathrm{ft})$.
Premium grade materials should be specified for fences taller than $2 \mathrm{~m}(6.5 \mathrm{ft})$.

6.3.7.3.2 Design Requirements

Although many synthetic fencing materials have high tensile strength, most are easily cut and susceptible to abrasion. All fencing materials must therefore be immobilized at vertical supports. For tall, permanent fences, strips of elastomeric roofing membrane (EPDM) should be placed between the vertical support and the fencing, and between the fencing and the batten (Figure 6.31). Battens should be rigid, and secured tightly to vertical supports using bolts or steel banding.

Figure 6.31. Sandwiching fencing between two strips of EPDM helps grip the plastic, and compensates for expansion and contraction of the batten (Tabler 1994).

End supports must be adequately guyed or braced to allow tensioning (Figure 6.32).

Figure 6.32. End supports must be braced longitudinally for tensioning synthetic materials (Tabler 1994). Tensar ${ }^{\circledR}$ UX3100 material was used for this $5-\mathrm{m}(16-\mathrm{ft})$ tall snow fence at Summitville, Colorado.

The preceding guidelines were developed when plastic netting was the only synthetic material available for fences. Now that the composite materials described in sections
 6.3.7.3.4 and 6.3.7.3.5 are available, plastic netting is no longer recommended for permanent fences taller than $1.8 \mathrm{~m}(6 \mathrm{ft})$ or so.

When plastic snow fencing $1.2 \mathrm{~m}(4 \mathrm{ft})$ wide is stretched to a specified tension, it cannot be made to conform to appreciable terrain irregularities without changing the distribution of tension across the width. This in turn leads to wrinkles or slack on the inside of the curvature. As a result, the vertical supports must use a method to account for slope changes such as those illustrated in Figure 6.33.

Figure 6.33. Methods for accommodating slope changes when using synthetic fencing materials (Tabler 1994).

6.3.7.3.3 Installation Requirements

To avoid excessive sagging from snow settlement (Figure 6.34), and to prevent excessive vibration that can lead to failure at points of attachment,
 before fastening to supports all fencing materials should be stretched taut to the manufacturer's specification. Proper tension can be determined by measuring elongation. Proper tension for punched-and-drawn fencing is typically $4.4 \mathrm{kN}(1000 \mathrm{lbf})$, as indicated by a longitudinal elongation 1% longer than the prestretched length. The typical tensioning procedure is to weave a $25-\mathrm{mm}$-diameter ($1-\mathrm{in}$) pipe through the openings on the slack end, and attach a chain at both ends of the pipe. Tension is applied in the center of the chain using a hand winch attached to a truck to hold position (Figure 6.35).

Figure 6.34. Synthetic fencing must be tensioned sufficiently to minimize sagging and damage caused by snow settlement.

Figure 6.35. A method of tensioning multi-tiered plastic fencing (Tensar ${ }^{\circledR}$ UX3100 snow fence)(Tabler 1994).

6.3.7.3.4 Composite Polymer/Wire Rail

A flexible polymer/wire rail originally developed for equestrian fencing is ideally suited for snow fences. The material is strong, durable, and allows fences to be built to any desired height and porosity. The material consists of high-tensile-strength polymer in which three 12.5 -gauge stranded wires are embedded (Figure 6.36). The product manufactured by Centaur HTP ${ }^{\circledR}$ Fencing Systems, Inc. (www.centaurhtp.com), consists of a strap 120 mm (4.75 in.) wide and approximately 200 m (660 ft) long, with a breaking strength exceeding $20 \mathrm{kN}(4500 \mathrm{lbf})$. Tests in Wyoming and in the Arctic have shown this material to be suitable for use at low temperatures, with no increase in brittleness that might limit its use for snow fences.

Stronger and more flexible Perma-Rail ${ }^{\circledR}$, manufactured by Perma-Rail International (www.snowfence.com) (telephone 1-800-575-4780), is available in two widths- 127 mm (5.0 in.) and 150 mm (6.0 in .). Four cables are used in the $150-\mathrm{mm}$ version (Figure 6.36). The greater flexibility of Perma-Rail ${ }^{\circledR}$ derives from the use of 7×7 stranded wire rather than the simple seven-strand wires in the Centaur HTP ${ }^{\circledR}$ product.
 (Figure 6.37). The porosity ratio was increased from 0.37 in the center to 0.74 at the end of the fence, with an intermediate section having a porosity ratio 0.65 (Tabler and Day 1992). Phasing out the wind protection prevents an abrupt transition that could cause derailment as trains left the protected area. An analogous application for snow fences is the phasing out of blowing snow protection to mitigate the abrupt transition in visibility described in section 6.5.4.4.

Figure 6.37. Composite polymer/wire rail was used to phase out wind protection over the last $90 \mathbf{m}(\mathbf{3 0 0} \mathbf{f t})$ of this fence to prevent an abrupt transition from protected to unprotected conditions.

Rails should be tensioned to eliminate slack and to prevent the material from excessive back and forth movement that would abrade the material where it passes through brackets. Permanently installed ratchet winches facilitate installation and maintenance. Until recently, the only suitable devices available were ratchet strap winches that had to be attached to end posts (Figure 6.38). On relatively uniform terrain, lengths of $300 \mathrm{~m}(1000 \mathrm{ft})$ or more could be tensioned with a winch at only one end of the fence, but for longer runs or in rolling terrain, winches needed to be installed on both ends. In steep terrain, winches and terminations were attached to end supports as shown in Figure 6.39 to keep the rail perpendicular to the take-up spool. Perma-Rail International now offers an in-line winch that can be installed at any desired location in the fence line (Figure 6.40). This greatly simplifies construction by eliminating the need to attach the winches to posts.

Figure 6.38. Left: Ratchet winch permanently attached to end of fence line facilitates installation and maintenance. Right: Method of attaching "dead" end to post.

Figure 6.39. Method for attaching winches and terminations to vertical supports in steep terrain allows take-up spool to be perpendicular to the rail (Tabler 1994).

Figure 6.40. Perma-Rail ${ }^{\circledR}$ in-line winch can be installed at any desired location and significantly reduces fence construction cost. Photos courtesy of Perma-Rail International.

Perma-Rail International manufactures several different types of brackets for attaching the rail to line supports (Figures 6.41 and 6.42) that allow the strap to move freely with the brackets in place. This facilitates maintenance by allowing replacement of damaged rails without removing the brackets, and periodic re-tensioning if required. In addition to brackets, Perma-Rail also manufactures post-and-sleeve combinations (Figure 6.43) and an aluminum slotted post that allows rails to be spaced for porosity ratios as low as 0.35 (Figure 6.44).

Figure 6.41. "C" channel post with adjustable brackets.

Figure 6.42. Heavy-duty post and bracket manufactured by Perma-Rail International facilitates construction of tall fences.
 allow adjustment of bottom gap in uneven terrain. Photo left courtesy Perma-Rail International.

Figure 6.44. Perma-Rail ${ }^{\circledR}$ slotted aluminum post and bracket system. Note use of guys in place of braces. Photos courtesy of Perma-Rail International.

Composite rail accommodates irregular terrain (Figure 6.45), but line posts at low points must be properly anchored in concrete to prevent them from being pulled out of the ground by the upward force generated by tensioned rails. To reduce concrete required for these locations, a "duckbill" earth anchor (Figure 6.15) can be driven below the bottom of the posthole before pouring the concrete.

Figure 6.45.
Composite rail accommodates irregular terrain, but posts at low spots must be properly anchored to resist the upward force generated by the tensioned rails.

Vortex shedding causes the vertical oscillation of suspended flexible rails, and the greatest oscillations occur within the first $1.5 \mathrm{~m}(5 \mathrm{ft})$ above the ground surface because of the vertical gradient of wind speed within this height (Figure 6.46). Because this vibration can abrade the rail where it contacts supports, and repeated flexing can lead to failure of the embedded wires, it is essential to provide stabilizers between vertical supports so that maximum spans not exceed 1.5 m (5 ft) (Figure 6.47). Because the oscillation frequency increases with tension, it is not advisable to tighten the rails beyond what is necessary to prevent sagging between supports.

Figure 6.46. Vertical oscillation can lead to failure of composite rail. Rails within the first 1.5 m (5 ft) above the ground are most vulnerable.

Figure 6.47. In areas with strong winds, stays or vibration dampeners should be used to limit unsupported spans to 1.5 m (5 ft).

Advantages of composite rail include:
$>$ Can be installed while winds are blowing at $70 \mathrm{~km} / \mathrm{h}(45 \mathrm{miles} / \mathrm{h})$ or more, and with winds from any direction;
$>$ Easily attached to vertical supports using a variety of brackets manufactured by PermaRail International Inc.;
$>$ Embedded wires make rail durable and resistant to vandalism;
$>$ Can be installed with vertical curvature to follow rolling terrain;
$>$ Individual rails are easily tensioned and repaired with permanently installed ratchet winches;
$>$ Can be used as multipurpose fence to control both access and snow;
$>$ Allows construction of fences of any desired porosity or height;
$>$ Resistant to damage by snow settlement and creep;
$>$ Neat and unobtrusive appearance.

6.3.7.3.5 Composite Polymer/Fiber Fencing

PARAWEB ${ }^{\circledR}$ Fence, manufactured by Linear Composites Limited in England (www.linearcomposites.com), is constructed from a series of horizontal $50-\mathrm{mm}$-wide ($2.0-\mathrm{in}$.) PARAWEB ${ }^{\circledR}$ strips, spaced 50 mm apart and held in place by verticals at 500 mm or 1 m centers (20 in . or 3.3 ft), depending on the product. PARAWEB ${ }^{\circledR}$ is made up of bundles of high strength polyester fibers encased in a polymeric sheath (Figure 6.48). The fencing comes in $30-\mathrm{m}$ ($100-$ ft) rolls, and is available in $1.0-1.5-$ and $2.0-\mathrm{m}$ widths (3.3-, 4.9-, and 6.6 ft). Although stronger versions are available, the nominal breaking load of the standard webbing is $1.62 \mathrm{kN}(364 \mathrm{lbf})$, which is adequate for snow fence applications. This material should be tensioned to 10 - to 15% of its nominal breaking strength ($1.62-$ to 2.4 kN per meter of fence height (111 to $166 \mathrm{lbf} / \mathrm{ft}$)), which is equivalent to a 1% elongation. A complete line of attachment hardware is available from the manufacturer but is not essential (Figure 6.49).

At $0.5 \mathrm{~kg} / \mathrm{m}^{2}\left(0.1 \mathrm{lb} / \mathrm{ft}^{2}\right)$, Paraweb ${ }^{\circledR}$ is significantly heavier than conventional plastic fencing, so long spans between vertical supports require some type of horizontal support such as a longitudinal cable to prevent sagging (Figure 6.50). The material is available with loops on the verticals to facilitate suspension.

Figure 6.48. PARAWEB ${ }^{\circledR}$ fencing consists of polyester fibers encased in a polymer sheath. A cross section is shown between the top web and the ruler, and the right ends of the webbing have been shaved to show white fibers.

Figure 6.49. Paraweb ${ }^{\circledR}$ fencing with channel clamp brackets. Photo courtesy Linear
Composites Ltd.

Figure 6.50. Paraweb ${ }^{\circledR}$ fencing with cable suspension between support posts. Photo courtesy Linear Composites Ltd.

6.3.8 Supports for Pole-Supported Fences

Pole supports must be designed to withstand wind loads and to allow proper tensioning of fencing materials. Because plastic fencing requires tensions as high as 2.5 kN per meter of height ($170 \mathrm{lbf} / \mathrm{ft}$), posts at ends or corners must be braced longitudinally, and horizontally curved fence lines are to be avoided unless extra precautions are taken with embedment.

As described in section 6.3.11, the force that the wind exerts on a fence depends on the wind speed, density of the air, upwind topography and ground cover, and the height and porosity of the fence. Although the wind speed to be used for the design of a structure varies with geographic location, applicable building codes, and standards set by the owner, snow fences are typically designed for $160 \mathrm{~km} / \mathrm{h}$ (100 miles $/ \mathrm{h}$) winds.

Steel T-posts that support $1.2-\mathrm{m}(4-\mathrm{ft})$ fences should be spaced $2.4 \mathrm{~m}(8 \mathrm{ft})$ apart to prevent bending in strong winds. The bending moment exerted by the wind on a fence $1.8 \mathrm{~m}(6 \mathrm{ft})$ tall is about 65% greater than on a $4-\mathrm{ft}(1.2-\mathrm{m})$ fence, so steel posts must be spaced about $1.4 \mathrm{~m}(4.5 \mathrm{ft})$ apart to avoid the need for braces or guys. Steel T-post supports are therefore impractical for temporary fences taller than $1.8 \mathrm{~m}(6 \mathrm{ft})$.

Transverse braces and guys are to be avoided for post-supported fences. When these supports become buried in the drift, they sustain large loads that can damage the fence. This is particularly true on sloping ground where snow creep occurs. The vertical supports must be sufficiently strong to resist bending or breaking under the design wind load, and embedment must be sufficient to keep the structure from overturning. The choice of materials for vertical supports depends primarily on cost and availability. Discarded steel well casing is used at Prudhoe Bay, Alaska, for example, and some railroad fences have utilized scrap rail. The optimum spacing between supports is usually that which minimizes total cost, balancing the cost of materials with the cost of excavation and backfill.

The approach to designing pole fences is to determine, by iteration, a pole spacing that requires reasonable pole sizes and embedment depths. The standard reference for pole design is the Timber Construction Manual, published by the American Institute of Timber Construction (1994). Structural engineering handbooks (Gaylord and Gaylord 1979) also provide procedures for designing pole supports.

Table 6.3 provides an example of the size and embedment of wooden poles required to support various heights of snow fence in $160 \mathrm{~km} / \mathrm{h}(100-\mathrm{miles} / \mathrm{h})$ winds for several pole spans.

Embedment depth is frequently limited by soil conditions, particularly depth to bedrock. Setting the supports in concrete significantly reduces the required embedment, but cost of this type of construction is often prohibitive. A less expensive way to increase lateral resistance is to backfill the hole halfway to the top with compacted excavated material, pour a $20-\mathrm{cm}$-thick (8in.) collar of concrete around the pole, and complete the backfill with compacted material. To anchor the pole to the concrete, lag bolts are installed in the pole at the center of the collar.

Poles should be set vertically plumb with a maximum lean of 13 mm (0.5 in .) in any direction, and the windward face of all poles should be within $25 \mathrm{~mm}(1 \mathrm{in}$.) of the indicated fence line. Care should be taken to compact backfill in lifts 30 cm (12 in.) or less.

For permafrost installations, vertical supports should extend to a depth of $6 \mathrm{~m}(20 \mathrm{ft})$ below the active layer to prevent frost jacking.

Table 6.3. Butt circumference (Circum.) and embedment depth (Embed.) required to support indicated heights of 50% porosity snow fence in $160 \mathrm{~km} / \mathrm{h}(100 \mathrm{miles} / \mathrm{h})$ winds, for pole spacing S_{p}. Values are for Douglas fir poles, soil with average bearing strength (120 $\mathrm{kPa}=\mathbf{2 5 0 0} \mathrm{lbf} / \mathrm{ft}^{2}$), compacted backfill, air temperature $-20^{\circ} \mathrm{C}\left(-\mathbf{4}^{\circ} \mathrm{F}\right)$, at sea level (Tabler 1986b).

Fence	Spacing $=2.5 \mathrm{~m}$		Spacing $=3.0 \mathrm{~m}$		Spacing $=3.5 \mathrm{~m}$		Spacing $=4.0 \mathrm{~m}$	
height	Circum.	Embed.	Circum.	Embed.	Circum.	Embed.	Circum.	
1.0	27	76	31	88	35	101	39	113
1.5	37	101	41	113	46	131	51	146
2.0	45	122	51	137	57	159	63	177
2.5	53	140	59	162	67	183	74	207
3.0	60	159	68	180	76	207	84	232
3.5	67	177	76	201	85	229	94	259
4.0	74	192	83	219	93	250	103	280

$1 \mathrm{~m}=3.281 \mathrm{ft}$
$1 \mathrm{~cm}=0.39 \mathrm{in}$.

6.3.9 Temporary Fences

Temporary fences are necessary in locations where snow fences are incompatible with summer land use, such as cultivated land. Past practice has relied primarily on 1.2-m (4-ft) fencing installed on steel posts, but it is now clear that taller fences are much more effective.

6.3.9.1 Conventional T-Post-Supported Fences

The guidelines in Table 6.4 should be used for T-post-supported fences.

Table 6.4. Guidelines for fences supported by T-posts.

Factor	Fence height (m)	
	1.2	1.8
T-post length (m)	2.0	2.6
T-post spacing (m)	2.4	1.4
Bottom gap (cm)	15	18

$$
1 \mathrm{~m}=3.28 \mathrm{ft}
$$

$$
1 \mathrm{~cm}=0.39 \mathrm{in} .
$$

Each end post should be braced with a steel post driven into the ground at an angle, extending from near the top of the end post to the ground line of the adjacent post, and wired in place (Figure 6.51).

If picket fencing is used, it should be pulled taut (at least 1.1 kN (250 lbf) for a 1.2-m (4-ft) width). Synthetic fencing material should also be pulled taut, as specified by the manufacturer.

Plastic fencing material should be sandwiched between a wooden lath against the post, and an outer wood batten 50-x $50-\mathrm{mm}$ (2-x 2 in.), wired tightly to the steel post at the center and at 15
cm (6 in.) in from each edge (Figure 6.51, detail B). A better method is to replace the wooden lath with foam insulation for $25-\mathrm{mm}$ (1-in.) pipe slipped around the post (Figure 6.52).

Figure 6.51. Guidelines for supporting 1.2-m (4ft) synthetic fencing materials using steel Tposts (Tabler 1994). Lath woven through openings provides a secure attachment for the ends of the fencing material.

Figure 6.52. Foam pipe insulation slipped over a steel T-post provides a better grip on fencing than wooden lath (Tabler 1994).

6.3.9.2 The Tensar ${ }^{\circledR}$ Portable Fence

The Tensar Corporation has a patented design for portable fences $2.0 \mathrm{~m}(6.5 \mathrm{ft})$ and $2.4 \mathrm{~m}(8 \mathrm{ft})$ tall (U.S. Patent Number 5,184,800). A snow fence with an effective height of $2 \mathrm{~m}(6.5 \mathrm{ft})$ stores three times as much snow as a $1.2-\mathrm{m}(4-\mathrm{ft})$ fence. A snow fence that is $2.4 \mathrm{~m}(8 \mathrm{ft})$ tall stores 4.6 times as much snow as the $1.2-\mathrm{m}(4-\mathrm{ft})$ fence.

Each 2.4-m (8-ft)-long panel consists of a wooden frame comprised of $50-\mathrm{x} 150-\mathrm{mm}$ ($2-\mathrm{x} 6-\mathrm{in}$.) lumber, bolted together at the corners, with a $1.2-\mathrm{m}(4-\mathrm{ft})$-wide strip of plastic mesh snow fence pulled taut across the center (Figures 6.53 and 6.54). The prototype utilized Tensar ${ }^{\circledR}$ UX3100 premium high-density polyethylene fencing material because of its superior strength and durability. That product has since been replaced with the lighter UX4200, and it is unknown how the change in materials might compromise the design. Tensioning is accomplished with threaded rods connected to a pipe woven through the plastic. The panels are connected to one another by rebar pins passing through the same U-clips that are used to anchor the Wyoming fences (Figure 6.11). U-clips also attach the fence to the rebar anchors that are driven into the ground. Adequate penetration for most soils is 50 cm (20 in.). The U-clip-and-pin connections (Figure 6.54) allow rapid set up and takedown. Panels can be overlapped at either the top or bottom as required to eliminate gaps between panels. The U-clips can be rotated as required to accommodate irregular terrain, and only a single U-clip needs to be tightened at each connection to prevent the pin from vibrating out. The U-clips can be made from either 3-mm ($1 / 8-\mathrm{in}$.) steel plate or ultrahigh-molecular weight polyethylene.

Each pair of adjacent panels shares a single $50-\mathrm{x} 150-\mathrm{mm}$ (2-x $6-\mathrm{in}$.) brace member and a single upwind anchor, thereby minimizing the cost of materials and installation. The braces can be installed on either side of the fence.

The fence can be inclined at any desired angle. This is useful to control the pattern of snow deposition, and allows the effective height of the fence to be changed to fit available space. Inclining the $2-\mathrm{m}(6.5-\mathrm{ft})$ snow fence at 45°, for example, makes a $1.4-\mathrm{m}(4.5-\mathrm{ft})$ fence, and changes the maximum length of the downwind drift from $70 \mathrm{~m}(230 \mathrm{ft})$ to $49 \mathrm{~m}(161 \mathrm{ft})$.

Field installation of prefabricated panels requires approximately three person-hours per 30 m $(100 \mathrm{ft})$ of fence, which is less than the time required to install a conventional $1.2-\mathrm{m}(4-\mathrm{ft})$ lath or plastic snow fence. Field installation of the $2.4-\mathrm{m}$-tall ($8-\mathrm{ft}$) fence requires only 10% as much time as is required to build a series of conventional $1.2-\mathrm{m}(4-\mathrm{ft})$ fences with an equivalent storage capacity. Costs for materials and fabrication are comparable to costs for permanent fences. Time required for fabrication of either height is approximately three-quarters personhour per panel.

Although the inventor intended that the wooden frame be replaced with an all-synthetic prefabricated panel, it appears that these plans have been shelved indefinitely. The New York State Department of Transportation has developed standard plans for the original wood frame version that are reproduced by permission in Figures 6.55 to 6.58.

Figure 6.53. The 2.0- and 2.4 -m-tall ($6.5-$ and $8-\mathrm{ft}$) patented portable fence design uses a wooden framework to support the Tensar ${ }^{\circledR}$ fencing material (left from Tabler 1994). The $2.4-\mathrm{m}$ version is shown in these views.

Figure 6.54. Panels are connected using the U-clips shown in Figure 6.11, with rebar pins. The $\mathbf{2 . 0} \mathbf{- m}$ ($6.5-\mathrm{ft}$) version is shown on the left (Tabler 1994).

Figure 6.55. Standard Plan for the $\mathbf{2 . 4} \mathbf{- m}$ (8-ft) portable fence, Sheet 1 of 2. Figure courtesy of the New York State Department of Transportation.

Figure 6.56. Standard Plan for the 2.4-m (8-ft) portable fence, Sheet 2 of 2. Figure courtesy of the New York State Department of Transportation.

Figure 6.57. Standard Plan for the 2.0-m (6.5-ft) portable fence, Sheet 1 of 2. Figure courtesy of the New York State Department of Transportation.

Figure 6.58. Standard Plan for the $2.0-\mathrm{m}(6.5-\mathrm{ft})$ portable fence, Sheet 2 of 2. Figure courtesy of the New York State Department of Transportation.

6.3.10 Specifying Fence Type

The type of fence selected for a particular application depends on relative cost, required height and porosity, appearance, fencing materials to be used, availability of materials, terrain, soil conditions, and use of the land where the fences are placed. Advantages and disadvantages of the Wyoming fence and pole-supported fences are summarized below.

Wyoming Fence

Advantages

$>$ Least expensive to build in most locations,
$>$ Relatively easy to remove or relocate,
$>$ Can be prefabricated to reduce field construction time,
$>$ Standard plans are available for most applications.

Disadvantages

> Susceptible to damage by snow creep or glide on steep slopes,
$>$ Occupies significant land area,
$>$ Requires attentive maintenance,
$>$ Maximum practical height limited to about $4.3 \mathrm{~m}(14 \mathrm{ft})$.

Pole-Supported Fences

Advantages

$>$ Occupies least land area,
$>$ Suitable for any height of fencing,
$>$ Less susceptible to damage by snow creep on steep slopes,
$>$ Allows utilization of all types of fencing materials such as plastics,
$>$ Suitable for permafrost soils,
$>$ Depending on fencing material, may require significantly less maintenance.

Disadvantages

> Usually more expensive than the Wyoming fence,
$>$ Fences taller than $1.8 \mathrm{~m}(6 \mathrm{ft})$ are not easily relocated,
$>$ More time is required for field construction,
$>$ Supports must be custom-designed for each site.

6.3.11 Wind Loads on Snow Fence

6.3.11.1 Basic Equation

The force of the wind on a structure is given by
$\mathrm{F}_{\mathrm{w}}=0.5 \rho_{\mathrm{a}} \mathrm{C}_{\mathrm{d}} \mathrm{H}_{\mathrm{s}} \mathrm{S}_{\mathrm{p}} \mathrm{U}^{2}$
where $F_{w}=$ wind force (N),
$\rho_{a}=$ air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$,
$C_{d}=$ drag coefficient,
$H_{s}=$ structure height (m),
$S_{p}=$ length or span (m),
$U=$ wind speed (m/s)
Generalizations from Equation (6.8) are that the force of the wind increases as the square of the wind speed, in direct proportion to the area of the barrier, and in direct proportion to air density.

6.3.11.2 Air Density

Air density varies with temperature and atmospheric pressure, and it is important to account for this variation in computing wind loads. The following expression for air density as a function of elevation and temperature, was derived from relationships presented in List (1968):
$\rho_{\mathrm{a}}=\left\{353(1-0.000022569 \mathrm{E})^{5.255}\right\} /\left(\mathrm{t}_{\mathrm{a}}+273\right)$
where $\rho_{a}=$ air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$E=$ elevation above sea level (m)
$t_{a}=$ air temperature $\left({ }^{\circ} \mathrm{C}\right)$

6.3.11.3 Drag Coefficient

The drag coefficient, C_{d}, is the coefficient of proportionality between the force exerted on an object, and the dynamic pressure of the wind (defined as $0.5 \rho_{a} U^{2}$). For purposes of structural design addressed here, drag coefficients are independent of wind speed above about $40 \mathrm{~km} / \mathrm{h}$ (25 miles $/ \mathrm{h}$), the approximate speed at which natural winds become fully turbulent. Drag coefficients are experimentally determined from wind tunnel or prototype measurements. Primary sources of published drag coefficients include Hoerner (1965) and Guyot (1978).

Because a drag coefficient can be computed that relates wind speed at any location to the force on an object, it is necessary to use a drag coefficient that is appropriate for the particular velocity used in Equation (6.8). It is possible, for example, to specify a coefficient that relates drag force
on a $1-\mathrm{m}(3.3-\mathrm{ft})$-tall fence to the wind speed at $10 \mathrm{~m}(33 \mathrm{ft})$ above the ground. As used here, the drag coefficient corresponds to the mean square wind speed over the projected area of the object. This is a particularly important distinction for computing wind loads on objects attached to the ground.

A long, solid plate suspended high above the ground has a drag coefficient of 1.98. If this same plate is in contact with the ground, the drag coefficient is reduced to about 1.25 , presumably due to the effect of the ground on vortex development. Three-dimensional objects do not show such large differences between free-stream and on-ground drag coefficients, and the same is true of porous screens.

The projected area of a porous object is that defined by its perimeter, and therefore includes any openings. Although drag coefficients are obviously related to the percent of solid area, this proportionality is generally not linear because the cross-section of the airflow is smaller than the opening itself. As a result, the aerodynamic porosity of a porous fence may be less than its physical porosity. For a given physical porosity, smaller openings result in a lower aerodynamic porosity (and therefore a larger drag coefficient) than larger openings.

Drag coefficients for various snow fences are listed in Table 6.5.

Table 6.5. Drag coefficients for snow fences.

Fence	Porosity, P	Source	C_{d}
Solid Fence	0	Hoerner (1965)	1.25
Solid fence	0	Tabler (1978)	1.22 ± 0.03
Wyoming snow fence	0.5	Tabler (1978)	1.05 ± 0.01

\pm values indicate 95% confidence limits.
When experimentally determined drag coefficients for porous screens are unavailable, estimates can be made from empirical relationships, as described by Guyot (1978). As a working equation applicable to coarse materials, the author proposes a simple parabolic equation to approximate the relationship between drag coefficient and porosity ratio, P, shown in Figure 6.59 (Tabler 1986b):
$\mathrm{C}_{\mathrm{d}}=1.4-1.4 \mathrm{P}^{2} ; \quad \mathrm{P}>0.3$
This equation provides an outer envelope for the data that should be sufficiently conservative for engineering purposes. It has been fitted with the single constraint that $C_{d}=1.05$ at $P=0.5$, because this value is a reasonably close approximation for most snow fences. Equation (6.10) appears to overestimate the drag coefficient for barriers that have $P<0.3$.

