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Preface
PyTorch Deep Learning Hands-On helps readers to get into the depths of deep 
learning quickly. In the last couple of years, we have seen deep learning become 
the new electricity. It has fought its way from academia into industry, helping 
resolve thousands of enigmas that humans could never have imagined solving 
without it. The mainstream adoption of deep learning as a go-to implementation 
was driven mainly by a bunch of frameworks that reliably delivered complex 
algorithms as efficient built-in methods. This book showcases the benefits of 
PyTorch for prototyping a deep learning model, for building a deep learning 
workflow, and for taking a prototyped model to production. Overall, the book 
concentrates on the practical implementation of PyTorch instead of explaining the 
math behind it, but it also links you to places that you could fall back to if you lag 
behind with a few concepts.

Who this book is for
We have refrained from explaining the algorithms as much as possible and have 
instead focused on their implementation in PyTorch, sometimes looking at the 
implementation of real-world applications using those algorithms. This book is 
ideal for those who know how to program in Python and understand the basics 
of deep learning. This book is for people who are practicing traditional machine 
learning concepts already or who are developers and want to explore the world of 
deep learning practically and deploy their implementations to production.
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What this book covers
Chapter 1, Deep Learning Walkthrough and PyTorch Introduction, is an introduction to 
the PyTorch way of doing deep learning and to the basic APIs of PyTorch. It starts 
by showing the history of PyTorch and why PyTorch should be the go-to framework 
for deep learning development. It also covers an introduction of the different deep 
learning approaches that we will be covering in the upcoming chapters.

Chapter 2, A Simple Neural Network, helps you build your first simple neural 
network and shows how we can connect bits and pieces such as neural networks, 
optimizers, and parameter updates to build a novice deep learning model. It also 
covers how PyTorch does backpropagation, the key behind all state-of-the-art deep 
learning algorithms.

Chapter 3, Deep Learning Workflow, goes deeper into the deep learning workflow 
implementation and the PyTorch ecosystem that helps build the workflow. This 
is probably the most crucial chapter if you are planning to set up a deep learning 
team or a pipeline for an upcoming project. In this chapter, we'll go through the 
different stages of a deep learning pipeline and see how the PyTorch community 
has advanced in each stage in the workflow iteratively by making appropriate tools.

Chapter 4, Computer Vision, being the most successful result of deep learning so far, 
talks about the key ideas behind that success and runs through the most widely used 
vision algorithm – the convolutional neural network (CNN). We'll implement a 
CNN step by step to understand the working principles, and then use a predefined 
CNN from PyTorch's nn package. This chapter helps you make a simple CNN and an 
advanced CNN-based vision algorithm called semantic segmentation.

Chapter 5, Sequential Data Processing, looks at the recurrent neural network, 
which is currently the most successful sequential data processing algorithm. The 
chapter introduces you to the major RNN components, such as the long short-term 
memory (LSTM) network and gated recurrent units (GRUs). Then we'll go through 
algorithmic changes in RNN implementation, such as bidirectional RNNs, and 
increasing the number of layers, before we explore recursive neural networks. To 
understand recursive networks, we'll use the renowned example, from the Stanford 
NLP group, the stack-augmented parser-interpreter neural network (SPINN), and 
implement that in PyTorch.

Chapter 6, Generative Networks, talks about the history of generative networks in brief 
and then explains the different kinds of generative networks. Among those different 
categories, this chapter introduces us to autoregressive models and GANs. We'll 
work through the implementation details of PixelCNN and WaveNet as part of 
autoregressive models, and then look at GANs in detail.
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Chapter 7, Reinforcement Learning, introduces the concept of reinforcement learning, 
which is not really a subcategory of deep learning. We'll first take a look at defining 
problem statements. Then we'll explore the concept of cumulative rewards. We'll 
explore Markov decision processes and the Bellman equation, and then move to deep 
Q-learning. We'll also see an introduction to Gym, the toolkit developed by OpenAI 
for developing and experimenting with reinforcement learning algorithms.

