Double Robustness in Estimation of Causal Treatment Effects

Marie Davidian Department of Statistics North Carolina State University

http://www.stat.ncsu.edu/~davidian

Based in part on Lunceford, J.K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. *Statistics in Medicine* 23:2937–2960

Double Robustness, EPID 369, Spring 2007

Outline

1. Introduction

- 2. Model based on potential outcomes (counterfactuals)
- 3. Adjustment by regression modeling
- 4. Adjustment by "inverse weighting"
- 5. Doubly-robust estimator
- 6. Some interesting issues
- 7. Discussion

1. Introduction

Simplest situation: Observational study

- Point exposure study
- Continuous or discrete (e.g. binary) outcome Y
- "*Treatment*" (exposure) or "*Control*" (no exposure)

Objective: Make *causal inference* on the *effect* of treatment

- Would like to be able to say that such an effect is *attributable*, or *"caused by"* treatment
- Average causal effect based on population mean outcome

{ mean if *entire population* exposed – mean if *entire population* not exposed }

1. Introduction

Complication: Confounding

- The fact that a subject was exposed or not is associated with *subject characteristics* that may *also* be associated with his/her potential outcomes under treatment and control
- To estimate the *average causal effect* from *observational data* requires taking appropriate account of this *confounding*

Challenge: Estimate the *average causal treatment effect* from *observational data*, *adjusting appropriately* for confounding

- Different methods of adjustment are available
- Any method requires *assumptions*; what if some of them are *wrong*?
- The property of *double robustness* offers *protection* against some particular incorrect assumptions...
- ... and can lead to more precise inferences

Define:

- Z = 1 if treatment, = 0 if control
- X vector of pre-exposure *covariates*
- *Y* observed outcome
- Z is *observed* (not assigned)
- Observed data are i.i.d. copies (Y_i, Z_i, X_i) for each subject $i = 1, \ldots, n$

Based on these data: Estimate the *average causal treatment effect*

• To *formalize* what we mean by this and what the issues are, appeal to the notion of *potential outcomes* or *counterfactuals*

Counterfactuals: Each subject has *potential outcomes* (Y_0, Y_1)

- Y_0 outcome the subject would have if s/he received *control*
- Y_1 outcome the subject would have if s/he received *treatment*

Average causal treatment effect:

- The probability distribution of Y₀ represents how outcomes in the population would turn out if everyone received control, with mean E(Y₀) (= P(Y₀ = 1) for binary outcome)
- The probability distribution of Y_1 represents this if everyone received treatment, with mean $E(Y_1)$ (= $P(Y_1 = 1)$ for binary outcome)
- Thus, the average causal treatment effect is

$$\Delta = \mu_1 - \mu_0 = E(Y_1) - E(Y_0)$$

Problem: Do not see (Y_0, Y_1) for all *n* subjects; *instead* we only *observe*

 $Y = Y_1 Z + Y_0 (1 - Z)$

- If i was exposed to treatment, $Z_i = 1$ and $Y_i = Y_{1i}$
- If i was not exposed (control), $Z_i = 0$ and $Y_i = Y_{0i}$

Challenge: Would like to *estimate* Δ based on the *observed data*

• First, a quick *review* of some *statistical concepts*...

Unconditional (marginal) expectation: Conceptually, the *"average"* across all possible values a *random variable* can take on in the population

Statistical independence: For two random variables Y and Z

• Y and Z are *independent* if the *probabilities* with which Y takes on its values are *the same* regardless of the value Z takes on

• Notation –
$$Y \parallel Z$$

Conditional expectation: For two random variables Y and Z,

E(Y|Z=z)

is the "average" across all values of Y for which the corresponding value of Z is equal to z

- E(Y|Z) is a *function* of Z taking on values E(Y|Z=z) as Z takes on values z
- $E\{E(Y|Z)\} = E(Y)$ ("average the averages" across all possible values of Z)
- E{Yf(Z)|Z} = f(Z)E(Y|Z) f(Z) is constant for any value of Z so factors out of the average
- If $Y \parallel Z$, then E(Y|Z = z) = E(Y) for any z