The preceding discussion applies to very long barriers. Although the drag coefficient is less for three-dimensional objects, correction is usually unwarranted for snow fence applications.

Figure 6.59. Independent drag coefficient as a function of barrier porosity (Tabler 1986b).

6.3.11.4 Wind speed

Assuming a wind profile as described in section 3.4.3, a close approximation to the mean squared velocity, $U_{m}{ }^{2}$, over a fence of height
 H is
$\left.\mathrm{U}_{\mathrm{m}}{ }^{2}=6.25 \mathrm{U}^{2}\left[\ln \left(\mathrm{H} / \mathrm{Z}_{\mathrm{o}}\right)\right]^{2}-2 \ln \left(\mathrm{H} / \mathrm{Z}_{\mathrm{o}}\right)+2\right]$
where other terms are as defined in section 3.4.3. The height above the ground, Z_{f}, at which the resultant of the drag force acts, is given by
$\mathrm{Z}_{\mathrm{f}}=0.5 \mathrm{H}\left\{\left[\ln \left(\mathrm{H} / \mathrm{Z}_{\mathrm{o}}\right)\right]^{2}-\ln \left(\mathrm{H} / \mathrm{Z}_{\mathrm{o}}\right)+0.5\right\} /\left\{\left[\ln \left(\mathrm{H} / \mathrm{Z}_{\mathrm{o}}\right)\right]^{2}-2 \ln \left(\mathrm{H} / \mathrm{Z}_{\mathrm{o}}\right)+2\right\}$
For a snow-covered surface (where $Z_{o}=0.02 \mathrm{~cm}$), Equation (6.12) indicates that to a reasonable approximation,
$\mathrm{Z}_{\mathrm{f}}=0.56 \mathrm{H}$
Wind pressures for 50%-porous snow fence are tabulated by fence height and wind speed in Table 6.6, for an assumed $Z_{o}=0.02 \mathrm{~cm}$ at sea level and a temperature of $20^{\circ} \mathrm{C}$.

6.3.11.5 Selecting a design wind speed

Design wind speeds (or effective wind loads) are often specified in local building codes. The Uniform Building Code (ICBO 1982), or UBC, states:
"The minimum basic wind speed for determining design wind pressure shall be taken from Figure No. 4 [map of the U.S. showing winds with 50 -year recurrence interval]. Where terrain features and local records indicate that 50 -year wind speeds at standard height are higher than those shown in Figure No. 4, these higher values shall be the minimum basic wind speeds."

These "basic" wind speeds are those for the "fastest mile," calculated from the shortest time required for a mile of wind to pass an anemometer. Anemometers that recorded fastest-mile data
have been taken out of service, and this criterion has been replaced with peak gust data based on a 50 -year recurrence interval. The wind speed map shown in Figure 6.60 has been proposed as the basis for a new wind load standard (Peterka and Shahid 1998). The 50-year peak gust does not apply in those areas marked as "special wind regions."

Table 6.6. Wind pressures, $P_{w, o}$, on snow fences that have porosity ratios of 0.5 ($C_{d}=1.05$) at sea level and $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$, as computed by numerical integration to determine the mean squared wind speed over fence height H, taking $Z_{o}=0.02 \mathrm{~cm} . Z_{f}$ is height of resultant force, or moment arm (Tabler 1986a).

$\begin{gathered} \mathrm{H} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{f}} \\ (\mathrm{~m}) \end{gathered}$											
		100	110	120	130	40	50	60	70	180	90	00
		Wind pressure, $\mathrm{P}_{\mathrm{w}, 0}(\mathrm{~Pa})$										
1.0	0.56	240	290	345	405	470	539	614	693	776	865	959
1.2	0.67	251	304	362	425	492	565	643	726	814	907	1005
1.4	0.79	261	316	376	441	512	588	669	755	846	943	1045
1.6	0.90	270	327	389	456	529	607	691	780	875	975	1080
1.8	1.01	278	336	400	470	545	625	711	803	900	1003	1111
2.0	1.12	285	345	410	482	559	641	730	824	923	1029	1140
2.2	1.23	292	353	420	493	571	656	746	843	945	1053	1166
2.4	1.34	298	360	429	503	583	670	762	860	964	1074	1190
2.6	1.45	303	367	437	512	594	682	776	876	982	1095	1213
2.8	1.56	308	373	444	521	605	694	790	891	999	1114	1234
3.0	1.67	313	379	451	530	614	705	802	906	1015	1131	1254
3.2	1.76	318	385	458	537	623	716	814	919	1030	1148	1272
3.4	1.87	322	390	464	545	632	725	825	932	1045	1164	1290
3.6	1.98	327	395	470	552	640	735	836	944	1058	1179	1306
3.8	2.09	331	400	476	559	648	744	846	955	1071	1193	1322
4.0	2.20	334	405	481	565	655	752	856	966	1083	1207	1337
4.2	2.31	338	409	487	571	662	760	865	977	1095	1220	1352
4.4	2.41	341	413	492	577	669	768	874	987	1106	1233	1366
4.6	2.52	345	417	496	583	676	776	883	996	1117	1245	1379
4.8	2.63	348	421	501	588	682	783	891	1006	1127	1256	1392
5.0	2.74	351	425	506	593	688	790	899	1015	1138	1267	1404

$\mathrm{km} / \mathrm{h}=1.606 \exists \mathrm{miles} / \mathrm{h}$
$\mathrm{m}=0.305 \exists \mathrm{ft}$
$\mathrm{Pa}=47.85\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$

Table 6.7.Correction factors $C_{E, T}$ for adjusting wind pressures in Table 6.6 for different elevations and temperatures, using Equation (6.14). Example: To determine the wind load at 2200 m and $-10{ }^{\circ} \mathrm{C}$, multiply value in Table 6.6 by 0.85 (Tabler 1986a).

Elevation (m)	-40	-30	-20	-10	0	+10	+20
			Correction factor, $\mathrm{C}_{\mathrm{E}, \mathrm{T}}$				
0	1.26	1.21	1.16	1.11	1.07	1.04	1.00
200	1.23	1.18	1.13	1.09	1.05	1.01	0.98
400	1.20	1.15	1.10	1.06	1.02	0.99	0.95
600	1.17	1.12	1.08	1.04	1.00	0.96	0.93
800	1.14	1.10	1.05	1.01	0.98	0.94	0.91
1000	1.12	1.07	1.03	0.99	0.95	0.92	0.89
1200	1.09	1.04	1.00	0.96	0.93	0.90	0.87
1400	1.06	1.02	0.98	0.94	0.91	0.87	0.84
1600	1.04	0.99	0.95	0.92	0.88	0.85	0.82
1800	1.01	0.97	0.93	0.90	0.86	0.83	0.80
2000	0.99	0.95	0.91	0.87	0.84	0.81	0.78
2200	0.96	0.92	0.89	0.85	0.82	0.79	0.77
2400	0.94	0.90	0.86	0.83	0.80	0.77	0.75
2600	0.92	0.88	0.84	0.81	0.78	0.75	0.73
2800	0.89	0.86	0.82	0.79	0.76	0.73	0.71
3000	0.87	0.83	0.80	0.77	0.74	0.72	0.69

${ }^{\circ} \mathrm{C}=0.556\left({ }^{\circ} \mathrm{F}-32\right)$
$\mathrm{m}=0.305 \exists \mathrm{ft}$

Table 6.8.Correction factor C_{P} for adjusting wind loads in Table 6.6 for different fence porosities using Equation (6.10) to estimate the drag coefficient, C_{d} (Tabler 1986a).

Porosity ratio, P	C_{d}	Correction factor, C_{P}	Porosity ratio, P	C_{d}	Correction factor, C_{P}
0.00	1.40	1.33	0.55	0.98	0.93
0.05	1.40	1.33	0.60	0.90	0.85
0.10	1.39	1.32	0.65	0.81	0.77
0.15	1.37	1.30	0.70	0.71	0.68
0.20	1.34	1.28	0.75	0.61	0.58
0.25	1.31	1.25	0.80	0.50	0.48
0.30	1.27	1.21	0.85	0.39	0.37
0.35	1.23	1.17	0.90	0.27	0.25
0.40	1.18	1.12	0.95	0.14	0.13
0.45	1.12	1.06	1.00	0.00	0.00
0.50	1.05	1.00			

Figure 6.60. 50-year peak gust wind speed map (Peterka, J. A. and S. Shahid 1998. Design gust wind speeds in the United States. Journal of Structural Engineering 124 (2): 207-214). ©Copyright 1998 ASCE (www.pubs.asce.org). Reproduced with permission of publisher.

6.3.11.6 Procedure for Calculating Wind Loads

The procedure for calculating wind pressures using Tables 6.6 to 6.8 follows.

1. Determine required fence height $\left(H_{S}\right)$ and porosity (P).
2. Determine the design wind speed from Figure 6.60 or use a greater value if required.
3. Determine the elevation of the site, and the lowest temperature expected to occur with the design wind speed.
4. From Table 6.6 , read the wind pressure, $P_{w, o}$, for a fence with porosity 0.50 at sea-level and $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.
5. From Table 6.7, determine the correction factor $\left(C_{E, T}\right)$ appropriate for the elevation and design temperature of the fence site.
6. From Table 6.8 , determine the correction factor $\left(C_{p}\right)$ for the porosity of the fence.
7. Multiply the value obtained in Step 4 by the correction factors obtained in Steps 5 and 6 to obtain the design wind pressure P_{w}, as given by Equation (6.14):

$$
\begin{equation*}
P_{w}=\left(C_{E, T}\right)\left(C_{p}\right)\left(P_{w, o}\right) \tag{6.14}
\end{equation*}
$$

The wind force, F_{w}, on support members spaced S_{p} apart is obtained by multiplying the design wind pressure $\left(P_{w}\right)$ by the fence area between supports $\left(H_{s} \exists S_{p}\right)$. The bending moment of the applied force with respect to the ground surface is obtained by multiplying F_{w} by Z_{f} given in Table 6.6.

```
Example for Buffalo, New York:
    Given: Fence height = 2.4 m (7.9 ft)
    Fence porosity ratio = 0.4
    Design wind speed = 140 km/h (87 miles/h)
    Elevation = 215 m (705 ft)
    Lowest temperature expected with design wind =-10 }\mp@subsup{}{}{\circ}\textrm{C}(14\mp@subsup{}{}{\circ}\textrm{F}
```

 Required: Calculate the design wind pressure and resultant bending moment on vertical
 supports spaced \(3.0 \mathrm{~m}(9.8 \mathrm{ft})\) apart. Assume that point of fixity is at surface.
 Solution:
 From Table 5.6, \(P_{w, o}=583 \mathrm{~Pa} ; \mathrm{Z}_{\mathrm{f}}=1.34 \mathrm{~m}\)
 From Table 5.7, \(C_{E, T}=1.09-(15 / 200)(0.03) \lambda 1.09\)
 From Table 5.8, \(C_{p}=1.12\)
 \(P_{w}=(583)(1.09)(1.12)=711.7 \mathrm{~Pa}\left(14.87 \mathrm{lbf} / \mathrm{ft}^{2}\right)\)
 \(F_{w}=(711.7)(2.4)(3.0)=5124 \mathrm{~N}(1152 \mathrm{lbf})\)
 Bending moment \(=(5124)(1.34)=6866 \mathrm{~N} \exists \mathrm{~m}(5061 \mathrm{ft} \mathrm{llbf})\)

6.4 Deflector Snow Fences

Although deflector fences are not commonly used in the U.S., they are the primary form of drift control in Japan, and are used in India, China, and other countries. Deflectors are also used in Europe to prevent snow cornices from forming in avalanche starting zones. The three most common forms of deflectors are the blower fence; the long, solid deflector (non-porous twodimensional vertical deflector); and the three-dimensional lateral deflector.

6.4.1 Jet Roofs and Blower Fences

The jet roof consists of a single, broad, roof-like deflection member that has a horizontal longitudinal axis. The structure is sloped so that the downwind edge is closer to the ground than the upwind edge (Figures 6.61 and 6.62). By accelerating the airflow and deflecting it downward, this structure promotes turbulent entrainment of the blowing snow particles and causes the snow to be carried farther downwind before it is deposited. These effects can be used
to eliminate snow cornices at the tops of cuts or in avalanche starting zones downwind of mountain ridges.

Figure 6.61. Jet roofs and Kolktafeln (turbulence generators) prevent the formation of snow cornices in avalanche starting zones.

Figure 6.62. Jet roof in Switzerland. Photograph courtesy of Dr. M. "Pete" Martinelli.

Jet roofs can be any length, but the width of the roof is typically 1.5 to 4 m (4 to 13 ft). For best performance, the slope of the roof should be about the same as that of the slope being protected, and the lower (downwind) edge of the roof should be 1 to 1.5 m (3 to 5 ft) above the ground.

In Japan, very large jet roofs have been used to reduce snow deposition in road cuts, and constitute one example of blower fences, or yudō-saku. Large blower fences designed to reduce snow accumulation in road cuts (Figures 6.63 and 6.64) can be effective in reducing snow deposition. Although collector fences can be much more efficient, the value and agricultural use of land in Japan has resulted in the preferential use of blower fences placed close to the road.

The most common use of blower fences is to improve visibility by reducing the amount of snow blowing off roadside snow banks at windshield level. There is a seemingly endless variety of fences used for this purpose, but one of the more common consists of multiple slats for deflecting the airflow downward. Figure 6.65 shows the use of smoke to visualize the airflow behind such a blower. The accelerated wind also reduces snow deposition downwind of the fence, but this effect extends only for a distance of $1.0-$ to 1.5 H . Blower fences must therefore be placed immediately alongside the area to be protected, and the protected area must be relatively narrow. Although these requirements limit applicability on U.S. highways, this type of control measure might be acceptable for use on private roads.

Figure 6.63. The effectiveness of blower fences in reducing snow depths in cuts can be seen in this photograph by Tetsuya Uchiya, Hokkaido Development Bureau.

Figure 6.64. The effect of this large deflector on snow deposition is shown in the sketch redrawn from Hokkaido Development Bureau 1974, page 19 (Tabler 1994). Photo by Tetsuya Uchiya, Hokkaido Development Agency.

Figure 6.65. Smoke was used to show the airflow behind typical blower fence used in Japan to reduce snow blowing off roadside snow banks at windshield level, with wind from right (Tabler 1986b). Photograph courtesy Tetsuya Uchiya, Hokkaido Development Bureau.

6.4.2 Long Solid Deflectors

Long solid deflectors can consist of solid fences or embankments constructed from earth or snow. The long solid deflector injects the snow particles into the accelerated jet flow over the top of the fence, allowing the particles to become entrained in the turbulent flow and be carried past the protected area before they settle to the surface. Turbulent diffusion also reduces the concentration of the particles. Long solid deflectors also collect snow, although not as efficiently as do porous fences.

For maximum effectiveness, such deflectors should be placed at a distance equal to ten times their vertical height $(10 H)$ upwind from the area to be protected. Embankment slopes should be as steep as possible, and the tops should be smoothed to eliminate protruding chunks of snow that disrupt the wake boundary and favor deposition rather than entrainment. Placing a porous fence on embankments eliminates their ability to deflect snow, and promotes deposition downwind of the crest (Jairell and Tabler 1985).

6.4.3 Lateral Deflectors

Lateral deflectors force the snow particles to pass around the sides of the protected region. As shown in Figure 6.66, the wake downwind of objects can be essentially free of blowing snow in the absence of concurrent snowfall. This snow-free zone can extend for great distances downwind because the rotation of the lateral vortices, and the pressure gradient between the wake and the outside flow, combine to retard the influx of snow into the wake. Livestock shelters offer the best example of lateral deflectors (Figure 6.67). For highway applications, the primary disadvantage of lateral deflectors is the formation of wing-shaped snowdrifts at the boundary between the wake region and the outer flow (Jairell and Tabler 1985).

Figure 6.66.
Blowing snow is deflected around three-dimensional objects, resulting in relatively snow-free air in the wake region (Tabler 1984). This view is looking upwind toward a trailer 2.4 m tall, 2.2 m wide, and 5 m long (8×7 x 16 ft).

Figure 6.67. Aerial view of drift pattern around livestock shelter (left, photo by R. L. Jairell). A 1:30 scale model of this shelter (right) illustrates the effectiveness of lateral deflectors in preventing snow deposition on the downwind side, and the wing-shaped drifts that form along the side of the wake (Tabler 1986b).

Blunt shapes are somewhat more efficient deflectors than streamlined forms, and model tests of livestock shelters show slightly less snow to be deposited behind a V-shaped deflector than behind a semicircular one (Jairell and Tabler 1985). The crosswind width-to-height ratio of lateral deflectors is a primary factor that affects performance. Wide shelters act like long, solid snow fences, resulting in snow deposition on the downwind side after the upwind drift attains equilibrium. To minimize snow deposition on the downwind side, the crosswind width (or diameter) of a shelter should not exceed fifteen times its height (15 H).

Kolktafeln are solid rectangular panels, typically on the order of $3 \mathrm{~m}(10 \mathrm{ft})$ square, that are used to prevent cornice formation (Figure 6.61). The turbulence generated by these panels prevents snow from being deposited at the location where the cornice would otherwise form. This approach can also be used to change the location of snowdrifts that form around buildings.

6.5 Fence Placement

The optimum placement of a snow fence depends on topography, ownership and use of the land, vegetation, soil conditions, location and nature of nearby buildings or other structures, scenic considerations, and many other more subtle but equally important site-specific factors. Field evaluation is essential because not all of the features that affect fence performance and acceptability are discernible from maps and plans. The criteria presented in this section provide only a starting point in determining where a fence should be placed.

6.5.1 Orientation

The orientation of a fence refers to its alignment with respect to the prevailing direction of snow transport. The angle between the transport direction and the alignment of the snow fence is referred to as the angle of attack, α (Figure 6.68).

6.5.1.1 Importance of Orientation

Although storage capacity per unit length of fence decreases as the wind becomes more oblique to the fence, the capacity per unit of width across the wind is not appreciably affected by orientation, at least not for attack angles greater than 45° or so (section 3.8.5.2.6). Trapping efficiency, however, probably declines as winds become more oblique to the fence. If the fence is not exactly perpendicular to the wind, the crosswind component causes the circulation vortex aft of the slip face to develop a corkscrew motion that transports some of the particles along the length of the drift until they are swept away in the slipstream at the end of the fence.

If fences are oriented perpendicular to the prevailing transport direction and if the wind direction is not perpendicular to the road, then the effectiveness of the fence decreases as the distance between the fence and the road increases.

6.5.1.2 Basic Rule

In general, fences should be oriented parallel to the road if the prevailing wind direction is within 35° of being perpendicular to the road (i.e., $\alpha \mu 55^{\circ}$). For more oblique winds, fences should be aligned perpendicular to the prevailing direction. Attack angles less than 55° are acceptable if necessary to avoid adverse terrain, or to take advantage of favorable topography. The orientation of a fence is much less important than its proper extension on either side of the area to be protected.

Figure 6.68. Fences should be aligned parallel to the road if the attack angle is 55° or more (Tabler 1994).

6.5.1.3 Parallel Versus

Oblique Fences

Fences parallel to the road are referred to as "parallel" (Figure 6.68), and those aligned at an angle to the road are referred to as "oblique" (Figure 6.69). Parallel fences require a shorter total fence length, have fewer openings to detract from trapping efficiency, and are more effective because of the reduced space between the fence and the area to be protected.

Where oblique fences must be used, adding a parallel fence between the road and the oblique fences affords the most complete protection. The capacity of the parallel fence should be sufficient to store all of the snow relocated over the maximum distance between the parallel fence and the oblique fences.

Where the average wind direction is nearly parallel with the road, blowing snow conditions can be improved by placing fences on both sides of the road in a herringbone pattern. Instead of aligning the fences perpendicular to the wind, the fences should be angled so that the outside end is farther downwind than the end closest to the road (Figure 6.70). This orientation helps to deflect the blowing snow away from the road.

Figure 6.69. Fences should be aligned perpendicular to the prevailing wind if the angle between the road and the wind is less than 55° (Tabler 1994).

Figure 6.70. Swept-back herringbone fences to be used where winds are aligned with the road centerline (Tabler 1994).

6.5.1.4 Other Considerations

Compromise may be necessary or desirable for compatibility with land use. On cultivated land, for example, it may be preferable to employ a single parallel fence rather than a series of staggered fences that would create more inconvenience for tillage operations, or to reduce the width of right-of-way acquisition required. This consideration should be addressed before initiating negotiations for easements or property acquisition.

6.5.2 Setback from Road

Setback is the distance that a fence is placed from the shoulder of the road, or some other reference location, measured perpendicular to the road. Because the required setback is on the order of 20 to $35 H$, depending on fence porosity and storage capacity relative to transport, the required space may not be available within the existing right-of-way or easement. This factor should not be a limiting constraint on fence height, however. If more space is needed than is currently available, then the necessary easements or right-of-way should be obtained to allow the proper fence height to be used. It is often possible to obtain a perpetual easement for fences at less cost than purchasing additional right-of-way. Where necessary, taking land can be justified by accident history and the well-documented benefits of properly engineered snow fence systems (chapter 2). Where necessitated by conflicting land uses, fences can be installed in the fall and removed in the spring using temporary fences described in section 6.3.9.

Because drift length is proportional to fence height, setback guidelines are given in terms of multiples of fence height. Although the setback requirements are based on effective fence height, H, conservative design requires that structural height, H_{s}, be used instead. This insures that drifts will not encroach on the road even during a winter when the fence is fully exposed (that is, not partially buried, as described in section 3.8.5.2.1).

6.5.2.1 Minimum Setback for Parallel Fences

Fences should be far enough away from the road that the downwind drift does not extend onto the road. On flat terrain, the length of the downwind drift, L / H, varies with fence porosity according to Equation (3.24):
$\mathrm{L} / \mathrm{H}=12+49 \mathrm{P}+7 \mathrm{P}^{2}-37 \mathrm{P}^{3}$
where P is the porosity ratio of the fence. The setback required for parallel fences on flat terrain is therefore
$\mathrm{D}=\mathrm{H}(\sin \alpha)\left(12+49 \mathrm{P}+7 \mathrm{P}^{2}-37 \mathrm{P}^{3}\right)$
where α is the angle of attack for the prevailing transport direction. Fences having $P=0.5$ have the greatest snow storage capacity, and should therefore be used where space permits. Where setback distance is limited, using a denser fence can reduce space requirements.

```
Example:
    Given: }\mp@subsup{H}{req}{}=2.4\textrm{m}(8\textrm{ft}
    \alpha=65
    P=0.5
Required: Minimum setback, D
Solution: Equation (6.16):
\[
D=2.4(0.91)\left[12+49(0.5)+7(0.5)^{2}-37(0.5)^{3}\right]=73 \mathrm{~m}
\]
```

Topography must also be considered in specifying setback distance. As described in chapter 3, an upward approach to the fence can elongate the equilibrium downwind drift. However, if the increased storage capacity caused by this topographic effect exceeds the snow transport, the equilibrium drift may never be attained and the downwind drift may be shorter than on level terrain.

A similar situation can exist where a fence is placed upwind of a depression that increases capacity. In both these cases, fences can be placed closer to the protected area than indicated by Equation (6.16). The snow control specialist can make a determination using the information in this report, but simplified guidelines have not yet been developed.

Other effects of topography can be inferred from the qualitative description in section 3.8.5.2.8.

6.5.2.2 Minimum Setback for Oblique Fences

Because drift length is proportional to fence height, stepping down the fence height near the road allows oblique fences to be placed closer to the road (Figure 6.71). Although the storage capacity of shorter stepped-down sections may not be sufficient to store all of the seasonal transport, partial protection is better than none. Stepped-down sections also improve the trapping efficiency of the main portion of the fence by reducing the end-effect that would exist without the shorter panels.

If the prevailing transport direction is known, and if it is consistent, the end effect (Figures 3.42, $3.43,3.44)$ allows the ends of oblique fences to be placed closer to the road than the setback distance given by Equation (6.16). Placement is best determined by using a template of the drift curvature drawn to the same scale as the map, photo, or layout drawing. The proper location for the end of the fence is determined by positioning the template along the proposed fence line so that the drift curvature is tangent to the road shoulder. Some allowance should be made, however, for the possibility that the wind direction might vary, or that it might differ from that assumed for the design. It is therefore recommended that the centerline of the ditch be used as a protection limit rather than the shoulder of the road. Coordinates for an end-effect template can be taken from Figure 3.44 or calculated from Equation (3.21).

Figure 6.71. Stepping down the fence height allows oblique fences to be placed closer to the road.

6.5.2.3 Reducing Setback by Over-Designing Height

By considering how drifts grow, it is possible to use a fence much taller than
 that needed for snow storage, such that the base of the slip-face just terminates at the protected area during the design year (Figure 6.72). As described in section 3.8.3, drift length varies with snow accumulation according to
$\mathrm{L} / \mathrm{H}=10.5+6.6\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)+17.2\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{2}$
where A is the cross-sectional area of the drift at a specified time during the winter, and A_{e} is the cross-sectional area of the equilibrium drift for the fence in question.

As an example, consider a location where a $2.4-\mathrm{m}(8 \mathrm{ft}), 50 \%$-porous fence provides the required storage capacity. On level terrain, this fence would have to be placed at least $84 \mathrm{~m}(280 \mathrm{ft})$ upwind. If a fence $4.3 \mathrm{~m}(14 \mathrm{ft})$ tall were used instead, then it would be expected to be about 30% full with the design transport; that is, $A / A_{e}=0.3$. From Equation (6.17), the drift length would be about $14 H$ or $60 \mathrm{~m}(197 \mathrm{ft})$. Thus, the taller fence could be placed $24 \mathrm{~m}(83 \mathrm{ft})$ closer to the road, if the risk posed by encroachment of a larger drift were acceptable. If this technique is used, it is wise to select a design year having a low exceedance probability (section 4.8.1). As a default, designing storage capacity for twice the mean annual transport ($Q_{c}=2 Q_{t, \text { ave }}$) is consistent with an exceedance probability less than 1%. Setting $A / A_{e}=0.5$ in Equation (6.17) gives a drift length equal to 18 H . The additional storage volume provided by the cut section should be included in such a calculation (Figure 6.72).

Figure 6.72.Setback distance can be reduced by using a fence taller than required for storage of the design transport (Tabler 1993).

Figure 6.73. Taking into account the additional snow storage in this cut section reduced the required setback distance to $\mathbf{1 8 H}$.

6.5.2.4 Topographic Considerations

Although the minimum distance
 guidelines are important to prevent the drift from encroaching on the road, other considerations are equally important in selecting fence locations. It is sometimes preferable to place fences farther away than the minimum distance to take advantage of favorable sites, or to avoid unfavorable locations (Figure 6.74)

To avoid burial, fences should not be placed in locations where drifts form naturally, such as in depressions or on the downwind side of hills. Steep upwind-facing slopes should be avoided because this topographic situation reduces both trapping efficiency and storage capacity. Favorable locations include the crests of ridges or hills, and sites upwind of stream channels or other topographic depressions that increase storage capacity.

Protection of high fill sections should include a fence upwind of the toe of the embankment to collect "far" snow, if present, and shrubs or a closely spaced series of fences should be used to hold snow in place on the slope (Figure 6.75). If placed too close to the shoulder of the embankment, a fence can cause a deep drift on the road. Spacing between fences on embankments should be equal to $H / \tan a$, where a is the slope angle measured from horizontal.

WIND
Figure 6.74. The best location for a snow fence may be farther away from the protected area than the minimum setback distance. Topography should also be considered in determining setback.

Figure 6.75. Fences on embankment slopes should be spaced as shown in this illustration (Tabler 1994).

6.5.2.5 Maximum Setback

The maximum distance a fence should be placed from the protected
 area (the setback) depends primarily on the nature of the drifting problem. At sensitive locations, such as shallow road cuts where even a small amount of blowing snow can cause drift encroachment on the road, fences must be closer to the area requiring protection. Fences can be farther away from deep cuts that store more snow before drifts encroach on the road. A fence can be too far from the area to be protected. The actual reduction in snow transport depends on the setback and the fetch distance (Figure 6.76). For a very long fetch ($>6 \mathrm{~km} / 3.7 \mathrm{miles}$), a fence set back as far as 300 m (1000 ft) from the road will reduce snow transport by 82%.

