

PyTorch Deep Learning
Hands-On

Build CNNs, RNNs, GANs, reinforcement
learning, and more, quickly and easily

Sherin Thomas
with Sudhanshu Passi

BIRMINGHAM - MUMBAI

PyTorch Deep Learning Hands-On

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Andrew Waldron
Acquisition Editor - Peer Reviews: Suresh Jain
Project Editor: Tom Jacob
Development Editor: Joanne Lovell
Technical Editor: Gaurav Gavas
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Sandip Tadge, Tom Scaria
Production Coordinator: Sandip Tadge

First published: April 2019

Production reference: 2180719

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78883-413-1

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Mapt is fully searchable
• Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

Contributors

About the authors
Sherin Thomas started his career as an information security expert and shifted
his focus to deep learning-based security systems. He has helped several companies
across the globe to set up their AI pipelines and worked recently for CoWrks,
a fast-growing start-up based out of Bengaluru. Sherin is working on several
open source projects including PyTorch, RedisAI, and many more, and is leading
the development of TuringNetwork.ai. Currently, he is focusing on building the
deep learning infrastructure for [tensor]werk, an Orobix spin-off company.

I am indebted to a multitude of professionals who have influenced me
and motivated me to write this book. Among them are my colleagues
from CoWrks and my friends. I can't thank enough the technical
reviewers and editorial assistants. Without them, I would not have
been able to meet the deadlines. Last, and most importantly, I am
indebted to my wife, Merin. Writing a book along with a day job is
not easy, and without her, it would have been impossible.

Sudhanshu Passi is a technologist employed at CoWrks. Among other things, he
has been the driving force behind everything related to machine learning at CoWrks.
His expertise in simplifying complex concepts makes his work an ideal read for
beginners and experts alike. This can be verified by his many blogs and this debut
book publication. In his spare time, he can be found at his local swimming pool
computing gradient descent underwater.

I would like to thank Sherin for this opportunity to be a co-author on
this book. I would also like to thank my parents for their continuous
support throughout the years.

About the reviewers
Bharath G. S. is an independent machine learning researcher and he currently
works with glib.ai as a machine learning engineer. He also collaborates with mcg.
ai as a machine learning consultant. His main research areas of interest include
reinforcement learning, natural language processing, and cognitive neuroscience.
Currently, he's researching the issue of algorithmic fairness in decision making.
He's also involved in the open source development of the privacy-preserving
machine learning platform OpenMined as a core collaborator, where he works on
private and secure decentralized deep learning algorithms. You can also find some
of the machine learning libraries that he has co-authored on PyPI, such as parfit,
NALU, and pysyft.

Liao Xingyu is pursuing his master's degree in University of Science and
Technology of China (USTC). He has ever worked in Megvii.inc and JD AI lab
as an intern. He has published a Chinese PyTorch book named Learn Deep Learning
with PyTorch in China.

I am grateful for my family's support and project editor Tom's help
in producing and reviewing this book.

[i]

Table of Contents
Preface V
Chapter 1: Deep Learning Walkthrough and PyTorch Introduction 1

Understanding PyTorch's history 2
What is PyTorch? 3

Installing PyTorch 4
What makes PyTorch popular? 5

Using computational graphs 6
Using static graphs 8
Using dynamic graphs 11

Exploring deep learning 13
Getting to know different architectures 17

Fully connected networks 17
Encoders and decoders 18
Recurrent neural networks 19
Recursive neural networks 20
Convolutional neural networks 20
Generative adversarial networks 21
Reinforcement learning 22

Getting started with the code 23
Learning the basic operations 24
The internals of PyTorch 29

Summary 32
References 33

Chapter 2: A Simple Neural Network 35
Introduction to the neural network 35
The problem 35
Dataset 36

Table of Contents

[ii]

Novice model 40
Autograd 40

Autograd attributes of a tensor 42
The PyTorch way 51

High-level APIs 51
The functional module 56
The loss function 58
Optimizers 58

Summary 60
References 60

Chapter 3: Deep Learning Workflow 61
Ideation and planning 62
Design and experimentation 63

The dataset and DataLoader classes 63
Utility packages 65

torchvision 66
torchtext 69
torchaudio 74

Model implementation 75
Bottleneck and profiling 76

Training and validation 79
Ignite 79

Engine 79
Events 81
Metrics 83
Saving checkpoints 84

Summary 85
References 86

Chapter 4: Computer Vision 87
Introduction to CNNs 87
Computer vision with PyTorch 90

Simple CNN 90
Model 92

Semantic segmentation 99
LinkNet 101
Model 104

Summary 112
References 113

Chapter 5: Sequential Data Processing 115
Introduction to recurrent neural networks 115
The problem 117
Approaches 117

Table of Contents

[iii]

