
Double Robustness in Estimation
of Causal Treatment Effects

Marie Davidian

Department of Statistics

North Carolina State University

http://www.stat.ncsu.edu/∼davidian

Based in part on Lunceford, J.K. and Davidian, M. (2004). Stratification and

weighting via the propensity score in estimation of causal treatment effects: A

comparative study. Statistics in Medicine 23:2937–2960

Double Robustness, EPID 369, Spring 2007 1



Outline

1. Introduction

2. Model based on potential outcomes (counterfactuals)

3. Adjustment by regression modeling

4. Adjustment by “inverse weighting”

5. Doubly-robust estimator

6. Some interesting issues

7. Discussion

Double Robustness, EPID 369, Spring 2007 2



1. Introduction

Simplest situation: Observational study

• Point exposure study

• Continuous or discrete (e.g. binary) outcome Y

• “Treatment ” (exposure) or “Control ” (no exposure)

Objective: Make causal inference on the effect of treatment

• Would like to be able to say that such an effect is attributable , or

“caused by ” treatment

• Average causal effect – based on population mean outcome

{ mean if entire population exposed − mean if entire population not exposed }
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1. Introduction

Complication: Confounding

• The fact that a subject was exposed or not is associated with

subject characteristics that may also be associated with his/her

potential outcomes under treatment and control

• To estimate the average causal effect from observational data

requires taking appropriate account of this confounding

Challenge: Estimate the average causal treatment effect from

observational data , adjusting appropriately for confounding

• Different methods of adjustment are available

• Any method requires assumptions ; what if some of them are wrong ?

• The property of double robustness offers protection against some

particular incorrect assumptions. . .

• . . . and can lead to more precise inferences
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2. Counterfactual Model

Define:

Z = 1 if treatment, = 0 if control

X vector of pre-exposure covariates

Y observed outcome

• Z is observed (not assigned)

• Observed data are i.i.d. copies (Yi, Zi, Xi) for each subject

i = 1, . . . , n

Based on these data: Estimate the average causal treatment effect

• To formalize what we mean by this and what the issues are, appeal

to the notion of potential outcomes or counterfactuals
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2. Counterfactual Model

Counterfactuals: Each subject has potential outcomes (Y0, Y1)

Y0 outcome the subject would have if s/he received control

Y1 outcome the subject would have if s/he received treatment

Average causal treatment effect:

• The probability distribution of Y0 represents how outcomes in the

population would turn out if everyone received control , with mean

E(Y0) (= P (Y0 = 1) for binary outcome)

• The probability distribution of Y1 represents this if everyone received

treatment , with mean E(Y1) (= P (Y1 = 1) for binary outcome)

• Thus, the average causal treatment effect is

∆ = µ1 − µ0 = E(Y1) − E(Y0)
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2. Counterfactual Model

Problem: Do not see (Y0, Y1) for all n subjects; instead we only observe

Y = Y1Z + Y0(1 − Z)

• If i was exposed to treatment, Zi = 1 and Yi = Y1i

• If i was not exposed (control), Zi = 0 and Yi = Y0i

Challenge: Would like to estimate ∆ based on the observed data

• First, a quick review of some statistical concepts. . .
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2. Counterfactual Model

Unconditional (marginal) expectation: Conceptually, the “average ”

across all possible values a random variable can take on in the population

Statistical independence: For two random variables Y and Z

• Y and Z are independent if the probabilities with which Y takes on

its values are the same regardless of the value Z takes on

• Notation – Y ‖ Z
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2. Counterfactual Model

Conditional expectation: For two random variables Y and Z,

E(Y |Z = z)

is the “average ” across all values of Y for which the corresponding value

of Z is equal to z

• E(Y |Z) is a function of Z taking on values E(Y |Z = z) as Z takes

on values z

• E{E(Y |Z) } = E(Y ) (“average the averages ” across all possible

values of Z)

• E{Y f(Z)|Z } = f(Z)E(Y |Z) – f(Z) is constant for any value of

Z so factors out of the average

• If Y ‖ Z, then E(Y |Z = z) = E(Y ) for any z
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2. Counterfactual Model

Challenge, again: Based on observed data (Yi, Zi, Xi), i = 1, . . . , n,

estimate

∆ = µ1 − µ0 = E(Y1) − E(Y0)

Observed sample means: Averages among those observed to receive

treatment or control

Y
(1)

= n−1
1

n∑

i=1

ZiYi, Y
(0)

= n−1
0

n∑

i=1

(1 − Zi)Yi

n1 =

n∑

i=1

Zi = # subjects observed to receive treatment

n0 =

n∑

i=1

(1 − Zi) = # observed to receive control
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2. Counterfactual Model

What is being estimated? If we estimate ∆ by Y
(1)

− Y
(0)

• Y
(1)

estimates E(Y |Z = 1) = population mean outcome among

those observed to receive treatment

• E(Y |Z = 1) = E{Y1Z + Y0(1 − Z)|Z = 1} = E(Y1|Z = 1). . .