Maximum protection can be provided by building two rows of fence, with the first having a larger capacity than the design transport, and the second row placed $20 H$ from the road shoulder. The rationale for placement is the pre-equilibrium drift length given by Equation (6.17). Obviously, snow transport must be estimated accurately when using such a design.

Figure 6.76. The reduction in snow transport is determined by the distance between fence and road, and fetch. This model assumes a 100% trapping efficiency for the fence, but that all snow between the fence and the road is relocated. (Tabler 1994).

6.5.3 Spacing Between Tandem Rows

A single tall fence traps more snow and is more cost-effective than multiple rows of shorter fence. There are situations, however, where multiple rows are necessary, such as where fences are installed and removed on a seasonal basis. Multiple rows of fence must be spaced so that downwind rows are not buried. This is important to achieve maximum storage and trapping efficiency of each fence, and to avoid structural damage.

The spacing guidelines given here are distances as measured in the direction of the prevailing wind. On flat ground, 30 H is a satisfactory spacing; on ground sloping downward with the wind, a greater spacing may be advisable if upwind fences are likely to fill. Where snow transport is sufficient, fences on ridges and hillcrests are certain to form long, deep drifts that can easily crush downwind fences. Figure 6.77 shows a $1.8-\mathrm{m}$-tall ($6-\mathrm{ft}$) fence on a hill that formed a lee drift twice as long $(130 \mathrm{~m}=420 \mathrm{ft}=70 \mathrm{H})$ as would be expected on flat terrain, because of the effect of the upward approach slope described in section 3.8.5.2.8. As a result, the drift buried a downwind fence $3 \mathrm{~m}(10 \mathrm{ft})$ tall, causing the damage shown in Figure 6.78. The proper spacing in this case depends on so many factors that a simple guideline is impossible, but the best advice is to avoid using more than a single row of fence in such situations.

The spacing of median fences (Figure 6.79) should be about 10 times their maximum height (as measured from the lowest elevation in the median).

Figure 6.77. Wind blowing up-hill toward a 1.8-m-tall (6-ft) fence caused a "super-drift" that buried the second 3-m-tall (10 ft) fence located 55 m ($\mathbf{1 8 0} \mathrm{ft}$) downwind. The drift contained four times as much snow as a $1.8-\mathrm{m}$ tall fence on flat terrain (Tabler 1986b).

Figure 6.78. Damage to the buried fence shown in Figure 6.74 (Tabler 1986b).

Figure 6.79. Median fences should be spaced 10 times their greatest height (right from Tabler 1994).

6.5.4 Fence Length and Overlap Criteria

6.5.4.1 Overlap of Protection Limits

One of the most common mistakes in fence layout is the failure to extend fences a sufficient distance beyond the limits of the area to be protected. Fences should extend far enough to intercept snow transported by the anticipated range of wind directions. Additional overlap is necessary to compensate for the end effect.

Wind direction fluctuates, even during a drifting event with a steady average direction. Atmospheric turbulence causes this variability, just as it causes fluctuations in wind speed. How large these variations are depends on meteorological conditions and local topography, but in the absence of specific information, fences should be planned for a 25° variation on either side of the prevailing direction. To account for variations in wind direction and the end effect, fences should extend far enough on either side of the protected area to intercept winds from 30° on either side of the prevailing wind direction(s) (Figure 6.80). The minimum overlap length is therefore equal to 0.6 times the distance (as measured in the direction of the wind) from the fence to the shoulder of the road.

Figure 6.80. Parallel fences should overlap the protected area sufficiently to intercept winds from 30° on either side of the prevailing transport direction (Tabler 1994).

6.5.4.2 Overlap and Spacing of Staggered Oblique Fences

When wind direction requires that fences be aligned obliquely with the road, it often becomes necessary to use staggered rows of fences to keep the fence close enough to the protected area to achieve the desired degree of control. The required length of these rows depends on the angle between the road and the fence, the spacing between rows, and the overlap required to compensate for the end-effect and variations in wind direction. This latter requirement is determined by the 30° angle specified for the overlap at the end of a fence. The overlap is sufficiently substantial that the equilibrium drift could bury a portion of the fence immediately downwind. Considering the length and depth of equilibrium drifts, the minimum spacing between staggered rows should be $25 H_{s}$. At this spacing, required overlap is $25 H\left(\tan 30^{\circ}\right)=$ 14 H . For a straight section of road, the required length, L_{f}, of staggered fences would be given by
$\mathrm{L}_{\mathrm{f}}=14 \mathrm{H}+25 \mathrm{H} / \tan \left(90^{\circ}-\alpha\right) ; \quad$ if $\mathrm{L}_{\mathrm{f}}<25 \mathrm{H} ;$ set $\mathrm{L}_{\mathrm{f}}=25 \mathrm{H}$
as plotted in Figure 6.81. The 25 H limit on fence length is not related to the spacing criterion, but instead is an independent guideline for minimum fence length that reflects the decreased efficiency of short fences (section 3.8.5.2.2).

Figure 6.81. Minimum length $\left(L_{f}\right)$ of staggered fences in relation to wind attack angle, α, providing 30° overlap angle (Tabler 1994).

6.5.4.3 Openings in Fence Lines

Fences should be as long as possible, without holes or openings. Wind acceleration through openings adversely affects snow deposition over an area much larger than the opening itself. This may surprise those who assume that, because porous fences are comprised of holes, a few additional openings could not make much of a difference. Even leaving $15-\mathrm{cm}(6-\mathrm{in}$.) spaces between panels of the Wyoming fence causes appreciable erosion and scalloping of the drift nose, with significant loss of snow storage capacity (Figure 6.82). As a result, spaces between panels should not exceed 2.5 cm (1 in .). To achieve this requirement, panels must be partially overlapped when traversing irregular terrain (Figure 6.18).

Figure 6.82. Model of a 1.8-m-tall (6-ft) Wyoming fence with $15-\mathrm{cm}$-wide (6 in .) boards on $30-\mathrm{cm}$ (12 in .) centers (facing wind). Note how leaving $15-\mathrm{cm}$ ($6-\mathrm{in}$.) gaps between panels reduces fence effectiveness.

Knowing that openings compromise effectiveness, the snow fence planner should resist
 giving in to the requests of landowners, wildlife officials, and others who want to leave openings for livestock or wildlife. Animals are capable of walking around barriers much longer than a snow fence, and they don't have much else to do anyway.

Where openings must be left for off-road summer use only, offsetting and overlapping fence lines (Type A in Figure 6.83) is the preferred method. As illustrated in Figure 6.84, this type of opening minimizes the end effect. Where a road must be kept free of snow for winter use, the best solution is to protect the opening with a section of fence farther upwind, if the alignment of the road permits. If not, the best that can be done is to minimize the width of the opening, which requires reliable information on prevailing wind direction. In locations with a consistent wind direction, fence ends should be at least $5 H$ from the road shoulders where travel is restricted to the road (Figure 6.83, Type C). This spacing should be considered a starting point, with the possibility that additional widening may prove necessary.

Where off-road access is sufficient, a narrow opening $5 \mathrm{~m}(16 \mathrm{ft})$ or so is best because the acceleration of the wind through the opening scours a snow-free path through the drift (Figure 6.83, Type B).

FENCE (HEIGHT H)

TYPE A: SUMMER ACCESS ONLY (PLAN VIEW)
Figure 6.83. Access openings in fence lines.

TYPE B: YEAR-ROUND OFF-ROAD ACCESS

Figure 6.84. Opening in fence similar to Type A in Figure 6.83. Fence height is 3.8 m ($\mathbf{1 2 . 4} \mathbf{~ f t)}$

Figure 6.85. Opening in fence suitable for year-round off-road access (Type B, Figure 6.83). Fence height is $4.3 \mathbf{~ m}(14 \mathrm{ft})$.

6.5.4.4 Preventing Dangerous

 Transitions

As demonstrated in chapter 2, fences can be extremely effective in improving visibility and reducing the formation of slush and ice (Figures 2.11, 2.12, and 2.16). Consequently, the snow fence planner can inadvertently create a serious hazard by creating an abrupt transition from protected to unprotected conditions. This is illustrated by the transition of visibility at the end of a snow fence system (Figures 6.86). Figure (6.87), taken on another date, shows the transition in road ice at this same location caused by a stream of blowing snow passing through the unprotected gap between the $3.8-\mathrm{m}$-tall ($12.4-\mathrm{ft}$) snow fence, and tall bushes growing along a watercourse. The fences should have been extended to eliminate such a gap. This dangerous transition has caused more wintertime crashes than occurs at any other location on Wyoming I-80 (Figure 6.88).

The following mitigation strategies can be employed to avoid creating dangerous transitions from protected to unprotected conditions at the ends of a fence system:
$>$ Tying in fences with natural features, such as trees and brush, that reduce blowing snow;
$>$ Filling in gaps between fence systems;
$>$ Tapering out protection by reducing the fence height, or increasing fence porosity, near fence ends.

Figure 6.86. This visibility transition is at the end of a system of 3-8-m-tall (12.4 ft) snow fences on Wyoming I-80. The left view shows the abrupt change in conditions at end of the fence system coinciding with the far side of a machinery underpass. Faintly visible amber lights mark a working accident. The right view shows conditions within the protected area at the same time, looking in the opposite direction.

Figure 6.87. The strip of blowing snow across the road, just above center of the photograph, coincides with the unfenced corridor between the fence system in the background, and brush growing along a watercourse, at the same location as Figure 6.86 (Tabler 1994).

Figure 6.88. Crash incidence in ground blizzard conditions in relation to location on Wyoming I-80, January 1, 1991 to December 31, 2001. Note largest number of crashes has occurred at the location of Figures 6.85 and 6.86.

6.5.5 Snow Fence Layout on Digital Topographic Maps

Digital topographic maps and mapping software greatly facilitate laying out snow fence systems. The 3-D TopoQuads ${ }^{\circledR}$ and XMap ${ }^{\circledR}$ software available from DeLorme (www.delorme.com) allows the user to draw lines of precise length and orientation on digital topographic maps, and to zoom in to any desired level of magnification. The procedure is as follows, with the simplifying assumption of a straight section of road aligned roughly north/south:

1. Mark the limits of the area to be protected on the map.
2. Draw a line from the marked points parallel to the prevailing wind direction plus or minus the required overlap angle. For example, if the prevailing direction is from 270° and a 30° overlap is acceptable as described in section 6.5.4.1, the line from the northernmost limit would be drawn at 300°, and the line from the southern-most limit would be drawn at 240°. These lines define the ends of the required snow fence protection.
3. From the edge of pavement, measure a distance along a line parallel to the prevailing direction equal to the maximum anticipated drift length (e.g., 35 times the required fence height) at both marked points. The ends of these lines define the required setback, and a line drawn between the points marks the location of the fence.
4. Break the fence line as required for roads and other constraining features, and if possible, add additional fence upwind to protect these openings.

Figure 6.89 illustrates the procedure for both parallel and oblique fences, and demonstrates the utility of topographic maps for preliminary layout. Xmap ${ }^{\circledR} 3.5$ also allows the coordinates of specific points to be determined in any desired coordinate system (Figure 6.90).

After the preliminary layout has been completed, the next step is to review proposed fence locations on the ground to determine if adjustments need to be made for reasons not apparent on the maps. Connecting an optional GPS receiver to a laptop computer running the DeLorme software facilitates locating the proposed fence lines in the field.

DeLorme also has available Sat 10 Satellite Imagery software that can be used in conjunction with $\mathrm{XMap}^{\circledR}$ and 3-D TopoQuads ${ }^{\circledR}$. The 10 -meter satellite imagery is useful for updating features that may not be shown on older topographic maps, and for visualizing vegetative cover and topographic features to help determine fetch. Figure 6.91 illustrates this application for the example location in Figure 6.89, and shows the appearance of the XMap ${ }^{\mathbb{B}} 3.5$ screen. The split screen view can be toggled off to provide full screen views of either the map or the satellite image.

Figure 6.89. Example illustrates preliminary layout of a snow fence system using DeLorme software. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$. [$1 \mathrm{~m}=3.28 \mathrm{ft}$]

Figure 6.90. Coordinates of snow fences can be displayed and annotated by clicking on the points. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR}$ 1.0.

Figure 6.91. Computer "print screen" image showing how 10-meter satellite imagery can be used in conjunction with XMap ${ }^{\circledR}$ and 3-D TopoQuads ${ }^{\circledR}$ to determine fetch distance for the example in Figure 6.89. © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5,3-D$ TopoQuads ${ }^{\circledR} 1.0$, and Sat 10 Satellite Imagery.

6.5.6 Computer-Aided Snow Fence Design (SNOWMAN)

The New York State Department of Transportation (NYSDOT) has supported the development of a computer system for automatically designing snow mitigation measures, including both road design and snow fences, using the guidelines, equations and algorithms presented in this report. This system, named SNOWMAN from SNOW MANagement, is being developed through the joint efforts of Brookhaven National Laboratory and the State University of New York at Buffalo, with Cornell University providing project management. Initiated in 1997, it is anticipated that a usable version will soon be available. The system utilizes a MicroStation ${ }^{(1)}$ platform for generating terrain cross-sections parallel to the prevailing snow transport direction from digital terrain model files. The user can specify the desired solution-earthwork or snow fences-and specific constraints. The system includes a statewide climatic database for quantifying snow transport for the specified location as described in chapter 4.

The key component in the system is a snowdrift profile generator that optimizes cross-section modification or snow fence placement by iteration. In the case of snow fences, for example, if the user has not specified a fence height or setback constraint, the program will calculate the required height and the closest setback that will not cause unacceptable drift encroachment on the roadway. Output can also include locations of multiple rows of a user-specified height, or required fence porosity for user-specified setback constraints.

Test cases verify the accuracy of the snowdrift profile predictions of the profile generator, as illustrated by the comparison of predicted and measured snow depths for the case of three rows of fences, each of different height, in irregular terrain (Figure 6.92).

Figure 6.92. Snowdrift profiles predicted with the SNOWMAN drift generation routine, compared with measured drift profile at a site on Wyoming I-80.

The snowdrift profile generator for the terrain without snow fences is described in detail in chapter 8 . The algorithms for predicting the snow fence drift profiles are too complex to describe here, but can be supplied by the author on request. It is anticipated that the availability of this program will be announced on the NYSDOT Web site (www.dot.state.ny.us/).

6.5.7 The Minnesota Web Site for Snow Fence Design

The University of Minnesota Internet site http://climate/umn.edu/snow fence/Components/Design/introduction.htm, described in detail in chapter 5, allows the user to determine the required height, setback, and overlap of snow fence systems for any location in Minnesota. The Web site can also be used to design fences for places outside the state if a location in Minnesota can be found with similar snowfall and snow relocation coefficient. In any event, the site is an excellent tutorial for the guidelines presented in this report.

6.6 References

American Institute of Timber Construction. 1994. Timber construction manual, Fourth Edition. John Wiley and Sons, Inc., New York.

Baker, H.A. and C.J. Williams. 1990. Guidelines for controlling snowdrifting on Canadian highways. Transportation Development Centre, Policy Coordination Group, Transport Canada Pub. No. TP 9937. Montreal, Quebec.
_-. 1990. Research study of highway snowdrifting. Transportation Development Centre, Policy Coordination Group, Transport Canada Publication No. TP 10129E. Montreal, Quebec.

Coker, W. 1986. The growth of plastics in the fence industry. Fence Industry/Access Control, Vol. 29, No. 1: 14-20.

Finney, E.A. 1934. Snow control on the highways. Michigan Engineering Experiment Station Bulletin 57.

Gaylord, E.H. Jr. and C.N. Gaylord. 1979. Structural engineering handbook. McGraw-Hill Book Company, New York.

Geisler, D.C. 1969. Comparative strengths of lodgepole pine and metal fence posts. M.S. thesis, Colorado State University, Fort Collins.

Guyot, G. 1978. Determination des efforts exerces par le vent sur un brisevent. Boundary Layer Meteorology 15: 57-67 (in French, with English abstract).

Hagen, L.J. and E.L. Skidmore. 1971. Windbreak drag as influenced by porosity. Transactions ASAE 14: 464-465.

Hoerner, S.F. 1965. Fluid dynamic drag. Hoerner Fluid Dynamics, Bricktown, N.J.
Hokkaido Development Bureau. 1974. Snow disaster prevention techniques using snow fences. Part I. Snow fence research report No. 3, Hokkaido Development Bureau, Construction Machinery Plant, Engineering Development Section (Sapporo). (In Japanese).

International Conference of Building Officials. 1982. Uniform Building Code. International Conference of Building Officials, 5360 South Workman Road, Whittier, Calif. 90601.

Jairell, R. L. and R. D. Tabler. 1985. Model studies of snowdrifts formed by livestock shelters and pond embankments. In: Western Snow Conference (April 16-18, 1985; Boulder CO) Proceedings 53: 167-170.

Japan Construction Machinery Society. 1988. New snow protection engineering handbook. Morikita Shuppan Co., Tokyo. (in Japanese)

Kaminski, D.F. and S. Mohan. 1991. PASCON: An expert system for passive snow control on highways. Transportation Research Record 1304: 193-201.

List, R.J. 1968. Smithsonian meteorological tables. Smithsonian Publication 4014, Rev. ed. 6 (4th repr.). Washington, D.C.

Martinelli, M. 1964. Influence of gap width below vertical-slat snow fence on size and location of lee drift. Bulletin of the International Association of Scientific Hydrology, International Union of Geodesy and Geophysics, IX Anne'e, No. 4: 48-57.

Mellor, M. 1965. Blowing snow. CRREL monograph, Part III, Section A3c, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.

Meroney, B. and R. Meroney. 1989. Snow control with vortex and blower fences. In: Proceedings, First International Conference on Snow Engineering (Santa Barbara, Calif., July 10-15, 1988), U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 89-6: 297-306.

Minsk, L.D. 1975. Control of snow and ice on missile fields. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report SR 240.

Norem, H. 1985. Design criteria and location of snow fences. Annals of Glaciology 6: 68-70.
Peterka, J. A. and S. Shahid. 1998. Design gust wind speeds in the United States. Journal of Structural Engineering 124 (2): 207-214.

Pugh, H.L.D. 1950. Snow fences. Great Britain Road Research Laboratory. Road Research Technical Paper No. 19.

Rowley, R.K. and G.H. Watson. 1973. Vertical and lateral pile load tests in permafrost. In: North Amer. Contrib. Permafrost, 2nd Int. Conf. Proceedings (Yakutsk, USSR): 712-721.

Schneider, T.R. 1959. Schneeverwehungen und Winterglatte. Interner Bericht des Eidg. Institutes fur Schnee- und Lawinenforschung, Nr. 302. English translation: Technical Translation 1038, 1962, National Research Council of Canada, Ottawa, Ontario, Canada.

Sutton, O.G. 1953. Micrometeorology. McGraw-Hill Book Co., New York.
Tabler, R. D. 1974. New engineering criteria for snow fence systems. Transportation Research Record 506: 65-78.
1975. Estimating the transport and evaporation of blowing snow. In: Symposium on Snow Management on the Great Plains (Bismarck, N. Dak.; July 1975) Proceedings, Great Plains Agricultural Council Publication 73: 85-104.
—_. 1978. Measured wind loads on 50% porous snow fences. Third U.S. National Conference on Wind Engineering Research (Feb. 26-March 1, 1978; Gainesville, FL), Preprint Volume: III-27-1.
——. 1983. Snow control research and engineering in Japan. Hokkaido Development Bureau, Civil Engineering Research Institute Report No. 81.
-_ 1984. Using visual range data for highway operations in blowing snow. Optical Engineering 23(1): 055-061.
__. 1985. Ablation rates of snow fence drifts at 2300-meters elevation in Wyoming. In: Western Snow Conference (Boulder, Colo.; April 16-18, 1985) Proceedings 53: 1-12.
——.1986a. Wind loads and fence design. Technical Report, Signode Corporation, Glenview, Illinois.
——_ 1986b. Snow fence handbook, Release 1.0. Tabler and Associates, Laramie, Wyoming.
——. 1987. Slide rule for snow fence design. In: Western Snow Conference (Vancouver, B.C.; April 14-16, 1987) Proceedings 55:162-165.
——. 1989. Snow fence technology: State of the art. In: First International Conference on Snow Engineering (Santa Barbara, California; July 10-15, 1988), U. S. Army Corps of Engineers, Cold Regions Research Laboratory, Special Report 89-6: 297-306.
. 1991. Snow fence guide. Strategic Highway Research Program, Report No. SHRP-H320, National Research Council, Washington, D.C.
——_ 1993. New guidelines for blowing snow control. In: Proceedings of International Workshop on Winter Road Management (IWWRM) (January 26- 29, Saporro, Japan). Road Division, Civil Engineering Research Institute, Hokkaido Development Bureau, Sapporo: 69-81
—_. 1994. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.
2002. Safety Improvement Study: Interstate-80 Mile 325-335. Final Report, Agreement No. 54839, prepared for the Transportation Commission of Wyoming.

Tabler, R. D. and T. Day. 1992. Innovations in wind protection. Proceedings, Fifth Symposium of the International Organization for Transportation by Rope -- North American Continental Section (Steamboat Springs, Colorado; 30 August - 3 Sept. 1992): 67-73.

Tabler, R. D. and R. L. Jairell. 1980. Studying snowdrifting problems with small-scale models outdoors. In: Western Snow Conference (April 15-17, 1980; Laramie, WY) Proceedings 48: 1-13.

Tabler, R. D., J. W. Pomeroy, and B. W. Santana. 1990. Drifting snow. In: Cold Regions Hydrology and Hydraulics, ASCE Technical Council on Cold Regions Engineering Monograph: 95-145

Tabler, R. D. and R. A. Schmidt. 1986. Snow erosion, transport, and deposition in relation to agriculture. In: Proceedings, Symposium on Snow in Agriculture (Swift Current, Sask.; July 9-11, 1985), H. Steppuhn and W. Nicholaichuk, ed. Great Plains Agricultural Council Publication No. 120. pp. 11-58.

Tabler, R. D. and D. L. Sturges. 1986. Watershed test of a snow fence to increase streamflow: preliminary results. In: American Water Resources Association, Cold Regions Hydrology Symposium (Fairbanks, Alaska; July 22-25, 1986) Proceedings: 53-61.

Tani, N. 1958. On the wind tunnel test of model shelter hedge. Bulletin of the National Institute of Agricultural Science, Tokyo, No. A6: 1-81.

Thom, H.C.S. 1968. New distributions of extreme winds in the United States. Journal of the Structural Division, ASCE. V.94, ST7 (Paper No. 6038): 1787-1801.

Western Wood Products Association (WWPA). 1988. Western Lumber Grading Rules 88. 522 S.W. 5th, Portland, OR.

Wrigley, N. E. 1987. Durability and long-term performance of Tensar ${ }^{\circledR}$ polymer grids for soil reinforcement. Materials Science and Technology v. 3: 161-170.

7 Living Snow fences

7.1 Scope

Living snow fences refer to vegetative plantings used to control drifting snow. Plant materials include trees, shrubs, grass, or agricultural crops, such as corn or sunflowers, left standing over the winter. This chapter presents engineering guidelines for vegetative barriers based on the same principles and quantitative relationships used for structural snow fences. The presentation assumes that the reader is familiar with the material in chapters 3,4 and 6 .

7.2 Highlights

$>$ Rows of trees or tall shrubs can be used in place of structural snow fences to collect blowing snow originating outside the right-of-way. Mass plantings of shrubs (snow retention plantings) can be used to stabilize snow within the right-of-way.
$>$ The same principles and quantitative relationships developed for structural fences also apply to living fences. Guidelines for structural fences also apply to living barriers, but modifications are necessary to take into account the changes in height and porosity as the plants grow.
$>$ Trees and shrubs suitable for drift control should have relatively dense foliage that extends to ground level. Self-pruning species should be avoided. Tolerance to aerial salt spray and soil salt is often a requirement.
$>$ An excellent source of information for many species appropriate for the Midwest and Northeast is the CD-ROM "Woody \& Herbaceous Plants for Minnesota Landscapes \& Roadsides," prepared by the Minnesota Department of Transportation (1999). This information is also available on the Web at www.plantselector.dot.state.mn .
$>$ Living barriers can be as effective as structural fences if properly designed. Key requirements include adequate storage capacity, absence of gaps, and sufficient setback to prevent the downwind drift from encroaching on the road at any stage of development.
$>$ Changes in the porosity and height of a barrier as the plants grow changes the length of the downwind drift. As the barrier becomes less porous, more snow is stored in the upwind drift and the downwind drift becomes shorter. Two or more rows of mature coniferous trees function as a solid barrier.
> It is possible to develop guidelines for specific species and planting patterns using the relationships for trapping efficiency and drift length as functions of height and porosity that were developed for structural fences. A computer simulation using spruce trees is used to justify some of the guidelines presented in this chapter.
$>$ Trees are considered fully effective when their average snow trapping efficiency reaches 75%--the same average efficiency as that of a structural snow fence from the first drifting
event to the time when the fence is filled to capacity. The height of the trees when this level of efficiency is reached is referred to as the "fully effective height."
$>$ The fully effective height varies with the quantity of snow transport, and represents the minimum required barrier height. Examples provided by the spruce tree simulation are $1.2 \mathrm{~m}(4 \mathrm{ft})$ for very light snow transport ($<10 \mathrm{t} / \mathrm{m}$ or 3.4 tons $/ \mathrm{ft}$), and $2.8 \mathrm{~m}(9.2 \mathrm{ft})$ for moderate transport conditions ($80 \mathrm{t} / \mathrm{m}$ or $27 \mathrm{tons} / \mathrm{ft}$). With average growth rates, these heights may be attained 5 and 10 years after planting, respectively.
$>$ The required setback depends on the attack angle of the wind, and the amount of snow transport. For light to moderate snow transport conditions, the setback distance is equal to $(\sin \alpha)\left(35 H_{\text {req }}\right)$, where $H_{\text {req }}$ is the required height of structural fence at that location.
$>$ Where snow transport is greater than light-moderate, tree plantings for living snow fences should be set back at least $60 \mathrm{~m}(200 \mathrm{ft})$ from edge of pavement.
$>$ Gaps or openings in living fences can cause deep drifts to form downwind and should be avoided. Gaps caused by tree mortality should be sealed off with structural fence until replacement vegetation is established.
$>$ The minimum setback for trees planted on the southerly side of a road should allow the noontime sun to shine on the road surface on the shortest day of the year. In Maine, for example, where the minimum sun angle is about 22°, the setback should be at least 2.5 times the mature height of the trees.
> The setback can be reduced by using a temporary snow fence to prevent drift encroachment until the trees reach their fully effective height. Such a fence should have sufficient capacity to store all of the design transport, and should be placed at least 20 times its height upwind of the tree planting.
$>$ A twin row of shrubs between the road and tree plantings provides temporary control until the trees become fully effective.
> Wide, dense plantings of trees, called "snowbreak forests," cause all snow to be deposited on the upwind side of the barrier, and require a setback of about $30 \mathrm{~m}(100 \mathrm{ft})$.
$>$ The best in-row spacing for coniferous trees is approximately $3 \mathrm{~m}(10 \mathrm{ft})$, with rows spaced $3 \mathrm{~m}(10 \mathrm{ft})$ apart. Three rows are recommended to reduce the possibility of gaps forming when trees die.
$>$ Shrubs have the advantage of faster growth, denser branching habits, and lower initial cost than trees. Two staggered rows of most shrubs spaced $1.2 \mathrm{~m}(4 \mathrm{ft})$ apart, with the same in-row spacing, provides an effective snow fence.
$>$ To retain snow on steep embankments, shrubs should be planted in staggered rows spaced $1.2 \mathrm{~m}(4 \mathrm{ft})$ apart.
$>$ In mass plantings, the optimum spacing between shrubs depends on the mature size of the shrubs, but generally ranges from 2 - to 3 m (6- to 10 ft).
$>$ Pruning the lower branches of trees reduces the size of the upwind drift, and increases the length of the downwind drift. Although pruning of living snow fences is therefore not recommended, pruning roadside trees can mitigate snowdrift problems.
$>$ Under favorable growing conditions, living fences are less costly than structural fences. Where conditions are less favorable, the combined direct and indirect costs for the two types of fences are comparable.
$>$ Rows of corn left standing in the field can provide effective and economical control of blowing snow. The best practice is to leave two strips of corn, each comprised of eight rows, separated by a space of $50 \mathrm{~m}(160 \mathrm{ft})$. The strip nearest to the road should be set back $65 \mathrm{~m}(213 \mathrm{ft})$ from the shoulder.