Challenge, again: Based on *observed data* (Y_i, Z_i, X_i) , i = 1, ..., n, estimate

$$\Delta = \mu_1 - \mu_0 = E(Y_1) - E(Y_0)$$

Observed sample means: Averages among those *observed* to receive treatment or control

$$\overline{Y}^{(1)} = n_1^{-1} \sum_{i=1}^n Z_i Y_i, \quad \overline{Y}^{(0)} = n_0^{-1} \sum_{i=1}^n (1 - Z_i) Y_i$$

 $n_1 = \sum_{i=1}^n Z_i = \#$ subjects *observed* to receive *treatment*

$$n_0 = \sum_{i=1}^n (1 - Z_i) = \# \text{ observed to receive control}$$

What is being estimated? If we estimate Δ by $\overline{Y}^{(1)} - \overline{Y}^{(0)}$

- $\overline{Y}^{(1)}$ estimates E(Y|Z=1) = population mean outcome *among* those observed to receive treatment
- $E(Y|Z=1) = E\{Y_1Z + Y_0(1-Z)|Z=1\} = E(Y_1|Z=1)...$
- ... which is not equal to $E(Y_1)$ = mean outcome if entire population received treatment
- Similarly, $\overline{Y}^{(0)}$ estimates $E(Y|Z=0) = E(Y_0|Z=0) \neq E(Y_0)$
- *Thus*, what is being estimated in general is

$$E(Y|Z = 1) - E(Y|Z = 0) \neq \Delta = E(Y_1) - E(Y_0)$$

Exception: Randomized study

- Treatment is assigned with *no regard* to how a subject might respond to either treatment or control
- *Formally*, treatment received is *independent* of potential outcome:

$$(Y_0, Y_1) \parallel Z$$

• This means that

 $E(Y|Z=1) = E\{Y_1Z + Y_0(1-Z) | Z=1\} = E(Y_1|Z=1) = E(Y_1)$

and similarly $E(Y|Z=0) = E(Y_0)$

• $\overline{Y}^{(1)} - \overline{Y}^{(0)}$ is an *unbiased estimator* for Δ

In contrast: *Observational study*

• Exposure to treatment is *not controlled*, so exposure may be *related* to the way a subject might potentially respond:

$$(Y_0, Y_1) \not\mid Z$$

• And, indeed, $E(Y|Z=1) \neq E(Y_1)$ and $E(Y|Z=0) \neq E(Y_0)$, and $\overline{Y}^{(1)} - \overline{Y}^{(0)}$ is *not* an unbiased estimator for Δ

Confounders: It may be possible to identify *covariates* related to *both* potential outcome and treatment exposure

• If X contains all confounders, then among subjects sharing the same X there will be no association between exposure Z and potential outcome (Y_0, Y_1) , i.e. (Y_0, Y_1) and Z are independent conditional on X:

$$(Y_0, Y_1) \ \underline{\parallel} \ Z \mid \boldsymbol{X}$$

- No unmeasured confounders is an unverifiable assumption
- If we *believe* no unmeasured confounders, can estimate Δ by *appropriate adjustment*...

14

Regression of *Y* **on** *Z* **and** *X***:** We can *identify* the *regression*

 $E(Y|Z, \boldsymbol{X}),$

as this depends on the *observed data*

- E.g., for continuous outcome, $E(Y|Z, X) = \alpha_0 + \alpha_Z Z + X^T \alpha_X$
- In general, $E(Y|Z=1, \mathbf{X})$ is the regression among *treated*, $E(Y|Z=0, \mathbf{X})$ among *control*

Usefulness: Averaging over all possible values of X (both treatments)