Chapter 8, PyTorch to Production, looks at the difficulties people face, even the deep 
learning experts, during the deployment of a deep learning model to production. 
We'll explore different options for production deployment, including using a Flask 
wrapper around PyTorch as well as using RedisAI, which is a highly optimized 
runtime for deploying models in multicluster environments and can handle millions 
of requests per second.

To get the most out of this book
• The code is written in Python and hosted on GitHub. Though the compressed 

code repository is available for download, the online GitHub repository will 
receive bug fixes and updates. Having a basic understanding of GitHub is 
therefore required, as is having good Python knowledge.

• Although not mandatory, the use of CUDA drivers would help to speed 
up the training process if you are not using any pretrained models.

• The code examples were developed on an Ubuntu 18.10 machine but 
will work on all the popular platforms. But if you find any difficulties, feel 
free to raise an issue in the GitHub repository.

• Some of the examples in the book require you to use other services or packages, 
such as redis-server and the Flask framework. All those external dependencies 
and "how-to" guides are documented in the chapters they appear.

Download the example code files
You can download the example code files for this book from your account at http://
www.packt.com. If you purchased this book elsewhere, you can visit http://www.
packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.
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Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for macOS
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
hhsecond/HandsOnDeepLearningWithPytorch. We also have other code bundles 
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781788834131_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "Mount the downloaded WebStorm-10*.dmg disk image file as 
another disk in your system."

A block of code is set as follows:

def forward(self, batch):
    hidden = self.hidden(batch)
    activated = torch.sigmoid(hidden)
    out = self.out(activated)
    return out

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

def binary_encoder(input_size):
    def wrapper(num):
        ret = [int(i) for i in '{0:b}'.format(num)]
        return [0] * (input_size - len(ret)) + ret
    return wrapper
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Any command-line input or output is written as follows:

python -m torch.utils.bottleneck /path/to/source/script.py [args]

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention 
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit, http://www.packt.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address or 
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, please 
visit http://authors.packtpub.com.
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Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and use 
your unbiased opinion to make purchase decisions, we at Packt can understand what 
you think about our products, and our authors can see your feedback on their book. 
Thank you!

For more information about Packt, please visit packt.com.
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Deep Learning Walkthrough 
and PyTorch Introduction

At this point in time, there are dozens of deep learning frameworks out there that 
are capable of solving any sort of deep learning problem on GPU, so why do we 
need one more? This book is the answer to that million-dollar question. PyTorch 
came to the deep learning family with the promise of being NumPy on GPU. Ever 
since its entry, the community has been trying hard to keep that promise. As the 
official documentation says, PyTorch is an optimized tensor library for deep learning 
using GPUs and CPUs. While all the prominent frameworks offer the same thing, 
PyTorch has certain advantages over almost all of them.

The chapters in this book provide a step-by-step guide for developers who want 
to benefit from the power of PyTorch to process and interpret data. You'll learn 
how to implement a simple neural network, before exploring the different stages 
of a deep learning workflow. We'll dive into basic convolutional networks and 
generative adversarial networks, followed by a hands-on tutorial on how to 
train a model with OpenAI's Gym library. By the final chapter, you'll be ready 
to productionize PyTorch models.

In this first chapter, we will go through the theory behind PyTorch and explain 
why PyTorch gained the upper hand over other frameworks for certain use cases. 
Before that, we will take a glimpse into the history of PyTorch and learn why 
PyTorch is a need rather than an option. We'll also cover the NumPy-PyTorch 
bridge and PyTorch internals in the last section, which will give us a head start 
for the upcoming code-intensive chapters.
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Understanding PyTorch's history
As more and more people started migrating to the fascinating world of 
machine learning, different universities and organizations began building their 
own frameworks to support their daily research, and Torch was one of the early 
members of that family. Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet 
released Torch in 2002 and, later, it was picked up by Facebook AI Research and 
many other people from several universities and research groups. Lots of start-ups 
and researchers accepted Torch, and companies started productizing their Torch 
models to serve millions of users. Twitter, Facebook, DeepMind, and more are part 
of that list. As per the official Torch7 paper [1] published by the core team, Torch 
was designed with three key features in mind: 

1. It should ease the development of numerical algorithms.
2. It should be easily extended.
3. It should be fast.

Although Torch gives flexibility to the bone, and the Lua + C combo satisfied all the 
preceding requirements, the major drawback the community faced was the learning 
curve to the new language, Lua. Although Lua wasn't difficult to grasp and had been 
used in the industry for a while for highly efficient product development, it did not 
have widespread acceptance like several other popular languages.