7.3 Comparison with Snow Fence Guidelines

All of the principles pertaining to snow fences apply to vegetative barriers as well, but guidelines for plantings must consider the variability or irregularity of height and porosity, and how these factors change with time. In addition, biological requirements must be considered in the planting and maintenance of living snow fences, as well as ecological factors affecting survival and growth. For these reasons, designing living snow fences requires the knowledge of agronomists, foresters, landscape architects, and engineers.

In the past, guidelines for living snow fences have been developed without regard for the quantity of snow transport, the changes in the snow-trapping efficiency of the plant material, or the physical processes involved. This oversight has all too often resulted in tree plantings that eventually had to be removed because their drifts encroached on the road. In addition, the guidelines that did prove satisfactory were so site-specific that they could not be applied successfully to other areas. The progress in quantifying snow transport and in understanding how structural snow fences work, as outlined in chapters 3 and 4 of this book, now make it possible to develop engineering guidelines for living fences. An excellent reference on living snow fences, that incorporates many of the guidelines in this report, is the publication by the University of Minnesota Extension Service (1999) entitled "Catching the Snow with Living Snow Fences." In addition to guidelines for design, the publication includes useful information about species selection, planting practices, insect and disease prevention, and herbicide considerations. The basic design calculations described in that publication are included on the Internet site introduced in chapter 6: http://climate/umn.edu/snow fence/Components/Design/introduction.htm.

7.4 Basic Strategies

There are two basic approaches to the use of plant materials to control blowing snow:
Snow collection -- Trapping "far" snow with rows of trees or shrubs; and
Snow retention -- Holding the snow in place with grass, shrubs, or trees. These control measures will be referred to as retention plantings.

The latter strategy is applicable where the source of the blowing snow is confined to the immediate vicinity of the road, such as embankment slopes, medians, and interchange gore areas.

7.5 Species

Trees and shrubs suitable for drift control should have relatively dense foliage or branches that extend to ground level. Self-pruning species should be avoided. They should be fast growing; resistant to drought, frost, and disease; unpalatable to livestock and wildlife; suitable for variable soil conditions; tolerant of crowding without shedding lower branches; long-lived; and most importantly, tolerant of aerial salt spray. Secondary considerations include ornamental value and value for cover and food for wildlife. Coniferous species have the advantages of year-round dense foliage and relatively low palatability for wildlife, but deciduous trees and shrubs can also be used if densely branched. Care must be taken, however, to avoid species that attract deer and other animals that create hazards for motorists, especially for plantings within the right-of-way.

Among coniferous species, spruces, cedars, and junipers are preferable because their foliage is denser than that of pines, and they can be planted close together without losing lower branches as they mature. Deciduous trees such as Russian olive (Elaeagnus angustifolia) and American plum (Prunus americana) can also be used for living fences, but more rows may be required to achieve a desirable density. Dense branching habits, tolerance to crowding and suckering make many species of shrubs ideal for snow control.

Species must be suited to local climate and soil conditions. The county extension service can provide information regarding general conditions, but the advice of a forester or agronomist should be sought for recommendations at specific sites. Table 1 lists species that are commonly for living snow fences. An excellent source of information for many species appropriate for the Midwest and Northeast is the CD-ROM "Woody \& Herbaceous Plants for Minnesota Landscapes \& Roadsides," prepared by the Minnesota Department of Transportation (1999). The species information provided on the CD includes growth habits; site requirements (including tolerance to salt spray and soil salt); susceptibility to insects, disease, and herbicides; and photographs. The CD-ROM is included with the publication "Catching the Snow with Living Snow Fences" (University of Minnesota Extension Service 1999). This information is also available on the Web at www.plantselector.dot.state.mn .

Where salt spray and salty soils are not a concern, dogwood species (Cornus spp.) make excellent snow fence plantings because of their rapid growth and suckering characteristics.

Table 7.1. Trees and shrubs commonly used for living snow fence plantings. Heights and widths are at maturity (* indicates sensitivity to salt spray and/or soil salt).

Trees	Height x Width (m)	Height x Width (ft)
Abies concolor (White fir)	(9-15) \times ($5-9)$	(30-50) x (15-30)
Elaeagnus angustofolia (Russian olive) ${ }^{1}$	(6-8) $\times 6$	(20-25) $\times 20$
Juniperus scopulorum (Rocky Mountain juniper)*	$(1.5-6) \times(2-3)$	(5-20) \times (6-9)
Juniperus virginiana (Eastern redcedar)	(12-15) \times (2.5-6)	(40-50) $\times(8-20)$
Picea pungens (Colorado spruce)	(20-30) $\times(6-11)$	$(70-100) \times(20-35)$
Pinus edulis (Pinion pine)	$(9-15) \times(6-8)$	(30-50) $\times(20-25)$
Pinus nigra (Austrian pine)	$(15-18) \times(6-12)$	(50-60) x (20-40)
Shrubs		
Caragana arborescens (Siberian pea shrub)	$(3-4.5) \times(2-3)$	$(10-15) \times(6-10)$
Cornus racemosa (Gray dogwood)*	(2-3.5) $\times(2-3.6)$	$(6-12) \times(6-12)$
Cornus sericea (Red dogwood)*	$(2-3.5) \times(2-3.6)$	$(6-12) \times(6-12)$
Cotoneaster acutifolia (Cotoneaster)	(2-2.4) \times (1.2-1.5)	$(6-8) \times(4-5)$
Juniperus chinensis Maneyi (Maney juniper)	(1.2-1.5) x (1.5-2)	(4-5) \times (5-6)
Lonicera tartarica (Zabelii) Zabel's honeysuckle	(3-4) $\times 3$	$(10-12) \times 10$
Potentilla fruticosa 'Jackmannii' (Jackmann potentilla)	(1-1.2) $\times(1-1.2)$	(3-4) \times (3-4)
Prunus Americana (American plum)*	(3-9) \times (2.5-7.5)	(10-30) x (8-25)
Prunus virginiana (Common chokecherry)	(3-6) \times (3-6)	$(10-20) \times(10-20)$
Rhus aromatica (Fragrant sumac)	(1-2.4) \times ($2-3$)	(3-8) $\times(6-10)$
Rhus glabra (Smooth sumac)	(3-4.5) \times (3-4.5)	$(10-15) \times(!0-15)$
Rhus trilobata (Skunkbush sumac)	(1-2) x (1.2-1.8)	(3-6) x (4-5)
Rhus typhina (Staghorn sumac)	(3.7-7.6) x (3.7-6)	(12-25) x (12-20)
Ribes alpinum (Alpine currant)	(1-1.8) x (2-3.7)	$(3-5) \times(6-12)$
Rosa rugosa (Rugosa rose)	$(1.2-2.4) \times(1.2-2)$	(4-8) \times (4-6)
Shepherdia argentia (Silver buffaloberry)	(3.7-4.5) x (3.7-4.5)	(12-15) x (12-15)
Symphoricarpus albus (Snowberry)	(1-2) $\mathrm{x}(1-2)$	(3-6) x (3-6)
Syringa vulgaris (Common lilac)	(3-4.5) x (2-3.7)	$(10-15) \times(6-12)$
Tamarix ramosissima (Five-stamen tamarisk)	(3-7.6) $\times(2-4.5)$	(10-25) $\times(6-15)$

${ }^{1}$ Russian olive is considered by some agencies to be an invasive species.

7.6 Effectiveness

If properly designed, tree and shrub plantings can be as effective as structural snow fences.

7.6.1 Requirements

The requirements for effective living snow fences are the same as those for structural snow fences:
$>$ Adequate snow storage capacity
$>$ Absence of openings or gaps
> Adequate setback

7.6.2 Factors That Affect the Effectiveness of Living Fences

Trees and shrubs have characteristics that make their snow trapping function different from structural fences. As the crowns close together and the canopy becomes denser, more snow is stored on the upwind side, and the downwind drift tends to become shorter (Figure 3.50). Simultaneously, the increase in height tends to make the downwind drift longer. The degree to which these two changes offset one another depends on the quantity of snow transport at the site, as illustrated in Figure 7.1.

Figure 7.1. Changes in snowdrift shape and snow storage as a living fence grows.

Because of the dynamic changes that occur in the physical configuration of living barriers, and the site-dependent factors controlling these changes, it is understandable why some living snow fences have exacerbated drifting problems rather than improving them.
Figure 7.2 illustrates the tendency for dense living snow fences to behave more like solid (nonporous) barriers. More snow has been deposited on the upwind side of the trees, and the downwind drift is closer to the barrier. The wind stopped blowing before equilibrium conditions were attained, so this represents the last stage illustrated in Figure 7.1.

Figure 7.2. Scale model (1:30) comparison of structural and vegetative snow fences 3.8 m ($\mathbf{1 2 ~ f t) ~}$ tall. Inset is Figure 3.50 .

The time required for living fences to become fully effective depends on the growth rate, spacing, and growth habit of the
 trees, and the quantity of snow transport. Where growing conditions are favorable and where snow transport is light (<10 $\mathrm{t} / \mathrm{m} ; 3.4$ tons $/ \mathrm{ft}$), tree rows can be fully effective five years after seedlings are planted. At the other extreme, 20 years or more are required for tree plantings to become fully effective in Wyoming (Powell et al. 1992), where snow transport is on the order of $100 \mathrm{t} / \mathrm{m}$ (34 tons/ ft)

The relationships determining the time required for a living snow fence to become fully effective are complex, but useful insight can be obtained by computer simulation of snow-trapping efficiency utilizing the relationships presented for snow fences in chapter 3.

7.6.3 Computer Simulation

Given that trapping efficiency varies as a fence fills with snow (section 3.8.3), and considering how porosity affects snow storage capacity (3.8.5.2.4), it is possible to infer how trapping efficiency changes as a living snow fence grows. Consider, for example, the typical example of two rows of dense trees that have triangular silhouettes, height H, and base diameter $0.7 H$. They are planted in a staggered offset pattern at spacing S, with the same spacing between rows (Figure 7.3). For simplicity, it is assumed that the porosity of the barrier is equal to the ratio of open space between the individual canopy silhouettes, to the total area bounded by the ground and the top of the trees, and that the area bounded by the outline of the crowns is non-porous. As an additional simplification, the average porosity is defined as the average of the highest porosity aspect (at 45° from perpendicular to the tree rows) and the lowest porosity aspect (perpendicular to the trees).

Figure 7.3. Model of living snow fence (spruce trees) used for computer simulation of porosity, snow-trapping efficiency, and drift length in relation to tree height, spacing, and snow transport (Tabler 1994).

Finally, to interpret tree heights in relation to years after planting, it is assumed that the seedlings are 20 cm (8 in .) tall when planted; grow 15 cm (6 in .) per year for the first two years; and 30 cm (12 in .) per year thereafter. Given these assumptions, the average porosity of such a barrier would vary with tree height, age, and spacing as shown in Figure 7.4.

Figure 7.4. Changes in the porosity of the model shown in Figure 7.3 in relation to changes in spacing, height, and age of trees (Tabler 1994).

To determine how snow-trapping efficiency varies with tree height, spacing, and snow transport, assume that the following relationships for structural fences apply also to living fences, and substitute the average porosity ratio as determined above:
$>$ Equation (3.25): $\mathrm{Q}_{\mathrm{c}}=\left(3+4 \mathrm{P}+44 \mathrm{P}^{2}-60 \mathrm{P}^{3}\right) \mathrm{H}^{2.2} ; \mathrm{P}<0.88$
$>$ Equation (3.31):

$$
\begin{equation*}
\mathrm{E}_{\text {ave }}=\left[1 /\left(\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)\right]\left(\mathrm{E}_{\mathrm{o}}\right)\left\{0.5\left(\mathrm{~A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)\left[1-\left(\mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)^{2}\right]^{0.5}+0.5 \sin ^{-1}\left(\mathrm{~A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{e}}\right)\right\}, \mathrm{Qt} \leq \mathrm{Qc} \tag{6.2}
\end{equation*}
$$

$>$ Equation (3.32): $\mathrm{E}_{\text {ave }}=\mathrm{E}_{\mathrm{o}}(0.79)\left(\mathrm{Q}_{\mathrm{c}} / \mathrm{Q}_{\mathrm{t}}\right), \quad \mathrm{Q}_{\mathrm{t}}>\mathrm{Q}_{\mathrm{c}}$

For moderate snow transport ($80 \mathrm{t} / \mathrm{m}$; 27 tons/ ft), snow-trapping efficiency would vary with spacing, tree height, and age, as shown in Figure 7.5. The line drawn at 75% trapping efficiency corresponds to the average trapping efficiency of a snow fence ($P=0.5$) over a winter with just enough snow transport to fill the fence (section 3.8.6.4). Applying this same criterion to the trees, 75% efficiency marks the height (or age) of "full effectiveness."

Figure 7.5. Change in snowtrapping efficiency with spacing, height, and age of trees using the model shown in Figure 7.3 (Tabler 1994).

7.6.4 Conclusions from Simulation

For the triangular tree shape and form
 factor $($ diameter $=0.7 H)$ assumed in the model:
$>$ The effect of spacing (1.83 to 3.05 m) on trapping efficiency is less than 10% over the range of spacing 1.83 to 3.05 m (6 to 10 ft),
$>$ Although a closer spacing initially increases efficiency, it reduces efficiency after porosity falls below 0.5 . The closest spacing $(1.83 \mathrm{~m})$ requires a year longer to become fully effective than the wider spacing. This result is opposite to the intuition that reducing the spacing increases snow-trapping efficiency. The wider spacing may also improve growth rate, which would add to the difference in performance.
$>$ The trapping efficiency and age at full effectiveness are strongly dependent on snow transport, as shown in the comparison of efficiency for trees at $2.4-\mathrm{m}$ spacing, for two different levels of transport (Figure 7.5). With $40 \mathrm{t} / \mathrm{m}$ (13.4 tons/ ft), trees reach full effectiveness 7 years after planting, compared to 10 years required for $80 \mathrm{t} / \mathrm{m}$ (27 tons/ ft).
$>$ A $2.4-\mathrm{m}(8-\mathrm{ft})$ spacing would be optimum for the spruce planting simulated here.
These conclusions are strictly applicable only to the tree geometry used in the model. However, the underlying principles are universally applicable, and a similar simulation could be used to develop guidelines for other shapes of trees.

Spacing is much more critical for more porous canopies, especially deciduous trees and shrubs.

Figure 7.6. Snow trapping efficiency in relation to snow transport, tree height, and age for a plant spacing of 2.44 m (8 ft), using the model shown in Figure 7.3 (Tabler 1994).

7.6.5 Openings

A living fence becomes less effective when plants die and leave gaps, and the drifts that form downwind of such
 openings often extend onto the road because they are much longer than the drift behind the remainder of the barrier. This is illustrated in Figure 7.7, which shows the consequences of an opening in a dense mature spruce planting. Preventive measures include using three or more rows for collector-type plantings; selecting species based on site conditions; replanting to fill openings where plants have died; and assiduous maintenance.

Figure 7.7. Severe drifting problems were caused by an opening in this dense spruce planting.

7.7 Required Height of Living Fences

Given that the required height of the barrier is equal to the height at full effectiveness (the height at which average snow-trapping efficiency equals 75%), the required tree height can be calculated in the same manner as for structural fences (section 6.3.2). Using the simulation described in section 7.4.1, Figure 7.7 indicates that for light to moderate snow transport regimes, the height of trees must be the same as that required for structural fences. For snow transport greater than $80 \mathrm{t} / \mathrm{m}$ ($27 \mathrm{tons} / \mathrm{ft}$), trees must be somewhat taller than structural fences. The heights required for full effectiveness at different levels of snow transport are shown in Table 7.2.

Figure 7.8. Required height of trees and structural fences in relation to snow transport (Tabler 1994).

Table 7.2. Height and age required for full effectiveness in relation to snow transport, for the model shown in Figure 6.1 with $2.4-\mathrm{m}$ ($8-\mathrm{ft}$) spacing (Tabler 1994).

Seasonal Snow transport $(\mathrm{t} / \mathrm{m})$	Blowing snow classification		Fully effective: Height		Age (m)
<10	Very light	1.2	5		
20	Light	1.5	6		
40	Light moderate	2.1	8		
80	Moderate	2.7	10		
160	Moderately severe	4.0	14		
320	Severe	6.1	21		

1 metric ton $=2,205 \mathrm{lb}$
$1 \mathrm{~m}=3.281 \mathrm{ft}$

Terrain must be considered in determining the required height of trees, in the same way as for structural snow fences. In some instances, shrubs planted near the top of a cut can supply all of the required snow storage (Figure 7.9). Snow transport must be accurately determined, however, if drift encroachment risk is to be acceptable.

Figure 7.9. Shrubs planted at the top of a cut can be used in place of taller barriers placed farther upwind. Snow transport must be accurately determined, however, if the risk of drift encroachment is to be acceptable. (Drawing from Tabler 1994).

7.8 Setback for Living Fences

For shrub plantings at the top of a cut (Figure 7.9), the same requirement applies as for structural fences - the combined storage capacity, from the shoulder to the planting, should be twice the design snow transport, and the setback should be at least eighteen (18) times the height of the shrubs (section 6.5.2.3).

The more common situation requires the setback to be determined by the length of the downwind drift at equilibrium. There is one especially important difference between structural fences and living fences, however--dense plantings of trees and shrubs act as solid barriers. As described in section 3.8.4, there is little snow deposition on the downwind side of a solid fence until the upwind drift approaches equilibrium. If the storage capacity in the upwind drift is sufficient to store all of the design transport, then no significant drift will form on the downwind side of the barrier. This concept is used in Japan to plant wide belts of trees to form "snow break forests" along railroads and highways (Figure 7.10), and the same principle can allow living fences to be planted relatively close to the road, although the trees will cast a drift on the road until they reach a certain height and porosity.

Figure 7.10. "Snowbreak" forests used in Japan utilize the principle that dense plantings act as
 solid barriers to induce snow deposition on the upwind side.

The problem in specifying setback distance for trees is that height, porosity, and snow storage capacity all change as the trees grow, so that the length of the downwind drift changes with time (Figure 7.1). In Montana, Laursen and Hunter (1986) recommend that the windward row of plantings be set back a minimum of $61 \mathrm{~m}(200 \mathrm{ft})$. Shaw (1989) recommends a minimum setback of $91 \mathrm{~m}(300 \mathrm{ft})$ for open prairie country with potentially high snow transport.

7.8.1 Computer Simulation of Downwind Drift Length

By comparing the storage capacity of the trees with the incoming snow transport, the computer simulation for the model illustrated in Figure 7.3 can be used to demonstrate how drift length changes as the trees grow. For this purpose, assume that in addition to Equations (7.1) to (7.3), the following relationships developed for structural fences also apply to the tree model:

Equation (3.24): $\mathrm{L} / \mathrm{H}=12+49 \mathrm{P}+7 \mathrm{P}^{2}-37 \mathrm{P}^{3}$
Equation (3.14): $\mathrm{L} / \mathrm{H}=10.5+6.6\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)+17.2\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{2}$
Combining these equations gives an expression for the length of the pre-equilibrium downwind drift:
$\mathrm{L} / \mathrm{H}=\left\{\left[10.5+6.6\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)+17.2\left(\mathrm{~A} / \mathrm{A}_{\mathrm{e}}\right)^{2}\right] / 34.3\right\}\left(12+49 \mathrm{P}+7 \mathrm{P}^{2}-37 \mathrm{P}^{3}\right)$

Snow storage capacity on the upwind side of the barrier, $Q_{c, u p}$, can be estimated by assuming that this drift is a right-triangle in cross-section, with base $12 H$, maximum depth $\left(Y_{\max }\right)$ equal to $(1-P) H$, and average snow density given by Equation (3.13):
$\rho_{\mathrm{s}}=522-\left[304 /\left(1.485 \mathrm{Y}_{\text {ave }}\right)\right]\left[1-\mathrm{e}^{-1.485 \mathrm{Y}_{\text {ave }}}\right]$
where $Y_{\text {ave }}=Y_{\text {max }} / 2$.

With these assumptions, the simulation model suggests that length of the downwind drift changes with tree height and snow transport as shown in Figure 7.11 for a $2.4-\mathrm{m}(8-\mathrm{ft})$ tree spacing. The rising limb of the curves coincides with the period when the downwind drift is filled to equilibrium, as given by Equation (7.1). The falling limbs coincide with the period when so much of the transport is retained in the upwind drift that the downwind drift no longer attains equilibrium. In this stage, length is given by Equation (7.6). The abrupt drop to zero signifies that all of the snow is stored on the upwind side of the trees.

Figure 7.11. Length of downwind drift formed by the tree model shown in Figure 7.3, as a function of tree height, age, and snow transport (Tabler
1994). Tree spacing is 2.4 m (8 ft).

Plotting the maximum length of the downwind drift that occurs at the peak of the curves in Figure 7.11, expressed
 as multiples of the required height of structural snow fence (Equation 6.3) for these snow transport amounts, shows that drift length is essentially the same as that formed by structural fence (Figure 7.12).

Figure 7.12. Maximum length of downwind drift formed by tree model shown in Figure 7.3, as a function of snow transport and tree spacing (Tabler 1994). $H_{\text {req }}$ is the height of structural fence required to store the indicated snow transport.

7.8.2 Setback Guidelines

The simulation model suggests that for light to moderate drifting conditions ($\mathrm{Q}<80 \mathrm{t} / \mathrm{m}$), the setback distance, D, for a living snow fence on flat terrain should be the same as for a 50% porous structural snow fence with height $H_{\text {req }}$.
$\mathrm{D}=35(\sin \alpha) \mathrm{H}_{\text {req }}$
where α is the attack angle of the wind. The setback can be less for higher snow transport rates, however. The application of this guideline is best explained by example. Consider a site where design transport, as calculated using the methods described in section 4.7, is $80 \mathrm{t} / \mathrm{m}$ (27 tons $/ \mathrm{ft}$). From section 6.3.2.1, $H_{\text {req }}$ would be $2.8 \mathrm{~m}(9.2 \mathrm{ft})$. If the prevailing transport direction were perpendicular to the road $\left(\alpha=90^{\circ}\right)$, then Equation (7.8) gives a setback of $98 \mathrm{~m}(322 \mathrm{ft})$. At this spacing, the downwind drift would not encroach on the road at any stage of growth.

The relationship between drift length and snow transport (Figure 7.12) helps to explain why appropriate setback distances can range from $30 \mathrm{~m}(100 \mathrm{ft})$ or less in Maine, to $90 \mathrm{~m}(300 \mathrm{ft})$ in many locations in the northern plains states. The most important lesson to be learned is that the required setback depends on snow transport, and guidelines should be customized on this basis.

Shorter setbacks can be used if drift encroachment can be tolerated for a few years before the trees attain their fully effective height. Alternatively, temporary structural fence could be installed upwind of the trees during this critical period. The fence should be placed far enough upwind that the downwind drift does not damage the trees, at a distance equal to or greater than 20 times the fence height (Figure 7.13). At this distance, the fence still provides some protection for the trees, but the drift will not be deep enough to damage the trees. The $60-\mathrm{m}(200-\mathrm{ft})$ setback for the trees is a minimum for a dense planting of trees with a branches extending to the ground, and requires that the storage capacity of the structural fence be equal to the design transport. Although this guideline is derived from experience, it is also supported by the simulation results in Figure 7.12.

Generally, setbacks less than $60 \mathrm{~m}(200 \mathrm{ft})$ are not recommended because the large drifts that form at the ends of the fence, or at any opening in the tree barrier, will cause deep drifts on the roadway. The example in Figure 7.7 was planted just inside the right-of-way, which is about 30 $\mathrm{m}(100 \mathrm{ft})$ from the shoulder. The idea of wrapping a planting around a cut (Figure 7.14) is a poor one. Although the center of the cut is well protected, this benefit is more than offset by the deep drifts that form at the ends of the planting.

Figure 7.14. Wrapping a planting around a road cut causes large drifts on the road at the ends of the trees.

Insects, disease or drought can cause needle loss in lower branches, resulting in the lee drift being displaced downwind similar to the bottom gap effect described in section 3.8.5.2.3. The consequence of foliar thinning is illustrated by the drift encroachment in Figure 7.15.

Figure 7.15. Deep drift on road resulted from needle loss of mature spruce trees planted $30 \mathrm{~m}(100 \mathrm{ft})$ from road edge.

When the setback is $90 \mathrm{~m}(300 \mathrm{ft})$ or more, rows of shrubs with a mature height of $2-$ to 2.5 m ($6.5-$ to 8 ft) should be planted $60 \mathrm{~m}(200 \mathrm{ft})$ from the road to provide early protection while the trees are growing, and to reduce "near" snow after the trees mature (Figure 7.16).

The minimum setback for trees should allow the sun to shine on the road surface at noon on the shortest day of the year. In Maine, for example, the minimum noontime solar angle is about 22° above the horizon, requiring that trees planted on the southerly side of a road be set back from the shoulder at least 2.5 times their mature height.

WIND

Figure 7.16. Shrub rows planted between the road and tree rows improves snow control during the years before the trees become fully effective.

7.9 Planting Patterns for Living Fences

To minimize the number of trees and land area required, trees are typically planted parallel to the road regardless of wind orientation. Ideally, however, the attack angle between the fence alignment and the wind should not be less than 55°.

Spacing between plants should assure "crown closure" at maturity. Holes and openings in the planting should be avoided for the same reasons described for structural fences. The layout should be planned to avoid burying trees and shrubs in deep drifts formed by upwind rows.

A minimum of two rows of coniferous trees, spaced $3 \mathrm{~m}(10 \mathrm{ft})$ apart, should be planted in a staggered pattern to reduce corridors between trees through which snow can pass. Three-row coniferous plantings become effective more quickly and are less likely to develop openings. Inrow spacing depends on the species used, but is typically $3 \mathrm{~m}(10 \mathrm{ft})$ for trees, and $1.2 \mathrm{~m}(4 \mathrm{ft})$ for shrubs. Shrub rows should also be staggered, and plantings on steep embankments should be as shown in Figure 7.17. In the case of high embankments, two rows of small deciduous trees can replace the shrubs at the toe of the slope.

Planting a row of shrubs on the windward side of the conifers improves survival and early growth by providing protection from desiccating winds, and by increasing snow accumulation to augment soil water recharge. Standard practice in Minnesota is to plant one row of Caragana (Siberian pea shrub) $1.5 \mathrm{~m}(5 \mathrm{ft})$ upwind of the conifers, at a within-row spacing of $0.9 \mathrm{~m} \mathrm{(} 3 \mathrm{ft}$). Although $1.2-\mathrm{m}$ structural snow fences have been used to protect newly planted trees, lowgrowing shrubs are preferable because the deeper drift formed behind a structural snow fence is more likely to damage trees downwind.

Figure 7.17.
 Recommended planting pattern for shrubs on steep slopes.

7.9.1 Deciduous Trees

Deciduous trees and shrubs can provide an effective snow fence if a sufficient number of rows is used to achieve a porosity ratio less than 0.6 . Two rows of trees with the branching characteristics shown in Figure 7.18 can provide an adequate porosity ratio, but three rows is more common. The visual or physical porosity is greater than the aerodynamic porosity, because the resistance to airflow is proportional to the swept area rather than the frontal area of the branch or twig itself (Hoerner 1965). Because most hardwood trees tend to be relatively open near the ground, it is also necessary to plant two rows of shrubs or coniferous trees on the upwind side to reduce snow blowing under the canopy (Figure 7.19). The utility of tall deciduous trees is that they provide wind shelter over greater distances downwind.