 $E\{E(Y|Z=1, \mathbf{X})\} = E\{E(Y_1|Z=1, \mathbf{X})\} = E\{E(Y_1|\mathbf{X})\} = E(Y_1)$

and similarly $E\{ E(Y|Z=0, \mathbf{X}) \} = E(Y_0)$

Double Robustness, EPID 369, Spring 2007

Thus: Under no unmeasured confounders

$$\Delta = E(Y_1) - E(Y_0)$$

$$= E\{E(Y|Z=1, X)\} - E\{E(Y|Z=0, X)\}$$

$$= E\{ E(Y|Z=1, X) - E(Y|Z=0, X) \}$$

Suggests postulating a model for the outcome regression
 E(Y|Z, X), fitting the model, and then and averaging the resulting estimates of

$$E(Y|Z=1, \boldsymbol{X}) - E(Y|Z=0, \boldsymbol{X})$$

over all observed \boldsymbol{X} (both groups) to estimate Δ

Example – continuous outcome: Suppose the *true* regression is

$$E(Y|Z, \boldsymbol{X}) = \alpha_0 + \alpha_Z Z + \boldsymbol{X}^T \alpha_X$$

• If this *really is* the true outcome regression model, then

 $E(Y|Z = 1, \mathbf{X}) - E(Y|Z = 0, \mathbf{X}) = \alpha_0 + \alpha_Z(1) + \mathbf{X}^T \alpha_X - \alpha_0 - \alpha_Z(0) - \mathbf{X}^T \alpha_X$ $= \alpha_Z$

• So
$$\Delta = E\{E(Y|Z=1, X) - E(Y|Z=0, X)\} = \alpha_Z$$

 Can thus estimate ∆ *directly* from fitting this model (e.g. by *least squares*); don't even need to average!

•
$$\widehat{\Delta} = \widehat{\alpha}_Z$$

Example – binary outcome: Suppose the *true* regression is

$$E(Y|Z, \boldsymbol{X}) = \frac{\exp(\alpha_0 + \alpha_Z Z + \boldsymbol{X}^T \alpha_X)}{1 + \exp(\alpha_0 + \alpha_Z Z + \boldsymbol{X}^T \alpha_X)}$$

• If this *really is* the true outcome regression model, then

$$E(Y|Z = 1, \boldsymbol{X}) - E(Y|Z = 0, \boldsymbol{X})$$

=
$$\frac{\exp(\alpha_0 + \alpha_Z + \boldsymbol{X}^T \alpha_X)}{1 + \exp(\alpha_0 + \alpha_Z + \boldsymbol{X}^T \alpha_X)} - \frac{\exp(\alpha_0 + \boldsymbol{X}^T \alpha_X)}{1 + \exp(\alpha_0 + \boldsymbol{X}^T \alpha_X)}$$

- Logistic regression yields $(\hat{\alpha}_0, \hat{\alpha}_Z, \hat{\alpha}_X)$
- Estimate Δ by *averaging* over *all observed* X_i

$$\widehat{\Delta} = n^{-1} \sum_{i=1}^{n} \left\{ \frac{\exp(\widehat{\alpha}_0 + \widehat{\alpha}_Z + \boldsymbol{X}_i^T \widehat{\alpha}_X)}{1 + \exp(\widehat{\alpha}_0 + \widehat{\alpha}_Z + \boldsymbol{X}_i^T \widehat{\alpha}_X)} - \frac{\exp(\widehat{\alpha}_0 + \boldsymbol{X}_i^T \widehat{\alpha}_X)}{1 + \exp(\widehat{\alpha}_0 + \boldsymbol{X}_i^T \widehat{\alpha}_X)} \right\}$$

Double Robustness, EPID 369, Spring 2007

Critical: For the argument on slide 16 to go through, E(Y|Z, X) must be the *true regression* of Y on Z and X

- Thus, if we substitute estimates for $E(Y|Z = 1, \mathbf{X})$ and $E(Y|Z = 0, \mathbf{X})$ based on a *postulated outcome regression model*, this *postulated model* must be identical to the *true regression*
- If not, average of the difference will not necessarily estimate Δ

Result: Estimator for Δ obtained from regression adjustment will be *biased* (*inconsistent*) if the regression model used is *incorrectly specified*!