• . . . which is not equal to E(Y1) = mean outcome if entire

population received treatment

• Similarly, Y
(0)

estimates E(Y |Z = 0) = E(Y0|Z = 0) 6= E(Y0)

• Thus , what is being estimated in general is

E(Y |Z = 1) − E(Y |Z = 0) 6= ∆ = E(Y1) − E(Y0)
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2. Counterfactual Model

Exception: Randomized study

• Treatment is assigned with no regard to how a subject might

respond to either treatment or control

• Formally , treatment received is independent of potential outcome:

(Y0, Y1) ‖ Z

• This means that

E(Y |Z = 1) = E{Y1Z+Y0(1−Z) |Z = 1} = E(Y1|Z = 1) = E(Y1)

and similarly E(Y |Z = 0) = E(Y0)

• Y
(1)

− Y
(0)

is an unbiased estimator for ∆
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2. Counterfactual Model

In contrast: Observational study

• Exposure to treatment is not controlled, so exposure may be related

to the way a subject might potentially respond:

(Y0, Y1) 6 ‖ Z

• And, indeed, E(Y |Z = 1) 6= E(Y1) and E(Y |Z = 0) 6= E(Y0), and

Y
(1)

− Y
(0)

is not an unbiased estimator for ∆
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2. Counterfactual Model

Confounders: It may be possible to identify covariates related to both

potential outcome and treatment exposure

• If X contains all confounders, then among subjects sharing the

same X there will be no association between exposure Z and

potential outcome (Y0, Y1), i.e. (Y0, Y1) and Z are independent

conditional on X:

(Y0, Y1) ‖ Z |X

• No unmeasured confounders is an unverifiable assumption

• If we believe no unmeasured confounders, can estimate ∆ by

appropriate adjustment. . .
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3. Adjustment by Regression Modeling

Regression of Y on Z and X: We can identify the regression

E(Y |Z, X),

as this depends on the observed data

• E.g., for continuous outcome, E(Y |Z, X) = α0 + αZZ + XT αX

• In general, E(Y |Z = 1, X) is the regression among treated ,

E(Y |Z = 0, X) among control

Usefulness: Averaging over all possible values of X (both treatments)

E{E(Y |Z = 1, X) } = E{E(Y1|Z = 1, X) } = E{E(Y1|X) } = E(Y1)

and similarly E{E(Y |Z = 0, X) } = E(Y0)
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3. Adjustment by Regression Modeling

Thus: Under no unmeasured confounders

∆ = E(Y1) − E(Y0)

= E{E(Y |Z = 1, X) } − E{E(Y |Z = 0, X) }

= E{E(Y |Z = 1, X) − E(Y |Z = 0, X) }

• Suggests postulating a model for the outcome regression

E(Y |Z, X), fitting the model, and then and averaging the resulting

estimates of

E(Y |Z = 1, X) − E(Y |Z = 0, X)

over all observed X (both groups) to estimate ∆

Double Robustness, EPID 369, Spring 2007 16



3. Adjustment by Regression Modeling

Example – continuous outcome: Suppose the true regression is

E(Y |Z, X) = α0 + αZZ + XT αX

• If this really is the true outcome regression model, then

E(Y |Z = 1, X) − E(Y |Z = 0, X) = α0 + αZ(1) + XT αX − α0 − αZ(0) − XT αX

= αZ

• So ∆ = E{E(Y |Z = 1, X) − E(Y |Z = 0, X)} = αZ

• Can thus estimate ∆ directly from fitting this model

(e.g. by least squares); don’t even need to average!