Two approaches are possible for deciduous plantings. In locations lacking native tree cover, a minimum of three rows of trees and two rows of shrubs are required to achieve the necessary canopy density. Species diversity is an important requirement to reduce the likelihood of losses to insects or disease. In areas originally occupied by forest vegetation, such as many areas in the northeastern United States, fewer rows need to be planted because volunteer trees and other vegetation will supplement the plantings and increase canopy density. In this case, planted stock should include species dominant in old-growth forests.

Figure 7.18. Two rows of deciduous trees with branching habits similar to the Russian olive shown here provide a satisfactory porosity ratio for efficient snow trapping (Tabler 1994).

Figure 7.19. Coniferous trees or shrubs are required to seal off open area under tall deciduous trees.

7.9.2 "Snowbreak" Forests

The $60-\mathrm{m}(200-\mathrm{ft})$ width specified for "snowbreak" forests in Figure 7.10, is for deciduous trees. For coniferous species with dense foliage, a width of $30 \mathrm{~m}(100 \mathrm{ft})$ would be adequate. The $30-\mathrm{m}$ ($100-\mathrm{ft}$) setback requires that the storage capacity in the upwind drift be at least as great as the design transport.

7.9.3 Methods of Protecting Grade Separations

Tree and shrub plantings can significantly mitigate the drifting problems at grade separations (Figure 7.20). In Minnesota, a triangular planting of spruce, referred to as a "snow trap," is often quite effective (Figure 7.21). In addition to providing excellent cover for wildlife, the snow trap has a higher trapping efficiency than a conventional two-row planting.

For wind directions parallel to the elevated road, a combination of trees and shrubs can be used as illustrated in Figures 7.22 and 7.23.

Figure 7.20. Typical snowdrift problem associated with grade separations.

Figure 7.22. A combination of trees and shrubs can reduce blowing snow problems at grade separations (Tabler 1994).

ELEVATION

WIND

Figure 7.23. This planting was reported to be successful in reducing drifts at this grade separation.

7.9.4 Plantings for Snow Retention

A mass planting of shrubs and trees can be effective in reducing blowing snow that originates in open areas within the right-of-way such as medians and gore areas at interchanges. Such plantings may aggravate the snow-drifting problem, however, if improperly designed. Roadside plantings for headlight screening, curve delineation, access control, and beautification, have had to be removed because of the drifting problems they created. A study in Illinois (Illinois Department of Transportation 1978) concluded "...the design intent advantages of ... shrub beds are now overshadowed by the problem of snow-drifting, which in severe cases can cause roadway closures and endanger the traveling public."

Shrub plantings for snow retention should only be used for Class 1 (Light) snow transport conditions ($<10 \mathrm{t} / \mathrm{m}$), because shrub beds are intended only to retain snow on the ground, and
not to collect transport arriving from upwind. If the source of blowing snow is outside the right-of-way, some other control measure is required.

Because complete crown closure is unnecessary for effective snow retention (as illustrated in section 3.6), mass plantings of shrubs can be spaced farther apart, with the spacing dependent on the canopy spread at maturity and typically 2 - to 3 m (6- to 10 ft)(Figure 7.24). Species that sucker freely, like dogwood, should be spaced farther apart.

Figure 7.24. Pattern for mass shrub plantings.
Where wind is nearly parallel to the road alignment, the number of shrubs required for snow retention can be reduced by planting staggered rows of shrubs in a herringbone design described for structural fences (Figure 6.67), where the row orientation directs the wind away from the road. This staggered row pattern and a variety of other planting strategies are illustrated in Figure 7.25 for a location with a complex directional distribution of blowing snow, which is also shown in the figure. Figure 7.25 also illustrates a good technique for describing plantings on plans.

Unless all of the area within the right-of-way is stabilized, shrubs should be planted so that the tops of the plants near the road are below the surface of the road. Shrub height should be equal to, or greater than, the depth of the snow cover at the time of peak accumulation.

When shrubs grow taller than desirable, the tops can be pruned back in the fall as part of the roadside vegetation management program. Herbaceous vegetation within the right-of-way can also contribute to snow retention, particularly those species that are resistant to winter lodging. Roadside mowing should therefore be limited to a distance from edge of pavement equal to twelve times the height of the unmowed vegetation, or $6 \mathrm{~m}(20 \mathrm{ft})$, whichever is greater (Figure 7.26). Leaving strips of unmowed grass perpendicular to the prevailing wind can also increase snow retention (Figure 7.27).

Figure 7.25. Example of plans for tree and shrub planting for site with snow transport directions shown upper right (Drawing courtesy of Wisconsin Department of Transportation; designed by Martin B. Villaca).

Figure 7.26. Herbaceous vegetation within the right-ofway should be managed for maximum snow retention.

Figure 7.27. Leaving strips of grass perpendicular to the wind can be an effective method to retain "near" snow. Photo courtesy Minnesota Department of Transportation.

7.10 Planting Stock

Coniferous Seedlings $20-$ to $30-\mathrm{cm}$ ($8-$ to $12-\mathrm{in}$.) tall are most commonly used for snow control plantings because larger trees are much more expensive. The cost of seedlings is small, however, compared to other expenses for establishing and maintaining a tree planting. The price of seedlings should be secondary to considerations of survival and rapid growth. In general, container-grown conifer seedlings will survive and grow better than bare-root stock. In Montana, a two-year study showed survival of container- grown stock to be 40 - to 55% greater than for bare root seedlings (Laursen and Hunter 1986). The potting mix contains a reserve of moisture and nutrients, and protects the roots from exposure during handling and planting, reducing transplant shock. Types of containerized stock are tar-paper-potted, styrofoam block, and plug-grown seedlings.

Deciduous Two-year-old rooted cuttings are preferred, but only one-year-old stock is available for some species. Members of the poplar family--willow, aspen, and poplar--are often started
from unrooted cuttings and this practice can significantly reduce costs for plant procurement and planting.

7.11 Site Preparation and Planting

Helpful guidelines for site preparation and planting are provided in the publications by Laursen and Hunter (1986), Shaw (1989), and the University of Minnesota Extension Service (1999). Some of the more important aspects are summarized in the following sections.

7.11.1 Seedlings

Because competition for water, nutrients, and sunlight are determining factors in seedling survival and growth rate, careful site preparation is essential. In late summer the year before planting, weeds should be controlled with an herbicide. In the fall, the planting bed should be plowed and disked. Seedlings should be planted as early as possible the following spring. Container-grown stock may be planted later than bare-root seedlings.

The importance of following proper planting procedures is emphasized by Laursen and Hunter (1986):

Planting needs to be performed as though everything in the success of the windbreak project were dependent on it. Seedling quality and viability deteriorate rapidly during the period of handling and planting. A seedling out of the ground or improperly planted is just like a fish out of water. The idea is to keep the rate of deterioration at a minimum. A few seconds of sun exposure can kill root tissue of evergreens...

Weed control is essential for the first 3 to 5 years after planting. Options to herbicides and mowing include the use of deep wood chip mulches or weed barrier-synthetic fabrics that allow water and air to pass through the membrane while preventing weed growth (Figure 7.28). The width of the material should be 1.8 to $2.4 \mathrm{~m}(6$ to 8 ft$)$. Seedlings can be planted before or after the weed barrier is laid. In Colorado, seedlings are typically planted by machine first. As the barrier-laying machine moves down the row, an operator cuts slits in the fabric and pulls the seedlings through the openings. It is essential that the edges of the weed barrier be firmly anchored to prevent the wind from lifting the material. Standard practice is to bury the edges in a trench. If sun-resistant material is used, the remainder of the barrier can remain exposed.

In dry areas, polyacrylamide placed in the soil at the time the seedlings are planted reduces postplanting watering and improves growth rate.

7.11.2 Larger Transplants

Larger transplants that have bare roots or root balls ("B and B" stock) also must be planted properly to insure survival and satisfactory growth. Planting soil should be of a loam texture suitable for the species being planted. Generally, 20-20-10 fertilizer should be mixed with the planting soil at the rate of $0.6 \mathrm{~kg} / \mathrm{m}^{3}\left(1 \mathrm{lb} / \mathrm{yd}^{3}\right)$, although this rate may need to be adjusted for certain soil types.

Planting holes should be excavated 60 cm (24 in .) wider than the diameter of the roots or ball, and 15 cm (6 in .) deeper than the ball or lower extremities of the roots (Figure 7.29). Tamped planting soil should be used for backfill. The ball or lower extremities of the roots should rest on 15 cm (6 in.) of tamped planting soil placed in the hole before setting the tree, but compaction should be sufficient to prevent the root collar from subsiding below grade as a result of soil settlement. To promote drainage, the top of the ball should extend 25 -to 50 mm (1- to 2 in .) above grade after backfill has settled. A layer of mulch, 10- to 13- cm (4 to 5 in .) thick, placed around the tree conserves moisture and reduces weed development. Thicker layers of mulch provide excessive insulation, delaying the rise of soil temperature in the spring.

All trees having a caliper of 5 cm (2 in .) or more should be staked for support. The preferred method is to use three, $2.1-\mathrm{m}$ ($7-\mathrm{ft}$) steel T-posts driven vertically outside of the root ball, equally spaced circumferentially. Twisted wire guys from the posts are connected to polypropylene or polyethylene straps that hold the tree trunk. Sections of hose should not be used in place of the straps.

Figure 7.29. Planting guidelines for large transplants.

7.12 Post-planting Care

Tree plantings must be watered and protected from excessive weed competition for the first five years or so until they become fully established and are able to compete with surrounding vegetation. Fabric weed barrier will provide passive weed control for at least 5 years if it remains securely fastened to the ground. By the time the fabric deteriorates, the
 planted material will be large enough to shade the soil and reduce the growth of herbaceous weed species.

Periodic inspections to monitor plant health and the stability of the weed barrier, if used, are critical maintenance tasks. Loose portions of the fabric must be re-secured because strong winds will lift the barrier and damage the plantings. Trees and shrubs should be inspected periodically for insects and disease, and treatments applied when necessary.

The trees and shrubs should be watered as necessary for the first 3 years or so after planting. In dry areas, drip irrigation systems can be an economical alternative to using a watering truck.

7.13 Pruning

Because snow deposition within the living snow fence is unfavorable for wildlife, pruning has been recommended as a way to reduce deposition within the trees. Removing lower branches has the same effects as widening the bottom gap under a structural fence. Pruning reduces snow deposition on the upwind side, elongates the downwind drift, and may adversely affect drift control performance. Because pruning increases wind speed and snow transport under the canopy, this practice may be deleterious for some wildlife species. A better way to reduce snow deposition under the trees is to increase the density of the leading edge of the planting, using shrubs or a structural fence if necessary, to encourage snow deposition upwind of the trees.

Pruning can be used to mitigate drifts caused by roadside trees (Figure 7.30). The higher above ground level that the limbs are pruned, the farther the drift is displaced downwind.

Figure 7.30. Pruning lower branches of roadside trees can mitigate snowdrifts. Pruning the trees in the upper right view would prevent the snowdrift at this location. Arrows indicate wind direction.

7.14 Cost

Direct costs for living snow fences include those for planting stock, site preparation, planting, fertilizer and other soil additives, weed barrier, mulch, and watering. Fencing is also often required to prevent damage by livestock and wildlife. Powell et al. (1992) compared installation costs for living snow fences and structural snow fences $4.3 \mathrm{~m}(14 \mathrm{ft})$ tall in Wyoming, taking into account the interest foregone on the initial investment during the time required for the trees to become fully effective. Their analysis (Table 7.3) indicates that installation costs for these two types of snow fences are almost the same over their respective service lives.

Contract costs for living snow fences in Minnesota were reported to range from $\$ 31,075$ to $\$ 52,830 / \mathrm{km}$ ($\$ 50,000$ to $\$ 85,000 / \mathrm{mile}$) for deciduous trees, and $\$ 77,690$ to $\$ 124,300 / \mathrm{km}$ ($\$ 125,000$ to $\$ 200,000 / \mathrm{mile}$) for plantings with both evergreen and deciduous species (Walvatne 1991). The cost for a $3.6-\mathrm{m}$ (12-ft) fence required in the more exposed locations in southern Minnesota is estimated to be $\$ 49,100 / \mathrm{km}(\$ 79,000 / \mathrm{mile})$ at 1994 prices.

In Iowa, contract costs for installing living fences in 1989 were reported by Shaw (1989) to be about $\$ 13,050 / \mathrm{km}$ ($\$ 21,000 / \mathrm{mile})$.

Considering the costs for snow removal and interest over the 5 to 20 years required for the living snow fences to become effective, it seems clear that living snow fences cost about the same as structural fences.

Table 7.3. Installation costs in 1983 for living snow fence and Wyoming snow fence 4.3 m (14 ft) tall (Powell et al. 1992). "Effective installation cost" is the value of the initial installation cost at 5.25% interest compounded annually, at the time the snow fence becomes fully effective.

Fence type	Installation cost $(\$ / \mathrm{km})$	Effective Installation cost $(\$ / \mathrm{km})$	Service life (years)	Unit cost
$(\$ / \mathrm{km} / \mathrm{yr)}$				
Living snow fence	22,625	62,957	60	1049
Wyoming snow fence	36,096	36,096	35	1031

$1 \mathrm{~km}=0.622$ mile

7.15 Advantages and Disadvantages of Living Snow Fences

Under favorable conditions, living snow fences can be less costly to establish than structural fences. In addition, living snow fences are aesthetically desirable, and provide habitat for wildlife. These benefits must be weighed against the following disadvantages:

On some sites, climate, soil, or biotic conditions make the establishment of trees difficult or impossible.

Even under optimum growing conditions and light blowing snow conditions, six years or more are typically required before plants become tall enough to be effective (Table 7.1 and Figure 7.5). In Wyoming, 20 years or more are required for full effectiveness.

Barrier height and porosity, and hence drift length and storage capacity, change with time.
The irregularity of growth form and branch arrangement can cause openings and excessive bottom gaps reducing the effectiveness of the barrier. Even small openings can cause big problems.

Vegetative barriers are subject to damage by insects, disease, fire, drought, winterkill, wind, snow, freezing rain, excessive water, and browsing by livestock and wildlife.

7.16 Standing Corn

At least two states have experimented with leaving rows of corn standing in fields adjacent to the highway right-of-way. The consensus is that this strategy is effective and economical (Figure 6.18). The number of standing corn rows varies with the size of the picker, but for effective drift control the minimum is six to eight rows. The most effective strategy is to use two strips of corn separated by a space 50 to 60 m ($160-$ to 200 ft) wide. In effect, the cornrows perform as $50 \%-$ porous snow fences. Two strips of standing corn $2 \mathrm{~m}(6.6 \mathrm{ft})$ tall will store approximately 75 metric tons per meter of length, or as much as a $2.7-\mathrm{m}$-tall ($8.8-\mathrm{ft}$) snow fence.

Past practice in Minnesota has been that farmers are paid for the corn left standing in the field based on the market value for the crop on the day of harvest, with the option of salvaging the corn in the spring. Costs for the Minnesota program in 1984 averaged $\$ 810 / \mathrm{km}(\$ 1,300 / \mathrm{mile})$. Over a 6-year period starting in 1985, one district in Minnesota reported an average cost of $\$ 480 / \mathrm{km}(\$ 775 / \mathrm{mi}$.$) - about 95 \%$ less than the cost of placing and removing regular 1.2-m (4ft) snow fence.

The minimum setback from the road shoulder should be the same as for structural fences: 35 times the effective height of the standing corn (Figure 7.32). Standard practice in Minnesota is a minimum setback of $46 \mathrm{~m}(150 \mathrm{ft})$ from the right-of-way. A setback of $30 \mathrm{~m}(100 \mathrm{ft})$ has proven too close.

Figure 7.31. Standing corn makes an effective and economical snow fence (Tabler 1994).

WIND

Figure 7.32. Guidelines for standing corn, assuming effective height of corn to be 1.8-m (6-ft)(Tabler 1994).

7.17 References

Bates, C. and J. Stoeckler. 1941. Snowdrift control on highways by planting trees and shrubs. Lake States Forest Experiment Station, USDA forest Service, University Farm, St. Paul, Minn.

Finney, E.A. 1934. Snow control on the highways. Michigan State College, Experiment Station Bulletin No. 57.
-_. 1937. Snow control by tree planting. Michigan State College, Experiment Station Bulletin No. 75.

Hoerner, S. F. 1965. Fluid dynamic drag. Hoerner Fluid Dynamics, Bricktown, New Jersey.
Hunter, W. G. 1959. Control of trees and shrubs for ease of highway maintenance. The Maine Trail, March, 1959: 6-10.

Illinois Department of Transportation. 1978. Effects of roadside vegetation on drifting snow.
Laursen, S. B. and H. E. Hunter. 1986. Windbreaks for Montana. Montana State University, Cooperative Extension Service, Bulletin 366.

Minnesota Department of Transportation. 1999, Woody and herbaceous plants for Minnesota landscape \& roadsides, version 2.0. CD-ROM.

Olsen, H.E. 1963. Landscape planting for snowdrift control. Park Maintenance, Vol. 16, No. 3: 17-28.

Peterson, T. and R.A. Schmidt. 1984. Outdoor scale modeling of shrub barriers in drifting snow. Agriculture and Forest Meteorology 31: 167-181.

Powell, K., C. Reed, L. Lanning, and D. Perko. 1992. The use of trees and shrubs for control of blowing snow in select locations along Wyoming highways. Final Report, Project No. HRP-1(18), Wyoming Department of Transportation. Federal Highway Administration Report No. FHWA-92-WY- 001. National Technical Information Service, 5285 Port Royal Road, Springfield, VI 22161.

Scholten, H. 1988. Farmstead shelterbelts: Protection against wind and snow. University of Minnesota Extension Service Publication NR-BU-0468.

Shaw, Dale L. 1989. Living snow fences: Protection that just keeps growing. Colorado Interagency Living Snow Fence Program, Colorado State University, Fort Collins.

Stoeckler, J.H. 1962. Shelterbelt influence on Great Plains field environment and crops. USDA Production Research Report No. 62.

Sturges, D. L. 1983. Shelterbelt establishment and growth at a windswept Wyoming rangeland site. USDA, Forest Service, Rocky Mountain Forest and Range Experiment Station Research Paper RM-243. Fort Collins, CO.

Sturges, D. L. and R. D. Tabler. 1981. Management of blowing snow on sagebrush rangelands. Journal of Soil and Water Conservation 36(5): 287- 292.

Tabler, R. D. 1975. Predicting profiles of snowdrifts in topographic catchments. In: Western Snow Conference (Coronado, Calif.; April 23-25, 1975) Proceedings 43: 87-97.
-_ 1983. Snow control research and engineering in Japan. Hokkaido Development Bureau, Civil Engineering Research Institute Report No. 81.
1991. Snow fence guide. Strategic Highway Research Program, Report SHRP-H-320, National Research Council, Washington, D.C.
—_. 1994. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.

Tabler, R. D. and R. L. Jairell. 1992. Trapping efficiency of snow fences and implications for system design. Transportation Research Record No. 1387: 108-114

Tabler, R. D. and R. A. Schmidt. 1986. Snow erosion, transport, and deposition in relation to agriculture. In Proceedings, Symposium on Snow in Agriculture (Swift Current, Sask.; July 9-11, 1985), H. Steppuhn and W. Nicholaichuk, ed. Great Plains Agricultural Council Publication No. 120: 11-58.

University of Minnesota and Minnesota Department of Transportation. 1999. Catching the snow with living snow fences. University of Minnesota Extension Service Report MI-7311-S.

Walter, J. 1984. Living snow fence: 60 years ago it was new. Wyoming Department of Transportation, Cheyenne. The Highwayman, Spring, 1984: 13.

Walton, Clyde D. 1984. Functional wind control with plants. In Proceedings, Northeastern States technology Exchange Meeting -- Roadside Management (Nov. 16, 1984; Kittery, Maine), Section 5, Maine Department of Transportation.
—_. 1985. Functional landscape design for Interstate highways. In Proceedings, Northeastern States Technology Exchange -- Roadside Management (Dec. 6, 1985), Section 2, Maine Department of Transportation.

Walvatne, P. G. A. 1991. A report on MN/DOT's living snow fence efforts. Unpublished report prepared for Minnesota Snow Control Workshop (February 6, 1991; Mankato, MN). Minnesota Department of Transportation, Environmental Services Section, St. Paul.

8 Designing Drift-Free Roads

8.1 Scope

This chapter provides guidelines for locating and designing roads to minimize blowing snow problems, derived from a combination of theoretical considerations, observation, and a mathematical model for predicting snowdrift profiles. The presentation assumes that the reader is familiar with the material in chapters 3 and 4.

To the extent practicable, the guidelines proposed here are consistent with the recommendations in the Roadside Design Guide (AASHTO 2002). However, the designer is responsible for assuring conformance with all applicable standards and regulations. These guidelines presuppose sound engineering judgment, and a thorough evaluation of potential blowing snow problems, as described in chapter 4.

8.2 Highlights

$>$ Road design can be effective in preventing snowdrifts, but this method of drift control cannot be expected to improve visibility and road surface conditions to the extent possible with fences.
$>$ Roads should be designed for drift-free conditions to the extent possible. However, snow fences are less expensive than reconstruction to change the cross-section of an existing road.
> Blowing snow and snow removal operations should be considered in all aspects of road design.
$>$ A mathematical model for predicting snowdrift profiles from ground profile information can be used to design drift-free roads using the guidelines presented here.
> Blowing snow problems can be greatly reduced or prevented by proper route location and alignment. Considerations include location in relation to terrain, alignment and clearing widths in wooded areas, safety barrier requirements, location in relation to sources of blowing snow, and avoidance of shallow cuts.
$>$ Roadside snow accumulations reaching a height of $0.5 \mathrm{~m}(1.6 \mathrm{ft})$ or more above the shoulder create serious safety hazards by reducing motorist visibility.
> The road surface should be elevated above the mean annual snow depth, with additional allowance for plowed snow. A 4H:1V front slope helps keep plowed snow accumulation below the shoulder. Safety considerations require, however, that the toe of the slope be generously rounded, and that a clear area exists over the required recovery distance.
$>$ High fill sections should be designed to eliminate the need for safety barriers. A barnroof section with $6 \mathrm{H}: 1 \mathrm{~V}$ front slopes reduces deposition of blowing snow, and paved shoulders facilitate snow removal operations.
$>$ Laying back slopes to 6:1 is not always successful in preventing drift encroachment. Cuts should be designed to promote snow deposition on the back slopes to allow the wind to form an equilibrium drift that tails out below the shoulder of the road. This design strategy also allows the cut to store some of the blowing snow, thereby improving visibility and road surface conditions.
$>$ Wide ditches are an important and effective feature for drift prevention because they prevent reduced sight distance on curves, provide space for plowed snow to accumulate, keep snow from sliding onto the road from back slopes, allow the equilibrium snow slope to tail out below the shoulder, and provide clear-zone requirements.
$>$ Ditch depth is important for drainage as well as for exposing the road surface to the wind, and for providing storage of plowed snow below the shoulder. The minimum depth for drift control is $1.2 \mathrm{~m}(4 \mathrm{ft})$ below the shoulder point-of-intersection (PI).
$>$ Because most of the cast from displacement plows is deposited within $3 \mathrm{~m}(10 \mathrm{ft})$ from the edge of the plowed lane, front slopes in cuts (rock cuts are an exception) should not be flatter than $4: 1$ to allow plowed snow to accumulate below the shoulder.
$>$ Recommended distances from shoulder to toe and top of back slope vary with depth of cut and attack angle for the prevailing transport direction.
$>$ For sidehill cuts in rock, the distance to toe of backslope should be at least $3.7 \mathrm{~m}(12 \mathrm{ft})$ to contain snow that slides off backslopes and to provide space for plowed snow to accumulate. A 6:1 front slope should be used to facilitate snow removal by off-road equipment. Paved $2.5-\mathrm{m}(8-\mathrm{ft})$ shoulders on both sides of the road facilitate snow removal operations and reduce deposition of blowing snow.
$>$ Superelevated curves promote deposition of blowing snow. Curves should be avoided in windward-facing sidehill cuts where the cut is on the inside of the curve.
$>$ The relative elevations of divided lanes should be such that the upwind lane does not cause snow to be deposited on the downwind lane.
> Safety barriers cause snowdrifts and interfere with snow removal by obstructing plow cast. A road design should strive to minimize barrier requirements by using recoverable slopes on embankments, preferred ditch sections, and clear-zone widths specified in the Roadside Design Guide (AASHTO 2002).
$>$ Concrete barriers create the worst problems, including reduced visibility in blowing snow. Box-beam and cable barrier offer less obstruction to wind and plow cast than Wbeam rail. Permanent curbs under barriers tend to accumulate snow and should be replaced with temporary sand-filled curbs where possible. Curbs can also degrade barrier performance in controlling errant vehicles.
$>$ Shirt-tail drifts that form at the ends of safety barrier can be eliminated by anchoring ends in the back slope, or flaring ends away from travel lanes. Although turned-down terminals would also be effective in eliminating these drifts, their use is not recommended because they can cause vehicles to vault or roll following impact.
$>$ Drifts caused by abutments at grade separations can be reduced with tree and shrub plantings, or by lengthening the overhead span so that the abutments are as far away as practicable from the shoulders of under-passing lanes. Clear-zone widths should be adequate to eliminate the need for safety barrier.

8.3 Road Design as a Solution to Drifting Problems

Experience since the 1930s has proved that road design can prevent snowdrifts. In the Snow Belt, roads should always be designed to minimize blowing snow problems and facilitate snow removal operations. Road design, however, cannot improve visibility and road surface conditions to the extent possible with snow fences, and does not eliminate the need for such measures. Optimum snow control is achieved by using proper road design and snow fences. Reconstruction of an existing section to eliminate drift encroachment is invariably more expensive than alternative control measures.

8.4 History

Guidelines for designing roads to prevent drifts have been proposed since the 1930s. All of these were based on observation. In 1939, Finney summarized existing road design practices for states within the Snow Belt, and combined these with wind tunnel experiments to develop recommendations that provide the foundation for most guidelines used in the past.

In 1975, the author proposed a method for designing drift-free roads using a mathematical model to predict profiles of drifts formed by terrain features. This model was based on an empirical equation relating the slope of the equilibrium drift to terrain slopes both upwind and downwind of the point where deposition begins (Tabler 1975). The resulting snowdrift profiles were generally consistent with Finney's wind tunnel results, but provided better approximations in complex terrain. In 1976, this snowdrift prediction routine was used to develop a "Snowdrift Prediction Computer System for Earthwork Design," which the Wyoming Department of Transportation interfaced with the Road Design System (RDS) earthwork program (Christensen 1976).

The Snowdrift Prediction System forecasts snowdrift profiles, but it does not automatically design the cross-section to eliminate the drift on the road, nor does it indicate what changes might be required. As a result, the design engineer must decide how best to change the section to eliminate the drift. Without experience, an optimum solution is purely accidental.

The guidelines presented here are intended to provide the designer with the information needed to design drift-free sections, but they can also be substituted for the snowdrift prediction routine now used in conjunction with the RDS program.

8.5 Factors Contributing to Drifting Problems

Almost every aspect of road design affects deposition of blowing snow. Although it is common knowledge that embankment height and cut geometry are important factors, other aspects that affect snow control include safety barrier placement and design, location and front slopes of superelevated curves, median depth and relative elevations of lanes on divided highways, and proximity of abutments and horizontal alignment of roads at grade separations. Snow should be considered in all aspects of design.

8.6 Predicting Snowdrift Profiles

The basis for designing drift-free roads is the ability to predict the snowdrift profile that a given section will generate. This prediction can be based on experience, small-scale modeling, mathematical modeling, or theoretical analysis. Experience can be entirely adequate if the rules are effective and cover all possible combinations of wind attack angle, snow transport quantities, surrounding terrain and vegetation, types of cross-section, and design constraints. The vast number of combinations requires experience-based rules to be locale-specific. Reduced- scale modeling can be effective, but it is obviously impractical to model every project. Aerodynamic theory, such as turbulent mixing, provides useful insight but not quantitative guidelines for road design. Mathematical modeling involves using an empirically derived mathematical predictor for the drift profile. This latter approach is combined with experience-based rules to develop the guidelines presented here. Derivation of the mathematical model is described in sufficient detail that its validity and limitations are evident to the user. In addition, it is hoped that this information will encourage future testing and improvement.