The widespread acceptance of Python in the deep learning community made some 
researchers and developers rethink the decision made by core authors to choose 
Lua over Python. It wasn't just the language: the absence of an imperative-styled 
framework with easy debugging capability also triggered the ideation of PyTorch.

The frontend developers of deep learning find the idea of the symbolic graph 
difficult. Unfortunately, almost all the deep learning frameworks were built on 
this foundation. In fact, a few developer groups tried to change this approach with 
dynamic graphs. Autograd from the Harvard Intelligent Probabilistic Systems Group 
was the first popular framework that did so. Then the Torch community on Twitter 
took the idea and implemented torch-autograd.

Next, a research group from Carnegie Mellon University (CMU) came up with 
DyNet, and then Chainer came up with the capability of dynamic graphs and an 
interpretable development environment.

All these events were a great inspiration for starting the amazing framework 
PyTorch, and, in fact, PyTorch started as a fork of Chainer. It began as an 
internship project by Adam Paszke, who was working under Soumith Chintala, 
a core developer of Torch. PyTorch then got two more core developers on board 
and around 100 alpha testers from different companies and universities. 
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The whole team pulled the chain together in six months and released the beta 
to the public in January 2017. A big chunk of the research community accepted 
PyTorch, although the product developers did not initially. Several universities 
started running courses on PyTorch, including New York University (NYU), 
Oxford University, and some other European universities.

What is PyTorch?
As mentioned earlier, PyTorch is a tensor computation library that can be powered by 
GPUs. PyTorch is built with certain goals, which makes it different from all the other 
deep learning frameworks. During this book, you'll be revisiting these goals through 
different applications and by the end of the book, you should be able to get started 
with PyTorch for any sort of use case you have in mind, regardless of whether you 
are planning to prototype an idea or build a super-scalable model to production.

Being a Python-first framework, PyTorch took a big leap over other frameworks 
that implemented a Python wrapper on a monolithic C++ or C engine. In PyTorch, 
you can inherit PyTorch classes and customize as you desire. The imperative style 
of coding, which was built into the core of PyTorch, was possible only because of 
the Python-first approach. Even though some symbolic graph frameworks, like 
TensorFlow, MXNet, and CNTK, came up with an imperative approach, PyTorch 
has managed to stay on top because of community support and its flexibility.

The tape-based autograd system enables PyTorch to have dynamic graph capability. 
This is one of the major differences between PyTorch and other popular symbolic 
graph frameworks. Tape-based autograd powered the backpropagation algorithm of 
Chainer, autograd, and torch-autograd as well. With dynamic graph capability, your 
graph gets created as the Python interpreter reaches the corresponding line. This is 
called define by run, unlike TensorFlow's define and run approach.

Tape-based autograd uses reverse-mode automatic differentiation, where the graph 
saves each operation to the tape while you forward pass and then move backward 
through the tape for backpropagation. Dynamic graphs and a Python-first approach 
allow easy debugging, where you can use the usual Python debuggers like Pdb or 
editor-based debuggers.

The PyTorch core community did not just make a Python wrapper over Torch's 
C binary: it optimized the core and made improvements to the core. PyTorch 
intelligently chooses which algorithm to run for each operation you define, 
based on the input data.
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Installing PyTorch
If you have CUDA and cuDNN installed, PyTorch installation is dead simple 
(for GPU support, but in case you are trying out PyTorch and don't have GPUs 
with you, that's fine too). PyTorch's home page [2] shows an interactive screen to 
select the OS and package manager of your choice. Choose the options and execute 
the command to install it.

Though initially the support was just for Linux and Mac operating systems, from 
PyTorch 0.4 Windows is also in the supported operating system list. PyTorch has 
been packaged and shipped to PyPI and Conda. PyPI is the official Python repository 
for packages and the package manager, pip, can find PyTorch under the name Torch.