Simple RNN 118
Word embedding 119
RNN cell 121
Utilities 123
Encoder 126
Classifier 126
Training 129

Advanced RNNs 130
LSTM 130
GRUs 131
Architecture 132
LSTMs and GRUs 133
Classifier 136

Recursive neural networks 136
Reduce 138
Tracker 139
SPINN 139

Summary 141
References 142

Chapter 6: Generative Networks 143
Defining the approaches 144
Autoregressive models 146

PixelCNN 147
Masked convolution 150
Gated PixelCNN 153

WaveNet 153
GANs 161

Simple GAN 162
CycleGAN 169

Summary 174
References 174

Chapter 7: Reinforcement Learning 175
The problem 177
Episodic versus continuous tasks 178
Cumulative discounted rewards 178
Markov decision processes 180
The solution 181

Policies and value functions 182
Bellman equation 183

Finding the optimal Q-function 184
Deep Q-learning 184
Experience replay 186
Gym 186

Table of Contents

[iv]

Summary 194
References 195

Chapter 8: PyTorch to Production 197
Serving with Flask 198

Introduction to Flask 198
Model serving with Flask 200
A production-ready server 203

ONNX 204
MXNet model server 208

MXNet model archiver 209
Load testing 216

Efficiency with TorchScript 217
Exploring RedisAI 220
Summary 224
References 224

Another Book You May Enjoy 225
Leave a review - let other readers know what you think 227

Index 229

[v]

Preface
PyTorch Deep Learning Hands-On helps readers to get into the depths of deep
learning quickly. In the last couple of years, we have seen deep learning become
the new electricity. It has fought its way from academia into industry, helping
resolve thousands of enigmas that humans could never have imagined solving
without it. The mainstream adoption of deep learning as a go-to implementation
was driven mainly by a bunch of frameworks that reliably delivered complex
algorithms as efficient built-in methods. This book showcases the benefits of
PyTorch for prototyping a deep learning model, for building a deep learning
workflow, and for taking a prototyped model to production. Overall, the book
concentrates on the practical implementation of PyTorch instead of explaining the
math behind it, but it also links you to places that you could fall back to if you lag
behind with a few concepts.

Who this book is for
We have refrained from explaining the algorithms as much as possible and have
instead focused on their implementation in PyTorch, sometimes looking at the
implementation of real-world applications using those algorithms. This book is
ideal for those who know how to program in Python and understand the basics
of deep learning. This book is for people who are practicing traditional machine
learning concepts already or who are developers and want to explore the world of
deep learning practically and deploy their implementations to production.

Preface

[vi]

What this book covers
Chapter 1, Deep Learning Walkthrough and PyTorch Introduction, is an introduction to
the PyTorch way of doing deep learning and to the basic APIs of PyTorch. It starts
by showing the history of PyTorch and why PyTorch should be the go-to framework
for deep learning development. It also covers an introduction of the different deep
learning approaches that we will be covering in the upcoming chapters.

Chapter 2, A Simple Neural Network, helps you build your first simple neural
network and shows how we can connect bits and pieces such as neural networks,
optimizers, and parameter updates to build a novice deep learning model. It also
covers how PyTorch does backpropagation, the key behind all state-of-the-art deep
learning algorithms.

Chapter 3, Deep Learning Workflow, goes deeper into the deep learning workflow
implementation and the PyTorch ecosystem that helps build the workflow. This
is probably the most crucial chapter if you are planning to set up a deep learning
team or a pipeline for an upcoming project. In this chapter, we'll go through the
different stages of a deep learning pipeline and see how the PyTorch community
has advanced in each stage in the workflow iteratively by making appropriate tools.

Chapter 4, Computer Vision, being the most successful result of deep learning so far,
talks about the key ideas behind that success and runs through the most widely used
vision algorithm – the convolutional neural network (CNN). We'll implement a
CNN step by step to understand the working principles, and then use a predefined
CNN from PyTorch's nn package. This chapter helps you make a simple CNN and an
advanced CNN-based vision algorithm called semantic segmentation.

Chapter 5, Sequential Data Processing, looks at the recurrent neural network,
which is currently the most successful sequential data processing algorithm. The
chapter introduces you to the major RNN components, such as the long short-term
memory (LSTM) network and gated recurrent units (GRUs). Then we'll go through
algorithmic changes in RNN implementation, such as bidirectional RNNs, and
increasing the number of layers, before we explore recursive neural networks. To
understand recursive networks, we'll use the renowned example, from the Stanford
NLP group, the stack-augmented parser-interpreter neural network (SPINN), and
implement that in PyTorch.

Chapter 6, Generative Networks, talks about the history of generative networks in brief
and then explains the different kinds of generative networks. Among those different
categories, this chapter introduces us to autoregressive models and GANs. We'll
work through the implementation details of PixelCNN and WaveNet as part of
autoregressive models, and then look at GANs in detail.