8.6.1 Basic Algorithm and Application for Generating Profiles

As discussed in section 3.7, any topographic accumulation area is assumed to have a maximum snow retention capacity that cannot be exceeded regardless of the amount of blowing snow. The snow surface corresponding to this maximum drift is said to be at equilibrium, and exhibits an equilibrium slope.

The snowdrift prediction model (Tabler 1975) is based on a regression analysis of snowdrift profiles measured in the field that determines the combination of terrain slopes providing the best prediction for the equilibrium slope. The data used for this analysis came from seventeen sites in Wyoming and Colorado where snow accumulation appeared representative of equilibrium conditions. The sites were selected to provide a wide range of upwind and downwind terrain. The equilibrium slope is the part of the drift profile that has a smooth, uniform slope, from near the upwind end of the accumulation and extending to the beginning of the concavity where the profile is influenced by the ground's proximity at the downwind end of the drift (Figure 8.1). In the case of very large terrain features that were not completely filled (Figure 8.2), the snow slope selected for the analysis was terminated about $20 \mathrm{~m}(60 \mathrm{ft})$ upwind of the slip face drop off. The length of the slope segment selected under these criteria varied
from $12 \mathrm{~m}(40 \mathrm{ft})$ for the smallest terrain features, to $69 \mathrm{~m}(225 \mathrm{ft})$ for the largest. Terrain profiles were measured during the summer by differential leveling along transects parallel to the snow profile measurements.

Figure 8.1. Illustration of slopes and distances used in Equation (8.1) (Tabler 1994).

Figure 8.2. One of the larger topographic accumulation areas used to derive Equation (8.1)(Tabler 1994).

Multiple linear regression analysis was used to determine the combination of upwind and downwind slopes having the best predictive value for the snow slopes, as indicated by the smallest residual
 variance.

To use terrain slopes to estimate the slope of uniform shear stress, it is necessary to specify some maximum limit for the downwind slope corresponding to the threshold for flow separation-that is, the maximum slope that the wind can follow without forming a region of reverse flow near the surface. The best value for this maximum slope limit was determined as part of the regression analysis.

The following regression was selected as the final predictor based on its small residual variance (mean-square regression 69.74, mean-square- residual $=3.40, R^{2}=0.87$), and because the resulting coefficients were intuitively logical, their sum was 1.00 , and the regression constant was approximately zero:

$$
\begin{align*}
Y_{\mathrm{S}}= & 0.25 \mathrm{X}_{1}+0.55 \mathrm{X}_{2}+0.15 \mathrm{X}_{3}+0.05 \mathrm{X}_{4} ; \\
& \text { if measured } X_{2}, X_{3}, \text { or } X_{4}<-0.20, \text { set } X_{2}, X_{3}, \text { or } X_{4}=-0.20 \tag{8.1}
\end{align*}
$$

where $Y_{S}=$ snow slope (\%) over the main portion of the drift,
$X_{I}=$ average ground slope (\%) over a distance of $45 \mathrm{~m}(150 \mathrm{ft})$ upwind of the catchment lip,
$X_{2}=$ ground slope $(\%)$ from 0 to $15 \mathrm{~m}(50 \mathrm{ft})$ downwind of the trap lip,
$X_{3}=$ ground slope (\%) from 15 to $30 \mathrm{~m}(50$ to 100 ft$)$ downwind of the trap lip, and
$X_{4}=$ ground slope $(\%)$ from 30 to $45 \mathrm{~m}(100$ to 150 ft$)$ downwind of the trap lip.
Slopes upward in the direction of the wind are taken as positive and downward slopes as negative.

Equation (8.1) can be used to approximate the slope of snow deposits caused by terrain features, but it provides no information on how the drift surface is curved, and this information is needed to predict accurately where the drift begins and ends. A more accurate representation of snowdrift profiles can be obtained by using Equation (8.1) in an incremental fashion to generate the snow surface. Because the upwind portion of the drift approaches equilibrium even while the downwind portion remains to be filled in (section 3.7), each increment of growth takes place as though the snow profile up to the top of the slip-face defined in itself a topographic trap (Figure 8.3). With this reasoning, Equation (8.1) can be used to estimate the slope of successive increments (such as $1 \mathrm{~m}(3.3 \mathrm{ft}$) or less) of the profile, allowing the drift to be constructed in segments by beginning calculations at the upwind end of the snow deposition area, and continuing to the drift's intersection with the ground (Figure 8.4). In these calculations, X_{2} is taken as the slope from the snow surface to the ground at a horizontal distance of $15 \mathrm{~m}(50 \mathrm{ft})$. Using the case in Figure 8.3 as an example, the slope $\left(Y_{s}\right)$ predicted for the next $1 \mathrm{~m}(3.3 \mathrm{ft})$ segment beyond point A would be calculated as
$Y_{\mathrm{S}}=0.25(-8)+0.55(-20)+0.15(-2)+0.05(+3)=-13.3 \%$

Figure 8.3. Example of distances and slopes used in Equation (8.1) to estimate the slope of the next snow profile increment (Tabler 1994).

Figure 8.4. Illustration of how Equation (8.1) is used to generate a snowdrift profile (Tabler 1994).

In applying this model using
 computer programs, incremental snow storage is calculated by computing the cross-sectional area of each incremental addition, converted to mass using Equation (3.13):
$\rho_{\mathrm{s}}=522-(304 / 1.485 \mathrm{Y})\left[1-\mathrm{e}^{-1.485 \mathrm{Y}}\right]$
where ρ_{s} is average snow density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ and Y in this case is the average vertical snow depth (m) across the increment. If the accumulated snow storage up to the last increment exceeds the mean annual snow transport (estimated by the methods presented in section 4.7.6), the end of drift is computed by assuming a slip face slope of 1.5:1 (run/rise, section 3.7.1).

Snowdrift profiles generated in this way agree with a wide range of profiles from the plains and mountains of Colorado and Wyoming.

8.6.2 Required Data

The ground profile (distance and elevation) must be known for at least $45 \mathrm{~m}(150 \mathrm{ft})$ upwind of the windward end of the snowdrift, and extend $45 \mathrm{~m}(150 \mathrm{ft})$ beyond the downwind shoulder of the road (Figure 8.5). The profile data upwind of the road cross-section are critical for accurate prediction. The ground profile should be aligned parallel to the prevailing transport direction, if known (section 4.7.3). Otherwise, it should be oriented perpendicular to the road to provide a "worst case" prediction.

Ground profile data should be obtained at all locations where changes in terrain slopes are evident to the surveyor, and should include measurements and notation coinciding with locations at the right-of-way, edge of pavement, and edge of travel lanes.

Figure 8.5. Ground profile data required to estimate the snowdrift profile in the region of interest (Tabler 1994).

8.6.3 Limitations and Applications

The following limitations apply to Equation (8.1) and to its use to generate snowdrift profiles:
> Most of the data used for the development of the equation were from gentle to moderately rolling terrain. The greater turbulence expected in mountainous country could cause slopes steeper than predicted.
$>$ Future research or experience might indicate that the prediction accuracy could be improved by revising the coefficients or mathematical model proposed here.
> The equation is applicable only to two-dimensional terrain features.

The snowdrift prediction model described here can be included as a subroutine in the earthwork computer program to yield drift-free designs automatically based on rules provided by the designer, such as those presented in section 8.8. The model can also be used in spreadsheet programs for personal computers, as was used to develop the quantitative guidelines for road design described in section 8.8.

8.7 Guidelines for Route Location and Alignment

Many problems arising from blowing snow could be prevented or at least minimized by considering environmental factors in route location.

8.7.1 Procedure

The following procedure is recommended for route location in areas subject to blowing snow:

1. Identify preferable location(s) using the usual criteria.
2. Obtain wintertime aerial photos using criteria described in section 4.6.2.
3. Conduct wintertime field reconnaissance to determine suitability of proposed locations and to identify potential problem locations.
4. Determine the mean annual snow transport and prevailing direction at the potential problem locations, as described in chapter 4.
5. Revise route where possible to avoid problem areas or reduce severity.
6. To provide basis for final route selection, determine mitigation measures required for alternative locations.

8.7.2 Guidelines for Route Location

There are numerous opportunities to reduce drifting problems with careful route location, but few design engineers have the experience to recognize them. The following guidelines for location and horizontal alignment will reduce winter maintenance costs and improve public safety.
$>$ Avoid locations where snowdrifts form naturally, and take advantage of natural shelter such as trees, shrubs, or terrain (Figures 8.6 and 8.7)
$>$ Select locations that have the least snow transport by considering the fetch, winter snowfall, and wind exposure. Features such as stream channels, wooded areas, and buildings can significantly reduce blowing snow even though they may be several kilometers, or miles, away. Where possible, select locations in the snow erosion zone, 150 to 200 m (500 to 660 ft) downwind from a deposition area.
$>$ Avoid locations downwind of frozen lakes or other bodies of water that ice over during the winter.
$>$ Avoid long, straight sections (tangents) parallel to wind, especially through wooded areas (Figure 8.8).
$>$ Enter wooded areas in locations sheltered from the prevailing transport direction (Figure 8.9).
> Plan alignment of roads at grade separations to allow placement of fences or living barriers (Figure 8.10).
$>$ Use wide curves to reduce super-elevation when center of curvature is on downwind side of road.
> Minimize grades near interchanges, intersections, and grade separations, to allow maximum plowing speeds and to reduce "stopping sight distance" on ice- or snowcovered roads.
$>$ Avoid locations requiring safety barrier in exposed locations. Plan for future lane expansion to avoid concrete safety barrier between lanes.
$>$ Select sheltered locations for interchanges, intersections, and grade separations.
$>$ In areas exposed to blowing snow, avoid shallow cuts $(<2.5 \mathrm{~m}(8 \mathrm{ft}))$.
$>$ Where exposure to blowing snow is unavoidable, select sites where snow fences or other drift control measures can be installed upwind. Downwind of frozen lakes, provide adequate space between the shoreline and the road to allow placement of fences that are the proper height, $H_{\text {req }}$ (section 6.3.2).

Figure 8.6 shows the importance of selecting sheltered routes. The existing alignment highlighted in yellow, traverses windswept exposed highlands. The proposed alternate location,
shown in red, follows a valley sheltered by a grove of trees. Conditions on the two routes on the day of a field reconnaissance are shown in Figure 8.6.

Figure 8.6. Comparison of blowing snow conditions on alternate routes shows importance of selecting sheltered locations. Yellow arrow indicates wind direction. Map © 2002 DeLorme (www.delorme.com) XMap ${ }^{\circledR} 3.5$ and 3-D TopoQuads ${ }^{\circledR} 1.0$.

Figure 8.9. Transitions from wooded to open areas should be located to minimize exposure to blowing snow (Tabler 1994).

Figure 8.10. Examples of good (upper left) and poor (upper right) layout for grade separations. Arrows indicate wind directions. Recommended conceptual design (right, from Tabler 1994) allows snow fences to be installed to protect structure.

8.8 Guidelines for Cross-Sections

To the extent practicable, the guidelines proposed here are consistent with recommendations in the Roadside Design Guide (AASHTO 2002). However, the designer is responsible for assuring conformance with all current applicable standards and regulations. These guidelines presuppose sound engineering judgment and a thorough evaluation of potential blowing snow problems, as described in chapter 4.

8.8.1 Embankments (Fill Sections)

8.8.1.1 Minimum Height above Grade

Snow blowing off roadside snow accumulations at windshield level can create a serious safety hazard (Figure 8.11). Visibility is seriously impaired by the high concentration of blowing snow particles, and snow accumulates rapidly on the road.

To prevent these problems, the road surface should be higher than the surrounding snow surface to allow the wind to blow snow off the surface of the road. The grade-line elevation must also be sufficient so that the accumulation of plowed snow does not extend above the shoulder. If snow is removed with motor graders or other low-speed displacement plows, however, the buildup of a snow berm alongside the road is unavoidable.

Figure 8.11. Snow accumulations alongside roads cause poor visibility by increasing particle concentration at windshield level (drawing from Tabler 1994).

The minimum height of the road surface above the surrounding terrain, H_{e}, is given by
$\mathrm{H}_{\mathrm{e}}=0.4 \mathrm{~S}+0.6$
where S is mean annual snowfall (m), and H_{e} is in meters (Figure 8.12).

These heights should be increased where necessary to elevate the road surface above a snowdrift. The $4: 1$ slope is preferable to flatter ones in this case to help keep the plowed snow below the shoulder. The tendency for flow separation at the top of the embankment is not as great as for high embankments because snow deposition at the toe reduces the effective slope.

The coefficient (0.4) in Equation (8.2) adjusts snowfall for density after settlement to $250 \mathrm{~kg} / \mathrm{m}^{3}$ $\left(15.6 \mathrm{lb} / \mathrm{ft}^{3}\right)$, and is therefore a quantification of Finney's (1939) recommendation that the gradeline be maintained above the average snow depth. The equation assumes that snowfall accumulates over the winter without melt losses, and is therefore conservative for most climates. The constant $(0.6 \mathrm{~m})$ is the required height of the embankment above the snow cover required to expose the road surface to the wind, and allows for plowed snow accumulation below the shoulder.

Saarelainen and Kivikoski (1990) report that favorable results were obtained in northern Finland with the road surface $0.5 \mathrm{~m}(1.6 \mathrm{ft})$ above the highest snow profile occurring once in 10 years. The exceedance probabilities presented in Table 4.6 could be used to estimate the snowfall depth for a particular return period.

Example:

Given: $S=200 \mathrm{~cm}$ (79 in.) $=2.0 \mathrm{~m}$
Required: 1) Required minimum height of road surface
2) Required minimum height using 10-year snowfall

Solution: 1) Equation (8.3): $H_{e}=0.4(2.0)+0.6=1.4 \mathrm{~m}(4.6 \mathrm{ft})$
2) From Table 4.6: $K=1.40$ for 0.10 exceedance probability

Therefore, $H_{e}=(0.4)(1.40)(2)+0.6=1.72 \mathrm{~m}(5.6 \mathrm{ft})$

8.8.1.2 Fill Sections with Height > $2 \mathrm{~m}(6.6 \mathrm{ft})$

As the wind passes over the crest of an embankment, an eddy area forms at the windward edge if the slope changes so rapidly that the wind cannot follow the curvature (Figure 8.13). As a result, snow tends to be deposited at the top of embankments, and this tendency increases with the steepness of the side slope, and the height of the embankment (Figures 8.14).

Figure 8.13. "Separation" of airflow at the top of an embankment causes the eddy area where blowing snow is deposited. $d U / d Z$ is the vertical velocity gradient. Upper left view uses smoke for flow visualization in a wind tunnel (courtesy University of Wyoming). Lower right view shows 1:30 scale model of dam.

Figure 8.14. The tendency for snow to be deposited on the top of an embankment is proportional to the height of the eddy area, shown here as a function of embankment slope.

A major deposition problem can result if safety barrier is present, and serious visibility problems can occur if the traveled way is close to the slope break. This is because the high concentration of snow particles being transported near the surface on the embankment slope become entrained in the turbulent flow in the "eddy region," and can reach heights where they obstruct visibility.

The height of the upper boundary of the eddy region (Figure 8.14) increases as the logarithm of distance from the slope break, and exhibits a curvature similar to the nose of a snowdrift behind a fence (section 3.8.5.2). The eddy areas for the various slopes in Figure 8.14 show this function drawn to scale, with the logarithmic curve displaced to windward so that its curvature is tangent to the embankment slope. Field observations have shown that embankment slopes must be about 9:1 (11\%) to eliminate deposition on the crest. Vegetation and plowed snow accumulations also affect snow deposition at the top of a fill section embankment, however, and these effects more than offset any advantage of a flat approach slope.

Figure 8.15 shows an example of how snow depth increases with slope steepness.

Figure 8.15. Snow depth increases with slope steepness. The effect shown here may be exacerbated by the unmowed vegetation on the steeper slope.

Safety barrier at the top of an embankment will cause snow to be deposited regardless of the geometry of the section (Figure 8.16). Thus, the most important objective of design should be to eliminate the need for safety barrier.

Figure 8.16. Safety barrier on embankments cause serious snow drifting problems. Photo courtesy Craig Shelton, Northern Region, Alaska Department of Transportation and Public Facilities.

The recommended treatment for a straight road section with parallel side slopes consists of a "barn-roof" cross-section (Figure 8.17) designed to eliminate barrier requirements and reduce snow deposition on the traveled way. Although previous recommendations called for a $6 \mathrm{H}: 1 \mathrm{~V}$ foreslope, subsequent experience suggests that steeper foreslopes are more desirable because they reduce the buildup of plowed snow and the drift-inducing effect of roadside vegetation. Even with the steeper slope, however, It is important, however, to mow roadside vegetation to the edge of the clear zone on high embankments. The paved shoulder allows snow removal by truck-mounted plows--keeping the shoulder plowed provides a buffer against snow encroachment on the traveled way, thereby allowing more time between duty cycles.

8.8.2 Cut Sections

8.8.2.1 Types of Snowdrifts Forming in Cut Sections

Snowdrifts tend to form in road cuts regardless of wind direction. Although the leeward drift is common knowledge, design engineers are often unaware that drifts also form in cuts on the windward side of hills (Figures 8.18 and 8.19). These "windward drifts" are not as deep as those in leeward cuts, but can be just as troublesome. As a result, ditch width and backslope on the downwind side of the road can be as important as on the windward side.

Figure 8.18. Types of drifts that form in cut sections (Tabler 1994).

Figure 8.19. Upwind drift in cut sections is caused by flow divergence as wind approaches a downwind obstacle. View on right is a wind tunnel smoke simulation, photo courtesy of the University of Wyoming.

The slope of the terrain upwind of the cut can have a significant effect on the length and volume of a leeward drift (Figure 8.20), but this effect decreases as cut depth increases.

Although rules for slope treatments to prevent leeward drifts have long been available, the windward drift has generally been ignored. One of the advantages of the snowdrift prediction model described in section 8.6 .1 is its ability to predict windward drifts with reasonable accuracy. When used to redesign the section shown in Figure 8.21, the model showed that the downwind ditch had to be widened to eliminate snow accumulation on the road. The redesigned section has remained free of drifts.

Figure 8.20. Upwind terrain affects the profile of snowdrifts in cuts
(Tabler 1994).

ORIGINAL GROUND

DRIFT-FREE

Figure 8.21. This successful crosssection modification, designed using the snowdrift prediction model, illustrates how geometry on the downwind side of centerline must sometimes be modified to eliminate the drifting problem (Tabler 1975).

8.8.2.2 Basis for Recommended Guidelines

The following rationale was used to develop the guidelines presented here:

1. Theory, reduced-scale models, mathematical models, and experience, all support the generalization that the distance from shoulder to the top of cut is the single most important geometric parameter that determines the snowdrift depth on the road. By comparison, the effects of back slope, ditch width and ditch depth are relatively subtle.
2. The back slope should be steep enough to promote deposition. This allows the wind to form its own equilibrium profile, which varies with upwind topography and vegetation, wind speed, and wind direction. As illustrated in Figure 8.22, this requirement is important because it allows the snow surface to intersect the road embankment below the point of intersection of the side-slope and road surface. Designing to eliminate a drift on the backslope assures that the snow surface will intersect at the shoulder. In other words, "laying back" slopes to eliminate snow deposition on the backslope results in the same problem as fill sections that are not elevated sufficiently above the surrounding terrain. Finally, storing some snow in the cut reduces the blowing snow crossing the traveled way, improving visibility and road surface conditions (Figure 8.23).

Figure 8.22. Comparison of the traditional and recommended strategies for designing cuts to prevent snowdrift encroachment (Tabler 1994).

RECOMMENDED SOLUTION

Figure 8.23. Guidelines recommended in Figure 8.22 maximize snow storage in cut and reduce possibility that drift will encroach on roadway.

3. The back slope should be flat enough to be easily vegetated for erosion stability, and should not require excessive excavation or right-of-way.
4. The slope from the shoulder point-of-intersection (PI) to the top of the cut should not be steeper than $7 \mathrm{H}: 1 \mathrm{~V}$. This rule is similar to Finney's 1939 recommendation for a $6 \mathrm{H}: 1 \mathrm{~V}$ backslope, but allows for the fact that equilibrium slopes of drifts in shallow cuts are flatter than $6 \mathrm{H}: 1 \mathrm{~V}$.
5. Wide ditches:
> Prevent drifts from reducing sight distances on curves;
$>$ Facilitate snow removal operations by providing space for storing snow after heavy snow storms;
$>$ Allow space for falling snow cornices and, in the case of steep rock cuts, snow sloughed off backslopes;
$>$ Allow the equilibrium snow slope to tail out on the foreslope rather than at the shoulder;
$>$ Help satisfy clear zone requirements specified in the Roadside Design Guide (AASHTO 2002).
6. The minimum ditch width should meet clear zone requirements for all traffic volumes and design speeds, as specified in the Roadside Design Guide.
7. Ditch depth is important for drainage, exposes the road surface to the wind, and provides storage for plowed snow below the shoulder. A depth of $1.2 \mathrm{~m}(4 \mathrm{ft})$ below the road surface was used for all of the guidelines developed here.
8. Because most of the cast from displacement plows is deposited within $3 \mathrm{~m}(10 \mathrm{ft})$ from the edge of the plowed lane, foreslopes should be as steep as possible to allow plowed snow to accumulate below the shoulder. A 4:1 slope meets the requirements for recoverability, as described in the Roadside Design Guide (AASHTO 2002).

With the above constraints and considerations, the snowdrift prediction model (section 8.6) was used to determine the minimum distance from shoulder PI to top of cut required to give a zero snow depth at the PI for cut depths ranging from 0.3 to $20 \mathrm{~m}(1$ to 66 ft$)$. Different back slopes and ditch widths were tested to determine if a particular combination significantly reduced excavation volume or section width. The results indicated that the required distance to top of cut was linearly related to cut depth over the range of heights of interest. The resulting equations were tested for inconsistencies with theoretical considerations, Finney's 1939 recommendations, and the author's experience.

These determinations were run separately for both windward and leeward sidehill cuts, and for the combination of these in through-cuts (Figure 8.18).

8.8.2.3 Guidelines for Sidehill Cuts (Not Rock)

As illustrated in Figure 8.24, the primary design requirement is that the distance, $W_{\text {top }}$, from the shoulder to the top of cut, be
$\mathrm{W}_{\text {top }}=29+5.8 \mathrm{H}_{\mathrm{c}}(\sin \alpha)$
where H_{c} is depth of the cut measured from the road surface, α is the attack angle of the wind (the acute angle between the road centerline alignment and the prevailing transport direction), and all variables are in meters. This equation assumes a $1.2 \mathrm{~m}(4 \mathrm{ft})$ embankment height and $4: 1$ front slope, as specified in section 8.8.2.2. Any back slope steeper than $4: 1$ is satisfactory, and snow storage increases as the slope becomes steeper. Snow storage capacities for a $4: 1$ backslope are shown for different cut depths in Figure 8.25.

Figure 8.24. Proposed section for cuts to prevent drift encroachment where upwind terrain is flat or slopes downward toward the road (Tabler 1993).

Figure 8.25. Snow storage versus cut height for $4 \mathrm{H}: 1 \mathrm{~V}$ backslopes, using cross- section in Figure 8.24.

These guidelines apply to horizontal terrain upwind of leeward cuts, so that design will be conservative if the terrain slopes downward toward the

cut. When the terrain is sloping upward toward the cut (Figure 8.26), the recommended procedure is to excavate a nearly horizontal surface extending for at least $15 \mathrm{~m}(50 \mathrm{ft})$ upwind of the top of the backslope.

Figure 8.26. Proposed section for cuts where approaching terrain slopes upward toward the road.

Other recommendations and conclusions include:
$>$ The 4H:1V front slope is flat enough to meet safety requirements and to allow snow removal by off-road equipment, while being sufficiently steep to help keep the plowed snow accumulation below shoulder level.
$>$ Minimum ditch depth should be $1.2 \mathrm{~m}(4 \mathrm{ft})$.
$>$ A $14-\mathrm{m}(46-\mathrm{ft})$ minimum distance from shoulder to toe of back slope meets requirements for clear-zone widths in most cases.
$>$ The trapezoidal ditch cross-sections illustrated here would have to be designed for proper drainage, and could be replaced with broad U- or V- shaped sections if desirable.
$>$ If $W_{\text {top }}$ is measured from the upwind end of excavation, rounding the top of the cut, as proposed by Finney (1939), does not significantly reduce the required width or excavation volume.
$>$ Earthwork volumes can be reduced by using terraced cuts designed so that the outer edge of each terrace falls within the cross-section defined by Equation (8.4), as shown in Figure 8.27.

It is not always practical or possible to design roads to ensure that drifts do not form on them. Snowdrift prevention through road design is most cost-effective for shallow cuts, but even these should be avoided by route location or vertical alignment where possible. An example of sidehill cuts designed according to these guidelines is shown in Figure 8.28.

Figure 8.27. Terraced cuts reduce excavation, but store less snow (Tabler 1994).

Figure 8.28. Example of cuts designed according to the recommendations in section 8.8.2.3.

8.8.2.4 Guidelines for Sidehill Cuts in Rock

The guidelines presented in the previous section must be altered for rock cuts because of the high costs for excavation. The proposed minimum section, as shown in Figure 8.29, is suitable for mountainous terrain with deep snowfall, and is applicable regardless of wind direction.

The principal features of this design are:
> The minimum ditch width of $3.7 \mathrm{~m}(12 \mathrm{ft})$ provides space to contain snow sliding off backslopes, and to store snow removed from the inside lane, over the course of a storm lasting several days (Figure 8.30). This minimum width may not be wide enough to meet requirements for rockfall containment, however, depending on rock characteristics and height of the cut and backslope.
$>$ The $2.5-\mathrm{m}(8-\mathrm{ft})$-wide paved auxiliary lane on the inside of the cut allows more efficient use of truck-mounted displacement plows, and serves four important functions:

- provides extra width to allow highway users to pass snow removal equipment and slower traffic,
- allows high-speed plows to remove snow from the shoulder (keeping the shoulder plowed provides a buffer against snow encroachment on the traveled way, thereby allowing more time between duty cycles);
- displaces snow berm farther away from traveled way, which reduces the tendency for snow blowing down road to accumulate on travel lanes,
- provides better rockfall protection.
$>$ The $2.5-\mathrm{m}(8-\mathrm{ft})$ paved shoulder on the outside serves the same purposes as the snow lane on the inside, and also provides the required shy-line offset for a $60-\mathrm{mi} / \mathrm{h}(100 \mathrm{~km} / \mathrm{h})$ design speed, as specified in the Roadside Design Guide (AASHTO 2002) (the shy line offset is the minimum distance from the edge of the traveled way that an object will not be perceived as hazardous by a driver). The paved shoulder also allows high-speed plows to work close to the safety barrier.
$>$ The $6 \mathrm{H}: 1 \mathrm{~V}$ front slope allows off-road equipment, such as front-end loaders and graders, to remove snow from the ditch during clean-up operations between storms.
$>$ The safety barrier should be placed as far from the driving lane as barrier type and topographic conditions permit. Placement near the slope breakpoint minimizes the buildup of plowed snow outside of the barrier (Figure 8.31).

The minimum section recommended here could have significant economic benefits. A study on the Klondike Highway in southeast Alaska showed winter maintenance expenditures to be about 50% less on sections of highway where the width from centerline to toe of backslope was 10 m (33 ft) or more, compared to locations where this width was $7.3 \mathrm{~m}(24 \mathrm{ft}$) (Tabler and Cavagnaro 1993).

Figure 8.30. The recommended minimum 3.7 -m ditch width provides space for snow sloughing and temporary snow storage. These examples on the Klondike Highway illustrate snow problems associated with a narrow ditch.

Figure 8.31. A wide bench outside of guardrail promotes snow accumulation.

8.8.2.5 Guidelines for Through-Cuts

The criteria developed for sidehill cuts also apply to through-cuts, with required widths calculated using the cut heights shown in Figure 8.32.

Figure 8.32. Proposed section for throughcuts (Modified from Tabler 1994).

