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Abstract In this paper, we propose a new generic filter
called Iterated Extended Kalman Filter on Lie Groups.
It allows to perform parameter estimation when the
state and the measurements evolve on matrix Lie groups.
The contribution of this work is threefold: 1) the pro-
posed filter generalizes the Euclidean Iterated Extended
Kalman Filter to the case where both the state and the
measurements evolve on Lie groups, 2) this novel fil-
ter bridges the gap between the minimization of intrin-
sic non linear least squares criteria and filtering on Lie
groups, 3) in order to detect and remove outlier mea-
surements, a statistical test on Lie groups is proposed.

In order to demonstrate the efficiency of the pro-
posed generic filter, it is applied to the specific problem
of relative motion averaging, both on synthetic and real
data, for Lie groups SE(3) (rigid body motions), SL(3)
(homographies) and Sim(3) (3D similarities). Typical
applications of these problems are camera network cali-
bration, image mosaicing and partial 3D reconstruction
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merging problem. In each of these three applications,
our approach significantly outperforms the state of the
art algorithms.
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1 Introduction

During the last decade, parameter estimation through
optimization on matrix manifolds has been extensively
studied [1] and employed in a wide range of applications
[46]. This is due to the fact that taking intrinsically into
account the geometry of the manifold increases the rate
of convergence of algorithms [54] and helps to avoid
singularities.

When the parameters follow a dynamical system
and/or when the measurements are acquired sequen-
tially, it is important to be able to perform the estima-
tion by filtering [35].

The link between optimization and filtering on Eu-
clidean spaces, in the context of non linear least squares,
has already been studied [5, 9]. It led to the Iterated
Extended Kalman Filter (IEKF) that produces better
results in practice than the Extended Kalman Filter
(EKF).

Even if several works successfully extended Euclidean
filtering algorithms to manifolds (see Table 1 in [15]), to
the best of our knowledge, the link between optimiza-
tion and filtering has not been established for parameter
estimation on manifolds yet.

In this work, we focus on bridging the gap between
the formulation of intrinsic non linear least squares cri-
teria and Kalman filtering on matrix Lie groups [32]
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that form an important kind of manifolds. Typical ex-
amples include 3D rotation matrices SO(3), unitary
quaternions SU (2), rigid-body motion SE(3), 3D simi-
larities Sim(3), homographies SL(3). More specifically,
we are interested in generalizing the IEKF to the case
of a state and measurements evolving on Lie groups.

1.1 Related Work

On the one hand, a large amount of works proposes
to minimize intrinsic non linear least squares to es-
timate parameters evolving on a Lie group. Most of
them apply a modified Gauss-Newton algorithm (GN)
[10], or closely related algorithms such as Levenberg-
Marquardt or Reweighted Non Linear Least Squares,
to take into account the geometry of the Lie group.
[62] was the first to propose a modified GN to estimate
a 3D orientation. Simultaneous Localization and Map-
ping approaches (SLAM) [31, 36, 41, 42] are based on a
GN like algorithm to estimate 3D points as well as cam-
era poses from a video sequence and [44] uses a GN to
estimate homographies. In the more specific context of
estimating global transformations from relative trans-
formation measurements, several works derived specific
GN like algorithms: [20] and [30] tackle the synchroniza-
tion of rotations problem, [55] considers the consistent
pose registration problem, [60] covers the partial 3D re-
construction merging problem and [50] performs image
mosaicking.

On the other hand, a large number of Kalman-like
filters has been proposed to estimate a state evolving on
a Lie group: [23, 48, 43, 52] deal with the estimation of
a 3D orientation, [47] dynamically estimates homogra-
phies and [24] performs SLAM. In [12, 11] an extended
Kalman filter on Lie groups is derived, which is dedi-
cated to continuous systems possessing symmetries. In
our previous papers [18, 15], we generalize the extended
Kalman filter to Lie groups both for discrete and con-
tinuous prediction models. However, these approaches
are not related to optimization on Lie groups.

To the best of our knowledge, only a few works,
that are specifically devoted to SLAM, have related fil-
tering to optimization on Lie groups. [61] proposes an
information-filter like algorithm while [39, 38] derive
efficient square root information like filters. However,
none of these approaches deal with the case of mea-
surements evolving on a Lie group.

In preliminary works ([17] and [16]), we propose an
Iterated Extended Kalman Filter on Lie groups specif-
ically dedicated to relative motion averaging. In this
paper, we are interested in proposing a generic Iterated
Extended Kalman Filter on Lie groups. Thus, in the

next section, we recall the (Euclidean) IEKF formal-
ism.

1.2 Reminder: The Iterated Extended Kalman Filter

The IEKF [5, 9] is a filter dedicated to non-linear sys-
tems. The objective of this filter is to recursively ap-
proximate the posterior distribution p (xk|z1, . . . , zk) by
a Gaussian distribution, where xk ∈ Rp is the state we
wish to estimate at time k and zl ∈ Rq is a measurement
available at time l. Then the state estimate is taken as
the mean of this approximated posterior distribution.
More specifically, the filter is composed of two steps, a
prediction step and an update step.

1.2.1 Prediction

The prediction step consists in approximating the fol-
lowing distribution:

p (xk|z1, . . . , zk−1)

=

ˆ
p (xk|xk−1) p (xk−1|z1, . . . , zk−1) dLxk−1 (1)

≈NRp
(
xk;µk|k−1, Pk|k−1

)
(2)

where dLxk−1 corresponds to the Lebesgue measure on
Rp, p (xk−1|z1, . . . , zk−1) = NRp

(
xk−1;µk−1|k−1, Pk−1|k−1

)
and the state transition is defined as:

xk = f (xk−1) + nk (3)

where nk ∼ NRp (nk;0p×1, Rk) is a white Gaussian
noise and f : Rp → Rp is a differentiable function.
Classically, µk|k−1 is obtained by propagating the pre-
vious mean µk−1|k−1 through (3) without noise, while
Pk|k−1 is computed by linearizing (3) in xk−1 = µk−1|k−1
and propagating Pk−1|k−1 through this linearized ver-
sion of the state transition model.

The same prediction step can be seen alternatively
as the fitting of a Gaussian distribution to the integrand
in (1), using a Gauss-Laplace approximation (see Sec-
tion 3), followed by the marginalization of xk−1. In this
case, µk−1|k−1 is propagated by minimizing the nega-
tive log-likelihood of the integrand in (1):

{x̂k, x̂k−1} =

argmin
xk∈Rp,xk−1∈Rp

(
‖xk − f (xk−1)‖2Rk

+
∥∥xk−1 − µk−1|k−1∥∥2Pk−1|k−1

)
(4)

where ‖·‖2Σ = (·)T Σ−1 (·) is the squared Mahalanobis
distance. It is trivial to show that x̂k−1 = µk−1|k−1
and x̂k = f

(
µk−1|k−1

)
. The predicted mean µk|k−1,

which coincides with the mode in the Gaussian case, is
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taken as x̂k. Finally, Pk|k−1 is computed by applying the
Gauss-Laplace covariance approximation equation (see
Section 3), followed by a marginalization of xk−1, which
results in a closed form covariance prediction equation.
This alternative view will help us in generalizing the
IEKF prediction step to Lie groups.

1.2.2 Update

The update step consists in approximating the following
distribution:

p (xk|z1, . . . , zk)
∝ p (zk|xk) p (xk|z1, . . . , zk−1) (5)
≈NRp

(
xk;µk|k, Pk|k

)
(6)

assuming p (xk|z1, . . . , zk−1) = NRp
(
xk;µk|k−1, Pk|k−1

)
and a measurement model defined as:

zk = h (xk) + wk (7)

where wk ∼ NRq (wk;0q×1, Qk) is a white Gaussian
noise, h (·) : Rp → Rq is a differentiable function. wk
and the state model noise nk are assumed to be inde-
pendent.

Once again, this update step can be seen as the
fitting of a Gaussian distribution to (5), using a Gauss-
Laplace approximation (see Section 3).

In this case, the updated mean µk|k = x̂k is defined
as the minimizer of the negative log-likelihood of (5):

x̂k = argmin
xk∈Rp

(
‖zk − h (xk)‖2Qk +

∥∥xk − µk|k−1∥∥2Pk|k−1

)
(8)

Employing a GN algorithm to solve (8) allows one to
compute µk|k, while Pk|k can be obtained by applying
the Gauss-Laplace covariance approximation equation
(see Section 3). Fortunately, by exploiting the specific
structure of the GN applied to (8), it is possible to de-
rive the IEKF update equations that allow to compute
both µk|k and Pk|k very efficiently [5].