Preface

[vii]

Chapter 7, Reinforcement Learning, introduces the concept of reinforcement learning,
which is not really a subcategory of deep learning. We'll first take a look at defining
problem statements. Then we'll explore the concept of cumulative rewards. We'll
explore Markov decision processes and the Bellman equation, and then move to deep
Q-learning. We'll also see an introduction to Gym, the toolkit developed by OpenAI
for developing and experimenting with reinforcement learning algorithms.

Chapter 8, PyTorch to Production, looks at the difficulties people face, even the deep
learning experts, during the deployment of a deep learning model to production.
We'll explore different options for production deployment, including using a Flask
wrapper around PyTorch as well as using RedisAI, which is a highly optimized
runtime for deploying models in multicluster environments and can handle millions
of requests per second.

To get the most out of this book
• The code is written in Python and hosted on GitHub. Though the compressed

code repository is available for download, the online GitHub repository will
receive bug fixes and updates. Having a basic understanding of GitHub is
therefore required, as is having good Python knowledge.

• Although not mandatory, the use of CUDA drivers would help to speed
up the training process if you are not using any pretrained models.

• The code examples were developed on an Ubuntu 18.10 machine but
will work on all the popular platforms. But if you find any difficulties, feel
free to raise an issue in the GitHub repository.

• Some of the examples in the book require you to use other services or packages,
such as redis-server and the Flask framework. All those external dependencies
and "how-to" guides are documented in the chapters they appear.

Download the example code files
You can download the example code files for this book from your account at http://
www.packt.com. If you purchased this book elsewhere, you can visit http://www.
packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Preface

[viii]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for macOS
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
hhsecond/HandsOnDeepLearningWithPytorch. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781788834131_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

A block of code is set as follows:

def forward(self, batch):
 hidden = self.hidden(batch)
 activated = torch.sigmoid(hidden)
 out = self.out(activated)
 return out

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def binary_encoder(input_size):
 def wrapper(num):
 ret = [int(i) for i in '{0:b}'.format(num)]
 return [0] * (input_size - len(ret)) + ret
 return wrapper

Preface

[ix]

Any command-line input or output is written as follows:

python -m torch.utils.bottleneck /path/to/source/script.py [args]

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packt.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Preface

[x]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

[1]

Deep Learning Walkthrough
and PyTorch Introduction

At this point in time, there are dozens of deep learning frameworks out there that
are capable of solving any sort of deep learning problem on GPU, so why do we
need one more? This book is the answer to that million-dollar question. PyTorch
came to the deep learning family with the promise of being NumPy on GPU. Ever
since its entry, the community has been trying hard to keep that promise. As the
official documentation says, PyTorch is an optimized tensor library for deep learning
using GPUs and CPUs. While all the prominent frameworks offer the same thing,
PyTorch has certain advantages over almost all of them.

The chapters in this book provide a step-by-step guide for developers who want
to benefit from the power of PyTorch to process and interpret data. You'll learn
how to implement a simple neural network, before exploring the different stages
of a deep learning workflow. We'll dive into basic convolutional networks and
generative adversarial networks, followed by a hands-on tutorial on how to
train a model with OpenAI's Gym library. By the final chapter, you'll be ready
to productionize PyTorch models.

In this first chapter, we will go through the theory behind PyTorch and explain
why PyTorch gained the upper hand over other frameworks for certain use cases.
Before that, we will take a glimpse into the history of PyTorch and learn why
PyTorch is a need rather than an option. We'll also cover the NumPy-PyTorch
bridge and PyTorch internals in the last section, which will give us a head start
for the upcoming code-intensive chapters.

Deep Learning Walkthrough and PyTorch Introduction

[2]

Understanding PyTorch's history
As more and more people started migrating to the fascinating world of
machine learning, different universities and organizations began building their
own frameworks to support their daily research, and Torch was one of the early
members of that family. Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet
released Torch in 2002 and, later, it was picked up by Facebook AI Research and
many other people from several universities and research groups. Lots of start-ups
and researchers accepted Torch, and companies started productizing their Torch
models to serve millions of users. Twitter, Facebook, DeepMind, and more are part
of that list. As per the official Torch7 paper [1] published by the core team, Torch
was designed with three key features in mind:

1. It should ease the development of numerical algorithms.
2. It should be easily extended.
3. It should be fast.

Although Torch gives flexibility to the bone, and the Lua + C combo satisfied all the
preceding requirements, the major drawback the community faced was the learning
curve to the new language, Lua. Although Lua wasn't difficult to grasp and had been
used in the industry for a while for highly efficient product development, it did not
have widespread acceptance like several other popular languages.

The widespread acceptance of Python in the deep learning community made some
researchers and developers rethink the decision made by core authors to choose
Lua over Python. It wasn't just the language: the absence of an imperative-styled
framework with easy debugging capability also triggered the ideation of PyTorch.