However, if you want to be adventurous and get the latest code, you can install 
PyTorch from the source by following the instructions on the GitHub README page. 
PyTorch has a nightly build that is being pushed to PyPI and Conda as well. A 
nightly build is useful if you want to get the latest code without going through 
the pain of installing from the source.

Figure 1.1: The installation process in the interactive UI from the PyTorch website
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What makes PyTorch popular?
Among the multitude of reliable deep learning frameworks, static graphs or the 
symbolic graph-based approach were being used by almost everyone because of 
the speed and efficiency. The inherent problems with the dynamic network, such as 
performance issues, prevented developers from spending a lot of time implementing 
one. However, the restrictions of static graphs prevented researchers from thinking 
of a multitude of different ways to attack a problem because the thought process had 
to be confined inside the box of static computational graphs.

As mentioned earlier, Harvard's Autograd package started as a solution for this 
problem, and then the Torch community adopted this idea from Python and 
implemented torch-autograd. Chainer and CMU's DyNet are probably the next two 
dynamic-graph-based frameworks that got huge community support. Although all 
these frameworks could solve the problems that static graphs had created with the 
help of the imperative approach, they didn't have the momentum that other popular 
static graph frameworks had. PyTorch was the absolute answer for this. The PyTorch 
team took the backend of the well-tested, renowned Torch framework and merged 
that with the front of Chainer to get the best mix. The team optimized the core, 
added more Pythonic APIs, and set up the abstraction correctly, such that PyTorch 
doesn't need an abstract library like Keras for beginners to get started.

PyTorch achieved wide acceptance in the research community because a majority 
of people were using Torch already and probably were frustrated by the way 
frameworks like TensorFlow evolved without giving much flexibility. The dynamic 
nature of PyTorch was a bonus for lots of people and helped them to accept PyTorch 
in its early stages.

PyTorch lets users define whatever operations Python allows them to in the 
forward pass. The backward pass automatically finds the way through the graph 
until the root node, and calculates the gradient while traversing back. Although it 
was a revolutionary idea, the product development community had not accepted 
PyTorch, just like they couldn't accept other frameworks that followed similar 
implementation. However, as the days passed, more and more people started 
migrating to PyTorch. Kaggle witnessed competitions where all the top rankers 
used PyTorch, and as mentioned earlier, universities started doing courses in 
PyTorch. This helped students to avoid learning a new graph language like they 
had to when using a symbolic graph-based framework.
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After the announcement of Caffe2, even product developers started experimenting 
with PyTorch, since the community announced the migration strategy of PyTorch 
models to Caffe2. Caffe2 is a static graph framework that can run your model 
even in mobile phones, so using PyTorch for prototyping is a win-win approach. 
You get the flexibility of PyTorch while building the network, and you get to 
transfer it to Caffe2 and use it in any production environment. However, with the 
1.0 release note, the PyTorch team made a huge jump from letting people learn 
two frameworks (one for production and one for research), to learning a single 
framework that has dynamic graph capability in the prototyping phase and can 
suddenly convert to a static-like optimized graph when it requires speed and 
efficiency. The PyTorch team merged the backend of Caffe2 with PyTorch's Aten 
backend, which let the user decide whether they wanted to run a less-optimized 
but highly flexible graph, or an optimized but less-flexible graph without rewriting 
the code base.

ONNX and DLPack were the next two "big things" that the AI community saw. 
Microsoft and Facebook together announced the Open Neural Network Exchange 
(ONNX) protocol, which aims to help developers to migrate any model from any 
framework to any other. ONNX is compatible with PyTorch, Caffe2, TensorFlow, 
MXNet, and CNTK and the community is building/improving the support for 
almost all the popular frameworks.