1.3 Contribution and Outline of the paper

In this paper, we propose a generic Iterated Extended
Kalman Filter on Lie Groups (LG-IEKF) that extends
the link between the minimization of non linear least
squares criteria and the Iterated Extended Kalman Fil-
ter [5, 9] to the case where the state and the observa-
tions evolve on Lie groups.

For this purpose, we first present a fitting approach,
called intrinsic Gauss-Laplace approximation, that al-
lows to fit a concentrated Gaussian distribution on Lie

groups to the probability density of a random variable
evolving on a Lie group.

Since this fitting technique requires to find the min-
imizer of an intrinsic non linear least squares crite-
rion, we present a generic intrinsic GN algorithm on
Lie groups, called LG-GN, which has the advantage of
taking intrinsically into account the geometry of the Lie
group on which the parameters evolve.

Then, we show that a generalization of the IEKF,
to the case where the state and the observations evolve
on Lie groups, can be obtained by employing intrinsic
Gauss-Laplace approximations both to derive the LG-
IEKF prediction step and the LG-IEKF update step
(which involves the LG-GN algorithm).

Finally, because of the Gaussian noise assumption,
the LG-IEKF is sensitive to outlier measurements. Thus,
a statistical test on Lie groups is derived to detect and
remove them.

In order to demonstrate the efficiency of the pro-
posed generic LG-IEKF, it is applied to the specific
problem of relative motion averaging, both on synthetic
and real data for Lie groups SE(3) (rigid body mo-
tions), SL(3) (homographies) and Sim(3) (3D similar-
ities).

The rest of the paper is organized as follows: Sec-
tion 2 introduces the formalism of Lie groups and the
concentrated Gaussian distribution on Lie groups. Sec-
tion 3 describes the intrinsic Gauss-Laplace approxi-
mation while Section 4 deals with the intrinsic GN on
Lie groups algorithm. The theory behind the proposed
filter is described in Section 5. In Section 6, our formal-
ism is applied to the relative motion averaging problem,
and evaluated experimentally. Finally, the conclusion is
provided in Section 7.

2 Preliminaries

2.1 Introduction to Lie groups

2.1.1 Definitions

In this section we give the definitions and basic prop-
erties of (matrix) Lie groups and Lie algebra. For a de-
tailed description of these notions the reader is referred
to [21]. A Lie group G is a group which has also the
structure of a smooth manifold such that group com-
position and inversion are smooth operations. If G is a
matrix Lie group, then X ∈ G ⊂ Rn×n and its opera-
tions are matrix multiplication and inversion with the
n× n identity matrix as identity element Id.

The matrix exponential expG and matrix logarithm
logG mappings establish a local diffeomorphism between
an open neighborhood of 0n×n in the tangent space at
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the identity TIdG, called the Lie Algebra g, and an open
neighborhood of Id in G. The Lie Algebra g ⊂ Rn×n as-
sociated to a p-dimensional Lie group is a p-dimensional
vector space defined by a basis consisting of real ma-
trices Ei for i = 1 . . . p. Hence there is a linear isomor-
phism between g and RP that we denote as follows:
[·]∨G : g → RP and [·]∧G : RP → g. For example let
a ∈ g ⊂ Rn×n, then we have [a]

∨
G = a ∈ RP . Thus

we can define a basis [Ei]
∨
G = ei such that {ei}i=1...p

is the natural basis of RP and a =
∑p
i=1 aiEi with

a = (a1 . . . ap)
T . The previous notions are summarized

in Fig. 1.
In order to lighten the notations, we define1: exp∧G (·) =

expG
(
[·]∧G
)
and log∨G (·) = [logG (·)]∨G.

For the sake of brevity, in the rest of the paper, when
we mention the Lie algebra g of a p-dimensional Lie
group G, we implicitly refer to its isomorphic Euclidean
space Rp. Moreover, when we write A = exp∧G (a) we
assume that log∨G (A) = a, i.e we work only on sets
where exp∧G (·) and log∨G (·) are bijective functions.

Let us introduce the linearized Baker-Campbell-
Hausdorff formula which expresses the group product
directly in Rp:

log∨G (exp∧G (a) exp∧G (b)) = b+ ϕG (b) a+O
(
‖a‖2

)
(9)

where

ϕG (b) =

∞∑
n=0

BnadG (b)
n

n!
= Id− 1

2
adG (b) + · · · (10)

is the inverse of the left Jacobian2 of G, the Bn are the
Bernoulli numbers and

adG (b) a =
[
[b]
∧
G [a]

∧
G − [a]

∧
G [b]

∧
G

]∨
G

(11)

2.1.2 Product of Lie groups

Most of the time, we wish to estimate several param-
eters evolving on different Lie groups, at once. Since
the product of Lie groups is a Lie group [56], the algo-
rithms presented in this paper can be applied to “con-
catenations” of Lie groups. They can even be applied to
Euclidean parameters since an Euclidean space Rp is a
trivial Lie group by taking the matrix embedding:

x ∈ Rp 7→ X =

[
Id x

01×p 1

]
⊂ R(p+1)×(p+1) (12)

1 For several Lie groups of interest, such as SO(3), SE(3),
Sim(3), analytical expressions of exp∧G (·) and log∨G (·) exist
[57]. However, for SL(3) for example, matrix exponential and
logarithm have to be computed.

2 A closed form expression of ϕG (b) was recently derived
for SE(3) in [4].

Fig. 1: Illustration of the geometry of a (matrix) Lie
group

The simplest way to “concatenate” several components
is to consider the Lie group formed by their direct prod-
uct (e.g: SO(3)×R3). Note that other ways to “concate-
nate” Lie groups exist [56] (e.g: semi-direct product,
twisted product).

2.2 Additional notations

In the rest of the paper, G and G′ are Lie groups of
intrinsic dimensions p and q respectively. dHX is the
right invariant Haar measure of G.

2.3 Concentrated Gaussian distribution on Lie groups

Here, we introduce the concept of concentrated Gaus-
sian distribution on Lie groups, which was initially pro-
posed in [59] and then studied in [66, 67], as a gener-
alization of the normal distribution in Euclidean space.
The distribution of X ∈ G is called a right3 concen-
trated Gaussian distribution on G of “mean” µ and “co-
variance” P , denoted X ∼ NR

G (X;µ, P ) (the super-
script R stands for “right”), if:

X = exp∧G (ε)µ (13)

where ε ∼ NRp (ε;0p×1, P ) and P ⊂ Rp×p is a symmet-
ric positive-definite matrix. Note that (13) depends on
the choice of the Lie algebra basis {Ei}i=1...p.

When the maximum of the eigenvalues of P is suf-
ficiently “small”, the probability mass is concentrated

3 In this paper, we consider quantities that are invariant
to the right action of the Lie group on itself. Similar results
could be obtained by considering the left action, leading to
a left concentrated Gaussian distribution on G, which is the
modelization used for instance in [18].



From Intrinsic Optimization to Iterated Extended Kalman Filtering on Lie Groups 5

around µ and the probability density of X, w.r.t the
right invariant Haar measure of G (denoted dHX) [26],
can be approximated as follows:

p (X) ≈ 1√
(2π)

p
det (P )

e−
1
2‖log∨G(Xµ−1)‖2

P (14)

Such a distribution allows us to describe the covariance
in Rp and hence to use Euclidean tools while being in-
variant w.r.t the right action of the group on itself:

exp∧G (ε) = Xµ−1 = XX ′ (µX ′)
−1 with X ′ ∈ G.

In Fig. 2, we provide an example of a concentrated
Gaussian distribution on the Lie group

SE (2) =

{
X =

[
R t

01×2 1

] ∣∣∣∣R ∈ SO (2) , t =

[
u

v

]
∈ R2

}
with Lie algebra

se (2) =

x =

 0 −θ xθ 0 y

0 0 0

 ∣∣∣∣θ, x, y ∈ R


Note that the “banana” shape [45] comes from the non-
linearity4 of expSE(2) and the correlations between θ, x
and y. Such a distribution is a better representation of
the uncertainty of a robot negotiating a bend compared
to a Euclidean Gaussian distribution.