The frontend developers of deep learning find the idea of the symbolic graph
difficult. Unfortunately, almost all the deep learning frameworks were built on
this foundation. In fact, a few developer groups tried to change this approach with
dynamic graphs. Autograd from the Harvard Intelligent Probabilistic Systems Group
was the first popular framework that did so. Then the Torch community on Twitter
took the idea and implemented torch-autograd.

Next, a research group from Carnegie Mellon University (CMU) came up with
DyNet, and then Chainer came up with the capability of dynamic graphs and an
interpretable development environment.

All these events were a great inspiration for starting the amazing framework
PyTorch, and, in fact, PyTorch started as a fork of Chainer. It began as an
internship project by Adam Paszke, who was working under Soumith Chintala,
a core developer of Torch. PyTorch then got two more core developers on board
and around 100 alpha testers from different companies and universities.

Chapter 1

[3]

The whole team pulled the chain together in six months and released the beta
to the public in January 2017. A big chunk of the research community accepted
PyTorch, although the product developers did not initially. Several universities
started running courses on PyTorch, including New York University (NYU),
Oxford University, and some other European universities.

What is PyTorch?
As mentioned earlier, PyTorch is a tensor computation library that can be powered by
GPUs. PyTorch is built with certain goals, which makes it different from all the other
deep learning frameworks. During this book, you'll be revisiting these goals through
different applications and by the end of the book, you should be able to get started
with PyTorch for any sort of use case you have in mind, regardless of whether you
are planning to prototype an idea or build a super-scalable model to production.

Being a Python-first framework, PyTorch took a big leap over other frameworks
that implemented a Python wrapper on a monolithic C++ or C engine. In PyTorch,
you can inherit PyTorch classes and customize as you desire. The imperative style
of coding, which was built into the core of PyTorch, was possible only because of
the Python-first approach. Even though some symbolic graph frameworks, like
TensorFlow, MXNet, and CNTK, came up with an imperative approach, PyTorch
has managed to stay on top because of community support and its flexibility.

The tape-based autograd system enables PyTorch to have dynamic graph capability.
This is one of the major differences between PyTorch and other popular symbolic
graph frameworks. Tape-based autograd powered the backpropagation algorithm of
Chainer, autograd, and torch-autograd as well. With dynamic graph capability, your
graph gets created as the Python interpreter reaches the corresponding line. This is
called define by run, unlike TensorFlow's define and run approach.

Tape-based autograd uses reverse-mode automatic differentiation, where the graph
saves each operation to the tape while you forward pass and then move backward
through the tape for backpropagation. Dynamic graphs and a Python-first approach
allow easy debugging, where you can use the usual Python debuggers like Pdb or
editor-based debuggers.

The PyTorch core community did not just make a Python wrapper over Torch's
C binary: it optimized the core and made improvements to the core. PyTorch
intelligently chooses which algorithm to run for each operation you define,
based on the input data.

Deep Learning Walkthrough and PyTorch Introduction

[4]

Installing PyTorch
If you have CUDA and cuDNN installed, PyTorch installation is dead simple
(for GPU support, but in case you are trying out PyTorch and don't have GPUs
with you, that's fine too). PyTorch's home page [2] shows an interactive screen to
select the OS and package manager of your choice. Choose the options and execute
the command to install it.

Though initially the support was just for Linux and Mac operating systems, from
PyTorch 0.4 Windows is also in the supported operating system list. PyTorch has
been packaged and shipped to PyPI and Conda. PyPI is the official Python repository
for packages and the package manager, pip, can find PyTorch under the name Torch.

However, if you want to be adventurous and get the latest code, you can install
PyTorch from the source by following the instructions on the GitHub README page.
PyTorch has a nightly build that is being pushed to PyPI and Conda as well. A
nightly build is useful if you want to get the latest code without going through
the pain of installing from the source.

Figure 1.1: The installation process in the interactive UI from the PyTorch website

Chapter 1

[5]

What makes PyTorch popular?
Among the multitude of reliable deep learning frameworks, static graphs or the
symbolic graph-based approach were being used by almost everyone because of
the speed and efficiency. The inherent problems with the dynamic network, such as
performance issues, prevented developers from spending a lot of time implementing
one. However, the restrictions of static graphs prevented researchers from thinking
of a multitude of different ways to attack a problem because the thought process had
to be confined inside the box of static computational graphs.

As mentioned earlier, Harvard's Autograd package started as a solution for this
problem, and then the Torch community adopted this idea from Python and
implemented torch-autograd. Chainer and CMU's DyNet are probably the next two
dynamic-graph-based frameworks that got huge community support. Although all
these frameworks could solve the problems that static graphs had created with the
help of the imperative approach, they didn't have the momentum that other popular
static graph frameworks had. PyTorch was the absolute answer for this. The PyTorch
team took the backend of the well-tested, renowned Torch framework and merged
that with the front of Chainer to get the best mix. The team optimized the core,
added more Pythonic APIs, and set up the abstraction correctly, such that PyTorch
doesn't need an abstract library like Keras for beginners to get started.