Moral: Estimation of Δ via regression modeling *requires* that the postulated regression model is *correct*

Propensity score: Probability of treatment given covariates

$$e(\mathbf{X}) = P(Z = 1 | \mathbf{X}) = E\{I(Z = 1) | \mathbf{X}\} = E(Z | \mathbf{X})$$

- $X \parallel Z|e(X)$
- Under *no unmeasured confounders*, $(Y_0, Y_1) \parallel Z|e(\boldsymbol{X})$
- Customary to *estimate* by *postulating* and *fitting* a *logistic regression* model, e.g.

$$P(Z = 1 | \boldsymbol{X}) = e(\boldsymbol{X}, \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \boldsymbol{X}^T \beta_1)}{1 + \exp(\beta_0 + \boldsymbol{X}^T \beta_1)}$$

 $e(\boldsymbol{X},\boldsymbol{\beta}) \Longrightarrow e(\boldsymbol{X},\widehat{\boldsymbol{\beta}})$

Double Robustness, EPID 369, Spring 2007

One idea: Rather than use the difference of *simple averages* $\overline{Y}^{(1)} - \overline{Y}^{(0)}$, estimate Δ by the difference of *inverse propensity score weighted averages*, e.g.,

$$\widehat{\Delta}_{IPW,1} = n^{-1} \sum_{i=1}^{n} \frac{Z_i Y_i}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} - n^{-1} \sum_{i=1}^{n} \frac{(1 - Z_i) Y_i}{1 - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})}$$

• Interpretation: Inverse weighting creates a *pseudo-population* in which there is *no confounding*, so that the *weighted averages* reflect averages in the true population

Why does this work? Consider
$$n^{-1}\sum_{i=1}^{n} \frac{Z_iY_i}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})}$$

• By the *law of large numbers*, this should estimate the *mean* of a term in the sum with $\hat{\beta}$ replaced by the quantity it estimates

If: $e(\mathbf{X}, \boldsymbol{\beta}) = e(\mathbf{X})$, the true propensity score $E\left\{\frac{ZY}{e(\mathbf{X})}\right\} = E\left\{\frac{ZY_1}{e(\mathbf{X})}\right\} = E\left[E\left\{\frac{ZY_1}{e(\mathbf{X})}\middle|Y_1, \mathbf{X}\right\}\right]$ (1) $= E\left\{\frac{Y_1}{e(\mathbf{X})}E(Z|Y_1, \mathbf{X})\right\} = E\left\{\frac{Y_1}{e(\mathbf{X})}E(Z|\mathbf{X})\right\}$ (2) $= E\left\{\frac{Y_1}{e(\mathbf{X})}e(\mathbf{X})\right\} = E(Y_1)$ (3)

(1) follows because $ZY = Z\{Y_1Z + Y_0(1-Z)\} = Z^2Y_1 + Z(1-Z)Y_0$ and $Z^2 = Z$ and Z(1-Z) = 0 (binary)

- (2) follows because $(Y_0, Y_1) \parallel Z \mid X$ (no unmeasured confounders)
- (3) follows because $e(\mathbf{X}) = E(Z|\mathbf{X})$

Similarly:
$$E\left\{\frac{(1-Z)Y}{1-e(X)}\right\} = E(Y_0)$$

Double Robustness, EPID 369, Spring 2007

Critical: For the argument on slide 22 to go through, e(X) must be the *true propensity score*

- Thus, if we substitute estimates for e(X) based on a postulated propensity score model, this postulated model must be identical to the true propensity score
- If not, $\widehat{\Delta}_{IPW,1}$ will not necessarily estimate Δ

Moral: Estimation of Δ via inverse weighted *requires* that the *postulated propensity score model* is *correct*

Recap: $\Delta = E(Y_1) - E(Y_0)$

- Estimator for Δ based on regression modeling requires correct postulated regression model
- Estimator for Δ based on *inverse propensity score weighting* requires *correct* postulated propensity model

Modified estimator: Combine both approaches in a *fortuitous* way

Modified estimator:

$$\begin{aligned} \widehat{\Delta}_{DR} &= n^{-1} \sum_{i=1}^{n} \left[\frac{Z_i Y_i}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} - \frac{\{Z_i - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})\}}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} m_1(\boldsymbol{X}_i, \widehat{\boldsymbol{\alpha}}_1) \right] \\ &- n^{-1} \sum_{i=1}^{n} \left[\frac{(1 - Z_i) Y_i}{1 - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} + \frac{\{Z_i - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})\}}{1 - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} m_0(\boldsymbol{X}_i, \widehat{\boldsymbol{\alpha}}_0) \right] \\ &= \widehat{\mu}_{1, DR} - \widehat{\mu}_{0, DR} \end{aligned}$$