3 Intrinsic Gauss-Laplace approximation

A classical way to tackle a Bayesian filtering problem is
to fit, at each time instant, a parametric distribution to
the posterior distribution of the state. In this section,
we propose a fitting method which will be employed,
in the rest of the paper, to fit concentrated Gaussian
distributions on Lie groups.

3.1 Problem

Let us consider the probability distribution of a random
variable X ∈ G:

p (X) = αe−‖φ(X)‖2Σ (15)

where φ : G → Rm is a differentiable function and
p < m.

The objective is to propose a method to fit a con-
centrated Gaussian distribution to p (X).

4 Of course, this shape is emphasized by the action of µ on
exp∧G (ε).
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(a) Samples of a Gaussian distribution on se (2):
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(b) Samples mapped to SE (2) using exp∧SE(2) (·)
(blue arrows) and moved around the mean µ =
exp∧SE(2)

(
[π 30 20]T

)
using the right action of SE (2)

on itself (green arrows)

Fig. 2: Illustration of a concentrated Gaussian distribu-
tion on SE (2). An arrow represents the position and
the orientation of a robot in a 2D plane.

3.2 Proposed solution

First of all, let us define the minimizer of the cost func-
tion ‖φ (X)‖2Σ :

X̂ = argmin
X∈G

‖φ (X)‖2Σ (16)

A first order Taylor expansion of φ (·) around X̂ gives:

φ (X) = φ
(
exp∧G (δ) X̂

)
≈ φ

(
X̂
)
+ Jδ (17)
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where δ = log∨G
(
XX̂−1

)
and

J =
dφ
(
exp∧G (s) X̂

)
ds

∣∣∣∣
s=0

(18)

We choose to take q (X) as an approximation of p (X):

q (X) = βe−‖φ(X̂)+Jlog∨G(XX̂
−1)‖2

Σ (19)

Finally, it is possible to show that q (X) has the form
of a concentrated Gaussian distribution:

q (X) = NR
G

(
X; X̂, P =

(
JTΣ−1J

)−1)
(20)

We call this fitting method “intrinsic Gauss-Laplace ap-
proximation”. This method is a generalization of the
Euclidean Gauss-Laplace approximation which is used
for instance in [5] to derive the IEKF update equations.
In fact, if G is a Euclidean space, the method comes
down to fitting a Gaussian distribution.

This method will be employed in Section 5 to derive
both the prediction and update steps of the novel filter
we present in this paper.

4 Intrinsic Gauss-Newton on Lie groups

The intrinsic Gauss-Laplace approximation introduced
in the previous section assumes that we are capable of
finding the minimizer X̂ of (16).

However, when the minimizer does not have a closed-
form expression, it is common to employ an iterative
optimization algorithm.

In this section, we derive an intrinsic GN algorithm
that allows one to estimate a matrix X of parameters
evolving on G.

4.1 Introduction

When performing an iterative optimization on an Eu-
clidean space, such as a gradient descent, the parame-
ters x ∈ Rn are iteratively updated as follows:

xl+1 = xl + δl+1/l (21)

where δl+1/l ∈ Rn is an increment that corrects the
previous parameter vector xl to get xl+1. In order to
perform intrinsic optimization on a Lie group G, the
update equation (21) cannot be applied since the oper-
ator “+” does not allow the parameters to remain on the
manifold. The key ingredient to intrinsically take into
account the geometry of the Lie group is to replace (21)
with:

X l+1 = exp∧G
(
δl+1/l

)
X l (22)

where X l, X l+1 ∈ G and δl+1/l ∈ Rp. One can see
that the update equation (22) is tightly related to the
concept of concentrated Gaussian distribution on Lie
groups (13).

4.2 Algorithm

A common iterative method for solving the problem
(16), when G is a Euclidean space, is the Gauss-Newton
method. In the following, we extend this formalism to
Lie groups and call it intrinsic Gauss-Newton on Lie
groups (LG-GN).

A Riemannian GN algorithm can be found in [1].
As a consequence, the algorithm we present can fit into
their formalism (since a Lie group is a Riemannian man-
ifold) and the convergence proof proposed in [1] applies.
However, the LG-GN we introduce is dedicated to Lie
groups (as the one already proposed in [63]) and lever-
ages the “one parameter subgroup” [21] structure of the
Lie group, i.e the Riemannian structure of the Lie group
is not explicitly exploited.

As in the Euclidean case, the convergence of the
algorithm depends on the starting point X0. X l+1 is
obtained by linearizing φ (·) at the previous value X l

and solving the following problem:

δl+1/l = argmin
δ∈Rp

∥∥φ (X l
)
− Jlδ

∥∥2
Σ

(23)

where Jl is defined as:

Jl = −
dφ
(
exp∧G (s)X l

)
ds

∣∣∣∣
s=0

(24)

Assuming that Jl has full column rank, the minimizer
of (23) is:

δl+1/l =
(
Jl
TΣ−1Jl

)−1
Jl
TΣ−1φ

(
X l
)

(25)

The current value of the parameters is finally updated
as follows:

X l+1 = exp∧G
(
αlδl+1/l

)
X l (26)

where 0 < αl ≤ 1 is a step size.
At convergence, we take X̂ = X l.
The approach described here will be employed in

the next section to derive the update step of the novel
filter we present in this paper.
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5 Iterated Extended Kalman Filter on Lie
Groups

From the concept of concentrated Gaussian distribu-
tion on Lie groups, the intrinsic Gauss-Laplace approx-
imation and the LG-GN algorithm introduced in the
previous sections, we derive a new filter called Iterated
Extended Kalman Filter on Lie Groups (LG-IEKF).

5.1 Proposed System Model

In order to derive our novel filter, we first introduce a
prediction model that describes the dynamical behavior
of the stateXk ∈ G we wish to estimate, where k stands
for the time. Then we propose a measurement model
that relates Xk to the measurement Zk ∈ G′.

5.1.1 Prediction Model

Let the system state be modeled as satisfying the fol-
lowing equation:

Xk = exp∧G (nk) f (Xk−1) (27)

where Xk ∈ G, Xk−1 ∈ G and nk ∼ NRp (nk;0p×1, Rk)

is a white Gaussian noise. f : G → G is a differen-
tiable function. The prediction model that we consider
induces the following conditional distribution:

p (Xk|Xk−1) = NR
G (Xk; f (Xk−1) , Rk) (28)

This model is more generic than the one studied in [18]
and thus allows us to deal with a larger class of prob-
lems (see section 6).
In order to simplify the notations, we have assumed
w.l.o.g that the Lie groups Gk and Gk−1, on which Xk

andXk−1 evolve respectively, are the same Lie group G.
In practice, we will allow them to be different in order
to augment the size of the state during prediction5 (see
Section 6.2.2).

5.1.2 Measurement Model

We consider discrete measurements Zk on G′ related to
Xk as follows:

Zk = exp∧G′ (wk)h (Xk) (29)

where wk ∼ NRq (wk;0q×1, Qk) is a white Gaussian
noise and h : G→ G′ is a differentiable function. More-
over, nk and wk are assumed to be independent.
The measurement model, that we consider, induces the
following conditional distribution:

p (Zk|Xk) = NR
G′ (Zk;h (Xk) , Qk) (30)

5 Augmenting the size of the state during the prediction
step is sometimes called “smoothing” and not “filtering” in
the literature.

5.2 Objective

We propose to approximate the state posterior distri-
bution with a concentrated Gaussian distribution on
Lie groups: p (Xk|Z1, . . . , Zl) ≈ NR

G

(
Xk;µk|l, Pk|l

)
. We

focus on l = k − 1 (prediction) and l = k (update).
Therefore, the aim of the LG-IEKF is to predict and
update the distribution parameters µk|k and Pk|k. In
our formalism, µk|k is taken as the state estimate at
time k.

5.3 LG-IEKF Prediction

We assume that the state posterior distribution at time
k − 1 is represented by:

p (Xk−1|Z1, . . . , Zk−1) = NR
G

(
Xk−1;µk−1|k−1, Pk−1|k−1

)
(31)

The aim of this section is to show how to fit a concen-
trated Gaussian distribution to the posterior distribu-
tion of the predicted state:

p (Xk|Z1, . . . , Zk−1)

=

ˆ
p (Xk|Xk−1) p (Xk−1|Z1, . . . , Zk−1) dHXk−1 (32)

≈NR
G

(
Xk;µk|k−1, Pk|k−1

)
(33)

In order to estimate µk|k−1 and Pk|k−1, we propose
to apply an intrinsic Gauss-Laplace approximation (see
Section 3) to the integrand of (32) and then to marginal-
ize Xk−1.