• ∆̂ = α̂Z
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3. Adjustment by Regression Modeling

Example – binary outcome: Suppose the true regression is

E(Y |Z, X) =
exp(α0 + αZZ + XT αX)

1 + exp(α0 + αZZ + XT αX)

• If this really is the true outcome regression model, then

E(Y |Z = 1, X) − E(Y |Z = 0, X)

=
exp(α0 + αZ + XT αX)

1 + exp(α0 + αZ + XT αX)
−

exp(α0 + XT αX)

1 + exp(α0 + XT αX)

• Logistic regression yields (α̂0, α̂Z , α̂X)

• Estimate ∆ by averaging over all observed Xi

∆̂ = n−1
n∑

i=1

{
exp(α̂0 + α̂Z + XT

i α̂X)

1 + exp(α̂0 + α̂Z + XT
i α̂X)

−
exp(α̂0 + XT

i α̂X)

1 + exp(α̂0 + XT
i α̂X)

}
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3. Adjustment by Regression Modeling

Critical: For the argument on slide 16 to go through, E(Y |Z, X) must

be the true regression of Y on Z and X

• Thus, if we substitute estimates for E(Y |Z = 1, X) and

E(Y |Z = 0, X) based on a postulated outcome regression model,

this postulated model must be identical to the true regression

• If not, average of the difference will not necessarily estimate ∆

Result: Estimator for ∆ obtained from regression adjustment will be

biased (inconsistent ) if the regression model used is incorrectly specified !

Moral: Estimation of ∆ via regression modeling requires that the

postulated regression model is correct
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4. Adjustment by Inverse Weighting

Propensity score: Probability of treatment given covariates

e(X) = P (Z = 1|X) = E{I(Z = 1)|X} = E(Z|X)

• X ‖ Z|e(X)

• Under no unmeasured confounders, (Y0, Y1) ‖ Z|e(X)

• Customary to estimate by postulating and fitting a logistic

regression model, e.g.

P (Z = 1|X) = e(X, β) =
exp(β0 + XT β1)

1 + exp(β0 + XT β1)

e(X, β) =⇒ e(X, β̂)
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4. Adjustment by Inverse Weighting

One idea: Rather than use the difference of simple averages

Y
(1)

− Y
(0)

, estimate ∆ by the difference of inverse propensity score

weighted averages, e.g.,

∆̂IPW,1 = n−1
n∑

i=1

ZiYi

e(Xi, β̂)
− n−1

n∑

i=1

(1 − Zi)Yi

1 − e(Xi, β̂)

• Interpretation : Inverse weighting creates a pseudo-population in

which there is no confounding, so that the weighted averages reflect

averages in the true population

Why does this work? Consider n−1
n∑

i=1

ZiYi

e(Xi, β̂)

• By the law of large numbers, this should estimate the mean of a

term in the sum with β̂ replaced by the quantity it estimates
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4. Adjustment by Inverse Weighting

If: e(X, β) = e(X), the true propensity score

E

{
ZY

e(X)

}
= E

{
ZY1

e(X)

}
= E

[
E

{
ZY1

e(X)

∣∣∣∣Y1, X

}]
(1)

= E

{
Y1

e(X)
E(Z|Y1, X)

}
= E

{
Y1

e(X)
E(Z|X)

}
(2)

= E

{
Y1

e(X)
e(X)

}
= E(Y1) (3)

(1) follows because ZY = Z{Y1Z + Y0(1 − Z)} = Z2Y1 + Z(1 − Z)Y0

and Z2 = Z and Z(1 − Z) = 0 (binary )

(2) follows because (Y0, Y1) ‖ Z|X (no unmeasured confounders)

(3) follows because e(X) = E(Z|X)

Similarly: E

{
(1 − Z)Y

1 − e(X)

}
= E(Y0)
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4. Adjustment by Inverse Weighting

Critical: For the argument on slide 22 to go through, e(X) must be the

true propensity score

• Thus, if we substitute estimates for e(X) based on a postulated

propensity score model, this postulated model must be identical to

the true propensity score

• If not, ∆̂IPW,1 will not necessarily estimate ∆

Moral: Estimation of ∆ via inverse weighted requires that the

postulated propensity score model is correct
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5. Doubly Robust Estimator

Recap: ∆ = E(Y1) − E(Y0)

• Estimator for ∆ based on regression modeling requires correct

postulated regression model

• Estimator for ∆ based on inverse propensity score weighting requires

correct postulated propensity model

Modified estimator: Combine both approaches in a fortuitous way

Double Robustness, EPID 369, Spring 2007 24



5. Doubly Robust Estimator

Modified estimator:

∆̂DR = n−1
n∑

i=1

[
ZiYi

e(Xi, β̂)
−

{Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

]

−n−1
n∑

i=1

[
(1 − Zi)Yi

1 − e(Xi, β̂)
+

{Zi − e(Xi, β̂)}

1 − e(Xi, β̂)
m0(Xi, α̂0)

]