8.8.3 Superelevated Curves

The tendency for snow deposition on a road is significantly increased when the superelevated shoulder is on the upwind side. This tendency arises from the combination of the windward front slope and the drop in elevation across the road surface, and can create serious deposition problems when a sidehill cut is on the inside of the curve (Figure 8.33). The guidelines for avoiding this problem are as follows:
$>$ Avoid curves in sidehill cuts facing upwind where the cut is on the inside of the curve
> Use curves with a low degree of curvature
$>$ Use spiral transitions to achieve the flattest curve possible
$>$ Use flat front slopes on the upwind side of curves when the center of curvature is on the downwind side. The optimum slope is given by:
Steepest front slope gradient $=0.18+$ Road surface gradient
where gradients upward toward the center of curvature are positive, and downward gradients are negative.

Example:

Given: Superelevation $=-0.06 \mathrm{~m} / \mathrm{m}(-0.06 \mathrm{ft} / \mathrm{ft})$
Required: Steepest front slope to minimize snow accumulation
Solution: Equation (7.4): Steepest front slope $=0.18+(-0.06)=0.12 \mathrm{~m} / \mathrm{m}=8: 1$.

Figure 8.33. Effect of superelevation on snow deposition, and interaction with downwind geometry drawing from Tabler 1994). The photo illustrates the exacerbating effect of an upwind drift in a cut.

8.8.4 Divided Highways

When opposing lanes of divided highways are close to one another, the downwind lane should be at the same elevation, or slightly higher, than the upwind lane. As the median width, W, increases, the downwind lane can be as much as 0.04 W below the upwind lane without drift encroachment (Figure 8.34). This guideline was derived with the snowdrift prediction model, allowing for a snow berm along the edge of the upwind lane.

When practical, medians should be depressed to retain snowfall. Shrub plantings can also increase snow retention in these areas (section 7.9.4). Use of the steepest allowable foreslopes in the median helps to provide storage space for plowed snow.

Figure 8.34. Proposed guideline for relative elevations of divided lanes (Tabler 1994).

8.8.5 Safety Barrier Requirements

Safety barriers can cause deposition of blowing snow, but they also interfere with snow removal by obstructing snowplow cast. A basic concept in designing roads for winter maintenance, even in areas where blowing snow is not a problem, is to minimize safety barrier requirements. This can be accomplished by using recoverable slopes on embankments, preferred ditch sections, and maintaining clear zone widths as specified in the Roadside Design Guide (AASHTO 2002). On mountain roads, guardrail can be reduced by using a lower design speed, and by eliminating roadside obstacles such as isolated rock knobs.

Concrete safety barrier creates the most serious snow accumulation and snow removal problems, and roads should be designed to minimize its use.

8.9 Guidelines for Structures and Appurtenances Inside Right-of-Way

8.9.1 Safety Barrier

Where barrier cannot be avoided, there is some opportunity to mitigate snow problems by using barrier designs offering the least obstruction to plow cast and blowing snow.

8.9.1.1 Concrete Barrier

Concrete barrier is often used in the median to separate opposing lanes of traffic because of its safety and lower maintenance cost. Disadvantages for its use in the snow belt include
$>$ Impairment of visibility in blowing snow (Figure 8.35);
$>$ Formation of drifts on the traveled way (Figure 8.36); and
$>$ Obstruction of plow cast.

For these reasons, concrete barrier should be avoided where possible. Designers should plan for future lane expansions that do not require median barrier. Concrete barrier should not be used for bridge rail or bridge rail transitions. Where concrete barrier must be used in open exposed areas, snow fences should be included as part of the design.

Figure 8.35. Snow blowing over the top of concrete barrier can impair motorist visibility (Tabler and Jairell 1980).

Figure 8.36. Snowdrift caused by concrete barrier blocked Interstate Highway 25 in Colorado, during the Christmas Blizzard of 1982 (Tabler 1994).

8.9.1.2 W-Beam versus Box Beam and Cable Barrier

The W-beam configuration is second only to the concrete barrier in obstructing plow cast and airflow (Figure 8.37). The presence of a bituminous curb exacerbates these problems. Where W-beam rail must be used, permanent curbs should be replaced with temporary sand-filled tubes to control drainage.

Figure 8.37. W-beam beam safety barrier causes snowdrifts and obstructs plow cast (left from Tabler 1994).

As a result of model tests that demonstrated the advantages of box-beam rail over W-beam (Figure 8.38), the Wyoming Department of Transportation now uses box beam wherever possible, and also employs temporary curbs to replace bituminous curbs (Figure 8.39). Cable barrier is equally satisfactory for minimizing snow accumulation.

Figure 8.38. Small-scale ($1: 30$) models show difference in snowdrifts formed by W-beam (top) and box-beam (bottom) barrier (Tabler and Jairell 1980). Photo by Robert L. Jairell.

Figure 8.39. Boxbeam rail with temporary curb (Tabler 1994). Temporary curbs should be used in preference to permanent curbs under rail.

8.9.1.3 Safety Barrier Terminations

"Shirttail" drifts that form at the ends of barriers (Figure 8.40) can be prevented by anchoring ends in the back slope, or by flaring out the end of the barrier so that the termination is located at least 15 times the barrier height away from the travel lane (11.4 m for $76-\mathrm{cm} \mathrm{W}$-beam rail (37 ft ; 30 in .). Although turned-down ends and controlled releasing terminals would also prevent drifts, these terminations can cause vehicles to vault or roll following impact.

Figure 8.40. Shirttail drifts form at the ends of safety barrier.

8.9.2 Abutments for Overhead Structures

Drifts are formed by abutments for overhead structures in both the upwind and downwind lanes (Figure 8.41). The least costly solutions to this problem are
 structural snow fences or tree and shrub plantings, as described in section 7.9.4.

The severity of the problem can be reduced by lengthening the overhead span so that the abutments are as far away as practicable from the shoulders of the under-passing lanes. Again, safety barrier greatly exacerbates the snow problem, particularly the windward drift that forms on the downwind side of the separation (Figure 8.41). Design should therefore strive to eliminate the need for barrier using the criteria in the Roadside Design Guide (AASHTO 2002).

Figure 8.41. Pattern of equilibrium drifts formed by abutments at grade separations (Tabler 1994).

8.10 References

AASHTO (American Association of State Highway and Transportation Officials, Inc.). 1977. Guide for selecting, locating, and designing traffic barriers. AASHTO, Washington, D.C.

AASHTO. 2002. Roadside Design Guide 2002. AASHTO, Washington, D.C.
Burton, V.R. 1925. Snow drift prevention and control on highways. Engineering News Record 95(19): 752-754.

Burton, V.R. 1928. Some economic considerations in using snow fences. Engineering News Record 100: 100-120.

Christensen, R. H. 1976. User Manual: Snowdrift prediction system for EWSD. State of Wyoming, Data Services, System Analysis and Design, Cheyenne.

Cron, Frederick W. 1967. Snowdrift control through highway design. Public Roads 34 (11): 227-234.

Cron, Frederick W. 1968. Snowdrift control before the fact. Public Works, Vol. 99: 72-75, 158.
Finney, E.A. 1939. Snow drift control by highway design. Michigan Engineering Experiment Station, Michigan State College, Bulletin 86.

Fowler, H.E. 1930. Designing to keep the highway snow free. Roads and Streets, Vol. 70: 557.
Harvey, W.H. 1941. Snow and its relation to the location and design of highways. In Central Snow Conference (Dec. 11-12, 1941; East Lansing, Mich.) Proceedings, Vol. 1: 52-65.

Jairell, R. L. and R. D. Tabler. 1985. Model studies of snowdrifts formed by livestock shelters and pond embankments. In Western Snow Conference (Boulder, Colo.; April 16-18, 1985) Proceedings 53: 167-170.

Kaminski, D. F. and S. Mohan. 1991. PASCON: An expert system for passive snow control on highways. Transportation Research Record 1304: 193-201.

Lindberg, W. R. and J. D. Petersen. 1991. Negatively buoyant jet (or plume) with applications to snowplow exit flow behavior. Transportation Research Record 1304: 219-229.

Rural and Urban Roads 1974. Road design changes snow fence needs. Rural and Urban Roads Dec. 1974: 18-19.

Rural Roads 1961. Widen 'snow trap' cuts. Rural Roads Dec. 1961: 16-18.

Saarelainen, S. and H. Kivikoski. 1990. Prevention of snow drifting with the help of road levelling and design. Experimental structure on main road 21 at Jeahkkash. Espoo, Technical Research Centre of Finland, Research Notes 1096. (In Finnish with English summary).

Schneider, T.R. 1959. Schneeverwehungen und Winterglatte. Interner Bericht des Eidg. Institutes fur Schnee- und Lawinenforschung, Nr. 302. English translation: Canada. National Research Council. Technical Translation 1038, 1962.

Schultz, W. 1930. Road location and design for snowdrift prevention. Public Works, Vol. 61: 557.

Simonson, Wilber H. 1937. Streamlined shoulders increase road safety. Contractors and Engineers Monthly, Vol. 34-9.

Tabler, R. D. 1975. Predicting profiles of snowdrifts in topographic catchments. In: Western Snow Conference (Coronado, Calif.; April 23-25, 1975) Proceedings 43: 87-97.
-_ 1982. Frequency distribution of annual peak water-equivalent on Wyoming snow courses. In Western Snow Conference (Reno, Nev.; April 20- 23, 1982) Proceedings 50: 139-148.
_- 1983. Snow control research and engineering in Japan. Hokkaido Development Bureau, Civil Engineering Research Institute Report No. 81.
—_. 1985. Ablation rates of snow fence drifts at $2300-$ meters elevation in Wyoming. In: Western Snow Conference (Boulder, Colo.; April 16-18, 1985) Proceedings 53: 1-12.
——. 1993. New guidelines for blowing snow control. In: Proceedings of International Workshop on Winter Road Management (IWWRM) (January 26- 29, 1993; Sapporo, Japan). Road Division, Civil Engineering Research Institute, Hokkaido Development Bureau, Sapporo, Japan: 69-81.
-_. 1994. Design guidelines for the control of blowing and drifting snow. Strategic Highway Research Program, Report SHRP-H-381.

Tabler, R. D., and E. Cavagnaro. 1993. How terrain and road design affect winter maintenance on the Klondike Highway. In: Transportation Facilities Through Difficult Terrain: 501510. J.T.H. Wu and R.K. Barrett, ed. A.A. Balkema, Rotterdam.

Tabler, R. D. and R. L. Jairell. 1980. Studying snowdrifting problems with small-scale models outdoors. In: Western Snow Conference (Laramie, Wyo.; April 15-17, 1980) Proceedings 48: 1-13.

Tabler, R. D., J. W. Pomeroy, and B. W. Santana. 1990. Drifting snow. In: Cold Regions Hydrology and Hydraulics, ASCE Technical Council on Cold Regions Engineering Monograph: 95-145

Tabler, R. D. and R. A. Schmidt. 1986. Snow erosion, transport, and deposition in relation to agriculture. Pages 11-58 In Proceedings, Symposium on Snow in Agriculture (Swift Current, Sask.; July 9-11, 1985), H. Steppuhn and W. Nicholaichuk, ed. Great Plains Agricultural Council Publication No. 120: 11-58.

Appendix A: Problem Evaluation Checklist

Site name: \qquad Date: \qquad
Site I.D. Evaluator: \qquad

Location:

District / County: \qquad
Designation: \qquad
Location (to nearest .01 mile (0.1 km)): \qquad to \qquad Length: \qquad
Elevation: \qquad
Notes: \qquad
\qquad

PRIORITY RANKING BY:

Maintenance foreman: \qquad
Evaluator: \qquad
Other: \qquad
Overall: \qquad

PROBLEM TYPE: (Check all that apply)
___ Drift on road (Downwind drift / upwind drift)
Poor visibility
Slush/ice
Other: \qquad
\qquad

PROBLEM CAUSE:

Safety barrier
Bridge abutment
Vegetation (trees / brush / other)
Building
Fence
Other: \qquad

Problem Evaluation Checklist (Page 2)

Site Name: \qquad
Site I.D. \qquad
Date: \qquad
Evaluator: \qquad

Problem Consequence (check all that apply):
__ Snow removal expense
___ Pavement damage from meltwater
__ Safety hazard
___ Loss of vehicle control
___ Reduced sight distance
_Intersection obscuration
\qquad Sign obscuration
____Reduced effectiveness of safety barrier
___ Reduced visibility by blowing snow
___ Slush / ice on pavement
Accident history
Other (explain): \qquad

Road Information:

Orientation: \qquad
Horizontal geometry: Tangent \qquad Curve/spiral \qquad
Feature: None \qquad Intersection \qquad Exit / Entrance Ramp \qquad
Typical section:
Right-of-way: Shoulder to Property line \qquad
No. of lanes and width (sketch below):

Problem Evaluation Checklist (Page 3)

Site Name: \qquad
Site I.D. \qquad

Date: \qquad Evaluator: \qquad

Road Information (Continued):

Typical Section (Continued):

On-grade: \qquad
Embankment: Height \qquad Slope \qquad Safety barrier? \qquad

Through-cut: Height \qquad Shoulder to toe of backslope \qquad
Backslope \qquad Foreslope \qquad

Sidehill cut: Cut: Height \qquad Shoulder to toe of backslope \qquad
Backslope ___ Foreslope \qquad
Fill: Height \qquad Slope \qquad
Safety barrier type \qquad

Weather Data (Preliminary):

Prevailing drifting directions:

N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW N

How determined? \qquad

Is there a "problem storm" direction? \qquad
Estimated annual snowfall: \qquad
Other: \qquad

Upwind Fetch:

Type of transport boundary: \qquad
Distance to transport boundary: \qquad

Problem Evaluation Checklist (Page 4)

Site Name: \qquad
Site I.D. \qquad

POSSIBLE SOLUTION(S):

Structural snow fences: \qquad
Tree or shrub barriers: \qquad
Shrub plantings:
Section modification: \qquad
Other: \qquad
\qquad
\qquad
\qquad
\qquad

Additional Data/Measurements Required:

Appendix B:

Wyoming Department of Transportation Standard Plans for 3.0- and 3.6-m-tall (10- and 12-ft) Snow Fences

Plans in both metric and English units provided courtesy of Wyoming Department of Transportation, 5300 Bishop Boulevard, Cheyenne, Wyoming 82009-3340

(A)FRAME CONNECTIONS

SILLAND FRAME ASSEMBLY CONNECTIONS SHALL BE MADE WITH $1 / 22^{\prime \prime} \varnothing$ MACHINE BOLTS (A307) WITH A MINMUM OF 114" USABLE THREAD BOLT LENGTHS INDICATED HEREIN ARE BASED OF THE MOST TYPICAL WOOD TICKNESSES ENCOUNTNRED BECAUSEOF THE VARIANCE OF
ROUGH SAWN WOO DHCKNESSES IT MAY NECESAR TO PROVID ROUGH SAWN WOOD THICKNESSES IT MAY BE NECESSARY TO PROVIDE
BOLTS OF ADIFFERENT LENGTH ANDIOR ADDITIONAL WASHERS TO BOLTS OF ADIFFERENT LENGTHAND/OR
MEET THE FOLLOWING REQUIREMENTS:
BOLTED CONNECTIONS SHALL BE TIGHTENED TO A CLAMP TIGHT CONDITION. CARE SHALL BE USED NOT TO CRUSH WOOD FIBERS BYM TIGHT CONDITION CONNECTIONS AFTER THE CONNECTIONS ARE TIGHTENED, THE LOCKNUT SHAL BE COMPLETELY O THE BOLT WITHAMINIMUMO ONE THREAD
PROTRUDING BEYONDTE NUT AND AMAIUM OF II NCH FFTHF PROTRUDING BEYOND THE NUT, AND A MAXIMUM OF $1 / 2$ INCH OF THE
THREAD PROTRUDING BEYOND THE NUT ADDITOONAL WASHERS MAY BE REQURED TO SHIM THE TEQARD POTRUDES. THIS SEQUUREMENT PROVIDES A MINIMUM OF $1 / 4$ INCH OF THREAD REMAINII
CONTINUES TO WEATHER.

GENERAL NOTES

(B) SLAT FASTENING

SLATS SHALL BE ATTACHED TO EACH FRONT VERTICAL FRAME WITH 2-10D
RING SHANK OR SCREW SHANK NAILS (FULL HEAD). THE USE OF NAIIING GUG SHANK OR SCRE
© CROSS BRACE AND SLOPE BRACE FASTENING CROSS BRACES SHALL BE FASTENED TO SLATS WITH 2-8D COMMON NAILS AT SLOPE BRACES SHALL BE REQUIRED IF THE GROUND SLOPE IS 5: 1 OR STEEP WHEN THE SLOPE BRACE IS REQURIED, IT SHALL BE ATTACHED IN THE SAME HE CROSS BRACE

(D) ANCHORS

THE ENDS OF EACH SILL SHALL BE ANCHORED WITHA DRIVEN \#6 REBAR
CLAMPED TO THE SILL WITH AN ANCHOR CLIP AS SHOWN.

FRONT VIEW
REVISION
PREVIOUS STANDARD 616-01A CONSTRUCTION REQUIREMENTS
(D)ANCHORS (CONTINUED) WHERE REBARS CANNOT BE DRIVEN AS SPECIFIED DUE TO ROCK CONDITIONS, REBAR SHALL BE ANCHORED IN THE ROCK. A7/8 INCH DIAMETER HOLE SHAL MATERIAL AND DUST REMOVED. THE REBAR SHALL BE INSTAL ED WITH MENDATIONS.
THE ROCK ANCHOR SHALL BE FASTENED TO THE FRAME AS SHOWN IN TH PLANS EXCEPT THAT THE ANCHOR MAY BE PERPENDICULAR TO THE SILL.
IF NO ANCHORS CAN BE DRIVEN FOUR ROCK ANCHORS SWO FOR EACH IGANCHORSCAN BE DRIVEN, FOUR ROCK

SOIL REMOVED PRIOR TO DRILLING SHALL BE REPLACED AND COMPACTED. (E)LINE POSTS

TWO LINE POSTS SHALL BE PLACED AT THE ENDS OF EACH RUN OF SNOW FENCE AS SHOWN.

12'-0" PANEL LENGTH
ANGOR CLIP DETALIS

WYOMING DEPARTMENT OF TRANSPORTATION STANDARD PLAN

10' WOOD SNOW FENCE

HARDWARE FOR ONE 12-FOOT PANEL		
NOTE	QUANTITY	DESCRIPTION
(A)	** 6	1/2" $\varnothing \times 6$ " MACHINE BOLT W/1 FLAT WASHER (MIN.) AND 1 NYLON INSERT LOCKNUT
(A)	** 3	$1 / 2$ " $\emptyset \times 5$ " MACHINE BOLT W/2 FLAT WASHERS (MIN.) AND 1 NYLON INSERT LOCKNUT
(B)	60	10D RING SHANK OR SCREW SHANK NAILS (FULL HEAD)
(C)	* 22	8D COMMON NAILS
(D)	6	\#6 X 5'0" REBAR
(D)	6	5"X 1 1/2" X 1/8" ANCHOR CLIP FOR 1/2" Ø BOLT

* * ADDITIONAL WASHERS SHOULD BE ANTIIIPATED. SEE NOTE © \mathbb{A}.

LUMBER FOR ONE 12 FOOT PANEL			
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { NO. OF } \\ & \text { PIECES } \end{aligned}$	LUMBER SIZE	DESCRIPTION
(1)	3	2"X6"X7'0"	SILL
(2)	3	$2{ }^{\prime \prime} \times 6{ }^{\prime \prime} \times 9^{\prime} 0{ }^{\prime \prime}$	BRACE
(3)	3	$2 " \times 6{ }^{\prime \prime} \times 10.00$	FRONT VERTICAL
NOTE: ALL ABOVE FRAME MEMBERS SHALL BE PRESSURE TREATED.			
(4)	1	1 " $\times 66^{\prime \prime} \times 12^{2} 00^{\prime \prime}$	CROSS BRACE
(5)	10	1"X6"X12'0"	SLAT
(6)	1	1"X6"X12'0"	SLOPE BRACE
NOTE: SLOPE BRACE (6)SHALL BE REQUIRED WHEN GROUND SLOPE I 5: 1 OR STEEPER.			

END VIEW

(D) ANCHOR CLIP CONNECTION DETAIL

FRONT VIEW

(D) END VIEW OF ANCHOR CLIP ANCHOR CLIP

(A) FRAME CONNECTION DETAIL

THIS DETAIL IS IMPORTANT SO THAT AMIN.
OF $1 / 4$ INCH OF THREAD REMAINS FO

THE WRONG WAY

PANEL LAPPING DETAIL

NOTE: PANELS SHOULD BE OVERLAPPED TO ELIMINATE SPACES BETWEEN PANELS THAT GREATLY REDUCE TRAPPING EFFICIENCY AND SNOW STORAGE CAPACITY.

WYOMING DEPARTMENT OF TRANSPORTATIONSTANDARD PLAN		
10' WOOD SNOW FENCE		
Oatassed	SEPT, 1996	$\begin{aligned} & \text { 616-01B } \\ & \text { SHEET2 OF } 2 \end{aligned}$
	WBW	
	kMw	

FILE: /netst/nstand/61601b02.dgn

HOLE MAY BE DRILED
FOLLOWING FRAME
FOLLOWING FRAME
FULL BEARING ON THE SILL.

END VIEW
(1)
(C) CROSS BRACE FASTENING (TYP.) (B) SLAT FASTENING (TYP.)

REVISION PREVIOUS STANDARD 616-02A CONSTRUTION REQUREMENTS 12'-O" PANEL LENGTH 12-0" PANEL HEIGHT ANCHOR CLIP DETALLS

WHERE REBAR ANCHORS CANNOT BE DRIVEN AS SPECIFIED DUE TO ROCK CONDITIONS, REBAR SHALL BE ANCHORED IN THE ROCK. A7/8 INCH DIAMETER HOLLE SHALLLE DRILLED A MINMMUM OF SIX INCHES INTO SOLID
ROCK AND ALLOOSE MATERIALAND DUST REMOVED. THE REBAR SHALL ROCK AND ALL LOOSE MATERIAL AND DUST REMOVED. THE REBAR SHALL
BE INSTALLED WITH AN APPROVED BONING RESIN IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
THE ROCK ANCHOR SHALL BE FASTENED TO THE FRAME AS SHOWN IN THE PLANS EXCEPT THAT THE ANCHOR MAY BE PERPENDICULAR TO THE SILL.
IFNO ANCHORS CAN BE DRIVEN, FOUR ROCK ANCHORS (TWO FOR EACH IF NO ANCHORS CAN BE DRIVEN, FOUR ROCK A
OUTER SILLL) SHALL BE INSTALLED PER PANEL.
SOIL REMOVED PRIOR TO DRILLING SHALL BE REPLACED AND COMPACTED. (E)LINE POSTS

TWO LINE POSTS SHALL BE PLACED AT THE ENDS OF EACH RUN OF SNOW FENCE AS SHOWN.

WYOMING DEPARTMENT OF TRANSPORTATIONSTANDARD PLAN		
$\begin{gathered} \text { 12' WOOD } \\ \text { SNOW FENCE } \end{gathered}$		
	Onatsued	SEPT, 1996
	Dosigendy	WBW
	Comedeb	KKMW
	Revesely	ENGR.SER.
	$\begin{aligned} & \text { 616-02B } \\ & \text { SHEET1OF } \end{aligned}$	

HARDWARE FOR ONE 12-FOOT PANEL		
NOTE	QUANTITY	DESCRIPTION
(A)	**	$5 / 8 " \varnothing$ X 6" MACHINE BOLT W/1 FLAT WASHER (MIN.) AND 1 NYLON INSERT LOCKNUT
(A)	** 15	$5 / 8 " \varnothing$ X 5" MACHINE BOLT W/2 FLAT WASHERS (MIN.) AND 1 NYLON INSERT LOCKNUT
(B)	72	10D RING SHANK OR SCREW SHANK NAILS (FULL HEAD)
(C)	* 22	8D COMMON NAILS
(D)	6	\#6 X 5'00" REBAR
(D)	6	5"X 1 1/2" X 1/8" ANCHOR CLIP

* 44 IF SLOPE BRACE IS USED.
** ADDITIONAL WASHERS SHOULD BE ANTIIIPATED. SEE NOTE (A).

(D)ANCHOR CLIP CONNECTION DETALL

(D) ANCHOR CLIP FOR 5/8" ø BOLT (FLAT PLATE PRIOR TO BENDING)
HOLES SHALL BENO GREATER THAN
1/16" LARGER THAN THE BOLT.

(D)END VIEW OF ANCHOR CLIP (AFTER BENDING)

(A) FRAME CONNECTION DETAIL THIS DETAIL IS IMPORTANT SO THAT A MIN.
OF $1 / 4$ INCH OF THREAD REMAINS FOR

LUMBER FOR ONE 12 FOOT PANEL			
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { NO. OF } \\ & \text { PIECES } \end{aligned}$	LUMBER SIZE	DESCRIPTION
(1)	3	2"X6"X8800	SILL
(2)	3	2"X8"X 11'0"	LONG BRACE
(3)	3	$2^{\prime \prime} \times 6{ }^{\prime \prime} \times 6{ }^{\prime} 0{ }^{\prime \prime}$	SHORT BRACE
(4)	3	2"X6"X 12'0"	FRONT VERTICAL
(5)	3	2"X6"X4'6"	KNEE BRACE
NOTE: ALL ABOVE FRAME MEMBERS SHALL BE PRESSURE TREATED.			
(6)	1		CROSS BRACE
(7)	12		SLAT
(8)	1	1"X6"X 12'0"	SLOPE BRACE
NOTE: SLOPE BRACE (8)SHALL BE REQUIRED WHEN THE GROUND SLOPE IS 5: 1 OR STEEPER.			

THE RIGHT WAY

THE WRONG WAY

PANEL LAPPING DETAIL
NOTE: PANELS SHOULD BE OVERLAPPED TO ELIMINATE SPACES BETWEEN PANELS THAT GREATLY REDUCE TRAPPING EFFICIENCY AND SNOW STORAGE CAPACITY.

WYOMING DEPARTMENT OF TRANSPORTATION STANDARD PLAN		
$\begin{gathered} \text { 12' WOOD } \\ \text { SNOW FENCE } \end{gathered}$		
Daitused	SEPT, 1996	Standafo plan number
Coamb	REED	616-02B SHEET 2 OF 2
$\substack{\text { Cindedeb } \\ \text { Resededy }}$		

HARDWARE FOR ONE 3 m PANEL		
NOTE	QUANTITY	DESCRIPTION
(A)	$* * 6$	M14 X 150 MACHINE BOLT W/1 FLAT WASHER (MIN.) AND 1 NYLON INSERT LOCKNUT
(A)	$* * 3$	M14 X 130 MACHINE BOLT W/2 FLAT WASHERS (MIN.) AND 1 NYLON INSERT LOCKNUT
(B)	60	75 LONG (10D) RING SHANK OR SCREW SHANK NAILS (FULL HEAD)
(C	$* 22$	65 LONG (8D) COMMON NALLS
(D)	6	NO. 19 BAR X 1500
(D)	6	$125 \times 38 \times 3$ ANCHOR CLIP

* 44 IF SLOPE BRACE IS USED.
** ADDITIONAL WASHERS SHOULD BE ANTICIPATED. SEE NOTE (A)

LUMBER FOR ONE 3 m PANEL				
ITEM NO.	NO. OF PIECES	LUMBER SIZE (mm)	DESCRIPTION	
(1)	3	$50 \times 150 \times 2130$	SILL	
(2)	3	$50 \times 200 \times 2740$	BRACE	
(3)	3	$50 \times 150 \times 3050$	FRONT VERTICAL	
NOTE: ALL ABOVE FRAME MEMBERS SHALL BE				
PRESSURE TREATED.				
(4)	1	$25 \times 150 \times 3600$	CROSS BRACE	
(5	10	$25 \times 150 \times 3600$	SLAT	
(6)	1	$25 \times 150 \times 3600$	SLOPE BRACE	

NOTE: SLOPE BRACE © SHALL BE REQUIRED WHEN
THE GROUND SLOPE IS $1: 5$ OR STEEPER.