5.3.1 Mean Prediction

In order to predict the mean, we minimize the negative
log-likelihood of (32):{
X̂k, X̂k−1

}
=

argmin
Xk∈G,Xk−1∈G


∥∥∥log∨G (Xkf (Xk−1)

−1
)∥∥∥2

Rk

+
∥∥∥log∨G (Xk−1µ

−1
k−1|k−1

)∥∥∥2
Pk−1|k−1


(34)

A trivial minimizer of this problem is X̂k−1 = µk−1|k−1
and X̂k = f

(
µk−1|k−1

)
. We finally take:

µk|k−1 = X̂k = f
(
µk−1|k−1

)
(35)
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5.3.2 Covariance Prediction

Concerning the covariance prediction, we apply the in-
trinsic Gauss-Laplace approximation formula (20).

By linearizing the error function inside the squared
Mahalanobis norm in (34) around its minimizer, we ob-
tain:

−log (p (Xk|Xk−1) p (Xk−1|Z1, . . . , Zk−1))

≈
∥∥∥∥[ Id −Fk0 Id

] [
δk
δk−1

]∥∥∥∥2
Σ

(36)

where Xk−1 = exp∧G (δk−1)µk−1|k−1 and
Xk = exp∧G (δk) f

(
µk−1|k−1

)
. Moreover,

Σ =

[
Rk

Pk−1|k−1

]
(37)

and

Fk = −
dlog∨G

(
f
(
µk−1|k−1

)
f
(
exp∧G (s)µk−1|k−1

)−1)
ds

∣∣∣∣∣
s=0

(38)

Thus, according to equation (20), the covariance P can
be approximated by:

P =

([
Id −Fk
0 Id

]T
Σ−1

[
Id −Fk
0 Id

])−1
(39)

=

[
R−1k −R−1k Fk

−FTk R
−1
k FTk R

−1
k Fk + P−1k−1|k−1

]−1
(40)

=

[
FkPk−1|k−1F

T
k +Rk FkPk−1|k−1

Pk−1|k−1F
T
k Pk−1|k−1

]
(41)

where we employed the blockwise matrix inversion [8].
Under the concentrated Gaussian approximation, the
top left block of P in (41) corresponds to Pk|k−1. Thus,
we obtain the following covariance prediction formula:

Pk|k−1 = Rk + FkPk−1|k−1F
T
k (42)

5.3.3 Prediction step summary

The prediction step consists in propagating the mean
µk−1|k−1 and the covariance Pk−1|k−1 by using the pre-
diction model (27). At the end of the prediction step,
the concentrated Gaussian approximation of the poste-
rior is:

p (Xk|Z1, . . . , Zk−1) ≈ NR
G

(
Xk;µk|k−1, Pk|k−1

)
(43)

5.4 LG-IEKF Update

The aim of this section is to demonstrate how to fit
a concentrated Gaussian distribution to the posterior
distribution of the state, after having received the mea-
surement Zk, using an intrinsic Gauss-Laplace approx-
imation:

p (Xk|Z1, . . . , Zk)

∝p (Zk|Xk) p (Xk|Z1, . . . , Zk−1) (44)

≈NR
G

(
Xk;µk|k, Pk|k

)
(45)

5.4.1 Mean Update

In order to update the mean, we minimize the negative
log-likelihood of (44):

X̂k = argmin
Xk∈G


∥∥∥log∨G′ (Zkh (Xk)

−1
)∥∥∥2

Qk

+
∥∥∥log∨G (Xkµ

−1
k|k−1

)∥∥∥2
Pk|k−1

 (46)

To minimize this function, we propose to apply the LG-
GN algorithm described in Section 4. We introduce the
following notations: δl+1/l = log∨G

(
X l+1

(
X l
)−1), δl =

log∨G
(
X lµ−1k|k−1

)
and δl+1 = log∨G

(
X l+1µ−1k|k−1

)
where

X l denotes the parameters value at iteration l of the
LG-GN.

At iteration l, we seek the minimizer of the following
problem:

δl+1/l = argmin
δ∈Rp

∥∥∥log∨G′ (Zkh (X l
)−1)−Hlδ

∥∥∥2
Qk

+
∥∥δl + ϕG

(
δl
)
δ
∥∥2
Pk|k−1


= argmin

δ∈Rp

∥∥ψ (X l
)
− Ψlδ

∥∥2
Ξk

(47)

where we used (9). The matrix ϕG
(
δl
)
is defined in

(10),

Hl = −
dlog∨G′

(
Zkh

(
exp∧G (s)X l

)−1)
ds

∣∣∣∣∣
s=0

(48)

ψ
(
X l
)
=

[
log∨G′

(
Zkh

(
X l
)−1)T (

δl
)T ]T (49)

Ψl =
[
HT
l −ϕG

(
δl
)T ]T (50)

and

Ξk =

[
Qk 0

0 Pk|k−1

]
(51)

For the sake of brevity, the inverse of the left Jacobian
of G is denoted ϕG

(
δl
)
≡ ϕl and Φl = ϕ−1l .
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The minimizer of (47) is given by:

δl+1/l =
(
ΨTl Ξ

−1
k Ψl

)−1
ΨTl Ξ

−1
k ψ

(
X l
)

=
(
HT
l Q
−1
k Hl + ϕTl P

−1
k|k−1ϕl

)−1 {
HT
l Q
−1
k

log∨G′
(
Zkh

(
X l
)−1)− ϕTl P−1k|k−1δ

l
}

(52)

We now demonstrate (see Appendix A.1) that, neglect-
ing second order terms in δl+1/l, it is possible to obtain
a generalization of the IEKF mean update equation [5]
to Lie groups:

δl+1 = Kl

{
log∨G′

(
Zkh

(
X l
)−1)

+HlΦlδ
l
}

(53)

where Kl is a gain that we call Lie-Kalman gain (see
Appendix A.2) and is defined as:

Kl = Pk|k−1Φ
T
l H

T
l

(
HlΦlPk|k−1Φ

T
l H

T
l +Qk

)−1
(54)

Note that this Lie-Kalman gain is a generalization of
the Kalman gain [5] to Lie groups. To the best of our
knowledge, it is the first time that this expression is
derived.

Moreover (53) can be simplified:

Φlδ
l = ΦG

(
δl
)
δl =

∞∑
n=0

1

(n+ 1)!
adG

(
δl
)n
δl = δl (55)

since

adG
(
δl
)
δl = 0 (56)

Finally, the current value of the parameters can be up-
dated as follows:

X l+1 = exp∧G
(
δl+1/l

)
X l (57)

≈ exp∧G
(
Kl

{
log∨G′

(
Zkh

(
X l
)−1)

+Hlδ
l
})

µk|k−1

(58)

At convergence, we take µk|k = X̂k.

5.4.2 Covariance Update

In order to estimate the updated covariance, we ap-
ply the intrinsic Gauss-Laplace approximation formula
(20). To do so, we linearize the error function inside the
squared Mahalanobis norm in (46) around its minimizer
µk|k:

− log (p (Zk|Xk) p (Xk|Z1, . . . , Zk−1))

≈

∥∥∥∥∥
[
log∨G′

(
Zkh

(
µk|k

)−1)−Hlδ

δl + ϕlδ

]∥∥∥∥∥
2

Σ

(59)

where Σ =

[
Qk 0

0 Pk|k−1

]
, Xk = exp∧G (δ)µk|k and the

subscript l corresponds to the last iteration of the LG-
GN employed to update the mean. Thus, according to
equation (20), the covariance Pk|k can be approximated
by:

Pk|k =
(
HT
l Q
−1
k Hl + ϕTl P

−1
k|k−1ϕl

)−1
(60)

However, it is possible to show that (see Appendix A.3):

Pk|k = Φl (Id−KlHlΦl)Pk|k−1Φ
T
l (61)

which is a generalization of the IEKF covariance update
equation [5] to Lie groups.

5.4.3 Update step summary

The update step consists in updating the mean µk|k−1
and the covariance Pk|k−1 by incorporating the infor-
mation coming from the measurement Zk, by using the
measurement model (29). At the end of the update step,
the concentrated Gaussian approximation of the poste-
rior is:

p (Xk|Z1, . . . , Zk) ≈ NR
G

(
Xk;µk|k, Pk|k

)
(62)

5.5 Inlier test before update

The novel filter we propose is based on the classical
assumption that the measurement noise wk (see Sec-
tion 5.1) is a white Gaussian noise. This assumption
is convenient and allowed us to derive an efficient al-
gorithm. However, it also makes the LG-IEKF not re-
silient to outlier measurements (this is also a limitation
of Kalman filtering on Euclidean spaces [53]). Conse-
quently, we propose a statistical test on Lie groups to
detect and remove outliers.