= µ̂1,DR − µ̂0,DR

• e(X, β) is a postulated model for the true propensity score

e(X) = E(Z|X) (fitted by logistic regression )

• m0(X, α0) and m1(X, α1) are postulated models for the true

regressions E(Y |Z = 0, X) and E(Y |Z = 1, X) (fitted by

least squares )
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5. Doubly Robust Estimator

Modified estimator:

∆̂DR = n−1
n∑

i=1

[
ZiYi

e(Xi, β̂)
−

{Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

]

−n−1
n∑

i=1

[
(1 − Zi)Yi

1 − e(Xi, β̂)
+

{Zi − e(Xi, β̂)}

1 − e(Xi, β̂)
m0(Xi, α̂0)

]

= µ̂1,DR − µ̂0,DR

• µ̂1,DR (and µ̂0,DR and hence ∆̂DR) may be viewed as taking the

inverse weighted estimator and “augmenting ” it by a second term

What does this estimate? Consider µ̂1,DR (µ̂0,DR similar)
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5. Doubly Robust Estimator

µ̂1,DR = n−1
n∑

i=1

[
ZiYi

e(Xi, β̂)
−

{Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

]

• By the law of large numbers , µ̂1,DR estimates the mean of a term in

the sum with with β and α1 replaced by the quantities they estimate

• That is, µ̂1,DR estimates

E

[
ZY

e(X, β)
−

{Z − e(X, β)}

e(X, β)
m1(X, α1)

]

= E

[
ZY1

e(X, β)
−

{Z − e(X, β)}

e(X, β)
m1(X, α1)

]

= E

[
Y1 +

{Z − e(X, β)}

e(X, β)
{Y1 − m1(X, α1)}

]
(by algebra )

= E(Y1) + E

[
{Z − e(X, β)}

e(X, β)
{Y1 − m1(X, α1)}

]
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5. Doubly Robust Estimator

Thus: µ̂1,DR estimates

E(Y1) + E

[
{Z − e(X, β)}

e(X, β)
{Y1 − m1(X, α1)}

]
(1)

for any general functions of X e(X, β) and m1(X, α1) (that may or

may not be equal to the true propensity score or true regression)

• Thus, for µ̂1,DR to estimate E(Y1), the second term in (1)

must = 0!

• When does the second term = 0 ?
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5. Doubly Robust Estimator

Scenario 1: Postulated propensity score model e(X, β) is correct, but

postulated regression model m1(X, α1) is not , i.e.,

• e(X, β) = e(X) = E(Z|X) ( = E(Z|Y1, X) by no unmeasured

confounders )

• m1(X, α1) 6= E(Y |Z = 1, X)

Is the second term = 0 under these conditions ?
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5. Doubly Robust Estimator

E

[
{Z − e(X)}

e(X)
{Y1 − m1(X, α1)}

]

= E

(
E

[
{Z − e(X)}

e(X)
{Y1 − m1(X, α1)}

∣∣∣∣Y1, X

])

= E

(
{Y1 − m1(X, α1)} E

[
{Z − e(X)}

e(X)

∣∣∣∣Y1, X

])

= E

(
{Y1 − m1(X, α1)}

{E(Z|Y1, X) − e(X)}

e(X)

)

= E

(
{Y1 − m1(X, α1)}

{E(Z|X) − e(X)}

e(X)

)
(1)

= E

(
{Y1 − m1(X, α1)}

{e(X) − e(X)}

e(X)

)
= 0

(1) uses no unmeasured confounders
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5. Doubly Robust Estimator

Result: As long as the propensity score model is correct , even if the

postulated regression model is incorrect

• µ̂1,DR estimates E(Y1)

• Similarly , µ̂0,DR estimates E(Y0)

• And hence ∆̂DR estimates ∆!
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5. Doubly Robust Estimator

Scenario 2: Postulated regression model m1(X, α1) is correct, but

postulated propensity score model e(X, β) is not

• e(X, β) 6= e(X) = E(Z|X)

• m1(X, α1) = E(Y |Z = 1, X) (= E(Y1|X) by no unmeasured

confounders )

Is the second term = 0 under these conditions ?
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5. Doubly Robust Estimator

E

[
{Z − e(X, β)}

e(X, β)
{Y1 − E(Y |Z = 1, X)}

]

= E

([
{Z − e(X, β)}

e(X, β)
{Y1 − E(Y |Z = 1, X)}

∣∣∣∣Z, X

])

= E

(
{Z − e(X, β)}

e(X, β)
E [{Y1 − E(Y |Z = 1, X)}|Z, X]

)