ONNX is built into the core of PyTorch and hence migrating a model to ONNX 
form doesn't require users to install any other package or tool. Meanwhile, DLPack 
is taking interoperability to the next level by defining a standard data structure 
that different frameworks should follow, so that the migration of a tensor from one 
framework to another, in the same program, doesn't require the user to serialize data 
or follow any other workarounds. For instance, if you have a program that can use a 
well-trained TensorFlow model for computer vision and a highly efficient PyTorch 
model for recurrent data, you could use a single program that could handle each 
of the three-dimensional frames from a video with the TensorFlow model and pass 
the output of the TensorFlow model directly to the PyTorch model to predict actions 
from the video. If you take a step back and look at the deep learning community, 
you can see that the whole world converges toward a single point where everything 
is interoperable with everything else and trying to approach problems with similar 
methods. That's a world we all want to live in.

Using computational graphs
Through evolution, humans have found that graphing the neural network gives 
us the power of reducing complexity to the bare minimum. A computational graph 
describes the data flow in the network through operations. 
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A graph, which is made by a group of nodes and edges connecting them, 
is a decades-old data structure that is still heavily used in several different 
implementations and is a data structure that will be valid probably until humans 
cease to exist. In computational graphs, nodes represent the tensors and edges 
represent the relationship between them.

Computational graphs help us to solve the mathematics and make the big networks 
intuitive. Neural networks, no matter how complex or big they are, are a group 
of mathematical operations. The obvious approach to solving an equation is to 
divide the equation into smaller units and pass the output of one to another and 
so on. The idea behind the graph approach is the same. You consider the operations 
inside the network as nodes and map them to a graph with relations between nodes 
representing the transition from one operation to another.

Computational graphs are at the core of all current advances in artificial intelligence. 
They made the foundation of deep learning frameworks. All the deep learning 
frameworks existing now do computations using the graph approach. This helps the 
frameworks to find the independent nodes and do their computation as a separate 
thread or process. Computational graphs help with doing the backpropagation as 
easily as moving from the child node to previous nodes, and carrying the gradients 
along while traversing back. This operation is called automatic differentiation, 
which is a 40-year-old idea. Automatic differentiation is considered one of the 10 
great numerical algorithms in the last century. Specifically, reverse-mode automatic 
differentiation is the core idea used behind computational graphs for doing 
backpropagation. PyTorch is built based on reverse-mode auto differentiation, so 
all the nodes keep the operation information with them until the control reaches 
the leaf node. Then the backpropagation starts from the leaf node and traverses 
backward. While moving back, the flow takes the gradient along with it and finds the 
partial derivatives corresponding to each node. In 1970, Seppo Linnainmaa, a Finnish 
mathematician and computer scientist, found that automatic differentiation can be 
used for algorithm verification. A lot of the other parallel efforts were recorded on 
the same concepts almost at the same time.

In deep learning, neural networks are for solving a mathematical equation. 
Regardless of how complex the task is, everything comes down to a giant 
mathematical equation, which you'll solve by optimizing the parameters of the 
neural network. The obvious way to solve it is "by hand." Consider solving the 
mathematical equation for ResNet with around 150 layers of a neural network; 
it is sort of impossible for a human being to iterate over such graphs thousands 
of times, doing the same operations manually each time to optimize the parameters. 
Computational graphs solve this problem by mapping all operations to a graph,  
level by level, and solving each node at a time. Figure 1.2 shows a simple 
computational graph with three operators. 
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The matrix multiplication operator on both sides gives two matrices as output, and 
they go through an addition operator, which in turn goes through another sigmoid 
operator. The whole graph is, in fact, trying to solve this equation:

Figure 1.2: Graph representation of the equation

However, the moment you map it to a graph, everything becomes crystal clear. You 
can visualize and understand what is happening and easily code it up because the 
flow is right in front of you.

All deep learning frameworks are built on the foundation of automatic differentiation 
and computational graphs, but there are two inherently different approaches for the 
implementation–static and dynamic graphs.

Using static graphs
The traditional way of approaching neural network architecture is with static graphs. 
Before doing anything with the data you give, the program builds the forward 
and backward pass of the graph. Different development groups have tried different 
approaches. Some build the forward pass first and then use the same graph instance 
for the forward and backward pass. Another approach is to build the forward 
static graph first, and then create and append the backward graph to the end of the 
forward graph, so that the whole forward-backward pass can be executed as a single 
graph execution by taking the nodes in chronological order.