(D)ANCHOR CLIP CONNECTION DETAIL

(D)ANCHOR CLIP FOR M14 BOLT (FLAT PLATE PRIORTO BENDING)
HOLES SHALLBE NO GREATER THAN 1mm SALL BE NO GREATER TH

(D) END VIEW OF $\frac{\text { ANCHOR CLIP }}{\text { (AFTER BENDING) }}$

FRONT VIEW

THE WRONG WAY

PANEL LAPPING DETAIL

NOTE: PANELS SHOULD BE OVERLAPPED TO ELIMINATE SPACES BETWEEN PANELS THAT PANELS SHOULD BE OVERLAPPED TO ELIMINATE SPACES BETWEEN PANELS
GREATLY REDUCE TRAPPING EFFICIENCY AND SNOW STORAGE CAPACITY.

(A) FRAME CONNECTION DETAIL

THIS DETALL IS IMPORTANT SO THAT
AMIN. OF $6 m m$ OF THREAD DEMAINS
FOR FURTHERTHGTENING.

FILE: /netst/mstand/61601b02.dg

GENERAL NOTES

(A) FRAME CONNECTIONS

SILL AND FRAME ASSEMBLY CONNECTIONS SHALL BE MADE WITH M16ø
MACHINE BOLTS (F568 CLASS 4.6) WITH AMIMUM OF 30 mm USABL THREAD LENGTH NYLON INSERT LOCKNUTS SHALL BE PROVIDED WITH EACH BOLT. BOLT LENGTHS INDICATED HEREIN ARE BASED OF THE
MOST TYPICAL WOOD THICKNESSES ENCOUNTERED BECAUSE OF THE VARIANCE OF ROUGH SAWN WOOD THICKNESSES IT MAY BE NECESSAR TO PROVIDE BOLTS OF ADIFFERENT LENGTH ANDOR ADDITIONAL

BOLTED CONNECTIONS SHALL BE TIGHTENED TO A CLAMP TIGHT CONDITION CARE SHALL BE USED NOT TO CRUSH WOOD FIBERS BY OVER TIGHTENING SHALL BE COMPLETELY ON THE BOLT WITH AMINIMUM OF ONE THREAD PROTRUDING BEYOND THE NUT, AND AMAXIMUM OF 12 mm OF THE REQURED TO SHIM THE CONNECTION SO THAT NO MORE THAN 12 mm OF OF THREAD REMAINING FOR FURTHER TIGHTENING AS THE WOOD CONTINUES TO WEATHER.

NOTE:

ALL DIMENSIONS GIVEN ARE IN MILLIMETERS (mm)
B) SLAT FASTENING

SLATS SHALL BE ATTACHED TO EACH FRONT VERTICAL FRAME WITH THE USE OF NALLING GUNS IS ACCEPTABEW
C) CROSS BRACE AND SLOPE BRACE FASTENING

CROSS BRACES SHALL BE FASTENED TO SLATS WITH TWO-65 LONG (8d
COMMON NAILS AT EACH LOCATION AND SHALL BE CIINCHED.
SLOPE BRACES SHALL BE REQUIRED IF THE GROUND SLOPE IS 1.50 R STEEPER. WHEN SLOPE BRACE IS REQUIRED. IT SHALL BE ATTACHED anner As The Cross brace.

THE ENDS OF EACH SILL SHALL BE ANCHORED WITH A DRIVEN NO. 19 THE ENDS OF EACH SILLSHALL BE ANCHORED WITHADRIVENNN.
REBAR CLAMPED TO THE SILL WITH AN ANCHOR CLIP AS SHOWN.
(D)ANCHORS (CONTINUED)

WHERE REBAR ANCHORS CANNOT BE DRIVEN AS SPECIFIED DUE TO ROCK CONDITIONS, REBAR SHALL BE ANCHORED IN THE ROCK. A 22 DIAMETE
HOLE SHALLBE DRILLED AMIIMUM OF 150 INTO SOLIDROCK AND ALL LOOSE MATERIALAND DUST REMOVED. THE REBAR SHALLBE NSTALLLED MANUFACTURER'S RECOMMENDATIONS.
THE ROCK ANCHOR SHALL BE FASTENED TO THE FRAME AS SHOWN IN THE
PLANS EXCEPT THAT THE ANCHOR MAY BE PERPENDICU AR TO PLANS EXCEPT THAT THE ANCHOR MAY BE PERPENDICULAR TO THE SILL.
IF NO ANCHORS CAN BE DRIVEN FOUR ROCK ANCHORS (TWO FOR EACH OUTER SILL) SHALL BE INSTALLED PER PANEL.
SOIL REMOVED PRIOR TO DRILLING SHALL BE REPLACED AND COMPACTED. © LINE POSTS

TWO LINE POSTS SHALL BE PLACED AT THE ENDS OF EACH RUN OF SNOW FENCE AS SHOWN.

Oatassed	SEPT, 1996
Desiomedy	wBw
Damby	RED
Craededely	knw
Revesedy	ENGR. SER.
STANDARD PLAN NUMEER	
	$\begin{aligned} & 2 \mathrm{~B} \\ & 10 \mathrm{~F} 2 \end{aligned}$

Glossary

Absolute trapping efficiency | The proportion of incoming wind-transported snow to $5 \mathrm{~m}(16 \mathrm{ft})$ |
| :--- |
| height that is permanently retained by a barrier. |

Aerodynamic roughness height The height above the ground or snow surface at which wind

speed is zero. \quad| The angle between the prevailing snow transport direction and the |
| :--- |
| alignment of the road or snow fence. |

response to the pressure imposed by overlying snow. Vapor transfer may also contribute to this process.

Design modulus (K)

Design snow transport

Downwind drift

Drag coefficient

Dust levee

Effective fence height (H)

End-effect

EPDM

Equilibrium drift

Equilibrium slope (Y_{s})
"Far Snow"

Fence height, H
Fetch (F)

Fully effective height

The ratio of design transport to the average annual snow transport.
The snow transport for which a snow control measure is designed. See also snow transport.

The snowdrift that forms on the downwind, or leeward, side of a snow fence or other object.

The coefficient of proportionality between the force exerted on an object, and the dynamic pressure $\left(0.5 \rho_{a} U^{2}\right)$ of the wind.

Earthen embankments constructed to protect railroads from blowing sand or topsoil.

Vertical height of fence above the surrounding snow surface, including the bottom gap.

The rounding of a snowdrift near the ends of a snow fence or other barrier.

Elastomeric roofing membrane used to grip synthetic fencing materials at attachment points.

The snowdrift formed by a snow fence, terrain feature, or other barrier when filled to capacity for the existing wind conditions.

The slope of the surface of an equilibrium drift, measured parallel to the prevailing transport direction.

Blowing snow originating upwind of the right-of-way.

See effective fence height, structural fence height.
The length of the area that is a source of blowing snow to a downwind location. The upwind end of the fetch is any boundary across which there is no snow transport, such as forest margins, deep gullies or stream channels, rows of trees, ice pressure ridges, and shorelines of unfrozen bodies of water.

The height of trees or shrub plantings when their average snowtrapping efficiency reaches 75\%.
\(\left.\left.$$
\begin{array}{ll}\text { Herringbone snow fences } & \begin{array}{l}\text { An oblique array of snow fences on both sides of a road. Used to } \\
\text { reduce drifting problems where prevailing transport direction is } \\
\text { parallel to road alignment. }\end{array} \\
\text { Initial trapping efficiency }\left(E_{o}\right) \text { The trapping efficiency of a snow fence at the beginning of the } \\
\text { first drifting event when there is no appreciable accumulation of } \\
\text { snow. }\end{array}
$$\right\} \begin{array}{l}A wooden or steel panel inclined from the horizontal that

accelerates wind passing underneath to prevent a cornice from

forming at the top of a cut slope or avalanche starting zone.\end{array}\right\}\)| A rectangular wood or steel panel set vertically that prevents |
| :--- |
| cornice formation at the top of a cut slope or avalanche starting |
| zones by generating turbulence. |

Pole crib fence	Fence made from wooden poles stacked vertically in a zigzag configuration, eliminating the need for vertical posts.
Porosity	The holes or spaces between slats or rails, excluding the bottom gap.
Porosity ratio	Ratio of openings to frontal area, excluding bottom gap.
Potential snow transport	The mean annual snow transport that would occur downwind of an infinitely long fetch with an unlimited snow supply. When calculated from historical wind records, potential snow transport is designated $Q_{\text {upot }}$. When calculated from snowfall data, potential transport is designated $Q_{\text {spot }}$.
Precipitation	Water-equivalent of the snowfall.
Prevailing transport directio	n The mean wind direction that corresponds to the mean annual snow transport.
Protected area	A section of road that is protected by a snow fence.
Protection limits	The locations (stations or mile markers) that mark the beginning and ending of the protected area.
Rails	The solid elements, oriented horizontally, that comprise the face of a fence. See also slats.
Rebar	Reinforcement steel. Used to anchor Wyoming snow fence.
Relocated precipitation	Precipitation that is moved by the wind. Relocated precipitation excludes snow retained by vegetation, topographic features, and snow that hardens or melts in place.
Relocated snow water-equiva	alent ($\mathrm{S}_{\text {rwe }}$) Relocated precipitation, expressed as water-equivalent.
Relocation coefficient (θ)	The proportion of winter snowfall water-equivalent relocated by the wind.
Required fence height $\left(H_{\text {req }}\right)$	The effective fence height required to store the design snow transport.
Saltation	Movement of snow or sand particles by bounding or intermittently jumping (saltating) along the surface. This is the dominant mode of travel for particles that are too heavy to be suspended in the air. Although most saltating particles travel within 5 cm (2 in.) or so of

the surface, most of the blowing snow is transported in this way at wind speeds below about $65 \mathrm{~km} / \mathrm{h}(40 \mathrm{mi} / \mathrm{h})$.

Sastrugi	A variety of snow surface features, the most common being anvil- or tongue-shaped features formed when wind erodes softer snow from beneath a more resistant surface layer.
Separation	The formation of an eddy near the ground that occurs when the surface slope in the direction of the wind changes more rapidly than the wind can follow.
Setback	The distance between the fence and the road shoulder, as measured in the direction of the prevailing wind.
Shear velocity $\left(U_{*}\right)$	The square root of (surface shear stress divided by the air density).
Shy line offset	According to the Roadside Design Guide (AASHTO 1989, p. 5- 28,), "The distance from the edge of the traveled way, beyond which a roadside object will not be perceived as hazardous and result in a motorist's reducing speed or changing vehicle position on the roadway..."
SlatsThe solid elements of a snow fence, usually oriented vertically.	
Slip-faceSee also rails.	
An abrupt drop-off that forms near the end of a downwind drift	
Suring the intermediate stages of growth. The slip-face assumes an	
angle of repose for sloughing snow cornices.	

\(\left.$$
\begin{array}{ll}\text { Snow transport }\left(Q_{t}\right) & \begin{array}{l}\text { The mass of blowing snow that is transported by the wind over } \\
\text { some specified period of time, per unit of width across the wind. } \\
\text { Snow transport normally refers to the total within the first } 5 \mathrm{~m}(16\end{array}
$$

\mathrm{ft}) above the surface, per meter of width across the wind.\end{array}\right\}\)| See Minnesota snow trap. |
| :--- | Snow trap | Snow water-equivalent $\left(S_{\text {we }}\right)$ |
| :--- |
| Structural fence height $\left(H_{S}\right)$ |
| The depth of water, usually expressed in mm (or inches) that |
| would result from complete melting of the snowfall or snowpack. |

Wind speed

Windward drift
Wyoming snow fence

Wind speed refers at the standard height of $10 \mathrm{~m}(33 \mathrm{ft})$, unless otherwise specified.

See upwind drift.
Snow fence 1.8 to 4.3 m (6 to 14 ft) comprised of horizontal boards attached to wooden truss frames, usually anchored with driven rebar.

Index

AASHTO Roadside Design Guide, 257, 258, 268, 276, 280, 283, 286, 287, 308
Aerial photographs, 10, 17, 38, 39, 79, 86, $88,89,108,120,122,135,164,202,225$, 228, 264
Aerodynamic roughness height, xxxvii, 29, 304
Air density, xxxvi, 29, 40, 192, 308
Arizona, 91, 98, 99, 151, 152
Benefit-to-cost ratio, 2, 4, 18, 19, 20, 80, 110, 111, 114, 115
Berms, 269
Bonding, particle, 24, 41, 45, 64, 162
Bonding,particle, 41, 45, 64
Boundary, snow transport, 13, 36, 40, 47, 53, 75, 76, 77, 108, 201, 220, 271, 292, 305
Centaur Corporation, 134, 172
Circulation region, 43, 44, 49, 50
Colorado, 1, 21, 91, 98, 99, 117, 150, 164, 170, 220, 223, 230, 249, 255, 260, 263, 284
Conwed Corporation, 168
Corn, standing, 42, 225, 227, 253, 254
Cornice, 49, 202, 304, 306
Creep, 23, 25, 304
Cut sections, xxxiv, xxxvii, 6, 7, 43, 83, 86, $87,94,123,124,125,142,155,161,169$, 199, 200, 207, 208, 209, 236, 237, 240,
249, 257, 258, 260, 265, 273, 274, 275, 276, 277, 278, 279, 281, 282, 288, 292, 306
backslope, 258, 273, 275, 276, 277, 278, 279, 280, 292
ditch, $83,124,206,258,273,274,275$, 276, 278, 279, 280, 283
ditch width, 273, 275, 276, 279, 280
front slope, 257, 258, 260, 277, 278, 280, 281, 282
rock, $124,125,258,276,279$
terraced, 278
Deflection of blowing snow, 27, 157, 166, 198, 308

Delineation, 32, 81, 84, 85, 245
Densification, 41, 96, 305
Disaggregation, 41
Divided highways, 122, 260, 282
Downwind drift, 24, 50, 51, 52, 53, 54, 57, $58,59,60,61,63,64,65,66,67,68,70$, $135,137,143,163,184,205,206,225$, 227, 231, 237, 238, 239, 240, 251, 290, 305, 306, 308
Drift growth, 48
Drift length, 50, 55, 56, 59, 67, 72, 128, 129, 144, 148, 205, 206, 207, 209, 216, 225, 233, 238, 239, 240, 253
Dunes, 23, 25, 38, 39, 44, 74, 304
Dust levee, 150, 305
Equilibrium drift, 24, 50, 51, 52, 53, 54, 55, $56,60,61,64,65,66,67,68,69,70,73$, 144, 148, 149, 206, 207, 209, 212, 258, 259, 286, 305
Equilibrium slope, 44, 45, 124, 260, 276, 305
Erosion, 16, 24, 27, 30, 38, 39, 40, 41, 50, $64,78,119,143,212,223,256,265,276$, 289
Evaporation of blowing snow, xxxvi, 23, 25, $28,34,35,36,37,40,77,80,90,116$, 117, 222, 309
Fetch, xxxiv, xxxvi, 35, 36, 37, 38, 40, 42, $80,82,83,88,92,94,95,105,107,108$, $109,110,112,115,116,122,123,209$, 217, 218, 265, 292, 304, 305, 307
Fill sections, 65, 82, 83, 121, 122, 126, 143, $149,150,201,208,221,226,242,258$, 268, 269, 270, 272, 283, 287, 305 minimum height above grade, 269
Grade separations, 122, 138, 244, 245, 259, 260, 265, 268, 286, 306
Ground profile data, 263
Hokkaido Development Bureau, iv, 149, 200, 201, 221, 222, 223, 256, 288
Interstate Highway-80, xxxv, 8, 9, 10, 11, $12,13,14,15,18,19,80,81,133,215$, 216, 219

Iowa, 98, 99, 252
Japan, iv, 118, 142, 149, 198, 199, 200, 221, 222, 223, 237, 256, 288
Klondike Highway, 280, 288
Livestock shelters, 201, 306
Maine, 99, 226, 240, 241, 255, 256
Maximum transport distance, 35, 36, 37, 106, 306
Minnesota, iv, 2, 91, 99, 135, 138, 140, 220, 225, 227, 228, 242, 244, 248, 249, 252, 254, 255, 256, 306, 309
Minnesota snow trap, xxxiv, 17, 70, 73, 130, $138,225,231,243,244,288,306,309$
Mixing length, xxxvii, 40
Modeling, 34, 54, 71, 73, 77, 78, 128, 159, 223, 255, 260, 274, 285, 288
Montana, 91, 98, 99, 105, 117, 151, 238, 248, 255
Natural Resources Conservation Service, xxxv, 91, 92
New York, iv, 2, 22, 74, 76, 90, 91, 97, 98, $99,100,102,103,104,106,107,109$, $112,115,118,144,184,187,188,189$, 190, 198, 219, 220, 222
New York State, iv, 2, 22, 74, 76, 90, 91, 97, $98,99,100,102,103,104,106,107,109$, $112,115,118,144,184,187,188,189$, 190, 198, 219, 220, 222
PARAWEB Fence, 179, 180
Perma-Rail International, 134, 135, 142, 172, 173, 174, 176, 177, 178
Prince Edward Island, Canada, 98, 104
Prudhoe Bay, Alaska, 78, 101, 110, 118, 169, 181
Recirculation zone, 43, 44, 49, 50, 63, 203
Relocation coefficient, 35, 122, 140, 220
Road geometry, 79, 87, 93, 120
Roadside Design Guide, 257, 258, 268, 276, 280, 283, 286, 287, 308
Route location, 257, 264, 265, 278
Safety barrier, xxxix, $1,4,5,79,81,83,84$, 85, 120, 126, 127, 257, 258, 259, 260, 265, 271, 272, 280, 283, 285, 286, 290, 291, 292, 306 box-beam, 127, 128, 258, 285
cable, 284, 285
concrete, 258, 283, 284
guardrail, 128, 281, 283
W-beam, 84, 127, 128, 258, 284, 285, 286
Saltation, 23, 24, 25, 26, 27, 28, 29, 40, 47, 50, 59, 76, 150, 307, 308, 309
Sastrugi, 39, 308
Slip face, 44, 45, 49, 50, 72, 203, 260, 263, 304
Small-scale models, 285
Snow
relocated, xxxvi, 35, 122, 140, 220, 307
Snow accumulation season, xxxiii, xxxiv, xxxv, 79, 88, 91, 92, 96, 97, 100, 101, $102,105,106,107,116,117,122,123$, 308
Snow berms, 79, 83, 84
Snow density, xxxvii, 24, 41, 56, 96, 107, 238, 263
Snow fence
anchors, 142, 154, 157, 158, 159, 160, 177, 181, 184, 307
benefit-to-cost ratio, $2,4,17,18,19,20$, $80,110,111,113,114,115$
blower, 142, 198, 199, 200, 221, 304
bottom gap, xxxv, 46, 54, 59, 61, 63, 67, $72,139,141,149,151,154,162,165$, $166,167,176,182,241,251,253,304$, 305, 307
buck-and-pole, 163
composite materials, 133, 134, 142, 170, 172, 173, 177, 178, 179, 180
construction cost, 113, 147, 174
Conwed, 168
Conwed Plastics, Inc., 168
deflector, 141, 142, 143, 198, 200, 201, 202, 304
drag coefficient, xxxiii, 192, 193, 194, 196, 305
drift melt rate, 147
effective fence height, 55,305
embedment depth of posts and anchors, 162, 181, 182
extruded plastic nets, 167, 168
herring bone, 204, 246
inclination angle, 63, 155
jet roof, 198, 199, 306

Kolktafeln, 142, 199, 202, 306
lateral deflectors, 201, 306
length, $11,19,54,58,59,72,113,131$, 204, 212, 304
living, xxxix, 1, 94, 121, 128, 135, 137, 225, 226, 227, 228, 230, 231, 232, 233, 239, 240, 251, 252, 253, 255, 256, 306, 308
cost, 252
full effectiveness, 234, 235, 236, 253
pruning, 137, 227, 251, 252
shrubs, xxxiv, $82,83,87,89,121,122$, $135,136,137,138,143,208,225$, 226, 228, 230, 231, 235, 236, 237, 241, 242, 243, 244, 245, 246, 251, 255, 265, 306
snow collection, 79, 228
snow retention, 228
species, $94,135,161,225,227,228$, 230, 235, 242, 243, 244, 246, 248, 250, 251, 252
trees,coniferous, 228, 243, 248
trees,deciduous, 228, 243, 248
weed barrier, 249, 250, 251, 252
weed control, 249
location of fence ends, 211
median, 122, 210, 211
non-porous, $24,52,53,60,61,67,72$,
$135,141,143,149,150,193,198,201$, 202, 225, 231, 237, 304, 307, 308
Norwegian, 163, 306, 309
nose of drift, 49, 53, 59, 63, 64, 213, 271, 306
number of rows, xxxvi, 144, 148, 243
oblique, 130, 131, 204, 206, 207, 216, 306
on embankment slopes, 209
on permafrost soils, $141,159,160,181$, 191, 222
openings, 57, 61, 67, 92, 131, 132, 137, $165,170,183,193,204,212,213,214$, $216,226,231,235,242,249,253,307$
orientation, $72,87,203,291$
overlap, $58,105,130,131,140,211,212$, 216, 220
parallel, 129, 205
pole crib, 164, 307
pole-supported, 141, 165, 180, 191
porosity, xxxiii, xxxv, 24, 46, 51, 54, 60, $61,63,67,68,69,72,128,132,135$, $141,142,143,144,145,148,149,150$, $163,165,166,172,174,178,180,182$, 191, 193, 194, 195, 197, 198, 205, 215, 219, 221, 225, 227, 232, 233, 234, 237, 238, 243, 253
protected area, $9,13,129,130,131,133$, 141, 143, 172, 199, 201, 206, 207, 208, 209, 211, 212, 215, 306, 307
punched sheet drawn grids, 167, 168
required height, $137,141,144,145,149$, 197, 216, 307
service life, 162
setback distance, xxxiv, 53, 57, 128, 129, $130,135,136,137,140,141,143,144$, 148, 149, 205, 206, 207, 208, 209, 216, 219, 220, 225, 226, 231, 237, 238, 239, 240, 241, 244, 254, 308
slat-and-wire, $6,67,166,167,182$
snow storage capacity, xxxv, $8,24,45$, $58,59,60,61,63,66,67,68,72,79$, $80,93,94,113,124,139,141,144$, $145,148,149,150,151,162,163,165$, 166, 205, 213, 231, 232, 238
solid, 24, 60, 67, 72, 141, 149, 193, 201, 237
specifications, $161,162,168,169$
standard plans, 133, 142, 153, 184, 294
storage capacity, 115
Swedish, 306, 309
synthetic, 67, 134, 139, 142, 167, 169,
$170,171,182,183,184,249,305$
temporary, $94,150,168,181,182,205$
Tensar, 168, 169, 170, 171, 184, 185, 224
tensioning synthetic, $139,142,169,170$, $171,173,177,178,179,182,184$
T-post supports, 139, 181, 182, 183, 250
transitions, 214, 267
trapping efficiency, xxxiv, 17, 24, 44, 45, $46,49,50,57,58,63,64,70,71,72$, $73,74,78,111,113,118,130,131$, 141, 162, 164, 203, 204, 206, 208, 209, 210, 225, 227, 232, 233, 234, 235, 236, 244, 256, 304, 305, 306, 309

U-clips, 142, 157, 161, 162, 184, 186
ultraviolet degradation, 142, 168, 169
wakes, xxxiii, 16, 54, 75, 201, 202
wind loads, xxxv, 29, 30, 142, 144, 180, 192, 193, 194, 195, 196, 222
Wyoming, 11, 57, 59, 63, 67, 68, 69, 133, $134,141,142,143,151,152,153,155$, $156,157,158,161,162,163,164,184$, 191, 193, 212, 213, 253, 307, 309, 310
Snow Fence Guide, 1, 227
Snow fence,living
weed barrier, 249, 250, 251, 252
Snow fences
living
snow collection, 79, 228
snow retention, 228
weed control, 249
parallel, 129, 205
Snow retention, 228
Snow shadow, 27, 28, 308
Snow stream, 27, 28, 308, 309
Snow transport, xxxv, xxxvi, xxxix, 1, 2, 19, $20,23,25,28,30,31,32,34,36,37,38$, $39,42,44,64,73,74,75,78,79,80,82$, $83,87,88,91,92,94,95,96,101,102$, $103,104,106,107,108,109,110,111$, $112,113,114,115,118,121,122,123$, $129,135,136,141,143,144,145,203$,
206, 209, 210, 211, 219, 226, 227, 231,
232, 233, 234, 235, 236, 237, 238, 239,
240, 245, 247, 251, 260, 263, 264, 265,
304, 305, 307, 309
classification, 109
design, 110, 113, 129, 130, 136, 141, 144, 146, 148, 207, 209, 226, 237, 239, 240, 244, 305, 307
design modulus, xxxv, 110, 111, 113, $114,115,305$
mean annual, $36,79,80,94,95,96,108$, $109,110,114,115,143,263,264,307$
modular coefficient, 110, 111
potential, xxxvi, 79, $80,94,102,103$, 104, 106, 107, 108, 121, 307
probability distribution, 110, 111
relevant, 104
seasonal, 2, 19, 20, 23, 135
vertical distribution, 30
Snowdrift profile prediction, 260, 264, 274, 276, 282
Snowfall, xxxvi, xxxvii, xxxix, $1,5,10,14$, $18,26,32,35,37,41,42,52,79,80,88$, $89,90,91,92,94,95,104,105,106,107$, $116,117,121,122,123,140,201,220$, 265, 269, 270, 279, 283, 292, 307, 309 water-equivalent, 105, 116, 307
Strategic Highway Research Program, 2, iv, 3, 22, 77, 78, 118, 223, 256, 288
Tensar Corporation, 168, 169, 170, 171, 184, 185, 224
Turbulent diffusion, 23, 25, 28, 29, 34, 201, 309
Uniform Building Code, xxxvi, 194, 221
Union Pacific Railroad, 6, 7
Upwind drift, 24, 52, 59, 66, 67, 70, 72, 135, 137, 149, 202, 225, 227, 237, 238, 244, 273, 282, 290, 310
Visual range, xxxvii, xxxix, 1, 4, 9, 13, 17, $20,21,23,32,33,77,79,81,82,83,84$, $86,120,123,126,127,132,133,142$, $172,199,214,215,222,257,258,259$, 268, 269, 271, 275, 283, 284, 290, 291, 304
Wainwright, Alaska, 16, 166
Water-equivalent, xxxvi, $35,36,37,89,91$, $92,96,105,106,107,117,122,123,288$, 307, 309
White Pass and Yukon Railroad, 6, 7
Wind attack angle, xxxvii, 63, 64, 124, 129, 203, 212, 226, 239, 242, 258, 260, 277 gust factor, 33
Wind direction, $13,15,27,38,39,64,65$, $72,79,80,86,87,88,90,95,101,104$, $105,108,124,127,129,130,143,144$, 166, 203, 204, 205, 206, 211, 212, 213, 216, 219, 239, 244, 247, 252, 258, 263, 265, 266, 268, 273, 275, 277, 279, 304, 305, 306, 307
attack angle, xxxvii, 63, 64, 124, 129, 143, 203, 212, 226, 239, 242, 258, 260, 277, 304
Wind speed
design, 194, 197
profile, xxxiv, 40, 44, 270
Wind speed profile, xxxiv, 270
Wyoming, iv, xxxvii, xxxix, $1,3,4,5,6,7$, $8,9,10,11,12,13,14,15,18,19,21,22$, $35,36,57,59,63,67,68,76,77,78,80$, 81, 90, 91, 92, 98, 99, 100, 105, 110, 117, $118,133,134,141,142,143,147,151$, $152,153,154,155,156,157,158,161$, $162,163,164,172,184,191,193,212$, 213, 215, 216, 219, 222, 223, 232, 252, 253, 255, 256, 259, 260, 263, 270, 273, 285, 287, 288, 294, 307, 309, 310
Wyoming Department of Transportation, iv, xxxvii, 6, 13, 19, 118, 151, 163, 255, 256, 259, 285, 294

[^0]: ${ }^{1}$ The current delay cost for lane rental calculations on this section of highway is given by:
 Delay Cost $(\$)=\$ 5,085+(\$ 10,710)(\mathrm{t}-1)$, where t is hours that the road is closed.

[^1]: ${ }^{2}$ The nominal cost of a perpetual easement paid by the Wyoming Department of Transportation is $\$ 1.00$ per foot of fence length.

[^2]: ${ }^{3}$ The use of trade names is for the benefit of the reader; such use does not constitute an official endorsement or approval of any service or product by the Transportation Research Board, the National Academies, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program; to the exclusion of others that may be suitable.