- $e(X, \beta)$ is a *postulated* model for the *true propensity score* e(X) = E(Z|X) (fitted by *logistic regression*)
- m₀(X, α₀) and m₁(X, α₁) are *postulated* models for the *true* regressions E(Y|Z = 0, X) and E(Y|Z = 1, X) (fitted by least squares)

Modified estimator:

$$\begin{aligned} \widehat{\Delta}_{DR} &= n^{-1} \sum_{i=1}^{n} \left[\frac{Z_i Y_i}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} - \frac{\{Z_i - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})\}}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} m_1(\boldsymbol{X}_i, \widehat{\boldsymbol{\alpha}}_1) \right] \\ &- n^{-1} \sum_{i=1}^{n} \left[\frac{(1 - Z_i) Y_i}{1 - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} + \frac{\{Z_i - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})\}}{1 - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} m_0(\boldsymbol{X}_i, \widehat{\boldsymbol{\alpha}}_0) \right] \\ &= \widehat{\mu}_{1, DR} - \widehat{\mu}_{0, DR} \end{aligned}$$

• $\hat{\mu}_{1,DR}$ (and $\hat{\mu}_{0,DR}$ and hence $\hat{\Delta}_{DR}$) may be viewed as taking the *inverse weighted* estimator and "*augmenting*" it by a second term

What does this estimate? Consider $\hat{\mu}_{1,DR}$ ($\hat{\mu}_{0,DR}$ similar)

$$\widehat{\mu}_{1,DR} = n^{-1} \sum_{i=1}^{n} \left[\frac{Z_i Y_i}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} - \frac{\{Z_i - e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})\}}{e(\boldsymbol{X}_i, \widehat{\boldsymbol{\beta}})} m_1(\boldsymbol{X}_i, \widehat{\boldsymbol{\alpha}}_1) \right]$$

- By the *law of large numbers*, $\hat{\mu}_{1,DR}$ estimates the *mean* of a term in the sum with with β and α_1 replaced by the quantities they estimate
- That is, $\widehat{\mu}_{1,DR}$ estimates

$$E\left[\frac{ZY}{e(\boldsymbol{X},\boldsymbol{\beta})} - \frac{\{Z - e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}m_1(\boldsymbol{X},\boldsymbol{\alpha}_1)\right]$$

= $E\left[\frac{ZY_1}{e(\boldsymbol{X},\boldsymbol{\beta})} - \frac{\{Z - e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}m_1(\boldsymbol{X},\boldsymbol{\alpha}_1)\right]$
= $E\left[Y_1 + \frac{\{Z - e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}\{Y_1 - m_1(\boldsymbol{X},\boldsymbol{\alpha}_1)\}\right]$ (by algebra)
= $E(Y_1) + E\left[\frac{\{Z - e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}\{Y_1 - m_1(\boldsymbol{X},\boldsymbol{\alpha}_1)\}\right]$

Double Robustness, EPID 369, Spring 2007

NC STATE UNIVERSITY

Thus: $\hat{\mu}_{1,DR}$ estimates

$$E(Y_1) + E\left[\frac{\{Z - e(\boldsymbol{X}, \boldsymbol{\beta})\}}{e(\boldsymbol{X}, \boldsymbol{\beta})}\{Y_1 - m_1(\boldsymbol{X}, \boldsymbol{\alpha}_1)\}\right]$$
(1)

for any general functions of $X e(X, \beta)$ and $m_1(X, \alpha_1)$ (that may or may not be equal to the true propensity score or true regression)

- Thus, for $\widehat{\mu}_{1,DR}$ to estimate $E(Y_1)$, the second term in (1) must = 0!
- When does the second term = 0?