Chapter 1

[ 9 ]

Figure 1.3 and 1.4: The same static graph used for the forward and backward pass
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Figure 1.5: Static graph: a different graph for the forward and backward pass

Static graphs come with certain inherent advantages over other approaches. Since 
you are restricting the program from dynamic changes, your program can make 
assumptions related to memory optimization and parallel execution while executing 
the graph. Memory optimization is the key aspect that framework developers worry 
about through most of their development time, and the reason is the humungous 
scope of optimizing memory and the subtleties that come along with those 
optimizations. Apache MXNet developers have written an amazing blog [3]  
talking about this in detail.

The neural network for predicting the XOR output in TensorFlow's static graph API 
is given as follows. This is a typical example of how static graphs execute. Initially, 
we declare all the input placeholders and then build the graph. If you look carefully, 
nowhere in the graph definition are we passing the data into it. Input variables are 
actually placeholders expecting data sometime in the future. Though the graph 
definition looks like we are doing mathematical operations on the data, we are 
actually defining the process, and that's when TensorFlow builds the optimized 
graph implementation using the internal engine:

x = tf.placeholder(tf.float32, shape=[None, 2], name='x-input')
y = tf.placeholder(tf.float32, shape=[None, 2], name='y-input')
w1 = tf.Variable(tf.random_uniform([2, 5], -1, 1), name="w1")
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w2 = tf.Variable(tf.random_uniform([5, 2], -1, 1), name="w2")
b1 = tf.Variable(tf.zeros([5]), name="b1")
b2 = tf.Variable(tf.zeros([2]), name="b2")
a2 = tf.sigmoid(tf.matmul(x, w1) + b1)
hyp = tf.matmul(a2, w2) + b2
cost = tf.reduce_mean(tf.losses.mean_squared_error(y, hyp))
train_step = tf.train.GradientDescentOptimizer(lr).minimize(cost)
prediction = tf.argmax(tf.nn.softmax(hyp), 1)

Once the interpreter finishes reading the graph definition, we start looping it through 
the data:

with tf.Session() as sess:
    sess.run(init)
    for i in range(epoch):
        sess.run(train_step, feed_dict={x_: XOR_X, y_: XOR_Y})

We start a TensorFlow session next. That's the only way you can interact with the 
graph you built beforehand. Inside the session, you loop through your data and pass 
the data to your graph using the session.run method. So, your input should be of 
the same size as you defined in the graph.

If you have forgotten what XOR is, the following table should give you enough 
information to recollect it from memory:

INPUT OUTPUT
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

Using dynamic graphs
The imperative style of programming has always had a larger user base, as the 
program flow is intuitive to any developer. Dynamic capability is a good side effect 
of imperative-style graph building. Unlike static graphs, dynamic graph architecture 
doesn't build the graph before the data pass. The program will wait for the data to 
come and build the graph as it iterates through the data. As a result, each iteration 
through the data builds a new graph instance and destroys it once the backward pass 
is done. Since the graph is being built for each iteration, it doesn't depend on the data 
size or length or structure. Natural language processing is one of the fields that needs 
this kind of approach. 
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For example, if you are trying to do sentiment analysis on thousands of sentences, 
with a static graph you need to hack and make workarounds. In a vanilla recurrent 
neural network (RNN) model, each word goes through one RNN unit, which 
generates output and the hidden state. This hidden state will be given to the next 
RNN, which processes the next word in the sentence. Since you made a fixed length 
slot while building your static graph, you need to augment your short sentences and 
cut down long sentences.

Figure 1.6: Static graph for an RNN unit with short, proper, and long sentences

The static graph given in the example shows how the data needs to be formatted for 
each iteration such that it won't break the prebuilt graph. However, in the dynamic 
graph, the network is flexible such that it gets created each time you pass the data, 
as shown in the preceding diagram.