PyTorch achieved wide acceptance in the research community because a majority
of people were using Torch already and probably were frustrated by the way
frameworks like TensorFlow evolved without giving much flexibility. The dynamic
nature of PyTorch was a bonus for lots of people and helped them to accept PyTorch
in its early stages.

PyTorch lets users define whatever operations Python allows them to in the
forward pass. The backward pass automatically finds the way through the graph
until the root node, and calculates the gradient while traversing back. Although it
was a revolutionary idea, the product development community had not accepted
PyTorch, just like they couldn't accept other frameworks that followed similar
implementation. However, as the days passed, more and more people started
migrating to PyTorch. Kaggle witnessed competitions where all the top rankers
used PyTorch, and as mentioned earlier, universities started doing courses in
PyTorch. This helped students to avoid learning a new graph language like they
had to when using a symbolic graph-based framework.

Deep Learning Walkthrough and PyTorch Introduction

[6]

After the announcement of Caffe2, even product developers started experimenting
with PyTorch, since the community announced the migration strategy of PyTorch
models to Caffe2. Caffe2 is a static graph framework that can run your model
even in mobile phones, so using PyTorch for prototyping is a win-win approach.
You get the flexibility of PyTorch while building the network, and you get to
transfer it to Caffe2 and use it in any production environment. However, with the
1.0 release note, the PyTorch team made a huge jump from letting people learn
two frameworks (one for production and one for research), to learning a single
framework that has dynamic graph capability in the prototyping phase and can
suddenly convert to a static-like optimized graph when it requires speed and
efficiency. The PyTorch team merged the backend of Caffe2 with PyTorch's Aten
backend, which let the user decide whether they wanted to run a less-optimized
but highly flexible graph, or an optimized but less-flexible graph without rewriting
the code base.

ONNX and DLPack were the next two "big things" that the AI community saw.
Microsoft and Facebook together announced the Open Neural Network Exchange
(ONNX) protocol, which aims to help developers to migrate any model from any
framework to any other. ONNX is compatible with PyTorch, Caffe2, TensorFlow,
MXNet, and CNTK and the community is building/improving the support for
almost all the popular frameworks.

ONNX is built into the core of PyTorch and hence migrating a model to ONNX
form doesn't require users to install any other package or tool. Meanwhile, DLPack
is taking interoperability to the next level by defining a standard data structure
that different frameworks should follow, so that the migration of a tensor from one
framework to another, in the same program, doesn't require the user to serialize data
or follow any other workarounds. For instance, if you have a program that can use a
well-trained TensorFlow model for computer vision and a highly efficient PyTorch
model for recurrent data, you could use a single program that could handle each
of the three-dimensional frames from a video with the TensorFlow model and pass
the output of the TensorFlow model directly to the PyTorch model to predict actions
from the video. If you take a step back and look at the deep learning community,
you can see that the whole world converges toward a single point where everything
is interoperable with everything else and trying to approach problems with similar
methods. That's a world we all want to live in.

Using computational graphs
Through evolution, humans have found that graphing the neural network gives
us the power of reducing complexity to the bare minimum. A computational graph
describes the data flow in the network through operations.

Chapter 1

[7]

A graph, which is made by a group of nodes and edges connecting them,
is a decades-old data structure that is still heavily used in several different
implementations and is a data structure that will be valid probably until humans
cease to exist. In computational graphs, nodes represent the tensors and edges
represent the relationship between them.

Computational graphs help us to solve the mathematics and make the big networks
intuitive. Neural networks, no matter how complex or big they are, are a group
of mathematical operations. The obvious approach to solving an equation is to
divide the equation into smaller units and pass the output of one to another and
so on. The idea behind the graph approach is the same. You consider the operations
inside the network as nodes and map them to a graph with relations between nodes
representing the transition from one operation to another.

Computational graphs are at the core of all current advances in artificial intelligence.
They made the foundation of deep learning frameworks. All the deep learning
frameworks existing now do computations using the graph approach. This helps the
frameworks to find the independent nodes and do their computation as a separate
thread or process. Computational graphs help with doing the backpropagation as
easily as moving from the child node to previous nodes, and carrying the gradients
along while traversing back. This operation is called automatic differentiation,
which is a 40-year-old idea. Automatic differentiation is considered one of the 10
great numerical algorithms in the last century. Specifically, reverse-mode automatic
differentiation is the core idea used behind computational graphs for doing
backpropagation. PyTorch is built based on reverse-mode auto differentiation, so
all the nodes keep the operation information with them until the control reaches
the leaf node. Then the backpropagation starts from the leaf node and traverses
backward. While moving back, the flow takes the gradient along with it and finds the
partial derivatives corresponding to each node. In 1970, Seppo Linnainmaa, a Finnish
mathematician and computer scientist, found that automatic differentiation can be
used for algorithm verification. A lot of the other parallel efforts were recorded on
the same concepts almost at the same time.