A measurement Zk is an inlier if and only if:∥∥∥log∨G′ (Zkh (Xk)
−1
)∥∥∥2

Qk
< t (63)

where t is a threshold to define. However, the true value
Xk is unknown. We only have an approximation of the
posterior distribution of the state:

p (Xk|Z1, . . . , Zk−1) ≈ NR
G

(
Xk;µk|k−1, Pk|k−1

)
(64)

which can also be expressed as follows:

Xk = exp∧G
(
εk|k−1

)
µk|k−1 (65)

where εk|k−1 ∼ NRp
(
ε;0p×1, Pk|k−1

)
. Thus, we propose

a statistical inlier test on Lie groups w.r.t the current
estimate of Xk:∥∥∥log∨G′ (Zkh (µk|k−1)−1)∥∥∥2

Qerr
< t (66)
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where

Qerr = E
((
Hk|k−1εk|k−1 + wk

) (
Hk|k−1εk|k−1 + wk

)T)
= Hk|k−1Pk|k−1H

T
k|k−1 +Qk (67)

Indeed, from (29) and neglecting second order terms in
wk and εk|k−1, we have:

0 = log∨G′
(
Zkh (Xk)

−1 exp∧G′ (−wk)
)

' log∨G′
(
Zkh

(
exp∧G

(
εk|k−1

)
µk|k−1

)−1 exp∧G′ (−wk))
' log∨G′

(
Zkh

(
µk|k−1

)−1)−Hk|k−1εk|k−1 − wk (68)

where

Hk|k−1 = −
dlog∨G′

(
Zkh

(
exp∧G (s)µk|k−1

)−1)
ds

∣∣∣∣∣
s=0

(69)

Thus, under the concentrated Gaussian assumption, the
LHS of (66) is distributed according to the chi-squared
distribution with q degrees of freedom, since G′ is a q-
dimensional Lie group. Consequently, one way to decide
whether Zk is an inlier is to define a threshold based
on the p-value of χ2 (q) [27]. Note that since we ne-
glected second order terms, this theoretical threshold is
possibly restrictive.

5.6 Summary of the LG-IEKF and remarks

The LG-IEKF algorithm is summarized in Alg.1.

Remark 1Employing the LG-GN allowed us to itera-
tively refine the linearization point during the update
step contrary to the Extended Kalman Filter on Lie
Groups (LG-EKF), proposed in [18], that performs only
one linearization. In this sense, the LG-EKF is a spe-
cial case of the LG-IEKF proposed in this paper. Note
that the prediction model we use in this paper is more
generic than the one employed in [18].

Remark 2The models (27) and (29) as well as the algo-
rithm Alg.1 reduce to the traditional models and algo-
rithm of the IEKF in the case of a state and measure-
ments evolving on Euclidean spaces. In this sense, the
LG-IEKF generalizes the IEKF to Lie groups.

Algorithm 1 LG-IEKF Algorithm

Inputs : µk−1|k−1, Pk−1|k−1, Zk, Qk, Rk, t (optional)

Outputs : µk|k, Pk|k

1) Prediction

µk|k−1 = f
(
µk−1|k−1

)
Pk|k−1 = FkPk−1|k−1F

T
k +Rk

where Fk = −
dlog∨

G

(
f(µk−1|k−1)f(exp∧

G
(s)µk−1|k−1)

−1
)

ds

∣∣∣∣∣
s=0

2) Inlier Test (optional)∥∥∥log∨G′ (Zkh (µk|k−1

)−1
)∥∥∥2
Qerr

< t

where Qerr = Hk|k−1Pk|k−1H
T
k|k−1 +Qk

and Hk|k−1 = −
dlog∨

G′

(
Zkh(exp∧

G
(s)µk|k−1)

−1
)

ds

∣∣∣∣∣
s=0

3) Update (if 2) is satisfied)

Set X0 = µk|k−1 and δ0 = 0p×1

Iterate until convergence:

Kl = Pk|k−1Φ
T
l H

T
l

(
HlΦlPk|k−1Φ

T
l H

T
l +Qk

)−1

δl+1 = Kl
{
log∨G′

(
Zkh

(
Xl
)−1

)
+Hlδl

}
Xl+1 = exp∧G

(
δl+1

)
µk|k−1

where Hl = −
dlog∨

G′

(
Zkh(exp∧

G
(s)Xl)

−1
)

ds

∣∣∣∣∣
s=0

ϕl ≡ ϕG
(
δl
)
is the inverse of the left Jacobian of G and

Φl = ϕ−1
l .

At convergence:

µk|k = Xl

Pk|k = Φl (Id−KlHlΦl)Pk|k−1Φ
T
l

Fk, Hk|k−1 and Hl are Jacobian matrices which
expressions depend on the application.

6 Application To Relative Motion Averaging

Here we apply the generic LG-IEKF algorithm to the
problem of estimating global transformations from noisy
relative transformation measurements6, a.k.a relative
motion averaging.

Such a problem occurs for instance in the context
of consistent pose registration [2] encountered in 3D
localization, structure from motion or camera network
calibration. In this case, a motion or transformation is
a rigid body transformation matrix (SE(3)). Thus, the

6 The Matlab code is available at
https://sites.google.com/site/guillaumebourmaud/
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relative measurements correspond to the rigid trans-
formations between two camera poses and the global
motions we wish to estimate are the rigid transforma-
tion matrices between a reference camera pose and all
the other camera poses.

In our context, a transformation is defined as an
element of a Lie group. Consequently, the solution we
propose can be applied to several other problems such
as the synchronization of rotations problem (SO(3))
[13], image mosaicing (SL(3)) [50] or the partial 3D
reconstruction merging problem (Sim(3)) [64].

6.1 Objective

We aim at estimating global transformations {TiR}i=1:N ,
where each global transformation TiR ∈ G′ is defined
as the transformation between a main reference frame
(RF) R and a RF i, and G′ is a q-dimensional Lie group.

We consider the case where the noises on the relative
transformation measurements {Yij}1≤i<j≤N are mutu-
ally independent. Each Yij ∈ G′ denotes a noisy relative
transformation between a RF j and a RF i expressed
as follows:

Yij = exp∧G′
(
biij
)
TiRT

−1
jR (70)

where biij ∼ NRq
(
biij ;0q×1, Σ

i
ij

)
is a white Gaussian

noise. The problem is illustrated in Fig. 3a. Note that
(70) is invariant w.r.t the right action of G′. Indeed,
TiRM (TjRM)

−1
= TiRT

−1
jR for any M ∈ G′. In the

context of consistent pose registration, it simply means
that rotating and translating all the camera poses does
not affect the relative measurements.

6.2 Case 1: Outlier Free Estimation

In this section, we consider the case where the measure-
ments are outlier free.

6.2.1 State of the Art

A large amount of works addressing the problem tackled
in this section has been previously published. However,
they usually do not intrinsically take into account the
Lie group structure and are tailored to specific applica-
tions such as:
-Relative orientation averaging (Lie group SO(3), or
SU (2) for unitary quaternion), a.k.a multiple rotation
averaging [34], a.k.a synchronization of rotations [14].
In [29] and [49], in order to obtain a closed-form solu-
tion that only requires solving a large linear system of
equations, the Lie group geometry of SU (2) and SO(3)

(a) Graphical representa-
tion of the problem

(b) LG-IEKF Initialization

(c) LG-IEKF First Predic-
tion

(d) LG-IEKF First Update

Fig. 3: Illustration of the relative motion averaging
problem: dashed observations (Yij with j > i + 1)
are used as measurements during the LG-IEKF update
step. Temporally consecutive observations (Yi (i+1) for
i = 1...N−1) are used as control inputs during the LG-
IEKF prediction step in order to guide the estimation
process.

respectively are overlooked. [28] formulates the problem
as [29], but the Lie group constraints of SU (2) are ex-
trinsically taken into account using Lagrangian duality.
-Relative Euclidean motion (Lie group SE(3)) averag-
ing, a.k.a camera pose registration problem. In [2], a
Euclidean motion is parametrized as an element of the
Lie algebra se (3) of SE(3), which is a vector space,
in order to formulate the problem into a classical non-
linear unconstrained Euclidean minimization problem.
However, this parametrization causes problems at the
boundary of the Lie algebra. [30] proposes an iterative
algorithm that intrinsically takes into account the Lie
group structure of SE(3). Nevertheless, the minimized
criterion is not invariant (w.r.t the left and right ac-
tion of the Lie group on itself) while the measurement
model is invariant to the action of SE(3).
-Relative homography (Lie group SL(3)) averaging, a.k.a
image mosaicing. In [19], an Euclidean Extended Kalman
Filter is derived for which the Lie group constraints are
extrinsically taken into account using a reprojection af-
ter each iteration. [50] derives an iterative algorithm
based on a matrix exponential update rule. However
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they do not completely take advantage of the Lie group
structure of SL(3). In order to obtain a closed-form so-
lution to the problem, [40] performs a relaxation where
the Lie group constraints of SL(3) are not considered.