The dynamic capability comes with a cost. Your graph cannot be preoptimized based 
on assumptions and you have to pay for the overhead of graph creation at each 
iteration. However, PyTorch is built to reduce the cost as much as possible. Since 
preoptimization is not something that a dynamic graph is capable of doing, PyTorch 
developers managed to bring down the cost of instant graph creation to a negligible 
amount. With all the optimization going into the core of PyTorch, it has proved to be 
faster than several other frameworks for specific use cases, even while offering the 
dynamic capability.
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Following is a code snippet written in PyTorch for the same XOR operation we 
developed earlier in TensorFlow:

x = torch.FloatTensor(XOR_X)
y = torch.FloatTensor(XOR_Y)
w1 = torch.randn(2, 5, requires_grad=True)
w2 = torch.randn(5, 2, requires_grad=True)
b1 = torch.zeros(5, requires_grad=True)
b2 = torch.zeros(2, requires_grad=True)

for epoch in range(epochs):
    a1 = x @ w1 + b1
    h1 = a2.sigmoid()
    a2 = h2 @ w2 + b1
    hyp = a3.sigmoid()
    cost = (hyp - y).pow(2).sum()
    cost.backward()

In the PyTorch code, the input variable definition is not creating placeholders; 
instead, it is wrapping the variable object onto your input. The graph definition 
is not executing once; instead, it is inside your loop and the graph is being built for 
each iteration. The only information you share between each graph instance is your 
weight matrix, which is what you want to optimize.

In this approach, if your data size or shape is changing while you're looping through 
it, it's absolutely fine to run that new-shaped data through your graph because the 
newly created graph can accept the new shape. The possibilities do not end there. 
If you want to change the graph's behavior dynamically, you can do that too. The 
example given in the recursive neural network session in Chapter 5, Sequential Data 
Processing, is built on this idea.

Exploring deep learning
Since man invented computers, we have called them intelligent systems, and yet we 
are always trying to augment their intelligence. In the old days, anything a computer 
could do that a human couldn't was considered artificial intelligence. Remembering 
huge amounts of data, doing mathematical operations on millions or billions of 
numbers, and so on was considered artificial intelligence. We called Deep Blue, 
the machine that beat chess grandmaster Garry Kasparov at chess, an artificially 
intelligent machine.
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Eventually, things that humans can't do and a computer can do became just computer 
programs. We realized that some things humans can do easily are impossible for 
a programmer to code up. This evolution changed everything. The number of 
possibilities or rules we could write down and make a computer work like us with 
was insanely large. Machine learning came to the rescue. People found a way to 
let the computers to learn the rules from examples, instead of having to code it up 
explicitly; that's called machine learning. An example is given in Figure 1.9, which 
shows how we could make a prediction of whether a customer will buy a product 
or not from his/her past shopping history.

Figure 1.7: Showing the dataset for a customer buying a product

We could predict most of the results, if not all of them. However, what if the number 
of data points that we could make a prediction from is a lot and we cannot process 
them with a mortal brain? A computer could look through the data and probably 
spit out the answer based on previous data. This data-driven approach can help 
us a lot, since the only thing we have to do is assume the relevant features and give 
them to the black box, which consists of different algorithms, to learn the rules or 
pattern from the feature set.
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There are problems. Even though we know what to look for, cleaning up the data 
and extracting the features is not an interesting task. The foremost trouble isn't this, 
however; we can't predict the features for high-dimensional data and the data of 
other media types efficiently. For example, in face recognition, we initially found 
the length of particulars in our face using the rule-based program and gave that to 
the neural network as input, because we thought that's the feature set that humans 
use to recognize faces.

Figure 1.8: Human-selected facial features

It turned out that the features that are so obvious for humans are not so obvious for 
computers and vice versa. The realization of the feature selection problem led us 
to the era of deep learning. This is a subset of machine learning where we use the 
same data-driven approach, but instead of selecting the features explicitly, we let 
the computer decide what the features should be.

Let's consider our face recognition example again. FaceNet, a 2014 paper from 
Google, tackled it with the help of deep learning. FaceNet implemented the whole 
application using two deep networks. The first network was to identify the feature 
set from faces and the second network was to use this feature set and recognize the 
face (technically speaking, classifying the face into different buckets). Essentially, the 
first network was doing what we did before and the second network was a simple 
and traditional machine learning algorithm.
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Deep networks are capable of identifying features from datasets, provided we have 
large labeled datasets. FaceNet's first network was trained with a huge dataset of 
faces with corresponding labels. The first network was trained to predict 128 features 
(generally speaking, there are 128 measurements from our faces, like the distance 
between the left eye and the right eye) from every face and the second network just 
used these 128 features to recognize a person.