= E

(
{Z − e(X, β)}

e(X, β)
{E(Y1|Z, X) − E(Y |Z = 1, X)}

)

= E

(
{Z − e(X, β)}

e(X, β)
{E(Y1|X) − E(Y1|X)}

)
= 0 (1)

(1) uses no unmeasured confounders, which says

E(Y |Z = 1, X) = E(Y1|Z = 1, X) = E(Y1|X) = E(Y1|Z, X)
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5. Doubly Robust Estimator

Result: As long as the regression model is correct , even if the

postulated propensity model is incorrect

• µ̂1,DR estimates E(Y1)

• Similarly , µ̂0,DR estimates E(Y0)

• And hence ∆̂DR estimates ∆!

Obviously: From these calculations if both models are correct, ∆̂DR

estimates ∆!

• Of course, if both are incorrect, ∆̂DR does not estimate ∆ (not

consistent )
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5. Doubly Robust Estimator

Summary: If

• The regression model is incorrect but the propensity model is correct

OR

• The propensity model is incorrect but the regression model is correct

then ∆̂DR is a (consistent ) estimator for ∆!

Definition: This property is referred to as double robustness
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5. Doubly Robust Estimator

Remarks: The doubly robust estimator

• Offers protection against mismodeling

• If e(X) is modeled correctly , will have smaller variance than the

simple inverse weighted estimator (in large samples )

• If E(Y |Z, X) is modeled correctly, may have larger variance (in

large samples ) than the regression estimator . . .

• . . . but gives protection in the event it is not
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6. Some Interesting Issues

Issue 1: How do we get standard errors for ∆̂DR?

• One way: use standard large sample theory , which leads to the

so-called sandwich estimator
√√√√n−2

n∑

i=1

Î2
i

Îi =
ZiYi

e(Xi, β̂)
−

{Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

−

[
(1 − Zi)Yi

1 − e(Xi, β̂)
+

{Zi − e(Xi, β̂)}

1 − e(Xi, β̂)
m0(Xi, α̂0)

]
− ∆̂DR

• Use the bootstrap (i.e., resample B data sets of size n)
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6. Some Interesting Issues

Issue 2: Computation?

• Is there software ? A SAS procedure is coming soon . . .

• In many situations, it is possible to find ∆̂DR by fitting a single

regression model for E(Y |Z, X) that includes

Z

e(X, β̂)
and

(1 − Z)

{1 − e(X, β̂)}

as covariates.

• See Bang, H. and Robins, J. M. (2005). Doubly robust estimation in

missing data and causal inference models. Biometrics 61, 962–972.
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6. Some Interesting Issues

Issue 3: How to select elements of X to include in the models?

• For the inverse weighted estimators:

– Variables unrelated to exposure but related to outcome should

always be included in the propensity score model =⇒ increased

precision

– Variable related to exposure but unrelated to outcome can be

omitted =⇒ decreased precision

• See Brookhart, M. A. et al. (2006). Variable selection for propensity

score models. American Journal of Epidemiology 163, 1149–1156.

• Best way to select for DR estimation is an open problem

• See Brookhart, M. A. and van der Laan, M. J. (2006). A

semiparametric model selection criterion with applications to the

marginal structural model. Computational Statistics and Data

Analysis 50, 475–498.
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6. Some Interesting Issues

Issue 4: Variants on doubly robust estimators?

• See Tan, Z. (2006) A distributional approach for causal inference

using propensity scores. Journal of the American Statistical

Association 101, 1619–1637.
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6. Some Interesting Issues

Issue 5: Connection to “missing data” problems

• (Y0, Y1, Z, X) are the “full data ” we wish we could see, but we only

observe Y = Y1Z + Y0(1 − Z)

• Z = 1 means Y1 is observed but Y0 is missing ; happens with

probability e(X); vice versa for Z = 0

• Missing data theory of Robins, Rotnitzky, and Zhao (1994) applies

and leads to the doubly robust estimator

• The theory shows that the doubly robust estimator with all of e(X),

m0(X, α0), m1(X, α1) correctly specified has smallest variance

among all estimators that require one to model the propensity score

correctly (but make no further assumptions about anything)
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7. Discussion

• Regression modeling and inverse propensity score weighting are two

popular approaches when one is willing to assume no unmeasured

confounders

• The double robust estimator combines both and offers protection

against mismodeling

• Offers gains in precision of estimation over simple inverse weighting

• May not be as precise as regression modeling when the regression is

correctly modeled, but adds protection, and modifications are

available

• Doubly robust estimators are also available for more complicated

problems
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