In deep learning, neural networks are for solving a mathematical equation.
Regardless of how complex the task is, everything comes down to a giant
mathematical equation, which you'll solve by optimizing the parameters of the
neural network. The obvious way to solve it is "by hand." Consider solving the
mathematical equation for ResNet with around 150 layers of a neural network;
it is sort of impossible for a human being to iterate over such graphs thousands
of times, doing the same operations manually each time to optimize the parameters.
Computational graphs solve this problem by mapping all operations to a graph,
level by level, and solving each node at a time. Figure 1.2 shows a simple
computational graph with three operators.

Deep Learning Walkthrough and PyTorch Introduction

[8]

The matrix multiplication operator on both sides gives two matrices as output, and
they go through an addition operator, which in turn goes through another sigmoid
operator. The whole graph is, in fact, trying to solve this equation:

Figure 1.2: Graph representation of the equation

However, the moment you map it to a graph, everything becomes crystal clear. You
can visualize and understand what is happening and easily code it up because the
flow is right in front of you.

All deep learning frameworks are built on the foundation of automatic differentiation
and computational graphs, but there are two inherently different approaches for the
implementation–static and dynamic graphs.

Using static graphs
The traditional way of approaching neural network architecture is with static graphs.
Before doing anything with the data you give, the program builds the forward
and backward pass of the graph. Different development groups have tried different
approaches. Some build the forward pass first and then use the same graph instance
for the forward and backward pass. Another approach is to build the forward
static graph first, and then create and append the backward graph to the end of the
forward graph, so that the whole forward-backward pass can be executed as a single
graph execution by taking the nodes in chronological order.

Chapter 1

[9]

Figure 1.3 and 1.4: The same static graph used for the forward and backward pass

Deep Learning Walkthrough and PyTorch Introduction

[10]

Figure 1.5: Static graph: a different graph for the forward and backward pass

Static graphs come with certain inherent advantages over other approaches. Since
you are restricting the program from dynamic changes, your program can make
assumptions related to memory optimization and parallel execution while executing
the graph. Memory optimization is the key aspect that framework developers worry
about through most of their development time, and the reason is the humungous
scope of optimizing memory and the subtleties that come along with those
optimizations. Apache MXNet developers have written an amazing blog [3]
talking about this in detail.

The neural network for predicting the XOR output in TensorFlow's static graph API
is given as follows. This is a typical example of how static graphs execute. Initially,
we declare all the input placeholders and then build the graph. If you look carefully,
nowhere in the graph definition are we passing the data into it. Input variables are
actually placeholders expecting data sometime in the future. Though the graph
definition looks like we are doing mathematical operations on the data, we are
actually defining the process, and that's when TensorFlow builds the optimized
graph implementation using the internal engine:

x = tf.placeholder(tf.float32, shape=[None, 2], name='x-input')
y = tf.placeholder(tf.float32, shape=[None, 2], name='y-input')
w1 = tf.Variable(tf.random_uniform([2, 5], -1, 1), name="w1")

Chapter 1

[11]

w2 = tf.Variable(tf.random_uniform([5, 2], -1, 1), name="w2")
b1 = tf.Variable(tf.zeros([5]), name="b1")
b2 = tf.Variable(tf.zeros([2]), name="b2")
a2 = tf.sigmoid(tf.matmul(x, w1) + b1)
hyp = tf.matmul(a2, w2) + b2
cost = tf.reduce_mean(tf.losses.mean_squared_error(y, hyp))
train_step = tf.train.GradientDescentOptimizer(lr).minimize(cost)
prediction = tf.argmax(tf.nn.softmax(hyp), 1)

Once the interpreter finishes reading the graph definition, we start looping it through
the data:

with tf.Session() as sess:
 sess.run(init)
 for i in range(epoch):
 sess.run(train_step, feed_dict={x_: XOR_X, y_: XOR_Y})

We start a TensorFlow session next. That's the only way you can interact with the
graph you built beforehand. Inside the session, you loop through your data and pass
the data to your graph using the session.run method. So, your input should be of
the same size as you defined in the graph.

If you have forgotten what XOR is, the following table should give you enough
information to recollect it from memory:

INPUT OUTPUT
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

Using dynamic graphs
The imperative style of programming has always had a larger user base, as the
program flow is intuitive to any developer. Dynamic capability is a good side effect
of imperative-style graph building. Unlike static graphs, dynamic graph architecture
doesn't build the graph before the data pass. The program will wait for the data to
come and build the graph as it iterates through the data. As a result, each iteration
through the data builds a new graph instance and destroys it once the backward pass
is done. Since the graph is being built for each iteration, it doesn't depend on the data
size or length or structure. Natural language processing is one of the fields that needs
this kind of approach.