Figure 1.9: A simple neural network

A simple neural network has a single hidden layer, an input layer, and an output 
layer. Theoretically, a single hidden layer should be able to approximate any 
complex mathematical equation, and we should be fine with a single layer. However, 
it turns out that the single hidden layer theory is not so practical. In deep networks, 
each layer is responsible for finding some features. Initial layers find more detailed 
features, and final layers abstract these detailed features and find high-level features.
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Figure 1.10: A deep neural network

Getting to know different architectures
Deep learning has been around for decades, and different structures and 
architectures evolved for different use cases. Some of them were based on ideas we 
had about our brain and some others were based on the actual working of the brain. 
All the upcoming chapters are based on the state-of-the-art architectures that the 
industry is using now. We'll cover one or more applications under each architecture, 
with each chapter covering the concepts, specifications, and technical details behind 
all of them, obviously with PyTorch code.

Fully connected networks
Fully connected, or dense or linear, networks are the most basic, yet powerful, 
architecture. This is a direct extension of what is commonly called machine 
learning, where you use neural networks with a single hidden layer. Fully 
connected layers act as the endpoint of all the architectures to find the probability 
distribution of the scores we find using the below deep network. A fully connected 
network, as the name suggests, has all the neurons connected to each other in the 
previous and next layers. The network might eventually decide to switch off some 
neurons by setting the weight, but in an ideal situation, initially, all of them take 
part in the communication.
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Encoders and decoders
Encoders and decoders are probably the next most basic architecture under the deep 
learning umbrella. All the networks have one or more encoder-decoder layers. You 
can consider hidden layers in fully connected layers as the encoded form coming 
from an encoder, and the output layer as a decoder that decodes the hidden layer 
into output. Commonly, encoders encode the input into an intermediate state, where 
the input is represented as vectors and then the decoder network decodes this into 
an output form that we want.

A canonical example of an encoder-decoder network is the sequence-to-sequence 
(seq2seq) network, which can be used for machine translation. A sentence, say in 
English, will be encoded to an intermediate vector representation, where the whole 
sentence will be chunked in the form of some floating-point numbers and the decoder 
decodes the output sentence in another language from the intermediate vector.

Figure 1.11: Seq2seq network

An autoencoder is a special type of encoder-decoder network and comes under the 
category of unsupervised learning. Autoencoders try to learn from unlabeled data, 
setting the target values to be equal to the input values. For example, if your input 
is an image of size 100 x 100, you'll have an input vector of dimension 10,000. So, the 
output size will also be 10,000, but the hidden layer size could be 500. In a nutshell, 
you are trying to convert your input to a hidden state representation of a smaller 
size, re-generating the same input from the hidden state.

If you were able to train a neural network that could do that, then voilà, you 
would have found a good compression algorithm where you could transfer high-
dimensional input to a lower-dimensional vector with an order of magnitude's gain.

Autoencoders are being used in different situations and industries nowadays. 
You'll see a similar architecture in Chapter 4, Computer Vision, when we discuss 
semantic segmentation. 
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Figure 1.12: Structure of an autoencoder

Recurrent neural networks
RNNs are one of the most common deep learning algorithms, and they took the 
whole world by storm. Almost all the state-of-the-art performance we have now 
in natural language processing or understanding is because of a variant of RNNs. In 
recurrent networks, you try to identify the smallest unit in your data and make your 
data a group of those units. In the example of natural language, the most common 
approach is to make one word a unit and consider the sentence as a group of words 
while processing it. You unfold your RNN for the whole sentence and process your 
sentence one word at a time. RNNs have variants that work for different datasets 
and sometimes, efficiency can be taken into account while choosing the variant. Long 
short-term memory (LSTM) and gated recurrent units (GRUs) cells are the most 
common RNN units.

Figure 1.13: A vector representation of words in a recurrent network