Scenario 1: Postulated propensity score model $e(X, \beta)$ is correct, but postulated regression model $m_1(X, \alpha_1)$ is not, i.e.,

- $e(X, \beta) = e(X) = E(Z|X)$ ($= E(Z|Y_1, X)$ by no unmeasured confounders)
- $m_1(\boldsymbol{X}, \boldsymbol{\alpha}_1) \neq E(Y|Z=1, \boldsymbol{X})$

Is the second term = 0 under these conditions?

$$E\left[\frac{\{Z-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}\right]$$

$$=E\left(E\left[\frac{\{Z-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}\middle|Y_{1},\boldsymbol{X}\right]\right)$$

$$=E\left(\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}E\left[\frac{\{Z-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\middle|Y_{1},\boldsymbol{X}\right]\right)$$

$$=E\left(\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}\frac{\{E(Z|Y_{1},\boldsymbol{X})-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\right)$$

$$=E\left(\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}\frac{\{E(Z|\boldsymbol{X})-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\right)$$

$$=E\left(\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}\frac{\{E(\boldsymbol{X})-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\right)$$

$$=E\left(\{Y_{1}-m_{1}(\boldsymbol{X},\boldsymbol{\alpha}_{1})\}\frac{\{e(\boldsymbol{X})-e(\boldsymbol{X})\}}{e(\boldsymbol{X})}\right)$$

$$=0$$

(1) uses no unmeasured confounders

Double Robustness, EPID 369, Spring 2007

NC STATE UNIVERSITY

Result: As long as the propensity score model is *correct*, even if the *postulated regression model* is *incorrect*

- $\widehat{\mu}_{1,DR}$ estimates $E(Y_1)$
- Similarly, $\widehat{\mu}_{0,DR}$ estimates $E(Y_0)$
- And hence $\widehat{\Delta}_{DR}$ estimates Δ !

Scenario 2: Postulated regression model $m_1(X, \alpha_1)$ is correct, but postulated propensity score model $e(X, \beta)$ is not

- $e(\boldsymbol{X},\boldsymbol{\beta}) \neq e(\boldsymbol{X}) = E(Z|\boldsymbol{X})$
- $m_1(X, \alpha_1) = E(Y|Z = 1, X)$ (= $E(Y_1|X)$ by no unmeasured confounders)

Is the second term = 0 under these conditions?

$$E\left[\frac{\{Z-e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}\{Y_{1}-E(Y|Z=1,\boldsymbol{X})\}\right]$$

$$=E\left(\left[\frac{\{Z-e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}\{Y_{1}-E(Y|Z=1,\boldsymbol{X})\}\middle|Z,\boldsymbol{X}\right]\right)$$

$$=E\left(\frac{\{Z-e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}E\left[\{Y_{1}-E(Y|Z=1,\boldsymbol{X})\}\middle|Z,\boldsymbol{X}\right]\right)$$

$$=E\left(\frac{\{Z-e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}\{E(Y_{1}|Z,\boldsymbol{X})-E(Y|Z=1,\boldsymbol{X})\}\right)$$

$$=E\left(\frac{\{Z-e(\boldsymbol{X},\boldsymbol{\beta})\}}{e(\boldsymbol{X},\boldsymbol{\beta})}\{E(Y_{1}|\boldsymbol{X})-E(Y_{1}|\boldsymbol{X})\}\right)=0$$
(1)

(1) uses *no unmeasured confounders*, which says

$$E(Y|Z = 1, X) = E(Y_1|Z = 1, X) = E(Y_1|X) = E(Y_1|Z, X)$$

Double Robustness, EPID 369, Spring 2007

Result: As long as the regression model is correct, even if the postulated propensity model is incorrect

- $\widehat{\mu}_{1,DR}$ estimates $E(Y_1)$
- Similarly, $\widehat{\mu}_{0,DR}$ estimates $E(Y_0)$
- And hence $\widehat{\Delta}_{DR}$ estimates Δ !

Obviously: From these calculations if *both* models are correct, $\widehat{\Delta}_{DR}$ estimates Δ !

• Of course, if *both* are *incorrect*, $\widehat{\Delta}_{DR}$ does not estimate Δ (not *consistent*)

Summary: If

- The *regression model* is *incorrect* but the *propensity model* is *correct OR*
- The propensity model is incorrect but the regression model is correct then $\widehat{\Delta}_{DR}$ is a (consistent) estimator for Δ !