Deep Learning Walkthrough and PyTorch Introduction

[12]

For example, if you are trying to do sentiment analysis on thousands of sentences,
with a static graph you need to hack and make workarounds. In a vanilla recurrent
neural network (RNN) model, each word goes through one RNN unit, which
generates output and the hidden state. This hidden state will be given to the next
RNN, which processes the next word in the sentence. Since you made a fixed length
slot while building your static graph, you need to augment your short sentences and
cut down long sentences.

Figure 1.6: Static graph for an RNN unit with short, proper, and long sentences

The static graph given in the example shows how the data needs to be formatted for
each iteration such that it won't break the prebuilt graph. However, in the dynamic
graph, the network is flexible such that it gets created each time you pass the data,
as shown in the preceding diagram.

The dynamic capability comes with a cost. Your graph cannot be preoptimized based
on assumptions and you have to pay for the overhead of graph creation at each
iteration. However, PyTorch is built to reduce the cost as much as possible. Since
preoptimization is not something that a dynamic graph is capable of doing, PyTorch
developers managed to bring down the cost of instant graph creation to a negligible
amount. With all the optimization going into the core of PyTorch, it has proved to be
faster than several other frameworks for specific use cases, even while offering the
dynamic capability.

Chapter 1

[13]

Following is a code snippet written in PyTorch for the same XOR operation we
developed earlier in TensorFlow:

x = torch.FloatTensor(XOR_X)
y = torch.FloatTensor(XOR_Y)
w1 = torch.randn(2, 5, requires_grad=True)
w2 = torch.randn(5, 2, requires_grad=True)
b1 = torch.zeros(5, requires_grad=True)
b2 = torch.zeros(2, requires_grad=True)

for epoch in range(epochs):
 a1 = x @ w1 + b1
 h1 = a2.sigmoid()
 a2 = h2 @ w2 + b1
 hyp = a3.sigmoid()
 cost = (hyp - y).pow(2).sum()
 cost.backward()

In the PyTorch code, the input variable definition is not creating placeholders;
instead, it is wrapping the variable object onto your input. The graph definition
is not executing once; instead, it is inside your loop and the graph is being built for
each iteration. The only information you share between each graph instance is your
weight matrix, which is what you want to optimize.

In this approach, if your data size or shape is changing while you're looping through
it, it's absolutely fine to run that new-shaped data through your graph because the
newly created graph can accept the new shape. The possibilities do not end there.
If you want to change the graph's behavior dynamically, you can do that too. The
example given in the recursive neural network session in Chapter 5, Sequential Data
Processing, is built on this idea.

Exploring deep learning
Since man invented computers, we have called them intelligent systems, and yet we
are always trying to augment their intelligence. In the old days, anything a computer
could do that a human couldn't was considered artificial intelligence. Remembering
huge amounts of data, doing mathematical operations on millions or billions of
numbers, and so on was considered artificial intelligence. We called Deep Blue,
the machine that beat chess grandmaster Garry Kasparov at chess, an artificially
intelligent machine.

Deep Learning Walkthrough and PyTorch Introduction

[14]

Eventually, things that humans can't do and a computer can do became just computer
programs. We realized that some things humans can do easily are impossible for
a programmer to code up. This evolution changed everything. The number of
possibilities or rules we could write down and make a computer work like us with
was insanely large. Machine learning came to the rescue. People found a way to
let the computers to learn the rules from examples, instead of having to code it up
explicitly; that's called machine learning. An example is given in Figure 1.9, which
shows how we could make a prediction of whether a customer will buy a product
or not from his/her past shopping history.

Figure 1.7: Showing the dataset for a customer buying a product

We could predict most of the results, if not all of them. However, what if the number
of data points that we could make a prediction from is a lot and we cannot process
them with a mortal brain? A computer could look through the data and probably
spit out the answer based on previous data. This data-driven approach can help
us a lot, since the only thing we have to do is assume the relevant features and give
them to the black box, which consists of different algorithms, to learn the rules or
pattern from the feature set.

Chapter 1

[15]

There are problems. Even though we know what to look for, cleaning up the data
and extracting the features is not an interesting task. The foremost trouble isn't this,
however; we can't predict the features for high-dimensional data and the data of
other media types efficiently. For example, in face recognition, we initially found
the length of particulars in our face using the rule-based program and gave that to
the neural network as input, because we thought that's the feature set that humans
use to recognize faces.