6.2.2 Implementation of the LG-IEKF

In order to apply the LG-IEKF to the relative motion
averaging problem, we need to specify the prediction
and update models.

However, before detailing these models, let us de-
scribe the way the observations {Yij}1≤i<j≤N are used.

We distinguish the temporally consecutive observa-
tions (Yi (i+1) for i = 1...N −1) from the other observa-
tions (Yij with j > i+1). Indeed, in order to guide the
estimation process, the temporally consecutive observa-
tions are used as control inputs in the prediction steps
(see Section 6.2.3). The other observations are used as
measurements in the update steps (see Section 6.2.4).
A graphical example of the prediction and update steps
is proposed in Fig.3.

6.2.3 Prediction model

As explained in Section 5.1.1, during the LG-IEKF deriva-
tion, we have assumed w.l.o.g that the Lie groups Gk
and Gk−1, on which Xk and Xk−1 evolve respectively,
are the same Lie group G. For this application, we al-
low them to be different in order to augment the size of
the state during prediction. Thus, at time instant k −
1, the state Xk−1 contains the global transformations
T1R, T2R, ..., T(k−1)R, TkR, while at time k, the state Xk

contains the global transformations
T1R, T2R, ..., T(k−1)R, TkR, T(k+1)R.

Consequently, Gk = G′ × G′ × · · · × G′, i.e k + 1

direct products of G′.
More precisely, the prediction step that we propose

augments the size of the state by duplicating the global
motion TkR and propagating it using the control input
Y(k+1) k = Y −1k (k+1) in order to predict T(k+1)R. Thus we
consider the following prediction model:

Xk =

[
exp∧G′

(
bk+1
(k+1)k

)
Y(k+1) k (Xk−1)kR 0

0 Xk−1

]
(71)

=exp∧Gk

([
bk+1
(k+1)k

0

])[
Y(k+1) k 0

0 Id

][
(Xk−1)kR 0

0 Xk−1

]
(72)

where the notation (Xk−1)kR corresponds to extracting
the global motion component TkR from the state Xk−1.
bk+1
(k+1)k ∼ NRq

(
bk+1
(k+1)k;0q×1, Σ

k+1
(k+1)k

)
is a white Gaus-

sian noise.

As can be seen, eq.(72) has the form of (27) where

f (Xk−1) =

[
Y(k+1) k 0

0 Id

] [
(Xk−1)kR 0

0 Xk−1

]
and

nk =

[
bk+1
(k+1)k

0

]
. As a consequence, the LG-IEKF pre-

diction equations can be applied.

6.2.4 Update model

The measurement model we consider corresponds to.

Zk = Yi (k+1) = exp∧G′
(
bii(k+1)

)
(Xk)iR (Xk)

−1
(k+1)R

(73)

where i < k and bii(k+1) ∼ NRq
(
bii(k+1);0q×1, Σ

i
i(k+1)

)
is a white Gaussian noise.

As can be seen, eq.(73) has the form of (29), where
wk = bii(k+1) and h (Xk) = (Xk)iR (Xk)

−1
(k+1)R. As a

consequence, the LG-IEKF update equations can be
applied.

Note that if several measurements Yi (k+1), for all
i < k, are available, then we concatenate them in order
to have a single measurement equation.

6.2.5 Application of the LG-IEKF prediction step

In order to apply the LG-IEKF prediction step to (72),
we need to compute Fk (see eq.(38)). We obtain (see
Appendix B.1):

Fk =

[
AdG′

(
Y(k+1) k

)
0

0 Id

] [
0 Id 0

Id

]
(74)

where we introduced the adjoint representation
AdG′ (·) ⊂ Rq×q of G′ on Rq that enables us to trans-
form an increment εiij ∈ Rq, that acts onto an ele-
ment Yij through left multiplication, into an increment
εjij ∈ Rq, that acts through right multiplication:

exp∧G′
(
εiij
)
Yij = Yijexp∧G′

(
AdG′

(
Y −1ij

)
εiij
)

(75)

6.2.6 Application of the LG-IEKF update step

In order to apply the LG-IEKF update step to (73),
we need to compute Hl (see eq.(48)). We obtain (see
Appendix B.2):

Hl =
[
0 Id 0 −AdG′

((
X l
)
iR

(
X l
)−1
(k+1)R

)
0
]

(76)

In our implementation, ϕl and Φl are approximated
by the identity matrix. Also, since we consider the case
where the measurements are outlier free, the inlier test
(Step 2 in Alg.1) is skipped.
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Fig. 4: Computational time and Residual errors for dif-
ferent number of global motions (N). The number of
relative motions is fixed to N + n (in our experiments
n = 30).

6.2.7 Results on Simulated Data for the Camera Pose
Registration Problem

We compare the proposed approach to state of the art
algorithms on a camera pose registration problem, i.e
global Euclidean motion (Lie group SE(3)) estimation
from relative measurements.

The explicit definitions of exp∧SE(3), log
∨
SE(3) and AdSE(3)

can be found in [57].
The data are simulated using the generative model

proposed in (70).
We consider 6 different algorithms:

-“Chain”: it composes the temporally consecutive rel-
ative measurements to obtain the global motions

-“Euc-GN Lie Algebra”: algorithm proposed in [2] (Agrawal
et al.)

-“GN Non Invariant”: algorithm proposed in [30] (Govindu)

-“LG-GN”: LG-GN derived in Section 4 minimizing

∑
i,j

∥∥∥log∨SE(3) (YijTjRT−1iR

)∥∥∥2
Σiij

(77)

-“LG-IEKF”: LG-IEKF derived in Section 5

-“LG-EKF”: modified version of the algorithm proposed
in [18] (Bourmaud et al.) which actually corresponds to
applying the LG-IEKF with only one iteration at each
update step

In order to fairly compare the algorithms [30], [2]
and the LG-GN to the LG-IEKF, they are applied in-
crementally since it guides the estimation process and
reduces the chance of falling in a poor local minimum.
All the algorithms are coded in Matlab and tested with
the following configuration: core I5 4x2.27GHz, 4GB,
Linux 64 bits.

We simulate circular camera trajectories (see Fig.6)
with N cameras. In order to compare the results of each
approach to the true global motions, we need to add a
step to align the estimated global motions with the true
global motions. For that purpose, we choose to employ
another LG-GN to minimize the sum of the following er-

ror function:
∥∥∥log∨SE(3) (µiRTRRTrueT−1iRTrue

)∥∥∥2. The fi-
nal error of this LG-GN obtained for each approach as
well as the computational time are presented in Fig.4.

Results show that the LG-IEKF, which considers
invariant errors, performs significantly better than the
state of the art algorithms [2] and [30].

Indeed, the parametrization used in [2] causes issues
at the boundary of the Lie algebra, while [30] does not
consider an invariant error function and thus does not
fully exploit the geometry of the problem. For these rea-
sons, [2] and [30] frequently fall into poor local minima.

As expected, the LG-GN, which is a batch optimiza-
tion, performs slightly better than the LG-IEKF. How-
ever, the LG-IEKF has a much lower computational
time. Finally, one can see that the LG-IEKF, that iter-
atively refines its linearization point, outperforms the
LG-EKF.

6.3 Case 2: Estimation in the presence of outliers

In this section, we consider the case where the measure-
ments are corrupted with outliers and compare the per-
formances of the proposed LG-IEKF against the state
of the art algorithms able to deal with outliers. As we
will see in the experimentations on real data, the outlier
measurements are usually due to duplicated structures
in the environment [55].