Definition: This property is referred to as *double robustness*

Remarks: The *doubly robust* estimator

- Offers *protection* against mismodeling
- If e(X) is modeled *correctly*, will have *smaller variance* than the simple *inverse weighted* estimator (in *large samples*)
- If E(Y|Z, X) is modeled correctly, may have *larger variance* (in *large samples*) than the *regression* estimator ...
- ... but gives *protection* in the event it is *not*

Issue 1: How do we get *standard errors* for $\widehat{\Delta}_{DR}$?

• One way: use standard *large sample theory*, which leads to the so-called *sandwich estimator*

$$\sqrt{n^{-2}\sum_{i=1}^{n}\widehat{I}_{i}^{2}}$$

$$\begin{split} \widehat{I}_{i} &= \frac{Z_{i}Y_{i}}{e(\boldsymbol{X}_{i},\widehat{\boldsymbol{\beta}})} - \frac{\{Z_{i} - e(\boldsymbol{X}_{i},\widehat{\boldsymbol{\beta}})\}}{e(\boldsymbol{X}_{i},\widehat{\boldsymbol{\beta}})} m_{1}(\boldsymbol{X}_{i},\widehat{\boldsymbol{\alpha}}_{1}) \\ &- \left[\frac{(1 - Z_{i})Y_{i}}{1 - e(\boldsymbol{X}_{i},\widehat{\boldsymbol{\beta}})} + \frac{\{Z_{i} - e(\boldsymbol{X}_{i},\widehat{\boldsymbol{\beta}})\}}{1 - e(\boldsymbol{X}_{i},\widehat{\boldsymbol{\beta}})} m_{0}(\boldsymbol{X}_{i},\widehat{\boldsymbol{\alpha}}_{0})\right] - \widehat{\Delta}_{DR} \end{split}$$

• Use the *bootstrap* (i.e., *resample* B data sets of size n)

Issue 2: Computation?

- Is there *software*? A *SAS* procedure is *coming soon* ...
- In many situations, it is possible to find $\widehat{\Delta}_{DR}$ by fitting a single regression model for $E(Y|Z, \mathbf{X})$ that includes

$$\frac{Z}{e(\boldsymbol{X},\widehat{\boldsymbol{\beta}})} \text{ and } \frac{(1-Z)}{\{1-e(\boldsymbol{X},\widehat{\boldsymbol{\beta}})\}}$$

as covariates.

• See Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. *Biometrics* 61, 962–972.

Issue 3: How to select elements of X to include in the models?

- For the inverse weighted estimators:
 - Variables unrelated to exposure but related to outcome should always be included in the propensity score model => increased precision
 - Variable related to exposure but unrelated to outcome can be omitted ⇒ decreased precision
- See Brookhart, M. A. et al. (2006). Variable selection for propensity score models. *American Journal of Epidemiology* 163, 1149–1156.
- Best way to select for DR estimation is an open problem
- See Brookhart, M. A. and van der Laan, M. J. (2006). A semiparametric model selection criterion with applications to the marginal structural model. *Computational Statistics and Data Analysis* 50, 475–498.

Issue 4: Variants on doubly robust estimators?

• See Tan, Z. (2006) A distributional approach for causal inference using propensity scores. *Journal of the American Statistical Association* 101, 1619–1637.

Issue 5: Connection to "missing data" problems

- (Y_0, Y_1, Z, X) are the "full data" we wish we could see, but we only observe $Y = Y_1Z + Y_0(1 Z)$
- Z = 1 means Y_1 is observed but Y_0 is *missing*; happens with probability $e(\mathbf{X})$; vice versa for Z = 0
- Missing data theory of *Robins, Rotnitzky, and Zhao (1994)* applies and leads to the *doubly robust estimator*
- The theory shows that the doubly robust estimator with all of e(X), m₀(X, α₀), m₁(X, α₁) correctly specified has smallest variance among all estimators that require one to model the propensity score correctly (but make no further assumptions about anything)

7. Discussion

- *Regression modeling* and *inverse propensity score weighting* are two popular approaches when one is willing to assume *no unmeasured confounders*
- The *double robust estimator* combines both and offers *protection* against *mismodeling*
- Offers gains in *precision* of estimation over simple inverse weighting
- May not be as precise as *regression modeling* when the *regression* is *correctly modeled*, but adds protection, and modifications are available
- Doubly robust estimators are also available for *more complicated* problems