Figure 1.8: Human-selected facial features

It turned out that the features that are so obvious for humans are not so obvious for
computers and vice versa. The realization of the feature selection problem led us
to the era of deep learning. This is a subset of machine learning where we use the
same data-driven approach, but instead of selecting the features explicitly, we let
the computer decide what the features should be.

Let's consider our face recognition example again. FaceNet, a 2014 paper from
Google, tackled it with the help of deep learning. FaceNet implemented the whole
application using two deep networks. The first network was to identify the feature
set from faces and the second network was to use this feature set and recognize the
face (technically speaking, classifying the face into different buckets). Essentially, the
first network was doing what we did before and the second network was a simple
and traditional machine learning algorithm.

Deep Learning Walkthrough and PyTorch Introduction

[16]

Deep networks are capable of identifying features from datasets, provided we have
large labeled datasets. FaceNet's first network was trained with a huge dataset of
faces with corresponding labels. The first network was trained to predict 128 features
(generally speaking, there are 128 measurements from our faces, like the distance
between the left eye and the right eye) from every face and the second network just
used these 128 features to recognize a person.

Figure 1.9: A simple neural network

A simple neural network has a single hidden layer, an input layer, and an output
layer. Theoretically, a single hidden layer should be able to approximate any
complex mathematical equation, and we should be fine with a single layer. However,
it turns out that the single hidden layer theory is not so practical. In deep networks,
each layer is responsible for finding some features. Initial layers find more detailed
features, and final layers abstract these detailed features and find high-level features.

Chapter 1

[17]

Figure 1.10: A deep neural network

Getting to know different architectures
Deep learning has been around for decades, and different structures and
architectures evolved for different use cases. Some of them were based on ideas we
had about our brain and some others were based on the actual working of the brain.
All the upcoming chapters are based on the state-of-the-art architectures that the
industry is using now. We'll cover one or more applications under each architecture,
with each chapter covering the concepts, specifications, and technical details behind
all of them, obviously with PyTorch code.

Fully connected networks
Fully connected, or dense or linear, networks are the most basic, yet powerful,
architecture. This is a direct extension of what is commonly called machine
learning, where you use neural networks with a single hidden layer. Fully
connected layers act as the endpoint of all the architectures to find the probability
distribution of the scores we find using the below deep network. A fully connected
network, as the name suggests, has all the neurons connected to each other in the
previous and next layers. The network might eventually decide to switch off some
neurons by setting the weight, but in an ideal situation, initially, all of them take
part in the communication.

Deep Learning Walkthrough and PyTorch Introduction

[18]

Encoders and decoders
Encoders and decoders are probably the next most basic architecture under the deep
learning umbrella. All the networks have one or more encoder-decoder layers. You
can consider hidden layers in fully connected layers as the encoded form coming
from an encoder, and the output layer as a decoder that decodes the hidden layer
into output. Commonly, encoders encode the input into an intermediate state, where
the input is represented as vectors and then the decoder network decodes this into
an output form that we want.

A canonical example of an encoder-decoder network is the sequence-to-sequence
(seq2seq) network, which can be used for machine translation. A sentence, say in
English, will be encoded to an intermediate vector representation, where the whole
sentence will be chunked in the form of some floating-point numbers and the decoder
decodes the output sentence in another language from the intermediate vector.

Figure 1.11: Seq2seq network

An autoencoder is a special type of encoder-decoder network and comes under the
category of unsupervised learning. Autoencoders try to learn from unlabeled data,
setting the target values to be equal to the input values. For example, if your input
is an image of size 100 x 100, you'll have an input vector of dimension 10,000. So, the
output size will also be 10,000, but the hidden layer size could be 500. In a nutshell,
you are trying to convert your input to a hidden state representation of a smaller
size, re-generating the same input from the hidden state.

If you were able to train a neural network that could do that, then voilà, you
would have found a good compression algorithm where you could transfer high-
dimensional input to a lower-dimensional vector with an order of magnitude's gain.

Autoencoders are being used in different situations and industries nowadays.
You'll see a similar architecture in Chapter 4, Computer Vision, when we discuss
semantic segmentation.

Chapter 1

[19]

Figure 1.12: Structure of an autoencoder

Recurrent neural networks
RNNs are one of the most common deep learning algorithms, and they took the
whole world by storm. Almost all the state-of-the-art performance we have now
in natural language processing or understanding is because of a variant of RNNs. In
recurrent networks, you try to identify the smallest unit in your data and make your
data a group of those units. In the example of natural language, the most common
approach is to make one word a unit and consider the sentence as a group of words
while processing it. You unfold your RNN for the whole sentence and process your
sentence one word at a time. RNNs have variants that work for different datasets
and sometimes, efficiency can be taken into account while choosing the variant. Long
short-term memory (LSTM) and gated recurrent units (GRUs) cells are the most
common RNN units.

Figure 1.13: A vector representation of words in a recurrent network