6.3.1 State of the Art

A large amount of works has been recently devoted to
specifically dealing with multiple rotation averaging in
the presence of outliers. This problem is also known as
synchronization of rotations in the mathematics com-
munity and is usually tackled by minimizing a given
criterion. In [3] and [58], spectral relaxations of the
problem are proposed while [13] uses their results as ini-
tialization for a second order Riemannian trust-region
algorithm to compute a local maximizer. [65] derives
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Fig. 5: Estimation error of the global motions for our
approach, Chatterjee et al. [20] and Roberts et al. [55]
on a camera pose estimation problem (λ = 1

10 and num-
ber of relative motions fixed to 5N + n with n = 60).

an algorithm that exactly estimates the global rota-
tions when a subset of the measurements are perfect
and outperforms [58]. In [33] and [20], two robust iter-
ative algorithms, based on L1 and L1-L2 minimization
criterion, respectively, are devised. However, the consid-
ered error functions are not convex and consequently
need a good initialization such as [65] to avoid poor
local minima. Finally, [22] proposes a discretization of
SO(3) to apply a loopy belief propagation algorithm on
the resulting Markov random field.

The works [25], [37] and [51] are also relevant for the
multiple rotation averaging problem. However, they are
specifically tailored for SO(3) and it is not straightfor-
ward to apply them to other Lie groups.

To the best of our knowledge, only one approach
[55] was proposed to deal with the generic problem of
global motion estimation from relative measurements in
the presence of outliers. An Expectation Maximization
(EM) algorithm is proposed, introducing latent vari-
ables to classify the measurements as inliers or outliers.

6.3.2 Implementation of the LG-IEKF

In order to apply the LG-IEKF, we assume that the
temporally consecutive observations (Yi (i+1) for i =

1...N − 1) are not corrupted with outliers. This as-
sumption might appear restrictive, however, for image
sequences for example, it is usually satisfied (see Sec-
tions 6.3.4 and 6.3.5). Indeed, relative transformations
computed between consecutive images usually do not
produce outlier measurements.

The LG-IEKF we apply is the same than the one
derived in Section 6.2.2. Nevertheless, this time the in-

(a) True trajectory (b) Result of [20]

(c) Result of [55] (d) This paper

Fig. 6: Camera pose registration problem results, a cone
represents a camera pose, a black line is an inlier mea-
surement and a gray dashed line is an outlier

lier test (Step 2 in Alg.1) is not skipped because of the
presence of outlier measurements.

6.3.3 Results on Simulated Data for the Camera Pose
Registration Problem

We compare the performance of the LG-IEKF to two
state of the art algorithms [55] and [20] on a camera
pose registration problem (Lie group SE(3)) with out-
liers. [20] was developed to deal with SO(3) but its
extension to SE(3) is straightforward. We simulate cir-
cular camera trajectories (see Fig.6) with N cameras
where each camera TiRTrue has a timestamp ti and we
generate noisy relative motions as follows: first of all, a
measurement can be either an inlier or an outlier (ex-
cept temporally consecutive relative measurements that
are always inliers). We model the probability of a mea-
surement to be an inlier as
P (Zij is inlier) = exp (−λ |ti − tj |) where λ is a user-
chosen parameter, i.e a larger time difference increases
the chance to produce an outlier. After having drawn
the label of a measurement (inlier or outlier), we sample
the measurement. The distribution of the independent
outliers is modeled as a centered Gaussian distribution
on Lie groups with a large covariance matrix (the large
covariance is not a problem in this case since log∨SE(3)
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is defined on the whole group) while an inlier can be
sampled using (70).

In Fig.5, we compare the proposed method (LG-
IEKF with inlier test) against the robust approach pro-
posed in [20] and the Expectation Maximization al-
gorithm (EM) of [55]. [20] and [55] are initialized by
composing the temporally consecutive relative measure-
ments as it is proposed by the authors of those papers.
As in Section 6.2.7, in order to compare the results
of each approach to the true global motions, we align
the estimated global motions with the true global mo-
tions using an LG-GN. The error obtained, for each
approach, at convergence of the LG-GN is presented in
Fig.5. We show that our method outperforms both [20]
and [55]. Indeed, [20] is based on a robust convex L2-L1
norm to mitigate the influence of the outliers. However,
because of the Lie group curvature, the complete func-
tional is not convex. Therefore, the algorithm usually
gets stuck in a poor local minimum. [55] introduces la-
tent variables to classify the relative motions as inliers
or outliers. However, the labels obtained at the initial-
ization of the global motions are very difficult to modify.
Indeed, the E-step does not take into account the es-
timation errors of the current global motion estimates
which is negligible only when N is small. Therefore, a
lot of inliers remain classified as outliers. In comparison,
our approach incrementally rejects outliers, taking into
account the current uncertainty of the global motions,
and refines its estimate with the inliers. Consequently,
the global motions are correctly recovered. An exam-
ple of recovered global motions with the three different
approaches is presented in Fig.6.

6.3.4 Results on Real Data for the Partial 3D
reconstruction merging problem

In this section, the LG-IEKF is applied to a partial 3D
reconstruction merging problem (Lie group Sim(3)).
The experimental setup is the following: the camera
is hand-held and evolves around two duplicated objects
(the position of the camera is the same at the beginning
and at the end of the video). We split the video in sev-
eral (half-overlapping) parts. For each part, we applied
a SLAM algorithm similar to [41] and obtained a 3D
point cloud of the scene as well as the camera poses.
We estimated the 3D similarities (Lie group Sim(3))
between every pair of point clouds using a RANSAC
algorithm followed by a LG-GN algorithm on Sim(3).
The covariance matrix of each relative motion is ob-
tained by applying an intrinsic Gauss-Laplace approx-
imation.

In Fig.7, we compare the results of our approach to
the EM algorithm of [55] and the method of [20]. For

(a) Examples of input images of the video sequence.
Note that the first and last frames are the same since
the position of the camera is the same at the beginning
and at the end of the video.
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(b) Ground Truth : labeling
matrix manually annotated

(c) [20] : aligned camera
poses of the video sequence
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(d) [55] : (left) labeling matrix, (right) aligned camera
poses of the video sequence
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(e) This paper : (left) labeling matrix, (right) aligned
camera poses of the video sequence

Fig. 7: Wearable camera experiment: in the labeling
matrices a white pixel corresponds to an inlier, a black
pixel corresponds to an unavailable measurement, a
gray pixel corresponds to an outlier. In the results, a
cone represents the pose of a camera. The first camera
position of the video sequence is dark red and the last
camera position is bright red.
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each algorithm, we provide the camera trajectory ob-
tained by aligning the camera poses of each reconstruc-
tion with the estimated global 3D similarities. Both [55]
and [20] are initialized by composing the control inputs
relative similarities.

In order to qualitatively compare the results, we
manually annotated the 3D similarity measurements ei-
ther as inlier or as outlier. Additionally, the position of
the camera is the same at the beginning and at the
end of the video, thus the first and the last estimated
camera pose should be perfectly superimposed.

On the one hand, both the EM algorithm of [55]
and the method of [20] remains stuck in a poor local
minimum. Indeed, the first and the last camera poses
are far from being superimposed and a lot of inliers are
classified as outliers by [55] (see Fig.7d). On the other
hand, our approach perfectly infers the set of inliers (see
Fig.7e) while the first camera pose and the last one are
almost perfectly superimposed.

6.3.5 Results on Real Data for the Automatic planar
image mosaicking problem

In this section, the LG-IEKF presented in this paper is
applied to an automatic planar image mosaicking prob-
lem. We took 53 photos of a planar scene (see Fig.8a)
with a smartphone, detected points of interest and es-
timated the homographies (Lie group SL(3)) between
every pair of images using a RANSAC algorithm fol-
lowed by a LG-GN algorithm on SL(3). The covariance
matrix of each relative motion is obtained by apply-
ing an intrinsic Gauss-Laplace approximation. In our
implementation, we use the Lie algebra basis of sl (3)
given in [6]. In this dataset, there are 65% of outliers
(see Fig.8b) due to the ambiguity of the scene (some
paper sheets are almost identical). Note that the rela-
tive homography between image 43 and image 44 is not
available. Instead, we employ the relative homography
between image 43 and image 45 as control input.

In Fig.8, we compare the results of our approach
against the EM algorithm of [55] which is initialized
by composing the control inputs relative homographies.
On the one hand, once again, the proposed EM of [55]
classifies a lot of inliers as outliers since the estima-
tion errors of the global motions estimates is not taken
into account during the E-step. Consequently, [55] is
not able to correctly recover the global motions (see
Fig.8c). On the other hand, our approach perfectly in-
fers the set of inliers and produces a mosaic visually
close to the ground truth (see Fig.8d).

We could not apply [20] because log∨SL(3) is not de-
fined on the whole group.

(a) Examples of input images
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(b) Ground Truth : (left) labeling matrix manually an-
notated, (right) scene overview
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(c) [55] : (left) labeling matrix, (right) mosaic of input
images
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(d) This paper : (left) labeling matrix, (right) mosaic of
input images

Fig. 8: Image mosaicking results: in the labeling ma-
trices a white pixel corresponds to an inlier, a black
pixel corresponds to an unavailable measurement, a
gray pixel corresponds to an outlier.

7 Conclusion

In this paper, we proposed a generic Iterated Extended
Kalman Filter on Lie Groups (LG-IEKF) that allows
to perform parameter estimation when the state and
the measurements evolve on Lie groups. This novel fil-
ter extends the link between the minimization of non
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linear least squares criteria and the Iterated Extended
Kalman Filter [5, 9] to Lie groups.

For this purpose, we first presented a fitting ap-
proach, called intrinsic Gauss-Laplace approximation,
that allows to fit a concentrated Gaussian distribution
on Lie groups to the probability density of a random
variable evolving on a Lie group.

Since this fitting technique requires to find the min-
imizer of an intrinsic non linear least squares criterion,
we presented a generic intrinsic GN algorithm on Lie
groups, called LG-GN. This optimization algorithm has
the advantage of taking intrinsically into account the
geometry of the Lie group on which the parameters
evolve.

Then, we showed that a generalization of the IEKF,
to the case where the state and the observations evolve
on Lie groups, can be obtained by employing intrinsic
Gauss-Laplace approximations both to derive the LG-
IEKF prediction step and the LG-IEKF update step
(which involves the LG-GN algorithm). For each of these
two steps, we were able to obtain a computationally ef-
ficient algorithm, by exploiting the specific structure of
the problem.

Finally, we derived a statistical test on Lie groups
to detect and remove outlier measurements.

In order to demonstrate the efficiency of the LG-
IEKF, it has been applied to relative motion averaging
problems for three Lie groups of interest. In each of
these applications, the proposed approach significantly
outperforms the state of the art algorithms.

Since this novel filter was derived for generic predic-
tion and measurement models on Lie groups, it can be
applied to a large class of problems.

Future work will consider its use in localization from
a wearable camera in a known 3D environment as well
as in visual odometry [7].

A Derivation of the LG-IEKF

A.1 Derivation of δl+1

Here, we derive the expression of the δl+1 in (53):

δl+1 = log∨G
(
Xl+1

(
Xl
)−1

Xlµ−1
k|k−1

)
= log∨G

(
exp∧G

(
δl+1/l

)
exp∧G

(
δl
))

' ϕlδl+1/l + δl

= ϕl
(
HTl Q

−1
k Hl + ϕTl P

−1
k|k−1ϕl

)−1

{
HTl Q

−1
k log∨G′

(
Zkh

(
Xl
)−1

)
− ϕTl P

−1
k|k−1δ

l
}
+ δl

= ϕl
(
HTl Q

−1
k Hl + ϕTl P

−1
k|k−1ϕl

)−1

{
HTl Q

−1
k log∨G′

(
Zkh

(
Xl
)−1

)
− ϕTl P

−1
k|k−1δ

l

+
(
HTl Q

−1
k Hl + ϕTl P

−1
k|k−1ϕl

)
Φlδ

l
}

= ϕl
(
HTl Q

−1
k Hl + ϕTl P

−1
k|k−1ϕl

)−1

HTl Q
−1
k

{
log∨G′

(
Zkh

(
Xl
)−1

)
+HlΦlδ

l
}

= Kl
{
log∨G′

(
Zkh

(
Xl
)−1

)
+HlΦlδ

l
}

(78)

where Kl is the Lie-Kalman gain derived in Appendix A.2.

A.2 Lie-Kalman Gain Derivation

Here, we derive the expression of the Lie-Kalman gain (54)
(the superscripts and underscripts are omitted):

K = ϕ
(
HTQ−1H + ϕTP−1ϕ

)−1
HTQ−1

= ϕ
(
HTQ−1H + ϕTP−1ϕ

)−1(
HTQ−1

(
HΦPΦTHT +Q

) (
HΦPΦTHT +Q

)−1
)

= ϕ
(
HTQ−1H + ϕTP−1ϕ

)−1((
HTQ−1HΦPΦTHT +HT

) (
HΦPΦTHT +Q

)−1
)

= ϕ
(
HTQ−1H + ϕTP−1ϕ

)−1(((
HTQ−1H + ϕTP−1ϕ

)
ΦPΦTHT

) (
HΦPΦTHT +Q

)−1
)

= PΦTHT
(
HΦPΦTHT +Q

)−1 (79)

A.3 Covariance Update Derivation

Here, we derive the expression of the Pk|k in (61) (the super-
scripts and underscripts are omitted):

Pk|k =
(
HTQ−1H + ϕTP−1ϕ

)−1

=
(
HTQ−1H + ϕTP−1ϕ

)−1{(
HTQ−1H + ϕTP−1ϕ

)
ΦPΦT −HTQ−1HΦPΦT

}
= ΦPΦT −

(
HTQ−1H + ϕTP−1ϕ

)−1
HTQ−1HΦPΦT

= ΦPΦT − ΦKHΦPΦT

= Φ (Id−KHΦ)PΦT (80)

where K is defined in (79).
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B Relative Motion Averaging

B.1 Derivation of Fk

From (38) and (72), we have:

log∨Gk

(
f
(
µk−1|k−1

)
f
(
exp∧Gk−1

(δ)µk−1|k−1

)−1
)

=log∨Gk

([
Y(k+1) k 0
0 Id

][ (
µk−1|k−1

)
kR

0
0 µk−1|k−1

]
([
Y(k+1) k 0
0 Id

] [
exp∧G′ (δkR)

(
µk−1|k−1

)
kR

0
0 exp∧Gk−1

(δ)µk−1|k−1

])−1
)

=log∨Gk

([
Y(k+1) k 0
0 Id

][ (
µk−1|k−1

)
kR

0
0 µk−1|k−1

]
([
Y(k+1) k 0
0 Id

]
exp∧Gk

([
δkR
δ

])[ (
µk−1|k−1

)
kR

0
0 µk−1|k−1

])−1
)

=log∨Gk

([
Y(k+1) k 0
0 Id

]
exp∧Gk

(
−
[
δkR
δ

])[
Y −1
(k+1) k 0

0 Id

])
=log∨Gk

([
Y(k+1) k 0
0 Id

]
exp∧Gk

(
−
[
0 Id 0
Id

]
δ

)[
Y −1
(k+1) k 0

0 Id

])
=−

[
AdG′

(
Y(k+1) k

)
0

0 Id

] [
0 Id 0
Id

]
δ (81)

where we introduced the adjoint representation
AdG′ (·) ⊂ Rq×q of G′ on Rq that enables us to transform an
increment εiij ∈ Rq, that acts onto an element Yij through left
multiplication, into an increment εjij ∈ Rq, that acts through
right multiplication:

exp∧G′
(
εiij
)
Yij = Yijexp∧G′

(
AdG′

(
Y −1
ij

)
εiij

)
(82)

Consequently, from (81), we obtain:

Fk =−
dlog∨Gk

(
f
(
µk−1|k−1

)
f
(
exp∧Gk−1

(δ)µk−1|k−1

)−1
)

dδ

∣∣∣∣∣
δ=0

=

[
AdG′

(
Y(k+1) k

)
0

0 Id

] [
0 Id 0
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]
(83)

B.2 Derivation of Hl

From (48) and (73), we have:

log∨G′
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)
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where we approximated ϕ (·) (see (10)) by Id.

Consequently, from (84), we obtain:

Hl = −
dlog∨G′

(
Zkh

(
exp∧G (δ)Xl

)−1
)

dδ

∣∣∣∣∣
δ=0

'
[
0 Id0 −AdG′

((
Xl
)
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(
Xl
)−1

(k+1)R
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0
]

(85)
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